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Abstract

A Software-Defined Network (SDN) is a new type of network architecture that sep-
arates the control and network planes. The centralised controller can programmat-
ically manage the underlying network devices. Although SDN provides many ad-
vantages, it raises new security challenges. A stealth attack is a particularly danger-
ous kind of attack adopted by adversaries who aim to avoid detection, typically by
incurring lower levels of traffic during their activities than would arouse suspicion.
Advanced Persistent Threats (APTs) are sophisticated attacks that implement stealth
behaviour during their campaigns. They present major challenges to the security of
systems. Little research has been carried out on detecting APTs in the context of
SDNs. This is the focus of this thesis.

Initially, an enhancement of scanning capabilities in SDN is introduced and an
open source scanner tool is adapted to operate more stealthily (allowing extended
periods of time between operations it carries out). It has been made publicly and
freely available to researchers. In this thesis, it is used to generate datasets (using
Mininet) to train and evaluate detection models. Existing datasets do not adequately
represent the presence of APTs, or do not do so in the context of SDNs. Thus, gen-
erating our own datasets was essential for the work in this thesis. However, we still
make use of existing datasets in our evaluations, e.g. to show our approaches may
still work effectively against non-APT threats. Of particular interest in this thesis is
the use of stealth techniques as part of ‘flow rule reconstruction’ attacks, where at-
tackers seek to infer aspects of packet handling policies that apply at targeted nodes.
Inferring such information facilitates further attacks.

The most common Machine Learning (ML) techniques for signature-based de-
tection (such as Decision Tree, K-Nearest Neighbour, Random Forest, XGBoost and
Support Vector Machine) and for anomaly-based detection (such as Local Outlier
Factor, Isolation Forest and One-class SVM) are evaluated. Consequently, XGBoost
is proposed as a signature-based model to detect known stealth attacks in SDN and
is shown to be highly effective.

Subsequently, a hybrid detection model is constructed by combining XGBoost
(as a signature-based detection module) and a One-class SVM (as an anomaly-based
detection module) leveraging the complementary aspects of these techniques to al-
low known and unknown attacks to be detected. This is the first demonstration of
the effectiveness of a hybrid approach for APT detection in SDNs.

As systems evolve, the effectiveness of an ML-based classifier degrades because
the distribution of the data it needs to handle increasingly deviates from that over
which it was trained. This is known as concept drift. One cause of such drift is at-
tackers changing their behaviour. A hybrid system (signature-based detection using
an Adaptive Random Forest and anomaly-based detection using an Adaptive One-
Class SVM) is presented that uses concept drift detection to instigate appropriate
run-time model retraining. The approach can detect known and unknown attacks
and adapt itself incrementally when concept drift happens. This is the first time
concept drift has been considered in the context of intrusion detection for SDNs.
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The validity of our IDS schemes is assessed using various datasets with different
attacks and network sizes. ML-pipeline techniques commonly ignored in the IDS lit-
erature are employed as part of the work: hyperparameter tuning to generalised the
model, imbalanced datasets are subject to resampling to prevent bias in predictions
and feature reduction is employed to focus modelling on smaller numbers of highly
informative features. Our proposed models are compared with available benchmark
results in the field and also with competing approaches as part of our comprehensive
empirical evaluation. Performance metrics such as Accuracy, Recall, Precision, and
F1-score are used in the evaluation. These steps collectively ensure that our schemes
are robust, accurate, and capable of generalising to new attack scenarios.

Overall, we show how machine learning can effectively detect APT stealth at-
tacks under constant contextual conditions and under change. We address the de-
tection of both known and unseen attacks. This is the first thesis to comprehensively
address the effective detection of APTs in an SDN context and demonstrates that
machine learning has a critical part to play in addressing the challenges APTs pose
to SDNs.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Software-Defined Networking (SDN) is being used in a large number of organisa-

tions due to the benefits the architecture offers in usability and efficiency. However,

some security challenges are raised due to the decoupling of the network and con-

trol planes. A fundamental aspect of the approach is the maintenance of ‘flow rule

tables’ in switches around the network. These rules dictate how a switch handles the

packets that it receives. This is a critical aspect of internal network configuration.

Knowledge of what rules apply at switch nodes can be of considerable use to

attackers. Consequently, preventing the malicious discovery of such rules in SDN

switches is one of the main concerns of the SDN community and a vibrant research

area [8]. When the attacker succeeds in determining the flow rules, some attacks

can be launched, including some that leak data or poison the network. Gaining this

traffic management data is usually referred to as ‘flow rule reconstruction’. In this

thesis, we will be concerned initially with such reconstruction attacks, particularly

using advanced stealthy approaches, and how machine learning (ML) may be used

to detect them. We will subsequently seek to widen the scope of attacks detected,

targeting further stealth attacks and more traditional attacks.

Advanced Persistent Threats (APTs) are complex and sophisticated attacks. They

are used not only for cybercriminal purposes but also for cyber warfare. Adversaries

behind these types of attacks are well-funded, highly skilled and target-specific vic-

tims. The characteristics and sophistication of APTs make them far more dangerous

than traditional threats and more difficult to detect. They are characterised by their
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persistence, stealth and the level of resources and expertise employed by the at-

tackers. They employ slow-and-low strategies and mimic normal user behaviour to

remain under any thresholds of detection systems and to otherwise avoid suspicion

[2]. This thesis focuses on APTs that target SDN networks. They behave extremely

stealthily by keeping activity levels low and stretching attacks over extended peri-

ods (i.e., they employ a ‘low and slow’ strategy). Hence, the term ’stealth’ in this

thesis refers to the extreme stealth behaviour employed by APTs.

Monitoring and detecting stealth attacks in SDN is important. The concept of

a Network Intrusion Detection System (NIDS) has been investigated to assist this

endeavour. A NIDS is a software system or device that monitors network traffic

to detect malicious activities. Intrusion detection approaches, in general, are cate-

gorised into two main types based on the detection approach: signature-based de-

tection, where the system seeks to match current behaviour or data against prede-

fined patterns (signatures) of attacks; and anomaly-based detection, which profiles

normal behaviour and then highlights unusual behaviour as suspicious. Adopting

machine learning within IDSs is now common. The capabilities of signature-based

and anomaly-based approaches differ: the former is a highly appropriate tool for

detecting known attacks (i.e. where a characteristic pattern of some form of the at-

tack is available), whereas anomaly-based detection has better chances of detecting

previously unseen attacks. Attacker behaviour will also change over time. Intrusion

detection systems must adapt to such changes to maintain detection performance.

This too raises challenges regarding how change is detected and how the intrusion

detection system should respond.

A small number of researches have been proposed to detect APT attacks. The

majority of these studies analyse a particular APT attack. Others evaluate their pro-

posals on a generic dataset with no APT attacks or do not conduct evaluations on an

SDN network. In general, there is a lack of literature proposing to detect APTs in an

SDN environment.

This thesis aims to build a Network Intrusion Detection System to detect stealth

attacks in an SDN environment. We seek excellent detection performance and a ca-

pability to evolve in the face of a changing adversary or network so that excellent
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performance is maintained. Furthermore, we aim to detect known and unseen at-

tacks. Our approach will also detect traditional attacks.

1.2 Research Questions

This thesis investigates the following three research questions:

1. Research Question 1 (RQ1): Can we use a machine-learning and signature-

based approach to detect the stealthy reconstruction of flow rules in SDN net-

works?

2. Research Question 2 (RQ2): Can we use a machine-learning and hybrid (signature-

based plus anomaly-based) approach to detect the stealthy reconstruction of

flow rules in SDN networks?

3. Research Question 3 (RQ3): Can we continue to detect stealth attacks in SDN

networks as adversaries change their behaviour?

1.3 Contributions

The contributions of this thesis are:

1. Proposal of a mechanism for making scans in SDN more stealthy.

2. Development of a customised scanning tool for stealthy reconstruction of SDN

flow rules.

3. Production of a dataset including activities geared to the reconstruction of flow

rules in SDN using some APT behavioural characteristics in the attack. This

dataset has been made publicly available 1.

4. Investigation of the most popular machine learning techniques in the context

of the two main detection approaches (supervised learning and unsupervised

learning).

5. Proposal for a signature-based Network Intrusion Detection System (NIDS) to

detect stealthy probing attacks in SDN networks.

1https://github.com/APT-SDNdataset



4 Chapter 1. Introduction

6. Proposal of a hybrid (signature-based and anomaly-based detection) NIDS

that detects stealthy (known and unknown) SDN attacks.

7. Proposal of an incremental adaptive NIDS that adapts to maintain excellent

detection performance in the face of behavioural change.

8. Incorporation of a richer ML pipeline than what is commonly seen in IDS

work. Specifically, we demonstrate more sophisticated feature engineering

and hyper-parameter tuning of all ML techniques used.

9. Evaluating the proposed models over different datasets.

1.4 Organisation of the Thesis

The rest of the thesis is presented as follows. The next chapter, Chapter 2, is a litera-

ture survey that presents background on the field of study and a review of the most

related research. Chapter 3 presents the work on enhancing the stealth of flow rule

reconstruction scans in SDN networks and shows how a signature-based supervised

machine learning approach can detect them. Chapter 4 presents a hybrid NIDS to

detect such scans in SDN networks. Chapter 5 shows our work on the incremen-

tal adaptive hybrid NIDS to detect APTs in SDN and overcome behaviour changes.

Chapter 6 concludes the thesis and identifies future work.

1.5 Publications

The work presented in this thesis has been published as shown below:

1. Enhanced Scanning in SDN Networks and its Detection using Machine Learn-

ing. Abdullah H. Alqahtani and John A. Clark. The Fourth IEEE International

Conference on Trust, Privacy and Security in Intelligent Systems, and Applica-

tions (2022).

2. Detecting Stealthy Scans in SDN using a Hybrid Intrusion Detection Sys-

tem. Abdullah H. Alqahtani and John A. Clark. WRIT – Workshop on Research

for Insider Threats (2022)
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Chapter 2

Literature Survey

2.1 Introduction

Computer networks are sets of devices connected to each other that communicate

through pre-defined protocols. Traditional networks struggle to meet today’s re-

quirements of carriers, enterprises, and users. It is hard to manage and configure

high-level policies on a large number of physical network devices. Network devices

such as switches and routers are fixed and dedicated to managing network traffic

based on predefined configurations and the complexity of legacy networks makes it

difficult to reconfigure and respond to network events and changes.

The Software Defined Network (SDN) paradigm is a highly flexible means of

providing distributed infrastructure and facilitating the means to manage it effec-

tively and efficiently. It does so by separating various concerns, in particular separat-

ing the control plane of the architecture from the data plane (allowing management

and control to be separated from routing). SDN has been adopted by a significant

number of major companies such as Intel, Huawei, Cisco, Juniper, IBM, Brocade and

Dell [9]. The SDN market is expected to reach US$ 37.24 billion by 2030 [10]. It is

clearly of major significance.

The architecture, however, brings with it various security concerns. This thesis

is concerned with one specific type of attack that could have SDN as a target. Ad-

vanced Persistent Threats (APTs) are stealthy and complex attacks that adopt strate-

gies making them hard to detect. Reconstructing flow rules in SDN and other attacks

will be considered. Below we review the literature concerned with SDN, threats to its

security, and means of detecting malicious software and behaviours directed against
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FIGURE 2.1: SDN vs Traditional Network

it.

2.2 Software-Defined Network

The Software-Defined Network (SDN) separates the control plane (SDN controller)

from the data plane (SDN network devices such as switches and routers). In tra-

ditional networks, forwarding decisions happen in network devices, whereas in an

SDN all forwarding decisions are defined in a centralised controller. The centrali-

sation of intelligence and state of the network in the SDN controller provides more

flexibility to the network [11]. To configure network hardware in the conventional

network, a network operator must typically log in to every device in the network

and configure it via the command line. Moreover, some vendors have their specific

commands [12]. In the SDN network, centralising the controller and separating it

from the network devices improved the network flexibility. Instead of static man-

ual configuration, the SDN network configuration can now be more dynamic and

programmable. The network operator can implement commands on any number of

devices at the same time, regardless of their vendors, by leveraging the programma-

bility offered by SDN. Through the controller, the operator can program switches by
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sending commands through "southbound APIs". Figure 2.1 shows the difference in

the location of the network brain in SDN and traditional networks. SDN has many

advantages including:

1. The centralisation of the controller provides a global overview of the whole

network. It can bring significant benefits to network security and performance.

2. Dynamic configuration of network infrastructures provides more flexibility to

manage their features and functionalities.

3. The capability of the controller to update and modify network traffic as a re-

sponse to changes.

2.2.1 SDN architecture

SDN has three planes (layers) and uses Application Programming Interfaces (APIs),

or protocols, in the communications between these planes. The network/Infrastructure

layer (data plane), Control layer (Control plane), and Application layer (Application

plane) are the main three layers in an SDN network [13]. However, some literature

[14; 11; 15] adds a fourth layer - a management plane - where the SDN manager

performs the management functions. Figure 2.2 illustrates the main three layers of

SDN. The Northbound Interface is the interface between the control plane and the

application plane. The interface between the control plane and the network plane is

called Southbound Interface.

1. Control plane: This is considered as the brain of the network, containing the

network controller. The controller is centralised and moved to be an external

entity running as software in the cloud or on a physical server. It has global

visibility of the entire network and maintains the flow rules according to the

policies derived from the services within the application plane. It provides

the network path for data flow in SDN [16]. SDN networks can have multiple

controllers logically centralised. The controller can monitor the network flows

and request the network devices’ status anytime. In addition, it manages the

SDN applications in the application plane.
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2. Data plane: In the traditional network, network devices are coupled with the

controller in the same device. In SDN, the network devices are decoupled,

making network infrastructure responsible for forwarding network packets

[17]. Network elements (devices) such as switches, routers, hubs, modems and

bridges lie in this layer. SDN devices can be in a virtual or physical model [18].

The SDN controller is considered the network brain. It communicates with the

network plane using the southbound interface (SBI) APIs, e.g. using Open-

Flow and Programming Protocol-independent Packet Processors (P4) [13]. Ev-

ery switch has one or more flow tables consisting of rules to forward, drop,

modify, etc. packets. These rules are inserted and updated by the controller.

The network devices handle the incoming packet by checking the information

in the packet header. This information is checked against the look-up table in

the network device. The decision is made, for example, to forward the packet

to a specific port, forward it to the controller, or drop the packet. If the infor-

mation in the packet header does not match any of the rules in the flow table,

the switch contacts the controller for further instruction, e.g. how to update

the flow rule table to handle this packet [19].

3. Application plane: The application plane consists of one or more applications

running on top of the SDN controller. Application developers can use APIs

provided by the controller to program the network devices to meet enterprise

requirements. SDN applications may include security applications (e.g. fire-

wall and IDS/IPS), operator services, management applications, traffic mon-

itoring, statistical applications, load balancing, and vendor applications, to

name but a few.

4. Northbound Interface: The Northbound Interface (NBI) is the channel (API)

used for communication between the application plane and the control plane.

The network operator uses these APIs to issue commands and network con-

figurations which transfer to the controller.

5. Southbound Interface:

The Southbound Interface (SBI) is the API or protocol that works as a com-

munication channel between the SDN controller and network devices (data
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plane). In the SDN controller, the received requests from the SDN applications

are translated into specific commands and then pushed to the network devices

using this API. OpenFlow, Programming Protocol-independent Packet Proces-

sors (P4), Network Configuration (NETCONF), and Simple Network Manage-

ment (SNMP) are examples of SDN Southbound APIs. In addition, a number

of companies have produced their commercial APIs.

OpenFlow (OF) is a standard communication protocol used in SDN for com-

munications between the controller and network devices. The SDN controller

receives information from applications running on the application plane. This

information is manipulated and fed into flow entries in SDN switches. It al-

lows the SDN controller to determine how to deal with incoming packets,

such as forwarding to a specific port, forwarding to the controller or dropping.

OpenFlow can also be used to gather information from network devices.

Programming Protocol-independent Packet Processors (P4) is a programming

language used in the communication between the SDN controller and the net-

work devices. It is a programming language that describes the network be-

haviour in SDN devices. Compared with OpenFlow, it provides advantages

by allowing the network administrator to program these devices at a much

more granular level. The programmer can modify and define the fields in flow

tables. It also allows the developer to define actions that can be applied when

an instance of a packet matches a particular flow entry [20].

OpenFlow and P4 have different architecture paradigms. In OpenFlow, net-

work devices such as switches or routers have fixed-function hardware pipelines.

The chips in OpenFlow network devices, like all traditional network devices,

are fixed-function and provide functionality to the device OS. This design is

called “bottom-up”. OpenFlow uses flow-based information to define rules

and matching mechanisms. The main limitation of OpenFlow is it is limited

to a fixed set of supported header fields. For example, the matching pro-

cess in OpenFlow is applied to specific (exact or wildcard) characteristics on

packet header information. This limitation is overcome by P4 as it allows the

network programmer to define the entire packet processing pipeline (Packet
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TABLE 2.1: Comparison of aspects between OpenFlow and P4

Aspect OpenFlow P4
Packet

Processing
Flow-based The entire packet processing

pipeline (flow-level and
metadata)

Granularity
of control

Flow-level (packet header) Finer granularity by processing
the entire packet (flow-level

and metadata)
Flow Rules Defined based on packet

header fields
Defined based on packet

header fields and metadata
Adoption Widely adopted by network

hardware vendors and has
been dominant for a long time

Gaining traction and largely
adopted in recent years by

network device vendors
Support

community
A large support in the SDN
research community with a
high number of tools and

techniques

It has significant support from
network devices vendors and
Open Network Foundation

(ONF) [22]. (SDN researchers
however mostly focus on

OpenFlow.)
Approach Bottom-Up Top-Down

header fields and metadata). They can define forwarding behaviour, packet

parsing, and processing logic. Rather than applying exact or wildcard match-

ing, the developer can customise matching logic allowing them to go beyond

exact (or wildcard) matching. They can create complex matching conditions

based on specific packet characteristics. These features provide more flexibil-

ity and adaptivity to programmable switches in P4 [21]. With special chips,

P4 employs a “top-down” paradigm as the network programmer uses the P4

program to define a set of network features. The P4 program compiles the

code and then injects the configuration into the network device. Figure 2.3

shows the difference in the architecture between OpenFlow and P4. Table 2.1

summaries the differences between OpenFlow and P4.

OpenFlow was the dominant protocol in SDN environments for many years.

However, P4 has been the most widely used API in recent years. The evolu-

tion from OpenFlow to P4 gives the network operator more flexibility to im-

plement more detailed commands to SDN network devices. P4 has many ad-

vantages for SDN; however, it is not a replacement for OpenFlow. OpenFlow
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FIGURE 2.3: Evolution from OpenFlow to P4 [1]

can be a part of P4 and used in implementing a number of P4 programs such

as P4Runtine [23].

2.2.2 Threats to SDN

The separation of the network plane from the control plane, together with its dy-

namic programming, brings improvements to the network. The global visibility of

the controller makes the monitoring of network traffic easier than in a traditional

network and allows easier implementation of security policies. Another benefit is

the amount of information that can be gathered from the network flow. This is a

challenge in conventional networks [22].

On the other hand, the new relationships between network elements in SDN

networks give rise to security issues. The most commonly known attacks on con-

ventional networks can be used against SDN, but the effects are different due to the
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new architecture of SDN. Man-in-the-middle, spoofing, hijacking, DoS, tampering,

repudiation, information leaks, and privilege escalation are examples of these at-

tacks [12]. However, the centralisation of the controller creates a new set of attacks

in SDN. A single controller (some SDN networks have multiple controllers) is an at-

tractive target for attackers[24]. Moreover, the ease of deploying applications on the

controller could allow adversaries to develop and deploy their malicious applica-

tions there. Reconstructing flow rules in SDN switches is a significant threat in SDN.

The attacker can send probing packets to gather information about the flow rules in

SDN devices. (This will be discussed in detail in 2.2.3.) The gathered information is

a preliminary to further attacks. The following are examples of potential attacks in

SDN:

1. Unauthorised access: An attacker can perform brute force or password-guessing

attacks to get access to the SDN application or the management plane. In addi-

tion, the attacker can exploit software vulnerabilities to get access to SDN ap-

plications. Therefore, they can get access to different network resources with-

out permission [25].

2. Data modification: One of the disadvantages of the centralisation of the con-

troller is the possibility of attackers controlling the entire network if they suc-

ceed in hijacking the controller or spoofing its identity. As a result, the attack-

ers can insert or modify flow rules in the network elements. They can route

data based on their aims, e.g. they may route it to themselves [25].

3. Information disclosure: In an SDN network, adversaries can gather different

information than in traditional networks. The flow rules in SDN switches are

one of the attackers’ targets in SDN. The adversaries can send probing packets

to reconstruct flow rules. Reconstructing flow rules leads to further attacks,

such as discovering the running applications and security policies. Another

type of attack is the side-channel attack which is an attack that depends on the

information that is gained from the physical implementation of the computer

system, for example, the time of data processing in switches. In SDN, a switch

applies certain forwarding policies on every packet: drop, forward, or send

to the controller. The attacker can analyse the time of packet processing to do
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that. For example, a packet sent to the controller will take longer than one

immediately forwarded to another switch port. The gained information can

be used to launch attacks on network elements or the SDN controller (such as

DoS on the controller) [26; 27; 28; 12].

4. Malicious applications: A malicious or compromised application can launch

several attacks on the controller, such as compromising or modifying config-

uration or management data, fetching flow table rules and contents, network

topology and other sensitive information [12]. One SDN characteristic is the

ability to integrate third-party applications - applications that are developed

by a provider who is not the same provider of the SDN controller and net-

work elements. In this case, the attacker can more easily get information about

the SDN controller or other applications. Furthermore, it is more dangerous

if the application itself is an attacker. A trusted connection and authentication

are required to prevent malicious applications from connecting to the network

[12].

5. Denial of Service (DoS): The separation of the control plane and the data plane

causes new attack vectors. The centralised and global visibility of the con-

troller makes it the most attractive element for attack by adversaries. One of

the most difficult challenges in SDN architecture is the single point of failure

when an attack on the SDN controller succeeds. Once an attacker launches a

DoS attack on the controller, the entire network would fail. For example, an at-

tacker can flood the controller with rule decision requests. When the number

of requests is more than the size limit of handling requests by the controller, it

is prone to miss a number of requests or go out of service. Similarly, an attacker

can overflow flow tables in SDN devices, making them unable to handle new

transmissions [29; 30].

6. Elevation of privilege: A number of attackers, such as APTs, often elevate their

privileges once they get inside a victim’s network and so gain unauthorised

access to resources or applications. If an attacker gets higher privileges on the

SDN controller, they could control the whole network. In addition, application

services could be a target [13].
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TABLE 2.2: General threats to SDN and their targeted interfaces

Type of attack App
Layer

App-Controller
Interface

Control
Layer

Control-Data
Interface

Network
Layer

Unauthorised
access

✓ ✓ ✓ ✓ ✓

Data modifi-
cation

× × ✓ ✓ ✓

Data breach × × ✓ ✓ ✓
Timing attack × × × ✓ ✓
Malicious ap-
plications

✓ ✓ ✓ × ×

DoS/DDoS × × ✓ × ✓
Elevation
Privilege

✓ × ✓ × ✓

App: Application;

Table 2.2 presents a summary of in which interface or layer the attack in SDN can

happen.

2.2.3 Reconstructing flow rules in SDN

An OpenFlow switch has one or more flow tables in which every entry of a table has

three main components:

• Match fields: these determine the criteria for matching incoming packets. Match

fields consist of packet header fields, ingress port, and metadata (optional).

• Counters: these maintain counts of various occurrences in the flow data, such

as the number of matched packets or bytes.

• Action: the action that would be executed when a packet matches a rule, for

example, forward the packet to a specific port, forward it to the controller, or

drop it.

When a new packet arrives at an SDN switch, the switch performs a lookup to

determine how to handle the packet, e.g., where it should be forwarded. Each flow

table contains a set of flow entries to manage the incoming traffic. The flow entries

contain matched fields, counters, and a set of instructions that are to be applied to

the incoming packets. If no appropriate (matching) entry for the packet can be found
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in the flow table, the switch contacts the controller via the southbound interface to

request updates for its flow table [31].

Figure 2.4 shows an example of an attacker sending probing packets to recon-

struct flow rules in OpenFlow switches. They can send probing packets to a host to

infer the required details to reconstruct flow rules in OpenFlow switches. This helps

the attacker to discover which forwarding policy is applied when a new packet ar-

rives. By reconstructing flow rules, the attacker can then launch further attacks such

as bypassing Access Control Lists (ACLs), avoiding defensive tools such as Moving

Target Defence (MTD) techniques, and learning what applications are running in the

application plane (such as the load balancer) [32; 33; 8].

SDNmap [34] is an open-source SDN scanner that allows the user to reconstruct

OpenFlow rules in SDN. It sends a sequence of probing packets to infer matching

fields and applied actions. SDNmap can scan one or more hosts by specifying one

or a range of IP addresses. The following are examples of the applied scanning steps

taken by SDNmap to infer flow rules in OpenFlow switches.

• MAC address: To infer the MAC address, the attacker generates a spoofed

MAC address and sends a prob request (TCP or ICMP) to the destination host

(target). The host will lookup in its local ARP cache for the corresponding IP

address. If the MAC address is founded in the entry, it will reply with the MAC

address which is presented in its local ARP cache. But if the IP is not listed in

the local ARP cache, the destination host will send an ARP request to resolve

the MAC address of the sender. The host then will update its local ARP cache

based on the reply from the sender. These techniques can reconstruct the flow

rules of matching MAC source address and the field of matching destination

MAC address [8].

• IP address: In the same way, the attacker generates a probe packet with a

spoofed IP to infer the matching fields of source IP and destination IP [8].

• Protocols and ports: The adversary can send probing packets to determine if

the entry in OpenFlow matches specific protocols (such as ARP, ICMP, TCP

and UDP) and determine which ports are open. The attacker can send ARP

requests and listen to reply messages in a manner similar to that adopted when
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reconstructing a MAC address. For ICMP, it can send an ICMP Echo Resuest

and list to the Echo Reply. Also, it can send a TCP SYN and wait for an ACK, if

the destination port is open, it will receive an ACK. Otherwise, it will receive

a TCP RST. To determine if the UDP is matching flow rules, the attacker can

send a probing packet with a spoofed IP and listen for an ARP request. Based

on the reply messages, the attacker can infer which ports can be reached by a

specific source and which protocols are supported [8].

• Ingress port: This refers to the input port in the switches. An attacker can

perform checks by sending probing packets and analysing ARP requests to

deduce whether the ingress port is part of the matching flow rule or not. The

attacker could impersonate another host in the sub-network to infer the ingress

port field. The attacker spoofs the other host’s ARP cache. If the attacker re-

ceives an ARP request from the recipient, it indicates that the ingress port is

not checked in the flow rule matching criteria. If the attacker does not receive

an ARP request, they can infer that the ingress port is a part of the matching

flow rule criteria [8].

• Rewritten IP addresses: In this procedure, the attacker can infer the actions in

the flow rule if that flow rule performs IP address rewriting (for source and

destination). Initially, the attacker sends a UDP probing packet to a closed

port. The destination should send back an ICMP error message (Destination

Port Unreachable). This message reveals the actual IP addresses that it received

that differ from IPs in the probing packet sent by the attacker. That indicates

the action of rewriting IP is performed in the flow rule [8].

• Forwarding action: The attacker can infer the flow rule action of forwarding

the received packet in the OpenFlow switch to a specific port or of dropping

that packet. This rule can be inferred based on the analysis of the previous

scanning steps (reconstructing the fields of MAC addresses, IP addresses, and

protocols and ports). The forwarding action can be inferred by analysing the

reply messages. The attacker infers that the action "drop" is performed when

there is no reply message[8].
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TABLE 2.3: A comparison between APT and traditional attacks [7]

Traditional Attacks APT attacks
Attacker Mostly single person Highly organised, sophisticated,

determined and well-resourced
group

Target Unspecified, mostly individual sys-
tems

Specific organisations, governmen-
tal institutions, commercial enter-
prises

Purpose Financial benefits, demonstrating
abilities

Competitive advantages, strategic
benefits

Approach Single-run “smash and grab”, short
period

Repeated attempts, slow-and-low
strategy, adapts to resist defences,
long term

2.3 Advanced Persistent Threats

Advanced Persistent Threat (APT) attacks target a specific system using sophisti-

cated tools and approaches. In some cases, it is a set of continuous and stealthy

attacking processes remaining in the target system for a long time [35]. Usually,

these attacks target nation-state organisations or big companies, mostly for political,

military or economic benefit. The impacts are usually far more insidious than tra-

ditional attacks. Table 2.3 compares APTs and traditional attacks. Attackers behind

these attacks are usually highly skilled, well-funded and well-resourced. They are

governments, activists or cyber-criminals. If they work for a government, they may

have military or intelligence agency support. Despite a large number of security

researchers saying that APT attacks require highly skilled attackers, they can often

be launched with basic skills [7; 36]. In addition, the majority of APT attacks use

known vulnerabilities [2]. There is no one behaviour of APTs; however, a number of

characteristics are common. They are listed below:

1. Low and slow: attackers stay in the system for a long time without detection.

Unlike a traditional “smash and grab”, they move slowly and quietly inside

the network, from one system to another, until they have accomplished their

goals [37].
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2. Stealthiness: refers to the ability of an attacker or their malicious activities to re-

main undetected by security measures and avoid raising suspicion. APTs em-

ploy techniques that minimize traffic volume, making their activities resemble

those of regular users (by utilising the earlier strategy "low and slow"). If they

intend to transmit the gathered data to the attacker (Command and Control

C&C), which is outside the victim network, they use covert communication

channels. In addition, some APTs clear any evidence of their presence that

may be noticed by the incident response team.

3. Adaptability: people behind APT attacks adapt themselves to resist defenders’

tools and efforts. Furthermore, they may use zero-day exploits in their attacks

to avoid a victim’s defences.

4. Customised attacks: in addition to traditional attacking tools, APT attackers of-

ten use tools and malware customised for their specific targets and goals. They

spend as much time as possible gathering information about the target includ-

ing the defence tools used, its environment and its vulnerabilities. They may

then develop new tools exploiting vulnerabilities (which may be zero-day).

5. Persistence: APT attackers spend a great deal of effort to achieve their goal. If

at first they fail, they adopt alternative approaches until they succeed, and stay

as long as they can without being detected.

2.3.1 High profile APT examples

Five high-profile APTs are discussed below:

1. Flame: Also known as sKyWIper, this targeted many systems in Europe and

the Middle East. The main aim of Flame was to collect secret and sensitive in-

formation on Microsoft Windows PCs. They use different techniques to collect

data such as keystroke logging, screen capture, switching on microphones and

cameras, and collecting data from external drives. The malware can switch

on the Bluetooth of an infected device, if available, to collect data from devices

within range that are also using Bluetooth. If a network connection is available,

Flame sends the gathered information using the C&C server to the attackers.
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If there is no connection, collected data is saved in a USB drive until that drive

is connected to a device with a network connection. Consequently, the newly

connected device is infected. The malware can propagate inside the network

in one of two ways: by exploiting the print spooler and LNK; or by sending

the malware to another computer in the same network as a Windows Update

[38; 39].

2. Operation Aurora: Early in 2010, Google announced on its blog [40] that itself

and more than twenty big companies had been targeted by an advanced attack.

The operation targeted the infrastructure and resulted in stealing intellectual

property from Google. In their report, they claim that the source of the attack

was China. McAfee in their investigation report [41] noted that attackers ex-

ploited an unknown vulnerability in Microsoft Internet Explorer. Moreover,

a vulnerability in Adobe Reader and Acrobat applications was exploited to

get access into the network of some infected firms [2]. Interestingly, the later

variants of this malware no longer use unknown vulnerabilities. Generally,

the attack, which started in 2009 and lasted for months, gathered information

about the system and network, including the usernames and passwords of its

victims, and sent it to the command and control server. The IP and domain of

the server were hardcoded in the malware [2].

3. Stuxnet: This is one of the widely recognised APT attacks to date and was dis-

covered in mid-2010 [42; 43; 44; 45] although the first sample was known to

date from 2007. Some instances were still active in 2012. The main aim was

to damage or delay the Iranian nuclear program. Attackers behind that at-

tack, widely thought to be state-sponsored [45; 46], targeted centrifuges in a

uranium enrichment plant’s network. In mid-2009, attackers started by infect-

ing the SCADA system in the isolated network (most likely, using an infected

USB drive). The malware then spread inside the network, exploiting a zero-

day vulnerability in a print-spooler. As a result, about 1000 centrifuges were

damaged. Although the malware had a specific target, the Iranian nuclear

program, it spread around the world after one engineer connected a work lap-

top to his home network. Stuxnet also exhibited remarkable counter-analysis
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measures, for example intercepting operator interactions with the system and

faking responses to enquiries.

4. Shamoon: After Iranian nuclear facilities were attacked by Stuxnet [45], at-

tackers learned from the experience and created Shamoon to attack one of the

biggest oil companies in the world - the Saudi Arabian oil company called

Saudi Aramco [47]. The attack happened in 2012, damaging about 30000 Win-

dows based personal computers. Inserting the malware for the first time in

a workstation within the network was not easy and may have required the

involvement of someone with physical access. The malware was designed,

after infecting the first machine, to propagate at a specific time over the net-

work, overwriting the hard drives of infected computers. Although Shamoon

was designed for a specific target, it spread to other oil companies such as the

Qatari company RasGas and the American ExxonMobil [48].

5. SolarWinds attack: In December 2020, FireEye [49] reported that one of its

penetration testing tools had been stolen by a national-based group (APT)[50].

The attackers successfully inserted a stealthy backdoor into a large number

of networks in companies and organisations across the world. The attackers

exploited a vulnerability in SolarWinds’ Orion Platform (Orion) [51] to deliver

their malware [52]. It is reported that the attack started on March 2020 and

remained undetected until the end of the same year [53].

Table 2.4 summarises the most notable APTs examples.

2.3.2 APT stages

A successful APT attack goes through several stages. The number of stages differs

from one attack to another. Although most stages of APT attacks are similar, there

are some differences in the literature [2; 37; 54; 55; 56; 57; 58; 59]. Table 2.5 presents

the different APT stages in the reported research. Based on these studies, the com-

mon APT stages can be identified:
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TABLE 2.4: Example of some notable APT attacks

Attack Period Target Results
Flame
[38; 39]

2007 - 2013 Academia Research,
Government entities,
Specific individuals in
Egypt, Europe, Iran, Is-
rael, Lebanon, Palestine,
Saudi Arabia, Sudan,
Syria, Ukraine

Stealing information

Operation
Aurora
[2; 40; 41]

2009 - 2011 Commercial companies Theft of sensitive infor-
mation

Stuxnet
[45]

2009 - 2012 Iran’s uranium nuclear
project

About 1000 centrifuges
were damaged and the
nuclear program was de-
layed

Shamoon
[48]

2012 - 2013 Energy, oil and gas com-
panies in Saudi Arabia

Destruction of about
30000 personal comput-
ers

SolarWind
attack [50]

2020 Global private and public
organisations

Stealing information

• Stage 1: Reconnaissance - The first step of any attack is gathering information

about the target. Social Engineering, open-source intelligence (OSINT) tools

and different scanning techniques can be used in this stage.

• Stage 2: Establish a Foothold - after gathering the necessary information, it is

time to break into the target’s network. Typically, attackers construct different

vectors of attack using different tools. Exploiting vulnerabilities in the victim’s

system, installing malware and spear-phishing are examples of methods and

techniques used by APT attackers to accomplish their foothold. APTs are per-

sistent and spend a great amount of time trying to infect the victim network.

APTs may target an isolated network, not connected to the internet, or one well

protected against cyber-attack. In this case, the attackers may use social engi-

neering methods to deceive someone inside the target network to download

the malware. However, an employee inside the targeted organisation could

easily install the malware deliberately. This is commonly referred as an ‘in-

sider’ threat.
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MaintenanceReconnaissance Lateral 
Movement      Reconnaissance Establish

Foothold
Exfiltration/
Damaging

FIGURE 2.5: APT stages

• Stage 3: Lateral Movement - The attackers move inside the network from one

component to another until they reach their targets. They may escalate their

privileges during the movement. To avoid detection, APT attackers usually

move stealthily using valid credentials. Therefore, previously stolen pass-

words may be used in this stage. Mimikatz [60] and Windows Credential Ed-

itor (WCE) [61] are popular examples of credential dumping tools that APT

attackers could use. Extracting and analysing parts of the Windows Local Se-

curity Authority Subsystem Service (LSASS) process is another technique used

for dumping credentials [62]. Attackers may keep scanning the network look-

ing to get useful resources that help for dumping credentials.

• Stage 4: Exfiltration or damaging - If the attacker’s goal is to get information or

damage part or all of the system, it would happen in this phase. The attacker

uses a command and control C&C server to communicate with the compro-

mised system to extract stolen data or perform commands that the attacker

would like to execute, such as updating malware, changing the C&C IP ad-

dress and disabling systems. However, it is crucial that the rate of exfiltrated

data is low during the communication to reduce the risk of it being considered

anomalous traffic.

• Stage 5: Maintenance - The APT attackers usually maintain access using a back

door open in the compromised network for future initiatives. They will typ-

ically test their accessibility periodically. If the access is lost, they may move

back to the reconnaissance or foothold stages. Moreover, they may cover their

tracks and clear any evidence, for example, by deleting logs.

2.3.3 APT defence methods

The sophisticated and advanced attacks in APTs’ campaigns make the detection or

prevention of these attacks challenging. APTs employ different tools or techniques
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TABLE 2.5: APT stages in existing research

Ref. stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7
[2] Recon Establish

foothold
Lateral move-
ment

Exfiltration
Impediment

Post-
exfiltration
Post-
impediment

- -

[37] Incursion Discovery Capture Exfiltration - - -
[54] Recon Preparation Targeting Further access Data gather-

ing
Maintenance -

[55] Collect intelli-
gence

Find a point of
entry

Call home Search for
data assets

Move thought
the network

Extract data -

[56] Recon,
Launching
and Infection

Control and
management,
Detection,
Persistence

- - - - -

[57] Recon Compromise Maintaining
access

Lateral move-
ment

Data exfiltra-
tion

- -

[58] Recon Weaponisation Delivery Exploitation Installation C&C Actions on ob-
jectives

[59] Initial com-
promise

Establish
foothold

Escalate privi-
leges

Internal recon Lateral move-
ment

Maintain pres-
ence

Complete mis-
sion

in different stages. To detect (or prevent) this type of attack, It is recommended to

implement different layers of defence. Correlating events, monitoring traffic, check-

ing logs and pattern matching are known approaches to detecting traditional attacks,

which would also help detect APTs. In [2], the authors classify defence methods into

three major categories: monitoring, detection, and mitigation methods, as shown in

Figure 2.6. More details about these methods are given below.

The first category comprises monitoring methods that are used to monitor sus-

picious activities. Monitoring methods include:

1. Disk monitoring: Monitoring all systems in the organisation’s network is im-

portant to detect malicious activities. Monitoring the CPU usage can also help

in detection. It is crucial to patch any vulnerabilities found in these systems

[2].

2. Memory monitoring: Some types of malware, called fileless malware, execute

not from a file, but from within memory. These malware are sophisticated and

difficult to detect by anti-malware software. Monitoring memory usage helps

in the detection of this type of malware.

3. Packet monitoring: Monitoring network traffic is a common practice in net-

work security solutions. The investigator can monitor the network flow for

abnormality or go deeper by inspecting the packets’ payloads. A high number

of packets, the amount of traffic, and the passing of some traffic over a port
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that is not designed for it (for example, a non-http over port 80) are examples

of suspicious behaviours.

4. code monitoring: Attackers usually seek vulnerabilities in systems and ap-

plications working in the network. It is important to check and analyse the

software code for any vulnerabilities attackers could exploit. Moreover, mon-

itoring the software behaviour on the network could help to identify possible

vulnerabilities [63].

5. Log monitoring: Correlating different logs can help to detect even unknown

attacks. Memory usage logs, CPU usage logs, applications logs and system

logs are examples of these log files. The biggest challenge in detecting attacks

using log monitoring is the large amount of data to be monitored and analysed

[64].

Some APTs are previously known, but some are unknown or zero-day. Two main

approaches to detecting APT attacks are:

1. Anomaly detection: APT attackers are persistent and usually implement eva-

sion techniques in their attacks. Also, they sometimes use unknown mal-

ware to evade defence tools. Anomaly detection techniques profile normal

behaviour and identify abnormal behaviour as deviating significantly from

that profile [65]. However, not only do APTs apply evading techniques, but

also sometimes behave in a ’normal’ manner or close to it.

2. Pattern matching: Also known as signature-based detection. It is a way of

detecting a predefined pattern (or signature) of attacks. Known attacks are

identified then profiles of these attacks are constructed. When a pattern is

encountered again, the classifier can detect it.

The following are the two main categories of mitigating attacks:

1. Reactive methods: The method is based on analysing the vulnerabilities in the

system and the possible paths used during the attack. Graph analysis is one

example of this mechanism to detect attacks [2; 66].
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FIGURE 2.6: APT defence methods [2]

2. Proactive methods: One of the most used ways to prevent APTs is to misin-

form the attacker about the system. For example, honeypots, or honeynets,

are hardware or software that work as a decoy presented to the attacker as a

part of the production environment. Analysing accesses to the honeypot or the

honeynet can lead to exposing the attack [67]. Moving Target Defence (MTD)

is another example of confusing the attacker by reconfiguring the network,

making it hard for attackers to collect information about the system [68].

2.4 Intrusion Detection Systems

An Intrusion Detection System (IDS) is a system or a device that monitors a network

or a host to detect suspicious activities. When an attack is detected, it generates

alerts to the administrator or the security team. Based on the alert, the admin can

investigate the alarm and take the appropriate actions, such as updating the fire-

wall (or flow rules in SDN) or blocking the sender. Figure 2.7 illustrates how IDS

makes decisions based on predefined knowledge. Signature-based and anomaly-

based detection are the two main detection techniques adopted by IDSs. A Network

Intrusion Detection System (NIDS) is a type of IDS that monitors network traffic to

detect suspicious attacks. Another type of IDS based on the source of data (location
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FIGURE 2.7: IDS making decisions based on predefined knowledge

of the IDS) is Host-based IDS (HIDS). An IDS taxonomy can be more detailed, as in

Figure 2.8; however, the main categories are now discussed.

2.4.1 Detection approach

• Signature-based IDS: Signature-based approaches also called misused-based, de-

tect abnormality based on predefined patterns or signatures of attacks. This is

a significant means to detect known attacks and is known to exhibit low false

alarm rates (i.e. it rarely classifies benign traffic as malicious). However, de-

tecting unforeseen malicious activities that have different properties to known

malware is a significant challenge for this approach.

• Anomaly-based IDS: In anomaly-based detection, the system is trained over

normal traffic and builds a profile of it. When the behaviour of a user differs

significantly from its normal profile, a potential attack is suspected.

2.4.2 Monitoring approach

As shown in figure 2.9, IDSs can be categorised based on the source of audit data as:

• Network-based IDS (NIDS): The NIDS (software or device) is placed on the

network, monitoring network traffic inside, exiting or entering the network.

• Host-based IDS (HIDS): Here the system is installed inside one or more hosts

that it is supposed to monitor. A HIDS monitors and analyses internal activi-

ties and files. In addition to analysing running software and local files (e.g. log

files), it can inspect incoming packets to the host.

Table 2.6 summarises the strengths and drawbacks of each type.
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FIGURE 2.8: Detailed IDS taxonomy [3]
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FIGURE 2.9: Types of IDS based on their source of data

TABLE 2.6: IDS location-based comparison

IDS Strengths Drawbacks
NIDS Analyse the whole network com-

munications
Difficult to analyse encrypted data

One machine can cover the whole
network

In some cases needs to use extra
hardware

Checks the traffic immediately Little information is checked
HIDS Easier to analyse encrypted data Inspects only hosts that it installed

in
No extra hardware Needs to be installed in every host

that is considered to be protected
Analyse a large number of files Delay to report attacks
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TABLE 2.7: Comparison between IDS and IPS

Scheme Strength Drawback
IDS Detect attacks Can not prevent attacks

No risk of impeding legitimate traf-
fic

The action of preventing the attack
may come late after the attack has
succeeded

IPS Prevent attacks There is a possibility of preventing
a legitimate transmission

2.4.3 Hybrid-IDS

Hybrid Intrusion Detection Systems combine two categories of systems. They might,

for example, use two types of detection (signature-based and anomaly-based ) or be

based on their location as placed on the network and a host (NIDS and HIDS) at the

same time.

2.5 Intrusion Prevention Systems

An Intrusion Prevention System (IPS) is a hardware device or a system that monitors

network traffic (or a host) for suspicious activities. Rather than just reporting the at-

tack, the IPS takes actions to prevent the attack. For example, blocking the source

of an attack, dropping the suspicious transaction, updating the firewall with a new

configuration and resetting the connection. Similar to an IDS, an IPS can be network-

based, host-based or hybrid. Also, an IPS applies similar methods for the detection

(i.e. signature-based or anomaly-based detection). As the detection techniques ap-

plied by IPSs have a high possibility of generating false positives, legitimate traffic

can be prevented. This makes network administrators reluctant to implement IPSs,

preferring IDSs instead. Table 2.7 summarises the strengths and weaknesses of both

approaches.

2.6 Machine-Learning-based IDS

Machine Learning (ML) describes the ability of a machine to learn by practice on

previous inputs and make decisions (predictions) on new samples. An ML-based
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FIGURE 2.10: Machine Learning algorithms taxonomy
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approach seeks to learn a prediction function f over a set of input features X. The

value of f (X) gives the target Y prediction (e.g. whether the inputs are malicious or

normal).

Y = f (X) (2.1)

Machine learning has been widely used for network security. It is the most used

technology in Intrusion Detection Systems nowadays [69]. There are a large number

of machine learning algorithms used by IDS researchers. Figure 2.10 shows exam-

ples of the most popular techniques based on their category. Regression and Clas-

sification are two approaches of machine learning. Regression algorithms predict

a continuous value (quantity) such as price, salary and probability. On the other

hand, the classification algorithms predict a discrete class or classes (category), such

as True or False, benign or malicious, or the type of attack (e.g. DoS, probe or brute

force). In classification problems, when the target has more than two classes, it is

called multi-classification. Binary classification is the case when the target might be

one of two classes (e.g. True and False, or, Malicious and benign).

2.6.1 Machine learning detection techniques

Machine learning can be categorised into three main categories based on the avail-

ability of labelled data (supervision of the developer):

1. Supervised learning: In this category, the model is trained over labelled data

(i.e. data designated as normal or malicious). Supervised learning can be used

for Classification and Regression. A reasonable number of ML techniques can

do both based on the developer’s needs. The following is a brief description of

the most popular supervised algorithms for IDS researchers.

Logistic Regression: This is easy to use and the go-to algorithm in binary classi-

fication [70]. Logistic Regression is a statistical model that estimates the prob-

ability of an instance being classified in one class (normal or attack). It has the

ability to use discrete and continuous variables to classify new samples. Lo-

gistic Regression uses a logistic function, also called sigmoid, to draw an "S"

shaped curve that maps any real number to a value between one and zero. If
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FIGURE 2.11: Logistic Regression in machine learning

the value is more than 0.5 then the predicted class is going to be 1, otherwise,

it is 0. Figure 2.11 depicts the shape of Logistic Regression.

K-Nearest Neighbour (K-NN): K-NN is one of the most popular machine learn-

ing techniques used for regression and classification. For classification, the al-

gorithm assumes that similar instances of one class are located near each other.

When a new instance arrives it uses a distance function (metric) to measure

the similarity of that instance with the nearest k instances (neighbours). An

instance is assigned to the most frequently occurring class amongst the k near-

est neighbours. Euclidean distance, Manhattan distance, Minkowski distance

and Hamming distance are the most popular distance functions used by K-

NN. k and the distance function are the most important parameters that play a

significant role in k-NN performance. A drawback of the K-NN is the compu-

tational expense when the number of independent features is high; however,

the prediction gets better when the number of features increases.

Decision Tree: This is a powerful machine learning technique that uses a tree-

based model. Data is repeatedly split based on a set of rules until the end (leaf).

The branches represent conditions (features) and the leaf is the class label. The
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FIGURE 2.12: Difference between Decision Tree and Random Forest
[4]

deeper the tree, the more accurate the decision, however, it may affect the gen-

eralisation of the model. The maximum depth is the parameter that represents

the depth of the tree. Another important parameter is the ’criterion’ which

specifies the methods used to decide how the condition is constructed during

split operation (in branches).

Random Forest: A Random Forest (RF) is an ensemble of Decision Trees. Ev-

ery tree uses a subset of features for splitting. The decision is based on the

outcome of the predictions of various decision trees. It is calculated by com-

puting the means or average of the outcomes of participant trees. Random

Forests overcome the limitations of Decision Trees by reducing overfitting and

increasing the accuracy of decisions. Maximum features, maximum depth and

the number of trees are the most popular parameters to be tuned when using

Random Forest. The more trees, the more accurate the decision, however, this

may require more computation and could affect the generalisation of the clas-

sifier. Figure 2.12 shows the differences between Decision Trees and Random

Forests.

The eXtreme Gradient Boosting(XGBoost): XGBoost is a boosting ensemble method
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FIGURE 2.13: How XGBoost works [5]

where a sequence of classifiers are combined to provide more accurate deci-

sions. Each model aims to correct wrong decisions of the model preceding it

and provides input to the next model in the sequence [71]. Figure 2.13 illus-

trates how XBGoost works. The important parameters while using XGBoost

are the maximum number of features to be used in a single run, the number of

trees, and the maximum depth of every tree.

Support Vector Machine (SVM): The SVM is one of the strongest techniques for

binary classification. It constructs a hyper-plane of N-dimensions between dif-

ferent instances based on their classes. The number of dimensions depends on

the number of features. Choosing the optimal kernel, the type of regularisation

and the kernel coefficient are the most important parameters to be considered

while using SVMs.

2. Unsupervised-Learning: The model is trained over normal data to build a pat-

tern for the behaviour of such traffic. In production, when a new instance of

traffic has a different pattern than those trained on, it is flagged as malicious.

Unsupervised learning is a well-known technique adopted by anomaly-based

detection classifiers. One-class SVM, Isolation Forest and Local Outlier Fac-

tor are the most popular unsupervised-based anomaly/outlier detection tech-

nique.

One-class SVM (OC-SVM): An OC-SVM is an instance of SVMs used for anomaly



2.6. Machine-Learning-based IDS 37

detection in unsupervised learning. The idea of classifying outliers is based on

the majority of normal data being close to each other, and those far from them

are anomalies. Rather than drawing a hyperplane, as SVM does, it uses a hy-

persphere to envelop most instances, with a few outliers remaining outside

the created envelope. In the testing phase, when a new instance falls within

the boundary of the hypersphere, it is classified as normal. Outliers are those

that fall outside the created hypersphere (decision boundary). The kernel type

used in the algorithm, gamma, and the percentage of outliers in the dataset are

the most important parameters to be considered in One-class SVM [72].

Isolation Forest: A tree-based algorithm models normal examples by isolat-

ing outliers. These anomalies are typically few and have different character-

istics of features. A random forest is generated randomly, and the features

with thresholds are chosen randomly. It keeps isolating instances from each

other. Anomalies are isolated very early as they are always far from other

instances. The most important parameters to be tuned are the number of es-

timators (trees), max samples (the number of samples to be used in each tree

for training), the percentage of anomalies in the dataset (called contamination),

and the maximum number of features to be trained within every base estima-

tor.

Local Outlier Factor (LOF): This calculates the local density of every point by

measuring the distance between that point and its neighbour. Data points that

have a significantly lower density compared to their neighbours are classified

as anomalies.

3. Reinforcement Learning (RL): RL is a reward-based technique where the main

idea is to improve the system based on the reward taken by an agent in an

interactive environment.

Machine learning algorithms can be categorised based on their learning approach.

Two types of techniques in this field:

1. Batch learning: Also called offline training, where the model is trained on the

entire dataset at one time. It has the advantage of learning over a large amount
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of data which improves the decision. The drawback of this model is that it

does not adapt to network traffic changes. Such changes may be due to the

natural evolution of the network architecture, or environment evolution, such

as changes in attacker behaviour.

2. Incremental learning: In this case, the model does not require all data at the

start to learn the model. Instead, it learns incrementally, adapting itself against

changes in data distributions. Incremental learning has the advantage of learn-

ing over time with no need for updates by the operator.

2.6.2 Data preparation for machine learning

Data preparation (or preprocessing) is a vital phase in building machine learning.

Figure 2.14 illustrates the phases involved in building a machine learning model.

The collected data may have noises, errors or missing values which need to be dealt

with. Some ML developers remove null data or replace it with 0s. Noise needs to

be differentiated from anomalies. Thus exploring data helps to improve the per-

formance of the model. Raw data comes from different sources have different struc-

tures. It needs to be transformed into a form that can be processed by ML techniques

[73]. In machine learning categorical data needs to be transferred into numbers;

however, these numbers have a different scale. To have a good model, it is impor-

tant to transfer input variables into a specific scale. Normalisation and standardisa-

tion are the two techniques used to transform numerical data into a standard range.

Normalisation is a technique to scale variables between 0 and 1. Standardisation is

a transforming technique scale data into a standard Gaussian.

Feature engineering and selection is a vital process in the preparation of data.

Feature selection is the process of variables that have an effect on the model. De-

livering more features from the basic selected features is called feature engineering

[74]. When data is prepared to be used by the ML model, optimal configuration

gives a better model performance. Hyperparameter tuning is the process of find-

ing the parameters for which the model gives its best performance. It should avoid

over-fitting, where the model is tuned too tightly to the training data and performs

well on it but does not perform well on new data. (The model does not generalise.)
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Define the problem and
propose the ML model

Construct the Dataset

Prepare data

Train and test the model

Use the model in
prediction

FIGURE 2.14: Building machine learning model phases

In addition, the developer seeks to avoid under-fitting, where the model performs

poorly both on the training data and new data [70], because it fails to fully exploit in-

formation in both sets. Feature importance is a technique that analyses the available

features and presents those that have more effect on the model [73; 74]. Principal

Component Analysis (PCA) is used to synthesise new features. These new features

are linear combinations of the current raw features and are information rich, i.e.

they can inform classification more strongly than raw features. Such features do

not exhibit the redundancy of the raw features and fewer of them are needed to ef-

fect high-performing classification. This also improves the amount of computation

involved in classification [75].

2.7 Imbalanced Classification

Most machine learning classifiers assume the number of examples of each class is

roughly equal. When the distribution of instances across the known classes is not

equal, it is called an imbalanced classification problem. In some cases, one class
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makes up a significant majority of the dataset and the other class is very rare. For ex-

ample, one class has 95% of the entire data and the other one is just 5%. In a number

of domains, the natural presence of one class is very often. For example, in stealth

attacks, the majority of traffic is normal and just a few are malice [76]. The minority

class, however, is more interested as the errors of classifying this class are more im-

portant to the user than those in the majority class. In Intrusion Detection Systems,

when the attack is stealthy and forms the minority, classifying a normal sample as

malicious (False Positive) is not as critical as misclassifying attacks as normal (False

Negative). It is difficult to learn the characteristics of a class (or classes) with mi-

norities as may no enough samples that give the classifier the ability to learn. Most

machine learning algorithms require a modification to classify correctly and not clas-

sify all samples as the majority class. Selecting the most optimal evaluation metrics

is essential when the dataset is imbalanced. Some metrics neglect the minority class

effects.

Applying traditional algorithms and typical evaluation metrics can lead to poor

performance of the model. An imbalanced classification requires different approaches

than those applied to balanced datasets. This includes the preparation of the dataset,

preprocessing of the classification techniques and the type of evaluation techniques

used to measure the performance.

2.8 Concept Drift

The data distribution may change for a number of reasons, e.g. updating or replac-

ing network devices, increasing or decreasing the number of users or devices in the

network, or user behaviour changes. A classifier’s performance may degrade if the

data witnessed under training no longer adequately represents the current situation.

The term concept drift is often used to describe this. Concept drift can be understood

as changes in the relationship between the input and target outputs of a classifier [6].

The drift can be virtual or real. Virtual drift refers to a deviation in data distri-

bution have no effect on the target prediction. The classification module will not

be affected, and there is no need to update the module. A real concept drift is that
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FIGURE 2.15: Concept drift types [6]

which makes a change in the target. This means that the classifier will lose its accu-

racy in classifying the network traffic. The model will need to be updated. Concept

drift takes various forms (see Figure 2.15):

1. Sudden/abrupt: The drift happens suddenly at a specific time.

2. Incremental: The drift happens incrementally in a slow manner.

3. Gradual: The concept change duration is relatively large compared to sudden

changes. Over time, the new concept gradually replaces the old one.

4. Reoccurring: This type is caused by, for example, seasonal events. A new

concept occurs, but after some time, the old one occurs again.

2.8.1 Concept drift framework

The general framework of concept drift is composed of four stages: data retrieval

- which retrieves enough data to help form a pattern that has a meaning; data

modelling- which abstracts the gained data in the first stage and extracts the most

important features; test statistics calculation - calculation of the dissimilarity; and;



42 Chapter 2. Literature Survey

FIGURE 2.16: Concept drift stages [6]

hypothesis test: evaluate the statistical changes that are observed in the previous

stage using a specific hypothesis test [6]. These stages are depicted in figure 2.16.

2.8.2 Concept drift detection techniques

In [6], the authors consider concept drift detection algorithms in three categories ac-

cording to their implementation details: error rate-based drift detection, data distribution-

based drift detection, and multiple hypothesis test drift detection.

2.8.2.1 Error rate-based drift detection

Techniques in this category calculate the error rates raised by the classifier. If the

error rate is increased or decreased dramatically, a concept drift has happened, re-

quiring the model to be adjusted. The most popular error rate-based drift detection

algorithms are:

1. ADaptive WINdowing (ADWIN) [77]: This algorithm uses the technique of

sliding windows. It calculates the statistics of every window. The window (W)
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keeps sliding, and at some point, it is divided into two sub-windows (W0, W1).

Then the distribution in every sub-window (W0, W1) is calculated. Concept

drift is detected if there is a significant change in the average data distribution.

The window size is variable as it can keep expanding and shrinking, mak-

ing the sliding window mechanism more flexible than other error-based tech-

niques. This makes ADWIN preferable, than other error-based techniques, by

a number of researchers [77; 6].

2. Drift Detection Method (DDM) [78]: The technique calculates the prediction

rate over the instances of incoming data. When the error rate exceeds a thresh-

old (as drift happens), it starts using a new prediction learner. If it just reaches

a warning level (warning zone), it warns the administrator and starts building

a new learner while using the old one. DDM finds the detection of sudden

drift challenging.

3. Early Drift Detection Method (EDDM) [79]: This works in a very similar man-

ner to DDM. It overcomes the drawback in the detection of sudden drift in

DDM. Rather than observing the error rate, it calculates the distance between

two errors.

4. Hoeffding’s bounds (HDDM_A and HDDM_W) [80]: Detection algorithms

based on Hoeffding’s bounds use moving averages. For the estimator, HDD_A

uses the input average, and HDD_W uses Exponentially Weighted Moving Av-

erage (EWMA) statistics.

5. Kolmogorov-Smirnov Windowing (KSWIN) [81]: This is a detection algorithm

based on the Kolmogorov-Smirnov (KS) statistical test. Using a sliding win-

dow, it compares the difference between empirical cumulative distributions

over two windows.

6. Page-Hinkle [82]: The algorithm calculates the variance between the moni-

tored values and their average until the present time. Drift is flagged when the

change is significant. It can detect drifts but does not signal warnings.
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2.8.2.2 Data distribution-based drift detection

In this type, the algorithms use distance functions to calculate the pattern changes

between old and new data. Kdq-tree [83] is a data distribution-based detection tech-

nique that uses relative entropy, a statistical distance, that measures the distance

between two sets of data distributions.

2.8.2.3 Multiple hypothesis test drift detection

In this category, multiple techniques (similar to those in the previous two categories)

are applied. The detection algorithms apply different hypothesis tests. The multiple

hypothesis test algorithms are applied in parallel or hierarchical ways.

2.8.3 Incremental learning model

In machine learning, the model is typically trained offline. All training data should

be available at the time of training the model. The model can be deployed when

the training is completed. The model can be trained later using a new batch of data.

This is called offline (or batch) learning. Another type of learning is called incre-

mental learning. This type does not require the whole data to be available initially.

Instead, the data is processed sequentially, and the model updates itself while new

data arrives [84].

2.9 Detecting attacks in SDN

Adopting anomaly detection techniques in SDNs is easier and more flexible than

in traditional networks. For instance, in the traditional network, anomaly detection

tools measure the network statistics by monitoring all network packets. However,

in SDN these pieces of information can be retrieved easily from the data plane [85].

Packet-based detection and flow-based detection are the two methods that are

used by IDS researchers. In a packet-based approach, the whole packet is analysed.

In the flow-based method, just headers and similar information of packets are anal-

ysed. Combining the two methods has been suggested to overcome their drawbacks.

A reasonable number of studies leverage SDN to detect network attacks. The

survey [86] has discussed different Machine Learning/Deep Learning algorithms
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and their usage in network-based IDS (NIDS) over five studies. They found that

using unsupervised learning algorithms for implementing NIDS in SDN is the best

for previously unseen attacks, such as those often presented by APTs. They argued

that most of the SDN-based NIDS are proposed for implementation on a SOHO

(Small Office/ Home Office) network.

A flow-based Intrusion detection system is proposed [87] to detect attacks using

an aggregator and a classifier system that gather statistical information from Open-

Flow vSwitches and then compare it with predefined features using a supervised

machine learning algorithm. The system works in parallel with the controller on the

same layer. Therefore, there is no overhead on the controller and less communica-

tion is required. The system is misuse-based, and the classification model is updated

offline.

The deployment of an Intrusion Prevention System (IPS) in conventional net-

works suffers from issues such as the high cost, being difficult to manage and low

utilisation rate [88]. In the traditional network, the IPS is deployed in the ingress and

egress points of data centres (DC). However, the authors in [88] proposed deploying

only one IPS in each DC instead. The experiment results show that pinging the SDN

network when not pre-configured consumes more than three times the resources re-

quired for the traditional network, but when the network is pre-configured it takes

less for the SDN architecture.

In [89], a signature-based IDS is integrated with a flow-based neural network

IDS. It is proposed to detect anomaly behaviour using a machine learning algorithm.

A backpropagation algorithm has been used to train the network in a flow-based IDS

model. In [90] a REST client communicates with the controller to get statistical flows

that are stored for further classification using self-organized maps of Artificial Neu-

ral Networks. This architecture uses a star topology with a single switch. Moreover,

the proposed method has performance drawbacks. In addition, using the measuring

module on the controller causes a performance problem. Atlas [91] is a fine-grained

mobile application detection using a machine learning (ML) algorithm for classifica-

tion to collect information about active mobile applications that are running on the

SDN network. However, the system is not proposed to detect malicious activities.

An Intrusion Detection and Prevention System (IDPS) has been proposed that uses
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SDN to detect and mitigate ARP spoofing and blacklisted MAC address attacks [92].

A reasonable number of research proposals have sought to detect unknown at-

tacks in Software-Defined Networks using anomaly-based detection systems. A

deep learning approach is proposed to detect unknown attacks [93]. The proposed

model is evaluated over NSL-KDD, scoring 75% in accuracy. Stacked Auto-Encoders

have been proposed to detect attacks in SDN [94]. The detection results (in accu-

racy) are 98% over NSL-KDD and 94% on CICIDS 2017. Various other approaches

to detect attacks in SDN have been proposed and compared [95]. The decision Tree

was found to be the best classifier among the nine techniques. An IDS is proposed

to detect online DDoS and port scans using clustering techniques [96]. Several re-

searchers utilise SDN to detect DoS and DDoS attacks [97; 98; 99]. Low-rate DoS

attack is a type of DoS attack with low traffic volume, typically seeking only to keep

services at or near 100% utilisation (enough to deny access to clients), rather than

overwhelming such services with requests (the usual DoS approach). Using SDN, a

number of researchers proposed solutions for this attack [100; 101].

A mean to detect a compromised switch in SDN is proposed in [102]. Any switch

processing a packet in a way that does not follow the programmed rules is a com-

promised switch. SDN-RDCD [103] is a system proposed that implements extra

controllers as a backup. They collect information from the main controller and SDN

switches to detect compromised devices by analysing and detecting inconsistent be-

haviour through the main controller, backup controllers, and SDN switches.

2.9.1 Detecting APT in SDN environments

APTs have the characteristic of staying and moving from one device to another in-

side the victim network. Thus, the malware does stealthy scanning activities and

moves slowly from one machine to another. The global view of the SDN controller

can lead to detecting this type of attack more easily than in the traditional network.

The SDN controller can react to any attack immediately as a result of the ability to

manipulate each flow forwarded from network devices. Compromising the SDN

controller can lead to easier spread within connected devices.

The literature focusing on APTs is limited despite APTs’ obvious importance
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[104]. Therefore, as the SDN is also still immature, little research has been con-

ducted on detecting or preventing APTs in SDNs. MARS [105] is a proposed system

intended to reconfigure the environment based on malware behaviour. Although

the paper does not discuss APTs, they evaluated the system using 50 APT mal-

ware samples. An improvement in malware analysis can be shown in the results.

A framework [106] was proposed to enhance the security in SDN-based data cen-

tres. The detection mechanism is based on collecting different logs from network

devices besides monitoring traffic using signature-based techniques to detect APT

patterns. However, there are no details about APTs and the detection mechanism

does not consider unknown attacks. A hierarchical security framework [107] which

benefited from SDN and NFV [108] is proposed to detect two types of APT, dynamic

ongoing threats and unknown attacks, in WSN in smart cities. Chance discovery

[109] and usage control (UCON) are the two technologies used in detection. In 2016,

[110] claimed that by that time there were no evaluations or studies of stepping-

stone attacks in the context of the software-defined network. However, they pro-

pose an architecture by adopting some stepping-stone detection techniques to de-

tect this type of attack in SDN. Then an evaluation of different network topologies

was carried out. However, the detection rate is decreased when the network size is

large. PivotWall [111] is a security architecture to track information flow to detect

stepping-stone attacks in APT using both the centralisation of the SDN controller

and host-based information tracking. However, installing a customised kernel in

every host is essential. In addition, it is only feasible for small networks.

A method to detect APTs in SDNs based on Hidden Markov Models (HMMs) is

proposed in [112]. They use the relationship between the attacker’s behaviour and

the APT stage. However, the attack stages and attacker behaviours described there

are the same as for a normal attack. A deception technique based on redirecting

the traffic from the compromised operational network to a deception network is

proposed in [113]. Although the main objective of this architecture, which uses SDN,

is to observe APT attacks, there are no details about the APTs.

In the context of scanning SDN, some studies have been proposed to prevent fin-

gerprinting attacks. In [114], a moving target defence (MTD) technique is used by

randomising both the host IP and time to invalidate attacker reconnaissance. The
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mutation in the randomisation of the source identity and time gives adversaries a

false view of the system. Using a similar strategy, the same authors published an-

other study [115] to slow down the process of scanning attacks in SDN by giving

wrong information to the attacker while doing their scan. The idea is based on the

IPs randomisation by assigning epheronal IPs to the original ones. In spite of the

system being proposed to prevent stealth scanning, it is not proposed for APTs. In

addition, there is no description of how to detect scanning activities. On top of that,

there is a delay in the system during processing packets caused by the mechanism

of IPs randomisation. Other work using MTD is proposed in [116] to make it diffi-

cult for the attacker to fingerprint the OS of hosts in SDN. However, this work is not

proposed for APTs. The Reconnaissance Deception System (RDS) [117] is proposed

to delay scanning activities that could be carried out by sophisticated attackers such

as APTs. The system maps the network features to other features, therefore, the

attacker misinforms the actual network features. A honeypot is employed to iden-

tify the compromised machine. The controller always checks the flow rules for all

machines. If there is any transmission from one node to the honeypot that means

this node is malicious. However, a honeypot is expensive and few systems deploy

them. Also, sophisticated attackers usually can detect whether a honeypot exists in

the system or not [118].

To detect APT C&C communications, [119] proposes to analyse traffic to identify

malicious DNS. In their work, they identified 14 characteristics of malicious APT

DNS and their ways of communication. The study in [120] found that APT C&C

communications are accessing DNS records independently. On the other hand, ac-

cessing legal web domains is correlated. However, the previous two studies are not

proposed or tested on SDNs.

2.10 Datasets

Intrusion detection systems use datasets to train and evaluate proposed models.

There is a reasonable number of datasets in the IDS literature. They differ in struc-

ture and type. The majority are flow-based and include the metadata of the trans-

mitted packets in addition to historical-based engineered features. These metadata
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are connection-based information such as source IP, destination IP, protocol and port

numbers. Other datasets are packet-based, usually pcap files that include metadata

and payload. A small number of datasets are collections of files such as log files and

malware hashes. The following shows the most popular used datasets in the field of

IDS:

DARPA: The dataset is a collection of files, collected in 1999, including payloads,

system events and log files. The dataset contains traces of various significant cat-

egories of attack: Denial of Service (DoS), User to Remote (U2R), Remote to Local

(R2L), and probe attacks.

DEFCON [121]: This dataset was generated in 2000 and contains port scan and

buffer overflow attacks. It is in packet format, generated during a capture the flag

(CTF) competition at a DEFCON conference. It is made up almost entirely of attacks

with few packets arising due to normal user behaviour.

KDD’99 [122]: KDD Cup 99 is a well-known benchmark dataset in the IDS re-

search community. The dataset was created in 1999 by researchers at MIT. It com-

prises DARPA packet traces. The dataset has 41 features describing the basic content

and traffic information. In addition to the normal traffic, it has four categories of at-

tacks: DoS, R2L, U2R and probing attacks.

NSL-KDD [123]: This is an improved version of the KDD dataset. The NSL-KDD

was produced to overcome a number of issues in the KDD dataset such as duplicate

records. In spite of the wide use of KDD’99 and NSL-KDD between IDS researchers,

its age means that it no longer represents current network architectures and attacks.

This issue also applies to the DARPA dataset.

UNSW-NB15 [124]: This is a network-based dataset generated using simulation.

The authors used Argus, Bro-IDs and additional scripts to generate 49 features. Dif-

ferent categories of attacks are involved including fussing, port scan, spam, back-

doors, DoS, shellcode, and worms.

CICIDS 2017 [125]: This is one of the most used datasets in recent years in IDS

work. It has various attacks such as probe, DoS, DDoS, Bot, Heart-bleed, Infiltra-

tion, Brute force, and Web attacks. It contains pcap files and more than 80 features

generated using CICFlowMeter [126].
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TABLE 2.8: CICIDS 2017 dataset attacks scenario

day Benign attack category attack type attack time
1 ✓ × - -
2 ✓ Brute Force FTP-Patator 9:20 – 10:20 a.m.

SSH-Patator 14:00 – 15:00 p.m.
3 ✓ DoS / DDoS DoS slowloris 9:47 – 10:10 a.m.

DoS Slowhttptest 10:14 – 10:35 a.m.
DoS Hulk 10:43 – 11 a.m.

DoS GoldenEye 11:10 – 11:23 a.m.
Heartbleed Heartbleed Port 444 15:12 - 15:32

4 ✓ Web Attack Brute Force 9:20 – 10 a.m.
XSS 10:15 – 10:35 a.m.

Sql Injection 10:40 – 10:42 a.m.
Infiltration –

Dropbox download
Meta exploit Win Vista 14:19 & 14:20-14:21 p.m.

14:33 -14:35
Infiltration – Cool

disk
MAC 14:53 p.m. – 15:00 p.m

Infiltration –
Dropbox download

Win Vista 15:04 – 15:45 p.m.

5 ✓ Botnet ARES 10:02 a.m. – 11:02 a.m.
probe port scan 13:55 - 14:35

14:51 - 15:29
DDoS LOIT 15:56 – 16:16

InSDN [127]: This SDN-based dataset, published in 2020, contains various at-

tacks: DoS, DDoS, web attacks (XSS, and SQL injection), R2L, Malware (botnet),

probe and U2R (exploitation) attacks. More than 80 features are generated using

CICFlowMeter. The dataset is imbalanced, with more than 80% of the dataset be-

ing attacks. Its limitations are similar to those in CICIDS, caused by the use of CI-

CFlowMeter.

DAPT 2020 [128]: The DAPT 2020 dataset contains various attacks and spans

APT stages. It contains network traces (attack and normal) in addition to system

log files. It is conducted over five days. Examination of the 85 features available in

the dataset suggests it was generated using the tool CICFlowMeter. Table 2.9 shows

details of attack scenario.

In general, except DAPT 2020, these generic datasets lack sophisticated attacks.

Also, most available datasets are imbalanced. For example, malicious traffic makes

up more than 80% of the InSDN dataset [128].

In our work, we require a network-based dataset that includes network traffic of
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TABLE 2.9: DAPT 2020 dataset attacks scenario

day Benign attack stage attack type attack time
1 ✓ × - -
2 ✓ Reconnaissance scanning 8:00 a.m. - 6:00 p.m.
3 ✓ Foothold establishment Sqli, XSS, authentica-

tion bypass
8:00 a.m. - 6:00 p.m.

4 ✓ Lateral Movement network scan (insider),
authentication bypass,
SQLi

8:00 a.m. - 6:00 p.m.

5 ✓ Data exfiltration Exfiltrating data to
C&C

8:00 a.m. - 6:00 p.m.

TABLE 2.10: State-of-the-art datasets

Name Year Number of
features

Attacks

DARPA 1999 41 DoS, Probe, R2L and U2R
KDD’99 1999 41 DoS, Probe, R2L and U2R

NSL-KDD 1999 41 DoS, Probe, R2L and U2R
Defcon 2000 - port scan, and buffer overflow

UNSW-NB15 2015 49 DoS, fussing, port scan, spam, backdoors,
reconnaissance, shell code and worms

CICIDS 2017 2017 80 Dos, DDoS, Brute force, port scan, botnet,
web infiltration

InSDN 2020 80 DoS, DDoS, web attacks, botnet, probe,
R2L, and U2R

DAPT 2020 2020 85 Web scan, port scan, account discovery,
brute force, web attacks, backdoor, data
exfiltration

stealth attacks (or APTs) against an SDN network. This is the main reason we have

chosen to generate our own datasets. See section 3.2.2 for more details.

2.11 Evaluation Metrics

Evaluation criteria for a classifier are predominantly concerned with whether it clas-

sifies instances from each class correctly or incorrectly. (The classifier may be more

successful in some classes than others.) In our (binary) case we are concerned with

whether instances are malign or benign (normal). It is common to refer to malicious

instances as ‘positives’ and benign or normal instances as ‘negatives’. The four fun-

damental measures of performance are:
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FIGURE 2.17: Confusion Matrix

• True Positive (TP): the number of instances of malicious transactions classified

correctly (as malicious).

• True Negative (TN): the number of instances of normal transactions classified

correctly (as normal).

• False Positive (FP): the number of instances of normal transactions classified

incorrectly (as malicious).

• False Negative (FN): the number of instances of malicious transactions classi-

fied incorrectly (as normal).

A confusion matrix is a matrix of numbers showing how many correct and in-

correct predictions (i.e. true positives, false positives, true negatives and false nega-

tives). It is very useful in imbalanced classification tasks as the user can see the actual

number of correct and incorrect decisions by class, not just overall counts. From the

confusion matrix, other important metrics can be calculated such as accuracy, recall,

precision and F1-score. Figure 2.17 illustrates the structure of a confusion matrix.

A large number of evaluation metrics are used by machine learning researchers.

The researcher selects the most appropriate metric based on the context (dataset) or

model used. For imbalanced classification, [129] divided the evaluation metrics into

threshold metrics, ranking metrics and probabilistic metrics. These are explained

below.
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2.11.1 Threshold metrics

These are metrics that calculate errors in the prediction. They represent an overview

of the prediction rate when the predicted value is wrong. They are useful when the

user is focusing on the errors in the model prediction. They are the most widely

used in the evaluation of Intrusion Detection Systems. The score is a value between

0.0 to 1.0. The following are the most popular metrics in this category.

• Accuracy: This is the fraction of all predictions that are correct. Accuracy =

Number of correct predictions / Total number of predictions, defined formally by:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

• Recall: This is the fraction of actual attacks that are correctly detected as attacks,

defined formally by:

Recall =
TP

TP + FN
(2.3)

• Precision: This is the fraction of all predicted attacks that are genuine attacks,

defined formally by:

Precision =
TP

TP + FP
(2.4)

• F-measure: The F1-score is a balance of Precision and Recall. It is the harmonic

mean of Precision and Recall, defined formally by:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.5)

2.11.2 Ranking metrics

These metrics primarily focus on differentiating between the classes. They are useful

when the user is focusing on how one class is identified correctly or wrongly. The

score of the prediction, indicating whether an item belongs to that class, is a key

aspect in this regard. The following are examples of widely used ranking metrics:
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• True Positive Rate (TPR): This is also called Sensitivity or Recall. It is the fraction

of positive instances that are correctly predicted as positive, defined formally

by:

TPR =
TP

TP + FN
(2.6)

• False Positive Rate (FPR): This is the fraction of negative instances that are in-

correctly predicted as positive, defined formally by:

FPR =
FP

FP + TN
(2.7)

• False Negative Rate (FNR): This is the fraction of positive instances that are in-

correctly predicted as negatives, defined formally by:

FNR =
FN

TP + FN
(2.8)

• True Negative Rate (TNR): This is the fraction of negative instances that are cor-

rectly predicted as negative, defined formally by:

TNR =
TN

TN + FP
(2.9)

• A Receiver Operator Characteristic (ROC) curve: ROC curve is a graphical plot

that represents trade-offs between the true positive rate (TPR) and the false

positive rate (FPR). Different parametrisations of machine learning approaches

may produce different trade-offs.

The RoC curve connects established trade-off points. Figure 2.18 shows how

the regions around the RoC curve can be interpreted. The dotted diagonal

line shows that the model is predicting the majority class under all thresholds

which would show that no skill is provided by the model. If the curve goes

under this line, it means that the technique performs worse than one exhibiting

no skill. A point at the top left indicates a perfect model.
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FIGURE 2.18: ROC curve

The ROC area under the curve (ROC AUC) is a score (between 0.0 and 1.0)

describing all threshold values of the classifier. It is helpful to overcome the

drawbacks of ROC in the ability to compare different classifiers based on their

curves.

• Precision-Recall Curve: This metric represents a score as a result of the calcu-

lation of the area under the curve, which can be used to compare with an-

other classifier. Figure 2.19 shows the details of the Precision-Recall Curve. As

mentioned earlier, Precision and Recall focus on the minority class, which is

of more concern in imbalanced datasets and stealth attacks. That makes the

Precision-Recall curve more useful.

2.11.3 Probabilistic metrics

This type of metric focuses on the assessment of the reliability of the classifier. They

are not concerned about the values of correct and incorrect predictions. They il-

lustrate the uncertainty of a prediction by a classifier. Log loss and Brier score are

examples of the most popular tools in this group.

Choosing proper evaluation metrics is essential in machine learning. For exam-

ple, in imbalanced datasets, similar to those used in this thesis, Accuracy, one of the
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FIGURE 2.20: Machine Learning evaluation metrics
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most used metrics in ML, may give a high score even when classifying all instances

of the minor class incorrectly. For example, if the dataset contains 95% of normal

traffic and just 5% as malicious, then if the model classifies all data (normal and ma-

licious) as the major class (normal) it will give 0.95 accuracy (because the portion of

True Negative (TN) is very high). This may deceive the user into believing that the

classifier is performing very well [130]. Recall, Precision and F1-measure are alterna-

tives to accuracy. They mainly focus on positives (which always present the minor-

ity in stealth attacks) [76]. Figure 2.20 presents a categorisation of machine learning

evaluation metrics. In this thesis, we focus on Recall, Precision and F1-measure, how-

ever, Accuracy results are presented to allow comparison with existing benchmarks.

2.12 Proposed Area of Research

The literature review has revealed that ‘flow rule reconstruction’ attacks are a major

current problem for SDNs. The literature review also revealed that very little re-

search has been carried out on the topic of Advanced Persistent Threats (APTs) in

the context of SDN. APTs are acknowledged as difficult to detect, typically adopting

a ‘low and slow’ strategy. This suggests that current security issues could practically

become much worse if the adversary incorporated APT aspects into their operations.

Such stealth might significantly affect the security of SDNs and hamper their further

uptake. Accordingly, we propose to investigate how an important means of attack

on SDNs (flow rule reconstruction) can be made more stealthy and investigate how

machine learning can be brought to bear for the detection of such attacks.

We propose first to use signature-based detection (Chapter 3) to establish a base-

line. This will use a supervised learning approach. We will then extend our approach

to incorporate anomaly-based detection, i.e. to develop a hybrid IDS (Chapter 4). As

far as we are aware this is the first such hybrid IDS for stealth attacks in SDN. This

provides prospects of being able to detect both known and unseen attacks.

Furthermore, current research on intrusion detection for SDN assumes a static

adversary. But we know that attacker behaviours change over time. Indeed, for

APTs such adaptivity is very much a deliberate strategy. Accordingly, we propose to

investigate how the concept drift occasioned by changes in attacker behaviour may
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be handled (Chapter 5). We know of no investigation of concept drift in the context

of SDN intrusion detection.

Analysis of the literature reveals a significant opportunity to adopt a compre-

hensive ML pipeline in our work. Thus, we intend to adopt aspects such as feature

engineering (seeking fewer and higher performing features) and hyper-parameter

optimisation (getting the best out of adopted ML techniques via judicious parame-

ter choices). This is driven by a desire to enhance performance but also to encourage

fair future comparisons by other researchers. The current literature on IDS often

ignores these, choosing to operate on raw features only, and not being fully trans-

parent about the rational for parameter choices.

Stealthy flow rule reconstruction is an exemplary stealth attack. The incorpora-

tion of stealth in other aspects of malicious operations is clearly feasible. Our pro-

posed programme of investigation offers immediate insight into how one current

attack (i.e. flow rule reconstruction) can be ‘stealthified’ and how the detection chal-

lenges this poses can be met using ML. It also demonstrates the applicability of our

proposed approach to a wider set of attacks.

Our work represents a focused, original, and important contribution to a little

researched area. Along the way, the lack of available datasets for experimentation

targeting APTs and SDN forces us to create our own and allows us to make available

such resources for the research community.

The above provides the rationale for the specific research questions presented in

section 1.2.

2.13 Summary

We have surveyed literature relevant to the proposed research, providing background

and covering research in SDN, APTs, IDS, concept drift and ML. Open and impor-

tant research questions have been identified. The next chapter begins to investigate

the first of those questions.
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Chapter 3

Enhanced SDN Scanning and its

Detection using Machine Learning

In this chapter, an existing scanning tool is enhanced to demonstrate an increased

level of stealth in scans targeting flow rule reconstruction. The tool has been made

publicly available. A benchmark dataset is produced that includes APT attacks over

exemplar SDN networks. It has also been made publicly available. Intrusion detec-

tors based on common ML techniques, and using supervised learning, are evaluated.

This chapter investigates the first research question as stated in section 1.2. RQ1:

Can we use a machine-learning and signature-based approach to detect the stealthy recon-

struction of flow rules in SDN networks?

3.1 Introduction

In SDN, scanning is a fundamental part of the reconstruction of flow rules main-

tained at nodes and underpins many further attacks. It is more challenging when the

attacker behaves more stealthily. This chapter presents a proposal for an enhanced

approach to the reconstruction of flow rules within SDN network switches using

stealthy scanning regimes and investigates the detection of the use of such regimes.

The SDNmap tool [34] is optimised to emulate stealthier scanning attacks with

‘slow and low’ movements. Such enhancements include extended waiting times be-

tween different activities with random values. In addition, there is an option to limit

the number of scanned ports to the most common ports for attackers. These en-

hancements give rise to the free and open-source tool that we henceforth refer to as



60 Chapter 3. Enhanced SDN Scanning and its Detection using Machine Learning

APT-SDNmap [131]. APT-SDNmap now adopts a ‘slow and low’ scanning strategy

which makes the detection of scans more difficult. A dataset containing APT activi-

ties is generated using Mininet [132] and APT-SDNmap. The dataset has been made

publicly available and free to use [133]. The most popular supervised machine learn-

ing algorithms are applied to the detection of stealthy scanning attacks, establishing

benchmarks for future research. Building the ML models includes comprehensive

feature engineering and hyper-parameter optimisation to give the best chances of

excellent results. A network-based Intrusion Detection System (NIDS) implement-

ing XGBoost is shown to give the best detection performance on such attacks. The

proposed detection model achieves at least 97.8% in Accuracy, Recall, Precision and

F1 measures, using just five features.

3.1.1 Motivation

SDN is increasingly used in a large number of organisations. The decoupling of the

control plane and the data plane raises a number of security challenges. Reconstruct-

ing flow rules in SDN switches is one of the main concerns of the SDN community

and a vibrant research area. When the attacker succeeds in reconstructing the flow

rules, some attacks can be launched, such as data leaks, network poisoning and DoS

attacks.

Statistics show the adoption of APTs (Advanced Persistent Threats) in attacks

has increased [134; 135]. The stealthiness and sophistication of APTs make them

far more dangerous and difficult to detect than traditional threats. Little research

has been carried out on detecting APTs in the context of SDNs (discussed in 2.9.1).

Reconstructing flow rules in SDN using the strategies and behaviour of APTs is a

significant attack whose detection is an important research area.

3.1.2 Contributions

The contributions in this chapter are:

1. The proposal of a stealthier scanning approach that adopts waiting times be-

tween various activities of an APT.



3.2. Related Works 61

2. Adapting a scanning tool to incorporate the stealthier scanning approach so

that it can be applied by APTs to reconstruct flow rules on an SDN. To the best

of our knowledge, there is no available flow rule reconstruction tool to scan an

SDN using APT behaviour.

3. Development of a publicly available dataset that includes APT activities in an

SDN. To the best of our knowledge, this is the first publicly available dataset

for APTs in an SDN.

4. A comparison of the most common supervised machine learning techniques.

We indicate how to deal with an imbalanced dataset and use importance mea-

sures to inform feature reduction. The XGBoost model can detect APT scans

in SDN with 0.97 in Accuracy, Recall, Precision and F1-score, and uses just a

small number of features ( f = 5)

3.1.3 Chapter organisation

The rest of this chapter is organised as follows. Section 3.2 presents related works.

Section 3.3 shows the APT temporal behaviour. The proposed enhanced scanning is

described in section 3.4. Section 3.5 gives a full description of the generated dataset.

Section 3.6 presents the proposed hybrid model and the results of our experiments

using ML to identify scanning attacks. Finally, section 3.7 provides a summary of

the chapter.

3.2 Related Works

The following sub-sections discuss techniques for reconstructing flow rules, APT

datasets in SDN, and the detection of APT scanning attacks.

3.2.1 Reconstructing flow rules techniques

DELTA [136] is a security assessment framework for SDN. It allows the user to es-

tablish different attack scenarios to assess the target. However, it does not consider

APTs or stealth attacks. A side channel attack is used in some works to gather infor-

mation about network configuration, e.g. security policies [137; 138]. Further side
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TABLE 3.1: Reconstructing flow rules techniques comparison

tool SDN Reconstructing flow rule Stealth APT Information

[139; 141; 140] ✓ ✓ × ×
[136] ✓ ✓ × ×
[137] ✓ ✓ ✓ ×

[8] ✓ ✓ ✓ ×
APT-SDNmap ✓ ✓ ✓ ✓

[*] :few, : average, : high

channel attacks are proposed [139; 140] to gather information about the flow table,

such as size and policy. This information would be useful for launching DoS attacks.

In [141], the authors implement timing techniques to illustrate the ability of remote

adversaries to determine whether a flow rule has already been installed in the host

(by the controller). It does not consider stealth or APT attack scenarios. SDNmap

is an open-source scanning tool for reconstructing flow rules in an SDN network. It

generates, on average, at most one probe packet every second to evade new SDN

defence techniques [8]. APTs are, however, usually even stealthier, as they wait for

a longer time during their communications. Table 3.1 compares the aforementioned

techniques and our approach, showing which techniques employ stealthy behaviour

or APT characteristics and the amount of gained information from the target.

3.2.2 APT datasets in SDN

There is a reasonable number of datasets, discussed in section 2.10, available to eval-

uate intrusion detection systems against normal types of attacks on traditional net-

works. None targets stealth attacks over SDN. None contains data reflecting the

reconstructing of flow rules in SDN. The only dataset conducted over an SDN is

InSDN but its attack traffic greatly exceeds its normal traffic: attack traffic forms

more than 80% of all traffic. DAPT 2020 is a dataset presenting APTs but is not col-

lected over an SDN.

The lack of APT datasets has led researchers to collect data from different re-

sources to build a dataset that represents APT attacks. For example, MARS [105]

used 50 samples of APTs collected from the publicly available malware repository

VirusShare [142]. Another example is [119], where the authors collected domains

from malwaredomains.com [143], snort rule sets [144], and Targeted Cyberattacks
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TABLE 3.2: Datasets comparison

DS Year Number of
features

Generating type SDN Recon. APT

KDD [122] 1999 41 Hybrid × × ×
UNSW-NB15 [124] 2015 49 Hybrid × × ×

UNB ISCX 2012 [151] 2010 20 Realistic × × ×
CICIDS2017 [152] 2017 80 Hybrid × × ×
ADFA-LD12 [153] 2013 49 Hybrid × × ×

InSDN [127] 2020 83 Hybrid ✓ × ×
DAPT 2020 [128] 2020 85 Hybrid × × ✓
Our dataset [133] 2022 25 Hybrid ✓ ✓ ✓

Recon.: Reconstruct flow rules

Logbook by Kaspersky [145]. The comparative study in [146] also used a collection

of data gathered from different sources. They collected malware hashes from some

reports by security companies such as Kaspersky and FireEye. Then they used Virus-

Total [147] Private API to search for these hashes and download 1037 APT malware

samples. Similarly, [148] built their dataset by collecting hashes of actual APT attacks

from APT & CyberCriminal Campaign Collection [149] and the blog in [150]. Table

3.2 presents a comparison between the available datasets and the dataset generated

in this chapter.

3.2.3 Detecting APTs in SDN using ML

Chapter 2 identifies a reasonable number of research works using SDN to detect

malicious activities. A proactive approach is proposed to detect reconnaissance at-

tacks by randomising network addresses [115]. A high number of failures caused

by an adversary implies there is suspicious activity. An Intrusion Prevention System

(IPS) [154] is proposed to prevent port scans using statistics collected from Open-

Flow switches. A Deep Learning Neural Network (DNN) technique is applied to

detect anomalies in an SDN using an anomaly-based approach and tested over the

KDD dataset [93]. The detection exhibits only 75.75% accuracy. Further work by

the same authors improves on this to achieve 89% accuracy using a Gated Recurrent

Unit Recurrent Neural Network (GRU-RNN) [155]. The KDD dataset is legacy and

includes no SDN traffic. Reconnaissance deception systems [117] [113] are proposed

to defend against SDN scanning by mapping real network features to virtual ones,
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TABLE 3.3: Related works: proposed techniques to detect APTs in
SDN

scheme SDN Scan Stealth APT ML technique
[115] ✓ × ✓ × × statistics
[154] ✓ × × × × statistics

[93] [155] ✓ × × × ✓ Neural Network
[117] ✓ ✓ × ✓ × statistics
[113] ✓ × ✓ ✓ × Deception System

Our technique ✓ ✓ ✓ ✓ ✓ various ML tools

which could delay or prevent the targeted attacks. Employing extra components,

however, could cause overheads in the system. Table 3.3 compares the capabilities

of the approaches used in the above works with those of our proposed method.

3.3 APT temporal behaviour

Stealth malware differs from other malware by engaging in fewer interactions inside

the victim network [156]. Scanning with a high rate can typically be detected by

defence systems such as Intrusion Detection Systems (IDSs). It is accepted that one

scan per minute could avoid most network detection techniques [157]. Therefore,

stealth malware, specially APTs, reduce their visibility in the network by keeping

movement low and applying longer times between their activities (i.e. using the

‘slow and low’ strategy) [158] [2].

One automated analysis technique to detect malicious software is analysing the

behaviour of the software for a certain amount of time after its installation. If the re-

sults over that period of time are normal, then it is considered to be benign. Mostly,

remaining idle for 10 minutes is sufficient for most sandboxes to conclude the soft-

ware is not malicious [159; 146]. The analysis shows that a number of APTs, such

as Duqu [39], Kilihos [160], and Nap [161], stay dormant for a certain period of time

after installation, typically ten minutes, to avoid these detection techniques.

A large number of APTs employ waiting times between their activities inside a

victim network. They may go to sleep for approximately two minutes between their

activities. Flame is a complex APT with several components. In the startup stage,

the main module mssecmgr.ocx is loaded. Then it waits two minutes before loading
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another module called advnetcfg.ocx by services.exe. This action repeats three times

every two to three minutes. After a further two minutes, the same service loads an-

other module called nteps32.ocx. Then, a few components and processes are loaded

and created. After waiting for two minutes, the services.exe writes ccalc32.sys which

is loaded after one minute by winlogon.exe. It continues to employ waiting times

for other activities, such as running a task every two minutes to retrieve data from

the compromised machine [38] [162].

A similar strategy is adopted with Shamoon 2.0. It has an executable worm,

called ntssrvr32.exe, that spreads inside the victim network. While this worm moves,

it connects to a remote machine registry. When the remote system32 folder is found,

it schedules a remote job to be run after one and a half minutes. Interestingly, after

copying itself inside the network, it attempts to run a command and control module.

The malware creates a Windows Task Scheduler job and waits around 90 seconds be-

fore executing the command and control module. It then waits for about 95 seconds

before deleting the scheduled job. Moreover, when all tasks are completed, the sys-

tem waits for two minutes before rebooting [163] [164].

Hydraq is a trojan used in the Operation Aurora cyber attack campaign. When

the malware successfully installs, it starts to contact the command and control server

using the configuration inside the backdoor by retrieving the hostname and alternate

DNS. It checks if the IP address is valid or retrieves the hostname IP address using

an available DNS. If the backdoor fails to resolve the hostname IP address, it sleeps

for two minutes before attempting to resolve the IP address using an available DNS

[165]. Pegasus, the OSN group spyware, is another example which waits for a few

minutes between particular interactions [166].

In fact, waiting a short time such as 10 seconds is enough for some interactions.

For example, Nap employs a 10 second waiting time between multiple attempts to

resolve domains during their C&C communications. StoneDrill [163] is another APT

that uses a wiper which is injected inside the running browser’s memory. When the

module is started, a script containing a sleep function is dropped and executed. This

script employs a 10 second sleep function between a number of its activities. The

same waiting time is also employed by Pegasus before and between some activities

[166]. The backdoor in the SolarWinds attack also implements a number of sleep
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functions [52].

3.4 Enhanced Scanning

As discussed in 2.2.3, SDNmap is an open-source scanner that can reconstruct flow

rules in an SDN. We add functionality to SDNmap to enable it to carry out its work

in a more stealthy manner (as might be expected of APTs). The generated tool, APT-

SDNmap, allows a scanner (adversary or security penetration tester) to carry out a

scan as part of flow rule reconstruction, but also to spread out that attack over time.

The adversary may also choose to limit the number of ports that are to be scanned.

These “slow and low” techniques, keeping rates of interaction and numbers of tar-

gets low, provide the adversary with an enhanced level of stealth. The implemented

techniques in APT-SDNmap, i.e., added to SDNmap, are (with referenced variables

taken from Algorithm 1):

• Initial delay: APT-SDNmap waits for 10 minutes (T = 600 seconds) after the

installation in a victim machine before doing any scan or transmission.

• Waiting between activities: In APT-SDNmap, two time (T) intervals are em-

ployed during scans: a selected random time in the range 120 - 150 seconds

from one type of scan to another (main scan Sµ); and a random time in the

range 10 - 15 seconds as a waiting time when doing a scan inside a main type

of scan (sub-scan Sυ). For example, if the user executes a protocol and a port

scan, it waits for around 120 to 150 seconds between the protocol scan and the

port scan.

Around two minutes is a reasonable waiting time between two main activi-

ties such as from one type of scan to another. But inside one scan, such as

scanning a range of IPs (from x.x.x.0 to x.x.x.255), this would be excessively

high. However, scans inside one type, such as a port scan, wait just 10 - 15 sec-

onds between one port and another. Implementing a random value between

120 and 150 seconds, or 10 and 15 seconds, helps avoid being recognised by

pattern matching algorithms.
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• Scan the most commonly attacked ports: In addition to the two time intervals,

APT-SDNmap offers an option to scan the most common ports for attackers,

namely 25, 80, 443, 20, 21, 23, 143, 3389, 22, 53, 67, 68, and 110 [167] [154]. This

option makes the level of interaction much lower than when interacting with

a full range of ports. However, the user is free to scan all ports or select some.

Algorithm 1, shows the proposed time intervals of the attack. We suppose one

host of the targeted network is already compromised and that APT-SDNmap has

been installed. The adversary launches a scan inside the network using APT-SDNmap.

Algorithm 1: Sleep functions implementation algorithm

1 Initialisation
2 Sµ: main scan
3 Sυ: sub-scan
4 Sι: Instance scan
5 τ1: lower value of waiting time
6 τ2: upper value of waiting time
7 frnd: a random value generator
8 Sleep(t): a sleep function where t time in seconds
9 T: time value t0 ← 600

10 Sleep(t0)
11 do
12 Sι ← Sι ∈ Sµ

13 do
14 Sι ← Sι ∈ Sυ

15 T = frnd(τ1, τ2) //τ1 = 10, τ2 = 15
16 Sleep(T)
17 while Sυ is not finished;
18 Sι ← Sι ∈ Sµ

19 T = frnd(τ1, τ2) //τ1 = 120, τ2 = 150
20 Sleep(T)
21 while Sµ is not finished;

3.5 APT-SDN datasets

The lack of datasets that cover APTs in SDN, or even any dataset for reconstruct-

ing flow rules in SDN, means that a dataset must be developed reflecting realistic

scenarios for stealth scans (reconstructing flow rules) in SDN. To plausibly reflect

real-world operations, different approaches are considered. We implement different
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network protocols (e.g. TCP, UDP, ICMP, IGMP, and ARP) reflecting the typical or

widespread way in which computer networks are used. To make it more realistic,

we generate malicious and normal traffic at the same time. The infected machine

generates both attacks and normal traffic. Most available datasets generate mali-

cious traffic and normal traffic at different times. The generated dataset has three

different size scenarios (four hosts, eight hosts, and sixteen hosts). The datasets are

cleaned, prepared, and made freely and publicly available [133].

3.5.1 Dataset generation methodology

We used a physical Windows 11 machine that hosts a virtual machine (VirtualBox)

for the testbed. The virtual machine hosts Ubuntu 16.04 (64-bit) as VM, with the

specifications including 2 GB of memory, a 30 GB virtual hard disk, and three pro-

cessors. Within this VM (Ubuntu 16.04), we ran mininet, creating four hosts, one

single switch (OVS switch) and one SDN controller (ovs-controller). All hosts were

connected with the OVS switch. The network architecture and the SDN components

involved in the experiments are depicted in Figure 3.1. One of these hosts is con-

sidered a server (IP: 10.0.0.2) receiving data from other hosts. The remaining three

hosts were installed with Ostinato [168], enabling the generation of normal traffic.

Ostinato is used to emulate typical user behaviour by transmitting varying num-

bers of normal packets across different protocols, such as TCP, UDP, ICMP, IGMP,

and ARP. APT-SDNmap is used to implement scanning inside the network. It is

assumed that one of the hosts has been compromised and that APT-SDNmap has

been successfully installed in it. (In our experiment, this host had the IP address

10.0.0.1 .) Except for the server, all hosts send normal traffic with different protocols

using Ostinato. This includes the infected machine, which simultaneously launches

attacks. APT-SDNmap sends probing packets to the server (IP:10.0.0.2) over TCP

to reconstruct flow rules. It limits the scanned ports to the most common ports for

attackers (i.e. 5, 80, 443, 20, 21, 23, 143, 3389, 22, 53, 67, 68, and 116). Specifically,

we executed the command: python main.py 10.0.0.2/32 TCP h1-eth0[’s’]. The traffic is

processed using Wireshark to produce a .pcap file.

We conducted two more experiments with varying network sizes to evaluate the

scalability of our proposed detection approach. We refer to the previous experiment



3.5. APT-SDN datasets 69

compromised
10.0.0.1 

server
10.0.0.2

host
10.0.0.3

host
10.0.0.4

SDN controller
(ovs-controller)

Ostinato Ostinato Ostinato
APT-SDNmap

OpenFlow

OVS - switch

malicious traffic
normal traffic

FIGURE 3.1: Network set up used to generate APT-SDNmap dataset

(with four hosts) as h = 4. The other two experiments maintained the same archi-

tecture (one switch and one controller) but with more hosts: eight hosts (h = 8)

and sixteen hosts (h = 16). Both the malicious and normal transactions followed the

same scenario, involving one compromised machine (launching a probing attack us-

ing APT-SDNmap), one server, and the remaining hosts (including the compromised

one) generating normal activities using Ostinato.

3.5.2 Data preparation

The network protocol analyser t-shark is used to generate a CSV file by constructing

the basic features from the pcap file. These features are frame number, frame date

and time, source IP, destination IP, source MAC address, destination MAC address,

protocol, source port, destination port, ethernet type, TCP flag and frame length. A

cleaning data process is carried out. Every transmission is labelled manually (to be 0

or 1) based on different features such as time of transmission, source IP and port, and

used protocol. Malicious transmissions are labelled as 1s, and normal transmissions

as 0s. In each network size scenario, the abnormal traffic constitutes around 5%
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TABLE 3.4: Experiment scenarios

scenario number of hosts normal attack total
1 4 13,944 816 14760
2 8 13,801 820 14621
3 16 16,440 803 17243

of the total. Table 3.4 shows the total number of transactions in each of the three

network size scenarios.

3.5.3 Data pre-processing

This stage is essential before applying Machine Learning techniques. The widely

used scikit-learn toolkit [169] provides the ML functionality used throughout our

work. There are some null data dealt with by substituting with 0s. The data is

split into a training set and a testing set, 70% and 30% respectively, using scikit-

learn’s train_test_split. SMOTE (synthetic minority oversampling technique) [170]

is applied to the training set to balance data between the two classes by randomly

replicating the minority class (1) samples to achieve balance with the majority class

(0). Finally, the dataset features are scaled using the standard scalar scikit-learn tech-

nique StandardScaler[171].

3.5.4 Feature Engineering

In this section, we engineer and extract a set of features that can facilitate the de-

tection of APT scanning attacks (discussed in section 3.4) in SDN. A large number

of features (basic and historical-based) are examined to deliver features that have

a significant effect on the detection model. 17 basic features (e.g. packet protocol)

are extracted from the headers of packets. Another eight historical features (e.g. the

average number of ICMP packets from a sender) are engineered based on the ex-

tracted basic features. Table 3.5 shows all extracted features and their descriptions.

Figure 3.2 represents an overview of the derived historical-based features and their

significant role in detection.
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TABLE 3.5: Dataset features

Feature Type Description

Basic features
No Integer frame number

time Nominal transition date and time
src_ip Nominal source IP
dst_ip Nominal destination IP

src_mac Nominal MAC source address
dst_mac Nominal MAC destination address
protocol Nominal protocol type
src_port Integer transmission source port
dst_port Integer transmission destination port
eth_type Nominal ethernet type

flag Nominal transmission flag
frame_len Integer frame length

TCP Binary TCP protocol
UDP Binary UDP protocol
ICMP Binary ICMP protocol
IGMP Binary IGMP protocol
ARP Binary ARP protocol

historical-based features (calculated for the identified host)
src_host_count Float proportion of network packets (from any sender)

sent with src as sender
src_ARP_count Float proportion of packets from src that are ARP packets

src_ICMP_count Float proportion of packets from src that are ICMP packets
src_IGMP_count Float proportion of packets from src that are IGMP packets
src_TCP_count Float proportion of packets from src that are TCP packets
src_UDP_count Float proportion of packets from src that are UDP packets

diff_proto_range Float proportion of available protocols used by src
diff_dst_port Float Count of unique ports accessed by the sender



72 Chapter 3. Enhanced SDN Scanning and its Detection using Machine Learning

FIGURE 3.2: The impact of the extracted historical-based features on
the proposed model
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FIGURE 3.3: The most important features on APT-SDNmap dataset

In our experiments to develop the classifiers, we remove features that are overly

specific: frame number, time, source IP, destination IP, source MAC address, desti-

nation MAC address, source port, and destination port. For example, in the training

phase, when a specific source IP is flagged as benign, it would generally be predicted

as normal in the testing phase. If the model learns to rely on specific values, it might

perform well on the training data, but it could fail to perform over new data (i.e.

it has been overfitted). All historical-based features are employed in the model, but

from the set of basic features we use only Protocol, TCP, UDP, ICMP, IGMP and ARP.

The omissions indicated are convenient but we would not assert that such omissions

are essential. Rather, additional modelling functionality would have to be invoked

to provide use at an appropriate level of abstraction. Thus, our approach is a simple

and pragmatic one, though our results suggest that it is also an effective one.

Feature importance is a technique that measures the usefulness of given features

in a model, indicating how every feature contributes to the model’s prediction [74].

The Random Forest classifier [172] is used to evaluate the importance of all used

features. The results are presented in Figure 3.3. In each network size scenario,

(h = 4, h = 8 and h = 16), we conducted experiments with all features ( f = 14), the

top 9 features ( f = 9) and the top 5 features ( f = 5), selected after applying feature

importance.
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TABLE 3.6: Hyper-parameter tuning

parameter description optimal value

K-nearest neighbour
n_neighbors number of neighbour 8

metric distance function of K euclidean
XGBoost
max_features maximum number of fea-

tures to be used in a single
run

sqrt

en_estimators number of trees 200
max_depth maximum depth of every tree 7

Support Vector Machine
kernel transforming data function rbf

C regularization parameter 50
gamma kernel coefficient scale

Decision Tree
Criterion the function used to measure

the quality of split
gini

max_depth maximum tree depth 7
Random Forest
max_features maximum number of fea-

tures used by individual tree
sqrt

max_dept maximum tree depth 7
n_estimators number of trees 200
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3.6 Detecting scans using ML

In supervised learning, the model is trained over labelled data to predict unlabeled

ones in the future. We have applied a number of the most popular supervised ma-

chine learning algorithms to the generated datasets. The best results came from

K-nearest neighbour, Support Vector Machine, Decision Tree, Random Forest and

XGBoost. Hyper-parameter tuning seeks to find parameter choices that give the

best performance for the given ML techniques. GridSearchCV [173], which is sup-

ported by scikit-learn, is used for hyperparameter tuning. Further manual selection

is employed to avoid over-fitting or under-fitting. Table 3.6 illustrates the selected

parameters for the used algorithms. The following paragraphs summarise the us-

age of ML classifiers (discussed in detail in the previous chapter section 2.6) that are

used in this work. The results of their application to the first network size scenario

(h = 4) are presented here. The results of all scenarios are discussed in section 3.6.2.

The K-Nearest Neighbour (K-NN) algorithm assumes that similar instances of

one class are located near each other. Choosing the right value of K is critical to

increase the accuracy of the prediction rate. K=8 gives good prediction whilst avoid-

ing over-fitting. Euclidean is the most popular distance function for K-NN and the

one picked after applying hyperparameter tuning. K-NN performs very well over

all experiments.

A Decision Tree (DT) is one of the most powerful classification tools in Machine

Learning. In the experiment, the maximum tree depth (maxdepth) is selected to be

seven. During the experiments, a high number of features gives better results.

A Random Forest (RF) is an ensemble classifier consisting of multiple Decision

Trees. A number of parameters are crucial to increase predictivity. sqrt is imple-

mented for the maximum number of features. It takes the square root of the number

of available features to fit in every tree in the model. The more trees (n_estimators),

the better performance of the model but this requires high computation and the

model could not be generalised. Using 200 trees with a maximum depth of 7 pro-

duces promising results. The performance is mostly very high in all experiments,

and the number of false positives is reduced when the number of features used is

low.



76 Chapter 3. Enhanced SDN Scanning and its Detection using Machine Learning

The eXtreme Gradient Boosting(XGBoost) is an ensemble classifier that combines

a set of Decision Trees to provide more accurate predictions in a fast way. 200 trees

with a maximum depth of 7 give the best results. With just ( f = 5) features, XGBoost

outperforms all other classifiers in our experiment with at least 97.82% in all selected

evaluation metrics used.

The Support Vector Machine (SVM) is one of the strongest techniques for binary

classification. However, it shows the highest number of false positives among these

techniques, especially when the number of features is reduced.

3.6.1 Proposed model

The SDN controller has global visibility over network devices. The network admin-

istrator can use any SDN controller ( e.g. OpenDaylight [174], ONOS [175] and Ryu

[176]) to provide the NIDS with batches of data. It can be configured to mirror net-

work traffic received in SDN switches. Furthermore, the controller can request and

receive network statistics from network devices using southbound APIs. For exam-

ple, OpenFlow messages o f p_ f low_stats_request and o f p_ f low_stats_reply are used

to request and receive, respectively. When the data are available, the feature extrac-

tor module extracts basic features and calculates the historical-based features (these

features are discussed in 3.5.4). We created a Python script (for the APT-SDNmap

dataset which used in experiment 1) to work as the feature extractor module. The

ML classifier module uses the ensemble classifier XGBoost to classify (malicious or

being) all instances. If the traffic is classified as suspicious, the administrator is no-

tified to take further actions, such as blocking IPs or updating the flow rules table.

Figure. 3.4 shows the proposed network architecture of the proposed model. If the

classifier has been updated by training over new data, the admin can also update

the current model through the northbound API.

3.6.2 Experimental results

A number of experiments are conducted and are described below:

1. Experiment 1:
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FIGURE 3.4: Network architecture of the proposed model
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TABLE 3.7: Results on APT-SDNmap dataset expressed as percent-
ages

ML f=14 f=9 f=5
tech Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1

h=
4

KNN 99.86 98.26 99.12 98.69 99.88 98.69 99.12 98.91 99.70 98.26 96.17 97.20
DT 99.43 97.82 91.83 94.73 99.27 97.82 89.28 93.36 98.05 98.69 73.22 84.07
RF 99.36 99.13 89.76 94.21 99.54 98.26 93.38 95.76 99.72 97.39 97.39 97.39

XGB 99.93 99.13 99.56 99.34 99.93 98.69 100 99.34 99.77 97.82 97.82 97.82
SVM 98.64 98.69 79.93 88.32 98.71 99.13 80.56 88.88 97.29 97.39 66.27 78.87

h=
8

KNN 99.63 96.34 96.34 96.34 99.59 95.43 96.31 95.87 99.72 98.63 96.00 97.29
DT 99.72 98.17 96.41 97.28 99.70 98.17 95.98 97.07 99.47 93.60 95.79 94.68
RF 99.77 99.08 96.44 97.74 99.79 98.63 97.29 97.95 99.65 97.26 95.94 96.59

XGB 99.74 98.63 96.42 97.51 99.79 98.63 97.29 97.95 99.70 97.26 96.81 97.03
SVM 98.95 99.08 83.14 90.41 98.95 99.08 83.14 90.41 97.85 80.82 77.29 79.01

h=
16

KNN 99.67 95.41 97.44 96.42 99.67 95.41 97.44 .96.42 99.63 95.00 97.02 96.00
DT 99.69 97.08 96.28 96.68 99.69 97.08 96.28 96.68 99.63 96.25 95.85 96.05
RF 99.36 95.00 97.02 96.00 99.76 97.91 97.10 97.51 99.74 97.50 97.09 97.29

XGB 99.78 98.33 97.11 97.72 99.82 99.16 97.14 98.14 99.76 97.91 97.10 97.51
SVM 98.60 75.00 93.75 83.33 98.62 75.00 94.24 83.52 96.55 36.66 77.19 49.71

* KNN: k-Nearest Neighbors; SVM: Support Vector Machine; DT: Decision Tree; RF: Random Forest; XGB: XGBoost;
Acc: Accuracy; Rec: Recall; Pre: Precision; f: number of features

Five machine learning classifiers were applied on the APT-SDNdataset. A dif-

ferent number of features are considered for every network size scenario. The

use of all features ( f = 14) is evaluated as the use of the most important 5

( f = 5) and the most important 9 ( f = 9) features. The importance of all

features is shown in Fig 3.3.

Table 3.7 shows the experiment results. On average, XGBoost outperforms all

other classifiers, with any number of features, scoring at least 97% in all metrics

(Accuracy, Recall, Precision and F1 score) except Precision in the second scenario

h = 8 (which attains nearly the same value). K-NN has good results over

any number of features, but it is practically not preferred because of computa-

tional costs and time to execute. Conversely, SVM is prone to obtaining a high

number of false positives and false negatives. Overall, K-NN and DT perform

better when the network size is small. Random Forest and XGBoost give fairly

uniform results.

2. Experiment 2:

As there is no other dataset including APTs in SDN to do a further evaluation
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TABLE 3.8: Results on InSDN dataset (probe attacks and normal in-
stances) in percentage

ML f=75 f=21 f=6
tech Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1
KNN 99.96 99.96 99.96 99.96 99.96 99.98 99.97 99.98 99.81 99.90 99.95 99.93

DT 99.96 99.96 99.96 99.96 99.98 99.99 99.98 99.98 99.95 99.97 99.94 99.96
RF 99.79 99.98 99.66 99.82 99.99 99.98 99.95 99.96 99.94 99.95 99.95 99.95

XGB 99.98 99.99 99.98 99.98 99.98 99.99 99.97 99.98 99.96 99.97 99.96 99.96
SVM 99.94 99.96 99.93 99.95 99.51 99.86 99.31 99.58 99.16 99.94 98.64 99.29
* KNN: k-Nearest Neighbors; DT: Decision Tree; RF: Random Forest; XGB: XGBoost; SVM: Support Vector

Machine; Acc: Accuracy; Rec: Recall; Pre: Precision; tech: Technique

FIGURE 3.5: The most important features on probe InSDN

for the proposed model, it is evaluated over probe attacks in the InSDN dataset

[127]. As mentioned in 2.10, InSDN has various attacks forming more than 80%

of the entire dataset, which is considered very high. As this chapter focuses on

scanning, the dataset is further prepared. Only instances representing probe

attacks are kept. All other types of attacks (DoS, DDoS, web attacks, R2L, bot-

net and U2R attacks) are removed. The dataset now includes just probe attacks

and normal samples, forming around 59% and 41% of the dataset, respectively.

In this thesis, we refer to this dataset version as the probe InSDN dataset.

The results of evaluating the proposed model (and all classifiers used in Ex-

periment 1) applying the same configurations (hyper-parameters) are shown

in table 3.8. More than 99% is attained in all metrics over different numbers

of features: (all features ( f = 75), default feature importance ( f = 21) and the

five most important features( f = 5)). Figure 3.5 shows the important features

using a Random Forest classifier. Although the default features of InSDN are

used in the evaluation, we removed the features that we believe could cause

over-fitting on the training data. These are flow id, source ip, destination
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TABLE 3.9: Results on InSDN dataset expressed as percentage

ML f=5
tech Accuracy Recall Precision F1
KNN 99.83 99.97 99.81 99.89

DT 99.82 99.97 99.81 99.89
RF 99.80 99.93 99.82 99.88

XGB 99.85 99.99 99.82 99.91
SVM 99.51 99.86 99.52 99.69
* KNN: k-Nearest Neighbors; DT: Decision Tree; RF:

Random Forest; XGB: XGBoost; SVM: Support Vec-
tor Machine

ip, time stamps, source port and destination port. We argue that the model

performance shows higher results over this dataset (probe InSDN) than those

over APT-SDNdataset. This is because the probing attack in this dataset is not

stealthy. In addition, the number of attacks (58.9% of the dataset) is higher than

the number of attacks in the generated dataset (APT-SDNmapdataset), which

forms around 5% of the whole dataset.

3. Experiment 3:

In these experiments, the proposed classifiers are evaluated over the actual

InSDN dataset. It is different from probe InSDN which is used in Experiment

2 by using the entire dataset, which includes various attacks (i.e. not just probe

attacks). All attacks are mapped to be one class (malicious), and the binary

classification methods are implemented. Attack traffic makes up 80% of the

InSDN dataset and so it can not be said to represent stealth (e.g. slow-and-

low) attacks. However, it is important to evaluate the system against different

kinds of attacks launched on an SDN network. Feature importance is applied,

see figure 3.6, to enhance the detection and performance. With just five fea-

tures, the model still shows outstanding results scoring more than 99% in all

evaluating metrics. All results are shown in table 3.9.

3.6.3 Discussion and challenges

Even though the stealth attacker tries to remain under detection thresholds, some

scanning behaviours could arouse suspicion. Contacting a wide range of different
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FIGURE 3.6: InSDN feature importance

IPs or using a high number of ports could identify a sender aiming to discover net-

work configuration. Using a high number of ARPs may lead to suspicions that the

initiator is discovering the active IP devices inside the local network. A specific user

using a wide range of protocols could indicate that this user is trying to identify the

supported protocols in the network.

In traditional attacks, a reasonable amount of all traffic is malicious. In DDoS at-

tacks, the majority of sampled traffic may be malicious. In stealth attacks, malicious

traffic forms a small fraction of all traffic. The datasets arising are significantly un-

balanced. Developed approaches must be able to handle such unbalanced datasets.

Nonlinear algorithms such as K-Nearest Neighbour and Decision Trees have the po-

tential to detect these kinds of attacks. However, we found ensemble classifiers such

as Random Forests and XGBoost are the best to detect APTs when attack traffic is

much lower than normal traffic.

It is still a significant challenge to provide a comprehensive simulation of APT

characteristics in one dataset, despite the emergence of research work concerned

with simulation and benchmark datasets. This chapter addresses one particular APT

characteristic (stealthy scanning of nodes). However, such scanning is an important

activity since it generally acts as an enabler of future attacks. It is, therefore, a highly

suitable target for enquiry in its own right.
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3.7 Summary

In this chapter, an enhanced means of stealth is proposed for scanning in SDN. Such

a strategy may be used by APTs to escape current detection. A dataset has been cre-

ated and used to investigate how such enhanced scanning attacks can be detected

by the application of Machine Learning techniques. We have also shown that sig-

nificant feature reduction is possible whilst retaining robust performance and have

applied hyper-parameter optimisation to derive maximum benefit from specific ML

techniques. XGBoost is proposed for detection, which shows promising results. The

system is evaluated over different datasets, showing consistency in performance.

The experiments show that suitably configured ML-based detectors can achieve

excellent detection rates for stealthy scanning in SDNs. Feature engineering, part of

such ML configuration, has an important role to play in the further development of

efficient scanning detection (and more generally). The work used supervised learn-

ing only, and investigation of an anomaly-based approach would seem a natural

next step, since the latter approach is typically better suited to an evolving threat en-

vironment. The APT-SDNmap tool assumes a single source for scanning. Allowing

multiple nodes to collaborate could provide even stealthier scanning.
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Chapter 4

A Hybrid NIDS for Detecting

Stealthy Scans

Chapter 3 evaluated the most popular signature-based detection algorithms in ma-

chine learning for stealthy scan detection. A model to detect known stealthy scan-

ning attacks in SDN using XGBoost was proposed. Although effective, signature-

based detection is unlikely to perform well on unseen attacks. Anomaly-based de-

tection is widely acknowledged as offering better prospects for detecting such un-

known attacks. This chapter investigates how well a hybrid (signature-based and

anomaly-based) IDS can detect known and unknown stealth attacks.

Thus it investigates the second research question, as stated in section 1.2, RQ2:

Can we use a machine-learning and hybrid (signature-based plus anomaly-based) approach

to detect the stealthy reconstruction of flow rules in SDN networks?

4.1 Introduction

APTs have multiple stages in their campaign. In an isolated or well-protected net-

work, it can be a significant challenge for the attacker to get inside the targeted net-

work. An insider can help in this case. The SDN architecture allows an insider to

more easily get information about the network configuration than in traditional net-

works. Investigating the detection of insider scans and external attacks can help to

cover the two types of networks (isolated and public).
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4.1.1 The insider perspective and APTs

An insider within an SDN network operates with privileges external agents do not

have. They are expected to use those privileges in a manner consistent with good

behaviour within the system. However, they may use their privileges for malicious

goals. Detection in part consists therefore in the identification of the end goals of

such a user from their actions. This is acknowledged as very hard to do. Further-

more, their presence on the network is authorised and does not in and of itself arouse

suspicion. An insider is, therefore, in a very powerful position. The insider can

gather sensitive information or install required malicious software in the targeted

network [177]. For an isolated or well-protected network, insider involvement may

be essential for a successful attack. Gathered information helps the attacker to move

inside the victim’s network and compromise new devices. An SDN network pro-

vides the insider with a greater capability to gather information than in a traditional

network. The dynamic configuration helps the attacker in gaining information. An-

other issue in SDN is that compromising the controller can lead to a compromise of

the whole network.

An insider starts from a highly advantageous position. But insiders can also

adopt stealth strategies to make detection even harder, carrying out scanning attacks

over an extended period of time, with probes issued at an extremely low rate. This

also presents an opportunity for defence. Detection of insiders can be regarded as

the ’stretch goal’ for intrusion detection in modern systems, such as those employ-

ing SDN architectures. SDN provides more flexibility to monitor the whole network

and get useful information from network devices. If we can detect insider attacks,

external attacks should not present much of a problem. Thus, we believe it is pru-

dent to target insider attacks as a priority. Finally, an insider perspective for intrusion

detection can provide defence-in-depth. Ultimately, a system’s defences may fail to

prevent the compromise of a node by an external agent. That comprised node is

now an insider. In this chapter, we assume the insider is a user inside the network

who has root access and so is able to install APT-SDNmap in a host and launch at-

tacks. Performing scans using APT-SDNmap on the compromised host is enough

to reconstruct flow rules in SDN switches. There is no need to move to other SDN
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components to accomplish its goals. If movement is not essential, then there seems

added incentive not to move: movement is not part of the normal operation of an

insider’s activities and so increases the chances of attracting attention.

4.1.2 Motivations and contributions

Stealth scans can be used to gather information that underpins further attacks (as

discussed in section 2.2.3). Their adoption of some APT characteristics makes stealth

scans hard to detect. With the help of an insider, the attackers can bypass the front-

line defences and access the targeted network.

When adversaries create new attacks and adapt their behaviour (as APTs do)

then employing anomaly-based IDS has better prospects for detecting such previ-

ously unseen malicious activity. However, this comes at a price. Anomaly-based

approaches raise more false alarms. These alarms are often referred to as false pos-

itives (FPs). A further problem is that some malicious activity, even known mali-

cious activity, may ‘look like’ normal activity. Consequently, exhibiting sets of mea-

sured properties consistent with experienced benign activity will usually not raise

an alarm. This gives rise to so-called false negatives (FNs).

A hybrid approach can address the weaknesses of individual ML techniques.

An anomaly detection approach can enhance the detection of unforeseen attacks (a

weakness of the signature-based approach). On the other hand, the high rate of

false positives (false alarms) by anomaly detection will be reduced by the use of a

signature-based technique.

In this chapter, we propose a hybrid machine learning-based NIDS to detect

stealth attacks, such as APTs, in an SDN. Incorporating the two detection tech-

niques, signature-based and anomaly-based, improves detection. Two significant

machine learning techniques are adopted to implement these approaches: XGBoost

for signature-based detection and a One-class Support Vector Machine (one-class

SVM or OC-SVM for short) for anomaly-based detection. The proposed model is

evaluated over different datasets that include internal (insider) or both internal and

external attacks. To improve the performance in the model, dimensionality reduc-

tion and hyper-parameter tuning are applied.

The contributions of this chapter are:
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• The development of a hybrid NIDS that integrates two detection techniques is

novel for this domain. To the best of our knowledge, it is the first IDS system

using anomaly-based techniques to detect APTs in SDN networks.

• The evaluation of the proposed model over several datasets.

• A comparison between the proposed system and the other standard ML detec-

tion techniques and the most relevant works is given.

4.1.3 Chapter organisation

The remainder of this chapter is organised as follows. Section 4.2 reviews the most

relevant proposed hybrid NIDS systems in the literature. Section 4.3 describes the

proposed approach. Section 4.4 presents the implementation and evaluation of the

proposed model. Section 4.5 gives a summary of the chapter.

4.2 Related Works

A number of researchers have proposed combining two Deep Learning classifiers to

improve the detection in IDSs in SDN [155; 178]. The systems are evaluated over

NSL-KDD, which has no SDN traffic. Integration of a One-class SVM and an LSTM-

Autoencoder is proposed and tested over InSDN (an SDN-based dataset discussed

in 2.10). The dataset is imbalanced and the majority of the traffic is attack traffic.

Similarly, a hybrid system [179] using a Long short-term memory (LSTM) and Con-

ventional Neural Network (CNN) is proposed for anomaly detection. However, it

is evaluated over the CICIDS 2017 dataset, which contains only traditional attacks

(discussed in detail in section 2.10). Nevertheless, none of the aforementioned works

considers stealth attacks such as APTs. Table 4.1 presents a comparison of the pro-

posed work and the most relevant works.

4.3 Proposed Scheme

The proposed hybrid system is composed of two main modules. The signature-

based detection module uses the XGBoost classifier and the anomaly-based detec-

tion module uses a One-class SVM. The NIDS monitors streaming data through the
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TABLE 4.1: Related works comparison

Scheme SDN Stealth Accuracy* Dataset Evaluation Technique
[155] × × 89% NSL-KDD GRU-RNN
[178] × × 87% NSL-KDD GRU-LSTM
[180] ✓ × 90.5% InSDN OC-SVM-LSTM-Autoencoder
[179] ✓ × 98.60% CICIDS2017 LSTM-CNN

Proposed model ✓ ✓ 98% APT-SDN dataset XGboost-OC-SVM
* GRU: Gated Recurrent Unit; RNN: Recurrent Neural Network; LSTM: Long Short Term Memory; OC-SVM: One-

Class SVM; CNN: Convolutional Neural Network; * Accuracy column presents scores as given in the original sources
(Scheme column).

SDN controller. The controller can request and receive the network statistics from

SDN switches using southbound APIs. When a new packet arrives at the model,

the signature-based detection module (XGBoost classifier) investigates whether the

pattern of the traffic is malicious or normal. If the pattern of the attack is already

defined, then the signature-based approach is best suited to detecting it; for that rea-

son, we use XGBoost to perform the first check. If it is classified as malicious, then

this transaction is deemed to be an attack. Otherwise, the transaction is inspected by

the anomaly-based module (using a One-class SVM), as a further check for unknown

attacks. If any one of the models (signature-based or anomaly-based detection), clas-

sifies the transaction as malicious, the administrator would be notified to take some

action, for example, instructing the flow tables to be updated so that communica-

tions from the compromised machine are dropped, or requiring another mitigation

action. If it is judged to be normal in both cases, then no further action is taken. The

proposed system architecture is illustrated in Figure 4.1.

4.3.1 Signature-based detection module

A signature-based detection model can detect known attacks with low false posi-

tive rates. It can detect known attacks quickly and more accurately. In the pro-

posed model, XGBoost is the classifier used for signature-based detection. It is well

known for its execution speed and high performance. In the experiments, the model

is trained over labelled training datasets, which include attacks and normal traffic,

and is evaluated over the test sets.
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FIGURE 4.1: System Architecture

4.3.2 Anomaly-based detection module

An anomaly-detection algorithm profiles normal behaviour to form a model of that

behaviour. Its model defines an envelope of acceptable behaviour and data out-

side this envelope are considered suspicious. The anomaly-based detection model

is used here to help detect unknown attacks. It has a potential to detect zero-day

exploits [181]. An OC-SVM is a significant option when non-malicious data domi-

nates a dataset (as is the case with stealth scanning attacks). In this work, OC-SVM

is trained over the normal portion of the training set. It is then evaluated over the

whole testing set (containing normal and malicious behaviours).

4.3.3 Model parameters

Hyperparameter tuning is applied to find the best performance. The parameter se-

lection considers avoiding over-fitting or under-fitting. In a One-Class SVM, ν ∈

(0, 1] plays a major role in the trade-off between generalisation and over-fitting. An-

other parameter in OC-SVM is γ ∈ (0, 1]. Figure 4.2 shows the effects of tuning the
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FIGURE 4.2: ν value tuning

ν value. In XGBoost the maximum number of features max_ f eatures, the number

of trees en_estimators and the maximum depth of every tree are the most important

parameters. Employing a wide range of experiments for different parameters for

every classifier, allows a high performing model to be identified. Table 4.2 presents

the selected parameters to be used in the proposed model.

TABLE 4.2: Hyper-parameter tuning

parameter description optimal value

eXtreme Gradient Boosting(XGBoost)
max_features Maximum number of fea-

tures in every single run
sqrt

en_estimators Number of trees 200
max_depth Maximum depth for any tree 7

One-Class SVM (OC-SVM)
Kernel Transforming data function rbf

ν This controls the fraction of
outliers in the system

0.001

Gamma Kernel coefficient 0.9
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4.4 Implementation and Evaluation

The dataset generated in the previous chapter (section 3.2.2) is used to evaluate

the proposed model. Further experiments are conducted over different datasets.

This further evaluates the system on benchmark datasets, allowing comparison with

works most similar to the scheme proposed here.

4.4.1 Preparation and preprocessing

APT-SDNdataset is used in the first experiments (against insider scan). Features that

could expose the identity of devices (users) are eliminated. Fourteen features are

selected from the dataset to be used in the experiments. These features are: Proto-

col, TCP, UDP, ICMP, IGMP, ARP, src_host_count, src_ARP_count, src_ICMP_count,

src_IGMP _count, src_TCP_count, src_UDP_count, diff_proto_rage and diff_dst_port.

Then we standardise the dataset features using the scikit-learn object StandardScaler.

Principal Component Analysis (PCA) is applied to create fewer information-rich de-

rived features. The experiments show that four such features (also referred to as

principal components) are sufficient to represent the whole dataset for our detection

purposes. Figure 4.3 shows the trend of how many components are enough for the

dataset. Experiments with more than that number of components were attempted

but the results were broadly similar. Thus, four components are used in all exper-

iments in this chapter. Figure 4.4 shows the impact of these features (components)

on the prediction capability of the model.

The dataset is split into 70% for training and 30% for testing. Because the dataset

is imbalanced (malicious scanning transactions are rare), SMOTE (synthetic minor-

ity oversampling technique) [170] is applied on the training set to make the number

of samples in each of the two classes (denoted by 0 and 1) relatively equal. Figure

4.5 illustrates the preparation and pre-processing phases and how the two ML mod-

ules (XGBoost as a signature-based and One-Class SVM as anomaly-based detection)

work together to investigate attacks.
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FIGURE 4.3: Number of components are enough to represent the
dataset (APT-SDNmap dataset)

FIGURE 4.4: The selected components affect the model (using APT-
SDNmap dataset)
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FIGURE 4.5: Hybrid IDS flowchart
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4.4.2 Evaluation on insider scan

In this work, we conduct two separate experiments, using APT-SDNdataset, on the

main two ML detection techniques to find the most optimal technique from every

type to be employed in the proposed model. This is followed by experiments on the

proposed hybrid model over different network sizes.

• Signature-based detection technique: The most popular ML supervised-learning

algorithms, used in Chapter 3, are evaluated using PCA technique. Table 4.3,

presents the results over Logistic Regression, K-nearest neighbour, Decision

Tree, Random Forest, Support Vector Machine and XGBoost (eXtreme Gra-

dient Boosting). All experiments use the h = 4 dataset. XGBoost outper-

forms all other techniques. Consequently, it is proposed as the classifier for

the signature-based detection.

• Anomaly-based detection techniques: The most popular One-Class classifi-

cation (ML-based anomaly detection technique when we have just two classes

normal and abnormal) in Machine Learning are One-class SVM, Isolation Forest

(IF) and Local Outlier Factor (LOF) [76]. These are evaluated over the dataset

when h = 4. One-Class SVM has far better results than others. Although,

the Isolation Forest shows better results than the Local Outlier Factor, both

suffer from high numbers of false positives and false negatives compared to

One-Class SVM, as shown in the confusion matrices in Figure 4.6. The high-

est results are from the OC-SVM (One-Class SVM) and so we propose it as

the anomaly detector in the proposed scheme. Table 4.4 compares these tech-

niques.

• Hybrid Intrusion Detection System: The proposed Hybrid NIDS employs

XGBoost and OC-SVM and is evaluated over the three network sizes (h = 4,

h = 8, and h = 16). The results are shown in Table 4.5. The proposed model

scales well as the network size is increased. Compared to the results of the

standard anomaly detection techniques, as shown in table 4.4, the proposed

model outperforms all these standard techniques.
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One-Class SVM Isolation Forest Local Outlier Factor

FIGURE 4.6: Confusion matrix for OC-SVM, IF, and LOF

TABLE 4.3: Supervised-learning results on APT-SDNmap dataset

Technique Accuracy Recall Precision F1-score
Logistic Regression 0.96 0.36 0.86 0.51
K-nearest neighbour 0.99 0.94 0.99 0.96

Decision Tree 0.99 0.85 0.98 0.91
Random Forest 0.99 0.90 0.99 0.94

Support Vector Machine 0.98 0.80 0.86 0.83
XGBoost 0.99 0.96 0.99 0.97

TABLE 4.4: Anomaly-based detection techniques comparison on
APT-SDNmap dataset

Tech Accuracy Recall Precision F1
One-Class SVM 0.98 0.97 0.81 0.88
Isolation Forest 0.89 0.75 0.30 0.43

Local Outlier Factor 0.87 0.28 0.16 0.20

TABLE 4.5: Hybrid NIDS experimental results (using the APT-
SDNmap dataset)

No. of hosts Accuracy Recall Precision F1
4 0.98 0.98 0.90 0.94
8 0.98 0.98 0.91 0.94
16 0.98 0.98 0.88 0.92
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4.4.3 Detecting externals

APT attacks involve multiple stages, as discussed in section 2.3.2, starting from re-

connaissance and scanning and ending with the aim of the attack, such as getting

the gathered information or damaging the target or even maintaining access for fur-

ther benefits. The communication between the attacker and the target is critical. In

isolated networks, with the help of the insider, the attacker can deliver the malware

and get the gathered information. When the network is accessible to the public, the

attacker can use a number of tools for the attack. This way of conducting an attack

is the most common because getting inside the victim’s network (being an insider)

is challenging for attackers. In this case, the attacker is described as external to dis-

tinguish them from the insider (internal).

In the previous section, an evaluation of the system is illustrated by using the

APT-SDNmap dataset, which includes just insider attacks (scanning). In the follow-

ing, the experiments were conducted over different datasets representing external

attacks as well as internal attacks.

1. Experiment 1: The InSDN dataset has two sources of attacks: insiders launch-

ing attacks from two hosts inside the victim network and an external source

(which forms the majority of the attacks in the dataset). The results show high

scores, with 0.97, 0.99, 0.96, and 0.98 in Accuracy, Recall, Precision and F1,

respectively.

2. Experiment 2: DAPT 2020 is a recent APT dataset that contains both internal

and external threats. It mimics APTs and includes all its stages. The exper-

iments demonstrated a score greater than 0.81 in Accuracy, Recall, Precision

and F1.

3. Experiment 3: In this experiment, the proposed model is evaluated using one

of the state-of-the-art datasets in the intrusion detection systems. CICIDS 2017

(discussed in detail in section 2.10) is used in the evaluation. It has various

attacks (internal and external), carried out over five days. The results are 0.99

in Accuracy and Recall, 0.96 in Precision and 0.97 in F1.
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TABLE 4.6: Hybrid NIDS experimental results over different datasets

Dataset Accuracy Recall Precision F1
InSDN (all attacks) 0.97 0.99 0.96 0.98

DAPT 2020 0.81 0.81 0.81 0.81
CICIDS 2017 0.99 0.99 0.96 0.97

Table 4.6 summarises the evaluation results of the hybrid model over different

datasets.

4.5 Summary

Detecting stealth attacks in Software-Defined Networks is a critical security endeav-

our for the community. The insider can make it easier for stealth attackers to deliver

malicious software. In this chapter, the internal and external perspectives of APTs

are discussed. A hybrid Network Intrusion Detection System is proposed to detect

stealth scans that aim to reconstruct flow rules in SDN. In addition, the detection of

attacks carried out by externals is addressed. It can detect known attacks and those

unseen previously. The proposed hybrid model overcomes the limitations of the in-

dividual techniques improving the detection methodology and reducing erroneous

decisions. XGBoost and OC-SVM are implemented to detect known and unknown

attacks, respectively. The system is evaluated over insider attacks and external at-

tacks on different datasets, showing promising results.
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Chapter 5

An Incremental Adaptive

Network-based IDS

In Chapter 4, it is shown that adopting an anomaly-based detection technique deliv-

ers significant results in detecting unknown attacks. The combination of signature-

based and anomaly-based detection techniques shows an improvement in the model’s

performance. However, ML classifiers are challenged when the data distribution

changes. Concept drift is a term that describes the change in the relationship between

the input data and the target value (label or class). The model is expected to de-

grade as certain forms of change occur. For us, the primary form of change will be

in user behaviour (particularly changes in attacker behaviour). It is essential for a

model to adapt itself to deviations in data distribution. SDN can help in monitoring

changes in data distribution. This chapter discusses changes in stealth attacker be-

haviour and investigates the use of various concept drift detection algorithms. An

incremental adaptive NIDS is proposed to tackle the issue of concept drift in SDN.

This chapter investigates the third research question, as stated in section 1.2, RQ3:

Can we continue to detect stealth attacks in SDN networks as adversaries change their be-

haviour?

5.1 Introduction

One of the main challenges in machine learning-based intrusion detection systems

is that the environment from which data is sampled changes over time. That is,

the distribution of the data to be classified changes. Such change may occur, for
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example, as a result of a change in the behaviour of both benign users and attackers.

Concept drift is the change, for any reason, in the relationship between the input

data and the predicted output over time. If the drift is not accounted for, the results

of a predictive ML model will deteriorate [6]. In this case, there is a need for the IDS

to adapt itself to any change by training over new data; it cannot simply depend on

old data. More details are given in section 2.8.

5.1.1 Motivation and contributions

Traditional machine learning techniques are static and trained over specific batches

of data. The model is built based on the behaviour of the users (normal or malicious)

at that time of training. Over time, when the data distribution changes, the model

performance will degrade unless it is trained again over newer data. The change can

happen by changing the attack behaviour, such as employing a different attacking

tool or launching a new type of attack. Updating the classifier regularly is costly

and sometimes not feasible. An optimal approach, or one at least currently giving

good chances of success, is to make the classifier adapt itself incrementally when a

new intrusion emerges or when concept drift occurs for other reasons. The global

visibility helps in monitoring changes in data distribution. This is because obtaining

network statistics is easier in SDN than in legacy networks. Adaptive learning is

the method of updating the predictive model as a reaction to concept drift [84]. In

Chapter 4, the experiments show that combining two detection techniques helps

to improve system performance. In this chapter, an incremental adaptive hybrid

network intrusion detection system to detect previously unseen attacks is proposed.

Adaptive Random Forest (ARF) [182] and Adaptive One-class Support Vector

Machine (Adaptive One-class SVM) [183] are implemented for incremental signature-

based and incremental anomaly-based detection, respectively. An Adaptive Ran-

dom Forest has the ability to detect a reasonable number of unseen data. However,

stealth attacks are still difficult to detect. Anomaly-based detection classifiers are be-

lieved to be the most effective technique for detecting such attacks [181]. An Adap-

tive One-Class Support Vector Machine is employed in our proposed hybrid system

to be the anomaly-based detection module. The contributions of this chapter are

summarised as follows:
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1. Proposal of the first incremental adaptive hybrid IDS to overcome concept drift

caused by stealth attackers in SDN.

2. Determination of the optimal parameters using hyper-parameter tuning.

3. Evaluation of the most popular concept drift detection techniques.

4. Evaluation of the proposed system over different datasets, reflecting various

attacks and scenarios (including known and unknown attacks).

5.1.2 Chapter organisation

The rest of this chapter is organised as follows. Section 5.2 summarises the capabili-

ties of existing proposed approaches. Section 5.3 discusses an aspect of APT adaptiv-

ity. An explanation of the proposed model is given in section 5.4. Evaluation results

are presented in section 5.5. A summary is given in section 5.6.

5.2 Related Works

Adaptive approaches have been brought to bear for intrusion detection in non-SDN

environments. An ensemble classifier has been proposed to detect concept drift

caused by the existence of new intrusions [184]. HDDM [80] is used as the con-

cept drift detector and the system scores 94.91% accuracy. Another ensemble clas-

sifier [185] uses Hoeffding Adaptive Tree and Adaptive Random Forest to detect

network attacks and uses ADWIN for concept drift. A network-based IDS uses a

Page-Hinkley test (PHT) to detect concept drift to improve a deep learning classi-

fier [186]. The classifier has high accuracy (99%) and is applied on the CICIDS2017

dataset which has just traditional attacks. (The dataset is described in section 2.10.)

The model is not generalised as it is trained over the dataset without removing

the features that could cause over-fitting. A stream learning IDS [187] is proposed

for detecting concept drift. CIDD-ADODNN [188] uses Adadelta optimiser-based

deep neural networks (ADODNN) to classify imbalanced data. The proposal used

anomaly-based detection and was evaluated over three different datasets. Opti-

mised Adaptive and Sliding Windowing (OASW) [189] is a window-based drift de-

tection technique proposed for Internet of Things systems. The authors proposed
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TABLE 5.1: Related works Comparison

Scheme SDN Stealth Accuracy* Technique Dataset
[184] × × 0.94 HDDM KDD Cup 99
[186] × × 0.99 PHT CICIDS2017
[187] × × 0.96 bespoke Fine-grained Intrusion

Dataset (FGD) [191]
[188] × × 0.95 ADWIN NSL-KDD

0.93 Spam [192]
0.76 Chess[193]

[185] × × - ADWIN KDD Cup 99
[189] × × 0.99 ADWIN IoTID20 [190]

0.98 NSL-KDD
Proposed model ✓ ✓ 0.99 ADWIN APT-SDNdataset

0.98 DAPT 2020
0.99 CICIDS 2017
0.94 InSDN

* Accuracy column presents scores as given in the original sources (Scheme column)

an optimisation for LightGBM to detect anomalies in such systems. It is evaluated

over the IoTID20 [190] and NSL-KDD datasets. The accuracy results are 0.99 on

IoTID20 and 0.98 over the NSL-KDD dataset. These schemes are not proposed to

detect stealth attacks or work on SDN. Table 5.1 compares the aforementioned stud-

ies and the proposed model.

5.3 APT Adaptivity

Two cases may cause concept drift when the aim is to detect APTs. These are de-

scribed below.

5.3.1 Case 1: Natural changes in any network

Common system evolution may incur changes in the user population, the specific

services produced, the platform such services are deployed on and the uses of such

services, and so on. Thus, the data distribution of ’normal’ behaviour may clearly

change over time. The deviation in the data distribution (a.k.a. concept drift) causes

the ML classifier prediction to degrade.
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5.3.2 Case 2: Attack characteristics

APTs may continually adapt their behaviour so that they maintain sufficient similar-

ities with normal behaviours to remain undetected [181]. They may stay dormant for

a period of time or employ sleep functions between their activities (as discussed in

3.3). Moreover, the majority of these attacks go through multiple stages and at every

stage, they have one or more tools that may create new classes of attack. New pat-

terns may emerge as a result of these changes. [158; 2; 194]. It is essential to retrain

the ML-based NIDS to track the concept drift and make the model more adaptive to

any changes in data distribution.

5.4 Proposed Scheme

Given a period of time [0,t], streaming data arrives as a sequence of packets K0,t =

{s0, s1, s2, ..., sn}, where si = (Xi, yi) is one sample. Xi is a vector of independent

features which can be labelled appropriately with yi ∈ {0, 1}. Let Pt(X, y) represent

the joint distribution of X and y at time t. (It is a probability density function.) Con-

cept drift happens when Pt(X, y) changes over time. Thus, it occurs between two

time points t0 and t1 if ∃X · Pt0(X, y) ̸= Pt1(X, y) [84]. This is defined in terms of the

data sampled. For example, if a new attack is developed after time t0 and launched,

corresponding to X′ say, then Pt0(X′, 1) = 0 (the attack never occurs in the data and

so has zero density) but Pt1(X′, 1) ̸= 0 (the attack does occur and so has non-zero

density). Technically, a specific vector of features X could in some circumstances

correspond to malicious action but be benign in others, though often the assignation

will be unequivocal. ML-based models that seek to predict y from X must adapt to

ensure continued high performance.

The proposed hybrid system combines signature-based and anomaly-based de-

tection techniques using Adaptive Random Forest (ARF) and adaptive One-Class

SVM. The model monitors networks through the SDN controller. Figure 5.1 gives

some details of the detection model. Every instance that arrives at the system is,

firstly, examined by the signature-based ARF module (discussed in section 5.4.1). If

the module classifies that instance as a known attack, then there is no need for fur-

ther investigation by the anomaly-based detection module. If the packet is classified
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FIGURE 5.1: The proposed adaptive hybrid model

as benign by the signature-based module, it is passed to the anomaly-based detec-

tion module (Adaptive One-class SVM) (discussed in section 5.4.2) to check if it is

an unknown attack. The administrator is notified if the signature or anomaly-based

module flags an instance as an attack. The concept drift is detected using ADWIN, a

concept drift detector, in both classifiers, and the model is updated. The model can

detect known and unknown attacks. Both are incremental and can adapt themselves

against concept drifts.

5.4.1 Signature-based detection module

The first phase of detection is the signature-based detection module. An Adaptive

Random Forest (ARF) is the classifier used in this phase. ARF is a classification
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TABLE 5.2: Hyperparameter tuning

parameter description optimal value

AdaptiveRandomForestClassifier (ARF)
max_features Maximum number of fea-

tures in every single run
5

n_estimators Number of trees 7
drift_detection_method concept drift detection tech-

nique
ADWIN

Adaptive One-Class SVM (OC-SVM)
ν This controls the fraction of

outliers in the system
0.2

Gamma Kernel coefficient 0.9

algorithm for evolving data streams. The classifier is trained over labelled data to

learn the pattern of malicious and normal activities. In addition, it is an incremental

algorithm that can adapt itself against concept drift. The ARF uses a drift detector in

every tree, which monitors drifts and warnings. In the case of a warning, the trees in

the background will train new trees. If a drift is detected, the primary module will

be replaced by the trained trees.

5.4.2 Anomaly-based detection module

Adaptive One-class SVM is an anomaly detection algorithm. The classifier is trained

over the normal data and tested over both normal and malicious samples. During

the training, it develops a profile of normal traffic. If the incoming traffic differs from

the normal data that it is trained on, it is considered an attack. It also adapts itself

incrementally when data distribution changes. The new data points are compared

to the existing model. A change in the distribution of the data points indicates a

concept drift is happening. SVMs and their variants have been shown to be highly

effective classifiers across many domains.

5.5 Evaluation and Results

APT campaigns go through multiple stages and different kinds of attacks are in-

volved in every stage. Moreover, there is no one pattern for APT attacks [2]. In our

work, a number of experiments were conducted on different datasets to show the
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effectiveness of the proposed model. These datasets include different attacks and

scenarios. In all experiments, various evaluation measures are recorded: Accuracy,

Recall, Precision, and F1-score.

1. Model evaluation over stealth SDN-based dataset: Two experiments are con-

ducted to compare the concept drift detection techniques. APT-SDNdataset

(more details are given in section 3.5), is used in both experiments. The dataset

has a probe scan that reconstructs flow rules in a stealthy manner. The first ex-

periment is a comparison between error rate-based drift detection techniques

(discussed in section 2.8.2.1). These techniques are ADWIN, DDM, EDDM,

HDDM_A, HDDM_W, PageHinkle, and KSWIN. The results are shown in Ta-

ble 5.3. All error-based detection techniques give very similar results.

The second experiment uses the data distribution-based drift detection tech-

nique (discussed in section 2.8.2.2). The kdq-tree detection is the algorithm

implemented in the experiment. The results are 0.99 in Accuracy and 0.96 in

Recall, Precision, and F1.

Figure 5.2 presents how the error-based detection algorithm (using ADWIN in

the comparison) is higher in all metrics compared to kdq-tree. Precision (which

affects F1) is much lower in kdq-tree, compared to ADWIN results, due to the

high percentage of false positives.

ADWIN will be used on the model as the concept drift detection technique.

Because most error-based concept drift techniques are very similar but it has

more flexibility than others as discussed in 2.8.2.1. In addition, it gives better

results than the distribution-based concept drift algorithm (e.i. kdq-tree).

2. Model evaluation over SDN-based dataset: For further evaluation on another

dataset, the proposed model is evaluated over InSDN (further discussed in sec-

tion 2.10). The dataset contains several attacks, making it suitable to evaluate

the changes in the attacker’s behaviour (concept drift). Another main advan-

tage of using InSDN to evaluate this work is that the dataset is SDN-based

traffic. Firstly, the model is evaluated using an error-based concept drift de-

tection technique. ADWIN is used in the experiment, scoring 0.94, 1, 093, and

0.96 in Accuracy, Recall, Precision and F1 respectively. Another experiment is
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TABLE 5.3: Results for error rate-based drift detection (over APT-
SDNmap dataset)

Tech Accuracy Recall Precision F1
ADWIN 0.99 0.99 0.95 0.97

DDM 0.99 0.97 0.96 0.97
EDDM 0.99 0.99 0.94 0.96

HDDM_A 0.99 0.99 0.95 0.97
HDDM_W 0.99 0.99 0.95 0.97
PageHinkle 0.99 0.99 0.95 0.97

KSWIN 0.99 0.99 0.95 0.97

FIGURE 5.2: Error-based ADWIN and distribution-based kdq-tree
comparison
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conducted using the distribution-based technique. kdq-tree is the algorithm

used in the experiment, and the results are 0.94 in Accuracy, 0.99 in Recall, 0.93

in Precision and 0.96 in F1. The results show significant performance in detect-

ing actual attacks correctly (True Positives). But this came with a price, as it

classified some normal instances as attacks (False Positives).

3. Model evaluation over APT dataset: The APT-based DAPT 2020 dataset is

used to evaluate the proposed model. The approach of conducting normal

traffic and various attacks over different days makes it very useful for evalu-

ating the model against APTs and concept drift issues. More detail about the

dataset is given in section 2.10. Figure 5.4 visualises the attack scenario. The

dataset is prepared by removing columns that can affect the system’s perfor-

mance. Flow ID, Source IP, Source Port, Destination IP, Destination Port and

Timestamp are the features that are removed from the dataset. Null values

are replaced by zeros, and labels are converted to (0) for benign and (1) for

malicious as the system is a binary classifier. The dataset is scaled using scikit-

learn’s StandardScaler [171]. The system gives significant results for detecting

APTs, scoring 0.98 in Accuracy, Recall, Precision and F1. Another experiment

is conducted to evaluate the implementation of the distribution-based detec-

tion technique. kdq-tree is the algorithm used in the experiment scoring 0.83,

0.80, 0.84, 0.82 in Accuracy, Recall, Precision and F1, respectively. The results

are not significant, but the technique has advantages as it is unsupervised.

Figure 5.3 shows a comparison between using the hybrid detection model in

Chapter 4 and the model in this chapter after implementing the adaptivity.

4. Model evaluation over traditional attacks: The CICIDS 2017 dataset is used in

this experiment. The dataset details and attack scenarios are discussed in sec-

tion 2.10 (also visualised in Figure 5.5). It has a large amount of data recorded

over five days with various attacks. As shown in Table 2.8, the first day is just

normal traffic, but the following days have different attacks every day. This

is a suitable scenario for concept drift as the attacker changes their behaviour

over time. It is not as stealthy as DAPT 2020. Attacks make up only around
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FIGURE 5.3: A comparison on the evaluation of static and dynamic
hybrid models over DAPT 2020 dataset
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FIGURE 5.4: Attacks details on DAPT 2020 dataset
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FIGURE 5.6: CICIDS 2017 feature importance

5% of the dataset. In this work, the dataset is prepared by removing all fea-

tures that may expose the identity of the sender/receiver or cause over-fitting

to the system. The removed features are Flow ID, Source IP, Source Port, Des-

tination IP, Destination Port and Timestamp. Feature importance technique is

applied using Random Forest technique [172]. Just seven features, the most

important of which are shown in Figure 5.6, were selected and applied. The

proposed system is a binary classifier. All attacks are converted to one class

(1) and all normal records are assigned (0). In the first experiment, ADWIN

is used as the concept drift detector. The second experiment uses the concept

drift distribution-based detector (kdq-tree). Significant results are shown in

both experiments. Using ADWIN it scores 0.99 in all metrics. With kdq-tree, it

is 0.98 in Accuracy, Recall and F1 and 0.99 in Precision.
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TABLE 5.4: A summary of the evaluation results of the proposed
model over different datasets

Technique Dataset Accuracy Recall Precision F1
ADWIN APT-SDNdataset 0.99 0.99 0.95 0.97
kdq-Tree APT-SDNdataset 0.99 0.96 0.96 0.96
ADWIN InSDN 0.94 1 0.93 0.96
kdq-Tree InSDN 0.94 0.99 0.93 0.96
ADWIN CICIDS 2017 0.99 0.99 0.99 0.99
kdq-Tree CICIDS 2017 0.99 1 0.86 0.92
ADWIN DAPT 2020 0.98 0.98 0.98 0.98
kdq-Tree DAPT 2020 0.83 0.80 0.84 0.82

A summary of all results (using ADWIN and kdq-tree) over all datasets is given

in Table 5.4

5.6 Summary

Machine learning model performance will typically degrade when the data distri-

bution is changed over time. In this chapter, two cases of user behaviour changes

are discussed. APTs usually change their behaviour, causing a change in data distri-

bution. An incremental adaptive hybrid intrusion detection system is proposed in

this work. The signature-based detection (implemented by Adaptive Random For-

est) and anomaly-based detection model (implemented using Adaptive One-Class

SVM) are combined to detect anomalies. It can detect known and unknown stealth

attacks. The system adapts itself incrementally to changes in data distribution (con-

cept drift). ADWIN is adopted in the proposed model to detect concept drift and

adapt the detection models. The following is a summary of the model experiments

(using ADWIN):

1. APT-SDNmap dataset: This dataset is created to represent the scanning phase

of the APT’s campaign in the SDN network. The evaluation of the system over

this dataset shows high scores, but the classifier flags some normal instances

as malicious (False Positives).

2. InSDN dataset: The SDN-based dataset contains different attacks. The various

attacks in the dataset are conducted at different times, showing how the dataset
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can be useful for evaluating concept drift detection in SDN. The results show

detecting actual attacks accurately but classify some normal as attack.

3. DAPT 2020 dataset: A recent APT dataset was recorded over different days

during the working week (Monday to Saturday). The scenario of conduct-

ing different attacks daily makes it a good example of the change in attacker

behaviour (causing concept drift). Despite the stealthiness of the attack, the

scores from the evaluation of the proposed model are very high.

4. CICIDS 2017 dataset: A benchmark dataset in the IDS field. The dataset in-

cludes various traditional attacks, in addition to normal user activities, over

five sequence days. The results of the application of the proposed model are

very high.

The diversity of datasets used in the evaluation and the high scores obtained

shows how the proposed model can detect known and unseen attacks and adapt

against concept drift. We recommend adapting security solutions (e.g. intrusion

detection systems) incrementally. This can maintain the performance of the system

even when a new attack has emerged or the attacker changed his strategy of attack.

SDN helps in this approach by allowing gathering and monitoring data to be easier.
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Chapter 6

Conclusions and Future Works

This thesis proposes three NIDSs to detect stealth attacks in SDN: a signature-based

NIDS, a hybrid (signature-based and anomaly-based) NIDS, and an incremental

adaptive NIDS (also hybrid). Each NIDS was developed in order to answer a re-

search question posed in Chapter 1. Below we discuss each of those research ques-

tions and consider the evidence generated by our experiments.

6.1 Investigation of the Research Questions

Three research questions were investigated:

1. Research Question 1 (RQ1): Can we use a machine-learning and signature-

based approach to detect the stealthy reconstruction of flow rules in SDN net-

works?

The work to address this research question is in Chapter 3. Reconstructing flow

rules is a major challenge in SDN. It is more critical when the attacker behaves

like an APT. Very little research had been conducted so far on this issue. We

developed and presented a stealth scanner that reconstructs flow rules in SDN,

implementing advanced scanning behaviour in victim networks. The enhance-

ment of the scanner itself is an original contribution and has been made pub-

licly available. We developed various candidate networks and emulated both

normal and scanning behaviours. The resulting APT SDN focused datasets

have also been made publicly available. Detecting stealth scans in SDN was

investigated with the most common ML approaches, using supervised learn-

ing over various datasets. The proposed ensemble classifier XGBoost showed
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the most promising results. A comprehensive ML pipeline was used through-

out. Our model is the first application of ML to detect the stealthy scans of

flow rule reconstruction attacks in SDN networks.

2. Research Question 2 (RQ2): Can we use a machine-learning and hybrid (signature-

based plus anomaly-based) approach to detect the stealthy reconstruction of

flow rules in SDN networks?

This research question is addressed in Chapter 4. A hybrid model is pro-

posed combining signature-based and anomaly-based approaches (XGBoost

and One-Class SVM, respectively). The approach was evaluated over vari-

ous datasets, including different attacks (insider and external) and known and

unseen attacks. Combining the two detection approaches improves detection

performance. This is the first demonstration of the power of a hybrid IDS for

the detection of stealth attacks in SDN networks.

3. Research Question 3 (RQ3): Can we continue to detect stealth attacks in SDN

networks as adversaries change their behaviour?

An incremental adaptive network intrusion detection system is proposed in

Chapter 5 to address this question. The proposed scheme can incrementally

adapt itself when the attacker’s behaviour changes. Error-based and distribution-

based concept drift techniques are investigated and evaluated over different

datasets. Adaptive Random Forest and Adaptive One-Class SVM are pro-

posed to detect known and unknown attacks respectively. Both are employed

in a hybrid system. Results show that adapting the detection models enhances

the detection of APTs.

We used beneficially various ML pipeline components, particularly feature en-

gineering (including the use of importance measures), re-sampling regimes to han-

dle imbalanced datasets (which inevitably arise in intrusion detection), and hyper-

parameterisation. These are generally accepted techniques that can improve model

performance and enhance the generalisation of models. The current literature on

IDS frequently omits these important techniques.
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6.2 Future work

Further research might usefully be conducted into the following:

1. A comprehensive hybrid system: The proposed models, in this thesis, focus on

network flow-based information. System events such as log files in network

devices, however, can help in the detection. Building a hybrid detection system

takes advantage of the network flow and local files and can improve detection

results. Thus, we propose combining HIDS and NIDS.

2. Engineer new features from the available APTs datasets: DAPT 2020 is the

only available APT dataset (other than our APT-SDNmap dataset). In DAPT

2020, the raw files (.pacp) that were used in the experiments to generate the

dataset are available. The features in DAPT 2020 are engineered using the

network traffic features generator CICFlowMeter. It would be useful to inves-

tigate APTs’ specific features to enhance the contributions of the features to the

detection models. Developing a feature extractor that considers stealth attacks

can help to deliver similar features from any available (in the future) stealth

dataset.

3. Reconstruct flow rules in P4 (Programming Protocol-independent Packet Pro-

cessors): SDNmap and the extension APT-SDNmap are based on the Open-

Flow protocol. Extending the work presented in this thesis to address corre-

sponding flow rule reconstruction under the P4 regime would greatly widen

applicability.

4. Real experiments: Our work is carried out on data generated under network

emulation. Implementing our proposed models on real devices with different

real networks is an obvious means to further validate the techniques we have

investigated. In addition, we could test the system on actual APT malware to

evaluate the approaches against unknown attacks in real environments.

5. Investigate the detection of APTs in Industrial Control Systems (ICS): APTs

have the potential to cause significant damage in industrial control systems.

Indeed, Stuxnet, targeting nuclear reprocessing systems, is an APT and is one
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of the highest profile malware applications of all time [42]. The proposed mod-

els can be evaluated on industrial networks.

6.3 Finally

The detection of stealthy attacks in SDN networks is a critical area for research. We

recommend it to the SDN, IDS, and ML communities.
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