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Abstract

5G and beyond is envisioned as a flexible and heterogeneous network that supports

use cases with a wide range of requirements. This thesis focuses on the optimisation

of physical RB and power allocation among users, bandwidth allocation among band-

width part (BWP)s, and data routing and user association in vehicular networks in a

wireless network, considering the concept of network slicing. All the above-given ele-

ments involve solving a complex joint optimisation problem with multiple objectives

and constraints, including minimising power consumption, maximising bandwidth and

energy efficiency, ensuring the quality of service, and maintaining network slicing re-

quirements. This thesis addresses the challenges of solving joint optimisation prob-

lems by proposing novel algorithms and techniques that enable efficient and effective

optimisation for the above-given objectives. This thesis, therefore, employs three op-

timisation tools, namely, Mixed-Integer Linear Programming (MILP), heuristics and

machine learning.

The study considers a city environment with multiple cells that support radio slicing

and multi-numerology techniques. Randomly located users generate traffic demands

characterised by data rate and delay requirements. Additionally, the vehicles in the

network serve as mobile Integrated Access and Backhaul (IAB) nodes, referred to as

vehicular base station (VBS). In this work, the backhaul network utilises mmWave

frequency bands, while the access links operate in sub-6 GHz frequency bands. The

developed model can be flexibly adapted to support other frequency distributions be-

tween backhaul and access networks. The VBSs establish communication links with

nearby BSs and users, facilitating the exchange of data. This combination of mmWave

and sub-6 GHz frequency bands allows for efficient and reliable communication be-

tween the VBSs and users, enabling the seamless operation of the IAB network for

iv



vehicular-based backhaul and access communication.

In the MILP optimisation, we consider the weighted objectives of minimising the total

transmit power in the downlink direction and co-channel interference (CCI) while

maximising the number of simultaneously served users. MILP efficiently allocates RBs

and power to the users, bandwidths among BWPs, and makes data routing and user

association for the proposed optimisation framework while considering CCI and the

many required constraints. MILP allows the simultaneous optimisation of multiple

objectives, resulting in an effective and efficient optimisation strategy in the vehicular-

based mmWave backhaul network.

A multi-objective problem involving multiple dimensions causes an exponentially in-

creasing number of parameters and variables, therefore, prolonged computation times

and the need for extensive verification of obtained outputs. Hence, we propose a

hybrid optimisation framework designed to address the complex problem of resource

allocation and routing in multi-numerology systems with multiple users and sources.

By combining heuristic and meta-heuristic approaches, specifically genetic algorithms,

we overcome the performance limitations of MILP and provide an efficient, effective,

reliable and alternative solution. Furthermore, the same scenario with a low number

of users is employed in MILP and heuristic algorithms, and the outputs are compared

for verification purposes.

In addition to the heuristic algorithms, we also incorporated an Reinforcement Learn-

ing (RL) algorithm to further reduce decision time for the optimisation problem. We

utilised various techniques to optimise power and numerology allocation among users

in a pre-allocated BWP environment. With these techniques, we aimed to achieve

optimal resource utilisation while meeting the various requirements of users in a 5G

and beyond RAN.
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Chapter 1

Introduction

1.1 Background

The concept of economics, which deals with allocating limited resources to satisfy

unlimited human desires, applies to various fields. The resources are always limited

and must be shared efficiently among those who want a share. These resources could

range from government grants for researchers to food for the family dinner table or a

toy shared by two siblings over time.

In the context of mobile networks, specifically Radio Access Network (RAN), the re-

sources are physical resource blocks that must be efficiently allocated to satisfy multiple

objectives, including user requirements, fairness, and efficiency, while also adhering to

various constraints such as limited bandwidth, limited transmission power, and inter-

ference limitations. Fifth Generation New Radio (5G-NR) networks provide a flexible

and service-oriented structure to meet diverse user needs. In this thesis, we optimise

resource allocation and routing for 5G-NR RAN, considering the flexible nature of

5G-NR networks and the aforementioned requirements and constraints.

With the emergence of 5G-NR networks, there is a need to optimise resource allocation

and routing to meet the diverse needs of users while ensuring efficiency. The approach

presented in this thesis considers multiple objectives, including user requirements, and

leverages the flexible nature of 5G-NR networks to achieve efficient resource allocation

and routing. This work contributes to the ongoing efforts to improve the performance

of 5G-NR networks and provides a foundation for future research.
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1.2 5G-NR Overview

5G-NR networks offer multi-Gbps peak data speeds, ultra-low latency, high reliability,

and enhanced network capacity to the users [1]. However, more than these improve-

ments are needed to call 5G-NR a new generation of mobile networks. The previous

generations of mobile networks utilised the one size fits all architecture; however, 5G-

NR provides a service-oriented architecture and flexibility to the vertical industries

[2]. Thus, 5G-NR supports multiple services on a virtually separated single physical

network [3]. Therefore, network slicing is one of the critical elements of 5G-NR tech-

nology; it allows to operate logically separated services with different requirements in

the same architecture [3].

A network slice refers to a collection of Core Network (CN) and RAN functions, where

these functions’ settings are configured to satisfy the various requirements of given

use cases regarding functionalities (e.g. security, mobility, support) and delivery per-

formance (e.g. latency, reliability, capacity) [4]. Network slices are the mechanism

that allows the coexistence of a wide variety of services with various requirements [5].

For example, the International Mobile Telecommunications (IMT) Vision document

defines 5G-NR in terms of eight parameters regarding; latency, connection density,

network energy efficiency, peak and user-experienced data rate, spectrum efficiency,

traffic capacity, and mobility [6]. These parameters are illustrated in Fig. 1.1 with the

comparison with the previous generation [6].

1.2.1 Virtualisation of the Network

5G-NR differs by allowing logically separated and isolated flexible networks from ex-

isting one-type-fits-all networks [7]. Software Defined Networking (SDN) and Network

Functions Virtualization (NFV) can be simultaneously utilised to virtually separate the

single physical network [8]. In 5G-NR, SDN and NFV are employed at the higher com-

munication layers. SDN decouples the control and forwarding planes where the former

is logically centralised in a software entity and the latter consists of high-performance

switches [9]. NFV virtualises all the network functions to create end-to-end isolation

among network slices ([10]). Providing isolation among network slices and efficiently

utilising radio resources is essential. SDN creates large and complex networks and

manages these networks effectively while abstracting the infrastructure from hardware

2
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Figure 1.1: Enhancement of key capabilities from IMT-Advanced to IMT-2020[6]

for virtual networks [11].

Utilising dedicated hardware increases the Capital Expenditure (CapEx) and Oper-

ating Expenses (OpEx) of network operators and causes ossification [12]. SDN and

NFV decouple network functions from dedicated hardware in the mobile network [12].

Therefore, SDN and NFV reduce the dependency on application-specific integrated

circuits.

1.2.2 5G-NR Use Cases

5G-NR provides the flexibility to support services with diverse requirements in the

same network. Three major network service classes are defined for 5G-NR; enhanced

Mobile Broadband (eMBB), Ultra-Reliable and Low-Latency Communication (URLLC),

and massive Machine-Type Communication (mMTC) [13]. eMBB is the successor of

the classic mobile broadband connectivity scenario where high data-rate requirements

are provided to support multimedia and data services [14]. URLLC has strict con-

straints for latency and reliability, where the former shall be less than 1 ms for end-

to-end latency, and the latter is expected to provide 99.99% reliability [15]. Internet
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of Things (IoT) refers to the concept of connecting physical objects (i.e. household

appliances, vehicular sensors or probes, healthcare equipment) to the existing inter-

net infrastructure [16]. mMTC slice supports the massive connectivity demands for

IoT devices [17]. The emphasis of the above-given parameters differs for each major

service. Fig. 1.2 shows the importance of key performance indicators for each service

[6].

Figure 1.2: The importance of key performance indicators in different usage scenarios
[6]

1.2.3 Multi-Numerology Concept

The 5G-NR flexibility is enabled with multiple deployment options provided by multi-

ple numerologies. In 5G-NR systems, the numerology term identifies the specifications

of the radio frame where these specifications indicate the sub-carrier spacing (SCS).

For example, LTE has a fixed SCS with 15 kHz, whilst 5G-NR has various types of

SCSs and distinct subframe times [18]. The numerology accepts 15 kHz SCS as a base

frequency and simply multiplies it by a factor of 2µ where µ ∈ N and 0 ≤ µ ≤ 4.

One resource block (RB) includes 12 of those subcarriers; therefore, the bandwidth of

one RB of the numerologies can be calculated by multiplying with 12 with their SCS

frequency (i.e. the bandwidth of each RB of the first numerology can be calculated

as 12× 15kHz = 180 kHz [19]). Figure 1.3 shows the SCS size of each numerology in

time and frequency domains.

Each time slot includes 14 symbols (excluding 60 kHz extended, it has 12 symbols); in
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Figure 1.3: Slot length and frequency occupation for the given numerologies

other words, the symbol duration changes for each numerology [20]. Since one radio

frame equals 10 ms and consists of ten sub-frames, each sub-frame has a different

number of slots given in Table 1.1 [20].

Table 1.1: Numerology parameters [20]

µ 0 1 2 2 3 4

SCS = 15x2µ (kHz) 15 30 60 60 120 240
Slot duration 1/2µ (ms) 1 0.5 0.25 0.25 0.125 0.0625
OFDM Symbol Duration (us) 66.67 33.33 16.67 16.67 8.33 4.17
Number of Slots in one Sub-
Frame

1 2 4 4 8 16

Number of Sub-Frames in one
Frame

10 20 40 40 80 160

Cyclic prefix (CP) Normal Normal Normal Extended Normal Normal

The slot length of the first three numerologies for one sub-frame is given in Fig. 1.4

[21].

5G-NR services utilise the numerologies to provide differing user requirements. For

example, mMTC is delay-tolerant, therefore, prefers small SCS with large symbol

duration, whilst eMMB employs both small and large SCSs according to the channel

(e.g. fast fading, Doppler spread, etc.) to provide high throughput demands [22].

Likewise, URLLC requires reliability and low end-to-end delay, as the name implies;
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Figure 1.4: 5G-NR time domain structure [21]

hence, it requires large SCS to afford these requirements [23].

1.2.4 Bandwidth Part

The multi-numerology deployment in the same radio resources causes an additional in-

terference, known as inter-numerology interference (INI) [24]. Resource elements in the

same numerology are orthogonal to each other; however, utilising different numerolo-

gies disrupts orthogonality and creates INI [22]. Therefore, the correlative services

that use the same numerology are grouped to provide BWP that helps to decrease the

INI and the necessary guard bands [25]. In order to provide BWP, the carrier band-

width is isolated to narrower parts that include contiguous RBs that belong to the

same numerology, taking into account the service requirements [18]. In other words,

the physical resources are divided into several BWPs with different numerologies that

consider the data rate and latency requirements of the user equipments (UEs). Fur-

thermore, the standard strictly describes the activation of BWPs; according to [18], an

UE can be designed with a single active downlink BWP whilst up to four BWPs can

be configured to a single UE. On the other hand, single carrier bandwidth supports

multiple BWPs [26].

1.2.5 5G-NR Frequency Range and Spectrum

5G-NR is designed to operate in both the lower frequency ranges, up to 100 MHz

bandwidth for Frequency Range 1 (FR1) and up to 400 MHz bandwidth for Frequency
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Range 2 (FR2) which are also known as sub-6 GHz and Millimeter Wave (mmWave)

frequency, respectively [20]. FR2 is globally identified between 24.25 GHz to 71 GHz;

this frequency band is also known as mmWave due to the wavelength of the frequency

[27]. The logic behind employing higher carrier frequencies is to satisfy the continuously

boosting traffic, higher consumer data rates and the related need for more spectrum;

therefore, wider transmission bandwidths [28]. mmWave frequency bands have the

larger available bandwidth for very high throughput [29].

In urban scenarios, including crowded areas and hotspots with pervasive smartphone

users, eMBB leverages from high network capacity of mmWave [30]. Moreover, video

streaming/broadcasts everywhere augmented and virtual reality (AR/VR) for en-

hanced online gaming experiences, and the evolution of the 5G-NR smart factory

applications enjoy the low latency characteristics of 5G-NR mmWave [30].

On the other hand, mmWave frequency bands have some significant disadvantages.

With the increasing frequency, mmWave signals suffer from high path loss and pene-

tration loss [31]. Also, decreased RF hardware performance and the existence of aux-

iliary systems for mmWave are other disadvantages [14]. One of the pioneer studies

in [32] proved that beamforming is a solution to achieve high-performance communi-

cation at mmWave frequencies. In 5G-NR, IAB improve the performance of mmWave

frequencies without requiring fibre backhaul connection with the core network [33].

1.2.6 Integrated Access and Backhaul

The global data traffic demand for mobile broadband systems doubles each year be-

cause of the boost of multimedia streaming [34]; hence, network densification increases

in parallel. Also, 5G-NR wireless network links are anticipated to be economical and

feasible to provide flexibility even in dense network deployments. Hence, instead of em-

ploying fibre backhaul everywhere, wireless backhaul communications gain importance

to increase the network capacity.

Although the wireless backhaul was considered in the past, it was based on non-

standardised solutions that relied on line-of-sight (LOS) or point-to-point connections

[35]. IAB enables backhaul connectivity without fibre deployment for 5G-NR services;

therefore, IAB enables flexibility in dense networks without densifying the transport

network [36]. Thanks to IAB, proportionally increasing the wired transport network is
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avoidable when the wireless network deployment for 5G-NR is utilised [29]. IAB sup-

ports access and backhaul in mmWave and sub-6GHz carrier frequency bands; 3GPP

defines in-band operation where access and backhaul links partially or fully overlap in

frequency and out-band operation where access and backhaul links use different fre-

quency resources [36]. Moreover, the out-band operation can utilise different frequency

ranges simultaneously (e.g. mmWave for backhaul and sub-6 GHz for access) [37]. IAB

nodes support multi-hop deployment utilising the same or different frequency bands

for access and backhaul [27].

IAB can be utilised to serve users that are far from mmWave base stations and require

high data rates, and low latency demands [27]. Users recognise and connect to IAB

nodes as regular base station (BS); moreover, IAB nodes create their own cells, which

can be used in special events or emergencies as temporary deployments of small cells

[28].

1.3 Vehicular Networks

Intelligent Transportation Systems (ITS) need digital applications to realise the vision

for the roads, which desires to eliminate road accidents and reduce congestion and

emissions [38]. Autonomous vehicles should exploit the information in their vicinity

and exchange messages among themselves to improve road safety [39]. Moreover, net-

work connectivity with reliable coverage is a factor in developing autonomous vehicles.

The information must be delivered in real-time, or as quickly as possible, and securely.

Increasing reliability and decreasing latency of data packets in 5G-NR help to improve

road safety and vehicular communication systems.

The 3rd Generation Partnership Project (3GPP) defines four types of vehicular com-

munications that allow for Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),

Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network (V2N) connections [40]. Vehic-

ular communications are combined under Vehicle-to-Everything (V2X) umbrella in

Release 14 [40]. V2Vs are networks in which cars communicate directly without any

external infrastructure. This type of Device-to-Device (D2D) communication can be

named sidelink communication [41]. The European Telecommunications Standards

Institute (ETSI) has defined two types of safety messages, cooperative awareness mes-
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sages (CAM) [42] and decentralized environmental notification messages (DENM) [43].

V2V and V2P exchange CAM and DENM messages among vehicles and pedestrians

via sidelink [44]. V2N enables to connect to a server supporting vehicular applica-

tions, and V2I refers to communications between vehicles and infrastructure such as

the roadside unit (RSU)s [4]. Vehicular communications types are illustrated in Fig.

1.5.

Figure 1.5: Vehicular communication types

V2X applications have limited coverage; in some conditions, V2X may be insufficient;

for example, if a vehicle detects some unexpected road condition and there is no vehicle

to communicate around it, the vehicle will not be able to send the information to others.

Moreover, V2X networks suffer from high mobility, delay, and packet dropping due to

their dynamic nature [45]. The high mobility causes non-stationary channel statistics

and high Doppler spread [46].

Hence, V2X has evolved into Cellular-V2X (C-V2X) to provide continuous connection

using cellular networks. By employing C-V2X, autonomous and connected vehicles’ re-

quirements can be satisfied more efficiently, even by utilising the Long Term Evolution

(LTE) network [47].

The service-oriented approach of 5G-NR services (eMBB, mMTC and URLLC) leads

to various verticals for the vehicular networks such as improved road safety [48], in-

vehicle experience and by paving the road to autonomous driving [49]. However, the

most distinguished specification of the 5G-NR for the vehicular communication is con-
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necting vehicles to everything with lower latency and higher reliability which is highly

critical for applications like remote driving, platooning, and advanced driving [50].

Furthermore, 5G-NR enables vehicular communication in real-time with enhanced

cryptographic-based security [39]. The service-oriented approach also ameliorates ser-

vices other than road safety for vehicles. 5G-NR C-V2X applications will harness the

power of network slicing as follows:

• To enable more autonomous vehicles on the road, data traffic must flow among

vehicles with low latency and high reliability. Therefore URLLC slice is employed

for self-driving or autonomous vehicles [51]. Moreover, safety applications such

as collision warning, blind spot, lane change warning, and adaptive cruise control

[52], platooning applications [53] enjoy the low latency and high reliability of this

network slice.

• eMBB slice is employed to serve infotainment services, which generally require

high user demands, high data rates, and high bandwidth requirements [41].

• Vehicles are getting smarter and filled with numerous sensors that collect, store

and send a massive amount of data. Internet of Vehicles (IoV) is a significant

branch of IoT [54] and is utilized in vehicular networks and traffic data. Fur-

thermore, D2D communication can be employed for mMTC applications where

mobile devices work as a relay for a group of mMTC sensors [55].

5G-NR is employed in highways (as well as the city centres) due to an increase in the

necessity of reliable coverage and low latency of communications. 5G-NR coverage map

[56] shows that network connectivity for vehicles is a crucial factor in the development

of autonomous vehicles and vehicular communications. Outside the city centres, Fig.

1.6 shows examples of the 5G-NR coverage for the UK, Japan, and France.

In addition to all, high speeds cause higher Doppler spread on highways. Therefore, in

order to satisfy vehicular demands, high bandwidth provided by higher numerologies

(possibly by URLLC slice) might be essential.
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Figure 1.6: 5G-NR coverage map for three different countries and regions [56]

1.4 Optimisation Tools

Optimisation tools are essential for solving resource allocation and routing problems in

mobile networks. These tools help to maximise the use of available resources, minimise

costs and energy consumption, and improve the overall performance of the network. In
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this section, we provide an overview of some of the most commonly used optimisation

tools, including MILP, heuristics, and Machine Learning (ML).

MILP is a powerful mathematical optimisation technique that can solve a wide range of

constraints and objectives but can be computationally expensive for large-scale prob-

lems. Heuristics, on the other hand, are rule-based or stochastic algorithms that can

quickly find good solutions for complex problems. Although they do not guarantee

optimality, they are useful for large-scale problems where exact methods like MILP

are impractical. ML techniques have gained popularity in recent years for their ability

to learn patterns and make predictions based on large amounts of data. In the context

of mobile network optimisation, ML can be used to predict network traffic patterns,

predict user demand, and even to develop decision-making models for resource allo-

cation and routing. ML techniques are particularly well-suited for applications where

data is abundant but analytical models are difficult to construct.

1.4.1 MILP

MILP is a robust optimisation tool that is well-suited for addressing complex optimi-

sation problems, such as resource allocation and routing. Many examples have been

provided in the Related Works Chapter to demonstrate its efficiency. MILP mod-

els consist of linear constraints and objective functions, where certain variables are

constrained to be binary numbers, and real numbers, for example, to show the user

association and the power allocation, respectively. The capability to incorporate a

diverse set of constraints and objectives renders MILP an appropriate optimisation

tool for a wide range of applications, including mobile network optimisation. How-

ever, the solution of large-scale MILP problems can be computationally demanding

and challenging.

In optimisation models, the first step is to determine an objective, which is a quanti-

tative measure of the system’s performance where this objective could be any quantity

that can be represented by a single number, such as profit, time, or potential energy

[57]. Variables and constraints characterise the model, and the aim is to find values

that optimise the objective. For example, MILP models for mobile network optimi-

sation typically include variables representing RBs and users. The constraints ensure

that the resources are allocated by taking into account user requirements, while the
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objective function aims to maximise the overall performance of the network. For exam-

ple, the objective function could be to minimise the power consumption of the network

while meeting the users’ demand for services.

In this thesis, the MILP optimisation model is presented in detail in Chapter 3. It

encompasses all constraints, variables, and objectives and is tailored to solve complex

resource allocation and routing problems in the context of mobile network optimisation.

1.4.2 Heuristics

Heuristics are algorithms that use rule-based or stochastic approaches to find quickly

acceptable solutions to complex problems. Unlike MILP, heuristics do not guarantee

optimality but can often find good solutions in a reasonable amount of time. Heuristics

are particularly useful for large-scale problems where the computational complexity of

exact methods such as MILP becomes prohibitive.

In addition to heuristics, meta-heuristics are also widely used in optimisation problems.

Meta-heuristics are higher-level strategies that guide the search for solutions by com-

bining multiple heuristics or modifying existing ones to improve their performance.

Meta-heuristics can help overcome some of the limitations of individual heuristics,

such as getting trapped in local optima or converging too quickly. Examples of meta-

heuristics used in mobile network optimisation include ant colony optimisation [58],

particle swarm optimisation [59], and genetic algorithms[60]. We have provided many

examples in both Chapter 2 and Chapter 4.

MILP optimisation is computationally intensive and requires significant computational

resources to find the optimal solution. In contrast, heuristic algorithms are designed

to provide solutions in a much shorter period of time, often at the cost of reduced

optimality. Thus, heuristic algorithms can be used as an alternative approach to find

sufficient solutions to MILP problems within a reasonable timeframe. Furthermore,

heuristic results can be compared with the optimal solution obtained through MILP

to evaluate the performance of the heuristic algorithm. By striking a balance between

computational resources and solution quality, heuristics can provide practical solutions

to large-scale optimisation problems in a timely manner.

Another reason to employ heuristic or ML algorithms is NP-hard problems. In compu-
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tational complexity theory, NP stands for ”nondeterministic polynomial time,” which

refers to a set of problems that can be solved in polynomial time by a nondeterministic

algorithm [61]. NP-hard, on the other hand, is a term used to describe the complexity

class of decision problems that are considered more difficult than those that can be

solved by a nondeterministic algorithm in polynomial time [62]. Therefore, solvers

may require exponential time to solve NP-hard problems. MILP can solve NP-hard

problems, but finding the exact solution for large-scale problems can be computation-

ally infeasible, making heuristic or ML algorithms necessary for finding satisfactory

solutions in a reasonable amount of time.

1.4.3 Machine Learning

Next-generation wireless networks are becoming increasingly complex, with diverse

service requirements and the need to use available resources efficiently. Traditional

approaches and limited data analysis tools might not be adequate for efficient and

cost-effective operation and optimisation [63]. ML is an optimisation tool that can

be utilised to solve complex resource allocation problems in 5G-NR networks. ML

techniques can learn patterns and make predictions based on large amounts of data,

making them suitable for predicting traffic patterns, user demand, and other variables

that affect resource allocation and routing decisions. Moreover, ML algorithms can

be used to predict the traffic demand for different parts of the network and allocate

resources accordingly [64].

ML techniques can be employed to optimise the power allocation and user association

in a network while ensuring compliance with user requirements, as demonstrated in

prior research [65]. The key advantage of utilising ML in this context is its ability

to learn from previous data and adapt to dynamic changes in network conditions.

This dynamic and flexible approach offers a promising solution to resource allocation

problems in the network domain.

However, ML also has some limitations. One of the significant limitations is the need

for large amounts of data for training the ML algorithms except reinforcement learn-

ing. In addition, ML algorithms may only be able to handle some types of optimisa-

tion problems and may require expert knowledge to design and tune the algorithms

properly. Finally, ML algorithms may not always provide an interpretable solution,
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making it difficult to understand why a particular decision was made. Despite these

limitations, ML has shown promise in solving complex resource allocation problems in

5G-NR networks and is an active area of research in mobile network optimisation.

RL is a subfield of ML that has also shown promise in resource allocation problems.

RL involves an agent observing an environment, then taking actions to build a policy

and receiving feedback as rewards or penalties based on the actions. The agent learns

to take actions through these trial-and-error interactions and by observing the envi-

ronment. RL has been applied to various resource allocation problems, such as power

allocation and radio resource management, and has shown to be effective in finding

optimal or near-optimal solutions. The examples and the context of ML are elaborated

on in Chapter 2 and Chapter 5.

1.5 The Summary of the Thesis

The main focus of our study is to optimise the physical RB and power allocation

among users in a wireless network, considering BWP allocation and the concept of

network slicing. Additionally, we aim to find the optimum route for data transmission

in vehicular networks where vehicles are employed as intermediate nodes. Therefore,

user association is another objective of the proposed optimisation framework. All the

above-given objectives involve solving a complex optimisation problem that considers

multiple objectives and constraints, including minimising power consumption, max-

imising RB utilisation, ensuring quality of service (QoS), and maintaining network

slicing requirements. Our study addresses these challenges by proposing novel algo-

rithms and techniques that enable efficient and effective RB allocation and data routing

in wireless networks. The study considers a city environment with multiple cells that

support radio slicing and multi-numerology techniques. Randomly located users gen-

erate traffic demands characterised by data rate in Mbps and delay requirements in

milliseconds (ms). Although there are two distinct requirements, the requirements are

related to each other to represent 5G-NR network slices. For instance, in our optimi-

sation framework, we consider three distinct user types: eMBB, which demands low

latency and high data rates; URLLC, necessitating both low latency and data rates;

and mMTC, characterized by high latency and low data rate requirements.
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Additionally, the vehicles in the network serve as mobile IAB nodes, referred to as

VBS. In the IAB (Integrated Access and Backhaul) network context, the backhaul

network utilises mmWave frequency bands, while the access links operate in sub-6

GHz frequency bands. The VBSs establish communication links with nearby BSs and

users, facilitating the exchange of data and information. This combination of mmWave

and sub-6 GHz frequency bands allows for efficient and reliable communication between

the VBSs and users, enabling the seamless operation of the IAB network for vehicular-

based backhaul and access communication.

In the optimisation problem, we consider the weighted objectives of minimising the

total transmit power in the downlink direction and CCI while maximising the num-

ber of simultaneously served users. The proposed framework utilises MILP to jointly

optimise multiple objectives. By employing MILP, the framework aims to efficiently al-

locate radio resources, such as physical RBs and power, while considering the trade-off

between power consumption, interference, and capacity. This approach allows for the

simultaneous optimisation of multiple objectives, resulting in an effective and efficient

resource allocation strategy in the vehicular-based mmWave backhaul network.

To address the challenges associated with optimisation problems involving multiple di-

mensions, such as the increased number of parameters and variables, prolonged compu-

tation times, and the need for extensive verification of obtained outputs, we employed

Genetic Algorithms (GA) as an alternative solution. GA provides a heuristic opti-

misation approach that can efficiently search for solutions in large search spaces and

has been widely used in various optimisation problems. In this thesis, we have de-

veloped two distinct GA algorithms that jointly optimise the aforementioned resource

allocation problem. These GA algorithms aim to find near-optimal solutions by itera-

tively evolving a population of candidate solutions based on genetic operators, namely

crossover and mutation, to explore the search space and converge towards optimal or

near-optimal solutions. By utilising GA as an alternative optimisation approach, we

aim to enhance the efficiency and reliability of the resource allocation process and

validate the outputs obtained from the MILP optimisation process.

In addition to the Genetic Algorithms, we also incorporated an RL algorithm to further

reduce decision time for the optimisation problem. We utilised a variety of techniques

to optimise power and numerology allocation among users in a pre-allocated BWP
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environment. With these techniques, we aimed to achieve optimal resource utilisation

while meeting the various requirements of users in a 5G-NR RAN.

1.6 Main Contributions

In this section, we outline the main contributions of this thesis and highlight the

key features that distinguish it from previous works. This thesis makes several key

contributions, including the development of a novel optimisation framework to address

the comprehensive resource allocation problem. This proposed framework considers

both sub-6 GHz (FR1) and mmWave (FR2) channel models and optimises bandwidth

allocation for BWPs and RB allocation for users while leveraging vehicles as routing

nodes to increase total system capacity.

The main contributions of this thesis can be summarised as follows:

• We propose an optimisation framework that jointly optimises three elements: the

bandwidth of multi-numerology BWPs, multi-user RB association and power

allocation in the downlink direction, and routing through VBS nodes. The

weighted objective function maximises the total number of served users and

minimises the total downlink transmit power and CCI to increase the power

efficiency and Signal to Interference-plus-Noise Ratio (SINR). Thus, the frame-

work can achieve maximum spectral efficiency for the same bandwidth.

• The network is a heterogeneous and flexible 5G-NR vehicular network that sup-

ports radio slicing for the various requirements of the users. The heterogeneity

is reflected by diverse user requirements, network slices and VBS nodes that

enable the out-band IAB backhauling. The flexibility is reflected by users that

can choose any numerology while ensuring their requirements are satisfied and

bandwidth allocation between BWPs. Users have data rate requirements that

must be fulfilled in a specific unit of time. Accordingly, the minimum numerol-

ogy requirements are determined according to the data rate and delay demands

of users.

• An inter-layer optimisation framework which includes both the physical and net-

work layers, is employed. This terminology derives from its interdependence and

interaction between the physical and network layer elements. In this optimisation
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framework, users can be served either directly by a BS that uses FR1 frequency

or indirectly by a VBS that uses mmWave for backhaul and FR1 for access. To

the best of our knowledge, no previous work considers the route selection for the

resource allocation optimisation problem. The optimisation framework increases

power efficiency by routing data through VBS nodes when necessary.

• Furthermore, we formulate the resource allocation optimisation for the above-

given problem as a Mixed-Integer Non Linear Programming (MINLP). The ef-

fective piecewise linearisation method resolves the difficulty of linearising a loga-

rithmic function. We demonstrate that the linearisation method works with less

than 0.04 % error.

• After the MILP optimisation, we leverage a hybrid optimisation framework that

leverages both heuristic and meta-heuristic approaches (genetic algorithm) to

concurrently optimise the bandwidth of multi-numerology BWPs, multi-user RB

association and power allocation in the downlink direction, and data routing

via out-band IAB nodes. The hybrid approach allows us to benefit from the

strengths of both methods and achieve a more effective optimisation solution.

• We generate the initial population using two algorithms. The first algorithm

assumes that each UE establishes a connection to the nearest source; therefore,

this algorithm is called the Nearest Source Genetic Algorithm (NSGA). In the

second algorithm, UEs are free to select any source; hence, this algorithm is

called the Total Random Genetic Algorithm (TRGA). There are slight differences

between these two algorithms in terms of the selection of individuals. To obtain

noteworthy results and verification, BSs, VBSs, and UEs are located in identical

locations used to obtain the MILP results.

• The MILP optimisation problem is computationally expensive; moreover, with

an increasing number of users, the problem becomes NP-hard. We solve the

same problem for the increased number of users that could not be solved by

MILP optimisation by leveraging hybrid heuristic algorithms.

• Then, we propose a novel downlink power allocation optimisation algorithm util-

ising Reinforcement Learning (RL), where the RL algorithm utilises a unique

reward function. This reward function effectively accomplishes two objectives
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at once. Firstly, the RL agent meets the data rate requirements of the user,

resulting in a positive reward. Secondly, the agent does not allocate more power

than requested to maximise the reward, which leads to an implicit minimisation

in the transmit power. The transmit power of the users is not located in the

objective function; still, the model minimises the transmit power.

• Additionally, we further enhance the RL algorithm to joint power and numerology

allocation in the downlink direction for the users, considering a 5G network

that supports multi-numerology, and includes multiple BWPs. A similar reward

function is employed to minimise power usage while simultaneously maximising

fairness among users.

This thesis aims to provide an in-depth analysis of the above-given critical aspects

of 5G-NR networks and their implications for the future of wireless communication.

Through a comprehensive review of existing literature, this thesis explores the key

challenges and opportunities of network slicing, bandwidth part allocation, and in-

tegrated access and backhaul in 5G-NR networks. The thesis also provides insights

into the state-of-the-art optimisation techniques such as MILP, genetic algorithms, and

deep reinforcement learning (DRL), and their potential to address the challenges and

opportunities of network slicing, bandwidth part allocation, and integrated access and

backhaul in 5G-NR networks. Finally, the thesis concludes with a discussion of future

research directions in this area and the potential impact of these features on the overall

wireless communication landscape.

In this thesis, we made some assumptions to mitigate the computational complexity.

However, the optimisation framework employed in this study has the capability to

scale up the complexity and handle more complex scenarios without compromising its

efficiency and effectiveness. For example, our focus is primarily on downlink commu-

nications throughout this thesis. Therefore, in the results sections of each chapter, we

present the transmit power allocated to each user by the corresponding base station in

the downlink direction. However, this approach can easily be extended to encompass

uplink communications.

Another assumption employed in this thesis is that the allocated data rate is equal to

the Shannon capacity. Since the choice of modulation techniques is not our primary
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concern, this assumption allows for the consideration of the maximum achievable data

rate. The assumption of the achievable data rate as Shannon capacity is widely used

in existing literature, as shown in [65], [66], [67], [68], [69], [70], [71], and [72]. By

abstracting the details of modulation schemes and encoding techniques, the focus is

directed towards optimising other aspects of the system, such as power allocation, RB

allocation, and bandwidth allocation among BWPs. Therefore, it is important to note

that while this assumption provides a useful approximation, the real achievable data

rate may be lower due to the choice of modulation techniques.

In this chapter, we have provided a brief introduction to the topics mentioned above

and presented our contributions. In Chapter 2, we conduct a comprehensive literature

review of related works in the field of resource allocation, data routing, ML, and heuris-

tic algorithms in 5G-NR networks. Chapter 3 outlines the channel and MILP optimi-

sation model, including its objectives and constraints, and presents results. Chapter 4

describes the heuristic algorithm, including its objectives and constraints, and presents

results by comparing them with optimisation outcomes. Chapter 5 provides a detailed

explanation of the ML algorithms and our proposed RL algorithm and compares its

results with those of the optimisation and heuristic algorithms. Finally, in Chapter 6,

we conclude the thesis and provide suggestions for future research.
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Chapter 2

Related Works

This thesis specifically focuses on 5G-NR RAN resources allocation , consider-

ing various aspects of 5G technologies, such as BWP partitioning, data routing via

vehicular nodes by employing out-band IAB for user association, co-channel and inter-

numerology interference, and multi-numerology employment. Furthermore, different

approaches were explored to solve the optimisation problem, including MILP optimi-

sation, genetic algorithms, and ML algorithms.

Before getting to the heart of the matter, an overview of the relevant literature is

provided in this chapter. Previous works and studies related to the research topic

are included in this literature review, setting the foundation for the research and

highlighting gaps and opportunities for further investigation in the 5G-NR resource

allocation and optimisation field.

2.1 Resource Allocation Optimisation

Radio resources refer to the physical resources used by a wireless communication system

to transmit and receive data over the air. These resources, including frequency bands,

time slots, bandwidths, RBs, and transmit power levels, improve network performance

and often require careful adjustments to achieve optimal performance [73]. Therefore,

the effective allocation of physical resources to efficiently utilise carrier bandwidth

resources in 5G wireless channels is a crucial challenge. Hence, the resource allocation

optimisation problem has garnered significant attention from researchers, resulting in

a substantial body of literature dedicated to this topic. We provided several examples
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from the literature to demonstrate the prevalence of resource allocation optimisation

problems in wireless communications.

Heterogeneous Networks (HetNets) refers to a type of wireless communication network

consisting of multiple types of cells with varying characteristics, such as different cov-

erage areas, cell sizes, and transmission power levels [73]. HetNets are designed to

enhance network capacity, coverage, and performance by integrating different types of

cells, such as macrocells, microcells, picocells, and femtocells, in a coordinated manner

[74]. These cells may operate on different frequency bands, utilise different access tech-

nologies, and serve different types of users. Since the users are covered by multiple cells

in HetNets, user association is also frequently seen in resource allocation optimisation

problems. 3GPP introduced the HetNets architecture in Release 12 [75]. In the 5G

HetNet environment, several smaller and simpler base stations, such as microcell BSs,

and relay nodes, are backing the current cellular networks to increase network capacity

and coverage area [76]. Previous studies, such as [74], [76], and [77], have surveyed the

resource allocation problem in 5G HetNets. The authors in [76] investigated the cur-

rent HetNets studies in the literature regarding user association, power and resource

allocation, and interference management. Similarly, radio resource management for

HetNets is surveyed in [77] considering spectrum and power allocation, user associa-

tion, interference management, and complexity. The authors of [74] present a detailed

survey on resource allocation in 5G HetNets, covering the definition of HetNets, various

network scenarios, different resource allocation models, and a classification of existing

resource allocation algorithms.

In the literature, many authors have conducted studies on resource allocation in Het-

Nets. The authors in [70] aimed to maximise the system energy efficiency in a non-

orthogonal multiple access HetNet through subchannel and power allocation. They

formulated the problem as a mixed integer nonconvex optimisation problem, consid-

ering co-channel and cross-tier interference. To acquire an optimal solution, they

proposed a suboptimal algorithm that alternately optimised the resource allocation for

macrocells and small cells, using convex relaxation and dual-decomposition techniques.

Additionally, they derived optimal closed-form power allocation expressions for small-

cell and macrocell user equipment using the Lagrangian approach. [78], the authors

proposed energy-efficient resource allocation algorithms for the downlink of femtocell
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HetNets. They considered a dense deployment of femtocells in the coverage area of a

central macrocell and optimised the energy efficiency of both femtocell and macrocell

users. The objective is to maximise the weighted sum of individual energy efficiencies

and the network energy efficiency while satisfying minimum throughput and fairness

constraints for delay-tolerant users, and some other network-related constraints. The

authors employed the subsequent convex approximation approach to address the com-

plex RB and power allocation challenge to transform the original problems into a series

of convex subproblems for more tractable optimisation. The authors in [71] proposed

a method for joint power and subcarrier allocation in a distributed MIMO system,

with the goal of eMBB and URLLC services. Different scheduling schemes, including

orthogonal and non-orthogonal schemes, were considered for subcarrier assignment to

improve spectral efficiency and meet the reliability requirements of URLLC. To ensure

low latency, short packet transmission was adopted for URLLC services. The problem

was formulated as a mixed-integer optimisation problem, aiming to maximise the en-

ergy efficiency of the system while adhering to QoS constraints. Due to the problem’s

intractability, a low-complexity algorithm was proposed to find a suboptimal solution.

Authors in [69] jointly optimise the user association and power allocation problem

for HetNets to maximise energy efficiency while satisfying user requirements in the

downlink direction without considering physical RB allocation.

As per the Shannon-Hartley theorem, the capacity of a communication channel can

be calculated as the product of the bandwidth and the spectral efficiency, where the

spectral efficiency is a logarithmic function of the SINR. Nevertheless, linearising a

logarithmic function can be challenging due to its non-linear nature. In [79], the

authors addressed this issue by employing the big-M method, which involves estab-

lishing upper and lower bounds for the logarithmic function to facilitate linearisation.

Furthermore, the authors proposed a dynamic two-stage design for downlink resource

allocation and baseband unit-remote radio head assignment in Cloud-RAN. They first

modelled the resource and power allocation problem as a MILP for real-time fluctu-

ating traffic and then proposed a Knapsack formulation for the baseband unit-remote

radio head assignment problem, aiming to improve QoS, power consumption and in-

terference management in C-RAN.

Numerous research studies have focused on investigating network slicing architectures
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primarily from the perspective of bandwidth allocation for BWPs only. Furthermore,

the majority of these studies have been limited to network scenarios with a single BS

and have yet to consider the effects of CCI or channel models [23] [80] [81]. This

highlights the need for further research incorporating these important aspects into the

design and optimisation of network slicing architectures for more realistic and com-

prehensive performance evaluations. In [23], a scenario with a single BS and multiple

numerologies for uplink and downlink is considered. The authors utilise the ratio of

average traffic load to capacity (i.e., normalised loads) as the optimisation objective.

A weighted sum of normalised loads is minimised to efficiently utilise resources for two

different services, eMBB and URLLC, each associated with a specific numerology. In

[80], an optimisation approach for multi-numerology-based adaptive numerology re-

source allocation is proposed. The authors aim to increase cell throughput, maintain

fairness, and minimise the delay. They define a metric for each numerology in terms

of throughput and QoS requirements. Then the highest metric value for a specific RB

is assigned to related numerology (by considering BWP) to allocate the bandwidth

resources between numerologies. In [81], the authors define latency, data rate, and

guaranteed bit rate requirements for services such as VoIP, video conference, and real-

time gaming. They then perform two optimisations in their model. First, they identify

the most demanding service (e.g., video conferencing) and allocate spectrum by con-

sidering fairness among users/services. The model is designed to be flexible, allowing

the allocation of any numerology to users/services while meeting their requirements.

However, this study does not consider channel models or BWP in the analysis.

The knapsack problem is a combinatorial optimisation problem that includes selecting

a subset of items with specific weights and values [61] such that the total weight does

not surpass a given capacity while maximising the total value. Due to its wide range

of applications and challenging nature, the knapsack problem has been extensively

studied in various fields. Researchers often utilise the knapsack problem as a bench-

mark or a foundational problem in their studies, owing to its complexity and relevance

to many real-world optimisation scenarios. In the literature, several authors have fo-

cused on addressing the RAN slicing problem by approaching it as a multidimensional

knapsack problem, specifically considering resource partitioning in the frequency and

time domains. This approach has been studied in-depth in [3], [82], and [83]. In [3],
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the authors propose a method to maximise the largest unallocated resources in the

time-frequency domain, with the aim of increasing spectral efficiency based on RAN

slicing. They consider various factors such as resource type (virtual or physical), re-

source abstraction type (e.g. fixed position, contiguous, non-contiguous RB groups),

and resource structure that includes the relevant radio frame numerologies. However,

this work should have taken into account BWP and interference aspects, which may

be relevant in practical RAN slicing scenarios. In [82], the authors propose a two-level

optimisation approach for spectrum allocation among numerologies and RB alloca-

tion among users. They refer to spectrum allocation as the first-level allocation and

RB allocation as the second-level scheduling. The optimisation problem is formulated

and solved for both time and frequency domains, with a focus on maximising fair-

ness among users belonging to the same numerology. However, this work considers a

single-cell scenario where CCI and BWP are unavailable for consideration due to the

lack of multiple cells. In [83], the authors propose an optimisation method for resource

and numerology allocation in a multi-user single-BS scenario, considering two types of

users: low latency and non-low latency. Instead of a calculated channel model, they

employ a channel estimation method that takes into account ICI, INI, and Doppler

shift. The optimisation model considers the requirements of users in terms of delay,

SINR, and packet size to allocate numerologies over available resources. While the

low latency users are given priority for resource allocation, there is no guarantee that

they will always be served. However, the authors could consider increasing the system

capacity using methods such as IAB to address this issue. The authors in [84] explored

resource allocation optimisation with flexible numerology in the frequency domain and

varying frame structure in the time domain for services with diverse requirements.

They proposed a scalable optimisation algorithm based on linear programming and

Lagrangian duality. They considered two categories of services: one with strict latency

requirements and the other to maximise throughput. They formulated the problem of

maximising total throughput subject to latency and demand constraints. They solved

a 2D knapsack problem considering different numerologies employed in 5G using MILP.

Several authors have conducted research on the allocation of transmit power and RBs

for three key communication services in 5G-NR and beyond networks, namely eMBB,

URLLC, and mMTC. In [85], the authors allocated transmit power and RB in the
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downlink direction for eMBB, URLLC, and mMTC users. The authors assumed that

the BSs have already allocated the BWPs in the carrier bandwidth. However, this

approach lacks flexibility for the users, as each user can only use its own pre-allocated

BWP, regardless of availability. 5G technology, on the other hand, can offer greater

flexibility to users by allowing them to choose numerology based on availability. This

approach can provide greater adaptability compared to the method used in the study,

which does not allow for such user choice. Additionally, BWPs should be allocated

based on user requirements rather than pre-allocated to ensure optimal resource usage.

In [86], the authors address the issue of conventional resource allocation methods

not being optimal for mission-critical IoT communications with URLLC requirements.

They propose a novel approach that considers the finite block length and physical-

layer security aspects and formulate two optimisation problems: weighted throughput

maximisation and total transmit power minimisation. The authors develop methods to

solve these non-convex optimisation problems, enabling resource allocation for secure

mission-critical IoT communications with URLLC requirements. One of the studies

closely related to our work in the literature is [87], where the authors investigated the

joint optimisation problem of network slicing, numerology allocation, and admission

control. In their work, URLLC and eMBB users were allowed to select numerologies

reserved for their respective services. However, the reserved numerologies were strictly

separated, with URLLC users able to select the first four numerologies and eMBB

users limited to the last two numerologies. The authors focused on minimising the

blocking probability of eMBB users’ flow while meeting the service requirements of

URLLC users. Furthermore, they did not consider aspects such as data routing or

HetNets in their optimisation approach. The authors in [88] proposed a dynamic

resource allocation scheme to decrease average scheduling latency in a network that

employs multiple numerologies. The goal of the scheme is to achieve flexibility and

adaptability for a vast variety of services while addressing the complexity of resource

allocation with multiplexed non-orthogonal numerologies. The authors conducted a

system-level simulation, instead of user-centring, to analyse different combinations

of numerologies and service requests of varying priorities. They observed that by

compromising the minimum achievable scheduling latency for high-priority requests, a

significant reduction in average scheduling latency could be achieved, considering all
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different types of service requests and different priorities.

2.2 Backhaul Routing Optimisation and IAB

As HetNets consist of diverse sources, such as microcell and IAB nodes, which are

backhauled by a macro cell or fibre infrastructure, optimising access and backhaul

links is crucial. Therefore, in this subsection, we present relevant literature examples

that focus on backhaul, with a specific emphasis on IAB studies.

The advancement of mobile telecommunications technology has led to the exponential

growth of data traffic and the need for more efficient and cost-effective ways of trans-

porting data. The traditional method of transmitting data from a cell site to a central

location, such as a mobile switching centre, was accomplished using dedicated leased

lines like T1/E1 circuits [89]. This backhaul method has been used for many years

and is still widely used in many parts of the world. IAB, on the other hand, refers to

a more modern method of backhaul that integrates the access and backhaul networks

into a single wireless network [27].

The main advantage of IAB is that it allows for the deployment of 5G-NR cells in dense

areas without the need to densify the transport network proportionally and can be

used for various deployment scenarios, such as indoor-outdoor small cell deployments

or mobile relays on trains or buses [36]. IAB offers dynamic partitioning of resources

between access and backhaul links, which enables cost-effective, flexible, and efficient

use of network resources [90]. By dynamically allocating resources in an IAB network,

the available bandwidth can be used more effectively, making it an ideal solution

for ultra-dense wireless networks that require high spatial reuse and large amounts

of bandwidth [91]. Additionally, IAB can help reduce the cost of deploying fibre to

mmWave BSs, which suffer the severe path and penetration losses of mmWave signals.

IAB-powered wireless backhaul can ensure efficient and flexible network operations

while reducing costs [90].

3GPP defined two types of IAB, called in-band and out-band, which are based on

the frequency overlap characteristics of the access and backhaul links [36]. In in-band

backhauling, the access and backhaul links partially or fully overlap in frequency,

which results in half-duplexing or interference constraints, which means that IAB nodes
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cannot transmit and receive on both links at the same time [36]. In contrast, out-band

backhauling uses different frequency resources for access and backhaul links. Therefore,

out-band IAB allows for the simultaneous use of different frequency ranges, such as

mmWave for backhaul and sub-6 GHz for access which allows the IAB node’s ability

to transmit and receive simultaneously on both links [37].

Since the same frequency band can be used for both backhaul and access, in-band

IAB offers maximum resource efficiency, but to prevent intra-node interference (also

known as self-interference), only half-duplexing can be used [92]. Specifically, it is

not possible to simultaneously transmit data from the Distributed Unit (DU) and

receive data at the Mobile-Termination (MT) in the downlink direction, nor can data

be simultaneously received at the DU and transmitted from the MT in the uplink

direction [92]. The MT unit is responsible for the wireless access part of the IAB node.

It communicates directly with the UE and provides access to the 5G network through

the IAB node. On the other hand, the DU is responsible for the backhaul part of the

IAB node. It communicates with the Central Unit (CU) and provides the necessary

data to the CU to connect to the core network.

Resource allocation in IAB networks is a critical aspect that has garnered significant

attention from researchers. The authors in [93] investigated joint resource allocation

and relay selection in a multi-hop IAB network with the objective of maximising the

geometric mean of UE data rates. The assumption of time division multiplexing among

contiguous links was made, and the focus was on in-band relaying, where the partition

between access and backhaul resources can range between BSs. In [94], the config-

uration of incentive mechanisms and resource allocation in a user-provided network

formed by Device-to-Device (D2D) links for 5G IAB networks are investigated. The

authors formulated an optimisation problem, considering user utility, battery energy

sensitivity, incentive compensation, and network resource limitations. They proposed

a centralised algorithm for an optimal solution but also developed a distributed algo-

rithm to address privacy concerns. The distributed algorithm decomposes the problem

into subproblems for each user and iteratively executes subproblems to converge to the

optimal solution of the centralised algorithm.

Since the best available SINR mostly determines user association in the optimisa-

tion problems, power allocation and user association problems can be intertwined.
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Therefore, some papers jointly optimise the above-given objectives by employing IAB

networks [95]. In their paper [95], the authors propose an optimisation problem that

maximises network capacity for bandwidth-intensive IoT services like virtual reality,

AR, and tactile Internet, using mmWave-based out-band IAB. The proposed approach

utilises dedicated mmWave bands for access and backhaul links while considering both

intra-cell and inter-cell interference. The problem is formulated as a joint user and

transmit power allocation optimisation problem, and the authors address it by solving

two sub-problems: user allocation and transmit power allocation.

The efficient access and backhaul routing and scheduling models increase the perfor-

mance of the 5G network. IAB is a promising candidate to maximise the spectrum

efficiency [96] [97]. The authors in [96] investigate the splitting methodologies of the

total carrier bandwidth between access and backhaul for three scenarios named equal

partitioning, instant partitioning, and average partitioning. They employ a single

macro cell and small cell BSs, where the IAB-donor (i.e., a macro cell) and IAB-nodes

(i.e., small cells) share the same infrastructure and wireless channel resources. The

small cells are deployed at the centres of user hotspots, and users can be served by

either small cells or macro cells. The same bandwidth, which employs only mmWave

signals, is shared between access and backhaul. The authors [97] have tested three

different IAB deployment scenarios; with only IAB nodes, with only BSs and with

a mixed scenario. They have implemented end-to-end system-level simulations for

mmWave frequencies to demonstrate that IAB provides a feasible solution for efficient

network deployment. The authors in [98] propose a resource allocation optimisation

among the backhaul link and UE access link of the IAB network, which allocates sub-

channels and power. Although they utilised only the mmWave frequency band, they

strictly separated the access and backhaul spectrum and considered out-band opera-

tion for the IAB network that supports multi-hop. Additionally, the paper conducts a

geometric analysis of the IAB network to provide details of the system design. How-

ever, the authors did not take into account numerologies and bandwidth parts in their

analysis.

When the multiple BSs transmit the same data to improve the signal strength received

by the user by utilising the same frequency bands and time is called joint transmis-

sion, which can be implemented through coordinated multipoint [99]. In [99], the
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authors employed out-of-band mmWave links using IAB for coordinated multipoint

joint transmission. This approach requires distributing identical user data to multiple

BSs in a joint transmission cluster, which can be a significant burden on the network

backhaul. To alleviate this, the authors cache the data in the base stations and re-

duce the number of resource units used by each BS in the cluster as the SINR of

the user increases. The authors in [100] addressed the challenge of wireless backhaul-

ing in mmWave networks, which generally require the dense deployment of mmWave

BSs. They proposed an efficient scheduling method called ”schedule-oriented optimi-

sation” based on matching theory, which optimises QoS metrics jointly with routing.

They demonstrated the optimal solution of maximum throughput fair scheduling as

an example of schedule-oriented optimisation, showing that optimal scheduling can be

acquired for the networks with a large number of mmWave BSs.

The authors in [101] propose an onboard relaying system that enables multi-Gbps

data rate transmissions for train and vehicular applications. The system operates in

the mmWave frequency band and provides mobile backhaul connectivity for in-vehicle

UEs. To ensure stability against high mobility-related behaviours, such as fast channel

variation and unsteady handover, the proposed system employs a relaying network ar-

chitecture with a backhaul link to a vehicular UE and an in-vehicle access link. Since

the proposed system can be implemented in high-speed trains, the authors considered

Doppler spread and antenna polarisation. The paper presents essential design ele-

ments, such as numerology, frame structure, reference signal, multi-antenna scheme,

and handover, for their proposed vehicular communication system. The system is

validated through experimental tests conducted in existing subway and urban road

environments using a testbed including a baseband modem, RF front end, and array

antenna units.

In conclusion, in mmWave communications, sending signals over a long distance needs

more transmit power; also mmWave signals can be easily blocked. Therefore, using

a multi-hop self-backhauling architecture is a better solution to enable long-distance

transmissions in mmWave networks instead of a single-hop approach [102]. However,

the use of multi-hop self-backhauling can lead to an increase in delay, which should be

taken into account during the design of such networks [102]. Due to these challenges

in mmWave networks, we adopted a one-hop approach in our model. This approach
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can be easily extended to a multi-hop IAB network, considering the potential impact

on delay and ensuring careful design considerations.

2.3 Vehicular Networks

Vehicular communication initially emerged to fulfil safety-related requirements by pe-

riodically broadcasting messages (such as CAM/DENM) to nearby vehicles [42],[43].

The early stages of V2X applications were centred around Intelligent Transportation

Systems (ITS) telematics and advanced auxiliary driving [103]. However, with the

growth of mobile internet applications, there has been an increasing demand for ve-

hicles with internet access capabilities to utilise services such as navigation and info-

tainment [103]. This evolution in vehicular communication has expanded the scope

of potential applications and use cases beyond just safety-related communication to

include various other services and functionalities enabled by internet connectivity.

Therefore, prior to the deployment of 5G-NR, V2X applications were primarily fo-

cused on safety-related communication, encompassing functionalities such as safety

messaging [104], traffic incident monitoring [105], and intersection management [106].

Despite this safety orientation, a significant number of internet-based applications,

such as navigation and infotainment applications, can also be found in the literature.

For example, [107] presents an optimisation-based approach to model and analyse the

performance limits of content downloading in vehicular networks, considering V2V re-

laying. In addition, the authors [108] proposed a 5G V2X ecosystem for IoV based on

SDN and evaluated vehicular Internet-based video services traffic and V2V communi-

cations in urban and rural scenarios. Simulations were performed utilising mmWave

frequencies, furthermore packet delivery ratio, data rate, and delay were analysed for

rural and urban IoV scenarios.

Research conducted in the early stages of 5G-NR also encompassed the investigation of

safety applications, as evidenced by the existing literature. For example, the authors

[109] proposed workflow involves vehicles sending road condition information with GPS

coordinates to other vehicles within a certain range and managing this information in

a list. Vehicles approaching the location of the road condition update receive the in-

formation and forward it. To prevent exponentially increasing messages, the utilising
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network slicing and SDN is suggested to enable efficient broadcast of information to

vehicles connected through the same BS. However, the 5G-NR technology has fur-

ther shifted the focus to a broader spectrum of advanced automotive applications.

Recognising this trend, 3GPP has defined enhanced V2X (eV2X) use cases, which

include extended sensors, vehicle platooning, remote driving, and advanced driving

(autonomous vehicles) [110]. These eV2X use cases reflect the growing need for ad-

vanced vehicular communication capabilities to support various emerging applications

in the automotive domain and highlight the evolving landscape of V2X technologies

in the era of 5G-NR.

The extended sensors use cases group facilitates the transfer of either raw or processed

data obtained from various sources such as regional sensors, live video images, RSUs,

pedestrian devices, and V2X application servers [111]. This group comprises three spe-

cific use cases: sensor and state map sharing, collective perception of the environment,

and video data sharing for automated driving [111]. The study conducted in [112]

proposed an analytical model to assess the performance of a joint perception-sharing

application. The analytical evaluation focused on examining the improvements in en-

vironmental perception and detection redundancy for connected vehicles, considering

various penetration rates of collective perception service and traffic densities. The re-

sults showed that LTE-V based service could remarkably improve the aforementioned

metrics, though additional improvements may be necessary to satisfy the latency re-

quirements of vehicular safety applications. Furthermore, the analysis highlighted the

necessity of decentralised congestion control in specific scenarios.

In vehicular communication, a platooning system refers to a configuration where mul-

tiple vehicles are grouped together to share common mobility modes, and all par-

ticipants are controlled by the leading vehicle [113]. This configuration allows for

coordinated and cooperative driving among the vehicles in the platoon, often resulting

in improved traffic efficiency, fuel efficiency, and safety. The authors [113] proposed a

spatial framework for mmWave V2X networks for platooning using stochastic geome-

try. In addition, they derived closed-form expressions for blockage caused by vehicles,

analysed path loss, and designed user association techniques. The study showed that

a higher density of platooning vehicles and larger antenna scales improved coverage

performance.
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The remote driving use case group enables remote vehicle control, either by humans or

cloud/edge computing [111]. It requires V2X communications to support data rates up

to 1 Mbps (downlink), 25 Mbps (uplink) for application-related control and video/sen-

sor data, and ultra-high reliability of 99.999% or higher is necessary to avoid applica-

tion malfunctions [111]. This recent paper [114] demonstrates a study conducted to

validate the feasibility of a remote driving application for V2X over mmWave 5G-NR.

The study starts with an overview of how a standard mmWave 5G-NR communica-

tion system is structured and its essential components for remote driving applications.

Then the study explores the technologies that make reliable communication possible

for remote driving, including beam switching, automatic gain control, uplink transmit

power control, and hybrid automatic repeat request with soft combining. The study

also covers the practical aspects of implementing and deploying testbeds and shares

the experimental outcomes acquired from field trials. Finally, the authors executed

a comprehensive implementation of the system, starting from theoretical findings on

the optimal physical layer design of the network and subsequently integrating the the-

ory into the testbed for a teleoperation scenario. In contrast to the teleoperation

scenario at a distance of 470m as studied in [114], the authors in [115] conducted a

remote control experiment with a vehicle equipped with sensors and actuators at a

distance of 36 km. This remote control experiment enabled the transmission of sen-

sor data and video streams, and vehicle-control commands from a remote operations

centre in the uplink and downlink communications, respectively. The main objective

of this study is to assess the feasibility of the proposed teleoperated support service

by assessing performance metrics such as latency, jitter, throughput, and loss rate.

Both Tele-operated Support services studied in [114] and [115] rely solely on human

teleoperators for remote control, without the involvement of artificial intelligence.

Advanced driving facilitates a high level of automation in vehicles, enabling fully au-

tomated driving while maintaining longer inter-vehicle distances [111]. The advanced

driving is achieved through data sharing among vehicles and/or RSUs obtained from

local sensors, which allows for coordinated trajectories and manoeuvres [111]. Ad-

ditionally, vehicles share their driving intentions with nearby vehicles. The key ad-

vantages of this use case group include safer travel, collision avoidance, and improved

traffic efficiency [111]. The key performance indicators that are required for advanced
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driving include an end-to-end latency of less than 3 ms, a throughput of 30 Mbps,

and reliability of 99.999%, all to be achieved within the communication range of 500

m [111]. These key performance indicators serve as vital benchmarks for assessing the

performance and effectiveness of the communication system under investigation.

The projected growth of autonomous vehicles in the future, driven by urbanisation,

improved living standards, and technological advancements, is expected to lead to a

significant increase in the demand for communications devices and digital applications

to encourage intelligent autonomous vehicles [116]. Furthermore, the emerging ser-

vices in autonomous vehicles, such as 3-D displays with enhanced depth and viewing

experience, free-floating capabilities, holographic control display systems, immersive

entertainment, and improved in-car infotainment, are expected to pose new communi-

cation challenges to the V2X network [116]. As a result, the development of 6G V2X

communications is considering these requirements for autonomous vehicles, which may

not be fully met by 5G NR-based V2X networks [116].

As evident from the examples mentioned above, some use cases in 5G-NR vehicular

networks require ultra-high reliability, while others demand high data rates, which

can be facilitated through network slicing. Hence, network slicing holds significant

importance for enabling diverse communication requirements in vehicular networks.

Accordingly, several authors have investigated network slicing for vehicular networks,

enabling use cases such as remote driving, advanced driving, and platooning. Network

slicing allows for the creation of dedicated virtual networks that can provide the specific

requirements of these vehicular applications.

Three primary use cases of 5G-NR have been identified and discussed in detail in

Chapter I and in this chapter. Here, we provide illustrative examples of how these use

cases are applied in the context of vehicular communications. Joint resource alloca-

tion for URLLC and eMBB traffics in a one-way highway vehicular network studied in

[117]. They assumed full-buffered eMBB traffic with scheduled multimedia transmis-

sions and random arrivals of URLLC traffic during eMBB transmission intervals. To

meet URLLC latency constraints, the eMBB time slot was divided into mini-slots and

URLLC traffic was scheduled promptly in the next mini-slot by puncturing ongoing

eMBB traffics. Guard zones were deployed around vehicle receivers to ensure URLLC

reliability by prohibiting eMBB transmissions inside these zones. The authors derived
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the transmission probability of RSU nodes, captured association probabilities of ve-

hicle receivers for URLLC and eMBB traffic, and analysed the coverage performance

of V2V links and the rate coverage performance of V2I links based on these results.

The authors[118] propose a network slicing-based communication solution for vehicular

networks, specifically targeting ultra-reliable vehicle-to-everything (V2X) communica-

tion. This work modelled a vehicular highway scenario where vehicular nodes have

diverse requirements. Two logical slices for safety messages and video streaming are

created on the shared infrastructure. A network clustering and slicing algorithm is

formulated to splitting the vehicles into different clusters and allocate slice leaders to

each cluster. Additionally, RSUs are utilised to provide infotainment services using

high-quality V2I links.

Ultra reliability and low latency are critical elements of 5G-NR, and as such, researchers

have extensively investigated methods to enhance reliability and reduce latency in ve-

hicular networks within the context of 5G-NR. URLLC slice is designed to fulfil the

requirements of latency-sensitive applications. These requirements typically include

extremely low end-to-end latency of 1 ms or less, robust security measures, minimal

data packet loss of 10−5 or lower, and high reliability of 99.999% or above. These

stringent performance criteria are crucial for applications that demand ultra-reliable

and low-latency communication and form the foundation of URLLC technology for

meeting the needs of such applications. The authors in [51] propose a network iso-

lation and slicing solution that expands from resource slicing to service and function

slicing to enhance reliability and latency performance in 5G autonomous vehicular

networks. Simulation results show that the proposed network slicing method enhances

reliability and latency performance, with optimisation depending on vehicle density in

5G autonomous vehicular networks. Furthermore, the authors formulated a stochastic

optimisation problem to achieve proactive radio resource allocation in the open-loop

uplink of vehicular networks for URLLC [119]. To address computational challenges,

the authors proposed a virtual resource slicing algorithm that maps radio resource

units to virtual RBs, aiming to reduce computation and improve the efficiency of the

Lyapunov optimisation. Link adaptation, which involves adjusting the modulation

and coding scheme based on channel state feedback, is essential to achieve reliable

outcomes. In [120], a Markov chain-based link adaptation technique is proposed to
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support URLLC use cases in vehicular networks. This study proposes a novel Markov

Chain model for link adaptation that estimates three key performance indicators: end-

to-end link latency, throughput, and block error rate, based on the modulation and

coding scheme used.

Regarding resource allocation in vehicular networks, the authors [121] investigate the

resource-sharing problem for V2V and V2I communication links. The authors apply

graph theory for the first time to solve the resource-sharing problem and propose two

interference graph-based schemes: the interference-aware and the interference-classified

graph-based resource-sharing schemes. The proposed schemes show an improved net-

work sum rate compared to vehicular networks’ traditional orthogonal communication

mode. The authors in [122] explain how they consider the connectivity in vehicu-

lar networks, assuming interference among multiple links rather than relying solely

on signal strength or distance between pairwise vehicles. They propose a connectivity

optimisation problem considering resource allocation utilising graph theory. They pro-

vide definitions of connectivity metrics affected by interference, analyse the number of

resources needed to guarantee network connectivity, and propose a resource allocation

algorithm taking into account the minimum spanning tree to enhance network connec-

tivity within the constraints of limited resources. A recent study conducted a survey

on resource allocation in vehicular networks, as referenced in [123]. Further studies

can be found and explored for more in-depth insights if desired.

In the field of vehicular networks, there is a wide range of studies and examples beyond

the papers mentioned above that can be found in the literature. Numerous papers

discuss the intersection of ML and vehicular networks; for example, the authors [124]

and [125] propose utilising ML and deep learning algorithms to analyse large-scale

transportation data with reduced complexity for traffic flow prediction. Additionally,

authors [126] demonstrate approaches for handling big data in traffic estimation, while

[49] shares simulation assumptions for vehicular urban scenarios. However, it should

be noted that in this thesis, our research focuses explicitly on 5G-NR network slicing

and involves the use of MILP, heuristics, and RL algorithms for resource allocation and

routing. Therefore, papers unrelated to our research topic have not been extensively

investigated in our research.
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2.4 Heuristics

Heuristics are problem-solving techniques that use practical approaches and shortcuts

to find solutions quickly. They are commonly employed in optimisation problems that

require finding an acceptable solution within a reasonable time frame. In addition,

heuristics are needed in scenarios where mathematical methods are not feasible due to

their complexity or the large scale of the problem. In such cases, heuristics can provide

a good approximation of the optimal solution, making them useful for practical appli-

cations. We provide a review of various heuristic and meta-heuristic approaches used

in the literature for solving optimisation problems related to wireless communication

networks.

Metaheuristics are higher-level strategies or frameworks for finding solutions to op-

timisation problems. They are designed to guide and improve the search process of

lower-level heuristics, which are methods used to solve specific problems. Metaheuris-

tics are problem-solving methods that can be utilised for diverse optimisation problems

rather than being limited to a specific problem. They use an iterative process to explore

the search space and attempt to enhance the quality of solutions, often by combining

and adapting different heuristics. For example, Evolutionary algorithm (EA)s are a

type of metaheuristic that is inspired by the Darwinian theory of evolution, which

emphasises the survival of the fittest. EAs are used to evolve a population of solu-

tions towards an excellent adaptation to their environment, with the goal of producing

solutions that closely approximate the global optimum. EAs have been widely used

to solve problems in diverse fields, such as energy efficiency in cloud computing [127],

finance and economics [128], and diesel engine designing [129] since their inception, as

demonstrated by multiple successful applications.

Since evolutionary algorithms are able to handle complex and multi-dimensional opti-

misation problems, they have been widely used in the literature to solve multi-objective

optimisation problems. The papers [130], [131] address the Vehicle Routing Problem

using an Evolutionary Multitasking approach, which involves the concurrent optimi-

sation of multiple tasks through a shared population of individuals that evolve over

generations. This approach has shown promising results in efficiently solving complex

optimisation problems with multiple objectives and constraints by evolutionary algo-
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rithms. In [132], an evolutionary algorithm that generates sub-populations at each

iteration, each devoted to solving a specific task, was introduced for resource alloca-

tion. Resources are allocated to each sub-population based on a task’s improvement

index, with the assistance of the softmax function.

Moreover, in [133], the authors implemented a joint optimisation of radio access net-

work resources (bandwidth) and mobile cloud networks among users by utilising heuris-

tic approaches. The objective is to maximise the total benefit of users and satisfy the

latency requirement of the users. To solve the optimisation problem, they utilised and

compared three progressive methods: genetic algorithm, ant colony optimisation with

genetic algorithm and quantum genetic algorithm.

In many heuristic papers in the literature, a common approach is to employ MILP

optimisation techniques to obtain optimal results initially. Subsequently, a heuristic

algorithm is implemented to reduce computational expenses while achieving accept-

able results. This approach enables a comparison between the optimal and sub-optimal

solutions, providing insights into the performance trade-offs and the effectiveness of

the heuristic approach. The authors in [134] addressed the resource allocation prob-

lem in 5G-NR that supports eMBB and URLLC services. They formulated the re-

source allocation problem at the RAN as a sum-rate maximisation problem, subject

to constraints such as service isolation, latency, minimum rate, and reliability, while

incorporating adaptive modulation and coding. They also proposed a low-complexity

heuristic scheduling scheme for efficient multiplexing of URLLC and eMBB services

to reduce the complexity of the optimisation-based scheduling algorithm. The result-

ing solution provides a near-optimal solution to the original problem. Finally, they

demonstrated the efficiency of their proposed optimisation and heuristic methods via

numerical simulations. In [135], the authors focus on the Open-RAN paradigm, which

involves cloudification and network function virtualisation for baseband function pro-

cessing in dis-aggregated Radio Unit (RU), DUs, and CUs. They propose and compare

two resource allocation mechanisms, namely minimum-maximum fairness and auction-

based, for creating a sustainable multi-tenant Open-RAN ecosystem for small, medium,

and large mobile network operators. The minimum-maximum fairness approach min-

imises the maximum OPEX of RUs via cost-sharing proportional to their requirements.

In contrast, the auction-based approach minimises the total OPEX for all resources
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utilised while extracting genuine requirements from RUs. In addition to MILP optimi-

sation, the authors propose a heuristics that outperform conventional greedy resource

allocation algorithms regarding economic efficiency and network resource utilisation.

In [136], the authors focus on the problem of rate and power allocation in a multiuser

orthogonal frequency division multiple access (OFDMA) systems. Using directional

derivatives, they derive a solution to the power allocation problem for a general cat-

egory of rate-power functions. They propose a new heuristic approach and compare

it to two existing heuristics using a branch-and-bound algorithm. The performance

of the algorithms is evaluated by computing the exact optimum, which is also calcu-

lated with heuristic methods with a given number of allocated subcarriers per user. In

[137], the authors proposed a frame reconfiguration scheme to provide more flexibility

in adapting to dynamic traffic. They formulated the inter-BS scheduling problem as

a nonlinear integer programming problem instead of MILP, aiming to maximise the

number of flows to satisfy the data request. They also presented a heuristic scheduling

algorithm with adaptive power allocation for multi-hop relaying, regarding the traffic

load at each BS.

In contrast, some heuristic papers in the literature utilise heuristic methods in their

approach without providing an optimal solution. As a result, it is challenging to eval-

uate the effectiveness of their proposed approach since it cannot be compared to an

optimal solution. The authors [138] proposed a novel heuristic method to address the

challenges associated with mixed numerology-based frame structures in 5G systems.

The authors developed a heuristic method that determines the optimum number of

mixed numerologies to be employed in the system, with the aim of controlling over-

heads in multi-numerology systems. The proposed method also includes an analysis

of trade-offs and relationships between various services and user requirements. The

algorithm designed by the authors incorporates a new flexibility function and perfor-

mance metric to achieve the desired outcomes. In [139], a solution for data block

allocation in a generalised frequency division multiplexing-based virtualised physical

layer is proposed. The authors formulate the data block allocation problem as a

Knapsack problem, where the QoS demands of the data flows are incorporated using

utility theory. The utility functions provide a metric of urgency for flow scheduling

and data block allocation. The authors propose a heuristic solution for the resulting
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two-dimensional geometric Knapsack problem and evaluate the data rate and queuing

delay performance.

In contrast to some existing literature that has employed heuristic approaches without

providing evidence of a proven-optimal solution, our work adopts a rigorous mathe-

matical method, namely the MILP optimisation approach, which guarantees finding

the optimal solution within the given problem constraints. For further information on

heuristic and meta-heuristic methods, please refer to Chapter 4, where we elaborate

on the different optimisation techniques used in our study.

Although the GA is computationally less expensive than MILP optimisation, it cannot

be employed in real-time or near-real-time due to its high computational complexity

in our model. However, the power allocation and user association algorithm must also

be computationally efficient for practical, real-world implementation. Therefore, the

algorithm should have a reasonable execution time and should be able to handle the

constraints and the number of variables in a realistic system. Thus, we considered to

employ ML techniques in this thesis.

2.5 Machine Learning

Machine learning is a rapidly growing domain that leverages computational algorithms

to create statistical models. ML enables computers can establish connections between

inputs and outputs; thus, computers can learn how to make predictions or take actions

based on the corresponding input data. ML has witnessed significant advancements in

recent years, with applications ranging from object detection [140], speech recognition

[141], and video classification [142] to wireless communications [143]. One subfield of

ML that has gained traction is RL, which involves training agents in an environment

by making observations, taking actions, and receiving feedback as rewards or penalties.

DRL, a variant of RL that utilises deep neural networks (DNN)s, has demonstrated

impressive performance in various applications, for example, mastering in atari games

[144] and the game of Go [145] without human knowledge. Furthermore, RL has been

utilised for power allocation [65] and user association [146] in wireless networks. In

this chapter, we explore the applications of ML and RL in the context of our research,

building upon the advancements made in these areas.
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It is worth noting that we specifically focus on the applications of ML in the areas of 5G-

NR, network slicing, and vehicular networks. Chapter 5 of this thesis provides detailed

definitions and information on the types of ML techniques used in 5G-NR, network

slicing, and vehicular networks. Chapter 5 also discusses various ML algorithms, such

as supervised, unsupervised, and reinforcement learning, and their applications in these

areas.

Machine Learning in Vehicular Networks

Today’s vehicles are equipped with many sensors, lidars, cameras, proximity sensors,

and motor and tyre control units; traditional data processing techniques cannot pro-

cess this massive amount of data. Since autonomous vehicles need more sensors than

human-controlled vehicles, a huge data processing and storing capacity is required in

real-time. The collected, generated, stored, and communicated data (speed and direc-

tion of a vehicle, road conditions, traffic flow) by road elements (vehicles, pedestrians,

traffic lights) are called mobile big-data [46]. ML algorithms are one of the enablers of

mobile big-data and vehicular communications. Moreover, given the high mobility of

vehicles, the fast-response requirements of vehicular networks, and the need to opti-

mise resource allocation in high throughput mmWave frequency bands, the application

of machine learning is essential.

There are several reasons to consider the use of ML algorithms in vehicular networks.

Firstly, ML algorithms can achieve real-time outputs by learning from collected data

without explicitly processing each individual data point [147]. Secondly, the availabil-

ity of accessible programming libraries, such as Python, Matlab, and R, has enabled

researchers and industries to develop ML algorithms more easily [148]. Addition-

ally, ML is well-suited for applications in vehicular networks due to the dynamically

changing environments and high mobility of vehicles. It can provide low-latency and

high-reliability solutions for applications with stringent requirements.

The utilisation of ML techniques in 5G-NR resource allocation has emerged as a promi-

nent and active research area. This utilisation encompasses not only traditional re-

source allocation challenges in 5G-NR networks but also extends to the unique resource

allocation requirements of vehicular networks. The resources in V2V communication

can be shared using the RL approach. The authors in [143] propose a decentralised
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resource allocation method for V2V communications based on DRL. They develop an

innovative technique that can be applied to unicast and broadcast scenarios, allowing

independent vehicles or V2V links to make decisions independently without waiting

for global information. The paper addresses the challenges of the broadcast storm

problem and package collision that can occur when blindly broadcasting messages in

V2V communication. The action space, state space, and reward function are carefully

developed for unicast and broadcast scenarios to solve the resource allocation problems

in V2V communications. The authors [149] address the problem of distributed resource

selection in V2V communication, where each vehicle autonomously chooses communi-

cation resources from a shared pool to distribute CAMs. Each vehicle must choose a

resource, which becomes more challenging in congested scenarios and in dynamic sce-

narios where the number of vehicles in the vicinity of each other changes dynamically.

The authors propose a multi-agent RL algorithm that builds on a unique state repre-

sentation. The aim is to perform complex joint behaviour in a distributed manner and

tackle the challenges of non-stationarity in resource allocation in V2V communication.

Further examples of research in resource allocation with ML can be found in the subse-

quent subsection. [150] focuses on optimising the transmit power allocation in a V2X

communication system to maximise the overall system throughput. The authors pro-

pose two methods to solve the power allocation problem: the weighted minimum mean

square error algorithm and a deep learning-based method. They use the block coor-

dinate descent method in the former algorithm and then employ supervised learning

techniques for the DNN-based approach, with the power allocation from the weighted

minimum mean square error algorithm as the target output. They employ an efficient

implementation of a mini-batch gradient descent algorithm for training the DNN. The

authors in [151] formulate a joint spectrum reuse and power allocation problem for

hybrid V2V and V2I communications. They want to maximise the weighted sum of

capacities and latency requirements, considering intracell interference and the high

capacity and low-latency requirements for V2I and V2V links, respectively. They de-

compose the problem into a classification subproblem and a regression subproblem and

develop a convolutional neural network-based approach to acquire real-time decisions

on spectrum reuse and power allocation.

42



Chapter 2. Related Works 2.5. Machine Learning

Machine Learning in 5G-NR Resource Allocation

Numerous studies in the literature have utilised DRL techniques to address the chal-

lenges of power and resource allocation among users and user resource association in

various communication systems. In [152], the power allocation problem in cellular

networks with multiple cells and shared frequency spectrum has been addressed us-

ing a multi-agent RL algorithm. Each BS is controlled by a DRL agent that adapts

power based on local observations, such as cell power, received power, interference, and

reward. The approach has achieved substantial energy savings and fairness between

users by effectively controlling transmit power. Similarly, in [153], the network consists

of multiple cells, each with a single BS serving multiple users. All BSs transmit over

the same spectrum, resulting in both intra-cell and co-channel interference. An RL

agent controls each BS to determine its transmit power to maximise the network’s sum

throughput.

In [65], the authors developed a dynamic power allocation scheme for wireless networks

using model-free DRL. The scheme is distributively executed, where each transmitter

collects channel state information and QoS information from neighbours to adapt its

transmit power. The objective is to maximise a weighted sum-rate utility function,

which can be customised for different performance goals. The proposed algorithm uses

deep Q-learning to address random changes and delays in the channel state information.

It is designed to make power allocation decisions in real time, even when there are

delays in obtaining the channel state information measurements, and it performs near-

optimal solutions. The scheme is particularly suitable for scenarios where the system

model is inaccurate, and channel state information delay is significant. The same

authors in [72] further propose a learning-based method for optimising discrete subband

allocations and continuous power allocations in wireless networks, considering time-

varying channel and traffic conditions. They use two complementary DRL algorithms

to optimise these allocations based on local and nearby channel state information,

which may be delayed and inaccurate. The goal is to maximise a joint objective,

addressing the challenges of computational complexity and acquiring instantaneous

global channel state information associated with standard model-based approaches

for network utility maximisation. The authors in [146] propose an RL approach for

solving the joint user association and resource allocation problem in the downlink of
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heterogeneous cellular networks. They aim to achieve the maximum long-term overall

network utility while ensuring the QoS requirements of UEs. The proposed method

is based on multi-agent RL and distributed optimisation, where UEs need to choose

a BS and transmission channel at each time step in the RL model. To address the

computational complexity of the large action space, a multi-agent DRL method is

proposed. This method considers the state, action, and reward function for each UE

and includes the duelling double deep Q-network (D3QN) strategy to acquire near-

optimal outcomes. Each agent employs the message passing technique to reduce the

communication overhead in the global state space.

The optimisation of RAN slicing using ML techniques has gained significant attention

as a cutting-edge research topic in wireless communications. This area explores novel

approaches to dynamically allocate and manage radio resources among different slices

in a wireless network using ML algorithms and has emerged as a prominent and active

research area in recent years. The authors [41] address the RAN slicing problem

in the context of 5G services, specifically eMBB and V2X. The authors formulated

the problem of RAN slicing to support eMBB and V2X communication on the same

RAN infrastructure as an optimisation problem. The objective is to determine the

allocation of radio resources to each slice while improving radio resource utilisation

and meeting specific requirements for each slice, considering uplink, downlink, and

sidelink communications. They proposed a new strategy based on offline Q-learning

and softmax decision-making as an enhanced solution for resource allocation between

the eMBB and V2X slices.

None of the previous studies has addressed the issue of a multi-numerology environ-

ment. However, with the emergence of 5G-NR networks, numerology selection has

become a crucial aspect of user association problems and, therefore, must be consid-

ered in power allocation and user association decision problems.

Machine Learning in Other 5G-NR Applications

The utilisation of higher carrier frequencies in communication systems is essential to

address the increasing demand for traffic capacity, consumer data rates, and spectrum

resources. This utilisation necessitates the use of wider transmission bandwidths to

meet these requirements [28]. mmWave frequency bands are particularly attractive
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due to their wider transmission bandwidths and higher data rates compared to sub-6

GHz frequency bands [97]. However, it is important to note that mmWave frequency

bands also exhibit higher propagation loss than sub-6 GHz frequency bands at the

same distance due to the proportional relationship between frequency and propagation

loss [32]. Moreover, due to the high mobility of vehicles, vehicular networks have

dynamically changing environments. Therefore, the deployment of mmWave frequency

bands in the vehicular must be carefully considered.

ML algorithms can be utilised for beamforming in wireless communication systems to

overcome the high propagation disadvantage of mmWave. Beamforming, a technique

used to focus the transmitted signal in a specific direction, plays a crucial role in im-

proving the performance of wireless communication systems by mitigating interference,

increasing signal quality, and enhancing overall system capacity. In their works, the au-

thors in [31] propose a beam selection model for vehicular networks, where connection

requests from vehicles are sent via LTE and associated with 5G mmWave base stations.

Their model leverages Fast Machine Learning algorithm and contextual multi-armed

bandit problem to autonomously learn the relationships between the environment and

decisions. The exploration stage allows the system to learn new knowledge, such as

identifying permanent and frequent blockages, while the exploitation stage optimises

decisions based on contextual information from prior knowledge. Additionally, the

same authors propose a similar machine learning-based approach for optimising the

use of mmWave frequencies in 5G vehicular networks in [154]. This approach also em-

ploys a contextual multi-armed bandit problem and a fast machine learning algorithm

to enable mmWave base stations to learn the relationships between contextual infor-

mation and their decisions and make optimised beamforming decisions based on that

learning. The paper also introduces a beam selection system for ensuring connectivity

between vehicles and mmWave base stations.

RL can be used to extend cellular network coverage to out-of-coverage areas by opti-

mising resource allocation and scheduling decisions. For example, in [155], the authors

propose a novel approach for resource pre-scheduling in V2V communication in ar-

eas outside cellular coverage. Their approach utilises the network infrastructure to

perform resource scheduling based on readily available information, such as radio re-

source occupancy and scheduling requests for periodic transmission, while the vehicles
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are still connected to the network. The scheduling decisions are then communicated

to the vehicles via scheduling assignments before they enter out-of-coverage areas.

Furthermore, the authors employ a DRL algorithm, specifically the asynchronous ad-

vantage actor-critic (A3C) algorithm, to exploit V2X-specific information for resource

pre-allocation. The A3C algorithm is known for its strong convergence properties and

is used to optimise resource scheduling decisions based on available information.

The path selection and rate allocation sub-problems are jointly investigated in the IAB

subsection. In this subsection, the same joint problem is optimised by [102] by using

RL techniques. They optimise the problem of path selection and rate allocation for

multi-hop self-backhaul mmWave networks, considering the challenges of severe path

loss and unreliable transmission over long distances at higher frequency bands. They

proposed a system design that utilises multiple antenna diversity, mmWave bandwidth,

and traffic splitting techniques to improve downlink transmission. The authors utilised

stochastic optimisation to separate the problem into path selection and rate allocation

sub-problems. For path selection, they employed RL, while for rate allocation, they

utilised the successive convex approximation method.

The optimisation of routing and dynamic storage allocation of renewable energy in

an electric vehicle network is of paramount importance, as the state of charge plays

a critical role in the overall performance and efficiency of the network. The authors

in [156] conducted a study on a renewable energy-enabled electric vehicle network,

which is an implementation of IoT in energy and vehicular networks. They focused on

optimising the routing and dynamic storage allocation of renewable energy in electric

vehicle networks to maximise plant-to-station energy transfer efficiency. They proposed

a time-expanded topology graph-based model and used linear programming for joint

energy storage capacity and route planning. They also extended the problem to cases

where the traffic pattern of the electric vehicle network is unknown and utilised deep

learning techniques such as long short-term memory (LSTM) and RL to predict and

improve the accuracy of traffic pattern prediction.

In conclusion, ML concentrates on the development of algorithms and statistical re-

lationships. These algorithms enable computer systems to learn and then either take

actions without being explicitly programmed to do so or provide predictions for unseen

data. By leveraging the huge quantities of data generated every day, ML has the poten-
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tial to revolutionise how we solve problems and provide predictions or decisions. In our

specific case, it is crucial that the optimal response be provided promptly to the users.

This optimal response can consider power or numerology allocation for users, BWP

allocation for the numerologies, user association, data routing among nodes, or the

joint optimisations of the combination of given problems. Additionally, the algorithm

must exhibit computational efficiency to be feasible for real-world implementation.
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Chapter 3

Optimisation Model

In this chapter, the mixed-integer linear formulation for the resource allocation prob-

lem in vehicular networks is presented. The proposed formulation considers the user

requirements and utilises binary and non-binary variables to optimise multiple objec-

tives. Linearisation methods and constraints are employed to handle nonlinear equa-

tions, such as the Shannon capacity formula involving logarithmic functions. Towards

the end of this chapter, the outputs of the optimisation framework are demonstrated,

showcasing the results obtained from the formulated approach.

We consider a city environment where multiple cells are deployed, supporting radio

slicing and multi-numerology techniques. A demand point (DP) can represent either

individual or aggregated user demands, as stated in [157]. These DPs are randomly

located and generate traffic demands, which are characterised by data rate in Mbps

and delay requirements in milliseconds (ms). Additionally, the vehicles in the network

also function as mobile IAB nodes, referred to as VBS. These VBSs establish commu-

nication links with nearby BSs and DPs, where the former uses the FR2 (mmWave)

frequency range for backhaul, and the latter provides access using the FR1 (sub-6 GHz)

frequency range. More details on the FR1 and FR2 frequency bands are discussed in

Chapter 3.1.2. Our work involves the implementation of three types of optimisation

techniques that are interdependent and closely related to each other.

• First, bandwidth allocation amongst BWPs by considering total carrier band-

width is optimised. The same bandwidth allocation of BWPs is applied to all BSs

in the model. Existing studies in the literature consider that inter-numerology
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interference (INI) causes in the same BS and maximises when resource elements

from different numerologies are physically close to each other [22], [158], [159].

To the best of our knowledge, no previous work in the literature considers specifi-

cally the INI caused by neighbour BSs. We assume that INI can occur among BSs

that use the same resource elements for different numerologies due to disrupted

orthogonality. Therefore, the BWPs with the same numerology are located in

the same frequency resources for all the BSs. Thus, INI caused by another BS is

minimised.

• Second, RB and power allocation among DPs are optimised by considering their

delay and data rate requirements in the downlink direction. We considered a

frequency-selective propagation channel and a multi-cell system where co-channel

interference (CCI) affects signal-to-interference-plus-noise ratio (SINR) perfor-

mance.

• The third optimised object is to achieve maximum power efficiency; the model

optimises the route of the data packets from BSs to DPs with or without utilising

VBS nodes. Since this optimisation framework is a HetNet, user association is

also optimised. Therefore, we optimise an inter-layer framework, including the

physical and network layers, where DPs can be served by BSs directly, which are

connected to the core network via fibre or VBSs, which are backhauled by BSs

using mmWave signals.

The network architecture is a heterogeneous and flexible 5G-NR vehicular network that

supports radio slicing to cater to the diverse requirements of DPs. The heterogeneity

is reflected in varying DP requirements, network slices, and VBS nodes that enable

out-band backhauling. The flexibility is reflected in DPs being able to choose any nu-

merology while ensuring their requirements are met and bandwidth allocation between

BWPs. In other words, shared network slices are employed instead of dedicated ones.

Minimum numerology requirements are determined based on the data rate and delay

demands of DPs to fulfil their specific requirements within a given unit of time.
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3.1 System and Channel Model

In this section, we introduce the system and channel model of the proposed framework.

This framework is utilised in MILP, Heuristics, and Machine Learning chapters. Thus,

the outputs of the proposed framework can be compared with each other.

3.1.1 System Model

We consider a 5G multi-cell cellular system with B base stations, V vehicular base

stations indicated by the setsB = {1, ..., B} and V = {1, ..., V }, respectively. Then, the

Source set S is defined as the union of the sets BS and VBS, where |S| = |B|+|V |. Also,

the set of DPs, numerologies, and RBs are denoted by D = {1, ..., D}, N = {1, ..., N},

and R = {1, ..., R}, respectively.

Any BS in the model has two functions: they generate data and provide connectivity.

We consider three different types of DPs, each designed to meet the specific require-

ments of three distinct service types in 5G-NR. These DPs are assumed to have two

distinct requirements, data rate and delay. Moreover, each DP is served either directly

by a BS or indirectly by a VBS, as illustrated in Fig. 3.1. VBSs are used as a tool

to meet wireless demand in 5G networks and can provide an intermediate solution

to increase network capacity. According to the DP requirements, the model allocates

the corresponding network service that is provided by a related RAN slice. The RAN

slices share the same carrier bandwidth; accordingly, the total bandwidth is divided

into BWPs, where each BWP occupies a certain portion of the available bandwidth,

and each BWP is split into RBs with the same numerology. An RB is the smallest unit

of frequency resource that can be allocated to a DP. We consider that the DPs can be

served by any network slice as long as their requirements are satisfied. Consequently,

bandwidth allocation between BWPs is flexible and depends on interference, transmit

power and the number of served DPs.

Let td denote the delay requirement of each DP, whereas tn denotes the slot duration

of each numerology n ∈ N . To meet the delay requirement of each DP td should be

greater or equal to tn.

td ≥ tn, ∀ d ∈ D (3.1)
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Figure 3.1: Basic system model illustration

DPs have data rate requirements, as well. To ensure that the data rate requirement

of each DP, denoted as dd, is satisfied, it should be less than or equal to the allocated

represented by Ωd.

Ωd ≥ dd, ∀ u ∈ U (3.2)

It’s important to note that Eq 3.2 exhibits non-linearity because of the data rate

calculation. However, due to the MILP nature of our problem, we need to transform

it into a linear formulation, which is elaborated in Chapter 3.3.

To reduce the complexity and number of binary decision variables, we have identified

all the binary decision variables as ’y’ but with different indices. Let us denote yrnsd

as the 4-dimensional binary main decision variable that establishes the relation be-

tween Sources, DP, RB and numerology. yrnsd gives the information about which source

connects to DP with the RB of related numerology, hence:

51



Chapter 3. Optimisation Model 3.1. System and Channel Model

yrnsd =


1, If DP d is served by source s utilizing numerology n and RB r

0, otherwise

(3.3)

It is worth noting that all the binary decision variables are derived from yrnsd . By

utilizing following method, any binary decision variable (ysd, yrd, yrns , etc) can be

composed. For example, to get ysd from yrnsd , we utilized the equations Eq (3.4) and

Eq (3.5) where K is a large number:

∑
r∈R

∑
n∈N

yrnsd ≥ ysd (3.4)

∑
r∈R

∑
n∈N

yrnsd ≤ K (ysd) (3.5)

Modifying the indices in Eq 3.4 and Eq 3.5 makes it possible to derive the above-

mentioned binary decision variables.

The set S represents the set of Sources from which the traffic will be generated or

forwarded towards DPs. A DP can be served by only one Source; hence we define the

binary decision variable ysd to indicate this as follows:

ysd =


1, If source s establish a connection with DP d

0, Otherwise

(3.6)

We assume that the total carrier bandwidth Wtotal (MHz) is sliced into three BWPs

that serve the above-mentioned services. The RBs that belong to the same numerology

are gathered into one BWP, so each BWP includes the same type of RBs. Let W1,W2

and W3 are the bandwidth of three numerologies 0.18, 0.36 or 0.72 MHz, respectively,

then

W1 +W2 +W3 = Wtotal (3.7)

Bandwidth allocation among BWPs is flexible; there are no lower or upper boundaries
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for the bandwidth of numerologies, but their summation must be equal to the Wtotal

in all scenarios.

Fig. 3.2 displays an example of 5 MHz bandwidth frequency resource allocation be-

tween RAN slices with guard bands from the number of RB point of view. Increasing

the bandwidth of higher numerologies causes a decrease in the number of available

RBs. Thus, the total number of RBs changes with the bandwidth allocation between

RAN slices. In this example, BWP1, BWP2 and BWP3 have three, five and three

RBs that belong to 180, 360 and 720 kHz numerologies, respectively.

Figure 3.2: Example of bandwidth allocation among BWPs for 5MHz carrier, also, the
figure shows the number of RBs for each numerology [20]

Two types of inter-numerology interference INI are assumed in this thesis. The first

INI occurs in neighbour RBs that belong to different numerologies in the same BS. The

second INI occurs between BSs due to using the same frequency resources for different

numerologies.

To minimise former INI, we add guard bands that are at least one RB size among

BWPs that employ different numerology. However, this solution can cause a reduction

in spectrum efficiency [22], and to minimise this reduction, the RBs that use the

same numerology are assigned to one BWP. For example, the RAN that has three

BWPs and two required guard bands is illustrated in Fig. 3.2. To minimise the latter

INI, we assume that all BSs in the model have the same BWP deployment in the

frequency domain. This arrangement ensures that the same bandwidth components
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are not used for different numerologies. With these two strategic measures in place,

the impact of INI is greatly mitigated, rendering it negligible. Consequently, in order

to maintain model simplicity and reduce complexity, the focus is primarily directed

towards addressing CCI exclusively. Furthermore, it is worth noting that despite the

aforementioned approach, a comprehensive evaluation of INI has been conducted, and

the results of this assessment can be found in Chapter 3.4.2.

mmWave signals offer a significant amount of available bandwidth but suffer from high

path and penetration loss, as discussed in Chapter 1.2.5. To address this challenge and

utilise mmWave signals efficiently, we strategically leverage vehicles as mobile relays as

backhaul nodes that use mmWave signals. Within the context of 5G-NR, where mobile

relays can be employed as IAB nodes [36], we design VBSs to function as relay nodes in

our optimisation framework. We assume vehicles or VBSs have LOS connection with

the nearest BS. Thus, VBSs are backhauled by the nearest BS with mmWave signals.

BSs and VBSs are serving to DPs with sub-6 GHz frequency bands; by employing VBS

nodes, the distance amongst DPs and Sources is shortened. It is important to note

that, most of the time, pedestrians (or more general DPs) walk closer to buildings and

are vulnerable to obstacles; consequently, connections between Sources and DPs are

assumed to be NLOS, as indicated by links 1 and 2 in Figure 3.1. Meanwhile, link 3

illustrates LOS mmWave signal propagation.

Each VBS uses mmWave backhaul links towards BSs and utilises sub-6 GHz access

links towards DPs; in other words, out-band IAB operation is considered. As men-

tioned in [37], out-band IAB operation could be operated alternatively where access

and backhaul communication utilise mmWave and sub-6 GHz frequency bands, respec-

tively. BSs connect to the core network with high-speed optical fibre.

VBS nodes work as IAB nodes to reduce total transmit power and CCI and to improve

spectrum efficiency. Consequently, the primary purpose of using VBS nodes is to

increase the power efficiency; instead of reaching far DPs.

Physical RB allocation among DPs and bandwidth allocation among BWPs are the

core of our study as it refers to the design of the 5G multi-numerology RAN slicing

including BWP and IAB nodes. A mixed numerology system in which each BWP holds

only one type of numerology is designed by considering the physical RB allocation
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Table 3.1: Numerology Parameters

µ 0 1 2 2 3 4

SCS = 15x2µ (kHz) 15 30 60 60 120 240
Slot duration 1/2µ (ms) 1 0.5 0.25 0.25 0.125 0.0625
RB size in freq domain (kHz) 180 360 720 720 1440 2880

FR1 Compatibility ! ! ! X X X

FR2 Compatibility X X X ! ! !
CP Normal Normal Normal Extended Normal Normal

problem for DPs where the serving BSs support multiple numerologies. The model

assesses the user requirements to find the network parameters that negotiate among

the considered objectives: SINR, latency, data rate and power consumption.

3.1.2 Channel Model

The higher numerologies have shorter OFDM symbol lengths in the time domain;

therefore, utilising higher SCS helps decrease latency. Thanks to the shorter slot

durations in the time domain, 5G reduces the delay for time-critical applications. FR1

and FR2 are designed by considering such numerologies. FR1 band supports the first

three numerologies (15 kHz, 30 kHz, and 60 kHz SCSs) and FR2 supports the last

three numerologies (60 kHz, 120 kHz and 240 kHz SCSs) [160] [161] as shown in Table

3.1 with frequency domain compatibility. Different cyclic prefix (CP) for the same

SCS causes difference in spectral efficiency and causes a different numerology [138].

The model establishes communication among every element, excluding BS-to-BS and

DP-to-DP. We assume that the BS to VBS connection is delivered by mmWave sig-

nals, and as mentioned before, this connection is considered as LOS. Any DP can be

served by only BS or VBS that is backhauled by a BS. The latter comes with more

latency but helps to improve 5G coverage and network capacity. Also, the backhauled

communication has less power consumption compared to full mmWave coverage. To

achieve the highest system performance with the lowest cost, we employed out-band

IAB [27], which has no interference between access and backhaul.

In the propagation model of the access side, channel gain is introduced as multiplication

of path loss, small scale fading (SSF) and large scale fading (LSF). For the design of

path loss in 5G wireless communication systems, the close-in (CI) free-space reference

distance model and an urban micro-street canyon scenario with an NLOS environment
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are considered [162]. Pathloss calculation includes free-space path loss (FSPL) and

LSF coefficients [162]. The access side communication contains BS to DP and VBS to

DP communications; therefore, the access propagation model can be written as follows:

PLsd(dB) = FSPL+ 10nlog (ksd) + σ2, ∀ s ∈ S, ∀ d ∈ D (3.8)

Equation 3.8 defines the variables used for path loss calculation for access communica-

tion. The term PLsd represents the path loss in dB, and FSPL denotes the free space

path loss, which can be determined by the carrier frequency (in our case, assumed to

be 2 GHz) and is calculated as 38.46 dB. ksd shows the distance between the source

and DP, the variable σ2 is a parameter for close-in shadowing effect (LSF coefficients)

and has a value of 7.7 dB in our scenario, while n is the path loss exponent with a value

of 3.1. Then we convert the unit of path loss dB to linear scale to use it in the model.

Rayleigh distribution is used to calculate the SSF [163] coefficients, which account for

the absorbing, diffracting, and scattering effects from the surrounding environment and

depend on DP, BS, and RB. Consequently, each RB has different gains even for the

same distance, resulting in a more realistic propagation model and accurate results.

The SSF function is defined in Eq 3.9 as Rayleigh distribution, where N
(
0, 1/

√
2
)

represents the zero-mean Gaussian distribution with a standard deviation of 1/
√
2.

SSF r
sd =

((
N
(
0, 1/

√
2
))2

+N
(
0, 1/

√
2
))2

,

∀ s ∈ S, ∀ d ∈ D,∀ r ∈ R

(3.9)

Then radio access gain between any sources towards DP is calculated as:

grsd = SSF r
sd ×

(
10−(PLsd/10)

)
, ∀ s ∈ S, ∀ d ∈ D,∀ r ∈ R (3.10)

The backhaul communication utilises a 28 GHz carrier frequency and is assumed that

it has LOS communication between BS to VBS. The channel propagation model is

calculated for the backhaul side as follows [164]:
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PLbv = α+ 10βlog (kbv) + σ2 ,∀ b ∈ B, ∀ v ∈ V (3.11)

PLbv refers to backhaul pathloss between any BS and VBS, and according to [164],

for 28 GHz and LOS, α = 61.4, β = 2, and shadowing σ2 = 5.8 dB. We allocate

bandwidth for the VBSs for the backhaul communication, therefore the linear scale of

the PLbv gives the gain between BS and VBS:

gbv = 10−(PLbv/10), ∀ b ∈ B, ∀ v ∈ V (3.12)

Doppler Effect

Since we assume vehicular communication, the Doppler effect must be considered.

Doppler effect causes inter-carrier interference [165] and scattering at the receiver [166]

and it is calculated as follows:

fd =
vmaxfc

c0
cos(α) (3.13)

fd refers to the maximum Doppler shift, depending on user velocity vmax, carrier fre-

quency fc, the angle of the moving object cos(α), and speed of light c0. The maximum

speed in urban vehicular scenarios is 50 km/h (or 30 mph). Considering a VBS is

moving towards from/to a BS with a perpendicular angle, the maximum Doppler shift

can be calculated as follows:

fbackhaul =
50× 28× 109

3× 108
cos(0) = 4667 Hz (3.14)

faccess =
50× 2× 109

3× 108
cos(0) = 334 Hz (3.15)

The carrier frequencies are 28 GHz and 2 GHz for backhaul and access, respectively, so

the calculated maximum Doppler shifts are negligible. Moreover, the angle is likely to

be different from zero, which makes the Doppler shift even smaller. Since we assume

low-speed urban scenarios and employ SSF that keeps the scattering in mind, we
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decided not to add another factor for Doppler shift to our optimisation framework.

3.2 Problem Formulation of the MILP

In this section, the MILP model is introduced that has been developed to maximise

the total number of served DPs while minimising the total transmit power (pt), CCI.

First, the problem is formulated as nonlinear, then linearised for MILP formulation

in the following section. To do so, we defined the indices, parameters, and variables

given in Table 2, Table 3 and Table 4, respectively.

3.2.1 Optimisation Problem

Given the data rate and delay requirements of DPs, the optimisation model responds

by selecting the optimum number of RBs and their numerology, as well as the optimum

physical RB allocation amongst DPs, so that the number of served DPs is maximised.

The optimisation model also minimises the total transmit power for access and back-

haul, along with CCI. Accordingly, the optimisation model determines how to serve the

demands according to DP requirements to achieve the maximum power efficiency for

the limited bandwidth. Moreover, reducing CCI benefits increase the channel capacity.

The objective function is given as follows:

min : −a1

(∑
d∈D

yd

)
+ a2 (pt) + a3

(∑
d∈D

∑
r∈R

IN r
d

)
(3.16)

yd is a binary decision variable that equals 1 if DP d served and equals 0 otherwise. pt

stands for the total transmit power in the downlink direction, which is the summation

of the access and backhaul communication and is calculated in Eq (3.17). IN r
d shows

CCI and noise signal for each DP d allocated to RB r. IN r
d is calculated at Chapter V,

Eq (3.52). The weights are shown as a1, a2, and a3 help to assign priority; for instance,

serving all the DPs is more critical than interference. Therefore, the weighted objective

function provides better interference management.

pt =
∑
s∈S

∑
d∈D

∑
r∈R

prsd +
∑
b∈B

∑
v∈V

pbv (3.17)
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Table 3.2: Sets and Indices

Symbol Description

B Set of base station nodes
D Set of demand point nodes
M set of segments for linearisation method
Nu Set of neighbourhood nodes
N Set of numerologies
R Set of resource blocks
S set of union of source nodes (BS and VBS)
U set of union of all nodes (BS,VBS and DP)
V set of vehicular base station nodes
b, v, d Indices of BS,VBS and DP nodes, respectively
s, u Indices of Sources and combination of all nodes, respectively
i, j Indices of any nodes that data can flow through
n Indices of numerologies
m Indices of segments for linearisation method
r Indices of RBs

Table 3.3: Model Parameters

Symbol Description

a1, a2, a3 Weights of the objective function
dd Data rate requirement for each DP in Mbps
Ēm mth point of corresponding X̄m value. X̄m and Ēm are used in lineariza-

tion method section
grsd Channel gain for each Source s to DP d and RB r for access
gbv Channel gain for each BS b to VBS v for backhaul
kbv Distance between BS and VBS
ksd Distance between Source and DP
prbn Physical resource block bandwidth
Ptbv Maximum backhaul transmit power for each link
Ptmax Total maximum transmit power of the BS
Prmax Maximum transmit power of each RB
td Delay requirement for each DP d in milliseconds (ms)
tn Delay for each numerology n given at Table 1
Wtotal Total carrier bandwidth in MHz
Xmax Maximum value of the logarithmic spectral efficiency function
Xmin Minimum value of the logarithmic spectral efficiency function
X̄m mth point of non-linear log(1 + SINR(m)) function
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Table 3.4: Model Variables (All are Nonnegative Real Numbers)

Symbol Description

Ar
d All the received signals by DP d that utilizes RB r (desired signal,

interference and additive white Gaussian noise (AWGN)(AWGN))
Cd Allocated data rate for each DP d in Mbps
Cv Allocated backhaul data rate for each VBS v in Mbps
Dsd Allocated data rate from each Source s to DP d
E1 , E2 Linear outputs of (log2(S + I +N)) and (log2(I +N)) functions

f ij
bd Data traffic flow between bs to dp traversing virtual link i in U to j in

Nu

Idrd Ideal/desired signal that includes only multiplication of transmit power
and gain, for each DP d allocated to RB r

IN r
d CCI plus noise definition for each DP d allocated to RB r

Lrn
d Linear version of spectral efficiency for each DP d, allocated to RB r

and numerology n
Lv Linear version of backhaul spectral efficiency for each VBS v
prbd Transmit power for each BS b to DP d and RB r
pbv Backhaul transmit power for each BS b to VBS v
prsd Access transmit power for each Source s to DP d and RB r
pt Total transmit power, summation of access and backhaul
plrn Binary variable that shows which RB belong to which numerology
yrnsd Binary 4-dimensional main decision variable that gives relation between

sources s(either BS or VBS) to DP d, RB r and numerology n
W1,W2,W3 Bandwidth of numerologies in MHz
Xm Nonlinear input value of linearisation function
xorrn, zrn Binary variables to provide BWP adaptation for each RB r and nu-

merology n
Zm Binary indicator variable that shows which segment is used for lineari-

sation
Λsd A binary variable that takes the value of 1 when the Source s is serving

the DP d in downlink access. This is the last source along the path from
the Source s to the DP d, physical link.

Ψbv A binary variable that takes the value of 1 when the BS b is backhauling
the VBS v in downlink access, virtual link.

Ωsd Allocated data rate from each s to d

3.2.2 DP Requirement Constraints

Each DP generates data rate and delay demands that are denoted by dd and td, re-

spectively. Firstly, the model ensures that the requested data rate by a DP is less or

equal to the data rate Cd and is formulated as follows:

dd × yd ≤ Cd, ∀ d ∈ D (3.18)

Ωbd is a variable that shows which source provides how much data rate to which DP.

It is important to note that, in this thesis, we assume that the allocated data rate is
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equal to the Shannon capacity which is elaborated in Chapter 1.6.

∑
s∈S

Ωsd = dd, ∀ d ∈ D (3.19)

Secondly, numerology is assigned to each DP to satisfy the delay requirement. We

formulated this requirement by using binary decision variable ynd that equals 1 when

DP d utilises numerology n and equals to 0 otherwise, in the following constraint:

td ≥ tn

(∑
n∈N

ynd

)
, ∀ d ∈ D (3.20)

According to [18], DPs must be designed by considering a single active downlink BWP

at a time. Therefore, each DP can pick one type of numerology at once given at

constraint 3.21, where ynd is the binary decision variable equal to 1 when DP d utilises

numerology n and equals to 0 otherwise.

∑
n

ynd ≤ 1, ∀ d ∈ D (3.21)

3.2.3 Flow Conservation Constraints

In order to provide the data rate flow, either directly from BS or indirectly using

wireless backhaul network, from BS to DP, flow conservation constraints are used.

The set of union of all sets (B, V , and D) is needed and denoted by U = {1, ..., U}

where |U| = |B| + |V| + |D|. Then, we defined neighbourhood matrix denoted as Nu,

u ∈ U , that shows the possible nodes that can be connected. The flow conservation is

formulated as follows

∑
j∈Nu(i)

f ij
sd −

∑
j∈Nu(i)

f ji
sd =


Dsd i = b

−Dsd i = d

0 otherwise

, ∀ i ∈ U, j ∈ Nu (3.22)

The flow conservation constraint (3.22) ensures that the total incoming traffic is always

equal to the total outgoing traffic for VBS nodes, BS nodes are the source of the traffic

and DP nodes are the sinks. The most generic flow conservation constraint, with no
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limitations, is generated in constraint (3.22). To do so, we assumed that each node

can connect to any node at the beginning. This subsection also demonstrates how to

achieve the desired flow in the model.

Constraint (3.22) shows that the data can be generated by any source. However,

BSs are the only data provider for the DPs; consequently, data rate demand for each

DP must be provided by a BS. VBSs can not generate data, they can only provide

connectivity among BSs and DPs. Constraint (3.23) prevents VBSs to generate data:

∑
j∈Nu

f ij
sd −

∑
j∈Nu

f ji
sd = 0 ∀ i ∈ U, j ∈ Nu, s ∈ V, d ∈ D (3.23)

It is assumed that DPs receive data only, and BSs generate data only; therefore,

we prevent routing among DPs and prevent flow among BSs with constraints (3.24)

and (3.25). The flow conservation constraint (3.22) is not minimised in the objective

function, so the model supports multiple hops: from Sources to DP, and from VBS to

VBS. Instead, the total transmit power is minimised in the objective function.

f ij
sd = 0, ∀ i, j ∈ D (3.24)

f ij
sd = 0, ∀ i, j ∈ B (3.25)

The physical link binary variable is shown as PLid, representing the last hop received

by DP d. PLid is employed to restrict the number of sources that serves a DP; that

is, each DP can be fed by only one source given at Eq(3.26). PLid is extracted from

flow conservation variable. In the original f ij
sd, variable j represents the neighbourhood

set Nu; however, here, Nu is replaced with the DP. To extract a binary variable from

the floating variable, we used the following well-known trick [167] where k is a large

number, given at Eq (3.27) and Eq (3.28):

∑
i∈S

Λid ≤ 1, ∀ d ∈ D (3.26)
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∑
b∈B

f id
sd ≥ Λid, ∀ i ∈ S, d ∈ D (3.27)

∑
b∈B

f id
sd ≤ k

(
Λid
)
, ∀ i ∈ S, d ∈ D (3.28)

3.2.4 RB Allocation Constraints

As noted earlier, each DP can be served by only one BS, even using a VBS condition.

ybd is a binary decision variable that equals 1 when DP d utilizes BS b and equals 0

otherwise. Then, the constraint (3.29) indicates that each BS-RB pair can be allocated

at most one DP. The constraints (3.30) and (3.31) provide the following conditions:

Each BS has its RB resources, and every individual RB can be allocated to one DP.

Also, individual RBs, as a resource in a Sources set, can belong to single numerology

at once.

∑
s∈S

ysd ≤ 1, ∀ d ∈ D (3.29)

∑
d∈D

yrsd ≤ 1, ∀ s ∈ S, r ∈ R (3.30)

∑
n∈N

yrns ≤ 1, ∀ s ∈ S, r ∈ R (3.31)

∑
d∈D

∑
r∈R

prsd ≤ Ptmax, ∀ s ∈ S (3.32)

prsd ≤ yrsd × Prmax, ∀ s ∈ S, d ∈ D, r ∈ R (3.33)

According to [168], the constraint (3.32) shows total transmit power limitations for

each Source. Finally, in terms of transmit power fairness between DPs, we limited the

allocated power of each RB for all Sources in constraint (3.33).
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3.2.5 Bandwidth Allocation Amongst BWPs Constraints

All BSs have the same BWP configuration. Thus, there will be no INI caused by other

BS. This is provided by the following three constraints:

∑
r∈R

∑
n∈N

plrn × prbn = Wtotal (3.34)

∑
n∈N

plrn ≤ 1, ∀ r ∈ R (3.35)

yrnb ≤ plrn, ∀ b ∈ B, ∀ d ∈ D, ∀ r ∈ R (3.36)

In constraint (3.34), we multiply each RB by its actual bandwidth and force the model

to allocate RBs amongst BWPs even if they are not in use. Moreover, in [169], the

maximum number of RBs for each transmission bandwidth is defined by considering

CP and guard bands, and our model fits into the standard. Constraint (3.35) and

(3.36) ensure that each RB can belong to at most one numerology and all RBs that

belong to the same numerology are positioned in the same frequency bands in the

carrier bandwidth, for all BSs respectively. Constraint (3.36) also highlights that all

RBs must belong to one numerology, whereas they do not have to be used by a DP.

plrn + pl(r−1) n = 2 (zrn) + xorrn, ∀ r ∈ R,∀ n ∈ N (3.37)

∑
r∈R

xorrn ≤ 2, ∀ n ∈ N (3.38)

After bandwidth limitation constraints are satisfied, RBs that are in the same nu-

merology are assembled into groups to provide BWP in constraints (3.37) and (3.38).

In constraint (3.37), every two successive RBs are summed, and the result equals two

other binary variables called zrn and xorrn. Any numerology shift between two suc-

cessive RBs causes an output of ’1’ in xorrn binary variable. This output is summed

and limited by ’2’ for each numerology shown at constraint (3.38).

3.2.6 Backhaul Constraints

Backhaul communication takes place between BS and VBS only; therefore, the binary

decision variable ybv is defined as follows:
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ybv =


1, If BS b is backhauling the VBS v

0, Otherwise

(3.39)

Ψij variable displays the data flow between BS to VBS and is extracted from the flow

variable by considering i = BS and j = V BS.

∑
b∈B

∑
d∈D

f ij
bd = Ψij , i ∈ B, j ∈ V (3.40)

VBSs can serve multiple DPs simultaneously. Therefore the bandwidth of backhaul

links is assumed that has a 2 RB size of 720 kHz numerology bandwidth:

Cbv = (2× 0.72)

(
log2

(
1 +

pbv × gbv
σ2

))
Mbps (3.41)

gbv is calculated in Section 3-B for 28 GHz carrier bandwidth, Cbv and pbv display data

rate between BS to VBS and the transmit power, respectively. Finally, the backhaul

data rate must be greater or equal to the flow between BS to VBS:

Ψbv ≤ Cbv, ∀ b ∈ B, v ∈ V (3.42)

The carrier frequency of the backhaul communication is given as 28 GHz in the channel

model section. The maximum transmit power of mmWave BS (in our case, it is VBS)

per user stream is defined as 25 dBm [170] which makes approximately 316 mW. The

maximum backhaul power between each BS and VBS is restricted in constraint 3.43

where Pbmax indicates maximum transmit power between BS and VBS:

pbv ≤ Pbmax × ybv, ∀ b ∈ B, v ∈ V (3.43)

The sets and indices used in the model are given in Table 3.2, while the model param-

eters and variables are presented in Table 3.3, and Table 3.4, respectively. To present

the objective function and all the constraints employed in the model in a readable

manner, Table 3.5 is utilized.
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Table 3.5: Model Constraints

Eq Number Objective Function

3.16 min : −a1

(∑
d∈D

yd

)
+ a2 (pt) + a3

(∑
d∈D

∑
r∈R

IN r
d

)
Eq Number Main Model Constraints

3.1 td ≥ tn, ∀ d ∈ D
3.2 Ωd ≥ dd, ∀ u ∈ U
3.7 W1 +W2 +W3 = Wtotal

3.4
∑
r∈R

∑
n∈N

yrnsd ≥ ysd

3.5
∑
r∈R

∑
n∈N

yrnsd ≤ K (ysd)

3.18 dd × yd ≤ Cd, ∀ d ∈ D

3.19
∑
s∈S

Ωsd = dd, ∀ d ∈ D

3.20 td ≥ tn
(∑

n∈N ynd
)
, ∀ d ∈ D

3.21
∑
n

ynd ≤ 1, ∀ d ∈ D

3.22
∑

j∈Nu(i)

f ij
sd −

∑
j∈Nu(i)

f ji
sd =


Dsd i = b
−Dsd i = d
0 otherwise

, ∀ i ∈ U , j ∈ Nu

3.23
∑
j∈Nu

f ij
sd −

∑
j∈Nu

f ji
sd = 0, ∀ i ∈ U , j ∈ Nu, s ∈ V , d ∈ D

3.24 f ij
sd = 0, ∀ i, j ∈ D

3.25 f ij
sd = 0, ∀ i, j ∈ B

3.26
∑
i∈S

Λid ≤ 1, ∀ d ∈ D

3.27
∑
b∈B

f id
sd ≥ Λid, ∀ i ∈ S, d ∈ D

3.28
∑
b∈B

f id
sd ≤ k

(
Λid
)
, ∀ i ∈ S, d ∈ D

3.29
∑
s∈S

ysd ≤ 1, ∀ d ∈ D

3.30
∑
d∈D

yrsd ≤ 1, ∀ s ∈ S, r ∈ R

3.31
∑
n∈N

yrns ≤ 1, ∀ s ∈ S, r ∈ R

3.32
∑
d∈D

∑
r∈R

prsd ≤ Ptmax, ∀ s ∈ S

3.33 prsd ≤ yrsd × Prmax, ∀ s ∈ S, d ∈ D, r ∈ R

3.34
∑
r∈R

∑
n∈N

plrn × prbn = Wtotal

3.35
∑
n∈N

plrn ≤ 1, ∀ r ∈ R

3.36 yrnb ≤ plrn, ∀ b ∈ B, ∀ d ∈ D, ∀ r ∈ R

3.37
∑
r∈R

plrn + pl(r−1) n = 2 (zrn) + xorrn, ∀ r ∈ R, ∀ n ∈ N

3.38
∑
r∈R

xorrn ≤ 2, ∀ n ∈ N

3.40
∑
b∈B

∑
d∈D

f ij
bd = Ψij , ∀ i ∈ B, j ∈ V

3.42 Ψbv ≤ Cbv, ∀ b ∈ B, v ∈ V
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3.3 Linear Reformulation Methods

The data rate in Section 3.2 is calculated by the Shannon-Hartley formula (Eq (3.44)).

The problem is formulated in the previous section as a mixed-integer nonlinear pro-

gramming (MINLP) and is unsuitable for linear programming. This section demon-

strates how to linearise nonlinear constraints, starting from the logarithmic function,

and perform this reformulation step.

3.3.1 Linear Reformulation of the Capacity

The constraint described in Eq (3.18) shows the data rate requirement for each DP.

Cd refers to the assigned data rate for each DP in Mbps determined by using the

Shannon-Hartley formula. We reformulate it with the following method to get a linear

form of the Shannon capacity at any given SINR. At the end of this section, we also

formulate how to define Cd from the output of the linearisation method in Eq (3.63).

Shannon capacity can be calculated as the multiplication of bandwidth and spectral

efficiency given in Eq (3.44) and Eq (3.45)

Cd = w (log2 (1 + SINR)) (3.44)

Cd = w

(
log2

(
1 +

S

I +N

))
(3.45)

Cd = w (log2 (S + I +N)− log2 (I +N)) (3.46)

Cd =
∑
r∈R

∑
n∈N

prbn (log2 (A
r
d)− log2 (IN

r
d)) , ∀ d ∈ D (3.47)

Eq (3.46) has two logarithmic functions; the first one has all the signals that a DP can

receive. The second logarithmic function includes interference and noise. Then, we

defined Ar
d variable that equals to desired signal + interference + noise (S+I+N) and

IN r
d variable that equals to interference + noise (I+N), as given in Eq (3.47). The

bandwidth of each numerology varies; hence, it is given as follows and utilised in Eq

(3.47)

Wtotal =
∑
n∈N

prbn (3.48)
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The connection between Sources to DP uses the same propagation model; therefore,

we implemented linearisation for the access side data rate at once. Ar
d represents all

the signals that received by a specific DP d and a specific RB r, from all sources plus

the noise at DP d, as shown at Eq (3.49). Since all the sources are summed in Eq

(3.49), Adr variable does not depend on any source. Still, summing all the sources will

not lead to multiple connections for a DP; constraint (3.26) ensures that each DP can

establish a connection with only one source.

Ar
d =

∑
s∈S

∑
d′∈D

(prsd′ × grsd) + σ2, ∀ d ∈ D, r ∈ R (3.49)

Idrd =
∑
s∈S

(prsd × grsd) , ∀ d ∈ D, r ∈ R (3.50)

Ar
d = Idrd + IN r

d, ∀ d ∈ D, r ∈ R (3.51)

IN r
d = Ar

d − Idrd, ∀ d ∈ D, r ∈ R (3.52)

The desired signal that includes only multiplication of power and gain for a specific

DP and RB is denoted as Idrd and formulated in Eq (3.50). Instead of calculating

the denominator of the Shannon-Hartley formula (which is interference and noise, and

denoted as IN r
d), we calculated the desired signal Idrd, and subtract it from Ar

d. Thus,

IN r
d can be simply derived, given in Eq (3.51) and Eq (3.52).

A piecewise linearisation method is employed for the linearisation of the logarithmic

function, given in [171]. In this method, the argument of the logarithmic function is

divided into a set of segments that are denoted as M = {1, ...,M} as shown in Fig

(3.3). Then, it is assumed that the curve between two nodes is linear. Also, as can be

seen in Fig. (3.3), the linear segments are concave; therefore, the linearisation error is

always negative, as shown in Table 3.6.

To begin with the linearisation method, a binary indicator variable Zm is defined to

mark in which segment we are in
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Figure 3.3: Piecewise linearization method

Zm =


1, X ∈

[
¯Xm−1, X̄m

]
0, Otherwise

(3.53)

Then, the following constraints are defined [171];

¯Xm−1Zm ≤ Xm ≤ X̄mZm, ∀r (3.54)

∑
m∈M

Zm = 1 (3.55)

X =
∑
m∈M

Xm (3.56)

Eq (3.54) and Eq (3.55) underline that related Xm point can only be in one segment,

and there must be only one positive Zm that indicates the corresponding segment.

Since there is an equality in Eq (3.55), the maximum and the minimum values of the

logarithmic function must be defined. If there is no connection, SINR will be equal to

zero, and Xmin equal to zero as well. Maximum data rate demand divided by minimum

RB bandwidth that is 180 kHz to calculate the Xmax.

Xmax = 2(max(dd))/(min (prbn )) (3.57)

Therefore, any Ar
d and IN r

d value must be between Xmin and Xmax points
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Xmin ≤ Ar
d ≤ Xmax (3.58)

Xmin ≤ IN r
d ≤ Xmax (3.59)

Finally, the linear output of the logarithmic Shannon-Hartley formula can be deter-

mined as:

E =
∑
m∈M

[
¯Em−1Zm +

(
Xm − ¯Xm−1Zm

) Ēm − ¯Em−1

X̄m − ¯Xm−1

]
(3.60)

Equation 3.60 is the summation of the two points A and B shown in Fig (3.4) that

illustrates the α angle, A, and B points. The former value in equation (point A)

displays the lowest value of the previous segment, and the latter gives the remaining

part of the value using the slope of the related segment, more specifically tan(α).

Figure 3.4: Piecewise linearization method

We linearized log2(A
r
d) and log2(IN

r
d) separately and the linear outputs are called E1

and E2 respectively. E1 and E2 variables have the indices of d and r, to reduce the

complexity we prefer not to display these indices through linearisation method. Also,

E1 and E2 variables are calculated with the same method, so we calculate only E

variable above. Thus, the linearized version of capacity function (Lrn
d ) is calculated

as:
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Lrn
d = w ∗ (log2(S + I +N)− log2(I +N)) (3.61)

Lrn
d = prbn ∗ (E1 − E2) (3.62)

Note that the allocated demand to each DP is formulated without including the index

of the serving BS. However, Eq (3.29) that is given in Section 4-D, prevents multiple

BS connection. The linear version of the assigned data rate is presented above as Lrn
d

for each DP, RB, and numerology. To test the capability of the linearisation method,

we assumed that any DP can utilise multiple RBs from the same BWP. Then, we

sum all RBs and numerologies to find the allocated data rate for each DP in Mbps as

follows:

Cd =
∑
r∈R

∑
n∈N

Lrn
d , ∀ d ∈ D (3.63)

The backhaul data rate Cv is also calculated by using the Shannon-Hartley formula,

and the same linearisation method is applied to Cbv. However, for the backhaul data

rate, we assume only SNR, without interference between access and backhaul due to

out-band backhauling. Moreover, even in the busiest condition, there is hardly any

CCI for backhaul. There are two possible reasons for the low interference; first, the

above-mentioned high attenuation for the mmWave signals; CCI is much lower for

the FR2 for the same distance when comparing FR1. The second reason is that the

mmWave BSs have lower transmit power given in Table 3.7. In addition, TDMA

operation (if operated for backhaul) also reduces interference.

Consequently, calculating interference for backhaul transmission brings only complex-

ity and processing time. Hence, interference calculations are removed from the back-

haul communications to alleviate the complexity. Moreover, the linearisation was

executed without considering any numerology. We assume that backhaul uses only

720 kHz numerology; therefore, the bandwidth of each RB of the numerology is fixed.

Lv, the linear output of the logarithmic spectral efficiency function for the backhaul,

is calculated in the same way as Lrn
d . Since we assign only the third numerology (720
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Table 3.6: Validation of Linearization Method by Comparing Ar
d

DP1 DP2 DP3 DP4 DP5

Actual Output 5.85901 4.6957 6.72756 5.80606 5.19076
Linear Output 5.85891 4.69419 6.72748 5.80586 5.19076
Difference 1E-04 0.00151 8E-05 0.0002 0
Percent 0.0017 0.0321 0.0012 0.0034 0

kHz bandwidth) for the backhaul data rate, it can be calculated as follows in Mbps:

Cv = (0.72)Lv, ∀ v ∈ V (3.64)

The outcomes of the linearisation method are compared to actual values to verify

the linearisation method. First, we evaluate the Ar
d and its linear output with actual

values. The proposed linearisation method is concave; therefore, all the differences

must be less or equal to zero. Table 5 shows the linearised and actual output for each

RB. In this linearisation example, all 5 DPs are served by single or multiple RBs. For

testing, we pick the RB that carries the largest data rate for each DP. Table 3.6 shows

that the maximum error is 0.032% which is disregardable.

3.3.2 Linear Reformulation of the Multiplication of Variables

Multiplying two variables in MILP disrupts linearity. In our optimisation framework,

this multiplication happens between a binary variable and a non-negative real number.

For example, to eliminate the unnecessary values from Ar
d, it must be multiplied with

binary yrd variable where:

yrd =


1, If DP d utilizes the RB r

0, Otherwise

(3.65)

Ar
d variable is originally formulated as follows:

Ar
d = ard × yrd, ∀ d ∈ D, r ∈ R (3.66)

ard shows all the received signals by DP d that utilizes RB r, same as Ar
d. Hence, ard

is the version of Ar
d that has not been multiplied with yrd yet. In our optimisation

framework, we employed Ar
d to prevent any wrong output. Since the multiplication
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given at Eq 3.66 is nonlinear, we replaced Eq 3.66 with following four equations by

utilising minimum and maximum value of the logarithmic spectral efficiency function

[167]:

Ar
d ≤ Xmax (y

r
d) (3.67)

Ar
d ≤ ard −Xmin (1− yrd) (3.68)

Ar
d ≥ ard −Xmax (1− yrd) (3.69)

Ar
d ≥ Xmin (y

r
d) (3.70)

3.4 MILP Model Setup and Results

In this section, we evaluate the performance of the considered RAN resource allocation

optimisation model. We used IBM’s linear solver CPLEX as well as the modelling

program AMPL [172] to develop our model.

First, we investigated the effects of VBS nodes in terms of bandwidth allocation

amongst BWPs, transmit power of each RB, total transmit power and CCI. To do

so, we run the optimisation model with and without the VBS nodes. In both cases,

the objective function and the constraints that are not linked to VBS are kept iden-

tical. For the without VBS nodes model, flow conservation constraints do not exist;

accordingly, backhaul communication is not considered at all in this case.

Then, to investigate the performance of multi BWP versus single BWP, we assume

that the BSs can have only one type of numerology; hence, only one BWP can exist.

In other words, only one numerology is available for all BSs at any time. Here, we

compare transmit power of each RB, total transmit power consumption and CCI for

each RB. In this part, the VBS nodes are always included in all scenarios.
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3.4.1 MILP Model Setup

We assume a square 500× 500 meters grid. Therefore, the farthest DP can be located

177 meters away from a BS on this grid. This distance is compatible with the signal

model proposed in [162]. DPs and VBSs are randomly located in the grid; and illus-

trated as mobile phones and vehicles, respectively, in Figure 3.5. We split the grid into

four equal imaginary squares to locate the BSs at the centre of each square. Any BS

can serve any DP on the grid whether the corresponding DP is inside the imaginary

square or not. In addition, mmWave backhaul links (FR2) and sub-6 GHz access links

(FR1) are demonstrated in Figure 3.5.

Figure 3.5: System model illustration. Vehicles and cell phones show VBS nodes and
DP nodes respectively.

The radio access links (BS and DP, VBS and DP links) utilise FR1 frequency bands.

The first three numerologies, µ = 0, µ = 1 and µ = 2, are considered for the access

side. On the contrary, backhaul links (BS to VBS) utilise FR2. The backhaul com-

munication is established by using mmWave specifications, and only one numerology
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(µ = 2) is employed for the backhaul.

The total transmission bandwidth Wtotal is considered as 5 MHz for simplicity and to

reduce computational time. The larger transmission bandwidth configurations (up to

100MHz [169]) can be easily adapted to the model. Also, when all the RBs belong to

the first numerology (180 kHz RB size), the 5 MHz bandwidth can have a maximum

of 25 RBs [169]. As mentioned earlier, we add guard bands between each BWP; hence

the total number of the first numerology RB is shrunk to 23. In other words, the total

available bandwidth is equal to 23× 180kHz.

There are three types of DP requirements in the optimisation model. The first type

of DPs require a 5-7 MBPS data rate of 0.8-1.2 ms, the second group of DPs need a

0.2-0.3 MBPS data rate with low latency, in 0.3-0.6 ms, and the last group of DPs

require 0.1-0.2 MBPS data rate in 1-2 ms. It is assumed that these groups of DPs

reflect the requirements of eMBB, URLLC and mMTC slices, respectively. Data rate

requirements of the eMBB DPs are determined considering normalised user throughput

for the dense urban scenario [173]. The normalised user throughput is defined in [173]

as the received bits in a certain amount of time (e.g. per second), divided by the

channel bandwidth and measured as bit/s/Hz. Data rate and delay requirements are

similar to those used in [81], [173] and adapted to this model considering aggregated

requirements of demand points. In our model, DPs are unrestricted to select any

numerology as long as their requirements are satisfied by the related BWP, and the

corresponding network slice has available bandwidth.

Although the model supports multi-hop, we confine the maximum number of hops to

two. In this thesis, the purpose of employing VBS nodes is not to reach far users

from BSs; instead, LOS and NLOS signal propagation scenarios are considered for

backhaul and access, respectively. This also means all the DPs and VBSs are inside

the coverage area. Moreover, the flow conservation constraint is not minimised in the

objective function; therefore, utilising multi-hops in the model brings complexity and

unnecessary bandwidth usage. There are two ways to reduce the number of hops to

two. First, the flow among VBSs can be prevented:

f ij
sd = 0, ∀ i, j ∈ V (3.71)
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When constraints (3.24), (3.25), and (3.71) are employed together, they limit the

maximum number of hops to two. The second method is that the neighbourhood

matrix Nu can be reshaped by removing the undesirable flows such as BS to BS, VBS

to VBS, and DP to DP. This solution comes with fewer constraints and requires less

processing time for the solver.

The objective function has weights; providing service to all DPs is the priority; hence

the largest weight is (a1). Some amount of CCI can be affordable in the model;

therefore, the smallest weight a3 is utilised for CCI regulation. These and the rest of

the input parameters are displayed in Table 3.7.

Table 3.7: Input Data for the Optimisation Model

Input Description

Carrier bandwidth for access w 5 MHz
Carrier bandwidth for backhaul wb 5 MHz
Data demand for each DP dd Uniformly distributed 5-7 MBPS for eMBB, 0.2-

0.3 MBPS for URLLC, 0.1-0.2 MBPS for mMTC
Delay requirement for each DP td Uniformly distributed 0.8-1.2 ms for eMBB, 0.3-

0.6 ms for URLLC, 1-2 ms for mMTC
Delay for each numerology Given at Table 1
DP locations kd Randomly distributed on the grid
VBS locations kv Randomly distributed on the grid
Total RB units 23*(180kHz)
Total Number of BSs 4
Utilized numerologies The numerologies with 15,30,60 kHz SCS
Noise power spectral density -174 dB/Hz [174]
Weights of the objective function
a1, a2, a3

100, 1 and 1 respectively

Ptmin 0
Ptmax 46 dBm [174]
Prmax 250 mW
Number of segments M 100
Start point of the segments Xmin 0

End point of the segments Xmax 2max(demand)/min(PRB)

3.4.2 Optimisation Results and Impact of VBSs

optimisation results have been taken with the different numbers of DPs and VBSs.

First, we considered eight different scenarios; each scenario possesses a different number

of DPs that requires diverse services as shown in Table 3.8. VBS nodes are not included

in half of the scenarios; still, the objective function and the rest of the model are

identical. It is important to note that scenarios named Sc1 and Sc5, Sc2 and Sc6, Sc3

and Sc7, Sc4 and Sc8 have identical DPs in terms of location on the grid, delay and
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Table 3.8: Scenario Parameters

Scenario
name

Number of
eMBB DPs

Number of
URLLC DPs

Number of
mMTC DPs

Total number
of DPs

Number of
VBSs

Sc1 2 2 2 6 5
Sc2 3 3 3 9 5
Sc3 4 4 4 12 5
Sc4 2 1 12 15 5
Sc5 2 2 2 6 0
Sc6 3 3 3 9 0
Sc7 4 4 4 12 0
Sc8 2 1 12 15 0

data rate requirements. The only difference is the existence of VBS nodes.

In what follows, we represent the corresponding optimisation results in terms of trans-

mit power and bandwidth allocation amongst RBs and CCI.

Total transmit power

Optimisation results are obtained for eight scenarios given in Table 3.8. In this subsec-

tion, we focus on the total transmit power of Sources (including backhaul and access)

in the downlink direction, as well as the average and individual power consumption of

each DP.

Figure 3.6: Total transmit power for each scenario

Figure 3.6 shows backhaul and each access power separately; the grey colour represents

backhaul power consumption, and the orange and blue colours show VBS to DP and BS

77



Chapter 3. Optimisation Model 3.4. MILP Model Setup and Results

to DP access transmit power, respectively, for each scenario. This colour representation

is identical for Figures 3.6 to 3.9. BS to DP connection is still in use when VBS nodes

are activated. Figure 3.6 shows that the total transmit power is always less when VBS

nodes are used. This difference rises when only access power consumption is compared.

The individual power consumption of DPs is investigated to analyse the impact of

backhaul communication. To do so, the scenarios that include the same number of

DPs are compared. Fig 3.7 illustrates the scenarios with six DPs, Sc1 and Sc5. Sc1

has VBS nodes hence backhaul communication is available. The results demonstrated

that the VBS nodes are utilised by high data-requiring DPs, in other words, eMBB

DPs. Both eMBB DPs have significant power savings compared to scenario Sc5.

Figure 3.7: Individual transmit power consumption comparison among all DPs for
Scenarios Sc1 and Sc5

It is important to note that we employ a frequency-selective channel with SSF co-

efficients that follow a Rayleigh distribution. SSF refers to the rapid fluctuations

in the received signal strength due to multipath propagation, where the signal trav-

els through multiple paths and encounters constructive and destructive interference

[175]. The SSF coefficients apply these fluctuations to the channel characteristics.

The changes in SSF occur much faster than LSF and FSPL, which change slowly over

longer distances. Therefore, channel gain might differ for different frequency bands

even for the same distance between a BS and a user. Considering this fact, we utilised

two methods to justify the allocated transmit power outputs.
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The first method employed to justify the allocated transmit power outputs involves in-

creasing the number of DPs and observing the optimal power allocation across different

scenarios. As shown in Fig 3.6, there is a continuous increase in power consumption as

the number of DPs is increased. Scenarios Sc1, Sc2, and Sc3 have an equal rate of DPs,

with an equal number of eMBB, URLLC, and mMTC DPs, respectively. However, as

the total number of DPs increases from 6 to 9 and then to 12, the power allocation

steadily increases for these scenarios. Similarly, scenarios Sc5, Sc6, and Sc7 exhibit

the same relationship, with a corresponding increase in power observed across these

scenarios.

The second method to justify the allocated transmit power outputs is, considering

the framework’s four BSs and five VBSs, we positioned DPs at equal distances for

each Source and observed the corresponding allocated transmit power. Specifically, we

employed the two eMBB DPs from the 6-DP scenarios and observed access power only.

DP number 1 and DP number 2 are located at distances of 61 meters and 71 meters

from their respective Sources. To assess the SSF coefficients, we placed these DPs at

the same distance from all BSs and VBSs. For instance, DP number 1 was located 61

meters away from each BSs and VBSs. Subsequently, we calculated the average and

standard deviation based on these measurements.

The average access power for DP numbers 1 and 2 are 3.17 mW and 1.9 mW, re-

spectively. As illustrated in Fig 3.7, the allocated access power for the corresponding

DPs is 2.41 mW and 2.03 mW, respectively. Thus, DP number 1 experienced a better

channel condition than the average, while DP number 2 encountered a worse channel

condition than the average. This observation suggests that channel conditions may

vary depending on the location or frequency band, but the displayed transmit power

tends to align around the average. Table 3.9 shows the optimal power allocation for

two eMBB DPs with no CCI or INI.

Table 3.9: Transmit Power for DP1 and DP2 (mW)

Sources BS1 BS2 BS3 BS4 VBS1 VBS2 VBS3 VBS4 VBS5

DP1 2.35 3.72 4.92 2.30 2.41 2.54 4.14 4.86 3.18
DP2 1.29 1.48 2.58 1.06 1.18 2.05 2.03 2.95 2.16

Figure 3.8 demonstrates the scenarios with nine DPs: Sc2 and Sc6. Only DP1 utilises

the VBS nodes in Sc2; hence, the reduction in transmit power. On the other hand,
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DP2 and DP3 indicate that power consumption is equal when VBS nodes are available

but not active. Up to now, backhaul communication has been employed for the high

data-requiring eMBB DPs only.

Figure 3.8: Individual transmit power consumption comparison among all DPs for
Scenarios Sc2 and Sc6

Sc3 and Sc7 are compared in Figure 3.9. All types of DPs utilise the backhaul com-

munication for the first time; however, the most significant change can be observed in

eMBB DPs; for instance, a dramatic reduction in transmit power can be seen in DP4.

Figure 3.9: Individual transmit power consumption comparison among all DPs for
Scenarios Sc3 and Sc7
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Since the locations of the VBSs are chosen randomly, the distance between a source

and DP might reduce. The closer the distance, the lower the transmit power. Lower

transmit power causes lower interference for those DPs that utilise the same RB. Hence,

lower transmit powers can satisfy the requirements of the DPs that suffer from high

interference. This accumulative transmit power reduction can be observed for DP5 in

scenarios Sc3 and Sc7. Although no VBS is activated for the DP5, the transmit power

reduces when other DPs utilised VBSs. This situation is investigated further in the

’CCI for DPs’ subsection.

The overall results in this subsection demonstrate that the services that require a

high data rate, are more likely to use VBS nodes to reduce total power consumption.

Moreover, as anticipated, the DPs that have higher data rate demands consume more

power than others, and utilising VBS nodes makes significant changes in those DPs.

Figure 3.7, 3.8 and 3.9 illustrate that the difference in transmit power can be seen

on eMBB DPs mostly. Consequently, the power efficiency for individual DPs is im-

proved; the same DPs are served with lower power consumption. The individual power

consumption of DPs is decreased by 48%.

In addition, average power consumption for each scenario and standard deviation are

lessened when VBS nodes are employed which is illustrated in Figure 3.10. The fall

in average power consumption and standard deviation shows that VBSs alleviate the

consumed power and help to maintain fairness in terms of power consumption. The av-

erage power consumption for each DP is decreased by 54% also the standard deviation

is reduced by 50%.

Just as high data rate and low latency, connection density is a factor in 5G [173].

Therefore, instead of simply increasing the number of DPs proportionally, we use

scenarios Sc4 and Sc8 to reflect the nature of mMTC. Hence, scenarios Sc4 and Sc8

have 12 mMTC DPs, 2 eMBB DPs and 1 URLLC DP. Since the focus is on the mMTC

DPs in Sc4 and Sc8, it is a good opportunity to discuss the bandwidth allocation among

BWPs. Instead of focusing on similar results on the individual transmit power that

mostly changes for eMBB DPs, we show the flexibility of the bandwidth in the following

subsection.
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Figure 3.10: Average transmit power and standard deviation comparison among sce-
narios

Bandwidth allocation amongst BWPs

We investigate the bandwidth allocation amongst BWPs as well as RB allocation

among numerologies. Due to the given delay requirements, the first numerology (with

15 kHz SCS, also displayed as BWP1 in Figure 3.11 and Figure 3.12) is not available

for URLLC DPs at all. Moreover, the first numerology comes with the lowest SCS

bandwidth; according to our constraints and objective function, all DPs tend to use

higher numerologies due to the higher bandwidth advantages.

Figure 3.11 shows the bandwidth allocation amongst BWPs for each scenario. The

numerologies with 15, 30 and 60 kHz SCSs are shown as BWP1, BWP2 and BWP3,

respectively. As stated earlier in this thesis, each BWP includes only one type of

numerology, and there is only one BWP for each numerology. Since three numerologies

are utilised in this model, there can be at most three separate BWPs.

Maximising the BWP that contains the 3rd numerology comes with the minimum

number of RBs; however, this is the optimum bandwidth allocation in this optimisation

framework in 6 out of 8 scenarios. Due to the low number of RBs, CCI is inevitable

for all scenarios except Sc1 and Sc5. Yet, the optimisation model tolerates the CCI

by utilising lower transmit power. However, scenarios Sc4 and Sc8 have a few data

and delay critical DPs. The rest of the DPs have lower data and delay requirements;

therefore, the optimisation model employs more RBs with lower numerologies.
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Figure 3.11: Bandwidth allocation between BWPs

Figure 3.12: Total number of RBs for each scenario

Bandwidth allocation amongst BWPs should be evaluated with the number of RBs for

each numerology. The scenarios with a low number of DPs do not need a high number

of RBs; however, due to CCI restrictions, as the number of DPs is rising, increasing the

number of RBs eases CCI. Figure 3.12 illustrates the number of RBs for corresponding

BWP.

Figure 3.13 shows the numerology selection of the DPs for scenarios Sc3 and Sc7.

According to their requirements, the DPs are flexible to select any numerology. Thus,

the model can offer higher numerologies (consequently higher bandwidth) to the DPs
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even when they do not need to. For example, URLLC DPs have to pick 3rd numerology

due to delay requirements, and eMBB DPs have high data rate requirements; selecting

3rd numerology helps to reduce the transmit power significantly. However, mMTC

DPs do not have strict delay or high data rate requirements. Thanks to the flexibility,

it can be seen that DP10 selects 3rd numerology, although it does not have to.

Figure 3.13: Numerology deployment for 12-DP scenarios Sc3 and Sc7

Interference

In this subsection, we investigate the interference focusing on two aspects: co-channel

interference and inter-numerology interference.

CCI

The CCI is calculated for each RB that is allocated to a DP. The scenarios with 6-DPs

avoid the CCI by selecting unallocated RBs; however, the rest suffers from CCI. Instead

of analysing the standalone interference power, CCI is investigated by considering its

percentage over all the signals that a DP receives. Since the eMBB DPs consume

relatively more power than other DPs, analysing the CCI percentage helps maintain a

CCI presentation standard in the model.

Also, we utilise sub-6 GHz for access and mmWave for backhaul; hence, there is no

interference between access and backhaul. When a DP selects a VBS as a supplier, the

signal comes from a closer source to the corresponding DP and transmit power can be
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reduced. Moreover, the distance of the interfering sources can be further when a VBS

node is activated. Considering propagation loss, moving away from the interfering

sources helps to reduce the CCI.

The 6-DPs scenarios, Sc1 and Sc5, have no CCI, and the 9-DPs scenarios, Sc2 and

Sc6, have insignificant CCI percentages. Figure 3.14 shows the percentage of CCI for

the 12-DPs scenarios, Sc3 and Sc7, respectively. In Figure 3.14, interfering DPs are

shown by the same colour; for instance, DP5 and DP8 use the same RB of different

BSs in Sc3, and DP6, DP10, and DP12 interfere with each other in Sc7. As a result,

the maximum percentage of interference is reduced by 69% (from 24,47% to 7,35%).

Figure 3.14: CCI percentage of each DP for 12 DP scenarios Sc3 and Sc7. Interfering
DPs are shown in the same colour.

It is demonstrated in the previous subsection that utilising VBS nodes decreases the

difference among individual transmit power (standard deviation) of DPs. In other
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words, fairness is better in the scenarios with VBS nodes; moreover, the percentage of

CCI is significantly diminished. Also, it can be seen from Figure 3.14 that eMBB DPs

hardly ever interfere with other DPs. Since eMBB DPs consume more power than

other DPs, interfering with DPs that use other services would cause a huge percentage

of CCI for the URLLC and mMTC DPs. Most of the time, eMBB DPs have no

CCI; however, when they have CCI, they either interfere with each other or interfere

with other types of DPs that are located far on the grid to compensate huge power

differences. Besides, all the scenarios are in a similar trend; the percentage of CCI is

significantly diminished when VBS nodes are in use. In addition to that, when a VBS

is activated, the location of the interfering source changes. Therefore, there is a chance

to increase the distance of the interfering sources; hence, interference reduces.

INI

In Chapter 3.1.1, we previously emphasised that we ignored the INI. This subsection

demonstrates the INI and its genuine effect on total interference in our optimisation

problem. To investigate the INI, we will begin by exploring the concept of orthogonal-

ity. Let x1(t) and x2(t) be two scalar waveforms. The inner product of these signals

is calculated as follows, where x∗2(t) shows the complex conjugate of x2(t) [176]:

(x1, x2) =

∫ ∞

−∞
x1(t) · x∗2(t) dt (3.72)

When the inner product of two signals is equal to zero, such signals are considered

orthogonal to each other, meaning those signals are completely independent and do

not interfere with one another [176]. To analyse sinusoidal signals, let us consider

two sinusoidal functions with different frequencies: x1(t) = cos[2πf1(t) + ϕ(t)] and

x2(t) = cos[2πf2(t)]. In order for these signals to be orthogonal to each other, it is

necessary that the following equation is satisfied:

∫ T

0
cos[2πf1(t) + ϕ(t)] · cos[2πf2(t)] dt = 0 (3.73)

If f1 − f2 = L
T , where ”L” is a positive integer, the Eq 3.73 is satisfied. Thus, it can

be concluded that signals with frequencies being integer multiples of each other are
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orthogonal to each other. Fig 3.15 shows orthogonal signals in the frequency domain.

Figure 3.15: Frequency Domain Representation of Orthogonal Signals.

Fig 3.15 demonstrates that the power of orthogonal signals exhibits an inverse rela-

tionship where one signal reaches its maximum while the other signal reaches zero, and

vice versa. Also, the signals in the Fig 3.15 are normalised.

Using orthogonal signals helps to utilise the bandwidth more efficiently. As mentioned

before, employing a multi-numerology system disrupts orthogonality and causes INI.

In this subsection, we investigate the allocated RBs, which have been found as optimal

and employed by the optimisation framework, to assess the extent of INI. In the opti-

misation problem, an optimal bandwidth allocation has been determined for different

numerologies. However, it is important to emphasise that we initially disregarded INI,

rendering it absent from any equations or constraints. In other words, we did not incor-

porate INI into our model or aim to minimise its effects, among other considerations.

This investigation aims to show the INI patterns for the allocated bandwidth.

Fig 3.16 illustrates the optimum RBs employed in the framework, where blue, red and

magenta lines show the 1st, 2nd and 3rd numerologies, respectively. In the optimal

BWP allocation, there are one, one and six RBs for 1st, 2nd and 3rd numerologies,

respectively. The green lines in Fig 3.16 represent the guard bands employed between

BWPs. In order to reduce the complexity of the figure, the first three RBs of the 3rd

numerology are displayed. Table 3.10 is employed to show the INI among different

RBs from different numerologies. The centre frequencies of the RBs and guard bands
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Figure 3.16: Frequency Domain Representation of Employed RBs.

are marked below in the figure.

Table 3.10: INI Among Numerologies

INI caused by
INI caused to

1st numerology 2nd numerology 3rd numerology

1st numerology NA X X
2nd numerology X NA X

3rd numerology ! X NA

It can be clearly seen from Fig 3.16 that the 1st numerology causes no interference to

the higher numerologies because its centre frequency will always be an integer multiple

of the higher numerologies’ frequencies. Thanks to the first guard band between the

first and second numerology RBs, 2nd numerology also causes no interference to the 3rd

numerology. This guard band also helps to cancel INI caused by 2nd numerology to the

1st numerology. Considering this specific BWP allocation which is found as optimum

and has any INI constraints and calculations, the only INI caused by the 3rd numerol-

ogy to the 1st numerology Table 3.10 shows the INI relation among numerologies for

this BWP allocation.

Given the abundance of available resources in scenarios with 6 DPs, CCI and INI can

be avoidable. Consequently, our focus shifts towards investigating INI in scenarios

involving 9 DPs. In this subsection, we aim to calculate the actual INI. To achieve

this, we utilise frequency domain analysis which is given in Fig 3.16 to calculate the

interference power.

88



Chapter 3. Optimisation Model 3.4. MILP Model Setup and Results

The power of side lobes reduces and starts from 21% then 12% 9% 7% to 5% in the

5th side lobe. The nearest 3rd numerology RB causes higher INI than those located

further in the carrier frequency. Although the power of the side lobes can be filtered

[177] to reduce this interference, in this subsection, we analyse all the side lobes without

considering any filter applied.

DP number 9 is served by BS number 1, which is 102 meters away, and utilises only

1st numerology RB. The closest 3rd numerology RB in the carrier bandwidth, which

is located at the 7fc in Fig 3.16, is employed by DP number 7, a URLLC DP, which

requires 0.21 mW and is served by BS number 4. The distance between DP number 9

and BS number 4 is 453 meters. Since only the 21% of its power causes an INI to DP

number 9, the power that causes INI is calculated as 0.04 mW. Table 3.11 shows the

same relation for the RBs that cause the INI for DP number 9.

Table 3.11: INI Power That Is Caused by Other DPs

Interfering
DPs to DP #9

Power for
other DP

Source of
other DP

Distance to in-
terfering DP

Side Lobe
Power

Interfering
Power

URLLC (7) 0.21 mW BS #4 453 m 21% 0.04 mW
eMBB (1) 7.45 mW VBS #3 590 m 12% 0.89 mW
eMBB (2) 6.19 mW BS #3 342 m 9% 0.55 mW
URLLC (5) 0.14 mW BS #3 342 m 7% 0.01 mW
eMBB (3) 25.85 mW BS #2 314 m 5% 1.29 mW

The channel gain amongst DP number 9 and interfering Sources is calculated for

the channel gain the same as CCI, considering path loss, LSF, and SSF coefficients.

The received INI power is given in Table 3.12. This table shows the interfering power,

channel gain, and their multiplication; hence, the received INI power can be calculated.

Table 3.12: INI Power Calculation

Interfering DPs to DP #9 Interfering Power Channel Gain Received INI Power

URLLC (7) 0.04 mW 8.27× 10−14 0.03× 10−13 mW
eMBB (1) 0.89 mW 1.11× 10−14 0.09× 10−13 mW
eMBB (2) 0.55 mW 3.97× 10−13 2.18× 10−13 mW
URLLC (5) 0.01 mW 4.21× 10−13 0.004× 10−13 mW
eMBB (3) 1.29 mW 3.59× 10−13 4.63× 10−13 mW

The summation of the received INI power to the DP number 9 becomes 6.94× 10−13

mW. The received noise power of the 1st numerology RB is calculated as 7.16× 10−13

mW. The transmit power, which is generated for DP number 9 by BS number 1, is 0.13

mW, and the employed channel gain is 5.54×10−11. Thus, the received transmit power
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is calculated as 72.02×10−13 mW. Just like CCI, INI is also investigated by considering

its percentage over all the signals that a DP receives; therefore, the percentage of the

actual INI is calculated as 8.04%.

The only INI observed in our framework is caused by the 3rd numerology RBs to the

DP number 9. Remarkably, the percentage of INI in this scenario is lower than that

caused by CCI without VBS scenarios. Furthermore, it is important to note that we

did not apply any filters to mitigate the effects of the sidelobes. Therefore, actual

values should be less than the calculated. Additionally, the optimisation framework

did not include any specific constraints or calculations for INI. Consequently, we can

confirm that the locations of BWPs in the carrier bandwidth are meticulously designed,

effectively minimizing the impact of INI. In conclusion, considering all these facts, the

decision to ignore INI in our analysis is justified, as it would otherwise introduce further

complexity to the system.

Another crucial aspect to consider is that we aim to achieve maximum bandwidth

efficiency. As a consequence, the RBs from different numerologies are located closely

in our optimisation framework. However, even lower levels of INI can be achieved

by making some specific trade-offs, such as increasing the guard bands or allocating

more bandwidth to the guard bands. For instance, if we were to allocate a guard band

equivalent to the size of 3rd numerology RBs, the result would be a zero-INI among

different numerologies for this optimum BWP allocation, as illustrated in Fig 3.17.

Figure 3.17: Frequency Domain Representation of Zero-INI RBs.
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Moreover, since we actively minimise the CCI in the optimisation framework, in the

case that INI coefficients are identified in the model, the interfering DPs would be far

from each other. This distance helps to reduce the interference among DPs. Further,

the distance among interfering DPs is elaborated in the next subsection.

Interfering DP locations

A lower interference is expected to acquire the minimum transmit power and maximum

SINR. However, in our optimisation framework, we deliberately minimised CCI in the

objective function. Hence, we concentrated on and investigated the interfering DP

locations on the map. Fig 3.18 shows the interfering DPs for scenario Sc 3. It can be

seen from Fig 3.18 that the interfering DPs are located on the opposite corners of the

map to minimise the CCI.

Figure 3.18: Interfering DP locations for the Scenario Sc3. Blue dots show the BSs
and the precise locations of interfering DPs are shown.
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3.4.3 Impact of a Flexible BWP Compared to Non-Flexible BWP

In this subsection, we withdraw the flexibility of the numerology selection for the

DPs. Each type of DP can utilise only pre-defined numerology. Considering the delay

requirements, the URLLC DPs can only use 3rd numerology. eMBB DPs require a high

data rate, consequently, high bandwidth; therefore, we allocated the 2nd numerology for

the eMBB DPs. Since the mMTC DPs have no strict data rate and delay requirements,

we assume that the 1st numerology is appropriate for them.

When DPs are flexible in selecting numerology, all the eMBB DPs enjoy a high data

rate advantage of the 3rd numerology that is shown in Figure 3.13. However, when

the flexibility is prevented, the eMBB DPs are forced to utilise 2nd numerology. The

greater numerology utilises the DP, the larger bandwidth the DP gets. Reducing the

bandwidth to half causes a significant increase in the transmit power for those DPs.

For example, for Sc1, the transmit power increases 66 times (from 4,4 mW to 293 mW)

and 26 times (from 3,3mW to 86 mW) for DP1 and DP2, respectively.

Since all eMBB DPs used to employ 3rd numerology in previous sections, we decided to

reduce the data rate requirements of eMBB DPs to alleviate this clear effect of reducing

bandwidth. The data rate requirements of eMBB DPs, therefore, are reduced to 1-

1.5 Mbps from 5-7 MBPS in this subsection. The rest of the DP requirements and

locations are identical. The lower data rate requirements enable investigation of the

BWP allocation among BWPs and CCI percentage for the scenarios with reduced

data rate requirements by ignoring the obvious transmit power increase of high data

rate-requiring scenarios. The scenarios with VBS nodes (Sc1 to Sc4) are employed to

analyse the flexible and non-flexible scenarios.

Figure 3.19 provides a comparison between flexible and non-flexible numerology se-

lection in terms of bandwidth allocation among BWPs for scenarios from Sc1 to Sc4.

Non-flexible scenarios increase the 2nd numerology utilised by the eMBB DPs, leading

to an increase in the probability of finding RBs with higher gains and a reduction

in interference among eMBB DPs. However, flexible scenarios maximise the 3rd nu-

merology as expected, which leads to a lower number of RBs, but more manageable

CCI in lower transmit power. Considering the objective function, the optimisation

model can compromise some power against interference, and selecting the larger band-
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Figure 3.19: Bandwidth allocation comparison between flexible and non-flexible BWP
allocation scenarios

Figure 3.20: Total number of RBs for comparison between flexible and non-flexible
BWP allocation scenarios

width counterpoises this compromise. Figure 3.20 shows the number of RBs for each

corresponding scenario.

In order to further evaluate the performance of the proposed optimisation model, we

compared the total transmit power consumption of flexible and non-flexible scenarios.

Figure 3.21 shows the power consumption for each scenario. As the optimisation model

consistently selects the 3rd numerology for almost all DPs, it is expected that the non-
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Figure 3.21: Total transmit power comparison of flexible and non-flexible scenarios.

flexible scenarios consume more power due to the utilisation of higher numerologies for

eMBB DPs. The results demonstrate that the flexible BWP allocation model reduces

the total transmit power consumption, which aligns with the objective of reducing

energy consumption in communication networks.

In the impact of non-flexible BWP results, we examined the scenarios for CCI, where

Sc1 had no interfering DPs, Sc2 and Sc4 had considerably less CCI; therefore, Sc3

is investigated for CCI. Due to RB shortage in the flexible scenario, it is anticipated

to have a higher number of interfering DPs; however, Figure 3.22 illustrates that the

percentage of CCI is consistently lower when flexible scenarios are employed. These

results demonstrate that using higher numerologies with interfering RBs can maintain

the advantage of higher bandwidth for DPs, allowing them to achieve the desired SINR

with lower power and less CCI.

In addition to comparing flexible and non-flexible scenarios, it is also essential to con-

sider a single BWP scenario. In such a scenario, only 3rd numerology can be employed

to meet the delay and data rate requirements, regardless of the scenario. However,

if a 5 MHz carrier bandwidth frequency is employed with only 3rd numerology, the

total number of available RBs becomes six. As a result, scenarios with more than six

DPs are guaranteed to experience interference. Conversely, in a hypothetical no delay

requirement scenario, the single BWP can employ 1st or 2nd numerology. However,

given our parameters, the total transmit power would increase exponentially due to
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Figure 3.22: CCI percentage of each DP for Flexible and Non-Flexible scenarios. 12-
DP Scenario Sc3 is utilised. Interfering DPs are shown in the same colour.

the lower bandwidth of lower numerologies. This exponential increase highlights the

advantage of flexible BWP allocation.

3.5 Conclusions

In this chapter, we proposed a joint optimisation framework that optimises the down-

link RAN power allocation, user association, bandwidth allocation among BWPs and

data routing through vehicular networks. The proposed optimisation framework aims

to improve network efficiency and reduce the total transmit power while considering

CCI. To achieve this, a MILP model was developed that jointly optimises the above-

given objects by taking into account the total carrier bandwidth, routing data through

VBS nodes when necessary, and RB allocation among DPs by considering their delay

and data rate requirements. The proposed optimisation model is designed to increase
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the flexibility of the network by incorporating VBS nodes, which allows DPs to receive

their demand from other sources, supported by the out-band IAB network. Access and

backhaul communications are achieved through the FR1 and FR2 frequency bands, re-

spectively. The objective function of the model aims to maximise the number of served

users while minimising the weighted sum of the total transmit power and the CCI. To

achieve this, the model optimises the distribution of resources per DP, considering

their specific data rate and delay requirements.

In determining the data rate requirements of the DPs, a minimum requirement of 0.225

(bit/s/Hz) as specified in [173] was considered. However, our user requirements are

much higher than this value. For instance, if a 720 kHz BW numerology is used, each

RB must carry at least 0.162 Mbps; on the other hand, our mMTC DPs require data

rates between 5-7 Mbps.

The proposed optimisation approach effectively reduces transmit power and CCI, in-

dicating the benefits of properly configured numerologies, which could support the

implementation of RAN slicing. Additionally, we present a logarithmic function lin-

earization method based on piecewise linearization. Overall, the proposed model can

significantly enhance network efficiency, reduce power consumption and CCI, and ef-

fectively implement RAN slicing. Moreover, the proposed optimisation framework can

be extended to address new problems by incorporating additional constraints. For

instance, in-band IAB optimisation can be considered for similar scenarios, or the

parameters can be increased to tackle more complex and realistic problems.
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Heuristic Model

In the previous chapter, we utilised MILP to obtain optimal solutions. However, some

MILP problems may be excessively complex, NP-hard, or require considerable time to

solve. Additionally, each variable included in the optimisation problem exponentially

increases the total number of variables, leading to a significant increase in computa-

tional load and time. For instance, as the number of DPs, VBSs, the total carrier

bandwidth, and numerologies increases, computational time increases exponentially.

This phenomenon is known as the curse of dimensionality, which arises due to the vast

amount of data or parameters required for data analysis [178].

For example, in our MILP optimisation model, we observed that the computational

time required to obtain an optimal solution increases significantly as the problem size

grows larger. Specifically, for the scenario with the highest number of DPs and VBSs,

which includes 15 DPs and 5 VBSs (denoted as Sc8), the optimisation problem took

over 36 hours to solve on a computer with an Intel Core i7 10750H 2.59 GHz processor

and 32 GB RAM. Furthermore, as the number of DPs increases, the problem be-

comes increasingly complex and can become NP-hard, meaning that finding an integer

solution becomes infeasible.

Due to challenges such as the curse of dimensionality and the difficulty of solving some

optimisation problems, researchers have turned to alternative algorithms that can offer

near-optimal solutions in less time. One such approach is to use heuristic algorithms,

which trade off maximum accuracy and optimality for reduced computational time. In

addition, heuristic algorithms may be particularly useful for addressing problems with
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unknown features.

The heuristic algorithms can be written by making some observations or assumptions;

for example, in our problem, we can say that the nearest source must serve each DP. On

the other hand, the meta-heuristic algorithms are significantly inspired by nature; for

example, the Ant System (or ant colony) optimisation model is derived from the study

of actual ant colonies [58]. The shortest path leaves more intense traces and scents for

the ants, and after some iterations, the ant colony starts to follow the shortest route.

Particle Swarm Optimisation is derived from a bird flock or fish school; each agent

(either a bird or a fish) keeps its distance to its surrounding agents the same all the

time [59]. The velocity of the nearest agent is assigned to the corresponding agent,

and after some iteration, a random velocity value is assigned to the agent to increase

’craziness.’ The expected behaviour is that agents maintain an optimum velocity for

themselves and the distance between themselves and their neighbours. Moreover, the

Bees algorithm and Bacterial Foraging Optimization are examples of nature-inspired

optimisation algorithms in the literature. [60].

The Genetic Algorithm (GA) draws inspiration from the principles of evolution, whereby

species adapt to environmental changes over generations [60]. These principles are

based on natural selection and sexual reproduction [179]. In nature, fitness tests are

used to select individuals in many ways; for instance, organisms that fail the fight or

flight test perish [179]. Humans, on the other hand, use another selection method by

choosing the best offspring to improve the quality of crops, horses, and dogs across

generations [179]. However, those tests are not enough for mating. Individuals must

also dominate weaker ones in a species-specific competition known as ”survival of the

fittest” [180]. Those who pass their genes to the next generation are regarded as

successful individuals. During mating, two individuals swap genetic material if their

chromosomes match, with the smallest unit determining an organism’s traits known

as a gene [180].

The GA is a computational method that relies on a population of individuals to ex-

change genetic material for obtaining optimal solutions. The GA is an iterative pro-

cess, and the fitness of each chromosome is evaluated in each iteration. Each generation

brings more individuals into the population. Since the GA is an iterative process, the

population size must be constant to hinder exponential population growth [181]. As
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part of the iterative process, the GA employs a selection (or elitism) process to iden-

tify and retain the best individuals while eliminating the rest. In this thesis, the terms

”chromosome” and ”individual” are used interchangeably to represent a solution for

our optimisation problem.

The GA is a search algorithm that aims to find the optimal solution from a vast set

of possible outcomes by following steps, including selection, crossover, and mutation.

An essential component of the GA is the evaluation method used to select the best

chromosomes and regulate population growth. In each generation, the chromosomes

are evaluated based on their fitness, and the fittest are chosen for reproduction [182].

The initial population can be generated randomly, using heuristics, or through fully

valid chromosomes [181]. Two common selection techniques are used: roulette and

tournament [183]. The roulette method selects the best chromosome based on its

fitness, while the tournament method uses the roulette method several times to obtain

a subset of chromosomes [183].

After evaluating and selecting the chromosomes, the GA proceeds with the crossover

and mutation process, which boosts genetic diversity and evolution. Occasionally,

genes are modified through mutation [179]. The crossover process involves the ex-

change of genetic material between parent chromosomes to generate new generations.

However, not all parent chromosomes participate in the crossover process; instead, a

certain number of parent chromosomes are selected with a probability of crossover

rate pc [183]. Two types of crossover methods, single-point and two-point crossover,

are commonly used [183]. In this thesis, we used the single-point crossover method,

which combines the top part of one chromosome with the bottom part of the other

chromosome.

To avoid being trapped in local optima and premature convergence, the GA utilises

mutation to explore the genetic material within the population [182]. By introduc-

ing new genetic material, mutation can help the population escape local optima and

increase its diversity [182]. Therefore, the role of mutation in GA is to promote the ex-

ploration of the search space. Compared to crossover, the mutation rate pm is typically

set to a relatively low-value [183].

We have generated the initial population by considering two algorithms. The first algo-
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rithm assumes that each DP establishes a connection to the nearest source; therefore,

this algorithm is called the Nearest Source Genetic Algorithm (NSGA). In the second

algorithm, DPs are free to select any source; hence, this algorithm is called the Total

Random Genetic Algorithm (TRGA). To get noteworthy results, BSs, VBSs and DPs

are located in the identical locations used to obtain the MILP results.

In this study, both NSGA and TRGA algorithms generate a population of 1 million

chromosomes, which are divided into 100 groups of 10000 chromosomes each. Each

group represents a set of chromosomes produced in order of their generation. The

term ”group” refers to these sets of populations that include 10000 chromosomes. The

chromosomes generated by the algorithms are evaluated to determine if they meet the

constraints of the problem. Invalid chromosomes are removed, and the initial gener-

ation comprises the first valid chromosomes. Therefore, the number of chromosomes

in the initial generation may vary depending on the number of valid chromosomes in

each group. After obtaining the initial generation composed of valid chromosomes, the

algorithms proceed to selection, mutation, and crossover operations on each group sep-

arately to generate new generations. It should be noted that the groups are designed

assuming they do not share any chromosomes or genes with each other. Therefore,

the algorithms produce 100 different outputs obtained from the 1 million generated

chromosomes.

In our study, we conducted multiple iterations of evaluation, selection, mutation, and

crossover in each group. Specifically, the algorithm evaluated the chromosomes in each

group, eliminated any faulty ones, selected the best chromosomes, and implemented

mutation and crossover operators.

To obtain statistically significant results, we analysed the average, standard deviation,

and best outputs of each group in the results section. These numerical analyses were

performed using 10,000 chromosomes, and as a result, we can expect to observe an

average output with some standard deviation.

4.1 The Nearest Source GA (NSGA)

The primary decision variable of the MILP optimisation model consisted of four di-

mensions, denoted by yrnsd , representing whether user equipment ’d’ is served by source’
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s’ using numerology’ n’ and RB ’r’. Heuristically, the nearest source can provide the

requested data rate to consume minimum transmit power. In the NSGA, we consider

this postulate, the dimension of the sources is removed, and the resource allocation

problem becomes three-dimensional. Assuming that the algorithm has four BSs and

five VBSs, removing sources dimension from yrnsd reduces the size of the chromosome

by 89%.

Furthermore, to further reduce the dimensionality of the problem, we incorporated nu-

merology information into the RBs. The relationship between the RBs and numerology

is encoded at the beginning of the chromosome; hence, we obtain a two-dimensional

problem that considers RB and power allocation among users. Thus, the primary

decision variable in the NSGA becomes yrd, indicating whether user equipment ’d’ is

allocated RB’ r’. Throughout this thesis, it is essential to note that we employ the

terms ”DP” and ”user” interchangeably.

The MILP optimisation model also considers the BWP allocation among carrier band-

width, resulting in the need to include BWP allocation in the chromosomes. As a

result, each chromosome is split into two segments: the initial binary portion indicat-

ing the BWP allocation among the carrier bandwidth (and hence the numerologies of

the RBs), and the second part consisting of non-negative real numbers indicating the

RB and corresponding transmit power allocation among users. The chromosome repre-

sentation for each user allocated an RB includes a non-negative real number indicating

the transmit power in milliwatts, as well as the specific RB of a given numerology be-

ing utilised. Conversely, if a user is not using the corresponding RB, the value in the

chromosome is set to zero. In other words, to simplify the problem, we used a single

variable that combines RB-user association, power allocation, and numerology-user

association instead of using separate variables for each. This approach reduces the

complexity of the problem and makes it easier to optimise.

prd =


> 0, If DP d utilizes RB r with corresponding transmit power

0, otherwise

(4.1)

RB numerology association determines the bandwidth allocation among BWPs. Band-

width allocation among numerologies that alters the total number of RBs is carried out
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randomly. For example, the maximum available number of the RBs can be achieved

when all RBs belong to the first numerology. To accommodate all possible outcomes

and keep the chromosome size constant, we allocate sufficient space in the chromo-

some for BWP allocation among carrier bandwidth. The total transmission bandwidth

Wtotal is considered as 5 MHz that can have a maximum of 25 RBs [169]. Considering

an RB size guard band between BWPs, the maximum available number of the first

numerology RB is reduced to 23. Thus, the first 23 genes of any chromosome indicate

the number of RBs for each BWP. These genes are binary, and they ensure that each

RB can belong to at most one numerology, as follows:

∑
n∈N

yrn ≤ 1, ∀ r ∈ R (4.2)

In the NSGA, the second part of the chromosome consists of a total of (number of UEs)

x (maximum available number of the RBs) genes. For a carrier bandwidth of 5 MHz

and 6 UEs, the second part of the chromosome consists of 138 genes, resulting in a

total of 161 genes in a single chromosome when BWP allocation is included. It is

necessary to repeat that the total number of RBs in each generation may vary and is

typically less than 23, except for very rare scenarios. Therefore, although the chro-

mosome reserves space for 23 RBs, not all RBs may be present in most cases. The

first 23 genes in the chromosome represent the RB allocation among BWPs, and the

corresponding numerology of the allocated RB can be found within these genes. Each

RB can be allocated to one of the six users.

To illustrate how numerology-RB allocation is incorporated into a chromosome, we

consider a straightforward example depicted in Figure 4.1. The chromosome consists

of two parts. The first part, which is common for all UEs, represents the allocation of

RBs among BWPs using a binary code. The second part consists of Nr × Nu genes,

where Nr is the maximum possible number of RBs and Nu is the number of UEs.

Each UE is represented with Nr genes, and only one gene can have a value greater

than zero, indicating the transmit power of the corresponding UE-RB pair as a real

number. Thus, the chromosome size becomes (Nr ×Nu) +Nr.

In the example, the maximum number of RBs is seven, and there are three UEs.

The first seven genes in both chromosomes are binary and represent the bandwidth
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Figure 4.1: Numerology DP RB allocation example for the Nearest Source Genetic
Algorithm (NSGA)

allocation among BWPs. Each UE can select one of the seven RBs; hence, only one

RB-UE pair can have a non-zero value. Figure 4.1 illustrates two chromosomes, each

with a different BWP allocation. The first chromosome has one BWP that belongs

to the 1st numerology, which achieves the maximum number RBs. UE1, UE2, and

UE3 utilise RB numbers 7, 5, and 1, respectively, and consume 3, 5, and 4 milliwatts,

respectively. The second chromosome has three RBs and BWPs, one of each. The

zeros before the ones that are given in the BWP info domain separate the BWPs.

UE1 uses the only RB that belongs to the 3rd numerology and consumes 9 milliwatts.

UE2 and UE3 employ the 2nd and 1st numerologies, respectively, and consume 8 and

7 milliwatts, respectively. Figure 4.1 also shows that the total number of RBs in each

generation may vary and be less than Nr. Thus, some of the allocated spaces for RBs

may remain empty in some scenarios.

4.1.1 Initialization

The initial population of chromosomes is generated by randomly selecting a numerology

and assigning random transmit power to the users. In our MILP optimisation problem,

we observed that all URLLC and mMTC UEs require less than 0.3 mW of power to

meet their requirements. Therefore, the NSGA algorithm allocates a default power of

0.3 mW to all URLLC and mMTC UEs. For eMBB UEs, power is randomly allocated

between 0.1 to 50 mW. Each chromosome in the initial population is produced by

considering the following constraints:

∑
d∈D

yrd ≤ 1, ∀ r ∈ R (4.3)
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∑
r∈R

yrd ≤ 1, ∀ d ∈ D (4.4)

The constraint (4.3) indicates that each RB can be allocated at most one DP, how-

ever since the allocation occurs among the DP and the nearest source, Eq (4.3) im-

plicitly means that each RB in each source can be allocated at most one DP. The

constraint (4.4) demonstrates that each DP can utilise a maximum of one RB. Since

RB-numerology relation is given in the beginning of the chromosome, there is no need

to write a constraint to explicitly indicate that each RB can belong to one numerology.

The constraints (4.3) and (4.4) are not necessary to create initial chromosomes, yet,

they help to increase the number of valid chromosomes that will be evaluated in the

following subsection.

In the next step of our GA, we apply termination criteria to exclude any chromosomes

that do not satisfy the user requirements. Only the remaining chromosomes are then

used to initiate the first generation of the population, ensuring that the initial popu-

lation is composed of solutions that meet the minimum requirements of the problem.

This approach helps to improve the efficiency of the GA by preventing the generation

of invalid solutions and focusing on feasible solutions that can converge towards the

optimal solution more effectively.

4.1.2 Evaluation

The evaluation operator is a crucial step in the GA that eliminates the invalid chro-

mosomes to create the initial generation. Two requirements, data rate and delay, are

evaluated in this step. First, since the GA randomly generates the transmit power, the

allocated data rate must be compared to the requested for each DP. To do so, SINR is

calculated using transmit power, and according to the bandwidth of the corresponding

RB, the allocated data rate is determined. The data rate and delay requirements are

denoted by dd and td, respectively. The data rate requirements of the DPs must be less

than or equal to the data rate allocated, and this constraint is formulated as follows,

where Cd shows allocated data rate:

dd ≤ Cd, ∀ d ∈ D (4.5)
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The second requirement is the delay requirement that is satisfied with the assigned

numerology. We formulated this requirement by using binary decision variable ynd that

equals 1 when DP ’d’ utilises numerology ’n’ and equals 0 otherwise, in the following

constraint:

td ≥ tn

(∑
n∈N

ynd

)
, ∀ d ∈ D (4.6)

DPs are flexible in selecting a numerology as long as their requirements are satisfied.

Therefore, in our heuristic algorithms, the GA only checks the DPs that require higher

numerologies. Finally, the evaluation operator eliminates the chromosomes that do

not satisfy the DP requirements, leaving only the valid ones to constitute the first

generation.

After generating the initial generation using valid chromosomes, the NSGA algorithm

identifies the DPs connected to a VBS as their source. If the nearest source is a

VBS, the algorithm finds the closest BS to the corresponding VBS. The same system

parameters used in the optimisation chapter for the Heuristics model, such as the

locations of BSs, VBSs, and DPs, as well as the data rate and latency requirements,

are maintained. Since we employed the same channel model, parameters and variables

in this Chapter, discussing the signal propagation model or identifying the parameters

and variables would be unnecessary.

Since different bandwidths are employed for access and backhaul communication, which

was emphasised in the MILP optimisation chapter, there is no interference between

the backhaul and access links. The backhaul links utilise mmWave frequency bands,

which employ numerologies higher than the third numerology. Since we assume the

optimisation framework employs the first three numerologies, the only available nu-

merology for backhaul becomes the third numerology with 720 kHz SCS. Therefore,

the backhaul data rate formula is given as follows:

dd = (0.72)

(
log2

(
1 +

pbv × gbv
σ2

))
(4.7)

The parameters dd, gbv and σ2 represent the data rate requirement in Mbps, channel

gain between VBSs and BSs and noise power, respectively. The noise power spectral
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density was also given as -174 dB/Hz [174]. The only variable in Eq. 4.7 is the

transmit power pbv. To calculate the transmit power between BS and VBS pbv, we use

the following equation, which is derived from Eq. 4.7:

pbv =
σ2

gbv
× 2(1.38×dd)−1 ∀ d ∈ D (4.8)

At this algorithm stage, we have two main motivations to calculate the exact trans-

mit power between the corresponding BS and VBS. Firstly, since the transmit power

equation (Eq (4.8)) includes parameters that are already known to the algorithm, com-

puting the exact transmit power only when necessary does not affect the computational

overhead. Moreover, assigning a random transmit power and evaluating the backhaul

SINR requirement would require more computational resources. Secondly, assigning a

random transmit power from a random BS could cause a decrease in the percentage

of valid chromosomes in the first generation, as a valid chromosome could become in-

valid due to randomly allocated unsatisfactory backhaul power. Additionally, when the

nearest BS-VBS pair is not selected, the required transmit power to meet the data rate

requirement may exceed the limits. Given that the percentage of valid chromosomes

is already low, assigning random transmit power would further decrease the number

of valid chromosomes in the first generation, and 1 million chromosomes would not be

sufficient to obtain satisfactory results.

4.1.3 Sorting

A maximum number of chromosomes limit is set for each generation in the GA to

minimize the computational time. Before applying crossover and mutation operators,

the valid chromosomes are sorted based on their total transmit power in ascending

order. If the number of chromosomes exceeds the set limit, the GA eliminates inefficient

chromosomes with higher power consumption. If the population size is still within the

limit, the population is sorted only, and no further chromosomes are removed.

4.1.4 Selection

The output of the crossover and mutation operators extends the number of total in-

dividuals in the population. For crossover, two chromosomes must be selected to
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reproduce two new individuals. The selection operator ensures to pick the chromo-

somes that have the same BWP deployment for the crossover. Selecting two chromo-

somes with the same BWP deployment has two main advantages. Firstly, it prevents

the creation of invalid chromosomes. When the selected chromosomes have different

BWP deployments, the selected RBs can belong to another numerology, causing the

crossover operator to fail. Alternatively, due to the change in the total number of RBs,

the selected RB might not exist in the pairing chromosome.

Secondly, it also alleviates the burden of the evaluation operator. Since all the chro-

mosomes and genes are valid, there is no need to check the data rate and latency

requirements once more. Therefore, after the crossover and mutation, the evaluation

operator only checks the number of non-zero genes in a chromosome. If a random

selection operation were employed, the data rate and delay requirements of the users

would also have to be checked, significantly increasing the computational cost.

In the NSGA algorithm, the first step is to sort the chromosomes according to their

total transmit power. Afterwards, a binary selection matrix is utilized to determine

which chromosomes can be selected for crossover. The matrix elements are set to 1 if

chromosomes a1 and a2 have the same BWP deployment and 0 otherwise. The matrix

size is a× a, where a denotes the total number of chromosomes in the population. It

is necessary to select chromosomes for crossover in a manner that maintains diversity

among the population. Therefore, the GA does not apply crossover to all chromo-

somes, nor are chromosomes selected randomly. Instead, the binary selection matrix is

employed to select pairs of chromosomes with similar BWP deployment, ensuring that

the crossover operator can be applied without creating invalid chromosomes. This

approach promotes the diversity of the population while minimizing computational

costs.

Figure 4.2 illustrates the binary selection matrix employed in the NSGA, which only

marks half of the chromosome matches as 1 in the matrix. For instance, the first and

second chromosomes share the same BWP deployment, but this is only indicated by

a 1 on the right side of the matrix. The algorithm checks the binary selection matrix

vertically, as indicated by the red dashed lines in Fig 4.2. This approach increases the

interaction among the best chromosomes. In this example, if the algorithm checked the

matrix horizontally and followed the blue line, the crossover operator would utilize the
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Figure 4.2: A binary selection matrix. The selection operator follows the dotted red
line.

first-best chromosome. However, the last chromosomes have the worst performance,

so the advantage of using the first-best chromosome would fade. The power efficiency

performance of the last chromosomes is likely to be low. Considering the algorithm

has hundreds of chromosomes, using the second and third-best chromosomes would be

more effective in obtaining better new generations.

4.1.5 Crossover

The crossover operation used in our approach consists of two types. Firstly, we employ

classic single-point crossover between two chromosomes to generate a new generation.

Then, to increase the genetic diversity, we expose one-third of the chromosomes to bit

flipping on top of the single-point crossover.

In the single-point crossover, as shown in Fig 4.3, the position of the single-point

is determined by following rules. First, the chromosomes to be crossed over must

have the same BWP deployment, and therefore, the first part of the chromosome that

contains the BWP deployment information is excluded from the crossover operation.

As a result of the first rule, the single point must be selected to the right side of the

red line illustrated in Fig 4.3. Second, the DP-RB sets must be preserved during the

crossover operation to prevent the division of a chromosome in a way that causes a

DP to have two RBs while another DP has zero RBs. In other words, the crossover

point should be an integer multiple of the number of possible RBs in the first part of

the chromosome.
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Figure 4.3: Crossover operation for the 12 gene chromosomes.

scp = k × |R| (4.9)

In Eq 4.9, scp, k, and |R| show the single crossover point, an integer, and the total

number of possible RBs for the given carrier bandwidth, respectively.

Figure 4.3 illustrates the single point selection of the crossover operation and the

resulting two reproduced chromosomes. The crossover operator selects a point on the

chromosome that is an integer multiple of the number of possible RBs, located on the

right-hand side of the red line in the figure. By using this method, two new individuals

are produced for the population, increasing its genetic diversity.

The second crossover operator, which involves bit flipping, is applied to the chro-

mosomes that have already undergone the single-point crossover operation. Since

the chromosomes have been filtered according to their BWP deployment in the first

crossover operation, there is no need to check the BWP allocation among the chro-

mosomes in the second crossover. The bit-flipping operation also excludes the initial

bits that represent the BWP allocation of the chromosome. During the bit-flipping

operation, the NSGA randomly selects a DP number, and the corresponding DPs swap

their transmit power with each other. This operation is carried out for one-third of

the chromosomes that are already involved single point crossover to increase genetic

diversity and improve the overall performance of the algorithm.

109



Chapter 4. Heuristic Model 4.1. The Nearest Source GA (NSGA)

4.1.6 Mutation

In the MILP optimisation, prsd denotes the downlink transmit power; it equals a real

number between pmin and pmax when the DP ’d’ is served by the source ’s’ utilising the

RB ’r’, otherwise, it is equal to zero. Since the NSGA removes the source dimension,

the power matrix prsd is transformed into prd.

The mutation operation is performed on a randomly selected non-zero element of the prd

matrix for a selected DP. The mutation only changes the value of r in prd. The selected

element is set to zero, and the same power is assigned to another RB. Each RB has

a different channel gain due to the SSF coefficients; thus, there is a chance to make

the chromosome valid. However, implementing this mutation to valid chromosomes

may cause them to become invalid. Furthermore, since the aim is to minimise total

transmit power, the output of this method may not have a significant impact on the

optimisation problem. For these reasons, the chromosomes to be mutated are selected

from the set of invalid chromosomes to increase the number of valid chromosomes.

After the mutation, the NSGA evaluates the chromosome. Thus, the NSGA ensures

that the output chromosomes of the mutation operation are valid. It is worth noting

that the predetermined mutation rate is relatively lower than the crossover rate.

In the proposed NSGA for the optimisation problem, the crossover and mutation oper-

ations may produce chromosomes with zero or multiple RBs for DPs, which render the

chromosomes invalid. Such chromosomes are detected and removed from the popula-

tion. After performing the crossover and mutation operations, the current population

is formed by combining both the parent and offspring populations. The combined

population is then sorted based on their fitness values. If the number of chromosomes

in the population exceeds the maximum allowed limit, the worst-performing chromo-

somes are removed. This removal ensures that the most promising chromosomes with

the best genes are preserved for the next generations, thus increasing the likelihood of

obtaining an optimal solution to the problem.

Algorithm 1 outlines the steps involved in the NSGA. The algorithm begins by eval-

uating the groups that contain 10000 chromosomes, and only valid chromosomes are

selected to generate the initial generation. From there, the NSGA expands the gen-

erations using crossover and mutation operators with different rates indicated by ’c’
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and ’m’, respectively. The algorithm keeps track of the best-performing chromosomes

based on their total transmit power in each iteration that occurs ’j’ times.

Algorithm 1 The Nearest Source Genetic Algorithm

Input: Wtotal, DP requirements, min/max transmit power, initial generation size (i),
crossover rate (c), mutation rate (m), number of GA iterations (j)

Output: BWP allocation (yrn), RB (yrd) and power allocation among DPs (prd) which
is provided by the nearest Source

1: Initialize (i) chromosomes randomly
2: [Constraint Handling]
3: for each chromosome do
4: Calculate data rates and numerology allocations
5: if valid data rates and numerology for all DPs then
6: Mark chromosome as valid
7: else
8: Remove the chromosome
9: for j ≥ 0 do

10: Select parent chromosomes for crossover and mutation according to the
method

11: Perform crossover
12: Apply mutation to the selected chromosomes
13: Remove duplicate chromosomes
14: Sort chromosomes based on transmit power
15: Eliminate excess chromosomes if needed
16: j = j − 1

4.1.7 The NSGA Results

The NSGA is conducted for 100 cycles, producing distinct outcomes for each cycle.

Table 4.1 outlines all the input parameters needed for the NSGA. The NSGA initiates

the first ’parent’ generation, denoted as ’Generation 1’ in the figures. The first re-

produced generation, which is created by applying crossover and mutation operators,

is ’Generation 2’. The term ”iterations” refers to instances where the mutation and

crossover operators are executed on the previous generation to yield new generations.

In the NSGA, the number of iterations is set to 7, leading to a total of 8 generations,

including the parent generation.

Table 4.1: The NSGA input parameters

Description Input

Number of chromosomes in each group 10000
Total number of groups (i) 100
Maximum # of chromosomes that have been kept in each generation 75
Crossover rate (c) 75
Mutation rate (m) 25
Number of new generations (j) 7
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The NSGA results are demonstrated in Figure (4.4) shows the average and standard

deviation calculated from the 100 groups. In Fig (4.4), the red line indicates the best-

performing generation in terms of the difference between the first and last generation,

the best output shows the minimum power-consuming generation and the blue line

indicates the average performance across all 100 groups. As shown in the Figure,

after the third iteration, the performance does not exhibit significant improvement,

suggesting that increasing the number of iterations beyond seven would not provide

substantial benefits in terms of performance improvement, especially considering the

computational load.

Figure 4.4: The NSGA output utilises 100 groups.

To validate the results of the algorithm, identical DPs with their requirements and

locations must be employed. Specifically, the validation is carried out on Sc1, a scenario

already subjected to MILP optimisation, encompassing 6 DPs and 5 VBSs. This

validation process is elaborated in Chapter 4.2.8, where we compare the algorithm’s

outputs and the optimal outputs found by MILP optimisation.

In the results of the NSGA, the average total transmit power of 100 groups is found

to be 24.35 mW, which is slightly higher than the optimal solution found in the MILP

optimisation model, which is 8.21 mW. However, the best result obtained by the
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NSGA (shown as a black line) with a minimum output of 10.14 mW is still acceptable,

considering the significant reduction in solver time compared to the MILP model.

It should be noted that it is possible to obtain even better outputs by combining

all successful chromosomes from all groups. However, this approach would require a

significant increase in computational resources, which makes it impractical. Therefore,

if the optimization process requires significant computational time, it might be more

feasible to use the MILP optimization approach.

The NSGA is also capable of optimizing the allocation of bandwidth among the BWPs.

In order to analyze the bandwidth allocation results, we followed a similar approach

to that of the power allocation problem. The average and standard deviation of the

number of RBs in each BWP are calculated using the final generation of the groups.

The number of RBs, or the allocated bandwidth for BWPs, differs from that obtained

in the MILP optimization. While the number of RBs in the 3rd numerology is higher

than the others, our findings suggest that the 1st and 2nd numerologies have a higher

number of RBs compared to the previous MILP optimisation results.

Figure 4.5: Average and standard deviation of the number of RBs for each numerology

Figure 4.5 displays the average and standard deviation of the number of RBs for each

numerology. The average number of RBs allocated to 1st, 2nd, and 3rd numerologies

are 3.04, 2.55, and 3.71, respectively. The standard deviations for 1st, 2nd, and 3rd

numerologies are 2.6, 1.54, and 0.86, respectively. The standard deviations imply that
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the number of RBs assigned to 3rd numerology varies less than the other numerologies.

It should be noted that the optimum number of RBs allocated to 1st, 2nd, and 3rd nu-

merologies were found as 1, 1, and 6, respectively, in the previous Chapter. Given that

the maximum carrier bandwidth allows for a maximum of 23 RBs of 1st numerology,

the average summation of RBs in the example scenario is calculated as 22.98.

The locations of VBSs and DPs are generated randomly by AMPL at the beginning,

while the locations of BSs remain fixed. In the NSGA algorithm, the locations of

BSs, VBSs, and DPs remain the same for all scenarios. Therefore, it is necessary to

investigate the distances among BS, VBS, and DP on a map. Figure (4.6) displays the

locations of BSs, VBSs, and DPs, represented by blue, red, and green dots, respectively.

It is worth noting that the algorithm finds the nearest source to a DP and the nearest

BS to a VBS.

In this section, we discuss the results obtained from the NSGA algorithm, which in-

dicate that the nearest source is only sometimes optimal in a network that employs

VBSs as out-band IAB nodes. As can be observed in Figure (4.6), some DPs are closer

to a VBS than a BS. However, the close VBSs are far from the BSs, which can lead

Figure 4.6: BS, VBS, and DP locations that are utilised in the MILP optimisation and
the NSGA
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to suboptimal results. This situation can be worse in cases where the DP is located

between a BS and a VBS, but it is far from the BS by δ, where δ represents the mini-

mum possible distance. Figure (4.7) illustrates one of the worst-case scenarios where

the BS is the data provider, and the VBS is closer to the DP. In such cases, the data

must flow from the BS to the VBS and then from the VBS to the DP, leading to a

waste of resources.

Figure 4.7: One of the possible worst-case scenarios for the NSGA

The NSGA generated the 1 million chromosomes in slightly more than 75 minutes;

that means each group provided a result in an average of 45 seconds. However, despite

its speed and performance, it is evident that a new algorithm is necessary to improve

the results in terms of transmit power consumption. Therefore, we developed the Total

Random GA (TRGA).

4.2 Total Random GA (TRGA)

The NSGA has two main advantages for the optimization problem at hand. Firstly,

it enables a shortened chromosome size by not including the Source-DP pairing infor-

mation as a variable. As a result, the dimensionality of the main association variable
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is reduced, leading to a significant reduction in the total number of possible outcomes,

thus avoiding the curse of dimensionality. Secondly, the NSGA increases the number

of valid initial chromosomes by pairing DPs with their nearest source. This approach

ensures that even a small amount of transmit power is sufficient for a DP to establish

a connection, resulting in more valid initial chromosomes. In contrast, the TRGA al-

gorithm yields an average of only 0.13% valid chromosomes, compared to 0.36% with

a maximum of 0.52% in a group with NSGA. The power allocation remains the same

for both algorithms, where URLLC and mMTC DPs have a default power of 0.3 mW,

and eMBB DPs have randomly allocated power between 0.1 to 50 mW.

Although the NSGA algorithm works fast, the trade-off between speed and accuracy

must be considered to obtain results closer to the optimum. Therefore, we developed

the TRGA algorithm, which balances speed and accuracy while achieving comparable

results to the NSGA.

Just like the NSGA, we embedded the numerology information into the RBs; thus, this

information is given at the beginning of the chromosome. Hence, the main optimisation

variable is three-dimensional in the TRGA; yrsd=1, if DP ’d’ is served by source ’s’ using

and RB ’r’. The TRGA randomly creates a 3-dimensional power matrix from a source

to each DP by utilizing an RB that is shown in the prsd matrix. Each RB that uses

different numerology has different bandwidth, and the numerology information of the

RBs is demonstrated in the BWP allocation information.

Like the NSGA, the TRGA also incorporates the numerology information into the RBs,

provided at the beginning of the chromosome. It is worth noting that each RB using

a different numerology has different bandwidth, and the BWP allocation information

represents the numerology information of the RBs. Since we consider user association

as well, the primary optimisation variable in the TRGA becomes three-dimensional,

where ysdr equals 1 if the DP ’d’ is served by the source ’s’ using RB ’r’. Therefore,

the TRGA generates a 3-dimensional power matrix randomly prsd, which denotes the

downlink transmit power; it equals a real number between pmin and pmax when the

DP ’d’ is served by the source ’s’ utilising the RB ’r’, otherwise, it is equal to zero.
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4.2.1 Initialization

This algorithm generates the first generation of chromosomes using a similar method

as presented in the NSGA. The first 23 genes of the chromosomes are reserved for

binary BWP allocation information. However, the second part of the chromosome

presents the power allocation as a three-dimensional matrix. The second part includes

a number of genes equal to the product of the total number of sources, the number of

DPs, and the maximum available number of RBs. For example, if the algorithm has

4 BSs, 5 VBSs, 6 DPs, and 23 maximum available RBs, the number of genes in the

second part would be ((4+5)×6×23) = 1242. Thus, including the BWP information,

the total number of genes in one chromosome becomes 1265.

∑
s∈S

∑
r∈R

yrsd ≤ 1, ∀ d ∈ D (4.10)

∑
r∈R

yrd ≤ 1, ∀ d ∈ D (4.11)

The constraints (4.10) and (4.11) indicate that each DP can select at most one RB

from one source, and each DP can utilise a maximum of one RB. In both the NSGA

and TRGA algorithms, the relationship between RBs and numerology is included at

the beginning of the chromosome. This means that there is no need to explicitly

state a constraint that each RB can only belong to one numerology, as this is already

accounted for in the chromosome. The constraints (4.10) and (4.11) are used to increase

the overall number of valid chromosomes in the TRGA algorithm.

4.2.2 Evaluation

The TRGA evaluates the initial chromosomes for each DP and removes any chro-

mosomes that do not satisfy their data rate or delay requirements. The allocated

data rate is calculated using the transmit power prsd, and BWP allocation information

(RB-numerology association) are used to calculate SINR and data rate for each DP.

It is worth noting that each DP is unrestricted to select any numerology as long as

their requirements are satisfied. Therefore, in both heuristic algorithms, the GA only

checks the DPs that require higher numerologies. Once the invalid chromosomes are
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removed, the remaining chromosomes form the initial generation. The data rate and

delay constraints are satisfied for all DPs in a valid generation acquired from the initial

chromosomes.

The backhaul power is also calculated when a DP uses a VBS as a source, and a distance

matrix is employed to establish communication with the nearest BS-VBS pair. Since

the total number of BSs is set to 4, this action only requires a little computational

power. Moreover, implementing a random process for BS-VBS pairing would cause

more invalid chromosomes due to power allocation constraints. The same formula is

used to calculate backhaul power in the TRGA, as given in Eq (4.8).

4.2.3 Sorting

The TRGA tends to keep the best-performing chromosomes and eliminates the worst-

performing chromosomes to reproduce better chromosomes in each generation. First,

the chromosomes are sorted considering their total transmit power to identify the

worst and best-performing ones. Then, the algorithm scraps the worst-performing

chromosomes by considering a pre-determined maximum number of chromosomes limit.

The identical limit is employed in the NSGA, as well. This limit is consistently applied

in both TRGA and NSGA to ensure statistical consistency of the results.

4.2.4 Selection

At this stage of the algorithm, a random selection process, instead of selecting the

best chromosomes, is implemented for crossover and mutation. A pair of chromosomes

are selected randomly for the crossover, and a chromosome is selected randomly for

the mutation. However, parallel to NSGA, the TRGA can utilize crossover when the

paired chromosomes have the same BWP deployment.

4.2.5 Crossover

The TRGA also employs two crossover methods, single-point and bit-flipping, similar

to the NSGA. However, the difference lies in the selection process, which aims to ran-

domly select the best-performing genes from poor-performing chromosomes to improve

the overall performance of the algorithm. This random selection process requires more

generations to reach the optimal solution optimisation.
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The crossover rate determines the number of randomly selected and paired chromo-

somes for the crossover operation in each generation. However, this rate only indicates

the total attempts of the crossover operation, not the number of successful crossovers.

A generation can be generated without any chromosomes undergoing a crossover op-

eration. Specifically, in the TRGA, this can occur when paired chromosomes have

different BWP deployments, rendering the crossover operation infeasible. In such

cases, the initial and extended generations would be identical.

4.2.6 Mutation

The same mutation operator is employed to randomly selected invalid chromosomes.

The mutation rate also defines the total number of attempts to implement mutation

operation. Algorithm 2 outlines the steps involved in the TRGA.

Algorithm 2 The Total Random Genetic Algorithm

Input: Wtotal, DP requirements, min/max transmit power, initial generation size (i),
crossover rate (c), mutation rate (m), number of GA iterations (j)

Output: BWP allocation (yrn), RB (yrsd) and power allocation among DPs (prsd)
which can be provided by any Source

1: Initialize (i) chromosomes randomly
2: [Constraint Handling]
3: for each chromosome do
4: Calculate data rates and numerology allocations
5: if valid data rates and numerology for all DPs then
6: Mark chromosome as valid
7: else
8: Remove the chromosome
9: for j ≥ 0 do

10: Select parent chromosomes for crossover and mutation randomly
11: Perform crossover
12: Apply mutation to a pair of chromosomes if BWP allocations match
13: Remove duplicate chromosomes
14: Sort chromosomes based on transmit power
15: Eliminate excess chromosomes if needed
16: j = j − 1

4.2.7 Results

The TRGA aims to randomly select the best-performing genes from poorly-performing

chromosomes, resulting in a selection process that requires more generations to reach

an optimal solution. However, this is a worthwhile trade-off as the best genes will

eventually emerge, as is observed in nature. The input parameters for the TRGA are

presented in Table (4.2).
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Table 4.2: The TRGA input parameters

Description Input

Number of chromosomes in each group 10000
Total number of groups (i) 100
Maximum # of chromosomes that have been kept in each generation 75
Crossover rate (c) 75
Mutation rate (m) 25
Number of new generations (j) 15

The TRGA and NSGA utilize the same number of chromosomes for each group, which

is set to 10000 chromosomes grouped according to their numerical production order.

The TRGA’s average percentage of successful chromosomes is 0.13%, with a maximum

of 0.23% in a group, after 100 iterations. This average is lower than the NSGA, which is

expected due to the TRGA’s random source-DP pairing process. The random pairing

of distant sources in the TRGA results in a larger amount of transmit power needed

to ensure a valid chromosome than the NSGA’s utilization of the nearest source. As a

result, the average successful chromosomes of the TRGA decreased by a factor of 2.7

compared to the NSGA.

The TRGA algorithm employs a larger number of genes in each chromosome, which

increases the time required for evaluating each chromosome. Additionally, the TRGA

also requires more iterations than the NSGA. The TRGA generated one million chro-

mosomes in approximately 7 hours and 50 minutes, resulting in an average processing

time of 4 minutes and 42 seconds per group. This computational time of the TRGA

is 6.2 times longer than that of the NSGA.

The results obtained from TRGA are presented in Figure (4.8), which demonstrates

the average, standard deviation, best performing, and minimum total transmit power.

Similar to Figure (4.4) presented earlier, the average and standard deviation are cal-

culated from 100 runs. Furthermore, Figure (4.8) also illustrates the best result that

attains the minimum total transmit power and the best-performing result that achieves

the highest difference between the first and last generations. The evaluation is carried

out on Sc1, which consists of 6 DPs and 5 VBSs.

Despite its drawbacks, the TRGA exhibits superior downlink transmit power perfor-

mance and produces better results in terms of total transmit power, standard deviation,

and the best output that yields the minimum total transmit power. The average total
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Figure 4.8: The TRGA output that utilizes 100 groups.

transmit power is reduced from 24.35mW to 23.52mW in the TRGA, representing a

3.4% improvement. The standard deviation is also improved by 11%; since the stan-

dard deviation is a quantity that shows how much differs the individuals from the

arithmetic mean of the group, reducing the standard deviation means getting better

results in our problem. The best output of 100 iterations is 9.46mW, which is closer

to the optimal result of 8.21mW.

Despite the TRGA’s ability to produce superior results, the NSGA remains the pre-

ferred algorithm for our optimization problem due to its shorter computational time.

As the number of users, RBs, or sources increases, the use of TRGA becomes im-

practical. Therefore, NSGA is a more suitable option for practical implementation in

scenarios with large-scale networks.

4.2.8 Comparison of Optimisation Algorithms

In this subsection, we compare the output of the three above-given optimisation algo-

rithms to assess their performance in addressing the joint optimisation problem. The

presented analysis offers insights into the effectiveness of each algorithm and its re-

spective outcomes, as illustrated in Fig 4.9 and Fig 4.10. In both figures, the red line

represents the optimal solution obtained from the MILP optimisation. The output of

the MILP optimisation yields precise and optimal results, serving as a benchmark for

comparison.
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Figure 4.9: Comparison of Optimisation Algorithms by Average

In Fig 4.9, the black curve illustrates the results obtained from the TRGA. It’s worth

noting that both algorithms’ outputs are presented in terms of averages before. There-

fore, Fig 4.9 displays the average outcome across these 100 generations conducted over

sixteen iterations. This approach provides a basis for evaluating the algorithm’s conver-

gence and performance. Also, the blue curve corresponds to the outcomes generated

by the NSGA. Despite its comparatively lower iteration count of seven, the NSGA

demonstrates a noteworthy trend toward optimal results, highlighting its efficiency in

yielding high-quality solutions.

The next figure, labelled as Fig 4.10, shows the optimal outcomes achieved through

100 iterations of the optimisation process. In this representation, ”best output” refers

to the most favourable results obtained from these 100 iterations. The figure provides

a clear visualisation of the performances achieved by the optimisation algorithms when

considering their best-performing outputs throughout these iterations.

The choice of utilising the NSGA over the TRGA is strategic. While the TRGA may

exhibit slightly improved outcomes, this advantage comes at the cost of significantly

increased computational time. In contrast, the NSGA, with its faster execution, strikes
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Figure 4.10: Comparison of Optimisation Algorithms by Best Outputs

a balance by delivering slightly worse solutions than TRGA in exchange for a signif-

icantly reduced runtime. Given the optimisation problems’ constraints, this strategic

trade-off makes the NSGA a more efficient choice. The presented results provide

valuable insights for selecting an appropriate optimisation approach based on desired

trade-offs between solution quality and computational effort.

4.3 NP-Hard Problems

In the heuristics chapter of this thesis, we have conducted experiments using six DPs

to validate the outputs of our proposed optimisation algorithms. We compared the

outputs of heuristics algorithms with MILP optimisation. After validating the results,

instead of increasing the number of DPs proportionally or utilising the same scenarios

as in the MILP optimisation problem, we aimed to tackle an NP-hard problem that

MILP could not solve. This approach allowed us to test the scalability and effectiveness

of our proposed algorithms in solving more complex problems that require significant

computational power and time.

This section considers a scenario consisting of 20 DPs, comprising 2 eMBB DPs, 2

123



Chapter 4. Heuristic Model 4.3. NP-Hard Problems

URLLC DPs, and 16 mMTC DPs. The data rate requirements of eMBB DPs are

set to a range of 1-1.5 Mbps, as previously described in Chapter 3.4.3, while the

requirements of the remaining DPs remain unchanged. Despite reducing the data rate

requirements of the eMBB DPs, the MILP solver fails to solve the problem, regardless

of how low the user requirements are.

In order to determine the appropriate algorithm for NP-hard problems, the total prob-

abilities of the algorithms must be evaluated. For instance, consider a scenario where

each user can have one RB and the corresponding power value of that RB can be only

1 mW. If there are 20 DPs located in this scenario, the number of possible outcomes

is estimated to be approximately ≈ 9.5 × 1026 when the NSGA is employed. On the

other hand, the TRGA would have ≈ 8.5× 1045 possible outcomes when a fixed 1mW

transmit power is considered for the 20 DPs scenario. It is important to note that the

actual outcome of the algorithms is practically infinite, considering the transmit power

is a real number. However, these examples provide an indication of the computational

expenses of the algorithms. Consequently, we chose to employ the NSGA algorithm

for NP-hard problems, which results in an increased number of valid chromosomes at

the cost of sacrificing optimality in terms of transmit power.

Figure 4.11: The NSGA that utilizes 1M chromosomes for the 20-DP scenario.

In this specific example, the NSGA produced acceptable outputs given in Fig. 4.11.

The presentation of the figure is the same as before; the red line shows the generation
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Figure 4.12: Average and standard deviation of the number of RBs for each numerology
for 20-DP scenario.

that delivers the best performance considering its first and last generation. The blue

line shows the average of the 100 results. The NSGA generally reaches the optimum

output after two iterations, so the outputs do not significantly improve after the third

generation. Thus, the number of generations could be reduced to achieve even faster

results. The average total transmit power of 100 groups is 18.45 mW, with a 5.72

standard deviation, and the best result is 11 mW.

The results of the bandwidth allocation among BWPs are presented in Fig 4.12. The

average number of RBs allocated to the 1st, 2nd, and 3rd numerologies are 4.19, 3.15,

and 3.12, respectively. The standard deviations for the 1st, 2nd, and 3rd numerologies

are 3.53, 1.97, and 1.11, respectively, indicating a relatively high level of variability

in the allocation. The increase in the allocation of RBs for the 1st numerology and

decrease for the 3rd numerology can be observed. It should be noted that the optimal

number of RBs could not be found in the previous chapter for the 20-DP scenario. Since

the validation is done with 6-DP scenarios, the solution presented in Fig. 4.12 can be

considered a suboptimal solution for the resource allocation and routing problem.

To assess the algorithm’s performance in challenging scenarios, we consider a problem
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consisting of 25 DPs, including 3 eMBB DPs, 3 URLLC DPs, and 19 mMTC DPs.

We use the NSGA algorithm to solve this problem and obtain an average successful

chromosome rate of 2.04% over 100 iterations. The results for the 25-DP scenario are

presented in Fig. 4.13. The average total transmit power of 100 solutions is 29.41

mW, with a standard deviation of 11.07 mW, and the best solution has a total trans-

mit power of 13.21 mW. These results show the algorithm’s effectiveness in tackling

complex and challenging optimisation problems involving a large number of DPs.

Figure 4.13: The NSGA that utilizes 1M chromosomes for the 25-DP scenario.

The results of the bandwidth allocation among BWPs are presented in Fig 4.14 for

25-DP optimisation problem. The average number of RBs allocated to the 1st, 2nd,

and 3rd numerologies are 4.22, 3.15, and 3.04, respectively. The standard deviations

for the 1st, 2nd, and 3rd numerologies are 3.78, 2.1, and 1.25, respectively, indicating

a slightly high level of variability in the allocation compared to 20-DP scenario. The

slight increase in the allocation of RBs for the 1st numerology is observed. The optimal

number of RBs is not available in the previous chapter for the 25-DP scenario, as well.

Therefore, solution presented in Fig. 4.14 can be considered a suboptimal solution for

the resource allocation and routing problem for 25 DPs.

The results of the bandwidth allocation among BWPs for the 25-DP optimisation

problem are illustrated in Fig. 4.14. The average number of RBs allocated to the 1st,
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Figure 4.14: Average and standard deviation of the number of RBs for each numerology
for 25-DP scenario.

2nd, and 3rd numerologies are 4.22, 3.15, and 3.04, respectively, indicating a slightly

higher level of allocation for the 1st numerology compared to the 20-DP scenario.

The standard deviations for the 1st, 2nd, and 3rd numerologies are 3.78, 2.1, and

1.25, respectively, which suggests narrowly high variability in the allocation of RBs.

It should be noted that the optimal number of RBs is not available in the previous

chapter for the 25-DP scenario. Therefore, the solution presented in Fig. 4.14 can be

considered a suboptimal solution for the resource allocation and routing problem for

25 DPs.

4.4 Conclusions

Based on the findings of this chapter, it appears that selecting the nearest source

may not always lead to optimal results in the given problem due to the location of

DPs. Furthermore, the results obtained from the TRGA demonstrate that introducing

more randomness into the algorithm can lead to the identification of individual high-

performing genes within a chromosome, even if the overall transmit power of that

chromosome is high. Therefore, increasing the level of randomness in the TRGA may
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lead to improved outcomes. However, both the mutation and crossover operators in

both algorithms are effective at identifying individual high-performing genes.

For example, the outputs generated by our proposed hybrid heuristic algorithm and

those produced by the MILP approach, which provides optimal results are compared.

This comparison allowed us to assess the proximity of the hybrid heuristic algorithm’s

outputs to the optimal ones. Our analysis demonstrated that the hybrid heuristic

algorithm could achieve a total transmit power as close as 87% to the optimal solution.

Although its proximity to the optimum, the TRGA is not practical to use due to its

computational expense. As demonstrated in the binary example presented earlier, the

number of possible outcomes for the TRGA is approximately ≈ 9× 1018 times higher

than that of the NSGA for the 20-DP problem. Furthermore, the total number of

possible outcomes for the problem is infinite since a real number is assigned for the

transmit power. Therefore, although the TRGA can achieve near-optimal results, given

the enormous number of possible outcomes, it is more reasonable to use the NSGA to

achieve acceptable results.

On the other hand, considering an infinite number of possibilities, both GA can produce

near-optimal solutions by producing 1 million chromosomes. These outcomes indicate

the effectiveness of the algorithms.

Considering the advantages and disadvantages of the algorithms discussed in this chap-

ter, the NSGA was chosen for solving the NP-hard problems. As mentioned earlier in

this chapter, speed is prioritised over maximum accuracy and optimality.

After carefully weighing the advantages and disadvantages of the algorithms discussed

in this chapter, the NSGA was chosen as the primary algorithm for solving NP-hard

problems. The decision is based on the need for speed, which was prioritised over

maximum accuracy and optimality. The NSGA is able to provide acceptable results in

a reasonable amount of time, making it a practical choice for the resource allocation

and routing problem.

Genetic algorithms have proven to be effective in solving complex optimisation prob-

lems, but there is a need for faster algorithms that can provide better approximations

of the optimum solution. Machine Learning (ML) can be employed to address this

issue by leveraging the data generated by GAs and heuristics. Even without using the
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data, ML can learn by itself how to behave in a specified environment. By training

an ML model, we can predict the optimal solution for a given set of input parameters,

resulting in quicker and more accurate problem-solving. Furthermore, ML can help

discover patterns and relationships in the data, which can be used to develop new and

improved algorithms for solving the problem. In conclusion, integrating ML into the

optimisation problem helps to achieve results in a shorter amount of time and bet-

ter near-optimal results, making it a valuable tool for solving complex optimisation

problems.
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Chapter 5

Machine Learning Model

Artificial Intelligence (AI) which covers ML, is defined in [184] as “all techniques that

enable machines to mimic human intelligence”. The human learning system inspires

AI; both have neurons, and the employed neurons develop stronger connections. An

artificial neuron consists of four mathematical elements; incoming connections, out-

going connections, an activation value assigned to each neuron, and a weight value

showing connection strength between neurons where a combination of the artificial

neurons creates the Artificial Neural Network (ANN) [185].

ML can handle many optimisation problems; for example, it can overcome the curse

of dimensionality, which is a significant challenge in optimization problems [186]. ML

algorithms have been extensively employed in diverse areas such as speech recognition,

robotic tasks, and radio resource allocation, as illustrated in Chapter 2 and further

exemplified in this current chapter. Furthermore, ML is becoming increasingly pop-

ular and accessible to more people and industries with the increasing available data,

computing power and storage. ML is a powerful tool that enables computer systems

to learn with different methods, which will be elaborated on in this section, and then

either take actions without being explicitly programmed to do so or provide predic-

tions.

In the context of the thesis, it is crucial to thoroughly understand the applications of

ML algorithms in 5G-NR and vehicular networks. Therefore, we begin by explaining

the concept of ML and its fundamentals. For example, ML has recently been employed

to enhance performance and efficiency in 5G-NR networks [65], [72]. Specifically,
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RL has emerged as a promising technique to optimize resource allocation in 5G-NR

networks. Subsequently, in this chapter, our focus will be on our proposed DRL-based

method for optimizing user and power association, considering pre-allocated BWPs for

different numerologies. Finally, we will provide detailed explanations of the problem

formulation, the design of the DRL algorithm, and the performance evaluation of our

proposed method.

5.1 An Overview of Machine Learning

The learning of a machine process involves several steps, including data collection, pre-

processing, model selection, model training, model evaluation, and model deployment

[187]. Data collection involves gathering data from diverse sources such as databases,

sensors, and online sources. Data pre-processing involves cleaning and preparing the

data for analysis, which may include data normalization, feature selection, and han-

dling missing values.

ML can be broadly categorized into two main types based on the characteristics of

neurons and the type of learning: (1) connection type of neurons, which refers to the

architecture and connectivity of neural networks, and (2) learning type, which encom-

passes the algorithms and techniques used for learning from data. In the literature,

three main types of ML are commonly recognized: supervised, unsupervised, and rein-

forcement learning [188]. However, there are more than 30 connection types available,

such as recurrent neural networks, feedforward neural networks, generative adversarial

networks, and LSTM, as documented in [185]. During the model selection process, the

most suitable ML algorithm or model is chosen to address a given problem effectively.

In the field of ML, the four main types of learning paradigms are as follows:

• Supervised learning employs labelled data to train a model to predict an output

variable based on one or more input variables [147]. Common supervised learning

algorithms include but are not limited to linear and logistic regression, random

forests, and artificial neural networks. However, in this type of ML, finding

labelled data might be challenging.

• Unsupervised learning employs unlabeled data to find patterns or relations in the

raw data where the aim is to find hidden patterns or clusters in the data without
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any prior knowledge of the output variable [189]. Some unsupervised learning

algorithms are called Naive Bayes classifiers, and K-means clustering [190].

• Reinforcement Learning involves learning by trial and error to find the optimal

action or sequence of actions to take in a given environment to maximize a reward

as a consequence of the corresponding action [191]. RL is often used in robotics,

game-playing, and control systems.

5.1.1 Supervised Learning

The process of building a supervised learning algorithm involves collecting a labelled

dataset which will be used for training the classification and regression models. During

training, the algorithm is demonstrated labelled input data and produces output scores

as a vector for each category [192]. The desired category typically does not have the

highest score initially, as the algorithm’s weights, which are adjustable parameters that

define its input-output function, are randomly initialized [140]. Then the supervised

learning algorithm calculates the error between the output and the desired or expected

output. Then it adjusts the weights to minimize this error. The algorithm calculates

and adjusts each weight, indicating how the error would change if a small amount

adjusted the weight. Finally, the weight vector is updated with corresponding adjust-

ments of weights to reduce the error. This process is repeated until the algorithm’s

performance converges to an acceptable level.

Supervised learning algorithms, such as convolutional neural networks (CNNs), are

commonly used in computer vision studies like image classification (GoogLeNet)[193],

(Inception) [194], speech recognition [141], and video classification [142].

5.1.2 Unsupervised Learning

Supervision with labelled data is commonly used in many visual recognition and clas-

sification tasks. However, generating or acquiring labels for large datasets that can

be useful can be hard and costly. In unsupervised learning, where the algorithm re-

ceives inputs but lacks supervised target outputs or rewards from the environment,

the absence of feedback may seem puzzling regarding what the algorithm could learn

[195]. An unsupervised learning algorithm is developed to build meaningful repre-

sentations of the data, decision-making or estimating future outcomes. Unsupervised
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learning can be seen as identifying patterns in the data beyond pure unstructured

noise, such as clustering and dimensionality reduction, which are traditional examples

of unsupervised learning [195].

In such cases, unsupervised learning methods provide significant success. This suc-

cess can be attributed to various factors, including the availability of abundant un-

labeled data, advancements in modelling techniques, diverse choices of optimization

algorithms, and, notably, the integration of domain-specific knowledge into structured

models [196]. Unsupervised methods have been utilized in diverse domains, including

but not limited to speech processing, tumour characterization [197], and depth esti-

mation [198]. Moreover, unsupervised learning methods have demonstrated notable

success in recent natural language processing research [196].

In some scenarios, a combination of supervised and unsupervised learning techniques

can be employed as a hybrid approach, known as semi-supervised learning. Semi-

supervised machine learning represents a synergistic combination of supervised and

unsupervised machine learning approaches, making it a potentially valuable tool in

domains where obtaining labeled data is laborious or impractical, and where a signifi-

cant portion of data remains unlabeled [190]. Semi-supervised learning is also utilized

in the fields of speech recognition [141], and image classification [199]. For example,

the authors [141] present results from using large-scale pre-trained automatic speech

recognition models, trained on diverse unlabelled datasets with millions of hours of

audio, and show that fine-tuning such models significantly increases data efficiency

and achieves state-of-the-art performance on automatic speech recognition tasks even

with limited labelled data.

5.1.3 Reinforcement Learning

As the utilization of RL constitutes a fundamental aspect of this thesis, we provide a

more comprehensive and detailed explanation of RL to facilitate a better understand-

ing of its principles and concepts. RL is a ML technique used for control problems,

where the objective is to select actions to achieve a desired goal. The goal of RL is

to develop an intelligent controller that can make optimal decisions in different sit-

uations based on learned experiences, rather than being explicitly programmed by a

human designer as in traditional control methods [148]. RL is well-suited for scenarios
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where extensive experimentation can be conducted quickly and inexpensively, often

through simulations, as it deals with complex systems and overall goal-oriented be-

haviors rather than individual component tasks [148]. Unlike other common ML tasks

such as clustering or classification, RL is unique in that it aims to achieve a measurable

goal without explicit labeling or scoring of individual actions [148]. This necessitates

an iterative process of trial and error, where different actions are tried in various situ-

ations, and the learning occurs from these experiences to determine the optimal action

in any given situation.

An RL agent interacts with the environment and learns to modify its behavior based

on the observed consequences of its actions and the rewards it receives. In RL, the

state is considered a sufficient statistic of the environment, containing all the necessary

information for the agent to make optimal decisions, which may include parts of the

agent itself [186]. Let S and A represent a discrete set of states and a discrete set of

actions, respectively. The agent, controlled by an RL algorithm, observes the state of

the environment s(t) at a given time step t. The agent selects an action a(t) based

on a policy π, and this action impacts the environment by transitioning it from the

current state s(t) to the next state s(t + 1). Fig. 5.1 illustrates agent-environment

interaction in RL [148].

In RL, the policy serves as a rule for determining the action to be taken in a given

situation. The primary objective of RL is to discover an optimal policy. The quality

of a policy is determined by the actions taken by the agent and the rewards received

in return [148]. The policy π(s, a) represents the probability of taking action a for the

corresponding state s, where the policy function must meet the following [65]:

∑
a∈A

π(s, a) = 1 (5.1)

The objective of the agent is maximising the summation of the reward that is received

over time. The agent learns to select actions that lead to maximum reward through

trial and error, utilizing a training algorithm that updates the policy based on ex-

pected rewards [148]. A training algorithm is utilized to develop an understanding of

which actions are effective in different situations and to make better decisions based on

experience [148]. The training algorithm updates the policy based on actions that are
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Figure 5.1: Agent-environment interaction in RL [148]

expected to yield higher rewards. Each iteration of the training algorithm, aimed at

finding the most efficient approach, is referred to as an episode. During training, the

algorithm executes multiple episodes, continually evaluating and improving the policy.

The Q-learning algorithm

The Q-learning algorithm, a widely utilised approach in the field of RL, focuses on

learning a state-action function, known as the Quality function, or Q-function [148].

This function estimates the expected reward associated with taking a specific action

a in a given state s and following a policy π subsequently [152]. The Q-function for a

policy π and a state-action pair (s, a) considering the discounting factor γ ∈ [0, 1) is

defined as follows [152]:

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, π(st)) | s0 = s, a0 = a

]
(5.2)

In the Q-learning algorithm, the agent begins with no prior knowledge, and the Q

matrix is initialized with zeros. In each episode, the algorithm randomly selects an

initial state and chooses one action among all possible actions for the current state. The
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selected action is then used to transition to the next state. The algorithm calculates

the maximum Q value for the next state using the Bellman equation, considering all

possible state-action pairs [152]:

Q(st, at) = rt+1 + γmax
at+1

Q(st+1, at+1), ∀st, at. (5.3)

where, Q(st, at) is the Q-function for state st and action at, rt+1 is the reward that

received at time step t+1, γ is the discount factor of the future rewards, and maxat+1

denotes the maximum value of all actions at+1 in the next state st+1.

Q-learning is an effective process when the action-state spaces are relatively small,

and a look-up table can be used to update the Q-values [148]. However, it becomes

impractical when the state-action space is large, as many states might not be vis-

ited, resulting in infrequent updates to the Q-values and slower convergence [148].deep

Q-Network (DQN) addresses this issue by combining Q-learning with deep neural net-

works to approximate the Q-function, enabling more efficient and scalable learning in

large state-action spaces.

Markov decision processes

RL can be mathematically described as a Markov decision process (MDP), where the

optimal Q-function can be derived using the Bellman equality given in Eq 5.3 [152].

The MDP comprises several crucial components in determining the optimal Q-function.

These components include a set of states, an initial state, a set of actions, transition

dynamics, which map a state-action pair at time t to the distribution of states at

the time (t + 1), a reward function, a discount factor (γ ∈ [0, 1]) that determines

the weight of given to immediate rewards [186]. In order to obtain discounted future

rewards, the lower values of γ, which increase the significance of immediate rewards,

can be employed and vice versa.

The ε is a parameter that is responsible for the exploration and exploitation rates

of the agent. The ε decay shows the craziness of the agent; at the beginning of the

training, the agent does not know the environment; therefore, it takes random actions.

However, the more it learns about the environment, it takes actions according to a

policy. Hence, the rate of random actions reduces. The policy (π) maps states to a
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probability distribution over actions [186]:

π : S → p(A = a | S) (5.4)

When an episode comes to an end, the state is reset, and the sum of rewards accumu-

lated over an episode compose the return, which is shown as summation in Eq 5.5. The

aim of RL is to discover an optimal policy, denoted as π∗, that achieves the maximum

expected long-term accumulated rewards from all states when the state is reset after

each episode of length T [186],[200]:

π∗ = argmax
π

E

[
T−1∑
t=0

γtrt+1|π

]
(5.5)

Note that the Bellman equation defined in Eq 5.3 is the recursive form of Eq 5.5.

In conclusion, the modeling of the environment as a MDP in RL [46] results in the

actions and rewards becoming Markov processes. Each action is associated with a

reward, and the agent’s objective is to maximize the cumulative reward throughout

the RL process.

5.1.4 Deep Learning

Due to its unique characteristics and significant impact on various applications, deep

learning merits a dedicated chapter in this context. In the formal parlance of ML, a

network with more than three hidden layers is often referred to as a ”deep” network

[188]. This terminology is applicable to various learning paradigms, such as supervised

learning, unsupervised learning, and RL, where the addition of multiple hidden layers

in the network architecture is commonly referred to as ”deep” variants of these respec-

tive paradigms. For instance, in the case of RL, the usage of deep neural network is

called as ”deep reinforcement learning” [143].

In the classification of ML algorithms, a distinction is made between shallow and deep

architectures. Deep learning utilizes artificial neural network that is inspired by the

structure and process of the human brain [201]. The utilization of multiple layers in the

neural network architecture allows for the learning of hierarchical representations of

the input data. This utilization leads to state-of-the-art performance in various fields,
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such as Atari2600 games [144], improving visuomotor skills of robots (i.e., sorting cubes

according to their shapes, and opening a bottle cap) [202], and wireless communication

[143]. For example, in [202] the authors generate four robotic tasks, including coat

hanger at three different distances, inserting the claw of a toy hammer underneath a

toy plastic nail, screwing on a bottle cap, and placing a shaped block in the correct

hole. Their study demonstrated that DNNs can be trained end-to-end, directly from

raw camera inputs, to learn visuomotor policies, thereby proving the possibility of

using this approach for learning visual control.

More impressively, deep learning models have shown remarkable capabilities in gener-

ating responses that are comparable to human-like responses. ChatGPT, a language

model developed using OpenAI’s GPT-3.5 and GPT-4 LLMs, has been fine-tuned

through supervised and reinforcement learning methods [203]. As such, ChatGPT can

be effectively utilized to tackle complex issues such as global warming [204], and public

health [205]. However, the use of ChatGPT in educational settings must be approached

with caution, as it raises concerns about plagiarism in academia [206]. Since ChatGPT

can generate human-like responses, it may be difficult to distinguish between original

work and responses generated by the model.

Expanding the size of DNNs, either by increasing their depth or width, is a common

approach to enhance their performance. However, this approach has drawbacks in-

cluding increased risk of overfitting and increased computational resources required

[193]. Larger networks with more parameters are more susceptible to overfitting, es-

pecially with limited labeled training data, and increasing the size of network filters

in convolutional layers can lead to a quadratic increase in computation, adding to the

computational cost [193]. Balancing the width and depth of the network is crucial

to achieve optimal performance. By increasing both the width (number of filters per

stage) and depth (number of network levels) of the network in parallel, higher quality

networks can be obtained while maintaining a balanced distribution of the computa-

tional budget [194]. This ensures that the improvement in performance is maximized

for a given amount of computation, resulting in an efficient and effective network design

[194].

In a DNN, the input layer receives raw data, which is then passed through to the

hidden layers. The deep term refers to the use of multiple layers in the neural network
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architecture, which enables the network to learn hierarchical relations of the input data

[188]. Each hidden layer contains multiple nodes, also known as neurons, and the links

between neurons have weights that are acquired by utilising mathematical functions

[185]. The input of the next hidden layer is the output of the previous hidden layer,

which leads to an increased learning rate that can be useful in finding the complex

relations of the data. In other words, the hidden layers are cascades of modules that

include trainable parameters at all levels [207]. A DNN is illustrated in Fig. 5.2.

Figure 5.2: DNN illustration [178]. In this example, the input to the neural network
is fed into three fully connected layers, with each valid action having a single output.

Deep learning can be used with supervised learning, unsupervised learning, and rein-

forcement learning [208]. With the help of deep learning, better results can be obtained;

however, deeper layers bring new challenges, like requiring more training data.

While there has been extensive research on vehicular networks, 5G-NR, and wireless

communication, our focus in this thesis is on RAN resource allocation. Specifically,

we aim to develop a novel approach to optimize user and power association in RANs,

considering a network that supports radio slicing and multi-numerology. By addressing

this problem, we hope to contribute to the ongoing efforts to increase the performance

and efficiency of 5G-NR networks. Based on the comprehensive literature review of

ML in vehicular networks and ML employment in 5G-NR conducted in Chapter 2, we

proceed with the system model in this chapter.
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5.2 Power Allocation Problem

In this section, we aim to address the classical power allocation problem in a network

with multiple links, focusing on a single frequency band with flat fading for simplicity,

similar to the approach taken by the authors in [65]. We randomly distributed users

within a field of a maximum size of 177m, which is similar to the approach employed

in Chapters 3 and 4. The data rate requirements of each user were also randomly

allocated for the training process. The downlink transmit power is determined based

on their corresponding data rate requirements and the channel model. To evaluate the

performance of our proposed RL model, we compare it with the calculated optimum

outputs. The set of users is denoted by U = {1, ..., U}, and the BS is displayed as b. For

the RL algorithm, the set of states, actions, and rewards are denoted by S = {1, ..., S},

A = {1, ..., A}, and R = {1, ..., R}, respectively.

The primary objective of this problem is to achieve a near-optimal power allocation

solution that is faster than the provided MILP and GA algorithms. Specifically, the

aim is to obtain near-real-time results where the trained RL agent can provide an

optimal solution within a few steps. We utilise the deep reinforcement learning (DRL)

approach to tackle this optimisation problem. By utilising a ”deep” approach, which

includes training a neural network with multiple layers, we aim to train an agent that

can recognise patterns in the environment. To be more specific, we employ DQN

agents for our proposed optimisation models. This pattern recognition enables the

DQN agent to learn better power allocation strategies to approximate the optimum

result utilising the state, action and reward function. Moreover, the deep approach in

the Q-Networks can improve the speed and efficiency of the power allocation process in

large-scale environments [148]. The DQN agent can handle the increased complexity

of large-scale environments by employing deep neural networks [148].

Last but not least, we adopt a similar approach as in Chapters 3 and 4, where we

consider a system in which each user has only one RB, and evaluate the system per-

formance concerning the single BS scenario.
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5.2.1 Channel Model

We use the channel model employed in Chapter 3 and Chapter 4 to illustrate the radio

access gain between BS and users. This model is used to evaluate the performance

of the DRL algorithm for the single BS scenario. We also assume that the users are

static; hence the channel gain is not changing over time. The gain is calculated using

Eq 5.6, where gbu represents the gain between the BS and user, PLbu denotes the path

loss in dB calculated using Eq 5.7, and the SSF coefficient calculated using Eq 5.8.

gbu = SSFbu ×
(
10−(PLbu/10)

)
, ∀ u ∈ U (5.6)

PLbu(dB) = FSPL+ 10nlog (kbu) + σ, ∀ u ∈ U (5.7)

SSF =

((
N
(
0, 1/

√
2
))2

+N
(
0, 1/

√
2
))2

(5.8)

Eq 5.7 defines the variables used for path loss calculation. The term PLbu represents

the path loss in dB, and FSPL denotes the free space path loss, which can be deter-

mined by the carrier frequency and is calculated as 38.46 dB. The parameter σ shows

LSF coefficients and has a value of 7.7 dB in our scenario, while n and d show the

path loss exponent with a value of 3.1 and distance between BS and user, respectively.

Since the gain calculation uses a linear scale, the path loss is converted from dB to

the linear scale in Eq 5.6. Finally, Rayleigh distribution is used to calculate the SSF

[163] coefficients, accounting for the absorbing, diffracting, and scattering effects of the

surrounding environment.

5.2.2 System Model

Our proposed DRL algorithm for power allocation does not directly minimise the

downlink transmit power in the objective function. Instead, we utilise the following

objective function and constraint to ensure satisfactory performance. The constraint

requires the allocated data rate to be greater than or equal to the requested data

rate. Thanks to the constraint in Eq 5.10, the DRL algorithm ensures that all users
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receive at least their minimum required data rate. Meanwhile, the objective function

maximises the ratio of the requested data rate to the allocated data rate, denoted

as Ωu and du, respectively, for each user. By maximising the objective function and

satisfying the constraint, we can achieve satisfactory performance and handle greedy

users without over-allocating resources beyond their requests.

maximise :
∑
u∈U

du
Ωu

(5.9)

subject to : Ωu ≥ du, ∀ u ∈ U (5.10)

The objective function and the constraint also ensure fairness among users. Eq 5.10

also leads to a power allocation that maintains fairness among users and prevents any

single user from monopolising the system resources. Since we assume a single BS

scenario for the power allocation problem, co-channel interference is not considered.

Therefore, the allocated data rate for each user is calculated using the Signal to Noise

Ratio (SNR) as follows:

Cu = w

(
log2

(
1 +

pu × gbu
σ2

))
(5.11)

The variable Cu, and parameters w, and σ2 in Eq 5.11 represent the allocated data rate

to the corresponding user, the bandwidth of the RB, and the additive white Gaussian

noise (AWGN), respectively.

In communication systems, Shannon capacity and data rate are measured with bits-

per-second; hence, they describe the amount of transmitted data over a communication

channel. The Shannon capacity is the theoretical upper limit of data that can be

transmitted without any data loss in a given amount of time. On the other hand, when

the data rate term is utilised, errors and employed modulations are also considered;

thus, it can be far from the maximum transmitted data. Since the choice of modulation

techniques is not our primary concern, we assume that the allocated data rate is equal

to the Shannon capacity, shown in Eq 5.12. This assumption allows us to evaluate the

system’s performance based on the theoretical maximum limit of the channel.

142



Chapter 5. Machine Learning Model 5.2. Power Allocation Problem

Cu = Ωu (5.12)

As described before, the DRL approach utilises three elements: state, action, and

reward. By utilising these elements, an agent can learn to navigate the environment by

observing states, taking actions, and then optimising its behaviour, considering a policy

to receive the highest reward. The environment is represented by the cellular network

that includes single BS, a flat fading channel and users. The following subsection

outlines the state, action, and reward function utilised in the proposed DRL algorithm.

States

The allocated transmit power for each user is represented as a vector, which shows

the state where the agent observes, modifies and gets a reward from it. Note that in

this section, we can use the terms ’state’ and ’transmit power’ interchangeably to refer

to the power level allocated to each user in the system. Although we optimise the

allocated data rate for the users, the only variable in the environment is the transmit

power that is allocated separately for each user. Moreover, we assume integer numbers

for the state instead of real numbers to reduce complexity and computational load.

Consequently, the state space becomes discrete and finite, which simplifies the problem

and makes it more tractable. Hence, the deep Q-learning algorithm that operates in

discrete state and action spaces can be used.

Choosing how to divide the state space into smaller pieces is essential because it affects

how accurate and fast the algorithm can find the best solution. If the pieces are too

small, the algorithm might take a long time to find the solution, while if they are too

big, the solution might not be accurate. Therefore, to find a balance between accuracy

and speed, we decide to divide the state space as a set of integers. This approach can

provide a reasonable accuracy level while reducing the computational complexity of

the algorithm.

In addition to defining the state space and the system dynamics, the DRL algorithm

also requires an initial state. The initial state can be set arbitrarily, but a better

approach is to use a state that is representative of the operating conditions of the

system. Therefore, instead of defining the initial system state randomly, we define the
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initial system for each user as follows:

su(1) =
pmax + pmin

2
(5.13)

Equation 5.13 demonstrates the initial state su(t) for each user at the time step 1, as

the average of the maximum and minimum allowed transmit power, denoted as pmax

and pmin, respectively. Beginning from the average power for each user minimises the

error and reduces the number of steps required to reach the optimum.

In our proposed DRL algorithm, the state is represented as a vector where the di-

mensions of the vector depends on the number of users in the system, denoted by u,

resulting in a state vector of size [1×u]. In each iteration, the agent selects an action,

and this action changes the state vector (i.e. transmit power), resulting in an updated

state representation for the next iteration of the algorithm. Also note that the reward

function employs two states, current and next, to provide a scalar reward value.

Actions

The proposed DRL algorithm performs transmit power allocation for each user in

the downlink direction. Also, the set of actions available to each user is defined by

considering all possible combinations of increasing, decreasing, or maintaining the

transmit power. To ensure that the action space is finite, we restrict the increase

and decrease in transmit power to integer values. Specifically, for a user with an initial

transmit power of pu, the available actions are to increase the transmit power by a

positive integer a, decrease the transmit power by a positive integer a, or maintain

the transmit power level at pu. By doing so, we obtain a finite set of actions for each

user. For instance, in the case of six users with three different actions for each user,

the total number of possible actions in the action space is 729, which can be calculated

as follows:

atotal = |a||u| (5.14)

In Eq 5.14, the number of actions available is calculated where |a| is the total number

of possible actions for each user and |u| is the total number of users in the model.
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If the action space were a real number between [-a, a], the number of actions would

be infinite. A continuous range of actions would give a more precise output as the

system can take any possible action value. However, this approach would significantly

increase the computational load and training time. Training and implementing the

system in real-time scenarios may not be feasible as the output is getting closer to the

optimum. Moreover, the system’s complexity would also increase, making it harder to

interpret the results and understand the algorithm’s behaviour. Therefore, although

increasing the action space might lead to better performance, it is essential to balance

performance with computational complexity for practical implementation. To provide

that balance, we limit the number of possible transmit power levels for each user to

ensure that the action space is finite. Despite this limitation, the number of possible

actions is still large enough to enable the system to reach a reasonable optimum.

The initial state starts from the average of the maximum and minimum power in

our DRL algorithm for each user. However, after taking some actions, the transmit

power allocated to each user must remain within the allowable limits. To ensure that

the actions are feasible, we employed the following constraint to control the transmit

power for each user:

su(t+ 1) = min (max ((su(t) + au(t)), pmin) , pmax) ; (5.15)

The summation of the current state su(t) and action au(t) gives the next state, repre-

sented as su(t + 1) in the Eq 5.15. The DRL algorithm must check the new state to

see if it is within the allowable limits. The Eq 5.15 represents a constraint to control

the power allocated to each user. The value of su(t + 1) is obtained by taking the

maximum between the next state value for that user, denoted by (su(t) + au(t)), and

the minimum power limit for that user, denoted by pmin, and taking the minimum

between this value and the maximum power limit for that user, denoted by pmax. This

constraint ensures that the transmit power for each user remains within the allowable

range specified by pmin and pmax, thus preventing any violation of power limits during

the training process.

Then, the DQN agent compares the initial state su(t) and the next state su(t+ 1) to

determine the action that resulted in the state transition. Based on this comparison,
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the agent receives a reward r(t) that displays the effectiveness of the selected action.

Reward Function

The conventional reward functions are based on metrics such as SINR, log(1+SINR)

[65], or Shannon capacity for power allocation optimisation in wireless communication

problems. However, our research proposes a new approach where a novel reward

function is employed compared to traditional approaches. The reward calculation

involves several steps, which are outlined below.

First, the RAN gain for each user is computed based on the current state. Since the user

locations remain identical between the current and next states, the calculation of radio

access gain is performed only once, avoiding unnecessary computation during training.

After that, the allocated data rate for all users is calculated using the current state at

time t. Then, the ratio between the requested and allocated data rate is calculated for

each user. If the allocated data rate is less than the requested, the individual reward

is assigned as -1. Otherwise, the requested and allocated data rate ratio is assigned

as the individual reward. The individual reward at time t is denoted as ru(t) and is

represented by the following equation:

ru(t) =


du
Ωu

, if (Ωu ≥ du)

−1, otherwise

(5.16)

Subsequently, the overall reward for the current state at time t is calculated by sum-

ming the individual rewards for each user, where the reward at time t is represented

as R(t) as follows:

R(t) =
∑
u∈U

ru(t) (5.17)

It is crucial to say that the system is a time-invariant system where the next state

is represented as (t + 1), the allocated data rate for each user in the next state is

represented as Ωu(t+1), and the sum of allocated data rate for all users in next state

denoted as R(t+ 1). In this case, Eq 5.18 provides the sum of the allocated data rate

for all users in the next state:
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R(t+ 1) =
∑
u∈U

ru(t+ 1) (5.18)

Finally, to calculate the episode reward which is the agent gets, we compare the state

rewards R(t) and R(t+ 1). If the overall ratio at the next state is greater or equal to

the current state and the data requirement is satisfied, the reward is set to the sum of

the allocated data rate for all users in the next state multiplied by 2, (R(t+ 1)× 2),

to indicate a good action. On the other hand, if any user receives less data rate than

requested, the reward is set to -1 to indicate an invalid action. Otherwise, the reward

is set to R(t + 1) to indicate a suboptimal but valid action when only the data rate

requirement is satisfied. Thus, the reward function effectively encourages the DRL

algorithm to allocate resources in a way that satisfies user requirements while avoiding

actions that result in a reduced data rate. The Eq 5.19 shows the episode reward

function. The aim is to maximise the ratio between the requested and allocated data

rates.

The state rewards R(t) and R(t+1) are compared to calculate the episode reward Re(t)

obtained by the agent. The aim is to maximise the ratio between the requested and

allocated data rates. Eq 5.19 presents the episode reward function, which considers

three cases:

Re(t) =


R(t+ 1)× 2, if (R(t+ 1) ≥ R(t)) & (Ωu ≥ du)

R(t+ 1), if Ωu ≥ du

−1, if Ωu < du

(5.19)

The ratio between the requested and allocated data rate explicitly tells to the DRL

algorithm that it should not allocate more resources than the users’ data rate re-

quest. Moreover, this reward function implicitly indicates to the DRL algorithm that

it should minimise the transmit power. This approach encourages the algorithm to

allocate resources efficiently while meeting the requested data rate. It also enhances

fairness by preventing the allocation of excessive resources to one user while allocating

insufficient resources to another. By minimising the transmit power implicitly while

meeting the users’ data rate requirements, this novel reward function provides a new
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perspective for optimising resource allocation in wireless communication systems using

DRL techniques. It is important to note that this reward function can solve the power

allocation problem with a single constraint. Having a single constraint simplifies the

problem and makes it more tractable, which is often desirable in practical applications.

5.2.3 Simulation Setup and Results

We evaluate the performance of the proposed power allocation optimisation model.

We utilize the Matlab RL environment class to create the environment, and for the

training, we use Matlab Reinforcement Learning Designer Toolbox.

Simulation Setup

We consider a single BS model, where the farthest user is assumed to be located at a

distance of 177 meters away from the BS, similar to the scenarios discussed in Chapter

3 and Chapter 4. The users are located randomly on this grid. Since the lowest

(180 kHz) bandwidth for an RB is considered, the user requirements are similar to

those employed in Chapter 4. The data rate requirements of the users vary randomly

between 0.3 Mbps to 2.5 Mbps.

To determine the optimal step size for the power allocation problem, we conducted a

trade-off analysis between the resolution of the power levels and the number of steps

required to reach near-optimal solutions. We found that increasing the step size to

3 mW decreased the number of steps to reach optimum but at the cost of reduced

optimality. After conducting a series of tests using Matlab, we determined that a step

size of 1 mW is an appropriate balance between resolution and the number of steps

required to reach near-optimal solutions. Therefore, we selected a step size of 1 mW

for our power allocation optimisation model.

We utilise the standard framework of RL, where an agent interacts with an environment

throughout a series of discrete actions in discrete time steps. The agent observes a

state s(t) and takes an action a(t) based on its policy π in each time step t. Then,

the agent receives a scalar reward R(t) by comparing the corresponding states. During

this process, the agent explores the environment with a reducing rate, ε, which changes

between [0, 1]. Since the agent learns to optimise its actions based on its experience, ε

determines the balance between exploration and exploitation. At the beginning of the
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training, the epsilon value is high; thus, the agent is encouraged with a high exploration

rate to explore the environment and discover the actions that lead to higher rewards.

As the agent gets experience, the exploration rate is gradually reduced to the favour of

exploitation of the acquired knowledge. In this work, we employ an exponential decay

function for the ε parameter, which starts from 1 and reaches its minimum value of

0.01 after 1000 time steps. The ε decay function is illustrated in Fig 5.3.

Figure 5.3: Epsilon decay of the employed agent.

In RL, the discount factor γ is a parameter that determines the significance of imme-

diate and future rewards [148]. It also changes between (0, 1); a high discount factor

aims to increase future rewards, while a low discount factor aims to increase immediate

rewards. Mathematically, the discounted cumulative reward can be represented as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1 (5.20)

where Rt is the reward received at time step t, and γ is the discount factor. In this RL

algorithm, we employ a high discount factor, γ, to increase the future rewards, which

is set to 0.99.

The DQN agent has a neural network that consists of an input layer, a fully connected

layer, a Rectified Linear Unit (ReLU), another fully connected layer, another ReLU

and an output layer. In neural networks, the neurons are connected to each other

with different weights, demonstrating the connection strength between neurons [185].

After a fully connected layer, some weights might have negative values, and the ReLU

activation function sets the output value to zero for any negative input while leaving

positive values unchanged [209]. In our problem, the input layer of the neural network

consists of a number of neurons equal to the number of users. The fully connected

layers include 256 neurons, and finally, the output layer consists of a number of neurons
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equal to the number of actions.

Training

In this study, we set the maximum number of episodes to 2000, which provides enough

training for the agent. Additionally, we define the episode length as 50, meaning that

the agent takes 50 actions in each episode and receives a summation of those actions

as the reward for the corresponding episode.

Figure 5.4: The episode reward through the training phase.

Figure 5.4 shows the episode reward achieved during training, where the dark blue

line represents the average reward over 10 episodes, and the light blue line represents

the reward obtained in each individual episode. The presence of spikes in the reward

function indicates that the agent is still actively exploring the environment. Fig 5.4

also shows that the reward steadily increases over time, indicating that the agent is

learning to optimise its actions and make better decisions. The final reward value is

close to the optimal value, indicating that the agent has learned an effective policy for

the given task.
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Results

One of the primary constraints of our DRL algorithm is that all allocated data rates

must be greater than or equal to the requested data rates. Given that the RL model is

not designed to minimise transmit power explicitly, it is reasonable to observe a slightly

higher transmit power than the optimal solution. However, the optimal solution typ-

ically produces the desired output almost instantaneously, as desired. Therefore, Fig

5.5 illustrates the requested and allocated data rates for a six-user scenario.

Figure 5.5: The requested and allocated data rates for a six-user scenario

The performance evaluation of the DRL algorithm in Fig 5.5 reveals that all users’

minimum data rate requirements are met, which also indicates the high accuracy and

advantage of the proposed algorithm. Specifically, four out of six users exceed the

requested data rate by less than 0.5% while User2 and User4 exceed by 12.3% and

7.2%, respectively.

Another crucial aspect in evaluating the performance of our proposed DRL algorithm

is its speed in reaching the optimal solution. To evaluate this aspect, we illustrate the

steps that are required for the algorithm to achieve near-optimal power allocation in

Fig 5.6. Our aim is to achieve near-real-time results where the trained DQN agent

could provide an optimal solution within a few steps. The figure shows that after the
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37th step, the agent no longer takes significant actions, indicating that the optimal

solution has been achieved. The results indicate that the DRL algorithm can reach

near-optimal solutions within a few steps, demonstrating its efficiency and effectiveness

in solving the power allocation problem.

Figure 5.6: The individual rewards for each episode.

In the proposed DRL algorithm, when the ratio of the required data rate to the al-

located data rate for a user is greater than 1, it indicates that the user’s data rate

requirement is not satisfied. Therefore, in such cases, the individual reward for that

user is set to -1. Furthermore, since we compare the current state with the next state

to calculate the reward, the RL agent adjusts the power value in order to obtain a

higher reward. This need for change to get a higher reward explains the observed

ripple effect in the performance of users number 2 and 6.

We compared the performance of our DRL algorithm with the calculated optimal

results for validation purposes. In the following section, we consider network slicing

and implement joint power and numerology allocation optimisation.
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5.3 Joint Power and Numerology Allocation

In this section, we extend the power allocation problem presented in Chapter 5.2 by

incorporating the selection of numerology by users. Since this is an extension of the

power allocation problem, the channel model and most constraints remain the same.

Similar to Chapters 3 and 4, users are allowed to select any numerology as long as

their data rate requirements are met.

The optimal BWP allocation is found in Chapter 3; therefore, we decide to utilise the

optimal bandwidth allocation here. In this pre-allocated 5 MHz bandwidth, 1 RB, 1

RB, and 6 RBs are allocated for numerology 1, 2, and 3, respectively, resulting in a

total of 8 RBs that are available for selection by any user.

In order to demonstrate the feasibility of joint power and numerology allocation using

DRL, we assume higher data rate requirements which can be provided by using higher

numerologies with higher bandwidths. For example, the data rate requirements of the

users are expanded to those utilised in Chapter 3. Moreover, URLLC users have strict

delay requirements that can be satisfied by higher numerologies.

Nonetheless, most of the problem remains the same except for the exponentially in-

creasing action space. For instance, we maintain the integer power values for the

users to prevent further expansion of the action space. Using integer power values al-

lows us to tackle the problem while keeping most aspects consistent with the previous

approach.

5.3.1 System Model

The proposed DRL algorithm for joint power and numerology allocation employs a

similar objective function provided in Eq 5.21. The objective function 5.21 has two

elements with the same weight. First, the required and allocated data rate ratio is

multiplied with the maximum allowed power level is maximised. Since the maxi-

mum allowed power level is a fixed parameter, the maximum positive outcome can be

achieved when the required data rate equals allocated. Conversely, the total transmit

power is minimised to encourage the agent to choose the higher numerologies; hence,

the objective function can be maximised.
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maximise :

((∑
u∈U

du
Ωu

)
× pmax

)
−
∑
u∈U

pu (5.21)

subject to : Ωu ≥ du, ∀ u ∈ U (5.22)

subject to : tu ≥ tn, ∀ u ∈ U (5.23)

The constraint in Eq 5.22, which ensures that the allocated data rate is greater than

or equal to the requested data rate, is also the same. With Eq 5.22, we ensure that

the value of the objective function is negative when the required data rate is more

than the allocated. This constraint prevents the model from receiving false positive

objectives. Furthermore, the constraint stated in Eq 5.23 guarantees that the allocated

numerologies’ delay is less than or equal to the delay requirement, thereby satisfying

the users’ delay constraints. In Eq 5.23, tu and tn represent the delay requirement of

the users and slot length of the corresponding numerology, respectively. By including

this constraint, we ensure that the selected numerology for each user satisfies their

delay requirements.

Since each numerology employs different RB bandwidth, the allocated data rate is

calculated as follows:

Ωu = nu

(
log2

(
1 +

pu × gbu
σ2

))
(5.24)

In Eq 5.24, nu represents the bandwidth of the allocated numerology for the corre-

sponding user. Since we assume that the allocated data rate is equal to the Shannon

capacity, we expressed this assumption using Eq 5.12.

In the context of our proposed DRL algorithm, the environment represents a cellular

network that consists of a single BS containing multiple numerologies, a flat fading

channel, and multiple users. The following subsection outlines the state representation,

action space, and reward function components of the proposed DRL algorithm for the

joint power and numerology allocation problem.
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States

In order to enable joint optimisation of power and numerology allocation, the state

must represent both power and numerology for each user. To achieve this state, we

construct a single state vector that is logically divided into two parts. The first half of

the state vector represents the transmit power allocation, same as before. The transmit

power is allocated separately for each user as an integer number. The second half, on

the other hand, shows the allocated numerology for each user. As a result, the entire

state consists of integer values for the state instead of real numbers. Any state vector

is represented as follows, where pu(t) and nu(t) represent vectors of size [1× u]:

su(t) = [pu(t) nu(t)] (5.25)

To ensure that the initial system state is representative of the operating conditions of

the joint optimisation problem, we adopt the following approach. We must consider

both the power allocation and numerology allocation aspects to determine the initial

state. The initial transmit power for each user is determined as the average of the

maximum and minimum permitted transmit power, as done previously. Then, we

allocate the maximum numerology to each user for numerology allocation, hoping to

achieve a positive reward at the beginning. Therefore, rather than randomly assigning

the initial system state, we adopt the following approach to define the initial system

state for each user:

pu(1) =
pmax + pmin

2
(5.26)

nu(1) = nmax (5.27)

su(1) = [pu(1) nu(1)] (5.28)

pu(1) and nu(1) represent power and numerology allocation for the initial state, re-

spectively. pu(1), and nu(1) together form the initial state denoted as su(1).
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The size of the state vector depends on the number of users, and there are two states

for each user. Hence, the size of the state vector becomes [1 × (2 × u)]. In each

iteration, the agent selects an action, and this action changes the transmit power and

numerology for each user, and the next state is obtained.

Actions

The proposed DRL algorithm performs transmit power and numerology allocation for

each user simultaneously. The set of actions available to each user is the combination

of the set of power and numerology actions. The set of power actions remains identi-

cal; it includes all possible combinations of increasing, decreasing, or maintaining the

transmit power by using integer numbers. On the other hand, the set of numerology

actions is independent of the previous state, allowing users to switch directly from the

3rd numerology to the 1st numerology and vice versa.

When the numerology selection is introduced to the action space as an additional

dimension, the number of elements in the set of actions increases exponentially. For

example, in the previous section, with six users, the total number of possible actions

in the action space was 729. However, considering the scenario with three available

numerologies for the same six users, the action space expands to 531.441 possible

actions. This exponential growth highlights how the additional dimension significantly

increases the complexity of the problem.

atotal = |ap||u| × |an||u| (5.29)

The number of available actions is calculated in Eq 5.29. Here, |ap| represents the

total number of power actions, |an| represents the total number of numerology actions

for each user, and |u| represents the total number of users in the model. This equa-

tion provides the overall size of the action space, considering the different power and

numerology options available to each user.

We employ a constraint that verifies the updated transmit power after applying a

power action to maintain the transmit power within the allowed limits. This constraint

ensures that the transmit power remains within the predefined limits for each user.

By using this constraint, we ensure that the power actions taken by the RL algorithm
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are valid and do not exceed the specified boundaries. The constraint is formulated as

follows:

su(t+ 1) = min(max((su(t) + au(t)), pmin), pmax); (5.30)

The numerology allocation operation directly modifies the states without any arith-

metic operations such as addition or subtraction. Consequently, there is no need to

employ a constraint to check if the new state exceeds the limits for numerology al-

location. Thus, the numerology allocation automatically ensures that the selected

numerology remains within the allowed limits without additional constraints.

Reward

In this section, we employ a similar reward function as before. However, we adopt a

simplified approach where the reward is based solely on the comparison between the

output and the user requirements without considering the performance of the next state

compared to the current state. The allocated data rate for each user is determined

based on the RAN gain, power allocation, and numerology allocation. The reward

calculation considers two main constraints: the delay and data rate requirements. If

any user requirement constraints are not satisfied, the individual reward is set to a

negative value of the maximum allowed transmit power. On the other hand, if both

constraints are satisfied, the individual reward is computed using the same approach as

the objective function. The reward equals the requested and allocated data rate ratio

multiplied by the maximum allowed transmit power, and the employed transmit power

is subtracted from the multiplication. The individual reward at time t is denoted as

ru(t) and is given by the following equation:

ru(t) =


((

du
Ωu

)
× pmax

)
− pu, if (Ωu ≥ du) & (tu ≤ tn) , ∀ u ∈ U

− (pmax) , if (Ωu < du) or (tu > tn) , ∀ u ∈ U

(5.31)

When both constraints are satisfied, the reward function has two elements. First, the

ratio between the requested and allocated data rates is multiplied by the maximum
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allowed power level to obtain a positive reward. The highest positive reward is achieved

when the allocated data rate is equal to the requested data rate. Conversely, the reward

decreases as the transmit power consumption increases. This negative value is intended

to encourage the agent to select higher numerologies, thereby reducing the impact of

the negative reward.

Next, the episode reward for the current state at time t is calculated by summing the

individual rewards for each user. The episode reward at time t is denoted as R(t) and

is computed as follows:

R(t) =
∑
u∈U

ru(t) (5.32)

The episode reward for the next state at time t+ 1, denoted as R(t+ 1), is calculated

as the sum of the individual rewards for each user. A positive reward signifies a

favourable action, which can be provided when all the constraints are satisfied, and

the ratio is close to 1. On the other hand, any negative reward indicates an invalid

action. The agent can increase the positive reward by minimizing the allocated data

rate to meet the requirements or increasing the numerology, both of which result in

power reduction. Consequently, in this section, the reward function implicitly guides

the DRL algorithm towards minimizing the transmit power.

5.3.2 Simulation Setup and Results

We evaluate the performance of the considered joint power and numerology allocation

optimisation model. Just like before, we utilize Matlab RL environment class to create

the environment, and for the training, we use Matlab Reinforcement Learning Designer

Toolbox.

Simulation Setup

In this scenario, we consider a carrier bandwidth of 5 MHz and three numerologies

with bandwidths of 180 kHz, 360 kHz, and 720 kHz. The slot lengths associated with

these numerologies are 1 ms, 0.5 ms, and 0.25 ms, respectively. Based on the optimum

bandwidth allocation determined in Chapter 3, the carrier bandwidth includes 1 RB,

1 RB, and 6 RBs for the 1st, 2ns and 3rd numerologies, respectively.
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Also, we assume a single BS model, and the users can be located around the BS at

distances ranging from 1 to 177 meters. Since higher numerology provides higher band-

width, hence, higher data rate, the data rate requirements of the users are increased,

similar to those in Chapters 3 and 4. Moreover, the delay requirement of the URLLC

users is included in this section.

The algorithm takes two actions at once in the step function. The step of the power

action is maintained in the algorithm; the size of each step is 1 mW, which also ensures

that the minimum power level is 1 mW. The second action is that the agent can modify

the employed numerology by the users, independent of their previous numerology at

each step. In other words, the step function allows for a 1 mW transmit power change

compared to the previous time step, and the numerology can change regardless of the

previous state.

In this study, we employ a single agent that is responsible for both power and nu-

merology allocation for all users. Immediately after a new dimension is introduced or

when the number of variables, such as users, RBs, and numerologies, is increased, the

curse of dimensionality arises. Therefore, to prove the feasibility of joint power and

numerology allocation using DRL is possible with a single-agent DRL algorithm, we

employed five users and three available numerologies in our scenario.

In the joint power and numerology allocation optimisation problem, we employ the

same rate of exploration rate (ε) decay and the minimum ε value to those employed in

the power allocation optimisation problem. However, the total number of actions in the

environment is increased 81 times. Moreover, according to the Matlab Reinforcement

Learning Designer Toolbox, the total learnables, which indicates the variables that

agent explores, are increased almost 60 times (from 254.9k to 15.2M). Consequently,

keeping the rate of ε decay and the minimum ε value the same means that exploration

ends relatively sooner than the previous problem. The following exponential decay

function for the ε parameter is employed, which starts from 1 and with a minimum

value of 0.01 after 1000 time steps illustrated in Fig 5.7.

Since the exploration fades relatively quickly, the agent is expected to find the optimal

policy faster and improve it with the agent’s acquired knowledge. However, the agent

can still explore the environment with the minimum ε parameter.
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Figure 5.7: Epsilon decay of the multi-objective problem’s agent.

To solve this joint problem, a different discount factor γ, which equals 0.75, is em-

ployed. The utilised γ decreases the importance of future rewards and increases the

importance of immediate rewards. Thus, the agent prioritises more accurate actions

at the beginning, and to maximise the episode reward, it selects the actions that yield

higher immediate rewards.

Finally, we employ the same neural network to train the DQN agent. This neural

network also includes an input layer, a fully connected layer, a ReLU, another fully

connected layer, another ReLU and an output layer, which is illustrated in Fig 5.8.

The number of neurons is also the same, where the fully connected layers include

256 neurons, and the number of neurons for input and output layers are equal to the

number of users and the number of actions, respectively.

Figure 5.8: The neural network that is employed in the joint optimization problem.
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Training

In this study, we set the maximum number of episodes to 2400, which provides enough

training for the agent. Additionally, long episode lengths might be challenging for the

agent due to the difficulty of determination of the action-reward relationship in long

episodes. To address this issue, more clarity than the previous problem is provided

for the agent. Hence, the agent can more easily identify which actions lead to better

or worse outcomes in achieving the desired results. The episode length is maintained

despite the exponentially increased problem size, which can be observed from the

action and observation vectors, the number of possible actions, and action space. In

other words, instead of increasing the episode length proportionally with the total

number of actions, we define the episode length as 50, meaning that the agent takes

50 actions in each episode and receives a summation of those actions as the reward for

the corresponding episode. Considering the maximum number of episodes, the total

number of steps in the training is equal to 120000.

Figure 5.9 shows the episode reward achieved during training, where the dark blue line

represents the average reward over 10 episodes, and the light blue line represents the

reward obtained in each individual episode.

Figure 5.9: The episode reward through the training phase.
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Compared to the previous power allocation optimisation problem, the increasing trend

of the episode reward can be seen more clearly in Fig 5.9. This trend is mainly caused

by the ε and γ parameters employed in this problem formulation. The ε fades in

the first 1000 steps to its minimum; nonetheless, the presence of spikes in the reward

function indicates that the agent is still actively exploring the environment till the end

of the training. The length of the spikes, on the other hand, is reduced due to a relative

reduction in ε and a reduction in the discount factor γ. Because of the decreased γ,

the future rewards have less importance; thus, the agent focuses more on immediate

rewards. This reduction mitigates the impact of large reward fluctuations throughout

the episodes. The steadily increasing reward over time also shows that the agent is

learning to optimise its actions and make better decisions.

By setting a high ε and maintaining it until the end of the training, with a higher

minimum ε, the DQN agent can provide satisfactory optimisation results in small

environments, such as our power allocation optimisation problem. However, when

another dimension is introduced, the number of variables increases exponentially, and

the agent no longer has the same luxury. Instead, the agent must stick with acceptable

outcomes and carefully explore the surroundings to find better solutions. In other

words, the exploration rate is reduced to increase exploitation and generate a more

greedy DQN agent. Otherwise, the agent may become lost in the environment and

struggle to reach the optimal outcome.

Results

There are two primary constraints in the joint power and numerology allocation opti-

misation problem. The first constraint dictates that the allocated data rate must be

greater than or equal to the requested, like the previous power allocation optimisation

problem. Fig 5.10 illustrates the requested and allocated data rates for the joint power

and numerology allocation optimisation problem with a five-user scenario.

The second constraint is the delay requirement, which is also satisfied for all users.

Only User3 has a critical delay requirement which must select the 3rd numerology. The

other users are free to select any numerology. Table 5.1 shows the delay requirements

and numerology allocations for all users. Moreover, the allocated power for each user

is also demonstrated in Table 5.1.
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Figure 5.10: The requested and allocated data rates for the joint optimisation problem

Table 5.1: Delay requirements and numerology allocation of the Users

User1 User2 User3 User4 User5

Delay requirement > 1 ms > 1 ms 0.45 ms > 1 ms > 1 ms
Allocated numerology 4th 4th 4th 1st 2nd

Allocated power 1mW 5mW 1mW 1mW 1mW

The behaviour of the agent and the corresponding allocated data rate to each user

can be only described using Fig 5.10 and Table 5.1 together. For example, it can be

observed from the figure that the most significant difference is in User1, where the

allocated data rate exceeds the requested by 23.8%. Considering the reward function,

the ratio between the requested and allocated data rate for User1 is 0.8073, and the

utilised transmit power is 1mW; hence the reward equals 30 × 0.8073 − 1 = 23.219.

On the other hand, if User1 selected the 2nd numerology, the ratio would be almost

equal to 1 with a power consumption of 17 mW. In this case, the reward would be

30× 1− 17 = 13. This reward calculation proves that despite the lower requested and

allocated data rate ratio, the agent selects the larger reward, which is also optimal for

User1.

Although there is no strict delay requirement for User2, it cannot select any other nu-

merology to satisfy its data rate requirement without exceeding the maximum transmit
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power limit. User2 would need 665 mW for the 2nd numerology selection.

User3 also could reach a higher ratio if the 2nd numerology would be employed. How-

ever, the transmit power would be 15 mW, and the reward would be less. Regardless,

the 2nd numerology would not satisfy User3’s delay requirement.

The allocated data rate meets exactly the requested data rate for User4, which selects

the only 1st numerology RB in the carrier bandwidth. Having 1st numerology and 1

mW, User4 receives approximately 29 as a reward. User5 also voluntarily selects the

only RB that belongs to the 2nd numerology; hence it can maximise its reward. If

User5 selected the 3rd numerology, and the ratio would be approximately 0.5.

Before evaluating the speed requirement of the proposed algorithm, it is essential to

state that all data and delay requirements are successfully met for all users. The out-

puts demonstrate that the agent shows an excellent performance in selecting the most

appropriate numerology and power level for each user for the given reward function.

By considering these achievements, we can conclude that the proposed algorithm ef-

fectively addresses the objectives of the joint optimisation problem with a sufficient

decision-making process, and a single-agent DRL algorithm can optimise the users’

individual performances.

We also evaluate the proposed DRL algorithm’s speed in reaching the optimal solution.

To evaluate the speed of the algorithm, we demonstrate the steps that are required

for the algorithm to achieve the optimal solution in Fig 5.11. The total number of

steps is limited to 60, and the optimal solution is achieved at the 40th step for the

first time, and the data rate allocation of this step is illustrated in Fig 5.10. All the

users are settled in the 39th step, except User2. The actions of User2 change in a

pattern; therefore, the optimum output is achieved more than once in 60 iterations.

The obtained results demonstrate that the proposed DRL algorithm shows promising

performance in terms of reaching optimal solutions within a few steps. These findings

highlight the efficiency and effectiveness of the proposed RL algorithm.

Although the complexity of the problem significantly increases, the joint power and

numerology allocation problem has been successfully solved using a single DQN agent.

However, it must be noted that the training process requires careful parameter tuning

for the optimal performance. Parameters such as ε (exploration rate), γ (discount
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Figure 5.11: The requested and allocated data rates for a four-user scenario

factor), and the number of steps in each episode must be assessed for each particu-

lar problem. Furthermore, the problem can be extended to user association or data

routing; the DQN agent can achieve the desired convergence of the DRL algorithm by

conducting detailed parameter tuning.

5.4 Conclusions

This section starts with providing a brief overview of Machine Learning, focusing on

Reinforcement Learning. Then we propose a novel reward function specifically de-

signed for power allocation optimisation problems. We leverage the deep Q-Network

agents and deep reinforcement learning algorithms to solve these optimisation prob-

lems. Next, we introduce two algorithms that employ the novel reward function in a

single-cell scenario. The first algorithm allocates the downlink transmit power among

users efficiently. The second developed algorithm extends the downlink transmit power

allocation optimisation by including numerology allocation in a cellular network that

employs multi-numerology. This enhancement in the algorithm enables placing 5G

constraints in the utilised cellular network.

The changes in the user requirements or the distance between BS and the user can
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be tolerated by the agent. In other words, the trained DQN agent can solve similar

problems in some cases. To do so, instead of the fixed parameters (e.g. fixed locations

and requirements), varying parameters can be employed during the training. In this

changing environment, the learning rate of the agent decreases dramatically; hence,

the number of episodes, ε rate, and minimum ε must be increased in training. Al-

ternatively, the agent would be more flexible for the changes with a reduced amount

of training when the fixed parameters are employed, which leads to a decrease in the

ability to find the optimal solution of the agent. On the other hand, when the same pa-

rameters are utilised, and the number of episodes in the training is increased, the agent

will be a problem-specific solver. This approach reduces the generalisation ability to

solve similar problems.

Moreover, this study can easily be extended by adding user association and data rout-

ing dimension. In order to deal with exponentially increasing complexity, the number

of episodes, ε rate, and minimum ε must be increased in training. Furthermore, a

multi-agent approach can be employed to solve the multi-objective problem. For ex-

ample, each agent might be assigned to a specific user, allocating a power level and

numerology, and selecting the optimal path for that user. Alternatively, each agent

might be assigned to a specific action for all users. For example, one agent allocates

power, and another allocates numerology while another selects the optimal path for

all users simultaneously.

However, in both cases, the agents must interact with each other to share some infor-

mation. This provided information can be useful and required, or sometimes using this

information might affect the agent in the opposite way expected. For example, consid-

ering a multi-cell scenario, when two separate agents select the same RB from different

sources, the CCI must be calculated. In this case, the communication is required and

necessary. On the other hand, this communication might be unnecessary and harmful

to the learning process. For example, the agents can share their experiences via their

rewards which are obtained by selecting an RB, numerology and source. However,

this information sharing might be confusing for another agent. Firstly, from the user-

source pairing point of view, each user has a different location on the grid; therefore,

the user-source pairing is unique. Secondly, when SSF coefficients are introduced, the

gain of the RBs changes with the smallest changes in the location. Therefore, even
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close users might experience different RB gains due to SSF coefficients. Consequently,

sharing this information might be misleading to other users; the results can confuse

the other agents and result in not finding a relation between location and connected

sources.
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Conclusions & Future Works

This thesis has investigated various aspects of resource allocation and data routing

optimisation in 5G-NR networks, with a particular focus on network slicing and its

implications for the efficient utilisation of network resources. Throughout this thesis,

we have explored a wide range of topics related to the 5G-NR wireless communication

networks. In the second chapter, we conducted a comprehensive literature review that

covered various areas of interest, including but not limited to 5G-NR network slicing,

resource allocation optimisation, bandwidth partitioning, vehicular networks, heuris-

tics, genetic algorithms, and machine learning. This review served as a foundation for

our subsequent research, allowing us to build upon existing knowledge and identify

gaps in the literature that we could address through our research.

In Chapter 3, the downlink RAN resource allocation optimisation framework is pro-

posed for vehicular communications to enhance the network efficiency and reduce the

total transmit power while considering CCI for demand points. A MILP model was

developed to jointly optimise BWP allocation by considering total carrier bandwidth,

routing data through VBS nodes when necessary, hence user association, and RB and

power allocation among DPs by considering their delay and data rate requirements.

VBS nodes increase the flexibility in the model; the DPs can receive their demand from

another source, which is supported by the out-band IAB network. FR1 and FR2 fre-

quency bands are utilised for access and backhaul communications, respectively. The

objection function maximises the number of served users and minimises the weighted

sum of the total transmit power as well as the weighted sum of the CCI, for which the
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optimal distribution of the resources per DP is obtained. The proposed optimisation

approach effectively reduces transmit power and CCI, indicating the benefits of prop-

erly configured numerologies, which could support the implementation of RAN slicing.

Additionally, we present a logarithmic function linearisation method based on piece-

wise linearisation. Overall, the proposed model can significantly enhances network

efficiency, reduces power consumption and CCI, and enables effective implementation

of RAN slicing.

As a future direction, optimisation remains an area of active research. In the context

of this thesis, one potential extension is to optimise in-band IAB networks, where ac-

cess and backhaul links share the same resource elements. Furthermore, currently, we

assume all BSs have the same BWP allocation in our environment, but this approach

may not be practical for larger networks. Therefore, considering INI, an optimisation

framework can be built for the scenario that BSs have different BWP allocations. Our

optimisation framework can easily be extended into these scenarios. Moreover, joint

power allocation and beamforming for mmWave networks optimisation is an open re-

search area. Considering an urban or highway scenario, our optimisation framework

also can be extended into this field. Furthermore, new technologies with the develop-

ing technology will require new requirements. Some applications, such as Augmented

Reality/Virtual Reality (AR/VR), already require high throughput and low latency.

Considering these user requirements, there is a need for a novel resource allocation op-

timisation approach that can effectively provide the specific demands of these emerging

technologies.

Chapter 4 introduces a hybrid optimisation framework that combines heuristic and

meta-heuristic approaches, specifically the genetic algorithm, to optimise the band-

width allocation of multi-numerology BWPs, multi-user RB allocation, and data rout-

ing through out-band IAB nodes. This approach leverages the strengths of both meth-

ods to achieve a more effective and comprehensive optimisation solution. In our study,

we evaluated the performance of NSGA and TRGA algorithms to achieve the opti-

mum solution and observed their impact on the overall system performance. Our

results revealed that while TRGA can improve power efficiency, it comes at a higher

computational cost compared to NSGA. On the other hand, NSGA may be slightly

further from the optimum solution, but it is faster in terms of computational time
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compared to TRGA. In this chapter, we also presented a near-optimum solution for

the allocation of BWPs among the total carrier bandwidth by calculating the aver-

age of all valid outputs. Additionally, we are able to solve NP-hard problems that

were previously unsolvable by MILP optimisation methods. In other words, the pro-

posed hybrid GA approach allowed us to solve NP-hard problems that could not be

solved in our MILP optimisation problem. By leveraging the strengths of both heuris-

tic and meta-heuristic methods, we were able to effectively optimise the bandwidth

of multi-numerology BWPs, multi-user RB allocation, and data routing via out-band

IAB nodes.

As a future work, the effectiveness of the GA is already proven by many papers. We

can implement the GA algorithm into many optimisation problems to achieve near-

optimum results faster or solve NP-hard problems, or both. More realistic outcomes

can be achieved with the increased number of parameters in the optimisation problems;

however, using a MILP optimisation becomes harder due to the curse of dimensionality.

GAs can help to solve such problems in less amount time with a little sacrifice of

optimality. Therefore, all the mentioned optimisation problems can be solved using

heuristic approaches.

Chapter 5 starts with exploring the basics of machine learning; then, it simply shows

that the resource and numerology allocation problem can be solved by reinforcement

learning. First, the power allocation problem is solved by employing a novel reward

function. This reward function can achieve two objectives at once; first, the RL agent

satisfies the data rate requirements of the user to get a positive reward. Second,

the agent does not allocate more than requested to maximise the reward; hence, it

implicitly minimises the transmit power. Then Chapter 5 presents joint power and

numerology allocation for a single BS environment. For the numerology allocation

among bandwidth, pre-allocated BWP for 5 MHz bandwidth and a fixed number of

RBs are employed. The users select the optimum resources in a few steps with the

well-trained agent.

A newly introduced dimension exponentially increases the number of variables and

parameters in any optimisation problem. Introducing the data routing or bandwidth

allocation among BWPs dimension to our problem would have the same effect on our

problem. Therefore, multi-agent RL can be employed when further dimensions are
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introduced. Considering our problem, each individual objective, such as user asso-

ciation, power allocation, and data routing, can be optimised by a different agent.

Alternatively, a user-agent assignment can be employed where each agent is dedicated

to optimising all the objectives for that user. To the best of our knowledge, this multi-

objective problem has not been addressed in the existing literature. As a concluding

remark, real-time heuristics or machine learning algorithms should be developed to ob-

tain real-time results. Moreover, future system states can be predicted using machine

learning for a better resource allocation model.
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