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Abstract

Artificial intelligence has long sought to develop agents capable of perceiving the complex

visual environment around us and communicating about it using natural language. In recent

years, significant strides have been made towards this objective, particularly in the field of

image content description. For instance, current artificial systems are able to classify images of

a single object with a high level of accuracy that is sometimes comparable to that of humans.

Although there has been remarkable progress in recognising objects, there has been less

headway in action recognition due to a significant limitation in the current approach. Most of

the advances in visual recognition rely on classifying images into distinct and non-overlapping

categories. While this approach may work well in many contexts, it is inadequate for under-

standing actions. It constrains the categorisation of an action to a single interpretation, thereby

preventing an agent from proposing multiple possible interpretations.

To tackle this fundamental limitation, this thesis proposes a framework that seeks to de-

scribe action-depicting images using multiple verbs, and expands the vocabulary used to de-

scribe such images beyond the limitations of the training dataset. In particular, the framework

leverages lexical embeddings as a supplementary tool to go beyond the verbs that are supplied

as explicit labels for images in datasets used for supervised training of action classifiers. More

specifically, these embeddings are used for representing the target labels (i.e., verbs). By ex-

ploiting a richer representations of human actions, this framework has the potential to improve

the capability of artificial agents to accurately recognise and describe human actions in images.

In this thesis, we focus on the representation of input images and target labels. We examine

various components for both elements, ranging from commonly used off-the-shelf options to

custom-designed ones tailored to the task at hand. By carefully selecting and evaluating these

components, we aim not only to improve the accuracy and effectiveness of the proposed frame-

work but also to gain deeper insight into the potential of distributed lexical representations for

action prediction in images.
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Chapter 1

Introduction

1.1 Overview

Context. The field of computer vision has experienced significant advances in recent years,

with remarkable improvements in various benchmark tasks. For example, the top1 accuracy

on the ImageNet classification task has increased from 54.3% (Sánchez and Perronnin, 2011)

to 88.5% (Zhang et al., 2023). Additionally, the box average precision (box AP) score on the

MSCOCO object detection task has also risen from 19.7% (Girshick, 2015) to 60.9% (Chen

et al., 2023).

Despite this rapid progress, it is evident that significant challenges still persist, especially

in more abstract tasks that involve understanding social constructs and context. One such chal-

lenging task is the ability to describe actions in images from various perspectives without being

limited by a small set of verbs. Verbs are naturally more abstract, making them harder to learn

even for humans, which is why children acquire them later in their development (Hirsh-Pasek

and Golinkoff, 2010). Furthermore, verbs are processed in different regions in the brain due to

their abstraction level, suggesting that they require a different processing mechanism (Moseley

and Pulvermüller, 2014).

Problem statement. Most studies in computer vision assume that each image action can be

grounded to one particular verb. However, this thesis argues that assigning one verb to an

action-depicting image is insufficient. The meaning of an image action is multifaceted and

although one verb might be sufficient for describing the meaning of one aspect, it cannot do so

for all aspects. Figure 1.1 illustrates that even with a simple action, one verb is not enough to

capture all its aspects.

There are at least three situations where multiple verbs are required for describing a single

1
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action in the image. First, actions can possess multiple layers of significance, with one layer

focusing on the practical mechanics of executing the action, and the other emphasising the mo-

tive or intention behind it. As an example, consider a hiker in a mountain range. The action

of hiking refers to the physical aspect, while the underlying purpose is to explore nature. To

fully capture both the physical aspect and the purpose of the action, different verbs may be

necessary. However, when describing the purposive aspect of the action it is vital to compre-

hend the context in which the action takes place. For instance, the act of holding a sword can

have different connotations; it could mean to battle, to kill, to execute, or even to dance and

celebrate.

The second situation is when describing multiple actions carried out by the same agent.

People can perform different, yet highly correlated, actions simultaneously (e.g., standing while

talking, and sitting while reading). One might say this can also be formulated as one action

specifying the physical state of the agent (e.g., sitting) while doing the other action (e.g., read-

ing). The third situation is when the choice of action description depends on the type of the

target audience. If the target audience prefers a description in formal language, the system in

this case should output converse instead of chat. The same goes for those educated in a specific

field (e.g., using the verb macerate or should be appreciated by people who are into cooking

but not by others).

Our observations suggest that relying exclusively on supervised methods that use visual data

is insufficient for effectively addressing the task. This is because interpreting image actions is

a complex process that requires more information than that provided by the images used for

training. To address the verb prediction task effectively, prior social and common knowledge

is required.

Additionally, using conventional supervised techniques to approach this problem leads to

an uncontrollable increase in the number of classes. For example, a simple classifier for an

action like hold would not suffice; rather, the model would have to distinguish between various

actions like “hold sword to fight” and “hold sword to dance” considering them as separate

classes. As a result, gathering and annotating adequate training images for an extensive set of

verb combinations is practically unfeasible.

Proposed solution. To address these challenges, we propose the use of lexical embeddings to

improve the capability of systems automatically generating descriptions of actions in images.

These embeddings act as a means to exploit knowledge present in the textual modality. The

main objectives of this thesis are to assess the effectiveness of incorporating these embeddings

and evaluate the feasibility of this solution. Our hypothesis is that a blended approach, combin-

ing both visual perception and knowledge extracted from text, will offer advantages over those
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Figure 1.1: This example 1 shows the impracticality of describing (labelling) the action in the
image with a single label, as the following verbs can be equally accurately used to describe the
action: write, learn, practise, sit, and hold.

that rely solely on visual perception.

Specifically, our thesis proposes a framework that should generate more detailed and precise

descriptions of actions by leveraging both visual cues and a wider range of verb labels. In

this thesis, the framework is designed to generate a single label for each image; however, the

framework is intentionally designed to be capable of generating multiple labels for each image.

Scope. The primary focus of this thesis is on human actions as they possess multi-layered

significances. Studying human actions presents an excellent opportunity to examine the extent

to which images require the linking of multiple verbs. The scope of this thesis is limited to

images displaying a central or primary action performed by an individual or a group. Hence,

the aim of this thesis is not to recognise multiple distinct actions within a single image.

This thesis focuses on analysing static images despite their limitations for action prediction

compared to videos. Actions involving motion, such as rubbing, are harder to predict using

images. However, this choice is justified by the technical complexities and extensive compu-

tational resources required for video processing—a hurdle that proved difficult to overcome

during the initial stages of this research. Additionally, the scarcity of video datasets annotated

with verbs added an additional barrier for working on videos.

1Image source: https://media.defense.gov/2008/Apr/10/2000634626/-1/-1/0/
080405-F-9433M-087.JPG

https://media.defense.gov/2008/Apr/10/2000634626/-1/-1/0/080405-F-9433M-087.JPG
https://media.defense.gov/2008/Apr/10/2000634626/-1/-1/0/080405-F-9433M-087.JPG
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1.2 Challenges in Utilising Distributed Lexical Representa-

tions

Leveraging distributed representations for verb prediction offers exciting possibilities, but it

also presents several challenges that require thoughtful attention. One critical challenge is

selecting a representative subset of verbs for model training. This entails exploring various

strategies for identifying the appropriate set of training verbs and understanding how their

characteristics may influence the model’s generalisation ability. In addition to selecting the

essential verbs for model training, it is equally crucial to identify verbs that can be predicted

with a reasonable accuracy without prior training. These unsupervised verbs, which are not

included in the training dataset, can benefit from the model’s generalisation capacity during

testing. Therefore, careful selection of such unsupervised verbs is crucial to harness the full

penitential of our proposal.

Another challenge is the positioning of verbs in the lexical space. The lexical embedding

space is not specifically designed for verbs or image-based tasks, making accurate navigation

and similarity measurement between verbs difficult. A significant issue is that verb embeddings

tend to be more proximal to one another than to other word embeddings, leading to potential

confusion and imprecise distinctions.

Finally, the limited descriptive power of the training text presents a challenge. Although the

lexical embeddings under investigation are trained on a vast amount of text, much of it derives

from genres that are not well-suited to depicting visual content, such as Wikipedia and news

articles. This limitation implies that the model may not possess adequate descriptive power to

predict verbs accurately.

1.3 Research Questions and Thesis Contribution

This thesis aims to investigate the effectiveness of distributed lexical embeddings for predicting

verbs that comprehensively describe actions in images, with a focus on challenging verbs that

are difficult to learn using supervised methods. To achieve this objective, the following research

questions will be addressed:

• To what extent can distributed lexical embeddings capture the essential information re-

quired to describe actions, especially for abstract verbs that lack direct or concrete visual

cues?

• How does the use of distributed lexical embeddings improve the generalisation of verb
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prediction models to unobserved verbs?

In addressing these questions, the thesis makes the following contributions:

(i) It introduces the I2A framework as a tool for describing various perspectives on actions

within images. Previous research has incorporated distributed representations for pre-

dicting image content, but this approach has not been applied to the task of describing

different interpretations of image actions. Additionally, to our best knowledge, no re-

search has investigated modifying the framework components to optimise them for this

purpose.

(ii) It investigates the performance of verb prediction using off-the-shelf verb embeddings in

both supervised and zero-shot settings. A variety of zero-shot experiments are conducted

to identify which verbs are more suitable for training and which are more appropriate for

testing purposes.

(iii) It examines how varying verb embeddings impacts the task of predicting verbs, with the

goal of gaining a deeper understanding of the specific characteristics of embeddings that

influence verb prediction.

(iv) It explores how different image representations affect the task of predicting verbs. The

goal is to gain a deeper understanding of which input features are crucial for accurate

verb prediction and to assess the upper-bound performance by incorporating an oracle

in the input feature extraction process. This upper-bound re-evaluation is intended to

determine if the framework’s performance could be further enhanced, especially in the

zero-shot setting, by using more advanced image feature extraction techniques.

1.4 Thesis Outline

This thesis presents an approach for addressing the verb prediction task that is capable of gen-

erating multiple verbs for the purpose of describing an action depicted in an image, without

the need for training each individual verb in a supervised fashion. This introductory chapter

has provided an overview of the motivations and challenges that the work in this thesis aims to

address. The rest of the thesis is structured as follows:

Chapter 2 provides an overview of theories and studies from various disciplines that demon-

strate the importance of describing actions from different perspectives. This chapter also
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reviews various tasks that involve the direct or indirect prediction of verbs. Addition-

ally, it reviews different methods for representing target labels as lexical embeddings and

presents the primary methods for addressing zero-shot learning.

Chapter 3 provides a formal definition of the task, introduces the proposed I2A framework,

and discusses its main components. It also introduces the dataset used in this thesis.

Chapter 4 presents initial experiments with the I2A framework using its default components.

Section 4.1 evaluates the feasibility of the framework through experiments in a super-

vised setting, comparing its performance to established baselines. Section 4.2 investi-

gates the performance of the framework in the zero-shot setting, showcasing its use of

distributed lexical embeddings, and evaluating its performance under different condi-

tions.

Chapter 5 introduces techniques for enhancing the representation of target embeddings, mak-

ing them particularly suitable for the verb prediction task.

Chapter 6 presents various experiments to assess the effect of varying the input representation.

Section 6.1 evaluates the characteristics of effective visual feature extractors through ex-

periments with multiple extractors. Section 6.2 introduces a second approach for repre-

senting input images by encoding semantic concepts depicted in the images. This section

also conducts an extensive investigation of the original annotation of image content in

the imSitu dataset.

Chapter 7 summaries the research conducted in the previous chapters and explores potential

future research directions that can build upon the findings and contributions of this work.



Chapter 2

Literature Review

With this literature review, we aim to provide a comprehensive overview of the theories, ap-

proaches, and techniques that inform our understanding of the multifaceted nature of actions

and their application in the verb prediction task.

Verbs play a central role in describing actions in images, as they capture the essence of an

action or event. However, the interpretation of verbs can be complex and multifaceted, shaped

by the context in which they are used, and cultural factors. To fully grasp the rich and nuanced

meanings of actions, Section 2.1 will provide theoretical justifications for our verb prediction

approach and introduce the theories and perspectives from multiple disciplines that support

the claim that actions can have multifaceted interpretations. Section 2.2 will examine various

approaches that have been developed for action-related tasks, which also represent verbs as

targets or parts of the targets.

Representing verbs as targets is a challenging task that requires taking into account their

complex and nuanced meanings. Section 2.3 will review different approaches for representing

verbs as targets, focusing mainly on distributed-based representation, where the meaning of

the verbs is expressed through multiple variables. This section will also explore how these

approaches can be utilised to capture the various interpretations of actions.

Finally, Section 2.4, will provide an overview of the zero-shot learning setup and discuss

its main techniques. Zero-shot learning aims to predict targets of classes that have not been

encountered during training. The section will discuss how this setup can be utilised to extend

action interpretations to the ones the are not supported in existing action datasets.

With this preamble, we aim to provide a comprehensive overview of the theories, ap-

proaches, and techniques that inform our understanding of the multifaceted nature of actions

and how this can be applied in the verb prediction task.

7
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2.1 Understanding Actions in Images

This section aims to justify the need to label actions in images with more than one verb, draw-

ing on supporting evidence from various scientific disciplines such as linguistics, philosophy,

psychology, etc. The section does not intend to provide an exhaustive overview of this complex

topic, but rather provides a justification for the argument that using one verb as an action label

may not be sufficient.

2.1.1 Action Identification

Vallacher and Wegner (1987) discuss how people identify their own actions and the factors

that impact action identification, a theory known as action identification theory. They sug-

gest that people can recognise and view an action either with a low-level identity, specifying

how the action is performed, or a high-level identity, signifying why or with what effect the

action is performed. They point out that identity is a relative concept (e.g., “taking a test” is

high level compared to “answering questions” but also low level compared to “showing one’s

knowledge”). They also state that people tend to choose the identity that provides the most

comprehensive understanding of what they are doing, indicating a preference for higher-level

identity.

Mange et al. (2015) hypothesise that low- and high-level identities of actions have different

social values, with higher-level identities having greater value due to their social utilities. While

the two studies aim to understand how humans identify their actions and what factors affect

their perception, we can apply this theory to understand how humans identify actions in images.

This is supported by studies showing that humans can accurately infer high-level identities

of actions performed by others (Baker et al., 2009; Saxe and Kanwisher, 2003). Figure 2.1

displays sample images depicting actions that can be identified at varying levels.

2.1.2 Highlighting Different Meanings in Images

In his study of Renaissance art, Panofsky (1955) identified three levels of meaning: (1) pri-

mary meaning, which requires practical experience of objects; (2) secondary meaning, which

requires requires prior familiarity with specific themes and concepts; and (3) intrinsic meaning,

which requires knowledge about the artist and their social background. To explain his classi-

fication system, Panofsky uses the example of a person lifting their hat as a greeting gesture.

The primary meaning only addresses the literal meaning (the fact of lifting a hat), whereas the

secondary meaning addresses the symbolic meaning (lifting a hat stands for a greeting). The
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intrinsic meaning, on the other hand, focuses on why the artist depicted the scene in this way

and what can be learned about their personality and background.

Current vision systems have achieved some success in recognising the literal meanings of

images by learning from large amounts of data. However, they fall short in recognising the

emotional and cultural associations of images, which require a deeper understanding beyond

just visual information. This level of understanding requires access to cultural and literary

context, which these systems lack as they are unable to incorporate knowledge from other

sources, such as text.

Panofsky’s theory has become widely accepted not only in art but also in other fields that

require a thorough understanding of images. Shatford (1986) extended the theory with the

goal of providing a framework for indexing and retrieving pictorial materials. She identifies

four facets, namely who, what, where, and when, through which the three levels of Panofsky’s

meanings could be viewed. The what facet of her framework included terms that described

events, actions, conditions, and emotions, answering questions such as: “What are the crea-

tures or objects in this picture doing?”, “What is their condition or state of being?”, “What

emotions are conveyed by these actions or conditions?”, “What abstract ideas do these actions

or conditions symbolise?” (Shatford, 1986, p. 52). To illustrate her point, Shatford provided an

example using the Pieta picture, where death could be considered a generic aspect, and sorrow

an emotional aspect.

The key takeaway from this section is to appreciate the fact that there can be several valid

ways to label an image during the indexing phase, as we cannot anticipate how someone might

characterise the image during the retrieval process. Therefore, it is essential to remain flexi-

ble in our approach to image labelling, acknowledging that multiple characterisations may be

appropriate.

2.1.3 Expressing Thematic Roles

The image could either depict the person performing the action or the person receiving it.

Therefore, multiple verbs may be required to convey both the action and the participants’ roles.

For instance, consider two images that can be accurately labelled with the verb interrogate.

However, one image shows a person conducting the interrogation, while the other depicts a

person undergoing it. In this case, it may be necessary to use more than just the verb interrogate

to effectively emphasise the participant’s role.
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(a) A man commutes to his
work in a busy street

(b) A couple enjoys a bike ride
along the beach

(c) Cyclists compete in
a race event.

(d) Practices (e) Performs on stage.

Figure 2.1: Actions with multifaceted interpretations. Two groups of images (top and bottom)
are shown. Both groups have a shared primary meaning but are distinct in secondary meaning.
The top group can be labelled with verbs such as riding and biking, but the context of the images
is not fully captured. Similarly, the bottom group shares the common activity of playing guitar,
but playing fails to express the nuanced context portrayed in the images.

2.1.4 Summary

This section highlights the complexity of describing images, as the meaning of an image ex-

ists on multiple levels, each requiring different verbs to express them. To address this issue,

two approaches can be considered. The first approach involves using a set of complementary

verbs to label the image, which helps to provide a more complete and accurate description. As

example of this approach would be using verbs like interrogating and undergoing to describe

an image. The second approach involves composing a larger lexical unit by combining smaller

units, which can be either verbs (including light verbs) or derived from verbs (including nor-

malised verbs). An example of this approach would be “undergoing interrogation”. The thesis

acknowledges the advantages of having a flexible system that can incorporate both approaches

simultaneously, but primarily focuses on the first approach of using a set of complementary

verbs to describe an image.

2.2 Verb Prediction

In this section, we will review the verb prediction task, emphasising the significance of the

output produced and its impact on both task design and dataset creation. Our focus will be on
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labelled datasets for both images and videos, where the labels, specifically the verbs, serve as

the primary target outputs for researchers in the field of verb prediction.

Initially, the verb prediction task was tackled as a standard classification problem, where the

classes were mutually exclusive verbs that were easily distinguishable from each other, such

as eat, sit, and ride (Ikizler et al., 2008). However, this approach faced the challenge of verbs

lacking sufficient context, making them highly ambiguous. For example, the verb play could

refer to playing a football game or playing an instrument, while the verb paint could refer to

painting a wall or a piece of art. To address this issue, the candidate classes were limited to those

that were specific enough on their own, such as drink or run (Sigurdsson et al., 2017), resulting

in the elimination of ambiguous verbs such as polysemous verbs or light verbs like take and

put, which require additional information (e.g. nouns and prepositions) to disambiguate them

(e.g. take medication, take shoes, take off shoes).

This section further explores the verb prediction literature through the lens of target label

specificity. The literature is categorised into four approaches based on how the output of the

task is defined and how concreteness is achieved for it.

2.2.1 Verb-Object Representation

The first approach to creating concrete descriptions of actions involved pairing verbs with ob-

jects as in the form of verb-object pairs or subject-verb-object triplets. This approach empha-

sises the understanding of the relationship between verbs and their context, such as participating

objects or location. Sadeghi and Farhadi (2011) introduced the visual phrases technique, which

combined verbs and objects into single units (e.g. person-riding-bicycle). This technique aimed

to simplify visual complexity by considering how objects’ appearance can change based on the

actions they participate in, leading to individual classes with distinctive visual features due to

their high inter-similarities. This approach was influenced by Marszalek et al. (2009), who

incorporated scene or location information (e.g. “eating in kitchen” or “eating in cafe”). These

earlier datasets and others, such as the Sports Dataset (Li and Fei-Fei, 2007) and Stanford-

40 (Yao et al., 2011), are restricted in both the quantity of images and number of classes. In the

following we discuss a number of more recent and extensive datasets whose labels have served

as targets for researchers working on verb predictions.

The “Humans Interacting with Common Objects” (HICO) dataset, as presented by Chao

et al. (2015), consists of 47K images covering 600 distinct categories of human-object inter-

actions. The focus of these interactions is exclusively on human subjects. One of the main

objectives for creating HICO was to provide a diverse set of actions for each object, averaging

6.5 interactions per object. For example, the dataset covers various actions for bicycle, such as
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ride, hold, sit on, walk, and repair. This objective, therefore, made object categories (80 from

MSCOCO (Lin et al., 2014)) the starting point in building HICO.

Yatskar et al. (2016) presented the situation recognition dataset (imSitu), which contains

structured annotations of actions occurring in 126K images. Each image is annotated with a

verb describing the action, the objects involved, and their respective roles in the action. This

dataset provides insight into the relationships between objects and their roles in actions, and

it enables machine learning models to generate comprehensive and meaningful descriptions of

images.

However, it also increases output complexity and the scope of possible outputs, as imSitu

has a large number of unique combinations, totalling 200K distinct situations, compared to just

600 in the case of HICO. The importance of verb categories in imSitu is emphasised through

their role in both the image selection and annotation processes.

The authors initially considered almost 10K candidate verbs, but narrowed down the list to

1K verbs by eliminating non-visual verbs and those requiring technical background or advanced

literacy. This list was further reduced to 504 due to the unavailability of suitable example im-

ages. The final set of verbs includes near-synonyms, making it difficult to differentiate between

them and treat them as separate concepts, such as PHONING and TELEPHONING. Additionally,

some verbs may also prove difficult to distinguish given the static nature of images, such as

LAUGHING and GIGGLING.

On the other hand, some verb pairs exhibit nuanced but important differences, such as

BIKING and RIDING (where biking is a type of riding), DIALLING and PHONING (where dialling

is a sub-activity of phoning), and PACKAGING and PACKING. These subtle distinctions are of

significance in the context of this thesis and make the imSitu dataset a promising resource for

experimentation.

A key drawback of this approach is that the number of classes, i.e., the combinations of

verbs and objects, increases at a rate higher than the increase in the number of objects. This

can result in an inability to gather sufficient training data for each distinct class. For instance,

if the task is to generate pairs of verbs and objects and the model is trained to detect 10 verbs

and 50 objects, the number of possible combinations would be up to 10× 50 = 500. However,

research has shown that the number of classes that can occur in real-life scenarios is much

smaller than the number of possible combinations (e.g., a person cannot sit on a pencil). This

insight has led to various proposals to address this challenge. For example, Lu et al. (2016)

suggests using written language as a prior, by utilising word vectors that are pretrained on large

text data, which are then finetuned on the image dataset.

Ramanathan et al. (2015) proposed an extensive set of action descriptions, comprising
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subject-verb-object combinations, to tackle the issue of data scarcity. Their work aimed to

understand the inter-relationships among actions as a means of generalising to unseen classes.

For example, if there were few or no training images for the action “person interacting with

panda”, the model could still learn it by leveraging its relationship with other actions with more

training data such as “person feeding panda” and “person holding animal”. The study explored

three types of relationships: implied-by, type-of, and mutual-exclusive. The model is expected

to learn these relationships through supervised training on a subset of “action descriptions” and

output the relationship type between two or three images. The study also incorporated a lan-

guage prior module that utilised the WordNet hierarchy, which exhibits the three relationships.

The authors constructed an extensive set of 27K unique action descriptions, but did not provide

a full list or in-depth discussion on how the they were developed. The action descriptions were

then used to construct a weakly-labelled image dataset through searching Google Images and

collecting the top results, followed by a filtering step to remove noisy images.

ActivityNet, introduced by Heilbron et al. (2015), is a video dataset that features 203

human activities chosen from a four-level taxonomy designed by the Department of Labour for

the American Time Use Survey (ATUS) 2. The taxonomy covers over 2K activities, organised

based on social interactions and activity location (Figure 2.2). Within the ATUS taxonomy,

intermediate nodes are categories or domains, while leaf nodes are the specific actions. It is

important to note that the taxonomy does not offer a hierarchical representation of verbs and

their connections, but rather groups activities into distinct domains or areas of application. To

ensure the inclusion of a diverse range of actions, the ActivityNet activities were manually

selected from 7 out of the 18 top-level categories in the original taxonomy.

2.2.2 Free-Form Representation

This section reviews datasets that annotate actions through indirect methods, where verbs are

generated as a byproduct. The focus is on two captioning datasets, MSCOCO (Lin et al., 2014)

and Flickr30K (Young et al., 2014). The purpose of this review is to observe the way humans

describe actions when limited restrictions are placed on the nature of the description and to

study the relationship between verbs that describe a particular image.

Each image in MSCOCO and Flickr30K is annotated with five captions written by five

human annotators. The captions are sentences that describe the visual content, with a focus on

salient aspects of the image (i.e., describing people and their interactions with each other or

the environment). It’s important to emphasise that the captions are not meant to supplement

images with additional information but rather to provide descriptions from individuals who are

2Source: https://www.bls.gov/tus/lexicons/lexiconwex2021.pdf

https://www.bls.gov/tus/lexicons/lexiconwex2021.pdf
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Figure 2.2: Visualisation of the sub-tree of the top level category household activities by
Heilbron et al. (2015).

unfamiliar with the specific context of the images (Karpathy, 2016). Examples of captions from

these datasets include:

• Ballet dancers in a studio practice jumping with wonderful form.

• Four men cutting into a cake with Malaysia written on it.

• A deep-sea diver is in full equipment studying a sea turtle.

These datasets offer a valuable insight into how individuals describe actions when given

more creative freedom, without having to select verbs from a pre-defined list. This can result

in a wider range of verbs being used, compared to action datasets that exclude abstract, spe-

cific, technical, or high-literacy verbs. We contend that a comprehensive description of actions

requires not only a larger but also a more diverse set of verbs. A balanced mix of verbs that

encompass different aspects of action description, such as concreteness, abstractness, reason,

manner, etc., is crucial.

We conducted an analysis on captions of both datasets and found that our observations were

relatively consistent across both; therefore, this section will specifically focus on one dataset:

Flickr30K. To identify all verb instances in the captions, we employed the part-of-speech (POS)

tagger from the spaCy (Honnibal and Montani, 2017) large language model (en core web lg).

The Flickr30K dataset was found to have a total of 2, 239 verbs, with an average of 5 unique

verbs per image and 1.5 verbs per caption.

Our analysis revealed that the verb (lemma) distribution is highly skewed, with certain verbs

(e.g., wear, sit, stand, play, and walk) occurring over 10K times, while 1, 656 occur fewer than

20 times. This imbalance raises doubts about the usefulness of most of these verbs, as the
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limited number of examples may lead to inadequate representation. Despite this, the 1, 656

verbs could be useful for evaluating zero-shot models, for instance.

This observation is also supported by the work of Alikhani and Stone (2019), reflecting

the constraints imposed during annotation and dataset creation (i.e, how the content of images

hugely influences how captions are written). Their study show that verbs are significantly un-

derrepresented in image captioning corpora compared to the American National Corpus (ANC),

a balanced corpus of spoken and written English (Ide and Suderman, 2004). In the ANC, 18.4%

of the tokens have verb tags compared to only 2.6% in MSCOCO and 1.2% in Flickr30K. Fur-

thermore, the frequency of verbs decreases sharply in image captioning corpora, especially

across the most frequent 100 verbs, indicating less diverse use of verbs. For instance, the top

10 most frequent verbs in MSCOCO already account for %60 of all verbal instances, and the

top 30 and top 100 account for 72% and 86% respectively. In the ANC, top 10, top 30, and

top 100 account for 44%, 56% and 71%. The study also shows that verbs in image captioning

corpora are either stative (describing conditions rather than activities) or atelic (describing an

ongoing process and in a general way without invoking the possible goal). Based on a sam-

ple of 500 captions from each dataset, only ≈ 5.6% of MSCOCO and Flickr30K contain telic

descriptions, compared to 58.8% for the ANC.

In our examination, we observed that the process of extracting verbs from captions is gen-

erally simple, except for verbs labelled as past participles. Past participles can be used to

describe either object states (e.g., “... a snow-covered mountain”) or actions “A couple getting

married”). However, after consideration, we chose not to address this issue as instances of

past participles only represent 7.5% of all verbal occurrences. The following provides more

examples of past participle instances describing actions:

• A young female student performing a downward kick to break a board held by her
Karate instructor.

• An African American child is supported by his three peers while riding his bicycle.

• A little baby cradled in someones arms.

Additionally, we carried out a manual examination on a subgroup of images with a higher

verb count, aiming to analyse the features of these images and assess the impact of verbs in en-

hancing the descriptive nature of captions. Out of the 30K images, only 8611 had a minimum

of six unique verbs across the set of five associated captions, while only 1945 had a minimum

of eight unique verbs. Our analysis revealed that the abundance of verbs in the captions was

a result of two primary factors: (1) the captions depicted various actions (as illustrated in Fig-

ure 2.3), and (2) the captions provided various perspectives or interpretations of the actions

(as illustrated in Figure 2.4). It was noted that the majority of cases were primarily due to
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1. A group of people, of all ages,
listening to a concert being performed
by a solo practitioner.

1. Two men in florescent vests are
standing next to parked cars in front
of a small building while one of them
converses with a driver and a woman on
a bike is seen riding by.

2. A woman playing a guitar in front of
a group of people standing outside.

2. A man leans into a car to talk to the
driver, as a man on a bicycle looks on.

3. A crowd gathers around a lady with
an acoustic guitar who is performing.

3. A man on a bicycle watching a row of
cars waiting to go through a checkpoint.

4. A woman , playing music , smiles as
a crowd surrounds her.

4. A park ranger talking to a tourist.

5. A woman performing with a guitar on
a crowded street.

5. Two cars are parked outside.

Figure 2.3: Two images from Flickr30K annotated with a large set of verbs, each showing
multiple actions.

the first factor, as it proved challenging to locate sufficient examples that illustrate the second

factor. This finding is key in informing the decision to not pursue experimentation on cap-

tioning datasets. Section 3.3 will delve deeper into the discussion of the dataset chosen for

experimentation in this thesis.

2.2.3 Sense-Based Verb Representation

This approach focuses on predicting the correct sense of a verb, instead of just the base form

of the correct verb. Gella et al. (2016, 2019) proposed the task of Visual Sense Disambiguation

(VSD) for verbs, which is inspired by the Word Sense Disambiguation (WSD) task. In VSD,

the input is a pair of image and verb, and the output is the correct sense of the verb. The authors

provided an example to demonstrate the importance of this task: three images labelled with the

word play can have different meanings such as an athlete playing in a match, a guitarist playing

music, and children playing in a sandbox.
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1. Puppeteer wearing a purple sleeveless
shirt showing off a puppet that looks like
a black man with shades playing a saxo-
phone.

1. A toddler is staring into the screen of a
brightly colored orange and yellow video
game in what appears to be a game center.

2. A man dressed in a burgundy shirt and
black pants maneuvering a puppet which
is holding a musical instrument.

2. A toddler wearing a onesie is stretching
to see a video game in an arcade.

3. Puppeteer entertaining with a puppet
playing the saxophone on the side of the
street.

3. A toddler in a white onesie is playing a
video game at an arcade.

4. A man wearing a red shirt has a puppet
band, on the street.

4. A toddler takes his first glimpse of the
wonders of video games.

5. A man manipulates a saxophone play-
ing marionette.

5. A baby in an arcade tiptoeing to see the
screen of a video game.

Figure 2.4: Two images from Flickr30K annotated with a large set of verbs, each showing a
central action with multiple interpretations.



CHAPTER 2. LITERATURE REVIEW 18

The authors proposed unsupervised techniques to mitigate the lack of datasets that label im-

age actions with verb senses, and developed a small-scale dataset (3.5K images) for evaluation

purposes. Creating a large-scale image dataset for verb senses presents a challenge as there

are limited linguistic resources available to organise verb senses in a hierarchical manner that

would be useful for building the image dataset (Barnard and Johnson, 2005; Chen et al., 2015).

This task formulation influenced the selection of verb senses, leading to a focus on polysemous

verbs.

HICO, previously discussed in Section 2.2.1, allocates some attention to verb senses for

the purpose of simplifying the set of verbs considered when building the dataset. To define

verb categories, HICO extracts a candidate set from MSCOCO captions using linguistic tools

such as a dependency parser and the Google N-Gram dataset. Verbs with similar meanings are

manually grouped into categories (e.g. repair and fix in the context of bicycles) and then linked

to WordNet senses, i.e. synsets. For instance, out of many verbs used to describe bicycle-related

actions, the following are grouped as one verb: repair, mend, fix, bushel, doctor, furbish up,

restore, and touch on. The purpose of grouping verbs is to simplify the action recognition task

by separating language understanding from vision recognition. Therefore, WordNet synsets are

merely used to facilitate the grouping of verbs, meaning that the verb sense labelling in HICO

is not designed to address VSD or handle overlapping senses. The definition of verb and object

categories is influenced by the MSCOCO dataset, leading to a similar dataset to MSCOCO

since verb and object categories determine the selection of images.

2.2.4 Multiple-Verb Representation

Wray and Damen (2019) propose a multiple verb-only representation for the target output of

the verb prediction task, which deals with the overlap of context among verbs by using an

object-agnostic approach. They use two techniques for representing actions in videos, hard

assignment and soft assignment. To motivate their approach, they provide an example that

highlights the ambiguities that can arise from verb-object representations, such as the ability to

open a door by pushing or pulling, or a bottle by turning and a package by cutting.

In the hard assignment method, the target is represented by a binary vector over the set of

target verb classes. The indices of verbs that describe the action are activated (assigned a value

of 1), while the rest of the indices are assigned a value of 0. In the soft assignment, each verb

in the target vector is given a relevance value between 0 and 1, which is calculated from scores

provided by 30 to 50 annotators for each example. These scores are then normalised. The

motivation behind this approach is that even if multiple verbs can be used to label a video, they

may not have equal validity or relatedness.
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An examination of the annotators’ agreement in the annotation data showed a tendency to

agree on verbs that are either highly relevant or certainly irrelevant, but disagreement was found

on a group referred to as secondary verbs. Although these verbs are not critical to describing

the action, some annotators did not deem them irrelevant.

Their experiments showed that both the hard and soft assignment techniques outperform the

verb-object representation as in Section 2.2.1. Hard assignment is more appropriate for verb

prediction, while soft assignment is better suited for retrieval. However, the main drawback of

the approach is its labour-intensive nature, as annotators need to evaluate the relevance of each

verb instead of simply selecting the most applicable one as in the single-verb approach.

The HICO dataset, previously discussed in Sections 2.2.1, and 2.2.3, assigns multiple verbs

to each image, treating all labels as equally important. The major challenge with HICO is the

imbalanced distribution of verbs, where some verbs such as sit and stand occur much more fre-

quently, whereas the majority of verbs have only a few occurrences. Despite attempts to rectify

this through increased query iterations during image collection, the source of this imbalance

may be traced back to HICO’s reliance on MSCOCO for creating its categories of verbs and

objects.

2.2.5 Summary

In this section, we discussed four main types of tasks that involve predicting verbs, both directly

and indirectly. We focused on how these verbs are presented in the tasks and the types of

resources that have been constructed for these tasks. Additionally, we explored the role of

verbs in dataset construction approaches.

In this section, we discussed the verb-object representation approach, depends on infor-

mation about the objects and scenes within an image to convey the meaning of the image

action. However, this approach has limitations in capturing the multi-faceted nature of action

meanings. It places the onus on the end-user, i.e., the human, to reason and derive additional

interpretations of the action from the available information.

In addition to the verb-object representation approach, we also examined the free-form rep-

resentation approach, which allows for more detailed descriptions of image actions and often

includes multiple verbs. This approach enables us to analyse the co-occurrence of verbs within

image descriptions. However, one significant challenge with the free-form representation ap-

proach is the highly uneven distribution of verbs within captions, which can limit the utility of

captioning datasets for verb prediction tasks like the one presented in this thesis.
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We also discussed the sense-based approach, which is highly specific to the sense disam-

biguation task and necessitates meticulous annotations of images. This approach has the po-

tential to yield more precise information about the actions depicted in images. However, it can

be time-consuming and require substantial resources to execute, especially when applied to a

large-scale dataset. Additionally, we explored the multiple-verb representation, with a focus on

Wray and Damen’s (2019) soft-assignment method, where labels are assigned varying degrees

of relevance.

2.3 Target-Label Representation

Earlier in Chapter 1, we established the premise that each image is assigned a single verb or

a set of verbs that characterise the primary action depicted in the image. In Section 2.1, we

highlighted the need for a diverse set of verbs when describing the primary action in the image,

and Section 2.2 presented an overview of various tasks that approached verb prediction, either

directly or indirectly, and analysed the output format of these tasks.

As our task requires the output to be represented in the form of one verb or a set of verbs,

this section explores multiple vector-based approaches to verb representation, categorised into

four approaches. Each of these categories will be discussed in detail in separate sections.

2.3.1 One-Hot Representation

The approach represents target labels as discrete symbols, each assigned a unique integer num-

ber, which can be based on alphabetical order or the order of observation. This integer repre-

sentation can be transformed into a vector representation, where each word in the set maps to

a distinct, sparse vector of L dimensions (where L is the number of distinct labels or classes).

This representation, known as one-hot vector, assigns a value of 1 to the i-th dimension for

label i and 0s in all other dimensions. One-hot vectors were previously widely utilised in ma-

chine learning and still in classification tasks that require mutually exclusive classes. However,

in recent years, the use of this representation has declined with the advent of deep learning

techniques, which have demonstrated superior ability in learning complex representations.

In this thesis, we view one-hot embeddings as insufficient due to the fact that the target

labels (verbs) are not mutually exclusive and cannot be arranged as disjoint sets of classes.

Furthermore, these embeddings lack the ability to measure similarity or relatedness without the

use of supplementary resources like WordNet as in Resnik (1995). Our proposed framework

emphasises the importance of capturing the relationships between verbs in the representation,
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which is crucial for expanding vocabulary and handling unseen verbs during training (as dis-

cussed later in Chapter 3).

2.3.2 Feature-Based Representation

A second method for representing verbs is through distributed representations using a set of

hand-selected features or attributes. These provide valuable insight into human concept repre-

sentation and have been applied successfully in NLP tasks, particularly as a proxy for modelling

perceptual information (Silberer and Lapata, 2014; Silberer et al., 2017). To develop a feature

norm dataset, individuals are asked to identify the most crucial attributes of a concept. For

example, in the widely used McRae dataset (McRae et al., 2005), the concept of shrimp is

associated with features such as being small, edible, and living in water.

Feature norm datasets can be transformed into vector representations, but the resulting vec-

tors tend to be sparse, with each concept only having a limited number of features (e.g. McRae

has an average of 13.7 features per concept). One of the main advantages of feature norm

datasets is that they cover a range of properties, including visual-form and surface properties,

rather than just taxonomic or encyclopedic ones. Table 2.1 shows the featural representation

for moose.

However, these datasets still only provide a partial view of human conceptual knowledge

and creating them is both expensive and labour-intensive, as extensive human annotations are

required to determine the features associated with a given concept (Fagarasan et al., 2015).

As a result, coverage is limited to a specific set of concepts and features. For instance, the

McRae dataset only has 541 concepts described using 2526 features, while the largest in terms

of coverage, the Cambridge Centre for Speech, Language, and Brain (Devereux et al., 2013),

includes only 638 concepts. Most of these resources are designed only for noun concepts, with

a few exceptions, such as Vinson and Vigliocco (2008), that include verbs in their studies.

Additionally, the subjectivity of this method raises concerns as it is based solely on human

annotators, which may introduce biases.

In the field of computer vision, feature-based representations are distinct from other feature-

based representations in two ways. Firstly, they consist of binary features and secondly, the

feature space is tailored to a specific task or dataset. For instance, features such as white, eat

fish, stripes, and water might be relevant for animal recognition (Lampert et al., 2014), while

vegetation, vacationing, and natural light may be suitable for scene recognition (Patterson

et al., 2014). Object recognition (Farhadi et al., 2009; Ferrari and Zisserman, 2007) could

benefit from features such as horn, wing, door, and wood, and action recognition (Liu et al.,

2011) might use features like indoor related, translation motion, and torso twist.
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Table 2.1: The featural representation for moose in the McRae dataset (2005)

Feature Production Frequency Brain Region Classification

is large 27 visual-form and surface
has antlers 23 visual-form and surface
has legs 14 visual-form and surface
has four legs 12 visual-form and surface
has fur 7 visual-form and surface
has hair 5 visual-form and surface
has hooves 5 visual-form and surface
is brown 10 visual-colour
hunted by people 17 function
eaten as meat 5 function
lives in woods 14 encyclopedic
lives in wilderness 8 encyclopedic
an animal 17 taxonomic
a mammal 9 taxonomic
an herbivore 8 taxonomic

Feature-based representations are inefficient due to their task-specific and labour-intensive

nature. Also, research has shown that feature-based techniques are inadequate for object clas-

sification (Yu et al., 2013), which raises concerns about their performance for other tasks.

2.3.3 Distributional Representation

In the preceding section, we explored a method of obtaining a distributed representation through

representing verbs as vectors of attribute or feature values. This section introduces a second

method, which is founded on the distributional hypothesis and employs patterns of verb usage

in large text corpora to construct the representation. The distributional hypothesis postulates

that words that appear in similar contexts tend to have similar meanings (Firth, 1957). This idea

has greatly influenced the development of distributional vectors and offers practical approaches

for constructing representations from vast text resources (Deerwester et al., 1990; Bengio et al.,

2003; Collobert and Weston, 2008).

One key aspect of these algorithms is that they do not require any kind of feature engineer-

ing as in the featural representation.

The earliest approach for creating distributional representations is the count-based approach,

which entails constructing a frequency matrix and subsequently undergoing linguistic and

mathematical processing. Although there are numerous variations and applications of this fre-

quency matrix, the one that has had the most direct impact on current distributional models is

the Hyperspace Analogue to Language (HAL) proposed by Lund and Burgess (1996). HAL
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innovated the use of a word-word frequency matrix instead of a word-document matrix and the

notion of a fixed-sized context window, rather than the entire document.

The second method for constructing distributional representations involves using a shal-

low neural network-based approach. This method is efficient and enables simple updates to

the embeddings. It gained widespread recognition with the work of Mikolov et al. (2013),

who introduced the word2vec library, which learns representations by predicting context words

given a target word (SkipGram) or by predicting the target word based on its surrounding con-

text words (CBOW). Another influential contribution is the Global Vectors (GloVe) proposed

by Pennington et al. (2014), which combines the global statistics of count-based techniques

like LSA with the local context-based learning present in word2vec.

Measuring similarity. The main advantage of using distributional embeddings for verb rep-

resentation is the ability to quantify the similarity or relationship between verbs. Attributional

similarity between pairs, such as (drive, commute) and (yell, argue), can be directly measured

using cosine similarity. However, it is important to note that distributional similarity yields

only one metric, making it challenging to differentiate between various forms of similarity, in-

cluding hypernyms, antonyms, and synonyms, as well as other semantic associations, such as

those between dine and table cloth.

One solution to overcome this vagueness is to measure relational similarity between pairs

of verbs, which adds context to the type of similarity being sought. For instance, the troponomy

relationship can be measured through the analogy nibble to eat is like sip to drink, which can

be determined by vector arithmetic (
−→
sip−

−−−→
drink+

−→
eat). The next step is to calculate the cosine

similarity between the resulting vector and each embedding in the vocabulary, and select the

closest match, which would be
−−−→
nibble.

Another solution to the vagueness of distributional similarity is to compare similarity based

on specific semantic features such as morality, social class, pleasantness, gender, wealth, and

sentiment (Grand et al., 2022). These semantic features are extracted from seed embeddings

and can be used to analyse the expressiveness of a wider range of embeddings. For example,

(Bolukbasi et al., 2016) conducted a principal component analysis (PCA) on a matrix composed

of very feminine and very masculine embeddings and used the resulting first component, which

explains the most variation among the embeddings, as the gender attribute.

Limitations. Since distributional embeddings are trained on text resources, they inherit the

limitations and biases that exist in text. Bias in text could stem form human biases, e.g., gen-

der bias as demonstrated by Bolukbasi et al. (2016). The nature of human communication
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and the medium used for communication, text, can also introduce reporting bias in distribu-

tional embeddings as discussed by Gordon and Durme (2013), which can negatively impact the

capability of describing human actions.

Another limitation of distributional embeddings is their inability to capture the full meaning

of a concept due to their reliance on linguistic resources alone. Representing meaning solely

through linguistic resources fails to account for the grounding of meaning in perception (Har-

nad, 1990). Humans acquire knowledge not just through text but also through physical experi-

ences and sensori-motor experiences (Louwerse, 2011), and as a result, distributional embed-

dings may lack the ability to effectively encode perceptual meaning, particularly in comparison

to taxonomic and functional features as discussed by Lucy and Gauthier (2017).

Despite these limitations, distributional embeddings have been widely adopted and utilised

in a range of visual-based applications due to their great potential. It is important, however, to

acknowledge these limitations and understand the potential biases and drawbacks inherent in

distributional embeddings.

2.3.4 Contextual Representation

Contextual representation is a subcategory of distributional representation, but it is discussed

separately in this section to emphasise that it is not the focus of the experiments in this thesis,

which concentrate on static distributional embedding (discussed in the previous section).

Since the advent of contextual models, such as those introduced by (Peters et al., 2018; De-

vlin et al., 2019; Radford and Narasimhan, 2018), they have become an essential component in

achieving state-of-the-art results in various NLP tasks. The key distinction between contextual

and distributional representation lies in the former’s ability to learn a robust language model,

allowing for an end-to-end architecture that seamlessly integrates the input representation (e.g.,

words) and the prediction module.

Aside from their primary applications in downstream tasks, contextual models also hold sig-

nificant value in terms of extracting specific representations, such as variations in the meanings

of words based on word sense, genre, or historical context. These models produce an instance-

based representation of words, where the representation of a word changes dynamically based

on the context in which it appears. For instance, the word play has different representations in

the sentences “A kid plays with his toys in the backyard” and “A person plays the guitar in a

room”.

Studies by Loureiro and Jorge (2019) and Loureiro et al. (2022) utilised contextual models

to extract specific representations from a small sense-annotated corpus such as SemCor. They

proposed a technique that extracts contextualised embeddings of each unique sense instance,
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then computes a prototype representation for the sense through average pooling or cluster cen-

troid calculation.

Contextual models are also potentially valuable for extracting representations in the vi-

sual domain. We believe that, even with limited training data, contextual models can produce

representations that are more relevant to visually-oriented applications, compared to the static

embeddings of the previous section. The representations generated by these models are ex-

pected to encode key information about the visual scene, including properties of the verbs,

information about the agents, objects, and actions related to the verb. One major challenge we

faced when considering the use of contextual models is the limited availability of publicly ac-

cessible datasets that are suitable for the verb prediction task, such as audio descriptions (AD)

for movies and television shows that are created for the visually impaired.

Despite the potential of contextual embeddings, this thesis exclusively concentrates on static

distributional embeddings due to their suitability for the research objective, which aims to es-

tablish a global representation of verbs, as opposed to context-specific ones (i.e., contextual

representations). Furthermore, exploring static embeddings offers valuable insights, as elab-

orated in Chapter 5. Static embeddings also demonstrate superior performance compared to

contextual embeddings across various out-of-context semantic tasks and datasets (Lenci et al.,

2022).

2.4 Zero-Shot Learning

Zero-shot learning is a learning setup in machine learning where the model is tested on classes it

has never seen during training. The goal is to predict the class of the new instances (or samples)

based on auxiliary information that describes the distinguishable features of classes. That is,

the auxiliary links the seen and unseen classes by describing the distinguishable features of

both types of classes. For instance, in image classification, a model that was trained on grizzly

bears but has never seen a panda can still identify a panda if it has access to the information

that pandas are black-and-white bears. The problem of zero-shot learning is well-researched

across various disciplines, particularly in computer vision, where object classification is a key

area of study.

The use of zero-shot techniques is motivated by the need for a mechanism to handle highly

descriptive verbs, which contain a rich amount of information about actions. These verbs

present a considerable challenge to conventional supervised learning algorithms due to their

limited range of application and rare occurrence in corpora and image datasets. This is due

to the phenomenon that the greater the degree of descriptiveness, the narrower the scope of
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application for a verb (Snell-Hornby, 1983). This is exemplified by the following ranking of

verbs based on the degree of descriptiveness provided by Boas (2008):

walk < jog < parade < stagger

There are two broad categories of zero-shot learning techniques that are relevant to vision-

based tasks, namely attribute-based methods and embedding-based methods. Attribute-based

methods (Lampert et al., 2014; Jayaraman and Grauman, 2014; Al-Halah et al., 2016; Farhadi

et al., 2009; Rohrbach, 2017) typically employ a two-step procedure, in which the attributes

of an image are first predicted and then, in step 2, matched to the class with the most simi-

lar attributes. The component that predicts image attributes is trained on a subset of classes,

with the aim of generalising to unseen classes. However, this approach necessitates expensive

manual annotation and is still susceptible to domain shift between the intermediate task (i.e.,

attribute prediction) and the target task (i.e., label prediction) (Fu et al., 2015). The nature of

these attributes was discussed previously in Section 2.3.2.

Mapping-based learning, on the other hand, directly learns a mapping from an image feature

space to a semantic space (Akata et al., 2016; Palatucci et al., 2009; Socher et al., 2013; Frome

et al., 2013). As in the other category, the model learns to perform the matching based on a

subset of classes only. The semantic space can be designed either by utilising a set of nameable

attributes (detailed in Section 2.3.2) or by employing distributional embeddings (discussed in

Section 2.3.3). In our thesis we employ the mapping-based approach that maps the input into a

distributional space. This configuration leverages the ongoing advancements in representation

learning, enabling the effective use of pretrained massive models without incurring the cost of

task-specific annotations.

This section provided a brief overview of zero-shot learning techniques relevant to our

thesis. For a more detailed look at the subject, we suggest the reader refer to Fu et al. (2018);

Xian et al. (2019).

Zero-shot in action classification. The application of zero-shot tasks in action classification

poses a greater challenge compared to other domains. This is primarily because of the scarcity

of appropriate lexical resources. These resources play a critical role in determining which

classes should be used for training and testing based on their degree of dissimilarity, as defined

by these resources.

In object classification, ImageNet has a broader role than being just an image dataset. As

it is constructed using WordNet, it offers a structured approach for selecting training and test

classes based on the similarity between the two sets. For example, when training a model
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on the ILSVRC (1K ImageNet) classes, we can select test classes from the remaining 20K

ImageNet classes by evaluating their similarity to the training classes. This can be achieved by

quantifying the links or edges between the classes using WordNet. By using this method, we

have the flexibility to adjust the level of difficulty in evaluating the model. For example, we can

achieve this by selecting test classes that are either one or three links away from the training

classes in terms of their relationship within WordNet.

Despite the added challenge, researchers have begun to tackle zero-shot learning for verbs

or actions in the visual domain. One notable study is the work of Zellers and Choi (2017),

which serves as a point of comparison for the current thesis since it was evaluated on the same

dataset. Their study proposes a method for verb prediction that combines predefined attributes

with distributional embeddings. The authors use lexical resources to identify 24 attributes that

are considered relevant to the task of verb prediction.

2.5 Summary

In this chapter, we have presented a comprehensive overview of the problem addressed in this

thesis from various perspectives. In Section 2.1 we have established the necessity of employing

diverse descriptions of image actions, considering their multifaceted nature and varying inter-

pretations. For instance, while one description may emphasise the manner in which the action

is performed, another may prioritise the intention or objective behind it. It is worth noting that

different descriptions often necessitate the use of distinct verbs, which is where the contribution

of this thesis lies.

In Section 2.2, we conducted a review of several tasks that involve predicting verbs, either

directly or indirectly, and examined the potential benefits of the resources generated from these

tasks. Our analysis revealed that these tasks have limitations, such as not demonstrating the

interrelationships between verbs when describing image actions, as in the verb-object format.

Alternatively, they may be too specific for their intended use, as in the sense-based format,

or may be challenging to implement on a large scale set of images and verbs, as in the soft

assignment of multiple-verb format. In addition, we demonstrated that resources that present

the output in a free-form format, i.e. captions, can potentially capture the interrelationships

between verbs and usually covers a wider range of verbs. However, we also showed that they

are challenging to use for the task presented in this thesis due to the extreme imbalance of verb

counts in these resources. In Section 2.2, our objective was to review available resources for

predicting verbs based on their output formulation. Our aim was to assess the limitations and

potential benefits of these resources and determine the most suitable one for the task presented
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in this thesis. Section 3.3 will thoroughly discuss the dataset selected for experimentation in

this thesis.

In Section 2.3 of our literature review, we have explored different techniques for repre-

senting verbs using distributed vectors. Two major approaches are feature-based represen-

tations, which involve identifying a set of semantic features for the verb (e.g., “has legs”),

and data-driven representations, such as distributional embeddings. Distributional embed-

dings are created by analysing large amounts of text data and identifying patterns of word

co-occurrence. These patterns are then used to create a vector representation for each word,

including verbs, based on its distributional context in the text. While feature-based repre-

sentations allow for greater interpretability, distributional embeddings have been shown to be

highly effective in capturing subtle semantic relationships between verbs, such as similarity

and relatedness. Given the objective of utilising existing large-scale resources in this thesis,

distributional embeddings emerge as a highly compatible choice. Not only do they offer access

to a wide range of pretrained models trained on vast corpora, but their ability to operate inde-

pendently of manual curation or supervised training further reinforces their suitability for this

task.

Finally, in Section 2.4, we provided a brief overview of zero-shot techniques and explained

why they are relevant to the task presented in this thesis. We also identified a specific challenge

that arises when applying these techniques to a verb prediction task.



Chapter 3

Methodology

Chapter 1 introduced the idea that information in addition to that derivable from visual inputs

may be necessary to address the verb prediction task and that a potential source of this is text.

The central hypothesis is that information distilled from the visual modality cannot entirely

solve verb prediction, and incorporating other modalities can improve the model’s predictive

capability. In our work, the textual modality is used as an auxiliary source to extract lexical

semantic information. Although text is not a perfect representation of knowledge, it can still

provide valuable insights for the task, especially for the zero-shot setting, a setting where the

textual modality should shine. Overall, we posit that a framework that incorporates semantics

and facilitates zero-shot learning should yield a model better at predicting less-visual actions

and capable of predicting multiple meanings of a given action.

This chapter discusses the verb prediction task in more detail and presents our proposed

framework for building the prediction model. We first present a formal definition of the task

(Section 3.1), distinguishing between the conventional supervised and zero-shot learning set-

tings. Section 3.3 reviews the dataset selected for experimentation and discusses the dataset

preparation process. Section 3.2 presents the proposed framework for building/training the

model and explains how lexical semantic information is incorporated.

3.1 Task Definition

Formally, let x be an input image. Let C = CS∪CT be the set of all the possible action classes,

where CS is the set of classes observed during training, and CT is the set of target classes that

we want to predict at test time. The task is to learn a function f(x) that assigns a target label

c ∈ CT to an input image x given training instances from class CS . We assume that an action

class can be represented as a verb, which allows us to treat the problem of action prediction as a

29
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verb prediction task. In this regard, we consider three different settings for the verb prediction

task:

Supervised learning. A standard supervised learning setting, where all classes are observed

during training. That is, the set of classes CS at training time is identical to the set of target

classes CT at test time; therefore, CS ≡ CT . Carrying out experiments in this setting allows us

to operate in a controlled manner. It enables direct comparisons against many existing baselines

trained only in this setting (i.e., standard vision classifier), usually comprising a softmax as a

final layer. Furthermore, the supervised setting is ideal for studying the effect of lexical seman-

tic information on less-visual actions. For example, we would like to compare the framework’s

performance on abstract classes (such as comforting) to standard label classifiers.

Zero-shot learning (ZSL). In a zero-shot learning setting (Lampert et al., 2014), the set of

classes (or verbs) CS observed at training time is disjoint from the target classes CT at test

time; i.e., CS ∩ CT = ∅. Intuitively, a model under this setting is forced to predict a class label

from CT without having any knowledge about these classes at training time, for example by

using associations and properties learned only from classes CS . Such a setting can be useful

for evaluating models that can predict novel target classes, for example abstract verbs (e.g.,

greeting or comforting) or classes that do not have many training examples (if any). We use

this setting to demonstrate the ability of our proposed approach to predict such novel target

classes.

Generalised zero-shot learning (GZSL). In a generalised zero-shot learning setting (Scheirer

et al., 2013), the set of class labels CS at training time is a strict subset of the target class labels

CT at test time; therefore, CS ⊂ CT . Under this setting, the model only learns from a subset

of the possible set of action classes CS at training time. At test time, the model generates a

prediction from a pool of classes that contains both classes CS and classes CT . This setting

enables us to test the framework under a relatively realistic and more challenging setup, given

that the search space at test time contains a more extensive set of classes.

Our experimentation is limited to the first two settings only. The results from the GZSL

setting proved challenging to analyse and interpret due to the mixed set of seen and unseen

classes in the evaluation set.
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3.2 The I2A Framework

Given an input image x, our Image2Action (I2A) model predicts one or more labels from a

set of possible target class labels CT . The key aspect of the model is an intermediate vector

representation that connects the class labels CS at training time to the target class labels CT

at test time. More specifically, we learn a regressor h(x) that predicts a vector from training

instances of class labels CS . At test time, the function f(x) will then predict a target class label

c ∈ CT that has a vector representation vc closest to the predicted vector h(x):

f(x) = argmin
c∈CT

D(h(x), vc) (3.1)

where D(i, j) is some distance function between vectors i and j

We first introduce and motivate the use of vectors as an intermediate representation to verbs

in Section 3.2.1. Section 3.2.2 describes the I2A framework in detail and explains the interac-

tions between its components during training and testing processes. The subsequent sections

describe the main components of I2A.

3.2.1 Distributed Lexical Representation of Verbs

In traditional classification tasks, each image is assigned a single label, which is represented

by a one-hot encoded vector. The length of this vector is equal to the number of distinct image

classes. This approach assumes that the labels are mutually exclusive, and that each image

has only true label. However, this assumption cannot be valid for the verb prediction task,

where multiple verbs can describe the same action from different perspectives (e.g., lifting

a hat vs greeting). Instead of one-hot vectors, I2A encodes target labels using distributed

lexical representations. The advantage of this approach is that it allows for a more nuanced

representation of target classes (i.e., verbs) beyond simple word labels.

We hypothesise that distributed representations have the potential to encode valuable in-

formation from text that can complement the limitations of the visual modality in the verb

prediction task. Our hypothesis is that a hybrid system combining multiple modalities holds

promise as the optimal approach for addressing abstract tasks, as demonstrated in Figure 3.1.

The following outlines the potential advantages of incorporating lexical embeddings in the verb

prediction task.

(i) Since embeddings can be aggregated into a single vector, we anticipate that I2A will

generate a vector that captures various interpretations of the image action. For example,



CHAPTER 3. METHODOLOGY 32

Figure 3.1: It is hypothesised that hybrid systems that use multiple modalities in addition to
visual, can be advantageous for certain vision tasks whose goal is to comprehend concepts and
ideas, rather than just detecting physical objects.

if an image depicts an athlete participating in a sprint race, instead of generating a one-hot

vector solely for the verb running, I2A is expected to produce a vector that encompasses

the concepts of racing, running, and sprinting.

(ii) The utilisation of word embeddings allows I2A to assign classes beyond those seen in

the training data. This is particularly important for verbs with limited training examples

but which have semantic connections to verbs with numerous examples. For example,

if eating is included in the training set and we want I2A to recognise dining despite

its absence in the training data, I2A in this case is expected to produce a vector that

encompasses the concepts of eating, formal event, and suits, resulting in a vector that

closely resembles the embedding of dining.

(iii) Lexical embeddings mitigate the reliance on visual similarity, thus enabling the handling

of non-visual and less visually distinctive verbs. Unlike visual classifiers, which are

limited by the intra-class similarity of visual features, lexical embeddings provide the

capability to process verbs like comforting that can be performed in different visually

distinctive manners.

(iv) Lexical embeddings are capable of encoding different lexical units and not being limited

to single-word verbs. In English, two prominent examples highlight the significance of

this versatility. The first is verb-particle pairs that convey a different meaning compared

to the verb alone (e.g. stick vs stick up). The second is multi-word expressions comprised

of verbs and conventionalised objects that express a meaning that cannot be derived from

their individual parts, i.e. non-compositional meaning (e.g. pay vs pay attention).
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Figure 3.2: The I2A framework comprises three components, each represented with a distinct
colour: (1) Image Feature Extraction (in red), (2) Projection into a Lexical Semantic Space (in
blue), and (3) Search in the Lexical Semantic Space (in green). The image feature extractor
shown here is a visual-based in the form of a convolutional neural network (CNN).The inner
box illustrates the the steps involved in both training and testing processes, while the outer box
shows the additional steps required specifically for the testing process.

3.2.2 Training and Optimisation

Our proposal takes a different approach to the task of action classification by casting it as a

regression task that predicts a vector in the space of verb embeddings, rather than directly

classifying the action as in traditional systems. This should allow us to explore the the space

of all plausible verbs for describing the action instead of being committed to single verb. The

flow of images through I2A’s components is shown in Figure 3.2. Given an image as input, I2A

predicts a vector that attempts to encode the semantics of the image action, referred to as the

action-encoding vector (the process is discussed in details in Section 3.2.2).

This action-encoding vector is then compared with subset of the lexical semantic space

embeddings specified at test time, and the k classes with the most similar embeddings are

selected. The process can be seen as predicting the latent semantic properties of the action,

which are expressed through the selection of different lexical embeddings.

I2A draws inspiration from prior work in the zero-shot recognition task for objects (Frome

et al., 2013; Palatucci et al., 2009; Socher et al., 2013). However, unlike these studies, I2A

does not have access to a taxonomic hierarchy such as WordNet for objects. These prior studies

utilised the ImageNet dataset, which was constructed based on the WordNet hierarchy, allow-

ing for varying levels of evaluation difficulty based on the similarity between the training and

evaluation classes. It also could serve as a source of auxiliary information.

Our goal with I2A goes beyond just addressing the zero-shot action recognition task. We
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aim to develop a framework that can decode the diverse meanings of actions, including those

that are not observed during training or less straightforwardly visual, such as greeting and

comforting.

Training process. The training process of I2A begins by pairing each image with its corre-

sponding vector, represented as distributed embedding, rather than the string label. In a general

setting, the corresponding vector could be a verb embedding or a combination of embeddings

for verbs related to the image. The images and their associated vectors are then fed into I2A as

input (x = image) and output (y = n–dimensional vector), respectively.

The training process of I2A involves two stages. First, the images pass through the im-

age feature extraction component, which produces a compact and dense representation of the

images in the form of either visual features or semantic feature (as discussed Section 3.2.3).

In the second stage, the projection component maps each image feature vector to an action-

encoding vector in the lexical semantic space. The objective of this stage is to position the

action-encoding vector close to the verb vectors that describe the image’s action. The loss

is calculated and backpropagated solely to the projection component, updating its parameters

while keeping the weights of the image feature extractor fixed. The rationale for fixing the

parameters of the visual feature extractor is discussed and justified in Section 3.2.3.

To summarise, the objective of the training step is to approximate the embedding of the true

label or the combination of the true labels by utilising only two components of I2A: the image

feature extractor and the projection component. The search component is not involved in the

training process.

Training objective (Loss function). The choice of loss function is crucial for training deep

learning models as performance on certain tasks will benefit more from particular loss func-

tions than from others. In our work, the function is required to compare and evaluate vectors (or

sets) of real numbers, which means standard loss functions such as the log loss and the mean

squared error cannot be employed. In I2A, we choose a cosine-based function for measuring

loss (Equation 3.2). The function aims to approximate the target vector (i.e., the embedding of

the true class). Practically, I2A cannot achieve this goal but manages to produce a similar vec-

tor, the desired behaviour for the tasks in this thesis. Other loss functions (Yin and Shen, 2018;

Kumar and Tsvetkov, 2019) are also considered for improving prediction accuracy. However,

these functions focus primarily on improving training efficiency, and their results show only

minor improvements in overall accuracy.



CHAPTER 3. METHODOLOGY 35

Loss = 1− 1

n

n∑
i=1

cos(xipred ,xitarget)

cos(x1, x2) =
x1 · x2

max(∥x1∥2 · ∥x2∥2)

(3.2)

Test process. The evaluation process necessitates, in addition to the steps involved during

training, the use of a search mechanism to identify the class embeddings that are most similar

to the action-encoding vector. To achieve this, a search function is incorporated as the third

component of I2A. This function takes the action-encoding vector as input, and performs a

k-nearest neighbour search to determine the k closest class embeddings. The labels associated

with these classes are then presented as the final prediction.

To summarise, I2A has three main components: (1) an image feature extractor (Section 3.2.3),

which extracts visual features from images; (2) a projection function (Section 3.2.4), which

maps the visual features into a lexical semantic embedding space; and (3) a search function

(Section 3.2.5), which determines the nearest verb vectors to the vector associated to the input

image.

3.2.3 Image Feature Extractor

This section provides a detailed discussion of the first component of I2A, presenting the two

types of extractors considered in this thesis. The visual feature extractor is a neural network

that extracts dense vector representations of the raw images (e.g., jpeg files), with the goal of

capturing high-level visual features that are expected to be relevant to the verb prediction task.

The salience of visual features is dictated by the dataset and task used for training the neural

network. That is, the salient features relevant to an image classification task may differ from

those relevant to an instance segmentation task. We detail our approach to devising the visual

feature extractor in the following section, given that it is the main type used for experimentation

throughout this thesis.

The semantic feature extractor on the other hand, extracts features of semantic concepts

associated with the image to produce a dense and high-dimensional vector representation of its

semantic features. It is assumed that the visual concepts have already been associated with the

raw image, either through automatic or manual processes (i.e., training starts with these visual

concepts). The extraction of semantic features can be achieved through various techniques,

such as pooling operations over the embeddings of the visual concepts, or through the use of a

deep neural network pretrained on an NLP task, such as sentence similarity. The experiments

on semantic extractors can be found in Section 6.2.
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3.2.3.1 Visual Feature Extractor

Convolutional Neural Networks (CNNs) are used as the visual feature extractor for I2A. CNNs

are a type of deep learning neural network that are commonly used for image and video recogni-

tion tasks, and their architecture design is inspired by the structure of the human visual system

and the process of visual perception (Goodfellow et al., 2016). CNNs are designed to learn

spatial hierarchies of features from input images (as illustrated by the feature extraction com-

ponent in Figure 3.2) in an automatic and adaptive manner, eliminating the need for manual

feature engineering. The primary layer type in CNNs is convolutional layers, which extract

features from images through the application of convolutional filters. Despite being introduced

decades ago, it is only in recent years that a rich diversity of CNN architectures has emerged.

In our work, we chose to work with ResNet (He et al., 2016) as the default visual feature

extractor. ResNet is still considered a strong baseline for many computer vision tasks and one

of the best-performing CNN architectures on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) (Russakovsky et al., 2015). ResNet comes in various block sizes, and in

this work, ResNet50 was chosen as the default option due to its solid performance and compact

size. More recently, transformers have shown promising results for computer vision tasks (Car-

ion et al., 2020; Dosovitskiy et al., 2021). In this thesis, we have decided to concentrate solely

on CNNs for visual feature extraction, as this area is not a central focus of the work.

Pretrained models. The default image feature extractor in I2A is a CNN model, as previously

noted. In this section, we discuss the use of the ResNet50 model pretrained on the ILSVRC

dataset. ILSVRC, which is a subset of the ImageNet dataset (Deng et al., 2009), consists of

1.2 million images depicting objects in a canonical view and annotated with a single label,

encompassing 1000 distinct object classes. Pretrained CNNs are conventionally obtained by

removing the task-specific softmax layer from a classification model. This layer generates a

probability distribution of the output classes in classification tasks (such as the 1000 classes in

the ILSVRC classification tasks). The prediction is ultimately made by selecting the class with

the highest probability score.

CNNs pretrained on ILSVRC are proven to be a viable option for transfer learning. Korn-

blith et al. (2019) have demonstrated a positive correlation between performance on ILSVRC

and the transferability to other datasets. That is, they find that CNN models that perform well

on ILSVRC also do well as pretrained models. This finding has also been observed in other

vision tasks such as object detection (He et al., 2016).

In the training process for new tasks, it is customary to further train or fine-tune the CNN

component for task-specific weight adjustments. However, our approach deviates from this
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common practice and retains the original pretrained weights learned from the ILSVRC dataset,

without undergoing any fine-tuning. This means that in our work the CNN component is

utilised purely for feature extraction, as it remains unaffected and uninvolved in the training pro-

cess. The CNN model employed in our work is obtained from the PyTorch repository (Paszke

et al., 2019).

Feature vectors. The output of the visual feature extractor, such as a CNN, is a high-dimensional

dense vector known as a visual feature vector or image feature vector. The composition of such

feature vectors necessitates an aggregation method to derive and combine visual information

from different parts of the image. In the context of a CNN, this aggregation is performed using

pooling techniques that summarise signals from the feature maps obtained through convolution.

In typical CNNs, feature vectors are obtained through either an average or a max pooling

operation. However, in our work, we adopt a different approach, where feature vectors are ob-

tained by concatenating features extracted from both pooling operations. We hypothesise that

the concatenation enables I2A to extract more comprehensive information from the images,

which is critical given that the image features are not specifically engineered for the verb pre-

diction task. The size of the feature vector is dependent on the CNN architecture and pooling

method used, typically ranging from 512 to 4096 dimensions.

In I2A, feature vectors can be calculated in two modes, online and offline. This thesis uses

the online mode, which computes feature vectors during the training phase by processing raw

images for each iteration. Conversely, the offline mode calculates feature vectors by processing

the entire dataset once and saving the results in a permanent storage. During training, these

feature vectors are used as input, instead of the raw images. Although the online mode incurs

a substantial increase in the duration of training when compared to the offline mode, it enables

the application of image augmentation techniques, including geometric transformations (e.g.

rotation, horizontal flipping, and zooming) and colour space transformations. These techniques

help to regularise the model and reduce the risk of overfitting by providing variations to the

training data (Shorten and Khoshgoftaar, 2019).

3.2.3.2 Semantic Feature Extractor

The previous section introduced the first method of extracting features from images using a

visual feature extractor such as CNNs. Although CNNs can handle complex visual shapes and

generate valid representations of visual concepts contained in images, we hypothesise that these

visual features are insufficient for the task of verb prediction.

Therefore, an alternative, semantic-based, approach is considered for feature extraction,
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Figure 3.3: Example action-encoding vector that hypothetically encapsulates the representation
of multiple verbs of which we can use to describe the image action.

which encodes the semantic content of images more explicitly, such as information about ob-

jects, spatial relations and scene types. However, this approach requires a reliable oracle, such

as a human annotator or an accurate vision system, making it less practical for real-world ap-

plications. Examination of this approach will be presented in in Section 6.2.

3.2.4 Projection

The second component in I2A is the projection component, which serves as a regressor function

that takes an image feature vector as input and outputs a vector in lexical semantic embedding

space that we refer to as an “action-encoding embedding”. In the simplest case, where images

are assigned one verb only and all classes are observed during training, the action-encoding

vector is expected to be a close estimate of the target embedding (i.e., the embedding of the

true class). That is, the purpose of the training process is to optimise the projection component

so that it accurately matches the image representation with its corresponding label representa-

tion. It’s important to note, however, that the action-encoding vector is ultimately designed to

serve as an embedding capable of capturing multiple meanings learned from various classes, as

demonstrated in Figure 3.3.

The projection component is implemented as a two-layer fully connected feedforward neu-

ral network (FNN), with 2048 nodes in the first layer and 1024 nodes in the second layer. The

number of nodes has been optimised for the size of input feature vector (4096 dimensions) and

the action-encoding vector size (300 dimensions), but I2A should not be limited to these sizes.

During the training process, only the projector’s parameters are updated; they are initialised

randomly.

The action-encoding vector is hypothesised to encode various meanings (or descriptions) of

the action, as demonstrated in Figure 3.3. Word embeddings have been shown to encode distinct

concepts related to a wordform in a single vector (Camacho-Collados and Pilehvar, 2018). For
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example, the embedding of play encodes the various senses of the word. While this presents a

challenge for sense disambiguation, it is advantageous for I2A, as the action-encoding vector

is designed to capture diverse action meanings.

3.2.5 Search

As discussed in Section 3.2.2, I2A, specifically the regressor component, is incapable of pro-

ducing the precise set of floating-point numbers that form the distributed representation of

the target. As a result, a search mechanism is needed, which serves to bridge this gap. The

search component accepts the action-encoding vector generated by the projection component

and outputs the labels of the k closest verbs similar verbs. The search component requires the

specification of (1) a search space and (2) a distance measure in this space.

Search space. The search space is the set of classes made available for the search component,

which is not restricted to the set of training classes. The search space is also flexible as it can

be defined after training the verb prediction model. The space can be as big as the entire

vocabulary of the embedding model or as small as a subset of training (or seen) classes. The

search space can be viewed as a reflection to the three learning settings presented in Section 3.1:

it can be either the same set observed in training (the supervised setting), a disjoint from the

one observed in training (the ZSL setting), or a superset that includes all training classes (i.e.,

the GZSL setting).

In our work, a proper definition of the search space is particularly crucial for the ZSL

setting. Hence, it may be necessary to determine what actions are required or advantageous for

training and what actions can benefit from the trained model. For instance, training on classes

with sufficient resources and testing on classes with limited resources can be a reasonable

approach to use semantic embeddings in ZSL, but other approaches such as categorising classes

based on abstraction, ambiguity, or imageability may also be effective (Coltheart, 1981; Wilson,

1988).

Similarity metric. In I2A, a metric is required to compare the action-encoding vector to each

embedding in the search space. The chosen metric must be efficient in terms of computational

speed and memory consumption, as the vectors are often large (up to 1000 dimensions) and the

search space contains thousands of embeddings. Furthermore, the metric must be precise, as

the embeddings in the space are expected to be very close, as they correspond to a subgroup of

verbs that share many common characteristics. Cosine similarity is a commonly used metric

for measuring the similarity between two vectors. It calculates the cosine of the angle between
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two vectors, which is equivalent to the normalised dot product.

I2A utilises a variant of the cosine metric family, known as the angular distance (Equa-

tion 3.3). This metric has been shown to be more effective in distinguishing highly similar

vectors with small angles between them (Cer et al., 2018). Given that verb embeddings are

likely to cluster in sub-regions of the embedding space, the use of angular similarity is partic-

ularly well-suited for our task. We have used the software of Boytsov and Naidan (2013) for

both the computation of similarity and the performance of nearest neighbour matching.

angular similarity = 1− angular distance

angular distance =
arccos(cos(xipred ,xitarget))

π

(3.3)

3.3 Dataset

Dataset selection. In selecting a suitable dataset for our experimental work, we considered

three options, namely imSitu, HICO, and MSCOCO, which are previously described in Sec-

tion 2.2. After careful consideration, we chose the imSitu dataset as the primary focus of our

research. The imSitu dataset serves as a starting point for establishing the validity of the I2A

framework, as it offers the lowest level of complexity among the three datasets considered. This

dataset is well-balanced in terms of the distribution of images per class, and its use of only one

verb label per image makes it suitable for early experimentation of I2A framework. Moreover,

imSitu comes with a comprehensive annotation of image content, which further supports its

suitability for our research.

The situation recognition dataset (imSitu). The dataset contains structured and compre-

hensive annotations of actions occurring in 126, 102 images. Each image is annotated with a

single verb describing the action, the objects involved, and their respective roles in the action.

Images are distributed across 504 classes (or verbs), and the number of images per verbs ranges

between 200 and 400 images, indicating that the dataset is relatively balanced, compared to

other datasets considered such as HICO and MSCOCO. Figure 3.4 shows a set of examples

taken from the original paper (Yatskar et al., 2016) along with their structured annotations (or

situations as refereed to in the dataset). The image on the right shows a fireman spraying water

on fire and is labelled with the following situation: S =
(
spraying, {(agent, fireman),

(source, hose), (substance, water), (destination, fire), (place, outside)}
)
.

In this dataset, each verb (or class) is associated with a set of fixed roles derived from

FrameNet, with an average of 3.5 roles per verb. The values corresponding to these roles are
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Figure 3.4: Examples from Yatskar et al. (2016) demonstrating six distinct situations, two
of which share the same verb. The fixed roles for each verb are highlighted in blue, while the
values of these roles (shown in green) depend on the specific actions depicted in the image and
their corresponding interpretations.

linked to an extensive collection of 11.5K WordNet synsets, leading to a vast collection of

distinct image annotations, encompassing over 200K situations.

The importance of verbs in imSitu is emphasised through their role in the image selection

process. The authors initially considered almost 10K candidate verbs, but narrowed down the

set to 1K verbs by eliminating non-visual verbs and those requiring technical background or

advanced literacy. The effort to gather images for these 1K verbs led to further reduction to 504

due to the scarcity of suitable example images of some verbs. The final set of verbs intentionally

excludes ambiguous verbs such as PLAYING; however, it also includes near-synonyms, making

it difficult to differentiate between them and treat them as separate concepts, such as PHON-

ING and TELEPHONING and PEEING and PISSING. Additionally, some verbs may also prove

difficult to distinguish given the static nature of images, such as LAUGHING and GIGGLING.

Conversely, certain pairs of verbs exhibit nuanced but important differences, such as BIK-

ING and RIDING (where biking is a type of riding), DIALLING and PHONING (where dialling

is a sub-activity of phoning), and PACKAGING and PACKING. These subtle distinctions are of

significance in the context of this thesis and make the imSitu dataset a promising resource for

experimentation.

The significance of verbs in imSitu is further underscored by their contribution to the image

annotation process where images are annotated according to the frame of their verbs (i.e., what

objects to label and what are their roles in the action). Various human roles are encompassed

within imSitu. For instance, “man”, the most frequent noun, appears in 44.6% of the roles. This

should be a good characteristic for the task addressed in this thesis as we aim to understand

actions with multiple different interpretations. Having images of humans engaged in various

roles stands as a valuable resource for a such task.
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(a) Images labelled with the verb APPLAUDING. The left image indicates encouragement, the middle
image demonstrates recognition and acknowledgement, and the image on the right conveys celebration.

(b) Images labelled with the verb INSTRUCTING. The left image depicts community engagement, the
middle image demonstrates teaching, and the image on the right indicates training.

(c) Images labelled with the verb MISBEHAVING under different contexts.

(d) Images from three different classes: SPROUTING, BALLOONING, and BLOSSOMING. These classes
are unsuitable for this thesis due to their one-dimensional interpretability.

Figure 3.5: Sample images from the imSitu dataset. The upper three rows display distinct
interpretations of actions within imSitu classes, highlighting the dataset’s potential for the thesis
task. The fourth row shows examples of unsuitable classes.
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Our experimentation with the I2A framework on the imSitu dataset will play a crucial role

in determining the feasibility of future experimentation with the remaining datasets, which are

beyond the scope of this thesis. The imSitu dataset is available in two versions, one containing

original images of varying quality, with most being high-quality, totalling a size of 34 gigabytes.

The second version comprises resized images, with each image scaled down to 256×256 pixels,

and has a smaller size of 3.7 gigabytes. For our research, we opted for the resized version of

the dataset, primarily due to its compatibility with existing pretrained CNNs and its efficiency

in training.

Dataset processing. All experiments are carried out on a filtered version of imSitu, contain-

ing only images of human actions. As previously discussed in Chapter 1 and 2, this thesis is

particularly concerned with exploring the complex nuances of actions, and human actions were

deemed most suitable for this purpose. Figure 3.5 shows examples of classes deemed appropri-

ate for the task, contrasting with others (displayed in the bottom row) that are not applicable.

The filtering process were performed by leveraging the comprehensive annotation of imSitu,

which not only annotated the target (class) but also the content of the image. The process in-

volves removing images that are not annotated with labels describing a person or a group of

people. Utilising the WordNet hierarchy, all images in imSitu were removed if they did not

contain in their annotations a synset which was either PERSON.N.01, PEOPLE.N.01 or

SOCIAL GROUP.N.01 or a hypernym of one of these two synsets. This process resulted in

a reduction of the number of instances in most classes, particularly those related to non-human

actions such as SPROUTING. Classes were eliminated if their instances were reduced to fewer

than 90 examples. The filtering process reduced the number of classes from 504 to 463 and the

total number of images from 126, 102 to 108, 342.

3.4 Summary

This chapter has provided a formal definition of the task of predicting verbs for actions in im-

ages and discussed three possible learning settings for it: supervised learning and two variants

of zero-shot learning (Section 3.1). Section 3.2 introduced the I2A framework and explained

how word embeddings are incorporated in the prediction process. The section also describes the

three components of I2A: (1) the image feature extractor, (2) the projector, and (3) the search

component. Two approaches to image feature extraction are distinguished: a visual-based and

a semantic-based approach. Section 3.3 discussed the process of selecting and preparing the

dataset.



Chapter 4

Initial Experiments with the I2A
Framework

This chapter presents experimental results utilising the I2A framework proposed in the previ-

ous chapter, with default or standard components outlined in Section 3.2. The default visual

feature extractor is ResNet50 pretrained on ILSVRC, and the projection component uses two

layers. To represent target labels, we use the pretrained GoogleNews embeddings, which are

trained using the Continuous Bag of Words (CBOW) method (discussed in Section 2.3.3) on

a large set of text comprising news articles, Wikipedia articles, parliamentary text, non-news

web pages, and other sources, totalling around 100 billion words. The embedding size is set to

300 dimensions, and the vocabulary size is three million words and phrases. These embeddings

have demonstrated good performance in various tasks, as discussed in Section 2.3.3. In this

chapter, we construct models using the GoogleNews embeddings under two learning settings:

supervised (Section 4.1) and zero-shot (ZS) (Section 4.2), with a view to establishing how well

this approach to verb target class representation performs on verb prediction task.

In the remainder of this chapter, we will refer to the model created using this setup as the

I2A model. However, in the subsequent chapters, we will differentiate between model variants

by naming them after their unique components. For example, in Chapter 5, we will refer to

this model as the “google-news” variant to distinguish it from other variants that use different

embeddings. Similarly, in Chapter 6, we will refer to this model as the “ILSVRC” variant

to distinguish it from other variants that use different image feature extractors. The default

settings are also employed in experiments in the subsequent two chapters, varying only the

target label representation in Chapter 5 and the component that extracts features from input

images in Chapter 6.

44
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4.1 Supervised Setting

In this section, we describe the construction of the I2A model under the supervised setting. The

model is trained on labelled images from all classes, with the objective of learning a mapping

function that can predict an action-encoding embedding based on the input image. The action-

encoding embedding is expected to represent one interpretation of the image action, which

is the same as target label associated with the image. This differs from the zero-shot setting

in Section 4.2 where the model is trained on a subset of verbs and then is expected to be

able to generalise to new, unseen verbs by utilising information encoded in the distributed

representation of related verbs.

4.1.1 Experimental Setup

As previously discussed in Section 3.3, we have selected the imSitu dataset for experimentation

in this thesis. The dataset is split into a 75:25 ratio for training and for testing, respectively,

using stratified sampling to maintain consistent sampling ratios across classes.

The 1cycle learning rate policy (Smith, 2018) has been applied, with 1 cycle and 20 it-

erations or epochs per cycle. The 1cycle policy cyclically varies the learning rates between

two previously specified bounds (as shown in Figure 4.1), promoting super-convergence and

leading to a greater boost in performance in less training time compared to standard training

policies. All experiments in this thesis follow the same setup and use the same hyperparameters

unless stated otherwise.

The model has approximately 34 million parameters, of which only 11 million are trainable,

all located in the projection component. Figure 4.2 shows the loss and top1 accuracy over

training epochs. Although the left plot shows some indications of overfitting, we decided to

train the model for 20 epochs instead of 10. This is because the overfitting signal is based on

an intermediate output (i.e., action-encoding vectors) which may not necessarily translate to

a direct impact on the final output (i.e., verb labels). It is worth noting that the loss function

not being directly linked to the evaluation criteria is a common issue in machine learning, as

discussed in Qin et al. (2008). Therefore, while we should be mindful of this issue, it may not

necessarily be a significant concern in this particular case.

4.1.2 Baselines

In this section, we introduce three baselines to compare with the I2A model. The purpose of

these baselines is to establish a performance range against which we can measure the model’s

effectiveness. The first baseline (random prediction) serves as a lower-bound, and the second
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Figure 4.1: The diagram, reproduced from Smith (2018), depicts how learning rates changes
cyclically over batches. The blue lines represent learning rate values changing between bounds.

Figure 4.2: Performance over epochs. The left plot shows loss, and the right plot shows top1
accuracy.

(vis-proto) allows us to directly compare the use of visual representations of the target class

with the use of lexical semantic embeddings. The third (label-cls) acts as an upper-bound. The

performance of these baselines is discussed in the following section, along with the I2A model.

1. Random prediction acts as the lower bound on the level of performance that can be ex-

pected when assessing a model trained on a dataset of 463 classes. This baseline randomly

selects five predictions for each test image. These random predictions are then fed to the eval-

uation code to calculate top1 and top5 accuracy. Alternatively, accuracy can be calculated

directly via Equations 4.1 and 4.2, where CT is the set of test (target) classes.

Top1 accuracy =
1

|CT |
(4.1)

Top5 accuracy =
5∑

i=1

1

|CT | − (i− 1)
(4.2)

2. Visual prototype prediction (vis-proto) follows the same process devised for I2A and uses

all of its three components. The only difference is that it uses visual class prototypes or exem-

plars as the target vectors instead of the lexical semantic embeddings. The class prototypes are
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Figure 4.3: The process of creating the class prototype for a single class.

calculated using visual features extracted from images in the imSitu training set. The visual

features are grouped by class and then aggregated using the average mean pooling operation,

resulting in a single vector that is used as the target vector for class instances (Figure 4.3). By

excluding lexical semantic information and having the same learning complexity as I2A, this

baseline provides a controlled comparison against the results of I2A.

3. Direct label classification (label-cls) is a conventional image classifier that acts as the up-

per bound on the level of performance that can be obtained for a model trained on a dataset

of 463 classes. The classifier consists of: (1) the CNN module, (2) the penultimate layers,

and (3) the softmax layer. The first two components are similar to the I2A framework. The

CNN module of the classifier is the same image feature extractor used to train the I2A model

(i.e., ResNet50 and pretrained on the ILSVRC dataset with frozen weights). The penultimate

component has the same architecture as the projection component of I2A, and the classifier has

the same training hyperparameters as I2A, which were discussed in Section 4.1.1. The primary

difference lies in the third module, where the classifier uses a softmax layer, whereas I2A uses

a search component. That means that during training, only the weights of the penultimate and

softmax layers are updatable.

4.1.3 Results

In this section, we analyse the performance of the I2A model and compare it to the baselines

introduced earlier, highlighting the strengths and limitations of I2A. To evaluate the model’s

performance, we use the macro-averaging accuracy metric, which is more appropriate than the
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Table 4.1: Comparison of I2A model performance with baseline models.

Top1 Top5

I2A model 32.48 51.45

random prediction 00.21 01.08
visual prototype prediction (vis-proto) 21.49 41.77
direct label classification (label-cls) 37.04 63.18

micro-averaging accuracy given that the imSitu dataset is slightly imbalanced. Equation 4.3

shows the formula for this metric where Acci is the accuracy for class i.

Accmacro =
Acc1 + Acc2 + · · ·+ Acck

k
(4.3)

The results presented in Table 4.1 clearly demonstrate the superior performance of the I2A

model over the random prediction baseline (with a top1 accuracy of 32.48% compared to

00.21%) and the visual prototype prediction (vis-proto) baseline (with a top1 accuracy of

32.48% compared to 21.49%). The results highlight the contribution of textual information in

I2A. However, the model falls short of the direct label classification baseline, which achieves a

top1 accuracy of 37.04%.

Despite not matching the performance of the direct label classification baseline, the perfor-

mance of I2A model is still promising given the challenge of producing dense vectors instead

of one-hot vectors and the potential benefits of incorporating textual information for predicting

previously unseen verbs. These benefits will be discussed further in Section 4.2.

In addition to using the macro-averaging accuracy metric, the F1 metric is also applied to

measure the model performance. F1 yields similar results. We have opted to use the macro-

averaging accuracy metric due to its wide adoption in image classification tasks and for mea-

suring the performance of top k. Throughout the rest of this thesis, we will refer to macro-

averaging accuracy as the accuracy metric. We will only use F1 sparingly, and solely to show

the performance of individual classes when required.

4.1.4 Cross-Baseline Analysis

Qualitative analysis. To study the effect of textual information on I2A, we conducted a qual-

itative analysis of the I2A model and compared its performance on individual classes with that

of the visual prototype prediction baseline (vis-proto). Table 4.2 categorises the classes into

three groups based on I2A performance compared to vis-proto: (1) significantly better, (2)

significantly worse, and (3) the same.
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Table 4.2: Comparison of the I2A performance with the visual prototype (vis-proto) model
on specific individual classes. The classes are divided into three groups: (1) those in which
I2A performs significantly better, (2) those in which I2A performs significantly worse, and (3)
those in which both models perform equally bad.

I2A >> vis-proto I2A << vis-proto performing the same

LEADING NAGGING RAFTING PROWLING SURFING PRACTICING

FRISKING MOURNING POTTING MICROWAVING READING GRIMACING

PINCHING KNEELING FORDING LAUNCHING PAYING STARING

HITTING MEASURING MOWING FLOSSING RIDING CHOPPING

FLINGING GRINNING FLEXING PANHANDLING STRIKING FLOATING

The first group includes classes where the I2A model performed significantly better com-

pared to vis-proto; a group that greatly benefits from semantic information. One of the goals

of the thesis is to investigate the characteristics of these classes and what makes them good

candidates for I2A. At first look, these classes seem to be less concrete; some are ambiguous,

such as HITTING, and others are abstract, such as LEADING, NAGGING, and MOURNING. This

group may provide some insights on where I2A can be used to unlock abstract interpretations

of classes.

Classes in the second group exhibited strong associations with specific objects or a small

set of objects. For instance, images of LAUNCHING always contain rockets and images of MI-

CROWAVING always contain microwaves. These objects are classes in the pretraining dataset

(ILSVRC) of the image feature extractor, and therefore the corresponding classes in imSitu are

easily predicted without an additional information from the auxiliary medium (i.e., the distri-

butional embeddings). Section 4.1.7 explores the relationship between the classes of ILSVRC

and imSitu.

The third group consists of classes on which both models performed poorly (i.e., near zero-

accuracy performance). We are unsure why the two models underperformed on these classes.

However, since the two models share the same framework design, we believe that these classes

should help further investigate inherit limitations of the I2A framework.

Quantitative analysis. In previous chapters, we put forth the hypothesis that conventional

image classifiers may not excel in identifying abstract interpretations of image actions, and we

recommended integrating word embeddings to improve their performance. To test this claim,

we conducted a cross-baseline analysis by comparing the performance of the I2A model to

two baselines (label-cls and proto-vis) on two sets of classes: concrete and abstract. We will

elaborate on this categorisation further in Section 4.2.5.
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Table 4.3: I2A performance compared to the baselines on two subsets of imSitu classes: the
67 most concrete and the 67 least concrete. It also shows the performance margin difference
between the two sets. Section 4.2.5 discusses the identification of these classes in detail.

Least Concrete Most Concrete % Difference

I2A model 22.23 39.70 78.59
visual prototype prediction (vis-proto) 15.14 27.73 83.16
direct label classification (label-cls) 29.03 42.48 46.33

Based on the results presented in Table 4.3, our findings indicate that all three models

displayed notably inferior performance on abstract classes when compared to their performance

on concrete classes, which was in line with our expectations for the baselines. The I2A model,

however, is initially assumed to outperform the others on abstract classes, but this did not occur.

In fact, the performance gap between the two sets was more pronounced for the I2A model than

for the label-cls baseline.

Section 4.2 will further examine the I2A model’s performance on unobserved abstract and

concrete classes. Additionally, the next chapter will propose methods for addressing the I2A

model’s underperformance on abstract classes by enhancing and customising the lexical se-

mantic representation of actions.

4.1.5 Performance Variation

In this section, we examine the performance variation of the I2A model from different perspec-

tives. Firstly, we assess the performance variance across multiple samples of training images.

In particular, we conducted a 4-fold cross-validation experiment with individually stratified

folds to assess I2A’s robustness. The results, shown in Table 4.4, indicate that I2A has con-

sistent performance across all four folds, demonstrating robustness against instance variations

caused by sampling.

Next, we investigate the variation in I2A’s performance across individual classes, which

is observed to be substantial. For top1 accuracy, a quarter of the classes exhibit zero accu-

racy, resulting in a right-skewed distribution, as illustrated by the left histogram in Figure 4.4.

Only a small fraction of classes perform above 75%, while many perform below 25%. On

the other hand, top5 accuracy has a more symmetrical distribution, and the performance gap

across classes is less pronounced, with the number of classes scoring above 75% being similar

to the number of classes scoring below 25%. The right-skewed distribution of top1 accuracy

is concerning and calls for further investigation. Sections 4.1.6 and 4.1.7 delve into the causes

and seek to determine whether it is a fundamental limitation of I2A or a dataset-specific issue
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Table 4.4: Performance of the I2A framework based on 4-fold cross-validation. The first fold
(CV1) is the one used to build the model in Section 4.1.3.

CV1 CV2 CV3 CV4

Top1 32.48 32.74 32.67 32.92
Top5 51.45 51.54 51.12 51.68

Figure 4.4: Histograms illustrating the distribution of class accuracy, where the x-axis rep-
resents accuracy ranging from 0% to 100% and the y-axis indicates the number of classes
(frequency). Left: shows the distribution of top1 accuracy. Right: shows the distribution of
top5 accuracy.

related to imSitu.

Additionally, we analyse the distribution of class predictions during evaluation to deter-

mine whether the I2A model shows a bias towards predicting certain classes. We observe

that the model generates a skewed prediction distribution despite the test set having between

36 and 98 examples for each class. That is, a small number of classes receive a large por-

tion of the predictions (e.g., four out of the 463 classes account for 12% of test predictions),

while a large number of classes receive no predictions (38 classes, which constitute 8% of all

classes). Table 4.5 shows the ten most frequently predicted classes. Importantly, the over- or

under-prediction of certain classes is not attributed to high sensitivity to the number of training

examples. This is evident from the training set, which does not exhibit the same skewness ob-

served in the prediction distribution. Additionally, a weak correlation (r-value=−0.03) between

prediction frequency and training size further supports this finding. Nonetheless, the predic-

tion distribution remains a fundamental underlying cause of the performance variation between
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Table 4.5: The I2A model’s ten most predicted classes, including the number of predictions
made for each class, as well as the corresponding number of examples in the evaluation set.

Class Predictions Eval-Set Class Predictions Eval-Set

1. RUBBING 1308 68 6. SMILING 245 64
2. PUTTING 786 97 7. THROWING 241 93
3. TALKING 603 64 8. REPAIRING 239 87
4. FLINGING 397 83 9. JUMPING 222 58
5. GLUEING 286 71 10. ARRESTING 220 54

classes observed earlier, particularly given the evaluation metric we have adopted.

4.1.6 Understanding Model Failures

To gain insights into the performance of the I2A model, it is important to conduct a thorough

analysis of its failures. This section presents the results of a confusion analysis, an investigation

into the impact of polysemous classes, and a misprediction analysis, all aimed at identifying

areas where the model can be improved.

Confusion analysis. With a dataset as large as imSitu, displaying a confusion matrix of size

463× 463 can be overwhelming. Instead, in this section, we present a more focused approach

to identify the most confusing classes. Specifically, we focus on the top 12 classes that are

mistakenly predicted as true classes, along with the corresponding true classes, as presented in

Table 4.6.

To determine which classes are the most confusing, we use a criterion where a class (p) is

considered confusing if the model predicts it incorrectly as the true class (t) for more than 20%

of the images belonging to class t. For instance, if the evaluation set has 60 images for class t,

and 15 of them are incorrectly predicted as class p, then we consider class p to be a confusing

class. By using this approach, we can provide more targeted insights into the most common

classification errors made by the model.

The confusion table reveals that RUBBING is the most confusing for the model, with 26 other

classes mistakenly predicted as RUBBING. Many of these classes lack any apparent semantic

or visual correlation with RUBBING. Even when considering that some of these classes may

in fact share similarities or contextual relevance with RUBBING, it is unclear why the model is

fixated on predicting RUBBING instead of a more appropriate related class.

The second most confusing class for the model is TALKING, with 13 other classes mistak-

enly predicted as TALKING. Some of these classes, like SAYING, are near-synonyms, while
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Table 4.6: The top 12 most confusing classes (p), where the I2A model frequently confuses
class t with class p. The first row shows that the model mispredicts a significant proportion of
images from 26 classes as RUBBING.

Predicted class (p) True classes (t)

RUBBING (26)

GIGGLING, YAWNING, WINKING, WHISTLING, SNIFFING, POKING,
PUCKERING, LICKING, BITING, NIPPING, TILTING, IGNORING,
TICKLING, LATHERING, SCRATCHING, SMEARING, WIPING,
COVERING,PINCHING, SLAPPING, STROKING, YANKING,
PERSPIRING, PATTING, NUZZLING, CLINGING

TALKING (13)
SCOLDING, IGNORING, LECTURING, TRAINING, SAYING,
SPEAKING, ENCOURAGING, ASKING, COMMUNICATING,
DISCUSSING, DISCIPLINING, NAGGING, REASSURING

ARRESTING (6)
DETAINING, HANDCUFFING, FRISKING, RESTRAINING,
APPREHENDING, SUBDUING

SMILING (5) WRINKLING, CRYING, SQUINTING, WINKING, GRINNING

TILLING (5) HOEING, FARMING, MOWING, PLOWING, SOWING

CHEWING (4) GNAWING, EATING, PUCKERING, BITING

GIGGLING (2) POUTING, DROOLING

REPAIRING (2) INSTALLING, FIXING

THROWING (2) PITCHING, FLINGING

PEDALLING (2) RIDING, BIKING

PHONING (2) CALLING, TELEPHONING

RECOVERING (2) RECUPERATING, AILING



CHAPTER 4. INITIAL EXPERIMENTS WITH THE I2A FRAMEWORK 54

others convey variations in the action’s interpretation, such as DISCUSSING, NAGGING, and

ENCOURAGING. We argue that the model’s predictions for many instances of these cases are

correct, even though they contradict the ground truth labels. The same observation applies to

other classes in the table, such as ARRESTING, TILLING, REPAIRING.

Eight out of the 12 classes shown in the table are partially attributed to either near-synonymy

or different levels of related meaning. It is worth mentioning that imSitu contains many seman-

tically similar classes, posing difficulties for both the textual modality (lexical embeddings of

target labels) and the visual modality (image feature extractor), as synonymous classes tend to

have visually similar images as well as similar lexical embeddings. The remaining three classes

(SMILING, CHEWING, and GIGGLING) highlight a distinct challenge as they resemble distinct

facial expressions that the image feature extractor may struggle to capture useful features for.

Further discussion on these issues, particularly with respect to class RUBBING and the three

facial expression classes, is provided in the following paragraph.

Visual aspects of the most confusing class. Class RUBBING by itself manifests many chal-

lenges. Firstly, it is a motion-based action, which makes it difficult to detect from still images.

Secondly, it lacks any clear association with particular objects, which affects the image feature

extractor’s ability to extract visually discriminative features. Furthermore, the image feature

extractor used in the I2A model is a CNN solely trained on the ILSVRC dataset, consisting

of objects in canonical views. As a result, the feature extractor struggles to distinguish subtle

differences among contact-based actions (e.g., LATHERING, TICKLING, and SCRATCHING) or

facial expressions (e.g., GIGGLING and WINKING). The feature extractor’s inability to produce

distinctive features for these classes leads us to believe that it sees no difference between them,

and consequently merges a significant portion of them into the class RUBBING.

Performance of polysemous classes. Lexical ambiguity is a significant factor that may con-

tribute to the confusion observed earlier in this section. To identify potentially polysemous

classes in imSitu, we can count their number of senses in WordNet and select those with more

than the average number of senses for imSitu classes, which is 5.6. Among the top 12 confusing

classes from Table 4.6, only three meet this criterion: TALKING,THROWING, and RECOVER-

ING. We also explored the relationship between polysemy and class accuracy. On average,

polysemous classes (i.e., those with more than six senses) scored 26.93% for top1 accuracy,

compared to 34.31% for non-polysemous classes. This difference is more pronounced in ex-

treme cases, where classes with more than ten senses averaged a score of 23.94%, while classes

with less than three senses averaged 37.65%.
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Top1 misprediction analysis. In the rest of this section, we will present an instance-based

analysis of the model’s incorrect predictions. In the first analysis, we randomly sampled 200

images from the incorrect top1 predictions to determine if any of these mispredictions can

be considered as “plausibly correct”. We consider a prediction to be plausibly correct if it

(a) describes a related but different action in the image, such as an image showing a person

CRYING while be comforted could also be labelled as COMFORTING, or (b) suggests a different

meaning of the action, such as an image labelled as MOURNING being appropriately labelled

as CRYING. Most of the observed instances fall under the second category, which is highly

relevant to our thesis. We found that 27% of the incorrect top1 predictions could be considered

“plausibly correct” despite not being ground truth according to the dataset annotation. This

implies that if we were to apply a different evaluation approach, the I2A model’s top1 accuracy

could potentially increase to 50.7%. Figure 4.5 shows a sample of mispredictions where (a)

and (b) provide examples of the two categories.

Furthermore, we conducted an additional experiment by selecting 200 images with incorrect

top1 predictions, but correct top5 predictions based on the ground-truth labels. The goal of this

experiment was to identify better-quality predictions. Our analysis revealed that 36% of the

predictions in this sample had top1 predictions that were considered “plausibly correct”. While

this percentage represents an increase compared to the previous sample, where only 27% of the

predictions were plausibly correct, we had hoped for a more substantial increase to strengthen

our argument about generating multiple levels of meaning. Nonetheless, our analysis suggests

that the I2A model has the ability to generate high-quality predictions beyond just the top1

prediction, indicating its potential to capture various levels of meaning.

4.1.7 Discussion

The purpose of this section is to investigate the possible reasons behind the findings presented

in Sections 4.1.5 and 4.1.6. We will delve into four potential factors that could contribute to the

observed results. Two of these factors are related to the distributed representation of the target

labels, while the remaining two are associated with the visual feature extractor and the imSitu

images. Through a detailed analysis of these factors, we aim to gain a better understanding of

the underlying mechanisms that affect the outputs obtained in the previous sections.

The effect of lexical embeddings on accuracy. To explore the impact of lexical embeddings

on accuracy, we observe the position of three groups of classes: easy, hard, and regular. Easy

classes are those that the model predicts accurately with high performance, while hard classes
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GT: TALKING

Pred: ADMIRING

INTERVIEWING

FILMING

WIPING

WEEPING

SOWING

TILLING

(a) Examples of predictions that describe different but related actions to those described by the ground-
truth labels.

GT: CONSTRUCTING

Pred: HOISTING

SMILING

RECOVERING

WAVING

CHEERING

BUYING

TYPING

(b) Examples of predictions that provide different interpretations of the same actions.

GT: SITTING

Pred: PUNCHING

UNCORKING

MANICURING

CALMING

SCRUBBING
WASHING

REPAIRING

(c) Examples of incorrect predictions that suggest spurious relationships between verbs and objects.

Figure 4.5: A sample of mispredictions. We argue that the ones in (a) and (b) are acceptable
verbs. In (c), I2A seems to learn a false correlation between certain objects and classes.
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are those that the model fails to predict correctly. Regular classes fall between these two ex-

tremes. We define a class as hard if it scores <= 1% on top1 accuracy and <= 15% on top5,

and a class as easy if it scores >= 70% on top1 and >= 85% on top5.

Our analysis aims to determine if there are specific characteristics related to how hard

classes are positioned in the embedding space that could be the possible cause of poor per-

formance. To visually explore these relationships, we generate two visualisations of imSitu

classes using UMAP (McInnes et al., 2018), with classes coloured according to their category.

UMAP, or Uniform Manifold Approximation and Projection, is a technique for reducing the

dimensionality of complex high-dimensional data and making it more understandable through

visualisation. Compared to other methods such as t-SNE (van der Maaten and Hinton, 2008),

UMAP is preferred for its superior ability to preserve the global structure of embeddings. This

should enable us to more accurately capture and comprehend the underlying relationships be-

tween data points in high-dimensional space, providing valuable insights into the nature of the

embeddings.

Figure 4.6 depicts these visualisations, with the left plot optimised to show local relation-

ships and the right plot showing global relationships between classes. The interpretation of

the transformed space can be challenging, as the shape of the layout varies based on UMAP’s

hyperparameters. However, the figure aims to demonstrate how classes are placed relative to

their neighbours, with the perplexity parameter controlling this relationship. The left plot is set

to 4, highlighting the relationship with the four nearest neighbours, while the right plot is set to

50, considering the 50 nearest neighbours.

The figure suggests that the positioning of classes in the embedding space may play a role

in performance discrepancy between easy and hard classes. The global view in in the right plot

suggests that hard classes occupy a different region of the space than easy classes, while the

local view in the left plot shows that easy and hard classes can still be close neighbours. We

illustrate our observation with the following example, class a could be the closest neighbour of

class b, but the relationship is not mutual as class b has other 5 or 10 classes closer to it than a.

The goal of this analysis was to highlight the importance of considering the positioning of

classes within the embedding space when evaluating model performance and suggests that the

geometric properties of hard class embeddings may contribute to classification difficulties. The

next analysis provides a further assessment of the issue and from a different perspective.

Hubness in the embedding space. This analysis studies the effect of hubness on class accu-

racy. Hubness refers to the phenomenon where certain embeddings, known as hubs, frequently

appear in the top neighbour lists of many action-encoding vectors generated by the projection

component of I2A. These hubs are believed to be located near many other classes in the space
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Figure 4.6: UMAP visualisations of imSitu classes. Left: shows a local view with a perplexity
value of 4. Right: displays a global view with a perplexity value of 50. Noticeably, hard classes
(in red) and easy classes (in green) often form distinct clusters, although a few exceptions are
highlighted in yellow circles.

Table 4.7: Top most frequent classes appearing in the five nearest-neighbours (5-NN) of imSitu
classes. The second column of this table indicates the number of times a class appears in the
5-NN list of other classes, while the third column shows the average cosine similarity score
between the class and its neighbours from the second column.

Class 5-NN Appearance Frequency Average cosine similarity

RUBBING 35 0.49
FLINGING 25 0.47
PUTTING 24 0.44
PULLING 23 0.47
SQUEEZING 20 0.45

of evaluation classes without having any meaningful similarity with them (Radovanović et al.,

2010; Lazaridou et al., 2015). To assess the effect of hubness, we examine the relationship

between hubs and confusing classes. We identify a class as a potential hub if it appears among

the five nearest neighbours (5-NN) of a substantial number of other classes, and we use cosine

similarity to measure the degree of proximity. Table 4.7 shows the most frequently appearing

classes in 5-NNs, with RUBBING being the most frequent at 35 times, which is six times higher

than if the embeddings were equidistant. This observation highlights the role of hubness in

explaining why RUBBING is the most predicted class and the most confusing class, as shown in

Tables 4.5 and 4.6, respectively.

Impact of the visual feature extractor’s pretraining dataset. The impact of the dataset

used for pretraining the visual feature extractor on the I2A model performance was investi-

gated. Specifically, the feature extractor was solely trained on ILSVRC and no finetuning

conducted, as discussed earlier in Section 3.2.3. As a result, the model may have relied on
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simplistic associations between actions and objects commonly observed in the imSitu dataset,

such as tents being frequently associated with camping. To investigate this claim, an off-the-

shelf ILSVRC classifier provided by PyTorch (Paszke et al., 2019) was employed to perform

object classification on the entirety of the imSitu dataset. The classifier is trained to predict

the most probable object among the 1000 ILSVRC classes. Subsequently, information theory

techniques were employed to compare the classifier’s predictions to the ground-truth of imSitu.

Normalised entropy (Equation 4.4) was calculated for each class to measure the correlation

between the imSitu ground-truth labels and the ILSVRC classifier predictions.

Hc =

−
n∑

i=1

P (xi | c)× log2 P (xi | c)

log2 n
(4.4)

where:

p(xi): is the probability of predicting object xi for given the imSitu class c.

n: is the number of ILSVRC object classes.

c: is a given imSitu class.

Table 4.8 present classes with the lowest entropy values, indicating a strong correlation

with a small number of ILSVRC classes, sometimes as low as one. For example, a closer look

at the classifier’s predictions for BALLOONING revealed that the majority of class images are

classified as a balloon (an ILSVRC class). Specifically, 338 images (out of 352) were classified

as a balloon, nine as a parachute, and one each for the following: go-kart, maraca, slot, cliff,

coral reef, geyser. In contrast, SNIFFING exhibited the highest entropy, with its images being

classified (or rather guessed) as 212 different ILSVRC objects, with each object being predicted

only a few times.

Table 4.9 shows the top 10 performing classes according to F1 score achieved by the I2A

model for verb prediction. The results of this table, along with Table 4.8, suggest a strong

association between F1 scores and normalised entropy values, with classes that rely on specific

objects demonstrating stronger performance according to the F1 metric. Nevertheless, while

the observation holds for extreme cases, as shown in the tables, the correlation between entropy

and F1 across all classes is weak (r-value = −0.06 and p-value = 0.23).

Image and annotation quality. The imSitu dataset is available in two versions, as discussed

in Section 3.3. The first version contains the original high-quality images, while the second

version consists of resized images with smaller dimensions and file size (approximately 10%

of the original size). The I2A framework utilises the resized version of the imSitu dataset,

where images are resized to 256 × 256 pixels. This resizing allows for more efficient training
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Table 4.8: Lowest-entropy classes.

Class Entropy

1 BALLOONING 0.02
2 PITCHING 0.08
3 PARACHUTING 0.09
4 RAFTING 0.09
5 SKIING 0.09
6 LAUNCHING 0.14
7 MOPPING 0.14
8 CAMPING 0.15
9 BIKING 0.15
10 MOWING 0.15

Table 4.9: Top-performing classes according to F1.

Class F1

BALLOONING 94.97
STINGING 94.62
LAUNCHING 93.02
SHEARING 89.33
SURFING 88.61
RAFTING 88.11
CAMPING 83.20
PILOTING 79.21
DRUMMING 79.17
ROWING 78.26

and compatibility with existing CNNs. However, it has negatively affected the quality of some

images, as seen in the DISTRIBUTING image in the top row of Figure 4.7.

Despite our attempts to train the I2A model on the original high-quality dataset, we faced

technical difficulties with the image feature extractor of I2A. The CNN used in I2A is pretrained

on ImageNet images of size 224× 224, which limited its ability to process larger high-quality

images in the dataset.

Another issue that we have observed in the dataset is the presence of watermarks in critical

areas of some images, which can hinder the detection of certain elements. For instance, a

copyright watermark in the shape of a tennis ball placed between two tennis players during a

match, or a watermark on a person’s face, which makes it difficult to detect facial expressions

accurately. Another issue is the use of composite images, such as the BEGGING image in the

second row of the figure, which is a collage of multiple images. Additionally, some images

have undergone extensive editing, as seen in the RELEASING image.

A third issue we identified in the imSitu dataset is related to the selection of verbs used

as target labels. As illustrated in the third row of the figure, some of the target verbs appear

unnatural or indirectly related to the actions depicted in the image. For instance, describing

the action of drinking as filling, as shown in the FILLING image, is not intuitive, regardless of

how it is performed. This issue can result in a mismatch between the target label and the actual

action in the image, which can significantly affect the performance of models trained on this

dataset. Therefore, it is crucial to carefully choose target labels that accurately represent the

actions taking place in the images. This emphasises the need for a different annotation process

that prioritises the selection of appropriate target verbs to ensure they accurately describe the

actions in the images. Nevertheless, these image quality issues should not be concerning as

they account for approximately 6% of the first sample of mispredicted images.
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COMPLAINING DISTRIBUTING SCOOPING

(a) Images suffering from low resolution or unclear views caused by atypical camera angles

INSERTING RELEASING BEGGING

(b) Images that have been substantially altered or heavily edited

IMMERSING FILLING SOAKING

(c) Images that are labelled with less suitable verbs

Figure 4.7: A sample of mispredicted images that appear to suffer from quality issues. The
identified issues are presented in three categories, with samples of each category shown in a
separate row.
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Table 4.10: a set of troponomy-based queries performed on the default word embedding
model (GoogleNews model) to extract specific verbs. These queries were conducted using
the “most similar” function available in the Gensim library (Řehůřek and Sojka, 2010).

Query Output Similarity score

nibble to eat is to walk stroll 0.56
nibble to eat is to drink sip 0.56
snore to sleep is to talk prattle 0.50
nibble to eat is to talk chit chat 0.42
weep to cry is to laugh chuckle 0.56
lisp to talk is to walk awkward gait 0.45
nibble to eat is to yell shout 0.55

4.2 Zero-Shot Setting

In the previous section, we introduced a supervised learning approach that involved training

a model to learn to describe actions using a finite set of verbs. However, this approach has a

significant limitation as it restricts the ability to describe image actions to only the set of verbs

the model has encountered during training. As discussed in Chapters 1 and 3, this poses a

challenge as it is impractical to have training data for all possible interpretations of an image

action.

Chapter 3 advocates for zero-shot (ZS) learning as a valuable technique for predicting var-

ious action meanings beyond what the model was explicitly trained for. I2A has the capability

to explore a space that encompasses verbs not encountered during training, and it can in theory

conduct algebraic operations to perform a guided search for extracting specific interpretations

of the actions. Table 4.10 offers a glimpse of the queries that can be employed to extract verbs

that describe the “how” using troponomy relations.

This section presents various ZS experiments, in which classes are divided into training

classes (or seen classes) and test classes (or unseen classes). Four methods of class sampling

are used: random, random with replacement, cluster-based, and sampling based on semantic

properties of verbs.

4.2.1 Experimental Setup

The sampling method plays a crucial role to any machine learning task, particularly in the

ZS learning setting (Xian et al., 2019). In this section, we organise our experimental setup

based on the sampling method to emphasise its importance in the ZS setting. Section 4.2.2
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discusses random sampling, a standard technique for any learning task, including the ZS learn-

ing. Section 4.2.3 discusses random sampling with replacement to investigate the performance

on certain test classes when the the model is trained on slightly different training sets. Sec-

tion 4.2.4 presents a cluster-based method to establish performance boundaries. Section 4.2.5

introduces a method that uses semantic properties of verbs to identify the classes on which I2A

performs well and the characteristics of these classes.

For the hyperparameters, we use the same settings discussed earlier in Section 4.1.1. The

1cycle policy (Smith, 2018) is applied, with one cycle for 20 iterations or epochs. The model

has approximately 34 million parameters, of which only 11 million are trainable. All of the

trained parameters are in the projection component.

4.2.2 Random Sampling

Random sampling is a fundamental technique in machine learning used to randomly select

test samples. However, relying solely on random sampling may not always provide reliable

evaluations of a model’s performance. To enhance the reliability of the evaluation, it is recom-

mended (James et al., 2013) to use the k-fold cross-validation (CV) procedure. This involves

dividing the dataset into k equal-sized folds, where each fold contains randomly selected in-

stances from each class. For each of the k folds, a model is trained on instances of the remaining

k − 1 folds and tested on the current fold. This process is repeated for each of the k folds, so

that each instance in the dataset is used for testing exactly once. of the dataset. The final score

is calculated by averaging the scores of the k models.

In this section, we use CV to split classes (not instances) into k folds, where each fold con-

tains a unique set of classes. The choice of k is critical for obtaining reliable and statistically-

sound evaluation scores. A commonly used value for k is 5 or 10, which have been shown to

yield low error rate estimates (James et al., 2013). However, in the context of zero-shot learn-

ing, the choice of k poses additional challenges. Decreasing the number of folds increases the

size of test classes, which can create difficulties for the search component as it needs to operate

within a more expansive search space. For instance, in the extreme case of 2-fold CV, the search

space contains 232 classes, whereas, in 10-fold CV, the space contains only 46 classes. Con-

versely, increasing the number of folds can be computationally demanding since the number of

models grows with the number of folds.

To balance efficiency and complexity, we have chosen to set k to 7. This value is believed

to maintain a healthy balance between the number of models (which affects efficiency) and

the number of test classes (which affects complexity). Additionally, 7 sits between the two

commonly used k values for cross-validation.



CHAPTER 4. INITIAL EXPERIMENTS WITH THE I2A FRAMEWORK 64

Figure 4.8: On the right, the plot shows the average accuracy of the seven splits over epochs.
The graph indicates that the performance reaches a plateau early on, specifically at epoch 5.
On the left, the plot illustrates the variation in performance across the seven folds. It is notable
that most of the folds exhibit significant performance fluctuations over the epochs.

Results. The average performance for top1 and top5 accuracy over the seven folds is 17.92%

and 41.39%, respectively. It is worth noting that the vis-proto and label-cls baselines presented

in Section 4.1.2 cannot be directly compared to our results as they require supervised learn-

ing. However, we can compare the results to the random prediction baseline using the same

equations from that section, keeping in mind that the size of target classes CT decreases for

the zero-shot experiment from 463 to 67 or 66. The top1 and top5 accuracy for the random

prediction baseline are 1.5% and 7.7% respectively.

In Figure 4.8, the left plot demonstrates significant performance fluctuation across folds.

The standard deviation for top1 and top5 is 2.10 and 3.10, respectively. The right plot indicates

that the average performance plateaus at epoch 5, which is earlier than what we observed in

the supervised setting discussed in Section 4.1.1. The variance can be attributed to either the

quality of the model, such as having an inadequate or appropriate set of classes for training, or

the difficulty of the test classes in particular folds. Nevertheless, the experiment has prompted

us to devise better sampling strategies, as we discuss in the following sections.

We also conducted a comparative analysis of our model’s performance with the work of

Zellers and Choi (2017), as presented in Chapter 2.4. To achieve this, we adopted their split of

the dataset, with the test set consisting of 96 classes and all imSitu classes included without any

filtering. Our model achieved a top1 accuracy of 16.85% and a top5 accuracy of 37.45% under

this more challenging setup, considering the larger test set. Despite this, these results were

still similar to the most comparable baseline in their paper, referred to as “DeVISE”, which

obtained a top1 accuracy of 16.50% and a top5 accuracy of 37.56%. This baseline employed

a ResNet152 for image feature extraction that was fine-tuned on the imSitu training classes,

along with GloVe embeddings trained on 840B tokens for target representation. By contrast,
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our model used comparatively less powerful components including an untuned ResNet50 and

GoogleNews embeddings trained only on 100B tokens. In Section 5.4.1, we provide a compar-

ison between our best performing model from Chapter 5 and the best performing model from

their work.

4.2.3 Random Sampling with Replacement

In the previous section, we identified two potential causes for the variation in accuracy: the

quality of the models across the seven folds and the varying difficulty levels of the test classes.

In this section, we will focus on the first potential cause and investigate the performance of

different models on specific test classes. To do so, we vary the models based on the training

classes and observe their performance on these specific classes.

In contrast to the previous section, where we employed cross-validation to train and test

our models, this section utilises a different methodology. Rather than dividing the dataset into

seven folds, we conduct seven independent samplings of test classes. To illustrate, in the first

sampling (iteration), we randomly select 67 out of the 463 imSitu classes as the test set and use

the remaining classes to train the model. We repeat this process for the remaining iterations,

allowing for the possibility of classes appearing in varying numbers of test sets.

Results. This section seeks to evaluate the consistency of I2A by constructing several models,

each trained on a distinct set of classes and observing their performance on selected test classes.

Table 4.11 provides examples of classes that exhibit extreme performance inconsistency (left)

and those that demonstrate consistent performance (right). The standard deviation (SD) is used

to measure the variability of individual class performance over several folds, and the calculation

only includes classes that appear in multiple test sets, which is in this case amounts to 115

classes. The average SD of these classes is 4.67, calculated based on the absolute difference

between their percentages.

The overall performance of this method is not reported, as it would be less reliable and based

only on 310 classes, which are unevenly represented across iterations (i.e., some appear in two

iterations, others in three, and a few in four). These results demonstrate the need for a deliberate

selection of well-sampled and comprehensive training classes to achieve optimal performance

in the zero-shot setting. Subsequent sections introduce systematic and semantically-driven

techniques for partitioning classes into seen (training) and unseen (test) categories.
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Table 4.11: A sample of classes divided into two groups based on performance consistency.
Right: classes with the most consistent performance, either good or bad. Left: classes with
the most inconsistent performance.

Inconsistent performance Consistent performance

Class
Top1 Accuracy
[split1, split2, etc] Class

Top1 Accuracy
[split1, split2, etc]

BARBECUING [0.79, 70.36, 67.59] FILLING [6.28, 6.28]
SOWING [0.0, 71.05, 59.47] LEANING [1.81, 1.81]
WEEPING [51.83, 23.39, 4.13] FEEDING [8.84, 8.84]
PEELING [17.78, 10.67, 54.22] TAPING [0.44, 0.44]
GARDENING [53.81, 17.26] DIPPING [0.00, 0.00, 0.27]
BOATING [27.56, 13.78, 37.78, 52.00, 0.00] JUMPING [71.06, 70.64]
PATTING [4.81, 40.06] PERSPIRING [2.79, 3.26]
POUTING [25.26, 60.31] IMMERSING [0.00, 0.51, 0.00]
ASCENDING [18.97, 52.82] GRINDING [5.90, 6.60]
SMILING [55.86, 23.44] DETAINING [62.77, 63.64]

4.2.4 Cluster-Based Sampling

In the preceding section, we observed significant performance variation of I2A across different

folds, and identified the generalisability of training classes as a contributing factor. In this

section, we investigate the performance bounds of I2A and identify scenarios where upper and

lower performance bounds can be achieved. Specifically, our analysis is based on the degree of

generalisability of training classes. Training the model on a well-sampled and comprehensive

set of classes is generally expected to lead to significantly higher performance. In contrast,

inadequately sampled classes can present a challenging scenario for the model and result in

substantially lower performance.

More concretely, this section utilises a cluster-based sampling technique that involves group-

ing classes that share similar features in the lexical semantic space and then randomly sampling

test classes from each group. By using cluster-based sampling, we can select a well-structured

and comprehensive set of training classes that accurately represents the entire domain. This

approach aims to improve I2A’s generalisability by ensuring that the model has learned from a

diverse range of classes.

We employed spectral clustering (Ng et al., 2001) to group the classes into clusters. This

choice was motivated by the solid performance of spectral clustering in extracting synonyms

compared to other techniques, including k-means (Zhang et al., 2017). To ensure that the

resulting clusters were coherent and balanced, we tested out several clustering techniques, and

the spectral method produced the most satisfactory results. Specifically, the clusters generated
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Table 4.12: Average performance of 10 models for each of the two clustered-based sampling
techniques: sample-one and sample-whole.

Method of sampling test classes Top1 Top5

sample-one: a class is sampled from each cluster 20.36 (±2.79) 44.78 (±2.58)
sample-whole: entire clusters are sampled 10.94 (±1.84) 32.64 (±3.01)

random sampling (Section 4.2.2) 17.92 41.39

by spectral clustering were well-populated, and the variance in cluster membership was smaller

than in other techniques.

In our experiment, we grouped the classes into 67 clusters using spectral clustering. The

number of clusters is meant to match the number of test classes used in previous sampling

methods, which was determined by the choice of seven folds in the first type of sampling of

this section. With the resulting clusters, we employed two different methods for sampling test

classes: sample-one and sample-whole. The remaining classes were selected for training.

The sample-one method involves selecting one class from each cluster to be included in

the test set. This method is intended to enhance the diversity of the training data, which in

turn maximises the model’s performance in the zero-shot setting. By using this method, the

model can generalise better to unseen classes and achieve performance close to the upper limit

of its capabilities. In contrast, the sample-whole method involves randomly selecting entire

clusters of classes to be included in the test set. This method aims to evaluate I2A’s ability to

generalise to verbs from domains that are entirely distinct and unrelated to those encountered

during training. It is regarded as a worst-case scenario and is designed to test the model’s

capacity to handle out-of-domain verbs. For example, this method may test the model’s ability

to predict cooking-related verbs none of which were included in the training set.

The results of our experiment, shown in Table 4.12, demonstrate that both models per-

formed as expected. Sample-one outperformed random sampling significantly, while sample-

whole performed significantly worse. We based our results on ten runs, each with its unique

sample. These findings emphasise the importance of thoughtful sampling and the significance

of acquiring a diverse range of training classes.

4.2.5 Sampling Based on Semantic Properties of Verbs

In the previous section, we proposed splitting classes into training and test sets based on clus-

tering the lexical semantic embeddings of imSitu classes, where the goal is to train a general-

isable model on a representative set of verbs. In this section, we suggest an alternative method
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of sampling that is based on the semantic properties of imSitu classes.

Throughout this thesis, we have argued that supervised learning cannot acquire all action

meanings, as the visual modality can only learn a limited subset of actions through supervision.

One way to approach this problem is to train a model on a representative set of classes, which

we refer to as the core or basic classes. We hypothesise that a semantically core or basic set of

verbs exists, which, if learned, would improve generalisation to unseen classes more effectively

than randomly chosen verbs. However, to serve as a basis for predicting unseen classes, these

core verbs must satisfy two conditions: (1) they must be core/basic/fundamental in some sense,

and (2) they must be learnable and learned with enough accuracy to be deployed in the zero-shot

setting.

Once the core verbs are identified and learned with sufficient accuracy, the model is tested

on a secondary set of classes, which must also be composed carefully. This setup has the

potential to yield the most significant benefit from I2A since the model is better equipped to

generalise to new and unseen verbs. However, categorising each class as core or secondary

requires a clear and robust definition of these categories, which may entail extensive research

beyond the scope of our work.

In this section, we simplify the definition by considering certain properties from linguistic

and psycholinguistic resources as estimators or proxies of the two categories. The section ex-

plores several methods based on established resources, where the core and secondary verbs are

identified based on a single metric (i.e., a semantic property). These methods are not restricted

to imSitu classes and can be applied to a broad spectrum of English verbs that are covered by

these resources.

Lexical resources. Two resources are utilised for categorising classes into core and sec-

ondary: the MRC Psycholinguistic Databases (MRC) (Coltheart, 1981), and WordNet (Miller

et al., 1990). MRC provides 21 linguistic and psycholinguistic attributes for 150k words, in-

cluding 30k verbs. However, the coverage of some attributes is limited, e.g., meaningfulness

covers only 1, 504 words. The most relevant attributes for our task are concreteness, image-

ability, and familiarity. We choose to focus on just one attribute – concreteness – since these

three attributes are highly correlated with each other (Wilson, 1988), and working on all three

may be redundant. The second lexical resource is WordNet (Miller et al., 1990), which also

has a broad coverage of verbs (approximately 11K). WordNet is a lexical database that captures

semantic relations between words, such as synonyms and hypernyms. In this section, Wordnet

is utilised to rate the specificity and ambiguity of verbs.

We also considered other resources such as ACT-FASTaxonomy (Thornton and Tamir,

2022), which proposes six psychological dimensions for describing actions. However, we
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Table 4.13: The 67 most concrete imSitu classes and the 67 least concrete classes according
the the concreteness attribute in the MRC dataset.

Most Concrete Least Concrete

chisel, coach, train, bite, sneeze, whip, cart,
rock, pin, tie, tear, pump, shiver, paint, lec-
ture, vault, weed, duck, prune, whistle, frown,
tape, smile, pedal, shell, crown, write, board,
sting, kiss, plant, farm, embrace, telephone, pa-
rade, pot, rake, wax, seal, water, milk, harvest,
record, ski, fish, arch, bandage, drink, dock,
swim, phone, button, chop, camp, eat, wheel,
shop, nail, buckle, spray, fall, photograph, skate,
plunge, drum, brush

sell, smear, mash, crush, build, lean, break,
whirl, nag, help, interview, pray, read, leap,
destroy, measure, call, sprint, pour, ignore,
put, haul, count, discipline, type, trim, clean,
rest, work, pat, turn, hang, imitate, attack,
fill, empty, speak, protest, aim, smash, gasp,
open, wait, bother, pull, bet, buy, vote, beg,
carry, crawl, assemble, teach, hunt, weigh,
repair, calm, throw, fall, stare, bury, give,
plunge, drop, make, admire, ail, till

found these dimensions difficult to use for our purpose and the scores of these dimensions are

somewhat unintuitive. Furthermore, our preliminary experiments with these dimensions failed

to yield clear conclusions either supporting or negating our thesis statement. Consequently, we

made the decision to exclude this resource from our experiments in this section.

In the rest of this section, we report on three experiments based on three properties of

verbs (obtained from WordNet or MRC): concreteness, specificity, and ambiguity. The key

point of these experiments to build two models where their test sets exhibit contrasting features

determined by the selected attribute (e.g., one model tested on the most concrete and the second

model is tested on the least concrete).

Concreteness. In this experiment, we use the concept of concreteness as it pertains to image-

based tasks, which has been defined in multiple ways in literature. Two main interpretations of

concreteness exist: one that relates to the ability to be experienced by the senses, and another

that relates to specificity (as opposed to generality) (Spreen and Schulz, 1966).

In this experiment, we employ the concreteness attribute from MRC, which defines con-

creteness based on the first interpretation. Therefore, verbs denoting to actions that can be

perceived through our senses (such as sight, sound, touch, taste, or smell) are rated as highly

concrete, while verbs referring to actions that cannot be directly experienced are rated as less

concrete. The concreteness rating scale ranges from 100 to 700. However, it should be noted

that only 221 classes of imSitu have a value for this attribute in the MRC. In this experiment,

classes are sorted based on the concreteness rating, and the 67 most concrete classes are selected

to form the test set for the first model (referred to as most-concrete). For the second model, the

67 least concrete are chosen to be the test set (referred to as least-concrete). Table 4.13 shows
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the classes of the two samples.

Specificity. In the second experiment, we adopt the second interpretation of concreteness,

namely, specificity. To operationalise this concept, we utilise WordNet (Miller et al., 1990) to

determine the path length from each verb to its root, which serves as a measure of its specificity.

WordNet organises concepts in a hierarchical structure, resembling a tree. Verbs located at the

lower levels of the hierarchy and distant from the root are typically more specific in meaning,

while verbs located closer to the root are more generic.

In this experiment, the classes are sorted according to their path length values, and the 67

imSitu classes with the longest path lengths are selected to form the test set for the first model

(referred to as most-specific). Conversely, for the second model, the 67 classes with the shortest

path lengths are chosen to be the test set (referred to as least-specific).

Ambiguity. The third experiment uses ambiguity, which is also related to specificity in the

sense that more specific verbs are less ambiguous. To quantify ambiguity, we use WordNet,

which provides multiple senses for words to capture fine-grained distinctions between mean-

ings. However, this level of detail may not be necessary for a visual-centric task.

In this experiment, initially sort classes by their sense count in WordNet. Then, we identify

the 67 classes with the highest sense count and designate them as the test set for the first model,

(the most-ambiguous). Conversely, we choose the 67 classes with the lowest number of senses

as the test set for the second model (the least-ambiguous).

Results. Our experimental results, presented in Table 4.14, demonstrate intriguing patterns

in the relationship between concreteness and model performance across both supervised and

zero-shot (ZS) settings. Specifically, we observed that the most concrete classes achieved sig-

nificantly higher performance than the least concrete classes in the supervised setting. However,

the opposite was true in the ZS setting, where the least concrete classes outperformed the most

concrete classes.

These findings suggest that the role of concreteness in model performance is contingent on

the level of supervision provided. Our results also underscore the importance of considering

the semantic information when predicting abstract concepts in zero-shot settings. The results

indicate that abstract verbs receive less benefit from the supervised learning, and benefit greatly

from the textual information when they cannot be observed during training (i.e., zero-shot).

Our results on specificity and ambiguity reveal a consistent pattern in their relationship to

performance across both supervised and zero-shot (ZS) settings. We found that specific classes

consistently outperformed generic ones, irrespective of the learning setting. Additionally, the
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Table 4.14: I2A performance based on three sampling techniques

Method of sampling Supervised Zero-shot
Top1 Top5 Top1 Top5

most-concrete 39.70 57.69 15.19 37.11
least-concrete 22.32 42.98 18.64 39.23

most-specific 36.38 55.46 20.39 43.26
least-specific 29.83 48.73 16.24 39.92

most-ambiguous 24.22 44.44 14.36 33.37
least-ambiguous 39.60 57.44 20.63 45.23

least ambiguous classes consistently outperformed the most ambiguous ones. This finding

aligns with the view proposed by Spreen and Schulz (1966) that specificity is more closely

related to ambiguity than to concreteness.

4.3 Summary

In this chapter, we conducted preliminary experiments using I2A’s default components, con-

sisting of a CNN pretrained on ILSVRC as the image feature extractor, and target labels repre-

sented as embeddings from the GoogleNews embedding model. These experiments represent

an important first step in assessing the potential of the I2A model using off-the-shelf compo-

nents.

Section 4.1 reported on the supervised performance of I2A, and provided a set of analyses

of the model’s performance, including an in-depth examination of the classes that performed

well or poorly, and an exploration of the factors contributing to these outcomes. It also pro-

vided a closer look at the imSitu dataset. Although the I2A model does not achieve the same

performance as the direct label classification baseline, it still shows promise given the potential

advantages of incorporating textual information to predict unseen verbs.

Section 4.2 covered a series of zero-shot experiments that vary in the sampling technique

used to split classes into training and test sets. The objective of these experiments is to explore

the most effective approach for sampling classes and to gain a better understanding of the

performance limits of the I2A model. These experiments highlight the importance of careful

sampling strategies in zero-shot learning scenarios and provide valuable insights into the factors

that influence the model’s performance.

In future work, we plan to extend the scope of our experiments by training the I2A model

on the entire set of imSitu verbs and testing it on verbs outside the imSitu vocabulary. This
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task requires the development of a suitable method for sampling a set of English verbs and the

implementation of an appropriate human evaluation technique. Nevertheless, the successful

completion of this task would represent a major step forward in our understanding of the I2A

model’s capabilities and limitations.



Chapter 5

Varying the Representation of Target
Labels

The previous chapter used semantic information in two ways: to represent the target labels

and to select test classes. That chapter demonstrated potential promise in certain experiments,

such as the sampling based on semantic properties (section 4.2.5). However, the usage of

a distributed semantic representation (i.e., GoogleNews embeddings) for target labels yielded

modest results, which could be attributed to the design of I2A or certain properties of the word

embeddings used in Chapter 4. In this chapter, we investigate the latter and experiment with

different ideas of creating distributed semantic representations for target classes (i.e., verbs).

We believe that there are ample opportunities to improve the representation of verbs and, in

turn, enhance overall performance.

The experimental setup follows the one outlined in Chapter 4, with the only change being

the type of semantic embeddings. Google-news (the verb prediction (VP) model from Chap-

ter 4) is used as a reference point or an additional baseline for experiments reported here.

Section 5.1 justifies the use of custom-made embeddings, explains the process of creat-

ing them, and examine I2A performance when using them. Section 5.2 proposes an efficient

method of extracting verb-specific representations from existing resources (i.e., GoogleNews

embeddings). Section 5.3 uses “zero semantic” embeddings to evaluate the effect of seman-

tic information on the two learning settings. Section 5.4 introduces methods of processing

existing semantic embeddings to make them more suitable for the verb prediction (VP) task.

Section 5.4.1 highlights issues of the embedding space layout and suggests the use of a well-

established technique for processing embeddings. Section 5.4.2 uses a method for enriching

embeddings with lexical resources. Section 5.5 evaluates the effect of certain aspects of em-

beddings: the size of embeddings (Section 5.5.1), the size of training corpus (Section 5.5.2),

73
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and the genre of training corpus (Section 5.5.3).

5.1 Bespoke Embeddings

This section aims to improve the semantic representation of target labels by training verb-

specific embeddings from scratch, which should be less ambiguous as they only contain verbal

senses of the word. This stands in contrast to conventional embedding models which define

vocabulary at the word level, resulting in conflation of different semantic concepts and com-

promised representation, known as the triangular inequality (Neelakantan et al., 2014). For

example, the embedding of plant contains information about refineries and pollen, a subopti-

mal representation for either sense.

The ideal solution would be to work at the sense level when defining vocabulary. However,

imSitu does not consider sense disambiguation, resulting in many polysemous classes. We

considered enhancing the dataset with sense-level annotation and expanding the taxonomy but

found it to be cost-prohibitive and leading to a substantial expansion of the dataset vocabulary

(each class on average has six senses, based on calculations made using WordNet). Addi-

tionally, many of these senses have an imbalanced number of images, which is problematic,

particularly for those already lacking sufficient images.

In order to solve this problem, we chose to focus on the part-of-speech level as it has

been found to be an effective way for semantic disambiguation (Wilks and Stevenson, 1998).

This solution requires no extra annotation to the image dataset and only requires specialised

semantic embeddings. However, it should be noted that this approach does not address the

inherent drawbacks of imSitu, which can be observed even with less-polysemous classes, such

as PAINTING, where two distinctive visual senses are observed: (1) covering the surface with

paint, and (2) composing a picture with paint.

5.1.1 Method

The objective of this experiment is to create distinct representations for verb instances, distinct

from non-verb instances, so play as as a verb would have a different embedding than play as a

noun. The hypothesis is that specialised representations for verbs will lead to better accuracy

on the downstream task of verb prediction.

Two bespoke (or custom) embedding models are developed: one that specifically handles

verbal instances (bespoke-tagged), and another that follows traditional methods as a control

model (bespoke-nontagged). Both embedding models are built from scratch using the Continu-

ous Bag of Words (CBOW) algorithm (Mikolov et al., 2013) and trained on the combination of
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an English Wikipedia archive3 and Gigaword5 (Parker et al., 2011), a dataset of news articles

written in English from specific news agencies.

The training process follows the one that used for training the GoogleNews embeddings

with two exceptions: (1) it uses a smaller set of training text, and (2) it applies an additional

step prior to training the bespoke-tagged model. The rest of this section provides more details

on the training process of the two embedding models.

Bespoke-nontagged. The objective is to create a VP model based on the bespoke-nontagged

embeddings that act as the control for the experiment, rather than using google-news for com-

parison against the VP model of bespoke-tagged. Both of the bespoke embedding models

follow the same training procedure and are trained on almost identical corpora, with the train-

ing corpus for the bespoke-tagged being a slightly modified version of the corpus used for the

bespoke-nontagged. The slight modification is due to the tagging process.

Bespoke-tagged. The Bespoke-tagged embedding model creates separate representations for

verbs by treating verbal instances in the corpus as distinct from non-verbal instances. This

approach is based on the work of Trask et al. (2015), which defines word types at the sense

and entity level. To distinguish verbal instances, a pre-processing step is applied to the training

text.

The pre-processing step works as follow: The text is tokenised into sentences using Gen-

sim (Řehůřek and Sojka, 2010), and then run through the spaCy part-of-speech tagger (Honni-

bal and Montani, 2017) to detect verbal instances. If a a token is tagged as a verb, its surface

form is converted into the base form, using the spaCy lemmatiser, and appended with a unique

substring |VERB. For example, eating would be converted into eat|VERB. The purpose

of lemmatisation is to increase training instances and improve the semantic representation (i.e.,

including all verb tenses yields more training examples than the base form alone). Figure 5.1

shows a sample text after applying this step, ready for training.

However, there is a possibility that this pre-processing step may negatively impact the qual-

ity of the embeddings, particularly due to issues with tagging and lemmatisation. The large

spaCy language model (en core web lg), which is used for POS-tagging, is reported to achieve

97.2% accuracy. Upon manual inspection of random excerpts, the tagging quality seems to be

in line with the reported accuracy. However, issues prompted during lemmatisation are more

problematic for embeddings’ quality. These issues are caused mainly due to using two differ-

ent lemmatisers. The first lemmatiser is of the spaCy language model and is applied during

3A snapshot archive is downloaded in 2019 using the following link: http://dumps.wikimedia.org/
enwiki/latest/enwiki-latest-pages-articles.xml.bz2

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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Figure 5.1: A sample of the training text for the bespoke-tagged embeddings after applying the
pre-processing step.

the tagging process. The second is a manually curated hash table that assigns imSitu classes

(in the gerund form) to vectors (in “lemma|VERB” form), and it is applied before training

the VP model. spaCy is also part of the second lemmatiser, but in conjunction with a manual

verification and editing process. spaCy could not be used solely in the second case since it

expects complete sentences to work accurately. Applying two different methods has created

some discrepancies, but only affecting four classes:

• MOULDING: spaCy converts it to mold, whereas the manual method converts it to mould.

Both mold|VERB and mould|VERB exist in the vocabulary of our trained model, and

the similarity between them is high ≈ 86% (in fact, the two vectors are the most similar to

each other). The performance of this class is poor on the zero-shot setting, and we believe

that averaging the two vectors could improve the performance given the low frequency

of the two, especially mould|VERB, which has around 2k instances.

• SINGING and SWINGING: singing is lemmatised to either singe or sing. Both exist in the

embedding model, and the similarity between them is high ≈ 88% (both are the most

similar to each other). The class performance is good, possibly due to the high frequency

of sing|VERB (≈ 200k). The same pattern is observed with SWINGING.

• CHEERLEADING: a deliberate decision is made to replace cheerlead|VERB with

cheer|VERB. The training set has only 200 instances of cheerlead|VERB and upon

inspection of the embedding via the similarity test, it has a poor representation of the ac-

tual action or activity.
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Table 5.1: The performance of I2A when using bespoke embeddings and how it compares to
the google-news from Chapter 4.

Model Supervised Zero-shot
Top1 Top5 Top1 Top5

bespoke-tagged 30.43 47.43 15.96 36.52
bespoke-nontagged 30.98 47.76 15.35 37.05
google-news (Ch. 4) 32.48 51.45 17.92 41.39

These issues can be resolved by standardising the lemmatisation process (e.g., using the NLTK

library (Bird et al., 2009) whenever lemmatisation is needed), but since it only affects one class

in the VP task, it was decided not to repeat the whole training process.

5.1.2 Results

The results of the experiment (Table 5.1) indicate that there is no significant difference in per-

formance between the bespoke-tagged and bespoke-nontagged models, indicating that creating

a separate representation for verbs does not yield better accuracy on the VP task. Further-

more, both bespoke models perform worse compared to the google-news model, suggesting

that google-news has better semantic representations despite not having unique representations

for verbs. The results also suggest that using only the gerund form is an effective technique

for verb representation. The underperformance of the bespoke models may be due to a lack of

semantic representation, potentially caused by the smaller training corpus used.

5.1.3 Discussion

Frequency count in the training corpus. This section analyses the differences in frequency

counts among the three embedding models, with a focus on bespoke models that are trained on

a smaller and less diverse set of text, primarily comprising of wiki and news articles. The lim-

ited size and diversity of the training corpus can result in insufficient counts of certain classes,

leading to poor semantic representation of these classes. The data in Table 5.2 illustrates that

the bespoke models have a disproportionate frequency distribution, where only a small number

of classes have high counts and the majority have low counts. For instance, the class SAYING

in the bespoke-tagged has the highest frequency among imSitu classes, with 40.7 million in-

stances, while MANICURING has the lowest frequency with just 235 instances, showcasing the

substantial variation among classes in the bespoke-tagged embeddings.
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Table 5.2: Figures show the mean, median and standard deviation of token occurrence per
class in the different training corpora.

Embeddings type Mean Median SD

bespoke-tagged 332k 30k 2,007k
bespoke-nontagged 69k 11k 181k
google-news 2,958k 2,977k 64k

Correlation between class accuracy and frequency counts. A correlation analysis was con-

ducted to examine the relationship between class accuracy and frequency counts. It was sus-

pected that embeddings trained on a small number of instances would result in “semantically

deficient” representations and poor performance in those classes. Kendall’s tau was used to

measure the correlation between frequency in the training corpus and class accuracy for the

three models, using both top1 and top5 metrics, and for both supervised and zero-shot learn-

ing settings. The analysis showed a weak correlation between accuracy and counts in all 12

comparisons, with the only noticeable pattern being that the supervised setting had a slightly

stronger negative correlation than the zero-shot. This means that classes with more counts in

the corpus performed slightly worse in the supervised VP task. The reason for this is that hav-

ing more training instances may force embeddings to be positioned in a challenging region of

the embedding space. Section 5.4.1 discusses the geometry issue and proposes the use of a

processing technique to mitigate this issue.

Overall, none of the three models displayed a strong correlation between class accuracy

and its frequency in the training text. Some high-performing classes rarely occur in the training

corpus (e.g., MANICURING occurs in 235 instances only). Also, some classes perform poorly

despite having an abundance of examples in the training corpus (e.g., MAKING has 10 million

instances but still scores 0% for top1 and top5).

5.1.4 Summary

Training embeddings on tagged text is highly inefficient since it necessitates training from

scratch on a POS-tagged corpus. Tagging large amounts of text is a time-consuming and error-

prone process. The method is contrary to the notion of utilising readily available resources

for the visual and textual modalities. Nevertheless, the method is introduced to determine the

potential of specialised embeddings. The following section presents a more efficient method

for obtaining verb-specific embeddings.
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5.2 Extracting Embeddings Using All Verb Forms

This section presents another approach to obtaining specialised embeddings for verbs. Instead

of training embeddings from scratch on verbal instances as in Section 5.1, representations are

directly extracted from pre-existing GoogleNews embeddings used in Chapter 4. This method

considers all forms of verbs, instead of just using one form (the gerund) as in the previous

chapter. For example, in order to represent the class TILTING, embeddings of all forms of the

verb tilt (such as tilting, tilts, tilted, and tilt) are considered. This approach is more efficient and

easier to implement, as it utilises existing resources and does not require additional training.

More importantly, it is expected to produce embeddings with better representation, as it utilises

powerful resources that are difficult to create from scratch; better representation ultimately

should improve the performance of downstream tasks.

5.2.1 Method

imSitu classes are converted to their lemma forms using the NLTK lemmatiser (Bird et al.,

2009). Each lemma is then used to retrieve all possible forms of the verb using pyInflect4. For

example, class TILTING is converted to the lemma tilt, which is then used to retrieve the follow-

ing set of forms: {tilting, tilts, tilted, tilt}. The embeddings for each form of the verb are then

aggregated into a unified representation using the average pooling operation. This operation

takes the mean of each dimension of the embeddings to create a single vector (Wieting et al.,

2016; Adi et al., 2017). These embeddings are referred to as avg-verbs.

5.2.2 Results

The results of using avg-verbs show that it outperforms both the google-news and bespoke-

based models, with a significant improvement in the zero-shot setting (as shown in Table 5.3).

This indicates that utilising existing resources is more effective than building bespoke embed-

ding models.

5.2.3 Discussion

This section demonstrated that using all forms of a verb, as opposed to just the gerund form,

in pre-existing embeddings (GoogleNews) improves the performance of the downstream task.

The size and variety of the training corpus for GoogleNews embeddings is a contributing factor

4https://spacy.io/universe/project/pyInflect

https://spacy.io/universe/project/pyInflect
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Table 5.3: The performance of our proposed model when using aggregates of all verb forms
(avg-verbs) and how it compares to the google-news from Chapter 4.

Embeddings type Supervised Zero-shot
Top1 Top5 Top1 Top5

avg-verbs 32.90 52.24 20.21 44.75

bespoke-tagged 30.43 47.43 15.96 36.52
bespoke-nontagged 30.98 47.76 15.35 37.05
google-news (Ch. 4) 32.48 51.45 17.92 41.39

to the success of avg-verbs. We conclude that better semantic embeddings do, indeed, improve

the performance of the VP model.

In future research, different weighting techniques can be applied instead of giving equal

weight to all forms of the lexeme. One approach is to give higher weightings to certain forms

based on the likelihood of them being verbs (e.g., play should have less weight than played).

Another is to assign higher weights based on frequency in a specific corpus, preferably one

that focuses on visual descriptions. Additionally, experimenting with cluster-based techniques

or different pooling operations such as max-pooling could be studied, but it is doubted that it

would make a significant difference in the downstream task.

5.3 Pseudo-Random Embeddings

In previous sections, we have explored the potential of using verb-specific target representation

to improve I2A’s performance. However, the results were inconclusive regarding the value

of using a distributed lexical semantic embeddings to represent the target classes, especially

under the supervised setting. Our findings in Section 5.1.2 indicate a weak negative correlation

between class accuracy in the supervised setting and class frequency in the training text. In

other words, performance using target embeddings of verbs with more instances in the training

data is slightly worse that for verbs with fewer instances. We believe that the poor performance

of models in Section 5.1.2 is not only due to inadequate semantic representation of verbs by

the pretrained embeddings but also due to the positioning of embeddings within the embedding

space. Later in this section and in Section 5.4.1, it will become evident that verb embeddings

tend to cluster very much in the same space, which makes them hard to separate.

This section proposes the use of embeddings that do not contain any semantic information,

i.e. which have not been pretrained on large textual resources, and investigates whether se-

mantics is beneficial for the supervised setting. Additionally, this section will also validate the
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Table 5.4: The table compares the performance of I2A using pseudo-random embeddings to
other models and baselines discussed earlier in this thesis.

Embeddings type Supervised Zero-shot
Top1 Top5 Top1 Top5

pseudo-random 36.54 56.58 1.65 7.51
avg-verbs (Sec. 5.2) 32.90 52.24 20.21 44.75

google-news (Ch. 4) 32.48 51.45 17.92 41.39
label-cls (Sec. 4.1.2) 37.04 63.18 NA NA

significance of semantics in the zero-shot setting.

5.3.1 Method

Zero-semantics embeddings are created using randomly generated numbers, similar to the ap-

proach used by Madhyastha et al. (2018), but with a greater emphasis on the distribution of ran-

dom numbers. A set of 300-dimensional vectors is generated from a normal distribution with a

maximum value close to 1, a minimum value close to −1, and an average mean near zero. The

values of the vectors are designed to resemble the range of values found in GoogleNews em-

beddings but not the actual distribution. These vectors are arbitrarily assigned to classes and are

referred to as “pseudo-random” embeddings. Unlike semantic embeddings, which have a ge-

ometry that reflects the syntax and meaning of words, the space of pseudo-random embeddings

is free from any constraints, except for satisfying the normal distribution.

5.3.2 Results

In the supervised setting, the performance of the pseudo-random VP model surpasses all other

embedding-based models as shown in Table 5.4. The performance for top1 is comparable to

the upper-bound baseline (label-cls), but the zero-shot performance is equivalent to random

guessing, which is in stark contrast to its superior performance in the supervised setting. These

results confirm that semantic information is essential for predicting unseen classes in the zero-

shot setting, but it can also slightly negatively impact performance in the supervised setting.

The next section will delve deeper into this negative effect of semantic information on super-

vised performance.
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Figure 5.2: The histograms present a comparison of the distribution of class accuracy for two
verb prediction models, google-news (blue) and pseudo-random (red). The x-axis displays
accuracy values from 0% to 100%, and the y-axis shows the frequency of classes. The left
histograms depict top1 accuracy, while the right histograms show top5 accuracy.

5.3.3 Discussion

In the supervised setting, the lack of semantic information has liberated embeddings from get-

ting clustered together in a narrow region of the space, enabling embeddings to be appropriately

distanced from one another. Comparing the performance of pseudo-random against google-

news shows that pseudo-random performs better on more classes and has a more balanced

distribution of class accuracy (Figure 5.2). This suggests that some characteristics of the se-

mantic embeddings play a role in the variance of performance among classes. The following

analysis will examine the effect of one of these characteristics on performance.

Embedding similarity. This analysis looks at the correlation between the cosine similarity

of embeddings and performance in the supervised setting. More specifically, we measure the

similarity of each class embedding with its k neighbours, and examines how this similarity

relates to performance. The analysis includes all types of embeddings discussed thus far in this

thesis.

The analysis shows that classes in pseudo-random are the least similar to each other, mak-

ing them more distinctive and more effective for the downstream task. On the other hand,

classes in bespoke embeddings are the most similar, which is believed to contribute to their un-

derperformance. Additionally, the analysis finds that bespoke-tagged embeddings have higher
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Table 5.5: Average similarity between class embeddings and their neighbouring classes.

Model 1NN Averaged 5NN Top1 in Supervised

bespoke-tagged 0.62 0.54 30.43
bespoke-nontagged 0.56 0.49 30.98
avg-verbs 0.53 0.46 32.90
google-news (Chapter 4) 0.52 0.45 32.48
pseudo-random 0.17 0.15 36.54

Table 5.6: The performance of I2A using pseudo-random embeddings of different sizes.

Vector Dimension 50d 100d 200d 300d 600d 1024d

Top1 34.07 36.13 36.73 36.54 36.69 36.04
Top5 46.50 51.94 55.31 56.58 57.11 57.65

similarities than non-tagged ones, likely due to tagged embeddings sharing a common char-

acteristic (being all verbs), making them semantically more close in embedding space. The

increase in similarity between class embeddings resulted in reduced performance; the opposite

of the desired effect of creating the bespoke embeddings.

Table 5.5 shows that the less similar classes are in the embedding space, the better I2A per-

forms in the verb prediction task. Specifically, it shows that pseudo-random embeddings have

the lowest similarity with their nearest neighbours and that well-spaced embeddings improve

performance by approximately four points. Section 5.4.1 will aim to tackle the problem of

congested areas in the semantic space by introducing a straightforward processing method.

Embedding size. We now consider an experiment that investigates the effect of embedding

size on performance in the supervised setting. Specifically, we look at how I2A performs when

using larger or smaller embeddings. In addition to the original pseudo-random embeddings

of 300 dimensions, five other embeddings of various sizes are generated: 50d, 100d, 200d,

600d, and 1024d. These sizes are chosen to reflect the commonly proposed ideal sizes in the

literature (Yin and Shen, 2018).

The results in Table 5.6 indicate that larger embeddings improve performance in the su-

pervised setting, especially for top5. However, performance starts to plateau at 200d for top1

accuracy. The results show that 300d, 600d, and 1024d perform comparably and suggest no

significant gain to using a size greater than 300d for pseudo-random embeddings. This is likely

due to the fact that the upper bound (label-cls) is approached, and no larger or better embed-

dings can overcome the limitations of I2A or the difficulty of the task.
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5.3.4 Summary

The layout of classes in the embedding space affects the performance of the task in the super-

vised setting. When the embeddings are more distant or distinct from one another, the model

performs better. This section has highlighted that the geometry of the embeddings is crucial

for the supervised setting, and semantic information is fundamental for the zero-shot setting.

The section also showed that using bigger pseudo-random embeddings does not result in sig-

nificant improvement for the supervised verb prediction task. However, it should be noted that

we cannot generalise this conclusion to semantic embeddings as they possess unique features.

5.4 Embedding Processing

This section covers two methods for modifying pre-existing word embeddings: removing dom-

inant components and retrofitting. Both methods are efficient, require no additional training,

and can be applied to various tasks and domains. Section 5.4.1 proposes removing dominant

components of embeddings for the purpose of altering the geometry of the embedding space in

a way that improves performance for verb prediction models. Section 5.4.2 explores the idea

of supplementing embeddings with information from lexical resources.

5.4.1 Removing Dominant Components

Findings from Sections 5.1 and 5.3 support the idea that the geometry of semantic embeddings

adversely affects the verb prediction performance in the supervised setting, particularly for

verbs which occupy a narrower and densely populated region of the semantic space. Further-

more, embeddings contain information beyond just the semantic meaning of actions, such as

syntactic characteristics and social bias (Andreas and Klein, 2014; Garg et al., 2018).

Since this thesis only focuses of a limited set of English verbs with a small portion of verbs

in the English language, it may be beneficial to remove information shared across these verbs,

such as being all verbs or irrelevant properties like word frequency (Bullinaria and Levy,

2012). We suspect that the similarity in one dominant aspect (e.g., being all verbs or being

frequent) can undermine other crucial elements needed for distinguishing verb embeddings.

Figure 5.3 illustrates how the embeddings of imSitu classes are pulled into a dominant direction

and clustered in a small region of the space.

Method. The technique, adopted from Mu and Viswanath (2018), is used to improve the

layout of the embedding space without hindering the semantic representation of individual em-

beddings. That is, fixing the issue of the global layout without damaging local and fundamental
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Figure 5.3: A plot that shows the position of imSitu classes (dark dots) relative to the 200k
most frequent words in the GoogleNews model (light dots). Embeddings transformed into 2d
vectors using the UMAP transformation technique (McInnes et al., 2018).

relationships between embeddings. The technique is applied to pre-trained embeddings; there-

fore, it requires no further training or finetuning. The technique consists of two steps: (1)

subtraction of the mean average vector, followed by (2) eliminating the first D principal com-

ponents.

The mean average vector is thought to contain shared information among vectors, which is

irrelevant for highlighting individual characteristics of verb embeddings. The second step ap-

plies the principal component analysis (PCA), a dimensionality reduction technique, to identify

dominant components. Unlike standard practice, which suggests removing the weakest com-

ponents and views them as noise signals, this method removes the top components to improve

performance. Mu and Viswanath (2018) have experimentally demonstrated that removing top

components has a purifying effect and improves performance in several tasks.

Mu and Viswanath (2018) suggest that D should depend on the vector size and states that

a good rule of thumb is choosing D to be the vector size divided by 100. For the experiment

in this section, four values for D are considered: 1, 3, 10, and 20. Another parameter is the

size of the matrix on which the calculations of the two steps are applied. Along with using

the whole vocabulary of the original embeddings (i.e., GoogleNews), we experiment with two

other matrices that are assumed to be more fitting for the downstream task:

• imSitu classes: A matrix that consists of the 463 class embeddings.

• 5K verbs: A matrix that contains nearly 5000 embeddings of verbs obtained from Verb-

Net (Schuler, 2006). We hypothesise that a more extensive vocabulary will improve the
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Figure 5.4: The effect of the method on the shape of imSitu embeddings before (left) and after
(right), using the matrix of 5K verbs and removing the top 10 components.

processing quality and will assist in calculating a more accurate mean average and princi-

pal components. Figure 5.4 shows the effect of the method on imSitu embeddings, using

the matrix of 5K verbs.

Results. The results in Table 5.7 indicate that using the matrix of the entire GoogleNews vo-

cabulary has no impact on performance, as finding dominant components and an average vector

for a matrix of three million embeddings is unlikely to be effective. On the other hand, using

the matrix of imSitu classes not only has no effect in the supervised setting but also negatively

impact the performance in the zero-shot, suggesting that this setup is removing important in-

formation from the embeddings. This reduction in semantic information is also reflected in the

top5 scores for the supervised setting.

In contrast, using the matrix of 5K verbs improves performance for both learning settings,

striking a balance between preserving relevant information and improving the geometry. The

performance improves as the number of removed components, reaching its peak at D = 10

(referred to as processed-5K-10C), and keeps improving for the supervised setting. In fact, it

surpasses all other embeddings discussed in this thesis, except for pseudo-random performance

in the supervised setting.

SOTA results. We also conducted a comparison between our best-performing model (processed-

5K-10C) and the method proposed by Zellers and Choi (2017), as presented in Table 5.8. Their

method combines distributional embeddings with learned attributes and/or gold attributes. De-

spite their use of gold attributes, which may not be a valid setup for zero-shot tasks, our

processed-5K-10C outperforms their method when we adhere to their experimental setup.

Their experimental setup uses the original dataset without any filtering and employed a dif-

ferent split for training and testing split.
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Table 5.7: The performance of I2A using 12 variants of processed GoogleNews embeddings,
which were created by varying the matrix of embeddings used for processing and the number
of top (dominant) components removed.

Processing a matrix of Components removed Supervised Zero shot
Top1 Top5 Top1 Top5

imSitu 463 classes

1 32.65 52.30 18.22 40.72
3 33.62 53.02 18.08 38.51

10 33.01 51.63 13.68 29.25
20 33.26 50.58 10.20 22.94

5K verbs

1 32.23 51.76 18.0 41.18
3 33.01 52.18 17.99 41.06

10 34.20 55.08 20.89 44.90
20 34.26 55.20 19.01 40.82

All GoogleNews vocabulary

1 32.65 51.65 17.87 41.11
3 32.46 51.88 18.02 41.85

10 33.01 51.63 18.16 41.68
20 32.94 52.78 18.28 42.04

google-news (Ch. 4) NA 32.48 51.45 17.92 41.39
avg-verbs (Sec. 5.2) NA 32.90 52.24 20.21 44.75
pseudo-random (Sec. 5.3) NA 36.54 56.58 01.65 07.51

The exclusion of variants in their method that rely on gold attributes resulted in achieving

inferior results, which further emphasises the superior performance of our processed-5K-10C

model model.

Discussion. The findings are promising, particularly when comparing our results with the

technique’s performance on certain intrinsic NLP tasks. Mu and Viswanath (2018) have re-

ported that the technique improves performance by an average of 2.3% on multiple word simi-

larity datasets and only an average of 0.4% on three analogy datasets. The gain in performance

on the verb similarly dataset SimVerb-3500 (Gerz et al., 2016), which is more pertinent for our

task, is only 0.15%.

An analysis, similar to the “Embedding similarty” in Section 5.3.3, is conducted to assess

the impact of removing dominant components on the similarity between the embeddings of

imSitu classes. The study measures how the average similarity changes as more dominant

components are removed. The average similarity is computed for each variant of the processed

embeddings in Table 5.7 (i.e., 12 averages) and calculated by mean averaging the pairwise

cosine scores between all classes. The results indicate that the average similarity, monotoni-

cally decreases when removing top components, which is desirable as it allows for easier class
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Table 5.8: Zero-shot performance comparison of the processed-5K-10C model and three vari-
ants of Zellers and Choi (2017). The processed-5K-10C model in this table differs from the
one in Table 5.7 as it following the same experimental setup employed by Zellers and Choi.

Three models presented by Zellers and Choi (2017) Zero-shot
Top1 Top5

Embeddings only 17.60 39.29
An ensemble of embeddings and predicted attributes 16.75 40.44
An ensemble of embeddings, predicted attributes, and gold attributes 18.15 42.17

Our processed-5K-10C 22.08 43.74

distinctions. Additionally, it is found that using only imSitu classes as the processing matrix

results in a greater decrease in similarity compared to using 5K verbs or the entire GoogleNews

vocabulary. However, overfitting to imSitu classes is not recommended as it leads to a loss of

useful information, as evidenced by a rapid decline in zero-shot performance.

5.4.2 Retrofitting

This section introduces another post-processing technique, but for a different purpose: enrich-

ing word vectors with knowledge from lexical semantic databases. The section applies the

seminal work of Faruqui et al. (2015), intending to answer questions about the effectiveness of

retrofitting for improving the verb prediction task, the impact of the choice of lexical database,

and the characteristics that make a lexicon suitable for a specific task.

Method. The technique produces a relational graph of the lexicon, where nodes are words

and edges are relations (e.g., synonym). Machine learners are more accustomed to the graph

format. The technique learns new word embeddings that satisfy the following conditions:

(i) Minimising the distance between the original and the new (inferred) embeddings. This

condition ensures that inferred embeddings retain most of the information of the original

embeddings.

(ii) Minimising the distance between inferred embeddings and their neighbours in the graph.

This condition ensures that inferred embeddings reflect the relations in the lexicons and

be enriched with semantic information.

The technique uses the graph structure to allow words to connect with their neighbouring

words, collect information, and update themselves iteratively. The Euclidean distance is applied

to measure the distance. The technique is efficient, requiring only ten iterations to converge,
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which takes only several seconds to run. In this experiment, we use a tool provided by the

original authors, which requires two inputs: a lexicon, and a list of word embeddings to be

enhanced. It is noteworthy that the graph is constructed exclusively from the specified set of

word embeddings. The remaining part of this section presents experiments where embeddings

are retrofitted to three lexical resources.

FrameNet. A manually curated linguistic resource that maps meaning to form through the

theory of frame semantics (Ruppenhofer et al., 2006). In theory, FrameNet appears perfectly

suitable for the verb prediction task since it is designed for action understanding. It contains

schematic representations of events and situations, referred to as frames, evoked by a set of

lexical units, including verbs. The meaning of these units can be derived from their frames

and other units from the frame. For example, the meaning of pay requires an understanding of

buying.

However, our primary concern is the size of FrameNet, as it contains only 10K lexical

units. Additionally, FrameNet is also underutilised during graph creation, with the graph only

expressing one type of relation where lexical units that evoke the same frame are connected.

The graph omits the connections between frames, which the database already manifests in a

lattice structure. Furthermore, not all frames are used; for instance, compete participates in two

frames, but only one frame is in the graph. In our experiment, imSitu classes are lemmatised to

improve coverage from only 27 to 377 classes.

Paraphrase Database. A collection of word pairs that have been automatically extracted

from parallel corpora (Ganitkevitch et al., 2013) and are considered to be paraphrases of each

other. The dataset assumes two words are a paraphrase pair if their translations to another

language are the same. We believe that this dataset contains semantics that are already captured

by word embeddings, which are known for their ability to perform analogy and similarity tasks.

WordNet. A rich linguistic resource in terms of the number of lexical units, the number

of relations, and the type of relations (Miller et al., 1990). The database groups words into

sets of similar words (synonyms) and connects them to more generic concepts (hypernyms)

and more specific concepts (hyponyms). The three types of relations (synonymy, hypernymy,

and hyponymy) enable the database to be naturally structured as a graph, making the dataset a

perfect fit for retrofitting. Despite having the most extensive coverage among the three lexicons,

WordNet might not be perfect for the verb prediction task since it focuses mainly on nouns.
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Table 5.9: The performance of I2A when using the GoogleNews embeddings that have been
retrofitted with semantic information from three lexical resources.

Lexicon Words in the lexicon Supervised Zero-shot
Top1 Top5 Top1 Top5

FrameNet 10,822 30.08 45.19 13.95 33.35
Paraphrase Database 102,902 29.68 47.97 15.83 39.55
WordNet 148,730 30.34 49.33 16.76 39.15

google-news (Ch. 4) NA 32.48 51.45 17.92 41.39

Results. Retrofitting harms performance regardless of which lexicon is used (Table 5.9). The

performance is seen to be related to the size of the lexicon, especially in a zero-shot setting.

Retrofitting to FrameNet, the smallest lexicon, has the greatest negative impact on performance

while retrofitting to Wordnet, the largest lexicon, has the least negative effect.

We conclude that retrofitting to these particular lexicons is not practical. The knowledge

they contain is mostly already encoded in the word embeddings, hence retrofitting would not

provide any additional benefit and indeed may even be detrimental, as in the case of the verb

prediction task addressed in this thesis. That being said, retrofitting would be effective if lexi-

cons contained complementary and perhaps task-specific knowledge, such as expressing rela-

tions pertaining to the visual domain.

5.5 The impact of Certain Embedding Characteristics

This section examines the impact of embedding size, corpus size, and corpus genre on the

quality of word embeddings and their effect on the verb prediction task. These characteristics

are discussed in Sections 5.5.1, 5.5.2, and 5.5.1, respectively.

5.5.1 Embedding Size

In Section 5.3, the optimal embedding size was explored using randomly generated embed-

dings in a supervised setting. However, this does not provide much insight into the ideal size of

embeddings that encode semantic information. As explained in Section 5.4.1, semantic embed-

dings have unique characteristics that make them different, and the optimal size is dependent

on the task, training methods, and corpus size (Yin and Shen, 2018). This section seeks to

determine the appropriate embedding size for encoding the semantic information necessary for

the verb prediction task.
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Figure 5.5: The plot illustrates the impact of increasing the size of embeddings on performance.
The left scale measures the performance of GloVe embeddings on an intrinsic task, while the
right scale measures the performance on the verb prediction task for the two learning settings.

Method. The study employs GloVe embeddings (Pennington et al., 2014) of various di-

mensons (50d, 100d, 200d, and 300d) that are pretrained using a common training corpus.

GloVe is an unsupervised machine learning algorithm that learns word embeddings based on

co-occurrence statistics between words. The version of GloVe embeddings used in the exper-

iment is trained of the combination of Gigaword5 dataset (Parker et al., 2011) and an English

Wikipedia archive from 20145. A verb prediction model is constructed for each one of these

different embedding sizes.

Results. The results of the study are presented in Figure 5.5, which shows the performance of

GloVe-based models on a downstream task, as well as the performance of GloVe embeddings

on an intrinsic semantic task (as reported by the GloVe authors). The figure illustrates that

for the intrinsic task, larger embeddings result in better performance, but this improvement

levels off after 300d. The performance of the verb prediction task follows the same pattern in

both learning settings. Based on the graph and the information from previous sections, and

what we have learned about performance bounds in Sections 4.1.2 and 5.3, it is assumed

that there would only be a minimal improvement from using embeddings of size 600d. This

would, however, be worth confirming empirically, something we have not done as the 600d

embeddings are not publicly available.

5The following link was accessed in 2014: http://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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Table 5.10: The performance of I2A when using two versions of GloVe embeddings, which
differ in the size of their training corpus. One version is trained on 840 billion tokens, while
the other is trained on only 6 billion tokens.

Size of training corpus Supervised Zero-shot
Top1 Top5 Top1 Top5

6B tokens 32.92 50.76 16.34 38.22
840B tokens 31.41 49.37 17.62 42.41

google-news (Ch. 4) 32.48 51.45 17.92 41.39

5.5.2 Size of the Training Corpus

This experiment studies the effect of the size of training corpus for embeddings on the perfor-

mance of the downstream task. add a sentence. It aims to determine if a larger corpus leads

to better embedding representation and improved task performance. Two versions of GloVe

embeddings are used, with the only difference being the size of the training corpus. The first

version is trained on 6 billion tokens from a combination of Gigaword5 (Parker et al., 2011)

and an English Wikipedia archive from 20146. The second is trained on 840 billion tokens of

web text from the Common Crawl.

Results. As Table 5.10 shows, training embeddings on the large corpus results in slightly

better performance in the zero-shot setting, while training on the small corpus yields slightly

better performance in the supervised setting. This supports the notion that embeddings with

more richer semantic representation aid in identify new concepts in zero-shot, but can also make

it harder to learn in the supervised setting, as they complicate the geometry of the embedding

space. However, this conclusion should be viewed with caution as the variance in performance

in both learning settings is minimal, especially when considering that the large corpus is 143

times bigger than the small one.

5.5.3 Genre of the Training Corpus

The use of embeddings trained on a genre more appropriate for visual-based tasks should yield

better performance than training on text from other genres such as news or Wikipedia articles.

Novels are rich in descriptive language that we hypothesis may be more helpful in matching

images to semantic embeddings.

6The following link was accessed in 2014: http://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
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Table 5.11: The performance of I2A when using two embedding variants, which only vary in
the type of training corpus used.

Training corpus Supervised Zero-shot
Top1 Top5 Top1 Top5

us-novels 31.93 51.56 18.62 42.59
small-wiki 28.95 43.52 12.58 31.27

google-news (Ch. 4) 32.48 51.45 17.92 41.39

Method. In this experiment, two embedding models are trained on different genres of text

- novels and Wikipedia articles. Both models follow the same training routine, including the

same training algorithm and hyperparameters, and are trained on corpora of an equivalent size.

The novel-based embeddings are trained on the Chicago Text Lab’s proprietary corpus of US

novels 7 , referred to as us-novels, which contains nearly 9000 American novels from the period

of 1880-2000. The corpus consists of only 700 million tokens. The wiki-based embeddings,

which act as the control for this experiment, are trained on a sample of the English Wikipedia

archive used in Section 5.1, referred to as small-wiki. The sample is designed to match the

number of tokens in the corpus of US novels.

Results. The performance of the us-novels embeddings was found to be superior to that of

the small-wiki embeddings in both learning settings. This supports the idea that training em-

beddings on text that is visually descriptive can be beneficial for vision tasks, particularly those

that involve understanding actions. The performance of us-novels is comparable with the main

experiment in Chapter 4, which utilised GoogleNews embeddings trained on 6 billion tokens.

This suggests that even though genre and corpus quality are significant factors, their impact

may be diminished when large corpora are available.

5.6 Summary

In the chapter, we experimented with various techniques and tools for making the representation

of target verb classes more suitable for the verb prediction task. We also examined the factors

or characteristics of word embeddings that impact verb representation.

Sections 5.2 and 5.4 proposed utilising efficient methods to extract specialised (verb-specific)

representations of target verb classes, in line with the thesis objective of utilising existing re-

sources and avoiding additional training. By using the GoogleNews embeddings, these sections

7https://textual-optics-lab.uchicago.edu/us_novel_corpus

https://textual-optics-lab.uchicago.edu/us_novel_corpus
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showed that post-processing of embeddings can improve performance on the verb prediction

task, although the improvement was only marginal.

Section 5.1 introduced the idea of having verb-specific representation and attempted creat-

ing them from scratch, but the results were not as successful and the reasons for poor perfor-

mance were identified. Section 5.3 presented experiments to investigate and understand certain

properties of word embeddings, and Section 5.5 analysed the contribution of three characteris-

tics of word embeddings.

As future research, we plan to use contextual embeddings to obtain dynamic representations

for target labels. This would be advantageous in situations where the definition of the search

space (Section 3.2.5) needs to be flexible, such as when a model is trained on single-word la-

bels, but must also handle phrasal verbs during production. Additionally, pretrained contextual

embeddings can be beneficial for obtaining representations from text resources that are of a

specific genre yet small in size, such as video description datasets, and audio description, and

novels.



Chapter 6

Varying the Representation of Images

In the previous chapter, we explored various techniques for extracting verb-specific represen-

tations of target labels and assessed their effectiveness in predicting verbs. In this chapter, we

explore different approaches for representing input images and extracting key features from

them. The techniques are categorised into two sections: visual-based (Section 6.1) and the

semantic-based (Section 6.2).

Section 3.2 introduced the two primary types of image feature extraction, with a particular

focus on the visual-based method, which is most relevant to this thesis. Figure 3.2 depicted how

the image feature extractor, specifically the visual one, processes input images and interacts

with other components.

To investigate the effect of image representation on verb prediction, we experiment with

varying the feature extraction component in this chapter. We maintain the experimental setups

and dataset splits from previous chapters for both supervised (Section 4.1.1) and zero-shot

(Section 4.2.2) experiments.

6.1 Visual-Based Representation

This section compares the standard visual feature extractor used for processing images, which

is a CNN trained on a subset of ImageNet called ILSVRC, against other CNN models that have

different architectures, pretraining image datasets, or pretraining tasks.

We argue that a CNN trained on ILSVRC, despite its widespread use, is not perfectly suit-

able for the verb prediction task. ImageNet is primarily designed for object classification and

features single objects in a canonical view, and many of its classes are not ideally suited for the

verb prediction task. We note that many of the ImageNet classes, such as 397 classes of animals

and 118 classes of dog breeds, are not relevant for verb prediction, while only a small number

95
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of classes, such as ballplayer, groom, scuba diver, pertain to humans. The lack of classes for

humans of different ages, such as babies and children, is also noted as a limitation, given our

focus on human actions in this thesis.

6.1.1 Method

This section examines the effect of using different CNN models for extracting visual features

from input images on the verb prediction task. Four verb prediction models are presented,

each of which employs a distinct CNN model that has been trained on a specific dataset for

a specific vision task. These models solve a more difficult task, which is hypothesised to

improve the representation of image features. The impact of using larger CNN architectures is

also analysed.

Moments in Time (MIT). Monfort et al. (2019) present a 3-second video dataset for action

understating, primarily featuring human actions, where each video is annotated with a single

label. The authors also propose multiple systems that separately or jointly exploit spatial,

auditory, and temporal modality. In this experiment, we extract a CNN from one of their uni-

modal spatial-based systems. The CNN model is a ResNet50 network initialised on ILSVRC

and trained on randomly selected frames from 802, 264 videos to classify 399 actions. It is

believed that this CNN can produce better visual representation because it closely resembles

the verb prediction task of this thesis.

MSCOCO. It was originally developed to provide a resource for detecting objects depicted

in a non-canonical way. The dataset, as describe in Lin et al. (2014), offers various annotations

for different tasks. In Section 2.2.2, we discussed the use of MSCOCO as an image captioning

dataset, with each image having five captions.

In this section, we will employ MSCOCO as a multi-label classification dataset (multi-label

classification dataset for labelling multiple objects in an image. One of the key advantages of

MSCOCO is its comprehensive coverage of human-object interactions, with the person class

having the highest number of instances. This emphasis on human-object interactions and the

more complex task of multi-label classification, compared to ILSVRC’s single-label classifica-

tion, makes MSCOCO an excellent choice for generating powerful image representations for

verb prediction. However, one aspect that needs to be considered when using MSCOCO as the

pretraining dataset is its relatively smaller size in comparison to the other datasets examined in

this thesis.

We utilise a CNN model provided by Wang et al. (2019), which is based on a slightly
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different variant of ResNet50, known as ResNext50. The CNN model is first pre-trained on

ILSVRC and then fine-tuned on nearly 82K images 8 for multi-label classifications, rather than

MSCOCO’s standard detection task.

ImageNet-21K-P. The ImageNet-21K-P (Ridnik et al., 2021) is a filtered version of the orig-

inal ImageNet dataset that retains most of its content, excluding only classes with insufficient

images. The number of images has been reduced from 14 million to 12 million and the number

of classes has been reduced from 21K to 11K. More importantly, the dataset has been trans-

formed into a multi-label format through the use of WordNet hierarchy, allowing an image of

swan to also be labelled as animal, vertebrate, bird, and aquatic bird. ResNet50 was initialised

on ILSVRC and trained on ImageNet-21K-P.

Despite standardising efforts, the CNN model was trained with a newer PyTorch version

and cannot be loaded with the older version used in other experiments in the thesis. The use

of the newer version for training the verb prediction model may account for some variations in

performance.

ResNet101. The ResNet architecture offers different sizes to cater to various application re-

quirements. ResNet50, being the default choice in this thesis, strikes a good balance between

accuracy and efficiency. However, in this study, we opted for a larger architecture, ResNet101,

with twice the number of layers as ResNet50, both trained on the ILSVRC dataset. The num-

ber 50 and 101 in the name of these architecture represent the total number of layers, mostly

convolutional layers.

The primary reason behind choosing ResNet101 is that deeper neural networks can extract

more intricate features from images, enabling them to learn complex patterns and deliver better

outcomes. We expect ResNet101 to outperform ResNet50 in the verb prediction task.

However, previous research has shown that larger ResNets tend to perform only slightly bet-

ter on ILSVRC (the pretraining dataset) (He et al., 2016; Kornblith et al., 2019). For example,

Kornblith et al. (2019) reported that ResNet101 outperforms ResNet50 only by 1.6% margin on

the ILSVRC test set. Despite the small margin of improvement, our goal is to evaluate whether

a larger architecture that slightly outperforms in the pretraining task can yield better results in

our downstream task. Both ResNet50 and ResNet101 used in this study were sourced from the

PyTorch repository (Paszke et al., 2019).

8The training set of the official 2014 split. Source: https://cocodataset.org

https://cocodataset.org
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Table 6.1: Performance of the I2A using various CNN models as the feature extractor.

Pretraining Dataset Dataset Type CNN Arch Supervised Zero-shot
Top1 Top5 Top1 Top5

Moments in Time Single-label actions ResNet50 34.87 54.40 19.76 43.94
MSCOCO Multi-label objects ResNext50 31.86 50.95 18.07 41.38
ILSVRC Single-label objects ResNet101 31.24 50.23 17.70 41.42
ImageNet-21K-P Multi-label objects ResNet50 40.54 60.01 20.60 45.43

ILSVRC (Ch. 4) Single-label objects ResNet50 32.48 51.45 17.92 41.39

6.1.2 Results

The results from Table 6.1 indicate that training a CNN with ImageNet-21K-P leads to a sub-

stantial increase in performance, surpassing not only other models discussed in this section but

also models from previous sections. However, this substantial improvement is only observed

in the supervised setting, as the advantage decreases in the zero-shot setting, making the per-

formance comparable to methods that enhance target label representation (as discussed in Sec-

tions 5.2 and 5.4.1). Our results suggest a strong connection between the size of the pretraining

dataset and the performance of the downstream task, while factors such as architecture size

and task difficulty seem to have less impact. ImageNet-21K-P is significantly larger than other

datasets in terms of the number of images and classes, being ten times bigger than the second-

largest dataset (ILSVRC) and over a hundred times larger than the smallest (MSCOCO). The

underwhelming results in the zero-shot setting for ImageNet-21K-P suggest that performance

in this setting cannot be significantly improved by simply using an exceptionally large training

dataset.

MIT also improves performance when compared to using ILSVRC. This is noteworthy

given the main difference between the two is the focus on actions and objects, respectively.

Both datasets have roughly the same number of samples (1 million) and their examples are

single-labelled. While MIT ranks second among the CNNs in the table, its performance is

comparable to, or slightly lower than, the top methods for representing target labels as discussed

previously in Sections 5.2 and 5.4.1. Since MIT is the only pretraining dataset of actions, we

are concerned that some of its classes exist as well in imSitu, which raises concerns about the

reliability of its zero-shot evaluation. The next section elaborates on this issue.

Despite being a more complex task (multi-label vs single label) and having images of a

more complex nature (objects in context vs objects in a conical view), MSCOCO fails to surpass

ILSVRC in terms of performance. Lastly, utilising a larger ResNet architecture (ResNet101)

for the ILSVRC dataset also fails to outperform ResNet50.
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Table 6.2: Assessing the performance of a subset of imSitu classes that are not present in MIT
(i.e., imSitu − MIT). The results in this table are not obtained from new experiments, but rather
a revised evaluation for the two models from Table 6.1.

Pretraining Dataset Test Classes Supervised Zero-shot
Top1 Top5 Top1 Top5

MIT imSitu − MIT 29.67 48.41 13.80 36.51
ILSVRC imSitu − MIT 29.48 46.78 12.81 34.83

ILSVRC (Ch. 4) imSitu 32.48 51.45 17.92 41.39

6.1.3 Discussion

Zero-shot learning is based on the premise that the training and test classes are distinct, a

condition which is usually met when looking at classes of downstream tasks. However, this

may not always the case when considering classes in pretraining datasets. Xian et al. (2019)

point out that many of the widely used datasets for zero-shot learning, such as the Animals

with Attributes (Lampert et al., 2014), the Caltech-UCSD Birds 200 (Wah et al., 2011), and

SUN (Xiao et al., 2010), contain objects that are also present in the ILSVRC (the pretraining

dataset for the CNN). If the CNN is exposed to certain classes during pretraining, these classes

should be excluded from zero-shot experiments. In this section, we analyse the relationship

between MIT and imSitu and assess the the overlap between their classes. MIT is the only

action dataset of the three pretraining datasets, making it more susceptible to the issue of class
leakage.

Our study reveals that there is an overlap of 258 classes between MIT (pretraining dataset

for the CNN) and imSitu (zero-shot dataset), which means that 55% of imSitu classes were

already seen by the CNN prior to conducting the experiments in Table 6.1. This raises questions

about the validity of MIT’s results reported in the table. To address this, we only evaluated

classes not found in MIT and the results, displayed in Table 6.2, indicate a substantial decrease

in performance. However, it is uncertain if this reduction is solely due to class leakage or if

the nature of these classes makes them harder to identify and detect. The table also shows that

using a CNN pretrained on ILSVRC results in even further decreased performance, indicating

that these classes pose a difficulty.

6.1.4 Summary

The section has experimented with four CNNs of different characteristics, mostly focusing on

the charactersitics of the pretraining datasets. Two CNNs, ImageNet-21K and MIT, showed



CHAPTER 6. VARYING THE REPRESENTATION OF IMAGES 100

Table 6.3: Assessing the performance of a subset of imSitu classes that overlap with MIT (i.e.,
leaky classes). The results in this table are not obtained from new experiments, but rather a
revised evaluation for the the models from Table 6.1.

Pretraining Dataset Test Classes Supervised Zero-shot
Top1 Top5 Top1 Top5

MIT imSitu ∩ MIT 38.95 58.97 24.49 49.83
ILSVRC imSitu ∩ MIT 34.86 55.15 21.98 46.59

ILSVRC (Ch. 4) imSitu 32.48 51.45 17.92 41.39

improved performance compared to ILSVRC presented in Chapter 4, indicating that the size of

the pretraining dataset might be the key factor. The section also addresses the issue of leakage

in evaluating zero-shot experiments and proposes a simple method for examining potential

leakage.

Future work plans to test newer and more advanced image representation techniques, such

as transformer-based visual encoders, which are expected to handle more effectively the orig-

inal version of imSitu that contains higher-quality images of various sizes. We conducted an

experiment using the default configuration of I2A (Chapter 4), but the results were not promis-

ing, suggesting the need for a different visual encoder to handle the original imSitu. We will

also explore the possibility of combining two visual encoders (e.g., CNNs), each designed for

extracting specific features such as objects, scene types, or positional relations (e.g., on and

next to). The next section shifts the focus to a semantic representation of input images, where

the features are more abstract.

6.2 Semantic-Based Representation

In complex tasks like verb prediction, extracting meaningful information from raw digital im-

ages, such as jpeg files, presents various challenges due to the limitations of traditional tech-

niques for feature extraction. Unlike tasks like object classification of ILSVRC that identifies

objects in isolation, verb prediction requires analysing how objects interact in a scene, which

further complicates the feature extraction process. In addition, working with imSitu images

can be challenging due to quality issues, as previously noted in Section 4.1.6. These quality

concerns can negatively impact the accuracy of the results.

To overcome these challenges, a semantic-based representation approach can be used. This

method involves capturing higher-level features of the images, such as object names, spatial

relations, and scene types, instead of relying solely on raw pixel data. By focusing on these
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semantic features, the limitations of traditional feature extraction techniques can be overcome,

improving the accuracy of verb prediction. Furthermore, this approach provides an upper bound

on performance by assuming perfect identification of object types and spatial relations, allow-

ing us to evaluate how the I2A framework performs.

More concretely, this section introduces the idea of using an oracle to alleviate the I2A

framework from the task of processing visual information. The oracle is responsible for recog-

nising visual concepts present in images, such as people, physical objects, scenes or locations,

and basic relations like on and next to. The semantic-based extractor consists of two parts:

(1) an oracle that labels images with a set of labels of visual concepts, and (2) the extraction

process of semantic features of these visual concepts.

The oracle could be either machine-based or human-based. In this section, we use human

annotations of imSitu images that are already provided by the dataset authors. As discussed in

Section 2.2.1, imSitu provides a wide range of concept types (i.e., fine-grained labels), and the

concepts of each image are organised into a frame structure where the role for each concept is

specified. For instance, an image of a fireman spraying water on fire is labelled with the follow-

ing situation: S =
(
spraying, {(agent, fireman), (source, hose), (substance,

water), (destination, fire), (place, outside)}
)
.9 Additionally, the concepts are

linked to their respective WordNet synsets, which will be useful in Section 6.2.4.

In the subsequent sections, we discuss different aspects of visual concept labels and their

impact on the performance of the semantic-based extractor. Specifically, Section 6.2.1 in-

troduces two techniques for encoding visual concept labels, while Section 6.2.2 presents the

results of applying these techniques. Additionally, Section 6.2.3 investigates the impact of

concept label granularity on the performance of I2A and the potential for information leakage

caused by fine-grained labelling. Lastly, in Section 6.2.4, we propose and evaluate methods for

generalising or coarsening the labels. By exploring these topics, we can gain a deeper under-

standing of the visual concept labels and identify effective ways to utilise them especially for

the zero-shot learning.

6.2.1 Method

The section outlines two techniques for encoding semantic information from sets of concept

labels, which have replaced raw images as the framework’s inputs. These techniques are the

semantic feature extractors for I2A, as discussed in Section 3.2.3. The first technique involves

using word embeddings, while the second utilises sentence encoders.

9This example is taken from the original paper of imSitu (Yatskar et al., 2016)
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First technique: Embedding pooling. In this approach, each concept label is encoded using

GoogleNews embedding. The embeddings of all concepts in an image are combined into one

vector, creating the feature vector of the image (Section 3.2.3). Two methods for combining

the embeddings are evaluated: average pooling and max pooling.

• Average pooling. The operation takes the mean over each dimension for all word embed-

dings. Average pooling is used extensively in Computer Vision for aggregating features

from CNNs, and later has been introduced for NLP tasks such as sentence encoding (Wi-

eting et al., 2016; Adi et al., 2017).

• Max pooling. The motivation behind max pooling is that not all visual concepts con-

tribute equally to final predictions. The technique presumably extracts the most salient

features from every dimension. It does that by taking the maximum value along each

dimension of the word vectors (Collobert et al., 2011; Shen et al., 2018). This method,

however, may amplify the noise signal or spurious features from certain input embed-

dings.

Matching WordNet synsets to embeddings vocabulary. We found that 87% of synsets in

imSitu can be directly linked to the vocabulary of GoogleNews embeddings through their synset

name. For the remaining 13%, the following solutions are taken to find a suitable match: (1)

using one of the synset’s lemmas instead of its name, (2) making slight modifications to the

synset name (e.g., hyphenated words), and (3) exploring the WordNet hierarchy (e.g., selecting

a parent synset). Through this process, the total number of distinct synsets is decreased from

7.8K to 5.4K.

Second technique: Sentence encoding. Using a sentence encoder as a feature extractor may

produce a better representation for the inputs, where the representation consists of salient and

highly predictive features. The intuition is driven by the fact that the sentence encoder com-

prises many complex neural layers, is trained sequentially on two tasks, and has a massive

number of parameters. Since this approach expects inputs as sentences, the set of concepts

of each image is transformed into a pseudo-sentence but not a complete sentence essentially

due to the absence of the main verb, which is the target we aim to predict. The creation of

pseudo-sentences is facilitated with the help of manually created templates. The imSitu dataset

provides these templates to aid in the annotation process and illustrate the interaction between

verbs and their roles. Each verb (class) in the dataset has a unique template; for example, the

following template is for the verb sign:

the AGENT signs the SIGNEDITEM with the TOOL at the PLACE.
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Table 6.4: A sample of pseudo-sentences ready for encoding.

image 1 man be contract with hand
image 2 people be on sofa at room
image 3 man be at hospital
image 4 bodybuilder be their body at audience at stage

For each image, we populate its corresponding template with the set of concepts depicted

in the image instance, replacing roles with values from the concept set. The verb is masked

by substituting it with the verb be. Nouns sharing the verb’s root are also removed, as in

“typing with a tape” and “pitching on a pitch”. Table 6.4 provides examples of processed

templates ready for encoding. These pseudo sentences are transformed into a vector of size 730

dimensions. The feature extractor for this technique is a standard BERT model (Devlin et al.,

2019) that is finetuned on a semantic textual similarity task (Reimers and Gurevych, 2019).

BERT is a transformer-based model that generates contextual embeddings for each word in the

sentence, which are then aggregated via the average pooling operation.

6.2.2 Results

Table 6.5 demonstrates that embedding-based techniques surpass all visual-based (CNN-based)

methods, with a significant improvement observed in the supervised setting regardless of the

pooling method used. In the zero-shot setting, using average pooling lead to a slightly better

performance, indicating that max pooling may lead to overfitting, due to its way of extracting

features, as discussed earlier in Section 6.2.1.

Using the sentence encoding techniques on pseudo sentences yields an exceptional perfor-

mance in the supervised setting, making it the top performer by a substantial margin. However,

its performance in the zero-shot setting fails to even reach that of the average embedding pool-

ing, suggesting that the rich textual representation may introduce information leakage as some

information in the pseudo sentences is not accessible to the embedding-based methods.

We suggest a new technique to validate that the jump in performance is mostly due to the

information present in pseudo sentences and not to the sentence encoder. Instead of repre-

senting the input with a pseudo-sentence, we concatenate the image’s set of concepts into one

string as in “people sofa room”. This technique, referred to as the bag of concepts, allows us to

compare both encoding techniques using the same amount of information. The bag of concepts

approach achieves comparable performance to the embedding-based techniques, indicating that

the gain observed in the pseudo-sentences approach is entirely due to the additional description

and not the encoding mechanism. The result confirms that the pseudo-sentences method relies
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Table 6.5: Performance of I2A using two text encoders as replacements for the visual feature
extractor. Each one of these text encoders has two distinct implementations, yielding a total of
four different models.

Encoding Technique Supervised Zero-shot
Top1 Top5 Top1 Top5

Distributional embeddings
avg pooling 51.11 67.65 22.04 49.24
max pooling 51.52 67.27 20.99 47.48

Sentence encoder
pseudo sentences 70.42 82.30 21.50 47.32
bag of concepts 51.62 67.51 21.18 46.17

Visual-based extractor (i.e., CNN) (Ch. 4) 32.48 51.45 17.92 41.39

on leaked information to achieve its outstanding performance in the supervised setting.

All semantic-based feature extractors perform significantly better than visual-based extrac-

tors (or CNNs). The reason for this is probably because fine-grained annotation of visual

concepts provides an unfair advantage to semantic-based methods and might be considered a

form of data leakage (Kaufman et al., 2012). For example, images of class TEACHING contain

leaky labels such as teacher and pupils, which are strongly predictive of the class. The follow-

ing section investigates the contribution of annotation granularity contributes to the superior

performance of semantic-based methods.

6.2.3 Examining Annotation Granularity

This section investigates the granularity of annotations and its effect on the performance of the

verb prediction task, particularly in the zero-shot setting. To explore the annotation quality, we

employ Pointwise Mutual Information (PMI) and Decision Trees as analysis tools.

Pointwise mutual information (PMI). PMI measures the dependency between two random

variables (Church and Hanks, 1990). A high and positive PMI score indicates that both vari-

ables are more likely to co-occur, giving them a predictive power. In this section, we use PMI

to measure the relationship between imSitu classes and the labels used to denote visual con-

cepts in imSitu images. We concentrate on pairs with high PMIs as these may reveal leaky

labels. After excluding pairs with fewer than ten examples, we calculated the PMI score for

7.2K pairs of the 463 classes and 5.4K unique concepts (or WordNet synsets). Normalised

PMIs are calculated to improve the interpretability of scores (Equation 6.1).
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Table 6.6: Top 10 pairs with the highest NPMI scores.

Concept Class NPMI Concept Class NPMI

1. surfboard SURFING 0.99 6. blowtorch WELDING 0.96
2. parachute PARACHUTING 0.97 7. sheep SHEARING 0.95
3. scale WEIGHING 0.97 8. drumstick DRUMMING 0.95
4. syringe INJECTING 0.96 9. rocket LAUNCHING 0.95
5. vacuum VACUUMING 0.96 10. welder WELDING 0.94

Table 6.7: Random examples of visual concept labels extracted from the top 100 pairs with the
highest NPMI scores. These labels are organised into five proposed categories.

Agent nouns dancer, punter, massager, beautician, manicurist, cameraman, skydiver

Specific labels whitewater, launching pad, skipping rope, rocking chair,
pier, shaving cream, marching band, frying pan

Specific tool whip, drum, comb, skate, stapler, masher, shredder, toothbrush

Abstract injury, mime, prey, voice, song, team, reading

Locations casino, concert, mine, cockpit, space, recording studio

npmi(x, y) =
pmi(x, y)

− log p(x, y)

pmi(x, y) =
log p(x, y)

p(x)× p(y)

(6.1)

Based on our manual examination of the top 100 pairs, we found that most of these pairs

reflect a strong relationship between actions and objects (e.g., MICROWAVING and microwave),

which is an topic already discussed in Section 4.1.7. However, some pairs raise concerns about

potential information leakage in the annotation process. For instance, Pair 6 in Table 6.6 exem-

plifies a situation where the labels are too specific and technical, existing only for a particular

class. Pair 10 highlights another issue, where the presence of an agent noun (welder) reveals

the nature of the action. Our examination of the top 100 pairs resulted into the following cate-

gorisation of concept labels: specific labels (11%), specific tools (27%), abstract concepts (9%),

agent nouns (10%), and specific locations (6%). We believe that “agent nouns” and “specific

labels” result from the level of granularity imposed during the annotation process. This analysis

is not intended to establish well-defined categories, but to provide some context for the reader.

Table 6.7 presents examples of each category.
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A simple PMI-base model is built to quantify the predictive power of visual concepts with

high PMI scores. Like other tasks in Section 6.2, the input is represented as a set of concept

labels, and the output is the class label. In this experiment, PMI is calculated based on the train-

ing instances and without filtering low-count pairs. In the evaluation step, we select the class

that maximises the summation of PMI values (Equation 6.2). The method achieves 49.30%

accuracy for top1 and 60.30% for top5. Despite having lower performance compared to other

semantic-based methods (as shown in Table 6.5), it still managed to be surprisingly close to

these more advanced techniques.

ŷ = argmax
k∑

i=1

pmi(oi, y) (6.2)

where k is the number of objects in a given evaluation instance

Decision Trees. In this section, decision trees (Breiman et al., 1984) are utilised as a base-

line for I2A, offering an alternative to the PMI-based baseline and come with regularisation

techniques to prevent overfitting. Unlike the deep learning algorithms used in I2A, Decision

Trees belong to a different class of machine learning that creates simple and easily interpretable

models based on meaningful features. This allows for a better understanding of the decision-

making process in the task discussed in Section 6.2.1 and highlights the key visual concepts for

each class.

Binary classifications (one-vs-rest strategy) are performed by constructing a decision tree

model for each imSitu class. The experiments involve testing different tree depths: “depth 1”

(d1), “depth 5” (d5), and “unlimited depth”. Trees with a depth of 1 (d1) enable examination of

the impact of specific concept labels, while trees with unlimited depth offer a robust comparison

to the semantic-based variants of I2A discussed in Section 6.2.1. In this section, we use the

terms “feature” to denote use of “visual concept labels” as the variables in decision trees.

Decision stumps, or d1 trees, are interesting as they classify instances based on a single

feature. This makes it easier to examine how leaky concepts persist in such restrictive models.

Out of the 463 decision stumps, only 420 features are utilised; therefore, some features are

common. For instance, people is shared features across the following classes: SOCIALISING,

CONGREGATING, GATHERING, QUEUING, and INTERMINGLING. Another example is police,

which is used in the following classes: CLAPPING, PATTING and SHAKING. It is worth noting

that classes sharing features tend to perform poorly in testing, which is understandable as only

one feature is used to classify multiple classes.

Table 6.8 displays the top ten performing classes. A correlation is observed with the top
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Table 6.8: Top 10 performing classes in decision stumps (i.e., one-feature classifiers), along
with the accuracy and the feature used for classification.

Class Top1 Feature Class Top1 Feature

1. VACUUMING 0.99 vacuum 6. WELDING 0.91 blowtorch
2. SURFING 0.97 surfboard 7. MOPPING 0.90 floor
3. WEIGHING 0.97 scale 8. INJECTING 0.90 syringe
4. PITCHING 0.96 baseball 9. PHOTOGRAPHING 0.90 camera
5. KISSING 0.96 lip 10. CAMPING 0.90 tent

Table 6.9: The performance of three decision tree classifiers that differ in depth and number of
features. The table also shows the PMI-based classifier from the previous section.

Tree depth Features Top1 Top5

1 420 28.16 34.76
5 2,251 44.56 57.39
No limit 3,772 47.63 59.83

PMI 5,450 49.30 60.30

10 NPMI scores in Table 6.6. Nonetheless, this table reveals a new issue in the dataset where

annotations are made based on prior knowledge of the verb. While lip is visually present in

many classes, it is only thoroughly annotated in images of the class KISSING. This method is

inferior to the PMI-based and other tree variants (as shown in Table 6.9) due to limited features.

The d5 trees exhibit a substantial improvement compared to decision stumps. The method

employs 2, 251 features, or about 40% of all features, and each classifier typically uses 14 fea-

tures. Lastly, unconstrained trees show only marginal improvement over d5, relatively speak-

ing, despite using a much larger number of features (3, 772) and tree size (each model on

average uses 43.5 features).

Summary. This section introduced the use of PMI and decision trees not only as baselines

against the semantic-based models in Section 6.2.2 but also as diagnostic tools to identify

strongly indicative concept labels, where the presence of label l almost guarantees that the

image is annotated with class c. While having predictive features is generally desirable, they

can also lead to overfitting and a lack of generalisability, as demonstrated in this section.

Our results showed that semantic-based models, as represented in Table 6.5, outperformed

PMI-based and decision tree classifiers, despite these baselines performing a simpler task of

multi-class classification with discrete features as input.
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6.2.4 Generalising Input Labels

This section proposes solutions that can be used jointly or individually to fix the fine-granularity

of visual concept labels.

Most generic annotation. imSitu provides three annotations per image. These annotations

are structured in verb frames where the role and value of each object are specified. Section 6.2.2

prioritised the richness of input representation by selecting the most populated frame (i.e., the

one that has the fewest empty role values). However, in the “most generic” technique, the goal

is to label objects with the most generic labels. It is believed that the synset with the shortest

distance to the root represents the visual concept in its most generic form.

Coarse human labels. The annotations for people in imSitu images are done at a fine-grained

labels, specifying gender, stage in life (e.g., adolescence and baby), occupation (e.g. surgeon

and welder), or social status (e.g., husband). Our emphasis on human labelling stems from the

significant presence of people in the dataset, with each image depicting a person or a group of

people. The dataset contains 628 synsets for labelling humans, and that number is after applying

the previous technique (i.e., selecting the most generic annotation). These fine-grained synsets

can be problematic, as they enable the machine learner to access information not intended

to be part of the input (i.e., information leakage). The conversion process to generic labels

is straightforward since the basic-level labels (i.e., the target labels for conversion) are pre-

defined; labels describing an individual human are converted to person, and labels describing a

group of humans are converted to people.

Yolo9000 Labels. Another technique to tackle this problem is to use a well-crafted taxonomy,

suitable for the visual domain. More specifically, we paid specific attention to taxonomies

designed for object-based tasks such as classification or detection. Such taxonomies tend to

satisfy two conditions: visual concreteness of objects and entry-level terminology. This should

also allow us to evaluate I2A in a more practical setting where the input is labelled at the same

level as current state-of-the-art methods.

Initially, we considered using the MSCOCO taxonomy, but its coverage of imSitu objects is

quite lacking, covering only 17% of imSitu labels. Yolo9000 (Redmon and Farhadi, 2017), on

the other hand, has broad coverage of objects at different granularities. We used the WordNet

hierarchy to rank the granularity of Yolo9000 classes, from the most generic to the most spe-

cific. The top 15 generic labels were removed as they were found to be too generic (e.g., object

and substance). This technique attempts to match every concept label in imSitu to a Yolo9000
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Table 6.10: The performance of the average pooling technique (detailed in Section 6.2.2) when
using four levels of input label granularity (i.e., visual concept labels in the image).

No Label granularity Features Top1 Top5

1 most generic annotation 4,574 50.37 66.88

2 most generic annotation + coarse human labels 4,110 47.68 63.57

3
most generic annotation + coarse human labels

+ YOLO9000 labels 3,102 42.05 57.13

4 basic-level + coarse human labels 667 31.14 46.72

Original labels (avg-pooling) (Sec. 6.2.2) 5,450 51.11 67.65

class, starting from the most generic Yolo9000 class at the top of the list.

Basic-level concepts. The basic level refers to the level of abstraction that humans are most

familiar with compared to other levels (e.g., dolphin is the basic level for grampus griseus).

Many studies have proposed methods for selecting the basic-level (or the entry-level) term of

objects (Ordonez et al., 2013; Izquierdo et al., 2007).

We employed the Izquierdo et al. (2007) tool to convert imSitu concept labels to basic

levels. This tool uses the structural properties of WordNet, such as hypernym, synonym, and

antonym, to automatically identify the basic concepts. Specifically, the tool considers the total

number of relations of each synset and rejects potential basic levels that do not represent a

minimum number of synsets. However, we noted that the tool may generate overly generic

labels for input labels near the basic-level and may not be effective for very specific levels,

resulting in synsets that are still too fine-grained.

Results. For each of the approaches listed in Table 6.10, we replicated the avg-pooling exper-

iment from Section 6.2.2, only varying the input label granularity. The table shows that utilising

the most generic technique (first row of the table) led to a slight decrease in performance. The

combination of this technique with converting human labels to coarser labels (second row)

resulted in a further decrease of three percentage points for both top1 and top5. The combina-

tion of the previous techniques with the Yolo9000-based approach (third row) led to a drop in

performance by approximately six more percentage points. The fourth row shows the results

of combining the basic-level approach with coarse human labels, causing another significant

decrease in performance of 11 points.
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Table 6.11: Best input and target representation as studied independently. The list shows the
top two methods for representing inputs from the previous sections in this chapter, as well as
the top two methods for representing targets from Chapter 5.

Input representation Target representation Supervised Zero-shot
Top1 Top5 Top1 Top5

ImageNet-21K-P (Sec. 6.1)
google-news (Ch. 4)

40.54 60.01 20.60 45.43
pseudo sentences (Sec. 6.2) 70.42 82.30 21.50 47.32

ILSVRC (Ch. 4)
avg-verbs (Sec. 5.2) 32.90 52.24 20.21 44.75
processed-5K-10C (Sec. 5.4) 34.20 55.08 20.89 44.90

Discussion. To assess I2A’s robustness to input label granularity, we conducted an experiment

where the training and evaluation granularities were different. A model trained on the original

labels (fifth row) performed poorly when evaluated on coarser granularities (second row in

Table 6.10), with a top1 score of 37.30% and top5 score of 53.13%. While reversing the setup

improved the results (top1: 42.75% and top5: 58.44%), it still did not perform as well as when

the granularity was consistent between training and evaluation (second row). These results

suggest that I2A lacks robustness and that training on fine-grained level of granularity can

negatively impact performance if that level cannot be replicated in real-world scenarios, as

might be the case with the imSitu dataset.

6.3 Combining the Best Image and Target Representations

In the previous sections, we have demonstrated that improving the input representation results

in better performance than improving the target label representation, as seen in Table 6.11. In

this section, we aim to investigate whether combining the most effective methods for repre-

senting the target label with those for representing the image input can further enhance the

outstanding performance achieved by the optimal input representations.

6.3.1 Method

We created four different combinations by pairing the two most effective input representations

with the two most effective target label representations.

To represent the image inputs, we selected the best-performing technique identified in Sec-

tion 6.2, which involves using pseudo sentences. However, given (1) concerns voiced above

about information leakage arising either from the method of sentence construction or the fine

granularity of concept labels, and (2) we have studied both semantic-based and visual-based



CHAPTER 6. VARYING THE REPRESENTATION OF IMAGES 111

Table 6.12: Best individual representation combined. The performance of I2A when combin-
ing the best methods for input representation with the best methods for target representation.

Input representation Target representation Supervised Zero-shot
Top1 Top5 Top1 Top5

ImageNet-21K-P (Sec. 6.1)
processed-5K-10C (Sec. 5.4)

41.67 62.60 23.86 49.76
pseudo sentences (Sec. 6.2) 71.68 84.12 24.84 51.19

ImageNet-21K-P
avg-verbs (Sec. 5.2)

40.48 60.53 22.88 48.68
pseudo sentences 70.29 82.34 24.63 52.10

representations, we have also decided to include the best-performing visual-based method,

ImageNet-21K-P.

For target label representation, we selected the most effective techniques identified in Sec-

tions 5.2 and 5.4.1, which outperformed the original Google-News embeddings. To facilitate

easy comparison, we summarised the results of these four methods in Table 6.11.

6.3.2 Results

Our analysis of the combined image and target representations reveals several important in-

sights. Firstly, the use of the processed-5K-10C post-processing technique from Section 5.4.1,

which involves a matrix of 5K verbs and the removal of the top 10 components, enhances per-

formance in both learning settings, consistent with our prior findings (row 1 Table 6.11 vs. row

1 Table 6.12).

On the other hand, our analysis revealed that using the avg-verbs method for target repre-

sentation did not result in improved performance in the supervised setting (row 1 Table 6.11

vs. row 3 Table 6.12). However, we did observe a comparable improvement for avg-verbs in

the zero-shot setting. This finding is consistent with our earlier findings in Chapter 5, which

reported limited benefits of enhancing the semantic lexical representation in the supervised set-

ting but demonstrated potential advantages in the zero-shot setting. These observations suggest

that the zero-shot performance can be further improved when combining the best of both input

and target representations.

6.4 Summary

This chapter explored the impact of two main types of image feature extraction methods on verb

prediction: visual-based and semantic-based. Visual-based extractors operate on raw images

and extract low-level visual features such as shapes and textures. In contrast, semantic-based
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extractors require an oracle, which could be machine-based or human-based, to identify name-

able concepts depicted in the image. The semantic-based extractor then extracts features from

these concept labels.

In Section 6.1, Convolutional Neural Networks (CNNs) were used as visual-based extrac-

tors, with the pretraining dataset being the main variable to determine the characteristics that

matter for verb prediction. Specifically, the study explored whether a larger pretraining dataset,

a more challenging pretraining task such as multi-label classification, or a more relevant pre-

training dataset such as action prediction could improve the performance of the verb prediction

task.

The results revealed that using a massive pretraining dataset (ImageNet-21K-P) signifi-

cantly enhanced supervised performance, outperforming other visual-based image feature ex-

tractors and the best techniques from Chapter 5 such as pseduo-random and processed-5K-

10C. However, this improvement was not observed in zero-shot, only matching the best tech-

nique from Chapter 5 in this setting (processed-5K-10C). Combining the best feature extractor

(ImageNet-21K-P) with the best target representation (processed-5K-10C) further improved

performance, achieving an impressive 23.86% for top1 and 49.76% for top5. Overall, this sec-

tion highlights the importance of pretraining datasets in improving verb prediction performance

and provides insights into the factors that impact the effectiveness of pretraining datasets.

Section 6.2 focused on the second type of feature extractors, the semantic-based extractors,

which operate on a set of labels denoting concepts that appear in the image. In this section,

the concept labels provided by the authors of imSitu, annotated by humans, were used. Two

techniques were explored for feature extraction from these labels: (1) applying a pooling oper-

ation over the distributional embeddings of these concepts, and (2) using a task-specific model,

which was a sentence encoder for a similarity task in this case.

The experiments demonstrated that both techniques led to substantial improvements in su-

pervised setting, with accuracy increasing by up to 73.7% and 46.3% for top1 and top5 re-

spectively, compared to the I2A model from Chapter 4. It is worth noting that these figures

represent relative improvements, rather than absolute values. However, in the zero-shot setting,

the improvements were not as significant, with top1 improving by only 20.6% and top5 by only

17.3%.

The remainder of Section 6.2 aimed to determine the reason for the discrepancy in perfor-

mance between supervised and zero-shot scenarios. Specifically, the investigation focused on

whether the discrepancy was due to approaching the best capability of I2A in the zero-shot

setting or the possibility that the concept labels provided an unfair advantage in the supervised

setting. This section focused on the latter possibility and explored the level of granularity of
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the imSitu concept labels and their associations with imSitu classes (verbs). In Section 6.2.3,

it was demonstrated that certain concept labels strongly indicate the presence of a particular

class. Specifically, the presence of label l almost guarantees that the image is annotated with

class c. Section 6.2.4 conducted supervised experiments where the level of granularity of the

concept labels was varied. The results showed that as the labels became coarser, performance

decreased rapidly.

In future work, it would be useful to replicate the same experiment in the zero-shot setting

to determine whether the same rate of decrease occurs or not. The goal would be to investigate

whether the fine granularity of the imSitu dataset provides any additional benefit for zero-shot

learning. It is possible that coarser labels may be just as effective, or even more so. Therefore,

by examining the impact of different levels of granularity in the zero-shot setting, we can gain

insights into the most suitable labelling scheme for zero-shot verb prediction tasks.



Chapter 7

Conclusion

7.1 Summary

Over the last decade, the field of artificial intelligence has experienced a remarkable surge in

progress, with the development of increasingly large models that require vast computational

resources for their training due to the high number of parameters involved. These models

have allowed for significant advances in a range of applications, including natural language

processing, and computer vision, among others.

In this thesis, we have contributed to this progress by developing a framework that leverages

these massive resources to tackle the challenging task of verb prediction. Traditionally, this

task has been oversimplified in the literature as predicting a single verb that describes a single

interpretation of the action. However, our framework takes a more sophisticated approach by

taking into account the multiple possible interpretations of actions.

Our approach overcomes the limitation of supervised learning, which would require training

with all possible verbs that could be used for describing actions in images. Instead, our frame-

work can describe image actions using verbs that were not observed during training, making it

more practical and efficient.

Concretely, in Chapter 3, we introduced our I2A framework for predicting verbs that can be

used for describe image actions. The I2A framework is capable of training models in supervised

and zero-shot settings. The chapter discussed the framework’s components in detail and also

discussed the role of distributed lexical representations.

In Chapter 4, we presented a diverse set of experiments using commonly used off-the-shelf

components to evaluate the performance of the I2A framework, serving as a benchmark for

subsequent chapters. We conducted extensive analyses to assess the framework’s effectiveness

on different groups of classes, such as concrete and abstract verbs, providing valuable insights
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into its strengths and limitations. Furthermore, we carried out a comprehensive set of analyses

to understand the framework’s failures, identifying the primary causes of errors in the verb

predictions. Specifically, we analysed the impact of the pretraining dataset of the image feature

extraction component and the properties of imSitu images. We also analysed the impact of

distributed representations. These analyses provided valuable insights into the limitations of the

current framework and suggest possible avenues for future research to address these challenges.

In Chapter 5, we investigated the impact of varying the representation of target labels

(verbs) on the performance of the I2A framework. We introduced several techniques to im-

prove the representation of lexical embeddings, including applying post-processing on existing

embeddings and training new ones from scratch. Our experiments demonstrated that simple

post-processing techniques are not only efficient but also far superior to building bespoke em-

beddings from scratch. We showed that by applying one of these techniques to the GoogleNews

embeddings, we achieved state-of-the-art performance on the verb prediction task, outperform-

ing the best-performing approach in the literature, so far as we are aware. Moreover, our

experiments highlighted the importance of incorporating semantic information into the model

to enable effective zero-shot learning of verb prediction. We also analysed the impact of dif-

ferent embedding sizes and training corpora genres and sizes on the framework’s performance.

Overall, Chapter 5 provides valuable insights into the role of lexical embeddings in the I2A

framework’s performance and identifies effective techniques for improving the performance of

the I2A framework.

In Chapter 6, we investigated the impact of varying the representation of input images, con-

sidering two main types of image feature extraction: visual-based and semantic-based. Sec-

tion 6.1 focuses on the visual-based extractor, which expects the input to be raw images (e.g.,

jpeg files) and extracts low-level visual features of images such as textures and shapes. We

solely focused on one specific type of visual extractor (i.e., CNNs and in particular variants of

ResNets) varying only the pretraining dataset. The goal was to determine what characteristics

of pretraining datasets matter to the task of verb prediction. Our findings revealed that the size

of the pretraining dataset is key for improving the performance of I2A.

Section 6.2 explored semantic-based feature extraction, which involves the use of an oracle

to label key visual concepts in input images, such as objects, scene type, and spatial relations.

The extraction process then operates on these labels using two techniques: pooling of the distri-

butional embeddings of the labels or utilising a sentence encoder trained to perform a sentence

similarity task. Our research showed that semantic-based extractors outperformed visual-based

extractors, including the default option from Chapter 4, in the supervised setting. However, we

found that the improvements were not as significant in the zero-shot setting.
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In addition, we found that both semantic-based approaches performed better than the deci-

sion tree classifier, which serves as a robust baseline and was also trained using oracle-supplied

visual features. We also used the decision tree baseline and a PMI-based classifier to investi-

gate the relationship between imSitu classes and visual concept labels. These baselines were

ideal for the task due to their interpretability. Our study revealed that certain visual concepts

were highly indicative of the target class, to the extent that it suggested a form of data leakage.

Lastly, we recommended coarsening the visual concept labels and showed that while supervised

performance is impressive, it rapidly decreases with coarser labels.

7.2 Future Work

While the research presented in this thesis provides valuable insights into the capabilities of the

I2A framework, it is important also to consider future directions that could expand upon these

findings. In this section, we outline critical areas that require further investigation, providing

potential avenues for future research.

One of the critical areas for future work involves the exploration of combining various

visual feature extractors instead of relying solely on a single CNN. The argument is that I2A

requires diverse visual features that cannot be provided by a single CNN alone. To tackle this

issue, a possible solution would be to develop separate CNNs, each focusing on extracting

features related to objects, scene type, and spatial relations. This idea is based on the promising

performance of the pseudo-sentence feature extractor discussed in Section 6.2.2, which encodes

vital information about objects, the scene, and spatial relations.

An additional area for future research is the definition of the embedding space and the inter-

pretation of its points. In Chapter 4 and most of Chapter 5, the points in the space correspond

to the word embeddings themselves, with the main exception being Section 5.2 where points

represent the average of verb forms. To further this idea, it may be beneficial to have these

points represent the average of multiple definitions or glosses of verbs, or the average of verb

instances in various sentences that exhibit the specific meaning we are targeting, as suggested

in Chapter 5.

The use of transformer techniques represents a promising avenue for exploration due to

their advanced ability to seamlessly integrate multiple modalities. What makes these tech-

niques even more fascinating is their ability to scale to unprecedented sizes, both in terms of

the training dataset and model parameters. We have witnessed datasets grow from hundreds

of thousands or millions of samples to hundreds of millions or even billions, and model sizes

grow from tens of millions to billions of parameters. However, to fully harness the potential of
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transformers, a significant rethinking of the framework design is necessary. Thus, a mere com-

ponent replacement of the current framework with transformer-based ones (as demonstrated

with the pseudo sentence method in Section 6.2.2) may not result in any further improvements.

It is also crucial to further investigate the set of verbs chosen for training or testing in the

context of I2A models. This exploration can provide a deeper understanding of the characteris-

tics of these verbs and complement the findings presented in Section 4.2. To better understand

the characteristics of these verb classes, we must address two critical questions. First, we

need to explore what factors cause I2A to excel at classifying certain verbs when trained in a

supervised setting while struggling with others? Second, we need to determine whether it is

necessary or beneficial for I2A models to use all verbs that perform well under the supervised

setting to achieve optimal zero-shot performance on a completely new set of verbs?

Finally, it would be worthwhile to examine the impact of training set size on the perfor-

mance of I2A. By plotting performance against training set size, we can determine whether

performance plateaus or continues to increase significantly as we approach the maximum train-

ing set size in imSitu. This analysis can have significant implications for determining whether

increasing the training set size is a worthwhile investment of effort and resources.

This section outlined several key areas that could potentially improve the performance of the

I2A framework and explored possible avenues for future research, including the combination of

different visual feature extractors, the redefinition of the embedding space, and the integration

of transformer techniques. Lastly, we argued for further exploration of the set of verbs used for

training or testing the I2A model, which should provide insights into the critical factors that

determine the success of I2A in the zero-shot setting.
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