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Abstract

This dissertation is a collection of three independent essays that explore novel econometric ap-
proaches for analyzing high-dimensional economic and financial data. A key commonality among
these essays is the use of a factor structure, which aims to capture the underlying latent factors
that drive the dynamics of the data. Moreover, each essay focuses on a unique aspect of the high-
dimensional factor model, delving into diverse areas such as high-frequency data analysis, network
analysis, and portfolio management in financial markets.

Chapter 1 studies high-frequency cross-sectional intraday stock returns which are contaminated
with microstructure noise and exhibit co-movements. A dual factor model is introduced to capture
the underlying dynamics of efficient prices and microstructure noise. Then a Double Principal
Component Analysis (DPCA) method is proposed for the estimation of common factors for both
efficient prices and microstructure noise.

Chapter 2 shifts the focus to network analysis for high-dimensional time series. Using a high-
dimensional time-varying factor-adjusted vector autoregressive (VAR) model framework, two types
of networks are investigated: a directed Granger causality network and an undirected partial corre-
lation network. To estimate the transition and precision matrices, a penalized local linear method
with a time-varying weighted group LASSO and a time-varying CLIME method is proposed.

Chapter 3 addresses the estimation of large dynamic precision matrices with multiple condi-
tioning variables. To overcome the challenges of high dimensionality and cross-dependence, an
approximate factor structure is introduced. A semiparametric method based on model averaging
marginal regression is employed to approximate the underlying dynamic covariance matrices of the
factors and the idiosyncratic components. The estimate of the dynamic precision matrices for the
original time series is then obtained by utilising the Sherman-Morrison-Woodbury formula, and is
applied in the construction of the minimum variance portfolio.

Throughout each chapter, asymptotic properties of the proposed estimates are established and
validated through extensive Monte Carlo simulations. These methods are further applied to stock

return datasets or a macroeconomic dataset to demonstrate their strong performance.
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Introduction

The exponential growth in data availability has sparked the development of data science, a multi-
disciplinary field that encompasses statistics, computer science, and econometrics. This data-driven
era presents unique challenges in handling complex datasets with intricate structures, a large num-
ber of variables, and diverse sources of noise. To effectively extract meaningful insights and capture
the underlying dynamics of the data, it is essential to employ robust methods that can handle high
dimensionality while accounting for cross-sectional dependence in the data.

The factor model has emerged as a powerful framework for analyzing high-dimensional data.
By assuming that the observed variables can be expressed as linear combinations of a few latent
factors plus an approximation error, the factor model provides a means of dimension reduction and
capturing the essential dynamics of the data. From a machine learning perspective, the factor model
can be viewed as a special case of the encoder-decoder framework in unsupervised learning. It aims
to learn a low-dimensional representation of the observed data by mapping it to a smaller set of
latent factors, which can then be used to reconstruct the original variables. From an econometric
standpoint, the factor model offers more than just dimension reduction. It also enhances the inter-
pretability of the underlying (economic and financial) phenomena, because the latent factors in the
factor model can be viewed as fundamental drivers that explain the common variation or trends
among the observed variables. By uncovering and examining these latent factors, economists and
researchers gain valuable insights into the economic mechanisms that govern the data dynamics.

Owing to the advantages mentioned above, the latent factor model has found widespread ap-
plications in various areas, especially in economics and finance (e.g., Chamberlain and Rothschild,
1983; Stock and Watson, 2002; Giglio et al., 2022). Recognizing the increasing importance of factor
models in high-dimensional data analysis, this PhD dissertation aims to contribute to the existing
literature by introducing novel econometric methods that use factor structures to address specific

challenges encountered in high-dimensional economic and financial data analysis.

e High-frequency high-dimensional time series analysis



The increasing availability of high-frequency transaction data motivates applying factor models to
intraday stock prices. However, this setting raises certain theoretical and computational challenges.
Compared to the discrete-time factor model, new mathematical tools are required to deal with a
continuous-time setting, where long-span asymptotics (also called increasing domain asymptotics)
gives way to infill asymptotics (also called fixed domain asymptotics). Market microstructure is
an additional challenge that must be faced. The specifics of market organisation and market par-
ticipants’ behaviour induce certain short-run patterns in security prices. These patterns, such as
bid-ask bounce and price-discreteness, lead to a deviation from the fundamental values (also known
as efficient prices) of the securities. The security prices are thereby contaminated with market
microstructure noise, which affects the estimation of parameters of interest.

High-dimensional models with microstructure noise have been developed more recently. Wang
and Zou (2010) propose the first noise-robust estimators of the integrated volatility matrix and
establish an asymptotic theory that allows both the sample size and the number of assets to approach
infinity, see also Tao et al. (2011, 2013a,b), and Kim et al. (2016) for related results. However, these
papers assume that the integrated volatility matrix is sparse, which often contradicts our intuition
from low-frequency data analysis. To solve this problem, Pelger (2019) and Dai et al. (2019) develop
a continuous-time factor model with microstructure noise.

Bollerslev et al. (2019) investigate a continuous-time factor model and assume that microstruc-
ture noise can have a factor structure itself. To eliminate the influence of microstructure noise on
estimation, they employ the modulated realised volatility estimator proposed by Christensen et al.
(2010). Notably, their approach avoids explicitly estimating the factors for microstructure noise
and separating them from those corresponding to efficient prices. However, given that the factor
structure for microstructure noise can be of independent interest, Chapter 1 aims to separately
estimate these factors from the observed prices. To the best of our knowledge, this is the first work
to specifically look at common factors for microstructure noise.

Chapter 1 studies high-frequency cross-sectional intraday stock returns which are contaminated
with microstructure noise and exhibit co-movements. A dual factor model is introduced to capture
the underlying dynamics of efficient prices and microstructure noise. Then a Double Principal Com-
ponent Analysis (DPCA) method is proposed for the estimation of common factors for both efficient
prices and microstructure noise. The uniform consistency of these estimators is established as the
number of assets and sampling frequency increase. Moreover, a Monte Carlo exercise shows that
our DPCA method outperforms the PCA-VECM method. Lastly, an empirical analysis of intra-
day returns of S&P 500 Index constituents provides evidence of co-movement of the microstructure

noise, highlighting its distinguishing features from latent systematic risk factors.



e Time-varying network analysis

The approximate factor model (e.g., Chamberlain and Rothschild, 1983) or its time-varying
version (e.g., Suand Wang, 2017) is employed to accommodate the strong cross-sectional dependence
among a large number of time series. These models extend the standard factor model by taking
into account the weak dependence of the idiosyncratic errors. Chapter 2 aims to further study these
dependencies and unveil underlying relationships between variables via network analysis. Motivated
by the stable network time series analysis in Barigozzi and Brownlees (2019), time-varying Vector
autoregression (VAR) is used to construct two dynamic networks of interest: the Granger causality
network and the partial correlation network.

In recent years, there has been increasing interest in extending the finite-dimensional VAR to the
high-dimensional setting. Under appropriate sparsity restrictions on the transition (or autoregressive
coefficient) matrices, various regularised methods have been proposed to estimate high-dimensional
VAR models and identify non-zero entries in the transition matrices (e.g., Basu and Michailidis, 2015;
Han et al., 2015; Kock and Callot, 2015; Davis et al., 2016). Moreover, to capture smooth structural
changes in the underlying data generating process, time-varying VAR models are developed (e.g.,
Ding et al., 2017; Xu et al., 2020; Safikhani and Shojaie, 2022). Chapter 2 reconsider the estimation
problem from a network perspective, combining the kernel smoothing with LASSO regularisation
in a preliminary estimation step and combining the kernel smoothing with weighted-group-LASSO
regularisation in a second step to construct the estimator of the Granger causality network.

Regarding the partial correlation network, the so-called graphical model is commonly used to
visualise the connectedness of a large panel with vertices representing variables in the panel and
the presence of an edge indicating appropriate (conditional) dependence between the variables. In
the past decades, most of the existing literature on statistical estimation and inference of network
data limits attention to the static network (e.g., Yuan and Lin, 2007; Fan et al., 2009; Loh and
Wainwright, 2013; Basu et al., 2015; Zhao et al., 2022), or dynamic network models with independent
data (e.g., Kolar et al., 2010; Zhou et al., 2010; Wang et al., 2021a). Chapter 2, on the other
hand, investigates the dynamic partial correlation network based on the time-varying error precision
matrix, considering the estimation error of both factor analysis and VAR estimation.

In Chapter 2, theoretical properties, including consistency and oracle properties, are derived
under the assumption of sparsity. In the case where the time series are highly cross-sectionally
correlated and the sparsity assumption is likely to be violated, we introduce a factor structure to
account for the cross-sectional dependencies so that the residual component follows a sparse network
structure, for which our methods are valid again. Simulation studies and an empirical application

to a large U.S. macroeconomic dataset demonstrate the good performance of our methods.



e Large precision matrix estimation

The estimation of large covariance matrices or precision matrices is a prominent subject in high-
dimensional statistics. It not only plays a vital role in network analysis but also holds significance
in portfolio management within the field of finance. Existing literature often assumes that the
precision matrix of a high-dimensional random vector satisfies an approximate sparsity condition
similar to that often imposed on large covariance matrices (e.g., Bickel and Levina, 2008), and then
uses various techniques, such as penalised likelihood (Lam and Fan, 2009), graphical Danzig selector
(Yuan, 2010) and constrained ¢;-minimisation for inverse matrix estimation (CLIME) (Cai et al.,
2011), to estimate it. A comprehensive review of recent developments in large precision matrix
estimation can be found in Cai et al. (2016) and Fan et al. (2016¢).

Chapter 3 aims to estimate a large dynamic precision matrix with a latent factor structure,
avoiding both the static and the sparsity assumptions. As in Tang et al. (2020) and Wu et al.
(2017), a sparsity assumption is imposed on the error precision matrix, which leads to a “low-
rank plus sparse” structure for the precision matrix of the time series. To capture the dynamics,
conditioning variables are utilised in the estimation. To address the curse of dimensionality, an easy-
to-implement semiparametric method, known as Model Averaging MArginal Regression (MAMAR),
is used to estimate each entry of the conditional factor/error covariance matrices. Subsequently,
the CLIME method is employed to obtain the estimate of the dynamic error precision matrices and
the Sherman-Morrison-Woodbury formula is utilised to obtain the dynamic precision matrix for the
time series. Under mild assumptions, such as the approximate sparsity assumption of the precision
matrix of the error component, the uniform consistency of the proposed precision matrix estimator
is established. Extensive simulations show the advantage of the low-rank plus sparse structure for
covariance and precision matrices estimation. Furthermore, the developed methodology is applied
to the returns of S&P 500 constituents, to demonstrate its effectiveness in the portfolio selection

problem.

The dissertation is organised as follows. Chapter 1 focuses on high-frequency data analysis,
presenting novel econometric methods to tackle the challenges associated with continuous-time
factor models and market microstructure noise. Chapter 2 delves into network analysis, introducing
methodologies to model time-varying networks to study the dependencies among a large panel of
time series. Finally, Chapter 3 explores precision matrix estimation in high-dimensional settings,
proposing innovative approaches to estimate time-varying precision matrices with a “low-rank plus
sparse” structure. The dissertation concludes with a summary of the findings, contributions, and

potential avenues for future research.



Chapter 1

Estimation of Common Factors for
Microstructure Noise and Efficient Price

in a High-frequency Dual Factor Model

Abstract We develop the Double Principal Component Analysis (DPCA) based on a dual factor
structure for high-frequency intraday returns contaminated with microstructure noise. The dual
factor structure allows a factor structure for microstructure noise in addition to the factor struc-
ture for efficient log-prices. We construct estimators of factors for both efficient log-prices and
microstructure noise as well as their common components, and provide uniform consistency of these
estimators when the number of assets and the sampling frequency go to infinity. In a Monte Carlo
exercise, we compare our DPCA method to a PCA-VECM method. Finally, an empirical analysis of
intraday returns of S&P 500 Index constituents provides evidence of the existence of co-movement

in microstructure noise, and this co-movement is distinct from latent systematic risk factors.

Key Words: Cointegration, Factor model, High-frequency data, Microstructure noise, Non-

stationarity.
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1.1 Introduction

Factor models are widely used in many scientific fields, and in particular in the study of financial
data. Their popularity is partly due to the easiness of their implementation and their effectiveness
in dimension reduction. More and more observable factors have been investigated and reported (see,
e.g., Ross (1976), Sharpe (1994), Fama and French (1993, 2015) and Carhart (1997)) as driving stock
returns. Researchers have also found common components in other attributes of financial assets
such as volatility and liquidity. For example, Chordia et al. (2000) document the commonality in
liquidity, which remains significant after controlling for volatility, volume, and price. The factor
structure is not found in isolation. Indeed, price and other attributes of stocks have been found
to have correlated common factors. Hasbrouck and Seppi (2001) use principal component analysis
to show that common factors exist in order flows and equity returns. In addition, using canonical
correlation analysis, they find that the common factor in returns is highly correlated with the
common factor in order flows. Hallin and Liska (2011) propose a two-step general dynamic factor
method to account for a joint factor structure of sub-panels, which is further developed by Barigozzi
and Hallin (2016) and Barigozzi and Hallin (2017) for extracting the market volatility shocks. They
find that returns and volatilities can be decomposed into four mutually orthogonal components: a
strongly idiosyncratic component, a strongly common component, a weakly common component,
and a weakly idiosyncratic component.

The increasing availability of high-frequency transaction data motivates applying this method-
ology to intraday stock prices. However, this setting raises certain theoretical and computational
challenges. Compared to the discrete-time factor model, new mathematical tools are required to
deal with a continuous-time setting, where long-span asymptotics (also called increasing domain
asymptotics) gives way to infill asymptotics (also called fixed domain asymptotics). For example,
Fan et al. (2016b) and Ait-Sahalia and Xiu (2017) extend Fan et al. (2013)’s Principal Orthogonal
complEment Thresholding (POET) method to high-frequency factor models. Market microstruc-
ture is an additional challenge that must be faced. The specifics of market organisation and market
participants’ behaviour induce certain short-run patterns in security prices. These patterns, such as
bid-ask bounce and price-discreteness, lead to a deviation from the fundamental values (also known
as efficient prices) of the securities. The security prices are thereby contaminated with market
microstructure noise, which affects the estimation of parameters of interest such as volatility. Mar-
ket microstructure models have been used to capture a variety of frictions inherent in the trading
process. Roll (1984) is among the first to propose a dichotomous structure in which the observed
market price is the sum of the efficient price and an exogenous i.i.d. bid-ask spread. After that,

Hasbrouck and Ho (1987), Choi et al. (1988) and Hasbrouck (1993) consider extended models with



1.1 Introduction 7

positive dependence in the bid and ask transactions. More complicated price patterns arising from
microstructure noise, such as asynchronous trading, have been investigated by researchers under
the fundamental dichotomous structure.

High-dimensional models with microstructure noise have been developed more recently. Wang
and Zou (2010) propose the first noise-robust estimators of the integrated volatility matrix and
establish an asymptotic theory that allows both the sample size and the number of assets to approach
infinity, see also Tao et al. (2011, 2013a,b), and Kim et al. (2016) for related results. However,
these papers assume that the integrated volatility matrix is sparse, which often contradicts our
intuition from low-frequency data analysis. To solve this problem, Pelger (2019) and Dai et al.
(2019) develop a continuous-time factor model with microstructure noise. Likewise, Bollerslev et al.
(2019) investigate a continuous-time factor model and assume that microstructure noise can have
a factor structure itself. They use the modulated realised volatility estimator (henceforth MRC)
of Christensen et al. (2010) to eliminate the effect of the microstructure noise on the estimation
without explicitly estimating the factors for the microstructure noise and separating them from
those of the efficient prices. They establish the consistency and bound the rate of convergence of
the estimated integrated covolatility matrix of the efficient price process in the large dimensional
case. Related to this, Pelger (2019) classifies factors in a high-frequency factor model into jump
factors and continuous factors.

We consider the dual factor model of Bollerslev et al. (2019) but we take a different approach
to estimation. Our goal is to identify and separate the factors and common components from both
sources: the efficient price process and the microstructure noise process. Factors for the efficient
prices arise from information about future security cash flows and thereby are long-lasting, whereas
factors for the microstructure noise are transient and due to the nature of trading behaviour; both
are of interest. We develop a methodology that is inspired by Bai and Ng (2004), who propose a
test procedure called Panel Analysis of Non-stationarity in Idiosyncratic and Common Components
(PANIC), which can be used to identify non-stationary factors in discrete time series. We extend the
PANIC approach to our high-frequency dual factor model. Our methodology is in two parts. First,
we estimate the common factors and loadings of both signal and noise components simultaneously
from the observed returns via PCA. The PCA uses the eigen-decomposition of a sample variance-
covariance matrix to identify the common component and the idiosyncratic error. The second step
separates the return factors into efficient price factors and microstructure noise factors. This involves
a second PCA on the cumulative form of the factors found in the first step, following the approach
of Bai and Ng (2004). Intuitively, after cumulation, the efficient price common components are

nonstationary and thus have a larger magnitude than the stationary microstructure noise common
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components, which enables us to separate the two different types of factors. Another way to
obtain separate estimates of the factors is to: (i) first obtain a consistent estimate of the integrated
covolatility matrix of the efficient price using a noise-robust method (such as pre-averaging) and
an estimate of the covariance matrix of the microstructure noise; and (ii) apply PCA separately
to these estimated matrices to obtain estimates of their respective common factors. However, such
an approach may result in a loss of efficiency. By contrast, our approach does not suffer from this
problem. We establish the consistency of our procedures as the number of assets increases and
the number of infill observations for each asset increases. Our asymptotic framework allows for a
rich diversity in the relative size of the efficient price process and the microstructure noise process
and in the relative size of the common component of the microstructure noise and the idiosyncratic
components of the noise. This is important because a number of authors have documented that in
frequently traded assets, the microstructure noise component can be quite small. Also, the Epps
effect, whereby observed cross-asset correlations shrink with sampling frequency, can be captured in
our framework when the idiosyncratic component of the noise is larger element by element than the
common component. Our model allows the so-called “weak factors”, c.f., Briggs and MacCallum
(2003); Onatski (2010) and Freyaldenhoven (2022). We provide a full analysis of the convergence
rates of all our estimators, which are affected by the magnitudes of the microstructure noise. We
apply our method to the intraday returns of S&P 500 Index constituents. The empirical analysis
provides evidence of co-movement of the microstructure noise.

The rest of this chapter is organised as follows. Section 1.2 specifies the model and its as-
sumptions. Section 1.3 proposes the high-frequency PANIC estimation procedure and presents the
asymptotic properties for the estimators. Section 1.4 provides finite-sample simulation results and
Section 1.5 demonstrates the applicability of our proposed method through an empirical study.
Section 1.6 concludes. The proofs of our main results are relegated to Appendix A.

Throughout this chapter, we use || - ||2 to denote the Euclidean norm of a vector. For a real
symmetric matrix S, we denote its k-th largest eigenvalue and trace by ux(S) and tr(S), respectively.
For any mxn matrix M = (my;), let || M[|o, [|M]]1, [|[M]|oo, ||M||r and ||M||max denote the spectral
norm, the /; norm, the [, norm, the Frobenius norm, and the max norm of M, respectively.
Specifically, [Mlo = +/ar(MM), [Mll; = max; ¥, [migl. [Ml]so = max; 5 mg|, [M]lp =
\/’W = E” mgj and ||M||max = max; j |m;j;|. Let 1, denote an n-dimensional vector of
1’s. Also let a vV b and a A b denote max{a, b} and min{a, b}, and x4 and z_ denote max{0,z} and

min{0, 2}, respectively.
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1.2 Model setup and assumptions

1.2.1 Dual factor structure

Let X;; denote the observed log transaction price of stock ¢ at time ¢, for i = 1,...,d. We allow d to
diverge with n, although we have suppressed the subscript n for d. For the sake of simplicity, we
assume that price observations of all stocks are synchronously collected, and that price observations
for each stock are equidistantly collected in the fixed time interval [0,7]. Thus we do not consider
non-synchronous trading explicitly. Without loss of generality, we let "= 1. Let n be the number
of observations and A = 1/n. Then, the prices are observed at the time points t = 0, A, 2A, ..., nA.

We assume that the observed log transaction price, X;;, can be decomposed into the unobserved

efficient log-price X7, plus a noise component Z;, i.e.,

X=X+ Zy or Xi=X/+Z, (1.2.1)

where X} = (X{,,... 7X:i‘t)T and Z; = (Z1,...,Z4)". For each component of X;;, we introduce
a factor structure (see Assumptions 1.A and 1.B below) and therefore, name the model as a dual

factor model.
Assumption 1.A. (Factor Structure for Efficient Log-price)

(i) The efficient log-price X; follows a factor model of the form,

dX; = ApdF, +dU,

dF, = ordBf,

dUt = O'UtdBly,

where Ap = (Apik)i<i<d,1<k<kip denotes the d x K matric of factor loadings, K is the number
of factors, Fi = (Fu,...,Fk.t)" denotes latent factors, Uy = (Uyt,...,Uq)" is the idiosyncratic
component, o is a Kp X Kg cad-lag spot volatility matriz for factors, oy is a d X d cad-lag spot
volatility matrix for idiosyncratic errors, and Bf' = (B}, ... ,Bf;Ft)T and BY = (BY},...,BY)" are
independent Brownian motions.

(ii) There exists a locally bounded process Q¢ such that ||0'Fto';“thax and Ha-Uto-[T]thax are bounded
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by Q; for all paths. !

We adopt the same high-frequency factor structure in Bollerslev et al. (2019). The existence
of uniform bounds on all volatility processes is natural in a continuous-time factor model (see, for
example, ATt-Sahalia and Xiu (2017)), and is necessary to the development of the large dimensional
asymptotic results. Locally bounded processes are more general than uniformly bounded processes.
For example, Q; = Q)g, where )y follows a normal distribution, is not a uniformly bounded process
but is a locally bounded process.

Remark: Our model inherits several limitations from Bollerslev et al. (2019)’s factor structure,
which does not allow for drift terms or jump terms in the diffusion model. We refer to Dai et al.
(2019) and Ait-Sahalia and Xiu (2019) for high-frequency factor models that both common factors
and idiosyncratic errors follow (continuous or general) It6 semimartingale processes. Moreover, our
model does not allow for time-varying loadings or an infinite number of factors. For these extensions,
we refer to Su and Wang (2017); Fan et al. (2011, 2016b); Kong (2017, 2018); Ait-Sahalia et al.
(2020) and Kong et al. (2023), respectively.

Assumption 1.B. (Factor Structure for Market Microstructure Noise)
The microstructure noise Z; follows a factor model whose magnitude may depend on the sampling
frequency, that is

Z, = A¢DgGi + DyV,, (1.2.2)

where Ag = (Ag.ik)1<i<d,1<k<Kk, denotes the d x Kg matriz of factor loadings with Kq being the
number of factors for the microstructure noise, Gy = (Git,...,Gkgt)' denotes the latent factors,
Vi = (Vit, ..., Vr)" is the vector of idiosyncratic components, and Dg and Dy are two diagonal
matrices satisfying p1(Dg) = O(n6), u1(Dg') = O(n~7&) and 1 (Dy) = O(n™V), where 75, 72,
and Ty, are constants, whose values may be positive, negative or zero.

In a stock market, microstructure noise can be much larger in magnitude than efficient prices
when sampling frequency is high. However, the observed prices are close to the efficient prices in
a long horizon due to the efficiency of the market. In other words, efficient returns accumulate

over time, but microstructure noise does not. Therefore, when the sampling frequency is low, the

LA process {Q¢}te0,1) is locally bounded if there exists a sequence of stopping times {7}, with 0 < 75 < 7.4 for
s=1,2,..., and 7s — 00, a.5., as s — 00, such that the stopped process 1;; 0} Qtar, is a uniformly bounded process
for each s, where 1.} is an indicator function.
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efficient prices will dominate microstructure noise in magnitude, while the reverse may happen when
sampling frequency is high. The introduction of Dg and Dy in (1.2.2) allows our model to capture
this phenomenon (see also Kalnina and Linton (2008) for a model where the microstructure noise
can be large or small, depending on the value of a magnitude parameter). With such a setup,
the magnitude of Ag, G¢ and V; is independent of n. A similar treatment can be found in Kim
et al. (2016). Our model is an extension of the model of Bollerslev et al. (2019), who only consider
D¢ = Ik, and Dy = I, where Ix denotes the K x K identity matrix. However, they use a similar
setting when generating simulation data (also see Section 1.4) without discussing the asymptotic
impacts of Dg and Dy.

To introduce the first-differenced form of the dual factor model, we use little letters to denote
the first-order differences of random variables. Specifically, define the return as ¢y = X; — X;_a,
and the efficient return (or frictionless return) as x; = fti AdX: = Xi — X[ 5. Denote f; =
ftt_A o'fsdBf =F—-F, A g=Gt—Gypn, 2t =2y — Zyp A, up = ftt_A O'Usng =U; — U,
and v, = V; — V,_a. Then by (1.2.1)—(1.2.2), we can write the dual factor model as

ry = ZB: + Zt,
xf = Apfi+uy, (1.2.3)
Zt = AGDGQt + DV’Ut.

Combining the factor structures for ; and z;, we have

zy = Apfi +u + AgDgg: + Dy,

= AHDHht + wy, (1.2.4)

where h; = (f/,n"2¢))", Ag = (Ar,Ag), w; = u; + Dyv; and Dy = diag(Ig,,n"/?Dg).
This can be seen as a factor structure for x; with hy = ( ftT,nfl/ 2g;)" being the factors and
Ay = (Ap,Ag) being the factor loadings. Note that g, is divided by n!/? in h; so that both
components of h; are of the same magnitude. Consequently, the magnitude matrix D¢ is multiplied
by n'/2 in Dy.

Define

TG - (TG)-i-a IE,‘ = (IG)—: and 77_{; = (TV)‘F’

with
Ta=1/24+7%, 1a=1/2+471%, and 7y =1/2+ 7.
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Since the factors for efficient returns, f;, are of order n~/2 and the largest component of D¢ggy is of
order n"¢, a positive value of 7‘5 indicates that the largest microstructure noise factor dominates the
efficient return factors. On the other hand, the smallest component of Dggy is of order n”¢, and a
negative value of 7, indicates that the efficient return factors dominate the smallest microstructure
noise factor. Similarly, a positive value of ﬂJ} indicates that the largest idiosyncratic microstructure
noise dominates the idiosyncratic efficient returns.

Remark: (Identification) First of all, a gap between the eigenvalues of the covariance matrices of
ApgDpyh; and wy (see Assumption 5*) ensures the identifiability of the factor space spanned by h;.
Secondly, as in conventional factor models, the factors h; and factor loadings Ay are not separately
identifiable. For identification up to a rotation matrix, a normalisation condition is imposed on
A (see Assumption 4). Lastly, for the identifiability of the factor spaces spanned by f; and g, it
requires another eigenvalue gap between the covariance matrices of the two types of factors but in
the cumulated form. This is implicit in Assumptions 1 and 2, as the types of processes for f; and
g: are different in nature, especially when they are cumulated.

Denote the number of independent factors in the factor model (1.2.4) as K. If f; and g are
collinear, K will be less than K + K. In such a case, the efficient prices and the microstructure
noise are not separable and the dichotomous structure fails. Thus for identification purposes, we

exclude this situation and make the following assumptions.

Assumption 1.C. (Independence between efficient prices and microstructure noise) The discrete

time series Gy and Vi are independent of the continuous-time processes F; and Uy.

Remark: It is prevalent to assume independence between price components due to fundamental
security value and noise attributable to market rules and trading mechanisms. The main reason for
the independence assumption is modelling simplicity, so that the two components can be identified
and interpreted. Recently, there has been some research that allows correlation between the efficient
price and the microstructure noise, such as Kunitomo and Kurisu (2021). But we will not pursue

this in the current chapter.

Assumption 1.D. (Factor loadings) The factor loadings matriz Ap satisfies

IAfllmax = O(1),  and  [[AyAn/d =Tk, = o(1),

where I, denotes the Ky x Ky identify matriz.
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As discussed in Ait-Sahalia and Xiu (2017), the condition %' % = I, , where 4 = (hy,..., h,)",
is not appropriate in the high-frequency factor model setting because the probability limit of 44
involves the volatility process or;, which is path-dependent rather than deterministic. Thus, we
adopt the normalisation condition on Az in Assumption 1.D. This identification condition looks
like a classical strong factor assumption. However, since we have introduced the magnitude matrix
Dy, our model allows for ‘weak factors’ in the sense that the divergence of MKH(D}{A}IAHD i)
can be at a slower rate than d (this is different from the usual weak factors which are defined as
being non-pervasive across cross-sections, see Onatski (2010); Fan and Liao (2022); Anatolyev and
Mikusheva (2022); Giglio et al. (2021); Uematsu and Yamagata (2023b,a); Freyaldenhoven (2022)).
Moreover, the theory can be extended to allow more general Dy, especially for the first diagonal
block corresponding to f;. But this can introduce an identification issue that requires setting one of
the factors to have a unit magnitude. For simplicity, we do not introduce a non-identity magnitude

matrix for f;.

For easy reference, we summarise the notation used for variables and factors in Table 1.1.
We use different fonts to distinguish between matrices, vectors and scalars. For example, & =
(XA, .. ,XnA)T is an n x d matrix of observed prices, X;A is its s-th row, and X; sa is the (s,17)-

entry of the matrix 2. Following the same rule, other variables are defined analogously.

Table 1.1: Notations for variables/factors in the dual factor model

Variables Cumulation Form First-difference Form
Matrix Row Element | Matrix Row Element
-wise  -wise -wise -wise  -wise -wise
Observed price VA X Xt x Ty Tit
Efficient price (EP) VA X; X} x* x; x}
Microstructure noise (MN) Z Z, Z; % 2 Zit
Factors for EP F F; F; Y4 I fit
Factors for MN g G, Gt g gt gjt
Total factors H H; H; 7 hy hji
Idiosyncratic errors for EP U U, U; 7 Uy Ut
Idiosyncratic errors for MN v Vi V; 7 v; Vit
Total idiosyncratic errors v/ W, W; wu wy Wit

! The first dimension of the matrices in the table is set as time, while the second dimension is set as
a stock or a factor. We havet = A,---  nA, 1 <i<dand 1< j < K, where K = Kr, Kg, or Ky,
depending on the circumstance. Note that in the subscript of the element-wise notation, we write the
column index first.

2 Although when ¢t = 0, X, is observable, t starts from A in the matrix-wise notation for both
cumulation form and first-difference form, for the sake of consistency.
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1.2.2 Covariance structure

Denote the integrated covolatility matrices of f; and u; as X p and Xy, respectively. That is
Y= fol O'FtO'};—vtdt and Xy = fol o-UtalTjtdt. Then the factor structure for the efficient prices leads
to the following identity,

Y = ApXpAL 4+ 3y, (1.2.5)

where 3.+ is the integrated covolatility matrix of ;. For the microstructure noise, we will assume

that its components G; and V; are stationary. So its covariance matrix has the following identity,
Y. = A¢DgE,DeAg + Dy 2, Dy, (1.2.6)

where 3, = Var(z;), ¥, = Var(g;), and X, = Var(v;). Hence, for the integrated covolatility matrix

of observed prices, we combine (1.2.5) and (1.2.6) to obtain
Y, = AyDpX,DyAy + X, (1.2.7)

where
Y = Y + 03,

Eh = diag(ZF, Eg),
3y =Xy +nDyX,Dy.

The matrix AgDg3,D HA}{ has Ky positive eigenvalues, which follows from the positive definite-
ness of Xp and the full-column-rankness of Az under Assumption 1.D. The reason we multiply 3,
by n is to be consistent with its sample estimates. Note that S, =n! > 24z, is an approxima-
tion of . while X, = S (x7)(x;)" is an approximation of 3.

In order to identify the factor structure, we make some sparsity assumptions on the idiosyncratic

volatility matrices, as in Fan et al. (2013) and Ait-Sahalia and Xiu (2017).

Assumption 1.E*. (Sparsity of idiosyncratic integrated covolatility matrices) There exist my 4
and my, 4, which are bounded away from zero and may diverge as d goes to infinity, such that the

integrated covolatility matrices of the idiosyncratic components satisfy

HEUH1 = Op(mud), szul = O(mv,d), mw,nd/(anIE‘) — 0 with My,nd = MU,d + TLZ‘Fvayd.
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The sparsity conditions are more general than the bounded eigenvalue condition for the idiosyn-
cratic volatility matrix in approximate factor models, c.f., Chamberlain and Rothschild (1983), as
1Zvllo < 1Zulh, [Zvllo < ||20]l1, and my ¢ and m,, 4 may diverge as d goes to infinity. In addition,
it is worth pointing out that the condition my, nq/(dn?*c) — 0 is sufficient for the identification of
the factors. Specifically, under the condition m., ,a/(dn*c) — 0, the smallest positive eigenvalue of
AyDp¥, Dy A} has a lower bound of order dn?Tc¢ (see Lemma A.1.1), which is larger than Moy, nds
the order of the largest eigenvalue of 3,,. In order to obtain consistent estimates, we further require

M .na/(d/?n*7c) — 0. This leads to the following stronger version of Assumption 1.E*.

Assumption 1.E. (Sparsity of idiosyncratic integrated covolatility matrices) The integrated co-

volatility matrices of the idiosyncratic components satisfy

IZulli = Op(mua), [|Zulli = O(mya), Muwna/(dV/*n*6) = 0 with My ng = myq + n*Vmy q.

Assumption 1.E is a stronger version of Assumption 1.E*. That estimation of an approximate
factor model requires more strict sparsity conditions than identification is also observed in Ait-
Sahalia and Xiu (2017).

We also make the following assumption on the stationarity of the microstructure noise compo-

nents.

Assumption 1.F. (Stationary and sub- Weibull microstructure noise)

(i) The series {Gy, V;} is strictly stationary. In addition, the eigenvalues of g and Xy are
bounded away from zero, and E[Gj;] = E[Vy] = E[Gj4Vie] =0 for all1 <i < d, 1 < j < Kg and
t=0,A,...,nA.

(ii) There exist positive constants Cp > 0 and v1 > 0 such that the strong mizing sequence o(-) of
the series {Gy, Vi} satisfies a(sA) < Cyp exp(—s™).

(iii) There exist by > 0, v > 0, with 7{1 + 3751 > 1, such that for all ¢ > 0, we have

: _ 2
| Dnax P(|Gjt| > ¢) < exp(l — (¢/b1)"?) (1.2.8)
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and

: _ 72
1réllaSXdP (|Vie] > ¢) < exp(l — (¢/b1)7?), (1.2.9)

fort =0,A,...,nA.

(iv) There exist bo > 0, 3 > 0, with 'yfl + 3751 > 1, such that for all ¢ > 0, we have

(max P (47X Vi > ) < exp(l— (e/b)), (1.2.10)

fort=0,A,...,nA, where Ag,. j is the j-th column of Ap;
(v) Let 1)y = 1/v1 +3/(72V 3). Then, (logd)?7~1 = o(n).

Assumptions 1.F(i) and (ii) are similar to Assumption 3.2(i) and Assumption 3.3 in Fan et al.
(2013). The strong mixing condition is more general than Assumptions 1 and 3 in Barigozzi et al.
(2021) in which the common component and the idiosyncratic component of the microstructure noise
are both assumed to be linear processes. The series Gy and V; can be serially correlated, which
is more general than the assumption in Kim et al. (2016). Moreover, V; can be cross-sectionally
dependent, in which case, (1.2.2) gives an approximate factor model for the microstructure noise.
More general assumptions can be found in Bai and Ng (2002), which permits weakly correlated
idiosyncratic errors. Assumption 1.F(iii) requires exponential-type tails for the distributions of
Gy and V4, which allows us to apply the large deviation theory (see Lemma A.2.2) to facilitate our
proofs. It allows for sub-Gaussian tails, sub-exponential tails and even heavier tails when 9, v3 < 1,
and is commonly used in estimation of large-dimensional volatility matrices, c.f., Fan et al. (2013)
and Tao et al. (2013b). With lengthier proofs of the asymptotic results, this condition can be
weakened to a finite moment condition as in Bai and Ng (2002). However, the convergence rates for
the estimators would be slower (see Lemma D.2 of Li et al. (2023) for an example). On the other
hand, if the microstructure noise has a heavy tail that violates Assumption 1.F(iii), then robust
estimation can be used to mitigate the influence of heavy tails (see, for example, Fan and Kim
(2018)).

Assumption 1.F(iv) is an additional exponential tail condition, which guarantees that

(nd) ™Y ApviaviaAn —d ' AES, Ay
s=1

= Op((logd/n)'/?),

max

see Lemma A.2.2(iv). Like Assumption 1.F(iii), it can also be weakened to a finite moment condition
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(see Assumption F.3 of Bai (2003) and Assumption 3.4(iii) of Fan et al. (2013))

E[(d™Y2 AL v))Y < C 1.2.11
1;?2;((11 [( ’ H,~,]'Ut’) ] ) ( )
for some positive constant C. Assumption 1.F(v) presents a trade-off between the mixing and tail

conditions and the dimension d.

1.3 Estimation procedure and asymptotic results

In this section, we develop a two-step estimation procedure for the common factors, # and &, of
the dual factor model. The estimation procedure is based on two PCA procedures and so we call
it Double PCA or DPCA. The asymptotic results are presented step by step, so as to provide a
better understanding of what the intermediate estimators estimate. In the first step, the factors
and factor loadings for the combined factor model (1.2.4) in the first-difference form are estimated.
In the second step, we cumulate the normalised factors and separate the efficient price factors and
the microstructure noise factors. For the time being, we assume that the number of factors K and
K are known, and Ky = Kp + Kg. We will discuss how to determine them in Section 1.4.1.

We also require the following assumption, which restricts the relation between n and d.

Assumption 1.G. (Relation between n and d) As n — oo,
(i)

n1+418—4(7"gv%‘f)/(10g d) — 00,

and
(i)
n1+415_4(%§\/%‘j)mgujnd/(d2 logd) — 0.
When 7¢ = 74 = 7y = 0 and my, ,¢ = O(1), Assumption 1.G degenerates to n/(logd) — oo

and n/(d?logd) — 0, which are similar to the corresponding condition in Theorem 3.1 of Fan et al.

(2013) and assumption Al of Tao et al. (2013b).
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1.3.1 First step: PCA estimation in first-difference form

The first step in our estimation procedure is to apply PCA to the first-difference form of the dual
factor model to extract estimates of all the factors and factor loadings (for both the efficient price
and the microstructure noise).

There are two ways to implement PCA to obtain estimates of the factors and factor loadings.

If we normalise the factor loadings, the PCA estimator solves the following optimisation problem,

min ||z — AAY|F,
At " (1.3.1)
s.t. A}{AH/d: IKH-

Computationally, we conduct an eigen-decomposition of the d x d matrix #' 2, and obtain A H =
~ —~ T
()\Hl, cees )\Hd) , which is the d x K matrix consisting of the K eigenvectors (multiplied by \/ﬁ)

corresponding to the Ky largest eigenvalues of ' 2. We then obtain
~ ~ ~ ~ T
N (hA,...,hnA> . (1.3.2)

The resulting A g and % are the estimators of A g and Dy /7, respectively, up to a rotation.
Alternatively, if we normalise the factors, the PCA estimator solves the following optimisation

problem,

i — AAT
Jin, |z allF,

st. A A=k,

Computationally, we conduct PCA* (we add a star to distinguish it from the PCA in (1.3.1),
which is based on the normalisation of the factor loadings) on the n x n matrix zz', and get
~ ~ ~ T

A= ( Ao by A) denoting the n x K matrix consisting of the K eigenvectors corresponding

to the Ky largest eigenvalues of 22 . Then we obtain

~

~ ~ ~ T
’}{:xTﬁ*:( s, ;,d) . (1.3.3)

The resulting K}I and /* are the estimators of AyDy (A7 4)Y/2 and %(%"%)~1/2, respectively, up
to a rotation.

The two restrictions in the optimisation problems should be distinguished from the identification
conditions in Assumption 1.D. The restrictions are imposed on the estimators whereas the identi-

fication conditions are imposed on the true parameters. Moreover, it is easy to show that both %
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and 4* are eigenvectors of zz", and thereby, they span the same space. Specifically, we can show

the following relation

A =A(A A2 and Ny =Ag(% #)V2 (1.3.4)
In this sense, the two ways of PCA are equivalent. However, when d is much larger than n, it is
computationally more convenient to conduct PCA on the n x n matrix z«', and vice versa. Then
the relation in (1.3.4) can be used to get the desired form of estimates. Bai and Li (2012) point out
that the analysis of one PCA representation will carry over to the other by switching the roles of n
and d and the role of the factor loadings and factors, and thus it is sufficient to carefully examine
the asymptotic properties of one representation.

In the second step of our estimation procedure, we will separate the efficient price factors and the
microstructure noise factors. The final estimators of f; and g; based on the above two ways of PCA
will not be equivalent. This is because the first-step factor estimators will be fed into the second step
in cumulative form for another PCA, and whether the factors from the first step are normalised will
affect the final results. In Section 1.4, we will compare the small-sample performance of estimators
based on the two different ways of PCA in the first step. We will see that PCA* always outperforms
PCA. Hence, we will use PCA* for our first step and derive the asymptotic theory based on it.

The following theorem shows the uniform rate of convergence for K}I and /* of the dual factor

model. For ease of exposition, we denote

12 n’v +7_'C4;' VTy, Mo nd
ang = (logd) pYE + = (1.3.5)
1/2 nTv +7‘&L VT Moy nd
ang = (logd) s+ R (1.3.6)
bpg = (log(nd))/ 2" . =276 . g, 5 + (logn)V/O3AD . g=1/2, (1.3.7)
and
bpa = (log(nd))/ 02/ p=2Tq .G (1.3.8)
It is easy to check that a,q < Gpq and byg < gnd.
Theorem 1.3.1. Suppose that Assumptions 1.A-1.G are satisfied. We have
(1)
HK;I —ApDy(A AR =0p (n*I& : and) : (1.3.9)
max
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where the rotation matrix R* is defined by

R* = dV2(5" )" V2AT Ay DL/
H

z,Kp>

in which ]/jszH —dA A = K‘}}K}{ is a Kg X Ky diagonal matrix with the diagonal elements being
the first Kg largest eigenvalues of ' « arranged in a descending order;

(i)

HfZ*T — (R)7N(ATA)AT|| = Op (n* o .and) , (1.3.10)
and
H;%*’ — (R UATA) AT = 0p (07 b ) (1.3.11)
iii) A*A% = AN}, an
fiii) A+ A5 = AAY and
HfZ*K;} —aDuAY| =0 (n*”ﬂﬁ : bnd) : (1.3.12)
(iv) R* is an asymptotically orthogonal matriz, that is
”R*TR* - IKH HO = OP(n_2Ia ) and)- (1313)

Part (i) of this theorem gives the uniform convergence rate of our factor loadings estimator.
Given the definition of a,q in (1.3.5), this convergence rate is close to the classic element-wise
convergence rate, n~ /2 + d~1, of factor loadings estimators (see Theorem 2 in Bai and Ng (2002)
for low-frequency factor models and Lemma K.7 in the Appendix of Pelger (2019) for high-frequency
factor models). When 7¢ = 7, = 0 > 7y, the convergence rate in (i) is (log d)1/2n_1/2 + mw,ndd_l,
which is faster than the convergence rate, (log d)l/ 212 4 mw,nddfl/ 2 in Theorem 5 of Ait-Sahalia
and Xiu (2017).

Part (ii) of Theorem 1.3.1 shows that the estimator A converges to the normalised factors
(#7%)7Y24" up to an asymptotically orthogonal matrix. Unlike Ait-Sahalia and Xiu (2017), in
which a uniform convergence rate of the factor estimator is given for both the max norm and the

spectral norm, we provide separate convergence rates under the two norms. When 7¢ = 74 =
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0 > 7y, the spectral-norm convergence rate is (log d)1/2n*1/2 + mw7ndd*1/2, which is the same as
that in Theorem 5 of Ait-Sahalia and Xiu (2017). This means that with the introduction of a
factor structure for microstructure noise which is of the same magnitude as the factor structure for
efficient returns, there is no loss in the convergence rates of factor estimators. Furthermore, when
Ta = T = 0 > Ty, the uniform convergence rate in (1.3.12) is close to the element-wise convergence
rate, n~' 4+ d~1, of the first-differenced factor estimator in high-frequency factor models, provided
by Lemma L.4 in the Appendix of Pelger (2019).

The introduction of the magnitude matrices provides insight into how a larger noise-to-signal
ratio can worsen the estimation. We can see from Theorem 1.3.1 (and Theorems 1.3.3 and 1.3.5
below) that the convergence rates of the estimators are affected by the magnitudes of both D¢ and
Dy. We exemplify this by looking at the uniform convergence rates of the estimators of common

components in (1.3.12) under the following three cases with v9 =3 > 1 and my g = m, g = O(1).

e (i) When 7¢g =74 = 7v =0 (i.e., 7o = 7 = Ty, = —0.5), the efficient returns, the microstruc-
ture noise common component, and the microstructure idiosyncratic error are of the same mag-

nitude. In this case, the uniform convergence rate in (1.3.12) is log(nd)-n '+ (log n)- (nd) /2.

o (ii) When 7¢ = 74 = 7v = —0.1 (i.e., 7% = 1 = Ty, = —0.6), the microstructure noise
common component and idiosyncratic error are of a smaller magnitude than efficient returns,
and the convergence rate in (1.3.12) becomes log(nd) -n "8 4 (logn) - (nd)~'/2, which is slower
than the convergence rate in case (i). This may be because the signals of the microstructure
noise common component now become weaker than the efficient return idiosyncratic errors,

making it more difficult to estimate.

e (iii) When 7¢ = 74 = 7v = 0.1 (i.e., 7& = 7¢% = Ty = —0.4), the microstructure noise common
component and idiosyncratic error are of a larger magnitude than efficient returns, and the

convergence rate becomes even slower at (log(nd)) - (%7 +n°2d=1) 4+ n®1(logn) - (nd)~ /2.

We will further compare the performance of our proposed method for cases (ii) and (iii) in the

simulation study.

1.3.2 Second step: PCA estimation in cumulative form

Denote 8 = (OxyxKp» IKG)T and B8, = (Ik,, OKFxKG)T, where O, x i, denotes a K x Ky matrix
of zeros. Then g = n'/2%43 is the matrix of true factors for the first difference of microstructure
noise, and £ = %3 is the matrix of true factors for efficient returns. However, by Theorem 3.1, the

estimated factors, ﬁA*, from the first step are consistent only up to a rotation. In other words, each
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column of 4* may converge to a linear combination of both factors for efficient returns and factors
for microstructure noise. Hence, instead of applying 3 and B, directly on %* to obtain estimates
of g and /£, we need to find proper rotations of 3 and 3, that achieve this goal. This will be the
aim of the second step.

There are different ways to estimate such rotations of 3 and B,. For example, Barigozzi
et al. (2021) use Johansen (1995)’s reduced rank estimation in a dynamic factor model to esti-
mate the cointegration coefficients of non-stationary factors (also see Section 1.4.2). However, their
method requires the specification of a finite-order vector autoregression (or a vector error correction
model) prior to estimation, which is not reasonable in our high-frequency setting. To avoid the
(mis)specification issue, we will use a second-step PCA on cumulated factors to estimate 3 and 3 .
This is a high-frequency analogue of Bai and Ng (2004)’s PANIC and is in the same spirit as the
methods of Stock and Watson (1988); Harris (1997); Pena and Poncela (2006) and Zhang et al.
(2019) for identifying nonstationary factors or cointegration by eigenanalysis in the low-frequency
setting. The intuition for why the second-step PCA can separate the factors for efficient prices and
the factors for microstructure noise is as follows. In the first step we estimate h; = (f/, n=1/ 2g)",

whose components are of the same magnitude. Upon cumulation of h;, we obtain

S sA T
Hgn = Z hsin = ((/ opndBf)T, n2(Gsa — GO)T> , l<s<n.
0

s1=1

As {G:} is assumed to be a stationary time series, the second component of H;a is dominated by
the first in magnitude, which would enable their separation. However, as the factors from the first-
step PCA are consistent only up to a rotation, a second PCA on the cumulated factors is needed.
The leading eigenvalues in the second PCA will correspond to the efficient price factors, whereas
the remaining eigenvalues will correspond to the microstructure noise factors. This separates out
the efficient price factors and the microstructure noise factors.

— ERR —
For 1 < s < n,let H}, = 21 h’;lA be an estimator of H,a. Define the demeaned H,

S1=

—~ —~ — — no_
as H}{ = H;y — H*, where H* = nt Y A~ In the matrix form, this can be written as
s=1
T

e = FH* —%, with Z*¢ = (f—I\ZC,...,A;CA)T, X = (f—I\Z,...,f-I\*A)T, and 7 — 1n§ . Define

n

the Ky x Ky matrix

~ T
SHH:n 1%*6 F*e.

Let B\ | be the matrix of eigenvectors associated with the largest K eigenvalues of §HH and let

B be the matrix of eigenvectors associated with the rest of the K eigenvalues. Then, ElAf is an
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estimator of ,Blht = fi, and B\TIALZ‘ is an estimator of B h; = n~Y2g;.

Lemma 1.3.2. Under the assumptions of Theorem 1.5.1, BJ_ and ,@ are consistent in the sense

that:
B — ETﬁQﬁ = Op((logn)n=26 - byy) (1.3.14)
and
BL—E7'8.Qp, = Op((logn)n 76 - byy), (1.3.15)
where

Qs =[B'EE'B"'B'ER.  Qp, =[BL(E)TETBLTIBL(E) B, and
- S n1-1/2
E=d2A AD, 2 = (A" #)Y*R".
The lemma shows that [/3\ estimates a basis for the space spanned by Z'3. Using Lemma 1.3.2
and Theorem 1.3.1, we can prove the following theorem, which gives the convergence rate of the

estimators of the microstructure noise factors, the efficient price factors and their factor loadings.

To this end, we define

P =i, #=AB Ab=AuBl, Ay=Ayd F =B, wd T =FB

Theorem 1.3.3. Suppose that Assumptions 1.A-1.G are satisfied. We have
(1)

|7+~ £8LE) By = 0r ((ogn)n = bua) (1.3.16)

and

|7 - £6LE) 8.

=0p ((log n)Q/(WM)nfl/QHJ*IE; -bnd> ; (1.3.17)

max

(i)

Hﬁ* — nil/ngﬁuo =0Op ((logn)nfzgv‘ ~gnd> (1.3.18)
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and

Py

Op ((log n)2/(72“)n_1/2+%‘j_£5 . bnd) ; (1.3.19)

max

(iii)

HIAX} —ArQg,

—0p (n—QzE; : and) : (1.3.20)

max

(iv)

HK*G _ nl/zAng,BTEE‘

= Op <n—215 : and) : (1.3.21)

max

where Qg, Qg, and E are defined in Lemma 1.3.2.

This theorem shows that ,? * and g* are estimators of the factors for the first-differenced efficient
prices and the microstructure noise with rotations ﬁl(ET)_la 1 and Qg, respectively, and that K}
and K*G are estimators of the factor loadings for the efficient prices and the microstructure noise

with rotations Qg, and B’ Eﬁ, respectively.

When we estimate the first-differenced common components of the microstructure noise and the
efficient prices (i.e., gATG and /£ A}), the rotation matrices cancel out. Thus, we have the following

corollary.

Corollary 1.3.4. Suppose that Assumptions 1.A—1.G are satisfied. We have
(1)

| 787 - £A%

=0Op ((log n)z/(w/\l)n_l/ﬂf‘j_za . bnd> ; (1.3.22)

max

(i)

o784 - omo)

- Op ((log n)Q/(’Yz/\l)n—l/Z-&-’F‘J;—I—?G—IE; . bnd) ) (1323)

max

In the following theorem, we provide the uniform convergence rates for the cumulated factors

and common components.

Theorem 1.3.5. Suppose that Assumptions 1.A—1.G are satisfied. Then,

(i) for factors, we have

|7 — (7 — 1.1 E)

= Op (n*IE: : bnd> , (1.3.24)

max
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H‘g* —n" V2% - 1nGB)Qg‘ = Op ((log n)*n"Ta . bnd> , (1.3.25)
and
|~ (7 - L.E)BLE) AL = 0p ((ogn)*n 6 ) (1.3.26)
(ii) for common components, we have
H%\*K;} (7 - lan)DHA}{‘ = Op <n—15+f$ : bnd) , (1.3.27)
H‘?*K*T (g 1nG5)DGAT0) — Op ((log n)n Tt . bnd> , (1.3.28)
and
Hg%fo —(F - LEF)AL|  =0p <(log n)*n T . bnd> , (1.3.29)

where Qg, Qg, and E are defined in Lemma 1.3.2.

When 7¢ = 74 = 0 > 7y, 72 = 73 > 1, and my, pg = O(1), the uniform convergence rate of
* in Theorem 1.3.5(i) becomes (log(nd))(n='/2 + d='/2). In comparison, Pelger (2019) obtains
an element-wise convergence rate of n~1/2 4 d=1/2 for the cumulated factor estimator (see Lemma
L.3 in the Appendix of Pelger (2019)). On the other hand, in a low-frequency factor model setting,
Bai and Ng (2004) obtain a uniform convergence rate of n=%/% + d=1/2 (see Lemma 2 in Bai and
Ng (2004)). Our estimators have a slower convergence rate, which is mainly due to the different
settings.

Although in this chapter we do not consider estimation of the integrated covolatility, X« =
ApX FA};%—EU, we can use the estimated common component of efficient price to estimate A pX FA}
without the need to use noise-robust estimation methods (such as pre-averaging). This may lead to
efficiency gain. However, for the estimation of X, since we do not separate the idiosyncratic errors

for the efficient price and the microstructure noise, methods like pre-averaging may still be needed.
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1.4 Monte-Carlo simulation

1.4.1 Number of factors

In this chapter, we apply the commonly-used information criterion proposed by Bai and Ng (2002)
to estimate the total number of factors. Then, we use the PANIC test procedure proposed by Bai
and Ng (2004) to determine the number of factors for the efficient prices.

To introduce Bai and Ng (2002)’s information criterion, we denote by Q a finite positive integer
that is no smaller than Kp. For any 1 < gy < Q, we let g*(qH) = </ﬁ2(qH),...,ﬁ;A(qH)>T be
the matrix of estimated factors when the total number of factors is assumed to be qg, and denote

by K}{(QH) the corresponding loadings matrix. The information criterion is defined as

n+d nd

ICi(qrr) = log [Vn(qm)] + qm - — log(n n d), (1.4.1)

where V,,(qr) = ||z — fZ*(qH)(ZA\}{(qH))T |%.. The total number of factors is then estimated as

~

Ky = argminlCy(qg), (1.4.2)
0<gn<Q
with 1C;(0) = ||||% for convention. For consistency of K g1, we refer to the asymptotic results given

in Theorem 2 of Bai and Ng (2002).

Bai and Ng (2004) propose two tests to determine the number of nonstationary factors. We
adopt the one that does not specify a finite order VAR representation. For any 1 < qp < K H,
we let 9A~'*(qF) = B 1 (¢r), when the number of factors for efficient prices is assumed to be gp.
Let é\tF(qF) be the residuals from estimating a first-order VAR of F/f/:*(qp), §g7£(qp) be the sample
covariance matrix of EtF , and by L.¢(gr) be the estimated long-run covariance matrix of 5? . The test

statistic for Hy : Krp = qp is defined by

MQ(gr) = n(v(qr) — 1), (1.4.3)

where v(qp) is the smallest eigenvalue of

n

P _ _
{22 2 <F5A(QF)F(ST*1)A(‘1F) + F(s—l)A(QF)Fsi(QF»

~ ~

—n(ZLe(qr) — i3s,s(f1F))] (Y. Finlar)Fir(ar) ™ (1.4.4)
s=2
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For a given significance level «, define

Kp = max qr, (1.4.5)
0<qp<Kp,
MQ(qr)<ca,mq(qr)

where co mQ(gr) is the critical value of the test statistic MQ(¢qr) at « significance level. For
convention, we define ¢, 17 (0) = +00. Following Bai and Ng (2004), we use simulation to calculate
the critical values. Specifically, we use a gr X 1 vector of demeaned standard Brownian motions to
replace l?‘z A(qr) and a gp-dimensional identity matrix to replace > r,7(¢r) in (1.4.4), and then use
(1.4.3) to obtain a value of the M@ statistic. With 100,000 replications, we calculate the critical
values at 1%, 5%, and 10% significance levels. We refer the reader to Theorem 1 of Bai and Ng

(2004) for the asymptotic distribution of the test statistic.

1.4.2 Alternative approaches for comparison

We consider two alternative approaches for comparison. The first approach, denoted as DPCA,
estimates the factors as 7 in (1.3.2) instead of )g*, and uses % for the second-step PCA while
keeping the rest of the steps exactly the same. The second approach is proposed by Barigozzi et al.
(2020) and Barigozzi et al. (2021) and is denoted as PCA*~-VECM. The PCA*-VECM uses /ﬁt* from
the first-step PCA* to construct a Vector Error Correction Model (VECM) in order to estimate 3
and B, while in our method, we use a second-step PCA to estimate B and B,. We set the lag
of VECM to 1 for simplicity, and for a lag length larger than 1, we refer the reader to Chapter 6
of Johansen (1995). Specifically, the PCA*-VECM uses Johansen (1995)’s reduced rank regression
method to estimate a VECM for /ﬁf

Step 1: Implement OLS of ?Lf and f{\;_ A On ?Lt*_ A to get residuals eg; and ej, respectively.

Step 2: Let §Z~j =n 130 é\i,SAé\;,SA fori,7 = 0,1. Then let 8 = (ﬁl, . ,BKG), where 8, | =
1,..., Kg, is the eigenvector belonging to the I-th largest eigenvalue of the matrix (§11 —§10§501§01).
Define B | as the orthogonal complement matrix of B such that B]_B = Ok, xK, and Bl,@ 1 =1g,.

Note that even if the estimated factors are not normalised in Step 1, the residuals ey, and
e1+ will not change and therefore the estimates of ,@ L and ,@ will not be affected. Also note that
the factors for the efficient prices follow a diffusion model and hence, are heteroskedastic. One
can implement more efficient estimation of VECM under heteroskedasticity (e.g., generalised least
squares estimation in Seo (2007) and Herwartz and Liitkepohl (2011)). But we do not pursue this

in our chapter.
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1.4.3 Data generating processes

The data generating process in our simulation is similar to that in Bollerslev et al. (2019). The
observable prices are the sum of the efficient prices and microstructure noise. The former has two
orthogonal factors and the latter has one factor.

The two factors in the efficient prices are independently generated from a GARCH diffusion
model as in Andersen and Bollerslev (1998),

dFu = o7udBy, (1.4.6)
dUJQf,it = kpi(0pi — OJQ“,it)dt + LfiJJQf,z'tdWifv

for i = 1,2, where B and W1 are dependent Brownian motions with corr(B, W) = —0.5. The
parameters are set as k1 = Ky = 0.035, 071 = 0.636, 02 = 0.3, 1p; = \/m, o1 = ¢r2 = 0.296,
and initial value (fio’aj%,z‘o) = (0,6y;). Then we draw the factor loadings of the efficient prices
independently from a normal distribution with mean zero and unit variance.

The idiosyncratic components of the efficient prices are generated as dU; = awtng, where
BiUt is a Brownian motion, and o, ;; is generated by three different volatility processes for different

stocks to allow for heterogeneity.

e For 1 < < [d/3], the volatility process is generated by an exponential ARCH diffusion limit
model as in Nelson (1990):

dlog(o? ;) = —0.6(0.157 — log(co2 ;,))dt + 0.25d WY

’U,,Zt U,Zt
with initial value log(o? ;) = 0.157, where BY] is a Brownian motion with corr(Bf/, W) =
-0.3.

e For |d/3]+1 <i < |2d/3], the volatility process is generated by a GARCH-M diffusion limit
model as in Nelson (1990),

d(o2 ;) = (0.1 — o2 ;,)dt + 0.20% ;, dW

u,it u,it

with initial value o2 ,, = 0.1, where BY is a Brownian motion with corr(BY, WY) = —0.3.

e For |2d/3] +1 < i < d, the volatility process is generated by a GARCH diffusion model as in
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Andersen and Bollerslev (1998),

d(oy ;) = 0.035(0.636 — o ;,)dt + 0.207 ;, W,

u,it u,it

with initial value o7, ;; = 0.636, where BY is a Brownian motion with corr(BY, W) = —0.3.

The two dimensional Brownian motion (BY,WY) is independent over 1 < i < d and also
independent with the driving Brownian motions (Bf;,, W{,) and (BZ,, W) for the efficient price
factors.

As for microstructure noise, we draw the factor loadings, Ag;, i = 1,...,d, independently from
a normal distribution with mean one and unit variance. Then we introduce the noise-to-signal
fé and 5‘2/ as in Bollerslev et al. (2019), which take values n?7¢ and n?V, respectively, with 75 €
{—0.4,-0.6} and 7y, € {—0.4,—-0.6}. The variance of the factor for the microstructure noise satisfies
Var(Gy) = 0.5¢% (4 Zle oy aiit)l/Q/E, and is thus time-invariant, where o ;; is the spot volatil-
ity of the efficient price process of asset 7 at time ¢, that is, 0’37“ = (Api1of1e)? + (Arizopar)® + ag’it,
and ¢ = 52?:1 )\QGZ.. The variance of idiosyncratic component V;; makes up 0.15‘2/ of the total
variance, that is Var(Vy) = 0.1&2 (2 >0, aiit)l/Q. We draw the factor G; independently from
a normal distribution with mean zero and variance Var(G¢), and draw Vj; independently from a
normal distribution with mean zero and variance Var(Vj;).

We assume that the prices are synchronously recorded once every one or five minutes during 6.5
trading hours, that is n = 390 or 78. The number of assets is assumed to be d = 50, 100,300 and

500. We present the simulation results based on 1000 Monte Carlo replications.

1.4.4 Simulation results

Firstly, we provide simulation results for the estimation of number of factors by the information
criteria described in Section 1.4.1, as well as by the PANIC test with different significance levels,
1%, 5%, and 10%. More specifically, we use Bai and Ng (2002)’s information criterion, 1Cy, to
estimate the total number of factors and then use the PANIC test to identify the number of efficient
price factors. For the PANIC test in (1.4.5), Kp is determined by 1C;.

Table 1.2 presents the average number of factors determined by each method (over 1000 repli-
cations) for n = 78 and n = 390, respectively. It can be seen that 1C; has excellent performance
in estimating the total number of factors in all scenarios. The PANIC tests using the M Q) statistic
at different significance levels are denoted as MQq9, M Q59, and MQqgy. They are used to deter-

mine the number of efficient price factors and perform satisfactorily in all scenarios, in particular
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Table 1.2: Average estimated number of factors and standard deviation (in parentheses) for sam-
pling frequency=>5 mins (n=78) or 1 min (n=390), true number of factors=2 (efficient prices)+1

(microstructure noise)

IC, | MQiw MQsy,  MQiox IC, | MQix MQsy,  MQiox
n=1875= 04,70 =04 n =300, 78 = 04, 70 = —0.4
d=50 3.026 1.998 1.931 1.855 d=50 3.035 1.989 1.901 1.815
(0.025) | (0.030) (0.086) (0.150) (0.036) | (0.027) (0.101) (0.177)
d=100 3.001 1.983 1.931 1.858 d=100 3.004 1.987 1.917 1.827
(0.001) | (0.017) (0.072)  (0.134) (0.004) | (0.015) (0.080)  (0.165)
d=300 3.000 1.986 1.942 1.871 d=300 3.000 1.987 1.920 1.850
(0.000) | (0.014) (0.059) (0.122) (0.000) | (0.013) (0.080)  (0.144)
d=500 3.000 1.988 1.940 1.869 d=500 3.000 1.988 1.923 1.850
(0.000) | (0.012) (0.062)  (0.130) (0.000) | (0.012) (0.071)  (0.146)
n="18, 7% =—0.6, 7o = —0.4 n = 390, 7& = —0.6, 7o = —0.4
d=50 3.026 2.015 1.939 1.861 d=50 3.035 1.991 1.909 1.818
(0.025) | (0.047) (0.091)  (0.156) (0.036) | (0.027) (0.101)  (0.175)
d=100 3.001 1.984 1.930 1.858 d=100 3.004 1.990 1.920 1.827
(0.001) | (0.018) (0.073)  (0.134) (0.004) | (0.010) (0.078)  (0.165)
d=300 3.000 1.987 1.943 1.873 d=300 3.000 1.989 1.920 1.851
(0.000) | (0.013) (0.058) (0.121) (0.000) | (0.011) (0.080) (0.143)
d=500 3.000 1.988 1.939 1.869 d=500 3.000 1.988 1.923 1.850
(0.000) | (0.012) (0.063)  (0.130) (0.000) | (0.012) (0.071)  (0.146)
n="78 7& =-04, 7 = —0.6 n =390, 7& = —0.4, 7y = —0.6
d=50 3.001 1.991 1.949 1.884 d=50 3.000 1.993 1.931 1.847
(0.001) | (0.011) (0.056)  (0.117) (0.000) | (0.007) (0.072)  (0.154)
d=100 3.000 1.986 1.942 1.881 d=100 3.000 1.991 1.932 1.848
(0.000) | (0.014) (0.063)  (0.115) (0.000) | (0.009) (0.067)  (0.147)
d=300 3.000 1.991 1.951 1.890 d=300 3.000 1.989 1.926 1.863
(0.000) | (0.009) (0.051)  (0.108) (0.000) | (0.011) (0.073)  (0.132)
d=500 3.000 1.988 1.948 1.887 d=500 3.000 1.990 1.931 1.860
(0.000) | (0.012) (0.055)  (0.114) (0.000) | (0.010) (0.064)  (0.137)
n =718, 7% = —0.6, 7y = —0.6 n =390, 7& = —0.6, 7y = —0.6
d=50 3.001 2.008 1.956 1.892 d=50 3.000 1.995 1.935 1.852
(0.001) | (0.028) (0.054) (0.114) (0.000) | (0.007) (0.071)  (0.150)
d=100 3.000 1.987 1.945 1.881 d=100 3.000 1.991 1.935 1.849
(0.000) | (0.015) (0.060)  (0.115) (0.000) | (0.009) (0.065) (0.146)
d=300 3.000 1.992 1.951 1.890 d=300 3.000 1.990 1.927 1.863
(0.000) | (0.008) (0.051)  (0.108) (0.000) | (0.010) (0.072)  (0.132)
d=500 3.000 1.988 1.949 1.887 d=500 3.000 1.989 1.931 1.861
(0.000) | (0.012) (0.054) (0.114) (0.000) | (0.011) (0.064)  (0.136)

for MQq9. In summary, ICy is very satisfactory in determining the number of total factors, and

the PANIC test with 1% significance level is the most robust method to determine the number of

efficient price factors.

Next, we compare the estimation of common components in the dual factor model. Our method

is denoted as DPCA*. For the alternative methods discussed in Section 1.4.2, we denote them as

DPCA and PCA*-VECM, respectively. We use the relative estimation error (REE) to measure the

performance of different methods. It is defined as

REE = |[M — M]||/[[M]
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where | - || can be the Frobenius norm, the max norm or the spectral norm, and M is an estimate
of the matrix M, which varies from place to place (depending on the quantity being estimated).
In Tables 1.3-1.6, “diff.total” refers to the total common component, ﬁA}{. “EP” and “diff. EP”
refer to the common components of efficient prices and efficient returns. That is, EP = & A}; and
diff. EP = / A}, respectively. Similarly, “MN” and “diff. MN” refer to the common components of
the microstructure noise and its first difference, i.e., MN = ?Az; and diff. MN = gAE;, respectively.
To focus on the comparison of different methods in estimating the common components, we assume
that the true numbers of factors for the efficient price factors and the microstructure noise are
known. Otherwise, one can obtain correct estimates of the numbers of factors by IC; and the
PANIC test in most cases (as can be seen from Table 1.2).

In the following study, we will only consider the cases 75 = 7y, = —0.6 and 7% = 7y, = —0.4.
To give a sense of the magnitudes of the different components in these two cases, we calculate the
average volatilities (averaged over stocks) of the common and idiosyncratic components of efficient
returns and the average sample variances of first differenced microstructure noise. We only provide
the results for d = 500, as the results for other values of d are similar. When n = 78, the average
volatilities of the common and idiosyncratic components for efficient returns are 0.01200 and 0.00684,
respectively, while the average variances of the common and idiosyncratic components for differenced
microstructure noise are 0.04523 and 0.00904 when 75 = 7, = —0.4 and decrease to 0.00788 and
0.00157 when 75 = 7, = —0.6. Similarly, when n = 390, the average volatilities of the common
and idiosyncratic components for efficient returns are 0.00240 and 0.00137, respectively, while the
average variances of the common and idiosyncratic components for differenced microstructure noise
are 0.01250 and 0.00249 when 75 = 7y, = —0.4 and decrease to 0.00115 and 0.00023 when 75 =
T = —0.6. Hence, when 75 = 7, = —0.4, the common and idiosyncratic components of the
differenced microstructure noise dominate those of the efficient returns, while the reverse is true
when 75 = 7, = —0.6.

Table 1.3 gives the simulation results for n = 78, 7% = —0.6, and 7{, = —0.6. In this case, the
factors for the first differenced microstructure noise are smaller than the efficient return factors and
idiosyncratic errors in magnitude and hence, are more difficult to detect and estimate. We can see
that the REE’s for “diff. MN” are generally larger than those for “diff. EP” for all the three methods.
The estimates of the total common component, /iA}{, are the same for all the three methods, and
the corresponding REE values are listed under “diff.total”. Among the three estimation methods,
it can be seen that DPCA* outperforms the rest of the methods. It can also be seen that the REE’s
for “MN” are always larger than those for “diff. MN”. On the contrary, the REE’s for “EP” are
always smaller than those for “difft. EP”. This may be due to the fact that the REE (calculated as



32

1.4 Monte-Carlo simulation

(ove'0) (gL00) (960°0) (680°0) | (081°0) (L80°0) (gL00) (8200) | (¢er0) (ge00) (¥e0'0) (9%00) | (010°0)
908°0 1610 ¥2g 0 0120 620  SST'0 69T1°0 FST'0 | LTE0 €910 Z81°0 18T°0 eIT0  00S=P
(ege’0)  (¥200) (g6000) (880°0) | (z1zo) (gvo0) (8L00) (ggo0) | (9210) (1v00) (090°0) (€900) | (010°0)
7E8'0 2610 822 0 g1z 0 89¢'0 €910 7810 19T°0 9¢e'0 1910 88T°0 991°0 gIT’0  008=P
(v6z°0) (¥80°0) (¥60°0) (280°0) | (zrz'0) (9200) (6600) (g010) | (z92°0) (2L00) (£90°0) (2900) | (€10°0)
7.8°0 9220 6£2°0 0£2°0 €IS0  ¥0Z0 0¥ 0 cez 0 S67'0 1020 €020 ¥6T°0 921’0 001=P
(6,6'0) (6zT'0) (660°0) (280°0) | (ce0) (oer0) (gero) (1e1°0) | (68¢°0) (921°0) (6L0°0) (2900) | (2200)
€86°0  TLT0 8520 69520 | L.90 1920 z0g'0 qTe0 0990  LST0 0£2°0 cez 0 191°0 0g=p
waJIou —Nhaowﬂm h@ﬂvg—.— mmm
(60e0) (990°0) (zgr0) (9800) | (2e10) (gv00) (¢80'0) (920°0) | (o10) (680°0) (¥2000) (0%0°0) | (220°0)
699°0 0020 8870 T€T0 c0e'0  ¢LT0 6120 88T°0 c0e'0  0LT0 cez 0 06T°0 L1ST°0  00G=P
(cge'0)  (0L00) (zzr0) (880°0) | (z91°0) (9%0°0) (6600) (180°0) | (61T°0) (€v00) (820°0) (¥20°0) | (620°0)
¥89°0  €0%°0 0620 9€7°0 8ee'0  LLTO qezT’0 00Z°0 TEE0  9L1°0 0¥ 0 96T°0 8GT'0  008=P
(06z0) (6L00) (gg10) (¢80°0) | (gozo) (8900) (611°0) (e11°0) | (08T°'0) (¥900) (€80°0) (190°0) | (¥€0°0)
L0 6220 9620 18270 TLV0 1120 G620 192°0 eFP'0 8020 €520 ez 0 9,10  00T=P
(9ge'0) (vo10) (1%1°0) (g01°0) | (922°0) (g¢01°0) (PST'0) (2¥1°0) | (922°0) (001°0) (g11°0) (280°0) | (6¥%0°0)
¥S80 9920 L1€°0 €620 0290 6920 €9¢°0 8e€'0 €8G°0 €920 ¥82°0 122°0 0120 0g=p
wJIou xeuwu h@ﬂ.:ﬂ— mmm
(Lee0) (g90'0) (12170) (28070) | (z81°0) (P€0'0) (¥80°0) (ge200) | (zeT0) (0€00) (ge0'0) (2£00) | (600°0)
7€8°0 €610 192°0 6£2°0 2980 6910 061°0 981°0 166°0  LST'O 86T°0 681°0 9¢T'0  00S=P
(ree’0)  (990°0) (21170) (¥80°0) | (912°0) (2ko0) (160°0) (cro0) | (€210) (8e00) (1900) (T%0°0) | (010°0)
698°0  00%°0 €L2°0 are 0 €0¥'0 8910 80%°0 2020 682°0 9910 6020 6610 P10 008=P
(gz62°0) (gL00) (11170) (¥20°0) | (890°0) (zrz'0) (60T°0) (9800) | (¢gz0) (g¢900) (2900) (9%00) | (¥10°0)
668°0 1€2°0 €620 0L3°0 | 2890 112°0 7820 992°0 | 1290  L0T0 €720 9€2°0 €10 001=P
(18¢'0) (e1T°0) (121°0) (080°0) | (12870) (9TT°0) (PET'0) (9010) | (€8¢°0) (T11°0) (260°0) (690°0) | (120°0)
900'T 8170 610 90€°0 1€L°0 9920 650 6£€°0 069°0 192°0 ¥82°0 €82°0 6020 0g=p
wIou sNiuaqoJg epun gHy

NIN d4 NIN'BP  dH'BP NIN dd NIN'BP  dH'BP NIN dd NIN'BP  dH PP | [BI0VHIP
INOHA-xVDd vodd *VDdd
90— = 94 ‘90— = YL ‘gL = u woym

INODHAAVO PR vOAA ‘xVOdd Aq sjueuodmwiod Towuwos Jo UOIIRWISS I0] (sesoyjuared UI) UOIJRIASD PIRPUR)S PUR HHY OSRIOAY :¢'T 9[qR],



33

1.4 Monte-Carlo simulation

(¢ee'0) (8L1'0) (ze00) (612°0) | (e270) (p9z0) (0ge0) (go8°0) | (8e10) (2v00) (120°0) (190°0) | (800°0)

Z8L'0  6£EL0 18T°0 z8¢°0 0160  STF 0 189°0 ceo'T 6220 0120 16070 z1%0 100 00S=P

(162°0) (291°0) (880°0) (goz'0) | (gsv0) (p9z0) (¥ee0) (eps0) | (0eT0) (6v00) (g2o'0) (2g00) | (800°0)

g6L'0  TIFE0 6ST°0 98¢°0 868°0  TEFO 189°0 79T cez’0  SIT0 660°0 6120 8.00  00e=P

(¥8z'0) (gL1'0) (0s000) (g8T'0) | (8¢ev0) (9¢z'0) (0og0) (¥8L0) | (PPT0) (92000) (2zo0) (1900) | (210°0)

96L°0 €920 19T°0 0070 | FI60  SFF0 S0L'0 €89'T 0820 0920 90T°0 7S50 6800  00I=P

(eee'0) (6.1°0) (060°0) (16T°0) | (F8e0) (922°0) (122°0) (112°0) | (202°0) (61T°0) (9¢0°0) (890°0) | (0Z00)

6£8°0  00¥7'0 7810 0 0960 G870 6£L°0 CLLT 9Fe'0  L6T0 ze10 LI€°0 6110 0g=p

waJIou —Nhaowﬁmm h@ﬂvg—.— mmm

(s6z°0) (0g1'0) (960°0) (621°0) | (8%%'0) (¥€z'0) (gge0) (g8.0) | (280°0) (690°0) (8€0°0) (290°0) | (820°0)

919'0  8€€0 Z6T°0 ¥8¢°0 6060 G970 veL0 1871 8020  I¥Z0 8ET°0 692°0 ¥ET'0  00S=P

(tzz0)  (Fp10) (6000 (821°0) | (g2¥'0) (1€2°0) (0z€0) (€820) | (¥80°0) (090°0) (8€0°0) (¥90°0) | (0€0°0)

¥29'0  TFE0 Y610 T6£°0 968°0 6970 6€L°0 a8yl gIT0 T 0 8ET°0 9220 8¢T'0  008=P

(L9z0) (6eT0) (280°0) (291°0) | (18%70) (1€20) (goe0) (gcL0) | (goro) (0800) (ev00) (080°0) | (1%0°0)

9¢9'0 1920 96T°0 TTr0 6260 6870 650 87T ¥T0  €LT0 6ET°0 TTe0 LST'0 00T=P

(6620) (691°0) (111°0) (86T°0) | (6L8°0) (6€T°0) (0%2°0) (80L°0) | (GL1'0) (s110) (¥80°0) (901°0) | (0L0°0)

€890 2OV 0 9120 187°0 | ¥96°0 LTG0 G6L°0 PHO'T 0T€'0  9T€0 8GT°0 86¢°0 96T°0 0g=p

wJIou xeuwu h@ﬂ.:ﬂ— mmm

(zze'0) (ser'0) (86000) (641T°0) | (Fzg0) (1¥z0) (9ve0) (ggr0) | (PeT0) (1900) (920°0) (€¥0°0) | (010°0)

68L°0  €€€0 981°0 18€°0 AR 0570 L1270 qey'T 920  VITO ZIT0 962°0 LIT0  00S=P

(z6z°0) (ev1'0) (g6000) (g91'0) | (80g0) (1¥20) (68€0) (90L0) | (92T0) (¥F¥00) (Lz00) (gv00) | (010°0)

2080  LEEO 681°0 96¢°0 060'T  LSV'O TTL0 VYT 162°0 122°0 9110 6920 €CT'0  008=P

(z8z'0) (ger0) (g800) (¥%T0) | (F8¥0) (cezo) (e1€0) (zeoo) | (0v1T0) (6900) (1€0°0) (0%0°0) | (¥10°0)

€08°0 %920 6610 YEY'0 6701 9.7°0 TrL0 8LV'T ¢62°0  LST0 T€1°0 220 IST'0  00T=P

(eze'0) (091T°0) (960°0) (gcr0) | (2gv0) (ogz0) (0820) (g690) | (To0z0) (2010) (6£0°0) (890°0) | (120°0)

L¥8'0  €0%°0 9120 Y670 880'T VIS0 8LL°0 295°T 09¢°0  90€°0 1GT°0 16€°0 G810 0g=p
wIou sNiuaqoJg epun gHy

NIN d4 NIN'BP  dH'BP _ NIN dd NIN'BP  dH'BP _ NIN dd NIN'BP  dH PP | [BI0VHIP
INOHA-xVDd vodd «VDdd
T0— = 9L F0— = P2 ‘gL =u uoym

INODHAAVO PR vOAA ‘xVOdd Aq sjueuodmwiod Towuwos Jo UOIRWISS I0] (sesoyjuared UI) UOIJRIASGD PIRPUR)S PUR HHY OSRIOAY :f'T S[qR],



1.5 An empirical application 34

M — MH/HMH) for “EP” has a larger denominator value than the REE for “diff. EP”.

Table 1.4 presents the simulation results for n = 78, 7& = —0.4, and 7y, = —0.4. In this case,
the first differenced microstructure noise factors and idiosyncratic errors are larger than the efficient
return factors in magnitude. The REE’s for “diff. MN” are now smaller than those for “diff. EP” for
all the three methods. DPCA™ still outperforms the other two methods, and DPCA performs the
poorest. The results for EP and diff. EP in Table 1.3 are better than their counterparts in Table
1.4, while the results for MN and diff MN in Table 1.3 are worse than their counterparts in Table
1.4. This suggests that factors with larger magnitudes are estimated with smaller relative errors.

Table 1.5 gives the simulation results when n = 390, 75 = —0.6, and 7j; = —0.6. When we
increase the sample size from 78 to 390, the REEs are smaller for “diff.total”, “diff. EP”, “diff. MN”,
and “EP”. However, all three methods have larger REEs for “MN”. When d = 50, the REEs are even
larger than 1, but they eventually decay when d becomes larger. Table 1.6 provides the simulation
results when n = 390, 75 = —0.4, and 7, = —0.4. The pattern is similar to that in Table 1.4, i.e.,
DPCA* outperforms DPCA and PCA*-VECM.

In summary, the simulation results show that DPCA* always outperforms DPCA, which means
that the eigen-decomposition of zz' gives better estimates than the eigen-decomposition of z' 2
in finite samples. In addition, we can find that the difference between the average REEs of DPCA*
and DPCA is larger when the magnitude of the factors for microstructure noise is larger (see Tables
1.4 and 1.6) but smaller when the magnitude of the factors for microstructure noise is smaller (see
Tables 1.3 and 1.5). This may be due to the fact that the factors corresponding to the leading
eigenvalues in the second-step PCA may come from the microstructure noise when the factors are
not normalised in the first-step PCA, especially when the magnitude of the factors for microstructure
noise is larger. Misidentification of the two types of factors leads to large REEs. Even when the
magnitude of the factors for microstructure noise is smaller, estimation error in the first-step PCA

may still lead to the same problem, but with a lower probability.

1.5 An empirical application

We now apply the proposed method to 1-min and 5-min intraday returns of S&P 500 Index con-
stituents (505 stocks in total). The data were collected from the Thomson Reuters Eikon database
and cover a period from 29 March 2021 to 30 June 2021. For each day, the observed prices constitute
an (n + 1)-by-d matrix, &, with n < 78 (for 5-min returns) or n < 390 (for 1-min returns) and
d < 505. The value of n (i.e., the number of observations) and d (i.e., the number of stocks) may

vary from day to day due to contemporaneous missing values at a time or suspension of trading in
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one day. For asynchronous missing data, we fill them using Next Observation Carried Backwards
(NOCRB) if the missing data are at the beginning of the series, Last Observation Carried Forward
(LOCF) if they are at the end of the series, and linear interpolation otherwise.

Firstly, we determine the number of factors using IC; and the PANIC tests for each of the
66 trading days within the sampling period. Figure 1.1 illustrates that the estimated number of
factors varies from day to day. Table 1.7 shows some summary statistics for the estimated numbers
of factors. The PANIC tests with different significance levels give similar estimates of the numbers
of factors for the microstructure noise and the efficient prices in each day, with a difference less than
1.5 on average. Since the PANIC test at 1% performs best in the simulation, it will be used as the

default PANIC test hereafter, unless specifically stated otherwise.

Table 1.7: Summary statistics for estimated numbers of factors over the sampling period

1-min data

mean  median 1st quartile 3rd quartile min max s.d.

K (1C)) 13.045 13 12 14 8 17 1.818
Kp (PANIC 1%) 8894 9 8 10 4 12 1.590
Kp (PANIC 5%) 8106 8 7 9 4 12 1.656
Kp (PANIC 10%) 7.561 8 6 9 3 12 1.890
Kg (PANIC 1%)  4.152 4 3 5 18 1.552
K¢ (PANIC 5%) 4939 5 4 6 2 9 1.626
Kg (PANIC 10%) 5.485 5 4 6.75 2 10 1.629

5-min data

mean  median 1st quartile 3rd quartile min max s.d.

Ky (IC)) 7.697 8 7 8.75 5 12 1488
Kp (PANIC 1%)  6.758 7 6 8 312 1710
Kp (PANIC 5%)  6.076 6 5 7 2 12 1.892
Kp (PANIC 10%  5.500 5 4 7 2 10 1774
Kg (PANIC 1%) 0939 1 0 2 0 3 099
Kg (PANIC 5%)  1.621 2 0 2 0 5 1.274
Kg (PANIC 10%) 2197 2 2 3 0 6 1.268

We can see from Table 1.7 that the numbers of factors are larger for 1-min data than those
for 5-min data. The reason might be twofold. Firstly, the signal of the efficient returns increases
when 1-min data are cumulated to 5-min data. Thus the factors for the microstructure noise are
more difficult to detect. Secondly, due to the Epps effect (as evident in Table 1.9), the correlation
between stocks decreases as the sampling frequency increases, resulting in higher numbers of factors
for both the microstructure noise and the efficient prices of higher frequency data.

To see how the number of factors change during the sample period, we looked at whether there
is a relation between the number of factors and the following variables: the market excess return

(MKT), the size factor (SMB), the value factor (HML), the Momentum factor (MOM), the short-
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term Reversal factor (STREV), the long-term Reversal factor (LTREV), the CBOE Volatility Index
(VIX), the high low volatility on the S&P500 index (HLVOL) and the implied Roll measure of bid-

ask spread (ROLL, computed as 2\/ — [C’ov(rt, Ti—1) A O] using 5-min price changes r; and averaged
over all stocks with equal weights). The first 6 risk factors were downloaded from Kenneth R.
French’s data library? and the VIX and S&P500 index were downloaded from Thomson Reuters
Eikon database.

We find from Table 1.8 that the contemporaneous correlations between the number of factors
and the above-mentioned risk variables are insignificant. However, some of these variables can
partially explain changes in the number of factors for efficient prices in the next day. Specifically,
the highest (in absolute value) correlation is between lag-1 SMB and 1-min K, which is 0.329 with
a p-value of 0.007. Significant correlations are also found, at 10% significant level, between 1-min
Kr and HLVOL at -0.240, between 1-min Kr and MOM at 0.211, and between 1-min Kr and
LTREV at 0.213. What is more, we also find a negative relation between the number of factors and
VIX (or HLVOL). Figure 1.2 shows this relation in a time series plot: when the S&P500 high-low
volatility peaks on 12 May 2021, the 1-min Ky and 1-min K drop in the next day. This indicates
that the co-movement of stocks increases during High VIX (or HLVOL) period, confirming the old

adage that diversification disappears when needed most.

Table 1.8: Correlation between number of factors and 9 risk variables. Panel A shows the contem-
poraneous correlation and Panel B shows the lagged correlation (the 9 risk variables are lagged by
1 day). P-values less than 0.1, 0.05 or 0.01 are flagged with one, two or three stars (*, ** ***)
respectively.

(Panel A) VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL
Ky(1-min) —0.193 —0.121  0.043 0.185 —0.038 0.178  0.141 0.1563 —0.034

( ) —0.134 —0.033  0.004 0.159 —0.054 0.065 —0.010 0.094 -0.113
Kg(1-min) —0.089 —0.108  0.047 0.055 0.010 0.142  0.175 0.083  0.075
Kg(5-min) —0.008 0.123  0.042 0.107 0.115 0.086  0.090 0.205  0.083

(5-min) —0.010  0.093  0.009 0.004 —0.061 —0.011 —0.051 —0.005  0.010
K¢ (5-min) 0.004 0.025 0.048 0.155 0.279 0.149  0.223 0.317  0.106
VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL
Ky (1-min) —0.206* —0.191  0.157  0.292** 0.129 0.231* —0.184 0.254** —0.132
Kp( )  —0.131 —0.240* 0.144  0.329**0.050 0.211* —0.027 0.213*  0.005
Kg(1-min)  —0.105  0.023  0.036 0.002 0.099 0.052 —0.187 0.078 —0.159
Ky (5-min) 0.003 —-0.088  0.110 0.026 0.041 —-0.084 -0.072 —0.006  0.033
K (
Ko

-
)
5
e,
=

) —0.013 —0.076  0.183 —0.019 0.055 —0.085 —0.150 —0.032 —0.056
¢(5-min) 0.027 —-0.003 -0.146 0.071 —0.032 0.019  0.146 0.046  0.144

For illustration purposes, we consider the results for 30 June 2021, i.e., the last day in the

sample period. For 1-min data, the estimated total number of factors is 13, among which 6 are

http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html.
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Table 1.9: Summary statistics for pairwise correlations between stock returns on 30 June 2021

Correlation

mean median 1st quartile 3rd quartile min max  s.d.
1-min 0.083 0.075 -0.025 0.179 -0.471 0.925 0.160
5-min  0.097 0.097 -0.062 0.253 -0.674 0.960 0.229

Absolute value of correlation

mean median 1st quartile 3rd quartile min max  s.d.
l-min 0.139 0.112 0.053 0.195 0.000 0.925 0.114
5-min 0.200 0.171 0.082 0.288 0.000 0.960 0.148

Table 1.10: Summary statistics for the variance ratio of the common component of the microstruc-
ture noise to that of the efficient price for each stock on 30 June 2021. Note that we define both

) . — A i B = -
variance ratios based on Var(A}, f\), as the variance Var(A}, Fy) is not meaningful.

. . . *T % *T px
Variance ratio of common components: Var(A;,G%a)/Var(Ay, fia)

mean median 1st quartile 3rd quartile min  max s.d.
1-min 4.116 2.541 1.302 5.451 0.030 48.788 4.875
5-min  0.148 0.048 0.013 0.138 0.000 4.228 0.325
Variance ratio of differenced common components: Var(A5,g%,)/Var(Ay, fix)
mean median 1st quartile 3rd quartile min  max s.d.
l-min 2.633 1.604 0.812 3.492 0.017 35.849 3.229
5-min  0.069 0.020 0.006 0.062 0.000 2.209 0.156

identified as factors for efficient prices by the PANIC test. Figure 1.3 shows the 13 estimated factors
in cumulative form, i.e., (B 0, B)TI/LI\;K, where (,@ 0, B) is the matrix of eigenvectors of the matrix
n=lgp*e’ ?/KT*C, arranged in descending order of their corresponding eigenvalues. The first 6 factors
appear to be more variable than the last 7 factors.

We cannot tell from Figure 1.3 whether the microstructure noise factors dominate the efficient
price factors, as estimated factors have been standardised. Instead, we calculate the variance ratio
of the common component of the microstructure noise to that of efficient price for each stock, to
take the magnitude of factor loadings into consideration. We give the summary statistics in Table
1.10. We can see that on average, the common components for the microstructure noise domi-
nate the common components of efficient prices at 1-min frequency, while the relation reverses at
5-min frequency. For individual stocks, however, the contribution of the common component for
the microstructure noise may still be small even at the 1-min frequency. To show this, we look at
the decomposition of prices (cumulative returns) into three components: a common component of
efficient prices, ApF; (CC.EP), a common component of microstructure noise, A¢DgG; (CC.MN),
and an idiosyncratic error component (Residuals). We illustrate with five randomly selected stocks
that have the stock ticker symbols — POOL, CHRW, AJG, CNP, and WM. Figure 1.4 shows the

decomposition for the cumulative 1-min returns of the five stocks on 30 June 2021. The correspond-
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ing numbers of factors are K r = 6 and I?G = 7. Figure 1.5 shows the decomposition for 5-min data
with K r=>5and I?G = 1. The two figures show that the common component of the microstructure
noise can explain only a small amount of the variability of the prices.

In summary, our analysis finds existence of common components for the microstructure noise
of S&P 500 stocks, although their magnitude is small. The small magnitude is also consistent with

the expectation that there are very few arbitrage opportunities in a frictional market.

Figure 1.1: Estimated number of factors for each trading day from 29 March 2021 to 30 June 2021.
The y-axis represents the number of factors and the x-axis represents the dates (given in the format
mmdd). The y-coordinate of the top of each grey bar gives the estimated total number of factors,
K m, from IC;. The length of each grey bar represents the difference between Ky and K r, which
is obtained from the PANIC test using 1% significance level. The length of each red bar represents
the difference between Kp’s obtained from the PANIC tests using 1% and 5% significance levels.
The length of each blue bar represents the difference between K r’s obtained from the PANIC tests
using 5% and 10% significance levels. The y-coordinate of the bottom of each blue bar gives the
value of K r obtained from a 10% PANIC test.
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Figure 1.2: Time series plots of Ky (1-min) and K (1-min), VIX, and HLVOL over the sampling
period
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1.6 Conclusion

We consider a dual factor model for high-frequency stock prices contaminated with microstructure
noise. We develop the Double Principle Component Analysis (DPCA*) to estimate the separate fac-
tor structures for efficient prices and microstructure noise. When comparing with the PCA-VECM
approach, the DPCA* approach is free from the need to impose strong parametric assumptions on
the microstructure noise and applies instead to a broad class of stationary processes. The estimators
are proven to be consistent and perform well in simulations. The empirical analysis of intraday re-
turns of S&P 500 constituents provides some evidence of co-movement in the microstructure noise,
apart from co-movement of prices caused by common systematic risk factors.

Identifying and separating out the common component of microstructure noise from observed
prices are very useful for the study of properties of the microstructure noise and efficient price
processes. For example, once the common component of the microstructure noise are separated
out, the common component of the efficient prices are no longer contaminated by microstructure
noise and hence, can be used to obtain a more accurate estimate of the common part of realised
volatility. For the idiosyncratic part of realised volatility, one can use the estimated idiosyncratic
errors and apply the pre-averaging method of Jacod et al. (2009). Adding these two parts together,
we get an estimator of the realised volatility matrix. We may introduce sparsity or block structure
into idiosyncratic components like Dai et al. (2019) and Ait-Sahalia and Xiu (2017), respectively.
However, since our main interests are the identification of common factors, we avoid introducing
these structures and leave the estimation of the realised volatility matrix to the future work.

The estimated common factors and loadings for microstructure noise provide useful tools for
portfolio management. With such estimates, portfolio managers can construct a new factor mim-
icking portfolio which is only exposed to microstructure noise factors. Such a portfolio can be used
to hedge risks from microstructure noise. Since the value of the portfolio is stationary, one can apply
the mean-reverting strategy to earn profits from the portfolio, once its volatility is large enough to
cover the cost. Even if its volatility is small, one can still time the market according to it, e.g.,

when adjusting the position of another portfolio, to lower the cost.



Chapter 2

Estimating Time-Varying Networks for

High-Dimensional Time Series

Abstract We explore time-varying networks for high-dimensional locally stationary time series, us-
ing the large VAR model framework with both the transition and (error) precision matrices evolving
smoothly over time. Two types of time-varying graphs are investigated: one containing directed
edges of Granger causality linkages, and the other containing undirected edges of partial correlation
linkages. Under the sparse structural assumption, we propose a penalised local linear method with
time-varying weighted group LASSO to jointly estimate the transition matrices and identify their
significant entries, and a time-varying CLIME method to estimate the precision matrices. The
estimated transition and precision matrices are then used to determine the time-varying network
structures. Under some mild conditions, we derive the theoretical properties of the proposed es-
timates including the consistency and oracle properties. In addition, we extend the methodology
and theory to cover highly-correlated large-scale time series, for which the sparsity assumption be-
comes invalid and we allow for common factors before estimating the factor-adjusted time-varying
networks. We provide extensive simulation studies and an empirical application to a large U.S.

macroeconomic dataset to illustrate the finite-sample performance of our methods.

Key Words: factor model, Granger causality, partial correlation, time-varying network, VAR.
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2.1 Introduction

In recent years, network analysis has become an effective tool to explore inter-connections among a
large number of variables, with applications to various disciplines such as: epidemiology, economics,
finance, and social networks (e.g., Newman, 2002; Burt et al., 2013; Diebold and Yilmaz, 2014, 2015;
Hautsch et al., 2014; Serrat, 2017; Barigozzi and Brownlees, 2019; Zhu et al., 2019). The so-called
graphical model is commonly used in network analysis to visualise the connectedness of a large panel
with vertices representing variables in the panel and the presence of an edge indicating appropriate
(conditional) dependence between the variables. In the past decades, most of the existing literature
on statistical estimation and inference of network data limits attention to the static network, which
is assumed to be invariant over time (e.g., Yuan and Lin, 2007; Fan et al., 2009; Loh and Wainwright,
2013; Basu et al., 2015; Zhao et al., 2022). However, such an assumption may be too restrictive and
often fails in practical applications where the underlying data generating mechanism is dynamic.
There have been some attempts in the recent literature to relax the static network assumption,
allowing the connectivity structure to exhibit time-varying features. For example, Kolar et al.
(2010) and Zhou et al. (2010) study dynamic network models with smooth time-varying structural
changes; whereas Wang et al. (2021a) consider change-point detection and estimation in dynamic
networks. However, most of the aforementioned literature typically assumes that the network data
are independent, which often becomes invalid in practice. We aim to relax this restrictive assumption
and model large-scale network data under a general temporal dependence structure.

Vector autoregression (VAR) is a fundamental modelling tool for multivariate time series data
(e.g., Liitkepohl, 2005). In recent years, there has been increasing interest in extending the finite-
dimensional VAR to the high-dimensional setting. Under appropriate sparsity restrictions on the
transition (or autoregressive coefficient) matrices, various regularised methods have been proposed
to estimate high-dimensional VAR models and identify non-zero entries in the transition matrices
(e.g., Basu and Michailidis, 2015; Han et al., 2015; Kock and Callot, 2015; Davis et al., 2016). Zhu
et al. (2017) introduce a network VAR model by incorporating the adjacency matrix to capture the
network effect and estimate the model via ordinary least squares. More recently, Chen et al. (2023)
and Miao et al. (2023) further study high-dimensional VAR and network VAR with latent common
factors, allowing strong cross-sectional dependence in large panel time series. The methodology and
theory developed in these papers heavily rely on the stationarity assumption with both transition
and volatility matrices being time-invariant.

The stable VAR model cannot capture smooth structural changes and breaks in the underlying
data generating process, two typical dynamic features in time series data collected over a long time

span. To address this problem, Ding et al. (2017) consider a time-varying VAR model for high-
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dimensional time series (allowing the number of variables to diverge at a sub-exponential rate of the
sample size), and estimate the time-varying transition matrices by combining the kernel smooth-
ing with ¢;-regularisation, whereas Safikhani and Shojaie (2022) simultaneously detect breaks and
estimate transition matrices in high-dimensional VAR via a three-stage procedure using the total
variation penalty. Xu et al. (2020) detect structural breaks and estimate smooth changes (between
breaks) in the covariance and precision matrices of high-dimensional time series (covering VAR as a
special case). In this chapter, we aim to jointly estimate the time-varying transition and precision
matrices in the high-dimensional sparse VAR under the local stationarity framework. Motivated
by the stable network time series analysis in Barigozzi and Brownlees (2019), we use the estimated
transition and precision matrices to further construct two time-varying networks: one containing
directed edges of Granger causality linkages, and the other containing undirected edges of partial
correlation linkages.

The proposed time-varying network via VAR is naturally connected to the locally stationary
models, which have been systematically studied in the literature for low-dimensional time series.
Dahlhaus (1997) is among the first to introduce a locally stationary time series model via a time-
varying spectral representation. Dahlhaus and Subba Rao (2006) study a time-varying ARCH model
and propose a kernel-weighted quasi-maximum likelihood estimation method. Hafner and Linton
(2010) further consider a time-varying version of GARCH model and introduce a semiparametric
method to estimate both the parametric and nonparametric components involved. Vogt (2012)
and Zhang and Wu (2012) study nonparametric kernel-based estimation and inference in a general
class of locally stationary time series. Koo and Linton (2012) extend the locally stationary model
framework to the diffusion process. Yan et al. (2020) develop a kernel estimation method and theory
for time-varying vector moving average models. This chapter complements the locally stationary
time series literature by further exploring the high-dimensional dynamic network structure.

We study the time-varying VAR and network models for large-scale time series, allowing the
number of variables to be much larger than the time series length. Under the sparsity assumption
on the transition and precision matrices with smooth structural changes, we introduce a three-stage
estimation procedure: (i) preliminary local linear estimation of the transition matrices and their
derivatives with time-varying LASSO; (ii) joint local linear estimation and feature selection of the
time-varying transition matrices with weighted group LASSO; (iii) estimation of the precision ma-
trix via time-varying CLIME. To guarantee the oracle property, the weights of LASSO in the second
estimation stage are constructed via a local linear approximation to the SCAD penalty (e.g., Zou and
Li, 2008) using the consistent preliminary estimates obtained in the first stage. Our penalised esti-

mation methodology for the time-varying transition matrices is connected to various nonparametric
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screening and shrinkage methods developed for high-dimensional functional-coefficient models (e.g.,
Wang and Xia, 2009; Lian, 2012; Fan et al., 2014a; Liu et al., 2014; Li et al., 2015a), whereas
the time-varying CLIME is a natural extension of the conventional CLIME for static precision
matrix estimation (e.g., Cai et al., 2011). The theoretical properties of the techniques developed
in the aforementioned literature (such as the oracle property and minimax optimal convergence
rates) rely on the independent data assumption. Extension of the methodology and theory to the
high-dimensional locally stationary time series is non-trivial, requiring new technical tools such
as the concentration inequality for time-varying VAR. Under some regularity conditions, we show
that the proposed local linear estimates with weighted group LASSO equal to the infeasible ora-
cle estimates with prior information on the significant entries of time-varying transition matrices,
and the precision matrix estimate with time-varying CLIME is uniformly consistent with sensible
convergence rates under various matrix norms. The estimated transition matrices are used to con-
sistently estimate the uniform network structure with directed Granger causality linkages, whereas
the estimated precision matrix is used to construct the network structure with undirected partial
correlation linkages.

We further consider highly-correlated large-scale time series, for which the sparsity model as-
sumption is no longer valid in which case the methodology and theory need to be substantially
modified. The approximate factor model (e.g., Chamberlain and Rothschild, 1983) or its time-
varying version (e.g., Su and Wang, 2017) is employed to accommodate the strong cross-sectional
dependence among a large number of time series. In particular, we assume that the high-dimensional
idiosyncratic error process in the approximate factor model satisfies the time-varying VAR structure
with the sparsity restriction imposed on its transition and precision matrices. The latent common
and idiosyncratic components need to be estimated consistently. With the approximated idiosyn-
cratic error vectors, the penalised local linear estimation method with weighted group LASSO and
time-varying CLIME are applied to estimate the time-varying transition and precision matrices.
Subsequently, the factor-adjusted time-varying network estimates with directed Granger causality
and undirected partial correlation linkages are obtained. This chapter thus substantially extends the
recent work on the factor-adjusted stable VAR model estimation (e.g., Fan et al., 2021; Barigozzi
et al., 2022; Krampe and Margaritella, 2021).

Our simulation studies demonstrate that the proposed methodology can accurately estimate the
time-varying Granger and partial correlation networks when the number of time series variables
is comparable to the sample size. In particular, for the time-varying transition matrix estimation,
the penalised local linear method with weighted group LASSO outperforms the conventional local

linear method (which often fails in the high-dimensional time series setting) and produces numerical
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results similar to those of the oracle estimation. For the time-varying error precision matrix esti-
mation, the numerical performance of the proposed time-varying CLIME is comparable to that of
the time-varying graphical LASSO. We further apply the developed methodology to the FRED-MD
macroeconomic dataset and estimate both the Granger causality and partial correlation networks
via the proposed time-varying VAR model.

The rest of this chapter is organised as follows. Section 2.2 introduces the time-varying VAR
and network model structures. Section 2.3 presents the estimation procedures for the time-varying
transition and precision matrices and Section 2.4 gives the asymptotic properties of the developed
estimates. Section 2.5 considers the factor-adjusted time-varying VAR model and network esti-
mation. Sections 2.6 and 2.7 report simulation studies and an empirical application, respectively.
Section 2.8 concludes this chapter. Appendix B contains proofs of the main theorems, some tech-
nical lemmas with proofs, verification of a key assumption and discussions on tuning parameter
selection. Throughout this chapter, we let |- |o, | - |1, || - || and | - |max denote the Lo, L1, Ls (Eu-
clidean) and maximum norms of a vector, respectively. Let I; and Ogxq be a d X d identity matrix
and null matrix, respectively. For a d x d matrix W = (wj;)qxa, we let [[W]lo = AL, (W'W) be
the operator norm, |W||p = [Tr (WTW)T/2 the Frobenius norm, |W||; = max;<;<q4 Zgzl |wijl,
|[W{|max = maxj<;<qmax;<;<q|wij|, and |W|; = Zle Z?zl |wij|, where Apax(-) is the maximum
eigenvalue of a matrix and Tr(-) is the trace. Denote the determinant of a square matrix as det(:).
Let a, ~ by, ap x b, and a, > b, denote that a, /b, - 1,0 < c < a,/b, <€ < oo and b,/a, — 0,

respectively.

2.2 Time-varying VAR and network models

In this section, we first introduce a locally stationary VAR model with time-varying transition
and precision matrices, and then define two types of time-varying network structures with Granger
causality and partial correlation linkages, respectively. Section 2.5 will further generalise them to

the factor-adjusted time-varying VAR and network setting.

2.2.1 Time-varying VAR models

Suppose that (X; : t = 1,...,n) with X; = (2¢1,...,7.4) is a sequence of d-dimensional random

vectors generated by a time-varying VAR model of order p:

p
Xt = ZAt,kXt—k + e with €t = E%/za?t, t= ]., ceey Ny (221)
k=1
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where Ay, = Ai(t/n), k=1,...,p, are d x d time-varying transition matrices with each entry being
a smooth deterministic function of scaled times, 3; = 3(¢/n) is a d x d time-varying volatility
matrix, and () is a sequence of independent and identically distributed (i.i.d.) d-dimensional
random vectors with zero mean and identity covariance matrix. Define €, = Q(¢/n) as the inverse
of 3, the time-varying precision matrix. We consider the ultra large time series setting, i.e., the
dimension d is allowed to diverge at an exponential rate of the sample size n. The time-varying VAR
model (2.2.1) is a natural extension of the finite-dimensional time-varying VAR to high-dimensional
time series. If 33, is replaced by a time-invariant covariance matrix, (2.2.1) becomes the same model
as that considered by Ding et al. (2017). Furthermore, when both A;x, k = 1,...,p, and X, are

time-invariant constant matrices, (2.2.1) becomes the high-dimensional stable VAR:

p
X, = Z ALX, .+ 2%, (2.2.2)
k=1

which has been extensively studied in the recent literature (e.g., Basu and Michailidis, 2015; Han
et al., 2015; Kock and Callot, 2015; Barigozzi and Brownlees, 2019; Liu and Zhang, 2021). Through-

out this chapter, we assume that the following conditions are satisfied.

Assumption 2.A. (i) Uniformly over 7 € [0, 1], it holds that det (I; — >-%_, Ax(7)z*) # 0 for any
z € C with modulus no larger than one, where C denotes the set of complex numbers. Each entry
in Ag(+) is second-order continuously differentiable over [0, 1].

(ii) The precision matrix Q(7) is positive definite uniformly over 7 € [0,1], and the operator
norm of ¥(7) is uniformly bounded over 7 € [0,1]. Furthermore, each entry in ¥(7) and (1) is
second-order continuously differentiable over [0, 1].

(iii) For any d-dimensional vector u satisfying |lul| = 1, E [exp {¢1(u"e)?}] < Cp < 0o, where 11
and Cj are positive constants.

The first condition in Assumption 2.A(i) is a natural extension of the stability assumption
imposed on the constant transition matrices (e.g., Liitkepohl, 2005), indicating that the time-varying

VAR process is locally stationary/stable and leading to the following Wold representation

oo
Xi = Z Py etk (2.2.3)
k=0
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with the coefficient matrices ®,;, being absolutely summable (in an appropriate matrix norm). For
example, when p = 1, we have ®;9 = Iy and ®;; = HleAt—jJrl,l for k > 1. Assume that, for k
sufficiently large,

P < k 2.2.4
Jax @ xllo < Cip”, (2.2.4)

where C7 is a positive constant and 0 < p < 1. A similar assumption can be found in Ding
et al. (2017). In some special model settings, (2.2.4) may be violated, and we refer interested
readers to the discussions in Basu and Michailidis (2015) and Liu and Zhang (2021). In fact, the
condition (2.2.4) may be removed by imposing some high-level conditions (e.g., the sub-Gaussian
condition on x;; proved in Lemma B.2.1). The smoothness conditions in Assumption 2.A(i)(ii) are
common in kernel-based local estimation method and theory. The sub-Gaussian moment condition
in Assumption 2.A(iii) is not uncommon in the literature of high-dimensional feature selection and
covariance/precision matrix estimation (e.g., Wainwright, 2019), and is weaker than the Gaussian
assumption frequently used in the high-dimensional VAR literature (e.g., Basu and Michailidis,

2015; Kock and Callot, 2015).

2.2.2 Time-varying network structures

Write Apk = (akie) geg D = (@) ge Ab(r) = (a155(7)) g a0 Q7Y = (wif(7) g g0 Where
1<t<mand 0 <7 <1. We define the network structure via a time-varying graph G, = (V,E;),
where V = {1,2,...,d} denotes a set of vertices, and E; = {(i,j) € VX V: cijie 70, i # j} denotes
a time-varying set of edges. The choice of c;j; is determined by the definition of linkage. The
construction of G; is similar to that in Kolar et al. (2010) and Zhou et al. (2010) for independent
network data. Following the stable network analysis in Barigozzi and Brownlees (2019) and Barigozzi
et al. (2022), we next consider two types of time-varying linkages: the directed Granger causality
linkage and undirected partial correlation linkage.

The definition of Granger causality is first introduced by Granger (1969) to investigate the causal
relations in small economic time series systems. In the context of stable VAR (with order p), we say
that x; ; Granger causes x; if there exists k € {1,2,...,p} such that ;_ ; improves predictability
of zy; by reducing the forecasting error. It is a natural idea to use the stable transition matrices
Ap = (ak,ij) 7 q 0 (2.2.2) to determine the Granger causality structure, i.e., if there exists at least
one k such that ay;; # 0, then x; ; Granger causes z; ;. We may extend the stable Granger causality
structure to a more general time-varying version using (2.2.1). At a given time point ¢, we say that

lags of z;; Granger cause z; if there exists at least one k such that ay;;; # 0. Hence, for given
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7 € (0,1), we define the time-varying local graph G& = (V, ETG) with
EY = {(i,j) € VxV: Tk e{1,2,....,p}, ari(1) #0}. (2.2.5)

The partial correlation is a commonly-used conditional dependence measure for network time
series. We next extend it to the time-varying setting using Q; = €(t/n) in (2.2.1). Let p;i =
cor(e i, et jleck, k # ,7) be the time-varying (contemporaneous) partial correlation between the
innovations e;; and e;;, where e; is the i-th element of e;. Following Dempster (1972), we may
show that p;;; # 0 is equivalent to w;;; # 0 for ¢ # j. Hence, we can construct the set of edges by
collecting the index pairs of the non-zero entries in the time-varying precision matrix. For 7 € (0, 1),

define the local graph G = (V,EF) with
EL = {(i,§) € VX V: wy(1) #0, i #j}. (2.2.6)

In practice, the primary interest often lies in the full network structures over the entire time
interval. This requires the construction of a uniform version of G and GF. Denote the uniform

graphs by G& = (V, IEG) and G* = (V, EP), with
EY = {(i,j) e VxV: TJkec{1,2,...,p} and 7 € (0,1), ag;;(7) # 0} (2.2.7)

and

EP = {(i,j) € VxV: 37€(0,1), wy(r)#0, i #j}. (2.2.8)

It is easy to verify that E¢ ¢ E¢ and EX ¢ EP for any 7 € (0,1). Section 2.3.4 below defines the

discrete versions of the above uniform networks and provide their estimates.

2.3 Methodology

Let Azl() and C; (-) be the i-th row of Ay(-) and Q71/2(-), respectively,

T T

Qo) = [ALi(-),...,A;,i(-)] , X = (XtT,...,XtT,pH) , (2.3.1)
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and 7, = t/n. The time-varying VAR model (2.2.1) can be equivalently written as
Tt = a;.(n)Xt_l + €t with €ti = CZT (Tt)z’:‘t, 1= 1, vy d, (2.3.2)

which is a high-dimensional time-varying coefficient autoregressive model with a scalar response and
pd candidate predictors for each 7. As the dimension of the predictors is allowed to be ultra large, we
need to impose an appropriate sparsity restriction on the vector of time-varying parameters aue(+)
to limit the number of its significant elements. High-dimensional varying-coefficient models have
been systematically studied in the literature and various nonparametric screening and shrinkage
methods have been proposed to select the significant covariates, estimate the coefficient functions
and identify the model structure under the independent data assumption (e.g., Wang et al., 2008;
Wang and Xia, 2009; Lian, 2012; Cheng et al., 2014; Fan et al., 2014a; Liu et al., 2014; Li et al.,
2015a). In this section, under the high-dimensional locally stationary time series framework, we
propose a three-stage procedure to estimate the Granger causality and partial correlation network
structures: (i) first obtain preliminary local linear estimates of aye(-) (and its derivatives) using
time-varying LASSO, which serves as a first-stage screening of the predictors in X;_1; (ii) conduct
local linear estimation and feature selection using weighted group LASSO, where the weights are
constructed via a local linear approximation to the SCAD penalty using the preliminary estimates
of aje(-) from Stage (i); (iii) estimate the error precision matrix €(-) via the time-varying CLIME
method. The estimated transition and precision matrices are finally used to construct the uniform

network structures.

2.3.1 Preliminary time-varying LASSO estimation

For 7 € (0,1), under the smoothness condition on the transition matrices in Assumption 2.A(i), we

have the following local linear approximation to e (7:):

when 7; falls within a small neighbourhood of 7, where &/, (+) is a (pd)-dimensional vector of the first-
order derivatives of the elements in aue(-). Hence, for each i € {1,2,...,d} and a given 7 € (0,1),
we define the following local linear objective function (e.g., Fan and Gijbels, 1996):
1< T 2
S| 7) =3 {oni—la+Blr— 1) Xiot | Knlre =), (23.3)

t=1
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where Kj,(-) = +K(-/h) with K(-) being a kernel function and h being a bandwidth or smoothing
parameter. The estimates of ae(7) and af,(7) are obtained by minimising Z;(a, 3 | 7) with
respect to a and 3. However, this local linear estimation is only feasible when the dimension of the
predictors is fixed or significantly smaller than the sample size n (e.g., Cai, 2007; Li et al., 2011). In
our high-dimensional setting, as the number of predictors may exceed n, it is challenging to obtain
satisfactory estimation by directly minimising &;(a, 3 | 7). To address this issue, we assume that
the number of significant components in ae(7) is much smaller than n and then incorporate a
LASSO penalty term in the local linear objective function (2.3.3).

The LASSO estimation was first introduced by Tibshirani (1996) in the context of linear regres-
sion and has become one of the most commonly-used tools in high-dimensional variable and feature

selection. We next adopt a time-varying version of the LASSO estimation. Define

ZHa,B|7)=Zi(a, B | 7) + M (||t + h[B1) , (2.3.4)

where A; is a tuning parameter. Let aue(7) and al,(7) be the solution to the minimisation of
ZF (o, B | T) with respect to a and 3. We call them the preliminary time-varying LASSO estimates.
This LASSO estimation may not accurately identify the true significant predictors, but can remove a
large number of irrelevant predictors and hence, serves as a preliminary screening step. Furthermore,
the first-stage estimates will be used to construct weights in the weighted group LASSO in the second
stage to more precisely estimate the time-varying parameters and accurately select the significant

predictors.

2.3.2 Penalised local linear estimation with weighted group LASSO

In order to estimate the uniform Granger causality network, we next introduce a global penalised
method to simultaneously estimate the time-varying parameters at 7, t = 1,...,n, and identify the

non-zero index sets % = i fi() and #/ = U;_, 7/ (7¢), where

Ji(r)={1<j<pd: a;;(r) #0} and 7 (r)={1<j<pd: a;j(r);éo}

with a; j(-) and ] ;(-) being the j-th element of cv;e(-) and a,(-), respectively. For each 4, note that

identifying the zero elements in a4 (7) (uniformly over ¢) is equivalent to identifying the indices j,
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1 <j < pd, such that D; ; = 0, where

n

n 2
D}j=) [ai,j(ﬁ) - :LZ%’J(TS)] :
s=1

t=1

In practice, D? ; can be estimated by

2
n n
~ 1
2 ~ ~
DI =" |ai(m) - - Zam(u)] ;
t=1 s=1
using the preliminary time-varying LASSO estimates &; j(1¢), t = 1,...,n. Let A = (Cte1, - ., Cap)"

with aes = (ayp, - - ozpd|t)T, and B = (Be1, ..., Ben)’ With Be; = (Bifes - - ﬂpd‘t)T. We define a global

version of the penalised objective function with weighted group LASSO:

n pd pd
O(AB) = Y Zilow, B | 1) + D ph, (1&gl sl + Yo ph, (Dig) InB1, (23.5)
t=1 j=1 j=1

where

—~ —_ ~ T T
Q5 = [ai,j(Tl)w"’a’i,j(Tn)]Ta Q= (aj|17"'7aj|n) ; /Bj = (ﬂj\lvaﬁﬂn) ;

while Ap is a tuning parameter and p)(-) is the derivative of the SCAD penalty function:

Ph(z) = A [I(z < )4 LG0A =)+

< (ao—l))\I(Z>/\)] ;

with ag = 3.7 as suggested in Fan and Li (2001) and I(-) being the indicator function. The penalty
terms in (2.3.5) are motivated by the local linear approximation to the SCAD penalty function
(Zou and Li, 2008). The terms p), (|| ;[|) and p), (INDU) in (2.3.5) serve as the weights for the
group LASSO, and their values are determined by the preliminary estimates in Section 2.3.1, i.e.,
the corresponding weight is heavy when || ;|| or 15” is close to zero, whereas it is light or equal
to zero when ||y ;|| or INDU is large. An advantage of using 5” in the second penalty term over

the Lo-norm of 62;- = a;j

;
(T1)5 -+ 0 (Tn)] is that the estimates of the time-varying parameters
involved in 5” often perform more stably than their derivative counterparts.

Let A; and B, be the minimiser of Q;(A,B) with respect to A and B, where

Kz' = (6%1, ceny ai7pd) with &i,j = [&i,j(n), ceey ai’j(Tn)]T ,
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A~ ~ ~ . ~ ~ ~ T

Bi= (a},,....Q},) with aj; = [@;(n),...,% ()] .
The index set % is estimated by % = {7 a,j # 0,}, and ¥/ is estimated by fi’ = {j Doy On},
where 0 is a k-dimensional vector of zeros. A similar shrinkage estimation method is used by Li
et al. (2015a) and Chen et al. (2021a) to identify a high-dimensional semi-varying coefficient model
structure for independent data. So far as we know, there is no work on such a penalised technique

and its relevant theory for high-dimensional locally stationary time series data.

2.3.3 Estimation of the time-varying precision matrix

In this section, we study the estimation of €(-) in model (2.2.1), which is crucial to uncover the
time-varying and uniform network structures of partial correlations. Estimation of large static pre-
cision matrices has been extensively studied under the sparsity assumption, and various estimation
techniques, such as the penalised likelihood, graphical Danzig selector and CLIME, have been pro-
posed in the literature (e.g., Lam and Fan, 2009; Yuan, 2010; Cai et al., 2011). Xu et al. (2020)
further introduce a time-varying CLIME method for high-dimensional locally stationary time se-
ries which are observable. Note that in this chapter, €2(-) is the time-varying precision matrix for
the high-dimensional unobservable error vector e; and hence, its estimation requires substantial

modification of the time-varying CLIME methodology and theory.

With @e(+), i = 1,...,d, from Section 2.3.2, we can then extract estimates of the time-varying
transition matrices, denoted by Ak(n), t=1,...,n, k=1,...,p, and approximate e; by
T . N
&= (Gt ) =Xe— Y Ap(m)Xep, t=1,...n. (2.3.6)
k=1

The approximation accuracy depends on the uniform prediction rates of the time-varying weighted
group LASSO estimates. In order to apply the time-varying CLIME, we assume that €(-) satisfies
a uniform sparsity assumption, a natural extension of the classic sparsity assumption to the locally

stationary time series setting. Specifically, we assume {2(7) : 0 < 7 < 1} € 8(q,&q), where

S(q,fd) Z{W(T) = [wij(T)]dxd,O S 7<1: W(T) - 0,02171—}21 HW<T)H1 S CQ,
o (2.3.7)

where 0 < ¢ < 1, 0° is defined as 0, “W = 07 denotes that W is positive definite, and Cy is a
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bounded positive constant. Define
R n n
3(7) = [6ij(Ngeq With Gi5(7) =Y wna(r)erifr;/ > @na(7), (2.3.8)
t=1 t=1

where the weight function w,, +(-) is constructed via the local linear smoothing:

Ony(7) = K (Tt - T) Sna(1) — K1 (”;) St (T),

in which s, ;(1) = >0 Kj (%57), Kj(z) = 2/K(z), and b is a bandwidth. With the uniform
sparsity assumption (2.3.7), we estimate Q(7) via the time-varying CLIME method:

Q(r) = [@:;()],., = argmin |y subject to HE:(T)Q - Id‘ <, (2.3.9)
Q

max

where A3 is a tuning parameter. As the underlying time-varying precision matrix is symmetric, the
matrix estimate obtained from (2.3.9) needs to be symmetrised to obtain the final estimate, denoted

as Q(1) = @i (T)] jg» Where

Wij (1) = Wji(1) = @i (T)I (|03 (7)] < |wji(T)]) + wji(T)I (|wis (T)] > |wji(T)]) - (2.3.10)

2.3.4 Estimation of uniform time-varying networks

In practice, when the sample size n is sufficiently large, it is often sensible to approximate the

uniform edge sets, E¢ and E”, by the following discrete versions:
EY = {(i,j) e VxV: Jke{1,2,...,p} and t€ {1,...,n}, ar;(r) # 0} (2.3.11)

and

El ={(i,j) e VxV: 3tec{l,..,n}, wy(n) #0, i #j}. (2.3.12)

n —

Hence, we next estimate EG and EP instead of E¢ and E”. With the time-varying transition and

precision matrix estimates in Sections 2.3.2 and 2.3.3, we can estimate EG by

EC = {(i,j) €EVxV: Ike{1,2,..,p}, > af(n) > 0} : (2.3.13)
t=1
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where @y, ;;(7¢) is the (i, j)-entry of Ay (71), and estimate EX by
EP = {(i,j) e VxV: Fte{l,...,n}, [@ij(r)] > A3, i # 5}, (2.3.14)
where A3 is the tuning parameter used in the time-varying CLIME.
2.4 Main theoretical results
To ease the notational burden, throughout this section, we focus on the time-varying VAR(1) model:
1/2
Xe=A(m)Xi—1 + 2, ey, (2.4.1)

where A(7) = [a;;(7)],, 4 For a general time-varying VAR(p) model (2.2.1), it can be equivalently

re-written as a (pd)-dimensional VAR(1) model as follows:
Xt = AIXt—l + €,

where X, is defined in (2.3.1), e, = (e;,0}, .. ., O;)T, and A} is a (pd) x (pd) time-varying transition

matrix:
A Ao o Ay Ay
. Is Odxda --- Odxd Odxd
Al =
Odxa Ogxa ---  Ig Ogxa

2.4.1 Uniform consistency of the time-varying LASSO estimates

Define

n k
Z(Tt;T> Xo1X) Kn(r—7), k=0,1,2, (24.2)
‘1’1(7') ‘IIQ(T) t=1

<
2
I
z
-+
=
e
o

:\H

and

d
.
Bi(1) = { (ug,u3) <l + luz® =1, Y (luagl + Juag) <3 D fuagl+ Y Juzgl] ¢

J=1 JeFi(T) jef(r)
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where %(7) and J#/(7) are defined as in Section 2.3.2 but with p = 1. To derive the uniform
consistency property of the preliminary time-varying LASSO estimates defined in Section 2.3.1, we

need the following assumptions, some of which may be weakened at the cost of lengthier proofs.

Assumption 2.B. (i) The kernel K (-) is a bounded, continuous and symmetric probability density
function with a compact support [—1, 1].

(ii) The bandwidth h satisfies
nh/log?(nVd) — oo and sh?log(nV d) — 0,

where s = maxj<;<qs; with s; being the cardinality of the index set 7.

Assumption 2.C. (i) The tuning parameter \; satisfies
Cna = log(nV d) |(nh)™Y2 4+ sh?| = o(\1) and +/sAi/h — 0.
(ii) There exists a positive constant kg such that, with probability approaching one (w.p.a.1),

1r£ii£d 1I§nti£n ueiggf(ﬁ) u W (1)u > Ko. (2.4.3)

Assumption 2.B(i) is a mild restriction which can be satisfied by some commonly-used ker-
nels such as the uniform kernel and the Epanechnikov kernel. The compact support assumption
on the kernel function is not essential and can be replaced by appropriate tail conditions. The
bandwidth conditions in Assumption 2.B(ii) are crucial for deriving the uniform convergence prop-
erties of the kernel-based quantities. When s is bounded and d diverges at a polynomial rate
of n, the conditions can be simplified to nh/log?n — oo and h%logn — 0. Assumption 2.C(ii)
can be seen as a uniform version of the so-called restricted eigenvalue condition widely used in
high-dimensional linear regression models (e.g., Bickel et al., 2009; Basu and Michailidis, 2015).
Appendix B.4 provides sufficient conditions for the high-dimensional locally stationary Gaussian
time series to satisfy Assumption 2.C(ii). Furthermore, with the Hanson-Wright inequality for
time-varying (non-Gaussian) VAR processes (e.g., Proposition 6.2 in Zhang and Wu, 2021), we may
show that max <<y, |[¥(r;) — E[®(7)][l0 = Op <\/10g(n vV d) /(nh)). Then, using Lemma B.4.1




2.4 Main theoretical results 61

in Appendix B.4 and assuming s4/log(n V d)/(nh) = o(1), a sufficient condition for (2.4.3) is

min min  inf w E[®(r)]u > kK.
1<i<d 1<t<n ue B, ()

Theorem 2.4.1. Suppose that Assumptions 2.A-2.C are satisfied. Then we have

Q; — oy = A1) - 2.4.4

max max [[Gie(r) — ie(7)|| = Op (Vshi) (2.4.4)

Theorem 2.4.1 shows that the preliminary time-varying LASSO estimates of the transition matri-

ces are uniformly consistent with the convergence rates relying on s and A;. Although the dimension
of variates d is allowed to diverge at an exponential rate of n, the number of significant elements
in aye(-) cannot diverge too fast in order to guarantee the consistency property. Furthermore, the

uniform convergence result (2.4.4) can be strengthened to

max  sup |[[Qe(T) — atie(7)|| = Op (VsA1) . (2.4.5)
1<i<do<r<1

A similar uniform convergence property holds for the first-order derivative function estimates, see

(B.1.1) in the proof of Theorem 2.4.1.

2.4.2 The oracle property of the weighted group LASSO estimates

Denote the complement of % and 7’ as #; and ?;, respectively, i.e., F; = (Vi {j: @ij(n) =0}
and 7, = Niey {j: o ;(7t) :0}. Let A° = (a2,,...,a2,)" and B® = (82,,...,02,) , where

. . — . . —/
ag, = (a‘l’“,...,afllt)T with a;?‘t =0for j € 7, and B, = (6?‘t7"'7/83‘t)1— with B;."t =0forje 7,

Define the (infeasible) oracle estimates:

N —~ ~ . ~ ~ A~ T
A = (aal, e agd) with aZj = [aZj(Tl), ey Oézj(Tn)] , (2.4.6)
A~ ~ ~ . ~ ~ ~ T
B; = (ag’l, e afd) with ag?j = [a;?j(Tl), . a;?j (Tn)] , (2.4.7)

as the values of A° and B? that minimise @;(A°, B°). We need to impose the following condition
on the tuning parameter \s and the lower bounds for the significant time-varying coefficients in the

transition matrix.
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Assumption 2.D. (i) The tuning parameter Ay satisfies

Vvnslog(nV d)Cna + vnshi = o(A2),

where (, 4 is defined in Assumption 2.C(i).

(ii) It holds that

n 2
. . 2 . .
Jnin, min (;_1: 0%4(%)) > (ag +1)A2 and [in, min Dij > (a0 +1)X2,

where ag = 3.7 is defined in the SCAD penalty.

When s is a fixed positive integer, h n~5 A\ o nT2/5t0 with 0 < no < 1/5, and d ~
exp {n™} with 0 < 11 < 1o, it is easy to verify Assumption 2.D(i) by setting Xy oc n'/2-" with
0 < m < 2/5—1[noV (2n1)]. Assumption 2.D(ii) imposes restrictions on the lower bounds for
the time-varying coefficient functions and their deviations from the means. These restrictions are
weaker than Assumption 6(ii) in Li et al. (2015a) and Assumption 8 in Chen et al. (2021a), and

they ensure that the significant coefficient functions and derivatives can be detected w.p.a. 1.

Theorem 2.4.2. Suppose that Assumptions 2.A—2.D are satisfied. The minimiser to the objective
function of the weighted group LASSO, Q;(A,B), exists and equals the oracle estimates defined in

(2.4.6) and (2.4.7) w.p.a.1. In addition, we have the following mean squared convergence result:

1 n d

~ 2 9
1H§1?§Xd ﬁ ; JZ; [aij (Tt) — Yy (Tt)] - OP (S n,d) ) (2.4.8)

where s is defined in Assumption 2.B(ii) and (, q is defined in Assumption 2.C(i).

Since the penalised local linear estimates are identical to the infeasible oracle estimates defined
in (2.4.6) and (2.4.7) w.p.a.1, the sparsity property holds for the global model selection procedures
proposed in Section 2.3.2, i.e., the zero elements in the time-varying transition matrix can be
estimated exactly as zeros. Following the proof of Theorem 2.4.2, we may verify properties (i)—(iv)
for the folded concave penalty function discussed in Fan et al. (2014b) w.p.a.1. Hence, Theorem
2.4.2 may be regarded as a generalisation of Theorem 1 in Fan et al. (2014b) and Theorem 3.1 in

Li et al. (2015a) to high-dimensional locally stationary time series.
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With the oracle property in Theorem 2.4.2, it is straightforward to derive the following consis-

tency property of the network estimates for the directed edges of Granger causality linkages.

Corollary 2.4.3. Under the assumptions of Theorem 2.4.2, we have
P (ES - ES) S (2.4.9)

2.4.3 Uniform consistency of the time-varying CLIME estimates

To derive the uniform consistency property of the time-varying CLIME estimates, we need the

following conditions on the tuning parameters b and Ag.

Assumption 2.E. (i) The bandwidth b satisfies
b—0 and nb/[log(nVd)]* — oco.

In addition, s¢, qv/log(n V d) = 0, where ¢, 4 is defined in Assumption 2.C(i).

n

(ii) There exists a sufficiently large constant C3 such that A3 = C3 (V° P d), where

o _ [lognvad)]? o, .
Via = |— 57— +b° and vy, 4= 8Cuav/log(nVd).

The following theorem gives the uniform convergence rates of the time-varying precision matrix

estimate €2(7) under various matrix norms.

Theorem 2.4.4. Suppose Assumptions 2.A-2.E are satisfied and {Q(7):0<7 <1} € 8(q,&q).

Then we have

s HQ(T) - Q(T)‘ =Op (Via+vna) (2.4.10)
0<r<1 max
sup | @7) - )| = Op (Salvia +v20)'™). (2.4.11)
0<7<1 o]
1A 2
ol d HQ(T) - Q(T)H =Op (& a+vpa)*™), (2.4.12)
0<r<1 F

where &4 is defined in (2.3.7), v, and v, 4 are defined in Assumption 2.E(ii).
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The uniform convergence rates in Theorem 2.4.4 rely on 1/27 g and 1/:;’ 4~ The first rate 1/27 4 18
the conventional uniform convergence rate for nonparametric kernel-based quantities, whereas the
second rate V;; 4 is from the approximation errors of €; to the latent VAR errors e;. Note that the
dimension d affects the uniform convergence rates via {; and log(nV d), and the uniform consistency
property holds in the ultra-high dimensional setting when d diverges at an exponential rate of n.
Theorem 2.4.4 can be seen as an extension of Theorem 1 in Cai et al. (2011) to the high-dimensional

locally stationary time series setting.

From Theorem 2.4.4, we readily have the following consistency property for the network esti-

mates of the undirected edges of partial correlation linkages.

Corollary 2.4.5. Under the assumptions of Theorem 2.4.4, if min; j)cpr mini<i<n |wij ()] > A3,

we have

P (@5 - Eﬁ) S (2.4.13)

2.5 Factor-adjusted time-varying VAR and networks

In this section, we let (Z; : t = 1,...,n) with Z; = (241,...,214) be an observed sequence of
d-dimensional random vectors. To accommodate strong cross-sectional dependence which is not
uncommon for large-scale time series collected in practice, we assume that Z; is generated by an
approximate factor model:

Zt :AFt—I—Xt, t= 1,...,71,, (251)

where A = (Aq,...,Ag)" is a d x k matrix of factor loadings, F; is a k-dimensional vector of latent
factors and (X;) is assumed to satisfy the time-varying VAR model (2.2.1). More generally, we may

assume the following time-varying factor model structure:
Zt :AtFt—FXt, t = 1,...,1’L, (252)

where Ay = A(t/n) is a time-varying factor loading matrix with each entry being a smooth function
of scaled time. The approximate factor model and its time-varying generalisation have been exten-
sively studied in the literature (e.g., Chamberlain and Rothschild, 1983; Bai and Ng, 2002; Stock
and Watson, 2002; Motta et al., 2011; Su and Wang, 2017). The primary interest of this section
is to estimate the time-varying networks for the idiosyncratic error vector X;. Even though the

components of Z; may be highly correlated, those of X; are often only weakly correlated. Hence, it
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is sensible to impose the sparsity assumption on the time-varying transition and precision matrices
of the idiosyncratic error process, making it possible to apply the estimation methodology proposed
in Section 2.3. However, this is non-trivial as neither the common components (AF; or AyF}) nor
the idiosyncratic error components are observable. Motivated by recent work on bridging factor and
sparse models for high-dimensional data (e.g., Fan et al., 2021; Krampe and Margaritella, 2021),
we next use the principal component analysis (PCA) or its localised version to remove the common
components driven by latent factors in the observed time series data.

Let Z = (Zy1,...,2,), F = (F\,...,F,)" and X = (X1,...,X,,)". For the conventional factor
model (2.5.1), we conduct an eigenanalysis on the n x n matrix ZZ'. The estimate of F, denoted
as F = (131, e ﬁn)T, is obtained as the n x k matrix consisting of the eigenvectors (multiplied by
\/n) corresponding to the k largest eigenvalues of ZZ'. The factor loading matrix is estimated by
A= (Kl, e Kd)T = Z'F /n. Consequently, the common component AFjis estimated by Kﬁt and

the idiosyncratic error component X; is estimated by
X, =27 —AF, t=1,....n. (2.5.3)

For the time-varying factor model (2.5.2), the above PCA estimation procedure needs some amend-

ments. Specifically, let
Kh* (Tt - 7')

where h, is a bandwidth and Kj,(-) is defined as in Section 2.3.1, and define the localised data

Kip, (1) 0<rT<1,

matrix:

Z(r) = [Z1(7), .., Za(7)] with Zi(7) = ZK[) (7).

Through an eigenanalysis on the matrix Z(7)Z' (), we can obtain the local PCA estimates of the
A~ A~ ~ T —~
factors and factor-loading matrix, denoted by F(7) = [Fl (1),.. .,Fn<7'):| and A(7), respectively.

Then, the idiosyncratic error vector X; is approximated by

~

X, =2 — Ar)F(n), t=1,...n, (2.5.4)

where we've kept the same notation X; as in (2.5.3) to avoid notational burden.

As in Section 2.4, we only consider the time-varying VAR(1) model for the idiosyncratic error
vector. With the approximation )?t, we can apply the three-stage estimation procedure proposed
in Section 2.3. Denote the preliminary time-varying LASSO estimate as &L-('), the second-stage
i
ij

weighted group LASSO estimate as ;. (-), and the factor-adjusted time-varying precision matrix
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estimate as Qf() = [@gj(-)}dxd. Subsequently, we may construct the uniform network estimates
EST and ELT, defined similarly to ES and EZ in (2.3.13) and (2.3.14), but with @;;(-) and &j;(-)
replaced by &}Lj(-) and QL(), respectively. To derive the convergence properties of these factor-
adjusted estimates, we need the following assumption, which modifies Assumptions 2.C-2.E to

incorporate the approximation error of the idiosyncratic error components.

Assumption 2.F. (i) Denote 0x = maxj<;<p X, - X, It holds that [log(n V d)]'/?séx =

max

op(1).
(ii) Assumption 2.C(i) holds when ¢, 4 is replaced by Cjud = Cpa + [log(n v d)]/?s6x.
(iii) Assumption 2.D(i) holds when ¢, 4 is replaced by C;r% -
(iv) Assumption 2.E holds when ¢, 4 and v}, ; are replaced by dz,d and VJLd = Scl,d\/mv

respectively.

Assumption 2.F(i) imposes a high-level condition on the approximation of the latent X; in the
factor model, i.e., the approximation error dx uniformly converges to zero with a rate faster than
s !log(n v d)]='/2. By Corollary 1 in Fan et al. (2013), a typical rate for the approximation error

from PCA estimation of the conventional factor model (2.5.1) is
ox =0Op ((log n)/? [(log d)/ 22 4 nl/”dfl/QD , (2.5.5)

where v > 2 is a positive number related to moment restrictions. From Theorem 3.5 in Su and
Wang (2017), we may obtain the typical uniform rate for x under the time-varying factor model
(2.5.2) when the local PCA estimation is used. In Assumption 2.F(ii)—(iv), we amend Assumptions
2.C(i), 2.D(i) and 2.E(ii) to incorporate the approximation error dx. However, if we further assume
that h o< n=1/5 and d diverges at a polynomial rate of n satisfying d > n'*2/?, then the rate in
(2.5.5) can be simplified to dx = Op ((log d)n_l/Q) = op(h?) and thus ¢, 4 o Cl’d. Consequently, we
may remove Assumption 2.F(ii)—(iv) and dx would not be involved in the estimation convergence
rates under model (2.5.1).

The following two propositions extend the theoretical results in Section 2.4 to the factor-adjusted

time-varying VAR and networks.

Proposition 2.5.1. Suppose that the factor model (2.5.1) or (2.5.2), and Assumptions 2.A, 2.B

and 2.C(ii) are satisfied.
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(i) Under Assumption 2.F(i)(ii), we have

QU

2

~1 g - 2

1o, s, 22 |70 — (0] = O (). 250
]:

(ii) Under Assumption 2.F(i)—(iii), the oracle property holds for the second-stage weighted group

LASSO estimates and furthermore,

n d

11"2?<Xd; Z Z [&L-(Tt) - ozl-j(Tt)]z =Op (s (C;d) 2) . (2.5.7)

t=1 j=1

(iii) Under Assumption 2.F and the sparsity condition that {Q(7):0 <7 <1} € §(¢,&4), we

have

swp [21() 0| =0 (via+l,), 25.8)
0<r<1 max s
swp [ @1(7) — )|, = Or (&0 710" ) ©259)
0<r<1 0 :
Llat 2 . F 2
S0 d HQ (m) - QWH =Op (éd(vn,d + V) ) - (2.5.10)
0<r<1 F

Proposition 2.5.2. (i) Under the assumptions of Proposition 2.5.1(ii), we have
P (IAE,GL’T - ES) 1. (2.5.11)

(ii) Under the assumptions of Proposition 2.5.1(iii) and min; jycgr mini<i<n [wij(7e)| > A3, we
have

P (Eﬁ»* - E,’f) 1. (2.5.12)

2.6 Monte-Carlo simulation

In this section, we provide four simulated examples to examine the finite-sample numerical perfor-

mance of the proposed high-dimensional time-varying VAR and network estimates. Throughout this
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section, we denote the proposed time-varying weighted group LASSO method as tv-wgLASSO and
the time-varying CLIME method as tv-CLIME. We compare the performance of the tv-wgLASSO
with the (infeasible) time-varying oracle estimation, denoted as tv-Oracle, which estimates only
the true significant coefficient functions (assuming they were known), and the unpenalised full
time-varying estimation, denoted as tv-Full, which estimates all the coefficient functions without
penalisation. We compare the performance of tv-CLIME with the time-varying graphical LASSO
estimation, denoted as tv-GLASSO, which is implemented using the R package “glassoFast” on the
VAR residuals. In addition, to investigate the loss of estimation accuracy due to the VAR model
error approximation, we also report results from the infeasible tv-CLIME, which directly uses the
VAR errors (rather than residuals) in the estimation of the precision matrices.

In the simulation, we use the Epanechnikov kernel K(t) = 0.75(1 — t?), with bandwidth h =
b = 0.75[log(d)/n]/> as in Li et al. (2015a). The bandwidth for the local PCA is set as hy, =
(2.35/1/12)[v/d/n]'/ as in Su and Wang (2017). We set the sample size n as 200 and 400, and
the dimension d as 50 and 100. Although such dimensions are smaller than the sample size when
n = 200 and d = 100, the “effective sample size” used in each local linear estimation in (2.3.3)
is approximately 2nh =~ 140, which is smaller than the combined number of unknown coefficient
functions and their derivatives, 2d = 200. Consequently, in this case, we fail to implement the naive
tv-Full estimation. There are three tuning parameters in the proposed estimation procedure: \;
in the first stage of preliminary time-varying LASSO estimation, Ao in the second stage of time-
varying weighted group LASSO, and A3 in the third stage of time-varying CLIME. They are selected
by the Bayesian information criterion (BIC), the generalised information criterion (GIC), and the
extended Bayesian information criterion (EBIC), respectively. Appendix B.5 gives definitions of
these information criteria.

To evaluate whether the time-varying model structure is accurately estimated, we report the
false positive (FP), the false negative (FN), the true positive rate (TPR), the true negative rate
(TNR), the positive predictive value (PPV), the negative predictive value (NPV), the F1 score
(F1), and the Matthews correlation coefficient (MCC). Definitions of these measures are available
in Appendix B.5. To evaluate the performance of the coefficient estimators, we report the average R
square (average R?) over all the dimensions, the average scaled Frobenius norm of estimation errors
of coefficient functions (EE4), and the root-mean-squared error of the errors (RMSE,). Taking our

proposed tv-wgLLASSO estimator for time-varying VAR(1) as an example,

n

AT 1
EE, = —— HA1 ) — Al H and RMSE, = ,| — (@i — €0)?.
n\/&; (7e) (7o), — 121; )
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To evaluate the performance of the precision matrix estimators, we report the average scaled Frobe-

nius norm of estimation error (EEq) defined as

EEq = ml/g Zn: Hﬁ(”) - Q(Tt)HF
t=1

All the above measures are calculated for each Monte Carlo replication and then averaged over 100

replications.

Example 2.1. The data is generated from a time-varying VAR(1) model with A;(7) being a
diagonal matrix for all 7 € [0,1]. Each diagonal entry of A;(7) independently takes a value of
either 0.64®(5(1 — 1/2)) or 0.64 — 0.64®(5(7 — 1/2)) with an equal probability of 0.5, where ®(-)
is the standard normal distribution function. We set ©(7) to be a block diagonal matrix: Q(7) =
Ii/o @ (1), where .(7) = [Wij«(T)]5y o With w114(7) = w2 (7) = 1, and wi2«(7) = wa14(7) =
1.4®(5(T — 1/2)) — 0.7. The diagonal structure of A;(7) implies that no Granger causality exists
between variables, whereas the block diagonal structure of Q(7) results in weak cross-sectional
dependence between the components of X;.

Table 2.1 reports the estimation results of the time-varying transition matrices and Granger
networks. For the proposed tv-wgLLASSO, the FP and FN values are very small compared with
d? (the total number of potential directed Granger causality linkages or entries of the transition
matrix). This leads to large values of the TPR, TNR, PPV, NPV, F1 and MCC measures, all of
which are close to 1. We can also see that the FP and FN values double when d increases from 50
to 100, but decrease substantially when n grows from 200 to 400. These results clearly show that
tv-wgLASSO can accurately recover the time-varying Granger network as long as the sample size is
moderately large. The average R? of tv-wgLASSO is close to that of tv-Oracle, but the naive tv-Full
method tends to have large R? due to model over-fitting. Although the EE 4 values of tv-wgLASSO
are larger than those of tv-Oracle when n = 200, they drop significantly and are even slightly smaller
than those of tv-Oracle when n = 400. A similar pattern can be observed in RMSE,, indicating
that the proposed tv-wgLLASSO is capable of providing good approximations to VAR errors, which
are used in the subsequent time-varying precision matrix estimation. Unsurprisingly, the tv-Full
method fails to estimate the time-varying transition matrix when d = 100 and n = 200.

Table 2.2 reports the estimation results of the time-varying precision matrices and partial cor-
relation networks. When n = 200, both tv-CLIME and tv-GLASSO have zero FP values, whereas
tv-CLIME has smaller FN than tv-GLASSO. Hence, the proposed tv-CLIME performs better than
tv-GLASSO in terms of the F1 and MCC measures. When n = 400, both tv-CLIME and tv-

GLASSO correctly recover the time-varying partial correlation networks. In terms of the precision



2.6 Monte-Carlo simulation 70

Table 2.1: Transition matrix and Granger network estimation in Example 2.1.

tv-wgLLASSO tv-Oracle tv-Full

measure dimension n =200 n =400 n =200 n =400 n =200 n =400
FP d =50 0.97 0.04 0 0 2450 2450

d =100 1.73 0.08 0 0 - 9900
FN d =50 3.53 0.08 0 0 0 0

d =100 8.55 0.15 0 0 - 0
TPR d =50 0.929 0.998 1 1 1 1

d =100 0.915 0.999 1 1 - 1
TNR d =50 1.000 1.000 1 1 0 0

d =100 1.000 1.000 1 1 - 0
PPV d =50 0.980 0.999 1 1 0.02 0.02

d =100 0.982 0.999 1 1 - 0.01
NPV d =50 0.999 1.000 1 1 1 1

d =100 0.999 1.000 1 1 - 1
F1 d =50 0.953 0.999 1 1 0.039 0.039

d =100 0.947 0.999 1 1 - 0.020
MCC d =50 0.953 0.999 1 1 0 0

d =100 0.947 0.999 1 1 - 0
average R®> d =50 0.289 0.296 0.296 0.297 0.933 0.721

d =100 0.296 0.306 0.305 0.307 - 0.959
EE 4 d =50 0.214 0.160 0.185 0.163 54.29 1.410

d =100 0.224 0.163 0.189 0.166 - 112.8
RMSE, d =50 0.203 0.115 0.162 0.120 1.119 0.876

d =100 0.213 0.113 0.159 0.119 - 1.145

In all the tables, except for exact values of 0’s and 1’s, the FP and FN measures are rounded to 2
decimal places, while the others are rounded to &8 decimal places.

matrix estimation accuracy (EEq), tv-GLASSO performs slightly better than tv-CLIME. In addi-
tion, by comparing the tv-CLIME and the infeasible tv-CLIME, we may conclude that the VAR
error approximation has a negligible impact on the precision matrix and partial correlation network

estimation.

Example 2.2. The data is generated from a time-varying VAR(1) model with A;(7) being an upper
triangular matrix for all 7 € [0, 1]. Each diagonal entry of A;(7) takes the value of 0.7®(5(T —1/2)),
each super-diagonal entry takes the value of 0.7 — 0.7®(5(7 — 1/2)), and the remaining entries take
the value of 0. We set Q(7) = [w;;(7)],,, to be a banded symmetric matrix for all 7 € [0, 1] with
wii(T) = 1, wi (i41)(7) = 0.70(5(1 = 1/2)) = 0.7, w; (42)(7) = 0.7—0.7®(5(7 — 1/2)), and w; j(7) =0
if i — 4] > 2.

Table 2.3 reports the estimation results of the time-varying transition matrices and Granger
networks. Note that the time series variables in this example are more correlated to each other than

those in Example 2.1, which affects the network estimation accuracy. When d = 100 and n = 200,
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Table 2.2: Precision matrix and partial correlation network estimation in Example 2.1.

tv-CLIME infeasible tv-CLIME tv-GLASSO
measure dimension n =200 n =400 n =200 n =400 n =200 n =400
FP d =50 0 0.02 0 0.02 0 0
d =100 0 0.03 0 0.01 0 0
FN d =50 5.06 0 3.49 0 9.24 0
d =100 13.25 0 9.01 0 28.31 0
TPR d =50 0.798 1 0.860 1 0.630 0
d =100 0.735 1 0.820 1 0.434 0
TNR d =50 1 1.000 1 1.000 1 1
d =100 1 1.000 1 1.000 1 1
PPV d =50 1 0.999 1 0.999 1 1
d =100 1 0.999 1 1.000 1 1
NPV d =50 0.996 1 0.097 1 0.992 1
d =100 0.997 1 0.998 1 0.994 1
F1 d =50 0.884 1.000 0.922 1.000 0.768 1
d =100 0.845 1.000 0.899 1.000 0.600 1
MCC d =50 0.889 1.000 0.925 1.000 0.788 1
d =100 0.855 1.000 0.904 1.000 0.653 1
EEq d =50 0.510 0.436 0.503 0.435 0.451 0.407
d =100 0.481 0.421 0.473 0.419 0.433 0.397

the FP and FN values of tv-wgLLASSO reach their maximum at 20.73 and 37.55, respectively,
whereas the F1 and MCC values are around 0.85. As in Example 1.1, the F1 and MCC values
increase when n increases from 200 to 400, and again the average R? of tv-wgLASSO is close to
that of tv-Oracle. However, tv-wglLASSO has much larger EE 4 and RMSE, than tv-Oracle.

Table 2.4 reports the estimation results of the time-varying precision matrices and partial cor-
relation networks. It follows from the EE4 and RMSE, results in Table 2.3 that the VAR error
approximation is poorer than that in Example 2.1. Consequently, the proposed tv-CLIME performs
worse than the infeasible tv-CLIME using the true VAR errors directly in the estimation. In par-
ticular, FN of the tv-CLIME is much larger than that of the infeasible tv-CLIME when n = 200.
Due to the same reason, the infeasible tv-CLIME also outperforms the tv-GLASSO. In addition,
we find that the tv-CLIME is better than the tv-GLASSO in recovering the time-varying precision

network when n = 200, and they perform equally well when n = 400.

Example 2.3. The data is generated from a VAR(1) model with Ai(7) = [a(7)],, 4 being a
Toeplitz matrix and a;;(r) = (0.4 — 0.17)"=7H+1 We also set Q(r) = [wij (T)] 4« q to be a Toeplitz
matrix with w;;(7) = (0.8—0.17)/"~J]. In this example, both the transition and precision matrices are
non-sparse, and we aim to examine how our proposed methods perform when the (exact) sparsity
assumption fails.

Table 2.5 reports the estimation errors of the various methods considered. In this example, the
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Table 2.3: Transition matrix and Granger network estimation in Example 2.2.

tv-wgLASSO tv-Oracle tv-Full

measure dimension n =200 n =400 n =200 n =400 n =200 n =400
FP d =50 13.53 12.75 0 0 2401 2401

d =100 20.73 7.73 0 0 - 9801
FN d =50 18.56 11.11 0 0 0 0

d =100 37.55 13.90 0 0 - 0
TPR d =50 0.813 0.888 1 1 1 1

d =100 0.811 0.930 1 1 - 1
TNR d =50 0.994 0.995 1 1 0 0

d =100 0.998 0.999 1 1 - 0
PPV d =50 0.859 0.875 1 1 0.040 0.040

d =100 0.888 0.960 1 1 - 0.020
NPV d =50 0.992 0.995 1 1 0 0

d =100 0.996 0.999 1 1 - 0
F1 d =50 0.834 0.881 1 1 0.076 0.076

d =100 0.847 0.945 1 1 - 0.039
MCC d =50 0.828 0.876 1 1 0 0

d =100 0.846 0.943 1 1 - 0
average R> d =50 0.465 0.448 0.477 0.462 0.963 0.829

d =100 0.473 0.467 0.483 0.471 - 0.978
EE 4 d =50 0.328 0.250 0.171 0.122 58.44 1.510

d =100 0.323 0.204 0.168 0.122 - 82.60
RMSE, d =50 0.631 0.476 0.417 0.305 1.673 1.414

d =100 0.613 0.390 0.414 0.309 - 1.720

Table 2.4: Precision matrix and partial correlation network estimation in Example 2.2.

tv-CLIME infeasible tv-CLIME tv-GLASSO
measure dimension n =200 n =400 n =200 n =400 n =200 n =400
FP d =50 0.03 0.04 0.02 0.03 0 0.01
d =100 0.01 0 0 0.01 0 0.01
FN d =50 12.62 0.82 2.34 0 20.84 0.06
d =100 24.71 0.23 6.21 0.01 49.73 0.43
TPR d =50 0.742 0.983 0.952 1 0.575 0.997
d =100 0.750 0.998 0.937 1.000 0.498 0.996
TNR d =50 1.000 1.000 1.000 1.000 1 1.000
d =100 1.000 1 1 1.000 1 1.000
PPV d =50 0.999 0.999 1.000 0.999 1 1.000
d =100 1.000 1 1 1.000 1 1.000
NPV d =50 0.989 0.999 0.998 1 0.983 1.000
d =100 0.995 1.000 0.999 1.000 0.990 1.000
F1 d =50 0.850 0.991 0.975 1.000 0.725 0.998
d =100 0.857 0.999 0.967 1.000 0.662 0.998
MCC d =50 0.856 0.991 0.975 1.000 0.749 0.998
d =100 0.864 0.999 0.967 1.000 0.701 0.998
EEq d =50 0.598 0.533 0.526 0.485 0.560 0.514

d =100 0.560 0.489 0.486 0.458 0.536 0.496
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Table 2.5: Estimation accuracy of dual networks in Example 2.3.

tv-wgLLASSO tv-Oracle tv-Full

measure dimension n =200 n =400 n =200 n =400 n =200 n =400
average R2 d =50 0.009 0.029 0.891 0.588 0.891 0.588
d =100 0.005 0.020 - 0.930 - 0.930
EE4 d =50 0.383 0.348 56.66 1.927 56.66 1.927
d =100 0.388 0.364 - 97.60 - 97.60
RMSE, d =50 0.515 0.463 1.716 1.300 1.716 1.300
d =100 0.523 0.486 - 1.776 - 1.776
tv-CLIME infeasible tv-CLIME tv-GLASSO

n =200 n =400 n =200 n =400 n =200 n =400
EEq d =50 1.669 1.601 1.613 1.572 1.584 1.570
d =100 1.674 1.615 1.616 1.580 1.587 1.588

tv-Oracle is equivalent to tv-Full and both suffer from the curse of dimensionality in the conventional
local linear estimation procedure for the time-varying transition matrices (in particular when d =
100 and n = 200). Consequently, the EE4 and RMSE, of the tv-wgLASSO are much smaller
than those of the tv-Oracle. The EEq results of the tv-CLIME are very close to those of the
infeasible tv-CLIME, suggesting that the VAR error approximation has little impact on the tv-
CLIME performance as discussed in Example 2.1. In addition, the EEq results of the tv-CLIME
and Oracle tv-CLIME are generally close to those of tv-GLASSO. The simulation results show that
the proposed tv-wgLLASSO and tv-CLIME perform reasonably well when the sparsity assumption

on transition and precision matrices is not satisfied.

Example 2.4. The data is generated from a factor-adjusted time-varying VAR model in the form
of (2.5.2). The idiosyncratic errors of the time-varying factor model are generated from a VAR(1)
model in Example 1.2. The two factors in F; = (Ft,l,Fm)T are generated from two univariate
AR(1) processes: F;1 = 0.6F_11 + mufl and Fyo2 = 0.3F_12 + mufk, where
uf 1 and uf o are independently drawn from a standard normal distribution. The factor-loading
matrix is defined as Ay = (A1, Ar2) where Ay = A; is a time-invariant vector drawn from a
d-dimensional standard multivariate normal distribution and Ao = (A2, ..., Adt,g)T with Ay o =
2/ (14 exp{—2[10(t/n) — 5(i/d) — 2]}) for i =1,...,d.

Table 2.6 reports the estimation results of the time-varying transition matrices and Granger
networks for the idiosyncratic errors, and Table 2.7 reports the estimation results of the time-
varying precision matrices and partial correlation networks. Comparing with the results in Tables
2.3 and 2.4, we can observe that the factor-adjusted estimation introduces additional estimation
errors, leading to smaller values of F1 and MCC. The impact is more marked when n = 200 but
reduces substantially when n = 400. As in the previous examples, the F1 and MCC values increase

when n increases from 200 to 400. Thus we may conclude that, although the factor model estimation
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Table 2.6: Factor-adjusted transition matrix
and Granger network estimation in Example

2.4.
tv-wgLLASSO
measure dimension n =200 n =400
FP d =50 11.35 10.60
d =100 20.40 10.41
FN d =50 35.97 14.77
d =100 65.45 20.68
TPR d =50 0.637 0.851
d =100 0.671 0.896
TNR d =50 0.995 0.996
d =100 0.998 0.999
PPV d =50 0.852 0.890
d =100 0.869 0.945
NPV d =50 0.985 0.994
d =100 0.993 0.998
F1 d =50 0.725 0.869
d =100 0.756 0.920
MCC d =50 0.725 0.865
d =100 0.759 0.919
average R d =50 0.298 0.350
d =100 0.339 0.389
EE 4 d =50 0.413 0.283
d =100 0.396 0.241
RMSE, d =50 1.319 1.025
d =100 1.230 0.856
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Table 2.7: Factor-adjusted precision matrix
and partial correlation network estimation in

Example 2.4.
tv-CLIME
measure dimension n =200 n =400
FP d =50 0.01 0.01
d =100 0 0.02
FN d =50 38.22 5.36
d =100 65.99 2.21
TPR d =50 0.220 0.891
d =100 0.333 0.978
TNR d =50 1.000 1.000
d =100 1 1.000
PPV d =50 0.999 1.000
d =100 1 1.000
NPV d =50 0.969 0.995
d =100 0.987 1.000
F1 d =50 0.349 0.941
d =100 0.496 0.989
MCC d =50 0.448 0.941
d =100 0.570 0.988
EEq d =50 0.670 0.585
d =100 0.628 0.534

errors are passed onto the three-stage estimation procedure, their impact on the estimation of the

networks is not significant when the sample size is moderately large (n = 400).

2.7 An empirical application

In this section, we apply the proposed methods to estimate the Granger causality and partial

correlation networks using the FRED-MD macroeconomic dataset. The dataset, available on the

Fred-MD website!, consists of 127 U.S. macroeconomic variables observed monthly over the period

from January 1959 to July 2022. These macroeconomic variables can be classified into eight groups:

consumption, orders and inventories; housing; interest and exchange rates; labour market; money

and credit; output and income; prices; and the stock market. A more detailed description can be

found in McCracken and Ng (2016).

We follow McCracken and Ng (2016) and McCracken and Ng (2020) to remove outliers and fill

"https://research.stlouisfed.org/econ /mccracken /fred-databases,/
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missing values. Each variable is standardised to have zero mean and unit variance. We consider the
two factor modelling methods in Section 2.5 to accommodate strong cross-sectional dependence: the
approximate factor model (2.5.1) with constant factor loadings, and the time-varying factor model
(2.5.2) with dynamic factor loadings. The information criteria proposed by Bai and Ng (2002) and
Su and Wang (2017) are used to determine the number of factors in these two models (see Appendix
B.5 for a description of the criteria). Seven factors are selected for the factor model with constant
loadings, whereas only four are selected for the time-varying factor model. Since the latter provides
a more parsimonious model specification, we hereafter report network estimation results only for
this model. The estimated idiosyncratic errors, denoted as z;;, i = 1,...,127, t = 1,...,763, are
then used for our empirical analysis. Miao et al. (2023) suggest determining the optimal order of a
high-dimensional VAR model via a ratio criterion, comparing the Frobenius norms of the estimated
transition matrices over different lags. We extend their criterion to the time-varying VAR model
context (see Appendix B.5 for detail) and subsequently select the time-varying VAR(1) model for
Xi = @e, - Bra21)

Figure 2.1 plots the estimated Granger networks from the static VAR(1) and the time-varying
VAR(1) models. From the estimated time-varying transition matrix, we uncover 190 directed link-
ages in the Granger causality network, among which 78 are self-linkages and 143 are linkages within
the same category. In particular, the self-linkages, which correspond to the significant diagonal
entries of the transition matrix, indicate that the macroeconomic variables in the following four
categories: consumption, orders and inventories; interest and exchange rates; money and credit;
and prices, are more persistent than the others, even though all the variables have been trans-
formed into stationary ones in the preliminary analysis. By contrast, we find 155 directed linkages
for the Granger network estimated via static VAR(1) and hence, our time-varying VAR(1) model
captures more linkages in the network estimation. Figure 2.2 plots the Granger networks estimated
without factor adjustment. Compared with the factor-adjusted version, the Granger network via
time-varying VAR(1) is more dense with 1118 directed linkages, among which 104 are self-linkages
and 432 are within categories. As pointed out by McCracken and Ng (2016), common factors,
which may be interpreted as business cycles, are the main sources of the Granger causalities be-
tween macroeconomic variables, leading to a rather dense network structure. On the other hand,
the estimated Granger network via static VAR(1) without factor adjustment has only 450 linkages.

We further explore the dynamic smooth structural changes of Gaussian causality linkages. Tak-

ing the logarithmic growth rate of S&P PE ratio (S&P PE ratio)? as an example, there are four

2We show in the parentheses the variable names used in the FRED-MD dataset. The variable transformation is
conducted following the guideline in the dataset.



2.7 An empirical application 76
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Figure 2.1: The estimated Granger causality networks using the factor-adjusted static VAR(1)
model (left) and time-varying VAR(1) model (right).
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Figure 2.2: The estimated Granger causality networks using the static VAR(1) model (left) and time-varying
VAR(1) model (right) without factor-adjustment.
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directed linkages to this variable: acceleration of the logarithmic monetary base (BOGMBASE),
the logarithmic return of S&P 500 index (S&P 500), the logarithmic return of S&P 500 industrials
index (S&P: indust), and the logarithmic growth rate of the S&P PE ratio which is a self-linkage.
We re-estimate the corresponding time-varying coefficients using the nonparametric autoregression
model with only the four selected predictors, and draw the 90% confidence bands using the R pack-
age “tvReg”. Figure 2.3 plots the estimated curves of the four coefficient functions. We find that
the logarithmic growth rate of S&P PE ratio is generally persistent and positively correlated to
BOGMBASE in the most recent two decades. The estimated time-varying coefficient of the S&P
500 industrials index return is significant but close to zero. It is thus unsurprising that the static
VAR(1) model with classic LASSO penalty does not detect the Granger causality linkage from this
variable. In fact, LASSO tends to select only one variable in a group of highly-correlated predictors.
Due to high correlation between the two index returns, only the S&P 500 Index return is selected
in the static VAR(1) model. In contrast, the proposed time-varying LASSO selects both of the two
index returns at different time periods, and the second-stage weighted group LASSO aggregates the

information over time and selects both index returns.

Coefficent of BOGMBASE Coefficent of S&P 500

0.3~ 4-
02-
3 01~
> 00
0.1+
0.2

= =]
=1 S
> a

10807
000
2005
010
015
980"
18857
1005°
005
2010
015
020

o 5]
@ &

1960
1865

18
197
1

1960
1965
10
1975°

date date

Coefficent of S&P: indust Coefficent of S&P PE ratio

value

1960
1965
1980
1985
1995
(i)
20057
010
0145
1980
1985
1995
(i)
2005
010
015

1975
1
1870
19

8 1990

@

5 1990

o
2
=%

Figure 2.3: The estimated time-varying coefficients linked to S&P PE ratio with 90% confident
bands.

We plot the estimated partial correlation networks in Figure 2.4, which are generally sparse.
Using the factor-adjusted time-varying CLIME, 234 undirected linkages are detected in the esti-
mated network, among which 205 linkages are within the same category. In contrast, the estimated
network without factor adjustment contains 236 linkages with 211 in the same category. Unlike
the Granger network estimation, it seems that whether to make factor adjustment or not has little
impact on the partial correlation network estimation.

We next examine the time-varying pattern of partial correlation linkages between S&P PE ratio
and four other variables: S&P 500, S&P: indust, S&P div yield (the increment of S&P composite
common stock: dividend yield), and BAAFFM (the spread between Moody’s seasoned baa corporate
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bond and effective federal funds rate). We re-estimate the relevant time-varying functions with a
200-month moving window (Jankova and van de Geer, 2015), and draw the 90% confidence bands
using R package “SILGGM” in Figure 2.5. Note that the partial correlation has a sign opposite to
the corresponding entry in the precision matrix. We find that S&P PE ratio is positively (partially)
correlated with S&P 500 and S&P: indust, whilst negatively (partially) correlated with S&P div
yield. The confidence bands in Figure 2.5 suggest that time-invariant partial correlation linkages

are inappropriate to describe the network structure of the FRED-MD data.
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Figure 2.4: The estimated partial correlation networks with (left) and without (right) factor ad-
justment.
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Figure 2.5: The estimated time-varying elements in the precision matrix linked to S&P PE ratio
with 90% confident bands.

2.8 Conclusion

In this chapter, we estimate a general time-varying VAR model for high-dimensional locally sta-
tionary time series. A three-stage estimation procedure combining time-varying LASSO, weighted
group LASSO and time-varying CLIME is developed to estimate both transition and error precision
matrices, allowing smooth structural changes over time. The estimated transition and precision ma-
trices are further used to construct dual network structures with directed Granger causality linkages
and undirected partial correlation linkages, respectively. Under the sparse structural assumption
and other technical conditions, we derive the uniform consistency and oracle properties for the
developed estimates. In order to accommodate high correlation among large-scale time series and
avoid directly imposing the sparsity assumption, we also extend the methodology and theory to a
more general factor-adjusted time-varying VAR and network structures. Both the simulation and
empirical studies show that the developed network model and methodology have reliable numerical

performance in finite samples.



Chapter 3

Estimation of Large Dynamic Precision
Matrices with a Latent Semiparametric

Structure

Abstract We estimate large dynamic precision matrices for high-dimensional time series data where
the conditioning random variables are multivariate. To overcome the challenges posed by the curse
of dimensionality, we introduce the approximate factor structure and employ the semiparametric
MAMAR approximation to estimate the underlying dynamic covariance matrix of the factors and
the idiosyncratic components. By using the Sherman-Morrison-Woodbury formula, we obtain the
dynamic precision matrix for the time series. Under some mild conditions such as the approximate
sparsity assumption, the proposed precision matrix estimation is proved to be uniformly consistent.
The simulation highlights the advantage of utilising the factor structure when estimating large
dynamic precision matrices. In the empirical analysis, we apply the proposed method to the returns
of S&P 500 constituents. The results indicate that our method performs well in the portfolio

selection problem.

Keywords: Approximate factor model, Conditional sparsity, Large precision matrix, MAMAR,

Semiparametric estimation.

81



3.1 Introduction 82

3.1 Introduction

There has been increasing interest in recent decades on estimation of large precision matrices, which
have applications in various fields including discriminant analysis, network or graphical model es-
timation and optimal portfolio choice. Existing literature often assumes that the precision matrix
of a high-dimensional random vector (with dimension possibly much larger than the sample size) is
static, satisfying an approximate sparsity condition similar to that often imposed on large covariance
matrices (e.g., Bickel and Levina, 2008), and then uses various techniques, such as penalised likeli-
hood (Lam and Fan, 2009), graphical Danzig selector (Yuan, 2010) and constrained ¢;-minimisation
for inverse matrix estimation (CLIME) (Cai et al., 2011), to estimate it. Under a high-dimensional
semiparametric Gaussian copula model framework, Liu et al. (2012) and Xue and Zou (2012) es-
timate the inverse of a correlation matrix by combining Spearman’s rho or Kendall’s tau with the
aforementioned techniques for large precision matrices. A comprehensive review of recent develop-

ments in large precision matrix estimation can be found in Cai et al. (2016) and Fan et al. (2016¢).

The static and sparsity assumptions for precision matrices may be too restrictive to be realistic
for many practical applications. When considering large precision matrices over a long time span, the
static assumption is likely to be violated and hence, it is important to explore their dynamic/time-
evolving pattern to avoid misleading results from subsequent analysis. The sparsity assumption
is also often violated in reality. Hence, there have been some attempts to relax either of the
assumptions in recent years. For example, Kolar et al. (2010) and Zhou et al. (2010) relax the
static assumption by allowing smooth time-varying changes in large precision matrices of dynamic
network or graphical models, where observations are assumed to be either serially independent or
stationary weakly dependent; Qiu et al. (2016) estimate a large precision matrix which depends on
a subject-specific variable; and Xu et al. (2020) test structural breaks on a large precision matrix
and then estimate its smooth time-varying structure between breaks. For the sparsity assumption, a
popular approach to circumvent it is to make use of the fact that many economic and financial time
series variables often exhibit co-movements, possibly driven by some latent factors. Chandrasekaran
et al. (2012) is among the first to study a large precision matrix with latent variables involved. They
provide the graphical model identification conditions and propose a penalised likelihood estimation
method under the joint Gaussian assumption. By decomposing the large precision matrix into a
“low-rank plus sparse” structure under an approximate factor model assumption, Wu et al. (2017)
and Tang et al. (2020) introduce the IPOD (Inverting Principal Orthogonal Decomposition) and
LVD (Latent Variables graphical models via ¢; and penalised D-trace loss) approaches, respectively.
A similar technique is also used by Cai et al. (2020) to estimate large precision matrices for high-

dimensional and high-frequency financial data.

In this chapter, we aim to estimate a large dynamic precision matrix with a latent factor struc-
ture, avoiding both the static and the sparsity assumptions. Specifically, suppose that X; =
(Xt1,.-- ,Xt7N)T is an N-dimensional random vector generated from the following approximate
factor model:

X;=xt+e with x¢ =AF;, t=1,...,T, (3.1.1)

where A = (\jj) Nxk is an N x K matrix of factor loadings, F; = (Fi 1, . .. ,FtyK)T is a K-dimensional

T . . . “ 1. .
vector of latent factors, and €; = (e4,1,...,6+n) is an N-dimensional vector of idiosyncratic errors.



3.1 Introduction 83

The approximate factor model has become an effective tool in analysing high-dimensional economic
and financial time series (e.g., Chamberlain and Rothschild, 1983; Fama and French, 1992; Stock
and Watson, 2002; Bai and Ng, 2002). As in the large panel literature, we consider the setting
that both NV and T diverge to infinity, making it feasible to consistently estimate the factor space
and factor loadings (up to an appropriate rotation). Let Uy = (Up1,---,Upq)’ be a d-dimensional
vector of conditioning variables which may be chosen as the lagged terms of some components of
X or some low-dimensional observed factors (such as the Fama-French three factors). We assume
that K and d are fixed, A is deterministic, and F; and e; are conditionally uncorrelated given the
past conditioning variables Uy, s < ¢t — 1. The dynamic covariance matrix of X; is defined and
computed as

Yx(u) = Var (Xs41|Us = u) = AZp(u)A" + X (u), (3.1.2)

where ¥ p(u) = Var (F¢41|U; = u) and 3.(u) = Var (e¢41|U; = u). It is worth noting that X (u) is
a K x K dynamic covariance matrix, whereas 3. (u) is a large covariance matrix with size N x N. As
in Fan et al. (2013) and Wang et al. (2021b), we impose a sparsity assumption on X.(u), resulting
in a “low-rank plus sparse” or conditionally sparse structure in (3.1.2), which makes it possible to
develop sensible estimation theory. Also note that it is not unreasonable to assume that ¥.(u)
is sparse, as all the systematic and common pattern in X; should have been accounted for by x;,

leaving only individual specific errors in &y.

The primary interest of this chapter is to estimate the dynamic precision matrix, denoted as
Qx(u), which is the inverse of X x(u). Letting Ap(u) = A2¥2(u), by (3.1.2) and the Sherman-

Morrison-Woodbury formula, we readily have
-1
Qx(u) = Q(u) — Q(W)Ap(u) Ix + Ar(u) Q(W)Ar(u)]  Ap(n)' Q. (v), (3.1.3)

where Q.(u) = X-1(u) and I is the K x K identity matrix. Asin Wu et al. (2017) and Tang et al.
(2020), we may impose a sparsity assumption on Q.(u), which leads to a “low-rank plus sparse”
structure for the precision matrix, Qx(u).

The rest of this chapter is organised as follows. Section 3.2 first introduces a semiparametric
Model Averaging MArginal Regression (MAMAR) approximation for €2 x(u) and then discusses the
estimation of this MAMAR approximation. It also discusses the construction of minimum-variance
portfolios using the MAMAR estimates of dynamic precision matrices. Section 3.3 provides uni-
form consistency results for the MAMAR estimators of the precision matrices. Sections 3.4 and
3.5 present Monte-Carlo simulation results and an empirical application showcasing the useful-
ness of our proposed method. Section 3.6 concludes. Proofs of the asymptotic results in Section
3.3 are relegated to Appendix C. Throughout this chapter, we use || - || to denote the Euclidean
norm of a vector; and Amax(*); Amin(-) and Tr(-) to denote the maximum eigenvalue, minimum
eigenvalue and trace of a square matrix, respectively. For a p x p matrix W = (wj;)pxp, we let
IWllo = A2 (W'W) be its operator (or spectral) norm, [|[W|z = Trl/? (W'W) its Frobenius
norm, [Wly =370 | 570 lwsl, (IWll = maxi<jcp 37 [wijl, [Wlloo = maxi<icy 35 [wij], and

[W [ max = maxi<i<p maxi<j<p |wijl-



3.2 Methodology 84

3.2 Methodology

3.2.1 Semiparametric MAMAR approximation

It is clear from the decomposition (3.1.3) that two key dynamic components of x(u) are .(u) =
¥ !(u) and Tp(u). Let 0-45(u), 1 <i,j < N, and op;j(u), 1 < 4,5 < K, be the (4, j)-entry
of the matrices ¥.(u) and ¥ p(u), respectively. Throughout this chapter, we do not impose any
pre-specified parametric form on either o, ;j(u) or op;;(u). As Uy is assumed to be a multivariate
vector of conditioning variables, a direct application of classic nonparametric methods to estimate
0c4j(u) and op;j(u) would suffer from the “curse of dimensionality” issue when the dimension of
u, i.e., d, is larger than three. To address this problem, we use a semiparametric approximation via
Model Averaging MArginal Regression (MAMAR). It is detailed below.

When E(e441,|Us) =0, 1 <i < N, the MAMAR approximation for o ;;(u) = E(e¢41,:6141,| Ut
=u), 1 <i,j <N, is defined as

d d
ocij(0) = agij + Z ak,ijE(er1i€41,5 Utk = ug) =: aoij + Z ke ij O ki (U ) (3.2.1)

k=1 k=1
where ay,;j, 0 < k < d, are unknown weights and o . ;;(ur), 1 < k < d, are univariate nonparametric
functions which can be easily estimated from commonly-used nonparametric methods (such as
kernel smoothing) without incurring the “curse of dimensionality”. The MAMAR approximation
is first introduced by Li et al. (2015b) in the context of semiparametric time series regression
estimation and forecasting, and is further generalised by Chen et al. (2018) to the ultra large
time series regression setting. This idea has been applied to semiparametric dynamic portfolio
choice (Chen et al., 2016), high-dimensional classification (Fan et al., 2016a) and high-dimensional
dynamic covariance matrix estimation (Chen et al., 2019). To write (3.2.1) in matrix form, denote
A = (argj) yun: K =0,1,...,d, and 3. g (ug) = [0c kij(ur)] yyno B =1,...,d. Then, the MAMAR

approximation for 3. (u) can be written as

d
To(u) ~ Ao+ Y Ap © B (), (3.2.2)
k=1

where ® denotes the Hadamard product.

The weighting parameters ay;; play a crucial role in the MAMAR approximation. We next
derive the theoretically optimal weights for the optimal MAMAR approximation of ¥_.(u). For
1 <4,5 < N, the optimal weights af i k=0,1,...,d, are obtained by minimising

J 2
Q(ao,j, a1, - -+ aa4j) = E |€41,i€041,5 — Q0,5 — E k,ij0e k,ij (Ur k)
k=1

with respect to ay;;, k = 0,1,...,d. Following standard calculations as in Li et al. (2015b), we have
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the following solution to the above minimisation problem:

d
T j—
(a(iij, “e ,a/g’ij) = A;ZjlW;,Z], agﬂ'j = (1 — Z a%yij> E(Et’i€t7j)7 (323)
k=1

*

*
where A =gkl

£,47
Wi Z,z‘j,k; = CoV [02 i (Utk), €t41,i€41,5]) =
Var (0. .Ut r)]. Letting A7 = (az’ij)NxN and replacing Ay by Af in (3.2.2), we obtain the

(theoretically) optimal MAMAR approximation to 3. (u):

is a d x d matrix with the (k,[)-entry being ¢ = Cov [0c k,ij (Ut k), 21,1 (Us)], and

is a d-dimensional vector with the k-th element being w

d
22(u) = AG+ Y AL O S (up). (3.2.4)
k=1

Consequently, taking the inverse of 32(u), we have the following optimal MAMAR approximation

to the error precision matrix, £2.(u),
J -1
Q) = |A§+ D AL O B p(u)| (3.2.5)
k=1
When E(e441,|Us) #0, 1 <i < N, note that
S (u) = E (er418141|Us = u) — E (41 |U; = 0) [E(e141|Up = w) ] =: Cc(u) — Mc(u)M-(u)".

We can similarly apply MAMAR to both Cg(u) and Mp(u) and obtain their approximations,
denoted as C%(u) and M$.(u), respectively, and then obtain the optimal MAMAR approximation
to X.(u):

22(u) = C2(u) — M2(u)MZ(u)".

For the component ¥ (u), we can similarly write
T
EF(u) =E (Ft+1FZ+1‘Ut = u) —E (Ft+1‘Ut = u) [E (Ft+1|Ut = u)] = CF(u) — MF(U)MF(U)T.

We can apply MAMAR to both Cp(u) and Mp(u) and obtain their approximations, denoted as
C%(u) and M%(u), respectively, and then obtain the optimal MAMAR approximation to X (u):

2% (u) := C%(u) — M%(u)M%(u)'. (3.2.6)
Letting A%.(u) = A [E%(u)]l/Q, by virtue of (3.1.3), we obtain
Q5 () = Q2(w) — Q) A%(w) [Tk + A (W) QW) AG(u)] " A%(w) Q2(w), (3.2.7)

which is the theoretically optimal MAMAR approximation to Qx (u).

Our main interest lies in estimating £22(u) and Q% (u), which can be seen as “proxies” for Q. (u)
and Qx(u), respectively. Chen et al. (2019) use a similar MAMAR approximation technique for

large dynamic covariance matrix estimation under a sparsity assumption. To relax the sparsity
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assumption, they also discuss, although very briefly, the estimation of the MAMAR approximation
for ¥ x(u) under the factor structure (3.1.2), without providing rigorous theoretical derivation.
In this chapter, we focus on large precision matrices rather than covariance matrices. In order
to derive sensible estimation theory, we assume that 3%(u) > 0 and Q2(u) satisfies the uniform
sparsity assumption, i.e., {Q2(u) :u € %} C §(q,wn, M, %), where §(q,wn, M, %) is defined as

N
Q) = [wy %) Q) = 0, sup |, < M ()t <
() = i (@], -2 € %] Q(w) = 0, sup [Q(w)lls < M, 3251%%;‘“”(“)' <oy,

(3.2.8)
for some 0 < ¢ < 1,0 < M < oo, and wy > 0 (which may depend on N). The notation “Q > 07
denotes that €2 is positive definite.

3.2.2 Factor model estimation

Before developing a feasible estimation procedure for 22(u) and 2% (u), we need to estimate the
latent components in the approximate factor model (3.1.1), i.e., the factor loadings matrix A,
common factors Fy, as well as the idiosyncratic errors €;. We will use the principal component
analysis (PCA) technique, which has been commonly used for factor model estimation (e.g., Bai
and Ng, 2002; Stock and Watson, 2002; Fan et al., 2013).

We first assume that the number of factors, K, is known, a priori, and will discuss its se-
lection later. Letting Xy 7 = (Xl,...,XT)T be the T x N matrix of observations and con-
ducting an eigenanalysis on the 7" x T matrix (XN,TX}V T) /(NT), we obtain a T" x K matrix

F= (fl, ces ,fT)T, whose columns are the K eigenvectors (multiplied by T 1/ 2) corresponding to
the K largest eigenvalues. Replacing F; with F, in (3.1.1) and applying the least squares estima-
tion, we obtain, using the normalisation restriction on @, the following estimate of factor loadings
matrix: A = (3\1, . ,XN>T = X;\LTﬁ /T. Finally, the idiosyncratic error €; can be approximated
by & = (i1,...,80n) = Xi—AF, t=1,...,T.

We next give some regularity conditions which are sufficient for deriving the uniform consistency

results for Fy, A;, and & ;.

Assumption 3.A. (i) The process {(F;,e;)' }$2, is stationary and a-mizing with the mizing coef-
ficient oy satisfying oy = O (Gt), where 0 is a constant that satisfies 0 < 0 < 1.

(ii) The K x K matrix %ATA is positive definite with its smallest eigenvalue bounded away from
zero, and || X;|| is uniformly bounded over 1 <i < N, where X; is the i-th column of A'.

(iii) The covariance matriz Var(Fy) is positive definite. In addition, there exists a constant
c1 > 0 such that E [exp (c1]|F¢[|*)] < oo.

(iv) The idiosyncratic errors satisfy

Ele)) =0, El[e;Fi] =0, and 12{2}(\[ 1rélta§xTE [exp (C1€m)] < 00,

where ¢y is defined in (iii).
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(v) There exist 0 < ca < 00 and 6 > 2 such that

0 0

N

< CQN5/2, max E [es.i€ti — E (€s,i€t,i)] < coN%/2,
1<s.4<T —
1=

max E
1<t<T

N
E i€t
i—1

Most of the above assumptions are standard in the approximate factor model estimation theory
(e.g., Bai and Ng, 2002; Fan et al., 2013; Chen et al., 2018). The sub-Gaussian moment conditions in
Assumption 3.A(iii) and (iv) are required to cover the ultra-high dimensional case where N diverges

at an exponential rate of 7', and can be weakened if NV diverges at a polynomial rate of T'.

Define a K x K rotation matrix

T N
1 «—o 1
R:=Ay <T§ FtF;> <N§ A,A}) : (3.2.9)
t=1 =1

where A is a K x K diagonal matrix with the first K largest eigenvalues of Xy 7Xy,/(NT)
(arranged in descending order) being the diagonal elements. The following proposition gives the
uniform consistency results for f‘t, Xi, and &;;, which are comparable to those obtained in the
existing literature (e.g., Bai and Ng, 2002; Fan et al., 2013; Chen et al., 2018; Li et al., 2023).

Proposition 3.2.1. Suppose that Assumption 3.4 is satisfied, N > T*° with § defined in As-
sumption 3.A(v), and N = O (exp{T"}) with 0 < v < 1/5. Then, we have the following uniform

consistency results:

()

~ 1 T2/é
lgltaé}%“ HFt - RFtH == OP m + W 5 (3210)
(iz)
1/2 2/6
N Sy log N T )
max (A R N||=0p (( T > +N1/2>, (3.2.11)

(iii)
log N\ /2 T2/
()

max max [€y; — &¢i| = Op <(10g T)!/? T N2

1<i<N 1<t<T

) : (3.2.12)

Proposition 3.2.1 shows that f‘t and A are consistent estimators of the rotated latent factors RF;

where § is defined in Assumption 3.A(v).

and rotated factor loadings matrix AR™!, respectively, rather than the factors and factor loadings
themselves (unless R = I). If, in addition, we assume that N > T(?+9)/0 the rate T2/ /N/? would
disappear in (3.2.10)—(3.2.12). In practice, the number of factors, K, is usually unknown but can
be consistently estimated via an information criterion (Bai and Ng, 2002) or a simple ratio method
(Lam and Yao, 2012).

3.2.3 Large precision matrix estimation

With the estimates of A, F, and &; from Section 3.2.2, the estimation procedure for Q2(u) and

Q% (u) includes the following steps: (i) use a semiparametric method to estimate X2(u) and X% (u);
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(ii) apply the method of constrained ¢; minimisation for inverse matrix estimation (CLIME) to
estimate Q2(u); and (iii) with the estimates of A, 3% (u) and Q2(u), compute the estimate of
Q% (u) using (3.1.3).

Let 02,;(u) be the (4, j)-entry of 32(u). We next describe a semiparametric method to estimate
o2, j(u). First, with the estimated idiosyncratic errors, & ;, constructed in Section 3.2.2, we estimate
the univariate nonparametric function o, j ;;(u;) by kernel smoothing, i.e.,

T—-1 Umk—uk ~ ~
t=1 K( 7 )5t+1,i5t+1,j

3&,]6,1']'(“/6 = T—1 U, o—un , 1<k<d 1<i,j<N, (3213)
=1 K (f)

where K (-) is a kernel function and h is a bandwidth that tends to zero as N,T increase. To
simplify the notation, we drop the dependence of h on N, T in its notation. Motivated by (3.2.1),

we consider the approximate linear regression models:

d

Et11,iEt41,5 ~ Q0,5 + Zak,ijas,k,ij(Ut,k)y 1<i4,5<N. (3.2.14)
k=1

Treating £41,E14+1,; and 04,7 (Ur k) in (3.2.14) as the “response” and “regressors”, respectively,
and using the ordinary least squares, we can obtain the following estimate of the optimal weights
defined in (3.2.3):

(@1, - - adss) = AZEWey (3.2.15)

and
T d 1 T-1
o ij = Z Erifry — Y kg (T—l Za\s,k,ij(Ut,k)> ; (3.2.16)
k=1 t=1
where Bsﬂ-j is a d x d matrix with the (k,{)-entry being

T-1 T—

—~ 1 —~ ~
5ij7kl T _ 1 05 kg (Utk)ag,l,ij(Ut,l)’ o-g,k,ij(Ut,k) Us k,ij (Ut k Z O¢ )k z]

and ij is a d-dimensional vector with the k-th element being

T-1 T
. 1 . ~ ~
Wisk = Y ki Ueh)Eist gy Eovt(ig) = Er+1ifiety — 25
t=1 =2
Combining (3.2.1), (3.2.13), (3.2.15) and (3.2.16), we obtain
. p
Ye() = [Gej(W)] yyy With Geij(u) =Goj + D GkijOe i (u)- (3.2.17)
k=1

Similarly, using the estimated factors, f‘t, and the same kernel function and bandwidth as in (3.2.13),

we can construct Cr(u) and 1\//\IF(u), which are semiparametric estimates of C%(u) and M$.(u)
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(subject to a rotation), and subsequently obtain

~ ~

Sr(u) = Cp(u) — Mp(u)Mp(u)'. (3.2.18)

In light of (3.2.7), to estimate £2% (u), we also need to have an estimate of the inverse of X2(u),
ie, Q2u). As the size of the matrix 3. (u) may be ultra large, it is often ill-conditioned and
computation of its inverse becomes very challenging. To alleviate this problem, we use the uniform
sparsity assumption (3.2.8) on Q2(u) and apply the CLIME method for estimating the inverse of a

large matrix. To this end, we define the estimator

Q.(u) = argmin |2|;  subject to Hig(u)ﬂ — IN’
Q

<, (3.2.19)
max
where p is a tuning parameter that tends to zero as N,T increase. As Q2(u) is symmetric, we
can modify the above estimator by symmetrising it. This leads to the final estimator of Q2(u),

Q. (u) = [@ij(w)] ., y, Where
We ji(0) = We,i5(1) = Weij (W) (|0e 55 ()] < [@e ji()]) + @e i (W) (|0z,55(w)| > |@e ji(w)]), (3.2.20)

where W, ;;(u) is the (4, j)-entry of Q.(u). Lastly, by the Sherman-Morrison-Woodbury formula
(3.2.7), we obtain the following estimate of Q% (u):

~ -1 .

Qx(u) = Q. (u) — Q(W)Ar) |Ix + Ap(w) Qe (WAp(u)|  Ap(u)
where Ap(u) = Ki}f(u) with A defined in Section 3.2.2.

3.2.4 Dynamic minimum variance portfolio

One of the most common uses of precision matrices is in financial portfolio choice. We next consider
an example of using the MAMAR approximation and the large dynamic precision matrix estimation
introduced in Sections 3.2.1 and 3.2.3 to construct a dynamic version of the minimum-variance
portfolio. To this end, let X;41 be a vector of N asset returns at time ¢t + 1 and Uy be a vector of d
conditioning variables, which can be chosen as style factors (such as returns on value stocks, returns
on large, small or medium cap stocks) and (macro)economic and financial variables (such as interest
rates, inflation rates, returns on market indices). Assume that Xy, satisfies the approximate factor
model structure (3.1.1). Recall that Ex(u) = Var(X;11|U; = u) and Qx(u) = ;' (u). The

dynamic minimum-variance portfolio for time t + 1, given U; = u, can be obtained by solving

argminw' Xy (u)w subject to w'1 =1, (3.2.22)

w

where 1 is an N-dimensional vector of ones. The analytical solution to (3.2.22) can be written as

S (w1l Qy(u)l

W) = 1" (u)1 C1'Qx(u)l’

(3.2.23)
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Note that we allow short sellings in the construction of the optimal portfolio, i.e., we allow elements

of w*(u) to be negative. We also assume that there are no transaction costs.

Using the semiparametric MAMAR approximation in Section 3.2.1, we can replace ¥ x(u) and
Qx(u) in (3.2.22) with £ (u) := AX%(w)A" + X2(u) and Q% (u) = [Zg((u)]_l. Consequently,
w*(u) can be approximated by

oy -

= 708 w1 (3.2.24)

Using the methods in Sections 3.2.2 and 3.2.3, we can estimate 2% (u) by ﬁX(u), which is defined

in (3.2.21). Hence, in practice we estimate w°(u) by

~ o ﬁx(u)l
w(u) = 71Tﬁx(u)1. (3.2.25)

3.3 Main theoretical results

Define cppij(ur) = E(Fir1,iFir1,|Uik = ug) and mpgi(up) = E(Fq1ilUse = ur), 1 < 4,5 <
K, 1 <k < d Let AL, and A}, be d x d matrices whose (k,l)-entries are 0%\
Covicrk,ij(Uk), cr,ii(Ur)] and 6%71-’,6[ = Cov [mp,i(Usk), mryi(Usy)], respectively. We introduce
the following assumptions, which will be used for establishing uniform consistency results for ﬁg(u)
and Qx (u).

Assumption 3.B. (i) The a-mizing dependence condition in Assumption 3.A(1) is satisfied for the
joint process {(U;, Fy, 1) }22,.

(i) The d-dimensional random vector, Uy, has a compact support, U = [[h_, Uk, where Uy, =
[a, bi] is the support of the k-th conditioning variable, Uy ;. The marginal density functions of Uy i,

fx(+), 1 <k <d, have continuous second-order derivatives and satisfy

min inf (ug) > c3 > 0.
1§1€Sdak§uk§bkf ( )

for some positive constant cs.

Assumption 3.C. (i) For each k, 1 < k < d, the univariate nonparametric functions oy ;i ()
(1<i,j<N), crri(-) 1 <i,j < K), and mpy;(-) (1 <i< K) have continuous and uniformly
bounded derivatives up to the second order.

(ii) For all 1 < i,j < N, the d x d matriz A¥,., defined in (3.2.3), is positive definite and

£,
satisfies

0<cs < min Apin(A

<
| Din ) max  Amax(A

<ep < 3.3.1
T 1< <N =609 ( )

k * )
€,1J &tj

where ¢4 and c5 are some positive constants. The same also holds for the matrices A}}ij and A%, ;.

Assumption 3.D. (i) The kernel function K(-) is symmetric and Lipschitz continuous and has a
compact support [—1,1].
(i) The bandwidth h and the dimension N satisfy

T172Lh

W — 00, N> T4/6, (NT) exp{—clTL} = 0(1)7 (3'3‘2)

h — 0,
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where 0 < v < 1/2, ¢ is defined in Assumption 3.A(iii) and 0 is defined in Assumption 3.A(v).
(i1i) The tuning parameter p in (3.2.19) satisfies p = c6(Cnra +CNT,2), where cg is a sufficiently

large positive constant,

(Nt = (log T)Y? . Cnt2 = \/1og(N vV T)/(Th) + h*.

log N 12 p2/s
T N1/2

The compact support restriction on the random vector U; in Assumption 3.B(ii) is imposed
mainly to facilitate the proofs of our uniform consistency results and can be removed by using an
appropriate truncation technique (e.g., Remark 1 in Chen et al., 2018). A recent paper by Wang
et al. (2021b) derives the uniform consistency properties for the nonparametric large covariance
matrix estimation without the compact support assumption on U;. We conjecture that a similar
extension can be achieved for the large precision matrix estimation in this chapter. The smoothness
condition on the univariate nonparametric functions in Assumption 3.C(i) is common when the
kernel smoothing method is applied. Assumption 3.C(ii) ensures that the optimal weights in the
MAMAR approximation are well defined (see, for example, (3.2.3)). The conditions in Assumption
3.D(ii) indicate that N can diverge exponentially fast with respect to 7', thus covering the ultra-high
dimensional time series setting. There is also a trade-off between the bandwidth condition and the
divergence rate of N. The convergence rate for p in Assumption 3.D(iii) is partly from the uniform

convergence result in Proposition 3.3.1 below and is crucial for the validity of the CLIME method.

Proposition 3.3.1. Suppose that Assumptions 3.A-3.C and 3.D(i)-(ii) are satisfied. Then we have

O —g%.. e
2033, SUp [Gej(w) = 02 5(w)| = O (Gvra + Cvra). (3.3.3)

where %h = ngl %k,h with %kvh = [ak + h, bk — h], CNT,I = (10g T)1/2 (log N/T)1/2 + T2/5/N1/2 5
and {72 = \/log(N vV T)/(Th) + h?.

Proposition 3.3.2. Suppose that Assumptions 3.A-3.C and 3.D(i)-(ii) are satisfied. Then we have

Sr(u) - REG(u)R'

sup =Op (Cnra +CNT2) (3.3.4)

ue¥y
where R is the rotation matriz defined in (3.2.9), ¥%.(u) and ﬁp(u) are defined in (3.2.6) and
(8.2.18), respectively.

Theorem 3.3.1. Suppose that Assumptions 3.A-3.D are satisfied and {Q2(u):ue ¥} C
S(q,wn, M, %), where S(q,wn, M, %) is defined in (3.2.8). Then, we have the following uniform

consistency results:

()

sup [[9:() — 02w)| = Op (Gyrs +Cvra): (33.5)
(i)
sup ||0e(w) - ng(u)HO = Op (@n (Cvra + vr2) 7)) (3.3.6)

ueUy
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(iii)

useuczlz) % Hﬁs(u) — Qg(u)Hi =0Op (wN (Nt + CNT72)2_q) ) (3.3.7)

If we assume that 39(-) is sufficiently close to X.(-) in the sense that

Sug ”Eg(u) - 2€(u)|’max = O(bNTJ)
uc

for some byr,1 — 0, then by Proposition 3.3.1, we have

sup
uey

=Op (Cn1a +CNT2 +bNT1) -

max

SEIES ]

If we further assume that the true dynamic precision matrix Q.(u), u € %, also belongs to
S(q,wn, M, %), then by following the proof of Theorem 3.3.1 and setting p = ¢5((nr,1 + (N2 +
bnT,1), we can show that

sup
ue%y

= Op (CNTa + (T2 + bNT1) S (3.3.8)

max

0. (u) - 2.(v)

Sél?ll) Q.(u) — Qe(u)HO < Sélcz[l) Q.(u) — QE(U)H1
u h u h
= Op (wN (N1 +CNT2 + bNT,l)liq) , (3.3.9)
and
1 11~ 2 N .
sup — HQE(u) — Qs(u)H < sup ||Q:(u) — Qg(u)’ Q.(u) — Qa(u)H
ue%, N F ue%y, max 1
= Op (wN (CnTa + (T2 + bNT,l)Z_q) . (3.3.10)

If the MAMAR approximation rate by 1 satisfies byr1 < (n71 + (NT,2 , the uniform convergence
rates in (3.3.8)—(3.3.10) would be the same as those in (3.3.5)—(3.3.7).

Theorem 3.3.2. Suppose that the conditions of Theorem 8.3.1 are satisfied. Then, we have the

following uniform consistency results:

(i)
sup ||Qx (u) — Qg{(“)“ =Op (wzv (CNT1 + CNT,z)l_q> ; (3.3.11)
ueU O
(i)
Su?lz) % Hﬁx(u) ; Q&(u)Hi =Or <wN (Cvra + Cvre) ™ + %W?V(CNTJ + CNT,2)2_2q> .
ue¥,

(3.3.12)
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3.4 Monte-Carlo simulation

In this section, we conduct some Monte-Carlo experiments to examine the finite-sample performance
of the proposed methods for estimating large dynamic precision matrices. In order to provide a
comprehensive performance study, we examine factor models under four distinct settings. The
precision matrices of the idiosyncratic errors in the four factor models exhibit different structures:
a dynamic block-diagonal structure, a varying-sparsity structure, a dynamic banded structure, and
a dynamic non-sparse structure.

We compare the proposed method for precision matrix estimation with two alternatives, both
of which use MAMAR and CLIME in some way but disregard the factor structure to some extent.
Specifically, Method 1 uses formula (3.1.2) and the procedure in (3.2.13)—(3.2.18) to compute the
covariance matrice estimate 3 x (u), but applies CLIME directly to > x (u) to compute the precision
matrix Qx (u) instead of utilising the factor structure and the Sherman-Morrison-Woodbury formula
(3.2.21). Method 2 completely ignores the factor structure and applies MAMAR directly to X; to
obtain ix(u) and then CLIME directly to ix(u) to obtain ﬁX(u). In all three methods, we use
the Epanechnikov kernel K (u) = 0.75(1 —u?) with the rule-of-thumb bandwidths as the smoothing
parameters.

To determine the number of factors, K, we use a commonly-used information criterion proposed

by Bai and Ng (2002). For any 1 < k < K, where K is a predetermined positive number, we let
~ ~ ~ T
F(k) = |Fi(k),---Fr(k)| Dbe the estimated factors given K = k. Define

Vi (k) NL i (X0~ AR ()] X0~ ARIF(R)
t=1

where A(k) = [Ai(k),---,An(K)]" is a N x k factor loading matrix. Consequently, we can choose

the following objective function:

N+T
IC(k) =log [V (k)] + K - ( N+T ) log(N AT), (3.4.1)
and obtain the estimate K via
K = argmin IC(k). (3.4.2)
0<k<K

When K = 0, the common components disappear and our method degenerates to Method 2.

3.4.1 KSIS + PMAMAR method

In this subsection, we introduce the KSIS + PMAMAR method, which combines the approach of
kernel sure independence screening (KSIS) and the Penalised Model Averaging MArginal Regression
(PMAMAR). This method is proposed by Chen et al. (2018), aiming to use KSIS to screen out the
unimportant marginal regression functions, and use PMAMAR to further select the most relevant
regression functions.

The feasibility of the MAMAR procedure in Section 3.2.3 depends on the positive definiteness

of A%, A%, and A7 (see, for example, (3.2.3) and Assumption 3.C). However, when there are
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irrelevant conditioning variables and one or more of these matrices are near singular, the MAMAR
optimal weights become ill-defined. For instance, if Uy is irrelevant to e;41;6141,; in the sense
that oc 1 (Urk) = E(€t+1,i£t+1’let7k) = E(5t+1,i€t+1,j), which is a constant that does not depend
on Uy, then &7, i = Cov (0 ,ij (Ut k) 021,35 (Ueg)] = 0, for all 1 <1 < d. Consequently, the kth
column and kth row of A ;. are all 0’s and AZ ;. is not positive definite. This issue will arise if any
of the matrices 3. i (ur), 1 < k < d, is sparse (so that many of the elements oy ;;(ui) are zero)
and the sparsity does not depend on the conditioning variable.

The above highlights that in implementation, we need to properly deal with possible irrelevant
variables in each MAMAR regression such as (3.2.14). We use the KSIS+PMAMAR approach,
which implements a preliminary KSIS step before using a penalised MAMAR to eliminate irrelevant
variables and obtain estimates of optimal weights. Taking the regression in (3.2.14) as an example:
in the KSIS step, we calculate, for each (i,7) pair and 1 < k < K, the variances of the response

variable and the regressors as follows,

T T 2
1 ~ ~
Var(g (€1,i€15) E Erifrj)? — ( E €t stJ) (3.4.3)
t:l t=1
and

T T 2
1

Vot eis V) = & 3Bt (Ve —( > s U> 644
t:l

and screen out those 0. (U k)’s that satisfy V/\ar(?ie’k,ij(Ut,k)) < K- V:;(é\m?-:},j), where k is a
constant within the range of (0,1). Subsequently, we perform a ridge regression of & ;& ; on the
remaining o¢ 1 i;(Usx)’s to obtain estimates of the optimal weights. Similarly, we can apply the
KSIS+PMAMAR method to each entry of C%(u) and M%(u). In the simulation and real data
application, we set x = 0.2 and use cross-validation to determine the tuning parameter for each

ridge regression.

3.4.2 Data generating processes
Throughout this section, the dimension N takes one of the values of 100, 300, and 500. The sample
size T is fixed at 300. The conditioning variables Uy is defined as

Uy = (Ui Ui, U)” = (200 /). 8T /o). 2(Tisf o))

where ®(-) is the cumulative distribution function of the standard normal distribution, o5 = /4/3,

~ — — ~ T
U; = (Utl, Uso, Utg) are drawn from a VAR(1) process:
ﬁtZO.E)ﬁt_l-i-Vt, t:].,,T

with [~J'0 = 0, v; are i.i.d. three-dimensional random vectors following the N (0,%,) distribution
with X, = {0};}3x3 and 035 = I(i = j) + 0.21(|i — j| = 1) + 0.1I(|i — j| = 2), for 4, j = 1, 2, and 3.
The dynamic precision matrix £x (u) is estimated at U = u € {®(—0.5/0), ®(0/0), ®(0.5/05)}?
or equivalently U=1¢ {-0.5,0,0.5}3, which are 27 grid points in total.
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Example 3.1 (Dynamic Block Diagonal Precision Matrix). For each t = 1,...,T, the
factor F; is generated independently from a 3-dimensional multivariate Gaussian distribution
N (ur(Uy), EF (Uy)), where

1 (Uy) = (sin(2704), sin(2n0s), sin(27U3))’,

F (Ut) = {O‘ZZ; (Ut)}3><3 with 0'5- (Ut) = 0.4§5 (ﬁtl) + 0.3§5 (ﬁtz) + 0.3§5 (fjﬁ) R

and

i) = (2+arctan(v/2)) {I(i = j) + (2.50 4+ 0.75)1(—0.3 < v < 0.1)I(|i — j| = 1)
+(20 —0.4)I(0.2 < v < 0.4)I()i — j| =2)}.

The idiosyncratic error g; is independently generated from an N-dimensional multivariate Gaussian
distribution N (0, X. (U;)), where

X (Uy) = Iyssungs ® e (Uy) with 3 (Uy) = {55 (U}, .,
55 (Uy) = ¢(4U, + 3 — i) + ¢(4Us) + ¢(4Us + 3 — i), fori=1,...,5,
_ N s~ 1/2
55 (U) = 0.1 (5 () 7%, (), fori# )
and ¢(-) is the probability density function of the standard normal distribution. In this example,
the dynamic covariance matrix of X is additive with respect to the elements of Uy.
Example 3.2 (Dynamic Precision Matrix with Varying Sparsity). For each t = 1,...,T,

the factor Fy is generated independently from a 3-dimensional multivariate Gaussian distribution
N (ur (Up), Q5" (Uy)), where

pr (Uy) = (sin(ﬁl), sin(f]g), sin(ﬁg))T,

F(U) = {wf (U}, with wf; (U1) = 036 (Tan ) + 036 (T2 ) + 0435 (Tis)

and

v—0. 2 . .
Gi;(v) = exp(v/2) {1(7; = j) + 0.5exp [—%] 1(—0.49 < v < 0.99)I(|i — j| = 1)

v—0. 2 . .
+0.4exp [—%1(0.31 <v<0.99I(i — j| = 2)] } . (3.4.5)

The idiosyncratic error &; is independently generated from an N-dimensional multivariate Gaussian
distribution N (O, Q! (ﬁt)>, where

Qg (Ut) = {(A)Z (Ut

M s With Wi (Ur) = 0.4 (T ) + 03655 (Trz ) + 0.3 (Tis )

Note that even if the conditional precision matrices have an additive structure, the conditional
covariance matrices do not maintain the additive structure. This example enables us to evaluate the

performance of the MAMAR method for approximating entries of a conditional covariance matrix
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that are non-additive.

Example 3.3 (Dynamic Banded Precision Matrix). For each ¢ = T the factor Fy

1,.
is generated from an 3-dimensional multivariate Gaussian distribution N( ), and the
idiosyncratic error &; is generated from an N-dimensional multivariate Gaussmm distribution

N (0,9.1 (Uy)), where
Qp {ww (Uy) }3 5 With w; (Ut) (2 + arctan(|U¢|1/9)) % ;5 (|U¢|1)

Q. (Uy) = {wfj (Uy) with wi; (Uy) = (2 + arctan(|U[1/9)) x ;5 (|Ul1),

}N><N

and
Gj(v) =1I(i=j) + [¢(v) + 0.1]I(i — j| = 1) + ¢(v)I(]i — j| = 2), (3.4.6)

in which ¢(v) is the probability density function of the standard normal distribution.

Example 3.4 (Dynamic Non-Sparse Precision Matrix). For each ¢ = 1,...,T, the fac-
tor F; is generated independently from a 3-dimensional multivariate Gaussian distribution
N (ur (Up), Q5" (Uy)), where

ur (Up) = (sin(Uy/2), sin(Us/2), sin(Us/2))’,
Qr (Uy) = {wﬁ (Ut)}3X3 with wi}; (Uy) = CZ-I; (ﬁtl + Ui + ﬁt?;) ,

and

o (0) = (exp(v/4)) {I(i = j) + (0.1 + ¢p(v))I(|i — j| = 1)
+o()I(li - jl =2)}.

The idiosyncratic error g; is independently generated from an N-dimensional multivariate Gaussian
distribution N (0, (Uy)), where

) = {wfj (Ut)}NXN with wi; (Uy) = ¢j; (Utl + Upp + Ut3>

and

si(v) = exp(v/4)g(v)il.

This Toeplitz structure enables us to evaluate the performance of the MAMAR method for approx-

imating the precision matrix with non-sparse dynamic inverse.

3.4.3 Simulation results

To measure estimation accuracy, we consider the average value (averaged over the 27 grid points)
of the scaled estimation errors N—1/2 Hf]x(u) - EX(u)HF and N—1/2 Hﬁx(u) - QX(u)HF In ad-
dition, we report the relative estimation error of the portfolio Weights |wW(u) —w(u)| /||w(u)| and
the volatility of the portfolio with weight W(u), that is /W™ (u)Z x (u)w(u).

Table 3.1 reports estimation results for Example 3.1. Our method outperforms the other two
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methods in terms of the covariance matrix and precision matrix estimation, as evidenced by all four
performance measurements. Importantly, our method exhibits significantly lower relative estima-
tion error in portfolio weights and smaller portfolio volatility compared to the other two methods.
Method 1, while having the same estimated covariance matrix as our method, neglects the factor
structure during precision matrix estimation. Instead of utilising the Sherman-Morrison-Woodbury
formula, Method 1 directly calculates Qx (u) from by x (u) using the CLIME method, resulting in a
sparse estimate of Qx(u). However, since the true Qx(u) is not sparse due to the factor structure,
this approach leads to poor performance of Method 1 in the estimation of the precision matrix.
Method 2 neglects the factor structure also in covariance estimation, leading to a less accurate
approximation of the covariance matrix. Similar to Method 1, the direct use of the CLIME method
for precision matrix estimation exacerbates the estimation performance.

Tables 3.2-3.4 report estimation results for Examples 3.2-3.4. The same pattern as in Table
3.1 is observed, where our method consistently outperforms the other two regardless of the form
of the precision matrix. Although Method 2 exhibits inferior performance compared to Method 1
in terms of estimation errors in the Frobenius norm for covariance and precision matrix estimation
in all four examples, this does not necessarily result in worse performance in the estimation of the
optimal portfolio weights. In other words, the approximation error and the estimation error in
large matrix estimation may accumulate non-linearly in the construction of estimators related to
optimal portfolio weights. As we can see from Example 3.1, Method 2 even yields a slightly superior
estimate of the portfolio weights than Method 1.

In summary, taking into account and utilising the factor structure in the estimation of the
covariance and precision matrices can lead to more accurate estimates, which can further lead to

better performance in portfolio choice.

3.5 An empirical application

We now apply the proposed method to daily returns of S&P 500 Index constituents in the construc-
tion of global minimum variance portfolios. The data are collected from the Thomson Reuters Eikon
database and cover a period from 1 Jan 2021 to 31 Dec 2022. As for the conditioning variables,
we use the one-day-before returns on the Fama-French three factors, which are downloaded from
Keneth French’s data library website !.

We use a rolling window structure to test the performance of our model. Specifically, at the
beginning of each month, we re-estimate the model parameters using data from the most recent
12 months. At the beginning of each trading day, we calculate the weights of the assets using the
returns of the three factors in the previous trading day. Thus, the out-of-sample period is from 1
Jan 2022 to 31 Dec 2022.

After obtaining all the out-of-sample global minimum variance portfolio returns, we compute
their annualised average return (AVR), annualised standard deviation (STD) and the max draw-
down (MDD). These measures are used as measures of the performance of portfolios constructed

using the proposed method and Method 1 defined in Section 3.4. In addition, we construct a

"http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data-library.html



3.5 An empirical application

Table 3.1: Average losses (standard error) for
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Table 3.2: Average losses (standard error) for

Example 3.1. Example 3.2.
Our Method Method 1 Method 2 Our Method Method 1 Method 2
N T )
N =100 47.193 47.193 56.750 N =100 8.261 8.261 12.654
(13.087) (13.087) (22.062) (1.368) (1.368) (0.00)
N =300 77.530 77.530 105.375 N = 300 15.062 15.062 31.328
(20.932) (20.932) (62.907) (2.048) (2.048) (8.338)
N =500 107.032 107.032 145.094 N =500 19.233 19.233 47.491
(33.855) (33.855) (95.681) (2.381) (2.381) (14.934)
N—1/2HQX(u) —QX(u)HF N—1/2H§2X(u)—nx(u)HF
N =100 3.119 4.006 4.217 N =100 0.583 0.633 1.030
(0.022) (0.052) (0.153) (0.014) (0.014) (0.045)
N =300 3.259 4.247 4.390 N =300 0.688 0.714 1.113
(0.026) (0.033) (0.110) (0.013) (0.013) (0.025)
N =500 3.325 4.348 4.469 N =500 0.745 0.755 1.131
(0.028) (0.031) (0.073) (0.013) (0.014) (0.013)
[W(w) — w(w/ [w(w] [(w) — wiw)[/ [w(w]
N =100 0.481 1.056 1.036 N =100 0.173 0.349 0.224
(0.016) (0.012) (0.047) (0.024) (0.038) (0.068)
N =300 0.484 1.096 1.067 N =300 0.127 0.387 0.137
(0.011) (0.010) (0.063) (0.013) (0.032) (0.042)
N =500 0.480 1.094 1.064 N =500 0.105 0.429 0.108
(0.011) (0.007) (0.060) (0.010) (0.025) (0.030)
VW () x (u)w(u) VW (W) x (u)w(u)
N =100 0.632 4.864 4.777 N =100 0.080 0.151 0.151
(0.043) (0.086) (0.241) (0.003) (0.050) (0.050)
N = 300 0.361 5.086 4.874 N = 300 0.044 0.098 0.100
(0.012) (0.052) (0.271) (0.001) (0.028) (0.033)
N =500 0.278 5.059 4.840 N =500 0.034 0.083 0.079
(0.008) (0.036) (0.240) (0.0004) (0.027) (0.029)
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Table 3.3: Average losses (standard error) for ~ Table 3.4: Average losses (standard error) for

Example 3.3. Example 3.4.
Our Method Method 1 Method 2 Our Method Method 1 Method 2
R O R O
N =100 3.365 3.365 3.416 N =100 7.979 7.979 15.215
(0.462) (0.462) (0.447) (1.165) (1.165) (3.630)
N =300 5.523 5.523 6.057 N =300 13.935 13.935 39.040
(0.717) (0.717) (1.178) (1.979) (1.979) (9.760)
N =500 7.182 7.182 8.337 N =500 17.946 17.946 61.546
(1.015) (1.015) (1.711) (2.550) (2.550) (21.051)
N7 R w) - x(u, N7 [ w) - ()]
N =100 1.614 1.723 1.931 N =100 0.640 0.682 1.044
(0.025) (0.023) (0.157) (0.019) (0.019) (0.018)
N =300 1.832 1.881 2.243 N =300 0.752 0.772 1.102
(0.022) (0.021) (0.097) (0.020) (0.020) (0.008)
N =500 1.929 1.963 2.322 N =500 0.805 0.814 1.114
(0.020) (0.019) (0.076) (0.020) (0.022) (0.006)
[W(w) — w)ll / [w()] [W(u) — w)/Tww]
N =100 0.167 0.270 0.286 N =100 0.211 0.367 0.201
(0.051) (0.094) (0.102) (0.020) (0.037) (0.020)
N =300 0.124 0.291 0.206 N = 300 0.146 0.393 0.125
(0.019) (0.021) (0.044) (0.011) (0.037) (0.035)
N =500 0.102 0.287 0.182 N =500 0.121 0.415 0.099
(0.015) (0.018) (0.042) (0.010) (0.035) (0.027)
VR W (Ww(u) Ve W (ww(u)
N =100 0.051 0.094 0.102 N =100 0.079 0.158 0.158
(0.003) (0.032) (0.036) (0.003) (0.055) (0.057)
N =300 0.028 0.068 0.072 N =300 0.044 0.104 0.106
(0.0006) (0.023) (0.026) (0.001) (0.032) (0.038)
N =500 0.021 0.056 0.056 N =500 0.033 0.086 0.084

(0.0004) (0.019)  (0.021) (0.001) (0.020)  (0.032)
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Table 3.5: Out-of-sample performance of the constructed minimum variance portfolios

Our Method Equal-weighted Static Method 1

AVR(%) -3.55 -16.0 11,9 141
STD(%) 14.8 23.2 20.7 22.0
MDD (%) 25.3 26.9 23.5 25.3

portfolio using (Static) sample covariance matrix and CLIME precision matrix estimate with the
same rolling window structure. As a benchmark, we also consider the equally-weighted portfolio
(Equally-weighted).

The results are summarised in Table 3.5. In 2022, all four portfolios experienced negative returns,
with the S&P 500 index recording a return of -18.11%. Among the four portfolios, our method
achieved the highest return of -3.55% and exhibited the lowest standard deviation. The equal-
weighted portfolio performed the worst, with a return of -16.0%. The Static model, which utilises
the information from the covariance matrix, performed slightly better. In contrast, our method
incorporated the information from the factor returns, which may explain its superior performance.
Regarding the maximum drawdown, the four portfolios exhibited behaved similarly, indicating that

they experienced comparable declines in value over the period.

3.6 Conclusion

In this chapter, we estimate large dynamic precision matrices for high-dimensional time series data
where the conditioning random variables are multivariate. To overcome the challenges posed by
the curse of dimensionality, we introduce the approximate factor structure and employ the semi-
parametric MAMAR approximation to estimate the underlying dynamic covariance matrix of the
factors and the idiosyncratic components. By using the Sherman-Morrison-Woodbury formula, we
obtain the dynamic precision matrix for the time series. Under some mild conditions such as the
approximate sparsity assumption, the proposed precision matrix estimation is proved to be uni-
formly consistent. The simulation highlights the importance of correctly specifying the low-rank
plus sparse structure. In the empirical analysis, we apply the proposed method to the returns of
S&P 500 constituents. The results indicate that our method performs well in the portfolio selection

problem.



Conclusions

This dissertation has made significant methodological contributions to the existing literature by
studying factor-model-based models and methods to analyse different types of data and data fea-
tures, such as high-frequency data analysis, network analysis, and precision matrix estimation. The
findings and contributions of each chapter are summarised below.

Chapter 1 contributes to the market microstructure literature by being the first study, to our
best knowledge, to examine and estimate common factors for microstructure noise. We develop
the Double Principle Component Analysis, which provides a robust method for estimating separate
factor structures for efficient prices and microstructure noise in high-frequency data. By avoiding
strong parametric assumptions, DPCA overcomes limitations of existing approaches such as the
PCA-VECM method. The consistent estimators obtained through DPCA enable the identification
of co-movements in both efficient prices and microstructure noise, offer tools for portfolio manage-
ment, and facilitate the construction of factor-mimicking portfolios to hedge risks associated with
microstructure noise.

Chapter 2 contributes to the high-dimensional VAR literature. Our contributions lie in the
development of a three-stage estimation procedure for modelling time-varying networks in high-
dimensional locally stationary time series. The proposed methodology, incorporating time-varying
LASSO, weighted group LASSO, and time-varying CLIME techniques, provides reliable estimators
of transition and error precision matrices. These estimators are used to construct directed Granger
causality networks and undirected partial correlation networks, revealing the dependencies among
a large panel of time series. The established uniform consistency and oracle properties under
sparsity assumptions validate the efficacy of the proposed estimates. Additionally, by extending the
methodology to factor-adjusted time-varying VAR, we account for high correlation among large-
scale time series, enhancing the applicability of the approach.

Chapter 3 contributes to the high-dimensional precision matrix estimation literature. By in-
troducing the approximate factor structure and employing the semiparametric Model Averaging
Marginal Regression approximation, we address the challenges posed by the curse of dimensional-
ity. By utilising the Sherman-Morrison-Woodbury formula and the CLIME method, the estimate
of the dynamic precision matrix for the original time series is then obtained. The resulting estima-
tors demonstrate uniform consistency under mild conditions. The simulation results highlight the
advantage of utilising the factor structure when estimating large dynamic precision matrices.

In addition to the methodological advancements, empirical contributions are made in each chap-
ter, further enhancing the practical relevance of this dissertation. In Chapter 1, empirical analysis

using intraday returns of S&P 500 constituents provides evidence of co-movement in both mi-
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crostructure noise and prices caused by common systematic risk factors. In Chapter 2, the devel-
oped methodology for modelling time-varying networks is applied to a large macro dataset. The
empirical analysis demonstrates the presence of time-varying Granger causal relations and dynamic
contemporaneous partial correlations. In Chapter 3, empirical analysis using returns of S&P 500
constituents showcases the performance of the proposed method for estimating large dynamic pre-
cision matrices. The results demonstrate the effectiveness of the approach in the portfolio selection
problem.

While this dissertation has made significant contributions to the literature on high-dimensional
methods, there are some directions for future research. First, the exploration of sparse factor
models (e.g., Uematsu and Yamagata, 2023b,a; Freyaldenhoven, 2022) and quantile factor models
(e.g., Ando and Bai, 2020; Chen et al., 2021b) presents two interesting directions for future research.
Moreover, high-dimensional inference techniques, such as debiased LASSO (e.g., Van de Geer et al.,
2014; Zhang and Zhang, 2014) could be incorporated into the factor analysis, and tuning-insensitive
approaches, such as scaled LASSO (e.g., Sun and Zhang, 2013; Liu and Wang, 2017), could be
more appealing in the precision matrix estimation. Finally, expanding the application domains
beyond finance, to areas such as health economics and environmental economics, would broaden the

empirical scope of this research.



Appendix A

Appendix to Chapter 1

In the subsequent proofs, we often make use of the following Weyl’s inequality, for two n x n

symmetric matrices My and My, with eigenvalues p;(IM7) and f1;(My):
|15 (M) — 1 (M2)| < [ My — Mallo, (A.0.1)
for j = 1,...,n. If Mj and My are invertible and | M; — Ms||o||M; !|lo < 1, we have

M = M5 lo < M7 [lo| M — Mal|olIM3 o

< M7 = My ol M — Malo[M;flo + My oM — MallofM; o
< M5 oM — Mojlo[|M; lo

< — (A.0.2)
1 — My — Mzllo| M5 [lo

Note that the max norm is not sub-multiplicative, but we can use |[MjMasl/max <

”M1”00||M2||max or ||M1M2”max < ”Ml”maXHMQHL

A.1 Proofs of main results

We first provide some lemmas that will be useful in the proofs of the main results.

Lemma A.1.1. Under Assumptions 1.A-1.D, 1.E* 1.F and 1.G(i), we have ug,(z'z) >
Cdn*<c.

Proof. Recall that
Y, =AgDpX,DyAy + X,

By Weyl’s inequality,

ey (@' @) = ey (Ba)] < 2”2 — Sallo
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Thus, we have

v

picy (2 ) picy (Ba) = 2"z = Ballo

v

1y (B2) — 2" 2 — AgDp A ADgAyllo — [|Zwllo

—||AgDyA AD A} — AyDyEaDy Al o,

where ¥, = Xy + nDy3,Dy. To prove the lemma, we only need to show that

iy (Bz) > CdnTe, (A.1.3)
|z'x — AgDyuA ADgAy|lo = op(dn®Ta), (A.1.4)

and
|AgDy#% ADyAy — AgDyXyDyAyllo = op(dn?Tc). (A.1.5)

As for (A.1.3), let B = AHDHZ}/QQ = (b1, - ,bg,) with ||bj||l2’s sorted in a descending
order, where Q is an orthogonal matrix such that QTE}/ D HA}IA gD HE,IL/ 2Q is a diagonal matrix.

Then ||b;[3, 1 < j < Kp, are the non-zero eigenvalues of BB' = AgDyX,Dy A} and also the

eigenvalues of B'B = 2,11/2DHA}{AHDHE,1/2. Therefore,

=+
165113 < B1]3 = 124 * DA AEDEE, o < [Dul3IZk]o - [Af Ao = O(dn®7),
where the last equality holds by Assumptions 1.B and 1.D. On the other hand,

bruld = pry (S DuAlArDyE)?)

> pry (Zn)pk, (Dmpky (AyAm) > Cdn’fe. (A.1.6)
By Weyl’s inequality and triangle inequality, we have
15(Z2) = 16;13] < [[Zwllo = O(muw na), (A.1.7)

for 1 < j < Ky, where my ng = myq + n?Vm, 4. Therefore by Assumption 1.E*, (A.1.6) and
(A.1.7), we have

ey (Ba) > ([brey 13 = [1brey 13 = 1y (B)| > Cdn®a.

As for (A.1.4), using Lemma A.2.4, we have

|#'z = AuDyp# #DpAyllo < 2|Anllo|Du# w|o + |[w w — Zullo + [|Zwllo

= Op(d(logd/n)'/? . nv+7c)



105
+OP(d(10g d/n)1/2 ’ n?ﬂt) + O(mw,nd)7 (A18)

since ||Agllo = O(dY?), |Dus"w|o < dV?|Dy#s w|; and ||w'w — Tylo < dl|w’w — Ty ||l max-

Then, under Assumptions 1.E* and 1.G(i),
|lz" 2 — AgDp A ADyAf o = op(dn®<),

if pl+ire =27 —205 V) [(log d) — oo and M na = 0o(dn?c). As for (A.1.5), by Assumptions 1.D

and 1.G(i), we have

|AgDgy#A" ADyAy — AgDyXDyAyo

IN

Cod|Dy%" Dy — DyXpDyllo

IN

CoKpgd - max {HKT/ - 2FH1’1’13X7 ||DGQTQDG - DG’ZgDGHmaxy H)ngDG”max}

Op(dn%g (logd/n)'/?) = op(dn’Ta),

where Cj is a constant larger than 1, and the last line follows from Lemmas A.2.1(ii), A.2.2(ii) and

A.2.3(iv). Hence we complete the proof. O]

Although we use PCA* in the first step of our estimation procedure, the n x n matrix zz', on
which PCA* is based, is conceptually more difficult to analyse (as the spot covariance matrices are
time-varying). It is easier to establish the asymptotic theory of % than that of 4*. Therefore, we
first prove the consistency of % (Lemma A.1.2 below) and then use the relations in (1.3.4) to prove

the consistency of %* in Theorem 1.3.1.

Lemma A.1.2. Suppose that Assumptions 1.A-1.G are satisfied. Define the rotation matrix
R =%"#DyAyApD, ., (A.1.9)

where f)x,KH 1s o Kg x Ky diagonal matriz with the diagonal elements being the first K largest

. T . .
etgenvalues of ' x arranged in descending order. Then, we have

(i)

HKH — AHDHR‘ =0p (n—215 .and) = op(1), (A.1.10)
where oot
_ 1 ZnTVJrTG Vv Mw,nd
ang = (logd)"/ 7 I

in which ?éf =124+ 7)1, 1o =(1/2+ 1), 7"{} = (1/24+7)+, Mwnd = My + n%‘/mv,d, and

T o=1/24 7.



(i)
(DFRR'Dy) ' —Ix,llo =0p(1), |DyRR'Dy —Ig,llo=op(l),
and
1/2 1/2 _
d'?|RDY} o = 0Op(1), d?|RDYE )l = Op(1).
(iii)
H/i (DyR)~ ,=0r (n—IE -End) :
and
Hﬁ (DyR)™ — Op (n‘l/ 247 'bnd> :
where e
" B 1 2nrv-i-TG\/TV Mo nd
g = (logd)"/ pYe + 7172
and
- 1
bnd = (log(nd))l/(’}’?/\l) . niQIG * Qnd _|_ (log n)l/('y?)/\l) . W

ProOOF OF LEMMA A.1.2. By the definition of PCA estimation, we may show that

(KH - AHDHR) Dok, = (2" 2 — AyDyh DAl Ay
= AHDHﬁTw/A\H—FwT}’iDHA}{KH

+ (wTw — Ew)KH + EWKH.

We can control the four terms with respect to max norm as follows,

~ ~ At ot
IAED 7" w At |lmax < [Atillmax|Dr 7" w1 [ Anlh = Op(d(logd/n)!/? - 0™V F7e),

~ ~ S
e" AD gAY A b |lmax < [ D g | max | Af 1| As |1 = Op(d(log d/n)/? - nvTT7e),

> ~ —+
(2 0 = Bu)Attmax < [[0" @ — Sullmaxl|Asi 1 = Op(d(log d/n)'/? - n?7V),

and

12w A s lmax < 1B llool| Ak ]lmax = Op(d 1y pna),

since HAHHmax = 0(1)7 < Km HﬁTmeax

IAg|1 < dV2|Ak|lp = dKg, and || Ag|lmax < |Ax||F = d/2Ky. Therefore

H (KH — AHDHR> ]/jacKH‘

max

106

(A.1.11)

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)
(A.1.16)

(A.1.17)

(A.1.18)

=O0p ((log d/n)t/?. nf\J/”r%) by Lemma A.2.4,

= OP (d(log d/n)1/2 ’ n%‘j+?$V%‘t =+ d1/2mw,nd> - OP(d ' and)'

(A.1.19)
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Since HDx KHHO = Op(d~'n~?7¢) by Lemma A.1.1, we can prove that

HKH —AHDHR’

= Op (n_215 -Zind) — op(1), (A.1.20)

max

by noting that

N6 g = op(1)

when nl+476 =27 -2 VR) /(log d) — oo and M na/(d/?n*7c) — 0. Note that (A.1.20) already
shows the consistency of the factor loading estimator, and we can following the argument of part

(ii) to prove ||AgDgR||max = Op(1). Since

1A #llmax < 1A#D AR lmax + |Arr — AyDaR|

max

we can improve the bound for ||ZyAz||lmax in (A.1.18), that is
”EwKH”maX < ||2wH00”KH”maX = OP(mw,nd)' (A-1~21)

Combining (A.1.15)-(A.1.17) and (A.1.21), we prove the result.

For part (ii), noting that

d'AL Ay =1, and HAHDHR AHH (dK g 1/2HAHDHR AH‘

max

we have

|[d ' Ay Ar — (DERR'Dy) Yo = |[d 'R DyAyAgDyR — Ik, |lo
= d_IHRTDHA}{AHDHR — K}{KHHO
<247 |Aulo|ArDrR — Ao +d ' |[ApDaR — Ax|y

= Op(n_2za “ang) = op(1). (A.1.22)

Then, by triangle inequality and Assumption 1.D, we have ||(DgRR'Dy)~! — Ik, |lo = op(1).

One the other hand, by (A.0.2) and (A.1.22),
A}{AH Hd_lR DHAHAHDHR_IKHHO

DyR)™!
[((DaR)™( |[d'R" Dy A AgDyR — Ik, o

=op(1).

) (R'D) =iy o <

Then following the same argument as in (A.1.22), we can prove |[DyRR Dy — Ik, |lo = op(1).
As for (A.1.12), since R™(#"%)'RD, k,, = R' Dy AL, Ay, by (A.1.10) and (A.1.22), we have

la-'D)z R (A ) 'RDYE 1, o
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= [d""RT(%"4)"RDq, iy, — Iicy llo
< [|d 'R Dy Ay AEDER — I, |lo +d R DyAyllol|Ax — AzDrR|o

= OP(n_2IE; “ang) = op(1).
Then by Lemmas A.2.1 and A.2.2, we can prove ||(%#' %) !|jo = Op(1), and therefore we have
_ 51/2
a2 RD,/L, o = Op(1).

Similarly, we can prove the second half of (A.1.12).

For part (iii), we use the following decomposition

T

AR =d Al (AHDHR - KH> R4 —dt (AHDHR - KH) @ +d R DAL’
(A.1.23)
For the first term on the right hand side (RHS) of (A.1.23), we have

|A% (AuDAR ~ Ap ) R74 o
< A3 llo [|(AnDaR — An) Dy | [B212 [ ROV, 17 o
= 0p(d"/?) - Op(d*? - anq) - Op(d~?*n"7c) - Op(d~/?) - Op(1)

= Op(dn TG apg). (A.1.24)
For the second term on the RHS of (A.1.23), when nl™4Z6 =47 /log d — oo, we have

~ T
H (AHDHR _ AH) w'

< HAHDHR _ KHH o
0 (@]

= Op(d?n~Taa,g) - Op(d /2 (logd/n)Y/* - ™ +m/2)

= Op(dn""Gang) - Op(n~"¢ (logd/n)"/* - nV 4+ m/ d=1/2)

w,nd

= op(dn TG ay,y). (A.1.25)

For the last term on the RHS of (A.1.23), by (A.1.11), Lemma A.2.4(v), and Assumption 1.G(ii),

we have

A R'DyAyw’ o < d7 'R Dyllol|ALwllo

=d'-0p(1)-Op (d1/2(10g d/n)t/*. n?‘tmllu/,id + d1/2m11”<id)

when d~'/2(logd/n)'/* - n*\tmqlu/id = o((logd/n)/? - nWHEVRTIG) or equivalently,

pl=4TEVI)HIG = o(d2 logd/m?,,.4). Combing (A.1.24)-(A.1.26), we have 12T — R0 =



109

Op(n~TGay,g), which completes the proof of (A.1.13).
Now we consider (A.1.14) and use the decomposition (A.1.23) again. For the first term on the

RHS of (A.1.23), we have

|AT (AsDaR = Apr) RTA ma

< A% (ArDHR = Rgr ) B oo |4 e

< K} 183 o | (AnDaR = &ir) Dusey|| B3] R 12 s
= Op(d/?) - Op(d*? - apq) - Op(d™*n7Za) - Op(d~?) - Op(n™/?(log )/ (2D)

= Op(d(logn)/0> =12 Taq, ), (A.1.27)

since

||7%T lmax < || £llmax + Hn_1/2£ZHmax = Op(n_l/Q(log n)) + OP(”_l/Q(IOg n)l/’yz)

by Lemma A.2.7.
For the second term on the RHS of (A.1.23), we have

o~ T —~
H(AHDHR—AH> wT‘ <d- HAHDHR—AHH (||| max
max

max

=d-Op(n *Gayy) - Op(n—1/2+f¢ (log(nd))Y/ 27Dy

= Op(d(]og(nd))1/(72A1)n71/2+7"$7218 nd), (A.1.28)

since

e limax < 112 lmax + | Dvellmax = Op(n~"/2(log(nd))) + Op(n" (log(nd)) /)

by Lemma A.2.7.
For the last term on the RHS of (A.1.23), using Lemma A.2.7(v) and (vi), we have

IR Dy ASy 0 e < KB | A s = O (420727 10g(n) /0D . (4.1.29)
Combing (A.1.27)—(A.1.29), we have
|27 = R lmax = Op((log(nd)) /2 12 =256, 0) + Op (a2 7127V Tog(n) /021 |
which completes the proof of Lemma A.1.2. |
PrROOF OF THEOREM 1.3.1. (i) Following (A.1.19) and noting that

Ry = Ap(ATA)? = d PRy DY |
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we have

HK}({ — d_1/2AHDHRf)1/2 ‘

xvKH

=0p (n—lé -and) .

max

Using the notation of R*, it can be equivalently written as

HK;I — AuD (A A)V2R*

=0 TG a,y) .
= 07 (1775 )
(ii) Note that Ax = ﬁ?()grﬁ?)_lﬂ = dl/QﬁTf);’%z and
(RY) ' =d"/*D, 2R L(A %)YV (A.1.30)
By Lemma A.1.2(iii), we have
2 — — N—1/2 /271 —
|77 =@y 2aT| = dPID (AT = R o

- Op (n—Qzé e d)

and

A R A D52 (AT = R7UAT)ma

max

= OP (n_l/%?‘t_zg‘ : bnd) .
(iii) For the first part, it is obvious that )‘/é\*.//iﬂ = ﬁ?f&}{ For the second part, we have

H%*K;} — #ADyAl

max

max

< Ky Hf? — (DyR)"'DyA"

. [AgDuR|

D}, (DgR)'Dys’

(A — AuDrR)D, |

max max

+KHHﬁ/ZT —(DHR)_IDHﬁT‘ KH—AHDHR

max max

= Op (072 b4) - Op (1) + Op(d " (log )/ n=Y/226) . Op (d - ana)
—0p (n—1/2+%‘t 'bnd) ’
as
-1 -1 _ [m1/2 —-1R-1/2 -1 _ —1,_—1,
HD%KH(DHR) DHHO - H(DLKHR) D, /” (DyR) DHRHO — Op (d n c)
by (A.1.11) and (A.1.12). Thus, we obtain the uniformly convergence rate for the common compo-

nents.

(iv) We next prove that R* is an asymptotically orthogonal matrix. By (A.1.30), we have

R"R* =d'D)/;; R'(# %) 'RDY} =d D)} R'DyALApD,

xvKH'
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Thus by (A.1.10) and (A.1.22), we have

IR"R* — I, llo
< |a'D}} R'DyAyAyD /2 —d 'DY} R'DyA,AgDuRD, o
+ld 1D}, R’ DyAyArDyRD, 2 — I, o
= |[d'R'DyALAy — d 'R'DyALADLR|o
+|d 'R DAL AED R — I, |0
= Op(n %Tcay,y).
We thus complete the proof of Theorem 1.3.1. [ |

Next, we prove 1.3.2. For this, we need some intermediate estimators or infeasible estimators
related to B\ and B\ 1. Recall that B 1 is the matrix of eigenvectors associated with the largest Kp
eigenvalues of §HH = n—177*d??*6, and ,@ is the matrix of eigenvectors associated with the rest
of the K¢ eigenvalues. For a Ky x Ky matrix, E, we define S%H = nTIBX HCE", where
HC=H —H and X =n"'1, o H;A. Replacing §HH with S%H in the second-step PCA, we
can obtain the infeasible estimators, ,Bf and B%. For simplicity, we use Sy to denote Sg(f; . Later

on, we will determine a proper choice of Z.

Lemma A.1.3. Suppose that Assumptions 1.A, 1.C and 1.F are satisfied. If the eigenvalues of

r——T
)
o b

are bounded away from zero and infinity uniformly with probability approaching one, then ,Bf

and BE are super-consistent in the sense that

m

[
[

B= —E'BIB'EE'B]'B'ESE = Op(n"), (A.1.31)

and

BT —E7'pu(BL(E)IETALTIBLE) BT = Op(n ). (A.1.32)

Proof. We decompose 8% in the directions of 2' 3 and '3, (which are orthogonal) as

B= = E'BB'EE'A B ELS
+ETBLBLEN)TIETIALTIBLED) B (A.1.33)

Note that 3% satisfies 2~ 'Sy (E")18% = ,BEDg, where DE is a Kg x K¢ diagonal matrix with

1

the diagonal elements being the K smallest eigenvalues of E~1S(E")~! arranged in a descending
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order. Using (A.1.33) and the equality Ix,, = 8,8] + 88", we have

=

Bl E'B"DF =B EE 'Syu(E") 87
=B SunBIB'EE"B] ' B'EST
+ 81 Sunlg, (BN 'E'BLBLE) BB IBLE S
—B1 SuuB|8'EE"B|"' B'ES
+B1SuuBB (E)'ETIBLBLE)TETBTIBIETBE
+B1SunBIBLE)TETIBLBLE)TETIBTIBLIETSE,
=B SunBIB'EE'B| '8 EB
+B1SuuBA (EN)'ETIBLBL(ET)ETBTIBIETBE
+B.SuuBLB E B

m

i)

1

Vectorising this expression, we have

—
=

vec(B1E710%) = {D? ® Ik, — Ik, ® B SuubL
Ik, © B SuuBB (E)'ETBLBLE)TEBI)
vec (B8] SuuBIB EE'B] 1B EST). (A.1.34)

Recall that 8 = (Og,x Ky IKG)T and B8, = (Ix, OKFxKG)T. By Lemma A.2.5, we have

B'Suuf =n" Z GiaGix = Op(n7),

s=1

n
BSuuBL=n""! Z FS\F<} is bounded away from zero,
s=1

B'SyuBL =n B/QZG FiA = Op(n™h),

where GSA = Gsa —n Y0 | Gsa and FS\ = Fsp —n ' >0 | Fia. Thus, only the first block,
B1SuuBL B SuuP
B'SuuB. B'SuupB
DE = op(1), and we have BLE*1,65 = Op(n~1). Then using (A.1.33) again, we can prove the

B]_S gEB.L, of the matrix Sy = does not converge to zero. Therefore,

consistency of B%. Using the same argument, we can prove the consistency of ﬂf. O

When E = Ig,,, the results in Lemma A.1.3 degenerate to Lemma 1 of Harris (1997). When
= = (#"%#)Y2(R*), and replacing Sy y with ESypE", we can prove 1.3.2.

Proor oF 1.3.2. Note that B satisfies §HH3 = B\f)s, where ]35 is a Kg X K¢g diagonal matrix

with the diagonal elements being the K¢ smallest eigenvalues of S mp arranged in a descending
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order. Let E = (#"%)Y/2(R*)". Following similar arguments in the proof of Lemma A.1.3, we have

vec(B1E'B) = {DF @ I, — I, @ B1[ESnE"18.
T 11 T =Ty —1le—1 !
~Ix, © BL1ESHAE]88' (EN) B ALIBLED) B8
- vec (,Bl[EgHHET],B[,BTEETﬁ]_lﬁTEA) . (A.1.35)

Using the convergence results in Lemma A.2.6 and |[Dgljo < D50+ ISt —E 'Sy (EN) o =
op(1), we can prove BJ_.:._l,B =0Op (ﬂL[.:.SHH.:. ]ﬂ) = Op((logn)n=7c - byy).

Then following the same arguments as in the proof of Lemma A.1.3, we can prove the results.
|

PrROOF OF THEOREM 1.3.5. (ii) and (iii) follow directly from Theorem 1.3.1 and 1.3.2.

As for (i), by Theorem 1.3.1 and 1.3.2, we have

|36, - =)= 810, |,
= op (|- 1@ 58,0, o + 1)l B - 58,00,
= Op (n*ZIE .'dnd> -Op (1) +0p(1)-Op ((1Ogn>n*zg ‘bnd>

= Op ((log n)n~Ie -End) . (A.1.36)

Using (8.8 + BB") = Ik,,, we have

AENTETBIQs, = A(B.8] +B8NHE)TIETIBLBLE)TIETIBIBLEN)TEL
= /BL(ENTBL +nV2gp () IETIBLBL(ENTIETIB.TIBLE) AL
(A.1.37)

Therefore, we only need to prove that the second term on the RHS of the second equality of (A.1.37)
is Op(n~*Gang). Indeed, ||n"1/2g|lo = Op(1) and

BT (ET)_la_lﬁL — /BT (ﬁ/Tﬁ)_l/z(R*TR*)_l(ﬁTﬁ)_l/zﬁJ_

=B (£ 4)'BL- (1+ Op(n*"Gana)) = Op(n~"Ganq),

where the last two equalities follow from (1.3.13) and the result that 4"/ converges to a block

1/2 using Lemmas A.2.1-A.2.3. Thus we complete the proof of (i)

diagonal matrix at rate (logd/n)
under the spectral norm.

As for the max norm convergence, by Theorem 1.3.1 and 1.3.2, we have

s a0l
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= 0p (|5 = AE =8 e+ AE) B~ =800 | )
(=26 ba) - Op (1) + Op(n ™2 (tog n)/02")) - Op ((log )n ™7 - bya)
((

= Op ((logn)?2AD) In =L/ T -bnd) . (A.1.38)

= 0

T

Using (A.1.37) again, and noting that |n~"2g||max = Op(n~/2(logn)'/72) by Lemma A.2.7(ii), we
can prove the result.

As for (iv), by Theorem 1.3.1 and 1.3.2, we have

HK%B - AHDHEET/BQﬁ)

— Op (n—% : and> . (A.1.39)

max

Following similar arguments to the proof of part (i), we can show that 8| EE'B = Op(n~*Tca,q)

and that
|AnDyEE"8Qs - AcDGBES|

= Op (n*% : and> . (A.1.40)

max

Combining (A.1.39) and (A.1.40), we complete the proof. [

PrOOF OF COROLLARY 1.3.4

The result is a direct consequence of Theorem 1.3.5 by noting that
BLE)'B.1Qg, =1k, and Qp(B'EP)" = Ik,
|

PrROOF OF THEOREM 1.3.5. We first prove the uniform consistency of 5{7, and then, following a
similar argument as in the proof of Theorem 1.3.1(ii), we can prove the uniform consistency of 2

We use the following decomposition

X -RYF - Hyl)) = d'A} (AHDHR - KH) R (%" — Hol))

-~ T
! (AHDHR - AH) @™ — Woll)

+d 'R Dy AL (7T — Wol)). (A.1.41)

and follow the similar arguments as in (A.1.27)-(A.1.29). The first term on the right hand side
(RHS) of (A.1.41) can be bounded as follows,

|A% (A#DAR ~ Ap) RHE — Hol}) mas
< A% (ArDHR = Apr ) R |27 — HoL} o

< K3f* - IAilo || (AmDa —Aur) Do o [Bics | |RD2E 177 = HOT
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= Op(d'?) - Op(d- ana) - Op(d~"*n"7) - Op(1) - Op(logn)

= Op(d(logn)n G a,g), (A.1.42)
since

177 = Holy lmax < | = FoLy llmax + In /(& = Go1;)max = Op((logn)) +Op(n~/*(logn)'/72)

by Lemma A.2.8.
For the second term on the RHS of (A.1.41), we have

~ T o~
H (AHDHR - AH) @ -wol))|  <d- HAHDHR - AHH 1977 — Woll |lmax

max

= d-Op(n~*¢ayg) - Op(log(nd))

= Op(d(log(nd))n~ "G a,g), (A.1.43)
since
17" = Woly lmax < | % —Uoly lmax+ Dy (7 = Voly,) [max = Op((log(nd)))+Op(n™ (log(nd))*/72)

by Lemma A.2.8 and 7y < —1/4 by Assumption 1.G(i).
For the last term on the RHS of (A.1.41), by (A.1.11) and Lemma A.2.8(v) and (vi), we have

||RTDHA}{(WT - Wol:z)”max < KH”RTDH”maXHA}{(WT - W01:L)||max

- Op (d1/2(log n)) . (A.1.44)
Combing (A.1.42)—(A.1.44), we have
|7~ R ~ HyL)) s = Op((log(nd))n~*G a,0) + Op (42 (logm) .

which completes the proof of the uniform consistency of %. Note that %* = dV/ 2%;%2 and
”ﬁ;}q{ lo = Op(d~'n=%7¢) by Lemma A.1.1, we can prove the uniform consistency of T,

Then following a similar argument as in the proof of Theorem 1.3.5, we can prove the uniform
consistency of ©* and F*.

As for part (ii), it is a direct consequence of part (i). [ |
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A.2 Auxiliary lemmas

This appendix provides some auxiliary lemmas, which are used in the proofs in Appendix A.
Recall that f; and u; are increments of continuous-time processes, between ¢t and t — A, while
g: and v; are the first-order differences of stationary time series, G; and V4, for t = 0, A, ..., nA.
Lemmas A.2.1-A.2.3 give the large deviation theory for them. Specially, Lemma A.2.1 is for f; and
u; only, Lemma A.2.2 for g; and v; only, and Lemma A.2.3 for mixtures of the continuous-time
processes and the discrete-time processes. In addition, Lemma A.2.4 provides bounds for quantities
related to «+. Lemmas A.2.5 and A.2.6 provide bounds for quantities related to the demeaned
cumulated factors. Lemmas A.2.7 and A.2.8 provide uniform bounds for the common factors and

the idiosyncratic errors.

Lemma A.2.1. Under Assumption 1.A, we have

(1) |5 wsauin = Bull,,, = Op((logd/n)'/?);

(i) |0z FoaFin = ZF || oy = Op((logd/n)'/?);

(1) |51 s Fi| e = Op((log d/n)V/?).

(iv) In addition, if Assumptions 1.D and 1.E hold, we have

a2 30 Apusaui Ay — d AL SuA ||, = Op(mya(logd/n)'/?).

max

Proof. Parts (i)—(iii) are the same as Lemma 1 in Ait-Sahalia and Xiu (2017). We only prove part

(iv), as parts (i)—(iii) can be proved similarly. By Bonferroni inequality and Lemma 10 of Tao et al.

(2013b), we have

d

for all 0 < ¢ < p2(d'ALZpAy) - n'/?, where C; = 8Hd_1A}{2UAH||2 is obtained from Lemma

max

> d Ajusaua Ay — d AR Sy Ay

s=1

> c) < K} - dexp(—nc?/(64C1))
max

3 of Fan et al. (2012). By Assumptions 1.A and 1.D, we have that u3(d AL ZyApy) is bounded
away from zero, and Cy < 8Hd*1A}{EUAHH% = O(m} ;). Then using the exponential inequality

and taking ¢ = my4(logd/n)'/?, we can prove the result. O

Lemma A.2.2. Under Assumption 1.F, we have

(i) [In~t iy vsavin = Bol| e = Op((logd/n)'/?);

(ii) [0 251 95895 — gl = Op((log d/n)'?);

(iii) ||t 30 veagiall, . = Op((log d/n)t/?).

(iv) In addition, if Assumptions 1.D and 1.E hold, we have

()= S5y AfyvsavinAn — d= Ay S Apl|,,,, = Op((logd/n)'/?).

max
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Proof. Parts (i)—(iil) are the same as Lemma C.3 in Fan et al. (2013). Note that, under Assumption
1.D(i), the mixing coefficient of {vsa} is bounded by C/, exp(—s?2), for some positive constant C,.
Also note that v; 3o still satisfies the exponential-type tail condition, since

P (|v: < 2P (|V; 2
max, (Jvisal >¢) < max ([Visal > ¢/2)

< 2exp(L - (¢/(26))) < exp(l — (¢/bs) ™), (A2.1)

for 1 <i<d, s=1,---,n, and ¢ > 0, where v4 € (0,72) and b3 > 2b; max{(y4/72)"/2, (1 +
log 2)'/72}, and the last inequality is shown in the proof of Lemma C.2 of Fan et al. (2011). Again

by Lemma C.2 of Fan et al. (2011), |v;, savi, sa| still satisfies the exponential-type tail condition,

max P ([viy saviy,sa — E[vi savip sall > ¢) < exp(l —(¢/ba)), (A2.2)
for 1 <ij,ip <d, s=1,---,n, c >0, some by, and 5 € (0,74/2). Therefore, using the arguments

in the proof of Lemma A.3 in Fan et al. (2011), we can show that

logd 1

for some positive constant Co, which proves part (i). Parts (ii) and (iii) are similar to part (i) and

n
—1 T
n g VsAUGA — 2y

s=1

max

can be obtained from the inequalities derived in Lemma B.1 of Fan et al. (2011). As for part (iv),

P( >d-ac>

n

2 —1 T T T

< K max P |n E)\ VAV ANH 7o — ANy i g NH i

- HlSleéSKH 1 H.ji PR TsA 2 Hji =0 72
s=

we have

n
-1 T T T
n E AHUSAUSAAH _AHE”UAH
s=1

>d- x) . (A.23)

Applying similar arguments in (A.2.1) and (A.2.2) and using Lemma C.2 of Fan et al. (2011) under
Assumption 1.E(iv), we have

|omax, P (d7 Ak, vsa0a A g2 — E[AL 5, 05808 A1 j5]| > ¢) < exp(l = (¢/bs)°),  (A.2.4)

for v6 € (0,727v3/(72 + 73)), ¢ > 0, and some bs; > 0 which does not depend on n and d. Since
|}\}{7 jleA'v; AAH,j,| satisfies the strong mixing condition, we can follow the same arguments as the
proof of Lemma B.1 in Fan et al. (2011) by applying the Bernstein’s inequality in Theorem 1 of
Merlevede et al. (2011) to obtain

P (dl

n
—1 T T T
n E AHJIUSA'USA)\HJQ — AH,jlz’UAH,jz

s=1

> Cs logd> =0 <;2> ; (A.2.5)

n
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for some positive constant Cs, which only depends on 71, 76 and bs. Then by (A.2.3) and (A.2.5),

we can complete the proof of part (iv). O

Lemma A.2.3. Under Assumptions 1.A, 1.C and 1.F, we have
(i) |02 i wsavia | oy = OP((log d/n)'/?);

(id) |71/ 320y 8974 | o = Or((logd/n)'/?);

(iii) ||~/ Es 1 VA LAl = Op((log d/n)'/?);

(iv) |02 5201 goaFinllmax = OP((1/)'2);

() |72 300 Gaa(n ™ PEL) || oy = Op((1/0)'72).
Proof. (i) The proof is similar to that of Lemma 11 in Tao et al. (2013b). Since Y7, usav.\ =

S usaAVoa — > on uSAV'(;l)A, we only need to prove

n~1/2 ZusA '\ = Op((logd/n)'/?) (A.2.6)
and
D2y wa Vi pya = Op((logd/n)'/?). (A.2.7)
s=1

The proofs of (A.2.6) and (A.2.7) are similar, so we only provide the former. Denote

= <
o = gz, poog, Jesenl < 11

Using the Bonferroni and Markov inequalities, we have

c _ < C’U/2—n. 9.
P0) = P (g, max usssl > 1) < e (A.28)

Note that U; and V; are independent. Conditional on the whole path of U, we have

<H _”zzusm

c(log d/n)1/2>

max

<P ( WS wa V| > cllogd/m), 9) P )
s=1 max
< E [P ( n_1/2 Z uSA‘/sA > C(lOg d/n)1/27 QO Ut’ te [0’ 1]) + O(nde_n)
s=1 max
= E [P ( nfl/ZZusAVSA > c(logd/n)'/?|Qy, Uy, t € [0, 1]) + O(nde™).
s=1 max

(A.2.9)

Note that conditional on the path of U; and €, usAV;TA satisfies the same mixing condition and
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exponential-tail condition for V;a, and the coefficients in these conditions only depend on =1, s,
and b;. Thus we can apply the Bernstein’s inequality in Theorem 1 of Merlevede et al. (2011) to
obtain (letting & = ¢(log d/n)'/?)

n
" ( Y wa Vs
s=1 max

&Y &2 &2 (1=
< nd? RN SR S— 2 S S
- exp< 04> exp< 05<1+06n>>+ eXp( Crn P (cs«logém

= O(1/d%), (A.2.10)

>c

QOa Ut7 te [07 1])

when (log d)?/7~! = o(n) and ¢ is large enough, where v = 1/, +1/72, and C4~Cy only depends on
1,72, and by. Therefore (A.2.10) holds true uniformly for all path of U; satisfying £y. Combining
(A.2.9) and (A.2.10), we can prove (A.2.6). The proofs of (ii)—(v) are similar to that of (i) by

choosing proper ¢. So we omit them to save space. O

Lemma A.2.4. Under Assumptions 1.A-1.F, we have

(i) HwTw - ZmeaX = Op((logd/n)'/?. n%\Jfr);

(ii) | " D |, = O ((log /)12 - 070476 )

(iii) [DyA @, = Op ((logd/n) /2 - w7V +7E )

(iv) [l = Op(@"/>(logd/n)"/* - n +myls + n7vml)?);
(0) A5 llo = Op (d2(myfg + n™m)/§) (1 + 7 (log d/n) 1))

Proof. For part (i), recall that wew' = Y0 (usa + Dyvsa) (usa + Dyvsa) and ,, = By +
nDyX,Dy. By Lemmas A.2.1(i), A.2.2(i) and A.2.3(i), we have

n n
HwTw—EmeaX < ZUSAULA -3y +2n'/2||Dy || n_1/2Zu8Av;A
s=1 max s=1 max
n
—|-7’L”Dv||% nil szAv;A -3,
s=1 max

= Op ((logd/n)l/2 . n2?¢> :

For part (ii), by Lemmas A.2.1(iii), A.2.2(iii), A.2.3(ii) and A.2.3(iii), we have

n n
| ADu| . < || usafia +n|Dylo|n™" > viagia Deéllo
s=1 max s=1 max
n n
+n'2 | In72Y Cwaagiall - IDallo + IDvllo || viafia
s=1 max s=1 max

= Op <(log d/n) /% . (1 + pMHoTTE 4 /2478 4 n”“ﬂ?))
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— OP ((logd/n)1/2 . (1 + n1/2+7_"<>)(1 _|_ n1/2+7——8))
@)

P ((log d/n)'/?. nﬂpﬁé) .

Part (iii) follows from part (ii) as H)%Tle < Ky ||[# w|| Part (iv) follows from |w|o =

1/2

max’

[’ w|o” < (@d]lww = By + 1Bullo)'? and [Sullo < (IBully 1Bull)? = Bl =

O(my.a + n*Vm, ). Lastly, we consider part (v). By Lemmas A.2.1(iv) and A.2.2(iv), we have

IAw' o = |Ajw'wAyly?
< (|AG (@ w — Z)Aulo + | A SwAsm|l)"?
< (Kyl|Ay (" @ — Sw)As lmax + AR 1Sl | Ag 1)

Op (dl/Q(mi,{j + 0™ )(log d/m) /4 - 0™ + V(s + nTle/Z))

= Op (@2 (myf +n™my2)(1 +n™ (logd/n)/)) .

O
Lemma A.2.5. Under Assumptions 1.A, 1.C and 1.F, we have
(i) I~ 325 (7 PG (0P GEN) = OP(07h);
N g, ¢ et d 1 t 1 .
(it) ™' S0y FAFA 5 [y (Jy 00udBY — [y 07udB)(fy o7udBy — [§ opudBY)"dt;
(iii) || 320 (0 PGEA) iy = OP(071);
where G5\ = Gsp — G, Fé\ = Fsp — F, G=n"1Y"_ Gsp, and F =n"13" | Fia.
Proof. Parts (i) and (ii) are trivial. For part (iii), by Lemma A.2.3(v), we have
PN GAFL| =nT e ZGSAF =Op(n™1).
[

Lemma A.2.6. Under Assumptions 1.A-1.G, we have

(i) In~'2*" % * |0 = Op(1);

(i) H%XCET ~we| - Op (n—1/2—15 : bnd) ;

(iii) n—luaif\*ﬂ%(s% — X" H*||o = Op ((log n)n"Ta - bnd) ;
(iv) w8 (B7*" 7 *E)B]lo = Op((logn)n™™% - bya).

where B is defined in 1.3.2.

Proof. (i) By Lemma A.2.4, the dominate term is n=! >°"_, FS F¢X, which is of order Op(1).

S

(ii) By Theorem 1.3.5, we have

|7 — (7 — 1.1 E)

=0Op (n*IE‘ : bnd> .

max
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Since Z*E" = (I, — 1,1} /n)#E", #°E" = (I, — 1,1 /n)(¥ — 1,h]) and ||I,, — 1,1} /no = 1,
we then have H??*CE.T —HC =0Op (n*IE . bnd).

(iii) The result follows by noticing that

max

—1 || pxcT GpkemT cT gpxc
0 EL FE — X e

—~ 2
H*E —x°

max

IN

[Ea

max

= Op (nila -bnd> -Op(logn).

max

2 H/‘”?*CET _ g

(iv) is an immediate consequence of (iii).

Lemma A.2.7. (i) Under Assumption 1.A, we have ||£||max = Op(n~?(logn));

(i) Under Assumption 1.F, we have ||g|/max = Op((logn)/12);

(iii) Under Assumptions 1.A and 1.E, we have ||e¢||max = Op(n~?log(nd));

() Under Assumptions 1.E and 1.F, we have ||¢||max = Op(log(nd)'/7?);

(v) Under Assumptions 1.A, 1.D and 1.E, we have d= /| A ||l max = Op(n~1/2(log(nd)));
(vi) Under Assumptions 1.D-1.F, we have d~Y?|[e A |max = Op((logn)'/73).

Proof. (i) Denote the (4, j)-th entry of op; as oy ;5. We can prove that

1/2 - [ 1/2
P(fie]| > Con™%log(n)) = 2P Z/ O‘FSZJdB > Con™ Y2 log(n)

t/n

IN

Kk p(t+1)/

2P Z/ UF,S/\T,Z-defS > Con~Y2log(n), 7 > 1| +2P(r < 1)
t/n

where Cy is a positive constant and the stopping time 7 reduces @; to a local bounded process

defined in Assumption 1.A. By the local (super)martingale property of stochastic exponential of

ft(tﬂ)/n +ijdBJ,, we have

(t+1)/ (t+1)/
exXp Z/ nUFtAT zg Z/ \/EUF,S/\T,ij)2dS <1

and thus

Kr o r(t41)/n n [tFD/n Kr
E |exp E /t \/EO-F,S/\T,ideﬁ E |exp 2/t E :O%',s/\T,ijds
- n n

IN

j=1

i n (t+1)/n
< E|exp 2/ Qsprds < 0.
t/n
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By Bonferroni and Markov inequalities and note that 7 — oo, we have

n KF

P(I£ e > Con™"*log(m)) < 3 3 P(Iful > Con™!/log(n)) = O(n'~),

t=1 j=1
which converge to 0 when Cy is large enough.
The proofs of (ii)—(iv) are similar to that of (i) so we omit them to save space.

(v) Denote the (i, j)-th entry of oy as oyy,i;. Following the same argument as in the proof of

part (i), we have

d 4 (t+1)/n
E |exp ZZAHM/ (n/d)"*ousnr,i;dBY,

i i=1 j=1 t/n
[ (t+1)/n 4 _d
n
< E|exp / ZZAH,ikUIQJ,sAmde
2d Jim i=1 j=1

< 00,

(t+1)/n
< E |exp (nHAZHmM/ QS/\TdS>
t/n

for k=1, ..., Kgy. Then using Bonferroni and Markov inequalities again, we can prove the result.

(vi) It can be proved by using Markov inequality and (1.2.10).

Lemma A.2.8. (i) Under Assumption 1.A, we have |F — 1, F, ||lmax = Op(logn);

(ii) Under Assumption 1.F, we have and ||€ — 1,Gp||max = Op((logn)/12);

(i4i) Under Assumptions 1.A and 1.E, we have |% — 1,Uy ||max = Op(log(nd));

(i) Under Assumptions 1.E and 1.F, we have |7 — 1,V ||max = Op(log(nd)'/2);

(v) Under Assumptions 1.A, 1.D and 1.E, we have d~2|(% — 1,Uy) A x| max = Op((log(nd));
(vi) Under Assumptions 1.D-1.F, we have d~/?|(7 — 1,Vy ) Axr||max = Op((logn)'/73).

Proof. The proof is similar to Lemma A.2.7 so we omit the proof. O



Appendix B

Appendix to Chapter 2

B.1 Proofs of Theorems 2.4.1-2.4.4

Proof of Theorem 2.4.1. The main idea to be used in this proof is similar to that in Bickel
et al. (2009), Lian (2012) and Li et al. (2015a) which study high-dimensional data under the classic
independence assumption. In the following proof, we need to use the uniform convergence properties
of the kernel-weighted quantities for time-varying VAR (say, Lemma B.2.3 in Appendix B.2). In
fact, we next prove a strengthened version of (2.4.4) which also includes a uniform consistency of

the derivative function estimates:

max max. (| (70) — aie(7)l| + 4 | & () — alu()]) = Op (VEN).  (BLY)

As we only consider the time-varying VAR (1) model,
Qio(1) = [0i1 (1), in(12), -+ s ia()]” and ey () = [} (1), afo(Te), -+ aa;,d(Tt)]T-
Recall that %(7) = {j : a;j(r) # 0} and define 7/(r) = {j Do () # O}. We first prove that

foranyi=1,---,dand t=1,--- ,n,

Yo g+ Yo <2 Y0 S+ Y 16 (B-1.2)

JEFi(Te) T (1) JESi(T¢) jeF! (re)

where 8; j (1) = Q;,j(7t) — a;,j(7) and 6 ;(7¢) = h [a;j(n) — a;»J(Tt)}

By the definition of the preliminary time-varying LASSO, we have
L (qie(1r), (1) | i) < & (tia(me), ia(me) | 72)

forany i =1,--- ,dand t = 1,--- ,n, where & (o, 3 | 7¢) is defined in (2.3.4). Then, we readily
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have that
g‘ (az‘.(Tt) a/ (Tt) ’ Tt) — g (&Z‘.(Tt) &/ (Tt) ‘ Tt)
[Zawn +hZ] TtZa”Tcha”Tt]. (B.1.3)
7j=1
Let
8i(re) = [6:1(7), -+ dia(m)]" and &j(7) = [0 1(m), - ,5§,d(7t)]T~
Note that

Zi (tia(T1), 0o (12) | Tt) — Zi (Qia(T2), Ao (72) | 72)

= 2[L](r)di(re) + Li 1 (7)8}(me)] — Tllzn: { [&(n) +8(11) <TS ; n)] T Xs—l} K (75 — 71)

s=1

< 2[L; o(1)di(me) + Li 1 (12)0i()] (B.1.4)

where L; o(7;) and L; 1(7¢) are defined in Appendix B.2. By Lemma B.2.3, we may show that

|Li o(7)6i(7e) + Li 1 (7)8;(7)| < Op (noa) - (Z% 7 y+z|5 ) (B.1.5)

uniformly over i =1,--- ,dand t =1,--- ,n

On the other hand, by the triangle inequality, we may prove that

[ a4 d d d
A D 1@ ()l 4 Y a ()] =D e (m)l =Ry aé,j(ft)]
j=1 j=1 j=1 j=1

= M| Y (@)l =l +h Y (&Q,j(ft)aé,j(ft))]Jr

| j€Fi(Tt) JEF ()

MY @l h Y

| j¢7i(Te) &S () i
> /\1< ST il >0 16l +>\1( S bl + > 52,]’(7-15))‘
JEFi (1) JeF! (¢) J¢Fi(Te) &7 (1e)

(B.1.6)

By (B.1.3)-(B.1.6) and the condition ¢, 4 = o(A1) in Assumption 2.C(i), we complete the proof of
(B.1.2).
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Let u1 = (u1,1,- - ,ul,d)T and ug = (ua,1,- - ,u2,d)T be two d-dimensional vectors and

:
Bi(1; M) = {u = (up,ug) : fua]? + fJual® = M,

d
> (gl + uagl) <31 D0 Juigl+ > Jugy },

J=1 JEFi(Tt) JeF (1)

where M is a positive constant which may be sufficiently large. Note that for any ¢ = 1,--- ,d,

t=1,---,n, and u € B;(r; M),

3
L} (cie(Te) + Vshur, oy (1) + Vshua/h | 7)) — L5 (qtie (), i (1) | 7¢) = ZEi,k(Tt), (B.1.7)
k=1

where

Eia(r) = Zi(aue(m) + Vshut, cue(e) + Vshiua/h | 7)) — Zi (qtie(11), e () | 71)
d d

Eiam) = A [ D leis(m) + Vedui =) laij(m)l |

j=1 j=1

d
Zis(n) = Z|ha (1¢) + VsAug ;| — Z|ho¢ (70|

7j=1 7j=1

For Z; 1(m), it can be written as
Zi1(m) = —2v/s \u' Li(1y) 4+ s\ ¥ (1y)u, (B.1.8)

;
where L;(1) = L;O(T),L;’l(’]')} , and W(7) is defined in (2.4.2). By the definition of %;(7; M),
Lemma B.2.3 and the Cauchy-Schwarz inequality, we have

max |f)\1u Li(re)| = op (s)\Q) ||| (B.1.9)

1<:<
By (B.1.8), (B.1.9) and the uniform restricted eigenvalue condition (2.4.3), when n is sufficiently
large and M is chosen to be large enough, we have

. . . — 1
nin, 121£nue%)1ir(17f;;M) uw'Zi1 (1) = sN3u O (r)u(l + op(1)) > 5/4,08)\%”’[1,”2, w.p.a.l.  (B.1.10)

We next consider =; 5(7) and Z; 3(7¢). It is easy to show that

d d

Eio(nt) = M Z |aij (i) + Vshu | — Z |ovi j(7¢)]

j=1 j=1

= A\ Z [aij(7e) + VsAhua 5| — | (7)]] + M Z [VsAuy ]

JEFi(Tt) j¢Fi(re)
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= O (sA]) - fwall + X Y [Wshurgl =0 (sA7) - ], (B.1.11)
J¢Fi(Te)
and similarly,
Eijg(Tt) =0 (S)\%) . HUQH + )\1 Z |\/§)\1U2J‘ =0 (SA%) . ||u2||, (B.1.12)
I 7 (7t)
uniformly over i =1,--- ,dand t =1, --- ,n.

With (B.1.7) and (B.1.10)—(B.1.12), letting M be large enough, we can prove that the leading
term of

L (ctie(T2) + Vshur, oy (1¢) + Vshua/h | ) — & (ctie(Te), ie(T2) | T)

is positive uniformly over ¢ = 1,--- ,d and t = 1,--- ,n. Hence, we may find a local minimiser to

Z¥ (o, B | 7¢), denoted by [otie(7t), ha,y(7%)], in the interior of
{(ctie(7) + V/sA1ur, hatjy (7¢) + V/shiug) + u € Bi(m; M)},

which, together with (B.1.2), completes the proof of (B.1.1). [ |

Proof of Theorem 2.4.2. Define

.
LY, = [19(cer,Ber | 1), o185 (Ctan, Bon | )]
r T
L = zfj(a.l,ﬁ.l|Tl)7...,zfj(a.n,ﬁ.n|Tn)} ,
r T
~ i ~ Qjin
Pe. = |ph (&) —25 o (@) 2 ]’
2,) i A2 (H Zy]’)Ha]H A2 (H ’h]”) ||a]||
_ B Bll B ﬂ\n T
P’ = P (D..)Jij...7p’ (D) J ’
" NN A T8
where
o IR r
1,710 T) = — ti — Tt —T t—1 ( Lt—1,j08p\Tt —T),
Bl = =3 {oni— ot Bl =] Xeot f a1 Kl —7)
t=1
B 1 = T Tt — T
a8l ) = 3 {w—la+ Bl =) Xt faeay (7T ) Kn(m = 7).
t=1

From the KKT condition (e.g., Fan and Lv, 2011; Fan et al., 2014b; Li et al., 2015a), the oracle

estimate <1A&f, ﬁf) is the unique minimiser to the objective function @;(A,B) if

LY, P =0, for jeg, L) —P) =0, for jeg (B.1.13)

max |[Lg;|| < min ph, (IGi,]), max||LE, | < minph, (Diy), (B.1.14)
IS JES; JES; JES;

3
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hold at A = Af and B = ]§,‘L’, where 0,, is an n-dimensional vector of zeros.
Note that the equalities in (B.1.13) automatically hold by the definition of the oracle estimates
;&f and ]§Z° It remains to prove (B.1.14). We next only show the proof of the first assertion

in (B.1.14) as the proof of the second one is analogous. By Theorem 2.4.1 and the condition of

(ns)/2X\; = o(\z) in Assumption 2.D(i), we may show that min; 7 P, (leisl) = A2 w.p.a.1.

Meanwhile, by Lemmas B.2.3 and B.2.4 as well as Assumption 2.D(i), we may prove that
max L] = Op (Vnslog(n V d)Gn.a) = or(X2)
€S

when A = AZO and B = ]§Zo, leading to the first assertion in (B.1.14). Then, the mean squared

convergence result (2.4.8) follows from Lemma B.2.4. [

Proof of Corollary 2.4.3. By Theorem 2.4.2 and Assumption 2.D(ii), we may show that
n
P ((lr'nin ’d?j(Tt) > aphg > 0) —1
7

and

leading to (2.4.9). |

Proof of Theorem 2.4.4. By Lemma B.2.5 in Appendix B.2, we have

S =) - =)

=0p Wy a+vpa)- (B.1.15)

n
max

By (B.1.15), the sparsity assumption (2.3.7) and the inequality: [[W1Wal|lmax < [|[W1|1]|W2]|max

for any two square matrices W1 and W with the same size,

sup HId — 2(7‘)9(7‘)‘

= swp ||=()0(r) - S(r)Q)|

0<r<1 max 0<7<1 max
< sw |20, |[£) - ()
0<7<1 max
< (9 sup Hf)(T)—E(T)‘
0<r<1 max
= Op(Vpa+vha), (B.1.16)

where Cy is defined in (2.3.7). By (B.1.16), the triangle inequality, Assumption 2.E(ii) and the

definition of the time-varying CLIME estimate, we readily have that

s 20 [260) 0]

max
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< sup Hf)(r)ﬁ(T)—Id‘ + sup HId—f](T)Q(T)‘
0<r<1 max 0<r<1 max
< X+O0p (Vi a+vea) =0p (vea+vig)- (B.1.17)

By Lemma 1 in Cai et al. (2011), Hﬁ(T)Hl < ||92(7)|l; £ Co uniformly over 0 < 7 < 1. Then, by
(B.1.16) and (B.1.17), we readily have that

swp || =(r) [€r) - (n)]|

0<r<1 max
< sup Hﬁ(T) [Q(T) — Q(T)} ‘ + sup H [2(7) — 2(7’)} [ﬁ(v‘) — Q(T)} ‘

0<r<1 max  0<r<1 max
< Op(vga+vpa) +2Cy sup Hf](T) —2(7‘)‘ =O0p (vVpa+vpa)- (B.1.18)

0<r<1 max
Using the assumption [[£2(7)[|; < C2 again and (B.1.18), we have
sw |2 -0 < sw ), |20 [0 - 20|
0<r<1 max 0<r<1 max
= Op(vpatvia). (B.1.19)

By (B.1.19) and the definition of Q(7) in (2.3.10), we prove (2.4.10).
We next give the proof of (2.4.11). By Lemma 1 in Cai et al. (2011), we have

i=1 =1 i=1

Noting that

d d
Zwm I (i (T)] < As) = Z!wm \—Z!wm ) (@i (T)] > As)

M&

)| = Z jwij (T)] + Z (@i ()T (|35 (T)| > A3) — wij (7)]

d
< Y 1@ (0T ([@45(7)| > As) — wis(7)]
j=1
we have
su Q(r —QTH < max Wi (1) — wiji(
0<T1:<)1H ™ ™ o 0<T<11<Z<d§:| ! (7

IN

2 I (|co;5 A
oi‘i&?zzz’% ~e IR )+

&2&&%2’“@] DI (1= )



129
=: A1+ A, (B120)
Define an event

& = { sup H(AZ(T) — Q(T)‘
0<7r<1

< e (v g+ v,’;d)} ;

max
where ¢, is a positive constant such that P (&) > 1 — € with any ¢ > 0. Conditional on &,

d
Ay <ce(vy g+ vy ) sup | max I(|ww( ) > A3) | - (B.1.21)

0<r<1 [ 1<i<d <

Note that on &,

@i ()] < Jowig (7] + 1@ (7) = wig(T)] < |wig (T)] + ¢ (Vg + vina) -

Choosing C3 = 2¢. in Assumption 2.E(ii), the event {|@;;(7)] > A3} implies that
{\wij(7)| > c, (Z/Zd + u;;d)} holds. Then, by (2.3.7) and (B.1.21), we may show that on &,

d

B % elhat i) | s 3T ()] > (Rt i)
ST =1

wii ()19
ce (Vg g+ vna) | sup max jwij (7)) i
0<7<1 1<Z<d — Cg (VO . Sy d)
B n, n,

— Op (gd (Vo + u;;d)l’q) . (B.1.22)

IN

On the other hand, by the triangle inequality,

@i ()| > [wij ()| = @i (1) — wij (T)| = |wis ()] = ce (Vi q + vi.a)

on &.. Hence, we readily show that {|&;;(7)| < A3} indicates {]wij (7)] < 3ce (I/Z v d) } Then,

by (2.3.7) again, we have

Ay < sup maxZ]ww )T (Jwi(7)] < Bce (Vg + 5 4))

0<r<1 1Sisd
1—q (, 0 * B
< () T (vp g+ ’/n,d) 0<T<1 112?<Xd Z i (7
1_
= Op <€d (vea+vna) q) : (012

The proof of (2.4.11) can be completed by (B.1.20), (B.1.22) and (B.1.23).
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Following the proof of (2.4.11), we also have

s o —ae)] =or (6 wha+via) ™).

which, together with the following inequalities:

1o - a0, < o - o)

Q(r) - ()

max 1

leads to (2.4.12). The proof of Theorem 2.4.4 is completed. [ |

Proof of Corollary 2.4.5. By (2.4.10) in Theorem 2.4.4 and the condition of

ming j)egr Mini<e<y [wij ()| > A3, we have

P | 2 =N 0) = B.1.24
((L%é%ﬁl%?ﬂww(ﬁ)\_ 3> > ( |

Letting &, and ¢, be defined as in the proof of Theorem?2.4.4 and choosing C5 = 2¢. in Assumption

2.E(ii), we may prove that

(3%5 Joax @i ()| < ce(vp g+ Vna) < A3 (B.1.25)

conditional on &.. By virtue of (B.1.24) and (B.1.25), letting ¢ — 0, we prove (2.4.13). [ |

B.2 Technical lemmas

In this appendix, we give some technical lemmas which are crucial to proofs of the main theoretical
results in Appendix B.1. Without loss of generality, we focus on the time-varying VAR (1) model
framework. Throughout the proofs, we let M denote a generic positive constant whose value may

change from line to line.

Lemma B.2.1. Suppose that Assumption 2.A is satisfied. Let

tp=u/C, 13=u(l-p)/(CIC.), C.= max |[Syflo < oo

where 11 and p are defined in Assumption 2.A, and C1 is defined in (2.2.4). For any d-dimensional

vector u satisfying ||ul| =1,
max E [exp {LQ (uTet)ZH <(Cp < (B.2.1)
1<t<n - ’
and
max max E [exp {Lgxfl}] < C’é/(l_p) < 00, (B.2.2)

1<t<n 1<i<d
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where Cy is a positive constant defined in Assumption 2.A (iii).

Proof of Lemma B.2.1. Writing u; = u' 2%/2 and using Assumption 2.A(ii)(iii), we may show
that

1<t<n 1<t<n

ma o {12 (7e)}] = € oo {1 (w7 50%) )]

1<t<n

< max E [exp {12C. (u]z1/ )}

~ maxE eXP{L2HUt||2 (ue/ ]}
{
{

= 121%an exp 0 ( utst/HutH) H < Cy,

completing the proof of (B.2.1).

By the time-varying linear process representation (2.2.3), we have

oo o0
- Z Z (q)-trvklyiet_kl) ((I);k’z,iet—k‘g)

k1=0k2=0

where <I>z 1 is the i-th row vector of @, . Without loss of generality, assume (2.2.4) for all k£ > 0.

Letting ugk; = Pt ki/||Pe,k,:|] and noting that

max max || Pyl < max
1<t<n 1<i<d 1<t<

we may show that

2 2 - k1 S ko T T
vy, < Cj E p E P2 | (g gy i€t—ky) (U oy i€t—ks) |
k1=0 ko=0

o (o] 9
2 k k T
0230 M 3 1 (i)

k1=0 ko=0

c? &
B 1712/’]6 (upier4)
P

IN

which, together with the independence assumption over e; and (B.2.1), indicates that

9 0
max max E [exp {Lgx“}] < max max E [exp {iB_Clp Zpk (U;k,z‘et—k)Q}]
k=0

1<t<n 1<i<d 1<t<n 1<i<d

b 13C% 2
= Imax max E [exp { 13 L ok (u;kiet_k) H
J— p Yy

1<t<n 1<i<d

e.)
k(T 2
= max max E[ex {LQ Uy 1. € H
1<i<n1<i<d P (U ieer)

ﬁ max max E [exp{ (u;k -et_k)2H ’
1<t<n 1<i<d l

k

IN
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< H Cgk _ Cé/(1—0)7
k=0

completing the proof of (B.2.2). [ |

The following lemma is a well-known Bernstein-type inequality for martingale differences (e.g.,

Freedman, 1975; de la Pena, 1999).

Lemma B.2.2. Let (2, F)i>1 be a sequence of martingale differences and o2 = Yoy E(22|F-1)-

Suppose that there exists a constant a > 0 such that P(|z:| < a|F—1) =1 for all t > 2. Then, for

n 2
P 2oy < S
(Zzt>x,an_y>_exp{ 2(y—|—ax)}

t=1

all x,y > 0,

Define

Zn: eri(1) X1 (” - T) Ky(m — 1),

t=1

S

1 n
Lio() = Ezet,i(T)Xt,lKh(Tt —7) and Liy(7) =
t=1

where e, (7) = 21— [tie(T) + &y (7)(7; — 7)]” X;_1. Lemma B.2.3 below gives the uniform asymp-

totic orders for the kernel-weighted quantities L; 1 (-), k =0, 1.

Lemma B.2.3. Suppose that Assumptions 2.A and 2.B are satisfied. Then we have

max, max |Lik(7e)lyax = OP (Gna), £ =0,1, (B.2.3)

where Cn.q = log(n V d) [(nh) Y2 + sh?] as in Assumption 2.C(i).

Proof of Lemma B.2.3. We only prove (B.2.3) for k¥ = 0 as the proof is analogous for k = 1.
Noting that

e1i(Te) = €1 + [ie(T1) — tin(T2) — g (7¢) (11 — Tt)]T X1 =1e; + blT,i(Tt)Xth

we write
1 ¢ 1~
Lip(m) = > e X Kn(m—7) + - > b ()X X Ky — 7).
=1 =1
In order to prove (B.2.3) with k = 0, it is sufficient to show that
1 n
— Z e ix—1,jKp(m — 7¢)

n

max max max

_ —-1/2
1<i<d 1<j<d 1<t<n Op ((”h) log(n Vv d)) (B.2.4)

and

1
n

max max Inax
1<i<d 1<j<d 1<t<n

=Op (sh2 log(n Vv d)) . (B.2.5)

n
> b () Xiamiy jKa (i — 7)
=1




Define

e = el <|el7z‘| < 2y/u5 " log(n Vv d)) , €l = €l; — €L,

Ty = xyl <|$z,i\ < 24/u5" log(n v d)) . Ty = X — Ty

where (9 and t3 are defined in Lemma B.2.1. Then, we have the following decomposition:

and

1 — le—_ _ le—_
- Z eriti—1jKp(n—m) = - Z i1, Kp(m — 1) + - Z ety Kp(n — 1) +
=1 =1 =1
1 — 1 —
- Zgzﬁz—l,th(Tl - 1)+ - Zgz,i?fz—l,jffh(ﬁ — ).
=1 =1
By the Bonferroni and Markov inequalities as well as (B.2.1), for any € > 0, we have

Zez iZi—1,;Kn (1 — 1)

P (max max max > e(nh) "% log(n Vv d))

1<i<d 1<j<d 1<t<n |
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< P (1121?<xd foax leci| > 21/15 ' log(n Vv d)>
d n
< ZZ <|e“\ > 2 Lgllog(n\/d)>
d n
< Z (nVvd)E (exp{LgetZ})
i=1 t=1
< M(nvd)™?=o(1). (B.2.6)

Hence, we have

_ _ ~1/2
1@?21112]&%{1@?31 nz_: €1,iTi—1,; Kp(me — )| = p((nh) log(n\/d)>. (B.2.7)
Following the proof of (B.2.7), we also have
Kn(n = )| = op ((nh) "2 10g(n v d)) B.2.
A 5, 2R )| <o () Pt v (B2
and
Kn(n = )| = op ((nh)"210g(n v d)) B.2.9
nax, max, max Z —13Ku(m =) = op ((nh) ™ log(n v d) (B2.9)

By the Cauchy-Schwarz and Markov inequalities and (B.2.1), we may show that

E(lei]) < [E (!ez,z'|2>]1/2 [P <|em’ > 2\/L2_110g(n\/d))]1/2
= [E ()] 1P lexp fuaet} > (v a))] 2
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IN

[E (|€l,i|2)] 2 [E (exp {Lgeﬁi})} 12 (nVd)~>

< M(nvd) 2,

which, together with the definition of 7;_; ; and the condition on the kernel function, indicates that

%Z E [El,z‘fl—Lth(n — Tt)|,%_1(X)] ' _

% Z E [gl,z‘fl—l,th(Tl — Tt)|9’l_1(X)] '

=1 =1
= Op ((n\/d)_2 log(n\/d))
= op ((nh)_1/2 log(n Vv d)) , (B.2.10)

where F(X) = o(X; : t <1). With (B.2.7)-(B.2.10), we readily have that

fZel i K — ) = Z{e“—E [e1ilFioa (X)) T1o1, Ko (= 70) + op (nh) ™ log(n v d) ) .
=1
(B.2.11)

By the Bonferroni inequality and the Bernstein inequality in Lemma B.2.2, we prove that

n

LD DI I HEANGS) | LA AT

1<i<d1<j<d 1<t<n | n

> Moy(nh)~Y?log(n Vv d))

P (max max max

n

d n
Ty 1

" <’n > {eri — EnilFia (X))} Foa j Kn(n — 72)
j=1t=1 =1

> Moy(nh)~Y?log(n v d))

M&

i=1

n

d
§j§j§jwp{goMmmanv@}f (nd2(n v @y ) = o(1),

i=1j=1t=1

IN

letting My > 0 be sufficiently large, where go(-) is a positive function satisfying go(z) — oo as

z — 4o00. Consequently, we have

= Op ((nh)_1/2 log(n V. d)) .

max max Imax
1<i<d 1<j<d 1<t<n

nZ{elz_ [€1i|F1—1 (X))} Ty—1,j Kn(m — 71)

(B.2.12)
By virtue of (B.2.11) and (B.2.12), we complete the proof of (B.2.4).

Letting X; = (1, - ,El,d)T and )~(l = (Z1, - ,EU'M)T, we have the following decomposition:

1 n
- > b () X K a(m - 7)

=1
1 = T ~ — 1 - T - ~
= - ; bl,i(Tt)lelxlfl,th(Tl —7) + - lz_; blji(Tt)lelxl,Lth(Tl —7)

1 & = 1 @& =
- > b () X1 Ty Ka (1 — ) + - > b () XiaF o1 Ka(m — 7). (B.2.13)
=1 =1

Similarly to the proof of (B.2.11), we may show that the last three terms on the right side of (B.2.13)

are of order op (h?log(n V d)). By Assumption 2.A(i) and the Taylor expansion of cs(-), we can
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prove that the first term on the right side of (B.2.13) is of order Op (sh?log(n V d)) uniformly over
i,7,t. The proof of (B.2.5) is completed. [ |

Lemma B.2.4 below gives the mean squared convergence rates of the infeasible oracle estimates

A;’ and ]§;’ defined in (2.4.6) and (2.4.7) of Section 2.4.2.

Lemma B.2.4. Suppose Assumptions 2.A-2.D are satisfied. Then we have

n d
1 ~0
i3 2 2 1a2() — i = O (561). (B2.14)
and .
1< o B
2% ; ; 8% (m) = oy (m)[|* = Op (s6.ah™2) - (B.2.15)

Proof of Lemma B.2.4. For any 1 < < d, let

U’ = [(U?)T7 (w(f)Tv (Ug)Ta (wg)T> Tt (Ug)Tv (w;)z)T] )

T T
where vy = (Ui}\w"' ,v§|t> with v;?|t =0for j € 7;, and wy = (wf‘t, e ,w§|t> with w;"t =0 for

VAS ?; Define
%; (M.) = {U° 27 (Il + g ) = Vel + 1we)® = nM*} ,
t=1

where M, is a positive constant which can be sufficiently large,

Vo= [(00) (@9)7, -, 00)] and WO = [(w)", (@), (wh)]

n

Write

A, = (ai’l, ce ,ai7d) with Q5 = [Ozl"j(Tl), s ,OZZ'J(Tn)]T ,

. T
B, = (a%l,--- ,a;,d) with a;j = [ag7j(71),--- ,04;7j(7'n)] ,

as the matrices of true time-varying parameters. Observe that
@; (A,» +,/C VOB + (;‘L,dWO/h) — 0 (A, By) = 19, + 112, + 119, 5, (B.2.16)

where C;;,d = sﬁid,

n

2= D0 [ % (elm) + G a0t )+ \ [ g | 1) = i (cua(m), dia(m) | 7))

t=1
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d
22 = Db, (Gl ([|eis +/Gravs] — lewisl)
j=1

d
o _ / .. / * ol| _ /
o= > _ph, (Dw> (Hham /Wi Hho‘u”) )
Jj=1
T T
i i R o — (. .. w°
in which v? = <vj|1, ,UNL) and wj <wj|1, ,wﬂn) .

By the definition of the local linear objective function, we readily have
n n T
01 ==2/C D> W) @) Li(re) + G [(0))T (w))T] () [(vf)"s (w))'] . (B.2.17)
t=1 t=1

By the definition of %} (M,), Lemma B.2.3 and the Cauchy-Schwarz inequality, we prove

= Op (@nlﬂ) ey (B.2.18)

uniformly over i. By the uniform restricted eigenvalue condition in Assumption 2.C(ii), we have

D (W) (w))'] Li(me)

t=1

n

S ) @) ] () [@) ()] = k0 S (1] + g 2) = nro, (B.2.19)

t=1 t=1

for U° € &(M,). Combining (B.2.17)-(B.2.19) and letting M, > 0 be sufficiently large, we have

. * * RO s
min T2, > koG g[O°)12 + Op (Gan?) - 10°) > 22¢; 072 wpat. (B.2.20)

On the other hand, by Theorem 2.4.1 and Assumption 2.D(ii), we have

P < min min ||5éz’y|| > ao)\2> — 1,
1<i<d j€.7%

and

P ( min min ]_~?ij > ao)\2> — 1.
1<i<djeg!

As (1) = 0 and u§ ; = 0 for j € 7;(7), we thus have

Ma(r) = > ph, (s (0l) (

JESi(Tt)

0 (72) + Gt 5| — g (7)]) =0 wpal,  (B221)
and similarly

Marm)= 3 pgz(\&;,j(rt)\)(‘ha;j(ftn\/@(Tt)u;j(—\ha;j(n)\):o wp.al. (B.2.22)

JEFi(Tt)
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Hence, by (B.2.20)-(B.2.22), letting M, > 0 be large enough, we can prove that

>0 w.p.a.l,

! (A /C Vo B+ [ WO h) — @i (A, B,
1I£'llgd [UDGZEI;"IEM*)@ ( + Cnvd + C”’L,d / ) Q ( )

indicating that there exists a local minimiser (A;’, f’);’) in the interior of
{(Ai+ /G Ve B+ |G Wo/R) - U7 € B ()}

for any 1 <4 < d. The proof of Lemma B.2.4 is completed. ]

Lemma B.2.5 below gives the uniform convergence rates for the time-varying volatility function

estimates, a crucial result to prove uniform consistency of the time-varying CLIME estimates.

Lemma B.2.5. Suppose that Assumptions 2.A-2.D are satisfied. Then we have

max sup [Gi;(7) — 0ij(7)| = Op (vj 4 + Vi .a) (B.2.23)
1<i,j<d g<7<1 ’ ’

where 0;5(7) is the (i, j)-entry of 3(7), vy, ; and v}, ; are defined in Assumption 2.E(ii).

Proof of Lemma B.2.5. By the definition of ¢;;(7) in (2.3.8), we have

n n .
) —aigtr) = [ ETIC )| 2m Bl Bl
Doty @nt(T)eri (Erj — erj) n Doty @it (7) (€ — eri) (€1 — ety) }
Z?:l @it (T) Z?:l @n,t(T)
=: ij(T) + x5 (7)- (B.2.24)

We first prove that

o -0 o B.2.25
s, s )] = Or (4 e

Note that

_ 2 @) [eviers = 0i(1)] | 3y @na(T)oi; (1)

X5 (7) ST wna(7) ST ) 9

By the Taylor expansion of o;;(-) and the definition of the local linear weights @, +(7), we have

Z?:l wn,t(’r)a—ij(’rt) 0 (T)
> i1 @nt(T) Y

max sup
1<ij<do<r<i

n _ )2
< max sup ’CTZ(T)l Zt:l(? 7)"@n(7)
1<i,j<d g<r<1 > i1 @t (T)
n _\2
< M sup |2 DT g2y (B.2.26)
0<r<1 Zt:l wn,t(T)
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Let €;; and e; ; be defined as in the proof of Lemma B.2.3. Then, we have
- T — T - T — T - T — T
t t— T\ _ t—T\_- ~
;K ( ) €t i€t — ZK < 5 > €t i€t + ZK ( 5 ) €t i€t +
T T
ZK( L >e“et,J+ZK< tb >e”et] (B.2.27)

Following the proof of (B.2.11), the first term on the right side of (B.2.27) is the asymptotic leading

term. Consider covering the closed interval [0, 1] by some disjoint intervals %, k = 1,--- , N, with
the center 7 and length b?[nblog(n v d)]~'/2. By the Lipschitz continuity of K(-) in Assumption
2.B(i), we have

1
nb

max sup
1<4,j<d o<r<1

n E
ZK( t b > €€t — E(ét7iét7j)]
t=1

1 *
< max max |— Y K2 Tk [eri€t,j — E (@rier5)]| +
1<4,j<d 1<k<N nbt 1 k L
1 K Tt*T % T — Th 61 E (221)]
max max sup |— - €€ — E (€€t
1<4,j<d 1<k<NT€fk nb pt b t,iCt,5 t,1Ct,5
i 1/2
i log(n Vv d
= | max max ZK< — > [€1i€t,; — E(€r,i€15)]| + Op ([g(an ) .
t=1

1<i,j<d 1<k<N

(B.2.28)

By the Bonferroni inequality and Lemma B.2.2 as well as the condition nb/[log(n V d)]* — oo in

Assumption 2.E(i), we may show that

1 " Tt

w2k (
t=1

" =T

ZK< : 2 k) (€€t — E (evier)]

t=1

; k) [erie.j — E (€rier,)]

nb

Pl max max
1<4,j<d 1<k<N

Y [log(n v d)] 1/2>

IN

sl

=1 k=

> My [nblog(n V d)]1/2>
= O (d*Nexp{—g1(M)log(n Vv d)}) = O <d2N(n v d)gl(Ml)) = o(1),

where M; > 0 is sufficiently large and g¢1(-) is a positive function satisfying that ¢1(z) — oo as

z — 4o00. Therefore, we have

b Z <Tt — Tk ) [erie; — E(€t7¢€t,j)]| =Op ([log(zbv@] 1/2> . (B.2.29)

Combining (B.2.28) and (B.2.29), we can prove that

b Z <Tt - T> €€, — E (et,iet,j)]‘ = Op ([log(zbw)] 1/2) . (B.2.30)

max max
1<i,j<d 1<k<N

max sup
1<4,j<d 0<r<1
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By the definitions of €;; and e;;, we have
E (e1i€t;) — 0ij(1e) = E(€ri€r5) — E(€ri€r;) — E (€€ 5) -
Meanwhile, by the Cauchy-Schwarz and Markov inequalities and (B.2.1) in Lemma B.2.1,

1/2
E &))"

4)}1/4 [P <|€m > 2 LQ_llO%(”Vd))] 1/4

1/4

E([eriersl) <

IN

exp {Lgefﬂ-} > (nV d)4)]

(
(exp {Lgeii})] 1/4 (nV d)*1

oo(n 1/2
O (v )y =o ([W} ) ’

M |

< M [E(Jews
M
M [

IN

IN

and similarly,

~ - log(n Vv d) ]2
E (2041) + E (1040) = 0 ([%)] ) .

Hence, we can prove that

With (B.2.27), (B.2.30) and (B.2.31), we can prove that

% g K (Tt ; T) [erier; — oij(T)]| = Op <[log(zb\/d)} UZ) : (B.2.32)

Analogously, we also have

% gKl <Tt ; T> lerier; — 0ij(T2)]| = Op ([log(Zde)} 1/2> : (B.2.33)

Using (B.2.32), (B.2.33) and the definition of w, ((7), we may show that

og(n 1/2
—0p (F g(nbv d)} ) , (B.2.34)

max = sup
1<i,j<d p<r<1

—or ([0 9] 7). maa

max = sup
1<i,j<d p<r<1

max sup
1<4,j<d o<r<1

Doy @it (7) lerier; — 0ij(T1)]

2 =1 @ i (7)

max = sup
1<i,j<d p<r<1

which, together with (B.2.26), leads to (B.2.25).

Using the arguments in the proof of Lemma B.2.4, we may prove that

1II§1?§><d lrg%xn |al, (1¢) — aie(Tt)|| = Op (\/E(n’d) , (B.2.35)
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which, together with (B.2.2) in Lemma B.2.1, indicates that

| = 1 ) 2.
1r21a<)§1 1@?231 ler: —eil = Op (s(n,d og(nVd) (B.2.36)

By (B.2.25), (B.2.36) and the Cauchy-Schwarz inequality, letting @y, (1) = @, ¢(7)/ >/ @ne(T),
we can prove that

n

B, s Zl @ a(7) (Eri = evi) en
1/2 1/2
2
< _ .
= 1@?§do§i<1 (Z [54(7) ) 1H<l?<xdoiu<1 (Z @ (7)| (Bt — er) )
= Op (s(md log(n V d)) — Op (v4) - (B.2.37)

Similarly, we can also show that

n
123}<{d02221 w;;’t(T)et,i (€1,j —ewj)| =Op (V;,d) (B.2.38)
and
n
12%%03351 Z;w;t(T) (€1 —ewi) (er; —erj)| =Op ([V:;d]2> =op (v54) - (B.2.39)
From (B.2.37)-(B.2.39), we readily have that
25,28, WOl = Or (4.0,
which, together with (B.2.24) and (B.2.25), completes the proof of Lemma B.2.5. [

B.3 Proofs of Propositions 2.5.1 and 2.5.2

In this appendix, we provide proofs of the convergence properties for the factor-adjusted estimators

stated in Propositions 2.5.1 and 2.5.2. Define

Tt — T

~ 1 .
Ze“ Xt 1Kh(Tt_T) and LZ'71 EZQ Xt 1(

) Kp(re —7),

where X, = (T, %) is defined in (25.3) or (2.54), and &,(r) = Zy; —
[tie () + &y (T)(7¢ — 7)]" Xi—1. The following lemma extends Lemma B.2.3 to the factor-adjusted

kernel-weighted quantities.
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Lemma B.3.1. Suppose that Assumptions 2.A, 2.B and 2.F(i) are satisfied. Then we have

Li x(71)

max max
1<i<d 1<t<n

— Op (gjl’d) Ck=0,1, (B.3.1)

where C;g 4= Cna + [log(n Vv d)]Y2s0x as in Assumption 2.F(ii).

Proof of Lemma B.3.1. As in the proof of Lemma B.2.3, we only consider k£ = 0. As
o~ A~ T <
ri(T) = eri(T) + (Bri — T13) + [ie(T) + e (T) (7 — 7)) (thl - Xw%l) ;

by Assumption 2.F(i), we may show that

n

Liolt) = Lio(r)+ =Y (@i — 1) X1 Kn(ri — 1) +
nt:l

% Z [ctie () + @i (7) (72 = T)]T (Xt—l - )?t—l) Xe1 K — 1) —
=1

1 « -
- Z eti(T) (Xt—l - Xt—l) Kp(m — 1)
=1

= Lio(r) + Op ([log(n v d)]1/255x> .

Then, by Lemma B.2.3, we complete the proof of (B.3.1) for k = 0. |
Write

T R ~
gi — (g;l’ e 7§I7d> =X, — A\];(Tt)thl, A\J{(Tt) = |:Oé;'rj(7't)] e’

Let 51.(7) be the factor-adjusted local linear estimate o;;(7), i.e., replace e;; by e in (2.3.8). The
L) J ’ t,l

following lemma extends Lemma B.2.5 to the factor-adjusted volatility function estimate.

Lemma B.3.2. Suppose that the assumptions of Proposition 2.5.1(iii) are satisfied. Then we have

oy ’:O <<> T) B.3.2
12%3);%221 UZJ(T) oi5(7) P\YndtVna)> ( )

where v, is defined in Assumption 2.E(ii) and V:L g 18 defined in Assumption 2.F(iv).

Proof of Lemma B.3.2. Asin (B.2.24), we have

" Si ) Daenens iy @nelr) (8l — ) eng
gl.(t) —oi(1) = = —045(1) ¢ + +

Z?:l @n,t(T) Z?:l @t (T)

> ote1 Pnt(T)e (é\j,,j - €t7j> >t @nt(T) (é\:fr,i - em‘) <€I,j - et,j)
_'_
>t @nt(T) >t @nt(T)

= x5 (7) + x4 (7). (B:3.3)
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By (B.2.25), we only need to show

XL-(T)’ =Op (Vl,d) : (B.3.4)

max sup
1<4,j<d 0<r<1

Following the proof of (B.2.36), we have

max max /e\IZ- — et
b

1<i<d 1<t<n

— Op (sgjhd\/m) . (B.3.5)

By (B.2.25), (B.3.5) and the Cauchy-Schwarz inequality, we can prove that

max sup E w,, (em—etﬂ-) el =

1<i,j<dp<r<1

Op (sC:L’d\/W> =0Op (I/:i’d) ,(B.3.6)

| = T
12113}<cd0i231 Zw T)ets <6” 6”) =Op (V”vd) ’ (B3.7)
PR N - IS | i
13113%0231 Zw (e“ em) (em et7]> op (I/md) . (B.3.8)
With (B.3.6)-(B.3.8), we complete the proof of (B.3.4). [ |
Define
~ W(T) U, T) . ~ le=/7—7\" &
U(r)=| ~ ~ with Wy(1) = — Xt WX Kp(r—7), k=0,1,2.
Bi(r) Bs(r) w2 1

Proof of Proposition 2.5.1. We start with the proof of

in min i "W (r)u > p.a. 3.
i, i ueéﬁf@“ U(r)u > ko/2, w.p.a.l, (B.3.9)

where %;(7) is defined as in (2.4.2). In fact, combining Assumption 2.F(i) with the arguments in

the proofs of Lemmas B.2.3 and B.3.1, we may show that

() — ¥ ()|

— Op <[log(n v d)}1/25X> . (B.3.10)

max

1<t<n max

Then, using (B.3.10) and the arguments in the proof of Lemma B.4.1, we have

. . . T > T ( 1/2 )
lrélilgd 1ggﬂﬂé£f(ﬂ)u W (ry)u > llglgd 1%1£1nu€%1£ )u W(y)u+ Op ([log(n Vv d)]*/“sdx ),

which, together with Assumptions 2.C(ii) and 2.F(i), completes the proof of (B.3.9).

The proofs of (2.5.6) and (2.5.7) are similar to the proofs of Theorems 2.4.1 and 2.4.2 but with
Lemma B.2.3 and (2.4.3) replaced by Lemma B.3.1 and (B.3.9), respectively. The proof of (2.5.8)
is similar to the proof of Theorem 2.4.4 but with Lemma B.2.5 replaced by Lemma B.3.2. Details

are omitted here to save space. |
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Proof of Proposition 2.5.2. With Proposition 5.1(ii), the proof of (2.5.9) is similar to the proof
of Corollary 4.1. With Proposition 5.1(iii), the proof of (2.5.10) is similar to the proof of Corollary
4.2. ]

B.4 Verification of Assumption 2.C(ii)

In this appendix, we verify the uniform restricted eigenvalue condition (2.4.3) for the time-varying

VAR under the Gaussian assumption, i.e., e; ~ N(0g4, 3;). Recall that

‘I’o(’T) ‘111(7')
Uy(r) Wa(r)

1 (7 —7\"
¥(r) = [ ] with Wp(r) = *Z (Tt h T) Xea Xy 1 Kn(r—7), k=0,1,2,
n

t=1

We first give some technical lemmas together with their proofs.

Lemma B.4.1. Conditional on the event that

Sa(6) = { i [ (ry) — E[(r)] s < 6} ,

1<t<n

we have

. . . T . . . T
min min  inf w ¥(r)u > min min  inf uw E[W(r)]u — 180s,
1<i<d 1<t<n ue B, (1) 1<i<d 1<t<n ucB;(r)

where %B;(T) is defined in Section 2.4.1 and s is defined in Assumption 2.B(ii).

Proof of Lemma B.4.1. The proof is similar to Lemma 6 in Kock and Callot (2015). Write
Jir = Ji(m) and j/t = JF/(r). For u= (u{,u;)T € B;(1¢) and given &g (J), we have

uw E[®(r)]u — v ¥ (r)u

IN

‘UTE[‘I’(Tt)]U — uT\II(Tt)u‘ = ‘uT (O(r) — E[\Il(Tt)Du‘
2

olul} < 90 (Jur (Fa)l, + [ua(F)], )

< 1865 ([l (Fi) > + ua () |7 < 1805,

IN

where u(_#) denotes the vector consisting only the elements of u index by #. This indicates that
u' W (r)u > u'E[®(n)]u — 186s.

Taking min;<;<4 mini<¢<p inf,cg,(7,) on both sides of the above inequality, we complete the proof

of Lemma B.4.1. [ |

Letting
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we may re-write

(nh)u’ @ (x u—zu K i) Xy = XK

with X, (1) = [u' Xk 1(7), -+ ,u' X gn(7)]". Since Xg(7) is a Gaussian random vector, we can

adopt the following lemma (e.g., Lemma 7 of Kock and Callot, 2015).
Lemma B.4.2. Let Z be an n x 1 vector with Z ~ N (0, Q). Then, for any 6,m > 0,

52

P(I|IZ]|* — E|Z]|* > §) < 2exp (SHHQHQmQ

) +nexp (—m?/2).

The inequality in Lemma B.4.2 is crucial to derive the probability of the event &g (0) defined in

Lemma B.4.1, as shown in the following lemma.

Lemma B.4.3. Suppose that Assumptions 2.A and 2.B(i) are satisfied. Then, for any 6,m > 0,

we have
P (&g (8)) < 4nd? |6ex —0%nh. + 6nhexp (—m?/2) (B.4.1)
O = P\ 6aczm? P ’ -
where C, = % Cy is defined in Lemma B.2.1, Ck is the upper bound of the kernel function

K(), and Cy and p are defined in (2.2.4).
Proof of Lemma B.4.3. Let the (4, j)-entry of ¥(r;) be ¥; ;(7¢). For any § > 0, we note that

n  2d 2d

P<max max |0, () — E[W; (7)) >5> S D P (1Wa(m) — E[W ()] > 6).

1<t<n 1<4,5<2d
-7 t=1 i=1 j=1

Hence, it suffices to show

—&6%nh

P(|¥;,;(r) — E[Wi ()] > 6) < 6exp <6403m2

> + 6nhexp (—m2/2) . (B.4.2)

By removing the zero elements of X, (7), we define a sub-vector X, () which only contains
the non-zero elements. We apply Lemma B.4.2 with Z = Xu(ﬁ) and Q = Q(1y) = Cov(f(u(n)).
Consider a typical entry in Q(7): Cov (UTYK’ll(Tt), UTYKJQ(T,:)) when |7, —7¢| < h and |7, —7¢| < h,

where u = (u{,u;)T is an appropriately selected vector with dimension 2d and |lu| = 1. Letting

ury = ( uz)/[|ur + 5 us||, we have

Cov (uTYK,ll (1¢), UTYK,lg (Tt))
T
T, — Tt T Tly — Tt 12 (Th 7T g2 (T 7Tt
<'LL1 + 1 h U2> Xlle2 (ul _|_ 2h U2>] K / <1h> K / <2h>
T — T 12 (Th =Tt 1/2 (T — Tt
K —— | K EEra—
(w1 + A ( u2H ( h > ( h )

T, — T o
oo )| R (B2 R (272).

E

T
Uz

IN

‘E (uTt,thleTzuTtvl?) ‘

IA
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For 1 <lj,lp <n with |7, — | < h and |7, — 7| < h, by (2.2.3) and (2.2.4),

E X, X; - Td !
‘ (U’Tt7l1 I lQuTt»ZQ)l - Z Z Ur, l1 lhklell—/ﬁ) (uTt,lg 127k2€l2—k2)
k1=0 k2=0
0 2 |la—11]
2 k1 |lo—l1|+k C.Cip
< C*Clzplpb 1l4+k1 —.
I—p
k1=0

Hence,

C*C'l2 i B 7 T, — Ty
< ‘lz l1| 1/2 1 1/2 2
max [|Q(7)||ec < max p 121%]( h K -

1<t<n 1—p? 1<h<n,
-
20 Cch Nt 20 CiCx
kz PO R

Using Lemma 7 in Kock and Callot (2015) and noting that the dimension of X, (r) is (2nh), we

obtain that for any &, m > 0,

P ([Rutr)| - [Ratm)]| > ) < 200 (G ) +20mesp (-m2/2),

indicating that

—62(nh)

p (uT‘I’(Tt)U —_E [uT\II(Tt)u] > (5) < 2exp (W

) + 2nhexp (—m?/2) . (B.4.3)

Choosing u as a vector with the i-th element being one and the others being zeros, by (B.4.3),

we have
—62(nh)

P (|Wii(7) — E[W;(7e)]| > &) < 2exp <1602m2
<&

> + 2nhexp (fm2/2) (B.4.4)

for i =1,---,2d. Analogously, we may further show that, for 1 <i # j < 2d,

P(IWi;(m) — E[Wi;()]| > 0)
< P(Wai(m) = 2Wi(me) + Wy5(me) — E[Wai(m) — 2Wi () + Wi5(m)]l /2 > 6/2) +
P(IWii(m) + Wj5() — E[Wii(m) + ¥ ()]l /2> 6/2)
< P(Wii(me) +2Wi () + W55(7) — E[Wii(7e) +2Wi () + W5 5(m)]| > 0) +
P(IWii(7) — E[Wii(m)ll > 6/2) + P (19;,5(m) — E[W;(7)]] > 6/2)
—582nh 9
< 6exp <6402m> + 6nhexp (—m?/2) . (B.4.5)
By virtue of (B.4.4) and (B.4.5), we complete the proof of (B.4.2). [ |

The following proposition verifies the uniform restricted eigenvalue condition.
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Proposition B.4.1. Suppose that Assumptions 2.A and 2.B(i) are satisfied. If

in inf v E[X, X, u> 2 B.4.6
min inf u [Xi X, Ju > 2ko, ( )

where B = {u : ||u|| = 1,|ujs < 3lug|i}, F is any index set satisfying # C {1,---,d} with
cardinality

s = o ((nh)/?/log(ndn'/?))

we have (2.4.3) w.p.a.l.

1/2
Proof of Proposition B.4.1. Taking § = ¢,/s and m? = (32307;};2) in Lemma B.4.3 with ¢,

being a proper constant to be determined later, we have

2
Co 5 —cinh 9
P <112%xn ¥ (1) — E[¥(7)]]] jpax > s> < 4nd [6 exp <646’332mQ> + 6nhexp (—m /2)]
h)1/2
< 48exp [ log(n?dh) — P

which converges to 0 if s = o ((nh)1/2/ log(ndhl/Z)). By Lemma B.4.1, we then have

min min  inf « ¥(r)u > min min inf o E[¥(r)u — 18¢c, w.p.a.l. (B.4.7)
1<i<d 1<t<n ueB;(r) 1<i<d 1<t<n ucB;(r)

It remains to prove that the first term on the right side of (B.4.7) has a lower bound and to find

a proper value for ¢,. In fact, by (B.4.6), we have

min min  inf u E[¥(r)]u

1<i<d 1<t<n ueB; (1)
;
T — Tt T n-mn
<u1 +— uz) X1X] <U1 + U2>] K( h >

n

. . . 1
= min min inf — g E
1<i<d 1<t<n ueB;(r;) nh —

vV

[\

X

o

=

=
\ —
7 N\
o
fou)
~_

Il

[\

=

o

\.m

where € is an arbitrary small number. Choosing ¢ < (ko — €)/18 in (B.4.7), we can complete the

proof of (2.4.3). [

B.5 Tuning parameter selection

The numerical performance of the proposed three-state shrinkage estimation procedure depends
on a careful selection of the three tuning parameters: A; in the preliminary time-varying LASSO
estimation, Ay in the time-varying weighted group LASSO, and A3 in the time-varying CLIME.

They are selected by the Bayesian information criterion (BIC), the generalised information criterion
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(GIC), and the extended Bayesian information criterion (EBIC), respectively. We next briefly
introduce these three criteria.
The local linear regression smoothing in (2.3.3) is essentially the weighted least squares with

kernel weights K,(1 — 7). The BIC objective function is thus defined as

Zi (aie(T | M), @i (T | A1) N log(n.)

BIC;(A1;7) = log AR 0
t=1 e

[l (7 | An)lg + [&da(T [ A1) ]
(B.5.1)
where ae(7 | A1) and &}, (7 | A1) are the local linear estimates using the tuning parameter \; at the
point 7, and the effective sample size n. is defined as Y ;| Kp (7 — 7)/ maxy{ Kp, (7 —7)}. We select
the tuning parameter in the preliminary time-varying LASSO by minimising BIC;(A;;7) defined in
(B.5.1) with respect to A\;. The selected tuning parameter depends on both the index i and the

(scaled) time point 7.

The GIC is introduced by Fan and Tang (2013) in the context of high-dimensional penalised
likelihood estimation. As our model involves unknown time-varying coefficients and the estimation
procedure involves local linear smoothing, we need to modify the GIC as in Li et al. (2015a). For
example, Cheng et al. (2009) suggest that each unknown functional parameter would amount to
36/(35h) unknown constant parameters when the Epanechnikov kernel is used. Hence, we define
the GIC objective function as

n

1 T 2 n 36s; (A
GICi(\2) = log [n {:cm- —a,(n | )\g)Xt_l} ] + ”n’d : 25(h2), (B.5.2)
t

=1
where v, 4 is a function of n and d, Qe (7 | A2) is the time-varying weighted group LASSO estimate
using the tuning parameter A2 and s;(A2) is the number of selected time-varying coefficients using Ao.
We choose 7,4 = vlog(log(n)) log(36d/(35h)) with v € (0,1]. We determine the tuning parameter
by minimising GIC;(A2) defined in (B.5.2) with respect to Ao. The selected tuning parameter depends
on the index i. A smaller v leads to denser network estimation. The intuition to select a =y less
than 1 is that when a functional parameter is zero in most of the sampling period and non-zero
otherwise, the marginal contribution to the sum of squared error by including the corresponding
variable is small, and a smaller « adjusts the the information criterion to be more adaptive and
sensitive. For example, when we want to select variables whose functional parameter is not zero in
at least 10% of the sampling period, we can choose v = 0.1. We choose v = 1 in the simulation and
v = 0.1 in the empirical study.

The EBIC is proposed by Chen and Chen (2008) and has been applied to Gaussian graphical

model estimation by Foygel and Drton (2010). The EBIC objective function is defined as

log(n

EBIC(Ag; 7) = —log (det(R(r | X)) + Tr(€(r | Xg)S(7) + )N 1@y | M) > 0),

n
€ 1<j

(B.5.3)
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where Q(7 | A3) = [@i;(T | A3)] 45y denotes the time-varying CLIME estimate obtained using the
tuning parameter \3. We determine the tuning parameter by minimising EBIC(A3;7) defined in

(B.5.3) with respect to A\3. Note that the selected tuning parameter changes with 7.

The numerical performance of the factor-adjusted VAR model and methodology depends on
a careful selection of the factor number. Let )/(\'t(q) be the estimated idiosyncratic component in
(2.5.3) or (2.5.4), when the number of factors is set to be ¢, and define the sum of squared residuals
as Vi (q) = Y1,y |)?t(q)\% When we consider the approximate factor model (2.5.1), we select the
factor number by the information criterion developed by Bai and Ng (2002), i.e., maximise the

following objective function with respect to g

IC(q) = log [Vn(q)] +q- (ngdd) log(n A d),

and obtain g as the estimated number of factors. When we consider the time-varying factor model
(2.5.2), we adopt Su and Wang (2017)’s information criterion, i.e., maximise the following objective
function with respect to ¢

nhy +d

IC(q) =log [Vn(q)] + ¢ - (nh*d

) log(nh. A d),

and obtain ¢ as the estimated number of factors, where h, is the bandwidth used in the local PCA.
The above two criteria are used in the empirical data analysis to determine the factor numbers.

In practice, we need to select an appropriate order for the time-varying VAR model. For the
high-dimensional VAR model with constant transition matrices, Miao et al. (2023) introduces a
ratio criterion which compares Frobenius norms of the estimated transition matrices over different

lags. We next extend their criterion to the time-varying VAR model context. Define

R(k) = l2irlgax S (ALl F Vv Ea)
S Zme S ([ Akl F Vv €a)

where ky.x and £4 are user-specified. In Section 2.7 of the main document, we set knax = 10 and

€4 = 0.1 and use the estimated transition matrices of time-varying VAR(20) in computing R(k).
The order of the time-varying VAR is selected by the integer which maximises R(k), 1 < k < kpax.

In the empirical analysis, we use the above criterion to select the time-varying VAR(1).

In Tables 1-7 of the main document, in order to evaluate the accuracy of the estimated time-
varying VAR and network structures, we report the false positive (FP), the false negative (FN),
the true positive rate (TPR), the true negative rate (TNR), the positive predictive value (PPV),
the negative predictive value (NPV), the F1 score (F1), and the Matthews correlation coefficient
(MCC). The FP is defined as the number of insignificant predictor variables falsely identified as the
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significant ones; FN is defined as the number of significant predictor variables falsely identified as

the insignificant ones; TPR and TNR are defined by

TP TN
R=gprny d TNR =30 55

with TP denoting true positive whereas TN denoting true negative; PPV and NPV are defined by

TP TN

PPV = — — NPV — v
V=Tprrp 4 NPV =3l N

the F1 score is the harmonic mean of precision and sensitivity defined by

PPV x TPR

I = el
1= % PPV + TPR’

and MCC is defined as

TP x TN — FP x FN

MCC = .
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)




Appendix C

Appendix to Chapter 3

C.1 Proofs of the asymptotic theorems

Proof of Proposition 3.2.1. The uniform consistency results in (3.2.10) and (3.2.11) follow from
Theorem 4 in Fan et al. (2013), Theorem 3(i) in Chen et al. (2018) and Lemma D.1 in Li et al.
(2023). It remains to prove (3.2.12). Note that

fi—e = —(NF - [(R) ] [RE))
= (%~ @A) (B -BE) - [(®)A] (F, - RF)
- (Xl- - (R_l)TAi)T RF,. (C.1.1)

By (3.2.10), (3.2.11), Assumption 3.A and the Cauchy-Schwarz inequality, we have

o o | (3 ®)N) (R RE)| < K- 7)'A  [F-we |
= op ((bgTN>1/2 + f:;) (C.1.2)
and
s s [ (F-me) | < e (70 [P v
= Op <Tb2 + fii) . (C.1.3)

By the sub-Gaussian moment condition on F; in Assumption 3.A(iii), the Bonferroni and Markov

inequalities, we have maxi<;<7 ||F¢| = Op ((log T)I/Q), which together with (3.2.11), leads to

(Xi—(R—l)TAi)TRFt < max ||IN - (R7)N

max max
1<i<N 1<t<T

max_||RF||
1<t<T
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= Op ((log T)\/?

log N 1/2+
T

With (C.1.1)-(C.1.4), we complete the proof of (3.2.12).

Proof of Proposition 3.3.1. Let

- ()| (5 ()|

and note that

T2/5
N1/2

T—1
Oc kyij(Uk) — Oc ij(up) = wy g (ur) [Er41,iE141,5 — e kyij (ur)]
t=1
T—1
= we g (Uk) (Et41,iE841,f — Et41,iEt41,5)
t=1
T—1
+ > wyp(ug) [E141i€041,5 — O kij(ur)] -

t=1

By Lemma 1 in Chen et al. (2019), we have

T-1
max max sup Z Wy, k uk) [€t+1 AEt+1,5 T Oe,k,ij (Uk)] =Op (CNT,2) :
1<i <N 1<k<d ey, ), | S
By (3.2.12) in Proposition 3.2.1, we can show that
T-1
max max sup Z we i (k) (Er41,i€141,5 — Et41,i€4+1,5)| = Op (1) -
1<i,j<N 1<k<d“k€%k P o

Combining (C.1.5) and (C.1.6), we have

max max sup |0¢pq(ur) — 0epij(ur)| = Op (Cvra + (Nt 2) -

1<i,j <N 1<k<d y, €%, h

Then following the proof of Lemma 2 in Chen et al. (2019), we can show that

max max |a a..l=0 + .
1<”<N0<k<d\ kij — af.i;] = Op (CNra + CNr2)

Finally, by (C.1.7) and (C.1.8), we have

d

o o
ag ;5 + Z g i50e,k,ij (Uk)

d
Oeij(u) —ol;;(u) = |do,; + Zakﬂﬁe,k,zj(uk)] -
k=1

k=1

SH

d
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) (C.1.4)

(C.1.5)

(C.1.6)
(C.1.7)

(C.1.8)

= (o —agig) + D @rij — af.i5) Oeg(ur) + D af i [Ge i (ur) — oe pig (ur)]

k=1 k=1

d
> (@rij — a8 55) [Ge ks (un) — 0c kg (up)]
k=1
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= Op((n7,1+CNT2)

uniformly for 1 < 4,5 < N and u € %},. This completes the proof of Proposition 3.3.1. [ |

Proof of Proposition 3.3.2. The proof of this proposition is analogous to that of Proposition

3.3.1, but with (3.2.10) replacing the role of (3.2.12). Details are omitted here to save space. |

Proof of Theorem 3.3.1. By (3.3.3) in Proposition 3.3.1, we have

sup
uc¥y,

Se(w) - 2(u)|

=Op (Cnra +CNT2) - (C.1.9)

max

By (C.1.9), the uniform sparsity assumption (3.2.8), and the inequality [A1Ag|max <

|A1|lmax||Az|/1 for any two conformable matrices A; and A, we have

sup

Ly - £ ()22 ()|
ue

< sup

max  uey,

Se(w) - Z2(w)| 92w, = Op (Cvrt + Cnra)

This together with Assumption 3.D(iii) and the constraint the CLIME estimator satisfies (see
(3.2.19)), implies

sup [| S (u) [ (w) - Q2(w)]|
ueUy max
< sup [|B.)Q(u) - IN‘ + sup ||y — ig(u)ﬂg(u)H
ue¥y, max  uc, max
< p+O0p (N1 +CnT2) = Op (CNTa + CNT2) - (C.1.10)

It follows from the definition of the CLIME estimator and Lemma 1 in Cai et al. (2011) that
Hﬁg(u)H1 < ||22(u)||; £ M uniformly over u € %,. Then, by (C.1.9) and (C.1.10), we have

sup |[22(u) [©2-(u) - Q2(w)|
ue¥y, L 4 llmax
< sup [S(w [0 - ee@)] |+ sup [|[Se) - z2w)] [2.) - 02w
ue¥y - 4 limax uc¥, max
< sup |[Se(w) [Qe(u) — Q2u) + sup ||S.(u) —zg(u)‘ ﬁa(u)—ﬂg(u)H
ue¥y, - 4llmax  yey,, max 1
= Op({nra +CNT2)- (C.1.11)

By (C.1.11) and the relation ||[AjA2||max < [|A1]lool|A2]|max = [|A1][1]|A2]|max for any symmetric

matrix A; and a conformable matrix Ao, we have

sup [|Q(w) - 02w < sup @2l | B2w) [£(w) - 22(w)] |
ue%y max uc, max
= Op({n1a+(NT2) - (C.1.12)

By (C.1.12) and noting that ﬁa(u) is the symmetrisation of Q. (u) via (3.2.20), we prove (3.3.5).
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We next turn to the proof of (3.3.6). Let w?,;(u) be the (i,7)-entry of ©2(u). Then by the
definition of @.;j(u) in (3.2.20) and Lemma 1 in Cai et al. (2011), we have, for any u € %} and

1<j<N,
N N N
S @) < 3 [Bei ()] < 3 Jwi;(w)
=1 =1 =1

Then, as We ;j(u) = & ji(u) and w?;; (1) = w? ;;(u), we have
N
Z\waw (W] (|oe i3 (w)| < p)
N
= Z"A‘)ﬂj |_Z’w€m ) (|@e,i5(0)] > p)

Z!ww \+Z\ww I(|Ge5(u)] > p) — w(u))|

A
M= T
B

INA
[~]=
)
m
<
£
~
©
m
<
V
Z‘i/
m
&
£

Further noticing that [|All, < \/||A|l1]|Allcc = ||A|l1 = ||Al|co for any symmetric matrix A, we have

Q.(u) — Q° H < Be (1) — w2
sup [Qw -0, < swp 12%2\%@@) w2i5(u)]
< 25w 12%2\%” I (|5 ()] > p) — w5 ()|
< 2swp l%zwww — w2y ()] 1[Gz 55(w)| > p)

+2 sup max Z w2 ()| 1 (|@ei5(w)] < p)
€

=: II; +IIs. (0113)
Define the event

& =< sup
ue¥y,

where M, is a positive constant such that P (&) > 1 —#n for any n > 0. Then, conditional on &,

0e(w) - Q(w)|

max

< M, (Nt + CNT,2)} ;

N

Iy < 2M,(Cnr1 + (NT,2) sup | max I (|@eij(a)| > p) (C.1.14)
ueUy, 1<7,<N‘771

and

[@eij (W) < fwe i (W] 4 @245 (1) = w25 (w)] < w2 ()] + My (Cvra + CNr2)-
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Recall that p = ¢5(Cn7,1 + (n72) in Assumption 3.D(iii). By choosing ¢5 = 2M,, we can verify
that, on &, the event {|w.;(u)| > p} implies {|w?;;(a)] > My,((n11 + (n1,2)}. Consequently, by
(C.1.14), we have, on &,

N

I < My(Cnr1 +(nT2) | Sup max I (w2 ()| > My(Cnra +¢NT2))
uet, 1S1EN

- q
< M N wg,z'j(u)‘
+
N o(ONTL+ CNT2) igg 1211%\’ MA(CnTa + CNr2)d
= O(wn - ((nra+ Cvr2) ). (C.1.15)

On the other hand, by the triangle inequality, for any u € %}, we have
|@eij(0)] = [w ()| = [@e ij(0) — w5 ()| = |we 5 (w)] = My (v + Cnr2)
on &. Then it is easy to see that {|W.;;(u)| < p} implies

{lw? ()] < (e5 4+ My) (Cnrn + Cvr2) } -

Hence, for IIy, by (3.2.8) and Assumption 3.D(iii), we have

N
o < 2 mp x5l u0] £ (24,0 < e+ 00) o+ o)

< 2 M)t ¢ —q
< 2(es + My)' TU(Cvr + Cvr2)! iﬁ%@%z‘“w

= Op (WN(CNT,l + CNT,Q)lfq) ) (C.1.16)

The proof of (3.3.6) can be completed by (C.1.13), (C.1.15) and (C.1.16).
Finally, (3.3.7) is proved by (3.3.5), the proof of (3.3.6)! and noting that

v - < |9 - 02w

Q.(w) - Q2(w) | -

1

max

Proof of Theorem 3.3.2. We first re-write

Qx(u) = Q. (u) — Q. (WA [ﬁp(u) + KTﬁE(u)K} AT (u) (C.1.17)

'Note that we proved (3.3.6) by showing that SUPyew,

() - 22| < supyey, Q) - 02| =
Q. (u) - ng(u)Hoo = Op (wn (Cvr + Cnr)' ™) (see (C.1.13), (C.1.15), and (C.1.16)).

SUPuewy,
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and

2% (u) = 22(u) - QW AR [ p(w) + ARQU(WAR] ' ARQ2(w), (C.1.18)

~ ~ -1
where Qp(u) = [EF(u)} . Q% () = [REL(WR'] " and Ag = AR, By (C.1.17), (C.1.18)

as well as some standard arguments, we may show that

[

k(u),

6

Qe (u) ~ Qg (w) =~ Y

k=1

where
Ei(w) = Q(w) - Q(u),
Zo(u) = [00) - Q2w A [Gr(w) + AQ(wA|  AT0(w)
S0 = QWA [Qp(w) + A0 wA] AT Q) - w)]
=) = 020) (K- Ag) [Qr(u) + A2 (wA] T AQ(w),
Es(w) = Q2(wAg |Qp(u)+ AT (WA B (AfAR>TQ§(u),
Es(u) = Q2(u)ArD(u)ARQ°%(u)

with

1

D(u) = [©r(u) +3Tﬁ€(u)x]‘1 Q% (u) + ARQ2(WAL] T = [ﬁFﬁ(u)}—l g (w]

By Theorem 3.3.1(ii), we have

sup [|E1(u)llo = Op (wN (CNTa + CNT72)1_q) : (C.1.19)
ue¥y,

Note that, with probability approaching one, Amin (ﬁp(u)) = [Amax (f)p(u))] is uniformly
bounded away from zero on %j,. Furthermore, following the proof of Lemma 15 in Fan
et al. (2013) and by Assumption 3.A(ii), we can show that, with probability approaching one,
Amin (KT ﬁs(u)f\) > coN uniformly over u € %}, where ¢y is a positive constant. Combining these

facts, we have

o~

[Qru) + AQ.wA] | = 0p/N). (C.1.20)

o

sup
ue%y

Then by Theorem 3.3.1(ii), Assumption 3.A and the uniform sparsity assumption (3.2.8), we readily

have
~ ~ [~ ~7 ~ ~71—1 ~ ~
sup |[Ex(u)o < sup {Hﬂg(u)—ﬂa(u)u A[QF(u)+A’Qg(u)A} N Hﬂa(u)H }
ue¥y, ueUy o O o
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= Op (wN (Cnra + CNT,2)1_q) ; (C.1.21)
and similarly,
sup [[E3(u)llo = Op (wN (Nt + CNT,2)17q) . (C.1.22)
ue%h

On the other hand, by (3.2.11) in Proposition 3.2.1(ii), we have

T e e e

=0p <N1/2 <logN>1/2 T2/% )

T N1/2
1922(u)]lp < NYV2{A|| [Q2u)], = Op(NV?).
O 0

and further by Assumption 3.A,

KT

A <

o

Combining the above results with (C.1.20), we have

~ ~ o~ o~ ~71—1
sup [Za(u)fo < sup { () (A - Ag)|_||[Qrw)+ AR wA] | AW }
uey, uc%, o @] o
log N\Y2 T12/% -
- (( ? > T yie | TP (WN (Cvr + Cnr2)’! q) : (C.1.23)
and similarly,
sup [[Z5(wlo = op (@ (Cvra + Cvr)' 7). (C.1.24)

ueUy
We next consider ZEg(u). Note that

-1

D@l = | [@rw] " [2h.0)  2pe(u)] [ (w)

O
-] |+ o))

NN S

IN
/~

0. (w) — Qe ()|

—1

- ([[[Ere] - (]

i) ot - w0,

IN
|
7 N
[N}
]
|
fo))
)
B
L
)
=0
B
|
B
)
B
L
=)
e
)
£

RICHTRE RN

IN
|

< = (|r- re] o] o
Q] 2, ()]




Hence,

D@l [1 = [@rew - 0] |[[05.@] " |

< [t o ~ et o,

This implies
2

[f2rctw - ., [ ]

o

D)o < -
" - e o]

O
By Proposition 3.2.1(ii), Proposition 3.3.2 and Theorem 3.3.1(ii), we can show that

Ssup
ue¥y

Qpe(u) - OF,E(U)HO =Op (Nwn(Cnra + Cvr2)'™9)
Similar to (C.1.20), we have

sup
uc¥,

[Q%,E(U)]AHO = Op(1/N).

By virtue of (C.1.25)—(C.1.27), we can prove that

SU?I; [D(u)llp = Op (N_le(CNT,l + CNT,2)1_q) .
ucUy
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(C.1.25)

(C.1.26)

(C.1.27)

(C.1.28)

By (3.2.8) and Assumption 3.A, |Q2(u)Arll, = Op(N'/?) uniformly over u € %, which together

with (C.1.28), implies

sup [|Eg(w)llo = Op (= Gy + Cvr)' 7).

ue¥y,

With (C.1.19), (C.1.21)-(C.1.24) and (C.1.29), we complete the proof of (3.3.11).
We next prove (3.3.12). By Theorem 3.3.1(iii), we have

1 _

sup NHEI(UW% =Op (wN (Cvra + Cvr2)” q> :

ue%y

Notice that for any two compatible matrices A; and A, it holds that
[A1A2|[F < [[Ad1][rllAzllo,  [[ArAz|r < [[A1]o]|Az|r.

Then by (C.1.20) and (C.1.30), we can show that

1 _
sup - ([Z2(w)[} + =5 (w}) = O (@ (Cvra + Cvra)* )
ue#y N

(C.1.29)

(C.1.30)

(C.1.31)

(C.1.32)
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By (C.1.31), (3.2.8), (C.1.20), Proposition 3.2.1(ii) and Assumption 3.A, we have

1, 9
sup —||Z4(u
sup ()}

IN

L {nns(mné &~ a2 Al

+ KTﬁ u
Nue%h, E(
2
1
N

- or(fs

ez}

(logN)l/2 T2/6

T N1/2
= op (WN (Cnra+ CNT,Q)z_q) ; (C.1.33)
and similarly,
1 -
sup 25 (w)|[} = op (@ (Cyra +Cvra)* ). (C.134)
ue¥y

For Eg(u), by (3.2.8), (C.1.28), and Assumption 3.A, we have

1 2 ]. 2 T 2
sup —||=2g(u < — sup [|N%(u)ArD(u ArQ%(u
ue‘ZE)hNH s(u)r < Nue?ll)hH 2()ArD(u)ll; || ARQ2(u)]|

IN

1 o 2 (0]
7 Sup 127 |AR]Z D)7, HA;%HF 1Q2(u)|3
ue%y
_ 0 <w12v(CNT,1 + CNT,2)2_2q>
P I .

(C.1.35)

Combining (C.1.30) and (C.1.32)—(C.1.35), we prove (3.3.12). [
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