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Abstract

This work develops and investigates localization and beamforming techniques with multiple
antennas for multiple access schemes in underwater acoustic (UWA) communication systems.
To enhance the accuracy of node localization, a non-coherent ambiguity function (AF)
approach has been developed based on matched field processing (MFP) for localization of
a single-antenna UWA communication receiver to one or more transmit antennas. Firstly,
we demonstrate that a non-coherent AF allows significant improvement in the localization
performance compared to the coherent AF previously used for this purpose, especially at
the high frequencies typically used in communication systems. Secondly, we propose a
two-step (coarse-to-fine) localization technique. The second step provides a refined spatial
sampling of the AF in the vicinity of its maximum found on the coarse space grid covering
an area of interest (in range and depth), computed at the first step. This technique allows high
localization accuracy and reduction in complexity and memory storage, compared to single
step localization. Thirdly, we propose a joint refinement of the AF around several maxima
to reduce outliers. Fourthly, the combination of different beamforming techniques with
two-step localization in a UWA communication system with orthogonal frequency-division
multiplexing (OFDM) has been investigated. For an approximate minimum mean square error
(MMSE) transmit antenna precoder with subcarrier-by-subcarrier regularization and with
diagonal loading, it is demonstrated that with a suitable assumed signal-to-noise ratio (SNR),
the MMSE precoder can achieve a significant improvement in the detection performance
compared to a previously proposed zero-forcing precoder. Numerical experiments for
multiple communication scenarios and acoustic environments are run for validation of these
proposed techniques.
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Chapter 1

Introduction

1.1 Underwater communication

In comparison to the terrestrial realm, the underwater environment comprises a significant
proportion of the planet. It contains abundant natural resources, such as valuable minerals and
offshore oil fields, which are highly sought-after and require efficient exploration strategies to
be developed [8]. Underwater communication has been an attractive topic to researchers for
several decades, and it is the process of transmitting information between underwater devices
or between an underwater device and a surface station. However, communication underwater
is a challenging field due to the physical properties of water, and due to the complex and
dynamic nature of the underwater environment.

A common approach to providing real-time communication in underwater applications
involves the deployment of wired communication systems. However, the practicality of
such systems has been challenged by various factors, including their high cost, complex
deployment procedures, and limited flexibility [8, 9]. To overcome the limitations of tradi-
tional wired communication systems, there has been a growing need for the development of
underwater wire-free communication systems. These wire-free systems have the potential to
provide more cost-effective and flexible solutions for a wide range of underwater applica-
tions related to ocean exploration and industrial activities such as environmental monitoring,
maritime archaeology, disaster prevention, tactical surveillance, offshore exploration, climate
change monitoring and oceanography research [8, 10, 11].

For underwater wire-free communications, the feasibility of using different physical
waves has been investigated. Typically, three distinct categories of physical waves are
suitable for transmission in an underwater wire-free context: radio, optical, and acoustic.

Radio waves can offer high data rates due to their high bandwidth, however, they cannot
propagate very far through water, even at low frequencies which limits their use to short range
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underwater transmission [11]. Radio waves are also limited by high absorption and rapid
attenuation, which require high transmission power [11–13]. Therefore, radio waves have
limited practical utility for underwater applications and are typically restricted to specialized
systems and specific use cases.

In underwater optical wireless communication (UOWC) systems, optical waves can
achieve high data rates with low power consumption. The UOWC systems can also support
low latency and simpler computational complexities in short-range transmission [11]. How-
ever, these systems are subject to distance limitations and are affected by water absorption
and scattering. Consequently, only a limited number of applications have been developed
utilizing UOWC technology.

Compared to the aforementioned electromagnetic waves, acoustic waves have garnered
significant attention due to their low attenuation in water, particularly in thermally stable and
deep water environments [14]. Acoustic systems have been identified as a promising solution
for underwater communications, particularly in situations where tethering poses physical
limitations on mobile systems [15, 16].

In an acoustic system, the available frequency range is from 100 Hz to 100 kHz and
higher [17]. However, the utilization of acoustic waves for communication in shallow
water can be adversely affected by temperature gradients, surface ambient noise, as well as
multipath propagation resulting from reflection and refraction. Compared with radio and
optical waves, the significantly slower speed of acoustic propagation in water (approximately
1500 m/s) poses an additional limitation for efficient communications and networking.
However, despite these limitations, acoustic waves remain the favoured technologies for
underwater communication in current research and applications [14]. It is acknowledged
that acoustic waves are considered the most practical physical medium for underwater
communications in longer ranges and diverse water environments [18]. Therefore, underwater
acoustic (UWA) communication systems are widely recognized as the predominant form
of wireless communication in underwater environments and continue to be the focus of
extensive research in the field.

1.2 Underwater acoustic communication

In recent years, UWA communication has attracted significant interest due to a wide range
of environmental, commercial and military applications [19–24]. Typical applications are
search and rescue [25], environmental and biological monitoring [26], sea floor mapping [27]
and oil and gas exploration [28]. In fact, UWA communication systems can provide greater
mobility and accessibility for underwater vehicles, such as autonomous underwater vehicles
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(AUVs) and remotely operated vehicles (ROVs), allowing for more efficient and effective
exploration and data collection.

In UWA communication, acoustic waves can be transmitted over several tens of kilome-
ters [29–35]. The propagation distance is mainly determined by the physical characteristics
of the underwater channel, including absorption, scattering, multipath propagation, and so
on. These phenomena can result in attenuation, delay, and distortion of the acoustic signal,
which can limit the bandwidth of the channel. The constrained available bandwidth poses a
challenge for transmitting a large amount of data in UWA communication systems.

UWA communication faces significant challenges due to the unique properties of the
underwater environment. The fundamental physics of sound propagation in water (including
the limited bandwidth, significant signal attenuation, and multipath propagation caused by
scattering and reflection) are major obstacles to reliable communication underwater. In
addition, underwater communication is further complicated by the Doppler effect induced
by the motion of the transmitter and receiver, ocean noise from numerous mechanisms,
including natural and human-made sources, and uncertainties arising from the lack of a priori
knowledge of the underwater environment. These challenges require the development of
advanced signal processing, modulation techniques, and communication protocols to improve
the reliability and performance of UWA communication systems. Therefore, it is necessary
to explore the unique properties of the underwater environment.

1.3 Characteristics of UWA channels

UWA channels are significantly different to radio channels. They are dynamic and dispersive
resulting from the complex and dynamic sea environment [36]. There is no such thing as
a fixed UWA communication due to the dynamic UWA environment. It means that one
designed acoustic communication system that works well in a shallow water environment
may not suitable to a deep water environment at all. Furthermore, there are some key factors,
influencing the UWA channels including the special noise environment, multipath effect
and the Doppler effect [37]. UWA channels are frequency-selective due to the unavoidable
multipath interference [18] and the time-varying effect together with the frequency-selectivity
leads to the doubly-selective fading channel [33]. Therefore, UWA channels can be regarded
as frequency-selective fading channels.

In a time-varying linear channel, a received signal, y(t), can be represented by [38]

y(t) =
∫

∞

−∞

h(t,τ)s(t − τ)dτ, t ∈ [0,Tsig], (1.1)
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assuming there is no noise, where h(t,τ) indicates the channel impulse response, s(t) is the
transmitted signal, and Tsig represents signal duration.

When designing an UWA channel for stable and reliable communication systems, it is
crucial to consider the physical characteristics of the underwater environment. Therefore, to
design a better acoustic channel for UWA communication systems, the following factors are
especially important, they are ambient noise, transmission loss, multipath propagation and
the Doppler effect.

1.3.1 Ambient noise

Ambient noise is widespread and a kind of unwanted background sound. Underwater
environments are typically characterized by various sources of ambient noise, such as the
noise generated by the sea surface, noise due to biological activity, ocean currents, and
anthropogenic activities. It may appear at a specific place of the ocean at a particular time
in the deep sea [37, 39] and considered separately to transient sounds and all forms of
self-noise including the current flow noise produced by the transducer [39]. Ambient noise
can be represented using a Gaussian model including the white noise [5]. The ambient
noise can significantly impact the performance of underwater communication systems by
reducing the signal-to-noise ratio (SNR). Therefore, it is essential to understand and model
the characteristics of the ambient noise in the target underwater environment when designing
an effective and reliable UWA communication system.

1.3.2 Transmission loss

Acoustic waves in underwater environments experience attenuation or transmission loss
when they propagate through the water medium. Transmission loss depends on various
factors, including frequency, distance, and environmental conditions such as temperature,
salinity, and water absorption. In UWA communication, the total loss experienced by the
acoustic signal can be decomposed into two main components: spreading loss and absorption
loss [39]. In UWA communication, transmission loss is considered in terms of the distance
between the transmitter and receiver [40]. The overall transmission loss, A, can be described
as [37],

A(l, f ) =
(

l
lr

)k

a( f )l−lr , (1.2)

where l is the propagation distance between the transmitter and receiver, f represents the
signal frequency, lr is a reference distance, k indicates the spreading loss, its value is chosen
between 1 to 2, which is used for cylindrical and spherical spreading, respectively, a is the

24



1.3 Characteristics of UWA channels

absorption coefficient. Eq. (1.2) can be rewritten in the form of dB,

10log
A(l, f )

A0
= k×10log(l)+ l ×10loga( f ), (1.3)

where two items on the right side of the equation represent separately spreading loss and
absorption loss.

The absorption coefficient a( f ) results from an empirical formula, the Thorp formula
given [40, 41] by

10loga( f ) =
0.11 f 2

1+ f 2 +
44 f 2

4100+ f 2 +2.75×10−4 f 2 +0.003, (1.4)

where a( f ) is in dB/km, f represents frequency in kHz.
The bandwidth limitation results from the physical property of acoustic propagation [40],

mainly influenced by the attenuation characteristic of sea water [36]. Signal-to-noise ratio
(SNR) is an important characteristic defined by the transmission loss and ambient noise. The
SNR in a narrow band can be defined as [5],

SNR(l, f ) =
Sl( f )

A(l, f )N( f )
, (1.5)

where Sl( f ) indicates the power spectral density of transmitted signals, N( f ) is the power
spectral density of the ambient noise. The AN product A(l, f )N( f ) is the frequency-
dependent term in SNR when given the specific distance.

The relationship between the narrow-band SNR, distance and frequency is illustrated
in Fig 1.1. The available bandwidth for UWA communication systems is influenced by the
transmission distance. At shorter distances, the available bandwidth is larger, whereas at
longer distances, the available bandwidth becomes more limited. For example, at a distance
of 10 km, the available bandwidth is around 8.5 kHz (frequency range is from 2 kHz to 10.5
kHz); while at a distance of 100 km, the available bandwidth is only about 1 kHz. This
decrease in available bandwidth with increasing distance is primarily due to the attenuation
of the acoustic signal. This attenuation is caused by spreading loss and absorption loss in the
underwater environment.

The available bandwidth is also affected by the SNR or the reciprocal of the ambient
noise ( 1

AN). A worse SNR or higher ambient noise level results in a narrower available
bandwidth. For example, a lower 1

AN value of -130 dB at a distance of 100 km corresponds
to a narrower available bandwidth of about 1 kHz, compared to a higher 1

AN value of -102 dB
at a distance of 10 km, which corresponds to a wider available bandwidth of about 8.5 kHz.
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Fig. 1.1 SNR in an acoustic channel depends on the frequency and distance through the
factor 1

A(l, f )N( f ) . Copied from [5].

Furthermore, the deployment of transducers (antennas) also can affect the bandwidth
of the UWA communication systems [37, 40]. The transducers used for transmitting and
receiving acoustic signals may have limitations in their bandwidth, which can further restrict
the available bandwidth for communication purposes. Therefore, there is a demand for
bandwidth-efficient modulation methods that can effectively utilize the limited available
bandwidth in UWA communication systems. These modulation methods need to be carefully
designed and optimized to achieve reliable and efficient communication performance, con-
sidering the available bandwidth, transmission distance and ambient noise in the underwater
environment.

1.3.3 Multipath propagation

Multipath propagation is a phenomenon that occurs in UWA communication systems due to
the complex sea environment. The sea environment includes various elements such as the
surface, bottom (which can be hard or soft), and objects, which can cause physical reflection
and refraction of acoustic waves, leading to the formation of multiple paths or rays that can
reach the receiver (hydrophone) at different times and angles [37]. The sound speed in water,
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influenced by factors such as temperature, salinity, and pressure, also varies with depth and
location, further contributing to multipath phenomena [14, 37].

As a result, when an acoustic wave is transmitted from a transducer in an UWA commu-
nication system, it can take multiple paths due to reflections, refractions, and variations in
sound speed, and arrive at the receiver with different propagation delays. These propagation
delays can be estimated and quantified, as they are generally stable in time-varying UWA
channels [18]. However, multipath propagation can also result in excessively long multipath
delays, which can cause time dispersion of the acoustic wave and result in severe intersymbol
interference (ISI) in the received signal [14].

To mitigate the effects of multipath propagation in UWA communication systems, tech-
niques such as orthogonal frequency division multiplexing (OFDM) with longer guard
symbols can be applied [42]. OFDM is a modulation technique that allocates the trans-
mission data across multiple subchannels in the frequency domain, allowing for effective
mitigation of frequency-selective fading channels caused by multipath propagation. By
using longer guard symbols, which are designed to protect against the ISI caused by mul-
tipath delays, the effects of multipath propagation can be reduced, improving the overall
communication performance in underwater environments.

Mitigating the multipath effect is a crucial aspect of UWA communication system design,
because it helps to minimize the impact of time dispersion, ISI, and other signal distor-
tions caused by multipath propagation, ultimately leading to more reliable and efficient
communication performance in underwater environments.

1.3.4 Doppler effect

The Doppler effect is a phenomenon that occurs due to the relative motion between a
transmitter and a receiver, resulting in a shift in the frequency of the transmitted signal as
observed by the receiver. The Doppler effect exists due to the motion of the transmitter
and/or receiver [43]. However, in UWA communication systems, the additional variation and
complexity of the Doppler effect can be caused by such factors as the sea surface motion
and/or internal waves.

In UWA communication, the Doppler spread effect is particularly significant due to the
propagation medium with a low propagation speed of sound (normally assuming 1500 m/s)
in water compared to radio frequency channels. The normalized carrier frequency offset,
which represents the Doppler shift, can be extremely large in UWA communication due to
the motion-induced Doppler effect [44, 45]. This can result in significant frequency shifts in
the received signal, leading to potential signal distortions and degradation of communication
performance.
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Therefore, it is essential to consider the Doppler effect when designing UWA communi-
cation systems. Techniques such as robust modulation and channel estimation methods that
can handle the effects of Doppler spread are commonly applied in UWA communication to
mitigate the impact of Doppler-induced frequency shifts.

1.4 Multiple antenna transmission

Information theory states that the channel capacity of a communication system increases
proportionally to the minimum number of antennas at the transmitter and receiver [46].
Therefore, it is necessary to explore the various implications of antenna deployment in
underwater communication systems.

In UWA sensor networks, it is feasible to deploy multiple antennas at the base station
(a single gateway node), but not practical to install multiple antennas at many sensor nodes,
which should be of low cost, low complexity, and low power consumption. For the downlink
transmission, this means that multiple transmit antennas are practical, whereas multiple
receive antennas are not practical.

Based on the number of antennas utilized at the transmitter and receiver, the same
antenna techniques used in terrestrial wireless communication systems, including single-
input single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output
(MISO), and multiple-input multiple-output (MIMO), can also be applied to underwater
communication systems. Each antenna technique has its advantages and limitations, and
careful consideration of the appropriate antenna technique is crucial for optimizing the
performance of wireless UWA communication systems.

In SISO systems, only one antenna is used at the transmitter and one antenna at the
receiver. SISO UWA communication systems have been widely used in practice due to their
relatively lower cost and simpler deployment compared to other antenna techniques [47, 48].
SISO UWA communication systems with multi-carrier modulation techniques like OFDM
are feasible [49]. SISO UWA communication systems can still provide basic communication
capabilities in certain scenarios, but their limitations in terms of potential distortion, low
data rates, and error rates may restrict their use in more complex underwater communication
environments. To enhance the performance of UWA communication systems, it is necessary
to extend research to multi-antenna systems.

In SIMO systems, there is only one antenna at the transmitter, while multiple antennas
are used at the receiver. SIMO systems exploit receiver diversity, where the multiple antennas
at the receiver are used to receive the same signal from different spatial paths, effectively
mitigating the effects of multipath propagation [50, 51]. Indeed, SIMO-OFDM communi-
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cation systems over UWA channels have been shown to improve bandwidth efficiency [52].
However, due to the high attenuation of acoustic waves in water, the SIMO technique may
have limited range and performance in UWA communication systems.

Compared to the SISO and SIMO systems, MIMO is a more complex system, allowing
an increased capacity of the whole system. The development of MIMO systems in terrestrial
wireless communications has achieved higher data rates [8]. In UWA communication, MIMO
techniques have been researched in [36, 44, 45, 53–55] for increasing data rates but MIMO
UWA systems bring about space-time interference and time-varying phase distortion [45]. In
addition, the extra space interference among concurrent transmission streams degrades the
detection performance significantly [44].

In MISO systems, multiple antennas are deployed at the transmitter and one antenna
at the receiver. It is impractical to use spatial division multiple access (SDMA) when
deploying a small number of antennas at the base station and large number of antennas
in the receivers [56]. MISO systems are combined with SDMA to maximize data rates
faced with power constraints and quality of service requirements [42]. MIMO and MISO
techniques show good performance in improving data rates in wireless communication
systems. However, it is not practical when the MIMO systems apply SDMA with the
deployment of a small number of antenna and a larger group of users. MISO systems with
SDMA present a more realistic implementation because a single antenna at each user are
multiplexed spatially and independently [56]. Multi-antenna and OFDM techniques have
been employed to increase data rates in the broadband communication systems. It has been
shown that MISO-OFDM systems can significantly reduce the transmission power [57]. In
this thesis, the multi-antenna technique, a MISO system combined with OFDM technique
is investigated and an advanced receiver localization technique is proposed to improve the
accuracy performance.

1.5 Underwater Localization

One of important applications in multi-antenna UWA communication systems is underwater
localization. Underwater localization is a difficult problem. In fact, the localization technolo-
gies for terrestrial communications cannot be applied directly to the underwater localization
problem. The well-known land localization technique, the Global Positioning System (GPS)
would experience significant attenuation underwater due to the use of radio waves.

Research and development into non-acoustic and acoustic technologies for positioning
and tracking underwater assets are on going [58]. In recent years, non-acoustic localization
techniques, such as inertial navigation methods have been adopted in some underwater
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communication systems to improve localization accuracy and reliability [59–61]. Inertial
navigation makes use of accelerometers and gyroscopes to measure the motion and orientation
of a platform, such as an underwater vehicle or a diver, and uses this information to estimate
the position and velocity of the platform relative to a reference point. However, inertial
navigation systems are subject to inherent errors and biases, which can accumulate over
time and lead to drift in the estimated navigation data. This drift can result in a degradation
of the localization accuracy over time, especially for long-duration underwater missions.
In addition, the limited transmission range and coverage challenge the development of the
non-acoustic localization techniques.

In comparison to the non-acoustic localization techniques, acoustic localization tech-
niques offer several benefits, including long range, wide coverage, robustness to environmen-
tal variability, complementarity with other localization techniques, and cost-effectiveness [59,
62, 63]. These advantages make acoustic localization as a popular choice for many underwa-
ter communication and navigation applications.

There are three types of commercially available systems applying localization techniques
using acoustic waves, including long baseline (LBL) systems, short baseline (SBL) systems
and ultra-short-baseline (USBL) systems [64]. These systems measure the distance between
the baseline stations and determine target position by trilateration.

In LBL systems, the method is that an underwater vehicle takes triangulation measure-
ments based on estimating the round-trip delay to transponders which are deployed at the
bottom of the sea [59, 65]. It can lead to a good localization accuracy but its limitation
is the substantial time consuming calibration [59]. In SBL systems, the core method is to
measure the time difference of arrivals to locate, for example, a ship equipped with receivers
on the surface. In USBL systems, the surface buoys are set as the reference points and other
functions are similar to the LBL systems [59]. A small array of hydrophones is used to
assess the acoustic signals from the undersea emitters in order to calculate the angle of arrival
(AOA). More aspects are considered including combining the AOA information with a range
estimation. This method can provide static positioning accuracy and precision comparing
to other methods and significantly reduces the time and cost of the offshore project [66].
Thus, it can achieve much better localization performance. These are the three types of UWA
communication systems for localization through the acoustic waves and they need improving
to provide better performance.

Acoustic localization techniques have pushed the development of UWA communication.
Acoustic localization techniques are important for further exploration in terms of data
analysis, tracking and detection [13]. Such technologies have been used in underwater
acoustic sensor networks (UASNs) to improve its performance including medium access and

30



1.6 Discussion of Li Liao’s work [1]

network protocols [13]. One deterministic factor of localization estimation is ranging, which
is to directly estimate the distance between the transmitter and the receiver.

The work in this thesis mainly contributes to the localization problem of the underwater
nodes, within a multi-antenna UWA communication system, thus enhancing the performance
of the whole system.

1.6 Discussion of Li Liao’s work [1]

This work can be considered as a continuation of what has been done in the thesis by Li
Liao [1]. For localization, he uses the coherent processing. Here, we will propose a new
non-coherent metric, which results in much more accurate localization. He considers only the
coarse localization approach. This approach requires huge computation for a large number
of points on the grid. We propose more advanced approaches, coarse-to-fine localization
techniques, which only need a small number of points on the grid, thereby greatly reducing
the computational complexity and further improving the localization accuracy.

For beamforming techniques, although he did precoding, his work was focused only
on two fixed positions of the receivers between grid points in the space, and he didn’t
explore what the detection performance would be for different random receiver positions.
Testing beamforming techniques with different random receiver positions provides a more
comprehensive understanding of the detection performance in real-world conditions. We
also investigate different transmit beamforming techniques, not only the zero-forcing (ZF)
precoder considered in [1].

Overall, the techniques proposed in this thesis can significantly improve both the accuracy
of localization and the detection performance of transmit beamforming techniques, as well
as reducing the computational complexity.

1.7 Motivation and Contributions

1.7.1 Motivation

Underwater localization techniques and transmit beamforming (MISO systems) are essential
for UWA communication. Developing such techniques will improve our ability to navigate
and track underwater sensor targets, and increase efficiency for underwater applications in
research and rescue [25], environment and biological monitoring [26], sea floor mapping [27],
mining exploration [67] and oil and gas exploration [28]. In recent years, many localization
and transmit beamforming techniques underwater have been developed, but they are still
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limited in performance, including relatively low data rates, high complexity, low accuracy
and detection performance, which demand further research.

The pre-computation of channel state information (CSI) in an area of interest can reduce
that complexity. Based on the grid pre-computation algorithm, the system can achieve better
localization accuracy with lower complexity. The estimated localization information can be
sent back to the transmitter through the feedback link. To avoid interference from other users,
the transmit beamforming can be designed through the feedback and achieve higher detection
performance. In such a way, the transmitter can transmit data to users simultaneously without
interference to increase data rates.

The non-coherent ambiguity function (AF) effectively achieves additional complexity
reduction by employing a smaller number of grid points in comparison to the coherent AF. In
addition, the work [68] shows that simulation results using the BELLHOP cannot be matched
to the experimental results when using the coherent AF, but have a good match when the
non-coherent AF applied.

Multi-antenna communication techniques can provide spatial diversity and improve
UWA communication reliability and capacity. However, an accurate receiver localization in
UWA communication is still a significant problem. In this situation, the localization accuracy
directly affects the designing of the transmit beamforming and further influences the detection
performance. In other words, this puts forward requirements for higher precision localization.

The aim of this thesis is to develop and investigate multi-antenna communication tech-
niques, more specifically, developing advanced underwater localization techniques and
investigating transmit beamforming techniques for such systems.

1.7.2 Contributions

The contributions of this thesis are summarized as follows.

• We demonstrate that a non-coherent ambiguity function (AF) allows significant im-
provement in the localization performance compared to the coherent AF previously
used for this purpose, especially at high frequencies.

• A two-step (coarse and fine step) technique is proposed. The first step is to find
the AF maximum by comparing the estimated channel frequency response with the
pre-computed frequency responses in the grid map; the second step provides a refined
spatial sampling of the AF in the vicinity of its maximum found on the coarse space
grid covering an area of interest (in range and depth), computed at the first step. This
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technique allows high localization accuracy and a reduction in complexity and memory
storage, compared to single-step localization.

• A joint refinement of the AF in the vicinities of several maxima is proposed to reduce
outliers in the position measurement.

• The combination of the zero-forcing (ZF) transmit beamforming with the two-step
localization is demonstrated and investigated. This allows significant improvement in
the detection performance compared to the existing localization in a particular scenario.

• A precoder, called approximate MMSE precoder with subcarrier-by-subcarrier regular-
ization by the diagonal loading, is demonstrated and investigated. This precoder allows
high detection performance and is shown to be feasible for a more general scenario.

• For validation of the proposed techniques, we run numerical experiments in different
UWA environments, with different parameters for spatial sampling, number of transmit
antennas and different accuracy for estimates of the acoustic channel response, plus
different precoders.

1.8 Thesis outline

This thesis is organized into five chapters. It explores the techniques of localization and
transmit beamforming in UWA communication systems.

Following the introduction and literature review described in Chapter 1, Chapter 2
presents the structure of matched field processing (MFP) localization using the non-coherent
ambiguity function (AF), which extends the work in [69], where receiver localization based
on the grid computation with coherent AF is described. The non-coherent AF provides
a significant improvement in the localization performance compared to the coherent AF
previously used for this purpose. Because the non-coherent AF focuses on comparing
magnitudes of channel impulse responses thus avoiding the phase information, the complexity
is reduced. In addition, better localization performance can be achieved especially at high
frequencies.

In Chapter 3, a two-step (coarse and fine step) localization technique is proposed. The
first step is to find the AF maximum by comparing the estimated channel frequency response
with the pre-computed frequency responses in the grid map; the second step provides a
refined spatial sampling of the AF in the vicinity of its maximum found on the coarse space
grid covering an area of interest. This technique provides higher localization accuracy and a
reduction in complexity and memory storage, compared to single step localization.
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In Chapter 4, we demonstrate and investigate two different linear precoders for transmit
beamforming with the combination of the two-step localization technique. The first pre-
coder is a zero-forcing (ZF) precoder. It allows significant improvement in the detection
performance, compared to the existing localization. The second precoder is an approximate
minimum mean square error (MMSE) precoder. This precoder is combined with subcarrier-
by-subcarrier regularization using diagonal loading. The MMSE precoder with an assumed
SNR allows better detection performance than the ZF precoder, especially in the mismatched
environments.

Finally, in Chapter 5, we conclude the thesis and present ideas for future work.

34



Chapter 2

Coarse Localization

2.1 Introduction

In recent years, UWA communication in sensor networks has gained increasing attention
due to its potential for various commercial and military applications [70–76]. Underwater
localization for acoustic sensors is a crucial task in many underwater applications, as the
collected data from sensors is often associated with their precise location. However, under-
water localization presents unique challenges because of the limitations of using radio-based
techniques, such as the global positioning system (GPS), which cannot operate underwater
due to the high attenuation of radio waves in water [77–79].

Matched Field Processing (MFP) is an effective and widely investigated technique for
underwater localization in acoustic sensor networks [80, 68, 81, 82]. MFP is a signal
processing technique that uses the principles of wave propagation and signal coherence to
estimate the position of a sensor by matching the received signals with modelled or measured
signals. MFP relies on an acoustic model to calculate a replica field, which represents the
expected acoustic field that would be received at each hydrophone in the array for a given
source position [83, 84]. This replica field is then compared to the field measured by the
hydrophones to estimate the source position.

In MFP, the similarity between the measured field at the hydrophones and the replica
field is typically quantified using an ambiguity function (AF). The AF is computed on a grid
of points in space (range and depth), covering the area of interest, and it represents the degree
of match between the measured field and the replica field at each grid point.

The AF is a measure of the similarity or coherence between the measured and replica
fields, and it can be computed using various techniques, such as cross-correlation, or other
similarity measures. The AF can be calculated over a range of possible source positions,
covering the region of interest where the source is likely to be located. The grid of points in
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an area of interest where the AF is computed represents the possible source positions that are
being considered for localization. This grid can be defined based on the expected range and
depth range of the source, and the grid step depends on the spatial resolution requirements of
the localization task.

The peak of the AF represents the best match or highest coherence between the measured
and replica fields, and it indicates the estimated source location [81, 85]. The source position
corresponding to the peak of the AF is considered as the localization estimate or the most
likely source location.

In MFP, AF processing can be categorized into two types: coherent AF processing
and non-coherent AF processing. Coherent AF processing takes into account the phase
relationship between the transmitted signal and the received signal. It provides a measure of
the time-delay and Doppler frequency shift of a target in a coherent manner, meaning that it
considers the phase information of the received signals. This coherent processing is most
often effective at low frequencies, typically up to 1 kHz, where the underwater sound waves
propagate well and exhibit coherent behaviour [68, 82].

However, the MFP with a coherent AF at high frequencies (where UWA communication
systems typically operate) can distort phase information in the received signals, resulting
in poor localization estimates or outliers. To mitigate this distortion, non-coherent process-
ing can be used in MFP for UWA communication systems operating at high frequencies.
Using numerical and real experiments, it is shown in [68] that with a non-coherent AF, the
localization accuracy at high frequencies (8 - 16 kHz) significantly improves.

Theoretically, the performance of the coherent AF should be better than the non-coherent
AF. The peak of the coherent AF or non-coherent AF can be found through their sampling
over the area of interest. In fact, the sampling interval for the coherent AF must be inversely
proportional to the carrier frequency and that of the non-coherent AF is inversely propor-
tional to the frequency bandwidth. Obviously, the coherent AF can always provide better
localization than the non-coherent AF when using a proper sampling rate. For example, if
the carrier frequency is 3 kHz and the frequency bandwidth is 1 kHz, the sampling interval
of the coherent AF is 3 times smaller, which means increasing the number of grid points by
32 = 9 times. In practice, in UWA communication systems the carrier frequencies and this
ratio are even higher, so that the coherent AF localization cannot be implemented due to the
high demand of the memory and high complexity. With the non-coherent AF, the number of
the grid points is significantly lower, thus, making the localization more feasible.

The work in [69] addresses the problem of localization in an underwater communication
network with multiple transmit antennas at the base station and single-antenna receivers at
the network nodes. The purpose of localization in this work is to reduce the amount of data
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needed to represent the channel state information (CSI) that is sent from the nodes back to
the base station for transmit antenna precoding. In [69], the coherent AF is used for the MFP
localization, and therefore, a large number of transmit antennas and dense spatial sampling
are required, resulting in high complexity and high memory storage requirements. Therefore,
it is necessary to explore other methods to improve the localization accuracy in MFP based
localization.

2.2 MFP coarse localization

UWA localization based on the coherent AF is described in this section, as proposed in [69].
Then, the non-coherent AF is introduced and the corresponding localization method is
considered. These two methods are compared through a number of numerical experiments
with the consideration of localization accuracy, complexity and storage requirement. The
localization methods with the resolution corresponding to the grid step will be considered to
be the coarse localization as opposed to the fine localization methods proposed in Chapter 3,
which provide a resolution better than the grid step (fine grid points are inserted between the
coarse grid points).

To make a further consideration of trade-offs between localization accuracy, complexity
and storage requirement in UWA communication systems, based on the work in [69], local-
ization with coherent AF and non-coherent AF is investigated in the following subsections.

2.2.1 Coarse localization based on coherent AF

In this subsection, we present a communication scenario and MFP coarse localization
technique exploiting a coherent AF, as described in [69].

Consider an UWA environment, where a geographical area of interest is defined as
illustrated in Fig. 2.1. We assume that the UWA environment is perfectly known, in particular,
that the sound speed profile (SSP) is available. The area of interest is covered by grid points,
each at a specific sea depth and range from the transmit antenna. Using an acoustic model
and the UWA environment parameters, the channel response between the transmit antenna
and every grid point is computed and stored in memory. We will call the result of this
computation a grid map for the transmit antenna. Such computations are repeated for every
transmit antenna and the corresponding grid maps represent a dictionary. This dictionary
is available at the receiver, which is located within the area of interest. Using the signal
transmitted from each transmit antenna, the receiver estimates the channel responses and
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Fig. 2.1 An example of two grid maps for a geographical area; every grid map corresponds
to a specific transmit antenna.

compares them with the channel responses of the corresponding grid maps. The best match
is assumed to indicate the grid point closest to the true receiver location.

In [69], it is assumed that by using a feedback communication channel, the node sends
the grid point index to the base station, where the dictionary channel responses are used for
optimization of transmit antenna beamforming. However, this information can also be used
for other applications, e.g. attributing the information from sensors to geographical locations.
Here, we only consider the localization problem.

For comparison of channel estimates with entries in the dictionary, different metrics can
be used. For communication systems, it is typical to describe the channel as a linear filter
with an impulse response or corresponding frequency response. Let gm be a K ×1 vector
representing the channel frequency response, corresponding to the mth grid point. Elements
of the vector are K samples of the frequency response (K subcarrier amplitudes) within the
frequency bandwidth of the communication system. Let ĥ be a K ×1 estimate of the channel
frequency response at the receiver. For comparison of these two vectors, the following metric
can be used [69]:

cm =
|gH

m ĥ|2

∥gm∥2
2∥ĥ∥2

2
, m = 1, ...,M, (2.1)

where M is the number of grid points in the grid map. The set of values cm over m represents
a coherent AF. The best match between the channel response estimate and channel responses
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in the grid map is given by
mo = arg max

m=1,...,M
cm. (2.2)

The grid point index mo defines the receiver location estimate.
With the knowledge of the specific acoustic environment including the SSP, acoustic

parameters of the sea bottom, the depth of transmit antennas, and the position of the grid
point, a ray tracing acoustic simulator is used to compute gm. Elements of the vector gm are
then given by

gm( fk) =
Lm−1

∑
i=0

Am,ie− j2π fkτm,i, (2.3)

where fk, k = 0, . . . ,K − 1, are subcarrier frequencies at which the channel frequency re-
sponses are computed, Lm represents the number of rays, Am,i is the complex-valued ampli-
tude and τm,i is the delay of the ith ray on the mth grid point. For our simulation below, the
ray information is generated by the BELLHOP3D ray tracing program [86].

However, there is an unknown propagation delay τ between the channel response estimate
and channel responses in the grid map. In the frequency domain, at a frequency f , this delay
is represented as a factor e− j2π f τ . With the unknown delay τ , the measure for comparison of
channel frequency responses is given by

cm =
maxτ∈[τmin,τmax] |g

H
mΛΛΛτ ĥ|2

∥gm∥2
2∥ĥ∥2

2
, (2.4)

where

ΛΛΛτ =


e− j2π f0τ 0

. . .

0 e− j2π fK−1τ

 ,

ΛΛΛτ is a K ×K diagonal matrix. The parameters τmin and τmax define the delay uncertainty
interval. The metric (2.4) describes a coherent AF {cm}, which provides an improved location
estimate mo compared to the AF in (2.1).

Computation in (2.4) can be efficiently done using the fast Fourier transform (FFT),

cm =
maxi=1,...,pK |q(i)|2

∥gm∥2
2∥ĥ∥2

2
, (2.5)

where q(i) are elements of the vector q = Fηηη and ηηη is obtained by zero-padding the vector
gH

m ⊙ ĥ. F is a pK × pK discrete Fourier transform (DFT) matrix and p is an integer, p ≥ 1.
Using p > 1 allows improvement in the delay resolution.
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Fig. 2.2 An example of the coherent AF in (2.6) for parameters of the acoustic environment
in Table 2.1. The crossing point of the horizontal and vertical black lines indicates the true
receiver position. The black square indicates the position estimate (the AF maximum). Here
we use the acoustic environment with the uniform SSP as shown in Fig. 2.3.

Note that the AF for a particular transmit antenna can have multiple maximums close in
magnitude. Since the channel estimates are corrupted by noise, a wrong (local) AF maximum
can be chosen for the localization, resulting in outliers. The probability that AFs computed
for different antennas have the same positions of maximums is low, which can be exploited
to reduce the outliers.

Therefore, with multiple transmit antennas, the localization performance could be further
improved by using the AF

cm =
NT

∑
t=1

maxτ∈[τmin,τmax] |g
H
t,mΛΛΛτ ĥt |2

∥gt,m∥2
2∥ĥt∥2

2
, (2.6)

where NT is the number of transmit antennas, gt,m is the channel frequency response vector
at the mth grid point on the tth grid map and ĥt is the estimate of the channel frequency
response between the tth transmit antenna and receiver antenna.
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Table 2.1 Simulation parameters used in an example of receiver localization.

Variable name Value Description

B 1024 Hz Frequency bandwidth
Cd 1 m Coarse grid step in depth
Cr 1 m Coarse grid step in range
DT 50,60,70,80 m Depth of transmit antennas
Dl 70 m Depth for area of interest
fc 3072 Hz Carrier frequency
K 1024 Number of subcarriers
NT 4 Number of transmit antennas
Rl 120 m Range for area of interest
δ 1 Hz Subcarrier spacing
τ [−0.5 s,0.5 s] Delay uncertainty interval

Fig. 2.2 shows the coherent AF defined in (2.6) for an acoustic environment described in
Table 2.1. Specifically, the SSP is uniform (sound speed is consistent, assuming 1500m/s)
as shown in Fig. 2.3, the number of transmit antennas NT = 4, the area of interest in range
is from 100 m to 220 m and in depth from 30 m to 100 m, the grid steps in both range and
depth are 1 m. It can be seen in Fig. 2.2 that the true position of the receiver is at the range of
184.5 m and in 70 m depth. However, the maximum of the AF is found at a depth of 41 m
and a range of 108 m. It can be seen that the location estimate is very poor, the estimate is
about 82 m away from the true location. This happens because the spatial sampling interval
is too large to provide accurate representation of the AF, i.e., the AF samples miss the AF
maximum. To overcome this problem, we need to reduce the spatial sampling interval, so
that we do not miss the AF maximum. However, this results in a higher number of grid points
M, and thus the memory required for saving the dictionary increases and the complexity of
the AF computation in (2.6) also increases.

This limitation of the coherent AF in terms of dense spatial sampling, computation
complexity, and potential false localization motivates the need for alternative approaches, such
as the non-coherent AF method proposed in subsection 2.2.2 and coarse-to-fine localization
approaches in the following chapters, which can provide more efficient localization results
with reduced computational requirements.
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Fig. 2.3 Sound speed profiles (SSPs): uniform, SWellEx-96 [6] and the mismatched SWellEx-
96 when the variance sound speed σ2

ssp = 1 (m2/s2). (Note: there is no change for the SSP
when σ2

ssp = 0, the mismatched SSP with a non-zero σ2
ssp is discussed in subsection 3.4.3)
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Fig. 2.4 An example of the non-coherent AF in (2.7) with specific parameters of the acoustic
environment as described in Table 2.1. The true receiver position is indicated by the crossing
point of horizontal and vertical black lines, while the position estimate (the AF maximum) is
denoted by a black square. The acoustic environment is assumed to have a uniform SSP as
shown in Fig. 2.3.

2.2.2 Coarse localization with non-coherent AF

In this subsection, a non-coherent AF is introduced as an alternative to the coherent AF for
UWA MFP localization, and its effectiveness is demonstrated in comparison to the coherent
AF.

The coherent AF method requires dense spatial sampling, which results in a high compu-
tation complexity and large memory storage for saving the dictionary. In practical scenarios,
even with relatively low carrier frequencies and small grid steps for the AF, false localization
(outliers) can occur when the receiver is located between the grid points. This is illustrated in
the example of coherent AF shown in Fig. 2.2, where even with such a low carrier frequency
as fc = 3072 Hz and small grid steps of Cd =Cr = 1 m, false localization can happen when
the receiver is located between grid points.
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In order to keep the memory and complexity low, a better localization performance can
be achieved with the method of the non-coherent AF, which is defined as

cm =
NT

∑
t=1

maxτ∈[τmin,τmax]

∣∣g̃H
t,mΛΛΛτ h̃t

∣∣2∣∣∣∣g̃t,m
∣∣∣∣2

2

∣∣∣∣h̃t
∣∣∣∣2

2

, (2.7)

where g̃t,m = F̃abs(F̃Hgt,m), h̃t = F̃abs(F̃Hht), F̃ is the K ×K DFT matrix and the vector
function abs(g) is defined as

abs(g) =

|g1|
.̇

|gK|

 ,

where gk, k = 1, . . . ,K, are elements of the vector g.
Obviously, the non-coherent AF is based on comparing the magnitudes of the channel

impulse responses (CIRs) without considering the phase information.
Fig. 2.4 shows an example of receiver localization using the non-coherent AF in (2.7) for

the parameters of acoustic environment in Table 2.1. When comparing Fig. 2.4 and Fig. 2.2,
it can be seen that the non-coherent AF is significantly smoother (i.e., accepting higher grid
steps for the AF approximation) than the coherent AF and the maximum of the non-coherent
AF provides an accurate estimate of the receiver location.

Therefore, the non-coherent AF without relying on phase information can provide rea-
sonable localization accuracy with lower computational complexity and memory storage
requirements. This method can be more efficient and robust in certain localization applica-
tions, especially in scenarios where dense spatial sampling is challenging or not feasible.

2.2.3 Coarse localization with multiple antenna transmission

In this subsection, we present results of numerical experiments that aim to compare the
localization accuracy of the coarse MFP approach using the coherent and non-coherent AFs,
in scenarios where multiple transmit antennas are employed. We apply the MISO multiple
antenna scheme to the coarse MFP localization for improving data rate. We expect the
localization performance of both coherent and non-coherent approaches to improve with the
number of transmit antennas, but in different levels.

44



2.2 MFP coarse localization

Table 2.2 Parameters for coarse receiver localization.

Variable name Value Description

Cd 1 m Coarse grid step in depth
Cr 1 m Coarse grid step in range
DT 50,60,70,80 m Depth of transmit antennas
Dl 200 m Depth for area of interest
K 1024 Number of subcarriers
NT 1, 2, 4 Number of transmit antennas
Rl 500 m Range for area of interest
Sc 201×501 Size of the coarse grid map
δ 1 Hz Subcarrier spacing
τ [−0.5 s,0.5 s] Delay uncertainty interval

In the experiments, to measure the localization performance, the cumulative distribution
function (CDF) is computed for the position error

ε =
√
(x̂− x)2 +(ŷ− y)2, (2.8)

where x̂ and ŷ are estimates of the true range x and depth y, respectively. The CDF is obtained
in 100 simulation trials. In each simulation trial, the receiver position is uniformly random
within the area of interest. The main simulation parameters are given in Table 2.2.

In these numerical experiments, we compare the coarse localization performance using
the coherent AF and non-coherent AF metrics. We analyse the CDF of the localization
error ε for both metrics, considering low and high carrier frequencies fc, and varying the
number of transmit antennas NT. The SSP is assumed to be uniformly distributed, as shown
in Fig. 2.3.

The results, as shown in Fig. 2.5, Fig. 2.6, Fig. 2.7 and Fig. 2.8, demonstrate that
the localization performance provided by the non-coherent AF is significantly better than
that provided by the coherent AF. As the number of transmit antennas NT increases, the
performance improves for both metrics.

At the low carrier frequency fc = 3072 Hz, when using the non-coherent AF with NT = 2,
all receivers are localized within an error of ε ≤ 2 m, whereas, for the coherent AF even with
NT = 4, in more than 40% of cases, the error is higher than 2 m. Thus, the use of the non-
coherent AF significantly reduced the number of outliers, as was previously demonstrated in
Fig. 2.4.
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Fig. 2.5 CDF of the localization error ε for the coarse localization using the coherent AF at
low carrier frequency fc = 3072 Hz against the number of transmit antennas NT.

Furthermore, the results show that the increase of carrier frequency fc results in a
significant degradation of localization performance with the coherent AF, whereas the non-
coherent AF maintains consistent performance. This indicates that the non-coherent AF is
more robust to changes in carrier frequency compared to the coherent AF, which may suffer
from performance degradation at higher carrier frequencies.

Therefore, these findings suggest that the non-coherent AF is more accurate and robust for
coarse MFP localization compared to the coherent AF, especially when the carrier frequency
is high or the number of transmit antennas is limited.

2.3 Conclusions

This chapter has focused on the investigation of an underwater coarse MFP localization
technique. The considered techniques are designed for a single-antenna UWA communication
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Fig. 2.6 CDF of the localization error ε for the coarse localization using the non-coherent AF
at low carrier frequency fc = 3072 against the number of transmit antennas NT.
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Fig. 2.7 CDF of the localization error ε for the coarse localization using the coherent AF at
relatively high carrier frequency fc = 15360 Hz against the number of transmit antennas NT.
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Fig. 2.8 CDF of the localization error ε for the coarse localization using the non-coherent AF
at relatively high carrier frequency fc = 15360 Hz against the number of transmit antennas
NT.
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receiver. A non-coherent AF method has been proposed to improve the localization accuracy
when compared to the method based on using the coherent AF, especially at high frequencies.

While the non-coherent AF has been shown to reduce the number of grid points compared
to the coherent method, it may still be computationally intensive for real-time implementation
in UWA communication receivers with limited computation resources. To address this, further
reduction in computation can be achieved by employing pre-localization techniques, such as
using known methods to estimate the receiver’s depth. This can significantly reduce the grid
size and, as demonstrated in the later chapters, can also result in higher localization accuracy.

The several maximum search and multiple refinement techniques proposed in the fol-
lowing chapter can also contribute to achieving a very high localization accuracy. These
techniques can compensate for potentially low spatial resolution at the coarse grid level when
using the non-coherent AF, by refining the localization results at a finer scale. This can
further improve the accuracy of the localization process and enhance the performance of the
proposed technique.
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Chapter 3

Coarse-to-fine localization

3.1 Introduction

Localization accuracy is a crucial factor in underwater wireless sensor networks (UWSNs) [87,
88]. Accurate localization of sensor nodes enables an autonomous underwater vehicle (AUV)
to determine its positions accurately, allowing for efficient data collection. A high localization
accuracy allows the AUV to decrease its communication distance to sensor nodes, reducing
the energy required for communication and increasing the data delivery ratio, particularly
in high signal-to-noise ratio (SNR) communication environments [89]. On the other hand,
low localization accuracy may result in the AUV failing to discover sensor nodes, leading to
incomplete data collection and reduced system performance.

The communication range in UWSNs refers to the maximum distance over which sensor
nodes can exchange data [90, 91]. Accurate localization allows for better estimation of the
distance between nodes, which in turn enables optimized communication range planning.
Inaccurate localization may result in unreliable communication links, leading to higher
packet loss rates, increased retransmissions, and reduced communication range, which can
significantly degrade the overall system performance.

Data delivery ratio indicates the proportion of successfully delivered data packets to the
intended destination [92, 93]. Accurate localization enables efficient routing and forwarding
of data packets based on accurate location information, resulting in higher data delivery
ratios. Inaccurate localization may result in incorrect routing decisions, leading to packet
losses, increased overhead, and reduced data delivery ratio.

Energy consumption is a critical factor in UWSNs due to the limited energy resources of
underwater sensor nodes [94]. Accurate localization can optimize energy-efficient routing and
communication protocols. In addition, it enables effective sleep scheduling and duty cycling
of sensor nodes [73]. Inaccurate localization may result in inefficient energy usage, leading
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to higher energy consumption, shorter network lifetime, and increased energy replenishment
requirements.

Therefore, localization accuracy is a crucial factor in UWSNs, and there is a growing de-
mand for more accurate localization techniques to overcome the challenges of the underwater
environment and enable reliable and precise underwater monitoring and sensing applications.

In the coarse localization techniques from Chapter 2, the estimated channel frequency
response is compared with pre-computed frequency responses in a grid map [69]. The grid
map covers a large area of interest in terms of range and depth. The maximum value of
the AF (either coherent or non-coherent) corresponds to the most likely target location, but
low spatial resolution and outliers may limit localization performance. The accuracy of the
estimated source location cannot be lower than the grid step; the outliers also influence the
receiver localization, resulting in a totally wrong position.

To solve these problems and further improve localisation accuracy, a two-step (coarse-
to-fine) technique for underwater localization is proposed and investigated in this chapter.
This localization technique involves a coarse step and a fine step, aimed at achieving high
accuracy while reducing complexity and memory storage requirements.

In the coarse-search step, by comparing the estimated channel response with the pre-
computed frequency responses, the technique aims to find the maximum of the AF, which
corresponds to the most likely source location. This step provides an initial estimate of the
source location.

In the fine-search step, after obtaining the maximum of the AF in the coarse step, a refined
spatial sampling of the AF is performed in the vicinity of the maximum. This means that
the localization search is focused at an area around the estimated source location obtained at
the coarse step, which reduces the search space and computational complexity. The refined
spatial sampling allows for a more accurate estimation of the source location by obtaining a
higher resolution of the AF in the vicinity of the maximum. The coarse step helps to reduce
the complexity, as it narrows down the search space to a smaller region of interest, while the
fine step improves the final localization resolution.

The two-step technique offers several advantages over a single step localization approach.
It allows for high localization accuracy by refining the estimation in the fine step while
reducing the computational complexity and memory storage requirements compared to
exhaustive searching over the entire area of interest. By leveraging the pre-computed
frequency responses in the grid map, the technique can efficiently estimate the source
location with reduced computational overhead. Overall, the proposed two-step technique can
be a promising approach for underwater localization, providing accurate results with reduced
complexity and memory storage requirements.
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3.2 Refinement

The receiver location can be estimated on the grid map using the coarse localization scheme.
However, the accuracy of the coarse estimation is limited by the coarse grid steps; additionally,
outliers are more likely when the receiver is not located on a grid point, which will be
discussed in subsection 3.2.1. Therefore, a fine estimation of the receiver location is required
to reduce the error between the estimated and true receiver positions. For the refinement, the
estimated position resulting from the coarse estimation is regarded as a center point, and a
small-size (refined) grid map around the center point is generated with a finer resolution.

The localization performance can be improved by the refinement of the grid map in the
vicinity of the coarse estimate. Fig. 3.1 demonstrates how the refinement works. The sign
△ represents the true receiver position. The sign denotes the maximum of the AF on the
coarse grid. Assuming that this is not an outlier, these two positions will be close to each
other as shown in Fig. 3.1. For the refinement, additional grid points are computed with
a finer resolution. In Fig. 3.1, the refined steps (in the following text, these will also be
called refinement steps) for both range and depth are half the size of the coarse grid steps.
In Fig. 3.1a, the refinement area size is chosen as 2Cr × 2Cd, where Cr and Cd are coarse
grid steps in range and depth, respectively. The choice of the refinement area can impact the
localization accuracy. In some cases, as will be shown in Section 3.4, a larger refinement
area can improve the localization performance, such as the larger refinement area shown in
Fig. 3.1b, where the refinement area size is 4Cr ×4Cd. The error of the coarse localization
is the distance between the signs △ and , whereas the error of the fine localization is the
distance between the sign △ and the closest refined grid point, which is smaller than the
coarse error due to the use of a small refined step.

The refined grid map can be computed by using the ray tracing model, similar to how the
coarse grid map is computed. However, a computationally more efficient approach is based
on bilinear interpolation between coarse grid points.

53



Coarse-to-fine localization

Fig. 3.1 The structure of refined areas in two cases: (a) the size of the refined area is 2Cr×2Cd;
(b) the size of refined area is 4Cr × 4Cd, where Cr and Cd are coarse grid steps in range and
depth, respectively. The refined grid step in depth is Fd =Cd/2, the refined grid step in range
is Fr =Cr/2. Notation: △ is the true receiver position, is the coarse location estimate,
are coarse grid points, are refined grid points.
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Fig. 3.2 An illustration of bilinear interpolation. Points (x1,y1), (x1,y2), (x2,y2), (x2,y1) are
grid points on the coarse grid map. The point (x,y) is the refined grid point. The vectors a j,
d j, θθθ j, j = 1, . . . ,4, are vectors of the ray amplitudes, delays and angles of arrivals for the
jth coarse grid point in this figure.

Consider an example of the bilinear interpolation of the acoustic field at the refined grid
point (x,y) using the acoustic fields computed at the four neighbouring coarse grid points, as
illustrated in Fig. 3.2. To compute amplitudes and delays for rays arriving at the point (x,y),
we use the approach in [95].

The bilinear interpolation of the acoustic field at the refined grid point (x,y) can be
computed using the following steps.

(1) Identify the four nearest coarse grid points to the refined grid point (x,y), denoted
as (x1, y1), (x2, y2), (x3, y3), and (x4, y4), respectively. These four points form a rectangular
region surrounding the refined grid point, as shown in Fig. 3.2.

(2) Compute the weights for the four nearest coarse grid points based on their relative
distances to the refined grid point.

(3) Compute the bilinear interpolation of the acoustic field at the refined grid point as
a weighted average of the acoustic fields at the four nearest coarse grid points, using the
computed weights.

(4) Repeat the interpolation process for all the refined grid points in the refined area.
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Furthermore, the approach in [95] is illustrated in Fig. 3.2. The vector of amplitudes is
given by

a =


(1−w1)(1−w2)a1

(1−w1)w2a2

w1w2a3

w1(1−w2)a4

 ,

where a j is the ℓ j ×1 vector of arrival amplitudes at the jth coarse grid point, j = 1, . . . ,4.
ℓ j ⩽ ℓmax, ℓmax defines the maximum number of arrivals. The weights are given by

w1 =(x− x1)/(x2 − x1),

w2 =(y− y1)/(y2 − y1),
(3.1)

where w1 and w2 represent proportional distance in the x direction and y direction, respectively.
The vector of delays is given by

d =


d1 +∆d1

d2 +∆d2

d3 +∆d3

d4 +∆d4

 , (3.2)

where d j is the ℓ j ×1 vector of arrival delays at the jth coarse grid point. The adjusted delays
from position (x j,y j) to position (x,y) are computed as

∆d j = (∆x jcosθθθ j +∆y jsinθθθ j)/c j, (3.3)

where

∆x j = x− x j,

∆y j = y− y j,
(3.4)

θθθ j is the ℓ j ×1 vector of arrival angles at the jth coarse grid point, j = 1, . . . ,4, and c j is the
sound speed at the depth of the jth coarse grid point.

Elements of the frequency response for the nth refined grid point, the point (x,y) as
shown in Fig. 3.2, are given by

gmo
n ( fk) =

ℓ1+ℓ2+ℓ3+ℓ4−1

∑
i=0

aie− j2π fkdi, (3.5)
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where k = 0, ...,K−1, ai and di are elements of vectors a and d, respectively. The vector gmo
n

with elements from (3.5) is used to compute the AF cmo
n .

With such a refinement, an improved position estimate is found from the maximum AF
within the refinement area:

no = arg max
n=1,...,MR

cmo
n , (3.6)

where MR is the number of refined grid points in the vicinity of the coarse receiver location
estimate mo and the set of values cmo

n over n from 1 to MR is the AF computed on the refined
grid map. As examples, for the refined area in Fig. 3.1a, MR = 25; for the refined area in
Fig. 3.1b, MR = 81. As will be shown in Section 3.4.1, the refinement can greatly reduce the
error between the estimated and true receiver positions.

3.2.1 Multiple refinement areas

The receiver position is found as the position of the global AF maximum. The AF, as a
continuous function of range and depth, apart from the global maximum, has multiple local
maxima. With a finite spatial sampling rate, i.e. finite grid steps in range and depth, the AF
maximum on the grid map might correspond to a local maxima. In this situation, the location
estimate is an outlier, i.e. the location error can be arbitrary high. The refinement does not
overcome this problem since it is possible that the refinement is performed in the vicinity of
the outlier.

In order to solve this problem, we can choose several AF maxima, the number of which
is defined as Nmax, from the coarse grid map, perform refinement in the vicinity of each of
them and find the AF maximum jointly on all the Nmax refinement areas.

This can be implemented as illustrated in Fig. 3.3. Firstly, the AF maximum is found
on the coarse grid map, the maximum position is m(1)

o . Then, coarse grid points in the
corresponding refinement area, around the coarse grid point m(1)

o , are removed from the
coarse grid map. We will consider two cases of removing the coarse grid points. In the
first case, only the maximum point is removed (one point). In the second case, 9 points are
removed including the maximum and 8 neighbouring coarse points. Then the AF maximum
at the grid position m(2)

o is found on the updated coarse grid map. The same procedure
can be repeated to find the third AF maximum at the position m(3)

o , etc. For each new grid
position with AF maximum, the refinement is now performed in the vicinity of the possible
candidate for receiver location. The position of a joint AF maximum over Nmax multiple
refinement areas is the final location estimate. As will be shown in subsection 3.4.1, the
multiple refinement process can remove outliers in the localization process.
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Fig. 3.3 An illustration of multiple refinement areas (Nmax = 3 as an example) in the area of
interest.
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3.3 Complexity of the two-step localization

In this subsection, we present an analysis of the complexity of the proposed localization
technique.

For the localization, the following steps should be carried out:
1. Coarse step, including the AF computation in (2.7) processed by an efficient algorithm

in (2.5), and finding the AF maximum.
2. Refinement step, including the computation of Nmax refined grid maps with the bilinear

interpolation described by (3.2) to (3.5), computation of the refined AFs and their maxima
using (2.7), (2.5) and (3.6).

Specifically, for the coarse step, in (2.7), the vector g̃t,m, related to the channel frequency
response on the mth grid point corresponding to the tth coarse grid map can be pre-computed
and stored into memory. Here, we consider the computation of the vector h̃t , related to the
estimated channel frequency response. h̃t = F̃abs(F̃Hht) which requires two FFT operations
of size K; when using the split-radix FFT algorithm in [96], the complexity of computing
each FFT requires Klog2K multiply and accumulate operations (MACs). The complexity of
computing abs(F̃Hht), requires 6K MACs. In (2.5), the computation is considered for every
grid point in each grid map. The complexity of computing q̃ requires the FFT operation
of size pK, which requires pKlog2 pK MACs; the complexity of computing g̃H

m ⊙ h̃ is K
MACs; the complexity of computing square of elements in q̃, |q̃|2, requires 2pK MACs; the
complexity of computing the maximum requires pK MACs; for the ∥h̃∥2

2, the complexity
of this computation is about K MACs. Therefore, the complexity of computing the coarse
receiver localization is

Ccoarse ≈ NT [2K log2 K +6K +M(pK log2 pK +3pK +2K)]. (3.7)

For the refined step, based on the tth coarse grid map, the complexity of computing (3.5)
requires 4Kℓmax for every refined point corresponding to each local maxima. The complexity
of computing the refined AFs using (2.7) and (2.5) is the same as the coarse step for each
point, it requires 2K log2 K+6K+ pK log2 pK+3pK+2K MACs. Therefore, the complexity
of computing the fine receiver localization for each trial is given as,

Cfine ≈ NT NmaxMR(4Kℓmax +8K +2K log2 K + pK log2 pK +3pK). (3.8)

The total complexity of computing the coarse-to-fine receiver localization is

Ctotal =Ccoarse +Cfine. (3.9)
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Fig. 3.4 The coarse-search complexity of the proposed localization algorithm against the
number of transmit antennas NT when the number of the coarse grid points is M.

The complexity for coarse-search computation and fine-search computation is shown
in Fig. 3.4 and Fig. 3.5. Fig. 3.4 shows the complexity of the coarse localization algo-
rithm with different number of transmit antennas NT . For the whole area of interest with
M = 201× 501 ≈ 105 coarse grid points, the complexity of the coarse search for NT = 4
transmit antennas, Ccoarse, ≈ 5.7× 1010 MACs. This complexity may be excessive for a
general-purpose processor, especially the ones that can be practically used on low-power
communication nodes. However, most of the computation is based on the FFT and vector mul-
tiplication, i.e., operations well suited to implementation as hardware accelerators [97, 98];
moreover, since the coarse search involves multiple parallel computations, its hardware
implementation, e.g., on Field Programmable Gate Array (FPGA) design platforms can be
very efficient, making this stage of the proposed localization algorithm feasible. As for
the coherent AF, as was mentioned in [69], the number of the grid points M needs to be
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Fig. 3.5 The fine-search complexity of the proposed localization algorithm against the number
of transmit antennas NT when the number of the refined points is MR.
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significantly higher even for such a low carrier frequency as fc = 3072 Hz, thus making the
coarse search less suitable for practical implementation than that with the non-coherent AF.

A reduction in the coarse-search computation can be achieved by using a pre-localization
of the receiver by any known methods. E.g., the knowledge of the receiver depth can
significantly reduce the grid size M and, as will be shown in subsection 3.4.3, also results in
a higher localization accuracy. As an example, from Fig. 3.4, it is seen that with 4 coarse
grid points in depth, the total number of grid points is reduced to M = 4×501 ≈ 2000; in
this case, Ccoarse ≈ 1.1×109 MACs, which is more affordable at the receiver node.

Fig. 3.5 shows the complexity of the fine localization algorithm with different combi-
nations of the product NT Nmax. For the highest accuracy, when the refined steps are set to
Fr = Fd = 0.1 m, we have MR = 441 points in a refined area, and with NT = 4 and Nmax = 4,
the fine-search complexity, Cfine ≈ 1× 109 MACs, which is high, but still lower than the
complexity of the coarse search. For the lower localization accuracy, when the refined steps
are set to Fr = Fd = 0.5 m (MR = 25), the fine-search complexity, Cfine ≈ 9×106 MACs for
NT = 1 and Nmax = 1, which is significantly lower than the coarse-search complexity. Thus,
the refinement stage does not result in significant increase in the total algorithm complexity
compared to the coarse-search complexity.

3.4 Numerical results

In this section, we present results of numerical experiments for coarse-to-fine localization
techniques by using two SSPs including the uniform SSP and the SWellEx-96 SSP. Firstly, we
use the simple acoustic environment with the uniform SSP to validate refinement techniques,
which is to prove its feasibility (in subsection 3.4.1 and subsection 3.4.2). Then, we do
numerical experiments in a more complex acoustic environment with the SWellEx-96 SSP,
which is to prove its robustness (in subsection 3.4.2, subsection 3.4.3 and subsection 3.4.4).
In addition, scenarios with CSI imperfections are considered in subsection 3.4.3 and subsec-
tion 3.4.4. In these numerical experiments, the static sea surface is assumed, and we mainly
consider the flat surface, but the sinusoidal surface with the SWellEx-96 SSP is considered in
subsection 3.4.3.

The CSI imperfections, such as mismatched environments and inaccurate channel es-
timation, are critical factors that influence the performance of UWA localization systems
in real-world scenarios. For mismatched environments, the SSP can be influenced by the
environment change, then SSP errors happen, finally resulting in the extra localization errors;
varying sea surfaces are also a factor to cause the imperfect CSI, leading to the localiza-
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Fig. 3.6 CDF of the localization error ε for the coarse-to-fine localization using the non-
coherent AF against different refined steps in range Fr and depth Fd with a refinement area of
size 2 m×2 m as shown in Fig. 3.1(a); the SSP is uniform as shown in Fig. 2.3; the number
of transmit antenna is NT = 1.

tion errors. For the inaccurate channel estimation, with the noisy underwater situation, the
estimated CSI can be obtained imperfectly, finally resulting in inaccurate results.

Therefore, it is necessary to apply the proposed localization algorithms to validate the
robustness in both perfect CSI and imperfect CSI.

3.4.1 Coarse-to-fine localization

We now demonstrate the benefit of the refinement for improving the localization performance.
Fig. 3.6, Fig. 3.7 and Fig. 3.8 show the localization accuracy against the refinement steps in
both depth and range with two sizes of refinement areas. It can be seen that the localization
accuracy proportionally improves with a reduction in the refinement step, as long as there are
no outliers.
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Fig. 3.7 CDF of the localization error ε for the coarse-to-fine localization using the non-
coherent AF against different refined steps in range Fr and depth Fd with a refinement area of
size 4 m×4 m as shown in Fig. 3.1(b); the SSP is uniform as shown in Fig. 2.3; the number
of transmit antenna is NT = 1.
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Fig. 3.8 CDF of the localization error ε for the coarse-to-fine localization using the non-
coherent AF against different refined steps in range Fr and depth Fd with a refinement area of
size 2 m×2 m as shown in Fig. 3.1(a); the SSP is uniform as shown in Fig. 2.3; the number
of transmit antenna is NT = 4.
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Fig. 3.6 presents results for one transmit antenna, and the refinement area in Fig. 3.1a. It
is seen that if the non-coherent AF maximum on the coarse grid map is found in one of four
coarse grid points surrounding the grid cell where the receiver is positioned, i.e., ε < 1.4 m,
then the localization accuracy improves proportionally to the reduction in the refined step.
It is also seen that there is a “step” in the CDF at ε ≈ 1.4 m. This error corresponds to the
maximum distance within the grid cell, and this means that, in a significant number of the
trials, the non-coherent AF maximum is found in neighbouring grid cells.

Compared to Fig. 3.6, Fig. 3.7 is also for one transmit antenna, but the refinement area is
increased by four times as shown in Fig. 3.1b. Apart from the same observations found in
Fig. 3.6, with the same refined steps, the number of outliers significantly reduces when using
a lager size of refinement area.

Compared to Fig. 3.6, Fig. 3.8 maintains the refinement area from Fig. 3.1a while
increasing the number of transmit antennas to four. It can be seen that the localization
accuracy significantly improves for all the grid steps, which shows similar localization
accuracy to the results in Fig. 3.7. It indicates that, with a correct choice of the refinement
area, the same improvement can be achieved as with the increase in the number of transmit
antennas. Obviously, in practice, the increase in the refinement area would be much easier
to implement. However, simultaneous increase in the refinement area and in the number of
transmit antennas brings extra benefits.
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Fig. 3.9 An example of the “continuous-range continuous-depth” non-coherent AF in an area
of 3 m×3 m. The circles are positions of coarse grid points; the triangle is the position of
the receiver; the blue cross is the coarse grid point closest to the true position of the receiver;
the red cross is the coarse grid point with the AF maximum on the coarse grid map; NT = 1.

Fig. 3.9 illustrates one such case. The increase in the refinement area from 2 m×2 m to
4 m×4 m (as shown in Fig. 3.1b), improves the localization accuracy as can be seen from
the comparison of Fig. 3.6 and Fig. 3.7. The increase in the refinement area allows somewhat
reduction in “small” outliers. The number of outliers can also be reduced by increasing the
number of transmit antennas, as demonstrated in Fig. 3.8. In this case, not only “small”,
but also “large” outliers are also eliminated. It will be shown in subsection 3.4.2 that the
probability of outliers can be significantly reduced when using multiple refinement areas.

3.4.2 Multiple refinement areas

We now demonstrate the benefit of using multiple refinement areas for improving the lo-
calization performance, primarily by reducing the probability of outliers. Fig. 3.10 shows
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the localization accuracy against the number of refinement areas Nmax. In this experiment,
after finding an AF maximum on the coarse grid map, the maximum point is removed before
the search for the next maximum. It can be seen that even with such large range and depth
refined steps (Fr = Fd = 0.5 m), the search in two refinement areas significantly reduces
the probability of outliers. Further increase in the number of refinement areas to Nmax = 4
provides further significant improvement; the probability of localization error ε < 1 m is as
high as 96%. Note that this performance is achieved with only one transmit antenna. With
two transmit antennas, as can be seen in Fig. 3.11, there are no outliers and the localization
error is lower than 0.5 m in all simulation trials.
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Fig. 3.10 CDF for the localization error ε in the acoustic environment with the uniform
SSP against the number Nmax of refinement areas; NT = 1, the size of a refinement area is
2 m×2 m as shown in Fig. 3.1a.
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Fig. 3.11 CDF for the localization error ε in the acoustic environment with the uniform SSP
against the number of transmit antennas NT; Fr = Fd = 0.5 m, the number of refinement
areas is Nmax = 4, where only one point is removed after finding the next maximum and the
refinement area is 2 m×2 m as shown in Fig. 3.1a.

In Fig. 3.12, we compare the localization performance with multiple refinement areas
at different refined steps using four transmit antennas. With NT = 4 and Nmax = 4, the
localization accuracy depends only on the refined step size, the smaller the refined step, the
higher accuracy can be achieved.

69



Coarse-to-fine localization

10-2 10-1 100

(m)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

F
r
=F

d
=0.1 m, N

max
=4

F
r
= F

d
=0.1 m, N

max
=1

F
r
=F

d
=0.25 m, N

max
=4

F
r
= F

d
=0.25 m, N

max
 = 1

F
r
= F

d
= 0.5 m, N

max
=4

F
r
= F

d
=0.5 m, N

max
 = 1

F
r
=C

r
, F

d
= C

d

Fig. 3.12 CDF for the localization error ε in the acoustic environment with the uniform SSP
against the refinement step and multiple refinement areas, where only one point is removed
after finding the next coarse AF maximum; NT = 4, the refinement area is 2 m× 2 m as
shown in Fig. 3.1a.
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Fig. 3.13 CDF for the localization error ε in the acoustic environment with the SWellEx-96
SSP against the size of the refinement area Sf and number of refinement areas Nmax, where
one point is removed after finding the next coarse AF maximum; NT = 1; Fr = Fd = 0.5 m.

We now present results for another acoustic environment, with the SSP from the SWellEx-
96 experiment [64] shown in Fig. 2.3.

Recall that in Fig. 3.10, we showed the localization performance with different number
and size of refinement areas for the uniform SSP. The refined step used is 0.5 m. Fig. 3.13
shows the localization performance for the SWellEx-96 SSP. As can be seen from comparison
of results in Fig. 3.10 and Fig. 3.13, the coarse localization performance with one transmit
antenna with the SSP from the SWellEx-96 experiment provides significantly more outliers
than that with the uniform SSP environment. For the uniform SSP, 85% of cases have the
error ε < 1.4 m, whereas, for the SWellEx-96 SSP, only 58% of cases have such localization
accuracy. By adopting four refinement areas of size 2 m×2 m, the probability of outliers in
the SWellEx-96 SSP environment is reduced from 42% to 26%, while in the uniform SSP
environment, it is reduced from 15% to 4%. Even with a larger refinement area of 4 m×4 m,
in the SWellEx-96 SSP environment, the probability of outliers is still as high as 14%.
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Fig. 3.14 CDF for the localization error ε in the acoustic environment with the SWellEx-96
SSP against refined steps Fr = Fd; NT = 4; Nmax = 4, after finding the AF maximum, two
cases are considered, 1 point and 9 points are removed from the coarse grid map as described
in subsection 3.2.1; the refinement area is Sf = 4 m×4 m (as shown in Fig. 3.1b).

In Fig. 3.14, we show the localization performance with the SWellEx SSP using four
transmit antennas. Two cases are considered as described in subsection 3.2.1. For the first
case, only one point is removed from the coarse grid map after finding the AF maximum; in
the second case, nine points are removed. It can be seen that the use of four transmit antennas
allows a significant reduction in the number of outliers. The localization accuracy can be
further improved by using a smaller refined step. It can also be seen that when a smaller
refined step is used, the localization performance can be further improved by removing
more (nine) points from the coarse grid map before finding the next maximum. This can be
explained by the fact that positions of several maxima are close to each other resulting in
overlapping refinement areas, thus reducing the probability of finding the global maximum.
For the rest of the section, we adopt the case of removing nine points from the coarse grid
map when a smaller refined step (0.1m) is used.
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Fig. 3.15 CDF for the localization error ε in mismatched acoustic environments against the
variance of sound speed σ2

ssp; NT = 1; Nmax = 4, nine points are removed after finding the
next coarse AF maximum; the refinement steps, Fr = Fd = 0.1 m; the size of a refinement
area is 2 m×2 m (as shown in Fig. 3.1a).

3.4.3 Mismatched environments

In this subsection, we consider scenarios with mismatched environments when acoustic
parameters used for computation of the dictionary differ from real acoustic parameters.

In the first experiment, the dictionary is computed using the SWellEx-96 SSP, while the
true SSP used in the experiment is given by

SSP(i) = SSP(i)+n(i), i = 1, ...,Nd, (3.10)

where Nd is the number of depth points with SSP values, i is the index of the corresponding
depth, n(i) are independent Gaussian random numbers with a variance of σ2

ssp.
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The SWellEx-96 SSP and a realization of the mismatched SSP used in the experiment in
the case σssp = 1 m/s is shown in Fig. 2.3. Fig. 3.15 shows the localization performance for
different levels of SSP mismatch. It can be seen that the localization performance is close to
the matched performance for σssp ≤ 1 m/s. The performance degrades for a higher level of
mismatch of the SSP (σssp = 3 m/s). It can be concluded that the localization performance is
robust against a small mismatch in the SSP.
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Fig. 3.16 CDF for the localization error ε in a mismatched acoustic environment when
σssp = 1 m/s as shown in Fig. 2.3 when depth of the sensor is unknown. NT = 4; Nmax = 4,
nine points are removed after finding the next coarse AF maximum; the refinement steps,
Fr = Fd = 0.1 m; the size of two refinement areas are 2 m×2 m and 4 m×4 m (as shown in
Fig. 3.1).
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Fig. 3.17 CDF for the localization error ε in a mismatched acoustic environment when
σssp = 1 m/s as shown in Fig. 2.3 when the depth of the sensor is known. NT = 4; Nmax = 4,
nine points are removed after finding the next coarse AF maximum; the refinement steps,
Fr = Fd = 0.1 m; the size of two refinement areas are 2 m×2 m and 4 m×4 m (as shown in
Fig. 3.1).

To reduce the sensitivity of a mismatched model, we consider a scenario when the depth
of the receiver is known. This can be easily achieved in practice by using a receiver equipped
with a depth sensor. Fig. 3.16 and Fig. 3.17 illustrate the localization performance of a
mismatched acoustic environment with a SSP uncertainty of σssp = 1 m/s, comparing the
cases where the depth of the receiver is unknown and known, respectively.

In Fig. 3.16, it is observed that the localization performance can be improved by increasing
the number of transmit antennas to NT = 4. Additionally, further improvement in performance
can be achieved by increasing the size of refinement areas to 4 m× 4 m, resulting in a
localization error ε smaller than 0.3 m in 99% of the trials. It suggests that increasing
the number of transmit antennas and refining the localization area can lead to improved
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localization accuracy in a mismatched acoustic environment, where the receiver depth is
unknown.

In Fig. 3.17, assuming the depth of the receiver is known, it can be seen that the local-
ization performance improves. The most significant improvement is observed when using
NT = 4 and a small refinement area of 2m×2 m. It indicates that accurate knowledge of the
receiver depth allows for better compensation of SSP uncertainties, resulting in improved
localization accuracy.

Therefore, the results suggest that both increasing the number of transmit antennas
and refining the localization area can be effective strategies to mitigate the effects of the
SSP uncertainties in UWA localization. Additionally, accurate knowledge of the receiver
depth can significantly improve localization performance, highlighting the importance of
incorporating depth information in UWA localization systems.

The use of a depth sensor at the receiver provides valuable information that can be
used to mitigate the effects of the SSP uncertainty in UWA localization. By knowing the
depth of the receiver, the model can better account for the variation in the SSP with depth,
leading to improved localization performance even in the presence of mismatched acoustic
environments. This highlights the importance of incorporating accurate depth information in
UWA localization systems to reduce the sensitivity to SSP uncertainties and improve overall
performance.
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Fig. 3.18 CDF for the localization error ε in the acoustic environment of the sinusoidal
surface with the SWellEx-96 SSP against different amplitudes Asin (Asin = 0 indicates a
flat surface); NT = 4; Nmax = 4, nine points are removed after finding the next coarse AF
maximum; the refinement steps, Fr = Fd = 0.1 m; the size of the refinement area is 4 m×4 m
(as shown in Fig. 3.1b).

In Fig. 3.18, we consider the scenario where the dictionary is computed assuming a flat
sea surface, whereas the “real” sea surface is a sinusoid of amplitude Asin and a period of
8 m. We consider a range of sea surface amplitudes from 0.01 m to 0.5 m. It can be observed
that as the sea surface amplitude increases, the localization error also increases.

Obviously, the presence of a sinusoidal sea surface introduces additional uncertainties
in the sound propagation environment, because the sea surface acts as a reflective boundary
that can cause scattering, diffraction, and refraction of sound waves. These effects can
increase the multipath effect and phase distortion, finally, leading to localization errors in the
underwater communication system.

As seen in Fig.3.18, for the sea surface amplitude Asin < 0.2 m, the localization error
remains below 2 m in all simulation trials. This level of error may be acceptable for
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Fig. 3.19 CDF for the localization error ε in the acoustic environment with the SWellEx-96
SSP against the SNR of channel response estimation; NT = 4; Nmax = 4, nine points are
removed after finding the next coarse AF maximum; the refinement steps, Fr = Fd = 0.1 m;
the size of the refinement area is 4 m×4 m (as shown in Fig. 3.1b).

many underwater communication applications. However, as the sea surface amplitude
increases beyond this threshold, the localization error becomes larger, indicating the increased
challenges in accurately estimating the positions of underwater nodes in the presence of
significant sea surface deformations.

3.4.4 Inaccurate channel estimation

In this experiment, the channel frequency response h̃( f ) between a transmit antenna and the
receiver at a frequency f is given by

h̃( f ) = ĥ( f )+n( f ). (3.11)
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The estimated channel frequency vector h̃ is now represented as h̃ = [h̃( f0), ..., h̃( fK−1)]
T

.
The noise samples n( fk) are independent complex-valued random Gaussian numbers with
zero mean and variance σ2. The signal-to-noise ratio (SNR) of the channel response estimate
is defined as

SNR =
1

σ2
1
K

K−1

∑
k=0

|ĥ( fk)|2. (3.12)

Fig. 3.19 shows the localization results against the SNR of the channel response estimate.
It can be seen that for SNR = 10 dB, the localization results are close to that of the perfect
channel response estimation. It also indicates that even at an SNR as low as 5 dB, the
localization error is smaller than 2 meters in all trials, demonstrating the robustness of the
localization performance against the estimation error of the channel response. It suggests that
the proposed localization algorithm can perform well even in low SNR conditions, where
the channel response estimate may be noisy or inaccurate. The fact that the localization
error remains below a certain threshold (2 meters in this case) despite the low SNR levels
indicates that the algorithm can mitigate the effects of estimation errors and still provide
accurate localization results.

The results suggest that the proposed localization algorithm is robust against estimation
errors in the channel response, which is a positive indication of its performance in real-world
UWA sensor network applications.

3.5 Conclusions

In this chapter, localization accuracy has been further investigated, and a two-step technique
for receiver localization has been proposed to reduce computation and enhance accuracy.
This technique is based on pre-computation of a grid map using channel state information
obtained from the acoustic environment. The source location found at the coarse search step
is improved using a finer grid through AF interpolation to find a more accurate estimate of
the source location. To further enhance the accuracy of localization, a joint refinement of
the AF in the vicinities of several maxima is proposed to reduce outliers. Therefore, these
proposed techniques potentially improve the accuracy of the estimated position by allowing
for a more precise representation of the underwater environment. The proposed approach
brings about a significant reduction in complexity and memory storage requirements for UWA
communication receivers and has potential applications in various underwater communication
and navigation systems. Numerical examples and simulations in different UWA environments,
varying the number of transmit antennas, and considering different accuracy levels for the
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estimation of the acoustic channel response, have demonstrated that the proposed techniques
can achieve high localization accuracy.

Based on the localization technique described in this chapter, transmit beamforming
techniques with different linear precoders is considered and investigated in Chapter 4.
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Chapter 4

Transmit beamforming using
coarse-to-fine localization methods

4.1 Introduction

Beamforming methods are commonly used in underwater acoustic (UWA) communication
systems, especially for target localization in underwater sensor networks [69, 99–104].

The traditional beamforming techniques (such as transmit beamforming and receiver
beamforming) have been used in the UWA communication systems to improve the capacity.
Transmit beamforming is a technique where the transmitter has knowledge of the channel
state information (CSI) between the transmitter and the receiver, and the CSI is usually
obtained through feedback from the receiver [105, 106]. With this channel knowledge, the
transmitter can shape the transmitted signals in a way that optimally utilizes the channel
characteristics to improve capacity. Receiver beamforming [107], is a technique used at
the receiver side to combine or process the signals received from multiple antennas. It can
be implemented independently at each receiver without affecting the performance of other
links in the system. However, a receiver beamforming technique that relies on large antenna
arrays at the receiver end maybe impractical in certain UWA communication scenarios due
to the size and weight constraint of the receiver equipment [108]. Therefore, we will focus
on transmit beamforming in UWA communication.

In transmit beamforming, accurate CSI is needed at the transmitter to adapt the transmitted
signals based on the channel characteristics. Typically, channel estimation is performed at the
receiver, and the estimated CSI is then fed back to the transmitter using a feedback channel.
The feedback channel is used to transmit the estimated CSI, which includes information
about the channel conditions, such as channel gains, phases, and directions from the receiver
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to the transmitter. This allows the transmitter to adjust the beamforming weights or phases of
the transmitted signals to optimize the signal quality and mitigate interference at the receiver.
However, in most UWA communication systems, especially with narrowband channels, the
amount of data required for feedback can be large and constrain data throughput capacity. It
may incur overheads and delay associated with feedback containing the entire CSI.

To reduce the amount of data required for the CSI feedback, all possible CSIs at both the
transmitter and receiver are based on grid maps, which can be pre-computed into a dictionary.
In this case, the receiver only needs to send back the index of the CSI from the pre-computed
dictionary, which indicates the best match to the CSI estimate [69]. This approach can
significantly reduce the amount of data needed for CSI feedback and especially mitigate the
challenges associated with limited bandwidth and low data rates in the narrowband feedback
UWA channels.

The accuracy of the estimated CSI is crucial for designing transmit beamforming, because
any errors in the estimated CSI can degrade the detection performance in UWA communi-
cation systems. This problem can be resolved by the coarse-to-fine localization algorithms
proposed in Chapter 3. This chapter considers a two-step localization technique that aims to
improve the detection performance in UWA communication networks with multiple transmit
antennas or an array of transducers at the base station and single-antenna receivers.

In the first step, the ambiguity function (AF) maximum is found by comparing the
estimated channel frequency response with the precomputed frequency responses in a grid
map. This step provides a coarse estimation of the spatial location of the receiver in terms
of range and depth; in the second step, a refined spatial sampling of the AF is performed
in the vicinity of the maximum found in the coarse grid. This allows for a more accurate
localization of the receiver within the area of interest. This refined sampling helps to further
improve the localization accuracy, reducing the potential errors introduced by the coarse
estimation in the first step. By using the two-step technique, high localization accuracy
can be achieved while reducing complexity and memory storage compared to a single-step
localization approach.

In addition, in UWA communication systems with multiple transmit antennas and re-
ceivers, transmit beamforming requires coordination among multiple transmit antennas to
adapt the weights or phases of the transmitted signals. This is because transmit beamforming
from each transmit antenna can affect the interference to all other users, and optimizing the
beamforming weights or phases for one user may impact the signals received by other users
in the system.

To reduce the interference between users, transmit beamforming has to be done jointly in
the entire network [109], for example with spatial division multiple access (SDMA). SDMA,
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as a spacial diversity technique, exploits the spatial separation between multiple transmit
antennas at the transmitter and receive antennas at the receiver. In this way, multiple users
can receive signals simultaneously over the same frequency band with less interference,
which improves system capacity and spectral efficiency.

To make a further reduction of interference, including the co-channel interference and
intersymbol interference (ISI), precoding can be used, as a key technique for the SDMA in
multiuser systems. With the knowledge of CSI, precoding involves the linear or non-linear
transformation of the transmitted signals before being sent through multiple transmit antennas
at the transmitter. Precoding can minimize interference between users and make a further
improvement in system capacity and spectral efficiency. In this thesis, we mainly focus on
the linear precoding techniques.

Linear precoding schemes [110–113] are commonly used in UWA communication for
designing transmit beamformers in multiuser channels. Linear precoding schemes include
zero forcing (ZF) [56], regularized channel inversion [114], minimum mean square error
(MMSE) [115] and constant envelope [116], which are relatively simple to implement
compared to non-linear techniques. These linear precodings exhibit a favourable tradeoff
between performance and complexity, and can achieve significant performance gains in
terms of interference suppression. In this thesis, we mainly focus on ZF precoding and an
approximate MMSE precoding scheme to design transmit beamforming.

ZF precoding aims to decouple the multiuser channel into multiple independent subchan-
nels [56, 117–120], where the transmitted signals are precoded to minimize the interference
caused by other users’ signals at the intended receiver. ZF precoding is designed to eliminate
interference between multiple users in multi-user systems. The other relative merits of this
precoding are its computational efficiency and relatively simple implementation. However, it
is limited by its sensitivity to channel estimation errors and potential amplification of noise at
the receiver, which may degrade the performance in practical underwater environments with
uncertain and time-varying channels. Despite its limitations, ZF can be an effective linear
precoding scheme for transmit beamforming in UWA communication systems.

While the ZF beamforming method can provide good detection performance in some
underwater scenarios, it is not as effective in more complex and time-varying environments.
Other linear precoding schemes, such as MMSE precoding, can be considered. MMSE
precoding can minimize the mean squared error between the transmitted signals and the
desired received signals, taking into account the interference caused by other users’ signals
and the noise at the receiver. One of the merits of the MMSE precoding is its noise mitigation.
It can provide a tradeoff between interference suppression and noise amplification, which
can be more suitable in certain scenarios. In addition, MMSE precoding is more robust to
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channel estimation errors compared to the ZF precoding, it can provide better performance
in scenarios with imperfect channel knowledge.

Although a MMSE precoder is computationally more complex than the ZF precoder, it
can be an effective linear precoding scheme in UWA communication systems when accurate
channel estimation is feasible and the system requirements demand a better tradeoff between
interference suppression and noise amplification.

In this chapter, we investigate transmit beamforming precoders, including a ZF precoder
and approximate MMSE precoder, based on the two-step localization technique proposed in
Chapter 3 for transmit beamforming with multiple transmit antennas and multiple receivers,
each receiver equipped with a single antenna in scenarios similar to that in [69]. Specifically,
the system works in the following way: in a UWA communication system with SDMA,
the two-step localization technique is applied to obtain an accurate estimated CSI, which is
compared to all possible CSIs from a pre-computed dictionary at the receiver for the best
match; the receiver sends the index of the best match to the transmitter through the feedback
link. The estimated CSI can be found by matching the index to the precomputed dictionary
at the transmitter. The linear precoder, such as ZF and MMSE precoders, can be built based
on the matched CSI. It is worth mentioning that in designing the MMSE precoder, generally,
the SNR has to be known at the receiver, and the SNR should be sent back to the transmitter,
in our case, the SNR is assumed to be known at the transmitter (it is treated as a constant
design parameter) to reduce the complexity. Note that the perfect knowledge of SNR at
the transmit beamformer generally can improve the detection performance compared to the
approach we are using here. However, this would require a feedback channel of high capacity,
which is not practical. As will be seen below, even without such knowledge, the approximate
MMSE beamformer significantly improves the detection performance compared with the ZF
beamformer.

To validate the performance of transmit beamforming algorithms, we use the channel
simulator based on the BELLHOP ray/beam tracing model [86, 121, 122] and the passband
Waymark simulator [33, 123, 124] to investigate UWA signal transmission for accurate
localization and high detection performance.

The following notation is used. Boldface upper case letters denote matrices, boldface
lower case letters denote column vectors and standard lower case letters denote scalars.
The superscript (·)T , (·)H , (·)−1, (·)† denote the transpose, the conjugate transpose, matrix
inverse and the pseudo-inverse, respectively. R is the set of real numbers and C is the set of
complex numbers. Re{z} denotes the real part x of a complex number z = x+ iy.
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Fig. 4.1 The UWA communication network system.

4.2 Problem to solve

Fig 4.1 shows the structure of an UWA communication network system. We focus on the
downlink data transmission. It can be seen that under the sea, there is a base station with
multiple transmit antennas and multiple users, each user equipped with one antenna. The
base station tries to transmit signals to the multiple users. For the simplicity, the base station
just transmits signals to User 1, in fact, the base station needs to transmit signals to all the
users at the same time. However, it cannot work simultaneously, because in that case, there
are plenty of interference among these users and these users cannot receive the information
reliably.

To mitigate or avoid interference from other users, transmit beamforming is adopted, and
we apply the estimated CSI to design the transmit beamforming. However, the main problem
of designing the transmit beamforming is the channel estimation, which can only be done
at receivers. This should exist a feedback channel (from the receiver to the transmitter) to
pass the CSI to the transmit beamforming. However, the amount of this CSI is very high
with respect to the typical UWA channel capacity, which makes such feedback transmission
not practical. To solve this problem, the receiver localization technique based on the grid
computations were introduced and further investigated in Chapter 2 and Chapter 3. With
such localization, the feedback channel is only used to transmit the grid index, which requires
a feedback channel of much lower capacity than for transmission of the CSI.
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4.3 System model

In this section, we present a communication scenario, including channel, transmit beamform-
ers, transmitter and receiver in a view of the frequency domain. Unless otherwise stated,
variables in the following equations are at subcarrier frequency f ∈ { f0, ..., fK−1} and K is
the number of subcarrier frequencies.

In such a multi-user (NR users) system with a broadcast channel, the received signal at a
frequency f ∈ { f0, ..., fK−1} is given by

yr( f ) = hT
r ( f )x( f )+nr( f ), r = 1, ...,NR, (4.1)

where yr( f ) is the signal received by the r-th user, hr( f ) = [hr,1( f ), ...,hr,NT ( f )]T represents
the channel frequency response between transmit antennas and the r-th user, x( f ) is the
NT ×1 transmitted signal vector and nr( f ) is the Gaussian noise with zero mean and variance
σ2

r ( f ).
With NT transmit antennas and NR users (NR ≤ NT ), the model in (4.1) can be rewritten

as
y( f ) = H( f )x( f )+n( f ), (4.2)

where y( f ) = [y1( f ), ...,yNR( f )]T ∈ CNR×1 is the signal vector received by NR users, n( f ) =
[n1( f ), ...,nNR( f )]T ∈ CNR×1 is the noise vector and the channel can be described by the
channel matrix

H( f ) =


h1,1( f ) h1,2( f ) · · · h1,NT ( f )
h2,1( f ) h2,2( f ) · · · h2,NT ( f )

...
... . . . ...

hNR,1( f ) hNR,2( f ) · · · hNR,NT ( f )

 (4.3)

of size NR ×NT .

4.3.1 Transmit beamforming

In a multi-user system with multiple transmit antennas, the transmitted signal vector x( f ) =
[x1( f ), ...,xNT ( f )]T ∈CNT×1 can be represented as a linear transformation of the information
symbols when the linear precoding (transmit beamforming) methods applied [69, 117],

x( f ) = T( f )s( f ), (4.4)

where T( f ) ∈ CNT×NR is the precoding matrix (beamformer) at the frequency f , s( f ) =
[s1( f ), ...,sNR( f )]T ∈ CNR×1 is the information symbol vector.
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Zero-forcing beamforming

The transmit precoding offers interference elimination benefits, leading to improved perfor-
mance in multi-users systems. However, its high computational and hardware complexity
can make it challenging to implement in real-time and resource-constrained systems. The
ZF precoder provides a tradeoff between complexity and performance. In particular, such
a precoder does not require the knowledge of SNR at subcarriers, thus simplifying the
implementation.

In ZF beamforming [117, 125], interference between users can be reduced to zero, and
the precoding matrix T( f ) satisfies

[H( f )T( f )]k, j = 0, if k ̸= j. (4.5)

Therefore, the product H( f )T( f ) ∈ CNR×NR represents a diagonal matrix, which is given by

H( f )T( f ) = INR. (4.6)

ZF precoding matrix T( f ) is the pseudo-inverse of H( f ),

T( f ) = H( f )† = H( f )H [
H( f )HH( f )

]−1
. (4.7)

The beamformer T( f ) can be rewritten as

T( f ) =
[
T(1)( f ) T(2)( f ), ...,T(NR)( f )

]

=


T1,1( f ) T1,2( f ) · · · T1,NR( f )
T2,1( f ) T2,2( f ) · · · T2,NR( f )

...
... . . . ...

TNT ,1( f ) TNT ,1( f ) · · · TNT ,NR( f )

 ,
(4.8)

where its column, which can be represented as T(n)( f ) = [T1,n( f ), ...,TNT ,n( f )]T ∈CNT×1, is
a beamformer weight for the n-th user. After beamforming, the transmitted signal for the
n-th user is given by

xn( f ) = T(n)( f )s( f ). (4.9)

In Eq. (4.7), the ZF precoding matrix is designed to eliminate the interference by inverting
the channel matrix. In this way, the receiving signal for each user can be aligned with
the intended direction, effectively mitigating interference from other users. In fact, ZF
beamforming can achieve optimal interference suppression in ideal conditions when the
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Fig. 4.2 The diagram of the transmitter process when applying transmit beamforming with
NT transmit antennas and NR users.

channel matrix is perfectly known and invertible. However, ZF beamforming, as a suboptimal
method, is generally power inefficient and the detection performance drops rapidly under
imperfect channel knowledge.

Approximate MMSE precoder

MMSE beamforming, as a solution to balance the transmission energy and interference level,
is another suboptimal strategy for the minimum detection error [126]. Compared to ZF
beamforming, MMSE beamforming provides a tradeoff between interference suppression
and noise amplification. It considers the noise covariance matrix when designing the MMSE
precoder matrix.

Generally, the SNR at the receiver needs to be obtained. However, it is not feasible to
obtain the SNR at the receiver at all the subcarriers and send this information back to the
transmitter in real-time. Therefore, an assumed SNR is used, and Eq. (4.6) and Eq. (4.7) are
modified by using the diagonal loading, thus the approximate MMSE precoding matrix is
given as,

T( f ) = H( f )H [
H( f )HH( f )+ γINR

]−1
, (4.10)

where 1/γ is the assumed SNR.
The MMSE beamforming can provide better performance than the ZF beamforming in

scenarios with imperfect channel knowledge and noisy channels.
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Fig. 4.3 The mutual conversion between a baseband signal and a passband signal in the
frequency domain by using complex modulation and demodulation techniques. FB( f ) is the
frequency spectrum of a baseband signal and FDSB( f ) represents the frequency spectrum
with double side bands of a passband signal, the carrier frequency is fc and the bandwidth is
B. (Note, FS indicates frequency shift).

4.3.2 Transmitter

The structure of the transmitter process is described in Fig. 4.2. The original data is encoded
into BPSK symbols, creating blocks of these symbols, and applying precoding with a de-
signed transmit beamformer in the frequency domain, which is described in subsection 4.3.1.
After the beamforming process, each block of precoded BPSK symbols is up-shifted in
frequency to the desired frequency range with the carrier frequency fc, which is illustrated
in Fig. 4.3. The modulated symbol’s spectrum can be transformed into a time-domain
OFDM symbol by applying the inverse fast Fourier transform (IFFT) to the set of modulated
symbols.

As an example of the m-th transmit antenna transmission, the consecutive OFDM symbol
can be represented as

x̃m(n) =
1√
K

K−1

∑
f=0

xm( f )e j2πn f/K, n = 0, ...,K −1, (4.11)

where x̃m(n) is a transmitted signal vector for the m-th transmit antenna m ∈ {1, ... ,NT}.
To mitigate the effect of multipath fading and intersymbol interference (ISI), a cyclic

prefix (CP) is added to the beginning of each OFDM symbol. The CP is a copy of the last
portion of the OFDM symbol and the length of the CP in our case is set to Ncp = K; such a
long CP is required due to high delay spreads of UWA channels. After insertion of the CP,
the OFDM symbol is given as

c̃m = [x̃m(K −Ncp +1), ... , x̃m(K) x̃m(1), ... , x̃m(K)], (4.12)

where the vector c̃m is a size of 1× (K +Ncp) for one OFDM symbol, as shown in Fig. 4.4.
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Fig. 4.4 The diagram of a sequence of transmitted OFDM symbols.

Finally, the real parts of OFDM signals from NT transmit antennas are transmitted
simultaneously to NR users through the channel modelled using the Waymark simulator and
the Bellhop.

4.3.3 Receiver

The received signal is given as

yr(k) =
NT

∑
m=1

yrm(k)+nr(k), r = 1, ...,NR, (4.13)

where yr(k) represents the passband signal received at the r-th receiver and ymr(k) represents
the received signal between the r-the user and the m-th transmit antenna. nr(k) is the Gaussian
noise with zero mean and variance σ2

r to the r-th user; the noise includes the ambient noise
and interference from other user signals.

The passband received signal is demodulated into frequency-domain OFDM symbols by
applying the fast Fourier transform (FFT). In this way, a passband signal yr(k) is converted
into a baseband signal ỹr(k) in the frequency domain.

The time synchronization is assumed to be perfect so that the CP can be removed.
Therefore, the best position to remove can be found through calculation, the process of
removing the CP of a baseband signal for the r-th receiver can be given as

wr(k) =[ỹr((Ncp + τ) : (Ncp + τ +K −1)), ... ,

ỹr(iLs)+(Ncp + τ) : iLs +(Ncp + τ +K −1)),

, ... ,

ỹr(NsLs +(Ncp + τ) : NsLs+

(Ncp + τ +K −1))],

(4.14)
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where the vector wr represents the receiving signal without the CP, size of 1×NsK and τ is
the suitable starting position to remove the CP, Ns represents the whole length of the OFDM
symbol, Ls = Ncp +K.

For channel estimation, pilot symbols are applied and we use the least square (LS) channel
estimation, assuming that the number of pilot symbols is Np (Np << Ns). Based on one pilot
OFDM symbol as an example, the LS estimate of the channel frequency response h( f ) at a
subcarrier f can be specified as

ĥ( f ) =
w( f )
s( f )

, f = 0, ...,K −1, (4.15)

where w( f ) represents the receiving signal and s( f ) represents the pilot symbol transmitted
from the m-th transmit antenna at the frequency f .

4.4 Numerical results

In this section, we consider a multi-antenna MISO-OFDM system with NT transmit antennas
and NR users (in the following parts, these will also called receivers), and each user equipped
with single receive antenna. The multi-antenna system is aimed at transmitting NR data
packets simultaneously to NR users. In this section, numerical experiments are presented,
and the objectives of the numerical experiments are as follows.

• Comparison of transmit beamforming performance using uncoded and encoded trans-
mission.

• Analysis of the performance of combining the coarse-to-fine localization with transmit
beamforming with different precoders applied.

• Analysis of transmit beamforming performance in the case of random positions of
receivers within an area of interest and for different localization algorithms.

• Analysis of performance of transmit beamforming for different numbers of users and
transmit antennas.

In the experiments, to evaluate the detection performance of transmit beamforming, two
metrics, the bit error rate (BER) and frame error rate (FER) are used. The BER is defined as

BER =
Number of bits with errors

Total number of bits
, (4.16)

i.e., BER is the ratio of the number of received bits with errors to the total number of the
original bits. A lower BER indicates better detection performance of transmit beamforming.
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The FER is defined as

FER =
Number of frames with errors

Total number of frames
, (4.17)

where FER represents the probability of the number of frames (OFDM symbols in our case)
received with errors to the total number of original frames transmitted. A frame is a group
of bits structured in a specific way for transmission. An error may occur when at least one
received bit in a frame is incorrect. A lower FER also indicates better detection performance
of transmit beamforming.

The main simulation parameters are given in Table 4.1.

Table 4.1 Parameters for transmit beamforming based on the receiver localization.

Variable name Value Description

NT 1,2,3,4 Number of transmit antennas
NR 2,3 Number of receivers
Np 1,10 Number of OFDM pilot symbols
Ns 100,1000 Number of OFDM symbols
rc 1/2,1/3,1/4,1/8 Coding rate
Cd 1 m Coarse grid step in depth
Cr 1 m Coarse grid step in range
DT 50,60,70,80 m Depth of transmit antennas
Dl 200 m Depth for area of interest
K 1024 Number of subcarriers
Rl 500 m Range for area of interest
Sc 201×501 Size of the coarse grid map

In an example simulation scenario, a code rate of 1/2 is considered, NR = 2 data packets
(vector d1 ∈R1×(K/2) and vector d2 ∈R1×(K/2)), each data packet contains one OFDM sym-
bol (correspondingly, this is repeated for every OFDM symbol), each data packet comprising
K/2 data bits, which are encoded using convolutional encoding, interleaving and BPSK
modulation to generate BPSK symbols, s1 ∈ R1×K and s1 ∈ R1×K , respectively. Specifically,
a convolution encoder of rate rc = 1/2 with a generator polynomial [23 35] in octal is applied
to encode the user data symbols. Therefore, every K/2 bits of each data packet are encoded
into a K-bit message. Then the message bits are interleaved and transformed into BPSK
symbols.
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These symbols are divided into Ns consecutive blocks of BPSK symbols corresponding
to each data packet. Each block of BPSK symbols for the two data packets is separately
represented as b1 ∈ R1×K and b2 ∈ R1×K , both b1( f ) and b2( f ) are scalars at subcarrier
frequencies f = f0, ..., fK−1 covering the frequency range of the communication system.
Then the Ns consecutive blocks of the BPSK symbols corresponding to each data packet are
processed to precode BPSK symbols corresponding to each transmit antenna by the jointly
designed beamformers T( f ) ∈ C2×2.

4.4.1 Perfect knowledge of CSI

In this subsection, the transmitter has perfect knowledge of CSI and receiver localization
is assumed to be perfect. The receivers are located between grid points. The performance
of the ZF transmit beamforming with the uncoded and encoded signal transmission in
different acoustic environments with uniform and SWellEx-96 SSPs is investigated by
using the BER and FER. Furthermore, in a more general case for users, we investigate
the detection performance of transmit beamforming with the ZF precoder and approximate
MMSE precoder with different assumed SNRs.

Scenario 1: Uncoded transmission and encoded transmission

In this scenario, NT = 2 transmit antennas and NR = 2 users are considered, where User 1
is located at the depth of 162.94 m and range of 181.09 m from the transmitter, while User
2 is located at the depth of 181.16 m and range of 497.14 m. These two users are located
between grid points in the area of interest. Ns = 1000 OFDM symbols are transmitted.

Fig. 4.5 and Fig. 4.6 show BER performance of the ZF transmit beamforming for User
1 and User 2, respectively. In the acoustic environment with the uniform SSP, both users
have good detection performance either uncoded or coded transmission. BER performance
of the coded transmission for both User 1 and User 2 improves significantly, compared to
the uncoded signal transmission when the SNR is greater than about 4 dB. Compared to the
uniform SSP, the BER performance in the acoustic environment with the SWellEx-96 SSP is
similar for User 1, and is significantly better for User 2. Coded signal transmission will be
applied in the following simulations scenarios.

Fig. 4.7 shows the FER detection performance of the ZF transmit beamforming with
coded signal transmission for User 1 and User 2, respectively. It can be seen that the FER
performance has a behaviour similar to that of the BER. To obtain more accurate detection
performance in a frame level, FER is chosen to measure the detection performance of transmit
beamforming, focusing on User 1 (due to User 1 and User 2 having a similar result), for the

93



Transmit beamforming using coarse-to-fine localization methods

0 2 4 6 8 10 12 14

SNR/(dB)

10 -3

10 -2

10 -1

10 0

B
E

R

Uncoded-Uniform SSP
Coded-uniform SSP
Coded-SWellEx SSP

Fig. 4.5 BER performance for User 1 of transmit beamforming with the ZF precoder against
SNR for uncoded and coded transmission; Ns = 1000 OFDM symbols are transmitted in the
acoustic environments with the uniform SSP and SWellEx-96 SSP, shown in Fig. 2.3.
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Fig. 4.6 BER performance for User 2 of transmit beamforming with the ZF precoder against
SNR for uncoded and coded transmission; Ns = 1000 OFDM symbols are transmitted in the
acoustic environments with the uniform SSP and SWellEx-96 SSP, shown in Fig. 2.3.
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Fig. 4.7 FER performance of transmit beamforming with the ZF precoder against SNR for
User 1 and User 2 with coded transmission; Ns = 1000 OFDM symbols are transmitted in
the acoustic environments with the uniform SSP and SWellEx-96 SSP, shown in Fig. 2.3.

following scenarios. All the following scenarios are in the acoustic environment with the
SWellEx-96 SSP.

Scenario 2: ZF and MMSE precoders

In this scenario, NT = 2 transmit antennas and NR = 2 users are considered, where positions
of these two users are randomly chosen from 100 locations in the area of interest. 100 trials
are conducted and Ns = 100 OFDM symbols are transmitted. We investigate the detection
performance of transmit beamforming with the ZF precoder and MMSE precoder with
different assumed SNRs.

Fig. 4.8 shows the detection performance of the ZF precoder and approximate MMSE
precoder with different assumed SNRs: SNRest = 5, 10, 20, 30 dB. It can be seen that
with the perfect CSI knowledge and receiver localization accuracy, the ZF precoder has the
best detection performance among other cases; for the approximate MMSE with different
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Fig. 4.8 FER performance for User 1 of transmit beamforming with the ZF precoder and
the approximate MMSE precoder with SNRest = 5, 10, 20, 30 dB against SNR; Ns = 100
OFDM symbols are transmitted in the acoustic environment with the SWellEx-96 SSP, shown
in Fig. 2.3.
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SNRest, the detection performance can be improved by increasing the assumed SNR to
SNRest = 30 dB, which achieves similar detection performance with the ZF precoder. For
the case of the approximate MMSE precoder with the assumed SNR, SNRest = 5 dB, the
detection performance of the receiver degrades; more specifically, there is a floor level due to
the noise interference induced. However, even in the presence of lower assumed SNR, the
receiver can still operate with a reasonable FER of approximately 10−2 (or 1%).

4.4.2 Imperfect knowledge of CSI

Compared to the perfect knowledge of the CSI and perfect receiver localization, it is necessary
and more practical to investigate the imperfect knowledge of the CSI and receiver localization.
The receivers are located between grid points for a practical situation. Combined with the
receiver localization proposed in Chapter 3, we investigate the detection performance of
transmit beamforming with different precoders, with different numbers of transmit antennas
and multiple receiver positions. In addition, the case of different coding rates has also been
explored and investigated.

Scenario 3: Coarse-to-fine localization for multiple receiver positions with transmit
beamforming

In this scenario, we demonstrate the benefit of the approximate MMSE precoder for improv-
ing the detection performance of transmit beamforming when imperfect knowledge of CSI
provided.

Fig. 4.9 shows the detection performance of different precoders against SNR for User 1 in
a multi-user system with NT = 2 transmit antennas and NR = 2 users. By comparing results
in Fig. 4.8 and Fig. 4.9, it is apparent that the detection performance of the receiver degrades
with such the receiver localization accuracy; more specifically, with the ZF precoder, the
detection performance drops significantly. Obviously, the ZF beamformer is very sensitive to
the imperfect CSI. It can be seen that the approximate MMSE precoder improves performance
significantly compared to the ZF precoder. It can also be seen that the detection performance
for the approximate MMSE precoder with different assumed SNRs, SNRest = 5,10,20,30 dB
improves in varying proportions. The detection performance improves greatly when the
approximate MMSE precoder is applied with the assumed SNR, SNRest = 10 dB. In addition,
there is a floor level due to the multiuser interference, which cannot be completely cancelled
by the designed transmit beamforming based on the CSI.
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Fig. 4.9 FER performance for User 1 of transmit beamforming with the ZF precoder and the
approximate MMSE precoder with SNRest = 5,10,20,30 dB against SNR; the simulation
parameters are NT = 2 transmit antennas; NR = 2 receivers; Ns = 100 OFDM symbols
transmitted in the acoustic environment with the SWellEx-96 SSP, shown in Fig. 2.3. Coarse-
to-fine localization, localization parameter setting: NT = 4; Nmax = 4, nine points are removed
after finding the next coarse AF maximum; in the refinement steps, Fr = Fd = 0.1 m; the size
of the refinement area is 4 m×4 m, shown in Fig. 3.1b.
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Fig. 4.10 FER performance for User 1 of transmit beamforming with the approximate MMSE
precoder with the assumed SNRest, SNRest = 10 dB against SNR for different localization
accuracies, as illustrated in Fig 3.14; the simulation parameters are NT = 2 transmit antennas;
NR = 2 receivers; Ns = 100 OFDM symbols transmitted in the acoustic environment with
the SWellEx-96 SSP, shown in Fig. 2.3. Coarse-to-fine localization, localization parameter
setting: NT = 4; Nmax = 4, after finding the AF maximum, two cases considered, 1 point
and 9 points are removed from the coarse grid map as described in subsection 3.2.1; the
refinement area is Sf = 4 m×4 m, shown in Fig. 3.1b.
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Scenario 4: Different imperfect CSIs

In this scenario, three different coarse-to-fine localization accuracies are chosen from
Fig. 3.14. Based on the 1-m resolution coarse grid map, with two different refined steps in
different refinement algorithms are investigated.

Fig. 4.10 shows the FER performance for User 1 in a transmit beamforming system with
an approximate MMSE precoder, assuming a specific estimated SNRest, SNRest = 10 dB;
the FER performance is evaluated against SNR for three different cases of localization
accuracies.

In the case of coarse-to-fine localization algorithm with the refinement steps, Fr = Fd =

0.1 m; nine points are removed from the coarse grid map after finding the AF maximum.
The localization error is smaller than 0.1 m in 97% of the trials, as shown in Fig 3.14, as
can be seen in Fig. 4.10, good detection performance can be achieved with such localization,
with the FER reaching 10−2. This suggests that the beamformer performs well in the case
that the accurate localization is available.

In the case of coarse-to-fine localization algorithm with the refinement steps, Fr = Fd =

0.1 m when one point is removed from the coarse grid map after finding the AF maximum,
as shown in Fig 3.14, the localization error increases slightly, the localization error for one
trial is over 1 m and in 97% of the trials, the localization error is below 0.1 m, the detection
performance slightly drops, resulting in an FER of 0.084, as shown in Fig. 4.10. In this case,
the beamformer can still achieve relatively good detection performance, although not as good
as in the case above.

Furthermore, in the case of the coarse-to-fine localization algorithm with the refinement
steps, Fr = Fd = 0.5 m and nine points removed from the coarse grid map after finding the
AF maximum, the localization error increases to 0.5 m in 97% of the trails, as shown in
Fig 3.14. In this case, the detection performance experiences a significant degradation, with a
floor-level FER of 0.6, as shown in Fig. 4.10. It indicates that transmit beamforming becomes
less effective when using the receiver localization with a relatively low localization accuracy.

These observations highlight the sensitivity of transmit beamforming to the accuracy
of the receiver localization. When a high accuracy in receiver localization is guaranteed,
transmit beamforming can significantly enhance the detection performance. However, any
degradation in localization accuracy can lead to a decline in the detection performance.
Therefore, more accurate and reliable localization information are crucial for designing an
effective transmit beamforming system to improve the detection performance in underwater
acoustic communication scenarios.

Therefore, the coarse-to-fine algorithm with the refinement steps, Fr = Fd = 0.1 m; and
a refinement area size of 4 m× 4 m (as shown in Fig. 3.1b) provides better localization
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accuracy, which is applied in the following scenarios to further investigate the transmit
beamforming.

Scenario 5: Multiple transmit antennas and receiver positions

In this scenario, multiple transmit antennas and multiple receivers to design transmit beam-
forming have been investigated. Specifically, two scenarios are considered, with NT = 4 and
NR = 2, and with NT = 4 and NR = 3.

To achieve better detection, we can increase the number of transmit antennas when design-
ing transmit beamforming. Fig. 4.11 shows the FER performance of transmit beamforming
with different precoders against SNR in a multiuser system with NT = 4 and NR = 2. By
comparing results in Fig. 4.9 and Fig. 4.11, an increase in the number of transmit antennas
from NT = 2 to NT = 4 greatly improves the detection performance. Specifically, the detec-
tion performance of transmit beamforming with all precoders can be achieved, with the FER
reaching 10−2 when SNR = 10 dB.

Fig. 4.12 shows the FER performance for User 1 of transmit beamforming with different
precoders against SNR in a multiuser system with NT = 4 transmit antennas and NR = 3
receivers. By comparing results in Fig. 4.11 and Fig. 4.12, it is apparent that the detection
performance of the receiver improves significantly when increasing the number of receivers;
more specifically, with the ZF precoder and approximate MMSE precoder with an assumed
SNR, SNRest = 30 dB, the detection performance improves by approximately one order of
magnitude 10−1. It can be seen that when applied the approximate MMSE precoder with
an assumed SNR, SNRest = 5, 10, 20 dB, the improvement of the detection performance is
even more significant, around one order of magnitude greater 10−2; especially for the approx-
imate MMSE precoder with an assumed SNR, SNRest = 10 dB, exceptional performance is
demonstrated, with the FER reaching as low as 10−4 when the SNR is close to 10 dB.
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Scenario 6: Various coding rates

Table 4.2 Maximum free distance (d f ) for convolutional codes with various coding rates
(adapted from [2–4]).

Code rate (rc) Constraint length (k) Generator in octal d f

1/2 5 [23,35] 7
1/2 7 [133,171] 10
1/3 7 [133,145,175] 15
1/4 7 [133,135,147,163] 20

1/8 7

[
153 111 165 173
135 135 147 137

]
40

The coding rate is an essential factor in designing transmit beamforming since it directly
influences the data throughput and the robustness of a multi-user UWA system. The main
parameters of coding rates used in our simulation are given in Table 4.2.

In this scenario, a multiuser system with various coding rates and transmit beamforming
with NT = 4 and NR = 2 is investigated. The two receivers (users) are chosen from 100
receivers randomly in area of interest, 4950 trials are conducted and Ns = 100 OFDM
symbols are transmitted. Fig. 4.13 shows the FER performance of transmit beamforming for
various coding rates rc = 1/2,1/3,1/4,1/8 and constraint lengths k = 5,7. For the case of
the code rate 1/2, the result with a constraint length k = 7 has a slightly better performance
than one with a constraint length k = 5. When the constraint length k = 7 and various coding
rates rc = 1/2,1/4,1/8 are applied, the higher the coding rate, the more error correction
capability has the code, thus, the better detection performance. However, this results in
more redundant information and more complexity. Therefore, a proper coding rate should be
considered for taking a trade-off between error correction, data rate and complexity.
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Fig. 4.11 FER performance for User 1 of transmit beamforming with the ZF precoder
and the approximate MMSE precoder with SNRest = 5,10,20,30 dB against SNR; the
simulation parameters are NT = 4 transmit antennas; NR = 2 receivers; Ns = 100 OFDM
symbols transmitted in the acoustic environment with the SWellEx-96 SSP, shown in Fig. 2.3.
Coarse-to-fine localization, localization parameter setting: NT = 4; Nmax = 4, nine points are
removed after finding the next coarse AF maximum; in the refinement steps, Fr = Fd = 0.1 m;
the size of the refinement area is 4 m×4 m (shown in Fig. 3.1b).
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Fig. 4.12 FER performance for User 1 of transmit beamforming with the ZF precoder
and the approximate MMSE precoder with SNRest = 5,10,20,30 dB against SNR; the
simulation parameters are NT = 4 transmit antennas; NR = 3 receivers; Ns = 100 OFDM
symbols transmitted in the acoustic environment with the SWellEx-96 SSP, shown in Fig. 2.3.
Coarse-to-fine localization, localization parameter setting: NT = 4; Nmax = 4, nine points are
removed after finding the next coarse AF maximum; in the refinement steps, Fr = Fd = 0.1 m;
the size of the refinement area is 4 m×4 m (shown in Fig. 3.1b).
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Fig. 4.13 FER performance for User 1 of transmit beamforming with the approximate MMSE
precoder with SNRest = 10 dB against SNR for different coding rates; Ns = 100 OFDM
symbols are transmitted in the acoustic environment with the SWellEx-96 SSP, shown in
Fig. 2.3.
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4.5 Conclusions

In this chapter, different beamforming techniques with multiple receivers are investigated,
which is based on the proposed coarse-to-fine localization algorithms in Chapter 3. With
the perfect CSI and accurate receiver locations, ZF beamformer has better performance
than approximate MMSE beamformers with different assumed SNRs. The robustness of
the detection performance has also been investigated when the knowledge of the CSI and
receiver localization are imperfect. In this situation, the approximate MMSE beamformer
with an appropriately assumed SNR can improve the detection performance. High detection
performance is shown in numerical results when multiple transmit antennas are applied to
multiuser UWA communication systems. Accurate localization information can significantly
improve the detection performance of transmit beamforming.
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Chapter 5

Conclusions and further work

5.1 Summary of the work

The goal of this thesis is to design multiple transmit antenna techniques to communicate
through the UWA channel with multiple receivers equipped with single antennas using
improved localization of the receivers with respect to the transmit antennas. The contribution
from this work is summarized as follows.

• A non-coherent AF based on MFP techniques is proposed, which significantly improves
the localization performance, compared to the coherent AF previously used for this
propose, especially at high frequencies.

• A two-step (coarse-to-fine) localization technique is proposed, which allows high
localization accuracy and a reduction in complexity and memory storage, compared to
single step localization.

• A joint refinement scheme with multiple refinement areas is proposed, which reduces
the number of outliers and achieves highly accurate position estimates by comparing
the vicinities of several maxima.

• Transmit beamforming techniques based on the proposed localization techniques are
proposed and investigated with the purpose of improving the detection performance.

Chapter 2 presents a new localization method based on matching the CSI estimated at the
receiver to the CSI pre-computed at the grid points in an area of interest. The proposed method
can not only mitigate the distortion of phase information in the received signals, but can also
work well at high frequencies, thus, allowing more accurate location estimates. The proposed
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non-coherent AF method has a significant advantage for receiver localization compared to the
coherent AF method. The results show there is a reduction for false localization estimate and
outliers, and the accuracy of the MFP localization has been improved. The results suggest
that even in the case of a single transmit antenna, when using the non-coherent AF, it is
possible to achieve useful results for localization of the single-antenna receiver. For the non-
coherent AF method, the number of grid points covering an area of interest is significantly
reduced and consequently the amount of computation required for the localization is also
significantly reduced, thus making the use of the non-coherent AF more practical. Moreover,
the non-coherent AF method also results in a smaller memory requirement for saving the
information on the grid.

Chapter 3 proposed several maxima search, multiple refinement and coarse-to-fine lo-
calization techniques. The several maxima search efficiently mitigates outliers due to a
finite spatial sampling rate, thus, improving the localization accuracy. A joint refinement
technique with multiple refinement areas brings about a further reduction in outliers and
improves the localization accuracy. These techniques can achieve a very high localization
accuracy, thus compensating for possibly low space resolution at the coarse grid when using
the non-coherent AF method. Since the refinement areas are typically much smaller than the
whole localization area, this improvement is achieved with relatively small computational
load. The joint search over multiple refinement areas allows one to avoid localization outliers
than can appear due to errors at the coarse stage in finding the AF area global maximum.

Chapter 4 investigates different beamforming techniques combined with the proposed
coarse-to-fine localization. The investigation is used to develop beamforming techniques
with different linear precoders. The beamforming techniques are used with multiple transmit
antennas and single-antenna receivers. The results show that the approximate MMSE
precoder with an assumed SNR has better detection performance than other precoders used
for comparison.

5.2 Future work

In this section, some suggestions for future work are given based on this thesis. The
suggestions for future work are as follows.

1. In Chapter 2 and Chapter 3, both coarse localization and coarse-to-fine localization are
proposed based on the grid computation. As illustrated in Chapter 2, grid maps cover
the area of interest, the CSI for every grid point needs to be pre-computed and stored
in both the transmitter and the receiver, which requires a high computation complexity.
Although the non-coherent AF can reduce the number of grid points, this number still
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can be too high for real-time implementation in a communication receiver limited in
computation resources. Therefore, it is necessary to investigate techniques to address
how the number of grid points can be further reduced to decrease the computation
complexity. For example, for this purpose, the basis expansion model (BEM) approach
for representation of the channel response can be used.

2. In Chapter 3 and Chapter 4, the localization techniques and beamforming techniques
are investigated. The investigation is based on the least square (LS) channel estimation.
However, LS channel estimation is not very efficient. Therefore, designing a more
efficient channel estimator might be beneficial to the performance improvement and
complexity reduction for both the localization and beamforming. The basis expansion
model (BEM) channel estimation is certainly a topic of further exploration.
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