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Summary

Smart composite materials have garnered a great interest from the engineering commu-

nity, and been the subject of many studies in the last few decades. This is a commonly

used terminology for composite materials being responsive to an external stimulus such

as electric/magnetic field, light, pH or temperature. Specifically, magnetorheological elas-

tomers (MREs) are examples of such responsive composites, typically they consist of fer-

romagnetic particles embedded in a polymer network. These composites exhibit a coupling

behaviour between magnetism and elasticity via the magnetostriction effect occurring in

the magnetic particles.

The underlying microstructure is a fundamental property in the analysis of heteroge-

neous materials’ behaviour. Microstructural information needs to be taken into account

in the macroscopic continuum to accurately describe and predict the material response.

Therefore, the main aim of this study is to develop numerical models and investigate

the static and dynamic behaviour of MRE materials by considering the influence of mi-

crostructural properties. In the static aspect, a multi-scale model has been proposed based

on a non-local homogenisation scheme. In this analytical homogenisation approach, mi-

crostructural effects have been introduced to macroscopic magneto-elastic continua via

additional material parameters: length-scales expressed in terms of Representative Vol-

ume Elements (RVE). Hence, a numerically-statistical procedure has been presented to

define and determine the RVE sizes for an MRE material. Further, the key parameters,

influencing the size of the determined RVE sizes have been studied. Thereafter, length-

scale enriched generalised gradient magneto-elastic continuum model has been used with

the determined RVE sizes to study the effectiveness of the model compared to a clas-

sical magneto-elastic continuum formulation that lacks of microstructural information.

Moreover, the effects of geometrical properties and magneto-elastic coupling on the longi-

tudinal wave propagation have been investigated, in particular, from appearance of band

gap phenomenon in the dynamic aspect.
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Chapter 1

Introduction

Stimuli-responsive materials and their composites have taken a great interest of the engi-

neering community in the last few decades due to their controllable/adjustable behaviours

and properties. These materials can respond to an external stimulus such as temperature,

light, pH, electric or magnetic field. Thus, they can alter their properties such as shape,

size, permeability, mechanical or optical features [1, 2].

Magnetostrictive materials, which exhibit magnetostriction under magnetic field, are

one of the well-known stimuli-responsive materials. Magnetostriction is a phenomenon

in which a magnetic field leads to a change in the shape&size of ferromagnetic materi-

als. This phenomenon was first discovered by James Prescott Joule in 1842 in iron bars.

Ferromagnetic materials (or their alloys) have small magnetic domains in which atomic

magnetic moments are aligned parallel to each other in the same direction. On a higher

scale, those magnetic moments of the domains lead to zero total magnetisation in the

material, and thus, material minimizes its potential energy [3,4]. When a magnetic field is

applied, those domains align themselves in the direction of the field and magnetostriction

occurs. Magnetostriction is denoted by λ. The strain caused by the applied magnetic field

will have a limit called saturation magnetostriction λs (see Figure 1.1). The change in

shape can be contraction or extension, and known as the direct (Joule) effect. An inverse

magnetostrictive effect, known as the Villari effect, can also be observed, and it describes

the change in magnetic state of the ferromagnetic material due to applied mechanical

stresses. These features presented a new field of research called magneto-elasticity for

stimuli-responsive materials and composites. [1–6].
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Figure 1.2: Representation of magnetisation process in magnetostrictive materials

The magnetic moments in the domains are oriented along one of the easy axes that are

defined by crystal structure of the material. An external magnetic field will result in the

domains aligned in the more energetically favourable direction with respect to the field

direction. In magnetostriction of ferromagnetic materials, there are three distinct regions

as shown in Figure 1.1. As mentioned, the magnetisation of the domains are randomly

aligned leading to a zero net magnetisation that is energetically favourable configuration
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Introduction

in the demagnetised state (Figure 1.2a). These magnetic domains are separated by bound-

aries called domain walls that are thin transition regions. When a low magnetic field is

applied, domain walls motion occurs in which resulting in growth of the magnetic domains

initially aligned favourably in the applied field direction (Figure 1.2b). Hence, there will

be small magnetostrictive strains in the first place at low fields and this is mostly because

of domains’s wall rotation that needs the least energy. Increasing the field causes the ro-

tation of the domains’s magnetisations to an easy axis that is the nearest to the applied

field (Figure 1.2c). In this region, there will be a steep increase in magnetostrictive strain

due to rotation of domains, and this part presents a relatively linear region that governs

most of the applications. Finally, material will reach to saturation in which magnetisation

vectors are oriented parallel to the field direction (Figure 1.2d) and last region will present

forced magnetostriction that has no practical interest [3, 7].

Ferromagnetic materials can be divided into two groups as soft- and hard-magnetic

materials [8]. Soft-magnetic materials show negligible magnetic hysteresis, which is the

remanent magnetisation in the material when the applied magnetic field is removed, and

present significant changes in material properties under external magnetic field. As a

consequence, they can provide significant mechanical deformations. Those changes are

reversed when the magnetic actuation is removed. Hard-magnetic materials present high

remanent magnetisation after switching off the external magnetic field (high magnetic

hysteresis), and they can show complex deformation phenomena [8].

Magnetorheological elastomers (MREs) are one type of such responsive composites of

ferromagnetic materials. They are generally manufactured by dispersion of magnetic par-

ticles or fibres in an elastomer, and the size of those solid magnetic inclusions embedded in

a polymer matrix can vary from micro to centimetre. These composite materials also show

a coupling between magnetism and elasticity via the magnetostriction effect [1,2,5,6]. By

applying a magnetic field to an MRE, the magnetic inclusions will show magnetostriction,

and the polymer matrix will experience some forces due to this phenomenon. As a result,

the composite material will also deform [5,9]. Monolithic form of the ferromagnetic materi-

als (or their alloys) generally show the largest magnetostrictive response compared to their

composite forms (i.e. MREs), however, polymer-bonded magnetic particles can have some

advantages over the monolithic counterparts. For instance, the required/desired geometry

(see Figure 1.3) can be created or resistivity and durability of the magnetic materials can

be increased [3,10,11]. Besides, several disadvantages (due to the brittleness of some types

of magnetostrictive materials) can also be improved [3, 11–14]. Magnetorheological fluids
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(MRFs) are another type of well-known soft smart materials. In contrast to MREs, MRFs

consist of magnetic particle suspensions in a carrier liquid, thus they show a liquid state

that can be turned into a semi-solid state when the external magnetic field is applied [15].

In the context of this study, MREs will be the subject of research, and a magneto-

elastic composite material will refer to as MREs unless otherwise stated.

Figure 1.3: Examples and various shapes of MREs. (Reprinted with permission. ©K.

Dobberke for Fraunhofer ISC, 2018)

Magneto-elastic coupling phenomenon proposes a variety of potential applications

in many engineering fields, including actuators, sensors, vibration isolation and control,

sensing of ultrasonic waves, micro beams/plates in micro-electro-mechanical systems and

health monitoring [1,2,5,6,8,16–20]. A comprehensive review has been provided by Bas-

tola et al. [19] for applications, and recent progress about MREs by also covering the

fabrication processes, widely used materials for matrix, particle and additives in such

composites. As stated, the most extensively studied and presented applications are shock

and vibration isolators/absorbers, in addition to some other applications such as dampers,

sandwich beams, actuators and sensors. Bastola and Hossain [20] also presented the cur-

rent state of art for shape-morphing (bending, twisting, jumping, crawling) magnetoactive

soft polymers with an extensive review focusing on material selection, fabrication methods,

programming and actuation techniques. They also provided a very useful categorisation

of the applications in terms of scale-wise classification namely macro-, mili-, micro- and

nano-scale applications.

Böse et al. [15] have studied the relationship between the viscoelastic properties and the
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composition of MREs under external magnetic field. They also manufactured ring-shaped

MREs to study different actuation types for possible applications such as a pumping

device, proportional valves and locking devices. Sun et al. [21] proposed a semi-active

mass damper made of multilayered MREs and steel structures. It was shown that the

shear modulus of MRE damper can be controlled by an external magnetic field, and

vibrations can be suppressed. They concluded that MRE based mass damper can alter

its natural frequency for different earthquakes. Besides MREs, MRFs are also used as

adaptive vibration dampers, controllable shock absorbers, and seat dampers in automotive

industry [15].

Application of MREs has initially emerged in material sciences and actuators, but the

concept is now being used in the biomedical field. Potential medical applications of these

materials including targeting cells, molecule separation, controlled drug release, shape

memory polymers, rupture of a capsule are promising and advanced examples of MRE

applications [1, 16, 20,22,23].

Despite being mostly labrotary-based prototypes, it was also reported that some po-

tential future applications of magnetoactive soft materials such as controlled drug delivery,

micro soft robotics, artificial muscle and invasive surgery are also being motivational for

researches [20]. An in-depth and instrumental review has been given by Kim and Zhao [23]

by addressing the recent progress, challenges and future aspects for soft magnetic mate-

rials specifically in biomedical and robotic applications. Besides conventional fabrication

techniques, 3D/4D printing is relatively a new fabrication technique in magneto/electro-

responsive polymers proposing some advantages such as single-step production, creation

of complex geometries and specifically tailored devices for users [20, 22]. The details,

types and recent progress about 3D/4D printing techniques have been reviewed by Yarali

et al. [22] in addition to current and future applications of magneto/electro-responsive

materials in biomedical field particularly.

Furthermore, there are various static and dynamic testing methods (i.e. uniaxial ten-

sion, compression, shear, bi-axial and forced vibration etc.) and experimental studies for

the magneto-mechanical characterisation of MREs in the literature. Although the testing

conditions and materials used in MREs differ in those studies, some general trends can

be observed as summarized in the work of Bastola and Hossain [24]. Moreover, the au-

thors suggested several standardisation ideas for magneto-mechanical characterisation of

MREs, test setups and testing device settings to address the need of testing protocol for

MREs.
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1.1 Magnetorheological elastomers with Terfenol-D

Various soft-magnetic materials such as Terfenol-D, cobalt ferrite, certain earth metals

and iron alloys can be used as magnetic filler with several alternatives of elastic matrix

such as natural rubber, silicone rubber, vinyl rubber or polyurethane [1,6,25,26]. Terfenol-

D and silicone rubber are commonly used elastomer matrix and magnetic material due

to the simplicity of the preparation of the composite and the potential of very high

magnetostrictive response [15]. For this reason, Terfenol-D will be of particular interest

as a magnetic material here, and more details will be covered for this material in the

following sections.

1.1 Magnetorheological elastomers with Terfenol-D

In 1970s, it was reported that an alloy of rare earth metals can achieve higher magne-

tostriction strains at room temperatures compared to pure metals that show low magne-

tostriction. This material was named Terfenol-D (TbxD1−xFey), and it is an alloy of rare

earth elements terbium (Ter), iron (Fe), and dysprosium (D) developed in naval ordnance

laboratory (NOL) in US [3,27].

Terfenol-D is called as a giant magnetostrictive material since it is able to show high

saturation strains in a range of 1000-1500 ppm [11, 27, 28]. Currently, the saturation

strain of Terfenol-D is the largest known at room temperatures. This material can be

manufactured in different forms such as powder, fibers, rods and films depending on the

purpose/application (see Figure 1.4 and Figure 1.5 for frequently used fiber and powder

forms). Moreover, the sizes of Terfenol-D can change from µm to cm depending on the

form [3, 4, 28]. Mechanical stress and magnetic conditions are influential parameters on

the material properties of Terfenol-D in addition to its crystal structure. Therefore, ma-

terial properties and some characteristics such as the saturation magnetostriction, elastic

properties, piezomagnetic coupling, and magnetic permeability differ widely as reported

in the literature [4,13,27,28]. Terfenol-D is a brittle material with low tensile strength, it

has a cubic crystal structure which leads to high anisotropy in magnetostriction [3, 13].
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Introduction

Figure 1.4: Long (a) and short (b) fibres of Terfenol-D. (Reprinted, with permission,

from Lo et al. [28]. ©2006 IEEE)

Combining Terfenol-D particles or fibres with a polymer can lead to a decrease in

maximum magnetostriction (saturation strain) and magneto-elastic coupling coefficient

compared to a monolithic form of Terfenol-D. However, preferred or desired shape can be

given to the composite and limitations due to brittleness can be improved as stated before.

Furthermore, low resistivity of Terfenol-D causes Eddy current losses at high frequencies,

but a polymer matrix can create insulating phase between the Terfenol-D particles and

reduce the losses [3, 10, 12]. Therefore, MREs consisting of Terfenol-D material as the

magnetic constituent have become promising and well studied type of MREs due to those

advantages and being highly responsive.

Figure 1.5: SEM images of Terfenol-D particles with various distributions (a) 250–300,

(b) 90–106, (c)<300, and (d)<45 µm. (Reprinted from Duenas and Carman [29], with the

permission of AIP Publishing.)
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1.1 Magnetorheological elastomers with Terfenol-D

Mech and Kaleta [27] have shown the positive correlation between the volume frac-

tion (Vf) of Terfenol-D powder (maximum of 70% Vf) and magnetostrictive response of

the composite. Further, they observed the difference in magnetostriction between bulk

Terfenol-D and polymer-bonded composite. Although the composite has shown smaller

magnetostriction compared to bulk form as expected, it still presented tens of times larger

response than traditional magnetostrictive counterparts such as iron, nickel and cobalt.

For this reason, Terfenol-D can be a preferable option over those magnetic materials in

MREs. Moreover, Rodriguez et al. [10] have studied magnetostriction of polyurethane

elastomer/Terfenol-D composites. They have demonstrated that samples with 50% wt

aligned Terfenol-D particles (anisotropic samples) can reach ≈ 800 ppm of magnetostric-

tion which is a promising value for magnetic actuators. In their later study, Rodriguez

et al. [11] also observed that composites with larger Terfenol-D particles and narrower

particle size distribution exhibit greater magnetostriction around 1350 ppm.

In addition to particulate Terfenol-D composites, Lo et al. [28] studied the magne-

tostriction of epoxy-bonded short and long (continuous) Terfenol-D fibres with a volume

fraction of 50% Vf . It was seen that continuous fibre configuration of the composite ex-

hibited larger magnetostriction (≈ 1300 ppm) than all other forms (particulate, short

fibre) including monolithic Terfenol-D. The reason for this interesting and significant im-

provement was attributed to a high aspect ratio for better stress transfer from fibres

to polymer matrix, positioning the magnetic material in the direction of highly magne-

tostrictive crystallographic axis, and residual compressive stresses occurred in the fibres

during the curing process. Similarly, Altin et al. [30] manufactured composites consisting

of crystallographically aligned Terfenol-D fibrils (with different volume fractions) in vinyl

ester epoxy. In this study, static properties of the composites such as Young’s modulus,

magnetic permeability, and piezomagnetic coupling coefficient were analysed. They also

observed that crystallographically aligned Terfenol-D composite with 49% Vf of inclusions

can have a coupling coefficient approximately 75% and magnetostriction roughly 90% of

monolithic Terfenol-D.

In some applications of monolithic Terfenol-D and its composites, it was observed

that a pre-stress can increase the saturation strain and piezomagnetic coefficient of the

material along the direction of external magnetic field. This behaviour can be explained by

the rotations of the magnetic domains from their initial states due to pre-stress. In other

words, a compression pre-stress applied to Terfenol-D causes an increase in the number

of domains aligned unfavourably with respect to applied field direction, and thus more
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domains can be aligned along the field direction resulting in higher magnetostriction

[3, 4, 7]. Kaleta et al. [14] studied the influence of pre-stress on the magnetostriction,

and observed that pre-stress is less influential for the composite compared to monolithic

Terfenol-D. Moreover, Ran et al. [12] proposed a non-linear magneto-elastic coupled model

considering the effect of pre-stress for polymer-bonded Terfenol-D composites. This model

was able to predict the saturation magnetostriction of the composite accurately by showing

good agreement with the experimental results.

1.2 Particulate MREs and influential parameters in

magneto-elastic behaviour

In magnetic particulate composites, the particle distribution plays a significant role in the

magnetostriction of the composite material, as well as size, shape and volume fraction of

the particles. On a macro-level, MREs can be categorised as isotropic or anisotropic ac-

cording to the particle distribution in the polymer matrix (see Figure 1.6 and Figure 1.7).

In manufacturing process, polymer and particles are mixed mechanically with some addi-

tives, and then the mixture is cured with or without magnetic field to obtain anisotropic

or isotropic MREs, respectively. For the anisotropic case, dipolar moments are induced

to magnetic particles when external magnetic field is applied, and this results in forming

chain-like columnar structures of particles in the matrix [31].

Figure 1.6: SEM images of isotropic and anisotropic polymer-bonded Carbonyl Iron (CI)

powder composites (Reprinted from Khairi et al. [32] and An et al. [33] respectively, with

permission from Elsevier)
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1.2 Particulate MREs and influential parameters in magneto-elastic behaviour

Figure 1.7: Anisotropic polymer-bonded Terfenol-D composite. (Reprinted from Duenas

and Carman [29], with permission of AIP Publishing)

Various studies have shown that anisotropic MREs propose larger magneto-elastic

response and they can have more functionality compared to isotropic counterparts [29,

32]. However, some difficulties can emerge during the fabrication, i.e. high intensity of

external magnetic field is needed during cross-link process or thickness of MRE can be

limited due to sharp decrease in magnetic flux density in the MRE [34]. In both types of

MREs, high permeability, high magnetic saturation and low residual magnetisation are

the preferable and desirable features for the magnetic particles in the elastomers to reach

stronger magnetostriction effects [1, 6, 26,35].

There are several reviews on the fundamentals of MREs, their production, modelling

and applications in the literature. Thévenot et al. [1] and Filipcsei et al. [2] have treated

magnetic responsive polymer composites (MRPCs) by covering different types of MRPCs,

fabrication methods, detailed examples, the preparation steps and used products. Elhajjar

et al. [5] evaluated the literature on magnetostrictive polymer composites (MPCs) after

2000 and presented progress and the current state of those materials. Some examples of

different compositions (such as cobalt ferrites, Terfenol-D alloys and carbonyl iron) and

their properties have been discussed in this review. Moreover, an overview from Ekreem

et al. [9] explained how magnetostriction occurs and measurement techniques of this

phenomenon. The advantages and disadvantages of the measurement procedures were

compared to conclude the most common and sensitive methods.

In Newnham’s nomenclature, composite materials consist of randomly distributed and

oriented particles in a matrix are called [0-3] type composites. Besides, composites with

fibres or particle chains in a direction embedded in the matrix are called [1-3] type [3].

In the literature, it is also possible to name isotropic and anisotropic MREs with their
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corresponding [0-3] or [1-3] type, respectively. Duenas and Carman [29] conducted an

experimental study for [1-3] type composites including Terfenol-D particle chains since

they were expected to provide more responsive behaviour compared to [0-3] type even for

the lower volume fractions. The higher magnetostrictive response in [1-3] type composites

was attributed to crystal orientation of the Terfenol-D particles along the easy axis. They

also studied the influence of particle size and distribution on the magnetostrictive response

of the MREs. It was reported that decrease in particle size results in an increase in

demagnetisation effects, thus the strain response of the composite is reduced. Moreover,

Winger et al. [36] studied the dependency of the magnetorheological effect on the particle

size fraction, and demonstrated that there is a correlation between larger particle size and

magnetorheological effect.

Besides particle size and distribution, volume (and weight) fraction of the magnetic

particles is also an important parameter in magneto-elastic response. Bellelli and Spaggiari

[37] performed compression tests and three-point bending experiments on the isotropic

and anisotropic MREs with or without external magnetic field. A phenomenological model

has been developed to predict the mechanical response of MREs subjected to compressive

stress. They concluded that weight fraction of the magnetic particles is the most influential

parameter on the specimen behaviour in their experiments. Moreover, Li and Zhang [38]

proposed an experimental and theoretical model, where an optimum volume fraction was

calculated for magnetic particles that leads to an improvement in magnetorheological

effects.

The temperature is another influential parameter on the properties and behaviour of

the MREs since the polymer materials are used as matrix phase. Wen et al. [39] studied

static and dynamic mechanical properties of anisotropic MREs under different tempera-

tures. It was shown that temperature increase causes a decrease in initial modulus and

magnetic-induced modulus due to rotation of particle chains in the polymer matrix.

In addition to using only one type of magnetic particle in MREs, different compo-

sitions of magnetic inclusions can also be used simultaneously. Furthermore, some non-

magnetisable particles can also be added to MREs for some special purposes. These type

of MREs are called hybrid MREs, and this feature can lead to an optimisation of the

magneto-elastic performance. Borin et al. [40] investigated the mechanical stress that re-

sults from the magnetostriction of hybrid magneto-elastic materials. In the experimental

setup, two different types of magnetic particles: CI powder (soft) and NdFeB (hard) were

used with a polymer host (PDSM silicone). They observed an increase in magnetostriction
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for hybrid form compared to those consist of only soft-magnetic CI particles.

Moreover, an experimental and computational characterisation of ultra-soft hybrid

MREs consisting soft and hard magnetic particles has been given by Mateos et al. [8] to

study the influence of different mixing ratios and the role of soft/hard particles on the

magneto-mechanical performance. From the numerical results, it was suggested that soft

magnetic particles lead to an amplification of the magnetisation while the hard magnetic

particles contribute the actuation modes. It was also shown that hybrid MREs present

enhanced stiffening under an applied magnetic field which is almost 1.5 and 4 times

larger than MREs consisting only soft or hard magnetic particles, respectively. Burgaz

and Goksuzoglu [34] also manufactured and studied isotropic hybrid MREs with the

combinations of carbon-black, carbonyl iron powder (CIP) and bare iron powder (BIP)

for dynamic applications. They pointed out high magnetic particle concentration results

in aggregation of those particles which leads to undesirable properties such as very high

damping ratio and low tensile strength for dynamic applications. Using carbon-black

can prevent those issues by increasing filler-matrix interaction and improving mechanical

properties.

Finally, another experimental study have been carried out by Bastola et al. [26] for

MREs. They presented an innovative fabrication method and demonstrated that 3D print-

ing can also be used to create anisotropic MREs without the need to use an external mag-

netic field. This study presents a new type of MRE manufacturing method, and it has

been observed that some printing parameters, such as feed rate, extrusion pressure, and

initial height have a significant effect on the properties of the MREs. In the experiments,

it has been shown that damping capacity and dynamic stiffness of the 3D printed MREs

could be tuned by applying a moderate external magnetic field.

1.3 Magneto-elastic modelling

After their introduction, researchers have conducted various experimental studies for

MREs, and also developed theoretical and numerical models to investigate the behaviour

of these composites.

Thus, besides experimental works, computational modelling of MREs has also been

instrumental in the understanding of the behaviour, optimising the designs and exploring

the potentials of these composites. Mechanical model of a composite material can be cre-

ated by following two distinct approaches called macroscopic and microscopic approach.
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In macroscopic approach, a mechanical model is established based on the empirical data

that characterise the material behaviour (see Figure 1.8a). Consequently, the detailed

description of materials such as geometrical and constitutive properties of the all com-

ponents is not necessary in this approach. On the other hand, microscopic approach is

built on the detailed definition of internal structure by considering the components’ own

constitutive response and geometry (see Figure 1.8b) [41,42]. Microscopic or macroscopic

modelling approaches can also be called as a mono-scale approach due to considering the

composite material on one level (scale).

Alternatively, a third combined approach known as multi-scale approach, in which

various scales are analysed simultaneously, can be used (see Figure 1.8c). The multi-scale

approach considers material on the microscopic level to reflect the real structure of het-

erogeneous material, and the macroscopic level to model the material as homogeneous

with effective properties. As mentioned, the geometrical configuration and constitutive

properties of the each component are not taken into account explicitly on a higher level

(macro-scale). Conversely, lower level (micro-scale) models the material as a heteroge-

neous medium by considering each component’s configuration and constitutive properties

explicitly [41–44]. In the following chapters, a multi-scale approach will be presented for an

MRE material, and more discussion on mono- and multi-scale approaches will be provided.

(a) (b) (c)

Figure 1.8: Different approaches. Macrostructural (a), microstructural (b) and Multi-

scale approach (c)

1.3.1 Macro-scale modelling in magneto-elasticity

Several macroscopic material models have been developed for MREs. A macroscopic model

has been proposed by Attaran et al. [45] to capture the mechanical deformation. The au-

thors have simplified a previously developed continuum model for this reduced form, and

it was reported that this reduced model shows good agreement with the experimental
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results. Raikher and Stolbov [46] have followed a continuum approach for MREs by con-

sidering them as a homogeneous elastic and isotropically magnetisable medium. Despite

some limitations and drawbacks, the model is able to reproduce experimental results with

acceptable accuracy. Besides, Akbari and Khajehsaeid [47] have developed a continuum

model for MREs with finite strains that takes the influence of magnetisation into account

by directly introducing to material shear modulus. They showed that this model can

simplify the constitutive model and considers the magnetic saturation in MREs.

Dorfmann and Ogden [48] studied constitutive relations for isotropic magneto-sensitive

(MS) elastic continua by using the electromechanical and thermomechanical theories.

After appropriate simplifications for such a material, they used their material model to

address axial shear behaviour of a circular cylindrical magneto-sensitive tube under an

applied magnetic field. The results showed that magnetic field leads to an increase in

shear stiffness of the material. Brigadnov and Dorfmann [49] modelled MS elastomers as

a moving non-polar deformable continuum in an electro-magnetic field. They considered

the MS material as hyperelastic and derived the constitutive equations to study shear

deformation of a rectangular shaped MS elastomer confined by parallel plates at the top

and bottom. By applying a magnetic field normal to the plates, it was also shown that

the influence of magnetic field was to stiffen the shear response of the MS material.

Further, Bustamante [50] developed a theoretical basis for non-linear transversely

isotropic magneto-active elastomers based on the non-linear magneto-elastic theory pro-

vided by Dorfmann and Ogden [48,51] used for only the isotropic magneto-elastic solids.

By using the results of two basic problems (simple shear of a slab, simple tension of circular

cylinder) and available experimental data, a prototype constitutive model was provided

to give the closed-form solutions of some boundary value problems. Another model for

anisotropic non-linear MRE bodies has been given by Shariff et al. [52] by introducing

a new set of spectral invariants in total energy function. They showed that this form of

energy function with novel spectral invariants is more general, presents simpler expression

for the total stresses (in classical homogeneous and non-homogeneous problems) and has

an experimental advantage.

Moreover, Saxena et al. [53] pointed out that magneto-elastic materials are naturally

viscoelastic since they are generally polymer based, and the response of the material

to an external magnetic induction is not perfectly instantaneous for all materials. The

magnetic field developed in the material will not be constant, but start from a non-

equilibrium value and approach to equilibrium in a finite time. Since these features are
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significant factors in designing MRE actuators, they presented a mathematical modelling

of magneto-viscoelastic behaviour by combining magneto-elastic theory (given by Dorf-

mann and Ogden [51]) and theory of mechanical viscoelasticity to consider magnetic and

mechanical dissipation effects appropriately. Following this study, Saxena et al. [54] ex-

tended the proposed non-linear magneto-viscoelastic modelling to anisotropic MREs. In

this model, an additional deformation gradient and a magnetic induction are considered

in the direction of particle chains. By following the previously developed ideas and further

decomposition of free energy function, they proposed physically reasonable and thermo-

dynamically consistent free energy density functions and evaluation laws to address the

problems such as stationary pure shear, time dependent strain and magnetic induction.

Similar to MREs, magneto-electro-mechanical soft materials are also promising candi-

dates for several advanced applications such as magneto-electric random access memory,

wireless energy harvesting and non-volatile memories. Bustamante et al. [55] proposed

mathematical framework to obtain constitutive equations of non-linear magneto-electric

soft materials at finite strains. With this model, they studied different homogeneous and

non-homogeneous boundary value problems.

Furthermore, Haldar et al. [56] proposed the finite element implementation of rate-

dependent (under time dependent mechanical and magnetic loadings) response of MRE

materials by capturing the saturation effects in magnetostriction. Dadgar-Rad and Hos-

sain [57] have also proposed a viscoelastic formulation for the time dependent analysis of

soft materials consisting hard-magnetic constituent. Numerical examples given for 2D soft

beams showed that the results of this model can be validated by previously reported re-

sults in case of purely elastic deformations. Following this validation, the authors studied

the creep response of the beams in case of viscoelastic deformations and investigated the

influence of viscoelastic parameters such as relaxation time and long-term shear modulus.

1.3.2 Micro-scale modelling in magneto-elasticity

Microscopic material models have also been presented for MREs. Wood and Camp [25]

presented a microscopic model to study the relationship between features of the mi-

crostructure and physical properties by using Monte Carlo computer simulations. It was

shown that the elastic modulus can be controlled by applying a uniform magnetic field

to the samples at the gel-formation stage. Another microscopically motivated approach

has been proposed by Kalina et al. [35] to study the deformation behaviour of isotropic
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and anisotropic MREs. Morever, Moreno-Mateos et al [8] provided a detailed experi-

mental characterisation and multi-physics microstructural computational approach for

Hybrid MREs consisting of soft- and hard-magnetic particles together. It was shown that

combination of soft- and hard-particles can have some functionalities such as stiffening,

amplification of the magnetisation and torsional actuation.

Besides, a novel modelling approach has been proposed by Ethiraj and Miehe [58] for

MREs with a constitutive formulation considering two microscopic fundamental properties

namely the energy of magnetized inclusions and the elastic energy of polymer phase. By

taking into account the dipole-dipole interactions, the presented model was used to solve

several types of application-motivated boundary value problems such as spherical MRE

sample, a finger actuator and ring shaped actuator in a valve. Further, Gonzales and

Hossain [59] developed a continuum model by following a microstructural-based approach

and considering the viscoelastic nature of the MREs. In this novel model, the influence of

distribution of the particles has been considered in three main groups namely isotropic,

perfectly aligned chain and wavy chain cases by also capturing the rate dependent, non-

linear magneto-mechanical response of the materials.

1.3.3 Multi-scale modelling in magneto-elasticity

Multi-scale analysis have been also used by researches in magneto-elastic modelling. Var-

ious strategies can be followed in multi-scale analysis, and they can be categorized into

two main groups as analytical continualisation or homogenisation and computational ho-

mogenisation techniques.

In the computational homogenisation technique, an explicit constitutive equation is

not described on the macro-level. Instead, a constitutive relation is obtained implicitly

from the macro-micro-macro connection. This connection is carried out via transferring of

the macro-level strains to the micro-level as displacement boundary conditions and then

solving a boundary value problem. Hereafter, reaction forces obtained from this problem

are transformed as stresses to the macro-level by using a homogenisation technique [41].

Alternatively, analytical techniques may be preferred. The difference of this technique is

having explicit constitutive equations on the macro-level. Here, a heterogeneous material

model (continuum or discrete) is used at the lower scale, and boundary value problems are

solved. These solutions are translated into the effective properties. Material is assumed

to be homogeneous on the macro-level, and the constants in constitutive relations in the
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macrostructure appear in the form of those effective properties [41,42].

(a)

effective
properties

model
parameter

Micro-level

Macro-level

strains

reaction forces
stiffness relations

Micro-level

Macro-level

(b)

Figure 1.9: Analytical (a) and computational (b) homogenisation representation

In addition to macroscopically and microscopically motivated models, non-local con-

tinuum theories have been extended to magneto-elasticity by researches to include the

information from the micro-level to the macroscopic continuum via additional material

constants such as length-scale parameters [60–63]. Xu et al. [61] have extended the the-

ory to magneto-elasticity, and derived macro-level magneto-elastic constitutive relation

enriched with higher order terms accompanied by characteristic length-scale parameters.

Ke et al. [62] investigated the free vibration of magneto-electro-elastic nanoplates based

on Eringen’s non-local theory, and they showed that the non-local parameter and the nat-

ural frequencies are inversely proportional. Besides free vibration, non-local bending and

buckling behaviour of a size dependent plate model have been given for magneto-electro-

thermo-elastic nanoplates by Gholamo et al. [60]. It was shown that non-local theory

always predicts smaller critical buckling load and natural frequencies than those from the

classical theory in the nanoplate. Non-local strain gradient theory has been used by [63]
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to analyse the static bending behaviour of a sandwich nanoplate consisting of a FGM

core and piezomagnetic face sheets. They presented that an increase in strain gradient

parameter results in an increase in stiffness, and thus the displacements are decreased.

Zabihyan et al. [64] have followed a multi-scale approach by using fully-coupled finite

element method with computational homogenisation procedure to obtain the response of

MRE at the macro-scale. The effects of different microstructures have been studied, and it

was shown that microstructure type and boundary conditions on micro-level has a signif-

icant influence on the macroscopic response. Further, Kalina et al. [65] have presented a

macroscopic model for MREs by using a computational homogenisation technique. Vari-

ous geometries and different volume fraction of magnetic particles have been investigated,

and magnetostrictive response of the macroscopic MRE was determined by considering

the underlying microstructure.

Moreover, Galipeau et al. [66] studied the effective macroscopic behaviour of mag-

netoactive materials and the influence of the microstructural properties such as particle

concentration, shape, distribution and deformation. Finite element models and a theoret-

ical homogenisation framework have been presented to investigate the behaviour of peri-

odic (rectangular and quasi-hexagonal) and random microstructures. On the macroscopic

scale, the total forces in the magnetoactive composite resulted from the applied magnetic

field and total magnetostriction have been analysed. It was concluded that the microstruc-

ture of a magnetoactive composite has a significant role in optimizing the macroscopic

magneto-elastic performance of such composites. Another multi-scale approach has been

proposed by Javili et al. [67], and the connections between micro- and macro-level vari-

ables have been established by using a geometrically nonlinear homogenisation scheme

for MREs at finite strains. On the micro-level unit cell, periodic boundary conditions

have been considered and finite element method has been used to compute the macro-

level field variables and tangent modulus. Two and three dimensional numerical examples

under simple shear and simple extension loading conditions have been addressed in this

model.

1.3.4 Representative volume element

In the multi-scale analysis, a Representative Volume Element (RVE) concept is typically

used to analyse materials on the micro-scale in both analytical and computational ho-

mogenisation techniques. Here, an RVE is the smallest specimen of a material, which
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is large enough to be constitutively valid. Therefore, the RVE must be satisfactorily

smaller than macroscopic dimensions, but it must have sufficient information about the

microstructure [41]. Generally, the existence of the RVE is assumed and its size is pre-

scribed in applications. In literature, several definitions have been made on the RVE, and

different procedures have been given in order to determine the size of an RVE for different

engineering materials [68–71]. Some commonly accepted views are to associate the size of

RVE with the largest inclusion particle size, number of grains or diameter of reinforce-

ment in the heterogeneous material [71–74]. In addition to these different procedures, a

systematic approach has been presented by Gitman [41] to determine the RVE size in

quasi-brittle materials.

Metsch et al. [75] have modelled a range of RVEs based on a microscopically motivated

continuum approach to investigate microstructural interactions. By applying varying am-

plitudes of the magnetic field, deformation of the isotropic and anisotropic RVE samples

has been analysed for different volume fractions of the magnetic particles. This model is

capable of describing magnetostriction by showing good agreement with the experimental

results in the literature. Sun et al. [76] have proposed another RVE approach to investigate

the effective mechanical properties of anisotropic MREs under plane stress conditions. The

influence of some parameters such as magnetic field intensity, particle diameter and dis-

tance between the particles were examined and resulted in a positive correlation between

shear modulus and field intensity/particle diameter, and inverse proportionality to the

distance between the particles.

1.4 Piezomagnetism

Magnetostrictive materials exhibit non-linear material behaviour, but magnetostriction

can be modelled as a linear behaviour in a certain range of operation. This linear magne-

tostrictive phenomenon follows piezomagnetic laws, and it can be obtained by considering

only the variations around initial bias conditions including a magnetic field and mechan-

ical pre-stress. In a static magnetic field (curl-free), the constitutive equations of a linear

piezomagnetic medium in classical continuum theory are described as [18,77–82]

σij = CH
ijklεkl − qkijHk (1.1a)

Bi = qiklεkl + µεikHk (1.1b)
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where σ and ε are the stress and strain tensors, B and H are magnetic induction and

magnetic field vectors. C is the stiffness tensor for constant magnetic field and µ is the

magnetic permeability tensor for constant strains, and q is the piezomagnetic coupling

tensor. Constitutive equations can be written in matrix form as shown below



σ1

σ2

σ3

σ4

σ5

σ6

B1

B2

B3



=



CH
11 CH

12 CH
13 CH

14 CH
15 CH

16 −q11 −q21 −q31

CH
21 CH

22 CH
23 CH

24 CH
25 CH

26 −q12 −q22 −q32

CH
31 CH

32 CH
33 CH

34 CH
35 CH

36 −q13 −q23 −q33

CH
41 CH

42 CH
43 CH

44 CH
45 CH

46 −q14 −q24 −q34

CH
51 CH

52 CH
53 CH

54 CH
55 CH

56 −q15 −q25 −q35

CH
61 CH

62 CH
63 CH

64 CH
65 CH

66 −q16 −q26 −q36

q11 q12 q13 q14 q15 q16 µε11 µε12 µε13

q21 q22 q23 q24 q25 q26 µε21 µε22 µε23

q31 q32 q33 q34 q35 q36 µε31 µε32 µε33





ε1

ε2

ε3

ε4

ε5

ε6

H1

H2

H3



(1.2)

via the Voigt notation.

In the literature, it is possible to see different forms of piezomagnetic constitutive

equations. Soh and Liu [79] have presented different forms of magnetoelectroelastic con-

stitutive equations and their thermodynamic potentials. Although they provided the forms

for magnetoelectroelastic solids, magneto-elastic (or piezomagnetic) forms can be reduced

from those. They also presented the relationship between the material constants in dif-

ferent forms. Two most commonly used forms in the literature and the relations between

the constants have been given in Table 1.1. In this thesis, the form given in Eq. (1.1) with

the independent variables ε and H will always be adopted. For the ease of readability,

quantities in piezomagnetic constitutive equations in Eq. (1.1) have been summarized in

Table 1.2 with their symbols and SI units.
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The most common two forms Relationship between constants

ε = sHσ + dH sH = (CH)−1

B = dt σ + µσH

q = CHd

σ = CHε - qH

B = qtε+ µεH µε = µσ − dtq

Note : Matrix notation is used and t denotes the transposition of a matrix.

Table 1.1: Relationship between constants in different forms

Quantity Symbol Unit

Stress σ (or T) N/m2

Magnetic Induction B T

Strain ε (or S) -

Magnetic field H A/m

Elastic compliance (Under constant H field) sH m2/N

Elastic stiffness (Under constant H field) CH N/m2

Piezomagnetic constant (σ & H independent variable) d m/A

Piezomagnetic constant (ε & H independent variable) q (or e) N/Am

Magnetic permeability (Under constant stress σ) µσ (or µT) N/A2

Magnetic permeability (Under constant strain ε) µε (or µS) N/A2

Scalar magnetic potential ϕ A

Table 1.2: Piezomagnetic terminology

1.5 Motivations

In the analysis of heterogeneous materials, it is known that microscopic properties affect

the macroscopic behaviour of the material. Therefore, capturing microstructural informa-

tion in the macroscopic continuum results in a significant improvement in accurately de-

scribing and predicting the response of heterogeneous materials. [41,42,44]. Moreover, it is

well known that size-dependent phenomena (when the smaller specimen behaves stronger,
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compared to a large, but geometrically proportionally similar specimen [83]) must be con-

sidered in the analysis of small size structures that have an underlying microstructure.

Classical continuum formulations are not sufficient to capture those microstructural infor-

mation, and atomistic dynamic approaches have some limitations such as computational

cost and difficulties in precision. Therefore, non-local continuum theories have been pro-

posed (such as strain gradient elasticity theory [84], non-local elasticity theory [85], modi-

fied strain gradient theory [86], and modified couple stress theory [87]). These theories can

be considered an efficient and adequate alternative to classical continuum theories [60].

In macroscopic level, additional material parameters so-called length-scale and time-

scale parameters have been introduced in non-local formulations to describe the influence

of the micro-scale. In case of multi-scale analysis, the micro- and macro-scales link to each

other by coupling the kinematics, stresses and forces of the two scales. In this approach,

size of the considered unit cell at the micro-scale is also become a significant parameter.

As mentioned, MREs are heterogeneous materials and studies have also shown that they

have the dimensions from the millimetre to centimetre [26,40]. Therefore, introduction of

the microstructural information has also a significant role in the analysis of mechanical

behaviour of MREs.

The above overview shows the importance of microstructural properties on the overall

behaviour of MREs and, thus, the importance of capturing these microstructural proper-

ties in mechanical models. As mentioned, RVE is used to denote the unit cell that rep-

resents the micro-level in multi-scale analysis. In analytical homogenisation approaches,

the unit cell (or RVE) is considered as model input; thus, the RVE size becomes a model

parameter [41,42]. It was already shown in [41,42,44], there is a link between the RVE size

on the micro-level and additional characteristic length-scale parameter employed in non-

local continua on the macro-level. Hence, the determination of the RVE size in magneto-

elasticity becomes an important step since it is to be used in multi-scale analysis of MREs.

This problem will be addressed in following chapters in details by presenting an RVE size

determination process for an MRE material and implementation of this parameter.

It is known that the behaviour of the materials with heterogeneous structure consider-

ably varies compared to their homogeneous counterparts especially in dynamic problems.

For instance, a well-known phenomenon called stop-bands or band gaps occur due to

the dispersion of the waves in heterogeneous materials with a periodic arrangement of

inclusions. In this phenemenon (stop-band), elastic/acoustic waves cannot propagate and

vibrations are suppressed in some frequency ranges. This type of composite materials are
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called as phononic crystals (PCs), and this feature enables various potential applications

such as acoustic filters, reflectors, wave guides, switches and vibration isolation [88–94].

A great deal of effort has been put on the elastic wave propagation in periodic composite

materials by theoretical and experimental studies [92, 95–99].

Controlling and tuning the characteristics (e.g. position and the width) of the stop-

bands and analysing the effective parameters influencing these properties are important

topics to create more effective designs or enhance the functionality of the PCs. It is

known that the stop-band can be influenced by inclusion geometry, lattice pattern, vol-

ume fraction and elastic characteristics of the constituents [91, 97, 99, 100]. Besides these

parameters, another interesting and promising way to control the stop-band characteris-

tics is using the responsive (smart) materials in PCs. Since the material and geometrical

properties can be influenced by an external magnetic field, magneto-elastic composites are

also becoming a new type of PCs in the field. In particular, contactless tunability of the

stop-bands in this type of composites has been studied extensively [88–91, 99, 101–104].

It is also known that band gap predictions can be affected by randomness in material

parameters [97,105].

With these motivations magneto-elastic coupling and the randomness in geometrical

properties are worthy to investigate. Hence, the influence of these parameters on the

longitudinal wave propagation and stop-band frequencies will be studied in this thesis.

The randomness will be introduced to size and position of the inclusions separately and

simultaneously by also covering the effects of magneto-elastic coupling.
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1.6 Outline

1.6 Outline

In this thesis, two primary aims can be distinguished as:

� Determination and analysis of a representative volume element (RVE), employed in

a gradient enriched magneto-elastic model.

� Analysing the influence of microstructure and magneto-elastic coupling on the lon-

gitudinal wave propagation, in particular, appearance of stop-band frequencies.

In accordance with these aims, Chapter 1 provides an overview of the background

about the fundamentals of the magneto-elasticity, introduces some modelling approaches

and reviews the literature for magneto-elastic composite materials.

In Chapter 2, the detailed procedure of the RVE size determination for a magne-

torheological elastomer (MRE) will be given. Definitions of different RVEs are presented

depending on different physical phenomena in the magneto-elastic material. To deter-

mine the defined RVE sizes, a finite element implementation will be adopted to obtain

a microscopic boundary value problem that will be used in the statistical analysis. After

analysing the convergence of the proposed statistical method in magneto-elastic problem,

the influences of mechanical, magneto-elastic coupling and magnetic permeability prop-

erties of the constituents will be studied on these model parameters (RVEs). Numerical

results and discussions of two-dimensional magneto-elastic RVEs are also addressed in

this chapter, since they are used as input in the next chapter.

Chapter 3 deals with the identification of the phenomenological material parameters

(length-scales) on the macroscopic magneto-elastic continua in terms of RVE sizes for

an MRE material. By means of a multi-scale approach based on a non-local analyti-

cal homogenisation scheme, the macro-level magneto-elastic constitutive formulation is

developed with additional model parameters (RVE sizes) to introduce the micro-level in-

formation to macroscopic continua. By using the RVE size determination results from

the previous chapter, a two-dimensional in-plane problem is presented for the singular-

ity removal study in mechanics and magnetic fields which is not an ability of classical

magneto-elastic continuum model.

The aim of Chapter 4 is to analyse longitudinal wave propagation and stop-band be-

haviour in magneto-elastic composite materials and to investigate the combined influence

of magneto-elastic coupling and geometrical randomness in the material. The influence of

the size and the volume fraction of magnetic inclusions will be studied with and without
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magneto-elastic coupling. Randomness will be introduced in the magnetic inclusions’ sizes

and positions separately as well as simultaneously. A finite element formulation will be de-

scribed that has been used to simulate magneto-elastic wave propagation. The test setup

and the algorithm of analysis will be given in this chapter as well as numerical results

and discussions of different test material geometries to study the effects of periodicity,

randomness, particle size, volume fraction, and coupled versus decoupled behaviour.

Finally, Chapter 5 and Chapter 6 give the conclusions of the thesis with some closing

remarks and potential future works respectively.
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Chapter 2

Determination of representative

volume element size for a

magnetorheological elastomer

The aim of this chapter1 is to present a numerically-statistical procedure to define and

analyse the Representative Volume Element (RVE) concept for an MRE material. As

discussed in the previous chapter, microstructural information needs to be taken into

account in the analysis of heterogeneous materials to describe and predict the behaviour of

the macroscopic continuum accurately. At this point, various approaches can be followed

such as mono-scale or multi-scale procedures. This microstructural information can be

introduced via material parameters: length-scale or time scale (time dependent processes)

parameters in a mono-scale approach [41, 106–108]. On the other hand, an interaction

between micro-level (unit cell) and macro-level (macroscopic continuum) is considered in

the multi-scale approach. In a multi-scale analysis, size of the unit cell also becomes an

important parameter in addition to material parameters, and RVE concept is used to

describe this unit cell.

Furthermore, it was already shown that a link between model parameter: RVE size in

multi-scale approach and material parameters: length- and time-scale in non-local macro-

scopic continua can be established [42, 43, 108–110]. Because of these reasons, it can be

concluded that the RVE size of a material can have a significant role in modelling ap-

proaches. Hence, this chapter seeks to determine the RVE size for an MRE material by

1This chapter is directly adopted from:

S. Eraslan, I. M. Gitman, H. Askes, and R. de Borst. Determination of representative volume element

size for a magnetorheological elastomer. Computational Materials Science, 203:111070, 2022. [81]
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analysing the influence of the constituents’ properties on this model parameter. A finite

element implementation will be adopted to obtain a microscopic boundary value problem

to be used in statistical analysis for RVE size determination. Moreover, the link between

the RVE size and the length-scale parameter on macroscopic continua will be explored and

extended to magneto-elastic coupling framework in details in Chapter 3 for a generalised

magneto-elastic continua.

2.1 Formulation and introduction of methodology

As introduced above, in this section, the methodology and formulation of RVE size deter-

mination problem will be presented for an MRE material. As has been explained, RVE cre-

ates the connection between micro- and macro-scales, thus it is an important parameter in

accurate description of the behaviour for heterogeneous materials. In the literature, some

well-known definitions of the RVE have been given by scientists. Analysing them, there

are specifically two common points that can be identified in all definitions [68,69,71,74].

These points can be summarised as:

1. on the one hand, RVE should be small enough compared to macrostructural dimen-

sions;

2. on the other hand, it must contain adequate information about the microstructure

to be considered as a representative.

After the definition, scientists attempted to determine the size of RVE for several

engineering materials. For instance, Van Mier et al. [71] suggested RVE size to be at least

3− 5 times bigger than the largest particle size for concrete samples. Lemaitre et al. [70]

proposed three-dimensional RVE sizes approximately 0.1mm, 1mm, 10mm, and 100mm

for metallic materials, polymers, wood and concrete, respectively. Drugan and Willis [74]

related the reinforcement diameter and RVE size for reinforced elastic composite. They

pointed out RVE must be twice the diameter of the reinforcement. Besides these studies,

Gitman [41] have proposed an objective systematic determination process for the RVE

size of concrete material, and assessed the influential parameters on both the procedure

and the size. However, these studies dealt with a purely mechanical response, and the

extension of the RVE size determination to a coupled physics (such as magneto-elasticity)

was not addressed.
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In the method proposed by Gitman et al. [111,112], the existence of the RVE was first

addressed before the introduction of the size determination by using a statistical analysis

based on the mathematical expectation and standard deviation in linear-elastic, hardening

and softening regimes for concrete material. It was concluded that an RVE exists in case

of linear elasticity and hardening. However, an RVE cannot be found in case of softening

since the material behaves differently for the increased unit cell size. In this thesis, MRE

was subjected to small variations of external magnetic and mechanical stimulus around

bias conditions which lead to modelling the MRE as a linear piezomagnetic material as

discussed in the first chapter. Thus, it can be assumed that the material will follow the

linear piezomagnetic material behaviour, and the RVE will exist and can be found in this

regime for an MRE. This hypothesis will be tested further in this chapter.

Since an RVE denotes the minimum size of the microscopic cell, it can be defined as a

lower bound, and it must have statistical homogeneity. This means that larger microscopic

cells present similar behaviours while the smaller microscopic cells behave differently which

also depicts lack of sufficient information about the microstructure.

In a conventional elastic material that does not exhibit a coupling behaviour, only one

RVE related to elastic properties can be defined. However, the response of a material that

shows magneto-elastic coupling will not only be mechanical, and thus there should be more

than one RVE for such a material. Hence, it is assumed that an MRE has different RVEs

depending on the considered phenomenon. The idea of defining different RVEs is one of

the novelties proposed in this study, and this assumption has been made due to different

(mechanical,coupling and magnetic) types of possible responses that can be observed in

a coupling (e.g. magneto-elastic) nature. Therefore, Velastic
RVE and Vmagnetic

RVE represent the

volumes of the RVEs for a purely mechanical and purely magnetic phenomenon. It is also

assumed for completeness that the “coupling phenomenon” itself results in a new different

Vcoupling
RVE .

For each aforementioned RVE, the minimum unit cell size showing converging response

(within the given tolerance) will be determined as the lower bound of the corresponding

RVE. Overall, four different RVE sizes for each phenomenon (elasticity, magnetism, elasto-

magnetic coupling, magneto-elastic coupling) will be assessed and determined for an MRE

in this study. Two different RVEs for coupling phenomenon were defined to assess the

response of an MRE separately for external mechanical and magnetic effects. Thus, elasto-

magnetic coupling refers to magnetic response due to external mechanical effects. For

instance, magnetic induction developed in the unit cell of MRE due to applied mechanical

37



Determination of RVE size for an MRE

deformations will refer to elasto-magnetic coupling. Similarly, magneto-elastic coupling

refers to mechanical response due to external magnetic effects. For instance, mechanical

stresses developed in the unit cell because of an applied magnetic field.

The details of these RVEs’ definitions and determination process will be explained

in further sections. It must be also noted that RVE size can be understood as length

(1D), area (2D) or volume (3D) according to considered application. In this study, 2D

MRE samples under plane stress and static magnetic field conditions will be analysed.

Therefore, RVE size should be understood as 2D area unless otherwise stated.

2.1.1 Microscopic characterisation of MRE

As discussed above, the MRE is modelled as a heterogeneous material on the micro-scale.

The constitutive equations of the components (i.e. magnetostrictive particles and polymer

matrix) can be written in the same form of Eq. (1.1) as follows:

σm
ij = Cm

ijklεkl − qm
kijH

m
k (2.1a)

Bm
i = qm

iklε
m
kl + µm

ikHm
k (2.1b)

where superscript m denotes the micro-scale. Note that compared to Table 1.1 and Ta-

ble 1.2, superscripts H and ε are omitted, in order to keep equations more readable.

Note 1: As mentioned, the polymer material is not a magnetostrictive medium, but

piezomagnetic constitutive equations (Eq. (2.1)) are also assumed for this material here.

For the clarity, this point will be addressed and non-magnetisable polymer material will

be explained in further sections.

Kinematic relations, equilibrium equations and governing equations on the micro-scale

can be derived as follow:

εm
ij =

1

2
(um

i,j + um
j,i) (2.2a)

Hm
i = −ϕm

,i (2.2b)

σm
ij,j = 0 (2.3a)

Bm
i,i = 0 (2.3b)

Cm
ijkl(u

m
k,jl) + qm

kij(ϕ
m
,jk) = 0 (2.4a)

qm
ikl(u

m
k,il)− µm

ik(ϕm
,ik) = 0 (2.4b)

where um
i is the displacement, and ϕm is the scalar magnetic potential on the micro-level.
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It is assumed that the unit cell is polarized along the z-direction, and all internal forces

act on the xz-plane. It is believed that the reduction of the general constitutive equation

(Eq. (1.2)) to the plane stress condition will be useful and leads a better understanding

of the material matrices on the micro-level. Adopting a plane stress assumption as well as

matrix-vector notation, the stiffness, piezomagnetic coupling and permeability matrices

of the transversely isotropic material read

Cm =


C11 C13 0

C13 C33 0

0 0 C55

, qm =


0 q31

0 q33

q15 0

, µm =

µ11 0

0 µ33

 (2.5)

Thus, Eq. (2.6) with superscripts m can be written as the constitutive equations on

the micro-scale.
σm

1

σm
3

σm
5


=


C11 C13 0

C13 C33 0

0 0 C55




εm

1

εm
3

2εm
5


−


0 q31

0 q33

q15 0


Hm

1

Hm
3

 (2.6a)

Bm
1

Bm
3

 =

 0 0 q15

q31 q33 0



εm

1

εm
3

2εm
5

+

µ11 0

0 µ33

Hm
1

Hm
3

 (2.6b)

Here, material properties are taken for a polymer matrix and magnetic particles ac-

cordingly. The constitutive equations of micro stress and induction have the same form

for both particles and polymer, but they will be calculated depending on their material

properties. The properties have been adopted from [78, 113] and are given in Table 2.1.

In contrast to magnetic particles, polymer materials cannot be magnetised and they do

not exhibit magneto-elastic coupling as well. The assumed material properties for cou-

pling coefficients and magnetic permeability of the polymer will lead to an ordinary non-

magnetisable linearly isotropic polymer.

C11 C13 C33 C55 q31 q33 q15 µ11 µ33

Terfenol-D [78] 27 11.8 31.4 4.2 -15.2 217 68 9 1.86

Polymer [113] 7.8 4.7 7.8 1.6 0 0 0 µ0 µ0

Cij in GPa, qij in N/Am, µij in 10−6N/A2

Table 2.1: Material properties
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Similarly, the kinematic relations, balance equations and governing equations can be

written in matrix-vector notation as follow:

εm = Luu
m (2.7a)

Hm = −Lϕϕ
m (2.7b)

LT
uσ

m = 0 (2.8a)

LT
ϕBm = 0 (2.8b)

LT
u CmLuu

m + LT
u qmLϕϕ

m = 0 (2.9a)

LT
ϕqmTLuu

m − LT
ϕµ

mLϕϕ
m = 0 (2.9b)

where Lϕ = ∇ and Lu is the usual strain-displacement derivative operator.

The boundary value problems for the 2D unit cell will be solved by using the finite

element method.

2.1.2 Finite element equations

To obtain the finite element formulation, the weak form of governing equation Eq. (2.9)

can be written for domain Ω and boundary Γ after integration by parts2 as follows:∫
Ω

(Luwu)TCmLuu
mdΩ +

∫
Ω

(Luwu)TqmLϕϕ
mdΩ =

∫
Γ

wT
u tdΓ (2.10a)

∫
Ω

(Lϕwϕ)TqmTLuu
mdΩ−

∫
Ω

(Lϕwϕ)TµmLϕϕ
mdΩ =

∫
Γ

wT
ϕB⊥dΓ (2.10b)

where wu and wϕ are the test functions, t are the boundary tractions, and B⊥ is the

magnetic traction on the boundary. By introducing the standard finite element shape

functions Nu and Nϕ for displacements and magnetic potential, i.e. 3 noded triangle

element in 2D:

Nu =

N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

 (2.11a)

Nϕ =
[
N1 N2 N3

]
(2.11b)

Thus, the following system of equations is obtained:

2The detailed formulation of the weak form has been given in Appendix A
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Kuu Kuϕ

Kϕu −Kϕϕ

dm

Ψm

 =

F

Φ

 (2.12)

where dm and Ψm are micro-scale nodal displacement and nodal scalar magnetic potential

vectors via um = Nud
m and ϕm = NϕΨm. Moreover, F and Φ are nodal mechanical force

and nodal magnetic flux vectors. Lastly, stiffness matrices are given by

Kuu =

∫
Ω

BT
u CmBudΩ Kuϕ =

∫
Ω

BT
u qmBϕdΩ

Kϕu =

∫
Ω

BT
ϕqmTBudΩ Kϕϕ =

∫
Ω

BT
ϕµ

mBϕdΩ

(2.13)

with Bu = LuNu, Bϕ = LϕNϕ.

After obtaining the nodal degrees of freedom from boundary value problem on the unit

cell, stresses and magnetic inductions in Eq. (2.6) can be calculated by following standard

FE post-processing methods to be used for statistical analysis in the next section.

2.1.3 Definition and determination procedure of RVEs

As it has been argued earlier in Section 2.1, it is essential to determine the size of the

RVE since it becomes a model parameter in the constitutive equations on the macro-scale

which will be explored in Chapter 3. At this point, the behaviour of a unit cell can be

investigated by using the FE equations derived in the previous section. Equations (2.1-

2.13) will be used to solve the boundary value problem on a unit cell to obtain its response.

Consequently, a systematic statistical method can be proposed to analyse unit cell sizes.

The statistical procedure to determine a lower bound of the related RVE size is built on

sets of numerical experiments performed for increasing unit cell sizes. The procedure can

be summarised by the steps shown below.

1. Creation and meshing of different realisations for the tested unit cell size with fixed

inclusion diameter (Uniform distribution of 100–300 µm in diameter is assumed)

and volume fraction (Vf = 30%) as seen in Figure 2.1. Different realisations have

been considered, since an RVE must represent any part of the composite material as

well as increasing the accuracy of statistical analysis. In each realisation, numbers

and positions of the inclusions are randomly created for the given volume fraction

and inclusion size. In this study, for an accurate statistical analysis, 200 realisations

were created.
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(a) Examples of different realisations of the unit cell

(b) FE mesh of different realisations of the unit cell

Figure 2.1: Different realisations of the unit cell and FE discretisation (size 1x1 mm2

and Vf = 30%)

2. Application of loading conditions such as a tension test and/or magnetic loading

as shown in Figure 2.2. The tension test is applied via prescribed nodal values of

displacement U on the two corners on the left and right of the sample. Magnetic

loading (static magnetic field in positive z direction in this study) was created via

the magnetic potentials ϕι and ϕr on the left and right edges, respectively.

Figure 2.2: An RVE under external loadings
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Furthermore, the periodicity in the deformation of an RVE might be a suitable

kinematic condition, and it was shown that periodic boundary conditions can re-

sult in reasonable estimation of the effective properties for the unit cell [114, 115].

Here, the periodicity refers to construction of a particular FE mesh to ensure the

continuity inside the material. As depicted in Figure 2.3, this specific mesh con-

struction has been established via nodes on the corner of the unit cell identically

having same position before and after the deformation. Additionally, each boundary

pair (opposing edges) has equal deformation under tension and magnetic loading.

This behaviour has been created by using tying constraints via penalty functions

as given in [116]. These particular type of constraints relate two or more degrees

of freedom to one another, and they are generally used to model periodicity. In a

linear system of equation Ku = f , a tying is established between degrees of freedom

n and m (positioned on opposite edges) via un − um = u where u is a prescribed

number. With this relation, the energy potential leads to an extended K and f with

a penalty function that accounts for tying u. In the literature, the scalar α is often

known as the penalty parameter, and the linear system of equation becomes

[K + Kp]u = f + fp (2.14)

where Kp and fp are zero except for related m and n degrees of freedom, Kp
mm =

Kp
nn = α, Kp

mn = Kp
nm = −α, fp

m = −αu and fp
n = αu (see [116] for more details).

Figure 2.3: Periodic boundary conditions

3. Performing the FE analysis and obtaining the parameter of interest, that is the

averaged stress or the averaged magnetic induction along the z direction over the
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unit cell. At this point, the z components of averaged stress and magnetic induction

are evaluated since the maximum magnetostriction response is expected in this

direction. Here, the different unit cell sizes namely L1,L2,L3 and L4 are assessed

separately as discussed previously in Section 2.1. In particular, L1, which is the unit

cell size for purely mechanical response, is determined by applying the tension test

and calculating the averaged stress in z direction due to this loading. Similarly,

the unit cell size for a purely magnetic response, L4, is assessed by calculating

the averaged magnetic induction in z direction due to only the external magnetic

loading. Lastly, the unit cell sizes for coupling response L2 and L3 are evaluated by

obtaining the averaged stress results from external magnetic loading, and obtaining

the averaged magnetic induction results from tension test, respectively. Note, that

these two conceptually different effects lead to two different ”coupling” RVEs as

discussed earlier in Section 2.1.

4. After calculating the parameter of interest for each realisation of a unit cell size,

statistical analysis can be conducted on these data. Various statistical approaches

can be used. In this study, the coefficient of variation value for the FE results will

be used. This coefficient presents the deviation of a single unit cell from the mean of

all realisations of the same unit cell size, and it is calculated as the ratio of standard

deviation to the mean of investigated parameter.

CV =

√√√√√ n∑
i=1

(xi− < xi >)2

n

< xi >
(2.15)

where n is the number of realisations (200) and xi is either averaged σz or Bz.

5. Comparison of statistical analysis accuracy with the desired accuracy (which was

taken 97% here).

6. Defining the tested size of the unit cell as the RVE size, if the desired accuracy is

achieved. In this case, it must be remembered that unit cell sizes L1 and L4 become

the corresponding RVEs sizes of Velastic
RVE and Vmagnetic

RVE . Similarly, unit cell sizes L2 and

L3 are considered as two different RVE sizes for coupling effects. If the accuracy is

not achieved, increasing the unit cell size (see Figure 2.4) and repeating the process

from step 1.
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Figure 2.4: Different sizes of unit cells (from left to right: 0.5x0.5 mm2, 1x1 mm2, 1.5x1.5

mm2, 2x2 mm2 and Vf = 30%)
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Figure 2.5: Procedure of RVEs sizes determination
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Note 2: These RVE sizes will be employed as model parameters in the governing

equations of the macroscopic magneto-elastic continua in the next chapter (see Eq. (3.15)

for purely mechanical, magnetic and coupling terms.)

2.2 Numerical results and influence of material prop-

erties on RVEs

The numerical experiments were conducted with a MATLAB code developed in-house.

For the magnetic particles, Terfenol-D material was chosen due to some of its advan-

tages discussed in the first chapter. In the calculation of the material constants for the

magnetic particles, the relationships given in Table 1.1 was followed. As mentioned, the

matrix (polymer) was assumed as a non-magnetisable material. Because of this assump-

tion, piezomagnetic constants were taken as zero to represent this behaviour. Also, the

magnetic permeability of the matrix has been assumed to equal the magnetic permeability

of the free space (µ0 = 4π10−6N/A2) due to the same assumption.

Two hundred different realisations of each unit cell size (ranging from 0.5 to 2.5 mm)

have been considered. The size of Terfenol-D particles have been chosen to be uniformly

distributed between of 100–300 µm in diameter. The responses of the unit cells have been

obtained via finite element analysis by using three-node triangular elements. Following

numerical analysis of all realisations, coefficients of variation have been calculated for each

sample size to investigate the convergence of the results. It is expected that a lower value

of coefficient of variation and a convergent trend should be observed for increasing unit

cell size since the unit cells larger than the lower bound of the RVE will present a similar

response. Coefficient of variation is a statistical measure of relative variability, and it is a

useful statistic for comparing the degree of variation between data series. A lower value

of the coefficient of variation means a more precise estimation. It is calculated as the

ratio of the standard deviation of the investigated parameter (σzz or Bz) to the mean (see

Eq. (2.15)). By comparing the coefficients of variation of computed parameters with the

desired value, i.e. it is 0.03 for 97% accuracy, a lower bound of the RVE can be defined as

seen in Figure 2.6. As shown in the figure, once the desired accuracy and the results from

the numerical tests have been plotted on the same graph, the intersection of the obtained

values and chosen allowed variability can be evaluated to define the related representative

sizes.
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Figure 2.6: Convergence of the results

Realisations of each cell size (Figure 2.2) were subjected to mechanical (U = 0.1 mm)

loading. Scalar magnetic potentials ϕι and ϕr have been assigned on the left and right

edges to create the magnetic field (Hz = 20 kA/m) that corresponds to a small variation

around bias field used in the measurement of material properties of Terfenol-D [78]. The

steps given in Subsection 2.1.3 were followed. Figure 2.6 shows converging trends around

different unit cell size values for L1, L2, L3 and L4. It can be seen that the lower bound

of the RVE can be considered as 1 mm for L1, 0.9 mm for L4, and 2.3 mm for L2 and

L3. Furthermore, it is remarkable how small the difference between L2 and L3 is. This

confirms the thermodynamic consistency requirements discussed later in the next chapter.

As shown above, it is now possible to determine the lower bound of the RVE sizes for

an MRE material. In the coupling framework, four different RVE sizes have been defined

and determined to represent different phenomena rather than only one RVE size as given

for purely elastic framework.

It has already been shown for purely elastic material that the lower bound of the RVE

size is affected by the stiffness ratio of the constituents [41]. Notably, changing the stiffness

ratio, which also means increased heterogeneity, causes an increase in the lower bound of

RVE size in purely elastic case. For this reason, it is worthwhile to conduct a parametric

study to investigate the effect of material parameters on the different RVE sizes such as

contrast in stiffness, coupling and permeability properties of the constituents. Hence, a

formalistic approach was established, and theoretical test specimens were created to study

the aforementioned contrasts.
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Determination of RVE size for an MRE

2.2.1 Contrast in elastic properties

Contrast in elastic properties was the first parameter to investigate the increased hetero-

geneity in elastic properties of the constituents. The stiffness ratio βc was defined as a ratio

between inclusions and matrix stiffnesses, see Eq. (2.16). The ratio βc was achieved by

decreasing the stiffness constants of matrix physically representing relatively softer poly-

mers. βc ranges (5, 25, 100) introduce the change in heterogeneity. This setup ensures

that there will be factors of 5, 25 and 100 between the components’ stiffness properties.

Piezomagnetic coupling and magnetic permeability of the constituents were considered as

given in Table 2.1 to investigate influence of the stiffness contrast only.

βc =
Cinclusion

Cmatrix

(2.16)

Numerical experiments and statistical analysis were performed for all stiffness contrast

ratios. Figure 2.7 demonstrates the effect of the elastic stiffness ratios on the RVE sizes.

It can be seen that there is a positive correlation between the contrast and the lower

bound of the RVE size up to a certain value of L1 that represents the purely mechanical

RVE size. When the contrast ratio is increased from 5 to 25, the lower bound of RVE size

has values of around 1 and 1.3 mm, respectively (Figure 2.7a). However, increasing the

stiffness contrast to more than 25 does not lead a notable further change. Furthermore,

it was found that different contrast values in stiffness result in near identical RVE sizes

for the coupling and purely magnetic RVE sizes L2, L3 and L4 (Figure 2.7(b-d)), which

means that the stiffness contrast does not affect those RVE sizes.
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Figure 2.7: RVE sizes for different stiffness contrast values. L1 (a), L4 (b), L2 (c), and

L3 (d).

2.2.2 Contrast in piezomagnetic coupling properties

Similarly, the influence of the contrast in piezomagnetic coupling has been analysed via the

ratio βq as given in see Eq. (2.17). The ratio βq was obtained by changing the piezomag-

netic coupling constants of matrix, and factors of 5, 25 and 100 between the components’

piezomagnetic coupling properties have been tested. Here, the stiffness and the magnetic

permeability properties were kept constant and as given Table 2.1 to study only piezo-

magnetic coupling effects.

βq =
qinclusion

qmatrix

(2.17)

Numerical analysis were conducted in the same way, and Figure 2.8 depicts the influ-

ence of the piezomagnetic coupling contrast on the RVE sizes. It has been observed that

more contrast in coupling properties of the constituents leads to larger coupling RVE sizes
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Determination of RVE size for an MRE

L2 and L3 only (Figure 2.8(c,d)), with minimal effects on L1 and L4 (Figure 2.8(a,b)).

By increasing the coupling contrast ratio from 5 to 100, the lower bounds of those cou-

pling RVE sizes L2 and L3 continuously increase, and have values around 1, 1.5 and 2.1

mm respectively (Figure 2.8(c,d)). A distinct difference between the coupling and elastic

contrast results was observed here. In the previous case, the elastic contrast values 25

and 100 resulted in same RVE sizes for affected L1 (Figure 2.7a). However, same values

of coupling contrast (25 and 100) led to notably different RVE sizes for affected L2 and

L3 (Figure 2.8(c,d)). It was also observed that different contrast values in piezomagnetic

coupling presented identical RVE sizes for the purely elastic and purely magnetic RVE

sizes L1 and L4 (Figure 2.8(a,b)) which means that the coupling contrast does not affect

those RVE sizes. This result is similar to the elastic contrast results that have an influence

only on the the purely elastic RVE size.
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Figure 2.8: RVE sizes for different piezomagnetic contrast values. L1 (a), L4 (b), L2 (c),

and L3 (d).
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2.2.3 Contrast in magnetic permeability properties

The contrast in magnetic permeability is the basis of the next test setup. This contrast

has been introduced via the ratio βµ. This ratio has been established by changing the

magnetic permeability constants of particles, since the matrix has the magnetic perme-

ability of the free space as discussed in beginning of Section 2.2. The same factors (5, 25

and 100) between the constituents’ magnetic permeability properties have been achieved.

Analogous to the previous cases, piezomagnetic coupling and the stiffness constants at

the values given in Table 2.1 were chosen to study only the effect of the permeability.

βµ =
µinclusion

µmatrix

(2.18)

Figure 2.9 presents the result of these configurations. The results show that contrast in

magnetic permeability has an effect on the RVE size L4, and this trend is similar to stiff-

ness contrast for L1 (section 2.2.1). The lower bound of RVE size has values of around 1

and 1.3 mm for the contrast ratio increased from 5 to 25, respectively (Figure 2.9b). Also,

magnetic permeability contrast more than 25 does not lead a significant further change

for L4 as seen in the elastic contrast case for L1 (Figure 2.9a). In addition, identical RVE

sizes for the coupling and purely elastic RVE sizes L1, L2 and L3 have been observed again

(Figure 2.9(a,c,d)), which shows that the magnetic permeability contrast does not have

an influence on those RVE sizes.
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Figure 2.9: RVE sizes for different permeability contrast values. L1 (a), L4 (b), L2 (c),

and L3 (d).

2.2.4 Larger contrast in elastic and magnetic properties

In addition to contrasts of 5, 25 and 100, it is relevant to investigate larger contrast values

to understand the influence better since there is almost no difference between 25 and 100

values for L1 and L4 in case of stiffness and permeability contrasts, respectively. To study

this point in more details, additional contrast values were created in the same ways (for

βc, βq and βµ), and influence of each contrast configuration analysed for the related RVE

size.

As seen in Figure 2.10, the results for more contrast values 10, 100, 1000,10000 and

100000 have been plotted on the same graph for each RVE size. The pattern in the cou-

pling contrast increase for L2 and L3 is different and it shows a continuously increasing

RVE sizes. However, the difference between the RVE sizes for larger permeability and

stiffness contrasts for L4 and L1 is relatively insignificant compared to other cases beyond

a value of 100. For the higher values, the purely mechanical and magnetic RVE sizes have
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2.3 Discussion

been determined to be around 1 and 1.1 mm, respectively. Here, it can be concluded

that RVE sizes are dependent on the stiffness, coupling and permeability contrast of the

constituents which means heterogeneity in these properties is an effective parameter for

the related RVE size. The case of a large contrast in coupling could represent a material

with (a) component with pronounce magnetostrictive behaviour and (b) component with

almost negligible magnetostrictive response. In this case, representative volume elements

related to coupling indeed will be larger (but still will exist and be measurable).
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Figure 2.10: RVE sizes for larger contrast values

2.3 Discussion

In this chapter, the significance of the representative volume element (RVE) size as a

model parameter, and motivations for determination of this size have been discussed.

Next, definition and determination process of the RVE size for a magnetorheological

material have been established. A systematic statistical method has been proposed for

an MRE material on the micro-level to determine the defined RVE sizes depending on

different phenomena in magneto-elastic framework. Finite element method has been used

to solve the microscopic boundary value problems to conduct a statistical analysis on the

response of the unit cells. After establishing the procedure and determining the RVE sizes

for a Terfenol-D/Polymer sample, the influence of some parameters such as contrasts in

stiffness, coupling and permeability properties of the constituents have also been studied.
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The proposed statistical analysis can be used to determine lower bounds of the RVE

sizes for an MRE material. Here, four different RVE sizes were postulated for different

phenomena namely L1 for purely elastic, L4 for purely magnetic, and L2 and L3 for coupling

behaviour in the material. In line with thermodynamic consistency, the difference between

the lower bound of L2 and L3 was found to be negligible, however the determined RVE

sizes for L1 and L4 are clearly smaller and different. As a practical conclusion, it may be

suggested that using the largest determined RVE sizes for L2 or L3 also covers the lower

bound condition of the other RVE sizes and only this size can be used. It is specifically

relevant in gradient enriched governing equations discussed in the next chapter.

Moreover, the formalistic approach also showed that the contrast in material properties

of the constituents can affect the minimum RVE sizes. It was found that the increase

in stiffness contrast leads to larger values of L1, whereas there is no influence on the

other RVE sizes. Similarly, the same trend was observed for an increase in coupling and

permeability contrasts for the RVE sizes L2 or L3, and L4, respectively. It can be concluded

that for more heterogeneity in these material properties, larger sizes of the associated

RVE are obtained. It was also previously shown that an increased stiffness contrast can

lead larger RVE sizes for a purely elastic model [41], and the results in this chapter

also confirms this conclusion for not only purely elastic, but also for a coupling model.

Finally, a converging trend was observed for L1 and L4, but L2 and L3 show a non-

convergent trend in the range of assumed larger contrast values. Given that the difference

between convergent L1 and L4 and non-convergent L2 and L3 occurs for extremely large

contrast, for practical purposes one may assume L1 = L2 = L3 = L4 = max(Li) ≡ L. This

conclusion remark will also be used in the next chapter.

Overall, separately considered RVE sizes for an MRE material can be determined by

following the statistical analysis as given in this chapter. Moreover, it has been shown

that the contrast between the elastic and magnetic properties of the constituents is an

effective parameter for the related RVE sizes. However, the pattern of this effectiveness

is different for coupling and purely elastic/magnetic RVEs. With these elaborations, the

first step of introducing the microstructural information to the macroscopic behaviour of

a magneto-elastic model is completed. As the next step, the constitutive and governing

equations of the macroscopic continua will be derived with the model parameters RVE

sizes. Thus, the conclusions and determined RVE sizes can be used in this macro-level

model to present the efficiency of the gradient formulation enriched with the RVE sizes.
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Chapter 3

RVE Sizes and Length-Scale

Identification in Generalised

Magneto-Elasticity

In this chapter 1, the link between model parameter RVE size and material parameter

length-scale in magneto-elastic coupling framework will be derived by using an analytical

homogenisation scheme. In particular, the second-order homogenisation technique will

be used. Kouznetsova et al. presented this terminology in a numerical homogenisation

scheme [110, 118]. Later, Gitman et al. established the link between those parameters

in decoupled elasticity framework [41, 44]. In this chapter, a generalised magneto-elastic

continuum model with gradients of strain, magnetic field, and piezomagnetic coupling

terms will be presented. Characteristic length-scale parameters, accompanying the higher

order components in the model, will be identified in terms of representative volume element

(RVE) sizes discussed in Chapter 2 in order to introduce the microstructural information

to material properties on the macro-level.

Another aim of this chapter is to present the influence of identified length-scale param-

eters in removing mechanics and magnetic singularities by using determined RVE sizes

(Chapter 2) as a model parameter in the generalised magneto-elasticy, thereby bridging

the gap between RVE-based approaches and generalised/non-local continuum approaches

1This chapter is partly adopted from:

Eraslan, S., Gitman, I.M., Xu, M., Askes, H., de Borst, R. (2023). Representative Volume Element Size

and Length Scale Identification in Generalised Magneto-Elasticity. In: Altenbach, H., Berezovski, A.,

dell’Isola, F., Porubov, A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials,

vol 170. Springer, Cham. [117]
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on the macro-level. For this, the macro-level magneto-elastic constitutive formulation with

identified length-scale parameters and determined RVE sizes will be implemented. Fur-

ther, numerical results will be presented for a two-dimensional in-plane problem to remove

singularities in mechanics and magnetic fields.

3.1 Non-local homogenisation

As has been stated in Introduction, various approaches can be followed to model and anal-

yse the behaviour of heterogeneous materials. In particular, a phenomenological multi-

scale approach can be used. In this approach, microstructural material information is

introduced via phenomenological (but related to material) parameters: length- and/or

time-scale in non-local continuum theories, contrary to classical (local) continuum theo-

ries that do not take microstructure into account [84,106,107,119–122]. On the other hand,

another approach: homogenisation-based multi-scale frameworks that considers the inter-

action of different scales explicitly can be used. In this approach, the unit cell representing

micro-level is denoted as RVE and its size becomes model parameter. The aforementioned

links between the parameters of different approaches have been presented for materials

with periodic and random microstructures [42–44,108,109]

Gitman et al. [42–44], and Kouznetsova et al. [110]. have introduced a non-local ho-

mogenisation technique in purely elastic context to establish this link. Homogenisation

describes the relation between the quantities on micro- and macro-scale, and the pro-

posed non-local homogenisation scheme was built on averaging the stresses in the RVE.

The macroscopic stresses (superscript M) were defined as the volume average of micro-

scopic counterparts (superscript m) that leads

σM
ij = < σm

ij > =
1

VRVE

∫
VRVE

σm
ij dV (3.1)

Thus, by also considering the microscopic constitutive equations, macroscopic stresses

can be written as

σM
ij =

1

VRVE

∫
VRVE

Cm
ijklε

m
kldV (3.2)

As the next step, linearisation of microscopic stiffness and strains were expressed

around the values at the centre of the RVE by assuming small perturbations compared

to the average values.
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3.1 Non-local homogenisation

Cm
ijkl = CM

ijkl + CM
ijkl,oδxo (3.3a)

εm
kl = εM

kl + εM
kl,pδxp (3.3b)

Combining Eq. (3.2) and Eq. (3.3) yields

σM
ij =

1

VRVE

∫
VRVE

(
CM

ijklε
M
kl + CM

ijklε
M
kl,pδxp + CM

ijkl,oε
M
klδxo

+CM
ijkl,oε

M
kl,pδxoδxp

)
dV

(3.4)

Finally, non-local homogenisation can be performed via integration of Eq. (3.4) with

the assumptions of periodic boundary conditions, symmetric domain and 2D context. As

seen in Eq. (3.3), the quantities CM
ijkl, and εM

kl are equal to their microscopic counterparts

Cm
ijkl, and εm

kl calculated at the centre of the RVE. Therefore, these quantities can be taken

out of the integral in Eq. (3.4) since they become constant with the values at the centre

of the RVEs. Assuming a square RVE with its centre acting as origin of a Cartesian

coordinate system, the linear terms of δx are cancelled as they consist of odd functions

integrated over a symmetric domain. The only quadratic term are integrated by parts as

follows∫
VRVE

CM
ijkl,oε

M
kl,pδxoδxpdV =

∫
S

CM
ijklε

M
kl,pnoδxoδxpdS−

∫
VRVE

(
CM

ijklε
M
kl,opδxoδxp

+CM
ijklε

M
kl,pδxo,oδxp + CM

ijklε
M
kl,pδxoδxp,o

)
dV

(3.5)

where no is a normal vector to surface of domain S.

Next, the boundary integral vanish due to assumption of periodic boundary conditions,

and the last two terms in Eq. (3.5) are also cancelled since they consist of odd functions

again. The integral of the quadratic term can be evaluated for two-dimensional context

as follow

∫
VRVE

δxoδxpdV =

L
2∫

−L
2

L
2∫

−L
2

δxoδxpdx1dx3 (3.6a)

=
1

12
L4δop (3.6b)

where δop is the Kronecker delta, VRVE = L2 and L is the size of the RVE.

After this integration, macroscopic constitutive equation Eq. (3.4) can be obtained as
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σM
ij = CM

ijkl

(
εM

kl −
L2

12
εM

kl,pp

)
(3.7)

As seen, Eq. (3.7) includes a coefficient in terms of RVE size L with gradients of macro-

scopic strains in addition to usual macroscopic parameters. As a result, an analogy was

observed between Eq. (3.7) provided by Gitman et al. [42–44] from non-local homogenisa-

tion and the constitutive equation for the gradient elasticity model presented by Aifantis

and co-workers. [123,124].

σij = Cijkl

(
εkl − `2εkl,mm

)
(3.8)

where ` is the length-scale parameter. Thus, the link between the phenomenological pa-

rameter length-scale and RVE size was established as

`2 =
L2

12
(3.9)

As discussed above, this relationship between the length-scale and the RVE size was ob-

tained and analysed for purely elastic context. Here, the non-local homogenisation scheme

will be extended to a coupled framework, particularly for a generalised magneto-elastic

continua. Macroscopic constitutive and governing equations for a piezomagnetic model

will be derived by including length-scale parameters expressed in terms of the related

RVE sizes following the discussion in Chapter 2. With these elaborations, microstructural

information obtained in previous chapter will be taken into account in a 2D magneto-

elastic system.
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3.2 Homogenisation and macroscopic length-scale parameter in MREs

3.2 Homogenisation and macroscopic length-scale pa-

rameter in MREs

In contrast to heterogeneous micro-level, MRE is modelled as a piezomagnetic material

with homogeneous effective material properties and model parameters on the macro-

level. This approach brings the advantage of computational efficiency with an accurate

description of the material behaviour on the macro-level. In the multi-scale analysis of

an MRE, the macroscopic stress and induction on the integration point can be defined as

the volume average of the microscopic counterparts in the RVE:

σM
ij =

1

VRVE

∫
VRVE

σm
ij dV =

1

VRVE1

∫
VRVE1

Cm
ijklε

m
kldV − 1

VRVE2

∫
VRVE2

qm
kijH

m
k dV (3.10a)

BM
i =

1

VRVE

∫
VRVE

Bm
i dV =

1

VRVE3

∫
VRVE3

qm
iklε

m
kldV +

1

VRVE4

∫
VRVE4

µm
ikHm

k dV (3.10b)

where the superscripts m and M denote the micro and macro-level, respectively. After de-

termining and analysing the properties of the RVE sizes as presented in previous chapter,

it is now possible to derive the macroscopic constitutive and governing equations by using

Eq. (3.10) and the second-order (non-local) homogenisation scheme. Consequently, the

formulation of a fully coupled magneto-mechanical model with gradients in terms of RVE

sizes can be obtained to introduce the microstructural information to the macro-scale

model. Before applying non-local homogenisation, linearisation of spatially dependent

stiffness, strain, coupling, permeability and magnetic field can be expressed around the

values at the centre of the RVEs as follow

Cm
ijkl = CM

ijkl + CM
ijkl,oδxo (3.11a)

εm
kl = εM

kl + εM
kl,pδxp (3.11b)

qm
kij = qM

kij + qM
kij,oδxo (3.11c)

Hm
k = HM

k + HM
k,pδxp (3.11d)

µm
ik = µM

ik + µM
ik,oδxo (3.11e)

It must be noted that first-order (local) homogenisation can be obtained if only the first

terms on the right hand-sides of Eq. (3.11) are considered. This yields Xm = XM, where

X is stiffness, strain, piezomagnetic coupling, magnetic permeability or magnetic field. In

this case, material parameters: length- and time-scale do not appear in the macroscopic
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continua, and local homogenisation results in classical form of the constitutive equations

(see also in [41]). However, non-local homogenisation requires the introduction of second-

order terms with δx. Now the constitutive relation for the macroscopic stress and magnetic

induction (Eq. (3.10)) can be rewritten as

σM
ij =

1

VRVE1

∫
VRVE1

(
CM

ijklε
M
kl + CM

ijklε
M
kl,pδxp + CM

ijkl,oε
M
klδxo + CM

ijkl,oε
M
kl,pδxoδxp

)
dV

− 1

VRVE2

∫
VRVE2

(
qM

kijH
M
k + qM

kijH
M
k,pδxp + qM

kij,oHM
k δxo + qM

kij,oHM
k,pδxoδxp

)
dV (3.12a)

BM
i =

1

VRVE3

∫
VRVE3

(
qM

iklε
M
kl + qM

iklε
M
kl,pδxp + qM

ikl,oε
M
klδxo + qM

ikl,oε
M
kl,pδxoδxp

)
dV

+
1

VRVE4

∫
VRVE4

(
µM

ik HM
k + µM

ik HM
k,pδxp + µM

ik,oHM
k δxo + µM

ik,oHM
k,pδxoδxp

)
dV (3.12b)

In Eq. (3.11), it can be seen that the quantities CM
ijkl, ε

M
kl , q

M
kij, q

M
ikl,µ

M
ik and HM

k are equal

to their counterparts Cm
ijkl, ε

m
kl, q

m
kij, q

m
ikl,µ

m
ik and Hm

k calculated at the centre of the RVE.

Hence, these quantities are constant and they can be taken out of the integral in Eq. (3.12)

since they are the values at the centre of the RVEs. Assuming a square RVE with its centre

acting as origin of a Cartesian coordinate system, the linear terms of δx are cancelled as

they consist of odd functions integrated over a symmetric domain. The quadratic terms

are integrated by parts as follows∫
VRVE1

CM
ijkl,oε

M
kl,pδxoδxpdV =

∫
S

CM
ijklε

M
kl,pnoδxoδxpdS−

∫
VRVE1

(
CM

ijklε
M
kl,opδxoδxp

+CM
ijklε

M
kl,pδxo,oδxp + CM

ijklε
M
kl,pδxoδxp,o

)
dV (3.13a)∫

VRVE2

qM
kij,oHM

k,pδxoδxpdV =

∫
S

qM
kijH

M
k,pnoδxoδxpdS−

∫
VRVE2

(
qM

kijH
M
k,opδxoδxp

+qM
kijH

M
k,pδxo,oδxp + qM

kijH
M
k,pδxoδxp,o

)
dV (3.13b)∫

VRVE3

qM
ikl,oε

M
kl,pδxoδxpdV =

∫
S

qM
iklε

M
kl,pnoδxoδxpdS−

∫
VRVE3

(
qM

iklε
M
kl,opδxoδxp

+qM
iklε

M
kl,pδxo,oδxp + qM

iklε
M
kl,pδxoδxp,o

)
dV (3.13c)∫

VRVE4

µM
ik,oHM

k,pδxoδxpdV =

∫
S

µM
ik HM

k,pnoδxoδxpdS−
∫

VRVE4

(
µM

ik HM
k,opδxoδxp

+µM
ik HM

k,pδxo,oδxp + µM
ik HM

k,pδxoδxp,o

)
dV (3.13d)

where no is a normal vector to surface of domain S.
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3.2 Homogenisation and macroscopic length-scale parameter in MREs

Assuming periodic boundary conditions, the boundary integrals vanish and the last two

terms in each of Eq. (3.13) are also cancelled since they consist of odd functions. Further-

more, the integrals2 with δxoδxp can be evaluated for two-dimensional context as follow

∫
VRVEi

δxoδxpdV =

Li
2∫

−Li
2

Li
2∫

−Li
2

δxoδxpdx1dx3 (3.14a)

=
1

12
L4

i δop (i = 1, 2, 3, 4) (3.14b)

where δop is the Kronecker delta, VRVEi
= L2

i (for 2D case) and Li is the size of the ith

RVE. With these elaborations, the piezomagnetic macroscopic constitutive equations with

gradients of strain, magnetic field, and piezomagnetic coupling terms can be expressed as

σM
ij = CM

ijkl

(
εM

kl −
L2

1

12
εM

kl,pp

)
− qM

kij

(
HM

k −
L2

2

12
HM

k,pp

)
(3.15a)

BM
i = qM

ikl

(
εM

kl −
L2

3

12
εM

kl,pp

)
+ µM

ik

(
HM

k −
L2

4

12
HM

k,pp

)
(3.15b)

In addition to the material coefficients of macroscopic constitutive equations, there are

additional coefficients (characteristic length-scale parameters expressed in terms of RVEi

size Li) in Eq. (3.15). It must be pointed out that Eqns. (3.10-3.15) have been derived to

motivate and present the application of the determined RVE sizes in the previous chapter.

In the current form of the macroscopic constitutive equations, microstructural information

can now be taken into account explicitly via additional RVE size parameters in Eq. (3.15).

This non-local macroscopic piezomagnetic model should exhibit some advantages over the

classical piezomagnetic model (Eq. (1.1)) in accurately describing the material behaviour.

Note that Eq. (3.15) follows the structure of the gradient enriched piezomagnetic model

proposed by Xu et al. [61], which is written in terms of phenomenological parameters `i:

σij = Cijkl

(
εkl − `2

1εkl,mm

)
− qijk

(
Hk − `2

2Hk,mm

)
(3.16a)

Bi = qijk

(
εjk − `2

2εjk,mm

)
+ µij

(
Hj − `2

4Hj,mm

)
(3.16b)

Comparing Eq. (3.15) and Eq. (3.16), it can be seen that the link between phenomeno-

logical parameters, representing internal characteristic length-scale parameter `i, and RVE

sizes Li can be established similar to purely elastic context as follows:

`2
i =

L2
i

12
(3.17)

2The detailed integration has been given in Appendix B for the most general 3D case
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3.3 RVE Sizes and Identification of Characteristic

Length-Scale Parameter

In the previous Chapter 2, the detailed methodology to determine the RVE sizes for a

magneto-elastic composite material has been presented. It was demonstrated that lower

bounds of the RVE sizes can be defined by following the proposed numerically-statistical

analysis. As shown, for the analysed MRE material, the difference between the coupling

RVE sizes L2 and L3 was negligible in line with thermodynamic consistency requirements.

Similarly, Xu et al. [61] followed a variational formulation which led to `2 = `3 for reasons

of thermodynamic consistency. In this thesis, this issue has been explored by determining

the same size for the coupling RVEs L2 and L3, while purely elastic and magnetic RVE

sizes L1 and L4 are clearly smaller and different. In this context, this chapter provides

a novelty in addition to work of Xu et al. [61] by proposing a way to determine the

parameter that was presented and prescribed as length-scale parameter (`) to introduce

the microstructural information.

According to numerical results in Figure 2.6, it can be seen that the largest determined

RVE size for L2 and L3 also covers the lower bound condition for L1 and L4. Therefore,

it was concluded and recommended that it is sufficient to use only these largest sizes for

practical purposes and set L1 = L2 = L3 = L4 = max(Li) ≡ L to introduce the magneto-

elastic information from micro-level. Eventually, the field equations of the problem on the

macro-scale can be obtained by combining the kinematic relations, balance equations and

constitutive equations:

εM
ij =

1

2
(uM

i,j + uM
j,i) (3.18a)

HM
i = −ϕM

,i (3.18b)

σM
ij,j = 0 (3.19a)

BM
i,i = 0 (3.19b)

where uM
i is the displacement field and ϕM is the scalar magnetic potential on the macro-

level. The governing equations in terms of the primary unknowns u and ϕ are now:

CM
ijkl

(
uM

k,jl −
L2

12
uM

k,jlpp

)
+ qM

kij

(
ϕM

,jk −
L2

12
ϕM

,jkpp

)
= 0 (3.20a)

qM
ikl

(
uM

k,il −
L2

12
uM

k,ilpp

)
− µM

ik

(
ϕM

,ik −
L2

12
ϕM

,ikpp

)
= 0 (3.20b)
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3.4 Finite element formulations

with L chosen as the largest of the four RVE sizes as discussed above. Here, by using the

finite element implementation given for gradient magneto-elasticity by Xu et al. [61], the

determined RVE sizes will be used instead of predefined phenomenological length-scale

parameters in a generalised magneto-elasticity example.

3.4 Finite element formulations

To derive the finite element formulations of the macroscopic model, Eqs (3.18-3.20) are

expressed in matrix-vector notation as follow:

εM = Luu
M (3.21a)

HM = −Lϕϕ
M (3.21b)

LT
uσ

M = 0 (3.22a)

LT
ϕBM = 0 (3.22b)

LT
u CMLu

(
uM − L2

12
∇2uM

)
+ LT

u qMLϕ

(
ϕM − L2

12
∇2ϕM

)
= 0 (3.23a)

LT
ϕqMT

Lu

(
uM − L2

12
∇2uM

)
− LT

ϕµ
MLϕ

(
ϕM − L2

12
∇2ϕM

)
= 0 (3.23b)

where ∇2 ≡ ∇T.∇ is the Laplace operator, Lu is the usual strain-displacement derivative

operator, and Lϕ = ∇. It can be realised that finite element implementation of Eq. (3.23)

is not straightforward because of the increased continuity requirements of shape functions

enforced by gradients.

At this point, Ru and Aifantis [123] developed an approach to solve the certain bound-

ary problems of gradient elasticity in terms of solutions of classical elasticity. As they

stated, the fourth-order partial differential equation needs to be solved to obtain the so-

lution (displacement vector) in gradient theory. However, they also showed that various

derivatives in gradient theory can be factorised to enable the usage of standard C0 in-

terpolation functions. This procedure was applied to numerical examples without any

magnetic or coupling effects. Afterwards, Askes and co-workers [61, 125] have extended

the concept to magneto-elasticity to implement the finite element formulation in gradient

piezomagnetic theory. In this method, displacements and magnetic potentials are defined

as two different sets by factorising the derivatives.
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uM and um = uM − L2

12
∇2uM (3.24a)

ϕM and ϕm = ϕM − L2

12
∇2ϕM (3.24b)

Here, again superscripts m and M denotes the micro- and macro-scale, respectively.

Subsequently, the governing Eq. (3.23) can be expressed as two sets of decoupled equations

following the Ru-Aifantis theorem as seen below.

LT
u CMLuu

m + LT
u qMLϕϕ

m = 0 (3.25a)

LT
ϕqMT

Luu
m − LT

ϕµ
MLϕϕ

m = 0 (3.25b)

um = uM − L2

12
∇2uM (3.26a)

ϕm = ϕM − L2

12
∇2ϕM (3.26b)

Thus, fourth-order governing Eq. (3.23) is now reduced to two sets of second-order

equations (3.25) and (3.26). Note that the original form of Eq. (3.23) can be retrieved by

substituting (3.26) into (3.25). In this operator split, there are now two distinct displace-

ment and magnetic potential fields: one follows the equations of classical piezomagnetism

(3.25), and other influenced by gradient activity (3.26). Under the appropriate boundary

conditions, one can obtain the same solution from the decoupled sets as in the origi-

nal form. For this, Eq. (3.25) is solved first, and the results can be used as input in

Eq. (3.26). This approach significantly simplifies analytical and numerical solution strate-

gies [61, 123,125].

To begin with the solution of the first set of the equations, the weak form of Eq. (3.25)

can be derived for domain Ω and boundary Γ after integration by parts as follows:∫
Ω

(Luwu)TCMLuu
mdΩ +

∫
Ω

(Luwu)TqMLϕϕ
mdΩ =

∫
Γ

wT
u tdΓ (3.27a)

∫
Ω

(Lϕwϕ)TqMT
Luu

mdΩ−
∫
Ω

(Lϕwϕ)TµMLϕϕ
MdΩ =

∫
Γ

wT
ϕB⊥dΓ (3.27b)

where wu and wϕ are the test functions, t are the boundary tractions, and B⊥ is the

magnetic traction on the boundary. It must be noted that the weak form (Eq. (3.27))

and finite element equations (Eq. (3.28)) of the first set are the same as Eq. (2.10) and

Eq. (2.12) given in the micro-scale analysis for RVE size determination. However, the ma-
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3.4 Finite element formulations

terial properties in Eqns. (3.25-3.29) are not described individually for the components,

but they are effective macroscopic material properties. Similarly, the standard finite ele-

ment shape functions of 3 noded triangle elements Nu and Nϕ are used for displacements

and magnetic potential in 2D. Thus, the finite element formulation is obtained as:

Kuu Kuϕ

Kϕu −Kϕϕ

dm

Ψm

 =

F

Φ

 (3.28)

where dm and Ψm are micro-scale nodal displacement and nodal scalar magnetic potential

vectors via um = Nud
m and ϕm = NϕΨm. Moreover, F and Φ are nodal mechanical force

and nodal magnetic flux vectors. Lastly, stiffness matrices are given by

Kuu =

∫
Ω

BT
u CMBudΩ Kuϕ =

∫
Ω

BT
u qMBϕdΩ

Kϕu =

∫
Ω

BT
ϕqMT

BudΩ Kϕϕ =

∫
Ω

BT
ϕµ

MBϕdΩ

(3.29)

with Bu = LuNu, Bϕ = LϕNϕ.

When the system of equations (3.28) is solved, microscopic displacements and mag-

netic potentials will be obtained. Afterwards, macroscopic displacements and magnetic

potentials in the second set of the equations Eq. (3.26) can be found. As stated, the singu-

larity removing in mechanical and magnetic fields will be addressed in this chapter, and

thus macroscopic strains ε and magnetic field H needs to be calculated in the numerical

example. For this purpose, strain and magnetic field based Ru-Aifantis ε&H − RA ap-

proach can be used as proposed by Xu et al. [61]. In this approach, macroscopic strain and

magnetic field can be calculated by using the known microscopic displacements and mag-

netic potentials from the solution of (3.28). As the first step, the derivative of Eq. (3.26)

is taken, and then the result are multiplied by relevant constitutive matrices as below:

CMLuu
m = CM

(
εM − L2

12
∇2εM

)
(3.30a)

−µMLϕϕ
m = µM

(
HM − L2

12
∇2HM

)
(3.30b)

The weak form of Eq. (3.30) can be derived after integration by parts:
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∫
Ω

wT
ε CMεMdΩ +

L2

12

(
∂wT

ε

∂x
CM∂ε

M

∂x
+
∂wT

ε

∂z
CM∂ε

M

∂z

)
dΩ

=

∫
Ω

wT
ε CMLuu

mdΩ +
L2

12

∫
Γ

wT
ε

(
n.∇CMεM

)
dΓ (3.31a)

∫
Ω

wT
Hµ

MHMdΩ +
L2

12

(
∂wT

H

∂x
µM∂HM

∂x
+
∂wT

H

∂z
µM∂HM

∂z

)
dΩ

=

∫
Ω

wT
Hµ

MLϕϕ
mdΩ +

L2

12

∫
Γ

wT
H

(
n.∇µMHM

)
dΓ (3.31b)

where wε and wH are test functions. Next, the finite element equations can be obtained

by assuming homogeneous natural boundary conditions for (Eq. (3.31))

Gε + L2

12
Aε 0

0 GH + L2

12
AH

εM

hM

 =

Tε 0

0 −TH

dm

Ψm

 (3.32)

where εM and hM are macro-scale nodal strains and nodal magnetic field vectors via

εM = Nεε
M and HM = Nhh

M. Additionally, stiffness matrices are:

Gε =

∫
Ω

NT
ε CMNεdΩ Aε =

(
∂NT

ε

∂x
CM∂Nε

∂x
+
∂NT

ε

∂z
CM∂Nε

∂z

)
dΩ

GH =

∫
Ω

NT
Hµ

MNHdΩ AH =

(
∂NT

H

∂x
µM∂NH

∂x
+
∂NT

H

∂z
µM∂NH

∂z

)
dΩ

Tε =

∫
Ω

NT
ε CMBudΩ TH =

∫
Ω

NT
Hµ

MBϕdΩ

(3.33)

Finally, the solution for the decoupled sets of equations can be obtained by solving

Eq. (3.28) first, and then the results (micro-scale displacements dm and magnetic po-

tentials Ψm) are used as input in Eq. (3.32) to calculate the macroscopic strains and

magnetic field in a macro-scale model. Now, the effectiveness of using a gradient piezo-

magnetic model which includes determined RVE sizes can be addressed.
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Start

Define:
Boundary conditions and geometry,

One RVE size,
Macroscopic effective material properties obtained on RVE

Solve Eq. (3.26) to obtain
microscopic displacements and potentials

Activate
the gradients

Yes:
Gradient enriched
piezomagnetism

No:
Classical

piezomagnetism

Solve Eq. (3.30) with
L=Determined RVE size

Obtain
macroscopic strain,
and magnetic field

End

Solve Eq. (3.30) with
L=0

Obtain
macroscopic strain,
and magnetic field

End

Figure 3.1: Procedure of gradient enriched piezomagnetic model solution
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3.5 Removal of singularities

In this section, the standard benchmark numerical example, demonstrating the removal

of singularities in mechanical and magnetic fields, will be analysed to demonstrate the

performance of the model. The detailed finite element implementation of gradient enriched

piezomagnetic continuum model considering microstructural information via the RVE size

has been presented in previous section.

It is well-known that singularities can be observed in case of sudden changes in the

boundary conditions or at the sharp corners in a model when the classical elasticity is

used. On the contrary, gradient elasticity with appropriate boundary conditions can pre-

vent these singularities as shown by researchers [123,124,126,127]. Therefore, a numerical

example will be presented demonstrating the removing of singularities to study the in-

fluence of gradient piezomagnetic formulation, and investigate the difference from the

classical piezomagnetic formulation. Accordingly, a MATLAB code has been developed

in-house to create an MRE plate with a notch, and solve the finite element formulations

(see Figure 3.1). Singularities are expected to appear at the tip of the notch if classical

theory is employed.

In the numerical example, a homogeneous MRE plate (Terfenol-D-epoxy composite)

was modelled on the macro-scale, with the effective properties as given in Table 3.1. The

effective material properties have been calculated via homogenisation of the constituents’s

properties (Table 2.1) on the determined RVE given in the previous Chapter. Plane stress

condition is considered, and external loadings were applied as shown in Figure 3.2a. The

plate is polarized along the z direction with prescribed displacements U = 0.1 mm and

scalar magnetic potentials on the left and right edges to create an external magnetic field

of Hz = 20 kA/m. Finite element discretisation was achieved by using linear triangular

elements, and the mesh was created as seen in Figure 3.2b. As discussed, it was assumed

that L1 = L2 = L3 = L4 ≡ L in Eq. (3.20), and L is the size of the RVE determined as

2.3 mm (see Figure 2.6). The notch in the plate has been modelled as an inclusion with

vacuum permeability, and zero values for elastic constants, piezomagnetic constants and

RVE size L to represent a void. Under these conditions, the distributions of strain ε and

magnetic field H components was calculated along z axis to analyse the singularities at

the tip of the notch.
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3.5 Removal of singularities

C11 C13 C33 C55 q31 q33 q15 µ11 µ33

MRE Plate 15.5 10 19 2.3 -9 57 20.3 3.4 1.4

Cij in GPa, qij in N/Am, µij in 10−6N/A2

Table 3.1: Effective material properties of MRE plate

U

30

2
0

3

2

z

x

U

φl

φr

(a) Macro-scale MRE Plate with a crack

(b) Mesh of the plate

Figure 3.2: MRE Plate with a crack and finite element discretisation (Units: mm and

thickness=5 mm)
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Figure 3.3 presents the distributions of ε and H components in the z-direction, in-

dicated by a solid red line, passing through the notch tip in Figure 3.2. To investigate

the effectiveness of the gradient formulation, two different cases have been considered:

one with the RVE size L = 2.3 mm that considers the gradients, and the other with the

RVE size L = 0 that represents the classical piezomagnetism in which the microstructural

information is absent. It can be seen (Figure 3.3) that using the gradient enhanced, RVE-

based piezomagnetic formulation can effectively remove the singularities of all ε and H

components, while singularities appear at the notch tip for the classical formulation.
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Figure 3.3: ε and H distributions along z-axis based on ε&H− RA appraoach
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3.6 Discussion

It must also be noted that a similar problem has been addressed by Xu et al. [61]

by using predefined characteristic length-scale parameter ` = 0.5 mm instead of the RVE

size L for an MRE material. Their work have also provided qualitatively similar results by

removing the mechanical and magnetic singularities. Therefore, the result of this chapter

also verifies the appropriateness of using the RVE size as a model parameter in gradient

formulation.

3.6 Discussion

In this chapter, a piezomagnetic continuum model has been developed with gradients of

strain, piezomagnetic coupling and magnetic field whereby the microstructural charac-

teristic length-scale parameters are expressed in terms of RVE sizes. Second-order (or

non-local) homogenisation scheme has been summarised, and adopted in magneto-elastic

framework. This technique results in the appearance of length-scale parameters as linear

functions of the related RVE size in macroscopic piezomagnetic constitutive relations.

By establishing this link, the second and final step of considering the microstructural

information on the macro-level magneto-elastic behaviour was achieved.

According to the conclusions of RVE size determination study given in Chapter 2,

previously defined RVE sizes have been assumed to be same and equal to L = 2.3 mm.

It was shown that gradient enriched piezomagnetic model (with RVEs) presents more

accurate description of material behaviour compared to a classical piezomagnetic model.

For this, an in-plane problem has been addressed with this generalised magneto-elastic

continuum model. A solution scheme was formulated and implemented based on the finite

element method and the extended Ru-Aifantis theorem adopted from the study given by

Xu et al. [61]. In the continuum model, representative volume elements (RVEs) were

included to introduce the microstructural information to the macroscopic behaviour of

the material. By using the determined model parameter RVE size L, it was observed

that the singularities can be removed at the tip of a notch in mechanical and magnetic

fields for a homogenised MRE (Terfenol-D/polymer) plate on the macro-scale. However,

classical piezomagnetic model with L = 0 mm, which also means not considering the

microstructure, has presented spiky values (singularities) at the notch tip for macroscopic

mechanical strain and magnetic field distributions. Additionally, a comparison has been

made between using determined RVE size and predefined length-scale as given by Xu et

al. [61] for the same problem in the work of Eraslan et al. [117]. It was seen that both
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approach very present similar results (remove singularities), and thus it was suggested

that a length scale can also be prescribed quantitatively by using the relation with the

RVE size as given in Eq. (3.17).

In summary, significance of the microstructural influence on a macro-level modelling

in a magnetostrictive composite material has been demonstrated, and the static aspect of

this thesis can now be concluded. The motivation in statics analysis was to remove the

singularities in mechanical and magnetic fields, and this was achieved by using RVE size

as model parameter in macroscopic non-local piezomagnetic continua. Next, a dynamic

aspect of the magneto-elastic composites motivated by a phenomenon called stop-band

behaviour will be studied in the context of this study.
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Chapter 4

Effects of randomness and

piezomagnetic coupling on the

appearance of stop-bands in MREs

It is well known that the behaviour of heterogeneous materials differs significantly from

their homogeneous counterparts, when a dynamic loading is applied specifically when

acoustic and/or elastic waves propagate through a material. This difference is attributed

to existence of wave dispersion due to the change in medium properties, i.e. density and

elastic constants of the constituents. A considerable effort has been put on the study of

elastic wave propagation in composite materials by theoretical and experimental studies

[92,95–99,128–132].

Composite materials with periodic arrangement of inclusions embedded in a matrix

are called as phononic crystals (PCs) and they show a well-known phenomenon referred

to as stop-band (or wave band-gap). Stop-band is a band of frequencies, where elastic

wave propagation and vibrations are suppressed in certain frequency ranges [90, 91, 95–

97, 133, 134]. In the case of magnetostrictive composites (or MREs), the arrangement of

magnetic particles or fibres can be non-periodic. Magnetic inclusions can be distributed

randomly (as discussed in previous chapters). It is thus of interest to analyse the wave

propagation phenomenon and stop-bands in MREs in this chapter1. Complete frequency

gaps have much potential for applications such as acoustic filters, reflectors, waveguides,

1This chapter is directly adopted from:

Eraslan, S., Gitman, I., Askes, H. et al. Effects of randomness and piezomagnetic coupling on the ap-

pearance of stop-bands in heterogeneous magnetorheological elastomers. Arch Appl Mech 93, 3259–3273

(2023) [135]
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switches and vibration isolation [88–92]. Controlling and tuning the characteristics (e.g.

position and the width) of stop-bands and analysing the effective parameters influencing

these properties are therefore important topics for investigation, allowing to create more

effective designs or enhance the functionality of composites. It is known that the stop-band

attributes can be influenced by inclusion geometry, lattice pattern, volume fraction and

elastic characteristics of the constituents [91,97,99,100]. Potential advantages of an MRE

material over an elastic composite material that does not exhibit coupled behaviour will

be investigated. Moreover, the influential parameters on the stop-bands characteristics

will be analysed.

4.1 Magneto-elastic materials and wave band-gaps

Stimuli-responsive composite materials have also been extensively studied in wave prop-

agation problems as they offer potential for superior features compared to conventional

materials, in particular improved and controllable physical properties [89,90,99,101–104].

As has been mentioned, material and geometrical properties of a composite are influen-

tial parameters in wave propagation behaviour, and these features can be affected by the

external stimuli in case of using responsive materials as inclusions in PCs. Consequently,

the idea of tuning and optimising the stop-bands have taken a great interest, and thus

these materials have become attractive and promising candidates for stop-band tunability

purposes.

Specifically, PCs with piezoelectric or piezomagnetic constituents show some advan-

tages compared to purely elastic PCs such as quick response, controllability and reversibil-

ity [101]. Bou et al. [91] pointed out that large magnitudes of stimuli are needed to tune

stop-band characteristics for electrorheological materials (or indeed temperature change)

while magneto-elastic materials are very sensitive to external magnetic fields and their

magnetic state. This feature makes magneto-elastic materials suitable candidates for con-

tactless controllable PCs. They have already shown contactless tunability of stop-bands

via the magnetic field dependent piezomagnetic material model for 2D PCs composed

of Terfenol-D and an epoxy matrix [91]. It was concluded that introduction of magneto-

elastic coupling can lead to some potentially advantageous effects on the band gap prop-

erties, such as an increase in bandwidth of the first stop-band range and the creation of

a second stop-band range [89,91,102].

The influence of an external static magnetic field on band gaps of Lamb waves in PC
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slabs has been studied by Zhou et al. [88]. They concluded that the width of the first

band gap can be changed significantly with a change in amplitude of the magnetic field,

which can have potential applications in vibration isolation. Similarly, Ding et al. [90]

have considered 1D magneto-elastic phononic crystals analysing and tuning longitudinal

wave band gap properties. In addition to the static magnetic field, it was shown that

filling fraction, pre-stress and thermal conditions can also influence band gap properties

noticeably. Furthermore, elastic wave propagation in 2D magnetoelectroelastic materials

has been investigated by Wang et al. [99, 113] to understand the effects of lattice geom-

etry and coupling effects on the band gap characteristics. They demonstrated that the

first band gap width is larger for triangular and square patterns as opposed to hexagonal

geometries, and this difference increases with the filling ratio. On the other hand, piezo-

electric and piezomagnetic effects have a significant influence (especially in high filling

ratios) on the width of the higher band gaps.

Moreover, small size PCs have been developed with the advancements in micro- and

nano-electromechanical systems [136–138]. Hence, non-local theories were also developed

to study size-dependent wave propagation behaviour and stop-bands in magneto-elastic

PCs. Hu et al. [136] have derived the governing equation of Terfenol-D/epoxy nano PCs

considering the non-local effects and piezomagnetic coupling on the stop-band structures.

They concluded that incorporating the non-local parameter in the model results in en-

larged edges and width of the stop-band. Classical continuum theory is not sufficient to

describe the dispersive wave propagation due to lack of terms incorporating microstruc-

tural information in macroscopic continua. Xu et al. [139,140] have presented a dynamic

piezomagnetic model with gradient enrichments and transient effects to describe the wave

dispersion in generalised magneto-elastic continua. They showed that the model can pre-

dict the wave dispersion, and dispersive properties are controlled by the ratio of the

length-scale parameters employed for strain and acceleration.

Besides the parameters influencing the stop-band characteristics of PCs as summarized

above, Song et al. [97,105] demonstrated that geometrical and mechanical randomness also

affect the stop-band frequencies in an elastic material. In particular, these authors showed

that randomness in the geometry causes much more significant changes on the stop-bands

compared to randomness in mechanical properties. Even for moderate perturbations in the

geometry, the second pass band decreases dramatically, both in width and in transmission

coefficient, and ultimately the second pass-band can be turned into a stop-band for a

sufficiently high degree of geometric randomness.
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The aim of this chapter is to analyse longitudinal wave propagation and stop-band

behaviour in magneto-elastic composite materials and to investigate the combined influ-

ence of magneto-elastic coupling and randomness. The influence of the size and volume

fraction of magnetic inclusions will be studied with and without magneto-elastic coupling.

Randomness will be introduced in the magnetic inclusions’ sizes and positions separately

as well as simultaneously to analyse possible effects of randomness. The finite element

formulation will be described that has been used to simulate magneto-elastic wave propa-

gation. The test setup and the algorithm of analysis will also be given to study the effects

of periodicity, randomness, particles sizes, volume fraction, and coupled versus decoupled

behaviour.

4.2 Continuum equations and discretisation aspects

To describe the longitudinal wave propagation in a heterogeneous MRE material, finite

element discretisation of the equation of motion for a piezomagnetic material will be

derived. For the ease of readability, some common points with the static formulation such

as kinematic relations, stiffness matrices etc. will be reiterated. As discussed in Chapter 1,

magnetostrictive materials show non-linear material behaviour, but they can be described

by linear piezomagnetic laws in a certain range of operation. This range can be obtained

by considering only variations around the initial magnetic bias and the mechanical pre-

stress conditions [78]. The constitutive equations of a linear piezomagnetic medium in

vector notation are given as [18,77–82]

σ = Cε− qH (4.1a)

B = qTε+µµµH (4.1b)

The equation of motion can be written as:

LT
uσ = ρü (4.2a)

LT
ϕB = 0 (4.2b)

Combining Eqns. (4.1-4.2) with the kinematic relations ε=Luu and H = -Lϕϕ yields

LT
u CLuu + LT

u qLϕϕ = ρü (4.3a)

LT
ϕqTLuu− LT

ϕµµµLϕϕ = 0 (4.3b)
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where ρ is the mass density, and a superimposed dot denotes a time derivative. As known,

Lϕ = ∇ and Lu is the usual strain-displacement derivative operator, u is the displacement

field, ϕ is the scalar magnetic potential.

Similarly, the weak form of Eq.(4.3) can be written for domain Ω and boundary Γ

after integration by parts to obtain the finite element formulation as follows:∫
Ω

wT
u ρüdΩ +

∫
Ω

(Luwu)TCLuudΩ +

∫
Ω

(Luwu)TQLϕϕdΩ =

∫
Γ

wT
u tdΓ (4.4a)

∫
Ω

(Lϕwϕ)TQTLuudΩ−
∫
Ω

(Lϕwϕ)TµµµLϕϕdΩ =

∫
Γ

wT
ϕB⊥dΓ (4.4b)

where wu and wϕ are the test functions, t are the boundary tractions, and B⊥ is the

magnetic traction on the boundary. Thus, the following system of equations is obtained:

M 0

0 0

d̈

0

+

Kuu Kuϕ

Kϕu −Kϕϕ

d

Ψ

 =

F

Φ

 (4.5)

where d and Ψ are nodal displacement and nodal scalar magnetic potential vectors via

u = Nud, ü = Nud̈ and ϕ = NϕΨ. Moreover, F and Φ are nodal mechanical force and

nodal magnetic flux vectors. Lastly, stiffness and mass matrices are given by

M =

∫
Ω

ρNT
u NudΩ , Kuu =

∫
Ω

BT
u CBudΩ , Kuϕ =

∫
Ω

BT
u QBϕdΩ

Kϕu =

∫
Ω

BT
ϕQTBuΩ , Kϕϕ =

∫
Ω

BT
ϕµBϕdΩ

(4.6)

with Bu = LuNu, Bϕ = LϕNϕ. Similar to static case, the matrices Nu and Nϕ contain

the relevant shape functions of linear triangular finite elements.

In order to solve the finite element form of equations of motion (Eq. (4.5)) for the

longitudinal wave propagation behaviour, a time integration method is required. Here,

the constant average acceleration variant of the Newmark integration method has been

used with the parameters γ = 0.5 and β = 0.25 since they provide unconditionally stable

solutions:

u̇t+∆t = u̇t + (1− γ)∆t üt + γ∆t üt+∆t

ut+∆t = ut + ∆t u̇t + (0.5− β)∆t2 üt + β∆t2 üt+∆t
(4.7)

where u, u̇ and ü are displacement, velocity and acceleration respectively. The superscript

t denotes the current time step, t + ∆t the next time step, and ∆t the time interval.
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4.3 Numerical test setup

The numerical test setup has been constructed as given in Figure 4.1. In addition to test

material (here - MRE), different artificial bodies namely perfectly matched layers (PMLs),

source and receiver parts have been created to generate and simulate the propagation of

the longitudinal wave. The test material (MRE) consists of polymer matrix and piezo-

magnetic particles. The details of the test material will be presented and discussed in the

following sections.

It is known that reflections either from the interface between the parts or from the

ends of the geometry can significantly affect the results in a wave propagation analysis. So-

called perfectly matched layers (PMLs) are often used in numerical simulations to absorb

the waves, so that unwanted reflections can be avoided [97]. Additionally, it was pointed

out that spurious reflections can pollute the results, if the difference in compressional

wave speeds between the PMLs and source/receiver parts is too large [97]. Therefore, two

PMLs have been created in the test setup to reduce this numerical noise.

The roles of the source and receiver parts were to generate and record the incident

wave during the simulation.

Receiver
PartTest MaterialPML-2 PML-2PML-1 PML-1

L

h
z

x

l1 l2 ls lt lr l2 l1

Source
Part

Figure 4.1: Numerical model of simulation

The test material (MRE) has been placed between PMLs and artificial source/receiver

regions to simulate the longitudinal waves propagating in the test material along the z

axis. Here, the superscripts 1, 2, s and r represent the first PML, the second PML, source

and receiver regions respectively. The acoustic impedance of PMLs and source/receiver

parts should be identical to provide a smooth transition between the various parts and

low compressional wave speeds in the PMLs [97]. Therefore, the material properties have

been taken as
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ρs = ρr ρ2 = 10ρs ρ1 = 50ρs

Cs = Cr C2 = 0.1Cs C1 = 0.02Cs
(4.8)

where ρ is the mass density and C is the stiffness tensor. Thus, the compressional matching

impedance has been achieved via
√
ρsCs

33 =
√
ρrCr

33 =
√
ρ1C1

33 =
√
ρ2C2

33, where C33 is

the stiffness in direction of longitudinal wave propagation along the z axis. Furthermore,

the compressional wave speed in the various parts follows from

vs
comp. = vr

comp.

v2
comp. =

√
C2

33

ρ2

= 0.1vs
comp.

v1
comp. =

√
C1

33

ρ1
= 0.02vs

comp.

(4.9)

Test material Source/receiver PML-1/PML-2

Length (l) 2 0.5 1.5

Height (h) 2 2 2

Table 4.1: Size of the parts in the test setup (sizes in mm).

The sizes of the parts in the test setup have been chosen as seen in Table 4.1. With

these elaborations, the numerical process to simulate the longitudinal wave propagation,

and identify stop-bands/pass-bands can be given as follows:

1. Mechanical boundary conditions have been prescribed as uz

(
-L

2

)
= uz

(
L
2

)
= 0,

ux

(
-L

2

)
= ux

(
L
2

)
= 0 and ux

(
-h

2

)
= ux

(
h
2

)
= 0 where ux and uz are horizontal and

vertical displacements. Magnetic boundary conditions have been set up by defining

scalar magnetic potentials ϕs and ϕr on the nodes of source and receiver lines (at

the middle of the source/receiver parts, see Figure 4.1) to create a static magnetic

field Hz in the test material. Scalar magnetic potentials on the receiver/source lines

have been assigned to create 5 kA/m of magnetic field that corresponds to a small

variation around bias field [78]. Lastly, initial conditions at t = 0 have been defined

as v = 0, u = 0, ϕs = 0, and ϕr = 0 where v is the nodal velocity vector.
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2. A continuous harmonic longitudinal sine wave is activated at the source line by

applying nodal forces Fg = Agsin(ωt) where Ag is the amplitude, ω is the angular

frequency and t is time. This longitudinal wave propagates in the positive z direction

through the test material (MRE) and the displacements on the receiver line are

recorded.

3. For each frequency, two simulations are set: one with a heterogeneous test mate-

rial, and one with the equivalent homogeneous test material. In the homogenous

setup, material properties of the test material are averaged from magnetic particle

and polymer matrix according to the rule of mixtures. In the heterogeneous setup,

constituents have their individual material properties. The material properties of

the source and receiver parts are assigned to be the averaged properties in both

simulations.

4. To have the amplitudes of propagated incident wave for both homogeneous (Ah)

and heterogeneous (Ac) setup, a Fourier transform is applied to the recorded dis-

placements at the end of each simulation. It is known that wave propagation is non-

dispersive in homogeneous materials, and each individual harmonic travels with the

same velocity. However, the wave propagation will show a dispersive behaviour in

the case of heterogeneous materials, and an inability of certain harmonic compo-

nents to propagate may occur. The amplitude variance between the homogeneous

and heterogeneous configurations will be used to define the transmission coefficient.

Displacements are recorded on ten equally spaced nodes (recording points) at the

receiver line during the simulation. Finally, a transmission coefficient is defined as

T =
Ac

Ah

(4.10)

In this thesis, it was assumed that if the transmission coefficient is less than 10%,

the relevant harmonic component can be considered as “stopped”. This process has been

followed for a range of frequencies to determine the stop-band frequencies. By varying

microstructural properties of the test material and applying or switching off magnetic

field, the effects of microstructure and magneto-elastic coupling can be measured and

assessed in a systematic manner. The procedure of the numerical process has also been

summarised in Figure 4.2.
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Start

Define:
Geometry of test setup,

Boundary and initial conditions,
Frequency range

Calculate
the amplitude of propagated wave

(Ac) via Fourier transform

Set
the simulation type

and frequency

Heterogeneous
test material

Solve Eq. (4.5) by using
Newmark integration method Eq. (4.7)
with prescribed simulation time (30*T)

and time step (T/20)

Recording
the displacements
on receiver points

EndEnd

Equivalent Homogeneous
test material

Define
material properties:

Test material:Heterogeneous
(see Table 4.2 for
coupled/decoupled cases)
Source/Receiver:Averaged
(Based on RoM)
PMLs:Calculated
via Eq. (4.8)

Define
material properties:

Test material:Homogeneous
(Based on RoM, see Table 4.2
for coupled/decoupled cases)
Source/Receiver:Averaged
(Based on RoM)
PMLs:Calculated
via Eq. (4.8)

Solve Eq. (4.5) by using
Newmark integration method Eq. (4.7)
with prescribed simulation time (30*T)

and time step (T/20)

Calculate
the amplitude of propagated wave

(Ah) via Fourier transform

Recording
the displacements
on receiver points

Calculate
the Transmission coefficient (T i)

at each recording point via Eq. (4.10)

Obtain
the averaged

Transmission coefficient

Is < 10%
YesNo Accept the frequency

as stopped
Accept the frequency

as passed

Figure 4.2: Procedure of wave propagation and stop-band analysis

81



Effects of randomness and piezomagnetic coupling on the appearance of stop-bands in
MREs

4.4 Results and analysis of influential parameters on

stop-bands

In the numerical analysis, material properties of magnetostrictive Terfenol-D particles and

polymer matrix material have been adopted as given in Table 4.2 (note that this mate-

rial is similar to the one analysed in previous chapters). The polymer matrix has been

modelled to be a non-magnetisable material. To represent the non-magnetisable polymer,

piezomagnetic constants of the matrix have been assumed as zero, and the magnetic per-

meability of the matrix has been taken as the magnetic permeability of air. Damping of

the constituents have been assumed as zero to simplify the analysis [93], and volume frac-

tions of particles Vf have been chosen as 30% and 45% (for different tests). A continuous

harmonic force function has been applied with an amplitude (Ag) of 1 Newton during the

simulation time which has been set to be equal 30 periods of the wave to ensure that

sufficient periods have propagated and been recorded. To describe the wave propagation

accurately, approximately 6 finite elements per wavelength were used in the test material.

The studied frequency range has been set to be 0.5− 7.0 MHz.

C11 C13 C33 C55 q31 q33 q15 µ11 µ33 ρ

Coupled
Terfenol-D [78] 27 11.8 31.4 4.2 -15.2 217 68 9 1.86 9250

Polymer [113] 7.8 4.8 7.8 1.6 0 0 0 µ0 µ0 1150

Decoupled
Terfenol-D [78] 27 11.8 31.4 4.2 0 0 0 µ0 µ0 9250

Polymer [113] 7.8 4.8 7.8 1.6 0 0 0 µ0 µ0 1150

Cij in GPa, qij in N/Am, µij in 10−6N/A2, ρ in kg/m3

Table 4.2: Material properties of test material

As mentioned above, the effects of piezomagnetic coupling and microstructure of the

MRE have been investigated in this chapter. To study the coupling effect, the piezomag-

netic coupling properties of the particles have been assigned as zero and non-zero (see

Table 4.2) to simulate decoupled and coupled physics. Moreover, the magnitude of the

external magnetic field Hz has been set to be 0 kA/m for the decoupled case, and 5 kA/m

for the coupled case in the z direction.

In the evaluation of the microstructure, attributing to earlier studies given in purely

82



4.4 Results and analysis of influential parameters on stop-bands

elastic decoupled context [93,97,105], periodic and random particle distributions have been

created for the test material. A Matlab code (by using PdeToolbox) developed in-house

has been used to create the test geometries. To this end, alongside periodic material (a),

randomness has been introduced in terms of particle size only (b), particle position only

(c), and both size and position simultaneously (d) as depicted qualitatively in Figure 4.3.

a b c d

Figure 4.3: Example of test materials. Periodic (a), randomness in particle size (b),

position (c) and both (d). (Vf = 30%)

4.4.1 Periodic microstructure

The first analysis has been done for a periodic test material (Figure 4.3a), which will serve

as a benchmark for all subsequent tests.

Influence of magneto-elastic coupling

In this first study, the influence of piezomagnetic coupling on the wave propagation in

periodic material has been evaluated. The transmission coefficients on the recording points

have been calculated for each frequency as seen in Figure 4.4 for the decoupled (left)

and the coupled (right) cases. On the recording points, the values of the transmission

coefficients are relatively lower at some frequencies (around 2.5 and 4.5 MHz) in addition

to being similar. Conversely, they have shown a varied and higher distribution at some

other frequencies (around 1, 3.5 and 5.5 MHz).

Furthermore, an averaged transmission coefficient T has been determined for each

frequency as the mean of the ten Ti, recorded in the ten receiver points to visualise and

compare results more quantitatively as shown in Figure 4.5. It must be noted that these

average values T represent the change in the trend of transmission coefficients along the

frequency range, and it should not be used as the only result to assess the propagation of

the wave in the test material. However, since transmission coefficients Ti at the stop-band

frequencies are very similar, the averaged value can represent the wave propagation and
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transmission coefficients on the recording line.
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Figure 4.4: Transmission coefficients on the recording points for a periodic structure.

Decoupled (left) and coupled (right).(Vf = 30%)

As seen in the averaged transmission coefficient graph Figure 4.5, stop-band frequen-

cies range of 2.1− 2.6 MHz can be assumed for the case of pure elasticity (or decoupled

with the absence of magnetic field). When the piezomagnetic coupling terms are intro-

duced (or coupled with the presence of magnetic field), the width of the first stop-band

increases to 2.1− 3.1 MHz, presenting a slightly enlarged stop-band characteristic for the

test material.
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Figure 4.5: The average transmission coefficient T and effect of magneto-elastic coupling

on the stop-band frequencies in periodic microstructure.
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Influence of volume fraction of inclusions

It is known that the volume fraction of the inclusions is an influential parameter on the

static and dynamic behaviour of MREs [27, 89, 91, 99]. It was previously reported that

a higher volume fraction of magnetic particles can lead to increased band width and

transition of the stop-band frequencies. Therefore, it is worth investigating the effect of

the volume fraction. To study this effect, another periodic test material has been created

by increasing the volume fraction to 45% as seen in Figure 4.6.

a b

Figure 4.6: Increased volume fraction for periodic test material: Vf = 30% (a), Vf = 45%

(b).

The results in Figure 4.7 show that while there is a relatively similar distribution

of transmission coefficients in decoupled case compared to volume fraction of 30% (Fig-

ure 4.4(left)), the values in the middle region 2 − 5.5 MHz have significantly decreased

in coupled case for increased volume fraction of inclusions (Figure 4.7(rigth) for 45% and

Figure 4.4(right) for 30%) .
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Figure 4.7: Transmission coefficients on the recording points for a periodic structure.

Decoupled (left) and coupled (right).(Vf = 45%)
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Further, Figure 4.8 presents the averaged transmission coefficient results of Vf = 45%

and Vf = 30% together for comparison. An increase in volume fraction affects the wave

propagation characteristics noticeably. Increasing the particle volume fraction moves the

frequency ranges 3.5 − 4.0 MHz and 6.5 − 7.0 MHz into stop bands for the decoupled

physics case. For the coupled physics case, increasing the particle volume fraction leads

to a considerably wider first stop band of 2.0− 5.5 MHz.
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Figure 4.8: The average transmission coefficient T and the effect of volume fraction on

the wave propagation.

Influence of particle sizes

The particle size for a given volume fraction is another geometric parameter influencing

the wave propagation. To study this parameter, three different (but each uniform) size

configurations have been created as seen Figure 4.9. The particle size used in the original

configuration have been increased and decreased by keeping the volume fraction Vf = 30%.

a b c

Figure 4.9: Different particle sizes: smaller (a), original (b), larger (c). (Vf = 30%)

86



4.4 Results and analysis of influential parameters on stop-bands

Figure 4.10 depicts that the particle size can significantly affect the stop-bands in the

periodic test material. Note that changing the particle size for a fixed volume fraction in

a periodic structure also means a change in the number of periodic arrays. Hence, the

effect of particle sizes for a fixed volume fraction can also be considered as the effect of

the numbers of periodic arrays.
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(a) Smaller particle size
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(b) Original particle size
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(c) Larger particle size

Figure 4.10: Transmission coefficients on the recording points for different particle sizes.

Smaller (a), original (b), larger (c) particle for Vf = 30%. Decoupled (left)/coupled (right).
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Effects of randomness and piezomagnetic coupling on the appearance of stop-bands in
MREs

The results shown in Figure 4.11 present the averaged transmission coefficient for

smaller (dashed), original (solid) and larger (dash-dotted) particle size configurations. It

can be seen that with decreasing particles sizes, the first stop-band frequency moves to

higher values and the first stop-band widens for both coupled and decoupled cases. It is

also useful to note, that coupled cases for each size configuration present increased first

stop-band widths compared to their decoupled counterparts.
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Figure 4.11: The average transmission coefficient T and the effect of particle size on the

wave propagation in coupled/decoupled cases. Decoupled (top), coupled (bottom).

Here, it must be noted that there are two aspects of changing the particle diameter as
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4.4 Results and analysis of influential parameters on stop-bands

studied under the titles ”influence of volume fractions” and ”influence of particle size”.

These are:

� The effect of particle sizes for a fixed numbers of periodic arrays that can also be

considered as the effect of the volume fraction. (which is the case in Figure 4.6)

� The effect of the numbers of periodic arrays for a fixed volume fraction that can

also be considered as the effect of particle sizes. (which is the case in Figure 4.9)

4.4.2 Random microstructure

Next, random microstructural configurations have been considered to study the effects of

magneto-elastic coupling, and material’s microstructure in more details and expand the

analysis to the class of materials with random microstructure. Geometrical randomness

has been introduced in terms of particle size only, particle position only, and both (see

Figure 4.3). A volume fraction of inclusions of 30% has been assumed for all random

microstructures.

Size or position randomness only

Initially, randomness in particle size or position has been considered separately as seen in

Figure 4.12. To investigate particle size randomness, a uniform particle diameter distribu-

tion of 110–240 µm is assumed to create random sizes for particles in a periodic pattern

(Figure 4.12a). For the next test, identical particles with random positions have been used

for position randomness by using a MATLAB code developed in-house (Figure 4.12b). In

this code, number of particles has been fixed, and the size or position of the particles have

been set to be variable with some limitations to create the randomness.

a b

Figure 4.12: Randomness added to particles sizes (a) or particles positions (b).

(Vf = 30%)
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Effects of randomness and piezomagnetic coupling on the appearance of stop-bands in
MREs

The distributions of transmission coefficients in Figure 4.13 and Figure 4.14 indicate

that randomness in particles sizes or positions can reduce the transmission coefficients

in the second pass region compared to periodic microstructure (Figure 4.4). Note that

the reduced wave propagation in the second pass region can be considered good or bad

depending on the purpose. For instance, it can be considered as a desirable property for

an absorbing purpose, while it can be undesirable for a filtering purpose that requires a

distinct range of reduced (stopped) waves and then a pass region.
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Figure 4.13: Transmission coefficients on the recording points for size randomness only.

Decoupled (left) and coupled (right).

0

0 0
1

0.2

2
2

43

0.4

Frequency (MHz) Recording Points

4 6

T
ra

n
s
m

is
s
io

n
 C

o
e

ff
ic

ie
n

t

5

0.6

86

0.8

107

1

0

0 0
1

0.2

2
2

4

0.4

3

Recording PointsFrequency (MHz)

4 6

T
ra

n
s
m

is
s
io

n
 C

o
e

ff
ic

ie
n

t

0.6

5
86

0.8

107

1

Figure 4.14: Transmission coefficients on the recording points for position randomness

only. Decoupled (left) and coupled (right)

The average transmission coefficients of these configurations in Figure 4.15 show that

randomness added to particles sizes leads to a similar first stop-band range (2− 3 MHz)

for the coupled physics case and a slightly increased first stop-band width for the decou-

pled physics case. However, randomness added to particles positions has a much more
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4.4 Results and analysis of influential parameters on stop-bands

significant influence on the results by removing almost all the second pass-band frequen-

cies and turning them into a stop-band in both coupled and decoupled cases. It can also

be noted that randomness in positions leads to more dispersive wave propagation in the

test material, and thus transmission coefficients in pass-band frequencies are generally

significantly lower compared to the periodic benchmark case while randomness in particle

size still maintains a level of geometric periodicity and, thus, it still provides distinct stop

and pass-band regions.
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Figure 4.15: The average transmission coefficient T and the effect of randomness in size,

position and periodic on the wave propagation. Decoupled (top)/Coupled (bottom).
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Effects of randomness and piezomagnetic coupling on the appearance of stop-bands in
MREs

Size and position randomness simultaneously

As the final analysis, randomness has been introduced to both particle size and position

simultaneously. Three different fully random test material realisations have been created

as seen in Figure 4.16.

a b c

Figure 4.16: Randomness added to particles sizes and positions simultaneously. Three

different realisations a, b and c from left to right. (Vf = 30%)

It can be seen that the full randomness can lead to a higher dispersion of the wave and

it can dramatically affect the stop-band behaviour for the material as given in 3D plots of

the transmission coefficients Ti (see Figure 4.17). Moreover, Figure 4.18 presents the dis-

tributions of the average transmission coefficients of random realisations, and shows the

difference with the periodic test material. As seen, all three random realisations present

very similar behaviour by removing the second pass-band compared to periodic arrange-

ment. Furthermore, note that the difference between the coupled and decoupled cases has

become negligible in a fully random test materials (see Figure 4.18).

Note that the results of random test materials in Figure 4.18 present similar wave

propagation characteristics compared to the case of the randomness added to the position

only (see Figure 4.15). However, the transmission coefficients in the second pass-band

have been reduced slightly more than the position randomness, and the second pass-band

has been turned into stopped frequencies.
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(a) Realisation-a
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(b) Realisation-b
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(c) Realisation-c
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(d) Periodic structure

Figure 4.17: Transmission coefficients Ti in periodic and fully random test materials.

Decoupled (left) and coupled (right).
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Figure 4.18: The average transmission coefficient T in case of fully random material

realisations and periodic material. Periodic, realisation-a, realisation-b, realisation-c. De-

coupled (left)/Coupled (right).
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4.5 Discussion

4.5 Discussion

In this chapter, the effects of magneto-elastic coupling and variations in geometry of

microstructures on the longitudinal wave propagation and stop-bands have been studied

for a magnetorheological elastomer. Longitudinal sine waves have been created during the

simulation time in the source region and these waves have been recorded in the receiver

region after having propagated through the test material.

In a material with a periodic structure, it was seen that the particle size and volume

fraction are important parameters in the stop-band frequencies. Furthermore, a distinct

difference in the first band gap has been observed between coupled and decoupled con-

siderations for these tests. When magneto-elastic coupling was introduced to the system,

test geometries exhibited a wider band gap. For the same volume fraction, decreasing the

particle size has resulted in a wider first stop-band gap and a shift of the first stop-band

frequency to a higher frequency value. As has been stated, this configuration can also be

considered as the effect of increased number of periodic arrays in the microstructure. The

results for different particle size case have been attributed to more dispersive behaviour

of the longitudinal wave due to those increased number of arrays. Moreover, the volume

fraction of inclusions also has a notable effect on the characteristics: it was observed that

pass-band frequencies can be transferred into the stop-band in case of higher volume

fractions. The difference between coupled and decoupled formulations has also been sig-

nificantly increased for higher volume fractions resulting in a possible second stop-band.

Next, materials with geometrically random microstructure have been analysed. It was

observed that randomness added to particle size reduces the transmission coefficient in

the second pass range although the first band gap remained similar to that of periodic

materials. However, introduction of randomness to particle position leads to the complete

removal of the pass-band ranges in both coupled and decoupled cases. Lastly, fully random

test materials with randomness added to both sizes and positions have been investigated.

Full randomness exhibited stop-band characteristics similar to those of randomness added

to position only. It was observed that the pass-band ranges tend to be removed in case of

full randomness similar to positions randomness. Therefore, it can be concluded that par-

ticle position randomness is much more significant than particle size randomness in wave

propagation behaviour. Interestingly, the effects of magneto-elastic coupling compared to

decoupled counterparts have been lost in the fully random structures, concluding that ge-

ometrical randomness, specifically positions randomness, is the most dominant parameter
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Effects of randomness and piezomagnetic coupling on the appearance of stop-bands in
MREs

characterising wave propagation and controlling stop/pass band behaviour.
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Chapter 5

Conclusions

The main aim of this thesis was to provide numerical models to predict and investigate the

behaviour of a responsive composite material, which can exhibit magneto-elastic coupling

phenomenon, in a static and dynamic problem.

Responsive composite materials have been an active field of research in the last few

decades. Magnetorheological elastomers (MREs) are examples of such responsive com-

posites (also referred to as smart composite materials), and they consist of magnetic

inclusions embedded in an elastomer. MREs are heterogeneous materials, and they show

a coupling between magnetism and elasticity. This coupling behaviour is originated from a

phenomenon called magnetostriction that occurs in magnetic component of the composite

under an external magnetic field. As a result, this feature proposes various feasible and

worthwhile applications in many engineering fields.

In the analysis of heterogeneous materials, the underlying microstructure needs to

be taken into account in order to describe and predict the behaviour of a macroscopic

continuum accurately. Several approaches can be used to describe the behaviour of a het-

erogeneous material by also considering the microstructural information. For instance,

macroscopic modelling approaches introduce the micro-level effects to the model via

phenomenological material parameters. A detailed and explicit material description of

the constituents is followed in microscopic approaches. However, it may not be possible

to measure or define the additional material parameter in macroscopic approaches, and

computational cost/CPU time can significantly increase in microscopic approaches. Al-

ternatively, a combined approach called multi-scale analysis considering various scales of

observation simultaneously can be used to capture the micro-level influences and avoid

potential disadvantages of those mono-scale methods. In the first part of this study, a
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Conclusions

multi-scale approach was followed for an MRE model to introduce the microstructural

information in a coupled physics framework.

This multi-scale approach describes the composite as a homogeneous material on the

macro-scale and heterogeneous on the micro-scale. A non-local analytical homogenisa-

tion scheme was used to establish the proposed multi-scale model. In this method, the

concept of representative volume element (RVE) was used to denote the micro-scale (or

microstructural unit cell) as typically employed by multi-scale approaches. Thus, the size

of the RVE have become a model parameter. On the other hand, non-local homogenisation

scheme results in the appearance of additional material parameters: length-scale that can

be expressed in terms of RVE size on the macro-level. These points have motivated the

definition and determination of the RVE size in magneto-elastic coupling framework for

an MRE material, and derivation of constitutive relations of macroscopic magneto-elastic

continua with additional model parameter RVE size. Consequently, the microstructural

information in an MRE can be taken into account via the RVE size in a static problem

on the macro-scale.

To this end, an RVE size determination process has been addressed first in this thesis.

A numerically-statistical analysis based on the coefficient of variation and finite element

method have been used to determine lower bounds of the RVE size for an MRE material.

In magneto-elastic coupling framework, four individual RVE sizes have been defined for

different phenomena: purely elastic (L1), purely magnetic (L4), and coupling (L2, L3) be-

haviour in the material. The results show that it is possible to determine a lower bound

of the RVE sizes for an MRE sample by following the proposed numerically-statistical

analysis. Furthermore, a parametric study has been conducted to examine the sensitiv-

ity of the RVE sizes to different material properties of the constituents, and following

conclusions can be deduced:

� The numerically-statistical analysis results in different RVE sizes for each defined

phenomenon, and the RVE size is primarily set by the contrast of the different mate-

rial properties, i.e. the stiffness, permeability or magneto-elastic coupling. Moreover,

negligible difference was observed between the coupling RVE sizes L2 and L3 in ac-

cordance with thermodynamic consistency.

� The formalistic approach showed that the contrast in material properties of the

constituents (more heterogeneity in material properties) leads to larger sizes of the

associated RVE. For instance, increased stiffness contrast results in larger purely
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elastic RVE size (L1) while not showing an influence on the other RVE sizes. In

the same way, an increase in coupling and permeability contrast presents the larger

RVE sizes only for coupling (L2, L3) and permeability (L4) respectively.

� Furthermore, while there is a converging trend for purely elastic and purely magnetic

RVEs, coupling RVEs show a non-convergent trend in the range of assumed larger

contrast values. Note that the difference between convergent and non-convergent

trends occurs for extremely large contrast. Additionally, it was found that the de-

termined coupling RVE sizes (L2, L3) also covers the lower bound condition of the

purely elastic and magnetic RVE sizes (L1, L4). With these elaborations, it was con-

cluded that same RVE size can be assumed for all (L1, L2, L3, and L4) for practical

purposes.

Once the definition and determination of the RVE size study has been addressed, a non-

local analytical homogenisation scheme has been followed to derive a generalised magneto-

elastic continuum model to complete the static aspect of this thesis. A piezomagnetic

continuum model has been developed with gradients of strain, piezomagnetic coupling and

magnetic field whereby the characteristic length-scale parameters are expressed in terms

of RVE sizes. With this gradient enriched piezomagnetic model, a singularity removal

study in mechanical and magnetic fields has been conducted to compare the results from

those obtained via classical piezomagnetic model. Difference between aforementioned RVE

sizes has been analysed and the largest determined RVE size was used as suggested in the

gradient enriched governing equations to introduce the information from the underlying

micro-level. A solution scheme has been employed and implemented based on the finite

element method and extended Ru-Aifantis theorem. The results showed that:

� In case of using the determined RVE size in the gradient model, the singularities

can be removed in mechanical strains and magnetic fields on the tip of a notch for

a homogenised MRE plate on the macro-scale. However, the classical model has

predicted spiky values (singularities) at the notch tip in the same problem. Thus,

the improvement in accurately predicting the magneto-elastic material behaviour,

and the significance of microstructural effects on the macro-level modelling has been

demonstrated.
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Conclusions

The behaviour of the magneto-elastic composites in dynamic problems is another ma-

jor area of interest within the field. In particular, phononic crystals (PCs) consisting of a

periodic arrangement of inclusions in a matrix material, have garnered a great deal of inter-

est owing to a phenomenon known as band gap frequencies in which particular frequency

ranges are not able to propagate through the PCs. The motivation of the dynamic aspect

of this work was to study the effects of magneto-elastic coupling and other parameters such

as randomness in geometrical properties, volume fraction and size of inclusions on longi-

tudinal wave propagation and, in particular, on the appearance of stop-band frequencies

for MRE materials. Longitudinal wave propagation through 2D MRE test material has

been studied by using finite element method and the constant average acceleration variant

of the Newmark integration scheme. In the numerical tests, magneto-elastic coupling has

been introduced to test material by assuming zero or non-zero piezomagnetic coupling

coefficients and magnetic permeability of the air or material to model the decoupled or

coupled physics, respectively. Further, the influence of geometrical randomness has been

analysed in different levels: randomness in particle size only, particle position only and

both simultaneously. The results indicate that:

� The most important parameters deciding whether a frequency is in a stop-band or

a pass-band were the randomness in geometrical properties and piezomagnetic cou-

pling. For a periodic microstructure, it was observed that piezomagnetic coupling

can lead to a wider first stop-band range compared to a elastic decoupled counter-

part. Next, while randomness in particle size leads to a stop-band range and reduced

wave transmission in the second pass region, randomness in particle position leads

to removal of the pass band ranges compared to periodic structures. Lastly, full

randomness exhibited similar stop-band characteristics to those from the position

randomness by transferring the second pass range into the stop-bands. Therefore,

it was concluded that randomness in particle position is more influential and sig-

nificant than the randomness in particle size in wave propagation and controlling

the stop/pass band behaviour. Additionally, the influence of piezomagnetic coupling

becomes insignificant in fully random structures.

� Moreover, the influence of size and volume fraction of the inclusions in a periodic

structure have also been investigated. It was seen that volume fraction of inclusions

has also a notable influence on characteristics. In case of higher volume fraction,

pass-band frequencies can be transferred into stop-band ranges for both coupled and
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decoupled formulations. Further, the difference between the coupled and decoupled

considerations has been increased for higher volume fractions. Finally, decreasing

the particle size for the same volume fraction in the periodic test material leads

to a widening of the first stop-band range and a transition of the first band gap

frequency to a higher value.
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Chapter 6

Future works

In this thesis, contributions have been made on the RVE size determination in a magneto-

elastic composite, a multi-scale model incorporating determined RVE size to analyse the

behaviour of the composite accurately, and longitudinal wave propagation analysis with

influential parameters from band gap aspect. However, some adaptations, numerical tests

and possible experimental work have been left aside for the future.

Firstly, randomly distributed Terfenol-D particles have been assumed in RVE size de-

termination chapter in this work, however, Terfenol-D grains can have irregular shapes

instead of being perfectly circular. Further, the orientation of the particles can also be ran-

dom in a mechanically mixed MRE sample. Therefore, numerical tests can be conducted

by also considering the shape and orientation randomness in RVE size determination

process to investigate the potential differences and effects of these parameters.

Secondly, the static and dynamic aspect have been studied in 2D framework in this

study. Another future work has been set to extend the finite element implementation

of these chapters to 3D analysis. For this purpose, 3D cubic RVEs can be created and

proposed size determination process can be followed to address the lower bound of the

RVEs in 3D context. Additionally, the gradient enriched formulation can also be extended

for a similar problem to study its efficiency in a 3D example. Further, the propagation of

a longitudinal wave in 3D MRE bodies can be modelled to study stop-band frequencies.

It is believed that extension of the models to 3D can be used for a future study that

investigates the direct validation and comparison of the numerical modelling with an

identical experimental sample.

As stated, the modelling approach in this study is based on linear piezomagnetic

behaviour that is suitable for small strains, and time dependent response of these naturally
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viscoelastic materials (MREs) has not been considered. These limitations are other points

that can be improved in the future studies. By following the viscoelastic (time dependent)

modelling approaches as summarised in the first chapter, it is worth to investigate the RVE

size determination for MREs exhibiting large strains. In addition, developing a viscoelastic

gradient model can also be a future research aim to capture the influence of microstructure

and the real nature of MREs in their macroscopic behaviour.

Moreover, the gradient enriched magneto-elastic model and determined RVE sizes

have been used in singularity removing application. Besides, size-dependent mechanical

and magnetic response of a model can also be addressed to study the effectiveness of

RVE sizes in the gradient model. Furthermore, an experimental work can be presented to

compare the results from two numerical analysis: with or without RVE sizes in the gradient

formulation to observe the accuracy of the numerical model with the real response of an

MRE sample.

Finally, it is known that classical continuum theories are not capable of describing

the wave dispersion. However, a gradient enriched dynamic piezomagnetic model has

been presented by researches, and this model was able to predict the dispersive wave

propagation in a magneto-elastic model. The main parameter controlling the dispersive

properties was expressed as the ratio of the length- and time-scale parameter. Specifically,

time-scale parameter must be larger than length-scale. Similar to length-scale, time-scale

parameter can also be associated to a namely dynamic RVE size. At this point, a definition

and determination of an RVE in case of dynamic loading can be studied in the future.

If a dynamic RVE can also be determined, a validation can be made with these already

presented dynamic piezomagnetic models.
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Appendix A

Weak form derivation on micro-scale

The governing equations on the micro-level:

LT
u CmLuu

m + LT
u qmLϕϕ

m = 0 (A.1a)

LT
ϕqmTLuu

m − LT
ϕµ

mLϕϕ
m = 0 (A.1b)

The weak form of Eq. (A.1) with domain Ω and boundary Γ can be found by using

test functions wu, wϕ and integration by parts,

wu =


wux

wuy

wuz

 , wϕ , and

∫
Ω

uv′dΩ =

∫
Ω

(uv)′ −
∫
Ω

u′vdΩ (A.2)

Firstly, Eq. (A.1a) can be multiplied by test function wu and integrated as follow:

1O∫
Ω

wT
u︸︷︷︸

u

LT
u CmLuu

m︸ ︷︷ ︸
v′

dΩ +

2O∫
Ω

wT
u︸︷︷︸

u

LT
u qmLϕϕ

m︸ ︷︷ ︸
v′

dΩ = 0 (A.3a)

1O→
∫
Ω

LT
u

(
wT

u CmLuu
m
)

dΩ−
∫
Ω

(
LT

u wT
u

)
CmLuu

mdΩ (A.3b)

2O→
∫
Ω

LT
u

(
wT

u qmLϕϕ
m
)

dΩ−
∫
Ω

(
LT

u wT
u

)
qmLϕϕ

mdΩ (A.3c)

1O+ 2O = 0 (A.3d)

By considering Divergence theorem for the first integrals in 1O and 2O, the weak form of

Eq. (A.1a) can be obtained as
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⇒
∫
Ω

(Luwu)T CmLuu
mdΩ +

∫
Ω

(Luwu)T qmLϕϕ
mdΩ =

∫
Γ

wT
u tdΓ (A.4)

where

∫
Γ

wT
u tdΓ =

∫
Γ

(
wT

u CmLuu
m
)
n̂dΓ +

∫
Γ

(
wT

u qmLϕϕ
m
)
n̂dΓ (A.5)

Secondly, Eq. (A.1b) can be multiplied by test function wϕ and integrated as follow:

3O∫
Ω

wT
ϕ︸︷︷︸

u

LT
ϕqmTLuu

m︸ ︷︷ ︸
v′

dΩ−

4O∫
Ω

wT
ϕ︸︷︷︸

u

LT
ϕµ

mLϕϕ
m︸ ︷︷ ︸

v′

dΩ = 0 (A.6a)

3O→
∫
Ω

LT
ϕ

(
wT
ϕqmTLuu

m
)

dΩ−
∫
Ω

(
LT
ϕwT

ϕ

)
qmTLuu

mdΩ (A.6b)

4O→ −
∫
Ω

LT
ϕ

(
wT
ϕµ

mLϕϕ
m
)

dΩ +

∫
Ω

(
LT
ϕwT

ϕ

)
µmLϕϕ

mdΩ (A.6c)

3O+ 4O = 0 (A.6d)

By considering Divergence theorem for the first integrals in 3O and 4O, the weak form of

Eq. (A.1b) can be obtained as

⇒
∫
Ω

(Lϕwϕ)T qmTLuu
mdΩ−

∫
Ω

(Lϕwϕ)T
µmLϕϕ

mdΩ =

∫
Γ

wT
ϕB⊥dΓ (A.7)

where

∫
Γ

wT
ϕB⊥dΓ =

∫
Γ

(
wT
ϕqmTLuu

m
)
n̂dΓ−

∫
Γ

(
wT
ϕµ

mLϕϕ
m
)
n̂dΓ (A.8)

Thus, the weak form of governing equation Eq. (A.1) can be written as∫
Ω

(Luwu)T CmLuu
mdΩ +

∫
Ω

(Luwu)T qmLϕϕ
mdΩ =

∫
Γ

wT
u tdΓ (A.9a)

∫
Ω

(Lϕwϕ)T qmTLuu
mdΩ−

∫
Ω

(Lϕwϕ)T
µmLϕϕ

mdΩ =

∫
Γ

wT
ϕB⊥dΓ (A.9b)
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Appendix B

Integrations of non-local

homogenisation

Linearisation of spatially dependent stiffness, strain, coupling, permeability and magnetic

field can be expressed around the values at the centre of the RVEs as follow

Cm
ijkl = CM

ijkl + CM
ijkl,oδxo (B.1a)

εm
kl = εM

kl + εM
kl,pδxp (B.1b)

qm
kij = qM

kij + qM
kij,oδxo (o, p = 1, 2 or 3) (B.1c)

Hm
k = HM

k + HM
k,pδxp (B.1d)

µm
ik = µM

ik + µM
ik,oδxo (B.1e)

Note : In open form, this yields: Xm = XM + XM
,1δx1 + XM

,2δx2 + XM
,3δx3 where X is

stiffness, strain, piezomagnetic coupling, magnetic permeability or magnetic field.

x1

x2

x3

Li

O

Li

Li

Figure B.1: Representative Volume Element
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Integrations of non-local homogenisation

T
h
u
s,

th
e

in
te

gr
at

io
n
s

of
th

e
te

rm
s

ca
n

b
e

ca
rr

ie
d

ou
t

as
fo

ll
ow

⇒
1

V
R

V
E
i

∫
V

R
V
E
iX

M
X

M
d
V

=
1 L
3 i

X
M

X
M
δ
x

1
δ
x

2
δ
x

3

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

=
X

M
X

M
(c

on
st

an
t)

(B
.5

a)

⇒
1

V
R

V
E
i

∫
V

R
V
E
iX

M
X

M ,p
δ
x

p
d
V

=
1 L
3 i

X
M

X
M ,p

δ
x

2 p

2
δ
x

m
δ
x

n

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

=
0

(p
,m
,n

=
1,

2
or

3)
(l

in
ea

r)
(B

.5
b
)

⇒
1

V
R

V
E
i

∫
V

R
V
E
iX

M ,o
X

M
δ
x

o
d
V

=
1 L
3 i

X
M ,o

X
M
δ
x

2 o

2
δ
x

m
δ
x

n

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

=
0

(o
,m
,n

=
1,

2
or

3)
(l

in
ea

r)
(B

.5
c)

⇒
1

V
R

V
E
i

∫
V

R
V
E
i

X
M ,o ︸︷︷︸ v
′

X
M ,p
δ
x

o
δ
x

p
︸︷

︷︸ u

d
V

=
1

V
R

V
E
i

∫
V

R
V
E
i( X

M
X

M ,p
δ
x

o
δ
x

p

) ,o
d
V
−

1

V
R

V
E
i

∫
V

R
V
E
i(X

M
X

M ,o
p
δ
x

o
δ
x

p
+

X
M

X
M ,p
δ
x

o
,o
δ
x

p
︸

︷︷
︸

=
0

(l
in

ea
r
)

+
X

M
X

M ,p
δ
x

o
δ
x

p
,o

︸
︷︷

︸
=

0
(l
in

ea
r
)

)d
V

=
1

V
R

V
E
i

∮ S

( X
M

X
M ,p
δ
x

o
δ
x

p

) n
o
d
S

︸
︷︷

︸
=

0
(p
er

io
d
ic

bo
u
n
d
a
r
y

co
n
d
it
io
n
s)

−
1

V
R

V
E
i

∫
V

R
V
E
i(X

M
X

M ,o
p
δ
x

o
δ
x

p
)d

V

︸
︷︷

︸
if

o
=
p
,
it

is
q
u
a
d
r
a
ti
c
a
n
d
6=

0

=
−

1 L
3 i

X
M

X
M ,p

p

δ
x

3 p

3
δ
x

m
x

n

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

∣ ∣ ∣ ∣ ∣L
i 2 -
L
i 2

=
−

X
M

X
M ,p

p

1 12
L

2 i
(p
,m
,n

=
1,

2
or

3)
(q

u
ad

ra
ti

c)
(B

.5
d
)

W
it

h
th

es
e

el
ab

or
at

io
n
s,

th
e

p
ie

zo
m

ag
n
et

ic
m

ac
ro

sc
op

ic
co

n
st

it
u
ti

ve
eq

u
at

io
n
s

w
it

h
gr

ad
ie

n
ts

of
st

ra
in

,
m

ag
n
et

ic
fi
el

d
,

an
d

p
ie

zo
m

ag
n
et

ic

co
u
p
li
n
g

te
rm

s
ca

n
b

e
ex

p
re

ss
ed

as
gi

ve
n

in
E

q
.

(3
.1

5)
.

108



Bibliography
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