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Abstract

The standard model of cosmology, ΛCDM, is in excellent agreement with almost

all present-day cosmological observations, however, there are serious theoretical

problems relating to its underpinnings. Moreover, some observations in recent

years have caused tensions to arise in the concordance model. It is therefore

natural that we look beyond the ΛCDM model and explore the consequences of

such extensions.

We explore the possibility of dark energy being in the form of a quintessence

scalar field and consider an interacting dark energy model whereby the minimally

coupled quintessence scalar field is conformally coupled to dark matter. We

explore its dynamical evolution and cosmological imprints, and then confront the

model with recent cosmological data, finding that the strength of the coupling is

constrained to be unappealingly small.

This naturally leads to the exploration of new forms of couplings, such as

couplings with minima. We show that such a coupling can lead to a growing

fifth-force in the dark sector which has been negligible until recent times, with

the onset of dark energy domination. We confront this model with cosmological

observations and find that background and linear perturbation level data allow

for a far stronger fifth-force in comparison. We then venture into cosmology

at the smaller, non-linear scale, where we expect that the effects of a growing

fifth-force will be highly significant. We conclude by speculating on the role of

cosmological N -body simulations in the future of cosmology and the part that

growing fifth-force models may play in it.
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1 — Introduction

Plato once wrote that wonder is the origin of all philosophy [5], and nature in all

her manifold forms and arrays can not offer one more instantaneously rapturous

display than that of a starry night sky. When the sun had settled and the duties

of the day had been complete, man looked up to this vast hidden world above

them and pondered the existence of it all. From times of old, the rulers and higher

powers of the cosmos were said to live ‘out there’, among the planets and stars,

with the origin of our planet and very selves being thought to have its answer

lying somewhere out there in the realm of the cosmos. Throughout space and

time, cultural attitudes have changed and different theories have been concocted,

however, what has remained constant is the undying feeling that the answers to

the deepest questions in life, our existence, our origin, and our future, lie out

there in the shining night sky.

Cosmology then is surely one of the most humbling ventures a seeker of wis-

dom can undertake, and coincidentally has some of the most profound conse-

quences of any discipline of human endeavour, so profound that they may even

appear prideful to those unaware of the deep complexity and thorough underpin-

nings of this most daring discipline. For cosmology claims to do nothing less than

to make reasoned judgements on the very origin, history, present-day state, and

future of our universe. Cosmology is therefore all-encompassing as it stretches

the limits of human imagination from the beginning of time to eternity, from one

end of the universe to the other, from the universe in its smallest state to its

largest, and consequently requires insight from all areas of physics.

One may wonder how it is possible at all that we may make confident predic-

1



2 1.1

tions and proclamations about our universe, or provide explanations for events

that happened billions of years ago, yet with a few theoretical underpinnings,

such claims can be made and explanations provided. One may attack the theo-

retical framework of cosmology, however, one would be naive to think that such a

task would be anything but mammoth, with continual rigorous testing, internal

consistency, and incredible agreement with high precision present-day observa-

tions, modern cosmology has firmly established itself as a force to be reckoned

with and demanding the attention of any lover of wisdom.

In this chapter we introduce a foundational pillar of cosmology and one of the

greatest theoretical achievements of physics, General Relativity. We introduce the

theory of General Relativity in section 1.1 and look at how it may be applied to

cosmology; in section 1.2 we look at another key ingredient of modern cosmology,

the hot Big Bang model, and see how together these lead to the standard model

of cosmology as presented in section 1.2.3; finally, we conclude in section 1.3.

1.1 Gravity, geometry, and cosmology

The general theory of relativity, also known as General Relativity, is without a

doubt one of the most beautiful and successful theories in all of modern physics.

The theory of General Relativity was developed by Albert Einstein over the course

of approximately eight years, starting from 1907 to finally being presented on 25

November 1915 to the Prussian Academy of Sciences [6] in the form recognised

today. General Relativity is our greatest theory of gravity today, and despite over

a hundred years of increasingly rigorous and precise testing, it remains unaltered

and withstanding to all experiments thus far.

Like all paradigm-shifting theories, General Relativity was first met with no

small amount of scepticism. Perhaps, in part, this initial scepticism was owing

to the introduction of a new and complex language, differential geometry. This

new language was understood by so few initially that a popular anecdote survives

where one of the early supporters of the theory, Sir Arthur Eddington, in response

to being told that he is one of only three people alive who actually understands
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General Relativity, pauses for a long while as if troubled, and upon further ques-

tioning as to his concerned look, he replies “I’m trying to figure out who the third

person is!” [7]. Now whether or not this conversation actually took place, one

may grasp that the mathematical elegance and beauty of this strange new theory

was not enough for the scientific community to accept it in place of Newton at

a whim, and so it could not come without some serious observational ammuni-

tion. Indeed Einstein himself presented three tests [6] in his original paper, two

of which we outline below, which could potentially falsify General Relativity.

The first test proposed was concerned with the anomalous perihelion preces-

sion of Mercury’s orbit. This anomality was first pointed out as a problem for

Newtonian celestial mechanics in 1859 by Urbain Le Verrier [8]. Perhaps the most

plausible solution among the many offered was the existence of a hitherto undis-

covered planet between Mercury and the Sun, named Vulcan after the Roman

god of fire, however, no evidence for such a planet was found and the problem

remained at large. A disagreement of approximately 40 arcseconds per century

existed between theoretical predictions of Newtonian mechanics and observation,

with no clear solution in sight. In the seminal paper of 1915, Einstein actually

calculated what this perihelion shift would be under General Relativity and came

up with a figure of 43 arcseconds per century, in close agreement with the ob-

served quantity. This prediction of General Relativity has further been tested,

and more recent and accurate measurements [9] report a value of 42.9799±0.0009

arcseconds per century.

Again in the same 1915 paper, a second test was proposed concerned with

the deflection of light by the Sun. It had been in discussion since at least the

early 1800s [10] of how light may bend around a massive object under Newtonian

mechanics, and a deflection angle was calculated for the Sun to be approximately

0.875 arcseconds. Einstein visited this problem, but this time with his new theory

of General Relativity and found instead the deflection angle should be twice the

answer given by Newtonian dynamics, that is, approximately 1.75 arcseconds.

The deflection angle had not yet been measured but Sir Arthur Eddington and

his collaborators [11] set to the task of measuring the deflection during the total
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solar eclipse of 29 May 1919. Eddington and his team confirmed the prediction

of Einstein, and Einstein, together with the theory of General Relativity, quickly

became famous and well known all across the world. General Relativity became

far more accepted after this result and has since stood up against more recent

tests [12, 13, 14] to extraordinary accuracy, claiming its place as a pillar of modern

physics.

One of the key ideas of General Relativity is that gravitation is an effect of

the curvature of spacetime itself, and at the heart of General Relativity are a set

of equations, often called the Einstein field equations, which intrinsically relate

the geometry of spacetime to the energy and momentum content of spacetime.

Before we begin introducing the mathematical framework of General Relativity,

it is important to note another foundational aspect of General Relativity which

is the equivalence principle. The equivalence principle, together with the search

for a properly geometric theory of gravity, were key markers for Einstein in his

long quest for a consistent theory of gravity [15].

The equivalence principle is often stated in three different ways according

to varying degrees of conditions and restrictions imposed. The weakest form of

the equivalence principle is aptly named the weak equivalence principle. One

way of stating this principle is that the inertial and gravitational mass of any

object are equivalent. This implies that the acceleration of a test body due to

gravity is independent from the test body’s mass, composition, and structure,

and therefore so too is the trajectory of a test body, where here the test bodies

are taken to be subject to gravity alone and not to any other additional forces.

One of the consequences of the weak equivalence principle is then that the local

effects of motion of test bodies subject to a gravitational field are the same as

that in a frame that is being uniformly accelerated [16]. The Einstein equivalence

principle takes this principle on and further states that in a laboratory that is free-

falling, the results of local, non-gravitational, experiments are independent of the

location and velocity of that laboratory [17], this means that one cannot infer the

existence of a gravitational field through local, non-gravitational, experiments.

The Einstein equivalence principle then suggests that gravity itself should be seen
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as an effect of the curvature of spacetime. Finally, the most restrictive equivalence

principle of the three is named the strong equivalence principle, which takes on

the Einstein equivalence principle but further extends it to include gravitational

local experiments as well.

So far we have seen how the need for General Relativity can arise upon con-

sideration of the equivalence principle and the need for a geometric explanation of

gravity. We now are at a point where we can introduce the mathematical frame-

work required to express this physical theory of gravity. The language of General

Relativity is differential geometry and so we will review some key definitions and

results of the theory.

We begin with recalling that a type (m,n) tensor T is a multilinear map from

a collection of m dual vectors and n vectors to the set of real numbers R,

T = T µ1...µm
ν1...νn

∂µ1 ⊗ · · · ⊗ ∂µm ⊗ dxν1 ⊗ · · · ⊗ dxνn , (1.1)

where ∂µ ≡ ∂/∂xµ and dxν are the basis of the vector space and dual vector space

respectively. The coordinate transformation of a tensor T then has the following

components

T
µ′
1...µ

′
m

ν′1...ν
′
n
=
∂xµ

′
1

∂xµ1
. . .

∂xµ
′
m

∂xµm

∂xν1

∂xν
′
1
. . .

∂xνn

∂xν′n
T µ1...µm

ν1...νn
, (1.2)

where we note that the tensor product is symmetrised. Some of the operations on

tensors to note include the tensor product ⊗ as seen in eq. (1.1), the addition and

subtraction of tensors of the same type, and the contraction of a tensor. A tensor

is said to be symmetric in some indicies if it is invariant under an exchange of said

indices, and anti-symmetric if the sign of the tensor changes under an exchange

of indices. For a type (2, 0) tensor this translates to T µν = T νµ for a symmetric

tensor and T µν = −T νµ for an anti-symmetric tensor.

A fundamental tensor which will appear frequently in this thesis is the metric

tensor gµν . The metric tensor plays an extremely important role in General Rela-

tivity as it supplants the flat Minkowski metric ηµν , as seen in Special Relativity,

to now provide a metric, and thus define a line element, for a curved spacetime.



6 1.1

The metric tensor is a type (0, 2) tensor which is symmetric, has a non-zero de-

terminant g = |gµν |, and has an inverse gµν defined by gµνgνα = gβαg
βµ = δµα,

therefore if gµν is symmetric then so is its inverse gµν . The metric tensor gµν may

be used to raise and lower indices on tensors, as can its inverse gµν , for example

T µ1...µmσ
ν2...νn

= T µ1...µm
ν1...νn

gν1σ. (1.3)

As mentioned above, the metric tensor defines the line element by

ds2 = gµνdx
µdxν . (1.4)

Note that throughout this thesis, we will be setting the speed of light c = 1 and

using the ‘mostly positive’ (−,+,+,+) signature for the metric unless specified

otherwise.

In order to relate vectors of tangent spaces that are close to each other, we

require a ‘connection’, and such an object is fundamental in defining the covariant

derivative, which generalises the partial derivative to a curved spacetime. The

connection coefficients appear in the definition of the covariant derivative, and in

General Relativity we require a torsion-free and metric compatible connection,

which leads to a specific type of connection called the Christoffel connection, with

the connection coefficients given by the Christoffel symbol

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (1.5)

It is important to note that, despite its appearance, the Christoffel symbol Γσ
µν is

not a tensor as may be seen by applying a coordinate transformation to eq. (1.5).

Note that precisely because the partial derivative ∂µ acting on tensors does not

transform like a tensor is the reason why we now need a covariant derivative. The

covariant derivative ∇µ acting on a general tensor is given by
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∇σT
µ1...µm

ν1...νn
=∂σT

µ1...µm
ν1...νn

+ Γµ1

σλT
λµ2...µm

ν1...νn
+ Γµ2

σλT
µ1λ...µm

ν1...νn
+ · · ·

− Γλ
σν1
T µ1µ2...µm

λν2...νn
− Γλ

σν2
T µ1µ2...µm

ν1λ...νn
− · · · .

(1.6)

Note that we may sometimes use the comma and semicolon notation for partial

and covariant derivatives, that is,

∂σT
µ1...µm

ν1...νn
≡ T µ1...µm

ν1...νn,σ
, ∇σT

µ1...µm
ν1...νn

≡ T µ1...µm
ν1...νn;σ

. (1.7)

The covariant derivative allows us to define parallel transport of a tensor T

along the path xµ(λ) to be

dxσ

dλ
∇σT

µ1...µm
ν1...νn

= 0, (1.8)

where λ is an affine parameter. Then, the parallel transport of the tangent vector

V µ = dxµ/dλ yields the geodesic equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0, (1.9)

which may be seen as a generalisation of Newton’s second law for a test particle

with zero net force acting upon it. We are now able to introduce the Riemann

tensor, which is a fundamental tensor containing all we need to know about

the curvature of a manifold, coincidentally, it is this tensor that is instrumental

in constructing the Einstein tensor as appears in the fundamental equations of

General Relativity, the Einstein field equations.

The Riemann tensor Rρ
σµν may be motivated in several ways, one of the

most popular is by considering the parallel transport of a vector V µ around a

closed infinitesimal loop in curved space. This leads to the equation (∇µ∇ν −
∇ν∇µ)V

ρ = Rρ
σµνV

σ where we identify the Riemann tensor as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (1.10)
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Note that despite eq. (1.10) containing partial derivatives of Christoffel co-

efficients and products of Christoffel coefficients, that is, objects that are not

tensors, the Riemann tensor itself is a tensor. Further, the Riemann tensor sat-

isfies numerous properties, the most useful of which for this discussion are

Rρσµν = gρλR
λ
σµν , Rρσµν = −Rσρµν , Rρσµν = −Rρσνµ, Rρσµν = Rµνρσ,

(1.11)

and hence we see that summing up cyclic permutations of the last three indices

results in the identity

Rρσµν +Rρµνσ +Rρνσµ = 0. (1.12)

Taking these into consideration, one may see that the Riemann tensor has

20 independent components in four dimensions. A further useful identity is the

Bianchi identity which results from permutations of the covariant derivative of

the Riemann tensor. It is given by

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.13)

We may contract the Riemann tensor to obtain the Ricci tensor given by

Rµν = Rλ
µλν , (1.14)

which is manifestly symmetric owing to the symmetries of the Riemann tensor as

described above. Note that since the Ricci tensor has indices and is symmetric,

it therefore has 10 independent components. We may further take the trace of

the Ricci tensor to get the Ricci scalar given by

R = Rµ
µ = gµνRµν . (1.15)
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If we now contract the Bianchi identity twice (eq. (1.13)) we get

∇µ

(
Rµν −

1

2
Rgµν

)
= 0, (1.16)

which may be stated in terms of the Einstein tensor

∇µGµν = 0, Gµν := Rµν −
1

2
Rgµν , (1.17)

where Gµν is known as the Einstein tensor and is manifestly symmetric owing to

the symmetry of the Ricci tensor and metric tensor. It is this tensor that will ap-

pear in the Einstein field equations, which tells us how the geometry of spacetime

is related to the presence of energy-momentum in spacetime. On the side of the

equation encapsulating the geometry of spacetime will be this Einstein tensor,

whereas on the side representing the energy-momentum content of spacetime we

are still in need of a tensor. Note that in the absence of energy-momentum being

present, we may arrive at the vacuum field equations given by

Gµν = 0. (1.18)

Similarly to how the equations of motion may be derived through the principle

of least action in classical field theory for a flat space-time, the Einstein field

equations may be derived through an appropriately defined action. The action

which when varied with respect to the metric yields the Einstein field equations

in a vacuum is the Einstein-Hilbert action [18]

SEH =
1

2κ2

∫
R
√
−g d4x, (1.19)

where κ =
√
8πG with G being Newton’s gravitational constant ensures that in

the weak field limit Newtonian gravity is recovered. Then to derive the Einstein

field equations in the presence of energy-momentum, we add an action for matter

Sm with matter Lagrangian Lm and then vary the action with respect to the
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metric as above. Consider the total action

S = SEH + Sm =
1

2κ2

∫
R
√
−g d4x+

∫
Lm

√
−g d4x, (1.20)

then varying this with respect to the metric gµν we arrive at

Gµν = κ2Tµν , (1.21)

where Tµν is the energy-momentum tensor defined by

Tµν =
−2√
−g

δSm

δgµν
. (1.22)

Note that the twice-contracted Bianchi identity ∇µG
µν = 0 is consistent with the

law of conservation of energy-momentum in curved space-time

∇µT
µν = 0. (1.23)

As we will discuss in more detail later, sometimes an additional constant term

appears in the Einstein field equations. This constant Λ is called the cosmolog-

ical constant and may be interpreted as a vacuum energy of spacetime, having

originally been added in order to find a static solution to the field equations. The

full action of theory then reads

S =
1

2κ2

∫
(R− 2Λ)

√
−g d4x+

∫
Lm

√
−g d4x, (1.24)

which upon varying with respect to the metric gµν gives the equations of motion

known as the Einstein field equations

Gµν + Λgµν = κ2Tµν . (1.25)

Having arrived at the field equations of General Relativity we will now look

at how this beautifully elegant theory may be applied to our universe to eventu-

ally arrive at the standard model of cosmology known as the Λ cold-dark-matter
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(ΛCDM) or concordance model. Naturally, this path in history found itself to

be filled with theoretical aspirations confronted with observational realities, of

human prejudices and philosophical objections, of extreme scepticism and rapid

acceptance, and perhaps more so than any other branch of physics, since cos-

mology wrestles with the deepest questions of life: our origin, our place in this

universe, and our future.

Ultimately, however, a scientist’s quest is a quest for truth, and so whatever

diverse and elaborate theories a scientist may hold to be true must be confronted

with the natural world. This is a painful experience for some no doubt, but a

true scientist must continually be open to new ideas of the universe even if that

means discounting years of hard work, giving up on strongly held beliefs, and

acknowledging that one was wrong, both publicly and privately. In the next

section we will briefly overview the history of modern cosmology, remarking on

keystone achievements which helped establish this discipline, and finally arrive

to the standard cosmological model of present-day, the ΛCDM model.

1.2 The birth of ΛCDM

Since the time of Newton, it has been recognised that, on large enough length

scales, it is the elusive force of gravity that dominates interactions, and so the

problems of the largest length-scales conceivable at a given time are chiefly gravi-

tational problems: the orbits of planets, satellites, stars, galaxies, galaxy clusters,

and so on. Therefore whatever scientific theory that tries to tackle the universe

as a whole must have at its heart a coherent, accurate, and consistent theory of

gravity. General Relativity provided a paradigm-shift in that gravitation was no

longer considered as one force among others, but an effect stemming from the

very nature of spacetime itself, and so now if the different forces of the universe

could be seen as players on a flat playing field, gravity went from being a player

to being an effect of a now curved playing field, with the curving of the field

being dependent on the players and their interactions, and hence gravity alters

all the interactions that occur since they all play on the same field. To that effect,
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gravity is inescapable and universal, coupling to all energy and momentum.

Therefore the birth of General Relativity is often taken as the birth of modern

cosmology. It is immediately apparent that if General Relativity is valid on

cosmological length scales, then the governing behaviour of our universe, past,

present, and future, is determined by the field equations. Indeed not long after

General Relativity was published in 1915, Einstein discussed its cosmological

applications some two years afterwards in 1917 [19] where he found a solution to

the field equations describing a closed and static universe. As mentioned earlier,

in order to arrive at this solution Einstein had to introduce the cosmological

constant Λ into the field equations which may be interpreted as a vacuum energy,

whereby if matter has a decelerating effect on expansion due to gravity, then Λ

has an opposite “repulsive effect” [20], the two effects cancelling each other out

in Einstein’s solution.

Another guiding principle of Einstein’s in his development of General Relativ-

ity was Mach’s principle which briefly stated is that the large-scale distribution

of matter in the universe determines the local frame of reference, or that “the

inertia of one body is caused by the presence of all others” [21], or more gener-

ally that “local physical laws are determined by the large-scale structure of the

universe” [22]. Einstein thought that his new theory of gravitation inherently

embedded this principle, especially through the introduction of Λ, whereby no

static solutions could be found in a matter-free universe. Very soon after, how-

ever, Willem de Sitter [23] found a well-defined solution to the field equations

for a closed universe with no matter at all present in the universe leading him

to ask “If no matter exists apart from the test body, has this inertia?”. Later on

in 1922, Kornel Lanczos [24] showed that de Sitter’s closed, matter-free universe

could be seen as an expanding universe through a coordinate transformation.

Then soon after, still in the year of 1922, Alexander Friedmann published

a pivotal paper [25] where he derived a general solution for the field equations

describing an expanding curved universe, of which the Einstein universe and de

Sitter universe were special cases. Einstein thought Friedmann had made an er-

ror in his solutions, however, Friedmann corrected Einstein showing him to have
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in fact made an error, and Einstein publicly withdrew his objection. Georges

Lemâıtre, a Belgian Catholic priest, derived Friedmann’s solutions independently

in 1927 [26] and noted that there should exist an approximately linear relation

between the recessional velocity and distance of a distant galaxy stating “the

receding velocities of extragalactic nebulae are a cosmical effect of the expansion

of the Universe” . This approximately linear relation between the recession ve-

locity of a galaxy and its distance is known as Hubble’s law after Edwin Hubble

who conducted foundational measurements of distant galaxies [27, 28] and pro-

posed such a linear relationship in 1929, unaware of Lemâıtre’s earlier theoretical

work. The constant of proportionality is known as the Hubble constant and was

calculated to approximately be 500kms−1Mpc−1 by Hubble [28].

Note that Einstein’s initial hesitancy to accept an expanding solution was

not a mere matter of personal prejudice or philosophical conviction but was in

fact supported by the observational data of the time. However, with mounting

theoretical evidence from work by Lemâıtre, Friedmann, and others, alongside

observational confirmation from work by Hubble and others, many were accepting

the new expanding universe model over the static model. Einstein, despite the

observational evidence, was still holding to his belief in a static universe and it

was only until 1930, when he was shown that such a static model is unstable by

Eddington [29], that he finally accepted an expanding universe.

Einstein’s first choice of an expanding model was the oscillating solution of

Friedmann’s, as presented in Friedmann’s 1922 paper, of a matter-filled universe

which is positively curved and with no cosmological constant. In 1932, Einstein

and de Sitter [30] constructed a model of the universe known as the Einstein-de

Sitter universe. This cosmological model went further than Friedmann’s oscillat-

ing model to now have zero curvature too, resulting in a flat universe composed of

matter alone. This cosmological model, the Einstein-de Sitter universe, quickly

became the dominant model of cosmology up until the end of the 20th cen-

tury, when observations on supernovae cast this model into serious doubt and

demanded the reintroduction of the long-abandoned cosmological constant Λ,

giving rise to the current standard model of cosmology, the ΛCDM model.
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Solutions to the field equations naturally give rise to the question of origin and

with the static universe model being superseded by an expanding universe model,

questions of the age of the universe began to arise. One cosmological solution

which allows for a universe that has existed for eternity, such as in the static

universe model, but is able to explain the observations of Hubble and others was

one sought by Eddington [31] in 1931. This describes a universe that has existed

for all eternity in an pseudo-static state, but then at some point in time becomes

unstable and begins to expand. This model was in fact favoured by Einstein after

his conversion into believing in an expanding universe by Eddington, although

he remarked to Eddington that despite this model being “only possibility” that

“no man would believe this” [32].

It was in 1931 that Lemâıtre [33] reasoned that if the universe is expanding,

and has always been expanding and cooling down, then going back in time the

universe must have been more dense, hot, and contracted such that at a certain

point there would exist a “primeval atom” with a mass equal to the total mass of

the universe, which upon disintegration produces the universe. Lemâıtre devised

a model similar to Eddington’s in that there existed a stagnatory period and

then expansion, however, in Lemâıtre’s model this stagnatory period was finite,

not eternal, where after the “Big Bang”, a term coined by the notable steady-

state proponent Fred Hoyle in 1940, the attractive force of gravity and repulsive

force of Λ balanced each other out to create a stagnatory period, before Λ would

take over so that the universe would continue expanding again. The notion of a

genesis point or creatio ex nihilo no doubt raised the hairs on the backs of many a

physicists neck, especially so when the chief proponent was an ordained Catholic

priest; but a true lover of wisdom will go wherever the evidence leads them, and

as we shall see the hot Big Bang model treads a long and weary journey before

finally being accepted and adopted as part of the concordance model of present

day cosmology.

In an effect to explain the uniformity of the abundances of chemical elements

in stars and the origin or nucleosynthesis of the chemical elements given that

the star’s interior was apparently not hot enough for such production, serious
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attention was paid to the hot Big Bang model. The main idea being that going

back in time, temperatures and densities were higher, and so there existed a point

in time hot and dense enough for the nucleosynthesis of the chemical elements

to occur, such that at some point afterwards the temperature and densities will

lower causing the ratio of abundances to be frozen.

The idea of tackling the problem of the origin of chemical elements through

Lemâıtre’s “primeval atom” was first taken seriously by Subrahmanyan Chan-

drasekhar and Louis Henrich in 1942 [34], however, there was a large mismatch

between theoretical predictions of abundances and observations, and it wasn’t

until the mid to late-1940s period that George Gamow, alongside Ralph Alpher,

Hans Bethe, and Robert Herman, [35, 36], conducted pioneering work that found

agreement with observations, owing further credence to the existence of a hotter,

denser period in earlier cosmic history. In 1948, Alpher and Herman [37] rea-

soned that at sufficient temperatures the universe would be radiation-dominated

as opposed to matter-dominated and further that there should be remnant ther-

mal background radiation today of around 5 Kelvin (K). And so the Big Bang

model of the universe as beginning in a hot, dense state, expanding and cooling

to produce chemical elements, and further expanding and cooling leaving behind

a remnant cosmic background radiation began to take hold.

The key features of the Big Bang model that differentiate it from other generic

expanding models are the abundance predictions of light nuclei owing to primor-

dial nucleosynthesis in a hot, dense state and the existence of a relic background

radiation detectable today of roughly 5 K. In the post-World War II period, the

Big Bang model was still in its earliest stages, and despite being able to predict

the abundances of chemical elements to a reasonable degree of accuracy, it was

far from being the dominant model of cosmology. A more popular expanding

model was proposed by Hermann Bondi, Thomas Gold and Fred Hoyle [38, 39] in

1948 called the steady-state model. In this model, the universe is expanding but

instead of the universe becoming cooler and less dense with expansion, matter

is created with expansion at such a rate that the overall density of the universe

remains the same, thus the large structure of the universe looks the same at all
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times, and thus also the universe is allowed to be infinite in age. Moreover, during

the 1950s, papers by Margaret Burbidge, Geoffrey Burbidge, William Fowler, and

Hoyle [40, 41] suggested that the abundance of chemical elements was possible

through stellar nucleosynthesis, thus taking away the need for a earlier hot and

dense phase in cosmic history. And so Big Bang cosmology was far from the most

favourable model of the universe as for many, depending perhaps on religious or

philosophical beliefs, an eternal universe was easier to stomach than one of finite

age. That was until 1965 when Arno Penzias and Robert Wilson [42] discovered

a pesky microwave signal of 3.5±1.0 K no matter where they looked at in the sky

with their telescope. This was quickly recognised by Robert Dicke and his group

[43] to be the blackbody background radiation that Big Bang theory predicted.

This led to rapid acceptance of the Big Bang model as the favoured model of the

universe, forming an integral part of the concordance model of cosmology today.

1.2.1 The Friedmann-Lemâıtre-Robertson-Walker metric

Recalling the field equations of General Relativity (eq. (1.25)), we see that these

are a complicated system of ten non-linear second order coupled partial differ-

ential equations. If we turn our attention to the left-hand side of the equation,

we note that this can be fully written out in terms of the metric gµν and partial

derivatives thereof, therefore highlighting the metric’s important place as a nec-

essary ingredient of any solution to the equations. If we wish to apply these field

equations to a cosmological model, we require a metric that satisfies the various

large-scale properties we observe from our universe.

One property we have seen is that the universe is expanding, so that must

be included in the metric, furthermore we do not know the precise geometry of

the universe so we must allow for an open, closed, or flat universe in the general

case. Two more properties drawn from observational data are the homogeneity

and isotropy of the universe at large enough length scales. What is meant by the

universe being homogeneous is that at a given point in time the universe looks

the same in any location, and what is meant by the universe being isotropic

is that at a given point in time the universe looks the same in any direction.
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Together these form the cosmological principle, that on large enough cosmological

length scales, the universe is homogeneous and isotropic, looking approximately

the same in any location or direction. The cosmological principle may also be

derived from combining the Copernican principle, that we are not in a unique

position in the universe, with the fact that the universe looks isotropic from

Earth, thus implying that the universe is isotropic everywhere, thus implying

that the universe is homogeneous everywhere too.

The cosmological principle implies a great amount of symmetry which con-

siderably reduces the complexity of the metric from ten independent functions to

only two, the scale factor a(t) and curvature parameter K. Friedmann derived a

solution to Einstein’s field equations describing a general expanding curved uni-

verse in 1922 which Lemâıtre independently derived in 1927, then later on during

the 1930s Howard Robertson and Arthur Walker [44, 45] proved that the solu-

tions found by Friedmann and Lemâıtre are implied by a metric that is uniquely

determined by the cosmological principle, proving that any spacetime geometry

that is spatially homogeneous and isotropic must have a metric, known as the

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, of the following form

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2(θ)dϕ2)

)
(1.26)

in comoving spherical coordinates where t is cosmic time and {r, θ, ϕ} are the

spatial spherical coordinates. Note that the comoving spatial coordinates are

not time-dependent, with the scale factor a(t) alone encapsulating the expansion

of the universe and with its dynamics being determined by the field equations

of General Relativity. One can see from this metric that the physical distance

between any two points of constant comoving distance increases with time owing

to the expansion of spacetime described by a(t), where a(t) is normalised today to

a(t0) ≡ a0 = 1, with the subscript of 0 indicating a present day value for cosmic

time t and scale factor a(t). The spatial curvature of the three-dimensional space

is quantified by the parameterK, which can be normalised to {+1, 0,−1} through
redefining the scale factor a(t) and radial coordinate r, corresponding to positive,

zero, and negative curvature on three-space.
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An important phenomenon in an expanding FLRW universe is that photons

lose energy with the expansion of the universe, scaling like E ∝ a−1 where E is

the energy, and hence the wavelength of a photon grows with expansion thereby

experiencing a redshift [16]. Therefore, by measuring the redshift of an object we

may determine how much expansion has taken place between us and the object,

and hence use redshift in our measures of time and distance. The relationship

between the observed redshift of a photon at present day to the scale factor at

time of emission is [16]

1 + z =
1

a
. (1.27)

From the FLRW metric we may now compute the different components of the

left-hand side of Einstein’s field equations (eq. (1.25)) describing the geometry of

spacetime, however, we have yet to specify the right-hand side Tµν of the equation

describing the energy-momentum content of spacetime. It is after an appropriate

definition of Tµν , alongside specifying particular energy species, that we will arrive

at the Friedmann equations and continuity equations which govern the dynamical

evolution of the universe. We will then discuss how the anisotropies of the cosmic

microwave background (CMB) radiation are sensitive to cosmological models,

what the most important parameters in determining the anisotropies are, and

how these parameters, together with parameters describing the different energy

densities of the universe, make up the six parameter standard model of modern

cosmology: the ΛCDM model.

1.2.2 Friedmann’s equations

The large-scale homogeneity and isotropy of the universe lead to a general form

of the energy-momentum tensor Tµν that describes a perfect fluid i as

T (i)
µν = (ρi + Pi)UµUν + Pigµν , (1.28)

where ρi and Pi are the fluid’s energy density and pressure respectively, and where

Uµ is the four-velocity of the fluid. Taking the trace of the energy-momentum
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tensor we find that T (i) = T
(i)µ

µ = −ρi + 3Pi. Therefore using the FLRW metric

together with the total energy-momentum tensor, found by summing up the in-

dividual energy-momentum tensors for each species i, we arrive at the Friedmann

equations [25, 46], describing how the evolution of the scale factor is related to

the energy content of the universe

H2 =
κ2

3
ρtot −

K

a2
+

Λ

3
(1.29)

ä

a
= −κ

2

6
(ρtot + 3Ptot) +

Λ

3
(1.30)

where H ≡ ȧ/a is the Hubble parameter describing the rate of expansion, and

ρtot, Ptot are the total energy density and total pressure found by summing up

over different energy species i. Furthermore, the energy conservation equation

(eq. (1.23)) implies

ρ̇tot + 3H(ρtot + Ptot) = 0 (1.31)

which is also known as the continuity equation. A particular species of energy i

may be characterised by its equation of state wi which is a constant describing

the relationship between the pressure of a fluid and its energy density

Pi = wiρi, (1.32)

and so, assuming each species i individually satisfies energy conservation, we may

write the continuity equation for a particular fluid as

ρ̇i + 3H(1 + wi)ρi = 0, (1.33)

and solve it to find a relation between the energy density of a fluid and the scale

factor

ρi ∝ a−3(1+wi). (1.34)

Some examples of fluids which appear in many cosmological models of our

universe, including the concordance model, are non-relativistic matter (m), radi-

ation (r), and the cosmological constant (Λ). Non-relativistic, collisionless par-
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ticles, known as dust or matter in cosmology, where the pressure is very small

compared to energy density, are specified by a zero pressure Pm = 0 and so have

an equation of state wm = 0. This implies then that the energy density of matter

scales like

ρm ∝ a−3, (1.35)

which can be seen as the number density of matter particles decreasing as the

universe expands. What is called radiation in cosmology refers to electromagnetic

radiation and relativistic particles. By considering the energy-momentum tensor

in terms of the electromagnetic field strength tensor Fµν

T µν
(r) = F µλF ν

λ −
1

4
gµνF λσFλσ, (1.36)

we may take the trace and find that T µ
(r)µ = 0 which upon equating with the trace

of a perfect fluid’s energy-momentum tensor gives an equation of state wr = 1/3.

Thus the energy density of radiation scales like

ρr ∝ a−4, (1.37)

and so similarly to matter, the energy density of radiation decreases with expan-

sion however at a faster rate due to the energy lost as the radiation particles are

redshifted with the expansion of the universe.

By considering the cosmological constant term in Einstein’s field equations

(eq. (1.25)) as a vacuum energy, it may be moved to the right hand side and

written in terms of an energy-momentum tensor

T (Λ)
µν = −ρΛgµν , (1.38)

where ρΛ = Λ/κ2, such that the trace T
(Λ)µ

µ = −4ρΛ which upon equating with

the trace of a perfect fluid yields wΛ = −1, thus the cosmological constant is

characterised by a negative pressure fluid. The energy density of the vacuum

energy is then

ρΛ ∝ a0, (1.39)
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that is, constant. The curvature term appearing in the first Friedmann equation

(eq. (1.29)) may be written in the form of a fictitious fluid, in which case ρK =

−3Ka−2/κ2 ∝ a−2 and from the second Friedmann equation (eq. (1.30)) we

require ρK + 3PK = 0, giving an effective equation of state wK = −1/3. The

first Friedmann equation (eq. (1.29)) is often written in terms of dimensionless

density parameters Ωi which describes the ratio of the energy density of a species

i to the critical energy density ρcrit where

ρcrit =
3H2

κ2
, (1.40)

and so for a species i we have

Ωi =
ρi
ρcrit

=
κ2

3H2
ρi. (1.41)

Thus, for a universe containing radiation (r), matter (m), a cosmological constant

(Λ), and curvature (K), the first Friedmann equation (eq. (1.29)) may be written

as

Ωr + Ωm + ΩΛ + ΩK = 1, (1.42)

which is also known as the constraint equation. Using the relation between the

energy density and scale factor (eq. (1.34)) for a general fluid i with equation of

state wi, we may write the dimensionless density parameters Ωi in terms of the

evolution of the scale factor a giving

Ωi =
κ2

3H2
ρi =

(
H0

H

)2

Ωi,0a
−3(1+wi), (1.43)

recalling that a subscript of zero indicates the present-day value. Substituting

this into the constraint equation (eq. (1.42)) we get

H2 = H0
2
(
Ωr,0a

−4 + Ωm,0a
−3 + ΩΛ,0 + ΩK,0a

−2
)
, (1.44)

giving the first Friedmann equation (eq. (1.29)) in a form frequently seen in

cosmology.
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Recall back to the beginning of this chapter where we noted that the Einstein-

de Sitter universe was the dominant cosmological model up until the late twenti-

eth century, which modeled the universe as having no curvature or cosmological

constant Λ. One parameter of particular interest to cosmologists in addition to

the expansion rate ȧ, contained inH, was the rate of change of the expansion rate,

ä, contained in dimensionless deceleration parameter q whose sign determines if

the expansion rate is increasing or decreasing and therefore if the universe is ex-

panding at an accelerating or decelerating rate. Note that because the prevailing

cosmological model of the time predicted a decelerating universe, that is, ä < 0,

the deceleration parameter was defined with a minus sign such that it is positive

when the expansion of the universe is decelerating. The deceleration parameter

is defined by [16]

q ≡ −aä
ȧ2
, (1.45)

which evaluated today becomes

q0 = − ä0

H0
2 , (1.46)

therefore the second Friedmann equation (eq. (1.29)) may be written as

q0 =
1

2

∑
i=r,m,Λ,K

Ωi,0(1 + 3wi)

= Ωr,0 +
Ωm,0

2
− ΩΛ,0,

(1.47)

which for the comparably negligible present-day radiation energy density Ωr,0

omitted may be approximated by

q0 =
Ωm,0

2
− ΩΛ,0, (1.48)

and so if the universe were experiencing a decelerating expansion rate at present

times then q0 > 0 which implies that we should see ΩΛ,0 < Ωm,0/2. Note that if

a particular fluid dominated the current energy budget today and the universe
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were found to be accelerating in expansion q0 < 0 then eq. (1.47) implies this

fluid must have an equation of state wi < −1/3 which would rule out matter,

radiation, or curvature as the dominating energy species.

During the late 1990s, two independent collaborations, the Supernova Cos-

mology Project (SCP) [47] and the High-z Supernova Search Team (HZT) [48]

used supernovae Type Ia (SNIa) measurements to determine the deceleration pa-

rameter q0. Remarkably, the HZT team found that at the 2.8σ confidence level

q0 < 0 and further that by allowing for the existence of a cosmological constant

term ΩΛ,0 > 0 at the 3.0σ confidence level. Similarly the SCP team found that

0.8Ωm,0 − 0.6ΩΛ,0 ≈ −0.2± 0.1 in strong support of the existence of a cosmologi-

cal constant term ΩΛ,0 > 0, furthermore they found at a 1σ confidence level that

Ωm,0 = 0.28+0.09
−0.08 for a flat cosmology. These results quickly led to the acceptance

of an accelerating universe and the adoption of Λ into cosmological models, fur-

ther showing that we are in an era of Λ-domination which happened at redshift

z ≈ 0.3 [49] and that the universe has been in a stage of accelerated expansion

since z ≈ 0.7 [49]. Thus, Λ has secured its place in the standard model of cos-

mology, even appearing in the name of the concordance model, which today is

known as the ΛCDM model.

1.2.3 The six parameter model

The ΛCDM model is a cosmological model of only six parameters [50], which

together can explain present-day cosmological data to an extremely high degree

of accuracy. Indeed, part of the success of the ΛCDM model lies in its simplicity.

Two of these parameters are easily motivated, being energy densities of matter

species populating the energy-momentum content of the universe, whereas the

other four parameters are motivated by considering other key parameters affecting

the cosmic microwave background radiation.

As we saw earlier, the energy densities appearing in the Friedmann equations

(eq. (1.29), eq. (1.30)) are the radiation density Ωr, the matter density Ωm, the

cosmological constant energy density ΩΛ, and the curvature density ΩK . Ob-

servational data has severely constrained ΩK [50] such that it is now generally
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assumed the universe is flat, thus the ΛCDM model considers a flat FLRW metric

as its baseline model. Moreover the radiation density Ωr, the present-day value

of which is negligibly small, is determined by [51]

Ωrh
2 = Ωγh

2

(
1 +

7

8

(
4

11

)4/3

Neff

)
, (1.49)

where h is the dimensionless reduced Hubble parameter defined by

H0 = 100 h kms−1Mpc−1, (1.50)

Ωγ is the photon energy density determined by the CMB photon temperature

T0 = 2.7255K [52], and Neff is the effective number of species of neutrinos where

Neff = 3.046 in the baseline model [53, 54]. Hence this leaves only considering Ωm

as a cosmological parameter, with the energy density of Λ being determined by the

constraint equation (eq. (1.42)) ΩΛ = 1−Ωm−Ωr. The matter energy density is

approximately 30% of the total energy budget in ΛCDM cosmology [50], meaning

roughly 70% of the universe’s energy density is taken up by the cosmological

constant. The concordance model further describes the matter sector as being

composed of two chief components, baryonic matter and cold dark matter, where

baryonic here means ordinary non-relativistic, collisionless, pressureless matter,

and cold dark matter is non-baryonic, non-relativistic, collisionless, pressureless

matter which interacts only via gravity.

Although accounting for approximately 85% of the total matter density [50],

meaning roughly 25% of the total energy density of the universe, the exact na-

ture of dark matter is still unknown, however we may still consider its effects in

cosmological models and in the evolution of the universe. We denote the energy

density of baryons, which take up approximately 5% of the total energy density

[50], by Ωb and of cold dark matter by Ωcdm, thus we have Ωm = Ωb + Ωcdm.

The inclusion of cold dark matter is a vital ingredient in the standard model of

cosmology, hence the namesake Λ-cold-dark-matter or ΛCDM. And so we require

only two energy density parameters, Ωb and Ωcdm out of the four parameters,

{Ωb,Ωcdm,Ωr,ΩΛ}, to appear as independent parameters in the ΛCDM model.
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Now let us look at how the other four parameters of the ΛCDM model arise

when considering the greatest cosmological observational data source to date,

the Cosmic Microwave Background radiation, and specifically the anisotropies

therein. The CMB spectrum itself presents an almost perfect black body spec-

trum and has been measured to the highest degree of precision out of any black

body spectrum found in the universe [55]. The anisotropies of the CMB spec-

trum are particularly sensitive to cosmological models and in particular to a set of

four parameters which will form the remainder of the six parameter concordance

model. In order to constrain the parameters of a cosmological model using the

observed spectrum of CMB temperature anisotropies, we require a theory that

is able to predict the theoretical spectrum of the CMB temperature anisotropies

based on a set of cosmological parameters. Such a prediction is possible by con-

sidering the linear perturbation of a FLRW universe, and the evolution of the

perturbations of the particular energy species therein.

Linear cosmological perturbation theory was first introduced in 1946 by Evgeny

Lifshitz [56], and not too long after the unexpected discovery of the CMB in

1965, it was applied to the CMB temperature anisotropy spectrum in 1970 by

James Peebles and his graduate student Jer Yu [57]. Solving the theoretical CMB

temperature anisotropy power spectrum then amounts to solving a large set of

coupled differential equations in an infinite Boltzmann hierarchy. The standard

method [58] of solving these equations was extremely computationally expensive,

often taking several days to run. However, in 1996 a new line-of-sight integral

method was presented by Uros Seljak and Matias Zaldarriaga [59] which saved a

considerable amount of CPU time, reducing the run time to a matter of minutes.

This new approach was implemented in the CMBFAST [59] Boltzmann code by

Seljak and Zaldarriaga and is used by the two most popular Boltzmann codes in

cosmology at present, CAMB [60] and CLASS [61].

The first clear measurement of the CMB temperature anisotropy was in 1977

by George Smoot, Marc Gorenstein, and Richard Muller [62], followed by two

more papers in 1979 [63, 64], however, this detection was of the dipole anisotropy

caused by the peculiar motion of the Earth and not the anisotropies of smaller
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scale which are caused by density fluctuations as predicted by cosmological per-

turbation theory. It is these smaller scale anisotropies that are of interest, and

it wasn’t until two decades later with the launch of the Cosmic Background Ex-

plorer (COBE) satellite in 1989, that in 1992 [65] anisotropies of the order 10−5

were reported. This breakthrough discovery resulted in COBE scientists George

Smoot and John Mather being awarded the Nobel Prize in Physics in 2006 [66].

The next big breakthrough in the detection of CMB anisotropies was with the

release of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite in 2001

which reported its first results in 2003 [67, 68], and later with the release of the

Planck [69] satellite in 2009 which presented its first results in 2013 [70]. With

each release of a next generation satellite, first COBE, then WMAP, and now

Planck, the resolutions and sensitivities of the anisotropies increased substan-

tially, allowing cosmological models to be ever more constrained, and for the

ΛCDM model to further secure its place as the standard model of cosmology.

Now that we have established that the CMB anisotropies can be theoretically

predicted from cosmological models to a high degree of accuracy using publicly

available codes, and that the CMB anisotropies themselves have been observa-

tionally measured to a high resolution and sensitivity thereby allowing for a tight

constraining of parameters in cosmological models, let us turn our attention to

the key cosmological parameters, epochs, and processes that affect the CMB

anisotropy power spectrum in order to decide the minimal set of parameters to

appear in the concordance model of cosmology.

Let us look at the epoch of recombination during which protons and electrons

combine for the first time to form neutral hydrogen, and when subsequently pho-

tons decouple from matter and are able to stream freely for the first time, thus

forming the CMB. At hotter temperatures in earlier times in cosmic history, pho-

tons were tightly coupled to electrons via Compton scattering and electrons were

tightly coupled to protons via Coulomb scattering. As the universe expanded and

temperatures cooled, the electrons began to be able to be captured by hydrogen

nuclei thus recombining to form neutral hydrogen atoms. This meant that the

abundance of free electrons, that is electrons not bound by atomic nuclei, be-
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gan to drop significantly and hence the rate at which photons used to Compton

scatter off electrons began to decrease. As the scattering rate of photons off

electrons decreases there comes a time when the rate of scattering becomes less

than the rate of expansion. It is during this era when photons then decouple and

can for the first time freely stream, making the universe transparent, and it is

these same photons that have redshifted to form the CMB as we see it today,

sometimes called the CMB photons [51].

If the epoch of recombination at z ≈ 1000 may be characterised by a deion-

isation of electrons as they are captured by nuclei to form neutral atoms, then

a more recent epoch at z ≈ 10 during which objects such as dwarf galaxies,

quasars, and stars began to ionise neutral hydrogen may aptly be called the

epoch of reionisation [51]. This reionisation created an increase in the abundance

of free electrons which subsequently recoupled CMB photons with electrons, how-

ever, by that time the number density of electrons had decreased significantly and

so the photon-electron Compton scattering rate did not increase to be compara-

ble with the rate of expansion, hence the universe remained transparent. This

reionisation of electrons causes a rescattering of CMB photons, leading to the

suppression of anisotropies at smaller scales in the CMB temperature spectrum

and hence a parameter giving a quantifiable measure of the effect of reionisation

makes an excellent addition to any cosmological model seeking to use the CMB

anisotropy spectrum in order to constrain the model. A parameter which success-

fully encapsulates the effect of reionisation is the optical depth [59] to reionisation

τreio which is given by

τreio := τ(ηreio) =

∫ η0

ηreio

aneXeσTdη, (1.51)

where τ is the optical depth measuring the opaqueness of the universe at a time

η from present-day time η0, η is the conformal time defined by dη = dt/a(t),

a is the scale factor, ne is the number density of electrons, Xe is the ionisation

fraction of electrons, and σT is the Thomson cross section.

Recall that before the era of recombination, the electrons and protons were
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tightly coupled through Coulomb scattering to form an electron-proton fluid,

which in turn was tightly coupled to photons through Compton scattering, thus

together forming a single oscillating baryon-photon fluid. This baryon-photon

fluid then has an associated sound speed of [51]

cs =

√
1

3(1 +R)
, (1.52)

where R ≡ 3ρb/(4ργ) is a ratio of baryon to photon energy density. We can

see that the sound speed is sensitive to the baryonic energy density, with an

increasing baryon density decreasing the sound speed of the baryon-photon fluid.

The comoving distance travelled by an acoustic wave by some time η is known

as the sound horizon and is given by

rs(η) =

∫ η

0

dη′cs(η
′), (1.53)

and so the physical sound horizon at decoupling is ds(ηdec) = a(ηdec)rs(ηdec). We

may now define the next parameter appearing in the ΛCDM model, which is the

angular size of the sound horizon at decoupling

θs =
ds(zdec)

DA(zdec)
, (1.54)

where the angular diameter distance DA(t) is

DA(t) = a(t)

∫ t0

t

dt′

a(t′)
(1.55)

in a flat universe where Ωk = 0. The fact that θs contains a ratio of two pa-

rameters, one depending on pre-recombination dynamics and the other on post-

recombination dynamics, makes it an excellent probe of not only matter densities,

such as Ωbh
2 and Ωcdmh

2, but also of the cosmological constant energy density

ΩΛ which dominates the late time energy density budget of the universe.

We now introduce the last two parameters in the six parameter model con-
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tained in the definition of the dimensionless primordial power spectrum of the

curvature perturbations

∆2
ζ(k) = As

(
k

k0

)ns−1

, (1.56)

where ζ are curvature perturbations, k is the wavenumber of perturbations, ∆2
ζ(k)

is the dimensionless power, As is the amplitude of the primordial curvature power

spectrum, ns is the spectral index of this spectrum, and the pivot scale k0 is fixed

to k0 = 0.05Mpc−1. This spectrum describes the primordial spectrum of density

perturbations, most typically thought to be set by inflation, which seeded and

provided the initial conditions for large scale structure, such as stars and galaxies,

in the universe. These primordial fluctuations leave signatures in the anisotropies

of the CMB temperature and polarisation spectrum and hence the amplitude of

the primordial power spectrum As and spectral index of scalar perturbations ns

can be constrained through CMB as measured, for example, by Planck [50]. The

baseline ΛCDM model is therefore a cosmological model of only six parameters,

this set of parameters being {Ωbh
2,Ωcdmh

2, θs, τreio, ns, As}.

1.3 Conclusions

In this chapter we introduced the greatest theory of gravity to date, General

Relativity, and its applications to cosmology. We then looked at how the hot Big

Bang model emerged and was adopted as part of the standard model owing to its

theoretical consistency and predictions of the abundance of light nuclei and rem-

nant radiation left over from an earlier era, the Cosmic Microwave Background

radiation. We also saw how the cosmological principle leads to the Friedmann-

Lemâıtre-Robertson-Walker metric and looked at some of the implications of this

for a universe filled by radiation, baryons, cold dark matter, curvature, and a

cosmological constant. Finally we gathered this all together and, upon consider-

ation of the CMB anisotropy spectrum, saw how the six parameter ΛCDM model

emerges.

The ΛCDM model is a triumph of modern science, akin to the standard model
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of particle physics, however, like the standard model of particle physics, there are

some issues which cannot be overlooked and have lead many cosmologists to

search beyond the ΛCDM model for an explanation. In the next chapter we

will look at some of the issues of ΛCDM cosmology and see if any can be better

explained in an extended framework.



2 — Beyond the ΛCDM model

Before we begin exploring some of the problems in the standard model of cosmol-

ogy, let us first note its triumphs and astounding concordance with present-day

state of the art observational data. With only six parameters, the ΛCDM model

can explain a whole wealth of current observational data to extraordinary preci-

sion [50], and, with the exception of some notable data sources [71, 72, 73, 74, 75],

is consistent with all cosmological observations thus far. What we mean by con-

sistent here is that the parameter constraints coming from independent data sets

agree with one another, or put another way, the allowed parameter values inferred

from differing data sets are not in tension with one another. Furthermore, statisti-

cal model selection and data analysis in general finds no preference for extensions

to the baseline, flat, six-parameter ΛCDM model [76, 77]. If ΛCDM is extended

by allowing for curvature and for the cosmological constant term to be replaced

by a general fluid with equation of state w, then data analysis using CMB, baryon

acoustic oscillations (BAO), and supernovae type Ia (SNIa) data favours a cos-

mological model which is consistent with a flat universe, ΩK,0 = 0.001 ± 0.002

and a cosmological constant w = −1.03± 0.03 [50], that is, the ΛCDM model.

The concordance model does have some issues, however, and these issues have

led cosmologists to look for extensions to the standard model of cosmology in

order to resolve them. We will first look at some problems associated with the hot

Big Bang model in section 2.1 and then look problems within the ΛCDM model.

In particular, we will look at tensions in the concordance model in section 2.2

and then problems surrounding the enigmatic cosmological constant term Λ in

section 2.3, finally concluding in section 2.4.

31
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2.1 Problems in standard Big Bang cosmol-

ogy

As we have previously noted, current observations [50] are consistent with our

universe being flat, that is, that ΩK,0 is very close to zero. This in fact creates a

problem for the standard Big Bang model and it was first recognised as a major

problem by the great Robert Dicke in 1969 [78]. The essence of the problem

lies with that fact that the curvature density parameter |ΩK | grows with time

in a matter or radiation dominated universe, and so if we were to measure the

curvature density parameter today we should expect it to be a large number,

however, the present-day value of the curvature density parameter, |ΩK,0|, is very
close to zero which means that it must have been far closer to zero in early cosmic

history, presenting a serious case of fine-tuning. We can quantify the level of fine-

tuning required by considering the definition of ΩK (eq. (1.41)) together with

the Friedmann equation (eq. (1.44)) and constraint equation (eq. (1.42)) for a

universe dominated by an energy species i yielding

ΩK(z) =
ΩK,0

(1− ΩK,0) (1 + z)1+3wi + ΩK,0

. (2.1)

So if we make a relaxed requirement of |ΩK,0| < 0.1, then this requires that

|ΩK(zBBN)| ≲ 10−11 at Big Bang nucleosynthesis using zBBN ∼ 1010, therefore an

astonishing amount of fine-tuning in the initial conditions of ΩK is required. This

fine-tuning issue creates a serious problem for standard Big Bang cosmology and

it gained the name of the flatness problem.

Another problem of fine-tuning arises when we consider the CMB. The CMB

we observe today appears to be homogeneous and isotropic across regions that

could never have interacted, in fact, the entire CMB appears to be homogeneous

and isotropic. What we should expect to see when we look at the CMB is several

smaller regions that are locally homogeneous and isotropic, but not that these

independent regions should be homogeneous and isotropic with each other, since

these regions have never interacted and therefore should look quite different to one
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another. That is, of course, unless we impose a tremendous amount of fine-tuning

that requires these causally disconnected regions to have the same exact initial

conditions and so despite them evolving independently, they all look the same to

one another. We can explore this problem at a deeper level by introducing the

concept of a particle horizon. The idea of a particle horizon is that since there

has been a finite amount of time since the universe began, then there exists a

finite amount of distance that a photon could have travelled from the beginning

up until some later arbitrary point in time. We may therefore define the particle

horizon to be

dhor(a) = a

∫ a

0

da′

a′2H(a′)
, (2.2)

which for a universe dominated by an energy species i becomes

dhor(a) ∼ a3(1+wi)/2, (2.3)

which we note grows faster than the physical distance between comoving objects

for a universe dominated by an energy species with wi > −1/3, such as in a

radiation-dominated wr = 1/3 or matter-dominated wm = 0 universe, and there-

fore two regions which are causally disconnected at some point in time must have

been causally disconnected at all points in time earlier in a radiation or matter

dominated universe. We can calculate the particle horizon at the time of decou-

pling to be dhor(adec) ≈ 0.3 Mpc for adec ∼ 10−3 which implies that regions in

the sky separated by an angle of more than θ ≈ 2◦ could not have interacted

before decoupling and hence should not be homogeneous and isotropic with each

other [51]. The fact that we do see such homogeneity and isotropy in the CMB

therefore amounts to another grave problem for the Big Bang model, known as

the horizon problem.

In an attempt to find an answer to these problems, a tactful solution was

proposed whereby both problems are solved if the universe undergoes a period

of cosmic inflation before the radiation-dominated era of cosmic history. Not

only does inflation solve the flatness and horizon problems that standard Big

Bang cosmology presents, but inflation also provides an explanation for the initial
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inhomogeneities which seeded large scale structure in the universe, as briefly

mentioned in section 1.2.3, as tiny quantum fluctuations in the early universe.

In 1979, Alan Guth was trying to solve the magnetic monopole problem that

arises in many Grand Unified Theories. The problem is that many Grand Unified

Theories propose the production of magnetic monopoles at a density that far

exceeds the amount observed in our universe, which is none as of present [79,

80]. He noted [81] that if the universe expanded at an accelerating rate, then

the density of magnetic monopoles could be sufficiently diluted in our universe

such that it is likely none would be detected. He quickly realised, however,

that if the universe underwent a period of accelerated expansion, or inflation

as it is commonly known, then this would solve two other problems plaguing

cosmology, namely the flatness problem and the horizon problem, leading to an

important publication in 1981 [82]. Seminal work in inflationary theory was also

conducted by Alexei Starobinsky [83], Andrei Linde [84], Andreas Albrecht [85],

and Paul Steinhardt [85] leading to the 2002 Dirac Prize for Guth, Linde, and

Steinhardt [86]; the 2012 Breakthrough Prize in Fundamental Physics for Guth

and Linde [87]; and the 2014 Kavli Prize for Starobinsky, Linde, and Guth [88].

Furthermore, the idea of linking quantum fluctuations to the origin of large-scale

structures within an inflationary paradigm was pioneered in 1981 by the work of

Gennady Chibisov and Viatcheslav Mukhanov [89].

To say the universe is expanding at an accelerating rate is to say that ä > 0.

We can immediately see the implication of this on the flatness problem by noting

ΩK(a) = − K

(aH)2
, (2.4)

and so |ΩK | grows whenever (aH)−2 is an increasing function, which upon inspec-

tion of the Friedmann equation (eq. (1.44)) is the case for a universe dominated

by a fluid with wi > −1/3 such as matter or radiation. However, if the universe

is undergoing an accelerated expansion such that ȧ > 0, ä > 0, then

d

dt

(
1

(aH)2

)
< 0, (2.5)
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therefore (aH)−2 is a decreasing function and so |ΩK | decreases with time. So

we can tentatively see how the flatness problem may be solved by inflation in

that the universe may initially have a large |ΩK |, however, inflation drives the

curvature density down sufficiently close to zero, such that after the inflationary

era has ended and radiation-domination begins, |ΩK | begins to grow again, giving

a present-day |ΩK,0| that is within limits allowed by observational data. The

question then remains, for how long does the universe need to undergo inflationary

accelerated expansion in order to get, say, |ΩK,0| < 0.1 today? Since the scale

factor will be increasing by many orders of magnitude during the inflationary

epoch, it is fitting to quantify the increase in terms of the number of e-folds the

scale factor undergoes, which is

N = ln

(
af
ai

)
, (2.6)

where N is the number of e-folds, ai is the initial value of the scale factor at

the start of inflation, and af is the final value of the scale factor at the end

of inflation. With the assumption that the Hubble parameter H(a) is constant

during this period [90, 91], we may then write

∣∣ΩK (af )
∣∣ = (af

ai

)−2 ∣∣ΩK (ai)
∣∣

= e−2N
∣∣ΩK (ai)

∣∣,
(2.7)

and so requiring |ΩK,0| < 0.1 means that at the end of inflation af ∼ 10−29 [82]

we must have |ΩK(af )| ≲ 10−59 via eq. (2.1), which in turn requires

N ≳ 68 (2.8)

many e-folds to solve the flatness problem, where we have used |ΩK(ai)| ∼ O(1).

Note that owing to the logarithmic dependence of N on the curvature density

ΩK , if we impose a much stricter requirement on the current curvature density of

say |ΩK,0| < 0.001, then the number of e-folds required increases only to N ≈ 70
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in order to solve the flatness problem.

Now let us look at how inflation can help solve the horizon problem. The

horizon problem is concerned with the fact that regions separated by a distance

greater than the particle horizon appear to have been in causal contact. Since the

particle horizon is a function that increases faster than the physical distance in

time for a matter or radiation dominated universe, then two regions that are not

in causal contact now could never have been in cosmic history. But what if there

was a period in cosmic history where causal regions in the universe universe grew

to much larger than the particle horizon? That means then that regions in the

sky which are causally disconnected today need not have been so at some point

in the past. Note that if the universe is undergoing inflation, then the comoving

particle horizon, (aH)−1, now becomes a decreasing quantity

d

dt

(
1

aH

)
= − ä

ȧ2
< 0, (2.9)

and so it is possible that during inflation, the entire observable universe was

brought well within a causal region, thereby solving the horizon problem. Inter-

estingly, the number of e-folds required to solve the horizon problem is similar to

that of the flatness problem, typically N ≳ 60 [92].

2.2 Tensions in ΛCDM

Before we begin exploring tensions in the ΛCDM model, we must first note that

although there are only six independent parameters in the baseline concordance

model, there exist a number of other cosmological parameters that can be derived

from these six. Two of these derived parameters which are of utmost importance

to us are the Hubble constant H0, and σ8, which is a parameter signifying the

root-mean-square mass fluctuation in a sphere of radius 8h−1Mpc at redshift

z = 0 defined by σ8 ≡ σ (8h−1Mpc) where [51]

σ2(R) =

∫ ∞

0

dk

k
∆2

m(k)

[
3
j1(kR)

kR

]2
, (2.10)
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where R is the radius of the sphere, ∆2
m(k) is the dimensionless matter power

spectrum and j1(x) is the first spherical Bessel function such that the term in

square brackets is the Fourier transform of a sphere of radius R. Furthermore,

owing to a degeneracy that arises between the Ωm and σ8 parameters in one of the

troublesome data sets, it is useful to introduce another derived parameter. This

parameter is denoted by S8, and is based on the σ8 parameter and the matter

energy density parameter Ωm, being defined by

S8 ≡ σ8
√

Ωm/0.3 . (2.11)

As we mentioned earlier, the ΛCDM model is able to explain nearly all data

sets, most notably the CMB anisotropy data as measured by Planck [50] and

background data sets such as from Baryon Acoustic Oscillations (BAO) [93] and

supernovae Type Ia (SNIa) [94] measurements, both accurately and consistently,

with no apparent tensions in the parameters. There is, however, mounting evi-

dence that there are serious tensions in the ΛCDM model for certain data sets.

The two major data sets which are in conflict with the ΛCDM model as deter-

mined by Planck are the local measurements of the Hubble constant H0 [71] and

the determinations of σ8 from weak lensing experiments [72, 73, 74].

Perhaps the most famous tension in cosmology at present is the tension be-

tween H0 as inferred by earlier-universe Planck CMB measurements [50] and

H0 as inferred by more direct later-universe local measurements, known as the

H0 tension. The value of H0 inferred from assuming a ΛCDM model and us-

ing the full Planck temperature, polarisation, cross-correlation, and lensing data

set is H0 = 67.37 ± 0.54 km s−1 Mpc−1 at 1σ [50], whereas local distance ladder

measurements determine a value of H0 = 74.03 ± 1.42 km s−1 Mpc−1 at 1σ [95],

giving a discrepancy of 6.6 ± 1.5 km s−1 Mpc−1 at 1σ. It is useful to be able to

quantify the degree of tension between two determinations of given parameter

and one may do so by the following equation

T ≡
∣∣µA − µB

∣∣√
σ2
A + σ2

B

, (2.12)
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where T is the tension in the parameters, µA and µB are the mean values of the

parameter from data sets A and B, and σA and σB are the 1σ confidence limits

or errors, as determined from data sets A and B. Using this equation to explore

the tension between H0 as derived from Planck compared to H0 as inferred from

local measurements, we find that there exists a ∼ 4.4σ tension in H0 between the

measurements when assuming the ΛCDM model. Furthermore, investigations

[96] suggest that this discrepancy cannot solely be due to errors in measurement

or systematic sources, therefore strongly suggesting that we need to look beyond

the ΛCDM model in order to resolve this significant tension. It is important to

note here that the larger value of H0 as determined from local measurements is

a model-independent measurement of H0, whereas the value of H0 as determined

by Planck is a model-dependent value. Therefore, any extension to the ΛCDM

model that hopes to resolve this tension must obtain a value of H0 from Planck

that is significantly larger than the value obtained assuming ΛCDM, such that it

is not in tension with the local measurements of H0.

Some of the most immediate extensions to ΛCDM which appear to help allevi-

ate this tension at least in part include allowing the effective number of neutrino

species Neff to vary, thereby accounting for undetected relativistic species, and

phantom dark energy, which allows for a fluid with an equation of state w < −1,

however, there are no shortage of extensions to ΛCDM which appear to help

resolve this tension [97]. The principle of Occam’s Razor [98], the physical vi-

ability and motivation of a model, and statistical model selection analysis will

prove which of these many models, if any, provides the solution to this tension

in H0. Great interest should be paid to model if it is able to simultaneously

resolve several tensions and problems, such as what inflationary theory did for

the flatness problem, the horizon problem, the magnetic monopole problem, and

the primordial origin of large-scale structure in the universe.

The second major data set that presents tensions in the ΛCDM model is

from the more direct cosmic shear determinations of σ8 such as that reported

by the KiDS-1000 and DES Y3 cosmic shear surveys [72, 73, 74]. Unlike the

H0 tension which is a tension between an inferred model-dependent value and a
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directly measured model-independent value, this tension is between two data sets

which give a significantly different inferred value of S8 under the assumption of

ΛCDM. Assuming ΛCDM, the inferred value of S8 using Planck measurements

is S8 = 0.830± 0.013 at 1σ [50], whereas the inferred value of S8 using the KiDs-

1000 cosmic shear measurements is S8 = 0.759+0.024
−0.021 at a 1σ confidence limit

under ΛCDM [72, 73], therefore presenting a ∼ 2.7σ tension in the S8 parameter

assuming the ΛCDM model.

It is important to note too, that the level of tension in this parameter is

significantly less than that of H0, therefore the probability of it being due to

statistical fluctuations and systematic issues is higher than with H0, however,

it is still quite possible that this tension is indicative of new physics beyond the

standard model of cosmology and therefore solutions in this line of thinking merit

attention. It is worthy to note also that a model which extends ΛCDM and infers

a result of a parameter, H0 say, with the same mean value as inferred by ΛCDM

but with larger 1σ errors would in fact reduce the tension T but only because

of an increase in uncertainty. Furthermore, models which reduce tension in one

parameter, say H0, may increase tension in another parameter, say S8, but not

only that, extensions to ΛCDM increase the degrees of freedom in that model

which in turn negatively compensate the model in statistical model selection.

Careful attention, therefore, must be paid to extensions of ΛCDM and claims of

resolving tensions.

Recall that inflationary theory predicts that our universe should be consistent

with a flat universe ΩK,0 = 0 to a high degree of accuracy, and indeed, upon the

combination of Planck, BAO, and SNIa data, we find that ΩK,0 = 0.001± 0.002

[50]. It is important to note here that inflationary theory does not predict that

our universe should be in fact flat, but that we can expect ΩK,0 to be sufficiently

close to zero, such that our universe is consistent with a flat universe under

observational and experimental bounds. We also mentioned that the ΛCDM

model as determined by Planck is consistent with nearly all other data sets, such

as from BAO and SNIa measurements, and this too is true.

Strikingly, however, when curvature is allowed to vary, recent Planck data [50]
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suggests that our universe is in fact closed ΩK,0 = −0.044+0.018
−0.015 such that ΩK,0 < 0

at a ∼ 3.4σ or more than 99% confidence limit, in contrast to when Planck is

combined with BAO or SNIa data. A signal of a closed universe does not serve as

a death-blow to inflationary theory as a whole, as there exists inflationary models

that could produce ΩK,0 ∼ −0.1 [99], however, these models do require additional

fine-tuning in order to achieve such a signal and are therefore unappealing. Recent

research [100] has suggested however, that this apparent detection of a closed

universe could instead be a consequence of the choice of likelihood code for the

Planck data and choice of prior on ΩK,0, further noting that Planck lensing, BAO,

and SNIa data help break geometric degeneracies that exist in the parameters

and as a result all of these additional data sets indicate a preference for a flat

universe. Clearly, the fact that Planck prefers a closed universe cannot easily

be dismissed as insignificant and its relationship to other tensions and problems

present in ΛCDM cosmology beckons to be explored further.

2.3 The dark sector

We mentioned early that in the concordance model, there exists matter Ωm, radi-

ation Ωr, and a cosmological constant ΩΛ which together make up the total energy

budget of the universe. We further remarked that the matter sector Ωm can be

decomposed into two parts, the baryonic sector Ωb and the cold dark matter sec-

tor Ωcdm which is thought to make up ∼ 85% of the total matter energy budget in

our universe. In cosmology, baryonic matter refers to ordinary matter composed

of atoms, protons, and neutrons; whereas the cold dark matter refers to a hitherto

unknown, non-relativistic, non-baryonic matter which interacts via gravity alone.

The existence of baryonic objects, such as massive astrophysical compact halo

objects (MACHOs) like black holes and neutron stars, being responsible for all of

the effects of dark matter has been heavily constrained [101] such that the most

popular candidates for cold dark matter are non-baryonic [102]. To be sure, cold

dark matter in this context does not refer to non-luminous baryonic matter, but

instead refers to non-baryonic matter that requires extensions to the Standard
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Model of particle physics to be made.

The existence of dark matter has its origins from as early as 1884 by Lord

Kelvin [103], when upon observing the velocity dispersion of stars about the

centres of galaxies, he found that there was not enough mass as inferred from

luminosity measurements to explain the velocities, so that therefore there must

be many non-luminous bodies in our galaxies, concluding that “Many of our

supposed thousand million stars, perhaps a great majority of them, may be dark

bodies”. This discrepancy between the observed mass from luminosity measure-

ments and the mass required in order to explain velocity dispersions and galactic

rotation curves was further reported by Jacobus Kapteyn in 1922 [104], Knut

Lundmark in 1930 [105], Jan Oort in 1932 [106], and notably Fritz Zwicky in 1933

[107], indicating that there must exist a large amount of invisible, non-luminous

mass in the universe. Later studies confirmed these results with two important

publications in 1974 by Jaan Einasto and collaborators [108] and Jeremiah Os-

triker and collaborators [109] such that by 1980 there was agreement that dark

matter must make up a large part of the matter content our universe [110]. Since

the 1980s, new techniques and observations have reinforced the existence of dark

matter such as measurements from gravitational lensing by galaxy clusters [111],

N−body structure formation simulations [112], and the matter power spectrum

and Cosmic Microwave Background temperature anisotropies power spectrum

[113].

Whilst cold dark matter is a fundamental ingredient in concordance cosmol-

ogy, the nature of dark matter has yet to be identified. Many extensions to the

Standard Model of particle physics predict dark matter-like particles [114] such

as sterile neutrinos [115], axions [116], and weakly interacting massive particles

(WIMPs) [117], and at present, the search for a dark matter-like particle is one

of the leading challenges in particle physics [118], being currently sought after

in experiments such as the LUX-ZEPLIN experiment [119], the XENON project

[120], and the PandaX-II experiment [121].

We now turn our attention to the second ingredient of the dark sector, the

cosmological constant Λ. We begin by recalling that the cosmological constant Λ



42 2.3

was first introduced by Einstein in order to obtain a static, closed, matter-filled

universe. However, after undeniable evidence for the expansion of the universe

began mounting, Λ fell into disfavour within the scientific community, being

regarded by some as nothing more than an unnecessary parameter and relic of

outdated static-universe theories. In fact, after Einstein’s conversion to belief

in an expanding universe, Einstein once famously remarked to his friend George

Gamow that introducing the cosmological constant was “the biggest blunder” of

his life [122].

Not all were so quick to abandon Λ all together, however; indeed an expanding

universe does not at all rule out the existence of a cosmological constant, but the

existence of Λ, whilst being allowed mathematically, was not physically motivated

and so many thought it best to be avoided. Some notable proponents of Λ who

did not drop their support even after accepting the expansion of the universe

include Eddington [29] and Lemâıtre [123]. Indeed, cosmological models which

excluded the cosmological constant Λ all suffered from the same problem, the age

problem, which has been noted since at least the early 1930s [29, 123]. The age

problem arises in cosmological models without Λ from the fact that they all have

an upper bound on the age of the universe which is less than the apparent age

of objects found in the universe. We can see this by considering the age of the

universe t0 for the general case

t0 = H−1
0

∫ 1

0

da

a
√

Ωr,0a−4 + Ωm,0a−3 + ΩK,0a−2 + ΩΛ,0

, (2.13)

and so for a radiation-only universe we have t0 = (1/3)H−1
0 , for a matter-only uni-

verse we have t0 = (2/3)H−1
0 , and for a curvature-only universe we have t0 = H−1

0 .

For a Λ-only universe we note that the age of the universe is infinite, therefore

the age of the universe for a cosmological model can be arbitrarily increased by

increasing the present-day energy budget of the cosmological constant, ΩΛ,0, in

that model.

The prevailing cosmological model since the scientific community reached a

consensus on the expansion of the universe was the Einstein-de Sitter model
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[124, 31], which describes a flat, matter-only universe. In this model, the age

of the universe is t0 = (2/3)H−1
0 , which using Edwin Hubble’s estimate [28] of

H0 ≈ 500 km s−1 Mpc−1 gives an age of the universe of t0 ≈ 1.3 billion years

which was less than the calculated age of the Earth at the time of at least 2

billion years [125]. We note, however, that the calculated age of the Earth had a

large uncertainty to it and so this problem was not seen as too much of a threat

to the Einstein-de Sitter model by some. For others, this disagreement between

the age of the universe and the age of the Earth was taken more seriously, and

it is thought that this was at least in part one of the motivating factors in the

development of the steady-state model [124] mentioned in chapter 1. It was noted

by Eddington [29] and Lemâıtre [123] that if the cosmological constant is included

in the model, then the age of the universe can be increased to fit observations

since

t0 = H−1
0

∫ 1

0

da

a
√

Ωm,0a−3 + ΩΛ,0

=
2H−1

0

3
√

ΩΛ,0

sinh−1

(√
ΩΛ,0

1− ΩΛ,0

)
,

(2.14)

where we have used the constraint equation (eq. (1.42)) Ωm,0 + ΩΛ,0 = 1, and so

in the limit ΩΛ,0 → 0 we recover the Einstein-de Sitter age of t0 → (2/3)H−1
0

whereas in the limit ΩΛ,0 → 1 we see that the age is non-finite H0t0 → ∞,

therefore any age within 2/3 < H0t0 < ∞ is allowed with the inclusion of the

cosmological constant term in a flat, matter-filled universe, thereby solving the

age problem in isolation. Over time, however, refinements in the determinations

of the Hubble constant brought it down to lower values [126], such that the age of

the universe in the Einstein-de Sitter case increased to acceptable values, thereby

reducing any tensions with measurements of old objects in the universe such as

the Earth.

During the late 1980s and early 1990s, however, determinations of the age of

globular clusters began pushing the minimum age of the universe to ever increas-

ing values [127] which were in tension with the competing values of H0 at the

time coming from independent measurements [128] during a period known as the



44 2.3

“Hubble wars” [129]. This was posing a serious problem for the Einstein-de Sitter

model at the time, since independent measurements of H0 were giving an age of

universe t0 = (2/3)H−1
0 which was lower than the age of globular clusters. This

rose to be a major outstanding problem in modern cosmology until the pioneering

supernovae measurements of the late 1990s [47, 48] strongly supported the inclu-

sion of the cosmological constant into the cosmological standard model thereby

solving the age problem, where we note that the value of ΩΛ,0 as determined by

the most recent Planck [50] release gives an age of universe t0 ≈ 0.95H−1
0 ≈ 13.8

billion years in agreement with recent globular cluster measurements [127].

So we see that the introduction of the cosmological constant solved two impor-

tant problems in cosmology, the age problem and the problem of the late-time

accelerated expansion of the universe as inferred by supernovae measurements

[47, 48]. However, the cosmological constant brought along with it two new

problems that are considered major outstanding problems in cosmology today,

these are the coincidence problem and the cosmological constant problem.

We appear to be living at a very special point in time. Bringing the Friedmann

equation (eq. (1.44)) to mind for a flat universe and noting the dependence on

the scale factor for each energy species, we see that in early times we have an

era of radiation-domination, followed by matter-domination, followed finally by

Λ-domination. Further, unless one happens to be sat at a unique point in the

transitory period from one era of domination to another, the ratios of various

energy species to one another will be many orders of magnitude, for example,

the ratio of the cosmological constant energy density to matter density scales like

ΩΛ/Ωm ∝ a3 and so we can expect the ratio to vary drastically depending on the

time chosen in cosmic history.

Strikingly, we find that the value of the cosmological constant energy den-

sity today is approximately the same as matter energy density [50], that is, that

ΩΛ/Ωm ∼ O(1), putting us at a very unlikely point in time. One can see that

through the cubic dependence on the scale factor, ΩΛ/Ωm ∝ a3, a point in time

that is not much earlier or later than now will give a ratio that is magnitudes

smaller or larger, therefore presenting a serious problem of fine-tuning. An im-
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mediate consequence of this coincidence of energy densities is that the era of

accelerated expansion must have happened recently at z < O(1). The fact that

we exist at the time when the energy densities of the cosmological constant and

matter sector roughly coincide seems extremely unlikely, hence raising a problem

for modern cosmology known as the coincidence problem.

Recall that Einstein introduced Λ into his field equations simply to find a

static, closed, matter-filled universe which he later abandoned. Whilst the in-

troduction of Λ was not a mathematically erroneous move, its existence was not

physically motivated and it was uncertain what it exactly represented. Some, like

Einstein, thought that if cosmology could survive without invoking Λ then all the

better for it, whereas others like Eddington, Lemâıtre, and Richard Tolman [130]

thought that one could not be so quick to dismiss the cosmological constant and

that it might even represent a new fundamental constant of nature [131].

As we saw in chapter 1, the cosmological constant term can be expressed on

the right hand side of the Einstein field equations where its form is the same as

that of vacuum energy. In General Relativity, gravity couples to all energy and

momentum, and so even the vacuum energy should have a gravitational effect. It

is fitting to mention that the problematic role of vacuum energy in cosmology has

been in discussion since at least 1926 when Wilhem Lenz [132] calculated that

if the vacuum energy of empty space did indeed contribute gravitationally then

“the radius of the observable universe would not reach even to the Moon”. The

gravitational effects of the vacuum were largely disregarded by cosmologists sub-

sequently owing to the fact that the contribution must either be zero or extremely

small, far smaller than any theoretical predictions, in order to be consistent with

cosmological observations of the time. Yakub Zel’dovich revisited this problem in

1967 [133] armed with the new language of Quantum Field Theory and considered

a non-vanishing vacuum energy arising from quantum effects, further exploring

the possibility of this non-vanishing vacuum energy contributing to the cosmo-

logical constant. Much like Lenz in 1926, however, he found that theoretical

predictions of the vacuum energy density far exceeded the upper bounds for the

cosmological constant by many orders of magnitude.
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This enormous mismatch between theoretical vacuum energy density predic-

tions and the observed cosmological constant energy density is what is known

as the cosmological constant problem, and has been described as “the worst the-

oretical prediction in the history of physics” [134], with discrepancies typically

being between ∼ 50 − 120 orders of magnitude [135, 136] or solutions requiring

fine-tuning to at least ∼ 50− 120 decimal places depending on how the problem

is formulated [137]. With the resurgence of Λ in the late 1990s, this problem has

been brought to the forefront of physics and remains one of the most important

problems in fundamental physics today.

Quantum Field Theory and General Relativity are two pillars of modern

physics and both have been rigorously tested to extremely high accuracy, with

little evidence that either need to be fundamentally modified in order to explain

our observations of nature and the universe thus far [138, 139]. This level of

disagreement between the two then poses a serious problem for modern physics,

and there are no agreed upon possible solutions that are able to solve this prob-

lem whilst also not creating conflicts with other experiments and observations of

nature and our universe [140, 141, 142, 143, 144, 145].

In an effort to resolve this issue, some have sought anthropic reasoning [146]

which attempts to explain various fine-tuning problems in our universe. The

weak anthropic principle [147] commonly invokes the existence of a multiverse

containing a possibly infinite number of universes with different properties and

then reasons that we observe our particular universe to have certain properties,

such as a small cosmological constant, because if our universe did not have those

properties, such as if our universe had a large cosmological constant, then in-

telligent life would not exist and so there would be no observers to observe the

universe and ask the question in the first place. Some have criticised this way

of reasoning as being unscientific or as simply being a mere tautology that a

universe with observers in it, such as humans, “must be found to possess those

properties necessary for the existence of observers” [148], however, this has not

stopped scientists from using this line of reasoning to calculate bounds on cer-

tain physical parameters. Steven Weinberg in 1987 [149] notably calculated an
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anthropic bound on Λ arguing that if Λ were too large and negative then the uni-

verse would collapse before intelligent life could form, whereas if Λ were too large

and positive then structures such as stars and galaxies could not form, therefore

intelligent life could not exist.

The cosmological constant appears to be the simplest explanation for the re-

cent epoch of accelerated expansion, however, these problems plaguing Λ have led

cosmologists to search for other possible possible sources of late-time accelerated

expansion, and henceforth a plurality of models have ensued [150]. Because of

the many possibilities, cosmologists term any model that seeks to explain the

late-time accelerated expansion as dark energy, which together with dark matter,

make up the dark sector. The reason why these labels gained the “dark” term

is because their existence is inferred via their gravitational effects alone, with

the precise microphysical description of dark matter or dark energy unknown as

of yet. Whatever dark energy is, we know that it in order for it to agree with

cosmological observations, it must mimic the cosmological constant at late-times,

aside from this, however, a whole host of possibilities exist [150].

In the search for alternatives to the cosmological constant which, whilst re-

maining consistent with observations, had a firmer physical grounding and were

less plagued by problems, the idea of dark energy being sourced by a dynamical

scalar field began to take hold in a model called quintessence. In 1988, two seminal

papers were released by Bharat Ratra & Jim Peebles [151] and Christof Wetterich

[152] where they investigated the cosmological consequences of a slow-rolling

scalar field and found that it can mimic the cosmological constant. Then in 1998,

when mounting evidence for an accelerated expansion was building up, Robert

Caldwell, Rahul Dave, and Paul Steinhardt released a foundational paper [153]

where the term “quintessence” was coined and described how this quintessence

scalar field could replace the time-independent cosmological constant Λ whilst

still agreeing with cosmological observations. In particular, if dark energy is due

to a quintessence scalar field then this may help to ameliorate the cosmological

constant problem [154]. At present, one of the most popular candidates for dark

energy is a classical scalar field with a canonical kinetic term and self-interaction
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potential, known as quintessence.

If such a scalar field exists, however, then it is expected to couple to all matter

fields unless forbidden by some symmetry [155], thereby producing a “fifth force”

[156]. Couplings to baryonic matter have been heavily constrained by fifth-force

experiments [157, 158, 159], however, couplings to dark matter are not able to

be probed by conventional fifth-force experiments and the possibility for a po-

tentially strong coupling between dark energy and dark matter remains [160].

Interestingly, if the quintessence scalar field is allowed to interact with dark mat-

ter then this may help to solve the coincidence problem too [161]. Quintessence

models usually assume that the scalar field interacts with matter fields via grav-

ity alone, however, there is no reason to assume this is true until nature proves

otherwise. Models which allow for an interaction between the quintessence scalar

field and matter fields are known as coupled quintessence models [162], or more

generally, models allowing for an interaction between dark energy and matter

fields are known as interacting dark energy models [163], and it is such models

that we will be exploring in depth for the rest of this thesis.

2.4 Conclusions

In this chapter, we explored some of the problems associated with the standard

Big Bang model, namely the flatness and horizon problems, and discussed how

they may be solved if the universe undergoes a period of accelerated expansion in

its very early history, known as the inflationary epoch. We then looked at some

of the tensions present in ΛCDM, with the possibility that they hint at having

to look beyond the ΛCDM model, and the possible resolutions of the tensions

therein. Finally, we explored the enigmatic dark sector and some of the serious

problems surrounding the cosmological constant.

The ΛCDM model is our best cosmological model to date, and yet it is in

enormous disagreement with predictions of fundamental physics with regards

to the vacuum energy density. These considerations and others have propelled

cosmologists to look for alternative theories for dark energy. One such model is



Chapter 2 49

a slow-rolling quintessence scalar field able to mimic the cosmological constant

at late-times and therefore is consistent with cosmological data at present. If

such a scalar field exists then it should couple to and interact with matter fields

in what is known as interacting dark energy. A potentially strong interaction

between dark energy and dark matter is permitted by current data, therefore it

is imperative we explore the possibility of interactions in the dark sector in order

to gain further insight into this obscure sector of nature thought to comprise

∼ 95% of the energy budget of universe [50], of which we know little about.
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3 — Cosmological evolution a-

nd imprints of interacting

dark energy

The quintessence scalar field models are some of the most promising candidates

for dark energy to date, having a clear physical motivation and having been shown

to help alleviate some of the deeply troubling problems affecting the cosmologi-

cal constant, namely the cosmological constant problem [154] and the coincidence

problem [164]. Despite its theoretical flaws, the cosmological constant, which pos-

sesses a static, non-dynamical, and constant energy density, is still the simplest

model for dark energy, introducing a minimal number of extra degrees of freedom

and also strongly agreeing with almost all current cosmological observations [50].

However, cosmological observations are also consistent with a large class of other

models, such as quintessence models [165], and so in the absence of the cosmo-

logical constant being responsible for dark energy, the next simplest model not

plagued by theoretical problems appears to be the dynamical, time-dependent,

and canonical quintessence scalar field.

The existence of a light scalar field is a prediction of many fundamental the-

ories of nature such as string theory [166], supersymmetry [167], pseudo-Nambu-

Goldstone models [168], and scalar-tensor theories of gravitation [169], and a

great deal of effort has been made to try and embed the quintessence scalar field

into a more foundational theoretical framework [165]. Moreover, many of these

theories predict an explicit long-range coupling between the light scalar field and

51
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the various components of the universe such as baryons, radiation, and dark mat-

ter, in a species-dependent manner [170, 167]. It is therefore natural to search

for such interactions in our exploration for the origin of dark energy.

It is interesting to note that scalar fields actually have a long history in cosmol-

ogy, dating back to at least the early 1940s, long before cosmological observations

started demanding the existence of a cosmological constant-like term to dominate

the energy budget at late-times. One area of cosmology where scalar fields play a

foundational role are in so-called scalar-tensor theories of gravity [171], which are

alternative theories to General Relativity whereby gravity is mediated by both a

non-minimally coupled scalar field and a metric tensor field.

These scalar-tensor theories of gravity were founded during the 1940s to 1960s

and had a diverse range of motivations, and often quite different interpretations

too, with one of the earliest notions of scalar-tensor theory being ascribed to

Willy Scherrer in 1941 as motivated by scalar relativistic wave mechanics [172].

Then in 1945, Pascual Jordan [173] presented a scalar-tensor theory which re-

placed the gravitational constant with a time-varying scalar field, as inspired

by Paul Dirac’s Large Numbers Hypothesis [174, 175], set in the framework of

the five-dimensional Kaluza-Klein unified field theory [176] but in the projective

relativity [177] approach. Around the same time, Yves Thiry and collaborators

[178, 179, 180] were working on Kaluza-Klein theory but from a more mathemati-

cal perspective in a unitary field theory approach and arrived at similar results to

Jordan. During the 1950s, Jordan and collaborators began distancing themselves

from unified field theory interpretations and motivations, and started to interpret

their scalar-tensor theories as extended theories of gravitation.

Then in 1961, inspired by Dirac’s Large Numbers Hypothesis, Mach’s prin-

ciple, and the equivalence principle, Carl Brans and Robert Dicke proposed a

scalar-tensor theory, named Brans-Dicke theory [181], which they also presented

as an extended theory of gravity. Interestingly, the Lagrangian they proposed

is the same as proposed by Scherrer in 1941 [172] and the field equations they

derived were derived in 1948 by Günther Ludwig and Claus Müller [182, 183].

Brans and Dicke noted that although “there is a formal connection between this
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theory and that of Jordan...there are differences and the physical interpretation

is quite different” [181], with one important difference being that the scalar field

and the Lagrangian for matter are not directly coupled in the Brans-Dicke ac-

tion. This means that, unlike in Jordan’s theory, the weak equivalence principle

is preserved since all matter species are coupled to the same metric. Note that

although in the action for Brans-Dicke theory the scalar field is not coupled to

the matter Lagrangian, thus satisfying the weak equivalence principle, there does

exist a coupling between the scalar field and matter in the field equations.

The scalar-tensor theory proposed by Brans and Dicke presented itself as a

modest extension of General Relativity and didn’t invoke grand ideas of unified

field theories and hidden extra dimensions, thus, combined with the prestige of

the authors, Brans-Dicke theory made a huge impact in the scientific community

when it made its first appearance and established itself as the paradigmatic scalar-

tensor theory of gravity.

The standard quintessence models of dark energy propose a minimally-coupled

scalar field with a canonical kinetic term that is slow-rolling and dynamical such

that it can provide the late-time accelerated expansion of the universe and also

help to resolve some of the issues surrounding Λ. In a standard Brans-Dicke

model of quintessence, however, the scalar field has a non-canonical kinetic term

and is non-minimally coupled to gravity whilst being minimally coupled to the

matter Lagrangian. The theory presented in this way is said to be in the Jordan

frame, which is when there is an explicit non-minimal coupling between the scalar

field and gravity. However, we are able to recover the case where the quintessence

scalar field is minimally coupled to gravity, known as the Einstein frame, if we

perform a conformal transformation [184] of the metric. If we conformally trans-

form the metric, then we can recover a canonical kinetic term for the scalar

field too, however, this metric transformation introduces a direct, non-minimal

coupling between the scalar field and matter.

In the Einstein frame, this can be seen as the mass of matter particles and

the coupling constants now becoming dependent on the scalar field, whereas in

the Jordan frame, this was encapsulated with the gravitational constant being
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replaced by a dynamical quantity. There are debates about which frame can or

should be considered the “physical” frame [185], however, unless stated otherwise,

we will be working in the Einstein frame where the scalar field has a canonical

kinetic term and is minimally coupled to gravity.

In this context, the standard uncoupled quintessence models can be seen as

conformally transformed Brans-Dicke scalar-tensor theories in the Einstein frame,

however, in contrast to the Brans-Dicke model, they are only minimally coupled

to matter. There is no reason to forbid an interaction between the scalar field

and other fields in the universe at a fundamental level, unless of course, there

exists some symmetry in nature which we have not discovered yet which forbids

such interactions [155]. Although couplings to baryons have been heavily con-

strained by fifth-force experiments [186], couplings to dark matter have not been

so heavily suppressed [187] and given the exotic nature of dark matter and dark

energy, should be thoroughly explored. Although there exists a number of ways

of introducing an interaction between dark energy and dark matter [187], with

some being at a fundamental level and others at a more phenomenological level,

we introduce an interaction by allowing the metric describing the dark matter

sector to become dependent on the DE scalar field, as seen in Brans-Dicke type

theories following a conformal transformation.

In section 3.1 we introduce the action of the interacting dark energy model,

whereby cold dark matter is conformally coupled to the quintessence scalar field,

and look at its background dynamics. Then in section 3.2, we look at the evolu-

tion of perturbations in this theory and discuss their behaviour in the small-scale

Newtonian limit in section 3.3. We then look at some of the imprints this IDE

model has on the background and perturbation level in section 3.4, finally con-

cluding in section 3.5.

3.1 Model and background evolution

The interaction between the dark energy (DE) scalar field and dark matter (DM)

field is introduced in a scalar-tensor theory setup whereby the DM particles travel
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along geodesics defined by a DE-dependent metric g̃µν . The total action for the

IDE theory in the Einstein frame is

Stot =

∫
d4x

√
−g
[
M2

Pl

2
R− 1

2
gµν∂µϕ ∂νϕ− V (ϕ) + LSM(gµν , σi)

]

+

∫
d4x
√

−g̃ L̃DM(g̃µν , ψi),

(3.1)

where gµν is the minimally coupled metric with determinant g, MPl = κ−1 =

(8πG)−1/2 is the reduced Planck mass such that MPl = 2.4 × 1018 GeV, G is

the Newtonian gravitational constant, and R is the Ricci scalar. The DE scalar

field ϕ has a canonical kinetic term and potential V (ϕ). The Standard Model

(SM) sector is described by the Lagrangian LSM whereby SM particles travel

along geodesics defined by the minimally-coupled metric gµν where σi are the

SM fields. The SM Lagrangian can be further decomposed into a relativistic (r)

and baryonic sector (b) such that LSM = Lr + Lb. Finally, the DM sector is

described by the Lagrangian L̃DM whereby DM particles travel along geodesics

defined by the modified DE-dependent metric g̃µν where ψi are the DM fields. We

will assume that there is only one DM field for the rest of this chapter. We see

that in this scalar-tensor theory setup, the action in the Einstein frame describes

only the DM particles as having a direct interaction with the DE scalar field. The

DM particles experience a modified gravitational field g̃µν which depends directly

on the DE field ϕ and therefore experience an additional ‘fifth-force’ as mediated

by ϕ. We investigate couplings of the form

g̃µν = C(ϕ)gµν , (3.2)

where C(ϕ) is the conformal coupling function, but remark that, in general, a

disformal term is allowed too [188].

Now that we have defined the action of our theory, we may vary it with respect

to the metric gµν to derive the equations of motion. Doing so, we recover the
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Einstein field equations

Rµν −
1

2
gµνR = κ2

(
T ϕ
µν + T SM

µν + TDM
µν

)
, (3.3)

where the energy-momentum tensors are defined by

T ϕ
µν := ∂µϕ∂νϕ− gµν

(
1

2
gρσ∂ρϕ∂σϕ+ V (ϕ)

)
, (3.4)

T SM
µν := − 2√

−g
δ (

√
−gLSM)

δgµν
, TDM

µν := − 2√
−g

δ
(√

−g̃L̃DM

)
δgµν

, (3.5)

for the DE, SM, and DM fields respectively. The SM particles follow the ordinary

conservation equation

∇µT SM
µν = 0, (3.6)

however, owing to the interaction between the DE and DM fields, their conserva-

tion equations are now altered thus reflecting an exchange of energy between the

species. The conservation equations for the DE and DM fluids respectively are

∇µT ϕ
µν = −Q∇νϕ, (3.7)

∇µTDM
µν = Q∇νϕ, (3.8)

where the coupling Q is defined by [189]

Q =
1

2

d lnC

dϕ
TDM , (3.9)

and where TDM is the trace of the DM energy-momentum tensor. Note that the

total energy-momentum tensor T tot
µν = T ϕ

µν + T SM
µν + TDM

µν is conserved, ∇µT tot
µν =

0, hence is consistent with the twice-contracted Bianchi identity (eq. (1.17))
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∇µGµν = 0, thus this coupling preserves general covariance.

Now let us specify the metric gµν to be the flat FLRW metric such that the

line element in Cartesian coordinates is given by

ds2 = gµνdx
µdxν = −a2(τ)(−dτ 2 + δijdx

idxj) (3.10)

where a(τ) is the scale factor in conformal time τ and δij is the Kronecker delta.

Furthermore, let us describe each energy species i by the perfect fluid energy-

momentum tensor (eq. (1.28))

T (i)
µν = (ρi + Pi)UµUν + Pigµν , (3.11)

where ρi and Pi are the fluid’s energy density and pressure in the Einstein frame

respectively, and where Uµ is the four-velocity of the fluid. The conservation

equation for the scalar field (eq. (3.7)) implies

□ϕ− V,ϕ = −Q, (3.12)

which, using the flat FLRW metric (eq. (3.10)), gives the modified Klein-Gordon

equation

ϕ′′ + 2Hϕ′ + a2V,ϕ = a2Q, (3.13)

where a prime signifies a derivative with respect to conformal time and where

H := a′/a is the conformal Hubble parameter. Furthermore, the conservation

equations for the SM and DM fluids (eqs. (3.6) and (3.8)) yield

ρ′r + 4Hρr = 0,

ρ′b + 3Hρb = 0,

ρ′c + 3Hρc = −Qϕ′,

(3.14)
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and the Friedmann equations are given by

H2 =
κ2

3
a2 (ρr + ρb + ρc + ρϕ) , (3.15)

H′ = −κ
2

6
a2 (2ρr + ρb + ρc + ρϕ + 3Pϕ) , (3.16)

where the relativistic, baryonic, DM, and DE sectors are represented by the

subscripts r, b, c and ϕ respectively. If we relax the requirement of wc = 0, then

the coupling Q given by eq. (3.9) is

Q = −1

2

d lnC

dϕ
(1− 3wc)ρc. (3.17)

3.2 Perturbations

Let us now look at the evolution of scalar perturbations in our coupled quintessence

model where we allow the coupled DM fluid to have a general equation of state

wc. We will start by looking at the evolution of perturbations in the synchronous

gauge and then follow on by obtaining the perturbation equations in the confor-

mal Newtonian gauge.

3.2.1 Synchronous gauge

We follow the convention of Chung-Pei Ma and Edmund Bertschinger [190] in

this section and start by writing out the line element in the synchronous gauge

ds2 = a2(τ)
[
−dτ 2 + (δij + hij) dx

idxj
]
, (3.18)

where hij is the metric perturbation. We work in the Fourier-space k, where

k is the wavenumber of the Fourier mode, and where the scalar mode of hij is

characterised by the two scalar fields h(k⃗, τ) and η(k⃗, τ) such that

hij(x⃗, τ) =

∫
d3keik⃗·x⃗

(
k̂ik̂jh(k⃗, τ) + (k̂ik̂j −

1

3
δij)6η(k⃗, τ)

)
, (3.19)
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where wavevector k⃗ = kk̂ and the trace of the metric perturbation hij is denoted

by h in both real and Fourier space. The zeroth-order energy-momentum tensor

is

Tµν = (ρ+ p)ūµūν + pgµν , (3.20)

where ρ and p are the fluid’s energy density and pressure respectively and where

ūµ is the zeroth-order four-velocity of the fluid. We now perturb the energy-

momentum tensor to obtain its first-order perturbation given by

δT µ
ν = (δρ+ δp) ūµūν + δpδµ ν + (ρ+ p) (δuµūν + ūνδuν) + pΠµ

ν , (3.21)

where δuµ is the first-order perturbation of the four-velocity and Πµν is the trace-

less anisotropic stress tensor which we allow for in the perturbed fluid. We now

perturb the Einstein field equations to obtain

δGµ
ν = 8πG

∑
δT µ

ν , (3.22)

where the sum is over the radiation (r), baryon (b), DM (c), and DE (ϕ) fluids.

Thus in k-space, the perturbed Einstein field equations lead to

k2η − 1

2
Hh′ = −4πGa2

∑
δρ,

k2η′ = 4πGa2
∑

ρ(1 + w)θ,

h′′ + 2Hh′ − 2k2η = −24πGa2
∑

δp,

h′′ + 6η′′ + 2H (h′ + 6η′)− 2k2η = −24πGa2
∑

ρ(1 + w)σ,

(3.23)

where a prime denotes a derivative with respect to conformal time; the sum is

over the radiation, baryon, DM, and DE fluids; θ is the divergence of the fluid

velocity, and σ = 2wΠ/3(1 + w) is the anisotropic shear where Π is given by

Πij = (−k̂ik̂j + 1
3
δij)Π [191].

The first-order perturbation of the conservation equations for the uncoupled
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relativistic (r) and baryon (b) species reads

δT (i) µ
ν;µ = 0, (3.24)

which leads to

δ′i + 3H
(
δpi
δρi

− wi

)
δi = − (1 + wi)

(
θi +

h′

2

)
,

θ′i +

[
H (1− 3wi) +

w′
i

1 + wi

]
θi =

δpi
δρi

k2δi
1 + wi

− k2σi,

(3.25)

where species i is either relativistic (r) or baryonic (b) and where δi = δρi/ρi is

the density contrast for species i. Recall that the equation of state relates the

pressure of a fluid to its density and is a constant for relativistic and baryonic

fluids such that for the fluid describing radiation we have wr = δpr/δρr = 1/3

and for the fluid describing non-relativistic baryons we have wb = δpr/δρr ≪ 1.

Furthermore, the baryons have a vanishing shear stress σb = 0 whilst the shear

stress of the radiation fluid cannot be neglected.

Now, for the coupled DM fluid (c) with a general equation of state wc and

vanishing shear σc = 0, recall that the conservation equation has been altered due

to an interaction with the DE scalar field. The first-order perturbation equations

read therefore [192]

δ′c + 3H
(
δpc
δρc

− wc

)
δc = −(1 + wc)

(
θc +

h′

2

)
+
Q

ρc
ϕ′δc −

Q

ρc
δϕ′ − ϕ′

ρc
δQ,

θ′c +

[
H(1− 3wc) +

w′
c

1 + wc

]
θc =

δpc
δρc

k2δc
1 + wc

+
Q

ρc
ϕ′θc −

Q

ρc(1 + wc)
k2δϕ.

(3.26)

For the last species, the DE scalar field ϕ, we perturb the conservation equa-

tion, δT
(ϕ) µ

ν;µ = 0, to obtain the perturbed Klein-Gordon equation in k-space

[193]

δϕ′′ + 2Hδϕ′ +
(
a2V,ϕϕ + k2

)
δϕ+

h′

2
ϕ′ = a2δQ, (3.27)



Chapter 3 61

with the first-order perturbation of the coupling Q reading

δQ = −C,ϕ

2C
ρc

(
δc

(
1− 3

δpc
δρc

)
+ δϕ

(
C,ϕϕ

C,ϕ

(1− 3wc) +
2Q

ρc

))
. (3.28)

Thus the perturbation equations for the coupled DM and DE fluids (eqs. (3.26)

and (3.27)) now read

δ′c+3

(
δpc
δρc

− wc

)(
H +

1

2
(lnC),ϕϕ

′
)
δc =

− (1 + wc)

(
θc +

h′

2

)
+

1

2
(1− 3wc) [(lnC),ϕδϕ

′ + (lnC),ϕϕϕ
′δϕ] ,

(3.29)

θ′c +

[
H(1− 3wc)+

w′
c

1 + wc

+
1

2
(lnC),ϕ(1− 3wc)ϕ

′
]
θc =

k2
[
δpc
δρc

δc
1 + wc

+
1

2
(lnC),ϕ

(
1− 3wc

1 + wc

)
δϕ

]
,

(3.30)

for the coupled DM fluid and

δϕ′′ + 2Hδϕ′ +

[
k2 + a2V,ϕϕ +

1

2
a2ρc(1− 3wc)(lnC),ϕϕ

]
δϕ =

− 1

2
h′ϕ′ − 1

2
a2ρc(lnC),ϕ

(
1− 3

δpc
δρc

)
δc,

(3.31)

for the coupled DE fluid.

3.2.2 Newtonian gauge

We now derive the perturbation equations in the conformal Newtonian gauge

[194]. To begin, let us start with the line element

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx

idxj
]
, (3.32)
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where Ψ and Φ are the scalar potentials. We perturb the field equations to get

k2Φ + 3H(Φ′ +HΨ) = −4πGa2
∑

δρ,

k2(Φ′ +HΨ) = 4πGa2
∑

ρ(1 + w)θ,

Φ′′ +H(Ψ′ + 2Φ′) + Ψ(H2 + 2H′) +
k2

3
(Φ−Ψ) = 4πGa2

∑
δp,

k2(Φ−Ψ) = 12πGa2
∑

ρ(1 + w)σ,

(3.33)

where the sum is over the radiation (r), baryon (b), DM (c), and DE (ϕ) fluids;

and where the shear stress is defined as above in the synchronous gauge case.

The perturbed conservation equations for the uncoupled radiation and baryon

fluids yield

δ′i + 3H
(
δpi
δρi

− wi

)
δi = −(1 + wi)(θi − 3Φ′),

θ′i +

[
H(1− 3wi) +

w′
i

1 + wi

]
θi = k2

[
Ψ+

δpi
δρi

δi
1 + wi

]
− k2σi,

(3.34)

where species i is either relativistic (r) or baryonic (b). For the coupled DM fluid

with equation of state wc and vanishing shear σc = 0 we obtain

δ′c + 3H
(
δpc
δρc

− wc

)
δc = −(1 + wc)(θc − 3Φ′) +

Q

ρc
ϕ′δc −

Q

ρc
δϕ′ − ϕ′

ρc
δQ,

θ′c +

[
H(1− 3wc) +

w′
c

1 + wc

]
θc = k2

[
Ψ+

δpc
δρc

δc
1 + wc

]
+
Q

ρc
ϕ′θc −

Q

ρc(1 + wc)
k2δϕ,

(3.35)

and for the coupled DE fluid, the perturbed modified Klein-Gordon equation

reads

δϕ′′+2Hδϕ′+(k2+a2V,ϕϕ)δϕ = (Ψ′+3Φ′)ϕ′−2a2V,ϕΨ+a2δQ+2a2QΨ. (3.36)
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The perturbation of the coupling Q in the Newtonian gauge is [189]

δQ = −C,ϕ

2C
ρc

(
δc

(
1− 3

δpc
δρc

)
+ δϕ

(
C,ϕϕ

C,ϕ

(1− 3wc) +
2Q

ρc

))
, (3.37)

which means we may write the perturbation equations for the coupled DM and

DE fluids as

δ′c+3

(
δpc
δρc

− wc

)(
H +

1

2
(lnC),ϕϕ

′
)
δc =

− (1 + wc)(θc − 3Φ′) +
1

2
(1− 3wc) [(lnC),ϕδϕ

′ + (lnC),ϕϕϕ
′δϕ] ,

(3.38)

θ′c +

[
H(1− 3wc)+

w′
c

1 + wc

+
1

2
(lnC),ϕ(1− 3wc)ϕ

′
]
θc =

k2
[
Ψ+

δpc
δρc

δc
1 + wc

+
1

2
(lnC),ϕ

(
1− 3wc

1 + wc

)
δϕ

] (3.39)

for the coupled DM fluid and

δϕ′′ + 2Hδϕ′ +

[
k2 + a2V,ϕϕ +

1

2
a2ρc(1− 3wc)(lnC),ϕϕ

]
δϕ =

(Ψ′ + 3Φ′)ϕ′ − 1

2
a2ρc(lnC),ϕ

(
1− 3

δpc
δρc

)
δc

−a2 [2V,ϕ + (lnC),ϕ(1− 3wc)ρc] Ψ,

(3.40)

for the coupled DE fluid.

3.3 Small scale limit

Let us now look at the small-scale Newtonian limit for the perturbation equations.

In particular, let us look at the general case for a coupled fluid with vanishing

anisotropic stress, such that Ψ = Φ, and in the Newtonian limit λ̂ = H/k ≪ 1.

We arrive at the following equations for the potential Φ and its conformal time
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derivative Φ′ [195]

Φ ≈ − λ̂
2

2

[
κ2

H2
(3Hϕ′δϕ+ ϕ′δϕ′ + a2V,ϕδϕ) + 3

∑
Ωiδi

]
, (3.41)

Φ′ ≈ 1

2

(
κ2ϕ′δϕ− 2HΦ

)
, (3.42)

where the sum is over the radiation (r), baryon (b), and coupled DM (c) fluids.

In this limit, the coupled DE fluid follows the perturbation equation

δϕ′′ + 2Hδϕ′ +H2λ̂−2δϕ ≈ a2δQ. (3.43)

If we apply the small-scale limit to the homogeneous solution of eq. (3.43), we find

that this solution has a vanishing contribution after averaging out. Furthermore,

if we average over the rapid oscillations of δϕ, and hence neglect the δϕ′ and δϕ′′

terms, we are left with an approximate inhomogeneous solution [192]

δϕ ≈ λ̂2a2H−2δQ. (3.44)

The perturbation of the coupling Q is now approximated by [188, 196]

δQ ≈ Qδc, (3.45)

in this limit, and the gravitational potential Φ by

Φ ≈ −3

2
λ̂2
∑

Ωiδi, (3.46)

where the sum is over the radiation (r), baryon (b), and coupled DM (c) fluids.

The density contrast perturbation equation for the coupled DM fluid now

reads

δ′′c +Heffδ
′
c −

3

2
H2Geff

G
Ωcδc =

3

2
H2(Ωbδb + Ωrδr), (3.47)

where the coupled DM fluid experiences an effective Hubble parameter and ef-

fective gravitational constant given by [188]
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Heff = H− Q

ρc
ϕ′, Geff = G

(
1 +

2

κ2
Q2

ρ2c

)
, (3.48)

thus the damping term in the evolution equation for the coupled DM density

contrast perturbations (eq. (3.47)) and the effective gravitational constant are

altered in the presence of a dark sector interaction and depend on the strength

of the coupling. One feature to note is that the effective gravitational constant

Geff is enhanced regardless of the sign of Q, meaning that the fifth-force between

DM particles is always attractive.

3.4 General imprints on background and per-

turbation level cosmology

Let us now briefly discuss some of the intriguing features of the coupled quintess-

ence (CQ) model, how it differs from ΛCDM and uncoupled quintessence (UQ)

models, and how it may be constrained using cosmological observations. To

begin, we must first specify the two new functions that the coupled quintessence

field introduces, namely the conformal coupling function C(ϕ) and the scalar field

potential V (ϕ). A widely-studied form for the conformal coupling function and

scalar field potential that arises naturally in many fundamental theories, such as

in supergravity [197, 198] and string theory [199], is the exponential form. These

read

C(ϕ) = e2αϕ/MPl , V (ϕ) = V 4
0 e

−λϕ/MPl , (3.49)

where the conformal coupling constant α, the slope of the scalar field potential

λ > 0, and the mass scale V0 are all constants. In this setup, the effective gravita-

tional constant between DM particles (eq. (3.48)) is constant, and the mass scale

for the potential V0 is obtained via a shooting mechanism in order to satisfy the

constraint equation (eq. (1.42)). Therefore, the IDE model introduces two new

independent parameters, the coupling constant α and slope of the potential λ. We

have implemented the background and perturbation equations for the interacting

dark energy model into a modified version of the CLASS [61] Boltzmann code and
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use cosmological parameter values from the 2018 Planck [50] bestfit results for

the baseline model where appropriate in order to obtain the numerical results for

the plots and tables in this section. Note that although we have implemented

the perturbation equations in both the synchronous gauge and Newtonian gauge,

we use the synchronous gauge for calculations in this section and for the rest of

this thesis. To be concrete, these are the present-day reduced baryon density

parameter Ωbh
2 = 0.02236, the present-day reduced cold dark matter density

parameter Ωcdmh
2 = 0.1202, the angular size of the sound horizon at decoupling

100θs = 1.04090, the amplitude of the primordial curvature power spectrum

ln(1010As) = 3.045, the spectral index of the primordial curvature power spec-

trum ns = 0.9649, and the optical depth at reionisation τreio = 0.0544, where h is

the reduced Hubble constant defined by H0 = 100h kms−1Mpc−1 and where the

cosmological parameters are as defined in section 1.2.3.

First, let us look at the background dynamics of the theory. One of the key

features of the coupled quintessence model is that the interaction between the

scalar field and dark matter can be seen to result in an energy exchange between

the two components (eqs. (3.13) and (3.14)). Through the Friedmann equations

(eqs. (3.15) and (3.16)), the coupled quintessence model can be seen to affect

expansion history as shown in Figure 3.1, where we plot the ratio of the Hubble

parameter to its present-day value H0 for the ΛCDM, UQ, and CQ models. In

the upper panel we plot the CQ model in the α > 0 regime and in the lower

panel we plot the CQ model in the α < 0 regime. The slope of the potential λ

is set to λ = 0.5 in the UQ and CQ models, with the uncoupled quintessence

model being equivalent to a coupled quintessence model with α = 0. We see in

Figure 3.1 that the uncoupled quintessence model deviates only slightly from the

ΛCDM model, whereas in the CQ models, both in the α > 0 and α < 0 case, the

expansion history deviates more significantly, with the deviation increasing with

coupling strength |α|. This altered expansion history directly affects background

measurements such as distance measurements. Relevant background measure-

ments that are impacted by the presence of a dark sector interaction include the

angular diameter distance DA(z) (eq. (1.55)) and the luminosity distance DL(z),
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Figure 3.1: The evolution of the Hubble parameter H(z) normalised by its present-day value
H0 for the ΛCDM, UQ, and CQ models. Four CQ models are chosen with different values
picked for the conformal coupling constant α as appearing in eq. (3.49). In the upper panel we
plot the α > 0 case and in the lower panel we plot the α < 0 case for the CQ models. The
slope of the scalar field potential is set to λ = 0.5 in the UQ and CQ models.

which is related to the angular diameter distance by

DL(z) = (1 + z)2DA(z). (3.50)

Background observations such as BAO measurements [93] and SNIa distance

measurements [94] can therefore help to constrain this interacting dark energy

model and indeed will be used in subsequent chapters where we perform data

analysis on variety of IDE models.

Owing to an energy exchange in the dark sector, the DM fluid no longer scales
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like the baryon fluid. From the viewpoint of the action, the introduction of this

coupling results in the masses of the DM particles mDM to become dependent on

the scalar field [171] such that

mDM(ϕ) ∝
√
C(ϕ), (3.51)

and so if C(ϕ) grows then the masses of the DM particles grow and if C(ϕ)

decreases, then the masses of the DM particles also decrease. Alternatively, we

may look at the continuity equation for the coupled DM fluid (eq. (3.14)) and

find that

ρc = ρc,0
√
C(ϕ) a−3, (3.52)

in contrast to uncoupled baryonic matter where the energy density scales like

ρb = ρb,0 a
−3. If the conformal coupling function decreases with the scale factor,

then the DM fluid dilutes faster than baryons, whereas if the coupling increases

with the scale factor, then the DM fluid dilutes slower than baryons.

One of the effects this altered scaling of the DM energy density has on the

background level is that if one assumes the interacting DM fluid scales like

baryons, then the effective DE fluid can appear to have phantom-like behaviour

with an equation of state w < −1 [200]. In the context of the Friedmann equation

(eq. (3.15)), we may define an effective DE fluid which absorbs the part of the

DM fluid that does not scale like ρ ∝ a−3 and then investigate its equation of

state. Writing out the first Friedmann equation (eq. (3.15)) we have

H2 =
κ2

3
a2 (ρr + ρb + ρc + ρϕ)

=
κ2

3
a2
(
ρr + ρb + ρc,0a

−3 + ρϕ + ρc − ρc,0a
−3
)

=
κ2

3
a2
(
ρr + ρb + ρc,0a

−3 + ρDE

)
,

(3.53)

where we have defined the energy density of the effective DE fluid to be ρDE :=
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ρϕ + ρc − ρc,0a
−3. The equation of state for this effective DE fluid is

wDE =
pϕ
ρDE

=
pϕ

ρϕ + ρc − ρc,0a−3
,

(3.54)

and so, in the presence of a dark sector interaction, the equation of state of the

effective DE fluid, wDE, deviates from the equation of state of the scalar field

wϕ = pϕ/ρϕ in the general case. The equation of state of the quintessence scalar

field is given by

wϕ = pϕ/ρϕ

=
ϕ′2/(2a2)− V (ϕ)

ϕ′2/(2a2) + V (ϕ)
,

(3.55)

where we have used pϕ = ϕ′2/(2a2) − V (ϕ) and ρϕ = ϕ′2/(2a2) + V (ϕ) for the

pressure and energy density of the scalar field respectively. One can see that,

for a general quintessence scalar field, the equation of state is bounded below by

wϕ ≥ −1 and therefore avoids the phantom condition w < −1. However, for the

effective DE fluid, the equation of state wDE now has an altered lower bound

depending on how the coupled DM fluid scales. In the case where α > 0, it is

possible to achieve wDE < −1 for the effective DE fluid at some earlier point in

cosmic history.

In Figure 3.2 we plot the effective DE equation of state parameter wDE for the

ΛCDM model which we define to be wDE := −1, the uncoupled quintessence, and

the coupled quintessence models. We see that in the lower panel of Figure 3.2,

that the CQ(α < 0) models have a less negative equation of state when compared

to the UQ model, however, in the upper panel of Figure 3.2, for the CQ(α > 0)

model, the effective equation of state for the CQ models crosses the phantom line

wDE < −1 in both cases. Note that the possibility of an actual phantom fluid

existing is disfavoured because it would violate the null energy condition [201].

It has therefore been suggested [200] that if cosmological observations seem to

indicate a preference for a phantom-like dark energy fluid in earlier cosmic history
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Figure 3.2: The evolution of the effective DE equation of state parameter wDE(z) for the
ΛCDM, UQ, and CQ models. Four CQ models are chosen with different values picked for the
conformal coupling constant α as appearing in eq. (3.49). In the upper panel we plot the α > 0
case and in the lower panel we plot the α < 0 case for the CQ models. Note that the effective
DE equation of state, wDE , in the CQ(α > 0) models crosses the phantom line w = −1. The
slope of the scalar field potential is set to λ = 0.5 in the UQ and CQ models.

w(z) < −1, then this is strongly indicative of an interacting dark sector, thus

making the determination of the evolution history of the dark energy equation of

state parameter an area of utmost importance in present-day cosmology [202].

The DE-dependent scaling of the DM energy density alters the ratio of the

baryon to DM energy density throughout cosmic history, including at photon de-

coupling, and therefore the DE-DM coupling directly affects the CMB anisotropies

[162]. Some of the immediate effects the coupling has on the CMB temperature

anisotropies power spectrum include a shifting of peaks due to an altered sound
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Figure 3.3: The CMB temperature anisotropy power spectrum for the ΛCDM, UQ, and CQ
models where Cℓ is the power spectrum of the anisotropies in units µK2 and ℓ is the multipole
moment [3]. Four CQ models are chosen with different values picked for the conformal coupling
constant α as appearing in eq. (3.49). In the upper panel we plot the α > 0 case and in the
lower panel we plot the α < 0 case for the CQ models. The slope of the scalar field potential
is set to λ = 0.5 in the UQ and CQ models.

horizon and a change in amplitude of the peaks due to change in growth his-

tory, as well as an integrated Sachs-Wolfe effect [203, 193]. In Figure 3.3 we plot

the CMB temperature anisotropies for the ΛCDM, uncoupled quintessence, and

coupled quintessence models. We clearly see in Figure 3.3 that the coupling has

a distinctive effect on the CMB temperature anisotropy power spectrum. The

uncoupled quintessence model is in good agreement with ΛCDM, however, the

CQ models deviate from the ΛCDM model with the deviation increasing with

coupling strength |α| in both the α > 0 and α < 0 case. Through the distinctive
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Model ∆G % σ8
ΛCDM 0 0.824
UQ 0 0.818

CQ (α = −0.05) 0.50 0.854
CQ (α = 0.05) 0.50 0.853
CQ (α = −0.15) 4.5 1.23
CQ (α = 0.15) 4.5 1.21

Table 3.1: The values of ∆G and σ8 for the ΛCDM, UQ, and CQ models where ∆G :=
(Geff/G) − 1 describes the enhancement of the effective gravitational constant compared to
the Newtonian gravitational constant. Four CQ models are chosen with different values picked
for the conformal coupling constant α as appearing in eq. (3.49). Note that the effective
gravitational constant experienced between DM particles, Geff , does not depend on the direction
of energy transfer between DE and DM, and that the stronger the coupling, the greater the
amount of matter clustering. The slope of the scalar field potential is set to λ = 0.5 in the UQ
and CQ models.

imprints coupled quintessence has on the CMB anisotropies, we may use obser-

vations of the CMB anisotropies, as measured by Planck [50] for example, to

constrain this coupled quintessence model.

The introduction of the coupling results in the growth of matter being en-

hanced at small scales, thus resulting in a larger σ8 when compared to uncoupled

models [193]. We may see this effect by comparing the matter power spectrum for

the ΛCDM, uncoupled quintessence, and coupled quintessence models as in Fig-

ure 3.4. We can see that when compared to ΛCDM and uncoupled quintessence,

the coupled quintessence models have an enhancement in power at smaller scales,

with the enhancement increasing with an increase in coupling strength |α|. One

measure of the amplitude of structure is the σ8 parameter mentioned in section 2.2

which provides a normalisation for the linear-theory matter power spectrum.

In Table 3.1 we report the derived values of σ8 for the ΛCDM, UQ, and

CQ models, as well as the percentage enhancement of the effective gravita-

tional constant compared to the Newtonian gravitational constant where ∆G :=

(Geff/G)− 1. We see that the coupled models have an enhanced σ8 compared to

the uncoupled quintessence model, with the enhancement increasing with |α| in
both the α < 0 and α > 0 case, therefore the introduction of the coupling has
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Figure 3.4: The present-day matter power spectrum for the ΛCDM, UQ, and CQ models
where P (k) is the matter power spectrum in units (Mpc/h)3 and k is the wavenumber in units
h/Mpc with h being the dimensionless Hubble parameter defined in eq. (1.50). Four CQ models
are chosen with different values picked for the conformal coupling constant α as appearing in
eq. (3.49). In the upper panel we plot the α > 0 case and in the lower panel we plot the α < 0
case for the CQ models. Note the enhancement in power for the CQ models in both the α > 0
and α < 0 case. The slope of the scalar field potential is set to λ = 0.5 in the UQ and CQ
models.

a distinctive effect on large-scale structure (LSS) in the universe. Cosmological

observations providing information on the growth and amplitude of structure,

such as LSS data from cosmic shear experiments [72, 73, 74] and galaxy cluster

measurements [204], may therefore be used in cosmological data analysis in order

to further constrain this IDE model.

We have briefly seen how the introduction of a coupling between DM and

DE affects cosmological imprints on the background and perturbation level, and
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how these imprints can help us to constrain the IDE model using cosmological

observations such as from CMB, BAO, SNIa, and LSS measurements. Although

we have only briefly examined these effects at a surface level, more in-depth and

thorough treatments on the imprints of IDE exist in literature, for example in

[193, 205, 206, 192, 207, 208, 209, 210, 211, 212, 196, 188, 213, 214, 215].

3.5 Conclusions

In this chapter, we introduced a general coupled quintessence model where the DE

scalar field is coupled directly to DM. In our formulation, we begin with an action

where the DM sector is described by a DE-dependent metric which is related

to the minimally-coupled metric through a conformal coupling. The evolution

equations for the uncoupled radiation and baryon fluids are unaltered, however,

the conservation equations for the coupled DM and DE fluids are modified thus

reflecting an energy exchange between the two fluids.

We then looked at the evolution of perturbations in the case of an uncoupled

radiation and baryonic sector, and a DM sector coupled to a quintessence scalar

field, finding that at small scales, the damping term in the density contrast evo-

lution equation for the coupled DM fluid is altered and the effective Newtonian

gravitational constant is enhanced.

Finally, we looked at some of the cosmological imprints of the IDE model at

the background and perturbation level, finding that distinctive observationally

relevant imprints exist, for example, in the CMB anisotropies, distance measure-

ments, and LSS measurements. We are now at a stage where we may probe these

interacting dark energy models using cosmological observations and constrain

them to see if indeed there are any hints of an interaction in the dark sector.
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ing dark energy

Given the current bounty of high precision cosmological data, we are able to

comprehensively explore cosmological models at a wide range of different points

in the cosmic history of our universe [216]. From these observations, we discovered

the need for two new ingredients in its makeup, the cosmological constant Λ and

cold dark matter (CDM), together forming two vital components in the standard

model of cosmology, the ΛCDM model [50]. In chapter 2, we saw that, despite

its many successes, this model is plagued by some issues surrounding Λ which

has led cosmologists to search for alternative explanations for dark energy.

One of the most well-motivated explanations for dark energy is a quintessence

scalar field [165], which should theoretically be allowed to couple to the various

energy species of our universe if it exists [155]. We saw that whilst couplings to

baryons have been heavily constrained [186], the same is not true with couplings

to dark matter [187]. We therefore introduced an interacting dark energy model

with an interacting dark sector in chapter 3 and explored its evolution at the

background and perturbation level, as well as some imprints it may have on

observationally relevant cosmological probes. We found that the IDE model does

affect background and perturbation level probes in a distinct way, and therefore

it is natural that we should seek to constrain this model using cosmological data

to see if there are any signals of a dark sector interaction.

In section 4.1 we introduce the interacting dark energy model and then in sec-

tion 4.2 we describe our methodology and the data sets used in our cosmological

75
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data analysis. We present the results of our parameter exploration in section 4.3,

finally concluding in section 4.4.

4.1 Interacting dark energy model

In this chapter, we consider two specific models based on the general IDE model

introduced in chapter 3. The first is the IDE model seen in section 3.4 where

the conformal coupling function and scalar field potential take on an exponential

form. This model will be denoted as M1 henceforth and is specified by

C(ϕ) = e2αϕ/MPl , V (ϕ) = V 4
0 e

−λϕ/MPl , (4.1)

where the conformal coupling constant α, the slope of the scalar field potential

λ > 0, and the mass scale V0 are all constants. In the case where α > 0, this

model is called M1+, and in the case where α < 0, this model is called M1−.

The second model we consider is where the conformal coupling function takes

on an exponential form, however, the scalar field potential is now of an inverse

power-law form. This form of potential has a long history in quintessence models,

appearing in one of the seminal 1988 papers by Peebles and Ratra [217]. The

inverse power-law potential admits “tracker” solutions [218] which help to allevi-

ate the coincidence problem, and further, this form of potential can be motivated

from fundamental particle physics theories such as in supersymmetry [219]. To

be concrete, this IDE model, which will be denoted as M2 henceforth, is specified

by

C(ϕ) = e2αϕ/MPl , V (ϕ) = V 4
0

(
ϕ

MPl

)−λ

, (4.2)

where the conformal coupling constant α, the slope of the scalar field potential

λ > 0, and the mass scale V0 are all constants. In the case where α > 0, this

model is called M2+, and in the case where α < 0, this model is called M2−.

In this setup, the effective gravitational constant between DM particles is

constant and the mass scale for the potential V0 is obtained via a shooting mech-

anism in order to satisfy the constraint equation (eq. (1.42)) in both IDE models.
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Note that in M1, the initial value of the scalar field when simulations begin,

ϕini = ϕ(aini) where aini = 10−14, plays no role in the evolution equations, with

varying ϕini being equivalent to varying V0 which is shot for, therefore we fix

ϕini = 1MPl without loss of generality. Hence M1 introduces two extra parame-

ters, the conformal coupling parameter α and slope of the potential λ. In M2,

however, ϕini does play a role and so is allowed to vary as an independent pa-

rameter. Thus M2 introduces three extra parameters, the coupling parameter α,

slope of the potential λ, and initial scalar field value ϕini.

4.2 Methodology and observational data

In order to numerically study the evolution of the background and cosmological

perturbations for the IDE model, we use a modified version of the CLASS code [61]

as seen in section 3.4. We confront the IDE model with data through cosmological

parameter exploration using the Markov Chain Monte Carlo (MCMC) sampling

package MontePython [220, 221], interfaced with CLASS, in conjunction with the

observational data sets outlined below. In addition to this, the GetDist [222]

Python package is used to analyse the MCMC chains and produce the values and

plots of the parameter constraints in section 4.3. Finally, in order to statistically

compare the different cosmological models and determine which model has the

greatest support for it in light of data, we calculate the Bayes factor of an IDE

model relative to the ΛCDM model by using the MCEvidence code [223].

The Bayes factor gives a measure of the level of support for one model over

another and intrinsically accounts for additional degrees of freedom, therefore

making it a useful tool in statistical model comparison [224]. The Bayes factor

of a model i relative to the ΛCDM model is given by [224]

B i, ΛCDM =
P (D| i )

P (D|ΛCDM)
, (4.3)

where D is a given data set, and where P (D| i ) and P (D|ΛCDM) are the so-

called evidences for models i and ΛCDM respectively. Therefore, the greater
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lnBi,ΛCDM Evidence

0 to 1.1 Weak

1.1 to 3.0 Definite

3.0 to 5.0 Strong

> 5.0 Very strong

Table 4.1: Jeffreys’ scale, which is used here to interpret the strength of evidence for model
i over ΛCDM.

the evidence for model i relative to ΛCDM, the greater the Bayes factor. We

may translate the numerical Bayes factor into a qualitative statement about the

strength of evidence against ΛCDM by using Jeffreys’ scale [225], which is a scale

giving an interpretation based on the size of the Bayes factor. Often, this is

quantified in terms of the natural logarithm of the Bayes factor and we will be

adopting this convention in this chapter. We display Jeffreys’ scale in Table 4.1,

where we note that if lnBi,ΛCDM < 0 for a model, then there is no evidence of

support for that model over ΛCDM.

In our analysis, M1 is described by a set of eight parameters and M2 by a set

of nine parameters. The six ΛCDM parameters are the reduced baryon energy

density Ωbh
2, the reduced CDM energy density Ωcdmh

2, the ratio of the sound

horizon to the angular diameter distance at decoupling θs, the scalar amplitude

of the primordial power spectrum As, the scalar spectral index ns, and the reion-

isation optical depth τreio, where h is the reduced Hubble constant defined by

H0 = 100hkms−1Mpc−1. The IDE models introduce the conformal coupling pa-

rameter α, the slope of the scalar field potential λ, and the initial value of the

scalar field ϕini. The flat priors for the ΛCDM, M1±, and M2± model param-

eters are shown in Table 4.2. We also report constraints on several important

derived parameters in section 4.3. The derived parameters of interest are the

Hubble constant H0, the present-day mass fluctuation amplitude in spheres of

radius 8h−1Mpc σ8, and the total matter density parameter Ωm.

We use combinations of the following recent observational data sets in order
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Parameter Prior Prior Prior Prior Prior

(ΛCDM) (M1−) (M1+) (M2−) (M2+)

Ωbh
2 [0.005, 0.1] [0.005, 0.1] [0.005, 0.1] [0.005, 0.1] [0.005, 0.1]

Ωch
2 [0.001, 0.99] [0.001, 0.99] [0.001, 0.99] [0.001, 0.99] [0.001, 0.99]

100θs [0.5, 10] [0.5, 10] [0.5, 10] [0.5, 10] [0.5, 10]

τreio [0.01, 0.8] [0.01, 0.8] [0.01, 0.8] [0.01, 0.8] [0.01, 0.8]

ns [0.7, 1.3] [0.7, 1.3] [0.7, 1.3] [0.7, 1.3] [0.7, 1.3]

ln (1010As) [1.7, 5.0] [1.7, 5.0] [1.7, 5.0] [1.7, 5.0] [1.7, 5.0]

α − [−1, 0] [0, 1] [−1, 0] [0, 1]

λ − [0, 5] [0, 5] [0, 5] [0, 5]

ϕini/MPl − − − [0, 50] [0, 50]

Table 4.2: Flat priors for the cosmological parameters sampled in our analysis in the ΛCDM,
M1± and M2± models.

to analyse and constrain the models in question:

• Cosmic Microwave Background:

We use the full TTTEEE+lowE CMB likelihood from the latest Planck

2018 release [50]. This includes temperature (TT) and polarisation (EE)

anisotropy data as well as cross-correlation data between temperature and

polarisation (TE) at high and low multipoles. We denote this dataset as

PL18 in this chapter.

• Baryon Acoustic Oscillations:

We saw in section 1.2.3 that prior to photon decoupling, baryons and pho-

tons were tightly coupled to form a single oscillating fluid. These oscillations

left distinct imprints in the baryon density field which can be seen today

in the clustering of galaxies as measured by large-scale surveys [226]. Since

the physical size of these oscillations can be theoretically predicted and

the angular size measured, a distance to BAO signals can be inferred, thus
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BAO can be used as standard rulers in cosmology [226]. If we measure the

redshift of a given BAO signal, then we are able to map out points in the

redshift-distance relation of our universe and hence use BAO data to help

constrain cosmological models. We consider BAO measurements coming

from BOSS DR12 [227], 6dFGS [228], and SDSS-MGS [229] surveys for use

in our analysis. We denote this dataset as BAO in this chapter.

• Type Ia Supernovae:

Type Ia Supernovae can be used as standard candles through the fact that

their absolute magnitudeM can be inferred through theoretical predictions

and physical measurements [230]. We may then measure the apparent mag-

nitude m of the supernovae and deduce a luminosity distance [231]. If we

measure the redshift of a given type Ia supernovae signal, then we are

able to map out points in the redshift-distance relation of our universe and

hence use supernovae type Ia data to help constrain cosmological models.

We use the Pantheon data catalog consisting of 1048 points in the region

z ∈ [0.01, 2.3] of SNIa luminosity distance data as provided by [232]. We

denote this dataset as Pantheon in this chapter.

4.3 Results

The results of our data analysis are shown in Tables 4.3 to 4.7 where we re-

port the parameter constraints for the ΛCDM, M1±, and M2± models using the

PL18, PL18+BAO, PL18+Pantheon, and PL18+BAO+Pantheon data set com-

binations for each model, apart from in the M2+ model where the PL18 only run

did not converge. In Figures 4.1 and 4.3 we display 2D marginalised posterior

distributions for the conformal coupling parameter α in the M1 and M2 models

where in the upper and lower panels, we display the α < 0 and α > 0 cases

respectively. Furthermore, in Figures 4.2 and 4.4 we plot the 1D marginalised

posterior distributions for the conformal coupling parameter α and slope of the

potential λ in the M1 and M2 models, where again in the upper and lower panels

we display the α < 0 and α > 0 cases respectively. For the α < 0 models in
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Parameter PL18 PL18+BAO PL18 +
Pantheon

PL18 + BAO +
Pantheon

Ωbh
2 0.02237±0.00015 0.02242±0.00013 0.02239±0.00014 0.02243±0.00013

Ωcdmh2 0.1202± 0.0014 0.1193± 0.0010 0.1199± 0.0013 0.11923±0.00097

100θs 1.04188±0.00029 1.04197±0.00028 1.04192±0.00029 1.04196±0.00028

τreio 0.0547+0.0071
−0.0080 0.0557+0.0072

−0.0081 0.0551± 0.0079 0.0560± 0.0079

ns 0.9654± 0.0044 0.9673± 0.0038 0.9660± 0.0042 0.9676± 0.0037

ln
(
1010As

)
3.046± 0.016 3.046± 0.016 3.046± 0.016 3.047± 0.017

H0 67.33± 0.60 67.70± 0.44 67.47± 0.57 67.75± 0.43

σ8 0.8118± 0.0075 0.8094± 0.0072 0.8109± 0.0075 0.8093± 0.0073

Ωm 0.3160± 0.0084 0.3107± 0.0060 0.3141± 0.0079 0.3101± 0.0058

Table 4.3: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters for the ΛCDM model using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO +Pantheon data set combinations. The quantities in the second half of this ta-
ble are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm.

Figures 4.1 to 4.4, we plot the absolute value of the conformal coupling constant,

|α|, for ease of comparison with constraints coming from the α > 0 case. In Fig-

ure 4.5 we combine into single plots the 1D marginalised posterior distributions

for the absolute value of the coupling parameter |α| and slope of the potential

λ in all the M1 and M2 models, using the full PL18+BAO+Pantheon data set

combination. In Figure 4.6 we plot the 1D marginalised posterior distributions

of the Hubble constant, H0, in the ΛCDM, M1±, and M2− models using the

PL18 data set, and also a recent local distance ladder measurement of H0 [4].

Finally, in Table 4.8 we report the percentage enhancement of the present-day

effective gravitational constant for the ΛCDM, M1±, and M2± models using the

95% confidence limit of the conformal coupling parameter α from runs using the

full PL18+BAO+Pantheon data set combination.

We run the MCMC chains until they have converged, with all parameters
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Figure 4.1: 2D marginalised posterior distributions of parameters in the M1− model (up-
per panel) and M1+ model (lower panel) using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations. We plot the 2D marginalised posterior dis-
tributions of the conformal coupling parameter, α, against the slope of the potential, λ, the
Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude in
spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded con-
tours indicate the 1σ and 2σ confidence limits.

achieving a Gelman-Rubin statistic [233] of |R−1| < 0.03, where R is the Gelman-

Rubin statistic. All the chains converged except in the case of the M2+ model

using the PL18 data set, therefore, we exclude this run from our results. We will

first discuss the M1 model, which possesses an exponential conformal coupling

function and exponential potential, then look at the M2 model, which possesses an

exponential conformal coupling function and inverse power-law potential, finally

concluding by comparing the two models and assessing their viability in light of

our analysis.

4.3.1 Exponential coupling and exponential potential

We begin by observing that the ΛCDM model is excellently constrained by PL18

data alone, as well as with the addition of background data sets, with the six



Chapter 4 83

Parameter PL18 PL18+BAO PL18 +
Pantheon

PL18 + BAO +
Pantheon

Ωbh
2 0.02235±0.00015 0.02239±0.00015 0.02237±0.00015 0.02239±0.00015

Ωcdmh2 0.1185+0.0027
−0.0015 0.1178+0.0018

−0.0012 0.1179+0.0026
−0.0015 0.1179+0.0016

−0.0011

100θs 1.04187±0.00030 1.04191±0.00029 1.04189±0.00030 1.04190±0.00028

τreio 0.0550± 0.0080 0.0554± 0.0081 0.0547+0.0071
−0.0080 0.0554± 0.0077

ns 0.9656± 0.0044 0.9671± 0.0039 0.9666± 0.0043 0.9670± 0.0040

ln
(
1010As

)
3.047± 0.016 3.047± 0.017 3.046± 0.016 3.047± 0.016

λ < 0.829 < 0.659 < 0.364 < 0.408

α > −0.0322 −0.028+0.022
−0.013 > −0.0409 −0.030± 0.016

H0 66.5+2.2
−1.8 67.3+1.1

−0.80 68.14+0.77
−1.3 67.98± 0.69

σ8 0.808± 0.023 0.811± 0.015 0.820+0.010
−0.018 0.817+0.011

−0.015

Ωm 0.321+0.021
−0.024 0.3110+0.0094

−0.011 0.304+0.016
−0.010 0.3052+0.0087

−0.0079

lnBi,ΛCDM −4.64 −4.64 −5.58 −5.38

Table 4.4: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters for the M1− model using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations. The quantities in the second half of this ta-
ble are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm. In the last row, we report the natural logarithm
of the Bayes factor with respect to the ΛCDM model, lnBi,ΛCDM, as defined by eq. (4.3).

ΛCDM parameters and derived parameters, apart from τreio, being constrained

to within a few percent precision as can be seen in Table 4.3. We remark that

the parameter constraints that we derived for the ΛCDM model are in agreement

with the constraints as derived by the Planck team [50].

We see in Tables 4.4 and 4.5 that whilst PL18 data alone favours a coupling α

consistent with zero at 1σ for the M1 model, the addition of background data sets,

such as BAO and Pantheon, allow for greater values of the coupling |α| in both the

M1± models, except for the M1+ model when using the PL18+BAO+Pantheon
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Parameter PL18 PL18+BAO PL18 +
Pantheon

PL18 + BAO +
Pantheon

Ωbh
2 0.02235±0.00015 0.02239±0.00015 0.02236±0.00015 0.02238±0.00014

Ωcdmh2 0.1193+0.0026
−0.0015 0.1190± 0.0011 0.1182+0.0022

−0.0015 0.1188± 0.0010

100θs 1.04185±0.00030 1.04190±0.00029 1.04187±0.00030 1.04190±0.00029

τreio 0.0548+0.0071
−0.0081 0.0551+0.0073

−0.0083 0.0553± 0.0080 0.0555± 0.0080

ns 0.9662± 0.0047 0.9670± 0.0040 0.9667± 0.0042 0.9667± 0.0040

ln
(
1010As

)
3.047+0.015

−0.016 3.046± 0.017 3.047± 0.016 3.047± 0.017

λ < 1.26 0.81+0.41
−0.60 < 0.510 < 0.477

α < 0.0464 0.035± 0.018 0.038+0.017
−0.030 0.029± 0.016

H0 65.8+3.8
−2.3 66.8+1.8

−0.94 68.59+0.88
−1.6 68.02+0.62

−0.74

σ8 0.801+0.036
−0.024 0.807+0.018

−0.016 0.826+0.011
−0.022 0.818+0.011

−0.015

Ωm 0.333+0.022
−0.045 0.3190+0.0098

−0.018 0.301+0.018
−0.011 0.3068+0.0084

−0.0074

lnBi,ΛCDM −4.12 −3.93 −5.21 −5.01

Table 4.5: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters for the M1+ model using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations. The quantities in the second half of this ta-
ble are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm. In the last row, we report the natural logarithm
of the Bayes factor with respect to the ΛCDM model, lnBi,ΛCDM, as defined by eq. (4.3).

data set combination. Indeed, for the M1− model, we are able to derive 1σ lower

bounds for |α| using the PL18+BAO and PL18+BAO+Pantheon data sets, and

for the M1+ model, we are able to derive 1σ lower bounds for all combinations of

the background data sets. We can see this effect in Figure 4.2 where the addition

of the background data sets results in a non-zero peak for the absolute value

of the conformal coupling parameter |α|. Using the full PL18+BAO+Pantheon

data set combination, the conformal coupling parameter α is constrained to be

|α| = 0.030± 0.016 at 1σ in the M1− model and α = 0.029± 0.016 at 1σ in the
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Figure 4.2: 1D marginalised posterior distributions of the coupling parameter, α, and slope
of the potential, λ, in the M1− model (upper panel) and M1+ model (lower panel) using the
PL18, PL18+BAO, PL18+Pantheon, PL18+BAO+Pantheon data set combinations, where p
is the normalised probability density.

M1+ model.

We do not derive a lower bound for the slope of the potential, λ, in the M1

model except when using the PL18+BAO data set in the M1+ model. We see

in Tables 4.4 and 4.5 that the addition of background data sets results in λ

being constrained closer to zero, with larger values of λ being allowed in the M1+
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model. We can see this behaviour in Figure 4.2 where the additional background

data sets can be seen to have quite a strong constraining effect on λ. Using the

full PL18+BAO+Pantheon data set combination, the slope of the potential λ is

constrained to be λ < 0.408 at 1σ in the M1− model and λ < 0.477 at 1σ in the

M1+ model. So we see that the absolute value of the coupling constant, |α|, and
slope of the scalar field potential, λ, are both constrained to a similar range of

values in the M1± models when using the full PL18+BAO+Pantheon data set

combination.

In Figure 4.1 we plot the 2D marginalised posterior distributions for the con-

formal coupling parameter α against λ,H0, σ8, and Ωm. In both the M1+ and

M1− models, there exists a positive correlation in the (|α|, H0) and (|α|, σ8) plane,
and a negative correlation in the (|α|,Ωm) plane. Moreover, the scalar field pa-

rameters |α| and λ appear to be positively correlated in the M1± models, except

in the PL18 only runs. The positive correlation between |α| and H0 can help

ease the H0 tension discussed in section 2.2. The tension between a recent local

measurement of H0 = 74.03± 1.42 km s−1 Mpc−1 at 1σ [4] and the derived value

of H0 using PL18 data, as in Table 4.3, is a troubling ∼ 4.3σ. This tension is re-

duced to ∼ 2.9σ in the M1− model and ∼ 2.0σ in the M1+ model. Note, however,

that the mean values of H0 in the M1 models, as shown in Tables 4.4 and 4.5,

are actually lower than in the ΛCDM model using PL18 data alone. The tension

is reduced as a result of the error bars associated with H0 being larger in the M1

models, since H0 is not as well constrained in the M1 models as in ΛCDM.

Although the absolute value of the coupling constant, |α|, is positively cor-

related with the σ8 parameter, as discussed in section 3.4, the mean values of

σ8 in the M1 models are actually lower than in ΛCDM, although the 1σ error

bars associated with this parameter are wider in the M1 models. We find that

this decrease in σ8 is compensated by an increase in Ωm when using PL18 data,

thus the S8 parameter is not significantly changed in the M1± models. The M1+

model reports a value of S8 = 0.839 ± 0.022 at 1σ and the M1− model a value

of S8 = 0.834 ± 0.018 at 1σ, which do not significantly differ from the ΛCDM

derived value of S8 = 0.833 ± 0.016 at 1σ. A full data analysis and comparison
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Figure 4.3: 2D marginalised posterior distributions of parameters in the M2− model (up-
per panel) and M2+ model (lower panel) using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations, excluding PL18 for the M2+ model. We plot
the 2D marginalised posterior distributions of the conformal coupling parameter, α, against
the slope of the potential, λ, the Hubble constant in units km s−1 Mpc−1, H0, the present-day
mass fluctuation amplitude in spheres of radius 8h−1Mpc, σ8, and the total matter density
parameter, Ωm. The shaded contours indicate the 1σ and 2σ confidence limits.

with cosmic shear data [72, 73, 74] is necessary, however, before anything more

definitive can be said about this model’s effect on the S8 tension.

Finally, we see in Tables 4.4 and 4.5 that the logarithm of the Bayes factor,

lnBi,ΛCDM, is negative for all data set combinations, indicating that there is no

evidence of support for the M1 models over the ΛCDM model. The M1+ model

has, however, a modestly less negative Bayes factor than the M1− model for all

data sets, indicating a very slight preference over the M1− model. Clearly, the

introduction of two extra scalar field parameters, α and λ, into the cosmological

model is not enough to account for the increase in model complexity.
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Parameter PL18 PL18+BAO PL18 +
Pantheon

PL18 + BAO +
Pantheon

Ωbh
2 0.02237±0.00015 0.02238±0.00014 0.02236±0.00015 0.02238±0.00014

Ωcdmh2 0.1183+0.0030
−0.0014 0.1188± 0.0012 0.1185+0.0021

−0.0013 0.1186+0.0012
−0.0011

100θs 1.04187±0.00030 1.04191±0.00028 1.04187±0.00029 1.04191±0.00028

τreio 0.0550+0.0072
−0.0084 0.0553± 0.0081 0.0551± 0.0076 0.0547± 0.0074

ns 0.9663± 0.0045 0.9663± 0.0040 0.9662± 0.0041 0.9661± 0.0038

ln
(
1010As

)
3.047± 0.016 3.047± 0.016 3.047± 0.016 3.046± 0.015

λ < 0.459 < 0.484 < 0.458 < 0.463

α > −0.0385 −0.025+0.021
−0.011 > −0.0379 −0.027± 0.015

H0 68.42+0.72
−1.8 68.05± 0.71 68.32+0.62

−1.3 68.21+0.58
−0.71

σ8 0.8240+0.0083
−0.021 0.8185+0.0096

−0.013 0.8229+0.0092
−0.018 0.8194+0.0092

−0.015

Ωm 0.303+0.022
−0.010 0.3063± 0.0084 0.304+0.016

−0.0086 0.3045+0.0085
−0.0073

lnBi,ΛCDM −5.22 −5.12 −5.28 −5.40

Table 4.6: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters for the M2− model using the PL18, PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations. The quantities in the second half of this ta-
ble are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm. In the last row, we report the natural logarithm
of the Bayes factor with respect to the ΛCDM model, lnBi,ΛCDM, as defined by eq. (4.3).

4.3.2 Exponential coupling and inverse power-law potential

We see in Tables 4.6 and 4.7 that whilst PL18 data alone favours a coupling α

consistent with zero at 1σ for the M2− model, the addition of the BAO and

BAO+Pantheon data sets give a non-null coupling at 1σ, finding that α =

−0.025+0.021
−0.011 and α = −0.027±0.015 respectively. In the M2+ model, we were not

able to obtain convergence using PL18 data alone, however, we similarly detect a

non-null coupling at 1σ with the addition of the BAO and BAO+Pantheon data

sets, finding that α = 0.025+0.012
−0.020 and α = 0.026+0.014

−0.019 respectively.
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Parameter PL18+BAO PL18 + Pantheon PL18 + BAO +
Pantheon

Ωbh
2 0.02238± 0.00014 0.02237± 0.00015 0.02238± 0.00015

Ωcdmh2 0.1190± 0.0011 0.1185+0.0021
−0.0014 0.1188± 0.0011

100θs 1.04190± 0.00029 1.04189± 0.00029 1.04191± 0.00029

τreio 0.0550+0.0073
−0.0082 0.0546± 0.0082 0.0554± 0.0079

ns 0.9663± 0.0038 0.9664± 0.0041 0.9666± 0.0039

ln
(
1010As

)
3.047+0.015

−0.017 3.046± 0.017 3.047± 0.016

λ < 0.500 < 0.450 < 0.451

α 0.025+0.012
−0.020 < 0.0387 0.026+0.014

−0.019

H0 68.05± 0.70 68.44+0.67
−1.4 68.19+0.52

−0.67

σ8 0.818+0.010
−0.014 0.8232+0.0086

−0.018 0.8195+0.0091
−0.014

Ωm 0.3068± 0.0083 0.303+0.016
−0.0093 0.3051+0.0079

−0.0070

lnBi,ΛCDM −5.12 −5.08 −5.36

Table 4.7: Observational constraints at a 68% confidence level on the independent and de-
rived cosmological parameters for the M2+ model using the PL18+BAO, PL18+Pantheon,
PL18+BAO+Pantheon data set combinations. The quantities in the second half of this ta-
ble are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm. In the last row, we report the natural logarithm
of the Bayes factor with respect to the ΛCDM model, lnBi,ΛCDM, as defined by eq. (4.3).

In Figure 4.4 we see that the addition of the BAO data gives rise to a strong

non-zero peak in |α| that is preserved with the addition of the Pantheon data set

in both the M2+ and M2− models. Again, we see that a similar magnitude of

coupling is allowed in either case, with α = −0.027±0.015 and α = 0.026+0.014
−0.019 at

1σ using the full PL18+BAO+Pantheon data set combination for the M2− and

M2+ models respectively.

We do not derive a lower bound at 1σ for the slope of the potential, λ, in

the M2± models in any combination of data sets. We can see in Table 4.6 that
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Figure 4.4: 1D marginalised posterior distributions of the coupling parameter, α, and slope
of the potential, λ, in the M2− model (upper panel) and M2+ model (lower panel) using the
PL18, PL18+BAO, PL18+Pantheon, PL18+BAO+Pantheon data set combinations, excluding
PL18 for the M2+ model, where p is the normalised probability density.

the addition of background data sets has little effect in constraining λ in the

M2− model, with PL18 data alone constraining the slope of the potential to be

λ < 0.459 and the full PL18+BAO+Pantheon data set combination constraining

the slope of the potential to be λ < 0.463 both at 1σ. For the M2+ model,

we find a similar constraint when using the full PL18+BAO+Pantheon data set
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combination of λ < 0.451 at 1σ. We can see this behaviour for the M2− model

in the upper panel of Figure 4.4 where we see that adding background data has

a minimal effect on the 1D marginalised posterior distribution of λ. For the M2+

model, we can look to the lower panel of Figure 4.4 and see that the distribution

of λ has a similar profile to when in the M2− model. The absolute value of

the coupling constant, |α|, and slope of the scalar field potential, λ, are both

constrained to a similar range of values in the M2± models when using the full

PL18+BAO+Pantheon data set combination.

In Figure 4.3 we plot the 2D marginalised posterior distributions for the con-

formal coupling parameter α against λ,H0, σ8, and Ωm. In both the M2± models,

there exists a positive correlation in the (|α|, H0) and (|α|, σ8) plane, and a nega-

tive correlation in the (|α|,Ωm) plane. Unlike in the M1± models, the scalar field

parameters |α| and λ do not appear to be correlated. The positive correlation

between the conformal coupling parameter |α| and Hubble constant H0 can help

ease the H0 tension as was the case in the M1± models. The M2− model reduces

the tension from ∼ 4.3σ to ∼ 3.5σ when using PL18 data, thus easing the tension

by a lesser degree than the M1± models. Note, however, that unlike the M1±

models, the M2− model actually raises the mean value of H0 compared to the

ΛCDM model, as can be seen by comparing Table 4.3 with Table 4.6, although

the constraint on H0 derived in the M2− model has smaller error bars than in

the M1± models, hence is not as effective at lowering the tension according to

the formula given in eq. (2.12).

Unlike the M1± models, we derive larger mean values for the σ8 parameter in

the M2± models compared to ΛCDM for all data set combinations. For the M2±

models, we find a lower mean value of the matter density Ωm when compared

to ΛCDM. The effect of the increase in σ8 and decrease in Ωm roughly cancel

each other out in the S8 parameter, thus the derived value of S8 = 0.827± 0.018

at 1σ in the M2− model does not significantly differ from the ΛCDM value of

S8 = 0.833 ± 0.016 at 1σ using PL18 data. Again, data analysis using cosmic

shear data [72, 73, 74] is needed before more can be said about this model’s effect

on the S8 tension.
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Figure 4.5: 1D marginalised posterior distributions of the coupling parameter, α, and slope
of the potential, λ, in the M1± and M2± models using the PL18+BAO+Pantheon data set
combination, where p is the normalised probability density.

Finally, we see in Tables 4.6 and 4.7 that the logarithm of the Bayes factor,

lnBi,ΛCDM, is negative for all data set combinations, indicating that there is no

evidence of support for the M2 models over the ΛCDM model. The M2+ model

has a minutely less negative Bayes factor than the M2− model for all data sets

considered, thus indicating a very small preference over the M2− model. The

introduction of three extra degrees of freedom, α, λ, and ϕini, is not enough

to account for the increase in model complexity and thus the M2± models are

disfavoured when compared to the six parameter ΛCDM model.

4.3.3 Comparing the two models

In Figure 4.5 we combine into single plots the 1D marginalised posterior distri-

butions for the absolute value of the coupling parameter, |α|, and slope of the

potential, λ, in all the M1 and M2 models, using the full PL18+BAO+Pantheon

data set combination. We see in Figure 4.5 that all the models have a similar pro-

file for |α|, with all models achieving a non-null coupling signal at 1σ when using
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Figure 4.6: 1D marginalised posterior distributions of the Hubble constant H0 in units
km s−1 Mpc−1 in the ΛCDM, M1±, and M2− models using the PL18 data set, where p is
the normalised probability density. The grey bands indicate the 1σ and 2σ errors of a recent
local distance ladder measurement of H0 = 74.03± 1.42 km s−1 Mpc−1 at 1σ [4]

the PL18+BAO+Pantheon data set combination. Clearly, not only does the sign

of the coupling constant α not significantly change the profile of the distribution

of |α|, but neither does the form of the scalar field potential for the two models

under consideration. Furthermore, we see that, despite M1 and M2 possessing

different forms of potential, the profile of the distribution of λ is similar in all

the models. We do not detect a non-null value of λ at 1σ for any of the models,

except for the M1+ model when using the PL18+BAO data set combination.

In Figure 4.6 we plot the 1D marginalised posterior distributions of the

Hubble constant, H0, in the ΛCDM, M1±, and M2− models using the PL18

data set, and also a recent local distance ladder measurement of H0 = 74.03 ±
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Model ∆G %

ΛCDM 0

M1− 0.63

M1+ 0.60

M2− 0.54

M2+ 0.49

Table 4.8: Percentage enhancement of the present-day effective gravitational constant com-
pared to the Newtonian gravitational constant for the ΛCDM, M1±, and M2± models using
the 95% confidence limit for coupling parameter α from PL18+BAO+Pantheon data set runs,
where ∆G := (Geff,0/G)− 1.

1.42 km s−1 Mpc−1 at 1σ [4] as indicated by the grey bands, where the grey bands

depict the 1σ and 2σ errors. It can be seen in this figure that whilst it is only the

M2− model that actually raises the mean value of H0 with respect to the derived

ΛCDM mean value, the M1± models possess a much wider error in H0 and hence

there is a greater overlap with the local distance ladder measurement distribution

of H0. The constraint on H0 inferred from the M2− model is tighter than in the

M1± models, however, is not as well constrained as in the ΛCDM model.

In all models, the natural logarithm of the Bayes factor with respect to

the ΛCDM model, lnBi,ΛCDM, is negative, thus indicating that ΛCDM is pre-

ferred over models M1 and M2. Of all the models, the M1+ model when us-

ing the PL18+BAO data set combination has the least negative Bayes factor of

lnBi,ΛCDM = −3.93, and the M1− model when using the PL18+Pantheon data

set combination has the most negative Bayes factor of lnBi,ΛCDM = −5.58.

As a closing remark, let us look at the magnitude of the present-day effec-

tive gravitational constant experienced between DM particles, Geff,0, for the IDE

models in question. The effective gravitational constant, Geff , (eq. (3.48)) is given

by
Geff

G
= 1 +

M2
Pl

2

(
C,ϕ

C

)2

, (4.4)

where G is the Newtonian gravitational constant and C = C(ϕ) is the conformal
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coupling function relating the DM metric to the minimally-coupled metric. For

the choice of conformal coupling function in models M1 and M2, Geff is constant

and is given by Geff/G = 1 + 2α2, where α is the conformal coupling constant.

In Table 4.8 we evaluate the percentage enhancement of the effective gravita-

tional constant for the ΛCDM, M1±, and M2± models. The value chosen for the

conformal coupling constant, α, in the IDE models is the upper 95% confidence

limit in models M1+ and M2+ and the lower 95% confidence limit in models M1−

and M2−, when using the full PL18+BAO+Pantheon data set. We can see that

cosmological data constrains all of the IDE models to have a sub-percentage en-

hancement in the effective gravitational constant when using the 95% confidence

limits for the coupling parameter α. Thus, if there is an interaction in the dark

sector, then a coupling which results in a constant and time-independent effective

gravitational constant is constrained to be quite weak at < 1% the strength of

gravity.

4.4 Conclusions

In this chapter, we considered an interacting dark energy model where the DE

scalar field is coupled directly to DM, as explored in chapter 3. We then consid-

ered two specific IDE models, one with an exponential coupling and exponential

potential, the other with an exponential coupling and inverse power-law poten-

tial. We confronted these models with a combination of cosmological data sets

and derived constraints on the cosmological parameters. We found that, when

using the full PL18+BAO+Pantheon data set combination, a weak non-null sig-

nal of a DE-DM coupling was detected in all IDE models at 1σ. Furthermore,

we found that in all IDE models, the slope of the potential λ was consistent with

zero at 1σ when using the full PL18+BAO+Pantheon data set combination. In

all the IDE models and for all data set combinations, cosmological observations

are still consistent with a null coupling and flat potential at 2σ.

The IDE models were able to ease the H0 tension, but this effect was mainly

due to an increase in uncertainty surrounding the H0 parameter in the IDE
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models. If the H0 parameter was as well constrained in the IDE models as it is

in the ΛCDM model, then the IDE models would not significantly help to solve

the H0 tension. Moreover, we did not find any evidence of support for the IDE

models over the ΛCDM model through our Bayesian model comparison analysis,

finding that lnBi,ΛCDM < 0 for all IDE models.

Finally, we looked at how large a present-day effective gravitational constant

the IDE models allow compared to the Newtonian gravitational constant, using

the 95% confidence limits on the conformal coupling parameter α for the full

PL18+BAO+Pantheon data set combination. We found that, in all cases, the

fifth-force is constrained to be quite weak at < 1% the strength of gravity.

There is no fundamental reason, however, to restrict ourselves to a dark sector

coupling that results in a constant effective gravitational constant. Indeed, if we

choose a conformal coupling function that results in a time-varying Geff , then

we will be able to escape some of the rigid constraints that cosmological data

imposes on models with a constant Geff , such as M1 and M2. In an effort to

avoid a purely phenomenological form for the coupling function C(ϕ), we may

look to see if fundamental theory can motivate a new class of couplings in which

a fifth-force emerges at late-times. In the next chapter, we will explore such a

class of couplings and will evaluate their status in light of recent cosmological

observations.



5 — Couplings with minima

The quintessence scalar field is an extremely promising candidate for dark energy

and its potential interactions with other matter sources, particularly dark mat-

ter, remains an exciting area of study with the search for a fifth-force in the dark

sector continuing to be at the forefront of modern cosmology [234]. In chapter 4

we confronted an interacting dark energy model with recent cosmological obser-

vations of the CMB anisotropies and background distance measure data sets. We

found that for an IDE model with a constant fifth-force, cosmological data con-

strains the strength of this fifth-force to be < 1% the strength of gravity. This

rather unappealing fact leads to the question, are there any other forms of cou-

pling that are well-motivated and do not lead to such strong constraints on the

fifth-force? It is in this chapter that we introduce and explore such a coupling.

In section 5.1 we introduce the interacting dark energy model and new form

of coupling, and explore some of its imprints at the background and perturba-

tion level. We then confront this IDE model with cosmological data as done

in chapter 4, describing the methodology and the data sets used in section 5.2,

presenting our results in section 5.3, and finally concluding in section 5.4.

5.1 Interacting dark energy model

The IDE model considered in this chapter is based on the general IDE model

introduced in chapter 3, where we recall that as a result of the dark sector in-

teraction, the DM particles experience an effective gravitational constant given

97
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by

Geff = G
(
1 + 2β2

)
, (5.1)

where G is the Newtonian gravitational constant and β is the coupling such that

β =
MPl

2

d lnC

dϕ
. (5.2)

Whilst the exponential form for the conformal coupling function C(ϕ) is well-

motivated and arises naturally in many fundamental theories of physics [197, 198,

199], we saw in chapter 4 that the strength of the fifth-force in the dark sector

is constrained to be < 1% the strength of gravity when using a combination

of cosmological data sets, making this particular form of coupling unappealing.

This leads us to consider new forms of couplings, where the fifth-force is no longer

constant throughout cosmic history.

In 1994, work by Thibault Damour and Alexander Polyakov [235, 236] sug-

gested that coupling functions in string theory could possess minima, and this

idea was further elaborated upon in [237] in the construction of a dark energy

model. Applying these concepts to the IDE model introduced in chapter 3, let

us consider a new class of couplings where the conformal coupling function C(ϕ)

possesses a minimum at some finite field value ϕ∗.

In the search for a coupling function with a minimum, let us consider a natural

extension to the exponential coupling by considering the sum of two exponentials,

such is done, for example, with extensions to the scalar field exponential potential

[238]. By requiring this coupling to have a minimum, this sum of exponentials

reduces in a simple case to the hyperbolic cosine function such that

C(ϕ) =
1

2

(
eα(ϕ−ϕ∗)/MPl + e−α(ϕ−ϕ∗)/MPl

)
= cosh

(
α(ϕ− ϕ∗)/MPl

)
,

(5.3)

where ϕ∗ is the minimum of the coupling function C(ϕ) and α is the conformal

coupling constant. Note that the conformal coupling function C(ϕ) in eq. (5.3)
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is symmetric under a sign change in α, so we only consider α > 0 without loss of

generality. If the field sits at the minimum of the coupling function, ϕ = ϕ∗, then

the coupling β between DM and DE vanishes. However, if the field then grows

ϕ > ϕ∗, then the coupling β (eq. (5.2)), which for this model is

β =
α

2
tanh

(
α(ϕ− ϕ∗)/MPl

)
, (5.4)

increases with ϕ such that energy flows DE → DM. This growth in the coupling

β results in an effective gravitational constant Geff (eq. (5.1)) that grows with

the field value, where we note that the strength of the fifth-force depends on the

magnitude of the coupling constant α and the distance between the field and the

minimum ϕ∗. We will see that this effect of the strength of the fifth-force being

determined by the evolution of the scalar field has interesting implications for

cosmology.

5.1.1 General imprints on background and perturbation level cos-

mology

We consider an IDE model where the conformal coupling function has a minimum

and the scalar field potential is of exponential form. To be concrete, this model

is specified by

C(ϕ) = cosh
(
α(ϕ− ϕ∗)/MPl

)
, V (ϕ) = V 4

0 e
−λϕ/MPl , (5.5)

where α > 0 is the conformal coupling constant, λ > 0 is the slope of the scalar

field potential, V0 is the mass scale of the potential, and ϕ∗ is the minimum

of the coupling function which is set to ϕ∗ = 1MPl without loss of generality.

Note that in this model, the initial value of the scalar field, ϕini, does play a

role, therefore this IDE model introduces three new scalar field parameters, the

coupling constant α, slope of the potential λ, and initial field value ϕini.

Let us now briefly look at some of the background and perturbation level

dynamics of this model. As in chapter 3, we use a modified version of the CLASS

[61] Boltzmann code and use cosmological parameter values from the 2018 Planck
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Figure 5.1: Evolution of the scalar field in units MPl for the UQ, IDE(α = 2, ϕini =
1.0MPl),IDE(α = 2, ϕini = 1.5MPl), and IDE(α = 100, ϕini = 1.0MPl) models. The slope
of the scalar field potential is set to λ = 0.5 in all the models.

[50] bestfit results for the baseline model where appropriate in order to obtain

the numerical results for the plots and tables in this subsection. To be concrete,

these are the present-day reduced baryon density parameter Ωbh
2 = 0.02236, the

present-day reduced cold dark matter density parameter Ωcdmh
2 = 0.1202, the

angular size of the sound horizon at decoupling 100θs = 1.04090, the amplitude of

the primordial curvature power spectrum ln(1010As) = 3.045, the spectral index

of the primordial curvature power spectrum ns = 0.9649, and the optical depth

at reionisation τreio = 0.0544, where h is the reduced Hubble constant defined by

H0 = 100h kms−1Mpc−1 and where the cosmological parameters are as defined

in section 1.2.3. In this subsection, the uncoupled quintessence (UQ) model we

consider possesses an exponential potential, and the IDE model we consider is as

defined in eq. (5.5), where the coupling has a minimum and the potential is of

exponential form.

The first thing to notice is that this model only differs from an uncoupled

quintessence (UQ) model when ϕ ̸= ϕ∗, therefore making the cosmological evolu-
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tion of the scalar field a determining factor in this model. In Figure 5.1 we plot

the evolution of the scalar field for the UQ model and three IDE models which

are specified by their choice for conformal coupling constant α and initial field

value ϕini, where the slope of the potential is the same in all models, λ = 0.5.

In the IDE(α = 2, ϕini = 1.0MPl) model, we see that this model behaves simi-

larly to the UQ model in its evolution of ϕ. In both models, the field is frozen

at the minimum by Hubble friction, but then at late-times, when the potential

becomes dynamically important, the field begins to roll. One difference that the

coupling makes, however, is that when the field switches on at z ∼ 1, the field

does not evolve as far as in the UQ model. This is because the coupling term

in the modified Klein-Gordon equation also grows, and thus slows down the evo-

lution of ϕ. In the extreme case of the IDE(α = 100, ϕini = 1.0MPl) model, we

see that the late-time growth in ϕ is heavily suppressed due to a stronger cou-

pling, growing only by ∼ 10−4MPl compared to the ∼ 10−1MPl growth in the

IDE(α = 2, ϕini = 1.0MPl) and UQ models.

In the IDE(α = 2, ϕini = 1.5MPl) model where the field does not initially sit

at the minimum, we see that it is initially frozen at ϕ = 1.5MPl but then is driven

towards the minimum by the coupling term in the Klein-Gordon equation when

the matter density becomes dynamically important. After the field has finally

settled at z ∼ 100, its evolution is very similar to the IDE(α = 2, ϕini = 1.0MPl)

model. So we see that the IDE(ϕini = ϕ∗) models do not differ too drastically

from the uncoupled quintessence model, except at late-times and depending on

the magnitude of the coupling constant α. However, if the field does not initially

sit at the minimum, the evolution history of the scalar field is quite different

compared to the UQ and IDE(ϕini = ϕ∗) models.

We mentioned that a particularly intriguing feature of this IDE model is that

the dark sector coupling can be switched on and off depending on whether or

not the scalar field sits at the minimum of the coupling. In Figure 5.2 we plot

the evolution of the ratio of the effective gravitational constant to the Newtonian

gravitational constant for the UQ and three IDE models that appear in Figure 5.1.

We see in this figure that for the IDE(α = 2, ϕini = 1.5MPl) model where the field



102 5.1

Figure 5.2: Evolution of the ratio of the effective gravitational constant Geff (eq. (4.4)) to the
Newtonian gravitational constant G for the UQ and IDE models. In the upper panel we plot in
the redshift range z ∈ (0, 1014) and in the lower panel we plot in the redshift range z ∈ (0, 2).
The slope of the scalar field potential is set to λ = 0.5 in all the models.

does not initially sit at the minimum, the DM particles initially experience a

constant fifth-force approximately the strength of gravity. Then, as the field is

driven towards the minimum ϕ∗ due to the matter density becoming important,
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Figure 5.3: The evolution of the Hubble parameter H(z) normalised by its present-day value
H0 for the ΛCDM, UQ, and IDE models. The slope of the scalar field potential is set to λ = 0.5
in the UQ and IDE models.

the fifth-force disappears. Only at late-times, when the scalar field potential

becomes dynamically important at z ∼ 1, does this fifth-force reemerge, giving

a present-day strength ∼ 10% the strength of gravity. In Figure 5.2 we also

plot the evolution of the effective gravitational constant for the more extreme

IDE(α = 100, ϕini = 1.0MPl) model. In this model, the field initially sits at the

minimum and is frozen there, however, when the field switches on at late-times,

a fifth-force in the dark sector emerges with a present-day strength over three

times the strength of gravity.

Let us now look at some of the effects this interacting dark energy model has

on the evolution history H(z). In Figure 5.3 we plot the evolution of the Hubble

parameter H(z) normalised by its present-day value H0 for the ΛCDM, UQ, and

IDE models. In the IDE models where the field initially sits at the minimum,

the models are indistinguishable from the uncoupled quintessence model until

late-times. Since the fifth-force in these models has only had a short time, cos-

mologically speaking, to act, they do not differ too drastically in their late-time



104 5.1

evolution of H(z) when compared to the UQ model.

Recall that the mass of a DM particle mDM becomes field-dependent as a

result of the coupling with the DE scalar field and scales like mDM(ϕ) ∝
√
C(ϕ)

. We find that in the IDE(α = 2, ϕini = 1.0MPl) model the mass increases by

∼ 1.25% and in the more extreme IDE(α = 100, ϕini = 1.0MPl) model, the mass

actually increases less by ∼ 0.02% as a result of the motion of the scalar field

being slowed down. Comparing this to a constant fifth-force model, such as those

with an exponential coupling and exponential potential seen in chapter 3, we find

that the masses of DM particles in these models change by ∼ 25% despite only

increasing Geff,0 by ∼ 5%, when the slope of the potential is λ = 0.5 and the

conformal coupling constant is |α| = 0.15.

Therefore, in the IDE models where the field initially sits at the minimum,

we do not expect the evolution of the energy densities to differ too greatly from

the UQ model and hence the evolution of H(z) is quite similar in these models.

In the IDE(α = 2, ϕini = 1.5MPl) model, we can see in Figure 5.3 that this model

has the greatest deviation from ΛCDM. The mass of DM particles in this model

differ from the uncoupled case at early times, and therefore the evolution history

of the DM energy density is altered in a distinct way, thus affecting the evolution

history of this model more significantly than in the IDE(ϕini = ϕ∗) models. We

can expect, therefore, that background data, such as from BAO [227] and SNIa

[232] distance measurements, may not be so effective in constraining the coupling

parameter α when compared to the initial field value ϕini.

As we saw in chapter 3, the coupling between DE and DM results in the DM

energy density scaling differently to baryons which, if not accounted for, results

in an effective DE fluid whose energy density ρDE absorbs the part of the DM

fluid which does not scale like baryons. The equation of state for the effective

DE fluid is (eq. (3.54))

wDE =
pϕ
ρDE

=
pϕ

ρϕ + ρc − ρc,0a−3
,

(5.6)

where pϕ is the pressure of the scalar field, ρϕ is the energy density of the scalar
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Figure 5.4: The evolution of the effective DE equation of state parameter wDE(z) for the
ΛCDM, UQ, and IDE models, where we define wDE := −1 for the ΛCDM model. Note that
the effective DE equation of state, wDE , for the IDE(α = 2, ϕini = 1.0MPl) and IDE(α =
2, ϕini = 1.5MPl) models crosses the phantom line w = −1. The slope of the scalar field
potential is set to λ = 0.5 in the UQ and IDE models.

field, and ρc is the energy density of the coupled DM fluid. If the coupled DM

fluid dilutes slower than baryons, then this can result in an equation of state

for the effective DE fluid that crosses the phantom line w = −1. In Figure 5.4

we plot the evolution of the effective DE equation of state parameter wDE(z)

for the ΛCDM, UQ, and IDE models. We see for the more extreme IDE(α =

100, ϕini = 1.0MPl) model, the late-time evolution of the field ϕ is inhibited so

strongly that its effective equation of state is very close to that of the cosmological

constant, wΛ = −1. For the less extreme IDE models, we see that they both

cross the phantom line at z ∼ 0.5, with the IDE(α = 2, ϕini = 1.0MPl) and

IDE(α = 2, ϕini = 1.5MPl) models being largely indistinguishable.

Now let us look at some perturbation level imprints of this IDE model. In

Figure 5.5 we plot the CMB temperature anisotropy power spectrum for the

ΛCDM, UQ, and IDE models. We see here that all the models agree to within
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Figure 5.5: The CMB temperature anisotropy power spectrum for the ΛCDM, UQ, and IDE
models where Cℓ is the power spectrum of the anisotropies in units µK2 and ℓ is the multipole
moment [3]. The slope of the scalar field potential is set to λ = 0.5 in the UQ and IDE models.

a reasonable degree in their predictions of the power spectrum. The IDE mod-

els where the field initially sits at the minimum differ less from the UQ model

than the IDE(ϕini ̸= ϕ∗) model. Since the IDE(ϕini = ϕ∗) models only begin to

differ from the UQ model at z ∼ 1, we do not expect these models to predict

a CMB anisotropy power spectrum significantly different from the UQ model.

The IDE(α = 2, ϕini = 1.5MPl) model deviates the most from the UQ model

and therefore whilst we expect that CMB data alone will not be too effective in

constraining the IDE model, it should constrain ϕini more effectively than the

coupling parameter α.

Finally, let us look at the matter power spectrum to see what effect the IDE

model has on the large-scale structure (LSS) in the universe. We see that for

the IDE(ϕini = ϕ∗) models, increasing the coupling constant α has the effect

of increasing the power at small to intermediate scales owing to an increase in

the effective gravitational constant experienced between DM particles. For the

IDE(α = 2, ϕini = 1.5MPl) model, the early-time enhancement of the effective
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Figure 5.6: The present-day matter power spectrum for the ΛCDM, UQ, and IDE models
where P (k) is the matter power spectrum in units (Mpc/h)3 and k is the wavenumber in units
h/Mpc with h being the dimensionless Hubble parameter defined in eq. (1.50). The slope of
the scalar field potential is set to λ = 0.5 in the UQ and IDE models.

gravitational constant results in a more pronounced increase in power at small to

intermediate scales.

A useful measure of the present-day amplitude of structure is the σ8 parameter

introduced in chapter 2. We saw in chapter 3 that the coupled quintessence

models with a constant fifth-force had a larger σ8 parameter associated with

them compared to the uncoupled model, owing to the constant enhancement of

Geff . In Table 5.1, we report the derived values of σ8 for the ΛCDM, UQ, and

IDE models, as well as the percentage enhancement of the present-day effective

gravitational constant with respect to the Newtonian gravitational constant. We

see in this table that for the IDE(ϕini = ϕ∗) models, increasing the coupling

parameter α has the effect of increasing the amplitude of structure, as signified

by the increase in σ8. In the IDE(α = 2, ϕini = 1.5MPl) model where the field

does not initially sit at the minimum, we see that despite the present-day effective

gravitational constant being comparable to the IDE(α = 2, ϕini = 1.0MPl) model,
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Model ∆G % σ8

ΛCDM 0 0.824

UQ 0 0.818

IDE

(α = 2, ϕini = 1.0MPl)
9.7 0.815

IDE

(α = 2, ϕini = 1.5MPl)
10 0.926

IDE

(α = 100, ϕini = 1.0MPl)
340 0.852

Table 5.1: The values of ∆G and σ8 (eq. (2.10)) for the ΛCDM, UQ, and IDE models where
∆G := (Geff,0/G) − 1 describes the enhancement of the present-day effective gravitational
constant compared to the Newtonian gravitational constant. The slope of the scalar field
potential is set to λ = 0.5 in the UQ and IDE models.

the σ8 parameter is significantly increased. This is owing to the enhancement of

the effective gravitational constant Geff at early times in the radiation-dominated

epoch as depicted in the upper panel of Figure 5.2. Owing to these effects, we

expect that LSS data, such as from cosmic shear [72, 73, 74] and galaxy cluster

[226] measurements, which provides information on the growth and amplitude of

structure may be effective in constraining the IDE model.

Now that we have established that this IDE model has a distinct effect on

background and perturbation level dynamics, let us seek to constrain the model

using cosmological observations, such as from CMB, BAO, SNIa, and LSS exper-

iments, to see what bounds nature puts on the model.
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5.2 Methodology and observational data

In order to numerically study the evolution of the background and cosmological

perturbations for the IDE model, which will be called M3 (eq. (5.5)) from now

on, we use a modified version of the CLASS code [61] as seen in chapter 3. We

confront the IDE model with data through cosmological parameter exploration

using the Markov Chain Monte Carlo (MCMC) sampling package MontePython

[220, 221], interfaced with CLASS, in conjunction with the observational data sets

outlined below. In addition to this, the GetDist [222] Python package is used

to analyse the MCMC chains and produce the values and plots of the parameter

constraints in section 5.3. Finally, in order to statistically compare the different

cosmological models and determine which model has the greatest support for it

in light of data, we calculate the Bayes factor of an IDE model relative to the

ΛCDM model by using the MCEvidence code [223]. For more details on the Bayes

factor and its interpretation, we refer to chapter 4.

In our analysis, M3 is described by a set of nine parameters. The six ΛCDM

parameters are the reduced baryon energy density Ωbh
2, the reduced CDM energy

density Ωcdmh
2, the ratio of the sound horizon to the angular diameter distance

at decoupling θs, the scalar amplitude of the primordial power spectrum As, the

scalar spectral index ns, and the reionisation optical depth τreio, where h is the

reduced Hubble constant defined by H0 = 100hkms−1Mpc−1. The M3 model

introduces the conformal coupling parameter α, the slope of the scalar field po-

tential λ, and the initial value of the scalar field ϕini. The flat priors for the ΛCDM

and M3 model parameters are shown in Table 5.2. We also report constraints on

several important derived parameters in section 5.3. The derived parameters of

interest are the Hubble constant H0, the present-day mass fluctuation amplitude

in spheres of radius 8h−1Mpc σ8, and the total matter density parameter Ωm.

We use the PL18, BAO, and Pantheon data sets described in chapter 4 along-

side the following data set in order to analyse and constrain the models in ques-

tion:

• Redshift Space Distortions:



110 5.2

Parameter Prior Prior

(ΛCDM) (M3)

Ωbh
2 [0.005, 0.1] [0.005, 0.1]

Ωcdmh
2 [0.001, 0.99] [0.001, 0.99]

100θs [0.5, 10] [0.5, 10]

τreio [0.01, 0.8] [0.01, 0.8]

ns [0.7, 1.3] [0.7, 1.3]

ln (1010As) [1.7, 5.0] [1.7, 5.0]

α − [0, 500]

λ − [0, 5]

ϕini/MPl − [0, 2]

Table 5.2: Flat priors for the cosmological parameters sampled in our analysis in the ΛCDM
and M3 models.

If the spatial distributions of galaxies are plotted in redshift-space, the

galaxies appear distorted due to the peculiar velocities of the galaxies along

the line of sight [239]. Measurements of the peculiar velocities of galaxies

allow for an inference of the growth of large-scale structure [240] and hence

galaxy redshift surveys such as the Sloan Digital Sky Survey peculiar ve-

locity (SDSS PV) survey [241] and the the 6-degree Field Galaxy Survey

velocity sample (6dFGSv) [242] survey, can be used to obtain measurements

on the product of the linear growth rate f(a) = d lnD/d ln a where D(a) is

the linear growth factor [243] and the root-mean-square matter fluctuation

in a sphere of radius 8h−1Mpc at a given redshift, σ8(z). Since predictions

of the growth history of the universe depend on the cosmological model as-

sumed, measurements of fσ8(z) at various redshifts allow for cosmological

models to be constrained [240]. We employ the ‘Gold 2018’ Redshift Space

Distortions (RSD) data set compilation consisting of 22 measurements as
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described in [244] and a likelihood code as detailed in [244, 245]. We denote

this dataset as RSD in this chapter.

5.3 Results

The results of our data analysis are shown in Tables 5.3 and 5.4 where we report

the parameter constraints for the M3 and ΛCDM models using the PL18+BAO

+Pantheon and PL18+BAO+Pantheon+RSD data set combinations for each

model. The runs involving the PL18, PL18+BAO and PL18+Pantheon data set

combinations did not converge for the M3 model and therefore we exclude them

in our analysis. In Figure 5.8 we display 2D marginalised posterior distributions

for the conformal coupling parameter, α, against the slope of the potential, λ,

the initial field value, ϕini, and the present-day mass fluctuation amplitude in

spheres of radius 8h−1Mpc, σ8 in the M3 model. In Figure 5.9 we plot the

2D marginalised posterior distribution of the σ8 parameter against the slope

of the potential λ in the M3 model. Furthermore, in Figure 5.7 we plot the

1D marginalised posterior distributions for the conformal coupling parameter α,

the slope of the potential λ, and the initial field value ϕini in the M3 model.

Finally, in Table 5.5 we report the derived σ8 value and percentage enhancement

of the present-day effective gravitational constant for the M3 model using the 68%

confidence limits of the conformal coupling parameter α and slope of the potential

λ from runs using the PL18+BAO+Pantheon and PL18+BAO+Pantheon+RSD

data set combinations. We run the MCMC chains until they have converged,

with all parameters achieving a Gelman-Rubin statistic [233] of |R − 1| < 0.03,

where R is the Gelman-Rubin statistic.

We begin by observing that the ΛCDM model is excellently constrained by

the PL18+BAO+Pantheon data set, with the six ΛCDM parameters and derived

parameters, apart from τreio, being constrained to within a few percent precision

as can be seen in Table 5.4. The addition of the RSD growth rate data set does

not appear have a significant effect on the parameter constraints.

Turning our attention to the IDE model M3, we see in Table 5.3 that both
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Parameter PL18+BAO+Pantheon
PL18+BAO+Pantheon

+RSD

Ωbh
2 0.02246± 0.00014 0.02248± 0.00014

Ωcdmh
2 0.1210+0.0010

−0.0027 0.11875± 0.00095

100θs 1.04195± 0.00029 1.04198± 0.00029

τreio 0.0560+0.0071
−0.0080 0.0541± 0.0077

ns 0.9682± 0.0038 0.9688± 0.0038

ln (1010As) 3.046± 0.016 3.041+0.015
−0.017

λ < 1.07 < 0.189

α < 22.5 < 29.1

ϕini/MPl 1.016+0.052
−0.084 1.015+0.073

−0.11

H0 67.73± 0.50 67.95± 0.45

σ8 0.904+0.055
−0.11 0.8080+0.0080

−0.0091

Ωm 0.3142+0.0067
−0.0093 0.3074± 0.0056

lnBi,ΛCDM −6.05 −8.32

Table 5.3: Observational constraints at a 68% confidence level on the independent and
derived cosmological parameters for the M3 model using the PL18+BAO+Pantheon and
PL18+BAO+Pantheon+RSD data set combinations. The quantities in the second half of this
table are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm. In the last row, we report the natural logarithm
of the Bayes factor with respect to the ΛCDM model, lnBi,ΛCDM, as defined by eq. (4.3).

the PL18+BAO+Pantheon and PL18+BAO+Pantheon+RSD data set combina-

tions are consistent with a null-coupling at 1σ. Interestingly, rather than con-

straining the coupling parameter closer to zero, the addition of the RSD data

set actually pushes the 1σ confidence limit up from α < 22.5, derived from the
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Parameter PL18+BAO+Pantheon
PL18+BAO+Pantheon

+RSD

Ωbh
2 0.02243± 0.00013 0.02247± 0.00013

Ωcdmh
2 0.11923± 0.00097 0.11872± 0.00095

100θs 1.04196± 0.00028 1.04200± 0.00029

τreio 0.0560± 0.0079 0.0543± 0.0078

ns 0.9676± 0.0037 0.9686± 0.0037

ln (1010As) 3.047± 0.017 3.041± 0.016

H0 67.75± 0.43 67.98± 0.42

σ8 0.8093± 0.0073 0.8057± 0.0069

Ωm 0.3101± 0.0058 0.3070± 0.0056

Table 5.4: Observational constraints at a 68% confidence level on the independent and de-
rived cosmological parameters for the ΛCDM model using the PL18+BAO+Pantheon and
PL18+BAO+Pantheon+RSD data set combinations. The quantities in the second half of this
table are the derived parameters of our analysis which are the Hubble constant H0 in units
km s−1 Mpc−1, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc σ8,
and the total matter density parameter Ωm.

PL18+BAO+Pantheon data set, to α < 29.1. In Figure 5.7 we plot the 1D

posterior distributions for the conformal coupling parameter α, the slope of the

potential λ, and the initial field value ϕini using the PL18+BAO+Pantheon and

PL18+BAO+Pantheon+RSD data set combinations. We see in Figure 5.7 that

whilst the distribution profile for α is quite similar in both the PL18+BAO +Pan-

theon and PL18+BAO+Pantheon+RSD runs, the behaviour at large values of α

is quite different. When using the PL18+BAO+Pantheon data set combination,

the probability density of α tapers off to zero at α ∼ 100, however, when using

the PL18+BAO+Pantheon+ RSD data set combination, we see that although

the density does decrease as α increases, it then asymptotes to a non-zero prob-
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Figure 5.7: 1D marginalised posterior distributions of the coupling parameter, α, slope
of the potential, λ, and initial field value in units MPl, ϕini, in the M3 model using the
PL18+BAO+Pantheon and PL18+BAO+Pantheon+RSD data set combinations. The dis-
tributions here are scaled such that their maximum value is equal to unity in order to aid
comparison.

ability density, before finally converging to zero at α ≳ 200. This long tail in the

distribution of α results in the 1σ confidence limit being pushed to greater values

when using the PL18+BAO+Pantheon+RSD data set combination compared to

the PL18+BAO+Pantheon data set combination.

We see in Table 5.3, where we report the parameter constraints for model

M3, that whilst data from the CMB anisotropies and background measurements

allow for a fairly large slope of the potential, λ < 1.07 at 1σ, the addition of the

RSD data set heavily constrains the slope to λ < 0.189 at 1σ. In Figure 5.7,

where we plot the 1D posterior distributions of the scalar field parameters, we

can see the powerful constraining effect the additional RSD data set has on the

distribution of the slope of the potential λ. Whilst the distribution profile for λ

when using PL18+BAO+Pantheon data set appears to be fairly flat and then

cuts off quickly to zero at λ ∼ 1.5, the profile for λ when using the additional

RSD data set decreases quite sharply to zero as λ increases. We will see why the

slope of the potential, λ, is so heavily constrained by the inclusion of RSD data

shortly when we explore the 2D distribution profiles and correlations between

parameters, but before we do, let us look to the final scalar field parameter, the

initial field value ϕini.

In Table 5.3 we see that the inclusion of RSD data does not have a significant



Chapter 5 115

0.5 1.0 1.5 2.0

50

100

150

200

0.8 1.0 1.2 1.4
ini

0.8 1.0 1.2
8

PL18+BAO+Pantheon PL18+BAO+Pantheon+RSD

Figure 5.8: 2D marginalised posterior distributions of parameters in the M3 model using the
PL18+BAO+Pantheon and PL18+BAO +Pantheon +RSD data set combinations. We plot
the 2D marginalised posterior distributions of the conformal coupling parameter, α, against
the slope of the potential, λ, the initial field value in units MPl, ϕini, and the present-day mass
fluctuation amplitude in spheres of radius 8h−1Mpc, σ8. The shaded contours indicate the 1σ
and 2σ confidence limits.

effect on the constraints on the initial field value ϕini. Constraints from the

PL18+BAO+Pantheon data set give a mean value of ϕini/MPl = 1.016+0.052
−0.084 at

1σ and constraints from the PL18+BAO+Pantheon+RSD data set give a mean

value of ϕini/MPl = 1.015+0.073
−0.11 at 1σ. We see then that the mean value of ϕini is

not significantly changed and that ϕini is tightly constrained about the minimum

of the conformal coupling function, in agreement with results found in [2]. This

suggests that the imprints from the IDE model when the field does not initially sit

at the minimum are significant enough at the background level and in the CMB

anisotropy power spectrum to effectively constrain this parameter. We see how

in Figure 5.7 the distribution of the initial field value, ϕini, sharply peaks at the

minimum ϕ∗ = 1MPl and then quickly drops off on either side of ϕ∗, for both of

the data set combinations. It may appear then that this IDE model requires fine-

tuning of the initial field value at aini ∼ 10−14 to be very close to the minimum

of the coupling function C(ϕ), however, it has been suggested [1] that there may

be attractor mechanisms at work in the very early universe, before simulations

begin, which efficiently drive the field towards the minimum ϕ∗, thereby helping

to solve the fine-tuning problem for this model.

Let us now explore the effect the additional RSD data set has on the cosmo-
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Figure 5.9: 2D marginalised posterior distribution of the present-day mass fluctuation ampli-
tude in spheres of radius 8h−1Mpc, σ8, against the slope of the potential, λ, in the M3 model
using the PL18+BAO +Pantheon and PL18+BAO+Pantheon+RSD data set combinations.
The shaded contours indicate the 1σ and 2σ confidence limits.

logical parameters at a deeper level by looking at the 2D marginalised posterior

distributions in Figures 5.8 and 5.9. We see in the (ϕini, α)−plane of Figure 5.8

that the further the initial field value departs from the minimum ϕ∗ = 1MPl, the

lower the allowed values are for the coupling parameter α. This corresponds to

what we saw in section 5.1.1 where initial departures of the scalar field from the

minimum of coupling result in an early-time enhancement of the effective grav-

itational constant. The magnitude of the fifth-force is governed by the distance

of the field from the minimum ϕ∗ and the magnitude of the coupling constant α,

therefore a degeneracy arises whereby a larger |ϕini − ϕ∗| can be compensated by

a smaller coupling constant α and such a correlation is apparent in Figure 5.8.

Note that the largest values of α are allowed when the field initially sits at the

minimum ϕini = 1MPl.

Turning our attention to Figure 5.9, where we plot the 2D marginalised pos-

terior distribution in the (λ, σ8)−plane, we see that when using PL18+BAO

+Pantheon data there exists a strong positive correlation between the slope of

the potential λ and σ8. This correlation is due to the fact that if the steepness
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Model ∆G % σ8

ΛCDM
(PL18+BAO+Pantheon)

0 0.827

M3
(PL18+BAO+Pantheon)

1470 0.962

M3
(PL18+BAO+Pantheon+RSD)

45.0 0.824

Table 5.5: Percentage enhancement of the present-day effective gravitational constant com-
pared to the Newtonian gravitational constant, ∆G := (Geff,0/G)− 1, and the derived value of
σ8 for the ΛCDM and M3 models. We use the upper 68% confidence limit for the coupling pa-
rameter α and slope of the potential λ from our data analysis using the PL18+BAO+Pantheon
and PL18+BAO+Pantheon+RSD data set combinations.

of the scalar field potential increases, then the field traverses a greater distance

from the minimum ϕ∗, therefore there is a stronger enhancement in the effective

gravitational constant (eq. (5.1)), which subsequently enhances the amplitude of

structure at small to intermediate scales. Note too in Figure 5.8, we see that

there exists a positive correlation between the coupling constant α and σ8 as was

the case for the M1 and M2 models investigated in chapter 4. The reason for this

degeneracy is the same, the effective gravitational constant is enhanced as the

coupling parameter α is increased, therefore there is an increase in the growth

of matter thus resulting in a larger value of σ8 at present-day. The introduc-

tion of the RSD data set, which contains measurements on the growth rate and

amplitude of structure, heavily constrains the σ8 parameter as can be seen in

Figure 5.9. This in turn heavily constrains the upper bound on the slope of the

potential λ and breaks the degeneracy in the (λ, σ8)−plane, with the degeneracy

in the (σ8, α)−plane also being broken with the inclusion of this data set. Thus,

the inclusion of the RSD data has a powerful constraining effect on the slope of

the potential λ.
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One interesting feature that the RSD data introduces is that the positive cor-

relation that exists between the coupling constant α and slope of the potential

λ when using PL18+BAO+Pantheon data becomes instead a negative correla-

tion. The reason for this is because although the RSD data strongly constrains

the present-day value of σ8, the same value of σ8 can be achieved by increasing

α whilst decreasing λ, or by decreasing α whilst increasing λ, hence a negative

correlation between α and λ arises with the addition of this data set. Note,

however, that although α is allowed to extremely high values as the slope of the

potential approaches zero, the same is not true in the other direction since in

the limit α → 0 we recover an uncoupled quintessence model where the slope

of the potential is readily constrained by cosmological observations [246]. This

behaviour in the (λ, α)−plane at small values of λ explains the large 2σ con-

tours in Figure 5.8 and the long tail in the 1D distribution of α when using

PL18+BAO+Pantheon+RSD as seen in Figure 5.7.

We remark that the IDE model M3 does not help to alleviate the H0 tension,

with the Hubble constant being constrained to H0 = 67.73± 0.50 km s−1 Mpc−1

at 1σ in the M3 model compared to H0 = 67.75 ± 0.43 km s−1 Mpc−1 at 1σ in

the ΛCDM model, using the PL18+BAO+Pantheon data set combination for

both models. Owing to an increase in σ8 and matter density Ωm compared

to ΛCDM, the M3 model appears to worsen the S8 tension, deriving a value of

S8 = 0.925+0.033
−0.12 at 1σ compared to the ΛCDM derived value of S8 = 0.823±0.013

at 1σ when using the PL18+BAO+Pantheon data set combination, although we

note that a full data analysis and comparison with cosmic shear data [72, 73, 74]

is needed before more can be said about this model’s effect on the S8 tension.

We see in Table 5.3 that the natural logarithm of the Bayes factor with respect

to the ΛCDM model, lnBi,ΛCDM, is negative for all data set combinations, thus

indicating that ΛCDM is the preferred model over the M3. The introduction of

three extra scalar field parameters, α, λ, and ϕini, into the cosmological model is

not enough to account for the increase in model complexity.

Finally, let us look at how strong the fifth-force is allowed to currently be un-

der the cosmological data considered in our analysis. In the IDE model M3, the



Chapter 5 119

enhancement of the effective gravitational constant depends on both the coupling

constant α and the distance traversed by the scalar field from the minimum of the

coupling ϕ∗. Therefore, for a given model, we use the best fit values of the cosmo-

logical parameters into the CLASS Boltzmann code to work out the field value at

present-day and hence evaluate the present-day effective gravitational constant,

Geff,0. For the scalar field parameters α and λ, we use the upper 1σ limits as

shown in Table 5.3. In Table 5.5 we report the present-day enhancement of the

effective gravitational constant, and also the derived value of σ8, for the ΛCDM

and M3 models where we display the results from the PL18+BAO+Pantheon and

PL18+BAO+Pantheon+RSD data set combinations for the M3 model. We see

that current cosmological observations of the CMB anisotropies and background

observables allow for a fifth-force that is over ten times the strength of gravity

at present-day. The addition of the RSD data sharply brings down this increase

owing to a tighter constraint on the slope of the potential λ, reporting a still

sizeable fifth-force that is approximately half the strength of gravity. The M3

model using PL18+BAO+Pantheon data results in a derived σ8 parameter that

is apparently at odds with inferences from large-scale structure measurements

[247] and we are excited to see results from analysis using cosmic shear data

[72, 73, 74] and galaxy clustering measurements [248], but leave this study for

future work.

5.4 Conclusions

In this chapter, we introduced a new class of interacting dark energy models

where the DE-DM coupling has a minimum at some finite field value, resulting

in a fifth-force that emerges at the onset of DE domination. We explored some of

the background and perturbation level effects of this model and found that effects

on expansion history and the CMB anisotropies were quite small, deviating only

minimally from ΛCDM and an uncoupled quintessence model for a wide range of

parameters. This means that a present-day fifth-force which is potentially quite

large would be allowed under standard cosmological probes. Perhaps the most



120 5.4

significant effect, however, was found at small scales in the linear matter power

spectrum predictions.

We then confronted this IDE model with cosmological data and subsequently

derived constraints on the IDE model parameters. We found that when using

CMB observations and background data sets, the slope of the scalar field poten-

tial λ and coupling constant α are not heavily constrained. Indeed at 1σ they

allow for a present-day fifth-force that is over ten times the strength of gravity.

Since we saw that a particularly sensitive probe of this IDE model was its predic-

tions of structure formation at small to intermediate scales, we decided to use an

additional data set containing measurements on the growth rate and amplitude

of large-scale structure. The addition of this data set was effective in constrain-

ing the slope of the potential λ but not the coupling constant α, because of a

degeneracy that arose between the two parameters. This tighter constraint on

the slope of the potential λ allows for the present-day fifth force to be approxi-

mately half the strength of gravity using the 68% confidence limits for α and λ.

This is in sharp contrast to constant fifth-force models, such as those explored in

chapter 4, where the fifth-force is constrained to be < 1% the strength of gravity.

The possibility of a fifth-force in the dark sector emerging at late-times due to

the onset of dark energy domination remains an exciting possibility. We saw that

whilst traditional data analysis techniques using background and linear perturba-

tion level data could constrain such a model, they weren’t too effective in doing

so, and allow for a potentially strong long-range fifth force in the current epoch.

The introduction of a gravity-like fifth-force between DM particles would result

in an apparent equivalence principle violation in the dark sector [249]. Therefore,

the search for dark sector equivalence principle violations at different redshifts

is an important task for cosmology today. Indeed, what this work suggests is

the possibility of a dark sector equivalence principle violation that is only made

apparent at late-times, with the onset of dark energy domination. We expect

that tests of violations of the equivalence principle in the dark sector, such as the

tidal tails test [250], will be effective in constraining this model further.

We saw that a distinct imprint of this model was at small scales in structure
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formation probes, and indeed, the introduction of data containing information on

structure formation heavily constrained this model compared to when using only

CMB and background data sets. We expect that deviations from ΛCDM and an

uncoupled quintessence model will be more significant at very small scales, where

perturbation theory at the linear level is no longer valid. We predict that this IDE

model will leave a distinct imprint in the evolution of non-linear perturbations

and in the formation of non-linear structures, such as dark matter halos [251],

and will also affect the matter power spectrum at small scales. Investigations of

this sort could be undertaken through the use of N -body codes [252], for example,

and interacting dark energy models have been explored through these methods

[253]. In the next chapter, we will look at cosmology at the smaller scale and the

role that a dark sector interaction may play in it.
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6 — Beyond the linear regime

With the rapid rise in computing power and increasing precision in the determi-

nation of cosmological parameters, the role of structure formation, especially at

the small and non-linear scale, is making its way to the forefront of cosmology.

The standard model of cosmology, ΛCDM, has been shown to be in excellent

agreement with CMB observations and background measurements [50], however,

in recent years some tensions have arose which seem to challenge the concordance

model, a few of which we explored in chapter 2. These tensions could be poten-

tially be down to systematic errors and statistical fluctuations, however, they

could also be hints of cosmology beyond the ΛCDM model [254, 71, 247].

One such tension we saw was a discrepancy in determinations of the S8 param-

eter (eq. (2.11)) from measurements of large-scale cosmic shear surveys [72, 73, 74]

and the CMB as measured by Planck [50]. For the ΛCDM model, this tension

amounts to CMB observations predicting too great an amplitude of structure

at present day when compared to results from more direct probes of large-scale

structure, such as cosmic shear experiments. However, there also exist tensions

in the ΛCDM model at smaller scales in non-linear structures, such as the ‘core-

cusp’ problem in predictions of the mass density of galactic dark matter halos

[255]. The possibility of there being a real discrepancy between predictions of

ΛCDM and astrophysical observations rests upon the accuracy of cosmological

N -body simulations, therefore it is imperative that N -body codes are routinely

and rigorously checked by independent teams such that their particular approxi-

mations and assumptions can be tested for validity. As cosmological simulations

become increasingly sophisticated and exact, and as surveys and observations

123
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of smaller-scale structures become increasingly more detailed, will more tensions

arise in the concordance model?

It is interesting to note that results from N -body simulations have suggested

that the effects of a dark sector interaction in the small-scale, non-linear regime

may help to ease several tensions that are present in the ΛCDM model, with

authors finding that the degree to which the tensions could be eased was corre-

lated with the strength of the coupling [253]. The dark sector coupling, β, was

assumed to be constant in those simulations, however, as we saw in chapter 4,

cosmological observations put a very tight constraint on the magnitude of such a

coupling and therefore strongly limit the degree to which these tensions can be

alleviated.

We found in chapter 5, however, that if the dark sector coupling is allowed

to vary with time such that the fifth-force is negligible until recent times, then

the strength of the fifth-force today can be significantly higher than in a constant

coupling model. This opens up the window again for the consideration of a

dark sector interaction in the search for a solution to these problems. Indeed,

promising results from N -body simulations where time-dependent couplings were

considered [256] suggests that these models can help to resolve astrophysical

tensions whilst not strongly effecting the background dynamics of the universe. It

would be interesting to see a full data analysis of the models considered in these

simulations, in the manner seen in chapters 4 and 5 for example, to see what

upper bounds cosmological observations put on the strength of the couplings and

therefore whether or not these models can be considered viable solutions.

The minimum strength the coupling must possess in order to resolve a partic-

ular tension must be in agreement with the maximum strength allowed by cos-

mological and astrophysical observations for the model to survive, and we eagerly

await further results from both of these fronts. But aside from exploring exten-

sions to ΛCDM in the search for possible solutions to current tensions, we may

utilise N -body simulations in constraining cosmological models too [257, 258].

Since non-linear effects in structure formation become especially important at

late-times z ≲ 2 [259], we expect that IDE models where the fifth-force switches
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on at late-times and then grows in magnitude will be effectively constrained when

investigating its non-linear signatures.

We are not at a stage yet where N -body simulations are ubiquitously used

to constrain cosmological models, partly because of their computational cost,

and partly because analysis at the background and linear level is effective in

constraining a wide variety of models [187, 246, 260]. However, as the abundance

of high-quality large-scale cosmological data continues to increase, more and more

cosmological models will be ruled out, and those that survive will need different

angles of attack in order to be differentiated from one another and ultimately

ruled out. N -body codes probing the non-linear regime offer, therefore, a unique

insight into competing models and hopefully will be able to reveal more about

the nature of the dark sector.

Due to the late-onset of the fifth-force in the model considered in chapter 5,

our attention was turned to the impact of the coupling on non-linear objects in

the universe, such as galaxies and galaxy clusters, that have already virialised. In

particular, we were interested in whether or not the late-time coupling could affect

the virialisation state of the object. Awaiting results from a fully cosmological

N -body simulation, we decided to test the idea by implementing the fifth-force

into a simple non-cosmological N -body code. In section 6.1, we briefly review

the interacting dark energy model of interest, we discuss the implementation of

the model and then explore its effects on a virialised system, finally concluding

in section 6.2.

6.1 N-body simulations

In this chapter we consider the IDE model introduced in chapter 5 where the dark

sector coupling switches on as the field begins to roll away from the minimum,

causing energy to flow DE → DM and the masses of DM particles to increase

according to mDM ∝
√
C(ϕ). This growth in the coupling results in an effective

gravitational constant Geff that also grows with time.
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6.1.1 The virial theorem

Since we are interested in the effect the coupling has on virialised structures, let

us briefly recall that the virial theorem in the context of a self-gravitating and

stable system of discrete particles states that the moment of inertia I, kinetic

energy K, and potential energy W of the system can be related by [261]

1

2

d2I

dt2
= 2K +W. (6.1)

Over large enough time spans, systems of this form tend to approach a steady-

state such that d2I/dt2 = 0 [261], and hence we obtain the following relation for

the kinetic energy and potential energy of the system

0 = 2K +W. (6.2)

If this relation holds true for an object, then that object is said to be virialised.

Galaxies and galaxy clusters are often considered to be virialised since they have

existed long enough to approach dynamical equilibrium [262], and the virial the-

orem is ubiquitously applied to such structures in, for example, determinations of

the virial mass [263]. We may introduce a virial ratio parameter bvir = 2K/|W |
which measures the degree to which a system is virialised. For a perfectly viri-

alised system, the virial theorem holds exactly and so bvir = 1, with any deviations

from the virial theorem amounting to bvir ̸= 1.

One can imagine then, that if a sudden energy exchange is introduced into

the system as a result the dark sector coupling switching on, such that the DM

particles begin to experience an additional fifth force and their masses begin to

vary, then this could perturb the system out of virial equilibrium and therefore

eq. (6.2) may no longer hold.

6.1.2 Set up of simulations

In the context of the N -body simulation we consider, the dark sector coupling

introduces two features following the procedure outlined in [264, 253]. The first



Chapter 6 127

is that the masses of the DM particles now vary with time and the second is

that DM-DM particle interactions are now governed by an enhanced effective

gravitational constant Geff which accounts for the additional fifth-force, as op-

posed to the Newtonian gravitational constant G which governs DM-baryon and

baryon-baryon interactions.

In our discrete system of particles, the equation of motion for a baryon particle

is given by

v̇i =
∑
j ̸=i

Gmj
rj − ri
|rj − ri|3

, (6.3)

where v̇i = dvi/dt is the acceleration of baryon particle i with velocity vi, G is

the Newtonian gravitational constant, mj is the mass of particle j, and ri, rj are

the position vectors of particles i, j respectively. Since the DM particle masses

vary with time, the rate of change of momentum for a DM particle i is

ṗi = ṁivi +miv̇i

= miβ
ϕ̇

MPl

vi +miv̇i.
(6.4)

Moreover, DM-DM particle interactions are characterised by an enhanced grav-

itational constant Geff and so we introduce a generalised gravitational constant

Gij such that Gij = Geff for all DM-DM interactions and Gij = G for all baryon-

baryon and baryon-DM interactions. The equation of motion for a DM particle

is then

v̇i =
∑
j ̸=i

Gijmj
rj − ri
|rj − ri|3

− β
ϕ̇

MPl

vi, (6.5)

where we see that the coupling has introduced an additional velocity term into

the acceleration equation for DM particles. In our setup, we have β > 0, ϕ̇ > 0,

therefore this term constitutes a dragging term slowing down the acceleration of

DM particles, however, if β and ϕ̇ were of opposite signs, then this term would

boost the acceleration of the DM particles. Finally, if we define a generalised

coupling parameter βi such that βi = 0 for baryons and βi = β for DM particles,
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then we can write an equation of motion for a general particle i as

v̇i =
∑
j ̸=i

Gijmj
rj − ri
|rj − ri|3

− βi
ϕ̇

MPl

vi. (6.6)

Therefore, in the equation of motion for a particle in the system, there are three

effects in total which the coupling introduces, an enhancement in the gravita-

tional force between DM particles, a time-varying mass in DM particles, and an

additional friction term in the equation of motion for a DM particle.

In our simulations, we consider a system of nb baryon particles and ndm cou-

pled DM particles, together making up N = nb + ndm particles in total, where

the masses of the baryon and DM particles are all assumed to be equal to be-

gin with. A common feature of the constant time-step algorithm we use is that

it does not behave well when the separation distance between particles is very

small and furthermore, if we smooth out the potential in the equations of motion,

then the graininess of the system is reduced and the system better describes one

with a continuous mass distribution, that is, one characterised by the collision-

less Boltzmann equation [265, 266]. Therefore, a popular remedy is to replace

the Newtonian potential with the smoothed Plummer sphere potential [267] such

that the acceleration of particle is now described by [268]

v̇i =
∑
j ̸=i

Gijmj
rj − ri

(|rj − ri|2 + ϵ2)3/2
− βi

ϕ̇

MPl

vi, (6.7)

where ϵ is the softening parameter. We can see from this equation that if ϵ

is too large, then the force can no longer reasonably be considered Newtonian,

whereas if ϵ is too small, then we encounter the same problems which led to its

introduction. An optimal choice for the softening parameter should be therefore

be made so as to minimise errors in force calculations. We follow the work of

[268, 269] in choosing the optimal value for the softening parameter ϵ for our

simulations.

We modify a simple, non-cosmological N -body Python code [270] where the

equations of motion are integrated using the second-order leapfrog method in the
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‘kick-drift-kick’ form [271] and where we adopt Hénon units [272] in the setup of

our runs such that the total energy is Etot = −1/4, the Newtonian gravitational

constant is G = 1, and the total mass is Mtot = 1. The initial positions of

the particles are randomly distributed with spherical symmetry and the initial

velocities are taken to be zero such that the system undergoes a cold collapse

before virialising. We are primarily interested in the virialisation of the system

and deviations thereof, therefore, the main quantity of interest is the virial ratio

bvir and its evolution in time.

The simulations run until the system virialises, bvir ≈ 1, after which the

coupling is switched on. The DM particles then begin to experience an enhanced

gravitational constant Geff , a growth in their masses mDM ∝
√
C(ϕ), and an

additional friction term in their equations of motion, in contrast to before the

switch-on, where the baryon and DM particles were indistinguishable. We allow

the simulations to run further under the influence of the coupling and then end

the simulations. We allow the coupling to evolve over several crossing times,

with the enhancement of a DM particle mass being ≈ 10% and the size of the

fifth-force being approximately four times the strength of gravity by the time

simulations end.

In our runs, we consider a system of N = 104 particles with a fixed time-step

∆t = 0.01 and a fixed softening parameter ϵ = 0.01. We set the proportion of the

number of baryons in the system to be nb/N ≈ 10% and randomly distributed

the baryon and DM particles in the manner outlined above.

6.1.3 Results

The results for our simulations are shown in Figure 6.2 where we show the evo-

lution of the virial ratio deviation, ∆bvir = bvir − 1, during early and late phases

in the simulation. We plot the evolution of ∆bvir over N -body time in units of

crossing time tcr, where one unit of crossing time is equal to tcr = 2
√
2 in Hénon

units [272]. We also provide a snapshot of our simulation in Figure 6.1 before its

initial collapse phase and plot the evolution of the effective gravitational constant

Geff in Figure 6.3.
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Figure 6.1: A snapshot of our simulation during its initial phase.

In the upper panel of Figure 6.2, we plot ∆bvir during the initial phase of

the simulation, before the coupling has been switched on, spanning from t = 0

to t ≈ 5.5tcr. We see in this figure that since we set up the system to initially

have zero kinetic energy, the virial ratio bvir is initially vanishing too. However,

as the particles begin to gravitate and draw closer together, their kinetic energy

increases. The system then quickly undergoes a collapse phase whereby the sys-

tem rapidly contracts and the particles are densely drawn together. The system

then expands briefly, with the virial ratio bvir reaching a maximum at t ≈ 1.5tcr,

before the system begins contracting again. The system continues to contract be-
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Figure 6.2: The evolution of the percentage deviation of the virial ratio from a virialised
system, where ∆bvir = bvir − 1 over time in units of crossing time tcr. In the upper panel we
plot the evolution in the initial phase of the simulation, during which the system undergoes a
cold collapse and then reaches virial equilibrium. In the lower panel we plot the evolution during
the latter stages of the simulation, during which the coupling is switched on. The vertical red
line in the lower panel figure marks the time the coupling is switched on.
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Figure 6.3: The evolution of over time of the ratio Geff/G where Geff is the effective gravita-
tional constant experienced by DM particles in DM-DM interactions and G is the Newtonian
gravitational constant.

fore expanding once more, then settling into a steady state by the time t ≈ 5tcr,

with the deviation from a perfectly virialised state being within a few percent.

We allow the system to remain in dynamical equilibrium before switching on the

coupling at t ≈ 14tcr.

In the lower panel of Figure 6.2 we plot evolution of ∆bvir but during the

latter stages of the simulation, when the coupling is switched on. The coupling is

switched on at t ≈ 14tcr, as indicated by the vertical red line, and is allowed to act

until the end of the simulation at t ≈ 21tcr. We see in this figure that immediately

after the field is switched on, the virial ratio begins to deviate significantly from

the virialised value of bvir = 1. The additional fifth-force causes an increase in the

acceleration of DM particles and thus an increase in their kinetic energy, however,

the increase is diminished by the presence of the friction term seen in eq. (6.5).

The potential energy also increases due to the increase in DM particle mass

and increase in effective gravitational constant in DM-DM particle interactions.

When the coupling first switches on, the increase in potential energy dominates
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the increase in kinetic energy and so the system begins to contract, driving bvir

down. This is followed by a short expanding phase starting at t ≈ 15tcr but

quickly ending at t ≈ 16tcr, after which the system contracts, followed by another

expansion phase starting at t ≈ 18tcr which continues until our simulation ends

at t ≈ 21tcr.

We see that this in this model, the increase in kinetic energy due to the fifth-

force is not outweighed by the increase in the potential energy of system, thus

having the effect of decreasing the virial ratio and causing the system to contract.

One interesting area of investigation would be for IDE models where β and ϕ̇ are

of opposite sign, such that the friction term in the equation of motion for DM

particles changes sign and so enhances the acceleration. In this case, it may be

possible for the coupling to cause the system to ultimately expand due to the

increase in kinetic energy, and thus, a dark sector coupling could, for instance,

predict either a greater or lower dark matter halo concentration than ΛCDM does

[256].

We see in these simulations that it is possible for a dark sector coupling

to disturb the virialisation state of a system previously existing in dynamical

equilibrium. This could potentially have implications in the determinations of

quantities which assume the virialisation state of a system, such as the virial mass

of a galaxy cluster. Whether or not the coupling does indeed have a significant

impact on the virialisation state of a non-linear structure in our universe will

be revealed by the results of a cosmological N -body simulation, but it is an

interesting and stimulating result nonetheless.

6.2 Conclusions

In this chapter, we began by motivating the need to look at smaller-scale struc-

tures in cosmology and hence the need for accurate N -body simulations. We saw

in chapter 5 that background and linear perturbation level data do not strongly

constrain a model whereby the dark sector coupling switches on at late-times, and

so our attention turned to the small-scale, non-linear regime where we expect that



134 6.2

the imprints of such a model will be far more pronounced.

Due to the late-onset of the coupling in this model, our interest was par-

ticularly directed towards the effects this model may have on already virialised

structures, such as galaxies and galaxy clusters. In anticipation of results coming

from a cosmological N -body simulation, we decided to implement the model into

a simple non-cosmological N -body code. We let the simulation run until virial

equilibrium was achieved, after which we switched on the dark sector coupling.

We saw that this disturbed the equilibrium state of the system and the virial ratio

bvir began to deviate significantly from its virialised value, thus demonstrating

that a late-time dark sector coupling can have an effect on the virialisation state

of an object per se. Although we only considered a simplified non-cosmological

model in our analysis, this work promotes and motivates the need for a full and

thorough treatment to be undertaken using cosmologicalN -body techniques, such

as through the use of codes like Gadget [273], Isis [258], and ECOSMOG [274].

As determinations of the large-scale structure and expansion history of the

universe become evermore precise, the remaining viable theories will need to be

tackled in new ways in order to be constrained. The advent of next-generation

surveys such as Euclid [275], LSST [276], and SKA [277] will bring fresh opportu-

nity for cosmology at smaller scales, and will be especially relevant for fifth-force

models, since the effects of a fifth-force are thought to be highly significant at

these scales [278]. Beyond large-scale measurements of the matter power spec-

trum and halo mass function, we can look to even smaller-scales and more novel

and unexplored ways of constraining extensions to ΛCDM thanks to the advances

in computation, such as looking at the predicted velocity dispersion and density

profiles of individual dark matter halos [279]. In one approach, a team of re-

searchers managed to tightly constrain a modified gravity theory by comparing

the gas observations and lensing measurements of the Coma galaxy cluster [280],

and other novel approaches include looking for signs of equivalence principle vi-

olations in the dark sector at the galactic scale [250, 281].

Therefore, alongside data analysis techniques using large-scale cosmological

observations at the background and linear level, we urge interest to be taken
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in new frontiers, beyond the linear regime, so as to thoroughly investigate the

cosmological standard model on all fronts and to see if any deeper insight can be

gained into the mysterious nature of the dark sector of our universe.
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7 — Conclusions

In this thesis we began by giving brief history of cosmology, from its theoret-

ical foundations in General Relativity, through to its cosmological applications

by virtue of the Friedmann-Lemâıtre-Robertson-Walker metric. After specifying

the various matter species of the universe, we reflected upon the triumphant dis-

covery of the Cosmic Microwave Background, and how together these led to the

formation of the six-parameter standard model of cosmology, ΛCDM. We saw

that, despite its numerous successes, there are some serious problems present in

the ΛCDM model which merit sincere attention.

One of the most severe problems in the standard model is to do with one of

its most fundamental ingredients, the cosmological constant Λ. The cosmological

constant problem corresponds to a grave disagreement between two pillars of

modern physics, General Relativity and Quantum Field Theory, and therefore

it is no wonder why it has so deeply troubled the scientific community. But

not only that, the cosmological constant also suffers from the problem of cosmic

coincidence too, hence cosmologists began to look elsewhere to see if nature could

provide any other explanation for the accelerated expansion of our universe.

Then along came the idea of quintessence, a light scalar field slowly rolling

down its potential, which was proposed as an explanation for the source of dark

energy and has remained an extremely promising possibility up to present day.

However, if such a quintessence scalar field exists, then it should be coupled

explicitly to the various matter species of our universe unless such a coupling

is forbidden by some symmetry condition. We saw that, although couplings to

baryons have been heavily constrained, the same is not true for couplings to

137
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dark matter, and therefore our attention turned towards the possibility of such

interactions in an interacting dark energy model.

We introduced an interacting dark energy model in the framework of a scalar-

tensor theory, whereby the minimally coupled quintessence scalar field is confor-

mally coupled to dark matter, and explored its background and perturbation level

dynamics and cosmological imprints. Finding that the interacting dark energy

model had a distinct effect on the imprints in our universe, we decided to con-

front the model with recent cosmological observations to see what bounds nature

puts on it. We found that for this model, whereby the dark sector coupling is

constant, the strength of the fifth-force was constrained to be very small at < 1%

the strength of gravity.

This led us to consider other possible forms of couplings that had not been

explored as thoroughly, and found that if we begin with the assumption that

the conformal coupling function has a minimum at some finite field value, then

this can lead to a fifth-force that emerges only at late-times with the onset of

dark energy domination. We then investigated the background and perturbation

level imprints of this model and found that it was hardly distinguishable from

an uncoupled quintessence model for a large range of parameter values, despite

potentially possessing a very strong fifth-force at present day. We confronted

this model with the same cosmological data sets as for the constant fifth-force

models and found that, in contrast, the fifth-force was allowed to be very strong

at present day at over ten times the strength of gravity. In an effort to see if

this model could be constrained further, we noted that it predicts a large ampli-

tude of structure and so added observations of large-scale galaxy redshift-space

distortions to our analysis. We found that this additional data set effectively

constrained the model and brought down the strength of the fifth-force to ap-

proximately half the strength of gravity at present day, still fifty times stronger

than in a constant fifth-force model.

Our cosmological data analysis highlighted the fact that this model was es-

pecially sensitive in its predictions of structure formation, and so our attention

turned to smaller scales, where we expect that the imprints of such a model will
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be highly significant. We remarked that background and linear perturbation level

data may have its limitations in constraining models in the future, and therefore

we must look towards new and less explored ways of testing the standard model

and its extensions. We saw that tensions exist for the ΛCDM model at the small,

non-linear scale too and that extensions such as an interacting dark sector can

help to alleviate these tensions. Furthermore, N -body simulations suggest that

models whereby the fifth-force switches on at late-times have a unique and sig-

nificant impact at the non-linear scale, and we therefore expect these models to

feature prominently in the future of such research. Finally, we remarked on the

possibility of constraining extended models through N -body simulations, and

speculated that they may be able to constrain regions of the parameter space

where background and linear perturbation level data cannot reach.

In the future, we hope to see cosmological data analysis paired with N -body

simulations, which together, will hopefully shine a brighter light into the darker,

more obscure corners of our universe and ultimately tell us more about this place

we call home.
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