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Abstract

The subject of this thesis is a position in the philosophy of mathematics—defended by

Bob Hale and Crispin Wright—known variously as neo-Fregeanism, neo-Logicism or

abstractionism, and which claims that knowledge of mathematical objects can be based

on principles—known as abstraction principles—which are in important respects like

definitions of mathematical language.

In the thesis, I make a distinction between two ways in which the abstractionist pro-

gramme might be carried out. These are the standardly defended static view, according
to which abstraction principles can used to discover previously unrecognised objects

lying within some fixed domain of quantification. The second is an expansionist view,
according to which abstraction principles allow one to introduce new quantificational

vocabulary, and thus expand one’s domain of quantification to one containing referents

of mathematical terms.

There are then two main aims. The first is to examine the static position, so as to

identify the components of that viewwhichmake it committed to a standard domain, and

to argue against the view. Mymain argument against the view concerns what has become

known as the bad company problem. I argue that there is an epistemological component

to the bad company problem which can not be avoided by the static abstractionist.

The second aim of the thesis is to argue for and defend the expansionist view. In

particular, I will claim that the expansionist view avoids the bad company problem, and

that the expansionist view allows for an abstractionist foundation for set theory—an

aim which (or so I will argue) has so far eluded the static view.
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Part I

Static abstraction





Chapter 1

Logicism and neo-logicism

The aim of this thesis is to examine the prospects of a philosophical foundation of

mathematics based on a certain class of axioms known as abstraction principles. These

are, roughly, criteria of identity of the form:

the abstract of F = the abstract of G iff R(F ,G)

where R is an equivalence relation on the domain of the (usually second-order) variables

F and G. I will say in more detail what abstraction principles are later on.

The claim that abstraction principles can play an important role in the metaphysics

and epistemology of mathematics has recently been defended by, in particular, Bob

Hale and Crispin Wright (e.g. Hale, 1987; Hale and Wright, 2001a; Wright, 1983) (but

see also Cook (2009b) for another defender of the position). Since it is usually claimed

that abstraction principles are in certain respects like definitions, and that much of

mathematics follows from these together with logic, such a position is claimed to be a

form of logicism. This position is known variously as neo-logicism, neo-Fregeanism or

abstractionism.

The purpose of this chapter will be to set the scene for what I intend to argue later

on. Sections 1.1–1.2 will give an overview of the relevant background, section 1.1 dealing

with Frege’s logicism—as espoused in his Grundlagen der Arithmetik (Frege, 1884)

and Grundgesetze der Arithmetik (Frege, 1893)—and section 1.2 with the neo-logicist

programme of Hale and Wright.

In section 1.3, I will argue that a distinction should be made in how one may think

of the role that abstraction principles play, or are intended to play. This will be be-

tween a static approach—according to which the role of abstraction principles is to

expose previously unrecognised existential commitments in some fixed domain of

quantification—and an expansionist approach—according to which the role of abstrac-

tion principles is to allow one to expand one’s domain of quantification. This distinction

will play an increasingly important role in the latter part of this thesis, in which I will

argue for and defend the expansionist approach.

1



2 logicism and neo-logicism

1.1 Frege’s logicism

On the topic of Frege’s logicism, I shall only be brief; my aim is not to give a full historical

study. Rather, I intend to give enough background to put abstractionism in context. As

such, I shall concern myself mainly with the aspects of Frege’s programme which have

been made use of by the neo-logicists. In particular, these are his use of abstraction

principles (although he did not call them that) and his justification of implicit definitions

via the context principle.

1.1.1 Aims and motivations
There are two aims that Frege explicitly states in the first few sections ofGrundlagen—one

mathematical, and the other philosophical, though both are related.

The first aim, which is stated in §§1–2, is to complete the task started in the earlier

part of the 19th century by the rigorous treatment of analysis by Bolzano, Riemann,

Weierstrass and others. That task (according to Frege) was to return mathematics, and

in particular arithmetic (constituted broadly, so as to include the theory of real numbers,

complex numbers and so on) to ‘the old Euclidean standard of rigour’ (p.1). So, as

analysis shows that ‘the concepts of function, of continuity, of limit and of infinity have

been shown to stand in need of sharper definition’ (p.1), so too should the same attention

be paid to the concept of number, and other basic arithmetical (considered narrowly)

concepts. Similarly, in analysis ‘proof is now demanded of many things that formerly

passed as self-evident’. Frege does not give an example, but one might be the seemingly

self-evident claim that, given a continuous function of reals which takes a negative value

for some argument a, and a positive value for another argument b, there must be some

point in between a and b where the function takes the value of 0 (this is the intermediate
value theorem).1 So then, Frege’s aim was to give proofs for similarly seemingly self

evident arithmetical propositions, such as ‘5 + 7 = 12’ and the associativity of addition.

Now, this is not clearly a peculiarly logicist aim; there is nothing particularly logicist

in character about the rigourisation of analysis, so why should there be about the

rigourisation of arithmetic? However, if the analogy is to be taken to its conclusion, it

can be seen that a logicist gloss is rather appropriate. The achievements of analysis might

be seen to arise from a process of firstly sharply defining concepts, and then proving

propositions just using those definitions. So, for example, the intermediate value theorem

might be seen to follow fairly immediately from the rigorous є-δ definition of continuity.

But, of course, this is not quite the case. The eligibility of the definitions involved, and the

application of them will depend, in this case, on more basic arithmetical propositions.

So, in some sense, this amounts to a reduction of analysis to arithmetic.2

So, if Frege’s aim is to continue this process, the aim will be to produce definitions

for arithmetical concepts, and to prove seemingly self-evident propositions concerning

them. Then, if these depend on more basic assumptions (in the same way as the proof of

the intermediate value theorem depends on arithmetic), then these assumptions should

1The first rigorous proof of this theorem was by Bolzano (1817). Prior to this, most ‘proofs’ involved an

appeal to geometric intuition.

2Of course, we now know that to move from arithmetic to analysis, at least a modicum of set theory is

required. But Frege considered class theory to be a part of logic. So, for him, the work of the analysts may

have seemed to be a (perhaps partial) reduction of analysis to arithmetic.
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be based on rigorous definitions, and so on. If carried to its conclusion (and, if indeed it

is possible to carry it on to its conclusion), a desirable outcome would be for the final

grounding to be on pure logic together with definitions.

Frege’s second aim, which he put forward in §3, is more squarely aimed at philoso-

phers. It is to give an answer to Kant’s questions of whether mathematics is a priori or a
posteriori, and whether it is analytic or synthetic. Frege’s aim ultimately is to argue that

arithmetic is analytic (and hence also a priori). It is in this aim that Frege’s project is

more explicitly avowed to be a form of logicism, if logicism is taken to be the thesis that

mathematics can be reduced to logic plus definitions.

Frege’s view that mathematics is analytic depends on a particular notion of analyt-

icity that he puts forward, but which goes beyond Kant’s notion of analyticity (albeit

claimed by Frege to merely amount to ‘stat[ing] more accurately what . . .Kant . . . [has]

meant by them’ (p.3 fn. 1)).3 For Frege, the key to whether a sentence is analytic or

synthetic, a priori or a posteriori is how it can be justified, and, in particular, what a

proof of it will depend on—the ‘ultimate ground’ of the proposition. So, concerning the

analytic/synthetic distinction, he writes:

The problem becomes, in fact, that of finding the proof of a proposition,

and following it up right back to the primitive truths. If, in carrying out

this process, we come only on general logical laws and definitions, then the

truth is an analytic one, bearing in mind that we must take account also

of all propositions upon which the admissibility of any of the definitions

depends. If, however, it is impossible to give the proof without making use

of truths which are not of a general logical nature, but belong to the sphere

of some special science, then the proposition is a synthetic one. (p.4)

and concerning the a priori/a posteriori distinction:

For a truth to be a posteriori, it must be impossible to construct a proof of

it without including an appeal to facts, i.e., truths which cannot be proved

and are not general, since they contain assertions about particular objects.

But if, on the contrary, its proof can be derived exclusively from general

laws, which themselves neither need nor admit proof, then the truth is a

priori. (p.4)

Thus, the claim that mathematics is analytic is precisely that the truths of mathe-

matics can be proved using only logic and definitions. It can also be seen how this aim

matches up with the first, mathematical aim. For the project of carrying the rigourisa-

tion of mathematics to its full conclusion must entail finding the ‘ultimate ground’ of

mathematics. If this ultimate ground is just logic and definitions, then it will be shown

that mathematics is analytic.4

3There is much that could be said about the relationship between Frege’s notion of analyticity and Kant’s

(e.g. Dummett, 1991, ch. 3; MacFarlane, 2002; Benacerraf, 1981; Blanchette, 1994), but I shall not be concerning

myself with this to any great extent.

4 It is important to note that, for Frege (and indeed, for neo-logicists), ‘logic’ means at least second-order

logic. That is, as well as permitting quantification into nominal position—with quantifiers ranging over

objects—quantification into predicate position is also permitted. These quantifiers range over concepts (which
stand to predicates as objects do to singular terms). Indeed, as we shall see, concepts play a crucial role in

both Frege’s programme and in the neo-logicist reconstruction of it.
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Since the notions of analyticity and a priority which Frege is working with are

broadly epistemological (concerning, as they do, justification), it follows that his aims

are also broadly epistemological (though this has been disputed, by, e.g. Benacerraf

(1981)). Frege is not particularly explicit on this point, however, and it is not clear how

much of a role it plays in his views. It is worth however flagging it up now, since similar

epistemological aims are explicit in neo-Fregeanism.

1.1.2 Definition, the context principle and abstraction principles
Since the notion of definition plays such a prominent role in Frege’s stated aims, it is

important for him to be clear about two questions. The first is: given that part of the

aim is to provide definitions for arithmetical vocabulary, for what parts of arithmetical

vocabulary in particular must definitions be furnished? The second is a demand for a

fairly general account of how definitions may be provided, and, more specifically, how

to provide the definitions for arithmetical vocabulary.

I shall not say much about the first question. After some consideration of various

competing options, Frege decides that we must supply definitions for terms of the form

‘the number of Fs’, where F denotes a concept. There are two features to this: the first is

that numbers correspond to concepts, rather than, for example, physical aggregates or

‘sets of units’. This is to avoid various problems with other approaches that Frege sets out

in §§21–44. The second feature is that the terms to be defined are singular terms, rather

than, for example, adjectives. By doing so, both adjectival and nominal uses of number

words can be accounted for. So, for example, an adjectival use of ‘seven’ in ‘there are

seven cities in Yorkshire’ can be paraphrased using ‘seven’ nominally: ‘the number of

cities in Yorkshire is seven’ (where ‘is’ signifies identity, rather than predication). By

contrast, some nominal uses of number words can not easily be expressed in terms of

adjectival uses. Consider, for example ‘the number of cities in Yorkshire is prime’.5

The details of the second question are of greater significance to the neo-logicist pro-

gramme, since two aspects of the answer—the use of the context principle to (perhaps)

justify implicit definitions, and the use (to some extent) of abstraction principles—play

a central role in the neo-logicist treatment.

What about the first part of this question: how is it, in general, that we are to

define a word? That is, how do we confer a word with meaning? Frege answers this

requirement—at least partly and at least as expressed in Grundlagen—with his context
principle.6

Frege states the context principle right at the beginning of Grundlagen (p.x), along

with two other ‘fundamental principles’. It is

never to ask for the meaning of a word in isolation, but only in the context

of a proposition.

5Though see Dummett (1991, ch. 9) for criticism of Frege’s hastiness in arguing for a purely nominal

analysis of number.

6The precise role that the context principle plays inGrundlagen, the extent to which Frege retained it (albeit
non-explicitly) in later writings, and the relationship between the context principle and his later distinction

between sense and reference are controversial (See, e.g. Dummett (1991, ch. 16–17), Milne (1986) and the

works cited therein). I do not wish to wade into these debates. Instead, since it is the neo-Fregean programme

which is my primary interest, for present purposes I will accept the interpretation of Wright (1983, ch. 1) and

Hale (1987, ch. 7) that the primary role of the context principle was to justify implicit definitions.
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So, if we want to ask after the meaning of a word, we must ask not just of the word itself,

but ask what contribution the word makes to the meanings of whole sentences.

Part of the purpose of adopting the principle, which Frege explicitly states, is to

avoid a psychologistic view of meaning, whereby the meaning of a word is something

like a mental picture that it conjures up. Such a view of meaning, Frege believed, would

go against the seeming objectivity of mathematics.

But the context principle also has consequences for definitions. Just as what is

required to ask of the meaning of a word is to ask of its contribution to whole sentences,

what is required to givemeaning to a novel word is to stipulate the behaviour of whole

sentences in which it appears. And indeed Frege repeats his commitment to the context

principle when discussing definitions. So, in §62 he writes:

How, then, are numbers to be given to us, if we cannot have any ideas or

intuitions of them? Since it is only in the context of a proposition that

words have any meaning, our problem becomes this: To define the sense of

a proposition in which a number word occurs. (p. 73)

Thus, Frege’s task is to define arithmetical vocabulary by stipulating the meanings of

an appropriate range of sentences in which arithmetical vocabulary occurs. That is, the

aim is to give implicit definitions of arithmetical vocabulary.

Thematter thenmoves on to the specifics for number terms. What contexts involving

number words need to be given truth conditions, and how are these truth conditions

to be given? Since it has already been decided by Frege that it is numerical singular

terms—which refer to objects—that we are interested in, we have a natural candidate

for the kinds of sentences for which we must give truth conditions:

we have already settled that number words are to be understood as standing

for self-subsistent objects. And that is enough to give us a class of proposi-

tions which must have a sense, namely those which express our recognition

of a number as the same again. If we are to use the symbol a to signify an
object, we must have a criterion for deciding in all cases whether b is the
same as a. (p. 73)

So, if we write ‘NF’ for the number of Fs, we must supply the truth conditions for

‘a = NF ’, where a is another singular term. An important particular case of this is where

a is also a number term. That is, we want to supply truth conditions of statements of the

form ‘NF = NG’. Moreover, Frege suggests such truth conditions (which he attributes

to Hume, although they are perhaps more accurately attributable to Cantor). NF = NG
just in case F and G can be put into one-to-one correspondence. If we write the relation

of one-one correspondence between the Fs and theGs as F ≈ G, we obtain as a principle:

(HP) ∀F∀G[NF = NG ↔ F ≈ G]

which has become known as Hume’s Principle.
F ≈ G can then be given a definition in pure second-order logic. Frege does not

supply one inGrundlagen, but does do so inGrundgesetze. Various equivalent definitions
can be given, but one would be:

(1.1) F ≈ G def
= ∃R (

∀x(Fx → ∃y∀z((Gz ∧ Rxz) ↔ z = y))∧
∀x(Gx → ∃y∀z((Fz ∧ Rzx) ↔ z = y))

)
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Hume’s principle is an abstraction principle. These are sentences of the form:

(AP) ∀α∀β[§α = §β↔ α ∼ β]

where ‘§’ is an abstraction operator, which attaches to terms of the type of α and β to

form a singular term, and ‘∼’ is an equivalence relation on the range of the variables α
and β. In the case of HP, α and β are second-order variables ranging over concepts, and

∼ is the relation of equinumerosity between concepts, as defined in (1.1).

Frege goes on to justify the possibility of using HP as a definition of number in

§§63–64, by comparing it to another abstraction principle—that which gives identity

conditions for directions of lines. It is:

(DE) ∀ℓ1∀ℓ2[Dℓ1 = Dℓ2 ↔ ℓ1 ∣∣ ℓ2]

Here, ℓ1 and ℓ2 range over lines, Dℓ denotes the direction of ℓ, and ∣∣ is the relation of

parallelism. This abstraction principle is often called the direction equivalence.
There are a couple of notable differences between DE and HP. One is that DE is a

first-order abstraction principle; the initial quantifiers range over objects rather than
concepts. As a consequence, the abstracts (i.e. directions) are of the same type as the

things which are being abstracted from (lines). Secondly, the equivalence relation on the

right hand side is non-logical. Unlike equinumerosity, there is no obvious paraphrase of

parallelism in purely (second-order) logical language. Although these differences will

be important later on, for the moment they do not matter much.

The purpose of introducing DE is to justify the possible use of abstraction principles

as definitions. Frege introduces the metaphor of content recarving to explain how such

implicit definitions may work. The idea is that the left hand side of an abstraction

principles serves to recarve the content expressed on the right hand side in a different

way:

The judgement “line a is parallel to line b” . . . can be taken as an identity. If

we do this, we obtain the concept of direction, and say: “the direction of

line a is identical with the direction of line b. Thus we replace the symbol

∣∣ by the more generic symbol =, through removing what is specific in the

content of the former and dividing it between a and b. We carve up the

content in a way different from the original way, and this yields us a new

concept. (pp. 74–5)

Presumably, the context principle is at work here; by recarving the content in this way,

we succeed in providing the content of sentences involving new vocabulary, and thus

confer this new vocabulary with meaning.7

However, Frege is ultimately not satisfied with DE, nor, for the same reasons, with

HP. Although they both give the truth conditions for identity contexts of the form

Dℓ1 = Dℓ2 (respectively NF = NG), they do not give the truth conditions of identity

contexts in general. So, he writes:

[O]ur definition [DE] affords us a means of recognising this object [the

direction of a] as the same again, in case it should happen to crop up in

7Grundlagen was written before Frege made his famous distinction between sense and reference. As such,

it is unclear which of these (if either) is meant by ‘content’.
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some other guise, say as the direction of b. But this does not provide for
all cases. It will not, for instance, decide for us whether England is the

same as the direction of the Earth’s axis—if I may be forgiven an example

which looks nonsensical. Naturally no one is going to confuse England

with the direction of the Earth’s axis; but that is no thanks to our definition

of direction. (pp. 77–8)

This has become known as the Julius Caesar problem, after a similar remark that Frege

makes earlier concerning an adjectival analysis of numerical vocabulary:

[W]e can never—to take a crude example—decide by means of our defini-

tions whether any concept has the number Julius Caesar belonging to it,

or whether that familiar conqueror of Gaul is a number or is not. (p. 68)

Consequently, Frege rejects the method of defining arithmetical vocabulary by

means of abstraction principles. Instead, he chooses to give an explicit definition in

terms of classes, or extensions of concepts.

1.1.3 Frege’s final definition of ‘NF’ and Basic Law V
In Grundlagen, Frege settles on defining the defining the number of Fs as being a class
of concepts, or the extension of a second-level concept. He writes, as the proposed

definition:

the Number which belongs to the concept F is the extension of the concept

“equinumerous8 to the concept F”. (pp. 79–80)

In set-theoretic notation, we might write this as:

(1.2) NF = {G ∶ G ≈ F}

In Grundgesetze, his definition changes somewhat. There, he does not countenance

classes of concepts, but only classes of objects. A very similar definition is still how-

ever available: NF is to be the class of all the extensions of all concepts which are

equinumerous with F:

(1.3) NF = {x ∶ ∃G(x = {y ∶ Gy} ∧G ≈ F)}

For such a definition, Frege obviously requires a theory of extensions or classes. In

Grundlagen, he does not provide such a theory, but merely asserts that ‘I assume that it

is known what the extension of a concept is’ (p. 80 n. 1). He does, however, provide such

a theory in Grundgesetze. Extensions are a specific case of value-ranges of functions,
where the value range of a function f can be thought of more-or-less as the graph of f .
Concepts are then a specific kind of function, which map objects to truth values.

Governing value ranges is the following principle, which Frege calls Basic Law V.

Where ε f denotes the value range of f :

∀f∀g[ε f = εg ↔ ∀x1 . . . xn( f (x1 , . . . xn) = g(x1 . . . , xn))]

8I have replaced Austin’s translation of Gleichzablig as ‘equal’ with ‘equinumerous’, to fit in with my use so

far.
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In the specific case of concepts (which will be the only case which from now on I shall

consider), we have:

(BLV) ∀F∀G[εF = εG ↔ ∀x(Fx ↔ Gx)]

Now, it is clear that again we have an abstraction principle, giving us our third exam-

ple. Here, the abstraction operator is ‘ε’, and the equivalence relation is co-extensionality.
Frege does not, however, seek to justify BLV by the same means as HP and DE, at

least not explicitly. Indeed there is no mention of the context principle or recarving of

content in Grundgesetze.
In any case, with BLV and definition 1.3, Frege can prove HP, and from that prove

basic laws of arithmetic which are equivalent to the Dedekind–Peano axioms. I shall not

go in to any detail about how this is done; to do so would take some time, and would

not add much to what I intend to argue for. Sketches of the derivation can be found in

Wright (1983, ch. 4), Boolos (1990), Heck (1993) and Zalta (2010).

1.1.4 Russell’s paradox and the collapse of Frege’s system
Alas, Frege’s theory of extensions, as embodied in BLV (together with a principle of

substitution which is captured in a modern setting by the comprehension principle for

second-order logic), is inconsistent. One consequence of Frege’s system in Grundgesetze
is that every open formula corresponds to a concept, and every concept has an extension.

This commitment—as is well known—leads quickly to contradiction.

First, it can be noted that it is possible to define a usual set membership relation ‘∈’

using the abstraction operator ‘ε’ as a primitive:

(1.4) x ∈ y df
= ∃F(y = εF ∧ Fx).

Then, there will be a concept R corresponding to the formula x ∉ x, and this in turn

will have an extension r. But then it is relatively simple to prove, making use of the

equivalence between x ∈ εF and Fx, that r ∈ r↔ r ∉ r, which is a contradiction.

As a consequence of this discovery—which was communicated to Frege by Russell

in a letter (Russell, 1901)—Frege ultimately abandoned his project.

1.2 Neo-Logicism

Recently, Bob Hale and Crispin Wright have defended a revised version of Frege’s

programme which aims to avoid the problem of contradiction. The aims of neo-logicism

are similar to Frege’s aims, but with different emphasis. In particular, there is an emphasis

on reconciling a realist conception of mathematics with a reasonable epistemology of

mathematics.

One aspect of Frege’s philosophy of mathematics, which I did not make much

mention of in the last section, is that it is realist or platonist. That is, it takes number

terms to be genuinely referential singular terms which refer to abstract objects (and,

moreover, that sentences including these terms are true). Hence, the view is committed

to there being abstract objects.

Platonism has come under attack in the latter half of the 20th century for epistemo-

logical reasons (e.g. Benacerraf, 1973; Field, 1989). The charge is that the platonist view
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can not account for knowledge of mathematics without appealing to some mysterious

faculty of intuition. Benacerraf argues that knowledge of acausal, non-spatio-temporal

objects (as the platonist claims numbers are) conflicts with a causal theory of knowledge,

which he claims to be the best theory available. Field makes a similar argument, but

without relying upon a causal theory of knowledge (at least, not explicitly). His argument

is that the platonist will not be able to explain the correlation between mathematicians’

beliefs and mathematical truths (which will be about an abstract mathematical realm,

according to the platonist).

One of the main aims of neo-logicism is to respond to such arguments. If something

like Frege’s project were successful, then an answer can be given to the epistemological

challenges: It is not the case that, in order to have knowledge of some sentence which

involves mathematical singular terms that we must first have some access to their

referents (be it through causal mechanisms or through some faculty of intuition). Rather,

it is the other way around; mathematical terms acquire reference through their use in

whole sentences. Moreover, since some of these sentences may serve as something like

definitions, they will be analytic, and hence knowable a priori.
Hale and Wright have sought to resuscitate Frege’s programme by making use of

HP directly, without an intermediate appeal to the inconsistent BLV. In this section, I

shall sketch the details of their neo-logicist programme. In 1.2.1–1.2.3 I shall sketch the

formal development of the programme—how HP fits into a consistent second-order

theory which suffices for the derivation of much of arithmetic. In 1.2.4, I will discuss the

epistemological claims that Hale and Wright make.

1.2.1 Frege arithmetic
It turns out that it is possible to interpret all of arithmetic in the system that results from

adding HP to second-order logic—a system known as Frege Arithmetic (Boolos, 1987).
Moreover, the resulting system is—in contrast to BLV—consistent. Before going into

details of how this is done, it will be useful first to get a little clearer on the notation

which I am using (and which I will be using for the remainder of the thesis).

Recall that I have treated the ‘number of ’ operator (and indeed, all abstraction

operators) as denoting a function from concepts to objects. I.e. it attaches to a concept

term, such as a second-order variable or predicate, to produce a singular term. Such

a function is sometimes called a type-lowering function, since it maps second-order

entities to first order entities.

An alternative way to express HP and other abstraction principles would be by

means of a variable-binding term-forming operator (vbto). That is, a symbol which

binds a free variable in an open formula—as a quantifier does—and results in a singular

term. In the case of the number operator, this is often denoted ‘Nx ∶ϕ(x)’.
The advantage of vbtos is that they allow one to refer to the abstracts of concepts

defined by specific formulas. For example, the number of things which are F-or-G
can be denoted by ‘Nx ∶ (Fx ∨Gx)’. Such a notation is not directly allowable with the

functional approach; something like N(F ∨G) is simply not well formed.

However, if we stick to the functional approach, a vbto can be emulated in a couple

of different ways. The first is to treat Nx ∶ϕ(x) as a definite description. So, we define:

Nx ∶ϕ(x) df
= ( ιx)[∃F(∀y(Fy↔ ϕ(y)) ∧ x = NF]
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Then, by using the usual Russellian contextual definition of definite descriptions, vbtos

can always be eliminated in favour of terms formed with the function.

Alternatively, a device for ‘naming’ concepts could be introduced into the language,

such as λ-abstraction: Where ϕ is a formula with x free, λxϕ will be a concept term

(i.e. a predicate) for the concept defined by ϕ. More generally, where x1 , . . . , xn are free
variables in ϕ, λx1 . . . xnϕ will be an n-ary relation term. With the λ notation, Nx ∶ϕ(x)
can simply be an abbreviation of N(λxϕ).

Then, either λ-abstraction can become an official part of the language, by adding

appropriate introduction and elimination rules:

ϕ(t1/x1 , . . . , tn/xn)
(λ-I)

(λx1 , . . . , xnϕ)t1 . . . tn

(λx1 , . . . , xnϕ)t1 . . . tn
(λ-E)

ϕ(t1/x1 , . . . , tn/xn)

Or, they can be eliminated in a similar Russellian way.

The functional approach has an advantage over the vbto approach when it comes to

considering models of abstraction principles (which I shall be doing at various points).

For then, the interpretation of an abstraction operator will simply be a function from the

second-order domain (usually the powerset of the first-order domain) to the first-order

domain.9 As such, I will officially be treating abstraction operators as type-lowering

functions. But the notation for vbtos will still feature, as unofficial abbreviations.

So, Frege Arithmetic (FA) can be defined formally. The language is that of second-

order logic with a single non-logical constant: ‘N ’, whose type is such that, where

F is a second-order variable, NF is a well formed term of the same type as the first-

order variables. FA is the theory in this language which consists of second-order logic,

including the full comprehension scheme:

∃F∀x(Fx ↔ ϕ)

and HP as its only axiom.

1.2.2 Frege’sTheorem
As mentioned, HP together with second-order logic suffices to interpret second-order

arithmetic. I.e. definitions of arithmetical vocabulary (zero, successor, natural number)

can be given within the language of HP, and the second-order Dedekind–Peano axioms—

as expressed using these definitions—can then be proved using HP. That this is the case

is known as Frege’s Theorem, since the proof is essentially the one which is sketched by

Frege in Grundlagen (as with Frege Arithmetic, this term was coined by Boolos).10

The first thing to do is to define the usual language of arithmetic within the language

of HP. That is, we need a term for zero, a successor relation symbol, and the predicate ‘is

a natural number’. These definitions can be given as follows:

Definition 1.1. 0
df
= Nx ∶x ≠ x

9I will later be considering modal logic, where things get a little more complicated than that. But in that

case, the simplicity of the functional approach is even more useful.

10Whether the formal proof in Grundgesetze could constitute a proof of the theorem is less clear, since it

makes use of BLV throughout. Heck (1993) has argued that all appeals to BLV in the proof in Grundgesetze
(after having derived HP) are inessential.
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Definition 1.2. Sab df
= ∃F∃x(b = NF ∧ Fx ∧ b = Ny ∶(Fy ∧ y ≠ x))

Definition 1.3. Na df
= ∀F[F0 ∧ ∀x∀y(Fx ∧ Sxy → Fy) → Fa]11

Definitions 1.1 and 1.2 are natural and fairly self-explanatory. Definition 1.3 is a

specific instance of Frege’s definition of the ancestral of a relation (Frege, 1879); an object

is a natural number if it is related to 0 by the ancestral of the successor relation.

Then, arithmetic can be interpreted in this system in the form of second-order Peano

arithmetic, the system which results from adding the following axioms to second-order

logic (with full comprehension):

dp1) N0

dp2) ∀x(Nx → ∃y(Ny ∧ Sxy))

dp3) ∀x∀y∀z(Sxz ∧ Syz → x = y)

dp4) ∀x∀y∀z(Szx ∧ Szy → x = y)

dp5) ∀x(¬Sx0)

dp6) ∀F[F0 ∧ ∀x∀y(Fx ∧ Sxy → Fy) → ∀x(Nx → Fx)]

I shall not go through the proof here. For details see Boolos (1990).

1.2.3 Model theory and the consistency of HP
It will be useful for various purposes to consider the model theory of abstraction princi-

ples. This is simply a special case of the semantics for second-order logic in general. A

model of an abstraction operator will be a pairM= ⟨D, §
M⟩. D is the domain of objects

over which the first-order quantifiers range. The range of the second-order quantifiers

can then be modelled by the power set of D, P(D). Finally, §M is the interpretation of

the abstraction operator. It is a function §
M ∶ P(D) → D.

Clauses for truth in a model can be given in the standard way. In particular, if F is a

concept term which is assigned X ⊆ D, ‘εF’ will be assigned the object §
M(X).

Given this, where the equivalence relation in the abstraction principle is Φ(F ,G), a
structureM will be a model of the abstraction principle just in case: For all X ,Y ⊆ D,

§
M(X) = §M(Y) iffM⊧ Φ(X ,Y)

We can apply this model theory to HP, and in doing so prove that it is consistent.

A natural model is achieved by letting D = N ∪ {ℵ0}, and NM(X) = ∣X∣ (i.e. the
cardinality of the set X). It is easy to then check that this is a model of HP, and hence

that HP is consistent (with the same level of certainty as any other mathematical claim).

But an improvement can be made; there is a model of HP whose domain is the natural

numbers, by letting NM be:

NM(X) =
⎧⎪⎪
⎨
⎪⎪⎩

∣X∣ + 1, X finite

0, X infinite

11A note on operator precedence: I will always assume that implication→ takes lower precedence than the

other connectives. That is, ‘p → q ∧ r’ is equivalent to ‘p → (q ∧ r)’ and so on. In situations like this I will

omit the parentheses.
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Again, it can be checked that this is indeed a model of HP (see Boolos, 1987).

Since NM can be defined in standard second-order arithmetic, we have an inter-

pretation of HP in second-order arithmetic. Since there is an interpretation both ways,

we can thus conclude that HP is consistent if and only if second-order arithmetic is

consistent. So, we can be sure (at least, as sure as could be reasonably demanded) that

HP will not face any similar problems to those suffered by BLV.

1.2.4 Epistemology and Hero
So, HP is sufficient as an axiom for arithmetic. But neo-logicists make a further claim—

as already mentioned—that HP can underwrite our knowledge of arithmetic in a way in

which the usual axioms do not.

The claim is that HP is, if not a definition of the number operator, then at least an

explanation of the number concept; anybody who has an understanding of the number

operator will thereby have the means to acquire knowledge of the existence of numbers,

and of their properties.

A thought experiment which is useful for the purposes of visualising this claim is

suggested by Wright (2001b). He suggests that we picture a character—‘Hero’—who

makes use of HP to gain knowledge of arithmetic. At the start, Hero neither has knowl-

edge of natural numbers, nor any vocabulary or concepts with which to express any

arithmetical claims. Hero is, however, proficient with the language of second-order

logic. Wright claims that, by laying down HP as an implicit definition of the number

operator, Hero can simultaneously gain an understanding of arithmetical vocabulary

and the wherewithal to gain knowledge of arithmetical truths.12

So, Hero will start off with an understanding of the various logical connectives, the

first- and second-order quantifiers and so on. Just what this understanding consists in—

especially in the case of the quantifiers—will play an important role in the distinction

that I make later in section 1.3. Hero may also have a smattering of various non-logical

predicates and names, perhaps standing for, e.g. physical properties and objects. But,

importantly, these will not include any mathematical vocabulary.

Then, Hero may extend his13 language by the addition of the abstraction operator

‘N ’, which is to be explained by means of HP. Since Hero is provided with an explana-

tion of the new symbol in the form of the abstraction principle, he will thus have an

understanding of the new vocabulary. Moreover, by means of HP, Hero will be able to

prove various propositions which use the new symbols.

For example, he may deduce that there are numbers thus: Take a concept, say that

denoted by λx(x ≠ x). It will be a matter of pure second-order logic that λx(x ≠ x) ≈
λx(x ≠ x), and since Hero has a full understanding of second-order logic, he will be

able to prove as much. By this stage, nothing concerning numbers has been introduced.

12The principal reason for which Wright introduces the story of Hero is actually to claim that this un-

derstanding or knowledge can be acquired in a predicativemanner. I shall discuss this later 5, but for now,

the main purpose of introducing Hero is to provide an example concerning the more general claims about

epistemology made by the neo-Fregeans.

13As a fictional character, there are many irrelevant properties of Hero which are undetermined; Hero has

no definitive height, hair colour, nationality, and so on. It is an unfortunate feature of English that another

irrelevant feature—Hero’s gender—may not be left indeterminate. I have decided to vary which pronouns I

use from chapter to chapter.
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But now, Hero may reason from right to left across HP, to deduce that Nx ∶x ≠ x =
Nx ∶x ≠ x. Thus (by the use of the usual rules for the existential quantifier), Hero can

deduce that there is such an object as Nx ∶x ≠ x, which may be called 0. And the same

method can be used to show that, for any concept F, NF exists.

Hero can then go on to gain an understanding of the other numerals. So, 1 is

Nx ∶x = 0, 2 is Nx ∶(x = 0∨ x = 1) and so on. Furthermore, Hero will be in a position to

make use of other definitions, perhaps those given in (1.1)–(1.3), fromwhich he can prove

the Dedekind–Peano axioms. He can then go on to prove any number of arithmetical

theorems.

This story—of Hero gaining knowledge of mathematics through the use of abstrac-

tion principles—need not be specific to HP and arithmetic. Part of the neo-logicist claim

is that this will generalise to some other abstraction principles; in certain circumstances,

Hero may lay down an abstraction principle and thereby both gain an understanding

of the abstraction operator involved, and knowledge of the resulting abstracts. So, for

example, suppose Hero starts off with an understanding of some limited geometrical

vocabulary involving lines and parallelism. The abstractionist claim is that he will then

be able to gain an understanding and knowledge of directions by means of DE. Or, it

might be hoped that there is an abstraction principle (or some abstraction principles)

will would allow Hero to gain a knowledge of mathematical objects beyond the natural

numbers, such as the real numbers or sets.14

1.3 Two kinds of abstraction

There are two ways in which one may think of the process of abstraction, the distinction

between which will play an important role throughout the thesis. These are between a

static view, whereby the domain of quantification is fixed throughout the process, and

an expansionist view, whereby an abstraction principle also may serve to expand the

domain of the first-order quantifiers.15

This is obviously in need of further explanation and detail. But before giving such

further details, it will be worth contrasting this distinction (as stated rather vaguely)

with a similar one made by Fine (2002, pp.56–7) between standard and creative defini-
tions. According to Fine, standard definitions ‘are made from a standpoint in which

the existence of the objects or items that are to be assigned to the defined terms is

presupposed.’ The purpose of such definitions is to ‘make an appropriate assignment of

the objects already in the domain to the terms that are to be defined.’ By contrast, in a

creative definition, ‘the existence of the objects that are to be assigned to the terms is

not presupposed.’ Since this distinction concerns domains of quantification, it seems

that it may serve my purposes.

But, as it stands, I do not think that Fine’s distinction is particularly useful. The

reason is that the distinction mixes up (or at least, fails to sharply distinguish between)

an epistemic reading of a definition ‘presupposing’ objects, and a more semantic or

14It should be noted that—at least according to the view of abstraction put forward by Hale and Wright—

BLV will not be such an abstraction principle. Being inconsistent, it can not be a source of knowledge.

15There may of course be yet further ways in which one may think about abstraction (e.g. Leitgeb (Forth-

coming) and Antonelli (2010a,b) have views about abstraction principles which do not fit within either of

these paradigms). I will not be concerning myself with such views.
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metaphysical reading. So, the distinction sometimes concerns distinctively epistemic

notions, such as us being ‘sure that the required objects . . . exist’, or us ‘knowing prior

to the definition being made that the objects of the required sort exist.’ At other times,

however, it merely concerns the domain of quantification. But it is perfectly consistent

(and indeed, very natural) to suppose that we may succeed in quantifying over objects

which one has no knowledge of.

So, a definition may presuppose some objects in one of two ways—either it presup-

poses knowledge of those objects, or it merely presupposes the ability to quantify over

those objects (without the requirement that a speaker knows that they are quantifying

over those objects).

Given this distinction, the terminology of ‘creative’ versus ‘standard’ definitions is

perhaps unfortunate. For a view which does not claim presupposition of knowledge of
objects need have nothing to do with creation of those objects. Even in the semantic

case, literal creation of objects may not be required, since if a definition allows a speaker

to quantify over objects that he did not previously quantify over, there is nothing to say

that the act of definition brought those objects into existence in some creationist man-

ner16 It is perhaps less misleading to refer to presuppositional and non-presuppositional
definitions.17

It should be clear that, taken in the epistemic sense, it is of no use to regard HP

as a presuppositional definition. For then it would presuppose knowledge of infinitely

many objects. But this is precisely what the use of abstraction principles by neo-logicists

is intended to avoid. As such, the distinction that I intend to make concerns only the

semantic presupposition of objects, in a sense that I hope to make clear. Epistemically

speaking, both sides of the distinction will claim that abstraction principles are non-

presuppositional definitions (in either the epistemic or semantic sense).

1.3.1 The static view
It will be useful to discuss the two views, and the differences between them, within the

context of Hero; they will be two different views concerning Hero’s understanding of

the first-order quantifiers. According to the static view, the domain of quantification

over which Hero’s quantifiers range remains fixed. So, the same objects are quantified

over both before and after laying down an abstraction principle like HP. In particular,

Hero’s quantifiers will range over the natural numbers before laying down HP, and one

of the roles of HP is simply to allow Hero to discover this fact.
To make this, and the distinction between the views, clearer, it will be useful to

distinguish between two kinds of ‘grasping’ of a domain of quantification. One will lie

firmly on the epistemic side, while the other will be more semantic in character.

Say that a speaker understands a particular domain of quantification, D, if there
is something (be it their use of quantified language, some particular mental state, or

whatever) that fixes the meaning of their quantifiers as being such so as to range over

D.18
16I argue for this claim more fully in chapter 6. Compare also Fine’s own (non-abstractionist) view, in Fine

(2005) and Fine (2007), which is clearly a creative view in Fine’s sense, but which he denies requires the literal

creation of objects.

17See Hale (2006) for a similar point.

18 Now is as good a time as any to remark on my use of ‘D’ as a singular term to denote a domain of

quantification. There will be points later on in this thesis in which it would be begging the question on my part



1.3. two kinds of abstraction 15

But an understanding of a domain in this sense falls well short of knowing substantial

facts about the domain, such as what objects fall within it, or its cardinality. I may, for

example, be completely proficient in quantifying over all stars, and it be completely

determinate over what the quantifier phrase ‘all stars’ ranges when uttered by me. But,

nonetheless, I am still utterly clueless about, say, the cardinality of this domain, even

approximately.19

This distinction, between knowing about a domain and merely understanding the

domain, will lead on to a similar distinction between a couple of domains of quantifi-

cation that may be discussed in the context of Hero. On the one hand, one may talk

about Hero’s semantic domain—the domain over which Hero’s quantifiers actually range,

which is (at least partially) fixed by Hero’s understanding of the first-order quantifiers.

On the other hand, there is what might be called Hero’s epistemic domain (or, perhaps,

range of domains). These will be the domains which are compatible with what Hero

knows about the range of his quantifiers. Since there will be many domains of quantifica-

tion which are compatible with what Hero knows at any one point, I will use ‘epistemic

domain’ sometimes to mean theminimal epistemic domain, that is, the smallest domain

of quantification which is compatible with what Hero knows about the range of his

quantifiers.

It is the former of these which is kept fixed under the static view. Before laying

down HP, for all Hero knows, there may be just a small finite number of objects over

which his quantifiers range (depending on some extent to the non-logical vocabulary

that Hero has to start with). Thus Hero’s possible epistemic domains include small finite

domains. But the semantic domain is nonetheless infinite, since it contains all of the

natural numbers.

Then, after laying down HP, Hero’s semantic domain will remain the same (since

that is the hallmark of the static view). But his epistemic domain will expand, for now

what he knows about his domain of quantification includes the fact that it is infinite.

1.3.2 A toy model for the static view
It will be helpful to explain the distinction between the two views in terms of toy models.

These will be, roughly, informal model-theoretic characterisations of the process which

Hero goes through in each case.

In the static case, the picture is more or less as described in 1.2.3, when describing

what a model of an abstraction principle is. There is one fixed domain, D, and this is

what Hero’s first-order quantifiers range over. There will also be a domain, perhaps

related to D, over which Hero’s second-order quantifiers range. Call thisD. (In the case

of the standard semantics of second-order logic, this will be P(D)). We might also

consider Hero’s epistemic domain as a subset of D, say DE .

to assume that a domain of quantification is a single object, such as a set (cf. Cartwright, 1994). For this reason,

it is important that my use of this singular terminology is not read as being committed to this ‘all-in-one’ view.

Where there is a possibility that this would make a real difference, ‘D’ can be read as a disguised plural term.

Instead of the quantifiers ranging over a single object, D, they may range over some objects, the Ds.
19This is not to deny that understanding a domain is not itself at least partially an epistemic notion.

Presumably an understanding of a domain involves at least some knowledge about the domain, perhaps, for

example, what kinds of thing lie in the domain and so on. As such the distinction is not quite one between

something epistemic and something non-epistemic, but rather between one kind of knowledge about a domain

and another kind of knowledge about that domain.
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The abstraction principle will then describe a function § ∶ D→ D which will serve

to provide names for various objects in D, namely the abstracts. Moreover, since it is

assumed that Hero started off with no knowledge of the abstracts, the image of § will lie

outside of DE .

Information about this function and the corresponding abstracts (as given by the

abstraction principle) can then be used to deduce information about the domain D.
This new information will result in a wider epistemic domain, D′

E , which will include

the abstracts. The picture which emerges will be something like that illustrated in figure

1.1.

Figure 1.1: The static view

D

D′
E

DE

D

§

Now, the information about D that results from the abstraction principle could be

deduced from the point of view of the object language, as in 1.2.2 and 1.2.4. But it can

also potentially be illuminating to view the situation ‘from the outside’ as it were, in the

context of the toy model itself. We can do this by considering a property of abstraction

principles which Fine (2002) calls inflation.
Consider HP, and a domain D which has cardinality κ. Suppose also that the second-

order domain is just that of the standard semantics, so thatD = P(D). The equivalence

relation of equinumerosity will partitionD into κ + 1 equivalence classes.20 But since

the function denoted by N must map equivalent subsets of D onto the same element of

D, we must then have that κ + 1 ≤ κ.
Since, for finite κ, κ < κ + 1, HP would require in such a circumstance that there be

more numbers than there are objects; it can be said to inflate on finite domains. But

since a core part of the Fregean view is that numbers are objects, this can not be the

case. By contrast, there is no conflict in the infinite case, since for infinite cardinalities κ,
κ + 1 = κ. Hence, if HP is true, then the original domain must be infinite.

A similar picture can be given to explain the problems with BLV. In this case, the

equivalence relation will partition the domain into 2κ partitions (i.e. one for every

subset of D). Since, by Cantor’s Theorem, κ < 2κ for any κ, BLV will inflate on any

20Why? There will be subsets of D with every cardinality between 0 (e.g. the empty set), and κ (e.g. D
itself). There will be κ + 1 such cardinalities.
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domain, and must therefore be declared unacceptable. We thus have something like a

model-theoretic explanation of Russell’s paradox.21

1.3.3 The expansionist view
Whereas on the static view it is only Hero’s epistemic domain which expands with the

laying down of an abstraction principle, on the expansionist view the semantic domain

is also permitted to expand. So, before laying down an abstraction principle, Hero’s

quantifiers range over some domain, and after laying down the abstraction principle,

they may range over a wider domain.

Again, a kind of toy model can be described. We will have a starting domain, D1,

with associated second-order domainD1. Now, instead of the abstraction operator being

amappingD1 → D1, as on the static approach, it will be amappingD1 → D2, whereD2 ⊇

D1 is the expanded domain. Thus, on this picture, Hero uses the abstraction principle,

not to gain knowledge about the original domain D1, but to gain an understanding of

the wider domain of quantification D2.

Typically, the relation on the right hand side of an abstraction principle will involve

quantification, and hence the application of the abstraction principle will depend upon

the range of the quantifiers, i.e. on D1. So, the abstraction principle could be applied

again, this time with the quantifiers ranging over D2 (and perhaps with the second-order

quantifiers ranging over an associated second-order domain,D2). Then the abstraction

operator will be a mappingD2 → D3, and so on. The emerging picture will be something

like that illustrated in figure 1.2.

Figure 1.2: The expansionist picture
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D3

. . .

. . .

§ §
§

This picture, it should be noted, is still compatible with the domain being fixed, as in

the static case. For there is nothing to say that the various D is are not in fact all identical,

so that D1 = D2 = . . ..

21There are reasons, however, to suspect that this may not be as explanatory as it seems. Russell’s paradox

arises whenever we have full impredicative comprehension. But impredicative comprehension is perfectly

compatible with a second-order domain which falls well short of the full power set of the first-order domain,

say, the (countable) set of all and only definable subsets of D. In this case, Russell’s paradox is still present, but

inflation will do nothing to explain its presence.

Another way in which inflation may fail to be a satisfactory as an explanation of Russell’s paradox concerns

features of the toy model outlook, and, in particular, the fact that this treats domains as sets, and thus as having
a determinate cardinality. If it could be claimed that domains only have a size in some indeterminate manner

(say, by having lower bounds to their cardinality, but not an upper bound), then the notion of inflation may

not apply.
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But, as I shall argue for in more detail in chapter 5, this does not mean that there

is little or no formal difference between the two views.22 The reason is that, although

the view is compatible with D1 = D2 = . . ., it does not permit us to assume that this is
the case. This will restrict certain methods of proof, which are essential to the standard

proof of the Dedekind–Peano axioms from HP. But, as I will show in chapter 7, this will

also allow the blocking of contradictions.

The two views are also different when we consider inflation. Consider again HP over

a domain D1 with cardinality κ. Again, ≈ will partitionD1 into κ + 1 equivalence classes.

But this time, N will map the equivalence classes to a possibly expanded D2, rather

than to D1. Hence, we no longer have the requirement that κ + 1 ≤ κ, but merely that

κ + 1 ≤ ∣D2∣. This is not a restriction on the size of D1, but rather a restriction on how it

can expand; if D1 is finite, then it must be the case that D1 ≠ D2. I.e. the expansion is a

genuine (one might say, ‘proper’) expansion.

Similarly, in the case of BLV, inflation is not such a stumbling block. In this case,

we will have the restriction that 2κ ≤ ∣D2∣. This is not a contradiction; it is simply a

proclamation that whatever the cardinality of a domain, an application of BLV will

require it to expand.

Nothing I have said here should be decisive concerning the differences between

these two approaches. For one thing, these are just toy models to give a rough idea

of the differences between the two views. For another, far more detail needs to be

given, especially about the expansionist view: What does the view look like in the object

language? Does it really avoid Russell’s Paradox, and if so, how? What is the appropriate

metaphysical picture to go along rather unclear concept of ‘domain expansion’? And so

on. I shall postpone giving such further details until later in the thesis (chapters 5–8), in

which I shall defend the expansionist position.

Before then, in the next few chapters, I will set out in more detail how I see the

static view, and will push what I see as some of the most major problems with it. In the

next chapter, I will argue that the background logic of static abstraction has a certain

feature—that it is a negative free logic—and connect this feature with the staticness of the

domain. This will also have relevance to certain kinds of restricted abstraction principles.

Then, in chapters 3–4, I will be concerned with the bad company problem for static

abstraction.

22This is in contrast with the attitude that Fine appears to take in his distinction between standard and

creative definitions. For in his discussion of the distinction, he does not mention at all any difference that may

occur in the technical part of the abstractionist programme as a consequence of conceiving of abstraction

principles in one way rather than another. Rather, his main concern seems to be with the philosophical

consequences of each view (and, in particular, the relation to the context principle).



Chapter 2

Abstraction and free logic

This chapter concerns a feature of the background logic of abstraction (or, at least, a

feature that I claim that it should have) which has received some, but not much, attention

in the literature. That feature is that the background logic should be a free logic. In
section 2.1, I shall say a little about what a free logic is and the difference between a

couple of ways of conceiving of it (in particular, between negative and positive free logic).
In section 2.2, I shall argue that neo-Fregeans require a free logic, and, in particular, a

negative free logic. Moreover, I shall argue that the use of such a logic is justified, given

both the context principle and the assumption of a fixed domain. Finally, in section 2.3

I shall discuss the applications of free logic to a particular kind of restricted abstraction

principle. The result will be a way of restricting abstraction principles which has—as far

as I know—not yet been considered.

2.1 Free logic

2.1.1 Existential presuppositions and quantifier rules
A free logic is one inwhich it is not assumed that every termof the language refers. So, one

may have a language which features apparent empty names, such as ‘Vulcan’ or ‘Pegasus’,

or that admits possibly empty definite descriptions as terms, without eliminating them in

the usual Russellian way (although in free logics with definite descriptions, the Russellian

contextual definition of definite descriptions can usually be derived as theorems). This

goes too for other complex singular terms, and—especially importantly for the present

purposes—functional expressions of the form f (a) (with a special case being abstract

terms).

That every term refers in a classical, non-free logic is a simple consequence of the ∀

elimination rule and ∃ introduction rule (which are interderivable given an equivalence

between ∀xϕ and ¬∃x¬ϕ). These rules are:

∀xϕ(x)
(∀-E)

ϕ(t)
ϕ(t)

(∃-I)
∃xϕ(x)

19
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So, for example, given the platitude ‘everything exists’ (∀x∃y(x = y)), we can infer

⌜t exists⌝ for any term t, regardless of whether t succeeds in referring or not.

This requirement can also be seen in the usual model theoretic semantics; an in-

terpretation function is required that assigns a referent in the domain to any constant

in the language. In addition, every functional term in the language is assigned a total
function on the domain, so that every functional term of the form ‘ f (a)’ receives a
referent.

Free logics avoid the presupposition that every term refers by modifying the quanti-

fier rules. The (∀-E) and (∃-I) rules are weakened by requiring an additional premise that

the terms involved refer, that is, that for a term t, ∃x(x = t). This existence statement I

will abbreviate as E!t. The resulting rules are:

∀xϕ(x) E!t
(∀-E)

ϕ(t)
ϕ(t) E!t

(∃-I)
∃xϕ(x)

The (∀-I) and (∃-E) rules are correspondingly strengthened—both allow the dis-

charge of an additional assumption:

E!t
⋮

ϕ(t)
(∀-I)

∀xϕ(x)
∃xϕ(x)

ϕ(t) E!t
⋮
ψ

(∃-E) ψ

2.1.2 Atomic formulas
This modification of the quantifier rules is common to all approaches to free logic. But

there are different attitudes that one can take towards the truth of unquantified sentences

involving non-referential terms and, in particular, the truth-values of atomic sentences
involving non-referential terms. A particularly important special case of this will be

statements of identity.

Negative free logics hold that all atomic sentences which feature a non-referential

singular term are false. In particular, in a negative free logic, even ⌜t = t⌝ will be false
if t fails to refer. Positive free logics hold that at least some atomic sentences featuring

non-referential singular terms—perhaps, e.g. ‘Pegasus flies’—are true. In particular,

they hold that ⌜t = t⌝ holds for any term whatsoever, regardless of whether t refers or
not.1

This difference will manifest itself in differences in the rules for identity, and in the

existence of a supplementary rule for negative free logic.

In a positive free logic, since ⌜t = t⌝ will hold for any term, we have the following,

which could be taken as an introduction rule for identity:

(=-I+) t = t
1There are also neutral free logics, according to which sentences involving non-referential terms are

truth-valueless. I shall not be considering these. For the present purposes, they will come out much the same

as negative free logic, since they will allow an inference from an atomic formula featuring a term t to the

existence of a referent of t.
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The corresponding elimination rule will be Leibniz’s Law:

s = t ϕ(s)
(=-E)

ϕ(t)
There is a further question as to when ⌜s = t⌝ is true if s and t are distinct non-referring
terms. The simplest approach is to take all such sentences as true. But an alternative

might be to judge this as true if s and t have the same sense, say, and false otherwise.

But, for my purposes, not much hangs on how this choice is made; the only important

feature of positive free logic for the present purposes is that identity statements may in

some cases be true when the ingredient terms do not refer.

In a negative free logic, ⌜t = t⌝ will only be true when t refers. As such (=-I) must be

restricted in a similar way to the quantifier rules:

∃x(x = t)
(=-I−) t = t

But, since an atomic formula can be true only if all of the component terms refer, we

will have also have the following rule:

A(t) (A atomic)
(E!-I)

∃x(x = t)
This raises the question of just what should count as an atomic formula. In the case of

a first-order language, this is a simple question; for each non-logical n-ary relation R,
Rx1 . . . xn will be an atomic formula, and x = y will be an atomic formula. In the case

of the second-order language that is under consideration, however, there are a couple

of issues that may arise. Firstly, should Fx, where F is second-order variable, count as
an atomic formula? Secondly, if we have lambda abstraction in the language, should

(λxϕ(x))y count as an atomic formula? These two questions intersect, with the answer

to one of them putting constraints on the answer to the other. It will be fine, however, to

postpone this question. For the present purposes, the only atomic formula which will

be under consideration will be identity.

It should be noted that, in either positive or negative free logic, a formula which

behaves in the same way as the identity of the other logic can be defined. So, from a

positive free logic, one can define:

(2.1) s =− t iff ∃x(x = s ∧ x = t)

and in a negative free logic:

(2.2) s =+ t iff ∀x(x = s↔ x = t),

provided that one is happy with kind of positive free logic in which ⌜s = t⌝ is true when
neither s nor t refers.

2.2 Free logic and abstractionism

The appropriate background logic for abstraction principles, I claim, is a free logic.

Moreover, it is a negative free logic (at least, in the case of static abstraction). There are

two main reasons for this. Firstly, a non-free logic risks begging the question of the

existence of abstracts. Secondly, there are abstraction operators for which it is natural to

suppose that not every abstract term formed from them refers.
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2.2.1 Abstraction and existence assumptions
First, it should be noted that one of the aims of abstractionism is to argue for the

existence of numbers and other abstract objects. But, if the background logic is non-free,

this would just be an assumption. Hence, the position would simply beg the question.

Moreover, such an assumption does not appear to be required; it seems that we can argue

directly to the existence of numbers from HP. Recall the reasoning by which somebody

like Hero is supposed to deduce the existence of numbers. It goes as follows:

(i) F ≈ F (logic)

(ii) NF = NF (HP)

(iii) ∃x(x = NF) (∃ introduction)

(iv) ∀F∃x(x = NF) (second-order ∀ introduction)

This proof is supposed to make a substantive use of HP in step (ii). But, in a non-free

logic, the conclusion is a trivial logical truth, since ‘NF ’ is bound to refer. For the proof

to be of interest, there must be the possibility of the abstract terms failing to refer. And

for this to be the case, the logic has to be free.

Moreover, for the proof to be valid, the logic in question must be a negative free logic.
For in a positive free logic, (iii) does not follow from (ii); in order to apply existential

introduction to a formula containing ‘NF ’, onemust already have (iii) as a supplementary

premise. This is what prevents a positive free logic from collapsing to a non-free logic,

since (ii) can be derived in positive free logic without the use of HP (indeed, it is a logical

axiom). Without the claim that number terms refer being derivable from HP, so too

would the Dedekind–Peano axioms be underivable. HP would need to be supplemented

by what would be, in effect, explicit existence assumptions.

In a negative free logic, however, these issues do not occur. The step from (ii) to (iii)

does not proceed by means of (∃-I) which would, as in the case of the positive free logic,

require (iii) already as a premise. Instead, it can make use of the (E!-I) rule, since (ii) is
an atomic sentence.

So then, for the purpose of abstractionism, a negative free logic is required. A non-

free logic opens the position up to accusations of question begging, and in a positive free

logic, it is impossible to prove that the number terms refer, and thus the central technical

plank of the abstractionist programme—Frege’s Theorem—can not be derived.2

Indeed, when the matter arises, neo-logicists appear to claim that the background

logic for abstraction principles will be a negative free logic. For example, Hale andWright

(2009a, p.464) claim, in the context of a situation where we ‘require, for universal

instantiation, a supplementary premise asserting the existence of a referent for the

instantial term, with a similar restriction on existential generalisation’ (i.e., in a free

logic), that ‘identity-contexts are so understood that they cannot be true unless their

terms have reference’ (i.e. the logic is a negative free logic).

That it is a negative free logic that is both required and desired by neo-logicists is

thus nigh on indisputable. The question of whether the use of a negative rather than

positive free logic is justified is, however, another matter. Several commentators have

2It might be thought that there could be some argument other than that above which allows one to infer

from HP that number terms refer, and that such an argument is valid in a positive free logic. A simple model

theoretic argument can show that this is not the case; in a positive free logic, HP will have models with an

empty domain, and in which no abstract terms is supplied with a denotation.
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written things which suggest that they see the appropriate free logic as being a positive

free logic, or at least, something similar to a positive free logic. So, for example Potter

and Smiley (2001) write:

Allowing for [empty terms] brings with it the realisation that there are two

variant readings of identity. There is a strong reading under which a = b is

false if either a or b or both fail to refer. But there is also a weak reading

under which a = b is false when one term refers and the other doesn’t, but is

true—one might say ‘vacuously true’—when both terms fail to refer. . . .The

weak reading comes into its own whenever non-existence is a serious issue.

. . .Hale [in Hale (1999)] has taken for granted the strong reading of identity.

(p.336)

Here, the strong and weak readings of identity clearly coincide with a negative and a

positive free logic, respectively. Similarly, Shapiro and Weir (2000) claim that a negative

free logic begs the question in much the same as a non-free logic does. They write:

[I]f [identity] does have existential import, then Frege’s Theorem holds

but the interpretation of the required abstraction principles . . .will beg the

question. (p. 188).

Finally, a similar claim is made by Rumfitt (2003, pp. 208–9). On HP he writes:

Within a free logic, in such a context it bifurcates in an interesting way.

On the one side, we have that part of Hume’s principle which gives the

criterion of identity for numbers when a number belongs to a concept, viz.:

(HP minus) For any concepts X and Y , if there is such an object

as the number of Xs, or the number of Ys, then the number of

Xs is identical with the number of Ys iff there are just as many

Xs as Ys.

On the other side, we have the part of Hume’s principle that tells us when

there is such a thing as the number of Xs:

(Universal countability) For any concept X, there is such an

object as the number of Xs.

It is not entirely clear whether this is a claim that a positive free logic is required; after

all, in a positive free logic, there would be no need to restrict (HP minus) to strip it of

existential import, since it would already lack existential import. But Rumfitt’s claim is

similar to the claim that a positive free logic is required, in that he requires that there be

an additional existence assumption.

So, what can be said in defence of negative free logic as a background logic for

abstraction? Hale (2001a) writes:

It would be . . .wrong to suppose that the truth of instances of the left hand

side [of an abstraction principle] is simply a matter of stipulation, if by

that it is meant that their truth (and hence the existence of referents for

their ingredient terms) is stipulated. All that is stipulated is the truth of a

(universally quantified) biconditional. In general, this will leave entirely

open the question whether terms of the type provided for by the left hand
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side have reference or not—and it will do so, regardless of whether the iden-

tity predicate is understood as signifying a strong or rather weak identity

relation in Potter and Smiley’s sense. There is therefore no good ground,

for all we have seen so far, to insist that if an abstraction principle is to be

the subject of legitimate stipulation, it must be existentially bowdlerised by

deploying the weak identity relation in the way Potter and Smiley suggest.

(p. 347)

And, considering the proposal that the identity on the left hand side of HP should be

taken as in positive free logic, Hale and Wright (2003) write:

The neo-Fregean will reply that it is not of the truth-conditions of identity

contexts of that etiolated kind that he is proposing Hume’s Principle as

a stipulative explanation, but of contexts whose being true precisely will

license straight-forward existential generalisation.(p. 260 n. 9).

Whereas in Hale and Wright (2009a), they simply write that

it is sometimes proposed that ‘t = t’ is to be understood so as to be true

even if its ingredient term lacks reference. But we are under no pressure to

accept such a view. (p. 464.n 15)

The thought seems to be that, with a choice between two readings of identity, the

abstractionist is free to choose which one they will be stipulating the truth conditions of

(by means of an abstraction principle). This choice is permissible since in neither case

will the identity statement itself be stipulated—to do that in the case of the identity of

negative free logic would clearly be question begging—but rather it is only the truth-

conditionswhich are stipulated. Whether these obtain or not is not amatter of stipulation.

But this can not be quite the whole story. What reason is there that we can choose

freely which of the identity statements we stipulate the truth conditions of? It seems

that there are two options. One is that there is something special about identity contexts
which means that they are suitable to be the contexts for which truth conditions may be

stipulated. Or, there is not, and we are free to explain the meaning of a new singular

term t (or range of singular terms, via an abstraction operator) by stipulating the truth

conditions of whichever contexts involving t that we choose. In the first of these cases,

an argument would then be required as to why it is the identity of negative, rather than

positive, free logic which has a special status. But in the second case, since there is no

longer anything special about identity, it seems that the abstractionist may be burdened

with having to explain a host of generalised abstraction principles. These would be

principles of the form:

(2.3) ∀α∀β[ψ(§α, §β) ↔ ϕ(α, β)]

where ϕ is a formula which does not make use of the § abstraction operator. Normal

abstraction principles such as HP are clearly instances of this, where ψ(§α, §β) is just
the identity ‘§α = §β’.

If the second of these options is taken, then a response may be possible by accepting

that certain generalised abstraction principles may be able to serve the same purpose as

HP in implicitly defining new concepts. Obviously it would be undesirable if a conse-

quence were that it would be possible to make use of any such generalised abstraction
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principle, with any formula featuring on the left hand side. But this may be resisted; there

must be some restriction on what abstraction principles proper are viable as implicit

definitions, so as to rule out, for example, BLV (see chapters 3 and 4). These restrictions

will no doubt be applicable to generalised abstraction principles as well, and would be

expected to rule out those which may be most problematic.

However, such a response—which still leaves the abstractionist with any difficulties

arising from generalised abstraction principles—may not be necessary. Instead, a re-

sponse can be given more in line with the first option, by arguing directly in favour of

negative free logic. That is, by arguing that genuine identity contexts permit existential

generalisation. Then it will be the case that there is not really a choice between a strong

and a weak reading of identity. There is instead simply a choice between identity (which

will permit existential generalisation), and the complex formula as given in (2.2). Al-

though this latter formula may behave in some ways like identity, it is not in fact identity,

so may simply be disregarded.

Such a response requires two components. Firstly, something should be said in

favour of the view that there is something special about identity which makes it suitable

for the left hand side of abstraction principles. Then, an argument is needed to the

effect that genuine identity contexts are as negative free logic says that they are. This

latter argument can be given, I believe, by appealing to two components of the static

abstractionist view, namely the context principle, and the assumption that the domain

of quantification remains fixed.

I will only be brief on the first component of this argument, concerning why we

should only take identity contexts as being suitable to appear on the left hand side of

an abstraction principle. Strictly speaking, all that is required is that identity contexts

are suitable, not the stronger claim that only such contexts are suitable. And, if ab-

stractionism is to go anywhere at all, the first of these can not be denied. To deny that

identity contexts are suitable for use in this way is simply to reject abstraction principles

altogether, well before it comes to determining the correct background logic for them.

But something could perhaps also be said for the stronger claim. There are a number

of reasons that one may think that it is identity contexts in particular which may play

such a role. So, for example, we may be following Frege in theGrundlagen in demanding

that ‘if we are to use the symbol a to signify an object, we must have a criterion for

deciding in all cases whether b is the same as a’ (p. 73). Or, one may think, like Quine

(1950), that criteria of identity are essential for fixing reference.

So, given the assumption that an abstraction principle may be used to give the

truth conditions of an identity statement, what can be said about the second part of the

argument? How might a negative free logic be defended directly? One way could be

as follows (c.f. Burge, 1975): an atomic formula ⌜Pt⌝ serves to ascribe a property (that
signified by the predicate P) to an object (that denoted by the singular term t). So, if
t fails to refer, the atomic formula must be false; there is no object to which it can be

ascribing a property. The same goes for relation symbols more generally. An atomic

sentence ⌜Pt1 . . . tn⌝ asserts that a particular relation (that signified by P) holds between
certain objects (those denoted by t1 , . . . , tn). Hence the sentence can not be true if the

terms involved do not refer. To put it another way: an atomic formula is true partly

because the singular terms in it refer. Hence the characteristic rule of a negative free

logic (E!-I) must be valid.
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However, by making use of the context principle, an alternative route to the (E!-I)
rule is available which turns the aforementioned explanation of the truth of atomic

sentences on its head. Roughly: it is not because the terms involved in an atomic sentence

refer that that sentence is true, but rather the other way around. Singular terms refer

because they appear in true atomic sentences; to appear in a true atomic sentence just is

what it is for a singular term to refer.

But how does this follow from the context principle? What the context principle

tells us is that claims about the semantics (e.g. reference) of singular terms are to be

explained in terms of claims about the semantics (e.g. truth-value) of whole sentences.

Similarly, questions about the semantics of singular terms are to be answered in terms

of the semantics of whole sentences. Thus, in asking if and why a singular term t refers,
the correct answer will be of the form ‘because this sentence/these sentences containing

t is/are true’ (or something similar). This is essentially the part of the context principle

which Wright (1983) calls the syntactic priority thesis. It is that ‘possession of reference

is imposed on a singular term by its occurrence in true statements of an appropriate

type’ (p.53).

There remains then the question of what kind of sentence is required (for clearly, it

can not be the truth of any sentence involving t which suffices). A natural answer to

this question, and one which Hale and Wright appear to be committed to,3 is that it is

the most basic kind of sentences—atomic sentences—which play such a role.4

But there is another element which is required in order to defend the (E!-I) rule,
which is supplied by the assumption of a fixed domain. The need for this assumption

can be revealed by examining more closely the (E!-I) rule.
What the conclusion of this rule—∃x(x = t)—says is that the term t refers to an

object in the range of the quantifier ∃. But there is prima facie space for there to be

gap between a term referring, and it referring to an object in a particular domain of

quantification. Of course, this gap may be closed if, for example, it is claimed that

there is an absolutely unrestricted domain of quantification, as the proponent of static

abstraction proposes. But, since this assumption will be questioned in the latter part of

this thesis, it is important to note that the assumption is needed.

Or, to put things another way, suppose that an abstraction principle allows us to

prove that §α = §α, and so that ‘§α’ refers. Now, what object this term refers to will

depend partly on the first-order domain of quantification which was in play in the

context in which the abstraction principle was laid down. This is because an abstraction

principle will (typically) involve first-order quantification on its right hand side. So, the

3See, for example, Hale and Wright (2009b, p.197).

4There is of course room to reject this. Another plausible alternative might be that sentences of the form

⌜∃x(x = t)⌝ play that role. Thus the issue of whether a singular term t refers should be answered in terms of

whether the sentence ⌜∃x(x = t)⌝ is true.
This would put abstractionists in a difficult position were it the case. For then, rather than having to explain

the truth of atomic sentences involving number terms, and then the truth of quantified sentences involving

those terms by means of the (E!-I) rule, the task would become to explain the truth of quantified sentences

involving number terms directly. But, since my present aim is to show how a negative free logic might be

motivated using a form of the context principle which Hale and Wright are already committed to, I will not

take this issue any further.

It is worth noting, however, that the use I make of the context principle in chapter 6 is not affected by a

similar response. For, in that chapter, I aim to justify the referentiality of abstract terms by means of directly

explaining the truth-values of quantified sentences involving them (rather than just explaining the truth value

of identity statements involving them).
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inference licensed by (E!-I) is that if an abstract term appears in an atomic sentence,

then it will refer to an object within the very same domain of quantification by which

its reference is (partly) determined. And this is, more or less, just what the assumption

of a fixed domain amounts to. Again, this might be justified by appeal to an absolutely

unrestricted domain.

These two components then provide a recipe for the justification of (E!-I): Given
an atomic formula A(t), t refers by the context principle. Then, by the assumption

that the domain is fixed, t will refer to an object which lies in the present domain of

quantification. Thus, we have the conclusion of the rule, that ∃x(x = t).

2.3 Free logic and restricted abstraction principles

In the context of an abstraction principle such as HP, the adoption of a free logic—as

long as it is a negative free logic—ultimately makes little or no difference (as Hale and

Wright are eager to point out in, e.g. Hale and Wright (2009a, p. 464)). Since, for any

term t, it can be proved from HP that E!t, the logic will behave exactly as a non-free
logic would. But there is a certain class of abstraction principles for which a negative

free logic can be put to a good use. These are restricted abstraction principles. This

useful application provides a further reason for adopting a free logic as the background

logic for abstraction.

For an abstraction principle such as HP, it is desirable that for any concept, there

is a resulting well defined abstract.5 This would be a consequence of taking arithmetic,

as Frege did, as being essentially universally applicable; no matter what we choose to

concern ourselves with, we can count it. For other abstraction operators that we may

wish to introduce, however, this is not the case. For example, we may wish to consider

the direction operator as applying not just to lines, but to any object whatsoever. In

that case, objects which are not lines would simply not have a direction associated

with them. Or, given what we know about the inconsistency of naı̈ve set theory, one

may wish to introduce a ‘set of ’ operator in such a way such that not every concept

has a corresponding set. Another use might be to take care of certain ‘degenerate’

mathematical terms—if they were to be introduced by abstraction—such as fractions

whose denominator is zero.

Since in these cases the desired outcome is that the abstraction operator denotes

what is, in effect, a (merely) partial function, free logic seems to be an appropriate

background in which to pursue such restricted abstraction principles. And indeed, I

shall argue that these kinds of restrictions can most naturally be accommodated in a

free logical setting. But before doing so, it will be useful to review a few ways in which

restricted abstraction principles have been pursued in a setting of classical non-free

logic. My concern is with restricted abstraction principles in general, but, for the sake

of concreteness, and because they are by far the most discussed in the literature, I will

only discuss restricted versions of Basic Law V. But everything I say should apply also to

5Actually, this is not quite the case even for HP. There are a number of concepts for various reasons that

we may not wish to attach a number to, such as vague concepts (e.g. ‘tall man’), non-sortal concepts (e.g.

‘red’), or perhaps indefinitely extensible concepts (e.g. ‘self-identical’) (see, e.g. Wright, 2001c, p. 207–8). The

method of restriction which I will discuss here will also apply to such as these, but I have in mind in particular

restrictions which even rule out definite, sortal concepts.
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restricted abstraction principles more generally.

2.3.1 New V
The principal aim of restricted versions of Basic Law V has been to rule out problematic

sets such as the Russell class, or a universal set. The first proposal in this direction was

by Boolos (1989) who proposed that BLV be restricted to concepts which are ‘small’.

A small concept is one which is not in a one-to-one correspondence with everything

that there is. Or, equivalently, it is a concept F such that there is not an injection from

everything that there is into F. This may be given a formal definition along similar lines

to the definition of equinumerosity:

(2.4) Small(F) df
= ¬∃R[∀x∃y∀z((Fz ∧ Rxz) ↔ z = y)]

Perhaps more notable than the specific restriction, however, is the way in which

Boolos suggests the restriction bemade. He proposes the following abstraction principle,

known as New V :

(NV) ∀F∀G[εF = εG ↔ ((Small(F) ∨ Small(G)) → ∀x(Fx ↔ Gx))]

But, of course, there is nothing specific about the restriction to smallness that makes

this possible. Wemay replace ‘Small’ with an arbitrary formula ϕ(F), where the concepts
which are not ϕ are ruled to be bad somehow (although it would be reasonable to demand

that ϕ does not contain any occurrence of ε). So, more generally, we have:

(NVϕ) ∀F∀G[εF = εG ↔ ((ϕ(F) ∨ ϕ(G)) → ∀x(Fx ↔ Gx))]

Some alternatives to smallnesswhich have been suggested are double-smallness (roughly,

smaller than some concept which is smaller than the universe) (e.g. Hale, 2000a, 2005)

and definiteness (e.g. Shapiro, 2003; Shapiro and Wright, 2006).

What is the effect of abstraction principles such as NVϕ? First, it should be noted

that it is simple to prove that the formula on the right hand side will be an equivalence

relation. As a consequence, it will be possible to prove ∀F∃y(y = εF) in exactly the

same way that it is possible to prove ∀F∃x(x = NF) from HP, and so NVϕ will be

consistent with non-free logic. So, every concept—including problematic concepts such

as a universal concept, or one which defines the Russell class—will have a corresponding

‘set’. Instead, however, all of these problematic concepts will map to the same abstract.
That is, we will be able to prove ∀F∀G(ϕ(F) ∧ ϕ(G) → εF = εG). This results in a

system which bares some resemblance to one of the precursors of free logic—the ‘chosen

object’ theory which is sometimes attributed to Frege (1948, pp.70–71) and Carnap (1947,

pp.35–6). This approach to empty singular terms first identifies a particular null object.
Then terms which would otherwise be taken to be non-denoting would be stipulated to

have the null object as their referent.

Now, NVϕ has what seem to be some undesirable (but by nomeans insurmountable)

consequences. So, for example, (assuming that a restriction rules out the same kind of

sets that, say, ZF set theory does), it identifies the set of all sets, the set of all objects

whatsoever, the set of cardinals, the set of ordinals and so on. Moreover, if we are to

define ∈ in the natural way (as in (1.4)), we will encounter further strange consequences.
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For example, writing U for {x ∶ x = x} and O for {x ∶ x is an ordinal}, we have such

consequences as U ∈ O, ∀x(x ∈ O) and so on. Even if we restrict attention to objects

which are not the null object, we get strange results, since NV permits us to form new

sets out of the null object.

As mentioned, these consequences are by no means insurmountable. Boolos deals

with them by restricting quantifiers to only those abstracts which are (a) not the null

object, and (b) are pure sets, in the sense that they have no non-sets (including the null

object) in their transitive closure. But the presence of these artifacts of the approach

and the need to avoid them in various ways at least suggests that we might look for a

more natural way of restricting abstraction principles.

2.3.2 Direct restriction
Another way of restricting abstraction principles is simply to explicitly restrict the

outermost quantifiers. So, if we continue to just consider restrictions on BLV by a

condition ϕ, we have:

(RVϕ) ∀F∀G[ϕ(F) ∧ ϕ(G) → (εF = εG ↔ ∀x(Fx ↔ Gx))]

A restriction of this form is considered by Hale (2000a).

I will not say much about this form of restriction yet. It is similar in many ways to

the method of restriction that I will propose shortly. There are a number of notable

differences between RVϕ and NVϕ which are worth pointing out at this moment. Rather

than mapping bad concepts onto the same null object, RVϕ does not say anything about
them; it does not say what objects they refer to, nor does it say that they fail to refer.

It will also transpire that it is not as powerful as NVϕ , at least in the case where ϕ is

smallness.

One objection that may be levelled against RVϕ is that, under a strict criterion of

what counts as an abstraction principle, it will not be counted as such, since it does not

have the requisite form of being a universally quantified biconditional. Of course, such

a criterion could readily be amended to permit restricted abstraction principles. But, at

the very least, refusing to count principles of the form of RVϕ as abstraction principles

proper will allow for a certain amount of simplification later on (especially in chapter 3),

since then we only need consider abstraction principles of a single form.

2.3.3 Using free logic to restrict abstraction principles
As I pointed out in my discussion of NVϕ , the right hand side of such principles is an

equivalence relation, and this is what makes it compatible with a non-free logic. In fact,

it is very often required by various writers that an abstraction principle must have an

equivalence relation on its right hand side. The reasoning for this is simple; the right

hand side is being stipulated to be equivalent to an identity, and must therefore inherit

the properties of reflexivity, symmetry and transitivity from those of identity; to do

otherwise would simply cause a contradiction.

However, in the context of a negative free logic, it is not required that the right hand

side be reflexive. An argument for its reflexivity might be given much as the following:

from the reflexivity of identity, §F = §F. So, reasoning left to right across the abstraction

principle, we have F ∼ F. Thus, by universal generalisation, ∀F(F ∼ F). But the premise
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of this argument is not a general truth in a negative free logic. §F = §F will be true

only if an additional assumption is granted that §F exists, which is just what is missing

in a free logic. Identity in a negative free logic is reflexive in one sense, namely that

∀x(x = x) holds in it. But the stronger claim that, for all terms t, ⌜t = t⌝ is true, does
not hold.

And in many of the natural cases in which we might expect abstraction operators

to behave as merely partial functions, we would also expect the abstraction relation to

be non-reflexive. This is often noted in regards to the direction equivalence. So, for

example, Wright (2001a) notes that

if the failure of parallelism between my hat and my shoe is down to the

unsuitability of of either object to be parallel to anything, then by the same

token they are not self -parellel, and DE provides no incentive to regard

either as having a direction at all. (p. 314)

And this thought transfers very naturally to the situation in which we wish to place

an explicit restriction on an abstraction principle, as we do in the case of BLV. We want

an abstraction relation ∼ such that, for ‘bad’ concepts F, F /∼ F. When the aim is to

restrict an already given abstraction principle—say BLV—to concepts which satisfy some

condition ϕ, a way of doing this is easily available. We can have, as such an abstraction

principle:

(FLVϕ) ∀F∀G[εF = εG ↔ ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx)]

It is then simple to check that, although the relation on the right hand side is transitive

and symmetric, it is not reflexive. In particular, in the case where ¬ϕ(F), the relation
will not hold between F and itself.

As a consequence, there are a couple of things that can be immediately noted. Like

RVϕ and unlike NVϕ , this does not a assign an object to non-ϕ concepts. But unlike

RVϕ , it does say something about the non-ϕ concepts, namely that they do not define

sets (the converse, that ϕ concepts do define sets, is also readily provable). That is, we

can prove the following proposition:

Proposition 2.1. FLVϕ ⊢ ∀F(ϕ(F) ↔ E!εF)

Proof. Suppose that ϕ(F). Then clearly also ϕ(F) ∧ ϕ(F) ∧ ∀x(Fx ↔ Fx). Hence, by
reasoning right to left across FLVϕ , εF = εF. Since this is an atomic formula, we may

derive E!εF by (E!-I).
For the converse, suppose E!εF. Then, by (=-I) for negative free logic, εF = εF. So,

reasoning left to right across FLVϕ , ϕ(F) as required.

In addition, in contrast to RVϕ , FLVϕ will count as an abstraction principle according

to the strict condition that it be of some specific form.

2.3.4 The relationship between the restrictions
It is possible to do better than these brief remarks concerning the differences between

the three approaches, and to map out precisely what the relationships between them are.

The comparison between RVϕ and FLVϕ is by far the simplest, so I will cover that first.
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As already mentioned, one thing that FLVϕ does which RVϕ does not do is prove

that non-ϕ concepts do not have corresponding abstracts. And, in fact, it turns out that

that is the only difference between them. In particular, we have the following theorem:

Proposition 2.2. FLVϕ ≡ [RVϕ ∧ ∀F(¬ϕ(F) → ¬E!εF)] (where ‘≡’ denotes logical
equivalence).

Proof. For the left to right direction: Assume FLVϕ . We have already shown that

∀F(¬ϕ(F) → ¬E!εF), so it remains to show RVϕ . Consider concepts F and G. If
¬ϕ(F) or ¬ϕ(G), then there is nothing to prove (RVϕ would be vacuous). So suppose

that ϕ(F) ∧ ϕ(G). The right to left direction of BLV embedded within RVϕ can then

easily be proved using the right to left direction of FLVϕ together with the assumption

that ϕ(F) ∧ ϕ(G). The left to right direction of BLV embedded within RVϕ follows

directly (eliminating unneeded conjunctions) from the left to right direction of FLVϕ .

For the right to left direction: Assume RVϕ and ∀F(¬ϕ(F) → ¬E!εF). For the left
to right direction of FLVϕ , suppose F and G are concepts such that εF = εG. By (E!-I),
we have that E!εF and E!εG, and hence by our second assumption, that ϕ(F) and ϕ(G).
We can thus apply RVϕ and so prove that ∀x(Fx ↔ Gx), which gives us the right hand

side of FLVϕ as required. For the right to left direction of FLVϕ , suppose that F and G
are concepts such that ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx). Since ϕ(F) and ϕ(G), we can
thus apply RVϕ , and deduce that εF = εG, as required.

The relationship between FLVϕ and NVϕ is not so simple. In contrast to the rela-

tionship between FLVϕ and RVϕ , there can be no simple relationship of entailment or

equivalence between any theorywhich extends FLVϕ and any theorywhich extendsNVϕ .

The reason is that the two theories are formally inconsistent. FLVϕ entails∃F∀x(x ≠ εF),
whereas NVϕ entails its negation, ∀F∃x(x = εF) (whether in the context of a non-free

logic or a negative free logic).

But this is perhaps to be expected since, in each case, the abstraction operator seems

intuitively to denote something different. In the case of FLVϕ , it is straightforwardly a

‘set of ’ operator, whereas in the case of NVϕ , the abstract terms denote a wider class of

entities—Boolos calls them subtensions—which include sets proper, the null object and

any sets formed out of the null object. To make this difference clearer, it will be helpful

to make use of a different symbol in each case. I will use ε1 for the ‘set of ’ operator of
FLVϕ , and ε2 for the ‘subtension of ’ operator of NVϕ .

Since the symbols involved in each abstraction principle intuitively have different

meanings, we might hope instead to find a relationship of interpretability between them,

by giving a definition of ε1 is terms of ε2 and vice-versa. One half of this is to some

extent fulfilled by Boolos (1989), since it is obviously an aim of his to interpret some set

theory within the theory of subtensions given by New V.

But again, things will not be quite so simple. The reason is that NVϕ is strictly

stronger than FLVϕ . Consider just the case where ϕ is smallness. Boolos shows that in

this case, NVϕ interprets second-order arithmetic, and so only has infinite models. By

contrast, FLVϕ by itself will have finite models. We can, for example, give a model of

FLVϕ with a single element in its domain as follows: LetM= ⟨D, εM⟩, where D = {a}
and εM ∶ P(D) → D is given by letting εM(∅) = a and εM({a}) be undefined. Then

it is simple to see that this satisfies FLVϕ ; it assigns a ‘set’ to the only small concept, and
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assigns none to the only large concept. This shows that FLVϕ cannot interpret NVϕ , for

in that case it too would only have infinite models.

But a suitable strengthening of FLVϕ can be achieved—so as to achieve a mutual

interpretability result—by noting how it is that NVϕ gets its strength. A crucial step in

Boolos’ derivation of some set-theoretic axioms from (NV) is a kind of bootstrapping

process which makes essential use of the null object. Firstly, since there must be at

least one abstract (since every abstract term refers), the empty concept λx(x ≠ x) is
guaranteed to be small. Moreover, the universal concept λx(x = x) is guaranteed to be

large and hence their respective subtensions must be distinct. So, there must be at least

two objects, and thus singleton concepts (e.g. λx(x = ελx(x ≠ x))) will be small. Then

we can infer the existence of at least three objects and so on.

Without a null object, however, this kind of reasoning will not get off the ground

in the case FLVϕ . But, all that is required instead is merely that there be at least one

urelement, that is, an object which is not itself a set.6 So, we can add to FLVϕ a sentence

which states just that. It is also convenient to give such an urelement a name. So,

consider an expansion of the language of FLVϕ by an individual constant c, and let ψ be

the sentence ∃x(x = c ∧ ∀F(x ≠ ε1F)). Then, we have the following relationship:

Theorem 2.3. NVϕ and FLVϕ ∧ψ are mutually interpretable.

In order to show this result, it is necessary to provide translations between the two

languages, by defining the language from one abstraction principle in the language of the

other. Then, it will need to be proved that each of NVϕ and FLVϕ proves the translation

of the other.

First, consider interpreting NVϕ in FLVϕ . In order to do this, we will need to give a

definition of ε2 in terms of ε1 and c. This definition will be a formula θ(F , x) such that

FLVϕ + ψ ⊢ ∀F∃!xθ(F , x)

If we write LNV for the language of NVϕ (i.e. with sole non-logical symbol ε2), and
LFLV for the language of FLVϕ (i.e. with non-logical symbols ε2 and c), this definition
will then induce a translation τ ∶ LNV → LFLV , by treating ε2 as a definite description
( ιx)(θ(F , x)).7

A suitable definition is the following:

(2.5) θ(F , x) df
= (ϕ(F) ∧ x = εF) ∨ (¬ϕ(F) ∧ x = c)

We can then prove the required uniqueness and existence claim:

Lemma 2.4. FLVϕ + ψ ⊢ ∀F∃!xθ(F , x)

Proof. For existence: if ϕ(F), then E!εF (by Proposition 2.1) and θ(x , εF) (by the

definition of θ). If ¬ϕ(F), then θ(F , c) (by the definition of θ), and E!c (by ψ). In either

case, we thus have that ∃xθ(F , x).
For uniqueness, suppose θ(F , x) and θ(F , y). If ϕ(F), then x = εF = y, so x = y. If

¬ϕ(F), then x = c = y, so x = y.

6It would also do to assume that there are at least two objects of any kind.

7Usually, an interpretation will also feature a domain restriction. But a domain restriction will not be

required to prove the result.
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Thenwe need to show that the formula resulting from translating NVϕ can be proved

using FLVϕ and ψ:

Lemma 2.5. FLVϕ + ψ ⊢ τ(NVϕ)

Proof. First note that:

τ(NVϕ) = τ(∀F∀G(ε2F = ε2G ↔ (ϕ(F) ∨ ϕ(G) → ∀x(Fx ↔ Gx)))
= ∀F∀G(τ(ε2F = ε2G) ↔ (ϕ(F) ∨ ϕ(G) → ∀x(Fx ↔ Gx)))

= ∀F∀G[∀x∀y(θ(F , x) ∧ θ(G , y) → x = y) ↔
(ϕ(F) ∨ ϕ(G)) → ∀x(Fx ↔ Gx)]

Now, we can prove the left to right direction of τ(NVϕ ) as follows: Assume

∀x∀y(θ(F , x) ∧ θ(G , y) → x = y) with the aim of showing that ϕ(F) ∨ ϕ(G) →
∀x(Fx ↔ Gx). So, suppose that ϕ(F) ∨ ϕ(G). Without loss of generality, suppose that

ϕ(F). Then, by the definition of θ, θ(F , ε1F). But then ϕ(G) and hence θ(G , ε1G); for
if not, then θ(G , c), and so ε1F = c, contradicting ψ. Hence ε1F = ε1G. So, by the left to

right direction of FLVϕ , we have ∀x(Fx ↔ Gx), and so ϕ(F)∨ϕ(G) → ∀x(Fx ↔ Gx)
as required.

For the right to left direction, assume that ϕ(F) ∨ ϕ(G) → ∀x(Fx ↔ Gx), with
the aim of showing that ∀x∀y(θ(F , x) ∧ θ(G , y) → x = y). So, consider arbitrary x
and y such that θ(F , x) and θ(G , y). If either ϕ(F) or ϕ(G), then, by our assumption,

∀x(Fx ↔ Gx), and thus also ϕ(G) (assuming that ϕ is stated in a purely extensional

language, so that it is a congruence with respect to coextensiveness). Thus, by the

definition of θ, x = ε1F and y = ε1G. But from the right to left direction of FLVϕ , we

have ε1F = ε1G, and hence x = y as required.
Suppose instead that both ¬ϕ(F) and ¬ϕ(G). Then, by the definition of θ, x = c

and y = c, and thus x = y as required.

We can also prove corresponding lemmas for the converse direction. What will be

required is a formula θ(F , x) which defines ε1. But, since ε1 is merely a partial function,

it will not be required that it satisfies both existence and uniqueness conditions, but

merely uniqueness conditions. That is, it is required that:

NVϕ ⊢ ∀F∀x∀y(θ(F , x) ∧ θ(F , y) → x = y)

In addition, it will be required to provide a definition for the constant c. This will be a

formula γ(x) for which
NVϕ ⊢ ∃!xγ(x)

As in the previous case, these definitions will induce a translation τ ∶ LFLV → LNV by

treating ε1F and c as definite descriptions ( ιx)(θ(F , x)) and ( ιx)(γ(x)).
Suitable definitions are then the following:

θ(F , x) df
= ϕ(F) ∧ x = ε2F(2.6)

γ(x) df
= ∃F(¬ϕ(F) ∧ x = ε2F)(2.7)

We can then prove the appropriate properties for θ and γ:
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Lemma 2.6.

NVϕ ⊢ ∀F∀x∀y(θ(F , x) ∧ θ(F , y) → x = y)
NVϕ ⊢ ∃x(γ(x) ∧ ∀y(γ(y) → y = x))

Proof. For the first, suppose that θ(F , x) and θ(F , y). Then ϕ(F), x = ε2F and y = ε2F.
Thus x = y as required.

For the second: To show existence, let F be the Russell concept . Then, on pain of

contradiction, ¬ϕ(F). Since we have ∃x(x = ε2F), we thus have ∃x(γ(x)) as required.
To show uniqueness, suppose that γ(x) and γ(y), so that there are F and G such that

¬ϕ(F), ¬ϕ(G), x = ε2F and y = ε2G. But, by NVϕ , we can deduce ε2F = ε2G, and thus

x = y as required.

It remains again to show that the resulting translation results in an interpretation.

That is, we need to show the following:

Lemma 2.7.
NVϕ ⊢ τ(FLVϕ) ∧ τ(ψ)

Proof. First, note that:

τ(FLVϕ) = τ(∀F∀G[εF = εG ↔ ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx)])
= ∀F∀G[τ(εF = εG) ↔ ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx)]

= ∀F∀G[∀x∀y(ϕ(F) ∧ x = ε2F ∧ ϕ(G) ∧ y = ε2G → x = y) ↔
ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx)]

≡ ∀F∀G[(ϕ(F) ∧ ϕ(G) ∧ ε2F = ε2G) ∧ y = ε1G → x = y) ↔
ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx)]

and that:

τ(ψ) = τ(∃x(x = c ∧ ∀F(x ≠ ε1F)))
= ∃x(γ(x) ∧ ∀F(¬θ(F , x)))
= ∃x(∃F(¬ϕ(F) ∧ x = ε2F) ∧ ∀F(¬ϕ(F) → x = ε2F))

Then we can prove the lemma. First, consider proving τ(ψ) from NVϕ . Since from

NVϕ it follows that all non-ϕ concepts have the same subtension, the two conjuncts of

τ(ψ) are equivalent, so we just need to show that ∃x∃F(¬ϕ(F)∧ x = ε2F). But we have
already shown just that, in lemma 2.6.

Now consider τ(FLVϕ). First, we will show the left to right direction. Consider

arbitrary concepts F and G and assume that ϕ(F) ∧ ϕ(G) ∧ ε2F = ε2G, with the aim

of showing ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx). The first two conjuncts obviously follow

immediately and trivially. Since ε2F = ε2G, we may reason left to right across NVϕ to

obtain ϕ(F) ∨ ϕ(G) → ∀x(Fx ↔ Gx). But since we have ϕ(F) and ϕ(G), a simple

application ofmodus ponens gives us the required result that ∀x(Fx ↔ Gx).
For the right to left direction: consider arbitrary concepts F and G and assume that

ϕ(F) ∧ ϕ(G) ∧ ∀x(Fx ↔ Gx), with the aim of showing ϕ(G) ∧ ϕ(G) ∧ ε2F = ε2G.
Again, the first two conjuncts are trivial. Since ∀x(Fx ↔ Gx), we have ϕ(F) ∨ ϕ(G) →
∀x(Fx ↔ Gx), so we may reason right to left across NVϕ to obtain ε2F = ε2G as

required.
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It simply remains to bring lemmas 2.4–2.7 together in a proof of the theorem:

Proof (of theorem 2.3). What is needed is that for any ϕ in LNV , FLVϕ +ψ ⊢ τ(ϕ), and
similarly for the converse direction. This will follow from lemmas 2.5 and 2.7, together

with the following general claim about translations of the appropriate sort:

If ϕ ⊢ ψ then τ(ϕ) ⊢ τ(ψ)

But this is well know to hold in the case of definitions of the sort given by τ, which make

use of formulas with appropriate existence and uniqueness properties (the proof is a

fairly simple but tedious one by induction on formula complexity). And this is just what

lemmas 2.4 and 2.6 show.

2.4 The implications of these restrictions

What conclusions can we draw from the foregoing results? For one thing, they show

that this way of restricting abstraction principles will never get us more in the way of

mathematics derivable from abstraction principles, since in every case, the New V-style

restriction will be stronger. What then, is the point of even considering such abstraction

principles? I do not wish to claim that there are any particularly deep conclusions to

draw, but I think that there are a couple of more tentative conclusions which can be

drawn.

Firstly, I claim that free logic provides the most natural approach to restricted

abstraction principles, or to abstraction principles where it would be expected that not

every abstract term has a reference. In contrast to what RVϕ allows, we frequently do

want to say something about the concepts or objects which do not define an abstract,

namely that they do not define an abstract. Rather than keeping silent about, say, the

direction of shoes and hats, as the equivalent of RVϕ for directions would have us, we

want to say that hats and shoes do not have directions. And I hope that it should be

clear that abstraction principles along the lines of FLVϕ are far more natural in their

consequences than those along the lines of NVϕ . Abstraction principles along the lines

of NVϕ require that we introduce a seemingly superfluous object to be, say, the direction

of hats and shoes. Moreover, in certain cases, such as set theory, it will not only require

the introduction of just one strange object, but a whole hierarchy of objects which

involve this object in some way. Worse, it seems that we may even have to have distinct

null objects for every abstraction principle, so that there is a null-set, null-number,

null-direction and so on.

The free logical approach to restricted abstraction principles, by contrast, suffers

from none of these problems. It permits us to say of hats and shoes that they do not have

directions, for example. Even better, in certain cases, it does not even require us to make

modifications to abstraction principles. Rather, it allows us to consider the relations on

the right hand side as something less than equivalence relations—which a non-free logic

would prevent—so that non-lines are not self-parallel, or so that non-sortal concepts

are not self-equinumerous and so on.

Secondly, and with regards to abstraction principles for set theory in particular, I

wish to claim that the weakness of FLVϕ compared with NVϕ reveals something of a

sleight of hand involved in the use of the latter. NewV can be seen as a way of formalising
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the limitation of size conception of set within an abstractionist system, and of showing

that the limitation of size conception is thus enough to recover a reasonable portion

of set theory. But, if I am right that FLVϕ is really the most natural way of restricting

BLV to ϕ concepts, then the result of formalising the limitation of size conception in an

abstraction setting is really the instance of FLVϕ in which ϕ is smallness.

But, in that case, it is not true that the limitation of size conception is itself sufficient

for deriving a substantial amount of set theory. Rather, it is the limitation of size

conception together with an assumption to the effect that there is at least one non-set

(or that there are at least two objects). New V sneaks this additional assumption in by

having the null object provide such an object.



Chapter 3

The bad company problem, and
how to think about it

3.1 The bad company problem

One of the main problems facing abstractionism, particularly the standard static form

of abstractionism propounded by Hale and Wright is the bad company problem.1 In

its simplest form, the objection is that the inconsistency in BLV infects the whole

abstractionist programme, rendering abstraction principles in general unsuitable as

implicit definitions of abstraction operators.

So, for example, Dummett (1991) writes:

If the context principle, as expounded by Wright, is enough to validate the

‘contextual’ method of introducing the cardinality operator, it must also be

enough to validate a similar means of introducing the abstraction operator

[for classes]. . . .Frege’s method of introducing the abstraction operator

[for classes]—that is, of introducing value-ranges—was, notoriously, not in

order. (p. 188)

The reasoning is then something like the following: The suitability of an abstraction

principle to serve as a definition is in virtue of its form. But then, BLVwould be suitable as

an implicit definition, in virtue of being an abstraction principle. But BLV is inconsistent,

and thus not suitable as an implicit definition (since it is not capable of being true).

Hence abstraction principles in general are not suitable as implicit definitions.

This line of argument is, however, too quick, as Wright (1997) points out. It is not

unreasonable to think that a method of definition may require restrictions on which

specific attempts to give a definition succeed. Wright gives as an example the (pre-

sumably perfectly acceptable) method of defining a predicate by specifying application

conditions. But this will inevitably have instances which lead to inconsistency. So,

for example, suppose we define the predicate ‘(is) heterological’ by specifying that it

applies to predicates which do not apply to themselves. As is well known, this leads

1I shall argue later that the expansionist approach to abstraction does not suffer from the bad company

problem.

37
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immediately to a contradiction (since ‘heterological’ will be heterological just in case it

is not heterological), yet this does not mean that we should abandon the specification of

application conditions as a way of defining predicates.

Another (perhaps less uncontroversial) example might concern logical connectives.

It might be thought that logical connectives have the meanings that they do by virtue

of their introduction and elimination rules. But Prior’s (1960) example of the ‘Tonk’

connective2 shows that not any old introduction and elimination rules will do. So,

proponents of this inferentialist view have suggested criteria that introduction and

elimination rules must satisfy so as to be in good order.

So then, it is reasonable to allow that some additional constraints may be placed

on abstraction principles before they may be considered acceptable, and that these

constraints will rule out abstraction principles such as BLV. The bad company problem

then becomes, not an outright objection to abstractionism, but rather a challenge; the
challenge being to find appropriate restrictions on which abstraction principles are to

count as acceptable.

It will not do, however, simply to propose that an abstraction principle shall be

considered acceptable if and only if it is consistent. For while this would rule out BLV

and other inconsistent abstraction principles, another problem remains. That problem

is that there are abstraction principles which, although individually consistent, are

mutually inconsistent.3

The standard example given of such a clash is between HP—which entails that the

universe is infinite—and some abstraction principle which entails that the universe is

finite. Such a principle is provided by the following ‘Nuisance Principle’ (Wright, 1997,

p.290):

(NP) ν(F) = ν(G) ↔ there are finitely many x s.t. (Fx ∧ ¬Gx) ∨ (Gx ∧ ¬Fx)

which has models of any finite cardinality, but no infinite models. Thus HP and NP are

jointly unsatisfiable.4

A word of caution is perhaps appropriate here. Although it is commonly claimed that

this shows that HP and NP are inconsistent, not quite as much has been shown. Whilst

2Tonk has the same introduction rules as ‘or’, and the same elimination rules as ‘and’. I.e.:

A
(Tonk-I1) A Tonk B

A
(Tonk-I2) B Tonk A

and

A Tonk B
(Tonk-E1) A

A Tonk B
(Tonk-E2) B

Then it is simple to see that we can derive any conclusion B from any premise A: First derive ‘A Tonk B’ from
(Tonk-I), then use (Tonk-E) to derive B.

3It is worth pointing out that this is also the case with predicates being defined by means of application

conditions. For a Curry-style paradox can be constructed as follows. Say that a predicate P is ϕ-heterological
iff P does not apply to itself, or ϕ. Then ϕ will be a consequence of this definition. So, if ϕ and ψ are such that

neither is inconsistent, but their conjunction is, the definitions of ϕ-heterologicality and ψ-heterologicality
will both be consistent, but will be mutually inconsistent.

4NP was actually the second of such restrictions to appear. Boolos (1999) introduced the parity principle,
which differs fromNP only in that ‘there are finitely many’ is replaced by ‘there are an even (and finite) number

of ’. It nonetheless has the same effect.
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satisfiability and consistency are one and the same in first-order logic (as a consequence

of the completeness theorem) the same can not be said of second-order logic; it is

possible for a set of sentences to have no (full) models, yet still be consistent. In order

to show that NP and HP are together inconsistent, it would be required to show that

NP and HP have no Henkinmodels (i.e. models where the second-order domain may

comprise less than the entire powerset of the first-order domain). The reason is that for

Henkin semantics, there is a completeness theorem, and so satisfiability and consistency

coincide. Whether NP and HP share a Henkin model is less clear. In particular, since

NP has models of every finite cardinality, a standard compactness argument can show

that it also has infinite models. This is, however, not enough to show that HP and NP

are consistent; although they both have infinite models, it would need to be shown that

they share an infinite model, and this is no easy feat. I will not, however, say more on

this here.

The issue in this particular case is, anyhow, to a large extent moot. For it is possible

to construct abstraction principles which are proof-theoretically inconsistent with one

another. An entire class of abstraction principles along such lines is provided by the

various principles NVϕ from the previous chapter.5 Recall that these are:

(NVϕ) ∀F∀G[εF = εG ↔ (ϕ(F) ∨ ϕ(G)) → ∀x(Fx ↔ Gx)]

It follows from NVϕ that ∃F¬ϕ(F), since, if not, the principle collapses into BLV and a

contradiction ensues.

It is then simple to select ϕ andψ so that NVϕ andNVψ are inconsistent. The simplest

way to show this would be to take ϕ not to depend on F, for example, a sentence which

says that F is coextensive with itself, and that the universe contains exactly 3 objects.

Then ψ could be taken to be the negation of ϕ.
The challenge which the bad company problem raises is then the following: how

do we place restrictions on abstraction principles so as not just to rule out inconsistent

abstraction principles such as BLV, but also to decide between inconsistent abstraction

principles? One way to do this would be to proceed in a somewhat piecemeal manner, by

proposing individual restrictions, and evaluating them individually. If some restriction is

unsatisfactory for some reason, then it may be discarded and new restrictions proposed

in its stead.

This has been, more or less, how the debate concerning how to restrict abstraction

principles has proceeded. Instead, however, I wish to claim that a more systematic

approach should be taken, and this in turn requires that more needs to be done to make

the challenge precise: what is to count as a restriction, for example, and what is to count

as a restriction being successful?

The aim of this chapter will be to do just that. Before suggesting a framework in

which we can ask questions relating to proposed solutions to the bad company problem,

I will in section 3.2 review a number of restrictions which have been suggested and

the relationships between them. In section 3.3, I will argue that a clear framework is

required in which to consider questions about proposed solutions. In particular, there is

a prima facie conflict between the need to restrict abstraction principles and the desire to
develop stronger and stronger mathematics in an abstractionist way. A clear framework

5Weir (2003) makes heavy use of these to provide a stock of mutually inconsistent abstraction principles.

The general idea of using modifications of BLV for such an effect is due to Heck (1992).



40 the bad company problem, and how to think about it

would provide a base from which to resolve such issues. Finally, in section 3.4, I will

endeavour to set up such a framework.

3.2 Survey of restrictions

Before considering the bad company problem in more detail, it will be useful to give an

overview of various restrictions that have been proposed, and the relationships between

them. My aim is not to be exhaustive in such an overview, but merely to provide a good

enough stock of examples for my arguments in this chaper and the next. In particular,

although I include within the examples all restrictions which have been taken seriously

as possible solutions to the bad company problem, I have left open certain questions

about the precise formal relationships between some restrictions which I mention.

Nonetheless, the restrictions which I do mention, and the relationships which I state,

will be adequate for my purposes.

Solutions which have been proposed so far can be seen to fall roughly into four

categories: restrictions based on the consequences of an abstraction principle; restrictions
based on the class of models of an abstraction principle; restrictions which partly involve

the form of an abstraction principle; and restrictions whichmake use of the fixed domain

of quantification over which—on the static view—the quantifiers of an abstraction

principle range (typically the absolutely universal domain).

3.2.1 Consequences
In the first category lie restrictions based on the logical consequences of an abstraction

principle. Since the background logic is second-order, a distinction needs to be made

between semantic consequence and proof-theoretic consequence. So, each definition I

give here will actually describe two (or more) restrictions. I shall denote consequence

generally by ‘∣∼’, where this may either be understood as semantic consequence (⊧)—

giving rise to one restriction—or deductive consequence (⊢)—giving rise to another.

Consistency

Themost obvious restriction to consider is that an abstraction principle be consistent.
That is:

Definition 3.1. An abstraction principle A is consistent iff A ∣≁ �.

This will have two variants, depending on whether consequence is taken to be deduc-

tive consequence or semantic consequence. It is well known that semantic consistency

entails deductive consistency (as an immediate consequence of the soundness theorem

of second-order logic), but not vice-versa (which would amount to a completeness

theorem).

As I have already mentioned, consistency will be too weak as a restriction, since

it says nothing about individually consistent, yet mutually inconsistent abstraction

principles.
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Strong conservativeness

Amuch stronger requirementwhichmight be considered, andwhichmight bemotivated

by an analogy with explicit definitions is conservativeness, or strong conservativeness
to distinguish it from a restriction which is more often discussed in the abstractionist

literature under the name of ‘conservativeness’. An abstraction principle is conservative,

roughly, if it does not have any consequences which do not involve the abstraction

operator. More formally:

Definition 3.2. Let T be a theory stated in a language L (which does not feature the

abstraction operator). Then an abstraction principle A is strongly conservative over T iff

for any sentence ϕ of L

if T ,A ∣∼ ϕ, then T ∣∼ ϕ.

A is strongly conservative simpliciter if it is strongly conservative over all such T .

The thought behind strong conservativeness is that, given some theory (which may,

for example, be a complete theory about all physical objects), an implicit definition

should not allow one to derive new consequences about the objects it quantifies over

(e.g., physical objects). That is, it should not be possible to draw consequences stateable

in the original language which were not already consequences. Explicit definitions are

strongly conservative, and thus it might be thought desirable for implicit definitions as

well.

Again, there will be both semantic and deductive versions of strong conservativeness.

It might also be thought that amixed version of conservativeness might be desirable,

whereby it is permitted for an abstraction principle to deductively entail consequences

which were not already deductive consequences, but which were semantic consequences

of T .
A moment’s thought, however, shows that strong conservativeness is too strong as a

restriction, since it will rule out any abstraction principle that says anything of interest.

For example, any abstraction principle which entails the existence of infinitely many

objects (as HP does) will fail to be strongly conservative over a theory which states that

there are exactly three objects, say.

Weak conservativeness

As such, most attention has been paid to restrictions which involve a weaker notion

of conservativeness, which I shall call weak conservativeness, or just conservativeness
simpliciter if it is obvious from the context that it is the weak variant at issue. Roughly,

an abstraction principle will be weakly conservative over a theory T if it has no conse-

quences for the non-abstracts that are not already consequences of T . More precisely:

Definition 3.3. Let T be a theory stated in a language L as before. For any sentence

ϕ, let ϕ¬§ result from ϕ by restricting all of its quantifiers by the formula ¬∃F(x =
§F). I.e. ∀x . . . x . . . becomes ∀x(¬∃F(x = §F) → . . . x . . .) and ∀F . . . F . . . becomes

∀F(∀x(Fx → ¬∃G(x = §G)) → . . . F . . .).

Then A is weakly conservative over T iff for any sentence ϕ of the language L,

if A, T¬§ ∣∼ ϕ¬§ , then T ∣∼ ϕ.

A is weakly conservative simpliciter iff it is weakly conservative over all such T .



42 the bad company problem, and how to think about it

As for strong conservativeness, there are three ways in which this may be taken,

depending on how the consequence relation is taken.

This captures more accurately the intuition behind the requirement of strong conser-

vativeness. Recall that this was to forbid abstraction principles which have consequences

which are not about the abstracts which they define. But this made use of the principle

that a sentence ϕ is about those abstracts only if it features the abstraction operator. But

in the presence of absolutely unrestricted quantification—which is a crucial feature of

the static approach to abstraction—this principle is flawed. For then even purely logical

sentences can, in some sense, be about the abstracts. For example, the sentence that states

that there are infinitely many objects may be true just because there are infinitely many

abstracts of a certain kind. Thus, its following from an abstraction principle will not

violate the requirement that an abstraction principle only have additional consequences

which are about the abstracts which it seeks to define.

The modification made in weak conservativeness eliminates this. By explicitly

restricting the quantifiers in ϕ, it automatically only considers consequences which are

not about the abstracts in question. Similarly for T—by restricting the quantifiers in T ,
we ensure that we are not capturing consequences which are partly due to something

which T says about the abstracts through its use of absolutely unrestricted quantification.

Unfortunately, weak conservativeness is too weak as a restriction. Weir (2003, § 4)

shows that we can construct distraction principles which are conservative but mutually

unsatisfiable.

Irenicity

Weir suggests as an alternative a stronger notion, which he calls irenicity. An irenic

abstraction principle is one which is weakly conservative and compatible with all other

weakly conservative abstraction principles. As with the other examples, this may be

taken in either a semantic or deductive sense. In contrast to the previously considered

restrictions, any set of irenic abstraction principles is consistent (Weir, 2003).6

3.2.2 Classes of models
A much discussed kind of restriction on abstraction principles concerns the class of

models that an abstraction principle has. These restrictions will classify an abstraction as

acceptable just in case it hasmodels of an appropriate kind (usually related to cardinality).

These have mostly been discussed with respect to full second-order models, i.e. those

whose second-order domain is the full power set of the first-order domain. It will be

useful, however, also to discuss analogues which consider Henkin models, where the

second-order domain may comprise less than the full power set of the domain.

Since most of these restrictions involve an abstraction principle being satisfiable by

a model of a particular cardinality, it is convenient to introduce a bit of notation. Where

κ is a cardinality, say κ ⊧ A iff there is a modelM⊧ Awith ∣M∣ = κ.

6It has been disputed by Linnebo and Uzquiano (2009) whether this means that irenicity is successful as a

restriction. In particular, they claim that there are proper classes of irenic abstraction principles which are not

consistent taken as a whole. I will argue in section 3.4, however, that such a situation can not in fact arise.
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Satisfiability

An obvious model-theoretic correlate to consistency is satisfiability. A abstraction prin-

ciple is satisfiable iff it has a model, or, to use the cardinality language, ∃κ(κ ⊧ A). If
we require a full model, then satisfiability will obviously correspond to semantic consis-

tency. If we only require a Henkin model, then, as a consequence of the completeness of

Henkin semantics7, this will correspond to deductive consistency.

Boundedness

Discussions concerning restrictions of this kind have, however, involved more demand-

ing restrictions. Weir (2003) considers unboundedness, which he introduces to corre-

spond to conservativeness. It is defined as follows:

Definition 3.4. An abstraction principle A is unbounded iff ∀κ∃λ > κ s.t. λ ⊧ A.

Weir then proves that conservativeness entails unboundedness. He claims also

to have proved the converse. Linnebo (2010b) shows that Weir’s proof has a gap. In

particular, the implication may fail for abstraction principles which feature non-logical

vocabulary on their right hand sides. What we need is the following definition:

Definition 3.5. An abstraction principle is purely logical if the relation on the right hand
side only involves (second-order) logical vocabulary.

Then, Weir’s proof in fact shows that if an abstraction principle is purely logical and

unbounded, then it is conservative.

Linnebo suggests an improvement on unboundedness so as to do without the addi-

tional assumption. He gives the following definition:

Definition 3.6. An abstraction principle A (stated in a language L) is uniformly un-
bounded iff for any L-structureM= ⟨D, I⟩, there is a modelN = ⟨D′ , I′⟩ such that:

• I′ interprets all non-logical vocabulary of L in the same way as I,

• The non-abstracts inN are precisely the objects of the original domain. That is,

{a ∈ D′ ∶ N ⊧ ¬∃F(§F = a)} = D

• N ⊧ A.

He then proves that this is equivalent to semantic conservativeness.

These kinds of boundedness all involve full models, and, as such, correspond to the

restrictions based on semantic consequence. But I suspect that it would be possible to

produce similar restrictions by considering Henkin models instead.

Stability

A more stringent restriction—first considered by Fine (2002), and suggested by Weir as

a correlate to irenicity—is stability. Roughly speaking, an abstraction principle is stable

if its class of models is not only unbounded above, but contains no ‘gaps’, in the sense

that it is satisfiable at every cardinality above a certain threshold. This actually leads to

two related restrictions:

7See, e.g. Shapiro (1991, §4.3)
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Definition 3.7. Let A be an abstraction principle. Then:

• A is weakly stable iff ∃κ∀λ(λ ≥ κ⇒ λ ⊧ A)

• A is strongly stable iff ∃κ∀λ(λ ≥ κ⇔ λ ⊧ A).

Weir does not distinguish between these, and claims an equivalence between stability

and irenicity. The actual situation (proved by Linnebo) is that, if an abstraction principle

is semantically irenic, then it is weakly stable, and that if a purely logical abstraction

principle is weakly stable then it is irenic.

3.2.3 Inflation and satisfiability
I have already discussed the notion of inflation as a possible diagnosis of what goes

wrong with BLV. Recall that an abstraction principle is said to inflate on a domain D
if the abstraction relation partitions P(D) into more equivalence classes than there

are objects in D. This notion of inflation has been suggested as forming the basis of a

restriction on abstraction principles, notably by Fine (2002).

Now, as it stands, inflation is a relative notion; an abstraction principle is inflationary
only relative to a domain. But this can be rectified by considering the notion relative

to a particular domain, namely the fixed domain in which abstraction principles are

considered on the static view. That is, inflation can be specified in the very language

in which abstraction principles are stated in, with the quantifiers ranging over the

same—supposedly absolutely unrestricted—domain.

We thus have the following definition (due to Fine):

Definition 3.8. Let A be an abstraction principle with abstraction relation Φ(F ,G).
Then A is non-inflationary iff

∃R[∀F∃x∀y(R(F , y) ↔ y = x) ∧ ∀x∃F∀G(R(G , x) ↔ Φ(F ,G))]

Some explanation of this definition is in order. Firstly, unlike the restrictions con-

sidered so far, this is a definition in the object language of abstraction itself, rather

than the metalanguage. That is, all of its quantifiers are taken to range over exactly

what the corresponding quantifiers in abstraction principles themselves range over. The

statement, as given this way, is similar to the (object language) statement that says that

a concept is small, or that concepts are in one-to-one correspondence. Secondly, in

contrast to abstraction principles (at least, the kind of abstraction principles which are

currently under consideration), it is third-order, since it features quantification over

relations between concepts and objects.

But, if we are to consider restrictions which are stated in the object language, it

seems that there are some (more or less trivialising) restrictions on abstractions which

are also worth considering. For example, why not just restrict to abstraction principles

which are true (on the fixed domain)?

This is not quite possible, however. For the truth of an abstraction principle will

depend on the interpretation of the abstraction operator, which is just what the abstrac-

tion principle aims to fix; a restriction stated in the object language, such as inflation,

should be stateable without using the abstraction operator. But something very close to

truth can be stated—namely, satisfiability on the absolutely unrestricted domain—by

Ramsifying the abstraction principle. So, we have the following:
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Definition 3.9. Let A be an abstraction principle with abstraction relation R. Then A is

absolutely satisfiable iff

∃f[∀F∀G(f(F) = f(G) ↔ R(F ,G))]

It turns out that these are, in fact, equivalent. Fine (2002) proves that the metalin-

guistic counterparts to non-inflation and satisfiability are equivalent, and indeed states

the object-language version of non-inflation in a way which is very close to how I have

defined absolute satisfiability.

There is not, however, much that can be said about the relationship between these

restrictions and those canvassed in the previous two sections. The reason is that what

relationship holds will be very sensitive to features of the fixed domain itself. So, for

example, if the fixed domain is a set, then we would be able to say that absolute satis-

fiability entails satisfiability. But this much may be denied. Likewise, it is tempting to

say that if an abstraction principle is stable then it would be absolutely satisfiable, by

appealing to a principle that states that the fixed domain is so large that it will be of a

cardinality greater than the stabilising point of any stable abstraction principle. But it

might be doubted that the notion of cardinality could apply to the fixed domain, being,

as it is, supposedly absolutely unrestricted and therefore presumably too large to be a

set.

3.2.4 Arrogance
All of the restrictions considered in the previous three sections have be closed under

logical equivalence. That is, if an abstraction principle A satisfies a restriction, and

B is logically equivalent to A, then B also satisfies that restriction. But one proposed

restriction—which has played a prominent role in neo-Logicists’ recent discussions of

the matter8—does not satisfy such a condition.

That restriction is one of avoidance of arrogance, which Hale and Wright (2000)

describe thus (in the context of implicit definitions in general):

Let us call arrogant any stipulation of a sentence, ‘# f ’, whose truth, such as is
the antecedentmeaning of ‘# ’ and the syntactic type of ‘ f ’, cannot justifiably
be affirmed without collateral (a posteriori) epistemic work. (p. 128)

They give as an example of an arrogant stipulation ‘Jack the Ripper is the perpetrator of

these killings’, since this presupposes that there is a unique individual who perpetrated

the series of killings. They give as another example (in Hale and Wright, 2009a) a

stipulation of the Dedekind–Peano axioms outright.

The most notable feature of this restriction is that there is no need to regard it as

closed under logical consequence. And indeed, Hale and Wright all but claim that

it is not in their appendix to Hale and Wright (2009a); although they are obviously

committed to HP satisfying any restrictions on abstraction principle, including non-

arrogance, they claim of a particular logically equivalent abstraction principle that it is
arrogant.9

8See, for example, Hale and Wright (2009a).

9This other abstraction principle was constructed by Ebert and Shapiro (2009) in order to support a claim

that abstractionism leads to the view that knowledge of advanced arithmetical theorems can be known without



46 the bad company problem, and how to think about it

Again, it is hard to map out just what the relation between non-arrogance and other

restrictions might be. The notion is not precise enough as it stands to say much on

the matter. But it seems that Hale and Wright see non-arrogance as being an issue

orthogonal to matters such as conservativity and the like, since they propose it as a

restriction in addition to conservativity.

3.3 The bad company problem and higher mathematics

The challenge of finding an acceptable solution to the bad company problem is liable

to intersect with another challenge for abstractionism—that of finding abstraction

principles which suffice for the derivation ofmore powerfulmathematics than arithmetic

and, in particular, set theory. One aspect of finding a restriction on abstraction principles

is that it must be strong enough. That is, it must rule out enough potential abstraction

principles so that the ones that are left do not jointly entail a contradiction. But there is

also a risk that, in finding a strong enough restriction, it will be too strong. It may be

that a restriction rules out enough abstraction principles that the ones left do not entail

a substantial amount of set theory.

Indeed, there are specific examples of this conflict between finding a restriction that

is strong enough, and finding an abstraction principle (or abstraction principles) which

can serve as a foundation of at least some set theory. One promising example of an

abstraction principle for set theory which has already been discussed is Boolos’ New V.

This principle is both consistent and recovers some set theory (albeit still far less than

might be hoped for).

But it turns out that New V is not conservative (see Shapiro and Weir, 1999). The

reason is as follows: By the reasoning of the Buralli-Forti paradox, the concept ‘is an

ordinal’ must not define a set. Thus, byNewV, it must be in a one-to-one correspondence

with the universe. The presence of this one-to-onemapping then shows that the universe

is well-orderable and, in particular, that even the non-abstracts are well-orderable. But

this fact will not, in general, follow without the use of New V.10

Another instance of how a solution for the bad company may conflict with attempts

to found set theory on abstraction principles concerns not any particular abstractionist

set theory, but set theory in general. The solution in question is stability (in either its

strong or weak form). Note first that stability is a notion which applies, not just to

abstraction principles, but any axiomatic theory in general. Uzquiano (2009) argues that

any theory in which a sufficient amount of set theory can be interpreted is not stable.

A consequence of this, then, is that any abstraction principle which recovers a large

amount of set theory will not be stable.

Both of these clashes between proposed solutions to bad company and proposed

proof (what they call the problem of easy mathematical knowledge). I shall be discussing this claim in the next

chapter 4.

It seems that perhaps when they first proposed non-arrogance in Hale andWright (2000), Hale andWright

saw it as being closed under logical consequence. So, they claim that a stipulation may be non-arrogant by

virtue of being equivalent to a non-arrogant stipulation (p.130 n.25). But the claim that non-arrogance allows

the avoidance of the problem of easy mathematical knowledge seems to suggest that their more developed

view is that non-arrogance is not closed under logical consequence.

10The same reasoning will go through even with the other forms of restriction discussed in the previous

chapter.
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abstractionist foundations of set theory can be resisted. So, for example, it could be

claimed that the well-orderability of the universe is a consequence of pure second-order

logic, if that is taken to include a principle of global choice (as it often is). Likewise,

there are parts of Uzquiano’s argument that may be resisted, such as its reliance on the

urelement axiom—the principle that there is a set which contains all non-sets.

But, regardless of the details of these individual cases, it would be very much desir-

able to foresee such (potential) clashes. That is, we should not be asking two separate

questions: ‘is there an abstraction principle which recovers set theory?’ and ‘is there an

appropriate solution to the bad company problem?’. Rather, we should be asking the

combined question: ‘is there an abstraction principle A, and a restriction on abstraction

principles S such that A recovers set theory, S is an acceptable solution to bad company,

and A is acceptable by S’s lights?’.
In order to be able to answer such a question, we need to set up a more precise, less

piecemeal framework concerning solutions to the bad company problem. That is, we

would like to be able to survey the space of, not only restrictions which have actually

been proposed, but all possible restrictions. We may then ask whether any of these

solutions is both acceptable as a solution to the bad company problem (whatever that

requires), and permits an abstraction principle (or abstraction principles) sufficient for

set theory.

The aim of the next section of this chapter will be to provide such a framework,

by considering potential solutions to the bad company to be subsets of all abstraction

principles.

3.4 What are abstraction principles?

The title of this section may seem strange. After all, have I not already answered such a

question in chapter 1? But there are issues thatmust be resolved if wewant to consider the

collection of all abstraction principles, as we need to if we want to consider restrictions

as being sub-collections.

Since all abstraction principles are of the same form,11 and differ only in what

11There are three classes of potential counterexamples to this claim. I believe, however, that these can be

accommodated.

The first of these is that of restricted abstraction principles. I showed in the last chapter how these could be

accommodated by allowing the abstraction relation to be non-reflexive.

The second concerns where the outermost variables in an abstraction are of a type other than that of

concepts variables. We have already seen abstraction principles where the variables range over objects (such as

the direction principle). But there have also been examples of abstraction principles where the variables range

over relations (e.g. Hazen, 1985; Hodes, 1984a), over higher-order concepts (e.g. Cook, 2009a), or perhaps over
more exotic types from further up the type-theoretic hierarchy. I will not deal with these cases directly. Instead,

it may simply be noted that the method I am about to give (p. 50) could easily be adapted to encompass these.

Since there are only countably many types, when it comes to enumerating formulas with two free concept

variables, we could easily instead enumerate all formulas with two free variables of any type (as long as they

are of the same type).

The final possible counterexample concerns, not abstraction operators of different types, but abstraction
operators of different arity. So, for example, Hale (2000b) makes use of an abstraction operator which is a

two-place function on objects, so that abstract terms have the form §(t1 , t2) and the relation on the right-hand
side is a four-place relation. There are two ways in which such abstraction principles could be accommodated.

The first would be to do the same as above, and consider more formulas in our enumeration (in particular,

all formulas with an even number of free variables). But alternatively, abstraction principles with a higher

arity can be reduced to monodic abstraction principles of a higher type. So, for example, consider a first-oder

dyadic abstraction principle (i.e. the abstraction operator is a two-place function from objects to objects):

(3.1) ∀x∀y∀z∀w(§(x , y) = §(z,w) ↔ Φ(x , y, z,w))
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abstraction relation they feature on the right hand side, the question reduces to that of

what abstraction relations there are. Such an answer will depend on what abstraction

relations themselves are.
This again may seem like a strange question to ask, but there are indeed two ways

in which one could go. The main choice to make is whether abstraction relations are

some kind of linguistic entity, such as formulas of a language, or whether they are

non-linguistic entities (i.e. higher-order relations) which go beyond just what can

be expressed by formulas. These could then be generalised over by means of third-

order quantification. There are some immediate attractions to the linguistic approach.

For if abstraction principles are thought to be definitions, they must be laid down in

some language or other, and there simply is no need to consider inexpressible relations.

Furthermore, by considering abstraction relations as formulas, it is possible to make

distinctions which cannot easily be made with the non-linguistic approach. For example,

we may wish to distinguish between coextensive but differently expressed relations on

concepts. But the standard semantics for third-order quantification will individuate

relations on concepts extensionally. Even individuating relations on concepts intension-
ally (so, perhaps treating them as something like functions from possible worlds to sets

of pairs of concepts) may fail to be fine-grained enough. This is because there may be

logically equivalent—and so necessarily coextensive—formulas which we may wish to

distinguish between for the purposes of, for example, distinguishing between arrogant

and non-arrogant abstraction principles.

There are some problems with the linguistic approach, however. Firstly, it may be

claimed that there are indeed ways of laying down individually inexpressible abstraction

principles. There are two ways this could be done. The first is to consider formulas

which have not only F and G as free variables, but also one or more parameters (similar

methods are considered by Fine (2002, p.6 n.2) and Linnebo and Uzquiano (2009)). For

example, the formula ‘Fx ↔ Gx’ expresses the equivalence relation which partitions

concepts into those which apply to x and those that do not (where x is a parameter,

referring to some unspecified object). Then infinitely many abstraction principles can

be laid down—one for each object x—by laying down the abstraction principle with the

free variable x and then quantifying out:

∀x[∀F∀G(§xF = §xG ↔ Fx ↔ Gx)]

Another way would be to use third-order quantification directly. So, for example, a

multitude of abstraction principles could be laid down as follows:

∀R[. . .R . . . → ∀F∀G(§RF = §RG ↔ RFG)]

This can be replaced by a monadic abstraction principle which ranges over first-order relations. Say that

a relation R encodes the pair of objects x , y if it holds between those two objects, and no other objects.

Symbolically: Enc(R, x , y) df
= ∀z∀w(Rzw ↔ z = x ∧w = y). Then we can replace (3.1) by:

(3.1′) ∀R∀S(§R = §S ↔ ∃x∃y∃z∃w(Enc(R, x , y) ∧ Enc(S , z,w) ∧Φ(x , y, z,w)))

The relation on the right hand side here will not be reflexive. In particular, it will not be reflexive for relations

R which do not encode a pair of objects. As such, the effect is that the abstraction principle is restricted to

those relations which encode a pair. It can also be seen that this will be equivalent to the original, dyadic,

abstraction principle. The same could also be done for polyadic abstraction principles of different types (so,

an n-adic abstraction principle whose variables range over entities of type τ can be replaced by a monadic

abstraction principle whose variable range over n-ary relations of entities of type τ).
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This is in fact the main way in which all abstraction principles in Fine’s general theory

of abstraction are stipulated (Fine, 2002, pp.165–192).

But are these really ways of laying down infinitely many abstraction principles,

including ones which may not be individually expressible? I would say not. For it is not

that multiple definitions are being laid down, but rather that just one sentence is being

laid down, which appears similar in many ways to abstraction principles. Perhaps such

a process—call it extended abstraction—could share many of the features and supposed

advantages of abstraction. However, if it leads to additional problems regarding bad

company, then this is a problem for extended abstraction, not for abstraction simpliciter.

In any case, an extended abstraction principle can only play the epistemological role

of abstraction principles—that is, providing a means to learn of a new kind of abstract

object—by means of a specified instance of it, and this will already be covered by

expressible abstraction principles, and hence by the linguistic account.

A second problem for the linguistic account is the question of what language it is that

we are to consider formulas of. We could just consider pure second-order logic, and thus

restrict attention to the purely logical abstraction principles. This would then include a

large number of the abstraction principles which have been made use of, such as HP.

But it might be desired to have non-logical abstraction principles, and in particular

abstraction principles which make reference in their relation to abstracts which have

already been obtained by means of abstraction principles. For example, abstractionist

approaches to the real numbers by Hale (2000b) and Shapiro (2000) make use of such

abstraction principles. We then face the problem of identifying a language which will

feature all such abstraction principles.

The problem with identifying such a language is that it seems that it will always

be possible to expand such a language by adding more abstraction operators. And

so the relations on concepts which are expressible will continually expand as well. It

is here in particular that treating abstraction relations as non-linguistic—as whatever

third-order quantifiers range over—has an advantage. For third-order quantifiers will

not just range over all relations expressible in a language, but will automatically range

over all relations expressible in any possible language (and possibly over more than just

that). As a consequence, they will already take into account any possible expansion of a

language.

But this problem can be avoided if it could be shown that there is a language ‘big

enough’ in some sense. By that, I mean a language which features enough abstraction

operators in its collection of non-logical terms and enough potential abstraction princi-

ples as sentences, that the addition of any more abstraction operators and principles will

not yield any new relations. And indeed, such a language can be constructed as follows.

3.4.1 A language of abstraction
The construction follows what might be taken to be a natural process in building up

non-logical abstraction principles in stages. First, logical abstraction principles are

considered, then abstraction principles which make reference to the logical abstraction

principles and so on.12

12The resulting hierarchy bears some resemblance to the hierarchy of abstract objects discussed in Hale

(1987, chap. 3).
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More precisely, we build up languages recursively and then we build up sets of

abstraction relations based on this hierarchy of languages as follows: Let L0 be a second-

order language which does not feature any abstraction operators. It might contain other

non-logical vocabulary, such as various terms for physical properties and so on. I will

assume that such a language is countable.13 Now, for each n > 0, let Ln+1 result from Ln
by adding a set of abstraction operators {§n , i ∶ i ∈ N}. So L1 is L0 ∪{§0,0 , §0,1 , §0,2 , . . .},

L2 is L1 ∪ {S1,0 , §1,1 , §1,2 , . . .} and so on. Finally, let L = Lω = ⋃i∈NLi . It would also be

possible to continue this process into the transfinite in a similar way (but, I shall argue

in a bit that this is not necessary).

Now at each stage we can define the set of abstraction principles which can be

formed at that stage. At the base level, let REL0 be the set of formulas of L0 with

the only free variables being F and G.14 Since the language is countable, this set is

countable. Let {ϕ i ∶ i ∈ N} be an enumeration of it. Now, for each i ∈ N, let A0, i be

the sentence ⌜∀F∀G[§0, iF = §0, iG ↔ ϕ i(F ,G)]⌝. Note that this is a sentence of L1. Let

AP0 = {A0, i ∶ i ∈ N}. So, what we have at this stage is an enumeration of the set of all

purely logical abstraction principles.

Similarly, for each n ∈ N, let RELn be the set of formulas of Ln with the only free

variables being F and G. Let {ϕ i ∶ i ∈ N} be an enumeration of RELn . Now, for each

i ∈ N, let An , i be the sentence ⌜∀F∀G[§n , iF = §n , iG ↔ ϕ i(F ,G)]⌝. Note that this is a
sentence ofLn+1. Let APn = {An , i ∶ i ∈ N}. So, AP1 is the set of all abstraction principles

which refer to the kinds of objects defined by purely logical abstraction principles and

so on.

Finally, let AP = APω = ⋃i∈NAPi . Note that AP is a set of sentences in L, unlike for

the finite case, where APn is a set of sentences in Ln+1.

Now, in what sense is this language and this set of formulas ‘big enough’? Firstly, it

contains enough abstraction principles for anybody who is only capable of performing

finite tasks. That is, any language of abstraction which could actually spoken by a finite

being will be contained within L. For every finite process of laying down more and

more abstraction principles, no matter how large, will only succeed in laying down

abstraction principles which are in AP.

Even if some kind of supertask effort of laying down abstraction principles were

permitted, the language and set of abstraction principles considered here will be suf-

ficient. For suppose that some creature manages to expand their language to actually

include all of Lω and has considered every one of APω . Then any further expansion

of the language and addition of abstraction principles will yield nothing new. This is

because any relation on concepts expressible in the language will already be expressible

in one of the languages Ln , and so the corresponding abstraction principle will have

been formed at stage n. For consider some ϕ ∈ RELω . Since the sentence is finite and so

only contains finitely many abstraction operators, there will be some greatest i ∈ N such

that §i , j appears in ϕ, for some j. Now, §i , j is in Li+1. Since each abstraction operator

in ϕ has first index ≤ i, every abstraction operator in ϕ is also in Li+1. Hence, ϕ is in

Li+1, and so the corresponding abstraction principle will be in APi and hence in AP.

13The account can be modified to apply to uncountable languages, by indexing members of each RELi by

some uncountable ordinal.

14We can safely ignore the requirement that the relations in abstraction principles be transitive and symmet-

ric. Since any abstraction principle whose relation is non-transitive or non-symmetric will be inconsistent, any

solution to the bad company problem will rule them out along with other inconsistent abstraction principles.
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Now, we are in a position to make precise any requirements on what should be

allowed as a solution to the bad company problem.

3.5 Solutions and sets of solutions

Having decided that abstraction principles should be thought of as sentences, which can

be treated as sentences in the language L, it is then possible to treat potential solutions

to the bad company problem as subsets of AP, the set of all abstraction principles in L.

So, each proposed solution will simply be some set S ⊆ AP. The relationships between

them, as in section 3.2, will simply be one of subsethood, or, in the case of equivalence,

simply identity.

Treating restrictions as sets of abstraction principles has a couple of advantages

over treating them as some kind of description of what is to count as an acceptable

abstraction principle. Firstly, sets of abstraction principles will themselves be theories,

which are amenable to simple investigation. So, for example, the question of whether a

restriction S allows for abstraction principles which can recover set theory just becomes

the question of how much set theory can be interpreted in S itself. Or, the question of

whether a restriction S lets through mutually inconsistent abstraction principles simply

becomes the question of whether S itself is consistent.
Secondly, given a particular restriction, it allows us to distinguish between the

question of which abstraction principles are permitted by that restriction, and the

details of how that restriction is—or could be—described. This then allows us to separate

questions purely concerning the consequences of a restriction (such as whether it permits

mutually inconsistent abstraction principles, or howmuch set theory it permits)—which

will just depend on which abstraction principles satisfy the restriction—and questions

concerning, for example, whether and how that restriction might be described in some

language or other. This latter type of question will become particularly important for

the purposes of chapter 4.

As well as considering sets of abstraction principles, we may also wish to consider

sets of solutions, that is, sets of sets of abstraction principles.

A set of potential solutions can be thought of as representing a criterion of adequacy

for solutions. And there will be various candidates for such a criterion, depending on

what one thinks of as the aim of potential solutions. It might be thought that there is

an objective fact of the matter concerning which abstraction principles are acceptable,

and thus a set S0 which is the set of all and only those abstraction principles which are

objectively capable of serving as implicit definitions. Then one potential aim—and really

the ultimate aim—of proposing restrictions is to find S0.
But, a more modest aim might be targeted instead. Whether some proposed restric-

tion is in fact S0 will be a somewhat intractable problem. Instead, we might aim for a

simpler, more formal criterion of what is required for a restriction to be successful. Such

an aim might be, for example, to avoid inconsistency. Any such aim will then determine

a success set, SUC ⊆ P(AP), consisting of all and only those restrictions on abstraction

principles which succeed in the aim.

There there may well be various potential success sets, corresponding to various

potential aims. Obvious potential aims are to rule out inconsistency or to rule out

unsatisfiability. These would correspond to the sets {S ∶ S ⊬ �} and {S ∶ S ⊭ �}
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respectively (note that these are sets of solutions, not sets of abstraction principles,

and thus do not correspond directly to consistency and satisfiability as restrictions on

abstraction principles). But other options are available; some of the other proposals in

section 3.2 could also be taken as proposals concerning when a solution is successful or

not.

3.5.1 Restrictions and definability
By treating restrictions extensionally, as sets of abstraction principles, the manner in

which restrictions are described has been abstracted from completely. So, for example,

conservativity and uniform unboundedness are, according to the foregoing account,

one and the same restriction. But it will be useful to relate restrictions, conceived of in

such a way, back to possible descriptions of them.

Now, a restriction, if it can be specified at all, must be specified in some language

or other, making use of various linguistic resources. In some cases, the resources

needed are relatively moderate—as perhaps is the case for some restrictions concerning

consequences, which require only the notion of provability or logical consequence.

And in other cases, the resources needed are more sophisticated—as is the case in

various model-theoretic restrictions, which are stated using quite a bit of set-theoretical

vocabulary.

The notionwhichwill do the job of relating sets of abstraction principles to particular

descriptions of these sets is that of definability. This will be a relative notion—a set of

abstraction principles will be definable relative to some language LH .15

Now, any language capable of defining a set of sentences of L (which is what restric-

tions are on the present view) will of course have to have the expressive power to talk

about, to some extent, the syntax of L. So, for example, it must have terms that refer

to sentences and formulas of L, and must have predicates which correspond to certain

properties of such sentences.

It would no doubt be possible to construct some minimal language to do this, with

terms for each sentence ofL and so on. However, languages capable of expressing syntax

are sufficiently similar to the language of (first-order) arithmetic that we may as well use

the language of arithmetic as such a language, and represent the sentences and formulas

of L by means of a Gödel numbering.16

So let LH be the usual language of first-order arithmetic, let ⌜A⌝ denote the Gödel
number of A, and let ⌜A⌝ be numeral of the Gödel number of A in the formal language

LA. Standard definitions concerning the definability of some set S can then be made:

• S ⊆ AP is definable in LH iff there is some formula ϕ(x) of LH such that for any

A ∈ AP, A ∈ S if and only if ϕ(⌜A⌝) is true (under the standard interpretation).

In this case we say that S is defined by ϕ.

It is also possible to generalise this to refer to definability by formulas of specific

complexity (by, for example considering the place of certain formulas in the arithmetic

15So labelled firstly to distinguish it from L, the language in which abstraction principles may be stated

(from section 3.4), and secondly, because this will later represent the language which somebody like Hero

may speak, before laying down any abstraction principles.

16But this will not have to be paired with any particularly strong theory of arithmetic. This is especially

important considering the use that LH will play in the next chapter—as the language that Hero possesses.
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hierarchy). Three instances of this will be particularly important for the purposes of the

next chapter. These are: definability by a Σ1 formula, definability by a Π1 formula, and

definability by both a Π1 and Σ1 formula. (A formula ϕ is Σ1 (resp. Π1) iff it is logically

equivalent to one of the form ∃x1 . . . ∃xnσ (resp. ∀x1 . . .∀xnσ), where σ is a formula

which features only bounded quantifiers.)

We thus have the following definitions:

• S ⊆ AP is Σ1-definable (respectively Π1-definable) iff S is defined by a Σ1 (Π1)

formula.

• S ⊆ AP is ∆1-definable iff it is both Σ1-definable and Π1 definable.

These types of definition will be important since they relate to computability. In
particular, the following relationships hold:

• S is Σ1-definable iff it is positively semidecidable: There is an algorithm which,

given any A ∈ S, halts and confirms that A ∈ S.

• S is Π1-definable iff it is negatively semidecidable: There is an algorithm which,

given any A ∉ S, halts and confirms that A ∉ S.

• S is ∆1-definable iff it is decidable: There is an algorithm which, for any A, outputs
1 if A ∈ S and 0 if A ∉ S.

So, if a restriction is ∆1-definable, it will be possible to mechanically compute of a

given abstraction principle whether it is acceptable according to that restriction or not.

If it is Σ1-definable, then there will be a procedure which will (eventually) reveal which

abstraction principles are acceptable, but may never give an answer for unacceptable

abstraction principles (and similarly for Π1-definability).

I shall also be interested in what can be proved about the membership of S given
some theory. Let T be some theory in the language LH . Then we have the following

definitions:

• S ⊆ AP is positively representable in T if there is some sentence ϕ of LH such that

for any A ∈ AP, A ∈ S if and only if T ⊢ ϕ(⌜A⌝). In this case we say that S is

(positively) represented by ϕ.

• S ⊆ AP is negatively representable in T if there is some sentence ϕ of LH such that

for any A ∈ AP, A ∉ S if and only if T ⊢ ϕ(⌜A⌝).

• S ⊆ AP is representable simpliciter in T if it is both negatively and positively

representable in T .

Success sets

As well as the definability of restrictions S ⊂ AP, we can also consider the definability of

success conditions SUC ⊆ P(AP). A few difficulties arise here which are not present

in the case of the definability of restrictions. In particular, there will not be terms for

sets of abstraction principles in the language LH , as there are terms for abstraction

principles, so we can not treat definability in the same way. But we can, for the purposes

of definability, treat SUC not as a set of sets of abstraction principles, but rather as a
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set of formulas of LH , which themselves define sets of abstraction principles. This will

require us to consider a Gödel numbering on the formulas of LH (which will thus be

required to talk of its own syntax) as well as of L

For a formula ϕ of LA, let Sϕ ⊂ AP be the set of abstraction principles which is

defined by ϕ. That is, Sϕ = {A ∈ AP ∶ ϕ(⌜A⌝) is true}. Then, we have the following

definitions:

• SUC ⊆ P(AP) is definable iff there is some formula Φ of LA such that for each

formula ϕ of LA, Sϕ ∈ SUC if and only if Φ(⌜ϕ⌝) is true.

• SUC is positively representable in T iff there is some formula Φ of LA such that

for each formula ϕ of LA, Sϕ ∈ SUC if and only if T ⊢ Φ(⌜ϕ⌝).

• SUC is negatively representable in T iff there is some formula Φ of LA such that

for each formula ϕ of LA, Sϕ ∉ SUC if and only if T ⊢ Φ(⌜ϕ⌝).

3.6 Conclusion

The aim of this chapter has not been to say much which directly concerns the substance
of the bad company problem; I have not sought to defend any particular solutions to the

problem, nor to criticise any proposed solutions. Nor have I said anything concerning

the consequences of the bad company problem in general for abstractionism.

Rather, my concern has principally been with the methodology around the bad

company problem. I have claimed that, instead of proceeding in a piecemeal manner,

by considering potential restrictions in isolation from one another, we should instead

survey the space of possible restrictions as a whole, for which we require a framework

to consider such questions.

Providing such a framework for considering restrictions on abstraction principles

as a whole has been my main aim. Restrictions on abstraction principles should be

considered primarily as sets of abstraction principles. But a restriction may also be

treated as some description of a property of abstraction principles, by considering the

definability of that set in some language or other.

It is also important to consider what would be required for a proposed solution

to be successful in solving the bad company problem. Such requirements can also be

considered as a set—this time a set of possible restrictions—and for this as well we can

consider particular definability characteristics.

I have not sought in this chapter to put this framework to use. In the next chapter,

however, I will do so, by arguing that any restriction, if it is to be capable of playing

the appropriate epistemic role in Hero’s development of arithmetic, must have certain

definability characteristics.



Chapter 4

The epistemological bad
company problem

4.1 Introduction

In this chapter, I shall argue that there is an epistemological element to the bad company

problem, which a solution must overcome by satisfying certain requirements. I shall

furthermore argue that none of the proposed solutions satisfy these requirements and

that, although we can construct restrictions with these requirements in mind, the

resulting restrictions fail to be successful.

Recall that neo-Fregeanism has as a key part to it an epistemological aim—to show

that knowledge of mathematics can be gained through the use of abstraction principles.

Then a question arises concerning what epistemological role a restriction on abstraction

principles must play. We can again bring the character of Hero into play, and frame the

question in terms of her.

Suppose that S is the set of acceptable abstraction principles. We can then ask: What

role must S play in Hero’s development of mathematics? What must Hero know about S
in order to gain knowledge from laying down an acceptable abstraction principle? Now,

with this question in place, a potential problem emerges. It may turn out that some

proposed S may not be capable of playing the role required of it.

A problem along these lines is raised by Ebert and Shapiro (2009). They consider

various options concerning the role that restrictions might play and the requirement on

what Hero must know. They find all of these options unsatisfactory for various reasons. I

will be considering some options which are very similar to those that Ebert and Shapiro

consider.

My aim in this chapter will be to develop an argument similar to that given by Ebert

and Shapiro. Along the way, I will make use of an argument given by Weir (2003) which,

although not an epistemological argument in its original form can—I believe—be used

to press an epistemological point.

My approach will be similar to that of Ebert and Shapiro in that I shall consider

various options concerning the role that S may have in Hero’s development of mathemat-

ics. My argument will differ as follows: Firstly, Shapiro and Ebert ask what is required
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for knowledge, whereas I shall ask what is required for justification. I shall argue in the

next section why I believe that it is better to ask the question in terms of justification.

Secondly, for each option considered for the role that S may play in the epistemology,

I shall identify the properties that S must have in order to play that role. Finally, I

shall consider an option not considered by Ebert and Shapiro, which does not suffer

from any of the problems that they raise, nor from the problem raised by Weir. I will

however argue that this final option will rule out any of the restrictions which have been

proposed.

4.2 The role of restrictions in neo-Fregean epistemology

So, the questions that I aim to answer are the following: Firstly, given some restriction S
and abstraction principle A, what must Hero know (or be able to know) in order for her

to gain knowledge that A is true simply by stipulating it? Secondly, given an answer to

the first question, what must a solution be like in order for the right kind of conditions to

be in place for Hero to be able to gain knowledge by stipulating abstraction principles?

The first question can also be asked, not in terms of knowledge, but simply in terms

of justification. The question then becomes: What does Hero have to know (or have

justified belief in) in order to be justified in believing the consequences of an abstraction

principle?

Indeed, I think that there are reasons as to why it is preferable to ask the question

in terms of justification. One reason is principally pragmatic. By only considering

justification, we do not need to worry ourselves with a number of tricky issues which

may arise due to sceptical worries or the possibility of Gettier cases. So, for example,

someone may perhaps claim that in some circumstances, although Hero is justified

in believing an abstraction principle A, she nonetheless fails to know this through the

world failing to cooperate in some way or other. For example, Amay fail to be true, or

the true justified belief may fail to be knowledge (as in a Gettier case), each through no

fault of Hero’s. In considering only the justification question, such problems will not

arise. Or, at least, they can then be dealt with separately.

But the justification question will also be adequate to my purposes, since an episte-

mological challenge which calls into doubt the possibility of justification of a certain

kind will be stronger than one that calls into doubt the possibility of knowledge. It

will also not be susceptible to a response that it is simply a sceptical worry that may

perhaps be brushed off. There are two epistemological aims that abstractionism could be

though to have, one weak and one strong. The weak aim is to show how mathematical

beliefs—platonistically construed—can be justified. The stronger claim is to show how

such beliefs can amount to knowledge. By considering questions about what is required

for Hero to be justified in believing an abstraction principle, my target in this chapter is

the weaker of these two aims. And if there is a problem for this weaker aim, then clearly

there will be too for the stronger aim.1

1Although prima facie it is the stronger of these aims which is required for answering the epistemological

challenges to platonism, I believe that a case could be made for the weaker aim sufficing. For if Hero is

justified in believing mathematics, platonistically construed, then we will successfully have shown that belief

in platonistic mathematics can be justified, and hence that platonism can be justified. This seems to me to be

adequate to the task at hand. If it could be shown that mathematical beliefs—platonistically construed—are in
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Whilst on the topic of justification, it will be useful to briefly consider an issue

concerning the nature of justification which will play a role in my discussion. That issue

is the debate between internalists and externalists about justification. Roughly speaking,
internalists claim that whether a belief is justified depends only on factors internal to the

person who has that belief, whereas externalists do not. More precisely, there are two

ways in which one can be an internalist. The first, which is often called access internalism
holds that, when A is justified in believing that p, A will have access to her source of

justification. By contrast,mentalism is the view that it is only mental states which play a

role in justifying a belief; hence if two agents are alike mentally, they will be alike with

respect to whether they are justified in having a belief.

I intend to remain neutral concerning whether the present notion of justification is

an internal one. Nonetheless, the issue will arise at various points, in which case I will

attempt to clarify why it is that my arguments do not rely on adopting either position.

So, if we then frame the questions in terms of justification, we have the following:

1) What position does Hero need to be in with respect to S and A in order for her to

be justified in believing A and its consequences?

2) Given an answer to (1), what does S have to be like in order for it to be possible for
Hero to be in such a position (and thus be in a position to have a justified belief

in A and its consequences)?

The first of these breaks down into two separate questions, regarding what Hero

knows (or or is justified in believing)2 about the relationship between A and S, and what
Hero knows about S itself. Firstly, given a proposed solution S, to what extent does

Hero have to be able to know of each abstraction principle Awhether A is acceptable

according to this solution? Secondly, does Hero have to be able to know that S is the set

of acceptable abstraction principles, or, at least, does she have to be able to know that it

is successful (e.g. that it avoids consistency).

That is, question (1) can be divided into:

1a) What position does Hero need to be in with respect to the question of whether

A ∈ S?

1b) What position does Hero need to be in with respect to the question of whether

S ∈ SUC?

Answers to these two question will then determine to some extent answers to the sec-

ond question. Moreover, these answers can be given in terms of the various definability

and representability properties that S may have in a particular language.

There will be some language LH that Hero speaks prior to the introduction of

abstraction principles, and some theory governing her use of that language. If questions

concerning what Hero knows about S are to even get off the ground, it must be the

case that LH includes some method of referring to abstraction principles themselves.

That is, Hero’s language must include at least some fragment of some language in which

syntax can be formalised. So, we may assume that it is some fragment of the language

general justified, to then object that they are nonetheless systematically false strikes me as, at worst perverse,

and at best no more than outright scepticism (see Burgess and Rosen (2005) for a similar claim).

2I will refrain from adding this parenthetical remark to each instance of ‘know’ in this paragraph.
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of arithmetic. Similarly, there will be some theory TH governing Hero’s use of this

language. Presumably, such a theory will far weaker than, say, Peano arithmetic, since

we are assuming that Hero does not have any knowledge of arithmetic. Since the aims

of neo-Fregeanism are to show how Hero can have knowledge of abstract objects, TH
should be weak enough that any consequences of it can be interpreted as being about

concrete objects, such as tokens of abstraction principles, rather than abstract types. I
shall discuss in more detail what such a theory could be later, in section 4.4.1

Now, consider what answers may be given to (1a) and (1b). Suppose that it is required

that Hero knows that an abstraction principle is acceptable in order to be justified in

believing A and its consequences. Whether such a situation is possible will depend on

various characteristics of S. So, it might be required that S is definable in LH , in which

case it could be claimed that, at the very least, Hero must know what it is for some

abstraction principle to be acceptable. It might also be required that S be representable

in TH , so that, not only can Hero know what it is for an abstraction principle to be

acceptable, but is able to prove whether any given abstraction principle is acceptable or

not.

We can likewise ask similar questions concerning SUC. What we require of SUC
will depend on the answers given to (1b).

We thus have the following two questions corresponding to (2) in the same way as

(1a) and (1b) correspond to (1):

2a) Must S be definable in LH? Must S be representable in TH?

2b) Must SUC be definable in LH? Must SUC be representable in TH?

4.3 The options

The way in which I intend to answer these questions is to consider various options

concerning what properties S must have. That is, I shall consider primarily possible

answers to question (2a). For each option, I will discuss what kind of answer to the first

question would motivate such a choice (and the motivation for that answer). I will then
consider firstly whether such an answer is plausible, and secondly whether there are

likely to be any proposed restrictions which satisfy the requirements.

Finally, I will consider answers that might be given to the questions (1b) and (2b).

I shall however be brief on this part of the issue, since the options to consider will

correspond very closely to the options concerning (1a) and (2a).

4.3.1 Option 1: Provability
One immediate thought would be that, in order to be justified in accepting an abstraction

principle, Hero must have justification for the claim that the abstraction principle is

acceptable. Since the standard means of being justified in accepting some logical or

mathematical claim is proof, Hero must then be able to prove that the abstraction

principle is successful.3 The answer to question (1a) would thus be: In order to be justified

in believing an abstraction principle A, Hero must have proved that A is acceptable.

3Of course, it could be rejected that the claim that an abstraction principle is acceptable is either logical or

mathematic. Nonetheless, in cases of the sorts of formally stated restrictions which are common, proof may

still be expected.
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An answer to the corresponding question (2a) then immediately follows. If this is

to be possible, then it must be the case that, for any acceptable abstraction principle A,
it is provable from TH that A ∈ S. I.e., S must be representable in TH (and hence also

definable in LH).

This position is essentially the same as the first option considered by Ebert and

Shapiro, under the title ‘Ya really gotta know’—it is the option that ‘Hero must be in a

position to show that the conditions . . . are met in order to be credited with knowledge

of the implicit definition in question’ (p.425).4 But this would, Ebert and Shapiro claim,

be an impossible achievement, whatever the condition of acceptability might be. A

necessary (though not sufficient) part of a condition of acceptability will be consistency,

and so Hero must be able to prove that a given abstraction principle is consistent. But

it is a consequence of Gödel’s second incompleteness theorem that a theory (such as

one which results from an abstraction principle) can be proved consistent only from the

viewpoint of what is in some sense a stronger theory, and, as already noted, whatever
TH might be, it will surely be much weaker than arithmetic.5

In describing what is required for Hero to know that a principle is acceptable, there

is an alternative to the requirement that it be provable. It could instead perhaps be

required simply that it is decidable, in the sense that there is some effective decision

procedure, such as an algorithm, for determining whether any abstraction principle

is acceptable or not. In this case, the condition of acceptability would not be given in

terms of some sentence that needs proving by Hero, but rather in terms of something

like an algorithm that must give the correct answer. This approach, however, seems

to suffer the same problem as requiring provability. For it is undecidable whether an

arbitrary abstraction principle is consistent or not.6

So, the requirement that Hero must know seems to be far too demanding. It would

require something that is simply impossible. Indeed, it seems that a similar requirement

for any similar project would be too strong, resulting in some form of scepticism about

many kinds of knowledge.

The situation is not, however, quite so simple; Ebert and Shapiro’s objection needs

extra finessing. Although consistency as a requirement is neither provable nor decidable,

it does not follow that any restriction S suffers similarly. For although S must only

contain consistent abstraction principles—so that it is a subset of the (undecidable and

unrepresentable) set of consistent abstraction principles—it does not follow that S itself

is unrepresentable or undecidable.7 Consider for example the rather simple restriction

Aweaker condition for Hero being justified that A ∈ Smay also be suggested, such as having good inductive

evidence. Such a position will be similar to one that I consider later.

4Shapiro and Ebert characterise such a position as internalist. But it should be noted that, although the

position would be acceptable to internalists of any stripe, it does not require internalism to be true in generality.

For there is nothing about externalism to suggest that there are not certain kinds of belief—or ways of forming

beliefs—in which the requirements for justification are internal; the situation of mathematics and proof seems

plausible as such a case.

5It is not quite right that a stronger theory is required. For example, Gentzen’s proof of the consistency

of arithmetic requires a theory which is neither stronger nor weaker than arithmetic in any natural way.

Nonetheless, whatever TH might be, it is unlikely to be able to prove the consistency of arithmetic.

6Heck (1992) proves this result. The reason is that such a decision procedure could be transformed to a

decision procedure to decide whether an arbitrary sentence of second-order logic is consistent, and no such

decision procedure exists.

7Alternatively, this could be put in terms of the conditions which define the set S—as Ebert and Shapiro

do—by saying that ‘consistency is among the conditions’ (p.425). In this case, consistency only needs to
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on abstraction principles which says that HP is acceptable, but no other abstraction

principles are, even if they are equivalent to HP (ie. S = {HP}). Then this entails

consistency, in that all abstraction principles satisfying it (ie. just HP) are consistent. But

this restriction will be both definable and representable in any reasonable choice of LH
and TH . For the formula x = ⌜HP⌝ will define S, and any (even very minimal) theory

of syntax should be able to prove such an equality. (Similarly, because S is definable by
such a simple formula, it is decidable.)

Whether this is a viable option will depend on whether Hero—as well as being able

to prove of each A ∈ S that A ∈ S—can also prove that S is a subset of the consistent

abstraction principles (or, in terms of conditions, that the conditions entail consistency).8

And whether Hero can prove this will depend on the answer to the second question,

concerning whether Hero needs to be a position to prove whether the restriction S
is successful, ie. whether S ∈ SUC. The kind of motivation for expecting S to be

representable will also presumably motivate this requirement as well. If it is required
that Hero has to prove this, then there are two options. Either Hero will be acquainted

with S via the aforementioned formula (x = ⌜HP⌝), in which case a proof that S ∈ SUC
will essentially just be a proof that HP is consistent. This will be impossible given a

relatively weak theory TH for the given reasons. Or, Hero will be acquainted with S by
some other definition, which she can prove to be consistent (perhaps), but for which

she can not prove that HP is a member. So, if both requirements are in place—that Hero

is able to prove that S ∈ SUC and that A ∈ S—then the proposal that Hero must know is

going to be too strong.

4.3.2 Option 2: Entitlement and imponderable solutions
In any case, it does seem that to demand that it be proven whether any abstraction prin-

ciple is acceptable would be too strong, and would bring along with it an epistemological

form of the bad company problem which could simply be rejected. Might we instead be

able to motivate a position according to which much less is required of Hero? That is,

may we be able to claim that, in order for Hero to be justified in believing an abstraction

principle A, she need do no prior work in establishing whether or not A is acceptable

(or, at least, no work so onerous as providing a proof)?

What could such motivation look like? One way might be to claim that, if A ∈ S,
then this fact itself may serve as justification of a belief that A is acceptable, regardless of

Hero’s acquaintance with this fact. This view would be an extreme form of externalism

about justification, since the justification for the belief is neither accessible to Hero, nor

a part of Hero’s mental life. It amounts to the claim that a belief that p is justified just in

case p is true (albeit for a restricted class of propositions).

At best, however, this view is unmotivated. For it to be viable, something would

need to be said about how it could be that the mere truth of a belief could result in that

belief being justified, independently of how that belief was formed. There are certain

kinds of belief for which it may be possible to motivate such a principle—such as beliefs

be among the conditions in that they materially entail consistency. But this entailment may fall short of

provability.

8Note that it is important that what is at issue is whether Hero can prove this, and not simply that she

knows it. For it seems that Hero will know that any acceptable abstraction principle is consistent in any

case—she is supposed to be able to know that they are true, which surely entails consistency.
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about one’s ownmental state—but this motivation is unlikely to also apply to the present

case.

But, a more plausible approach is available which would have a similar result, and

which would—depending on the precise details—be acceptable to both internalists

and externalists. The problem with the previous option, it might be thought, is that it

requires Hero to do the requisite work needed in order to become certain (or close to

certain) that an abstraction principle is acceptable. Such a requirement of certainty is

likely to lead to scepticism in any circumstances. Instead, it could be claimed that Hero

may have an entitlement to believe that an abstraction principle is suitable as an implicit

definition, where an entitlement is a kind of right to believe which does not require

having evidence for that proposition. There have been a number of proposals concerning

entitlements to beliefs,9 but the proposal which is most relevant to the present task is

that of Wright (2004a,b).

According to Wright, there are certain propositions which we may be entitled to ac-

cept without having evidence for their truth.10 Such propositions he calls presuppositions
or cornerstones of some cognitive project.

Wright defines what it is for a proposition to be a presupposition as follows:

P is a presupposition of a particular cognitive project if to doubt P (in

advance) would rationally commit one to doubting the significance or

competence of the project. (Wright, 2004a, p. 163)

Then, we will be entitled to accept P under the following circumstances:

(i) [T]here is no extant reason to regard P as untrue and

(ii) The attempt to justify P would involve further presuppositions in

turn of no more secure a prior standing, . . . , and so on without limit;

so that someone pursuing the relevant enquiry who accepted that

there is nevertheless an onus to justify P would implicitly undertake

a commitment to an infinite regress of justificatory projects, each

concerned to vindicate the presuppositions of its predecessor.

(Wright, 2004a, p. 163)

Now, how could this motivate the claim that Hero is not required to know anything
about the acceptability of abstraction principle A in order to be justified in believing A?
And what kind of answer to the second of my questions—concerning what properties a

proposed solution must have—can it be used to motivate?

First, we must be clear on what the cognitive project in question is, and what the

cornerstone proposition is that Hero may be entitled to accept. Consider an abstraction

9See, for example Burge (1993); Dretske (2000); Peacocke (2004).

10Wright makes a distinction between belief in a proposition, and mere acceptance of the proposition,

where the latter may fail to amount to the former. The details of such a distinction will not make a difference

to my evaluation of the present option. In particular, it should make no difference whether Hero has an

entitlement to believe that an abstraction principle is acceptable or merely an entitlement to accept that it is

acceptable. I will tend to use ‘accept’ and ‘believe’ interchangeably.

Wright also seems to refrain from calling entitlement a kind of justification (and other authors making use

of entitlements explicitly make a distinction between justification and entitlements). Again, I shall not be

making such a distinctions; the way I am using ‘justification’ is such that, if there are entitlements, then they

are a form of justification.
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principle A, which purports to provide a definition for terms referring to certain kinds

of abstract objects, Fs. It seems that it is a worthwhile cognitive project to make use of

A in order to expand one’s vocabulary (to include terms referring to Fs), and to discover
truths about Fs. In this case, it seems that a presupposition of the cognitive project is

that A is indeed capable of providing an implicit definition of Fs. Otherwise, our terms

purporting to refer to Fs would be ill-defined, and thus the project would fail to be a

competent one. 11

Now, if the conditions (i) and (ii) obtain concerning the acceptability of A, it is
possible to see how Hero may be justified in believing A. The story is similar to one

which may be told as in option one; in order for Hero to be justified in believing A and

its consquences, she must be justified in believing that it is acceptable as an implicit

definition. But, as long as (i) and (ii) obtain, she is justified in believing that A is

acceptable as an implicit definition, as a matter of entitlement.

So, what would a proposed restriction S have to look like for the foregoing to be

the case? It seems that there would be no requirement whatsoever on what S is like.

Consider, for example, a restriction which is neither representable in TH , nor even

definable in LH . That is, the restriction S can only be stated in a language that Hero

does not understand. Some of the model-theoretic restrictions considered in 3.2.2 may

fall into such a category. They are typically stated in a way that makes use of much set-

theoretic vocabulary. But it is an assumption about Hero that she does not start off with

an understanding of even arithmetical vocabulary, let alone the kind of sophisticated

set-theoretic vocabulary needed to express, say, stability.

Hero in such a case will obviously not be able to accept the claim that A satisfies

the particular restriction S, but she will be able to accept that A satisfies whatever it
takes to be suitable as an implicit definition. Moreover, it will also be the case that this

belief (or acceptance) will satisfy (i) and (ii) in more or less trivial ways. Since S is not
even definable in Hero’s language, Hero will not be able to know what it is for some

abstraction principle to be unacceptable, and so can not be in possession (or be expected

to be in possession) of any reasons to suspect that A is unacceptable. Moreover, due

to the non-representability of S, there is no hope of Hero being able to prove that S is
acceptable. Thus Hero will be entitled to accept that A is acceptable.

A similar situation arises if a slightly less extreme position were to be taken, ac-

cording to which it is required that S be definable—so that Hero can state what it is for

some abstraction principle to be acceptable—but with no requirements at all on repre-

sentability. Then there may be restrictions S such that: there are abstraction principles

S with A ∉ S, but for which no evidence can come to light, from Hero’s perspective,

that shows that they are indeed unacceptable. An example might be Fine’s requirement

that an abstraction principle be non-inflationary, where an abstraction principle is non-

inflationary if it does not require that there are more abstracts than there are objects.

A non-inflation requirement can be expressed internally, since it is expressible in pure

third-order logic. But whether an abstraction principle is non-inflationary will depend

very much on how many objects there actually are, which can not be known prior to

laying down an abstraction principle.

11This claim concerning what should be taken to be the candidates for being entitlements should be

contrasted with an alternative application of entitlements to the neo-Fregean programme. For example,

Pederson (2011) claims that it is the abstraction principles themselves (and, in particular, HP) which are

candidates for being entitlements.
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Call such restrictions imponderable. They are the restrictions which are neither

positively nor negatively representable in TH , and may even be undefinable in LH . That

is, no possible evidence available to Hero can tell either for or against an abstraction

principle’s acceptability. The resulting position is then the following: in answer to

question (1a), for Hero to be justified in believing A and its consequences, the conditions

(i) and (ii) of entitlement must obtain.12 In answer to question (2a), any restriction can

then play such a role, whether ponderable or imponderable. In the case of imponderable

restrictions, it will be the case that the conditions (i) and (ii) obtain automatically. The

resulting picture—at least in the case of imponderables—is similar to that discussed by

Ebert and Shapiro under the title ‘if it’s good it’s good’.

There are a number of problems however with this position. The first, given by

Ebert and Shapiro, is that, given some plausible assumptions about the behaviour of

restrictions, it leads to it being possible for Hero to knowmany non-trivial mathematical

truths (their example is Fermat’s Last Theorem) without significant work. The second—

which is similar to a problem thatWeir (2003) raises for a particular proposed restriction

(stability)—is that it makes it impossible to distinguish between the good abstraction

principles and the bad.

The problem of easy mathematic knowledge as presented by Ebert and Shapiro

(pp.429–430) is as follows. Let ϕ be some true sentence in the usual language of arith-

metic, a standard proof of which may be highly non-trivial. Now, in pure second-order

logic a sentence can be constructed which effectively says that any structure satisfying

the second-order Dedekind–Peano axioms satisfies ϕ. Let ϕ[F , f , x] be the result of re-
placing each occurrence of 0 and s in ϕ by variables x and f of the appropriate type, and
restricting the quantifiers to F. Then, where PA is the conjunction of the second-order

Dedekind-Peano axioms, and PA[F , f , x] is formed in the same way as ϕ[F , f , x], let
ϕ∗ be the sentence ∀F∀f∀x(PA[F , f , x] → ϕ[F , f , x]). When ϕ is true of the natural

numbers, ϕ∗ will be a truth of pure second-order logic.

Now, consider the following abstraction principle:

(HPϕ) ∀F∀G[§F = §G ↔ F ≈ G ∧ (ϕ∗ ∨ ∀x(Fx ↔ Gx))]

The important properties of HPϕ are as follows. (a) The abstracts introduced by HPϕ
can be considered to include natural numbers in that—as with HP—a version of the

Dedekind–Peano axioms can be proved by introducing the language of arithmetic as

abbreviations. (b) Since ϕ is true of the natural numbers (and hence ϕ∗ is logically

true), HP and HPϕ are logically equivalent. (c) HPϕ entails ϕ (where the arithmetical

vocabulary in ϕ is substituted according to the abbreviations used in (a)), and the proof

is relatively simple—if ϕ∗ were not the case, then HPϕ would effectively become BLV

and so would result in inconsistency.

Now, on the assumption that acceptability is closed under logical consequence, HPϕ
will be acceptable, since HP will presumably be deemed acceptable by any proposed

restriction. So, under the present proposal, Hero can lay down HPϕ to gain both

knowledge of the natural numbers and that ϕ is true of them. To do this, she does not

need to prove that it is an acceptable abstraction principle.

Of course, the proponent of the view that Hero need not know anything about

whether an abstraction principle satisfies a given restriction could simply reject the

12There is a further question concerning whether Hero must know that they obtain. An access internalist

may require that she must, whereas others may not.
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assumption that the correct restriction will be closed under logical consequence. The

problem of easy mathematical knowledge simply shows that the correct restriction

will be one that is not closed under logical equivalence, so that HP is acceptable whilst

the equivalent HPϕ is not. This is essentially the reply that Hale and Wright (2009a,

pp.478–481) give; they reject HPϕ on account of it being ‘arrogant’, where arrogance is
‘the situation where the truth of the vehicle of the stipulation is hostage to the obtaining

of conditions of which it’s reasonable to demand an independent assurance’ (p. 465). It

seems to me that such reply is decisive.

However, there is another problem with this position which does not rely on the

assumption of closure. In particular, an issue arises for imponderable restrictions.

Consider a restriction which is imponderable (and which is being relied on alone as

demarcating the good abstraction principles from the bad)13 For a concrete example,

suppose that the restriction in question is simply the satisfiability of an abstraction

principle on the universe. That is, for an abstraction principle

(AP) ∀F∀G[§F = §G ↔ ϕ(F ,G)],

to be acceptable, its Ramsey sentence (a third-order sentence):

∃f∀F∀G[f(F) = f(G) ↔ ϕ(F ,G)]

must be true (with its quantifiers ranging over absolutely everything). This restriction

is plausibly internally definable (since it is expressed purely in third-order logic), but

appears to be neither positively nor negatively representable (since if it were known of

some abstraction principle that its Ramsey sentence were true, there would be no need

to stipulate it). It is thus imponderable.

Now, suppose that there are two theorists, Hero1 and Hero2, who lay down, re-

spectively, HP and NP, and hence come to believe the consequences. According to the

standard abstractionist story, in such a situation Hero1 comes to know HP, and thus is in

a position to come to know the Dedekind-Peano axioms by laying down a few explicit

definitions. By contrast, Hero2’s belief is faulty in some way. But this difference can

not be explained in terms of differing justificational status; for, given the story about

entitlement, bothHero1’s belief andHero2’s belief are justified, and justified in essentially

the same way.

We thus have a situation in which both Hero1 and Hero2 are both justified in their

resulting beliefs, despite them being inconsistent with one another. And indeed, anyone

in a similar situation (i.e. laying down some abstraction principle or other) would be

justified in their belief. This is situation is a rather unattractive one to accept. It is of

course not flat out inconsistent; it may in general be possible for different people to be

justified in their mutually incompatible beliefs. But such situations will presumably be

ones in which the two people have access to different evidence. For example, if Hero1

and Hero2 both had different views of the same physical object they may form mutually

incompatible beliefs, but still be justified in having those beliefs. The present situation

is not like that, however; Hero1 and Hero2 have access to exactly the same information,

and, moreover, they are justified in having their respective beliefs to the highest level

possible.

13The assumption that the imponderable restriction is relied on by itself is not strictly speaking required.

For, if a restriction is imponderable, so too will be the conjunction of that restriction with any other restriction.
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The problematic nature of the situation could also be explained in terms of the notion

of reliability. The situation is such that justified beliefs about abstraction are utterly

unreliable. That is, being justified in believing an abstraction principle is in no way a

reliable indicator of that abstraction principle being true. For there will be infinitely

many unacceptable abstraction principles which are justified on such an approach (since

all abstraction principles would be justified). One does not have to be a reliabilist14 to

see this as problematic. For presumably it is the case that we should accumulate beliefs

in such a way that—barring any external factors which are out of our control—we have

mostly true beliefs. But, with imponderable restrictions on the scene, this will not be

the case.

Still, it might be thought that, as long as we can appeal to an external perspective

from which to evaluate the beliefs of Hero1 and Hero2, there will be no problem. That

is, since we know that the universe is infinite, we can explain why it is that Hero1’s belief

results in knowledge, whereas Hero2’s belief is justified but mistaken in some sense.

This is to take an external perspective in that we already assume a certain amount of

mathematical theory, in which we can determine that there are infinitely many objects.

But then how do we justify this perspective? Such a perspective essentially presumes

platonism. But, if the aim of this epistemological discussion is to show how it is that

platonism may be justified, this would clearly beg the question against those—such as

nominalists—who would claim that it is not.

A final suggestion concerning imponderable solutions might be the following: At

first, perhaps, a restriction will be imponderable for Hero. But then, having been

entitled to accept that certain abstraction principles are acceptable, she builds up a

body of mathematical vocabulary and theory. At this point, the restriction is no longer

imponderable; Hero may kick down the ladder provided by her initial entitlement and

prove, from her new perspective, that the initial abstraction principles were acceptable

after all. But, on further inspection, this too will not solve the problem. For which

abstraction principles may be proved to be acceptable will depend on which abstraction

principles are laid down in the first instance. For example, on laying down NP, it will be

possible to prove that the Ramsey sentence of NP is true, whereas the Ramsey sentence

of HP is false, and conversely.

This problem is not, however, specific to this example (that is, of universal satisfi-

ability); it will apply to any restriction which is imponderable. For in any such case,

there could be a situation in which Hero1 and Hero2 lay down competing abstraction

principles, which—due to the imponderability of the restriction—can not be decided

between, as in this case.

So, for example, Weir (2003) raises a problem for stability which can be seen to result
in the same kind of situation.

Weir raises a problem which he calls ‘Embarrassment of Riches II’ (Embarrassment
of Riches is his name for the bad company problem). He does not consider it as a

specifically epistemological problem, but rather as an ‘analogue of the ER objection

simply [recurring] at a metatheoretic level’ (p. 15). Nonetheless, the problem has—as a

corollary—exactly the kind of epistemological problem that I have just raised.

The problem is the following:15

14Reliabilists about justification claim that a belief is justified just in case is has been formed by a reliable

process. See, for example Goldman (1979)

15See page 3.1 for the definition of a distraction.
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Consider a bunch of theorists, each taking a distraction principle as the

basis for their pure mathematics, but a different one, utilizing a different

definition of Bad, in each case.. . .

. . .They can all take over the same definition of stability and each can define

‘acceptable’ in the same way but relative to provability from their own

abstraction principle. Moreover, from the standpoint of any one theory,

each of the others is unstable either because it places a cap on the universe

at some unacceptably low cardinality or because it has no set models at all.

And since the five distractions are pairwise inconsistent, each can prove

that every other is unacceptable.

The upshot, then, is just the same as that for universal satisfiability. In particular,

we have a number of theorists, each with their own abstraction principle, but no way

of deciding between them. Moreover, Weir’s example shows that the ‘ladder kicking’

response will be no good here either; the notion of stability which arises for any set

theoretic abstraction principle will be such that that abstraction principle passes, but

others fail.

Likewise, similar arguments could be levelled at any other imponderable solution.

4.3.3 Option 3: Innocent until proven guilty
To avoid this problem, there is no need, however, to go all the way back to option 1,

requiring that Hero first prove that her chosen abstraction principle is acceptable. An

intermediate position can be arrived at by modifying the notion of entitlement slightly.

Entitlement permits a certain amount of fallibility in Hero’s beliefs, and for her to ‘fly

without a safety net’, as Shapiro and Ebert put it (p. 433). Her belief in the acceptability

of an abstraction principle is innocent until proven guilty.

The problem with imponderable restrictions arises because it forecloses the very

possibility of any abstraction principle to be proven guilty from Hero’s perspective, even

in the case of abstraction principles which we would, from our external perspective,

declare guilty. That entitlement appears to permit imponderable solutions then seems to

be to be more of a bug than a feature of the notion. For the notion of entitlement to be

meaningful, we must require that there be such a possibility; imponderable restrictions

must be ruled out.

I would suggest that the problem may be avoided by adding a new condition to

entitlement that corresponds to this requirement. That is, in order for Hero to be entitled

to accept a proposition P (in this case, that an abstraction principle is acceptable), as

well as (i) and (ii) holding, it must be the case that, if P is in fact false, it is possible, in

principle, for Hero to discover that it is false.16

But the upshot concerning questions (1a) and (2a) should be fairly clear. The answer

to (1a) will be much the same as in option 2. But in answer to (2a), if it is to be possible for

Hero to discover of unacceptable abstraction principles that they are indeed unacceptable,

16Some care would be needed to give a fully rigorous specification of such a requirement, and, in particular,

the treatment of the conditional featured in it. Amaterial conditional would not seem adequate, and something

like a counterfactual conditional would face problems related to the fact that if an abstraction principle is

acceptable, it is necessarily so. But it seems likely that such worries could be overcome.
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we must have that S is negatively semi-representable in TH . That is, S must be definable

by a formula ϕ in LH , and, given some A ∉ S, it must be provable from TH that ¬ϕ(A).
Now that the modification to entitlement has been made, the problems with the

previous two options no longer arise. Consider first the problem with option 1, that it

runs afoul of Gödel’s incompleteness theorems. This problem no longer arises. What the

incompleteness theorems show is that it is not possible to prove of consistent abstraction

principles that they are indeed consistent. But what is now required (if we just consider

consistency) is a kind of converse. We need to be able to prove inconsistency, and the

incompleteness theorems do not threaten this. Indeed, it is clear how to prove that an

inconsistent sentence is inconsistent without assuming much—if any—mathematics:

Simply derive a contradiction from that sentence.

The present option will also not suffer from the main problem that I raise for the

second option. Suppose again that we have two theorists, Hero1 and Hero2, and they

both put forward competing abstraction principles, which can not both be acceptable.

Suppose for example that Hero1’s abstraction principle is acceptable and Hero2’s is

unacceptable. It may be that, at first, neither Hero1 and Hero2 are aware of any evidence

which tells against their respective beliefs. But, if the notion of acceptability is negatively

representable, then it will be possible to prove, from the initial perspective shared by

Hero1 and Hero2, that Hero2’s abstraction principle is unacceptable. When made aware

of such a proof, Hero2 will no longer be justified in believing her abstraction. We thus

do not reach the kind of standoff that resulted in the previous case.

4.3.4 Definability and representability of SUC

I have still not said much about questions (1b) and (2b), which relate to what Hero must

know about whether S is successful as a restriction. Ultimately, we want to know to

what extent we require SUC to be definable or representable in Hero’s initial language.

There is not much new to say in this regard. The options will be much the same as

before, and corresponding motivations and objections will apply.

As before, an immediate thought is that Hero must be able to prove of any S whether
S ∈ SUC or not. The reason is that, in order for Hero to make use of a restriction, she

first has to come by such a restriction. Unless some kind of divine revelation is imagined,

in which Hero is told of some restriction from on high (or, more plausibly, by somebody

approaching the neo-Fregean enterprise from an external perspective), the only clear

way in which Hero can come to accept some restriction is by proving it to be successful.

However, unlike the first option considered previously, this position does clearly fall

foul of Gödel’s second incompleteness theorem. This would require that Hero be able to

prove of any consistent set of abstraction principles that it it consistent. Since some sets

of abstraction principles are sufficient to interpret arithmetic, this will not be possible

unless Hero already has access to some particularly strong theory.

We can, however, give a similar answer to this question as we did to the previous

question. That answer is that, as long as SUC is negatively representable, Hero will have

an entitlement to accept that a given solution S is successful, absence evidence to the
contrary. The resulting picture would be as follows: Hero may try out some particular

restriction, say consistency, and be entitled to accept that it is successful. However, she

may then come across reasons that the solution is not in fact successful (say, the mutual

incompatibility of HP and NP), at which point her entitlement is defeated, and she is
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forced to find some other restriction. In fact, this would be much the same as how the

discussion of possible solutions has gone in the literature—restrictions are proposed,

then possible defeaters are found, and so on.

4.4 Evaluating solutions

The situation is then as follows. I have argued that there must be an epistemological

component to considerations about the bad company problem. I have furthermore

argued that, in order for a proposed restriction on abstraction principles to be able to

play the epistemological role required of it, it must be negatively representable in Hero’s

original theory TH . Moreover, the set of successful restrictions (which we are assuming

to simply be those which avoid inconsistency) must also be negatively representable in

TH .

Now, prima facie, there will be negative consequences to such a requirement. A

number of solutions which have been proposed, including those which seem most

promising, seem to be ruled out. Among these, it seems, would be the various model

theoretic solutions, since they appear to require a substantial amount of mathematical

language to state. Those restrictions such as non-inflation which involve the unrestricted

domain may also be rejected since there does not seem to be an internally acceptable

method by which Hero could rule out inflationary abstraction principles. At the other

end of the scale, consistency appears to pass the test, although it fails to rule out all bad

company.

But, to be sure of these consequence, a more systematic approach is needed. It is not

clear, for example, whether any of the solutions based on consequences will pass the test.

Or, it might be the case that some of those which appear at first to be ruled out, should

not be, perhaps in a different guise. Two things are required. First, we need to be clear

on what we should take to be Hero’s language LH and theory TH . Secondly, we need

to check each restriction to see if it is negatively representable, given such a choice. It

might also be desirable to investigate whether there are any sets of abstraction principles

which (1) avoid all instances of bad company and (2) satisfy the relevant definability and

representability conditions. I will however argue that this latter is not a realistic goal.

4.4.1 Hero’s language and theory
Before we can assess any of those restrictions which have been suggested, plausible

candidates for LH and TH need to be settled on. The language and theory are ideally

going to be very weak, since Hero is supposed not to have any knowledge of mathematics

before laying down abstraction principles.

If Hero’s language is impoverished enough that it cannot even refer to abstraction

principles, then no proposed solutions will satisfy the requirements that I have claimed

are needed if neo-Fregeanism is to fulfil its epistemological aims. No solution will be

expressible in such a language.

So, such a language must have terms referring to certain linguistic entities, and as

such, may as well be taken to include the basic vocabulary of arithmetic (0, s,+, etc.) (al-
though it may make more sense to include operations which represent certain primitive

syntactic interpretations such as concatenation rather than addition and multiplica-
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tion).17 This does not mean, however, that a full theory of arithmetic is being attributed

to Hero, since that would ultimately be self defeating. It also does not need be the case

that this attributes the capability of reference to numbers to Hero; by considering some

codification of syntax, each arithmetical term can be interpreted, not as referring to

some natural number n, but as referring to the linguistic entity encoded by n.18 The use

of a (weak) theory of arithmetic is merely for convenience.19

In order not to attribute any knowledge of an infinity of objects already to Hero, it

must be the case that no sentences of LH that she can derive by use of TH alone can

be seen to committing her to infinitely many objects. It may also be desirable that the

objects which it does commit her to can be taken to be concrete. Such a constraint would

arise if one thought that all abstract objects are to arise from abstraction principles, and

so Hero must be assumed not to have any knowledge of any abstract objects prior to

laying down abstraction principles.

One option which seems to fill these requirements is Primitive Recursive Arithmetic
(PRA). The most notable feature of the language of PRA is that it does not contain

any quantifiers, and this is why no sentence in it can be taken to be about infinitely

many objects. Instead, it features a symbol for every primitive recursive function and

predicate. Importantly, for the purposes of considering it as a theory of syntax, this will

include function symbols and predicates that correspond to natural syntactic operations

and properties. So, for example, there will be a function symbol corresponding to

concatenation, and predicates such as ‘x is an abstraction principle’, ‘x is a longer string

than y’ and ‘x is a proof of y from z’. (It will also contain predicates and functions which

do not correspond to natural operations on linguistic entities, but these can simply be

ignored.)

The theory which goes with PRA is similar in many ways to a standard theory of

arithmetic, but devoid of quantifiers. There are the two axioms:

1. sx = sy → x = y

2. ¬sx = 0

then axioms governing each primitive recursive function. Eg. for addition:

3. 0 + y = y

4. sx + y = s(x + y)

Finally, there is a rule of (quantifier-free) induction:

ϕ(0) ϕ(x) → ϕ(sx)
ϕ(x)

17To see that any language of syntax will essentially contain the language of arithmetic, consider the

following. A language of syntax will have at least one term for at leas one symbol, say ‘∣’. It will also have the

means of expressing concatenation of symbols. Then, ‘∣’ can serve as zero, and concatenating x with ∣ can

serve as a successor function. It is also clear that these will behave just as zero and successor behave.

18The coding would have to be such that every n ∈ N codes some linguistic item, as well as every linguistic

item having a code or Gödel number (i.e. the coding function is a bijection). This is not typically the case for

Gödel numberings, but, since there are no more natural numbers than linguistic items, such a coding will of

course be possible.

19A language which is more transparently a theory of syntax rather than arithmetic would require, for

example, a constant referring to each symbol in object language instead of a constant ‘0’ and a concatenation

function symbol instead of a successor function symbol.
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Now, is PRA plausible as a candidate for LH and TH? Importantly, would it avoid

commitment by Hero to an infinity of abstract sentence types? A parallel can be drawn

between an affirmative answer to this question, and the claim—argued for by Tait

(1981)—that PRA is the correct formalisation of finitism about arithmetic.20

For this to be the case, two requirements have to bemet. Firstly, no sentence derivable

in PRA must require the existence of infinitely may objects. Secondly, the vocabulary of

PRA (and in particular the primitive recursive function symbols) must be intelligible

without requiring a commitment to infinitely many objects. It would also be desirable

for any sentence of PRA to be interpreted so as not to refer to abstract objects.

The first of these requirements is easily met. Since the language contains no quanti-

fiers, each closed sentence must only refer to finitely many objects (namely, those for

which a term denoting them appears in the sentence).

What of the second requirement? Onemay think that having a large array of function

symbols may be problematic, since these symbols will denote functions from all natural

numbers/types/possible tokens to all natural numbers/types/possible tokens. Since there

are infinitely many of these, it might seem that to understand such a function symbol

would require already a commitment to infinitely many objects. Tait (1981) argues that

this is not the case, and in fact that the finitistically acceptable functions are precisely

the primitive recursive functions. The reason is that for each such function symbol (and

its corresponding axioms) ‘the finitist can accept it as a construction’ (p.533). In the case

of considering PRA as a theory of syntax, each such function can be considered as a

method of constructing a new linguistic item from existing items.

But could PRA it be interpreted as being only about concrete objects? Each theorem

will be built up from identities of the form ⌜s = t⌝, with sentential connectives. The

question would then be whether each of s and t could refer to a concrete sentence

token. Perhaps this is possible. Where such a theorem is inscribed or uttered, each

term could refer to itself. This would require in addition that ‘=’ is not interpreted as

numerical identity, but rather as whatever relation holds between different instances

of the same type. There are no doubt many problems with this suggestion, but any

attempt to eliminate reference to sentence types is surely going to face such problems.

And any attempt to locate a theory of syntax which avoids all reference to abstract

objects will likewise face such problems.21 (Of course, the requirement that TH be free of

commitments to abstracta could just be dropped, and a non-abstractionist epistemology

for linguistic types given.)

I will assume that this is more or less correct, and that we can take Hero’s theory as

being PRA. My arguments which follow would still, however, go through if a weaker

theory were adopted. It also seems unlikely that a theory sufficiently stronger than PRA

could be motivated.

20Adoption of PRA as Hero’s original theory results in a situation quite similar in a number of ways to

Hilbert’s programme. His aim was to start off with finitistic mathematics (essentially, PRA), and use this to

justify the acceptability of higher mathematics, where acceptability is the conservativeness (in the strong sense)

of higher mathematics over the finitistic mathematics. Hilbert required a finitistic proof of conservativeness,
thus essentially requiring conservativeness to be positively representable, which ultimately put an end to the

programme at the hands of Gödel’s theorems. That we are only requiring negative representability ensures

that the same fate does not face us.

21Another alternative might be to go modal, and interpret the theorems of PRA as concerning the possibility
of the existence of concrete sentence tokens.
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4.4.2 Definability and representability in PRA
Now, which sets—and crucially, which potential solutions S ⊆ AP to the bad company

problem—are definable and representable in PRA? Sticking strictly to the requirement

that S be definable, the requirement is that there is a quantifier-free formula ϕ(x) (with
only x free) such that, for any A ∈ AP:

A ∈ S iff ϕ(⌜A⌝) is true

A consequence of this is that any definable S is also fully representable.22 Additionally,
as a result, the only restrictions S which satisfy this requirement will be those which are

primitive-recursive.

As a consequence of such a demand, very few restrictions would be deemed to be

acceptable. For example, even simple proof-theoretic consistency is not definable (since

then it would be recursive and decidable, which it is not).

However, it seems that some quantified formulas may be used as defining formulas—

and as formulas for the purposes of representability—without incurring a commitment

to infinitelymany objects. Indeed, consistency (which is naturally defined as a universally

quantified formula) seems like it should be negatively representable. For suppose some

abstraction principle A is inconsistent. Then a proof of its inconsistency could simply

be given by giving a proof of a contradiction from A. Such a proof would not require a

commitment to infinitely many objects.

And in general, some generalities can be proven with PRA. A proof of ∀xϕ(x)
(where ϕ is quantifier-free) will be a proof of ϕ(x) (in PRA) where the proof does not

depend on x. Similarly, a proof of ∃xϕ(x) will be a proof of ϕ(t) for some term t. Tait
(1981) argues that these are finitistically acceptable proofs of generalities (although the

generalities themselves are not interpreted as being about infinitely many objects, but

about giving a method of proving ϕ(t) for any particular term t).
Of particular interest will be generalities of the first sort. That is, I shall be concerned

with restrictions S which are definable and negatively representable in the sense that

there is some quantifier-free formula with parameters ϕ(x , y1 , . . . , yk) such that, for all

A ∈ AP

(a) A ∈ S iff ∀y1 . . . ykϕ(⌜A⌝, y1 , . . . yk) is true

(b) If A ∉ S then for some terms t1 , . . . , tk , PRA ⊢ ¬ϕ(⌜A⌝, t1 , . . . tk)

There are two things to note about this requirement. Firstly, the first condition (defin-

ability) is sufficient for the second condition.23 Secondly, this requirement corresponds

to the requirement that S be co-recursively-enumerable (co-r.e.) (in that the complement

is recursively enumerable), and, computationally, to the requirement that S be negatively
semi-decidable (assuming Church’s Thesis). So, there is a decision procedure such that,

for A ∉ S, the algorithm will affirm so, and halt. Alternatively—and equivalently—there

is an algorithm which enumerates the abstraction principles not in S.

22Proof: Suppose S is defined by ϕ. Now, if A ∈ S, then ϕ(⌜A⌝) is true, and since ϕ is just an identity

between terms given by primitive recursive functions (or propositional combinations of these), this can easily

be verified using the axioms governing those functions. Similarly, if A ∉ S then ¬ϕ(⌜A⌝) which can also be

similarly verified.

23Proof: Suppose A ∉ S. Then, by (a), ∃n1 , . . . , nk ∈ N such that ¬ϕ(⌜A⌝, n1 , . . . , nk) is true. Then, for

similar reasons as before, ¬ϕ(⌜A⌝, n1 , . . . , nk) will be provable.
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It may also be worth considering higher levels of quantifier complexity, with more

nested quantifiers. Recall that a formula in the language of arithmetic is Σ0 and Π0 iff it

contains no quantifiers. Then, for each n, a formula is Σn+1 (resp. Πn+1) iff it is of the

form ∃x1 . . . ∃xkσ (resp. ∀x1 . . . ∃xkσ) where σ is Πn (resp. Σn). So, the claim above is

that we should be interested in the definability of a restriction by a Π1 formula. But, it

could perhaps be claimed that formulas of greater complexity could be allowed, although,

in this case, the equivalence between definability, representability and computability no

longer holds.

4.5 How do restrictions fare?

Now, if I am correct that a restriction must be negatively representable in Hero’s theory,

and the best candidate for Hero’s theory is PRA, how would those proposed restrictions

which I consider in the previous chapter fare? That is, which of them are negatively

representable in PRA?

In this section, I shall consider these restrictions in turn. Rather than grouping

restrictions in the way that I did in the last chapter—in terms of how they are specified—I

shall group them by which sets they define. That is, if two proposed characterisations of

acceptability define the same restriction (or similar restrictions), then I shall consider

them together.

4.5.1 Consistency and satisfiablity
The simplest restrictions which I considered were those closely related to consistency.

These were deductive and semantic consistency, as well as satisfiability (which is equiva-

lent to semantic consistency). Are either of the two resulting sets negatively representable

in PRA?

We have the following two propositions:

Proposition 4.1. The set of deductively consistent abstraction principles is co-r.e., and so
negatively representable in PRA.

Proof. Consider the following decision procedure. Consider an abstraction principle

A. Run through all possible proofs from A and halt if a proof of � is arrived at. If A is

inconsistent, then eventually a proof of A ⊢ � will be arrived at, and so the algorithm

will halt.

Proposition 4.2. The set of semantically consistent abstraction principles (= the set of
satisfiable abstraction principles) is not co-r.e., and so not negatively representable in PRA.

Proof. Suppose that the set is is co-r.e., so that there is a decision procedure that halts

and gives the correct answer if A ⊧ � (ie. A is not-satisfiable). But then consider the

following abstraction principle:

(Aϕ) §F = §G ↔ ∀x(Fx ↔ Gx) ∨ ϕ

As Heck (1992) notes, Aϕ is satisfiable if and only if ϕ is. But then there is a decision pro-

cedure which, given any second-order sentence ϕ, will halt if and only if ϕ is unsatisfiable.

But this can not be the case, since second-order satisfiability is not decidable.
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Furthermore, the previous proof also shows that satisfiability is not definable by any

arithmetic formula of any quantifier complexity (since, if it were, it would mean that

the set of second-order satisfiable sentences is arithmetical, which it is not).

We thus have one example of a restriction which can play the role required of it in

Hero’s epistemology. Alas, consistency, as is well known, is not sufficient to rule out all

bad company.

4.5.2 Conservativeness and unboundedness
What of the restrictions based on the idea of conservativeness and the closely related re-

strictions based on boundedness; will any of these turn out to be negatively representable

in PRA? Recall that these restrictions were two kinds of conservativeness (deductive

and semantic), as well as boundedness.24 Recall that conservativeness as stated using

semantic consequence is equivalent to the notion of uniform unboundedness.

It turns out that semantic conservativeness is not negatively representable in PRA,

for much the same reasons that semantic consistency was not:

Proposition 4.3. The set of semantically conservative abstraction principles is not co-r.e.
and so not negatively representable in TH

Proof. Consider some sentence of first-order arithmetic ϕ and let ϕ∗ be the second-order
sentence which asserts that every structure satisfying the second-order Dedekind–Peano

axioms satisfies ϕ (as in the problem of easy mathematical knowledge). If ϕ is a truth

of arithmetic, then ϕ∗ is a logical truth. If ϕ is not a truth of arithmetic, then ϕ is

incompatible with the statement that the Dedekind-Peano axioms are satisfied (and in

particular it entails that the universe is finite).

Now, for each such ϕ, consider:

(Aϕ) §F = §G ↔ [∀x(Fx ↔ Gx) ∨ ϕ∗]

If ϕ is true, so that ϕ∗ is a logical truth, then Aϕ will have models of every cardinality

and hence (since it is purely logical) will be semantically conservative. Similarly, if ϕ is

false, then Aϕ will be non-conservative (since it entails that the universe is finite).

Now, suppose that we have an algorithm which enumerates the non-conservative

abstraction principles. By considering only abstraction principles of the form A¬ϕ ,

this will essentially be an algorithm which enumerates the truths of arithmetic. Since

this is not possible, there can not be such an algorithm and so the set of conservative

abstraction principles is not co-r.e. and so not definable in the relevant sense.

What about deductive conservativeness? It certainly seems that there might be a

chance, since itmakes use of proof, which is decidable, rather than semantic consequence,

which is not. What is needed is that, if an abstraction principle is non-conservative,

then Hero must be able to come to know that it is non-conservative. The most natural

way to do this, it seems, would be to exhibit some theory T and sentence ϕ such that ϕ§

is derivable from A together with T§, but ϕ is not derivable from T alone.

The first of these is simple—to show that T§ ,A ⊢ ϕS , Hero simply needs to exhibit

such a proof (just as in the case of consistency). The second however is not; if there were

24I will not consider the ‘mixed’ kind of conservativeness which I mentioned in section 3.2. I expect that

the situation for that will be similar to the situation for SS-conservativeness.
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some general method of showing that T ⊬ ϕ, then there would be a general method of

showing that a theory is consistent, which is not possible. So, conservativeness is not

clearly co-r.e. Indeed, it is natural to formalise conservativeness as a sentence which has

more quantifier complexity than just a universal generalisation. It would be something

like:

∀T , ϕ[∃p(p is a proof of ϕ§
from T§

,A) → ∃p(p is a proof of ϕ from T)]

which, when put in prenex normal form, is a Π2 type formula, rather than simply a

universally quantified formula as required.

This is not to say, however, that there is not a formula of the appropriate kind

formalising conservativeness, or that there is not a similar restriction which is definable

by a formula of the appropriate kind. We should then see if there is such a formulation.

For the sake of simplicity, I shall only consider the case for purely logical abstraction

principles, but I expect things will goes similarly in the general case.

In trying to find an appropriate formulation, we might turn to boundedness. Recall

that an abstraction principle A is unbounded if, given any cardinality κ, A had a model

of cardinality κ. Uniform unboundedness is a modification of this idea to take into

account non-logical vocabulary.

Now, clearly unboundedness makes use of set theory in its formulation, so is not

definable as-is in LH . But many cardinality properties are definable in pure second-

order logic, and this leaves room to try and construct a version of boundedness which

is definable in LH . If there were some sentence (or class of sentences) which may be

taken to mean something along the lines of ‘the universe is bounded’, then this can be

taken to be just as undesirable a consequence of an abstraction principle as a flat out

contradiction, and a restriction can be given correspondingly.

Boundedness constraints along these lines, making use only of a consequence rela-

tion, can be given as follows. First, we can define the set of sentences that characterize

cardinalities precisely:

Γ = {ϕ ∶ ∃κ∀M,M⊧ ϕ iff ∣M∣ = κ}

Then a function from Γ to cardinalities can be given:

Card(ϕ) = the κ s.t. ∀M,M⊧ ϕ iff ∣M∣ = κ

For any ϕ ∈ Γ, let ϕ[F] be the result of restricting all the quantifiers in ϕ to F (so

∀x(. . . x . . .) becomes ∀x(Fx → . . . x . . .) and so on). Then, the following can be noted.

Given some abstraction principle A (or indeed any sentence) and ϕ ∈ Γ:25

A ⊧ ¬∃Fϕ[F] iff A only has models with cardinality < Card(ϕ)

Then two variants of boundedness can be given, which I shall call definable bound-
edness:

25Proof: Suppose that A ⊭ ¬∃Fϕ[F]. Then A has a modelM ⊧ ∃Fϕ[F]. So, the domain ofM has a

subset of cardinality Card(ϕ). So,M has cardinality ≥ Card(ϕ).
For the converse, suppose that for everyM⊧ A, ∣M∣ < Card(ϕ). Then no subset of the domain ofM can

have cardinality Card(ϕ). So,M⊧ ¬∃Fϕ[F].
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Definition 4.1. A abstraction principle A is semantically/deductively definably un-

bounded iff

∀ϕ ∈ Γ,A ∣≁ ¬∃Fϕ[F]

according to whether ∣∼ is taken as deductive or semantic consequence.

These new notions have beenmotivated mainly by the desire to have a notion related

to boundedness and conservativeness which has a better chance of being negatively

representable in TH . We can note the relationship between the various notions of

unboundedness as follows (bearing in mind that we are restricting attention to purely

logical abstraction principles):

Unbounded = Conservative ⊆ Semantically

definably bounded

⊆ Deductively

definably bounded

What does this say about whether any conservativeness constraint is co-r.e.? A

similar kind of decision procedure can be given for testing whether an abstraction

principle A is deductively definably bounded as for whether A is inconsistent. Simply

run through proofs starting from A, then halt if a proof of ¬∃Fϕ[F] for some ϕ ∈ Γ is
arrived at. Or course, this requires that it be possible to recognise when some sentence

is a member of Γ. That is, Γ must be recursively enumerable.

It is not clear that Γ is r.e., but there are certainly some large subsets of Γ which

are. George (2006) proves various results about which cardinals are characterisable

by explicitly constructing sentences that characterise certain cardinalities, and these

explicit constructions can be used to construct a recursively enumerable subset Γ∗ of Γ.

So, as base members of Γ∗ we have sentences ϕ1 and ϕω such that ϕ1 characterises 1 and

ϕω characterisesℵ0. Then, three recursion rules can be given, generatingmoremembers.

For each ϕ ∈ Γ∗, we can construct sentences ϕ+, 2ϕ , ℵϕ which characterise Card(ϕ)+,
2Card(ϕ) and ℵCard(ϕ) (where Card(ϕ) is considered as an ordinal) respectively. Since

these constructions are given explicitly by rules, the resulting set Γ∗ will be recursively

enumerable. As such, the set of abstraction principles:

B = {A ∈ AP ∶ ∀ϕ ∈ Γ∗ ,A ⊬ ¬∃Fϕ[F]}

is co-r.e. as required.

Now, it would be important to know if B as a restriction is restrictive enough so as

to rule out inconsistent pairs of abstraction principles. It is not, however.

Clearly all unbounded abstraction principles are in B (since if it is provable that

some abstraction principle is bounded, so not in B, it is bounded). Since boundedness
does not rule out inconsistent pairs of abstraction principles (Weir, 2003, p.27), B will

not either. Something beyond conservativeness and unboundedness is needed, such

as stability. The question is: is a similar technique possible to construct some co-r.e.

restriction related to stability, andwhich is similar enough that it rules out inconsistency?

Before considering stability, it is worth noting a possible argument against this

approach to conservativeness. Hero is not supposed to have any knowledge of mathe-

matics, and in particular any knowledge of cardinality. How then is she supposed to

understand that some second-order sentence which is derivable from an abstraction

principle says anything about the cardinality of the universe? In order to interpret the
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sentences of Γ∗ as being about the cardinality of the universe, one needs some specific

model theory (and if the model theory were different, such as Henkin semantics, then

the sentences of Γ would not characterise cardinalities, since Henkin semantics satisfies

the Löwenheim–Skolem theorems).

But, just because Hero does not have knowledge of cardinal numbers as objects does
not mean that she should not have knowledge of cardinality quantifiers. Just as it seems

unproblematic that someone with a knowledge of first-order logic automatically has

knowledge of first-order definable cardinality characterisations (such as ∃x∀y(x = y)
and ∃x∃y∀z(x ≠ y ∧ (z = x ∨ z = y))), it should be unproblematic that someone

(like Hero) with a knowledge of second-order logic also has knowledge of cardinality

characterisations.

4.5.3 Stability and Irenicity
Finally, we move on to restrictions which do make claim to ruling out inconsistent pairs

of abstraction principles, unlike the previously considered restrictions. Recall that an

abstraction principle is stable if there is a cardinality κ such that A is satisfiable on all

cardinalities greater then κ (strong and weak stability disagree on whether Amay have

models of cardinality less than κ). Stability succeeds as a restriction in that any set of

stable abstraction principles is consistent (and, indeed, stable).26

Again, stability is a set-theoretic notion, and so can not be formulated in LH in its

current form. But is there an equivalent restriction which can be? The answer is no:

Theorem 4.4. Stability is not co-r.e.n and so is not negatively representable in PRA.

Proof. The proof is very similar to that of Theorem 4.3. Consider Aϕ as before, for ϕ a

sentence of first-order arithmetic. If ϕ is true of the natural numbers, Aϕ has models of

every cardinality, and so is stable. If ϕ is not true of the natural numbers (so that ¬ϕ is
true of the natural numbers), Aϕ is satisfied by every finite cardinality, but no infinite

cardinality, and so is unstable.

Given an algorithm which enumerates the unstable abstraction principles, an algo-

rithm can be given which enumerates the truths of arithmetic, which is not possible.

This is since exactly one of Aϕ , A¬ϕ will be unstable, and so will get listed. If Aϕ is

unstable, then ¬ϕ is true, and if A¬ϕ is unstable, then ϕ is true.

Similar considerations will also show that stability is not representable with an

arithmetical formula of any quantifier complexity.

There are two possible approaches to trying to find a similar restriction which is co-

r.e. Firstly, we could consider the notion of irenicity. Recall that an abstraction principle

is irenic if it is conservative and consistent with all other conservative abstraction

principles. Semantic irenicity defines the same set as stability, which, as has just been

noted, is not negatively representable in TH , and thus does not help. But, since deductive

26Linnebo and Uzquiano (2009) claim that it is not successful, since there are proper classes of stable

abstraction principles which taken together are inconsistent. Such a scenario will not, however, be a possibility

under the present framework. Under the present framework, abstraction principles are taken to be certain

sentences of a certain language. Hence, there are not proper class many abstraction principles tout court,
let alone of some particular type. The way in which Linnebo and Uzquiano construct their proper class of

abstracation principles is actually to construct a single instance of what I called an ‘extended abstraction

principle’ in the previous chapter.
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consequence is decidable, there may be more chance of the deductive version of irenicity

being co-r.e..

Alas, this inherits the problemwhich faced deductive conservativeness, but amplified.

The natural way to formalise such a statement will have more quantifier complexity than

is required (more so even than conservativeness). Similarly, a natural thought on what

would count as evidence against an abstraction principle being irenic does not appear

to be decidable. To show that an abstraction principle is non-irenic, one would need

to exhibit another abstraction principle B with which it is inconsistent—that much is

simple—but then it must be verified that B is conservative.

A second approach is to find an analogue of the set B, but for stability. An abstraction
principle Awill be strongly unstable if and only if there are cardinalities κ < λ such that

A has models of cardinality κ but not of λ (or it has no models at all).27

To find an analogue of B4 then, we require two recursively enumerable classes of

sentences L and K such that:

(∀ϕ ∈ L)∃λ such that, if A ⊧ ϕ then A has no models of cardinality λ.
(∀ϕ ∈ K)∃κ such that, if A ⊧ ϕ then A has a model of cardinality κ.

We could then say that an abstraction principle A is provably unstable if there are ϕ ∈ L,
ψ ∈ K such that A ⊢ ϕ, A ⊢ ψ and ⊢ ∀F∀G(ϕ[F] ∧ ψ[G] → F ≺ G), where ≺ means

that there is a relation which maps the Fs one-to-one into the Gs, but not vice-versa.
Unfortunately, this is not possible. Although there is a suitable L (just take ¬ϕ for

each ϕ in Γ), there is no such set K. For suppose K is non-empty, and take ψ ∈ K. By ex
falso quodlibet, � ⊧ ψ, but there is no cardinality κ such that � has a model of cardinality

κ (since � has no models at all).

4.6 Conclusion

So then, none of the restrictions considered in the previous chapter will be successful

in both avoiding the problem of mutually incompatible abstraction principles and the
epistemological problem which I raised at the beginning of this chapter. At one end of

the spectrum, consistency satisfies the requirement of being co-r.e., yet badly fails to

rule out mutually incompatible abstraction principles. At the other end of the spectrum,

stability rules out mutually incompatible abstraction principles, but there does not

appear to be a restriction even in the vicinity which is co-r.e.. Conservativeness fares

somewhere in the middle. There is a way of modifying boundedness to as to result in a

co-r.e. restriction, but this requires weakening an already unsuccessful restriction.

How could the abstractionist find their way out of this problem? One way would be

to bite the bullet concerning the conclusion of the epistemological argument.28 That

27Proof that this is in fact equivalent to instability: Suppose A is unstable. If A is satisfiable, then there is a

least κ such that A has a model of cardinality κ. Since A is unstable, there must be λ > κ such that A has no

models of cardinality λ (otherwise Awould be satisfiable on all and only cardinalities ≥ κ, and hence stable.)

Suppose that A is such that κ < λ, κ ⊧ A but λ ⊭ A. Then A is not stable. For suppose that it is, so that for

some µ, A is satisfied by all and only cardinalities ≥ µ. But if µ ≤ κ, then λ ≥ µ but A is not satisfied at λ. And
if µ > κ, then A is satisfied at κ, but κ ≱ µ.

28I will ignore the possibility of biting the bullet concerning inconsistency, and so accepting the existence

of true contradictions.
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is, she could decide that one of the proposed restrictions—perhaps stability—does in

fact pick out the set of all and only acceptable abstraction principles. Someone like

Hero would then be unable to tell, even in principle, which of the abstraction principles

which face him are acceptable, and there will be no way of him finding out if he is wrong

in his choice. This would lead to a choice between two positions which seem to be to

be unsatisfactory. Either the abstractionist programme will have a crucial element of

luck attached to it, so that Hero (and, ultimately, we) has to pick abstraction principles

essentially at random, and hope to be lucky in choosing an acceptable one. Or, a degree

of relativism may be introduced, whereby multiple starting points (e.g. HP and NP)

may be deemed to be acceptable, each of which may give rise to different conceptions of

acceptability (see, for example, Sider (2007, pp.26–27), who suggests something along

these lines).

A secondway out for the abstractionist would be to face the epistemological challenge

head on, and seek an restriction on abstraction principles which rules out inconsistency

(as stability does), and is co-r.e.. Since I have set the problem up in a somewhat formal

manner, it might be hoped that there could be a rigorous investigation into whether

such a set of abstraction principles exist. The problem is not, however, so simple. It is

in fact trivial that there are such sets of abstraction principles; one such example is the

singleton set which contains just HP, another would be the singleton set which contains

just NP. These are consistent sets, as required, and they are also co-r.e. (and r.e. as well);

it is simple to test whether, of a given abstraction principle, that abstraction principle is

HP or not, and whether it is NP or not.

Such a restriction is, however, clearly ad hoc and not well motivated. A proposal

which seeks to avoid both problems will have to be well motivated. And such a condition

is probably not easily amenable to formal study.29

Given the failure of all of the rather wide range of restrictions to satisfy these con-

ditions, however, I am pessimistic about the possibility of such a proposal being forth-

coming. This does not, of course, constitute an argument against there being such a

proposal. But, absent a concrete proposal of such a kind, it seems to me that the burden

of proof lies on the static abstractionist to provide one.

4.7 Towards expansionist abstraction

There is another, more radical, way in which the problem may be avoided. That is to

conceive of abstraction in such a way that the bad company problem does not arise at all.

If all abstraction principles were compatible with one another, then the set of acceptable

abstraction principles could be taken to be all of them. This set will clearly be decidable

in the appropriate way.

As I mentioned in chapter 1, the analysis of the bad company problem in terms of

inflation suggests that the problem may arise from the assumption that the first-order

domain is kept fixed. In the remaining chapters of this thesis, I intend to develop an

approach to abstraction—which I call expansionist abstraction—according to which

29That is not to say that there are not certain conditions, related to well-motivation, which can be given a

precise formulation. For example, one may require that a restriction S bemaximal, in the sense that, for any

abstraction principle A ∉ S, A∪ S is inconsistent. This would certainly rule out the singleton restrictions just

discussed.
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the first-order domain may expand. I will argue that, on this approach to abstraction,

the bad company problem does not arise, and hence the epistemological bad company

problem does not arise either.
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Part II

Expansionist abstraction





Chapter 5

The expansionist account of
abstraction

5.1 Introduction

So far, my concern in this thesis has beenwhat I called the static conception of abstraction.
On this view, Hero’s quantifiers range over a fixed domain of objects, which does not

change as a result of his laying down of abstraction principles. All that changes is Hero’s

knowledge of the domain.

I argued that the bad company problem which this version of abstractionism faces

has not been resolved, and expressed pessimism about the possibility of resolving the

problem; any solution which has been suggested either fails to avoid contradiction, or is

incapable of playing the role required of it in Hero’s epistemology.

My aim for the remainder of this thesis is to develop an alternative way of looking at

abstraction—an expansionist conception—that does not suffer from the bad company

problem. My aim is relatively modest; I do not wish to claim to refute the static con-

ception of abstraction, so that abstractionists are compelled to adopt the expansionist

conception of abstraction. My aim is instead simply to provide an alternative concep-

tion of abstraction. The two conceptions can be assessed on their relative benefits and

weaknesses. I would then claim that, assessed on these benefits and weaknesses, the

expansionist conception comes out the stronger, in major part due to problem of bad

company. The expansionist approach will, of course, face its own difficulties, and a

major goal of the latter half of this thesis will be to face down those difficulties.

There are a couple of aims for this brief chapter. Firstly, I will recap and expand upon

the characterisation of expansionist abstraction which I gave in chapter 1. Secondly, I

wish to highlight the main questions that must be answered for the expansionist position

to be viable.

83
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5.2 Expansion and impredicativity

Expansionist abstraction is, to put it briefly, the claim that abstraction principles may

serve to allow someone to expand their domain of quantification. It shares with static

abstraction the claim that abstraction principles can be used to define an abstraction

operator, and along with it the abstract terms which result from the application of this

operator. It differs from static abstraction on issues regarding quantification and, in

particular, how the abstract terms interact with the quantifiers. Static abstractionists

claim that, if these abstract terms have referents, then these lie within the range of the

same quantifiers by which the abstraction principle is stated. As such, new knowledge

may be gained about this particular domain of quantification. Or, to avoid talk of

domains, an abstraction principle allows one to gain new knowledge of propositions

expressible using the same quantifiers as were used in stating the abstraction principle.

As such, on the static picture, abstraction principles are impredicative definitions—they

define abstract terms by means of quantification which involves the referents of those

terms.1

Expansionist abstraction drops the assumption that the referents of abstract terms

must lie within the domain of quantification used in the abstraction principle. Instead,

it may be the case the referent of an abstract term may lie within a different, wider
domain. Thus abstraction principles do allow one to gain new knowledge, but this new

knowledge will consist in knowledge about a possibly wider domain of quantification.

Or, again to try to avoid talk of domains, it allows one to gain new knowledge, but

expressible only by means of interpreting the quantifiers differently, or by using the

quantifiers in a different context. It also provides one with the means to interpret the

quantifiers in such a way.

But, although expansionist abstraction stands in contrast to the impredicativity of

static abstraction, it does not amount to the claim that abstraction principles must be

understood in a predicative manner.2 This would be the claim that, for any abstract

term, the referent of that term does not lie within the domain of quantification of the

quantifiers used in the abstraction principle.

There are, instead, two main differences between expansionist abstraction as I shall

see it and predicative abstraction, simply understood. The first is that I will not insist

that an abstract termmust not lie within the domain of the quantifiers in terms of which

it is defined. Instead, it will be left open whether this is the case or not. Consequently,

it is left open whether the domain of quantification which results from an abstraction

principle is indeed different from the domain in terms of which the abstraction principle

is stated. In some cases, however, it will be possible to show that some referents of

abstract terms must lie outside the original domain, and thus that there is a domain

expansion.

Secondly, predicative abstraction has normally taken to be a one-off affair. That

is, an abstraction principle is laid down, with resulting abstract terms which refer to

‘new’ objects, and that is the end of the matter. But it is possible to conceive of this

1This should be distinguished fromanother dimension of impredicativity in the abstractionist programme—

in the second-order logic. The second-order comprehension principle is impredicative in that concepts may

be defined by means of quantification over all concepts.

2It has been claimed by some that abstraction must be understood in a predicative manner by (e.g. Potter

and Sullivan, 2005).
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process being iterated, so that we quantify over these new objects, and then lay down

the abstraction principle again resulting in yet more new objects. This process may then

be continued indefinitely.3 The version of expansionist abstraction which I intend to

give is designed to allow such iteration.

5.3 Some case studies: HP, BLV and NP

It will be useful to look at some examples of roughly how expansionist abstraction may

work, partly in order to make the idea clearer, but also partly because doing so will

highlight some issues that may arise. The examples that I will look at are HP, BLV and

NP.

5.3.1 HP
Consider Hero, who we are supposing to have no knowledge of mathematics, and no

understanding of mathematical vocabulary. Suppose that his quantifiers range over a

domain D. For the moment, nothing needs to be assumed about D; it may be severely

limited (to say, just physical objects), or even absolutely unrestricted (although we shall

see that there is a problem with absolutely unrestricted domains later).

Now, suppose that Hero lays down HP as an abstraction principle, in order to gain

knowledge of the number of operator N . The effect is that N maps concepts F and G
onto the same object if and only if (from our point of view), an equal number of the

objects in D fall under F and G. Hero gains knowledge of these objects, and thus of a

domain of quantification D′ which ranges over them.

The first thing to note is that it is left open whether D′ is more expansive than D. In

particular, there is nothing to say that Hero was not already quantifying over the natural

numbers, unbeknown to him. Such would be the case, presumably, were D absolutely

unrestricted.

Secondly, in contrast to the static case, it need not be the case that D′ is infinite, so

that Hero gains knowledge of infinitely many objects. For consider the case where D is

finite, containing n objects. Then, as noted in 1.3.2, there will be n + 1 numbers which

Hero comes to know of (0 to n), and thus which lie in D′. Even if D is infinite, it will

only be the case that Hero come to know that there are infinitely many objects in D′ if

he knows that there are infinitely many objects in D. In particular, the proof that there

are infinitely many numbers will not be available to Hero, since that assumes that HP is

impredicative.

But this does not mean that HP will only ever allow Hero to come to know of one

additional object. For suppose that Hero knows that there are at least m objects in D;
let us suppose that he names them a1 to am . Then he will be able to prove that there

are m + 1 numbers in D′. But he can then iterate the process, resulting in D′′, in which

Hero knows there are at least m + 2 numbers and so on. A problem will, however, arise

at this point. The situation seems to be the following: given any natural number n, Hero
is able to iterate HP so that he knows of n natural numbers. As such, there is a kind

of potential infinity of natural numbers which he has access to: no matter how many

3There is an issue concerning whether this process could be continued, not just indefinitely, but genuinely

infinitely, so that we reach transfinite stages of the process. I shall return to this issue later.
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natural numbers he requires for some purpose, he will be able to iterate to get them. But

it does not seem that he can iterate enough so as to get an absolute infinity of natural
numbers all at once, at least, not without performing some kind of supertask. This is an

issue that I will return to in later chapters.

5.3.2 BLV
The case of BLV is much the same as for HP, and many of the same issues still arise.

In particular, the same issue concerning infinite iterations will arise. In the case of set

theory this problem is particularly pressing. For it may be thought acceptable for Hero’s

knowledge of the infinity of the natural numbers to be merely potential, since it would

at least be the case that, for any natural number, it is possible for Hero to expand his

domain to include such a number. But the analogous situation in set theory is that, for

any hereditarily finite set, Hero may expand his domain to include it. But this, it seems,

is manifestly not enough. If there is to be an abstractionist set theory, it must at the very

least be the case that Hero can expand his domain to include infinite sets.

Another major difference concerns the possibility of starting out with an absolutely

unrestricted domain. This time, the abstraction operator will map concepts F and G
onto the same object if and only if the same objects in D fall under F as fall under G.
This will mean that—again, as noted in chapter 1—there will be 2κ resulting abstracts if

there are κ objects D.
So, the resulting domain, D′ can not be the same as as D, but must be a proper

expansion. Likewise, iterating this process results in a sequence of domains D ⊊ D′ ⊊

D′′ ⊊ . . .. Consequently, it seems that there is no possibility of D being the absolutely

unrestricted domain. This raises a potential conflict, which I will discuss in section 5.4.

5.3.3 NP
Finally, something should be said about other examples of bad company, such as the

nuisance principle NP. If the expansionist approach is to avoid the bad company problem,

it must avoid any problems arising from these as well as flat-out inconsistent abstraction

principles such as BLV. That is, it needs to be the case that the combination of, say, NP

and HP is does not result in a contradiction.

Although I will not be saying much about this issue in the coming chapters, I will

merely note why an analysis in terms of inflation suggests that no such problem arises.

The mutual unsatisfiability of NP and HP arises from the fact that the two abstraction

principles put different demands on the domain; HP requires the domain to be infinite,

and NP requires that it be finite. And this can be accounted for in terms of inflation:

HP inflates on on finite domains, since, given κ objects, it requires that there be κ + 1

numbers, and, for finite κ, κ < κ + 1. Likewise, NP inflates on infinite domains, since

given an infinite domain of cardinality κ, it requires that there be 2κ nuisances (see
Wright, 1997).

But this will not be a problem on the expansionist account; if an abstraction principle

requires that there be more abstracts than there are objects, the domain may simply

expand so as to accommodate them. The resulting effect will be that, in finite domains,

HP will drive domain expansion, and in infinite domains, domain expansion will be

driven by NP.
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5.4 Expansionist abstraction and absolute generality

Say that generality absolutism is the view that it is possible, in some sense, to speak about

(i.e. to quantify over) absolutely all objects at once. Generality relativism by contrast is

the opposing view. Generality relativists claim that it is not possible to quantify over

absolutely everything at once. More needs to be said about the precise content of this

distinction (with which I will be concerned in chapter 6). But hopefully the idea has

enough intuitive appeal for present purposes.

I have not characterised distinction between static abstractionism and expansionist

abstractionism in terms of absolute generality, but there clearly is a relationship. I have

already mentioned, albeit briefly, that one important motivation for the static approach

is the assumption of the availability of an unrestricted domain. The reason that we may

take the domain to be static, and that we may take abstract terms to refer to objects

within this fixed domain, is that the domain is the absolutely unrestricted one (for

obviously then there would be no possibility of expansion).

This raises the question: Is there a similar, but converse, relationship between the

expansionist account and absolute generality? That is, does the expansionist account

required generality relativism as amotivating assumption? Asmentioned in the previous

section, there is prima facie reason to think that it may do.

One way that it might have been thought that expansionist abstraction is not com-

mitted to generality relativism would be that, since there is no requirement in general

that the domain properly expands, the view is compatible with D1 = D2 = . . ., with each

of these domains being absolutely unrestricted. Then the expansionist position would

neither be committed to generality absolutism (since there is no requirement that the

domain must not expand) nor to generality relativism (since there is no requirement

that is must expand).

But the properties of BLV mentioned in the previous section show that this idea

is not tenable. For although there is no requirement in general that the domain must

expand, it seems that the inflationary nature of BLV shows that it is required in some

cases. (As I mentioned in the discussion of inflation in chapter 1, it may be possible

to resist this, since the argument depends on particular features of the metatheoretic

viewpoint that may be resisted. I will show later that, just as the inconsistency of BLV

on the static approach can be replicated in the object language of abstraction, so too can

the relationship between BLV and generality relativism.)

So, the expansionist account (if it is to accommodate abstraction principles such

as BLV) must have it that each D i is not the absolutely unrestricted domain. But there

is another way in which one may separate the expansionist account from generality

relativism. If there were a way to demarcate absolute domains from non-absolute

domains, then it could perhaps be claimed that abstraction principles are only to apply

to non-absolute domains. This strikes me, however, as problematic. There are two

questions which the proponent of such a position must answer. These are, firstly, how is

it that we are to demarcated two types of domain, and secondly, why is it that abstraction
principles should not apply to absolute domains? Unless such questions can be answered

(and it seems unlikely to me that they can be) then this approach too will not be feasible.

So then, it looks like the expansionist abstractionist is committed to generality rela-

tivism. This raises somewhat of an obstacle to expansionist abstraction. For generality
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relativism faces a number of challenges itself. These challenges must then be met by

the expansionist abstractionist if it is to be a viable position. My main aim in chapter

6 will be to clarify what these challenges are (especially as they apply to expansionist

abstractionism) and to respond to them. My response to these challenges will actually

be very similar to the response that static abstractionists give to potential challenges to

their position, in that it makes essential use of the context principle.

5.5 Where do we go from here?

There are a number of issues which clearly need to be addressed by the proponent of

expansionist abstraction. My aim for the next few chapters will be to address such issues.

What is required?

My characterisation of expansionist abstraction in chapter 1 and this chapter has

solely been an external one. This is in contrast to how static abstraction has been

developed. On the static approach, abstraction principles have had a status much the

same as axioms in an axiomatic system, and we have been interested in the axiomatic

systems which result, such as Frege Arithmetic. Such an approach makes sense from the

point of view of the epistemological aims of abstractionism. The abstraction principles

are sentences which Hero knows through stipulation, and the theorems of the resulting

axiomatic system are sentenceswhichHero can come to knowby deduction. The external

viewpoint can still be useful, but mainly for the purposes of various metatheoretic results

concerning, for example, what is possible in such an abstractionist system.

Such an internal characterisation has been notably absent from my discussion of

expansionist abstraction so far. I have not suggested an axiomatic system which can be

seen as the one that Hero occupies. Some kind of axiomatic system is needed if there are

to be any epistemological claims concerning the approach. That is, we need to identify

certain basic principles, and give a story about how Hero could come to know them.

Then, some deductive system must be identified, and it must be claimed that Hero can

make use of this deductive system to extend his knowledge.

So, the first task is to develop such a deductive system. This will be my aim in chapter

7. Given such a deductive system, there will be further questions that may be asked

from the external perspective. In particular, we would then be able to ask more precisely

the question about whether the bad company problem can be avoided. In particular,

we want to know whether the resulting axiomatic systems are consistent. We also want

to know how much mathematics can be developed in such a situation. I.e. we want to

know how strong a mathematical theory can be interpreted in such a theory.

These tasks are more or less purely technical. But there are also important philo-

sophical questions that must be answered for expansionist abstraction to be viable. In

particular, generality relativism must be defended, and particularly the form of gener-

ality relativism which is involved in expansionist abstraction. There are a number of

issues that the generality relativist needs to explain. They must, for example, explain the

metaphysics of domain expansion, and explain how abstraction principles might serve

to bring one about. All this should be done without appealing to any mysterious ideas,

such as the creation of mind-dependent objects. I will address these issues in chapter 6.

Finally, there is the issue of how to account for the apparent need to iterate domain

expansion into the transfinite. This issue will arise in a more technical form in chapter 7,
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in which the lack of such infinite iterations forms an obstacle to developing a particularly

powerful system. My solution in that chapter is to introduce a reflection principle, which,
I claim, has the same effect as an infinite iteration. I explore the technical consequences

of such a principle in 7, and then discuss the possible motivation for such a principle

(and some issues arising from it) in chapter 8.
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Chapter 6

What do generality relativists
need to explain?

As I argued in the previous chapter, the expansionist position will likely entail generality
relativism, the view that in some sense it is not possible to quantify over absolutely
everything. The aim of this chapter is to answer the first of the challenges raised at the end

of the previous chapter—to defend generality relativism as a coherent position. There are

two parts to this challenge. Firstly, it has been claimed by some that generality relativists

can not even state their position without falling into self-contradiction. Secondly, even

if a position can be stated, much more needs to be said so that the position does not

seem utterly mysterious. The relativist must claim that domains of quantification must

‘expand’ in some way or other, and as such they owe an explanation of the metaphysics of

domain expansion. In absence of such an explanation, the view risks being to committed

to something like the claim that domain expansion involves something like the literal

creation of objects.

Sections 6.2 and 6.3 concern the first of these challenges. In section 6.2 I shall

articulate the challenge, and argue that, rather than being a problem purely for relativists,

it is also a problem for their opponents—generality absolutists. In section 6.3, I will argue
that the challenge can be met by formulating relativism in a modal language, which

is a view argued for by Kit Fine. In contrast with Fine, who claims that the relevant

‘postulational’ modality must be taken as primitive, I argue that it may be explained in

terms of other, more commonplace modalities. I then give such an explanation.

Sections 6.4 and 6.5 concern the metaphysics of domain expansion. I shall argue

that the idea of moving to a more inclusive domain from a less inclusive domain can

be made unmysterious by adopting a viewpoint according to which talk of domains is
secondary to talk of the truth-conditions of sentences containing quantifiers. As such,

the view arrived at relates to quantifiers and quantification in much the same way as

orthodox neo-Fregeanism relates to singular terms and singular reference.

91
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6.1 Introduction—Relativism and absolutism

Although the reason that I need to defend generality absolutism is that it is a consequence

of expansionist abstraction, others have given independent reasons for accepting the

view. It will be useful to very briefly survey these arguments here.

Various writers (e.g. Fine, 2006; Glanzberg, 2004, 2006) have claimed that generality

relativism follows from Russell’s Paradox.1 The reasoning goes roughly as follows:

Given some purported use of absolutely unrestricted quantification, we can consider a

particular object—namely, the Russell set {x ∶ x ∉ x}—which must not lie within the

range of the quantifier, on pain of contradiction. Hence, the purportedly absolutely

unrestricted quantifier is not absolutely unrestricted after all. More fully, the argument

(the following version is Fine’s) goes like this:

Let us use ‘∃’ and ‘∀’ for those uses of the quantifier that the universalist

takes to be absolutely unrestricted. The critical step in the argument against

him is that, on the basis of his understanding of the quantifier, we can then

come to another understanding of the quantifier according to which there

will be an object (indeed, a set) whose members will be all those objects,

in his sense of the quantifier, that are not members of themselves. . . .From

[this], we can derive the extendibility claim:

(E) ∃+y∀x(x ≠ y)

. . .But the truth of (E) shows that the original use of the quantifiers ∃ and ∀

was not absolutely unrestricted. (Fine, 2006, p.22)

A similar argument, due to Williamson (2003), but which does not make reference

to sets, concerns instead quantification over interpretations of a language. Suppose we
have a candidate for an absolutely unrestricted quantifier. For a given predicate letter

P in the language and any definite condition on objects, we must be able to consider

an interpretation I of P so that for all objects x, P applies to x if and only if x satisfies
that condition. Now, consider the condition which any x satisfies if and only if x is not

an interpretation under which P applies to x, and consider the interpretation I which
associates P with such a condition. On pain of contradiction, I must not fall under the

quantifier involved in its own definition. Hence, the quantifier in question must not be

absolutely unrestricted after all.

A third version of the argument may be given, using ordinals rather than sets or

interpretations. The key step is in noting that, since all the ordinals are well ordered,
they too should have an ordinal. Then, on pain of the Burali-Forti paradox, this will not

lie within the range of the current quantifiers.

For themoment, I shall be unconcerned with whether these particular arguments are

successful or not. Before individual arguments themselves can be assessed, a generality

relativist already faces a number of challenges. Firstly, the relativist must develop the

resources necessary to even state her position. In section 6.2 I shall show why a problem

arises (and why it is also a problem for the absolutist), and consider some of the solutions

which have been suggested—namely, introduction of a primitive modality and appeal

1As such, their argument is very similar to the kind of reasoning which shows that the expansionist

position leads to generality relativism.



6.2. articulating relativism 93

to ‘open-ended’ schemes. In section 6.3 I develop further the modal solution, filling in

what I see as a number of deficiencies of the solution as offered by its main proponents.

Secondly, the relativist owes an explanation of the metaphysics of domain expansion.

In section 6.4 I shall argue that such an explanation has not been sufficiently given. Var-

ious broadly fictionalist approaches suggest themselves (whereby the domain expansion

is only an expansion according to some fiction). Such a fictionalist approach is however

clearly unacceptable for the aims of the relativist. I shall instead make an alternative

suggestion, whereby what happens when a domain expands is a shift in the meaning

of the quantifiers, which is not to be explained in terms of antecedently understood

domains. I shall defend this approach from various objections.

6.2 Articulating relativism

Thefirst issue that must be addressed is how the relativist can best articulate her position.

It clearly can not be stated in the same way as it näıvely is at the beginning of this chapter.

That is, as:

(GR1) It is not possible to quantify over absolutely everything.

For this characterisation uses absolutely unrestricted quantification! Indeed, it is trivially
the case that it is possible to quantify over everything, since, by definition, everything is
what we quantify over. This is not so much an argument against the relativist, however.
That (GR1) is trivially false must instead simply be an indication that it is not what

generality relativism is getting at. For the same reason, the absolutist position can not

simply be ‘it is possible to quantify over absolutely everything’. Either this presupposes

whatever the position is, or it states a mere tautology. Even in clearly non-absolute

domains (such as the one in use when somebody about to embark on holiday asks ‘is

everything packed?’), the claim ‘I am quantifying over everything’ is trivial.

Without a clearly articulated position, there is nothing for the relativist and absolutist

to dispute. Therefore, the need to develop the resources needed to articulate the relativist

position is something that should also concern the absolutist. Once an adequate formu-

lation of relativism has been come to, the absolutist position can be understood simply

as the negation of relativism. Similarly, given an adequate articulation of absolutism,

relativism should simply consist in the negation of this position.

Of course, if the absolutist is permitted to make use of absolutely unrestricted quan-

tification, they can state their position in a similar way to (GR1). It would simply be,

in this case, ‘it is possible to quantify over absolutely everything’. Various writers have
claimed that this is all that is needed on the part of the absolutist (e.g. Williamson, 2003).

But this will not do. What is at issue is whether some linguistic device with certain

properties is in good standing, and what is needed to articulate the two positions is

some characterisation of these properties. But it is surely inadequate, or at least highly

unsatisfactory, to attempt to use the very notion itself in characterising its behaviour.

Suppose that somebody puts forward some new linguistic device—a new logical con-

nective, say—and then refuses to explain what she means by this new connective other

than by using the connective itself (say, by giving a homophonic semantics). In this

situation such an explanation would be clearly lacking, and there would be no way to

conduct a debate about whether the new connective is in good standing or not.
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To give an example, suppose that somebody starts to use the word ‘schtonk’ as a

logical connective, and then, when asked what it means, says that ‘ϕ schtonk ψ’ is to
be true just in case ϕ is true schtonk ψ is true. That is, ‘schtonk’ means schtonk! And

suppose then that we are to decide whether schtonk is in good standing as a connective

(in the same way as, say, ‘and’ and ‘or’ are), or whether it is not (in the same way as ‘tonk’

is not). Clearly we do not yet have enough information in order to decide.

Why should the situation be any different in the current case, where the linguistic

device in question is the absolutely unrestricted quantifier? It might be claimed by the

absolutist that the situation is different since, unlike ‘schtonk’, absolutely unrestricted

quantification is used all the time in everyday speech. But this too will be unsatisfactory.

For one thing, absolutely unrestricted quantification is uncontroversially not in use

all the time in everyday speech; the vast majority of uses of quantification are clearly

contextually restricted. And in the rare other cases (e.g. in metaphysics), it is precisely

whether the quantification involved is absolutely unrestricted which is at issue between

the relativist and the absolutist. To simply take it that in these cases the quantification is

absolutely unrestricted is simply to beg the question against the relativist.

So then, in order to get to the heart of what is at issue in the debate, a formulation

of each position must be articulated in a neutral manner, that is, in a language that both

the relativist and the absolutist can speak and accept as intelligible. Of course, in this

situation, although each side will find the other’s position intelligible (in that is will be a

perfectly meaningful sentence of the language), they will regard it as (necessarily) false.2

Nonetheless, it seems that the onus should be on the relativist to provide a charac-

terisation, since it is they who are putting forward the claim to be discussed.

One option that may be considered is to give more force, somehow, to the modifier

‘absolutely’. As it is, it is unclear how ‘absolutely everything’ is to differ from ‘everything’

simpliciter. Similar problems, however, seem to arise. Williamson (2003, p.416) points

out that even the full phrase ‘absolutely everything’ may be contextually restricted in

the usual way; someone may exclaim (in the same situation as before) ‘Of course I’m

late—you left me to pack absolutely everything!’. In any case, there would still be

the need to articulate clearly what precisely is meant by ‘absolutely’.

Amore neutral characterisation of the two positionsmay be arrived at by considering

more carefully what the extendibility arguments purport to show. The claim is that,

whatever quantifier is being used, or whatever context the quantifier is being used in, it is

always possible to arrive at a new quantifiermeaning which is wider in scope. This can be

expressed more formally, by indexing quantifiers to contexts—so that ‘∃C ’ expresses the

existential quantifier as used in context C—and allowing quantification over contexts3:

(GRcontexts) ∀C0∃C1∃C1
x∀C0

y(x ≠ y)

2A distinction needs to be drawn here between a relativist finding absolutism intelligible, and finding

absolutely unrestricted quantification intelligible. The first concerns whether a certain position is an intelligible

position—and it surely shall be if a neutral formulation can be arrived at (since it is just the negation of

a position that the relativist herself accepts). The second concerns whether a certain linguistic device is

intelligible.

3Similar possibilities are considered by Williamson (2003) and Fine (2006), and deemed unsuccessful for

the same reasons. What follows in considering alternatives follows approximately the same line as these two

papers.
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This needs to be distinguished from a similar (natural language) formulation con-

sidered by Williamson (2003, p.430):

(6.1)
For any context C0, there is a context C1 such that not everything that is

quantified over in C1 is quantified over in C0.

As Williamson points out, this is immediately self-refuting in the same way as (GR1) is.

For (6.1) must be stated in some context C. Then, instantiating C0 in (6.1) by the context

of utterance, C, it follows (expressed in C) that

(6.2)
There is a context C1 such that there is something which is quantified over

in C1 which is not currently being quantified over.

Instead, (GRcontexts) should be compared to the following formulation, whichWilliamson

also considers:

(6.3)

For every context C0, there is a context C1 such that ‘Not everything is

quantified over in C0’ is true as uttered in C1 (where ‘C0’ as uttered in C1

refers to C0)

which is not clearly unacceptable.

Now, is (GRcontexts) acceptable as a neutral formulation of relativism? Unlike (GR1),

it is not trivially false. Nor does itmake use of absolutely unrestricted quantification—the

quantifiers are restricted, to contexts. However, the extendibility arguments, if successful,

show not merely that quantification over absolutely all objects is somehow illicit, but

that even quantification restricted to certain sortal concepts—namely, over sets and

over interpretations—suffers similarly. That is, given some quantifier purportedly over

absolutely all Fs, we can specify some F which does not fall under that quantifier.

Without a guarantee that this is not the case for contexts themselves, there is similarly

no guarantee that (GRcontexts) successfully expresses what it aims to express. Indeed,

the concept of context seems to be precisely the kind of concept which exhibits such

behaviour, given the similarity between contexts and interpretations.

Fine (2006) claims that this is indeed the case. Under the assumption that the

quantifier over contexts is absolutely unrestricted, it is claimed that it follows that there

is a context for which the quantifier is absolutely unrestricted. Fine’s argument is as

follows. Consider a context C0 where we interpret the quantifier as follows:

∃C0
xϕ iff ∃C∃Cxϕ

But then, the existence of C0 contradicts (GRcontexts), since it follows that

∀C2∀C2
x∃C0

y(x = y).

Now, this relies on the premise that there is such a context, and it is not entirely

clear why there should be. Nonetheless, with no guarantee that there is no such context,

or no similar argument to be made, formulating relativism as (GRcontexts) is rather

tenuous. It would be desirable to find some better way of expressing relativism which is

less susceptible to suspicion. There are two main approaches that have been suggested

in the literature. The first is to state the position in some schematic form, where the

relevant schema is not to be understood as the generalisation over its instances. This is

closely related to the idea of a statement being given with ‘typical ambiguity’. The second

approach is to adopt a primitive modality in place of the quantifier over contexts.
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6.2.1 Schemes and systematic ambiguity
The problem with (GRcontexts) is that we can not be sure that, in the context in which it

is uttered, the quantifier over contexts is neither restricted, nor extendible. In shifting to

a new context, we may include more contexts within the range of our quantifiers, and,

for all (GRcontexts) tells us, an utterance of (GRcontexts) in this new context may be false.

What is desired is that it be stated that (GRcontexts) be true as uttered in any context.
Clearly, simply stating such a generalisation (∀C′((GRcontexts) is true as uttered in C′))
will not do; the problems will simply reemerge. Instead, the schematic approach suggests

that we do away with attempting to generalise over contexts by use of quantification,

but instead simply lay down:

(GRschematic) ∃C′∃C′x∀y(x ≠ y)

where this is understood as being systematically ambiguous. That is, it is recognised as

being true no matter what context it is uttered in.4 Importantly, however, this should not

be understood as being the same as asserting the universal closure (over contexts); the

universal closure over contexts is just (GRcontexts), which we have seen is unacceptable.

This approach does, however, suffer from a number of weaknesses. For one thing,

it would be desirable to say more about what a systematically ambiguous sentence is

supposed to amount to. What (if anything), for example, is being asserted when a

scheme is laid down as being systematically ambiguous? And, if there is nothing being

asserted, what is the nature of this non-assertorial speech act which is involved?

Secondly, systematic ambiguity comes at the expense of expressive power. We can

not, for example, negate a systematically ambiguous statement. This is a particular

problem if we wish to characterise absolutism as the negation of relativism. Nor can

we embed a systematically ambiguous statement into other sentences. I believe that

the next and final approach that I will consider will avoid such difficulties by, in effect,

generalising the notion of systematic ambiguity.

6.2.2 Postulational modality
The second possibility is to introduce a modality, roughly representing the ‘possibility

of extending the domain’. This is suggested (though eventually rejected) by Williamson

(2003, p.431), and taken up fully by Fine (2006). Fine states the idea behind using a

primitive modality as follows:

Under the modal formulation of the limitivist [relativist] position, we take

seriously the thought that any given interpretation can be extended, i.e.

that we can, in principle, come up with an extension. Thus, in coming up

with an extension we are not confined to the interpretations that fall under

the current interpretation of the quantifier over interpretations. (p.30)

So, ⌜◊ϕ⌝ expresses that interpretation of the quantifiers occurring in ϕ can be extended

so that ϕ is true, and similarly, ⌜◻ϕ⌝ expresses that ϕ is true nomatter how the quantifiers

are interpreted. Fine calls the modality in question postulational possibility.

4The systematic ambiguity approach is adopted by, amongst others, Glanzberg (2004), Hellman (2006)

and Lavine (2006)
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This then results in something like a generalisation of systematic ambiguity in the

quantifiers. Since ◻ϕ says, in effect, that ϕ is to be taken to be true no matter how the

quantifiers in it are interpreted, this has the effect of laying down ϕ in a systematically

ambiguous manner.

A way of expressing the relativist position modally does not fall out of this simply.

What is required in order to say that the current quantifier is extendible is that it is

postulationally possible that there be an object which is not under the range of the

current (or perhaps, actual) quantifier. This would require that something like an

actuality operator be added to the language, and can then be expressed as

◊∃x(@∀y(y ≠ x)).

However, this will not be enough; it simply states that the present domain of quantifica-

tion is extendible. A stronger claim is needed to the effect that this is postulationally

necessary, but with ∀y(y ≠ x) being evaluated outside the scope of the possibility

operator (as above), but within the scope of the outermost necessity operator. This

would require enhancing the language with a more sophisticated method of indicating

scope. Such a method is supplied by an extension of modal logic given by Hodes (1984b),

who adds an operator ↓, whose effect is to exempt what follows from the scope of the

innermost modal operator.5 Then, generality relativism can be expressed as:6

(GR) ◻◊∃x(↓∀y(y ≠ x))

The question immediately arises as to how this new modality should be understood.

A suggestion that may present itself is that the modality should be understood as a

quantifier over meanings, interpretations, contexts or domains of quantification. So,

◊∃xϕ means that there is an interpretation I of the quantifier so that ∃xϕ is true under

that interpretation. Indeed, Fine considers a move like this before introducing modality.

But this would mean that the modal approach simply collapses to one similar to that of

(GRcontexts). And we have already seen that such an approach will fail.

Fine goes on to reject a number of possibilities of how to understand the modality

in terms of other, more familiar, concepts. So, postulational modality is not to be

understood as a ‘circumstantial’ modality, like metaphysical and physical modalities. It

concerns instead ‘possibilities for the actual world, and not merely possible alternatives

to the actual world’ (p. 33).
Nor, Fine claims, can the modality be defined in terms of more familiar modalities.

So, for example, the postulational possibility of a proposition can not be defined as ‘the

metaphysical possibility of our specifying an interpretation under which the proposition

is true’ (p.34).

So, how can postulational possibility be explained? Fine seems to claim that an

understanding of such a possibility is implicit in the possibility of the domain expanding

by means of demonstrating the existence of a Russell set, as in his original argument

against absolutism:

5Alternative scoping operator could be used, such as those discussed by Parsons (1983b, Appendix).

6 Fine does not go down this route, but instead uses quantification over interpretations to allow the claim

to be expressed. Introducing quantification over interpretations seems to me to be more problematic than

this minor extending of the expressive power of the modal logic.
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[I]t seems clear that there is a notion of the required sort, one which is such

that the possible existence of a broader interpretation is indeed sufficient

to show that the narrower interpretation is not absolutely unrestricted.

For suppose someone proposes an interpretation of the quantifier and I

then attempt to do a ‘Russell’ on him. Everyone can agree that if I succeed

in coming up with a broader interpretation, then this shows the original

interpretation not to have been absolutely unrestricted. Suppose now that

no one in fact does do a Russell on him. Does that mean that his interpre-

tation was unrestricted after all? Clearly not. All that matters is that the

interpretation should be possible. But the relevant notion of possibility is

then the one we were after. (pp.34–5)

I fail to see how this could amount to an explanation of the new modality.7 Leaving

aside for the moment what an interpretation of a quantifier supposedly is—which Fine

deals with later—it is unclear how an explanation of the relevant kind of interpretation is

supposed to lead on to an explanation of the modality. Firstly, a supporter of absolutism

will presumably not accept that someone, in attempting to ‘do a Russell’, can succeed.

For the absolutist will refuse to acknowledge that from our understanding of sets and

the quantifier we can come to an understanding of a quantifier so that it includes in its

range a universal set (that is, universal with respect to our current quantifier). Of course,

it is the conditional claim that if a Russell manoeuvre is possible then this would show

that the domain is not absolutely unrestrictedthat needs to be accepted, and this may be

accepted without accepting the antecedent. Nonetheless, surely the sense in which it is

required that such a specification of an interpretation be possible is a more common

metaphysical (or perhaps even physical) possibility. Or, at least, Fine gives us no reason

to suppose that this it is not.

Fine thus intends that the modality must be understood primitively. But stipulating

that postulational modality should be understood primitively is problematic in a way

which it is not for circumstantial and other modalities. In these cases, such as physical

and metaphysical possibility, it is at least plausible to take them as already understood.

It is also reasonable to make use of them without first requiring further explanation of

them. The reason is that they are (at least apparently) in common usage, and so therefore

presumably understood by competent speakers of a language.8 But the same can not be

said of postulational modality, which only explicitly features in Fine’s work. Fine claims

(Fine, 2005, p.108) that it is actually widespread, for example where apparent postulation

is used in mathematics. But the burden presumably is on him to show this, and that

these uses are not best accounted for either by eliminating any apparent modality, or

by means of other, more familiar, modalities. For this reason, if postulational modality

is to play a crucial role in discussion, it seems reasonable to first demand that some

explanation of it in other terms be given. In any case, if an explanation of postulational

modality can be given in more primitive terms, then surely it is desirable to do so.

7Perhaps it is not intended as a full explanation, but simply as a partial explanation. Nonetheless, surely

something more than a partial explanation is required.

8This is not to say that they must be taken as primitive altogether, so that they cannot be explained in

terms of something more simple. That would be an extremely controversial claim, and not one that I wish to

commit myself to. All I intend to claim is that such an explanation is not required of somebody before they

are entitled to use these commonplace modalities.
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In the following sections, I wish to suggest such an explanation, which is one that

Fine explicitly rejects. It is that ϕ is postulationally possible just in case it is (metaphys-

ically) possible to interpret the quantifiers occurring in ϕ so that ϕ is true under that

interpretation. I claim that a sufficiently careful version of this avoids Fine’s criticisms

of it, as well as other criticisms which may be raised against it.

6.3 Possible interpretation

Fine considers very briefly a definition of postulational possibility in terms of metaphys-

ical possibility, before rejecting it:

Nor can we take the postulational possibility of a proposition to consist in

themetaphysical possibility of our specifying an interpretation under which

a proposition is true. For one thing, there may be all sorts of metaphysical

constraints on which interpretations it is possible for us to specify. More

significantly, it is not metaphysically possible for a quantifier over pure sets,

say, to range over more pure sets than there actually are, since pure sets

exist of necessity. So this way of thinking will not give us the postulational

possibility of there being more pure sets than there actually are. (p.34)

I will argue that these two objection are misguided, or at least would be against the

best formulation of such an account. The first objection—that there may be metaphysi-

cal constraints on specification of interpretations—will be avoided by modifying the

definition to avoid the dependence on specifications of interpretations. The second

(‘more significant’) objection—concerning the metaphysical necessity of the existence

of sets—will be seen to rest on a use/mention (or perhaps de re/de dicto) confusion once

a more precise formulation is given.

Before getting to a more precise formulation, let me say something briefly about

relationship between interpretations, contexts, and the need to specify either of them.

An alternative to considering these issues in relation to interpretations—so that a domain

expansion is a matter of changing one’s interpretation of one’s quantifiers—is to consider

them in relation to contexts, whereby a domain expansion is a matter of shifting to

a different context of quantification.9 I do not think that there is much in the way of

difference between these approaches. For each context of quantification, there will be a

unique interpretation of the quantifiers—namely, the interpretation which they receive

in that context. And for each interpretation, presumably there will be a context in which

the quantifiers are interpreted according to that interpretation.

Now, in order to change context, or to reinterpret parts of one’s language, there is no

need to specify what the interpretation is to be. Indeed, many speakers of a language

(which will of course be an interpreted language) would not be able to specify how

their language is to be interpreted (whatever that would amount to), except perhaps

homophonically (or in some cases by means of a translation into another language,

say by specifying how a sentence in English is to be interpreted by giving the French

equivalent). So, the issue here is not specifying interpretations or contexts, but simply

being in such and such a context, or interpreting an expression in such and such a way.

9The contextual approach is taken by Glanzberg (2001, 2004, 2006); Parsons (1974).
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Removing the reference to specifications then, a first attempt at a definition of

postulational possibility might be:

(pp1) ⌜◊ϕ⌝ def
∼ ⌜it is possible to interpret the quantifiers so that ϕ⌝10

There is obviously an issue at this point concerningwhat tomake of the construction ‘it is

possible to A so that B’, where A stands for some action, and B a possible outcome of such

an action. This does not clearly have a straightforward gloss in terms of the possibility

of some proposition. But in this it is no different to many other modal notions, such as

counterfactual conditionals, and is in any case a commonly used construction. A gloss

might perhaps involve considering only possible worlds in which facts concerning the

action A change. For the moment, I shall simply assume that this kind of construction

is understood. Now, in the case of (pp1), it is unclear whether Fine’s first objection

would apply. What would be required for the objection to work, presumably, is for there

to be some interpretation such that it is metaphysically impossible to interpret some

sentence according to that interpretation. It is not just required that the interpretation

be unspecifiable; it must be impossible for a being to use a sentence interpreted in that

way. But what could such an interpretation possibly be? And in what sense could an

interpretation which can never be used be properly called an interpretation? Perhaps

one could envisage the kind of thought experiment in which, for example, a shy god

immediately strikes down anybody who considers interpreting the quantifiers so that

their domain includes the god. Although it may not be possible to rule out such an

example a priori, I feel comfortable ruling it out on empirical grounds (and the mere

remote metaphysical possibility of such a scenario will not suffice to bring back the

objection).

(pp1) does, however, suffer insurmountably from another problem, which stems

from the fact that the definition involves using ϕ, and, in particular, using ϕ in the

same context in which one wishes to assert ⌜◊ϕ⌝. Consider an example concerning, not

the interpretation of quantifiers, but of ordinary predicates.11 Consider the following

question: were we to apply ‘leg’ to dogs’ tails, how many legs would a dog have? The

answer, is, of course, four. Nothing that we do concerning how we interpret words

can affect facts about the anatomy of dogs. What we can say concerning this example,

however, is that were we to apply ‘leg’ to tails, then ‘dogs have five legs’ would be true. The

difference here is that we are evaluating the truth of a sentence under a counterfactual

situation in which some of the words in that sentence are interpreted differently.

This then also applies to interpretations of quantifiers. There are no more sets than

there actually are (trivially). Moreover, we can not change this simply by interpreting

some words differently (just as we can not change the fact that dogs have four legs by

changing the meanings of our words).12 So then, under the definition given by (pp1),

10The precise relation ‘
def
∼ ’ between the expressions named on the left and right hand sides here should

be taken as schematic. There are various options for how a definition may be understood. For example, the

expressions may be taken to be part of an object language, then the definition may be taken as stating (in the

metalanguage) that they are to have the same truth conditions. Or the right hand side might be taken to be in

the metalanguage, stating the truth conditions for the sentence named on the left hand side, and so on.

11This is an example used by Hirsch (2002). The original question is often attributed to Abraham Lincoln

(though presumably not to make a point about use and mention!).

12 Some kinds of entities might plausibly be taken to arise from our change in linguistic practice. For

example, one might hold that a sufficiently major reinterpretation of the language in some literary work might

result in a new literary work. But this surely does not apply to sets.
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the postulational possibility that there be more sets than there actually are is ruled out

immediately. This is perhaps the second objection that Fine had in mind. But note

that the metaphysical necessity that there be no more sets than there actually are is

not needed. It is certainly metaphysically possible for there to be more tables than

there actually are, but more tables can not be conjured into existence simply by us

interpreting our quantifiers differently. Hence the definition rules out the postulational

possibility of there beingmore tables that there actually are by definition.13 The necessary

existence of sets does, however, rule out the option that we may indeed create sets just

by reinterpreting our language. Note that this objection does not in any way stem from

disallowing the actuality operator involved from exempting evaluation from the scope

of the possibility. It simply concerns the inability of speakers to change the world by

changing the meanings of their words. For example, under the use of actuality which I

have in mind, it would be perfectly correct to say that it is possible to build furniture so

that there are more tables than there actually are.

As already suggested, the problem stems from using ϕ in the right hand side of the

definition.14 Reinterpreting quantifiers will not change facts about the world. But it

will change facts about the truth value of quantified sentences. This suggests then the

following improvement on (pp1), which mentions, rather than uses ϕ:

(pp2int) ⌜◊ϕ⌝ def
∼

⌜it is possible to interpret the quantifiers so that ‘ϕ’ is true
under that interpretation⌝

Or, in terms of contexts, rather than interpretations:

(pp2cont) ⌜◊ϕ⌝ def
∼

⌜it is possible to shift context so that ‘ϕ’ is true as
uttered in the new context⌝

Similarly, use can be made of a satisfaction predicate, in place of a truth predicate, to

deal with formulas with free variables.

This formulation, I believe, avoids the objection stated above to (pp1), and, in particu-

lar, avoids Fine’s second objection. Consider some context C1, in which we are (trivially)

correct in saying ‘everything falls under the range of the quantifiers as used in C1’ (note

themention of the quantifiers). It is not self-refuting to claim that it is possible to shift

context in such a way so that it is correct to utter ‘there is something which did not

fall under the quantifiers as used in C1’. This simply then amounts to the postulational

possibility of there being more things than there actually are. Nor is it self refuting if we

consider only the kinds of things which exist of necessity. What would be self-refuting
would be to claim that it is possible to shift to a context C2 in such a way that it is correct

to utter ‘there is something which does not fall under the range of the quantifiers as

used in C2’. That amounts to saying that it is possible to shift to a context in which it is

13Not that Fine, or anybody else, wants to defend the postulational possibility of there being more tables

than there actually are. Nonetheless, the position should not be ruled out as immediately, and in this way.

An alternative example might to consider, not tables, but impure sets which have tables in their transitive

closure. It is metaphysically possible for there to be more of these than there actually are (if there were more

tables), and one might also wish to defend the postulational possibility of there being more of these than there

actually are. But the postulational possibility is ruled out in the same way as before.

14Hellman (2006) suggests that the key to formulating positions concerning absolute generality is to be

careful in when to use and when to mention quantification. His suggestion is similar to what I am proposing,

though not using modality (at least, not explicitly).
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correct to utter ‘there is something which is not anything’.15

Although (pp2) avoids the objections which (pp1) faces, it nonetheless creates a

number of new difficulties which must be avoided. Firstly, it may be objected that,

since the definition of ◊ϕ involves predication of sentences, it is at best misleading to

treat the modality as an operator, rather than itself a predicate. A second, related, issue,

concerns the appearance of a truth predicate in particular. Since we will want to nest

the postulational modal operator, it seems that we will need to account for the truth

predicate applying to sentences which themselves contain a truth predicate. Without

care, there will be a risk that something like the liar paradox may surface. Thirdly, there

is a difficulty when ϕ contains an actuality operator, or other similar scoping operators

(this may have been suspected when names for contexts were introduced in the example

above instead). For, if, for example, ϕ is ‘there are more sets than there actually are’,

plugging this directly into the definition will fail to get the required result. For ‘there are

more sets than there actually are’ is false in any context and under any interpretation.

Finally, a worry may remain concerning whether the possibility of reinterpretation

simply reduces to the existence of an interpretation (just as, for example, the provability

of a mathematical claim might be thought to reduce to the existence of a proof).

I think that all these difficulties can, however, be overcome.

6.3.1 Predicates and operators
The right hand side of the definition (pp2) essentially involves predicating something

of the sentence ϕ. However, what is being claimed to be defined is not a predicate of
sentences, but an operator. The difference between these categories is an important one.

A language which allows predication of sentences must have terms in it which refer to

sentences, but operators require no such thing. Moreover, predication of sentences is in

some sense inherently more risky than use of operators. For example, the naı̈ve truth

schema for a truth predicate
Tr⌜ϕ⌝ ↔ ϕ

is famously inconsistent (as long as the background theory allows self-reference). But

the corresponding principle with a truth operator

Tϕ↔ ϕ

is utterly harmless (and in many ways, rather dull—the truth operator is just the identity

truth-function). The same holds for predicate versions of familiar unary and binary

operators; naı̈ve predicate versions of negation (falsehood), conditionals and modality

are also inconsistent (Deutsch, 2010; Montague, 1963). Because of these important

differences we should not smuggle predicates of sentences into operators, and this—so

the objection goes—is just what (pp2) does.

15This will not be the case if the notion of interpretation/context is such so as to allow for the quantifiers

‘∀’ and ‘∃’ to take on meanings which should not count as universal and existential quantifiers respectively.

For example, if ‘∃’ and its natural language counterparts meant ‘most’, then ‘there is something which is not

anything’ would come out as true as long as there are at least 3 objects; it would mean that, for most x, it is not
the case that most things are identical with x. I shall assume that whatever notion of interpretation or context

is used, it will rule out deviant interpretations such as these. I will come back to the issue of just what will

count as an interpretation later.
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It is not, however, immediately clear that predications of sentences should not

feature in the definition of an operator. Consider, for example, the usual Tarskian

semantics for the ordinary truth-functional operators, which can be taken in some sense

to be a definition of them. So, for example, for conditionals we have (given in some

metalanguage):

⌜ϕ → ψ⌝ is true ⇔ ψ is true or ϕ is not true

Similarly, a definition in the spirit of (pp2) can be treated as such a metalinguistic

specification of truth conditions (see footnote 10), where the metalanguage features

vocabulary for metaphysical possibility:

⌜◊ϕ⌝ is true ⇔ it is possible to interpret the quantifiers so that ϕ is true.

This definition suffices also for nested modal operators. Just as the definition for the

conditional will yield—with two applications—the condition that ⌜ϕ → (ψ → θ)⌝ is
true just in case θ is true or either of ϕ or ψ is not true, the definition for ‘◊’ will give

relatively simple truth conditions for, eg. ⌜◊◊ϕ⌝ as:

⌜◊◊ϕ⌝ is true ⇔ it is possible to reinterpret the quantifiers

so that it is possible to reinterpret the quantifiers so that ϕ is true.

It might, however, be demanded that there be a definition of ‘◊’ in the object lan-

guage, or that somehow giving a metalinguistic definition is inadequate. For example, if

ascending to a metalanguage is itself the result of a reinterpretation of the language (so

that, for example, the domain of quantification includes a set representing the domain

of the object language quantifiers), there may be worries of circularity. I do not think

that this is much of a worry. Postulational possibility involves the reinterpretation of

quantifiers. But, the metalinguistic version of (pp2) does not use quantification at all, so

any issues concerning the interpretation of the quantifiers in the metalanguage simply

do not arise.

I believe then that these concerns can be overcome in such a manner. But in any

case, worries of this kind will not be specific to just the case of postulational possibility,

as I have defined it, but must also apple to a number of modal operators which are much

more commonplace. Consider, for example, propositional attitude reports that report

de dicto attitudes to propositions involving proper names. To give an example, suppose

that, of the following two sentences, we judge (1) as true, but (2) as false.

1.) Lois Lane believes that Superman is strong. (B(Strong(Superman))

2.) Lois Lane believes that Clark Kent is strong. (B(Strong(Kent)))

These are treated in doxastic logics by means of an operator on sentences (in a way

similar to that shown above). But any explanation of the truth value of these sentences

will have to involve mentioning the names appearing in the sentences—for this is all that

differs between them—and thus involve at some level predication of linguistic items.

And this will be the case not just for some specific position with regards to propositional

attitude reports, but must hold for any position which allows (1) and (2) to have different

truth values.16

16An exception would be naı̈ve Russellians, who claim that co-referential terms are intersubstitutable salva
veritate even in belief contexts. As such, (1) and (2) will be materially equivalent, with the differences between

them being pragmatic, rather than semantic.
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6.3.2 Scoping operators
It will be desirable to embed scoping operators within postulational modalities. Indeed,

a very natural expression of generality relativism involves actuality—namely, that there

(postulationaly) could be something which is not actually anything. More generally, I

will want to make use of the scoping operator ‘↓’ which exempts what follows from the

scope of the innermost enclosing modal operator (rather than exempting what follows

from the scope of all enclosing modal operators). But this raises a problem for how such

scoping operators are supposed to interact with postulational modalities.

Sentences involving actuality can not simply be inserted into the definition to get

the desired result. For example, consider the statement of relativism: there could

be something which is not actually anything. Formalised, this is: ◊∃x@∀y(x ≠ y).
But the definition tells us that this is true just in case it is possible to reinterpret the

quantifiers so that ‘∃x@∀y(x ≠ y)’ is true. But this is plainly false. No matter how the

quantifiers are interpreted (ruling out ‘deviant’ interpretations), ‘∃x@∀y(x ≠ y)’ will
be false; the actuality operator no longer lies within the scope of a modality for the

purposes of evaluating this sentence, and so is redundant—the sentence is effectively

the contradiction ‘∃x∀y(x ≠ y)’.
It should be noted that this problem is again not unique to postulational modality.

It applies too to other operations which result in something like a de dicto evaluation.
So, for example, we may wish to consider scoping operations in relation to belief. It

is common to ascribe to another a mistaken belief in something which does not, in

fact, exist (for example, the charge levelled against platonists by nominalists, or against

theists by atheists). This is best formalised very similarly to the statement of relativism,

as Ba∃x@∀y(x ≠ y).17 But this should not be taken to be a claim that a believes the

contradiction that there is something which is not actually anything.

A typical way to explain scoping operators is within a possible worlds semantics.

Either a particular world is specified as the actual world, or which worlds have been

‘travelled through’ are kept track of. The result of a scoping operator is then to take one

back to the actual world, or to some world which has been travelled through. It should

be clear that such an approach is not available here. The very reason for adopting a

modality is to avoid quantification over interpretations or contexts, which would be

the best candidates for possible worlds. (Similarly, it seems like the possible worlds

approach would not do for belief operators either.)

This problem can be solved if ‘@’ and scoping devices more generally are thought of

as ‘quasi-syntactic’. That is, they do not express any meaning themselves in a sentence,

but simply indicate how other parts of a sentence ought to be evaluated. Other symbols

which would fit into this category would be parentheses. These too do not carry any

meaning of their own, but simply indicate in which order to evaluate other parts of

a sentence. For example, ⌜↓ϕ⌝ should not be thought to have any meaning itself. Or,

perhaps, ⌜↓ϕ⌝ shouldmean exactly the same as ϕ in the same way as ⌜(ϕ)⌝means exactly

the same as ϕ.

17Of course, if each belief is taken seperately, then there is no need to make use of the actuality operator. It

is rather what the two beliefs have in common (according to an atheist nominalist) that requires the actuality

operator.

A formulation of what it is that the beliefs have in common could also be given without recourse to an

actuality operator if a second-order formulation is adopted. Then, the commonality can be expressed as

‘∃F(Ba(∃xFx) ∧ ¬∃F(Fx))’. But it seems desirable to be able to make such a claim in first-order logic.
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This idea surely needs more in the way of spelling out. I do so by giving a deductive

system which, I claim, does justice to the idea that when ⌜↓ϕ⌝ appears within the scope

of a modal operator, it signifies that ϕ should be evaluated as if it did not lie within the

scope.

Consider, for example, the formula ⌜◻(ϕ ∧ ↓ψ)⌝. A deductive system governing the

scope operator should allow one to ‘extract’ ψ from the scope of the necessity operator.

Indeed, this formula will clearly be equivalent to ⌜◻ϕ ∧ ψ⌝. The deductive system must

give us a systematic way of deducing equivalences like these. But, we should not expect

to find an equivalence in every case (otherwise there would be no need to have the

scoping operator in the first place).

What is needed is a way to ‘look inside’ the scope of an instance of ‘◻’, and then,

when confronted with a subformula prefixed by ↓, treat this as not lying within the scope.
This can be done by means of a deductive system which makes use of labels. These are

used throughout a deduction to keep track of when we are looking inside the scope of a

modal operator, and when we can exempt a formula from that scope. In order to look

inside the scope of a modal operator, we may simply ignore it, but add a label indicating

that it is currently being ignored. This label will then indicate that either the modal

operator must be appropriately reinstated later, or, if ↓ is encountered, the operator may

be ignored permanently, by removing the label.

I give the details of such a deductive system in appendix A.

6.4 Interpretations and the metaphysics of domain ex-
pansion

The definition of postulational modality that I have given involves the notion of an

interpretation, or at least the act of interpretation of a piece of language.18 But what

is the relevant notion of an interpretation, and in particular the interpretation of a

quantifier? And what is supposed to be going on when one reinterprets the quantifiers?

The question concerns how quantifiers succeed in ‘latching on’ to the world. How is this

determined, and how is it supposed to change?

Interpretations of quantifiers are often thought of as being very closely related to

domains, so that the meaning of a given pair of quantifiers just is the associated domain

of quantification. The account of interpretation that I will give will consider talk of

domains to be purely secondary in role to more fundamental aspects of the meaning

of quantifiers, namely the truth conditions of whole sentences in which they appear.

Nonetheless, it is very useful to talk of domains in relation to the meanings of quantifiers

(though leaving it open how domains are themselves to be understood). The main

question of this section then becomes how to understand the shift in domain that must

occur when reinterpreting one’s quantifiers. Of particular interest will be cases in which

the domain expands.
First, I would like to place some constraints on how such a shift in domain could be

understood, at least for my purposes. I wish to consider only broadly realist accounts in

the shift of interpretation. So, for example, a shift in domain should not be accounted

for in a fictionalist manner, so that a shift in domain consists in enhancing a fiction, or

18I will put aside for the moment the contextual version.
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moving to a new fiction. And a shift in domain should not involve the ‘creation’ of new

mind-dependent objects to add to the domain.

Fine suggests two ways in which the effective expansion of a domain could be

understood: as a lifting of restrictions, or by means which does not involve the lifting

of restrictions (the latter of which he calls creative or expansive (Fine, 2005, p.103)).
The first of these is the standard way of specifying the interpretation of a quantifier,

and shifts in such interpretation. A domain D for a quantifier is specified in some

metalanguage which itself has a wider domain of quantification, as a restriction of the

wider domain. Truth conditions for sentences involving the quantifier are given in the

usual way—i.e. ⌜∀xϕ⌝ is true under such an interpretation iff every object in D satisfies

ϕ. It should be clear that this standard notion of the interpretation of a quantifier can not
suffice for present purposes. For it presupposes what is, in effect, absolutely unrestricted

quantification. And postulational possibility would then be simply definable in terms of

this absolutely universal domain. ⌜◊ϕ⌝ could simply be defined as ∃D(ϕD), where ϕD

is the restriction of the quantifiers in ϕ to D.19
This means that the shift in interpretation, if it is to be understood in terms of

domains, must be explained in terms of domain expansion. That is, moving to a larger

domain can not be thought of in terms of a lifting of restrictions on a larger domain.

Instead, an interpretation with a larger domain must be reached by presupposing only

the domain from which it is an expansion.

But how are we to make sense of the idea that a domain may expand without this

being the case of lifting restrictions? There are two questions which must be answered—

one broadly epistemic, and one concerning the metaphysics of domain expansion.20 The

epistemic question concerns how we can come to understand an expanded domain, and

the metaphysical question concerns how such an expansion of an unrestricted domain

can come about—what must the world be like in order for it to be possible to expand

the domain? These are not independent questions; what is needed in order to come to

an understanding of a new domain may include being able to know that the appropriate

metaphysical conditions obtain.

Answers to these questions are immediately available when considering either the

placing of or the lifting of restrictions. If we understand a particular domain of quan-

tification, we can understand a restriction of it in the usual way (assuming that we

have a proper understanding of the restricting predicate). Similarly, there is nothing

metaphysically problematic. If we can quantify over some particular domain, then we

can surely quantify over a restriction of it. What is required to be able to quantify over

ϕs is that there are ϕs. This ‘there are’ can simply be understood as being the larger

(perhaps absolutely unrestricted) quantifier that we are restricting.

Similarly, if domain expansion is thought of in terms of a lifting of restrictions, similar

answers can be given. For suppose we start with a domain D′ which is a restriction of a

domain D. Then we can easily come to understand an expanded domain, as long as it

too is a restriction of D. The situation in which it is permissible to expand to a domain

which includes ϕs just is when there are ϕs (in the sense of the quantifier attached to D).

19There are several options as to how D itself may be understood. It could be taken to be a plural variable, a

second-order variable, or perhaps (although this last suggestion would have some limitations) as a set variable.

The restriction on quantifiers in ϕ would then be given in a way appropriate to whichever choice is made.

20These roughly correspond to two question which Hale and Wright (2009b, p. 191) raise which may be

asked about the use of abstraction principles.
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But these answers are not available for domain expansion. The target is as follows.

Suppose we have a domain of quantification, D, which is not understood as the restric-

tion of a larger domain (we might say unrestricted, if we are careful to distinguish this

from unextendable) . How can we then come to quantify over a domain which includes

objects which are not in D (such as, for example, the domain D itself, considered as a

set)? How do we gain an understanding of such a quantifier, and what justification in

there for this move being legitimate? Fine writes that this expansion is to come about

via postulation of a certain kind:

[T]he change in interpretation of the domain of quantification is somehow

given by the condition ∀y(y ∈ x). But rather than thinking of that condi-

tion as serving to define a new predicate by which the quantifier is to be

restricted, we should think of it as serving to indicate how the range of

the quantifier is to be extended. Associated with the condition ∀y(y ∈ x)
will be an instruction or ‘procedural postulate’, !x∀y(y ∈ x), requiring us
to introduce an object x whose members are the objects y of the given
domain. In itself, the notation !x∀y(y ∈ x) is perhaps neutral as to how the

required extension is to be achieved. But the intent is that there is no more

fundamental understanding of what the new domain should be except as

the domain that might be reached from the given domain by adding an

object in conformity with the condition. Thus !x∀y(y ∈ x) serves as a
positive injunction on how the domain is to be extended rather than as a

negative constraint on how it is to be restricted. (Fine, 2006, p.37)

This tells us how, on Fine’s view, a domain expansion is to be effected—via postulation—

and what effect it should have—that there be an object satisfying such and such a

condition. Given a logic governing procedural postulates (which Fine (2005) promises),

it will also provide a route for learning about the consequence of such an expansion.

This then gives a partial answer to the epistemological question. But we still require an

answer to the metaphysical question. When is it legitimate to make such a postulation

and go on to speak as if the domain has expanded? Moreover, what justification is there

for postulation ever being legitimate?

For Fine, a postulation is legitimate just in case it is consistent tomake the stipulation,

and moreover, that it is consistent with a set of ‘postulational constraints’ governing the

vocabulary in the postulates. For example, the constraints governing postulation about

sets are:

Extensionality ∀x∀y[Sx ∧ Sy ∧ ∀z(z ∈ x ↔ z ∈ y) → x = y]

Sethood ∀y[∃x(x ∈ y) → Sy]

Set-rigidity ∀y∀F[Sy ∧ ∀x(x ∈ y → Fx) → ◻∀x(x ∈ y → Fx)].

But this does not explain why postulation is legitimate in these cases, if ever. For one

thing, consistency generally falls well short of truth; it is consistent to suppose that the

earth is flat, or that there are talking donkeys, or to postulate electrons into existence,

for example. And it is not clear how consistency with a set of constraints improves this

matter.
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Weir (2007) raises a number of challenges along these lines, and which surely have

to be met by the proponent of domain expansion. I shall claim that Fine’s responses

to these challenges is not adequate. But I will argue that they can indeed be met, by

adapting neo-Fregean ideas about singular terms to quantifiers.

Broadly, there are two relevant criticisms that Weir raises.21 Firstly, there are some

apparent counterexamples to the claim that consistency and compatibility with con-

straints is sufficient for the legitimacy of postulation. These are examples where it

appears that it would be permissible to postulate the objects of some physical theory,

such as electrons. The example is as follows. Suppose that T is some physical theory,

and θ(x1 , . . . , xn , R1 , . . . , Rm) is the result of replacing each non-logical constant in T
by variables of the appropriate kind. The Carnap conditional of T is then

∃!(x1 , . . . , xn , R1 , . . . , Rm)θ(x1 , . . . , xn , R1 , . . . , Rm) → T

which plausibly serves as an (non-existentially committing) implicit definition of the

terms in T . But then, if this is taken to be a postulational constraint, postulating the

existence of the objects involved in the theory will be permitted.

Hence, some non-ad hoc criteria for what count as acceptable constraints must be

given. But, even if some non-ad hoc restriction can be made, this will not result in a

justification for why it is then legitimate to expand one’s domain via postulation. Surely,

an opponent will argue, in order for it to be legitimate for us to interpret our quantifiers

so that ⌜∃xϕ⌝ comes out as true, it is not sufficient that it simply be consistent that there

are ϕs. What is required instead is existence; there must be some ϕs. There must be a

domain which contains ϕs. But this will not ever be the case when we are considering a

genuine expansion. For then any domain which we have access to, and can use to ask

the quantificational question ‘are there ϕs’, will not contain ϕs. In the case of the main

opponent—the absolutist—the domain in question will be what they perceive to be the

absolutely unrestricted domain. More must be said in order to answer why a condition
such as consistency could serve as a sufficient condition for domain expansion, and why

demands for more (such as existence in some already given sense) can be rejected.

There are two broadly anti-realist proposals which Weir suggests could make sense

of such undemanding sufficient conditions (although each has problems of its own). This

is his second objection—that domain expansion must rely on some form of anti-realism.

The first is that the domain expansion involves the literal creation of new objects. For

example, it is plausible that one could expand the domain of absolutely all tables simply

by building more tables.22 It is also plausible that some abstract objects can be created,

such as fictional characters, works of literature and the like. But this is much more

implausible in the case of sets. For one thing, it makes the existence of sets a contingent

and tensed matter. But in any case, it is not the kind of realist metaphysics which is

being sought.

The second anti-realist picture is a fictionalist one. On this picture, we are not

expanding a genuine domain of quantification, but rather just changing what we can

say within a fiction. So, a domain expansion is akin to adding new characters to a story,

and the resulting claim that there is something satisfying some condition is asserted

21Weir also criticises Fine’s approach for its use of second-order logic. I shall not discuss that criticism here.

22Whether this example works will depend on some contentious issues in metaphysics. For example, it

will depend on whether an absolutely unrestricted quantifier must include future objects, and whether the

rearrangement of matter can result in the creation of new objects.
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within an implicit ‘according to the fiction’ operator.23 While this may be a plausible

approach, it is again not the realist picture we are after. Moreover, it is unclear what

advantages a fictionalist reading of domain expansion would have over a more direct

form of fictionalism along the lines of Field (1980). In particular, it will presumably

inherit any drawbacks that more standard forms of fictionalism face.

Regardless of their individual merits and demerits of these positions, neither satisfy

the requirement that domain expansion be made sense of in a broadly realist fashion.

Neither do they do justice to the idea that it is the interpretation of a quantifier that is

changed. What is to occur in a domain expansion is not to result from a change in how

the world is (via creation), or a change in what is true according to some fiction. Rather,

all that happens is a change in the truth-value of sentences involving quantification,

brought about through a change inmeaning (to some extent) of the quantifier. We do

not change how the world is, but merely how it is being described.

The position is thus similar in some respects to that of quantifier variance (cf. eg.
Hirsch, 2009). According to such a view, the meaning of quantifiers can vary, and in

such a way that no one meaning is privileged over others, either metaphysically—by, for

example, representing more accurately the real structure of the world—or logically—so

that all other quantifiers are to be understood as restrictions of one particular quantifier.

Both positions also share difficulties. In particular, they both face the challenge of

explaining these differences and changes in meaning. And this challenge must be met

without negating their position by presupposing some wider perspective (either an

absolutely unrestricted domain, or metaphysically fundamental quantifier) in which to

do so.

The most natural way to explain such a change would be in terms of domains, and

hence by domain expansion. But it is then hard to see how that might be explained but

by means of talking of change of meaning. But this is obviously circular. A different

problem is to explain why these separate meanings should not be taken in the discussed

fictionalistmanner, but as genuine quantifiers which are used, at face value, as quantifiers.

The problem is even more pressing when the opponent claims to be quantifying over

absolutely everything. For any expanded quantifier meaning will appear not to have a

domain (for otherwise it would be expressible as a restriction).

So, the two problems are this:24

(a) How are the changes in meanings to be accounted for? What aspects of the

meaning of the quantifier is is that varies?

(b) How is it that all the supposed quantifiers are quantifiers? What aspect of meaning

is shared?

I believe that answers to these questions can be given by rejecting talk of domains,

at least, as being fundamental to the meaning of a quantifier. And this can be done by

adopting something like the syntactic priority thesis (cf. Wright, 1983) to quantifiers as

opposed to just singular terms.

23If one adopts realism about fictional entities, then this view will collapse to the first, creationist, view.

24These two challenges are raised by Hale and Wright (2009b) and others against quantifier variantists.
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6.5 The context principle, the syntactic priority thesis,
and quantifiers

Frege (1884, p.x) urges us ‘never to ask for the meaning of a word in isolation, but only

in the context of a sentence.’ This principle has usually been used to apply to singular

terms, notably by neo-Fregeans, but if the principle is correct, it is surely correct for

any category of words, quantifiers included. If this is right then this will allow for a way

to explain a shift in the interpretation of a quantifier not in terms of its domain (and

hence, in some sense, removed from the context of a sentence), but simply in terms of

the truth conditions of sentences involving quantification.

More needs to be said about how this is to be done, and how it will avoid the worries

laid out in the previous section. That will be the aim of this section.

If the context principle is to be of any use in explaining the meanings of words in

terms of the sentences in which they occur, we can not explain what category some term

belongs to (such as a singular term, or a quantifier) in terms of its semantic function. So,

for example, we can not state that σ is a singular term if it refers (or purports to refer) to

an object, or that it is a quantifier if it serves to generalise over a domain. Instead, an

account must be given in non-semantic terms. The claim that the syntactic behaviour

of some term is prior in some sense to its semantic function is the syntactic priority
thesis. Stating this principle (together with a form of the context principle), Wright

(1983) writes:

The question of whether a particular expression is a candidate to refer. . . is

entirely a matter of the sort of syntactic role which it plays in whole sen-

tences. . . questions concerning its reference should be addressed by. . . reflection

on the truth-conditions of sentences of the appropriate kind. (p.51)

The corresponding principle for quantifiers will then be:

The question of whether a particular expression is a candidate to quantify
is entirely a matter of the sort of syntactic role which it plays in whole sen-

tences. Questions concerning its domain should be addressed by reflection

on the truth-conditions of sentences of the appropriate kind.

In order to apply such a principle, we must then give some syntactic or inferential

account of what it is for some term to be a quantifier of a certain kind.25 I propose that

we simply say that some symbol Σ is an existential quantifier just in case it obeys the

free-logical inference rules for existential quantifiers:26

ϕ(x/t)
(Σ-I)

Σxϕ
Σxϕ

[ϕ(x/t)]
⋮
ψ

(Σ-E) ψ

25Such a task for singular terms is carried out by Dummett (1973, ch. 4) and Hale (2001b,c)

26This will not suffice for natural language quantifier phrases. In this case, grammatical considerations are

not sufficient to distinguish quantifiers from singular terms (both are noun phrases), and the natural language

counterparts of the quantifier rules are not sufficient either. Nonetheless, it seems plausible that further tests

could be given to distinguish the two, similar to those given by Dummett and Hale.
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and similarly for universal quantifiers.

It is important that if we wish to allow for different quantifiers having different

domains, and if we wish to allow for empty singular terms, the rules must be free. This

is because otherwise, for any term t, and any quantifier, t must have a referent that lies

within the domain of that quantifier.27

Now, if we adopt something like the context principle and the syntactic priority thesis

for quantifiers, it seems that we can shrug off demands to explain shifts in interpretation

by means of domains, and to answer the two questions (a) and (b) raised earlier about

these shifts in meaning (p. 109). Recall that these were: what aspect of meaning is

is that is preserved amongst quantifiers, and what aspect of meaning is it that varies?

The aspect of meaning that is preserved between quantifier interpretations is their

inferential behaviour—this is what sets them apart as quantifiers (of a certain kind).

More importantly, we can explain how it is that the meanings can vary, without taking a

perspective which views them as restrictions, and without making appeal to dubious

ideas such as creation. What changes about the meaning of a quantifier is simply the

truth conditions of sentences containing them. Any further demand to explain this,
perhaps in terms of domains, is to get the order of explanation the wrong way round.

It is not the change of truth-conditions that is to be explained in terms of change in

domain. Rather, the change in domain is to be explained in terms of change of truth

conditions.

Where does this then leave us with respect to the metaphysical and epistemic ques-

tions that need answering about domain expansion raised in the last section? Recall

that the challenges are: (1) to explain how one can come to an understanding of a new

interpretation of a quantifier without presupposing an understanding of larger domain

of which it is a restriction; (2) to answer what the world has to be like for such a domain

expansion to be successful in generalising over a domain, and justifying that answer

(without presupposing something like absolutism).

To the first question, an answer similar to the neo-Fregean position concerning

singular terms may be given. For them, abstraction principles serve as a stipulated

implicit definition of a class of singular terms (or rather, of the abstraction operator

which is common to that class of singular terms), and an understanding of those singular

terms derives from knowing the truth of the implicit definition. For quantifiers then,

perhaps something like implicit definitions can be used to stipulate the truth conditions

of sentences involving a quantifier. Perhaps Fine’s procedural postulates could serve as a

method of stipulating such truth conditions. I would favour, however, a more uniform

way of doing so, via abstraction principles. Consider the following abstraction principle:

(AP) ∀F∀G[§F = §G ↔ Φ(F ,G)]

We wish to be defining a new quantifier which, in effect, has §s in its domain28, so we

do not assume that §F has a referent which lies within the domain of any quantifier

appearing in Φ. Nor do we need to assume that it does not – it is not a matter of

stipulation that the new quantifier will have a new domain (although that may, in some

circumstances, be a consequence).

27See, for example, Turner (2010), who puts free logic to a similar use.

28The domain talk here is easily eliminated. What is required is that ∃x∃F(x = §F) is true with the new

quantifier.
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Now, we can define a new pair of quantifiers ∃§/∀§ by stipulating the truth conditions

of sentences containing it as follows:

(∗) ∃§xϕ↔ ∃Fϕ(§F)

where in some cases the appearance of § on the right hand side may be eliminated by

use of (AP). For example, consider the claim that there are§ at least two things:

(6.4) ∃§x∃§ y(x ≠ y)

By (∗) this is true just in case the following is true:

(6.5) ∃F∃G(§F ≠ §G)

The abstraction operator can then be eliminated via (AP), to get:

(6.6) ∃F∃G¬Φ(F ,G)

Since (6.6) contains only old vocabulary, an understanding of (6.4) can be gained just

given an understanding of the old vocabulary. Since it may be the case that the new

quantifier ∃§/∀§ may exceed any of the quantifiers appearing in Φ, this may then give

us a means of understanding a quantifier without presupposing an understanding of a

wider quantifier.

What then of the second question: In what circumstances is such a method of

implicit definition justified, and what reason is there to believe that it is ever justified?
The answer is again similar to that given by neo-Fregeans concerning singular terms.

There will be some limits on what implicit definitions are acceptable, but these will not

be a matter of, as Hale and Wright (2009b) put it, ‘hitting off reference to a range of

entities qualified to play the role that the principle defines’ . Rather, the requirements on

implicit definitions will be logical/linguistic as opposed to metaphysical—requirements

such as conservativeness, harmony and so on. In the case of definitions of quantifiers

in the way that I have suggested, an option is available which is not available for the

standard approach to abstraction. That option is a strong form of conservativeness—

roughly speaking, the requirement that the definition should not result in any new

consequences expressed in the old language. This is not available on the standard

approach. For example, HP entails that there are at least two objects (∃x∃y(x ≠ y)),
which is expressible without using the newly introduced abstraction operator, and which

does not follow without HP. Although the present expansive approach will also (if it is

to be successful) entail that there are at least two objects, this will be a claim expressed

using the new quantifiers, and hence does not violate strong conservativeness.

And this position—that the conservativeness of some implicit definition is sufficient

for the possibility of interpreting the quantifier in such and such a way29—is itself

justified given the context principle and the syntactic priority thesis. For what else could

be required? The implicit definition simply serves as a prescription of how to use a

new piece of language, and if this new piece of language does not interfere with the old

language (through violations of conservativeness), what is to stop us? And it can not

be claimed that the new piece of language may fail to be a genuine quantifier on the

29Or, at least that whatever sufficient conditions there are do not involve the metaphysical cooperation of

the world in some way or other.
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grounds of there not being any domain for it to generalise over. For, by the syntactic

priority thesis, all there is to being a genuine quantifier is to have the correct inferential

behaviour.

6.6 Conclusion

My aim in this chapter had been to defend generality relativism. I should emphasise

that the aim has not been to argue directily in favour of the view. Instead, it has been to

flesh out what I think the view must amount to, and, in doing so, to respond to what I

see as some of the most pressing objections to the view.

My first aim was to respond to the charge that relativism is either self-refuting or

inexpressible. There were two responses which I gave to that—one negative, and one

postitive. The first, negative, response was to argue that the very same problem faces

everyone in the debate, including the absolutist. The second, more positive response,

was to provide a way to articulate relativism, by building on work of Fine’s, and claiming

that relativism can be expressed using the notion of postulational possibility. In contrast

to Fine, I argued that it is not acceptable simply to take the modality as primitive. I

supplied such an explanation, in terms of the possibility of reinterpreting vocabulary.

My second aim was to supply a metaphysics of domain expansion which does not

suggest any mysterious faculty of creation of objects. Such a metaphysics (or, perhaps,

anti-metaphysics) consisted in taking themeaning of a quantifier to derive, not primarily

from a presupposed domain of quantification, but rather from the truth conditions of

sentences in which it appears.
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Chapter 7

Abstraction with domain
expansion

7.1 Introduction

In this chapter, my aim is to answer the second of the challenges raised in chapter 5.

That is, it is to develop a formal theory of expansionist abstraction. This will be done

by investigating which components of the standard approach to abstraction involve

the assumption of a fixed domain, and then modifying these components. In section

7.2 I shall discuss what changes are required in order to remove the assumption of

absolute generality. This will involve using the modality of postulational possibility

and adapting abstraction principles for a modal setting. Sections 7.3–7.7 will deal with

the consequences of this background logic, and in particular for a set theory based on

a modal version of Basic Law V. In particular, I will show that when an appropriate

background logic is adopted, Basic LawV is consistent and can account for all of standard

set theory.

7.2 A suitable logic for domain expansion

We saw in chapter 2 that the assumption of a fixed domain (and, in particular, an

absolutely unrestricted domain) plays a key role in motivating the characteristic E!-I

rule of a negative free logic. Recall, this is the rule:

ϕ(x/t) ϕ is atomic
(E!-I)

∃x(x = t)

It is worth going over how this is so. A particularly important class of instances of the

E!-I rule is when the singular terms involved are abstract terms. In such a circumstance,

the definition of such a term may involve a quantifier. In cases such as these, E!-I says

that, if an abstract term t occurs in a true atomic sentence, then one may infer that a

referent of t lies in the domain of the very quantifier which is involved in defining t.
And, as I argued, this seems plausible when the domain of quantification is absolutely

unrestricted.
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But no such motivation is available when we allow that the domain may expand. For

in that case, why should we expect that the referent of t should lie within any particular

domain?1 Consider, for example, a commonplace case of where there is room for a

domain to expand—when the quantifiers in question are contextually restricted to

salient objects. Suppose that a family is discussing the state of their packing for a holiday.

In such a context, it is likely that the quantifiers may be restricted to, say, just those

things which might be expected to be packed, and thus that ‘everything is packed’ might

be true in this context. But, there will be singular terms which refer, and which may

appear in true atomic sentences, yet do not fall under the range of the quantifier. So, for

example, it could presumably be true, in such a circumstance, that the kitchen sink is

white. It does not follow, of course, that the kitchen sink is packed! That is, the following

inference:

P1. Everything is packed.

P2. The kitchen sink is white.

C. The kitchen sink is packed.

is not valid. In the context under consideration, the two premises are true, yet the

conclusion false. It would, however, be validated by a negative free logic.

Of course, in the course of such a discussion, an utterance of P2 is very likely to

cause the context to shift, so that the quantifier now ranges over the domain which

includes the kitchen sink. But that is beside the point. Unless changes are made to the

logic to take into account the possibility of a context shift from one line of a proof to the

next, it must be a presupposition that we keep the context fixed.

What we can say in such a situation is that the context can shift so as to include a

referent of the singular term in question. From the truth of an atomic sentence featuring

a singular term t, one can infer that it is possible to shift context, or interpretation of the

quantifier, so that t has a referent lying within the new domain of quantification. This

can be expressed in the form of an inference rule making use of postulational modality

as follows:

ϕ(t/x) ϕ is atomic

◊∃x(x = t)

This rule will still not quite suffice, however. Many such terms under consideration

will be non-rigid, and their reference may vary as the interpretation of the quantifiers

varies. For example, ‘the set of everything’ will denote a different set depending on the

interpretation of ‘everything’. Suppose that t is such a term. We do not want to say

that the truth—in the present context—of an atomic sentence containing t allows us to
reinterpret the quantifiers so that it includes the referent of t in the new context. Rather,
we want to say that this allows us to reinterpret the quantifiers so that it includes the

referent of t in the old context (the one in which an atomic sentence containing t is
true). In other words, we want to exempt t from the scope of the possibility operator.

This can be done by allowing the scoping device ↓ to apply to terms as well as formulas.

The revised (◊E!-I) rule will then be:

1We would expect this if our language was carefully restricted in such a way so that the referent of any term

will lie within a particular domain of quantification. Consider, for example, the usual language of arithmetic,

in which every term refers to an object in the (restricted) domain of natural numbers.
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ϕ(t/x) ϕ is atomic
(◊E!-I)

◊∃x(x = ↓t)

So then, in order to assess the impact of dropping the insistence on absolutely

unrestricted quantification, the (E!-I) rule must be replaced by (◊E!-I). This then gives

us the basis for developing a formal theory of abstraction principles where the domain

may expand. But, in order to make such a replacement, there are two main tasks

that must be carried out. Firstly, changes need to be made to the form of abstraction

principles in order to deal with modality. Secondly, a suitable background second-order

modal logic which incorporates (◊E!-I) must be developed.

7.2.1 Modalised abstraction principles
Abstraction principles in the form:

(AP) ∀v1∀v2[§(v1) = §(v2) ↔ E(v1 , v2)]

fail to give a fully general criterion of identity when considering modal contexts. The

reason is that, even when stated as a necessity:

(AP◻) ◻∀v1∀v2[§(v1) = §(v2) ↔ E(v1 , v2)],

they fail to give trans-world identity conditions. Or, to avoid talk of worlds, given v1 and
v2 in the abstraction domain, AP◻ fails to determine whether v1 would have the same

associated abstract were circumstances one way than v2 would have were circumstances

some different way. This failure is pointed out by Hale and Wright (2001b, p.358) in the

case of DE:

To presuppose that the Direction Equivalence may be appealed to in rea-

soning in an arbitrary hypothetical scenario of lines and their properties

is merely to assume that the principle is a necessary truth. That much is

presumably alright. . .But that only yields that the Direction Equivalence

holds of any world. What [is needed] is that the scope of the principles en-

compasses not merely relations of parallelism within a world, but relations

of, as it were, trans-world parallelism. 2

The problem is that in AP◻, everything is evaluated within the scope of the necessity

operator, and so evaluated at the same world. What is needed then, is for some part of

the abstraction relation E to be evaluated outside the scope of the necessity, by making

use of scoping devices, such as an actuality operator. To develop such a method in full

generality to cover any abstraction relation would be a large undertaking, and I shall

not attempt to do so here. Instead, I shall simply concentrate on the specific cases of

BLV and HP.

2Worries could of course be raised about whether some absolute notion of transworld parallelism can

be made sense of, independent of some specified fixed frame of reference (consider, for example, thought

experiments where the entire universe is rotated 45 degrees). However, in the present case, where the modality

only concerns changes in interpretation and context, the worry seems less pressing. In any case, certain

relations—in particular coextensiveness and equinumerosity—certainly do seem to make sense considered as

transworld relations.
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We shall need to allow the actuality operator ‘@’ to apply to singular terms as well as

to formulas. This is because, as already noted, abstract terms are likely to be non-rigid,

in that they have different referents depending on the circumstances in which they are

evaluated.3 By allowing this, we can formulate a modal version of BLV as follows:

(BLV@) ◻∀F∀G(εF = @εG ↔ ∀x(Fx ↔ @Gx))

This says that for any concepts F and G, the set of Fs in some circumstances (or, in the

case of postulational possibility, under some possible interpretation of the quantifiers)

is the set of Gs under the actual circumstances iff everything that is an F under those

circumstances in actually a G and vice versa.

But there are still two things wrong with this. The intended effect of an abstract term

such as ‘εF’ or ‘NF’ is to refer to the set or number (or whatever) of all and only the Fs,
and so implicitly involving the domain of quantification of the context in which it is

used. This is what is stipulated in the non-modal versions of abstraction principles. For

example, the criterion for F and G having the same set is ∀x(Fx ↔ Gx), i.e. that all the
Fs are G and only the Fs are G. It also corresponds to the actual usage of such terms;

suppose, for example, that the context is such that the quantifier phrase ‘all bottles’ is

restricted to just those bottles which are in this room. It seems plausible that, in this

same context, the singular term ‘the set of bottles’ will refer to the set of just those bottles

in this room.

But BLV@ does not do this. The criterion of identity should be that every F is an

actual G and vice-versa, where ‘actual G’ is to be understood as only encompassing

things which fall under the actual quantifier. But the relation ∀x(Fx ↔ @Gx) does not
do this, since the quantifier throughout is evaluated within the scope of the necessity

operator. Instead, the relation should be ∀x(Fx ↔ @(E!x ∧ Gx)), where E!x is an

abbreviation of ∃y(y = x).4
The other problem with BLV@ is that it is tied to actual circumstances. We want

instead to state its necessitation. This can be done by using the scoping operator ↓

instead of @ (since otherwise @ would exempt what follows it from all enclosing modal

operators). We then have the following:

(BLV↓) ◻◻∀F∀G(εF = ↓εG ↔ ∀x(Fx ↔ ↓∃y(y = x ∧Gy))

Similarly, a suitable version of HP can be given:

(HP↓) ◻◻∀F∀G(NF = ↓NG ↔
∃R[∀x(Fx → ∃!y(↓(E!y ∧Gy) ∧ Rxy)) ∧ ∀x(↓(E!x ∧Gx) → ∃!y(Fy ∧ Ryx))])

3If we are interested in abstraction principles in a more general modal setting (e.g., in relation to meta-

physical possibility), then there will be even more examples of this. For example, ‘the set of red things’ will

denote different sets depending on the circumstances.

4This would of course not be a problem if the logic was a negative free logic. Since then, @Gx would entail

@E!x. But rejecting the (E!-I) rule characteristic of negative free logic is central to the current approach.
In fact, if a stronger comprehension principle were adopted than the one that I do adopt, then BLV@ would

be inconsistent. Suppose that there are concept terms I and E such that for any term t, ◻(Et↔ ∃x(x = t))
and ◻It (so E is the concept ‘falls under the quantifier’, and I is essentially the concept ‘is self-identical’). Then

BLV@ will give us ◻(εI = @εI), εI = εE and ◊(εI ≠ @εE). But then these together yield a contradiction.
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7.2.2 Logic
In order to investigate abstraction with the possibility of domain expansion, we need a

suitable background logic inwhichwe can lay down themodalised abstraction principles.

Such a logic must feature the (◊E!-I) rule, as discussed at the start of this section. But

there are still more details to be given. Firstly, since both the (◊E!-I) rule and the

modalised abstraction principles feature the scoping operator ↓, more needs to be

said about how this works. Secondly, appropriate principles need to be given for the

behaviour of the modal operator. I shall call the resulting logic EL (for expansion logic).
Full details of the logic—proof theory, model theory and a soundness result (though no

completeness result)—can be found in Appendix A. This section will discuss the most

distinctive features, and the motivation for them.

Proof theory for ↓

Thebacktracking operator ↓was first introduced byHodes (1984b), for which he provides

a possible worlds semantics. However, for the present purposes, a proof theory is

required (or, at the very least, highly desirable). Why is this? There are a few reasons.

One was mentioned in the previous chapter, in 6.3.2; a proof theory might help to

explain the sense in which the operator may be seen as quasi-syntactic—not having

any meaning of its own, but instead signifying how other parts of a sentence are to be

evaluated (similarly to parentheses). But there are two more reasons simply relying on

the model theory would be problematic.

Firstly, themodel theory essentially replaces the use ofmodal operators by quantifica-

tion over worlds. But the worlds are—in the setting of postulational modality—perhaps

best identified with contexts or interpretations of the quantifiers. But it was precisely

because of the problems with expressing generality relativism by quantifying over con-

texts or interpretations that the modal approach was adopted. Even worse, the model

theory for quantifiedmodal logic involves quantification over one ‘super’-domain, which

contains within it every object which could be quantified over. But the denial of the

possibility of such a quantification is central to the present approach. So, any reliance

on the possible worlds semantics should be eliminated (except in an instrumental role

to prove, via soundness, that certain proof-theoretic consequences do not obtain).

Secondly, one of the main reasons to develop a theory of expansionist abstraction in

an internal manner, rather than the external manner in which it was characterised in

chapter 5, was to give a story about how Hero’s knowledge of mathematics may develop

from abstraction principles. Since the object language now contains the ↓ operator, it

must be claimed that it is the kind of thing that Hero can understand. But, since Hero

is assumed to have no prior knowledge of mathematics, he can not understand the

operator by means of the semantics, since the semantics is set theoretic.

I provide the full details of a natural deduction style system for the ↓ operator in

appendix A.1. A key feature of the system, which requires defending, is that formulas in

a proof are labelled by a finite sequence of natural numbers; the various inference rules

permit changing these labels in certain ways. So, for example, a simple deduction of ϕ
from ◻↓ϕ could proceed as follows:

1) ◻↓ϕ ;− (Assumption )

2) ↓ϕ ; 0 (1, ◻-E )
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3) ϕ ;− (2, ↓-E )

Here, the label is everything following ‘;’ in a formula. ‘-’ denotes an empty label. The

(◻-E) rule permits adding to the label of a formula (as occurs in the step from 1 to 2),

and the (↓-E) rule permits removing from a label.

Now, the presence of such labels in the proof theory may raise a worry. At first,

these labels look very much like they are playing the role of referring to worlds in the

semantics (or—perhaps worse—to sequences of worlds). But then the possible worlds

semantics again appears to be playing a crucial role, which, as I have already noted, it

must not. How are the inference rules then going to be justified?

Now, even if the labels in proofs do have to be interpreted as making reference to

world sequences, this is not disastrous. For, as noted, it would be plausible to take the

worlds as being contexts or interpretations. And reference to such things might seem

relatively innocuous. What is problematic is quantification over contexts, which merely

using labels does not do. Nonetheless, the use of labels need not even imply so much as

this.

Labelled sentences should not be taken to be some special kind of sentence which

can be asserted (and so perhaps referring to worlds in the process). They never appear

as the conclusion of a proper deduction, not even sentences labelled by the empty label.

Proof theoretic consequence, as defined (definition A.3, p. 166), is a relation simply

between sets of sentences and a sentence, all of which are sentences of a language which

does not contain any vocabulary referring to or quantifying over worlds. Labels will

only appear during the course of a proof. The use of labels should only be thought of as

something of a bookkeeping device, to keep track of how some sentence may become

exempt from the scope of the modal operators which enclose it. Thus, labels need not

have any semantic interpretation any more than, say, line numbers, or the horizontal

and vertical lines common in a number of versions of natural deduction.5

The inference rules which may be used during a proof do, however, feature labels in

their premises and conclusion. How then can they be justified, if their premises and

conclusions can not be taken to be assertions of any kind? It can not be in terms of

validity, since labelled sentences are not the kind of things which can be said to be true

or false.

The inference rules in question which need motivation are those for ↓ and ◻. These

are (where s⃗ is a finite sequence of natural numbers, and s⃗− is the result of removing the

last element of s⃗):

ϕ ; s⃗
(◻-I)

◻ϕ ; s⃗−
◻ϕ ; s⃗

(◻-E)
ϕ ; s⃗, n

ϕ ; s⃗
(↓-I)

↓ϕ ; s⃗, n
↓ϕ ; s⃗

(↓-E)
ϕ ; s⃗−

with a restriction on the (◻-I) rule that the premise may only depend on assumptions

ψ ; t⃗ such that s⃗ properly extends t⃗.

5In fact, the labels play a very similar role to the vertical lines indicating a strict subproof in the Fitch style

systems of Fitch (1952); Hazen (1990); Siemens (1977).
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Consider first the rules associated with ↓. The intended meaning for ↓ is that it

exempts what follows it from the scope of the innermost modal operator from which it

is not already exempt (if it already contains some occurrence of ↓). And so, it can be

appended to any formula, together with a note (the label) signifying that there should

be no overall effect when a modal operator is applied. The label is then simply signifying

that a modal operator is currently being ignored for some purposes. So, in this way (↓-I)

and (◻-I) act in a kind of harmony with each other, with a use of each in turn resulting

in what is essentially the same assertion—ϕ and ◻↓ϕ. Similarly, this process can be

iterated, appending ↓↓ to a formula, together with a note signifying that there should be

no overall affect when twomodal operators are applied, allowing ◻◻↓↓ϕ to be derived

from ϕ. (↓-E) and (◻-E) then simply operate as duals of (↓-I) and (◻-I) respectively.

This may make it seem peculiar that labels need to be sequences of natural numbers,

rather than just a single natural number. After all, if they are just to note how many

modal operators are permitted to be added, then surely a single number will do, namely

the number of modal operators that may be added? But there may be need, considering

the restriction on the (◻-I) rule, to introduce two assumptions with different labels

which are of the same length.

For example, consider the derived (◊-E) rule:

◊ϕ ; s⃗

[ϕ ; s⃗, n]
⋮

ψ ; t⃗
(◊-E)

ψ ; t⃗

which is subject to the restriction that s⃗, n does not appear in any other assumption

on which (ψ ; t⃗) depends (this restriction follows from the restriction on the (◻-I)

rule). Now, it must be possible to introduce separate labels of the form s⃗, n if using this

rule more than once at a time. For example, to prove ◊ϕ ∨ ◊ψ → ◊(ϕ ∨ ψ), two such
subproofs are needed.6

Modal principles

It also needs to be considered what principles the modality will satisfy, and how it will

interact with quantifiers. The modal logic governing ◊ and ◻ will be that of S4.2, which

6The proof is:

◊ϕ ∨ ◊ψ

(1)
◊ϕ ;−

(2)
ϕ ; 0

ϕ ∨ ψ ; 0

◊(ϕ ∨ ψ) ;−
(2)

◊(ϕ ∨ ψ)

(1)
◊ψ ;−

(3)
ψ ; 1

ϕ ∨ ψ ; 1

◊(ϕ ∨ ψ) ;−
(3)

◊(ϕ ∨ ψ)
(1)

◊(ϕ ∨ ψ)

(which makes use of derived rules for ∨ as well).
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means adding the following axioms:7

ϕ → ◊ϕ(T)

◊◊ϕ → ◊ϕ(4)

◊◻ϕ → ◻◊ϕ(G)

In the context of postulational modality, these are very plausible. (T) says that if ϕ is

true under the current interpretation, then it is possible to interpret the quantifiers so

that ϕ is true. This is clearly correct, since the current interpretation serves as a witness

to the possibility. (4) says, in effect, that if it is possible to make ϕ true by expanding

the domain twice, then it is possible to expand the domain so that ϕ is true. Again,

this is correct—it is still possible to interpret the quantifiers so that ϕ is true, even if it

requires two shifts. (G) is the hardest to motivate. If ◻ and ◊ were to be interpreted as

quantification over something like domains, then it could be done easily. Suppose that

there is a domain D (or interpretation I, or context C etc.) so that for all D′ expanding D,

ϕ is true interpreted on D′. Now consider an arbitrary domain D′′. Then we can expand

the domain to D′′ ∪D′, which is an expansion of D′, and hence ϕ holds on it. This does

not by itself justify (G), since the modality is not to be understood as quantification.

However, it is plausible that, since the modality is in some sense a generalisation of

quantification over domains, (G) should hold for it.

But we should not expect further rules or axioms. In particular, we should not expect

postulational possibility to satisfy the characteristic S5 axiom:

(5) ◊ϕ → ◻◊ϕ

This states that, if it is possible to expand the domain so that ϕ is true, then, no matter

how we expand the domain, it will always be possible to expand so that ϕ is true. But

this will not be the case. Suppose that the domain is restricted to one which contains

only two objects, so that ∃x∃y(x ≠ y ∧ ∀z(z = x ∨ z = y)) is true. Then (by the (T)

axiom), this is postulationally possible. But, it will not be the case that, however we

expand the domain, this sentence will be postulationally possible. For if we were to

expand the domain to one in which there are three objects, it will never be possible to

expand it further so that there are just two objects again.

First- and second-order quantification

As mentioned previously, a key feature of the logic is the (◊E!-I) rule and the restricted

free-logical quantifier rules for first-order quantification. In addition, we will adopt the

Converse Barcan Formula:

(CBF) ∃x◊ϕ → ◊∃xϕ

which guarantees that the domain can only expand, and not contract. This can be seen in

some ways simply as a restriction on which reinterpretations are going to be considered

possible.

7Actually, when ↓ is added to the language, these need restricting. Roughly speaking, they are restricted to

formulas where any instance of ↓ is ‘cancelled out’ by a modal operator enclosing it. See appendix A.1.5 for

full details.
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For the second-order quantifiers, the rules will be the usual non-free rules, as well

as both the Barcan and Converse Barcan Formulas. We will also have a strong modal

comprehension principle:

(Comp) ∃F◻∀x(Fx ↔ ϕ).

These reflect a natural thought that any formula will define an intensionally equivalent

concept, which does not depend on the existence of objects for its existence (see, e.g.

Williamson (forthcoming) for arguments that we should expect second-order modal

logic to feature these principles).

Model theory

As was the case for static abstraction, it will be useful to have a model theory for

pragmatic purposes. In order to adapt it to the present purposes, the model theory for

static abstraction must be adapted so as to allow for modal operators. This can be done

by having a possible worlds semantics, as is usual for modal logics.

A model will be a 4-tupleM= ⟨W ,D, δ, I⟩. W is a set of worlds, which informally

can be said to represent various possible contexts or interpretations of the quantifiers.

D is a set of all ‘possible objects’. δ is a function δ ∶W → P(D); for each w ∈W , δ(w)
is the domain of the first-order quantifier at that world/context/interpretation. Finally, I
is an interpretation function, which will provide an interpretation for the abstraction

operator.

The domain of the second-order variables, D2, is fixed across worlds as the set of

all intensions, which are functions f ∶ W → P(D). This represents the idea that the

extension of a property may vary from world to world.

Given this interpretation of the second-order quantifiers, the interpretation of an

abstraction principle will be a function I(§) ∶W ×D2 → D. This allows a given property

to have a different abstract associated with it at different worlds.

Given these ingredients, satisfaction of a formula in a model can proceed as normal.

The only slight complication is to allow for the scoping operator. I give full details of

how this works in appendix A. For most purposes in this chapter, it should be clear what

effect it will have.

Remark on ‘nonexistent’ objects

An important feature of the logic is that it supplies the ability to refer to objects which

do not fall under the domain of quantification. This may seem slightly odd, but it is in

fact a crucial feature of generality relativism. A common feature of various extendibility

arguments is that, for a given domain of quantification, they exhibit an object which

does not lie in that domain. And this must be done by referring to one such object. One

way to do this will be by using abstract terms, but the features of the logic will also allow

for this in other ways—in particular, by using variables in certain ways.

One model theoretic way to consider reference to objects which do not lie in the

domain of quantification—which is shared by anymodal logic with variable domains—is

if some formula with a free variable is evaluated at a world w with respect to a variable

assignment a such that a(x) ∉ δ(w) (where δ(w) is the domain of the worldw). But, as
already mentioned, the semantics should be treated as purely instrumental. In addition,
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it might be claimed that the only assertable parts of the language are sentences, with

no free variables. However, the presence of the scoping operator allows one to partially

mirror this kind variable assignment in the object language without recourse to the

model theory. For example, consider (GR), which, recall, is the sentence ◊∃x↓¬E!x.
Here, for the purpose of evaluating the ¬E!x part, x is essentially assigned an object

which does not lie in the domain of quantification. This will also occur during the course

of proofs, when there are free variables around.

It should also be noted that a consequence of this (and this is not specific to this

particular system) is that a formula ϕ(x) with a free variable will not be equivalent to

its universal generalisation. In particular, I will state some principles and results in free

variable form, and others with variables quantified out. It should be noted that a free

variable formulation is stronger than the corresponding quantified formulation.8

It is tempting to paraphrase this ability to refer to objects which do not lie in the

present domain of quantification as reference to objects which ‘do not exist’. This may

seem even more perplexing (and even suggest a certain kind of Meinongianism). But as

long as ‘a exists’ is understood as ‘there is something which is a’, and it is understood

that there is no absolutely unrestricted quantification, then the claim that it is possible

to refer to objects which do not exist should no longer be so mysterious. It is simply the

claim that a just does not fall under the present domain of quantification. Care should

probably be taken in using phrases like ‘a exists’ for this reason. Nonetheless I will use
it throughout in this latter sense, tied directly to quantification.

7.3 The consequences of Expansion Logic

Now, having laid out the logic, it is possible to see the effects of adding modalised

abstraction principles. I willmainly concernmyself with BLV, since that is the abstraction

principle most likely to cause worries about inconsistency. It is also the abstraction

principle which seems most likely to provide for a foundation of set theory. So, then,

what does the theory which results from adding BLV↓ to EL look like?

(Certain results will consist in saying that some sentence ϕ is derivable from BLV↓

in EL. For these, I have typically given a formal proof of ϕ from BLV↓ in appendix B,

and given a rough outline of the formal proof here.)

7.3.1 The consistency of BLV↓
Since Basic Law V is infamously inconsistent with a background of a standard second-

order logic, it will be important to establish that BLV↓ is consistent with the background

logic being EL. (Note that BLV↓ is not a weakening of the non-modal version, since the

non-modal version is a straightforward consequence of it.)

Recall, the modal version of BLV is:

(BLV↓) ◻◻∀F∀G[εF = ↓εG ↔ ∀x(Fx ↔ ↓(E!x ∧Gx))]

8An open formula might not be taken to be the kind of thing which is assertable, and so not comparable

to any closed sentence. But a principle stated as an open formula (or more likely, a scheme of open formulas)

can be taken, not as an assertion, but as a principle licensing the use of that open formula in a proof. If a

sentence corresponding to an open formula is required, then, for ϕ(x) a formula, the sentence ◻◻∀x↓ϕ will

have the same effect.
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The model theory developed and the soundness theorem can be used to show that

EL+BLV↓ is consistent, by constructing a model. It can be seen that a modelM =

⟨W , δ, R, I⟩ satisfies BLV↓ if and only if, for every w1 ,w2 ∈ W , with w1Rw2, and for

every f , g ∈ D2,

I(ε)(w1 , f ) = I(ε)(w2 , g) iff, for every d ∈ δ(w2), d ∈ f (w1) ∩ δ(w1) ⇔ d ∈ g(w2).

By extensionality of sets (in the metatheory), the right hand side is just f (w1)∩ δ(w1) =

g(w2) ∩ δ(w2).

So, the condition is:

I(ε)(w1 , f ) = I(ε)(w2 , g) iff f (w1) ∩ δ(w1) = g(w2) ∩ δ(w2).

We now construct such a model. LetW = N, R =≤ (the usual ordering on N) and
δ(n) = Vn , the nth finite level of the cumulative hierarchy (so V0 = ∅ and for every n,
Vn+1 = P(Vn)). So, D = ⋃Vn = Vω . Finally, let I(ε)(n, f ) = f (n) ∩ Vn ∈ Vn+1.

It is easy to check that this model satisfies all the requirements needed. Hence BLV↓

is consistent.

7.3.2 Some rigidity properties
An important kind of property of formulas of EL will be various kinds of rigidity.
Roughly speaking, rigid formulas will be those which have a fixed extension, in some

sense. In particular, it is often claimed that set membership should have certain rigidity

properties (e.g. Fine, 1981; Linnebo, ms; Parsons, 1983b), and rigidity of formulas will

become important later on when recovering parts of set theory.

There are two broad classes of rigidity properties which might be considered. In EL,
it is perfectly possible for a formula ϕ(x) to be true at a world even if the free variable

x is assigned an object not in the domain of that world. This will almost certainly be

the case in any modal logic with varying domains (consider for example the formula

◊∃y(y = x)), but the presence of ↓ allows this to be expressed to some extent in the

object language. For example, that ϕ(x) is satisfied at a world by an object which is not

in the domain of that world can be expressed by ◊∃x↓(¬E!x ∧ ϕ(x)).
Then, the two kinds of rigidity are as follows. The first requires that a formula ϕ have

the same extension of existing objects falling under it at each world. Model theoretically,

ϕ is rigid in this sense at aworldw if for allw′ such thatwRw′, {a ∈ δ(w′) ∶ w′ ⊧ ϕ(a)} = {a ∈ δ(w) ∶ w ⊧ ϕ(a)}.
This can be expressed in the object language by:

(Rx
0-ϕ) ◻∀x(ϕ↔ ↓(E!x ∧ ϕ))

For example, the formula ‘x = x’ is not rigid in this sense (its extension grows), but

‘↓∃y(y = x)’ is.9

9This is the kind of rigidity which is normally used, partly because it can be expressed without using the ↓

operator, whereas the second can not (or so I suspect). It can be expressed by the following three properties

(see eg. Parsons (1983b, pp.299–302)):

ϕ(x) → ◻ϕ(x)(R-ϕ)

¬ϕ(x) → ◻¬ϕ(x)(R-¬ϕ)

∀x(ϕ → ◻Fx) → ◻∀x(ϕ → Fx)(BF-ϕ)

These can be shown to be equivalent to R0-ϕ.
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But another kind of rigidity requires that ϕ have the same extension at every world,

where this is understood as including not just objects in the domain of that world, but

objects in the domain of other worlds as well. Model theoretically, ϕ is rigid in this sense

at a world w if for all w′ such that wRw′, {a ∈ D ∶ w ⊧ ϕ(a)} = {a ∈ D ∶ w′ ⊧ ϕ(a)}.
This can be expressed proof theoretically as:

(Rx
1 -ϕ) ◻∀x(ϕ↔ ↓ϕ)

For example, ‘x = x’ is rigid in this sense (although it would not be in a negative free

logic), but ∃y(x = y) is not.

7.3.3 Defining set-theoretic notions
Set membership is often taken be rigid. We should thus like to decide which of the

rigidity properties is most appropriate, and then show that we can prove that this rigidity

follows from BLV↓. That is, that one of the following hold:

◻∀x(x ∈ y↔ ↓(E!x ∧ x ∈ y))(R0-∈)

◻∀x(x ∈ y↔ ↓(x ∈ y))(R1-∈)

However, the language of abstraction which we are currently dealing with does not

feature a primitive membership relation. So, before dealing with the question of whether

these principles follow, a membership relation must be defined (and preferably in a

natural way).

A natural definition is the following (which is similar as that given in other discus-

sions of abstractionist set theory such as Boolos (1989) ):

s ∈0 t
def
= ∃F∃x(x = s ∧ t = εF ∧ Fx).

(The subscript will become clear in a moment.) However, due to the presence of non-

denoting terms in the language (or, rather, terms which denote an object which does

not lie in the present domain of quantification), this will fail to give the expected results

in some cases. The definition requires that, for ‘a ∈ b’ to hold in some context, a must

be in the domain of quantification, and b must be a subset of the domain. That the

first is required is built directly into the definition,10 and that the second is required

follows from the quantification implicit in the ‘ε’ operator (as discussed in section

7.2.1). This is undesirable; membership should be like identity in not requiring that the

objects involved fall under any particular domain of quantification. In particular, as

with identity, we should expect membership to be rigid in the second sense discussed.

But with this definition, ◻∀x(x ∈ y → ↓(x ∈ y))may not hold.

So, it should not be required for x ∈ y that x lies in the present domain of quantifica-

tion, or that y is a set of objects taken from the present domain of quantification (just as

it is not required for the truth of x = y that x and y fall under the current domain of

quantification). Instead, it should merely be required that it is possible to interpret the

quantifiers so that x falls under them, and that y is a set formed from objects which fall

10This is in contrast to how membership is usually defined from a set abstraction operator. But the

requirement is needed in order that the only objects which are members of ‘εF ’ are those which actually exist,
since εF is supposed to be the set of only such objects.
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under the range of some quantifiers under which x falls. That is, the following revised

definition should be adopted:

s ∈1 t
def
= ◊∃F∃x(x = ↓s ∧ εF = ↓t ∧ Fx)

The use of ‘↓’ is to ensure that if ‘s’ and ‘t’ are non-rigid, the same objects are picked out

by ‘s’ and ‘t’ within the scope of the modal operator as outside.

This definition behaves just as we would expect it to when y = εF for some F:

Proposition 7.1. BLV↓ ⊢ y = εF → (x ∈ y↔ (E!x ∧ Fx)) (for either ∈0 or ∈1.)

Proof. The right to left direction is trivial: From (E!x ∧ Fx ∧ y = εF) we get x ∈ y by an
application of the (T) axiom (for ∈1) and existential generalisation.

For the left to right direction: x ∈ y implies there is possibly someG such that y = εG
and so on. Then BLV↓ can be used to compare G and F, which gives the required result.

See page 175 for a formal proof.

This has a perhaps more natural (though weaker) result as an immediate corollary:

Corollary 7.2. BLV↓ ⊢ ∀x∀F(x ∈ εF ↔ Fx)

We can now prove the appropriate form of rigidity for ∈1:

Proposition 7.3. BLV↓ ⊢ R1- ∈1

Proof. The left to right direction of R1- ∈ follows fairly directly from a use of the (4)

axiom. The right to left direction can be proved by defining a concept in such a way that

it witnesses the truth of x ∈ y appropriately. This direction makes use of the (G) axiom.

See page 175 for a formal proof.

Since the resulting set theory will be one which allows non-sets, it will be necessary

to define a sethood predicate. Two alternative definitions can be given, analogous to ∈0
and ∈1:

Set0(t)
def
= ∃F(εF = t)

Set1(t)
def
= ◊∃F(εF = ↓t)

I will take the second of these as the definition that I am principally interested in. Again,

we can prove the appropriate form of rigidity:

Proposition 7.4. BLV↓ ⊢ Rx
1 -(Set1(x))

Proof. The proof is essentially the same as (or rather, a part of) the proof of proposition

7.3, since x ∈ y entails Set(y).

The relationships between the two alternative definitions of sethood and the two

definitions of membership will be useful to examine. Partly, this will be because such

results will be useful later on. But also, there may be a worry about the appearance of

modal vocabulary in the definitions. It certainly does not seem that mathematicians

have anything modal in mind when using such notions; the non-modal definitions

appear muchmore plausible as an account of mathematics. It will therefore be important
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to see under what circumstances the alternative definitions coincide. I claim that these

are circumstances which always obtain in the course of ordinary mathematics.

It is clear that Set0(x) → Set1(x) and that x ∈0 y → x ∈1 y. But we want to know

when the converse holds.

Firstly, it can be shown that if x ∈1 y, x ∈0 y will hold just in case x refers to an object
in the present domain, and when Set0(y):

Proposition 7.5. BLV↓ ⊢ x ∈1 y → (x ∈0 y↔ (E!x ∧ Set0(y))

Proof. See page 176

Then the question arises—given y such that Set1(y), under what conditions will
Set0(y) hold? The answer is: just in case any expansion of the domain will not include

members of y:

Proposition 7.6. BLV↓ ⊢ Set1(x) → [Set0(x) ↔ ◻∀y(y ∈ x → ↓E!y)]

Proof. The left to right direction makes use of BLV↓ by comparing concepts F and G
which both have x as a set in different contexts. Then, the relation∀y(Fy↔ ↓(Gy∧E!y)
allows one to derive ↓E!y at the appropriate point. For the right to left direction, we

define a set by using the concept F such that ◻∀y(Fy↔ y ∈ x). Together with ◻∀y(y ∈
x → ↓E!y), it can be proved that x = εF.

See page 176 for a full formal proof.

7.3.4 Set comprehension
As well as principles governing how set-theoretic vocabulary behaves modally, it is

important to know what sets there are, or what sets there can be. It is a fairly direct

consequence of BLV↓ and (◊E!-I) that we have:

∀F◊∃y(y = ↓εF)

That is, every concept defines a set.

But we might also ask what formulas define a set. That is, what formulas are such

that there is (or could be) a set x such that ∀y(y ∈ x ↔ ϕ)? In one sense, just as every

concept defines a set, every formula defines a set. That is, for every formula ϕ, the set of
all and only the ϕs can be introduced into the domain:

◊∃x∀y(y ∈ x ↔ ↓(E!x ∧ ϕ(x)))

Themodified right hand side here means that the set concerned only contains objects

which fall under the actual domain of quantification.

But we can do better than this. It possible to give sufficient conditions for a formula

not just to define a set, but to continue to define the same set as the domain expands.

This gives a comprehension principle which is first order and does not feature ↓ in the

condition which defines the set:

Proposition 7.7. BLV↓ ⊢ ◊Rx
0 -ϕ ∧ ◻R

x
1 -ϕ → ◊∃y↓(Set y ∧ ◻∀x↓(x ∈ y↔ ϕ)).

Proof. The basic idea is that, when ϕ is rigid, we can let y = εF, where F is the concept

defined by ϕ. Then we can prove that ◻(y = εF) (which makes use of rigidity). This

means that y necessarily has the ϕs falling under it, which is what is required. The

possible existence of y is then given by the (◊E!-I) rule.
See p.178
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7.4 Modal abstraction and the iterative conception

Other modal approaches to set theory (e.g. Linnebo, ms; Parsons, 1983b; Studd, 2012)

have been motivated to various degrees by the iterative conception of set. On this view,

the sets are built up in stages, starting from the empty set, and at every stage, as many

sets as can be introduced are introduced. That is, at any stage, the very next stage consists

of all subsets of the preceding stage. This process then carries on into the transfinite by

taking unions at limit stages.

Since the present approach—which is not explicitly motivated by the iterative

conception—is similar to these other modal approaches, it will be useful to compare it

to them.

The present approach is similar in many ways to the iterative conception. If sets are

introduced into the domain according to the principles discussed in the last section,

then they will be introduced in stages. And, for any collection of objects, it is possible to

introduce a set of them. However, the present approach differs in a couple of respects, in

not having consequences which might be thought to be essential features of the iterative

conception. These differences affect how various set-theoretic axioms are eventually

proved.

One aspect of the iterative conception is that the elements of a set are prior to the set
itself. That is, before a set can be introduced into the domain of quantification, all of its

elements must be present in the domain of quantification. A similar, weaker condition

is that elements of a set can not be introduced into the domain of quantification after
that set has been introduced into the domain of quantification. This can be expressed as:

E!y ∧ Set(y) → ◻∀x(x ∈ y → ↓E!x)

Such a principle might be called weak priority, and versions of it can be derived in those

modal set theories mentioned above.

This is not, however, a consequence of BLV↓ and the background logic. This is not

because BLV↓ allows one to introduce sets into the domain before introducing elements

of that set into the domain. Indeed, as the comprehension principles of the previous

section show, any sets introduced in such a way do satisfy the weak priority principle. It

is simply that it has not been ruled out that sets could be introduced in some other way

as well.

Serving as an alternative to this priority principle, however, is a simple corollary of

proposition 7.6:

Corollary 7.8 (of propn. 7.6).

E!y ∧ Set(y) → ◊◻∀x(x ∈ y → ↓E!x)

Proof. Because Set(y), we have ◊∃F(y = εF). Since ◻(∃F(y = εF) → ◻∀x(x ∈ y →
↓E!x) by proposition 7.6, we have ◊◻∀x(x ∈ y → ↓E!x)

This principle states that, given any set, it will always be possible to expand the

domain to one which includes all of its elements.

Another feature of the iterative conception of set is a kind of maximality condition

that, at each stage, all of the subsets of the previous stage are formed. A similar principle
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can be stated in the present system. It is:

◻(∃x↓∀y(y ≠ x) → ∀F∃y(y = ↓εF))

This says that, whenever the domain is expanded, then it is expanded by introducing

sets of every concept (but the sets that those concepts had at the previous stage). Again,

this is not a consequence under the present approach. Although for every concept,

it is possible to introduce a set for that concept, it does not follow that sets for all of

the concepts can be introduced at once. A principle considered later, in section 7.6,

will allow one to derive a similar condition, which will suffice for the purposes which

maximality is needed.

7.5 Interpreting set theory

Since the aim is to develop as much set theory as possible with this approach, it needs

to be seen which results of standard set theory (and in particular, which axioms) can be

proved by adopting BLV↓. Clearly this is not simply the case of going straight ahead and

attempting to prove axioms of ZFC,11 since the language of standard set theory and the

language of abstraction are very different. Instead, the aim is to interpret standard set

theory in the system resulting from EL and BLV↓, making use of definitions, translations

and so on. One difference between the languages is the difference in primitive non-

logical vocabulary—‘∈’ (and perhaps a sethood predicate) for standard set theory, and

the abstraction operator on the present approach. This is easily dealt with by making use

of a natural definition of ∈, as above. The other difference is that the present approach

features modal vocabulary, whilst the standard language does not.12 Given this, there

are several routes one could take in trying to interpret non-modal set theory. These are:

(a) we could ignore modality, and simply try to prove the axioms of ZFC as they are; (b)

we could aim to prove that, taken together (in some sense), all the consequences of ZFC

(or some subset of them) are (postulationally) possible; (c) some wholesale translation

of non-modal set theory into modal set theory could be undertaken, and then we could

aim to prove the translations of the axioms of ZFC.

The first of these approaches, (a), is clearly hopeless. It amounts to trying to prove

that the axioms of ZFC are true on any world of any possible worlds model. Or rather

(to avoid over-reliance on the talk of possible worlds), that any way of interpreting the

quantifiers will have them ranging over some suitably large universe of sets, before any

reinterpretation or domain expansion. This is clearly undesirable, and the fact that the

model mentioned previously (p. 125) has an empty domain for one world shows that it

is unattainable.

What is wanted instead is not that the quantifiers (under whatever context) range

over a suitably rich domain of sets, but that we could shift context and reinterpret the

quantifiers so that they range over such a domain. This is the approach (b). The thought

is that, in doing set theory, set theorists operate under some context in which they

quantify over some domain of sets.13 In that case, the aim of abstraction—as presently

11Actually, I will be interested in set theories with urelements, since BLV↓ allows for urelements.

12If ‘standard’ set theory is first-order ZFC, then another difference will be the presence of second-order

quantification. This need not be an issue, since the target could just be taken to be second-order ZFC instead.

13Alternatively, it might be thought that assertions made in the language of set theory should be taken to
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conceived—is to show how, on the basis of some characterisation of the concept of set

via BLV↓, it is possible to interpret the quantifiers so that they range over a suitably rich

domain of sets. That is, the aim is to show how the statements made by set theorists are

postulationally possible.

How is this aim to be fulfilled? First, it needs to be shown that the axioms of ZFC (or

some of them) are possible. In particular, they should be jointly possible. Fortunately,

second-order ZFC is finitely axiomatisable, and can therefore be axiomatised by a single

sentence, namely the conjunction of these finitely many axioms, which I shall write

Z. Hence, the aim is to show that BLV↓ ⊢EL ◊Z. Consequences of the axioms can

then be accounted for as follows. If ZFC ⊢ ϕ, for some sentence ϕ, then evidently

⊢EL ◻(Z → ϕ). Hence BLV↓ ⊢EL ◊ϕ, and even BLV↓ ⊢EL ◊(Z ∧ ϕ).
Unfortunately, this shares the feature of approach (a) that, short of strengthening

the background logic, very little can be achieved. For example, the empty set axiom

can be proved (i.e. ◊∃x[Set(x) ∧ ∀y(y ∉ x)]), but little else. It can be proved that it

is possible to expand the domain in useful ways—for example, for any x and y, it is
possible to expand the domain to contain their pair. But this is not the pairing axiom,

since it can not be proved that the domain can be expanded so that for any x and y in
the new domain, their pair also lies in that domain. The same goes for, for example,

singletons.

That (b) will not result in much set theory can also be seen from the existence of the

model in section 7.3.1. For, in that model, every domain is Vi for some i ∈ N, which is

finite. Since these domains represent the domains of quantification which are possible,

it follows that we can not prove that it is possible to expand the domain to an infinite

one. This is essentially the problem attested to in 5.3, that there is nothing to say that it

is possible to iterate the process of domain expansion into the transfinite.

What about (c)? This approach would involve the wholesale translation of sentences

of non-modal set theory into the modal abstractionist theory, by recursively giving

some translation rules. This will generally allow more power than the approach in (b),

since there is no restriction on what the translation may be. The aim is to have some

translation ϕ ↦ ϕ∗ such that:

• BLV↓ ⊢EL ϕ∗ for every axiom14 ϕ of ZFC,

• If Γ ⊢ ϕ then Γ∗ ⊢ ϕ∗, where Γ∗ = {ϕ∗ ∶ ϕ ∈ Γ}.

This approach is taken by Parsons (1983b) and Linnebo (ms). It is also implicit in various

presentations of Kripke semantics for intuitionistic set theory (eg. Lear (1977)). Parsons’

translation is to take a formula ϕ, translate into an intuitionistic language via a negative

translation15, and then into themodal language via a standard translation of intuitionistic

logic in classical modal logic (by, e.g. boxing every subformula). Linnebo’s translation is

to replace each occurrence of ∀with ◻∀ (and likewise each occurrence of ∃ with ◊∃).

Considering translations such as this provides for precisely measuring the strength

of the resulting system, in the usual way in which the strength of systems are measured.

be systematically ambiguous, intended to be about any suitable domain of sets. This will also be covered by

approach (b).

14It might instead be acceptable to only succeed in interpreting most of the axioms of ZFC, although this

would be less desirable.

15For example, simply double-negating every subformula is such a translation.
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However—without the assistance of further argument—such approaches risk failing to

be faithful to the meaning of the non-modal language. Both the languages involved are

interpreted, at least to some extent (although there is room for disagreement over what

the interpretation is), so each assertion in each language presumably expresses some

proposition. So, if a translation ϕ ↦ ϕ∗ is to be of any interest beyond measuring consis-

tency strength, it must map sentences onto those which mean the same thing. It will not

be the case that any translation is allowed. For an example (for a different translation),

it is well known that real analysis (and in fact almost all ordinary mathematics) can be

interpreted in second-order arithmetic. But it would not be open for neo-Fregeans to

claim that Hume’s Principle can be used as a foundation of almost all mathematics. The

reason is that, in interpretations of analysis in arithmetic, real numbers are taken to be

certain second-order entities. But under the intended interpretation of second-order

logic as used by the neo-Fregeans, these are concepts whereas real numbers are objects.
Similarly, one could perhaps imagine a translation from the non-modal set theory to

the abstractionist language which completely changed the logical structure. Such a

translation would not say anything about how much set theory can be proved from

BLV↓.

That is not to say, of course, that any wholesale translation will not be faithful in this

way. Of particular interest will be whether translations similar to those of Parsons and

Linnebo are acceptable in this way, since these appear to allow the most set theory to be

interpreted.16 It seems to me that these translations will not do.

As a first assumption, it seems fair to take the surface grammar of set theory com-

pletely at face value. In particular, the quantifiers are indeed quantifiers, which range

over some domain or other. But the translations do not map quantified statements onto

quantified statements with the same structure. For example, using Linnebo’s translation

would map ∃y∀x(x ∉ y) onto ◊∃y◻∀x(x ∉ y). It could be claimed that the compounds

‘◻∀’ and ‘◊∃’ are quantifiers, so that a quantified statement has been mapped to a quanti-

fied statement of the same form. But if this is the case, then it is possible to interpret the

simple quantifier symbols themselves as having such a meaning. But this them just goes

back to approach (b), since the claim is still that it is possible to interpret the quantifiers

such that ∃y∀x(x ∉ y) is true. In any case, it seems that such an approach could be

problematic from the current perspective. If ◻∀ and ◊∃ are indeed quantifiers, then it

looks very much like they would be absolutely universal quantifiers, but we have seen

that absolutely universal quantification is in conflict with basic law V.

Alternatively, it could be claimed that the original assumption about the surface

grammar of mathematics should be challenged, and in particular the claim that in set

theory there is some particular domain over which the quantifiers range. Indeed, it has

often been claimed that assertions of set theory should be taken to be systematically

ambiguous. That is, they should be taken as true no matter what domain of sets the

quantifiers range over. But this interpretation of set theory does not warrant arbitrary

translations, but rather just approach (b). The claim that some sentence is to be taken as

true nomatter how the quantifiers are interpreted (which is the claim that a systematically

ambiguous assertion is intended to convey) is formalised in modal language as ◻ϕ. And
when the assertion is only intended to be ambiguous over suitably large, set theoretic

16I should note that my only concern (for the moment) is whether these translations are acceptable formy
purposes. Nothing I say will concern whether these translations are appropriate for the purposes that Parsons

and Linnebo put their translations to.
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interpretations, this is best formalised as something perhaps like ◻(Z → ϕ), just as in
approach (b). Then the additional component of (b), proving ◊Z, simply ensures that

this is not vacuous.

Perhaps more radical claims could be made about the intended meaning on non-

modal set theory. However, I do not wish to make such claims. As such, I am limited to

approach (b) to explain howmuch set theory is recoverable from this modal abstraction-

ist approach. Since—as I have already noted—approach (b) does not allow for much set

theory at all, more principles concerning postulational modality must be considered.

7.6 Reflection

It looks then that we do not get much set theory from this approach, at least, if we only

attempt an interpretation of the same kind as type (b). But, it might be possible to justify

and add some additional principles which do allow us to do so. The idea will be to

suggest some principle which has the same effect as permitting transfinite iterations of

domain expansion.

I will suggest that we adopt such a principle which, for reasons which will become

clear, will be called a reflection principle. My aim in this section will be to specify such a

principle, to give a brief motivation for it, and to investigate the result of adding such a

principle. I will postpone a more detailed defence of the principle until chapter 8, since

the issues that arise are somewhat involved.

Before stating this principle, some additional notation will be useful. Where ϕ is

a sentence not involving the modal operators, let ϕ◊ result from ϕ by replacing each

instance of ∃x with ◊∃x↓, and each instance of ∀x with ◻∀x↓. Similarly, where ϕ is

again a sentence not involving modal operators, let ϕ↓ result from ϕ be prefixing every

abstract term with ↓.

Now, consider the following inference rule:

ϕ◊
(Refl)

◊ϕ↓

From an external point of view, we can view this rule as follows: Given some

progression of domains D1 ,D2 , . . ., the sentence ϕ◊ says that ϕ holds over the entire

domain D = ⋃i D i . It is, in some sense, a ‘potentialised’ sentence; it talks not just about

actual objects, but possible objects as well. The conclusion of the rule then just says

that we can expand our domain to one in which includes all the possible objects which

are involved in the truth of the premise. It collapses the potential into the actual. (The

conclusion has to feature ϕ↓ rather than just ϕ to ensure that the abstract terms featured

in it still refer to the same objects as they do in the premise.)

Obviously this way of talking about things will not do as a motivation. For one

thing, it does not make sense to talk about all postulationally possible objects if we have

adopted relativism; to do so amounts just to talking about absolutely all objects. Even if

this weren’t a problem (so that talk of all possible objects were eliminated), motivation is

still lacking. What is there to say that such a reinterpretation of the quantifiers is indeed

possible?
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The problems of motivating such a rule and distinguishing it from a motivation

for absolutism are large. As such I will not say more about that motivation here, post-

poning such a discussion for chapter 8. I will instead confine myself to discussing the

consequences of such a rule.

Informally, such a rule may allow us to break the transfinite barrier, so to speak.

Suppose that we have an abstraction principle that allows us to expand our domain

finitely, but arbitrarily many times, so that we have a sequence D1 ,D2 , . . . (we might for

example have the D i as in section 7.3.1, so that D i = Vi). The reflection principle will

allow us to, in effect, move to an ωth stage, Dω = ⋃i D i . From here, we can then start

iterating again, to get Dω+1 ,Dω+2 . . . and so on.

This kind of reasoning will also often be internalisable to the object language. So,

for example, suppose that we can deduce that, necessarily for any object, it is possible to

expand the domain to include a singleton of that object. This corresponds externally to

the fact about the sequence of D is that for any object a in D i , there is some j > i such
that the singleton of a is in D j . Reflection will allow one—internally—to derive that it is

possible to expand the domain so that, for any object, there is a singleton of that object.

We can say more precisely the effect that (Refl) has by comparing it to reflection

principles in standard non-modal set theory. These are schemas of the form:

(ReflZF) ϕ → ∃γϕVγ .

where γ ranges over the ordinals, and ϕVγ results from ϕ by restricting the quantifiers in

it to the γth stage of the cumulative hierarchy. (ReflZF) and (Refl) can not be compared

directly, since the languages involved are quite different. Moreover, the definitions

of ∈ and Set which we are working with involve a modal operator, and so (Refl) does

not yet apply to any formulas involving them. But it is simple to extend (Refl) to

involve such formulas (without assuming any strengthened principles). Suppose the

(⋅)◊ operation were extended to apply also to formulas involving ∈ and Set, with these

treated as primitives. Then it is simple to check that the extended version of the reflection

principle is valid.

Now, it is possible to see the relationship between (Refl) and non-modal reflection

principles. LetM be a ‘standard’ model of BLV↓, like that in section 7.3.1, based on

Vα for some ordinal α. So, W = α; for β < α, δ(β) = Vβ ; D = Vα ; D2 is all functions

f ∶ α → P(Vα); for f ∈ D2 and β < α, I(ε)( f , β) = f (β) ∩ Vβ . Then the following

relate satisfaction of a formula at a world with satisfaction of formulas on Vα .

Lemma 7.9. Let ϕ(x⃗ , F⃗) be a formula of a language with primitives ‘ε’ and ‘∈’ (so a
non-modal formula of the language of EL, but with ‘∈’ treated as primitive) where x⃗ and
F⃗ are lists of the free variables in ϕ. Then, for any β < α, a⃗ ∈ Vα and X⃗ ⊆ Vα :

M, β ⊧ ϕ◊(a⃗, X⃗′) iff Vα ⊧ ϕ[β](a⃗, X⃗)

where:

• For any X ⊆ Vα , X′ ∶ α → P(Vα) such that for any β < α, X′(β) = X.

• ϕ[β] is a formula in the standard language of (second-order) which results from
replacing occurrences of εX by X ∩ Vβ .17

17Some care is perhaps needed here. ‘X ∩ Vβ ’ will not be a term in the language of set theory. It can be

eliminated in the usual way in which such terms are, and then treated as a formula with Vβ being an additional

parameter.



7.6. reflection 135

Proof. By induction on formula complexity:

Atomic formulas: There are several cases to consider: there are three kinds of atomic

formula—a = b, a ∈ b and Fa—and for each of these, the terms may be a variable or an

abstract term. In every case, ϕ◊ will just be ϕ. The interesting cases are for a ∈ b and for

when a term is an abstract term. For the first:

β ⊧ a ∈ b ⇔ β ⊧ ◊∃F∃x(a = x ∧ b = εF ∧ Fa)
⇔ ∃γ ≥ β, ∃ f ∈ D2 s.t. a ∈ Vγ , b = f (γ) ∩ Vγ and a ∈ f (γ)
⇔ a ∈ b
⇔ Vα ⊧ a ∈ b

For the second, we have, for example:

β ⊧ a = εX′ ⇔ a = X′(β) ∩ Vβ = X ∩ Vβ

⇔ Vα ⊧ a = X ∩ Vβ

⇔ Vα ⊧ (a = εX)[β]

The situation is similar for other atomic formulas containing abstract terms.

Connectives: For conjunction, we have:

β ⊧ (ϕ ∧ ψ)◊ ⇔ β ⊧ ϕ◊ and β ⊧ ψ◊

⇔ Vα ⊧ ϕ[β] and Vα ⊧ ψ[β]

⇔ Vα ⊧ (ϕ ∧ ψ)[β]

The situation is similar for negation.

First-order quantification: We have,

β ⊧ (∀xϕ)◊ ⇔ β ⊧ ◻∀x↓(ϕ◊)

⇔ for all a ∈ Vα , β ⊧ ϕ◊(a)

⇔ for all a ∈ Vα ,Vα ⊧ ϕ[β](a)

⇔ Vα ⊧ (∀xϕ)[β]

Second-order quantification: First note that, for a non-modal formula, and

f ∶ α → P(Vα), whether β ⊧ ϕ( f ) and whether β ⊧ ϕ◊( f ) depend only the value of f
at β (this can be proved by a simple induction on formula complexity). For any such f ,
let fβ ⊂ Vα be f (β), so β ⊧ ϕ( f ) iff β ⊧ ϕ( f ′β) and β ⊧ ϕ◊( f ) iff β ⊧ ϕ◊( f ′β). Then we

have the following:

β ⊧ (∀Fϕ)◊ ⇔ for all f ∶ α → P(Vα), β ⊧ ϕ◊( f )

⇒ for all X ⊆ Vα , β ⊧ ϕ◊(X′)(∗)

⇔ for all X ⊆ Vα ,Vα ⊧ ϕ[β](X)

⇔ Vα ⊧ (∀Fϕ)[β]

The converse of (∗) can be proved as follows. Suppose that f ∶ α → P(Vα). Since

fβ ⊆ Vα , β ⊧ ϕ◊( f ′β). But, by the above consideration, β ⊧ ϕ◊( f ) as required.
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For formulas taken from the usual language of set theory without abstraction opera-

tors, this is a more natural relationship, since in that case, ϕ[β] just is ϕ.
Before stating and proving the relationship between (Refl) and (ReflZF), one addi-

tional lemma will be useful, relating ϕ[β] and ϕ↓:

Lemma 7.10. For β < γ,
Vγ ⊧ ϕ[β] iff ⟨β, γ⟩ ⊧ ϕ↓

Proof. By induction on formula complexity:

Atomic formulas: The only interesting case is where a term involved is an abstract

term. In which case, we have, for example:

Vγ ⊧ (a = εX)[β] ⇔ Vγ ⊧ a = X ∩ Vβ

⇔ a = X ∩ Vβ

⇔ a = ∣∣εX∣∣β

⇔ a = ∣∣↓εX∣∣⟨β ,γ⟩

⇔ ⟨β, γ⟩ ⊧ (a = εX)↓

Connectives: This is trivial.

First-order quantification: We have that:

Vγ ⊧ (∀xϕ)[β] ⇔ for all a ∈ Vγ ,Vγ ⊧ ϕ[β](a)

⇔ for all a ∈ Vγ, ⟨β, γ⟩ ⊧ ϕ↓(a)

⇔ ⟨β, γ⟩ ⊧ ϕ↓(a)

Second-order quantification: We have that:

Vγ ⊧ (∀Fϕ)[β] ⇔ for all X ⊆ Vγ ,Vγ ⊧ ϕ[β](X)

⇔ for all X ⊆ Vγ , ⟨β, γ⟩ ⊧ ϕ↓(X)

⇐ for all f ∈ D2 , ⟨β, γ⟩ ⊧ ϕ↓( f )

⇔ ⟨β, γ⟩ ⊧ ϕ↓

Finally, we can now prove the following:

Theorem 7.11. Let α be any ordinal, and letM be a structure as described before. Then
M satisfies the reflection rule (Refl) iff Vα satisfies (ReflZF).

Proof. For the left to right direction: Let ϕ be a sentence of the language of standard set

theory, with parameters, and suppose that Vα ⊧ ϕ. Then, by lemma 7.9, 0 ⊧ ϕ◊. So, by
(Refl), 0 ⊧ ◊ϕ↓. So, for some 0 ≤ γ < α, γ ⊧ ϕ (since ϕ↓ is just ϕ). So, clearly, Vα ⊧ ϕVγ .

Hence Vα ⊧ ϕ → ∃γϕϕγ .

For the right to left direction: Let ϕ be a non-modal sentence of the language of EL
(with parameters), and β < α with β ⊧ ϕ◊. By lemma 7.9, Vα ⊧ ϕ[β]. So, by (ReflZF), for
some γ < α, Vγ ⊧ ϕ[β]. Then by lemma 7.10, ⟨β, γ⟩ ⊧ ϕ↓. So β ⊧ ◊ϕ↓ as required.
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This result then tells us that we have good reason to accept the consistency of

EL+BLV↓+Refl. The soundness theorem tells us that it will be consistent if it has a

model, and proposition 7.11 tells us that it will have a model if a standard second-order

reflection principle has a model. It also gives reason to be optimistic about being able

to derive strong consequences. Second-order reflection principles are very strong, and

what has been proved is an equivalence of sorts between these and (Refl). But this alone

does not assure that such strong consequences will be forthcoming. Firstly, it may be

that not all models of BLV↓+Refl are of the form Vα . Secondly, even if they are, the step

from a sentence holding in all models of BLV↓+Refl to it being a deductive consequence

would require completeness, and second-order logic is not complete. However, it turns

out that much of standard set theory can be derived from BLV↓+Refl, as the next section

will show.

7.7 Interpreting set theory, again

Having accepted (Refl), the task of proving ◊Z—where Z is the conjunction of suitably

many axioms of set theory—appears more achievable. There are two ways it does this.

Firstly, a simple consequence of (Refl) and BLV↓ is

(∗) ◊∀F∃y(y = ↓εF)

simply by applying (Refl) to ∀F◊∃y↓(y = εF), which follows directly from BLV↓ and

(◊E!-I). That is, as well as each concept possibly forming a set, it is possible for them all

to form a set at once. This is the alternative to the maximality idea which is expressed in

section 7.4. This is crucial in proving, for example, the power set axiom, since it can be

used to show that all the subsets of some set can lie in the domain of quantification at

once.

The second reason that (Refl) makes proving ◊Z more achievable is that, in many

cases, where ϕ is an axiom, it is possible to prove ϕ◊. The conjunction of these can then

have the reflection principle applied to it (and since they will not involve the abstraction

operator, ϕ↓ in each case will just be ϕ). In fact, a fairly general comprehension principle

of this sort is a simple consequence of proposition 7.7. It is:

◊Rx
0 -ϕ ∧ ◻R

x
1 -ϕ → ◊∃y↓(Set y ∧ ◻∀x↓(x ∈ y↔ ϕ))

(Adding the ↓ operators to proposition 7.7 essentially has no effect due to the rigidity of

ϕ and membership.)

Now, recall the following set existence axioms of ZF set theory with urelements:

Empty set ∃x(Set(x) ∧ ∀y(y ∉ x))

Pairing ∃x∀y(y ∈ x ↔ y = u ∨ y = v)

Union ∃x∀y(y ∈ x ↔ ∃z(z ∈ u ∧ y ∈ z))

Power set ∃x∀y(y ∈ x ↔ y ⊆ u)

Infinity ∃x(∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x))

Replacement ∀R[∀x∃y∀z(Rxy↔ y = z) → ∃x∀y(y ∈ x ↔ ∃z(z ∈ u ∧ Rzy))]
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For many of these, the appropriate formulas can be proved to be rigid in the appropriate

way.

Rigidity of the appropriate formulas for empty set and pairing are relatively simple to

prove—they follow directly from the rigidity of identity. Union is also relatively simple

to prove. Corollary 7.8 is needed to ensure that it is possible that the required formula is

R0.

The interesting cases are power set and replacement, which require an additional use

of reflection to prove possible rigidity, and infinity, which requires reflection to prove

an appropriate version of.

7.7.1 Power set

We need to prove that ◊Rx
0 -(x ⊆ u)

◊, where ⊆ is defined in the normal way in terms of

∈ as:

x ⊆ y def
= Set(x) ∧ Set(y) ∧ ∀z(z ∈ x → z ∈ y)

To do so, it will be useful to look at the properties of the relations x ⊆ y and (x ⊆ y)◊.
Firstly, it can be noted that (x ⊆ y)◊ behaves in similar ways to ∈1, in that it is rigid in

the second sense:

Proposition 7.12. BLV↓ ⊢ Rx
1 -(x ⊆ u)

◊

Proof. The proof is very similar to those of propositions 7.3 and 7.4. First, it can be

shown that x ⊆ u → ◻(x ⊆ u). By the rigidity of membership, (x ⊆ u)◊ is equivalent to

◊(x ⊆ u). So, we have ◊(x ⊆ y) → ◊◻(x ⊆ u) and hence ◻(x ⊆ y)◊ by (G). This then

allows rigidity to be proved.

As always , see appendix B for a full proof.

It is then possible to prove:

Proposition 7.13. BLV↓ + (Refl) ⊢ ◊Rx
0 -x ⊆ u

Proof. The basic idea of the proof is as follows. Firstly, it will be possible that Set0(u)
and also that ◻∀x((x ⊆ u)◊ → ↓(Set0(x))), by using propositions 7.6 and 7.12. Then, by

using (∗), it is possible that ◻∀x(x ⊆ y → ↓(E!x)). See appendix B for full details.

So, by propositions 7.13 and 7.7, (Power set)◊ will be provable.

7.7.2 Replacement and infinity
I will not give detailed proofs of replacement and infinity here. I shall simply note that

it is a known result that, in a non-modal setting, it is known that both infinity and

replacement follow from a second-order reflection principle (Bernays, 1976). Similar

methods can be used to prove the modalised versions of infinity and replacement from

the modal reflection principle.
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7.8 Conclusion

In this chapter, I have shown how the technical part of a program of expansionist

abstraction might be carried out. I doing so, I have also demonstrated a number of

advantages that the approach may have over the static approach. For one thing, the bad

company problem does not arise; even BLV is consistent. Secondly, the approach allows

for a significant amount of set theory to be developed.18

So, the second of the major tasks that I highlighted in chapter 5 has at least been

partially filled. The main obvious lacuna is in my motivation for the reflection principle.

The motivation that I gave was brief. Moreover, it even seems to suggest a threat to

the expansionist approach; a spectre of absolutely unrestricted quantification seems to

lurk within the reflection principle. Confronting this spectre will be the task of my next

chapter.

18Moreover, this set theory is developed in a way which is suggestive of the iterative conception of set.

This may be advantageous if one thinks (like, e.g. Potter (2010)) that there is something wrong with the

limitation of size approach to set theory which is shared by most of the approaches to set theory within the

static framework.
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Chapter 8

Conservativeness,
diagonalisation and reflection

8.1 Introduction

The aim of this chapter is to motivate more fully the reflection principle which plays a

key role in the development of the previous chapter. In doing so, however, a potential

problem arises for the overall position which I have laid out concerning domain expan-

sion. That problem is that, given the account of definition of quantifiers given in chapter

6, it seems that it may be possible to define an absolutely unrestricted quantifier.

In section 8.2 I introduce the main worry, that it seems possible to introduce an

interpretation of the quantifiers which makes them, in effect, absolutely general. This

problem is the one hinted at in 7.6, concerning the similarity of the reflection principle

to a motivation for collapsing all interpretations into a single, absolute, interpretation.

In 8.3, I consider two potential ways out of the problem, but ultimately reject them.

Section 8.4 is somewhat of a digression. In it I discuss what restrictions there must be

on an implicit definition of a quantifier—namely that, in some sense it must not conflict

with the meanings already given to other vocabulary. The reason this is being discussed

here is that it will play a role in resolving the aforementioned tension. In section 8.5 I

then show how the initial worry can be avoided by reference to such restrictions. This

will not solve the tension definitively in favour of the relativist, but rather provides a

way out for either the relativist or the absolutist to appeal to extrinsic reasons to hold

one or the other position.

Finally, in section 8.6, I turn back to the problem of motivating the reflection

principle, and show how this can be done without falling into the problem.

141
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8.2 Defining absolutely unrestricted quantification?

Consider the following candidate as a definition of a quantifier.1

(DefAU ) ∃AUxϕ↔ ◊∃x↓ϕ

It can be seen that this satisfies the usual inference rules for quantifiers. Moreover, it

can be proved that ∃AU is absolutely unrestricted. That is, that ◻∀y↓∃AUx(y = x) (i.e.,
no matter how one interprets the quantifier, its domain will not exceed that of ∃AU ).

This raises a problem for the picture I have given of abstractionist generality rela-

tivism. For on the one hand, this definition appears to secure an absolutely unrestricted

interpretation of the quantifiers (albeit one which depends essentially on the postula-

tional modality for its elucidation). Moreover, given the view of quantification I gave in

chapter 6, it is permissible to interpret the quantifier in such a way. But on the other

hand, as has already been pointed out, BLV appears to allow for definitions of expanded

domains no matter what domain is started from (by reasoning via Russell’s paradox).

One of these has to go.

What we have, in effect, is a tension between absolute generality and naı̈ve com-

prehension. This time, however, the situation is in some ways more precise. Before,

there were just competing intuitions between some form of naı̈ve comprehension and

absolute generality. Moreover, it was not clear what this form of naı̈ve comprehension

was, and what absolute generality amounted to. In this case (assuming the present view

concerning the possibility of defining interpretations of quantifiers is accepted), we have

two competing definitions, both of which seem in equally good standing.

One of these potential definitions must then be rejected. I will consider later how

this might be done, by appealing to a principle of conservativeness for definitions of

quantifiers.

8.3 Two possible ways out

8.3.1 Weakening comprehension
One option that could be taken is not to restrict which of the two definitions of quan-

tifiers to accept, but instead to restrict which concepts there are, by weakening the

comprehension principle. Recall that this is (in the present setting):

∃F◻∀x(Fx ↔ ϕ(x))

This principle embodies the idea that concepts are to be individuated intensionally. For
example, given predicates which are extensionally equivalent, but perhaps not necessarily

so, they can not be assigned the same concept according to this schema.2 In particular,

1Williamson (forthcoming) considers something similar in the case where the modality is of a more usual

metaphysical modality. His aim is not to define a new quantifier, but rather to provide a method by which a

non-believer in possibilia can express some of the things that their opponent can.

2For example, consider a standard example of coextensive predicates which are not necessarily so: ‘has a

heart’ and ‘has a liver’. If these were assigned the same concept F, then it would be possible to reason using the

above schema as follows. Firstly, we could see that, necessarily for all x, Fx iff x has a liver (by instantiating

ϕ(x) by ‘has a liver’). Secondly, necessarily for all x, Fx iff x has a heart (by instantiating ϕ(x) by ‘has a heart’).
Hence, necessarily everything which has heart has a liver and vice-versa, which is (or so it is supposed) false.
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due to the appearance of the necessity operator in the schema, what concepts there are

does not depend on the present domain of the first-order quantifiers.

The restriction which will be needed will, at the very least, need to rule out the

existence of a concept R such that ∀AUx(Rx ↔ x ∉ x) (i.e. one which would define a

Russell set), and perhaps also a concept U such that ∀AUxUx. But this raises a dilemma

for a proponent of this strategy. Either the indifference of the comprehension principle to

the first-order domain of quantificationmust be dropped, or it may bemaintained. If the

second of these cases, the concept Rmust be banned at every domain. But then, since it is

such a concept which drives the domain expansion, the resulting set theory will be much

weakened. I suspect that, for natural choices of restrictions, the resulting theory will

be one of similar strength to BLV with a fixed domain and predicative comprehension

(Burgess, 2005, pp.87–92), which is very weak—weaker even than first-order PA.

In the first case, it seems that we can no longer treat the second-order quantifier

as ranging over concepts or properties (or perhaps substitutionally). For why should

the existence or not of a property depend on what objects there are? There are two

such dependences which may be plausible—denying the existence of non-instantiated

properties for Aristotelian reasons, and having the existence of properties tied to the

existence of objects to which their defining predicates refer—but neither of these would

rule out the problematic properties R and U .

Alternatively, if the second-order quantifiers were interpreted extensionally, perhaps
as plural quantifiers, then this may leave room for such a restriction,3 although it is

unclear what the restricted comprehension principle would be if it is to allow certain

predicates to define a plurality in some cases but not others. But in any case, this option

too looks very problematic. For, in that case, one would need to say that ∃AU is indeed a

quantifier, but that it is not the case that there are some things which are all and only

those things which it quantifies over. Moreover, the plural definite description ‘the

things being quantified over’ or ‘all the things’ would have to be deemed to be empty

(and not just in the sense that it refers to an ‘empty’ plurality).

8.3.2 Diagonalising the modality
Amore radical suggestion would be to claim that the combination simply shows that

the modality fails to deliver on the expressiveness that it promises. Just as, according

to the generality relativist, BLV allows one to ‘diagonalise out’ any particular use of

the quantifier (i.e. shows that it fails to be absolutely general, reasoning via Russell’s

paradox), the proponent of this solution (who, for the moment, I shall call a ‘diagonalist’)

claims that BLV together with DefAU allows one to diagonalise out themodality.
What do I mean by this? The relativist pictures a scenario in which a user of a

quantifier is shown that she can not be quantifying absolutely generally, by presenting

her with an object (namely, the Russell set), which must not lie in her domain of

quantification. The relativist then has a problem in expressing the general conclusion

of this (namely, generality relativism), as previously discussed. It will be no good to

try and express the thought by using quantification, by, for example, saying that every
domain of quantification fails to be absolutely unrestricted. By the relativists own lights,

the quantifier used is not absolutely unrestricted, and so can not preclude there being

an absolutely unrestricted domain which simply did not fall under the quantifier used.

3Such an approach—of taking sets to be formed out of pluralities and to restrict the plural comprehension

principle—is taken by Linnebo (2010a).
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So, the relativist adopts a modal formulation instead, claiming that absolutely universal

quantification is not possible. But, in order that this does not suffer the same fate as

the quantified formulation, the modality involved must be absolute; if the notion of

possibility is too narrow, then the formulation may allow for an absolutely unrestricted

quantifier which is possible in a wider, more permissive sense than that which is used.

The diagonalist claims that it is this required absoluteness of the modality which

fails. He claims that, just as the relativist can show that any quantifier is not absolutely

unrestricted, he can show that any use of postulational modality fails to be appropriately

absolute. This is done by presenting an interpretation of the quantifier which is evidently

in good standing (defined by DefAU ), but which was not envisaged by the use of the

modality (on pain of contradiction).

Now, the diagonalist proposal is a very radical position. It runs into severe difficulties

when it comes to the question of how it is to be expressed, and it has drastic implications

which go well beyond the present project. Whereas the relativist can respond to worries

about expressing her position by making use of modality, the diagonalist has no such

option—any attempt to do so (by, for example, quantifying over modalities) will surely

be subject to the same diagonalisation process. The diagonalist must then resort to some

sort of ‘militant quietism’(cf. Button (2010)). According to this position, relativists (and,

in this case, diagonalists), must refrain from adopting and stating a definite position.

Instead, they should be content in waiting until somebody claims to have an absolutely

unrestricted quantifier (or, in this case, an absolute postulational modality), and show

that it in fact fails to be absolutely unrestricted (or absolute).

The diagonalist position (if arrived at from this perspective) will also have fairly

radical consequences for modality in general. Since postulational modality is explained

in terms of a more ordinary ‘circumstantial’ modality, properties of the former are

likely to rub off on the latter. In the case of generality relativism—as expressed by the

modality—a consequence is that the concept of a possible world (or similar notion) must

be indefinitely extensible. Otherwise, themodality would simply reduce to quantification

over (absolutely all) worlds, and it is a crucial part of the position that the modality must

not be reducible to quantification. In particular, there will be an indefinitely extendible

sequence of possible worlds in which the quantifier is interpreted in an increasingly

expansive way.

But for the diagonalist position, the consequences are more extreme. For now it is

not the concept of a possible world that is indefinitely extensible, but rather the strength

of the modality itself. Consider the common picture of nested modalities, with say,

physical possibility being more expansive than biological, metaphysical being more

expansive than physical, and so on. According to the picture here, this sequence will be

indefinitely extensible, with each element envisaging more possible interpretations. The

relativist accepts a notion of absolute modality, but simply rejects that this is equivalent

to quantification over any particular domain of worlds (or similar). The diagonalist, by

contrast, must reject absolute modality altogether, instead postulating an indefinitely

extendible sequence of ever stronger and stronger notions.

The aim was to survey some alternative ways out of the problem of competing

definitions before coming on to my preferred solution in terms of conservativeness. In

the previous case—restricting comprehension—we saw that there were some concrete

proposals for how to modify the framework, but which ultimately had to be rejected.

But in this case, it does not appear to be so much a way out of the problem, but instead
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seems to require giving up on the project (since, according to it, there is no absolute

modality which can be used). But perhaps something can be salvaged, whilst rejecting

that the modalities involved are absolute.

How would such a salvaging go? Suppose that the diagonalist simply proceeds

with the project of generating some set theory with Basic Law V together with some

principles of domain expansion expressed in modal terms. To do this, they must of

course not claim that the modality is absolute. Is such an approach viable? Some things

inevitably will have to be given up. For one thing, the expression of generality relativism

in terms of modality—that necessarily, it is possible to expand the domain, or something

similar—no longer does what it aimed to do; it at best merely hints at a position. But

this is no loss for the diagonalist, for they have already acknowledged that they can not

express their view. Other conclusions stated in terms of the modality are also more-or-

less unaffected. For example, the overall aim of the project will still be to claim that it is

possible to reinterpret the quantifiers, making use of abstraction principles, so that they,

in effect, range over a universe of sets. This is not significantly affected if it is conceded

that the modality involved in expressing it is not absolute.

The final thing that must be asked is then what to make of DefAU . By rejecting

absolute modality, there is no particular problem. For what DefAU does is show (ac-

cording to the diagonalist) that the modality involved in its statement is not absolute.

The genuine contradiction between DefAU and BLV occurs when we are permitted to

infer from some sentence ϕ, where each quantifier is ∃AU or ∀AU , to the claim that ϕ is

postulationally possible. This the diagonalist can concede, but under the proviso that

the possibility involved in the conclusion may be different (and, in particular, weaker)

than that involved in the definition of the quantifiers appearing in the premise.

There are still questions to be asked of diagonalist position, and in particular the mili-

tant quietism that it requires. What are we to make of the idea of a position which claims

to be unstatable, for example? As such, I shall not consider the position further, but

instead I will go on to argue that the impasse between the two competing definitions can

be solved by rejecting one or the other by appealing to conservativeness requirements.

8.4 Conservativeness

Might there be some way to reject the proposed definition? I will claim that there is. But

before doing so, more needs to be said about the framework in which such a solution will

be given. In order to avoid the difficulty raised by conflicting definitions of quantifiers, it

needs to be considered what there are in the way of necessary and sufficient conditions

for an implicit definition of a quantifier to be acceptable. And there must indeed be

restrictions. For example, it surely must be the case that it would be illegitimate to define

a quantifier in such a way that, according to it, there is a natural number less that zero,

or so that the existence of a Higgs boson becomes a matter of stipulation.

Now, as already discussed, one such requirement must be that the defined symbols

have the appropriate inferential behaviour for quantifiers. Although this will of course

be a necessary condition, it will not in general be sufficient. For example, Williamson

(2003, pp.440-442) and Sider (2009, pp.391–392) give examples of ways to supposedly

define a quantifier which satisfies the correct inference rules, but clearly should not

be acceptable (so that, for example, according to the new quantifier, there are talking
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donkeys).4

Given the view on quantifiers which I have previously advocated (namely, that the

acceptability of a quantifier meaning is to be justified by reference to the context princi-

ple and syntactic priority thesis), there is one potential requirement for acceptability

which must be rejected. That requirement is that a candidate quantifier meaning must

correspond in some strong way with some absolute feature of the world, for example

by ‘latching on’ in some way to a domain of quantification, or by ‘carving nature at

the joints’.5 Any restrictions on what is to count as acceptably giving the meaning of a

new quantifier must, like the condition of inferential adequacy, be of a more logical or

linguistic character.

In particular, the kind of restriction that I have in mind will roughly be that a defini-

tion must not interfere (in some sense) with preexisting vocabulary and its meaning.6

Since the general issues of meaning which are involved go quite some way beyond the

scope of the present project, I will not be giving a single criterion which I claim to

be the correct way of spelling out acceptability. Rather, I shall give the specification

somewhat schematically, depending on notions which may be selected according to

various commitments elsewhere. I do, however, claim that any reasonable such selection

will be adequate for the use to which I put the restriction.

In general, a constraint will then be, roughly, that an implicit definition must not

require a change in the meaning of any vocabulary which already has a given meaning.7

What might such a constraint look like? My aim here will not be to argue for any

one particular way of stating such a constraint. It will instead be to survey a range of

possible constraints (which of these is most suitable will depend on issues concerning

how the meaning of language is fixed in general, and is beyond the scope of this project).

But each of the constraints considered will be suitable for the use to which I will put

them—namely, to help in avoiding an apparent tension in the view that the meaning of

quantifiers may be given by an implicit definition.

The aim is as follows. Given some ‘starting’ language L, we want to know when

a definition D—which will be a sentence in an extended language L+ consisting of L

together with the symbol or word to be defined—does not conflict with, or does not

require going beyond, the meanings given to the components of L. The strategy to

achieve this aim will roughly be the following. Given L, we will identify a privileged

4Williamson’s construction goes via giving a model-theoretic semantics for such a quantifier, Sider’s by

defining ∃+xϕ to be true just in case some particular ‘person who is logically perfect, maximally opinionated,

and totally nuts’ (p.391) believes ‘∃xϕ’.
5This attitude is then similar in some ways to that taken by Hale and Wright (2009b) concerning when

abstraction principles are successful. They reject the idea that part of what it takes for some abstraction

principle to be acceptable is ‘hitting off reference to a range of entities qualified to play the role that the

principle defines’ (p.206). Also, see Sider (2009) on the topic of joint carving.

6Sider (2009) seems to suggest that some approach like this might succeed in ruling out his purported

counterexample. In particular, he concedes that in his example ‘[i]ntuitively, the candidate meanings . . . assign

names and predicates different meanings from their English ones’ (p.392 fn.24).

7This is somewhat of a simplification. In many cases, it may be desirable when shifting to a larger domain

to redefine existing vocabulary. For example, a shift from a domain of real numbers to one of complex

may require that the exponential function has its definition widened to include complex arguments, and

consequently the logarithm function would even need to be redefined on the reals, so as to be multi- rather

than single-valued. See, for example, Buzaglo (2002).

But the possibility of such concept expansion should not affect the requirement of fixed meaning here. For

the kind of conflict in mind here is that between the definition of the new quantifier and the old vocabulary

as already understood.
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set of (true) sentences, TL, of L which some way or other hold information about the

meaning of components of L. This set will consist of something like those sentences

of L whose truth is settled by the meaning of L. A candidate definition D will then be

ruled out as conflicting with the meaning ofL if it has consequences which conflict with

TL. There are two ways of conceiving of this conflict—either as D having consequences

which contradict some sentences of T , or as D having consequences, expressible in L,

which go beyond T in that they do not appear in T . Symbolically, let us say that some

definition D is:

1. Conservative over L iff for all ϕ in the language L, if D, TL ⊧L ϕ, then ϕ ∈ TL,

2. Consistent over L iff for all ϕ in the language L, if D, TL ⊧L ϕ, then ¬ϕ ∉ TL,

This proposal, as it currently stands, is obviously very unclear; there are two items in

the above definitions—TL and ⊧L—which have not been adequately explained. More-

over, it is not evident why such conditions might serve as sufficient conditions for a

definition to be acceptable. My intention is that this unclarity can be resolved in one

of many directions, depending on issues which go beyond the scope of the present

project, and that, for many such ways of clarifying, the result is a plausible restriction

on implicit definitions. There are two components of the foregoing sketch that require

fleshing out: (a) What, in general, do we select for TL? That is, what is meant by a

sentence being ‘settled by the meaning of L’?. (b) What is the notion of consequence

involved in saying that some sentence is a consequence of D? This may not be as simple

as considering only logical consequence,8 since in many cases one may think that what

counts as a consequence of D may depend on the meaning of L in a way which can

not be captured by a judicious choice of TL. In order to make it clearer what may be

chosen for these options (a), (b), I shall give some examples. I will then say why, for

at least some combinations of these, one of conservativeness or consistency will be

plausible as a restriction on definitions. Moreover, given a rejection of requirements of

joint-carving, hitting-off, and the like, they will be plausible as forming necessary and

sufficient conditions along with inferential adequacy.

8.4.1 (a) What do we take for TL?
The first gap that needs to be filled out in order to make the proposal clearer is that

of what TL should be. The question is not what particular set TL should be for some

particular language, such as the language of arithmetic. Before that may be answered, a

more general question must be answered. That question is: what requirement should be

made of TL so that the resulting restriction on acceptable definitions is plausible? That

is, for some particular language, how do we choose what to take for TL? As mentioned

earlier, the aims will be to identify a set of sentences which, in some sense, are those

settled purely by matters of meaning, though I shall also consider kinds of restrictions

which are different from this, but that nonetheless lead to a plausible restriction.

8Of course, even if it is just logical consequence that is involved, it is contentious what even this amounts

to.



148 conservativeness, diagonalisation and reflection

(i) Analyticity

One option—and perhaps the most simple—would be to take some notion of analyticity

as given, and then let TL be the set of all those sentences of L which are analytic.

Now—assuming that the notion of analyticity involved is in good standing, and making

plausible assumptions about the consequence relation involved—this will result in

conservativeness being a plausible restriction on definitions. The aim is that D should

count as a definition and hence be analytic. So, if ϕ follows from T and D, it too should
be analytic, assuming that the consequence relation involved preserves analyticity. But

then, if ϕ only contains vocabulary from the old language L, it must be in TL. So, if
there is a ϕ from L which follows from D and TL but is not in TL, some of the meaning

of the Lmust be assumed to have changed—for something is now considered analytic

which previously was not. Hence, a definition which is not conservative in this sense

can be no good.

(ii) Theories of meaning

A related option, which perhaps simply amounts to a more sophisticated version of

the previous one, would be to take TL to be determined by a metatheoretic theory of

meaning ofL (in the sense of Davidson (1967)). If one has such a theory ofmeaning, then

TL can be the set of sentences in L whose truth is a theorem of the theory of meaning.

There are a couple of remarks that may be made abut such an approach. Firstly, in the

case where the language in question has some resources to talk about its own semantics

(as, for example, it may be thought in the case of English, or other natural languages),

much of the theory of meaning itself may be replicated in TL. As such, one may perhaps

say that we simply let TL be a theory of meaning forL (albeit one expressed in the object

language). Secondly, it may be the case that what is determined to be analytic in this

sense may be relative to some notion of analyticity in the metalanguage; thus, we do not

have some absolute notion of analyticity (as in the previous option), but one which is

relative to analyticity in another language.

Now, this option will result in conservativeness being a plausible option for much

the same reason as the previous one. Since D should count as a definition, the theory of

meaning for the extended language L+ had better have its truth as a theorem, either by

adopting something like ‘Tr(D)’ as an axiom, or by adopting a metatheoretic version

of D as an axiom from which its truth follows. For example, if one were to add the

word ‘bachelor’ to a language for the first time, by explicit definition, one may expect

the theory of meaning of the extended language to feature some axiom such as

Tr(⌜Bachelor(x)⌝) iff [Tr(⌜Unmarried(x)⌝) and Tr(⌜Man(x)⌝)]

from which ‘Tr(⌜Bachelor(x) ↔Unmarried(x)∧Man(x)⌝)’ will presumably follow as a

theorem.

In addition, the consequence relation ⊧L will be truth preserving in the sense that,

if ϕ is determined to be true by the theory of meaning, and ϕ ⊧L ψ, then ψ will be

determined to be true according to the theory of meaning (this is essentially just the

same as saying that consequence preserves analyticity). So, if D is non-conservative,

the meaning of parts of L must change, since there will be theorems of the theory

of meaning of L+ which only concern L, but which are not theorems of the original
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theory of meaning of L. Hence, again, non-conservative purported definitions must be

disallowed.

(iii) A holistic approach

The two preceding options seem to rely on having a notion of analyticity in some way—

either directly as in the first case, or indirectly as in the second case. It may thus seem

that the notions of conservativeness and consistency which have been suggested above

are unavailable to those—like Quine (1951)—who eschew such notions, or at least who

claim that no clear dividing line may be made between those sentences of a language

which are analytic, and those which are not. But it may be possible for the criteria to be

used by making use of a different choice of TL, and one which is more compatible with

a holistic view of meaning according to which there is no clear demarcation between

the analytic and the synthetic.

So, for example, one could take for TL, not those sentences which are analytic, but
rather sentences from a language which are chosen, for pragmatic reasons, to hold

come what may. Or, perhaps, since such a view may deny that there are any sentences

which can be held absolutely fixed, TL may instead consist of those sentences that are

sufficiently fixed—those closer to the center of the web of belief, as it were. Such a choice

of TL would include logical truths, and presumably most (or all) of those sentences

which are commonly taken to be paradigmatically analytically true. But there would be

no claim that the membership of some sentence ϕ in TL is a matter of absolute meaning,

but that it is simply a matter of pragmatics.

Given such a conception of what TL is, either of conservativeness or consistencymay

seem like good choices as a restriction on implicit definitions. Conservativeness might

be considered for the same reasons as for when TL is analyticity, since TL under the

current proposal is essentially just a substitute for analyticity. But theweaker requirement

of consistency might also be an option instead of conservativeness. For perhaps, if a

definition has particularly desirable uses or consequences, it might be permitted that it

requires some sentences of the original language to be elevated in status. But what must

be ruled out instead, is that the definition does not contradict one of the original ‘fixed’

sentences.

Now, this option is not without its difficulties. For one thing, it may result in

membership of TL—and hence conservativeness and consistency—becoming a matter

of degree. But perhapsmodifications can bemade to allow for this by, for example, letting

TL be a fuzzy set. For another thing, it is not clear to what extent a proposal similar to

this would be acceptable to a Quinean (and, even if it were, which of conservativeness or

consistency is preferable). In any case, I shall say no more about this particular option. I

will simply refer to those elements of TL as being those which are analytic, especially

as, in the cases I will be interested in, the terms involved will have been introduced by

laying down definitions, which can then presumably be ranked as being analytic. My

intention in presenting this option has simply been to indicate that it may be possible to

adapt such a restriction on definitions without relying on the concept of analyticity, if

that were to be desired.
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8.4.2 (b) Consequence
The second gap that must be filled, in order for conservativeness and completeness as

given above to be properly defined, is the consequence relation ⊧L. The role that this

played in establishing the plausibility of conservativeness as a restriction (at least under

option (i)) was that it preserves analyticity. That is, ⊧L is the relation that holds between

two sentences if one entails the other solely in virtue of the meaning of components of

L. (Alternatively, slightly different pictures may be given along similar lines to options

(ii) and (iii) above.)

There are a number of things that should be noted about ⊧L. Given the gloss just

mentioned, we should expect TL to be closed under ⊧L. This follows simply from the

fact that ⊧L is to preserve analyticity. But ⊧L will not be a relation only on sentences or

formulas of L, nor can it be. For it is essential in giving the definitions of consistency

and conservativeness that the relation is defined with D on the left hand side, which is

itself not a sentence of L.

Now, it may be thought at this point that there is no need to take ⊧L as going beyond

some notion of plain logical consequence. Logical consequence is defined not just for

some language L, but for any extension of such a language, as required. Moreover, any

aspect of inference which is not purely logical but depends on aspects of the meanings of

L seems to be accommodated by adding the appropriate conditionals to TL. For example,

in a language which features the words ‘bachelor’ and ‘unmarried’, the inference from

‘x is a bachelor’ to ‘x is unmarried’ will hold as a matter of meaning (though not as a

matter of pure logic). But, this does not require that some special consequence relation is

required specifically for this language. Instead it will simply be the case that TL includes

the conditional ‘x is a bachelor→ x is unmarried’. The inference in question then will

follow simply as a matter of logic (with TL in the background), by an application of

modus ponens.
But things may not be a simple as this. There may be inferences which hold as a

matter of the meanings of components of L, but which hold between sentences which

themselves are not sentences of L, but of some extension. In such a circumstance,

the relevant conditional will not be a part of TL, since it too will not be a sentence of
L. Consider again the example of ‘bachelor’ and ‘unmarried’ as above. Now suppose

that the language is extended to include a new constant or proper name, ‘a’. Then an

inference from ‘a is a bachelor’ to ‘a is unmarried’ should surely hold as a matter of the

meanings of ‘bachelor’ and ‘unmarried’, as before. But in this case, the conditional ‘a
is a bachelor→ a is unmarried’ can not appear in TL, since it is not a sentence of L. It
seems then that a special consequence relation is required after all.

There are a number of ways that this could be resisted, especially for this example,

but I think that ultimately, they do not work work.9 One such way would be to claim

that, although the instance ‘a is a bachelor→ a is unmarried’ can not be a member of

TL, its universal generalisation ‘∀x(x is a bachelor → x is unmarried)’ will be, since

it only features language from L. And it is from this that the inference can be made

9In any case, recall that the aim here is to give these restrictions sufficiently schematically so that various

versions can be considered. So, if somebody thinks that there is no need to go beyond logical consequence,

that is fine. But if somebody this that it is required to go beyond purely logical consequence in this case or

in others, that too should be accommodated. Thus, I do not need to show that onemust go beyond logical
consequence in the definitions, but merely that there are plausible reasons why one may wish to go beyond

logical consequence.
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purely logically over the background of TL. But still, making this inference will involve

instantiating the quantifier appearing in it with a. But what will guarantee that the
reference of a—if any—will lie in the domain of the quantifier in L? If there is to be

something which justifies this (perhaps the claim that the quantifier of L is absolutely

unrestricted), then it will surely be the case that this inference is then justified by specific

reference to features of the meaning of components of L (in this case, the domain of the

quantifier), which brings us back to a need for a consequence relation which is specific

to L.

If this particular case is not convincing, there are other situations in which it seems

more desirable that we should have a consequence relation which applies to extensions

of L and which goes beyond purely logical consequence. For example, it has been

claimed that some inference rule schemas should be open ended, in that the schema

may be instantiated by formulas from extensions of a language. The inference rules for

logical connectives are a clear case of this; the inference from, for example, ‘ϕ ∧ ψ’ to ‘ψ’
is to hold, not just for sentences from some particular language, but from any language,

and any extension of any language. But there are also cases where such inference rules

do not pertain to strictly logical vocabulary. For example, McGee (1997) argues that

we should understand arithmetical induction as being open-ended, so that the schema

can be instantiated by any formula from any extension of the language of arithmetic.10

Or, it is plausible to think that the comprehension schema of second-order logic can be

instantiated not just by formulas of some particular language, but by formulas of any

possible language.

So, to summarise, for a given languageL,⊧L will be the relationwhich holds between

sentences when one follows from the other in virtue of the meaning of L. There is no

requirement that the relation be one which only applies to sentences of L. Nor is there a

requirement that it be restricted to logical consequence.

8.4.3 An example
Now, what kind of candidates might there be for TL and ⊧L for some given language?

Consider, for example, the language of arithmetic. As before, here too there will be

multiple options, depending on how one sees the meaning of the language to be fixed.

Perhaps the simplest option would be to take TL to be some axiomatised theory such as

PA (or its closure under provability), and ⊧L to be the standard provability relation.11

Such a view may arise from identifying meaning with use, together with the claim that

the use of language must be such that assertability conditions are effectively computable

in the way that provability is. But such a choice is likely to be unduly restrictive. Given

the nature of both TL and ⊧L, there will be a Gödel sentence G in the language of

arithmetic which is not provable from TL, but which could perhaps be claimed to be

10McGee does not treat open-ended induction as an open-ended inference rule, as I am suggesting,

but instead as a sentence schema. Open-ended schemata rather than inference rules could probably be

accommodated into TL by making some modifications, but, since there will already be some open-ended

inferences involved in ⊧L in the form of logical inferences, it is simpler to only consider open-endedness in

⊧L rather than also in TL.
11This would of course require that the arithmetical truths derivable from PA be analytic. But one could

instead take TL to be a collection of sentences suitably conditionalised, on, say, the existence of numbers, in

order to avoid this.
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true by virtue of the meaning of arithmetical language. Such a conception will also rule

out as non-conservative many extensions of the language which might be thought to

be in good standing. For example, even a small amount of set theory will be enough to

prove the Gödel sentence of L. So some larger, non-recursively-enumerable theory for

TL may be desired (perhaps along with a weaker consequence relation).

One way to do so would be to consider a second-order language of arithmetic,

and take the consequence relation to be full second-order consequence. Then the

corresponding TL would consist of all sentences of second-order arithmetic which

follow from the second-order axioms. In this case, TL will be negation complete, and

so conservativeness and consistency come to the same thing. Alternatively, one could

remain with first-order PA, but with the modification that, in inferences with extensions

to the language of arithmetic, the induction scheme may be instantiated with formulas

from the extended language. McGee (1997) shows that such a theory—like second-order

arithmetic with the full consequence relation—uniquely determines the theory of the

natural numbers. Hence (I suspect), it would amount to much the same thing as the

second-order approach.

8.4.4 Piecemeal conservativeness and universal conservativeness
For either of conservativeness or consistency, there are two ways in which they may

be taken. One way is for the requirement to be relative to some particular language L

(together with TL and ⊧L). So, the acceptability or not of a definition D will always be

relative to some base language. In most cases, it is clear what the relevant language will

be which D must be checked against—it is the language which the new vocabulary is

being added to, and which D is expressed in.

Another way of taking conservativeness (and consistency) is in a universal form.

Here, conservativeness is required, not just relative to some particular language, but

relative to any language (with corresponding TL and ⊧L). Again, I will not rely on either

one of these being the correct option, but hope to make use of these in such a way that

my arguments go through given any selection of these options.

I do notwish to claim that any of these options forTL and⊧L is correct, nor that either
of conservativeness or consistency is more appropriate for a criterion of acceptability.

The aim is to provide a way in which some definition or definitions of a new quantifier

may be ruled out. For this it will suffice to show that such a definition would be ruled out

on any reasonable conception of acceptability along these lines. My aim will simply to

be to target the weakest such conception—namely, consistency where ⊧L is just taken to

be provability. Unacceptability according to this measure will then entail unacceptability

according to any other measure, since inconsistency entails non-conservativeness, and

for any reasonable choice of ⊧L, D, T ⊢ ϕ will imply D, T ⊧L ϕ.

8.5 Rejecting definitions and conservativeness

So, how might conservativeness help to solve the problem? The idea will be to reject

one or other of the definitions. So, for example, from the point of view of the relativist,

DefAU may be regarded as being non-conservative, and vice-versa. Thus, the solution

will not tell in favour of relativism in particular. As I wrote in chapter 5, my aim is not
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to provide expansionist abstraction—and, along with it generality relativism—-as an

inevitable alternative to the static, absolutist approach; it is instead merely to provide an

alternative.

In order to decide between the absolutist definition and the expansionist definitions

then some extrinsic argument will be required (which I do not intend to give here). But

that this must be resorted to is not a fault of the framework that has been set up (i.e.

that of justifying implicit definitions of quantifiers by means of the context principle,

and of making use of postulational modality). The framework is not intended as an

argument for relativism by itself. The aim is rather to provide a framework within which

both positions can be adequately expressed, and with which metaphysical worries about

domain expansion can be resolved.

So then, may we reject one of the definitions as being non-conservative? At first, this

may seem to be what Dummett (1994) calls ‘to wield the big stick’. Dummett considers

the case of someone who asks what the cardinality of all the cardinals is12and who is told

that they must not do that, since it will lead to contradiction. In this case, somebody

asks about ‘all possibly introduced objects’ or something to that effect, and is told that

they can not do so since that would be to make a non-conservative definition.

The difference, however, is that in this case, the rejection of one of the definitions is

justified by considerations concerning definitions in general. There is also room for an

explanation of why either of the definitions may be problematic, in terms of indefinite

extensibility. But how might one go about rejecting one or other of the two conflicting

definitions? In either case, the aim will be to show that the other’s principle is non-

conservative when ⊧T is taken to be provability, which will then entail that the principle

is non-conservative in any other reasonable sense. I shall go through both options

(either rejecting DefAU as non-conservative or rejecting BLV as non-conservative).

Consider a relativist who wants to claim that DefAU amounts to a non-conservative

addition to their language. In particular, they want to show that for some consistent T
and ϕ in the language L of T , T ∪ {DefAU} ⊢ ϕ, whilst T ⊢ ¬ϕ. That is, the aim is to

show that T ∪ {DefAU} is inconsistent. In this case, the language L will be that of the

modality together with the set operator, and the theory governing the language, T , will
be EL+BLV↓. Then T ⊢ (GR). But, as noted above, DefAU proves the negation of this.

The same can be said the other way around, with the absolutist rejecting BLV since

it is non-conservative over DefAU .

But something also needs to be said concerning the universalised forms of conserva-

tiveness, according to which a definition must be conservative over any theory which
is in good standing. This is not a worry in the course of showing that the opponent’s

definition is non-conservative, since, by showing that it is non-conservative over one’s

preferred theory, one has shown that it is not universally conservative in the appropriate

sense. But what is a worry is that, on the requirement of universal conservativeness, both

definitions must be ruled out as non-conservative, since they are both non-conservative

12It seems tome that this is not the best example, since, as the consistency of HP—on the static view—shows,

it is consistent that there be a cardinal of all cardinals. Since HP is consistent, and (unless modified somehow)

entails that there is a cardinal for any concept (including self-identity, and being a cardinal), it is consistent for

there to be a cardinal of all cardinals. Moreover, even in the context of a set theory such as ZFC, a contradiction

only follows from the existence of a cardinal of all cardinals together with some additional assumptions—such

as the claim that every cardinal is the cardinal of some set, that cardinals are themselves sets, and so on. A

better example might be of somebody asking what the order type of the ordinals is.
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over the theory resulting from the opposing definition.

In this case, however, it seems that such a worry can be avoided. For it must only

be conservativeness over theories in good standing that must matter, and the opposing

definition will not be seen as a theory in good standing. So, consider for example the

relativist again. After showing that DefAU is non-conservative, they must reject the

claim that BLV is non-conservative, since it is non-conservative over DefAU . But this

is easily done. For, as they have already claimed, DefAU is non-conservative, and so

not a theory in good standing by which to judge the conservativeness of BLV. There is

obviously a gap left: since the situation is symmetric, reasons must be given for going

the relativist way, rather than the absolutist way. But these may be reasons extrinsic to

issues concerning conservativeness and so on.13

8.6 Reflection

8.6.1 Reflection for the absolutist
Now, despite DefAU being unacceptable to the relativist, it seems that it provides a way

of increasing the amount of mathematics that can be derived from this approach. In

particular, it seems to solve the problem raised earlier of expanding to an infinite domain

without assuming that infinitely many separate expansions must take place. It would be

desirable to achieve the same effect from the point of view of the relativist, by making use

of weaker implicit definitions of quantifiers than DefAU . In this section I shall describe

the ‘reflection’ effect that DefAU has, and describe a way that the relativist can achieve

the benefits in a way which is acceptable from that point of view.

Recall that there is a particular problem concerning expanding a domain from one

which is finite to one which is infinite. So far, all that has been motivated by way of

domain expansions arising from abstraction are those from finite domains to larger,

but still finite, domains.14 The same goes for domain expansion according to Fine’s

view of procedural postulationism. Each procedural postulate (with the exception of

those arising from his ‘∗’ operator, which I shall discuss later) will only result in a finite

expansion if starting from a finite domain.

So, some additional means is required in order to transform such finite expansions

into an infinite expansion. For example, Fine (2005, pp.92,94) suggests that the process

of iterating a procedural postulate (which is indicated by the ‘∗’ operator) may continue

into the transfinite.15

13For example, the ease with which set theorists talk about proper classes as objects may suggest that the

kind of collapse of concepts to objects permitted by BLV may be desirable. But more argument is clearly

needed.

14in particular, in the case of HP, a domain of cardinality n may be expanded to one of cardinality n + 1,

and in the case of BLV, a domain on cardinality n may be expanded to one of cardinality 2n .

15Fine glosses the ∗ operator as follows:

We may read β∗ as: iterate β; and β∗ is executed by executing β, then executing β again, and

so on for any finite number of times. (p.92)

with an exception that it may need to be interpreted as going into the transfinite only for the case of set theory.

But it seems to me that the operation must be transfinite even for the case of arithmetic. For, in that case, it is

presumably necessary to expand one’s domain to one containing infinitely many objects (namely, the natural

numbers), whereas the ∗ operator as stated here appears only to accommodate arbitrarily large finite domains.
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But, given the epistemological aims of the enterprise, this will not be acceptable. For,

if gaining an understanding of an infinite domain requires the transfinite iteration of an

action—namely, coming to an understanding of increasingly larger domains through

domain expansion of some kind—how are mere humans to achieve it? Instead some

other means is required to gain such an understanding, and it must be by means which

it is plausible for humans to achieve.

What is required instead is some way to achieve the same effect—i.e., an under-

standing of quantification over an infinite domain—but in a finite time. That is, what is

required is a specification of truth conditions associated with a quantifier such that it,

in effect, ranges over an infinite domain. DefAU seems to provide such truth conditions

(and, as I will argue shortly, so do some other principles which are acceptable to the

relativist).

DefAU motivates the following rule:

ϕ◊

ϕAU

where ϕ◊ is as before, and where ϕAU results from superscripting each quantifier with

‘AU ’. Furthermore, ϕAU will then entail that ◊ϕ, since the truth conditions associated

with ∃AU/∀AU are assumed to describe a possible way of interpreting the quantifiers

(since, recall, this is from the absolutist perspective).16 Hence, we have the reflection

principle.

As already noted, the reflection principle captures the thought that it is possible

to ‘close off ’ an operation of continually expanding one’s domain. So, for example, if

it is the case that, (necessarily) for any number it is possible to expand the domain to

include its successor, the reflection principle entails that it is possible to expand the

domain so that every number has a successor (in that same domain). Similarly, if it is

the case that for any set, it is possible to expand the domain to include its powerset, then

the reflection principle entails that it is possible to close off the iteration, so that every

set has a powerset in that same domain. This is not to say that the reflection principle

states that one can achieve the supertask of iterating infinitely. Rather, the possibility is

witnessed by the interpretation of the quantifiers according to DefAU , which, in order to

be understood, does not even require an understanding of what it would be to continue

a process into the transfinite, let alone the ability to do so.

Another way of illustrating the effect of the reflection principle is in terms of possible

worlds models. It motivates the claim that, given some modal sentence ψ, it is possible
to reinterpret one’s quantifiers so that they, in effect, range over the domain of a possible

worlds model of ψ. Why? Suppose that ϕ◊ holds in some world @ in a possible worlds

modelM and let D be the union of the domains of worlds accessible from @. Then,

a simple induction on quantifier complexity shows that ϕ holds with its quantifiers

interpreted as ranging over D, and any non-logical vocabulary interpreted as it is at @.17

16Some additional carewill be neededwhen ϕ includes non-logical vocabulary, such as abstraction operators,

so that these are not evaluated within the scope of the enclosing possibility operator.

17More precisely: Let L be a language (i.e. a collection of non-logical constants) and ϕ a sentence of that

language. Then, ifM = ⟨W , I, δ⟩ is a possible worlds model, with w ∈ W , thenM,w ⊧ ϕ◊ if and only if

M′ ⊧ ϕ, whereM is the (not possible worlds) modelM′ = ⟨D′ , I′⟩, where D′ = ∪w′ s.t. wRw′ δ(w) and for

each non-logical constant ξ of L, I′(ξ) = I(w , ξ).
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Indeed, from the absolutist point of view, it makes sense that this is the case. For

from the absolutist point of view, a domain expansion is equivalent to the lifting of

restrictions on the absolutely unrestricted domain. So, a domain expansion is possible

just in case there are (unrestrictedly) some objects which can serve as members of that

domain—that is, the domain of all ‘possible’ objects for domain expansions just is the

domain of all objects.

8.6.2 Reflection for the relativist?
Now, with the desirable consequences that the reflection principle brings (namely, a way

of ‘completing’ various processes of expansion), is there a way of getting these conse-

quences without the full strength of DefAU? That is, are there weaker definitions which

(a) allow one to motivate the reflection principle and (b) are consistent/conservative

over relativist commitments? I will argue that there are. In particular, I will not replace

DefAU with a single definition which motivates reflection in a way acceptable to the

relativist. Instead, I shall provide a definition schema, which will provide a definition of

a quantifier for each instance of the reflection principle. Together these will justify the

reflection schema as a whole.

Before giving these definitions, it will be useful to set up some notation. The aim

will be to define, relative to some sentence ϕ, a quantifier ∃ϕ which will witness the

relevant instance of reflection, i.e., the instance featuring ϕ. Where ψ is any sentence or

formula, I will denote by ψϕ the sentence or formula which results by replacing each

instance of ∀ and ∃ in ψ by ∀ϕ and ∃ϕ respectively.18 As before, I shall use ψ◊ to denote

the replacement of each quantifier ∀x or ∃x in ψ by ◻∀x↓ or ◊∃x↓ respectively.
The aim is as follows. We want to give truth conditions associated with ∃ϕ/∀ϕ in

such a way that, for example, from ◻∀x◊∃ySxy we can derive ∀ϕx∃ϕ ySxy. In this case,

since we wish to use this to derive the instance of the reflection principle featuring ϕ,
the relevant ϕ will be ∀x∃ySxy. Alternatively, the aim can be be put in terms of possible

worlds models, as was discussed in the last section. Given a modal sentence (or formula)

ϕ, we want to give truth conditions for a quantifier which, in effect, quantifies over the

domain of a possible worlds model of ϕ.
Note how this aim differs from the consequence of DefAU . That consequence is that

it is possible to quantify over what is effectively the domain of a possible worlds model

of every true modal sentence. The present aim is that, given any modal sentence, it is

possible to quantify over what is in effect the domain of a possible worlds model of that
sentence.

How is this aim to be achieved? The strategy will be the following. Instead of giving

truth conditions for the new quantifiers directly, as was the case for DefAU , they will be
given indirectly. Truth conditions will be given directly for some sentences, in addition

to a stipulation that the newly introduced quantifiers are to obey the appropriate free-

logical inference rules (so, roughly, elimination rules will give necessary conditions, and

Proof. This can be verified by a simple induction on complexity of ϕ. The only non-trivial case is where ϕ
is ∀xψ for some ψ. Then ϕ◊ is ◻∀x↓ψ. Now, w ⊧ ◻∀x↓ψ iff for all w′ such that wRw′, for all a ∈ δ(w′),
w ⊧ ψ(a). Which (by the inductive hypothesis) is equivalent toM′ ⊧ ψ(a). etc.

18It is unfortunate that this notation coincides with one often used for quantification restricted to ϕ (so that,

for example (∀xFx)ϕ denotes the sentence ∀x(ϕ(x) → Fx)). For the present purposes then, it should be

noted that this is not what ψϕ signifies.
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introduction rules sufficient conditions).

The implicit definition for the new quantifier ∀ϕ will then be:

(∗) ϕϕ ↔ ϕ◊

together with a stipulation of the inference rules. It is then trivial to infer the relevant

instance of reflection from this. For example, suppose that ϕ is ∀x∃ySxy. Then, ϕϕ ,

which is the sentence for which we are directly giving the truth conditions, will be

∀ϕx∃ϕ ySxy. This will then be determined to be true just in case ◻∀x↓◊∃y↓Sxy, which
is stated entirely in terms not including ∃ϕ . In addition, some necessary or sufficient

conditions will be given for further sentences including ∃ϕ .

The definition (∗) above is unlike both DefAU and the definition previously given

for expansions resulting from abstraction principles.19 These are both, to some extent,

explicit definitions, directly giving the truth conditions for statements of the form ∃+xϕ
(where ∃+ is the quantifier being defined). (∗), by contrast, only directly gives the

truth conditions of one sentence, which, although containing the new quantifier, might

not simply be of the form ∃+xϕ. For this reason, it is worth discussing whether it is

legitimate to do so.

Recall that one requirement on an interpretation being legitimately a quantifier
was that it should have the correct inferential behaviour. In the case of the previous

definitions, it has been possible to prove that they satisfy the relevant rules. But is it

legitimate—as is the case here—to simply stipulate that ∃ϕ behaves like a quantifier? I

do not see why not. The aim of a definition will simply be to give truth conditions for

a sufficient range of sentences in a way which is conservative. There need not be any

restrictions on how such truth conditions are given. In any case, giving the meaning of a

new symbol in terms of inference rules is no different from the claim that the meanings

of the logical connectives can be given by their inference rules (or the weaker claim

that inference rules partly give the meanings of logical connectives). Or, for that matter,

it is not very different from how abstraction principles must be seen as definitions of

new singular terms (or rather, of new abstraction operator symbols). In this case, it

must surely be part of the introduction of the abstraction operator that the terms it

forms are indeed singular terms (that is, that they satisfy the appropriate inferential

behaviour for singular terms). For being grammatically like a singular term (that is, in

this case, flanking an identity symbol) is not enough to be a singular term in general (cf.

Dummett, 1973; Hale, 2001b,c).

Another objection to the proposed stipulation might be that it fails to be sufficiently

general. That is, that it fails to give the truth conditions for a sufficiently large rage

of sentences featuring the new quantifier. The worry is then that this means that the

definitions fail to confer the new vocabulary with a meaning. The objection is essentially

just a variant of the Julius Caesar problem. It should be noted that this problem is not

unique to (∗). For example, even though the definition of ∃§ (see fn. 19) is explicit,

the truth conditions it gives depend on the truth conditions of formulas involving

abstract terms, and, famously, the truth conditions of all such sentences in not settled

by abstraction principles. The situation is similar for DefAU .

19Recall, these were:

∃§xϕ↔ ∃Fϕ(§F)
where § is the abstraction operator in question, and ϕ(§F) is to be evaluated via the abstraction principle in

question.
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There are two questions which then need to be asked. Firstly, to what extent is this

lacuna in the truth conditions fixable—that is, can further principles be added as part

of the implicit definitions so as to confer a complete range of sentences featuring the

new symbols with truth conditions?20 Secondly, even if this is not achievable, to what

extent does this matter? Perhaps it could be claimed that, although the definitions do

not succeed in completely conferring a definite meaning for the new quantifiers, they

do succeed in conferring meaning partially. To fully answer these questions now would

be a large undertaking. I believe, however, that adequate answers can be given to these

questions. In particular, if truth conditions can not be given universally for the new

symbols, I do not think that this affects the proposal to the extent that it is worthless.

For sure, a gap in truth conditions would leave indisputable worries concerning the

determinacy of reference of the proposed quantifiers.21 But that would not affect the

main conclusion, which is that it is possible to reinterpret quantifiers so that they quantify

over a domain on which certain parts of mathematics are true.

8.7 Conclusion

I have here tackled two separate, but related problems for the way in which I have

justified the introduction of new quantifiers. One is how to justify the introduction of

quantifiers over infinite domains, without assuming that it is possible in principle to

repeatedly expand ones domain infinitely many times. The second concerns the attitude

that should be taken towards the apparent introduction of an absolutist quantifier in a

similar way to how other quantifiers have been introduced.

The second problem can be avoided by appealing towhatmust be a general constraint

on introducing quantifiers—namely that of conservativeness. Although this restraint is

not sufficient to rule out the absolutist quantifier, it does give an account of why there

is no compulsion to accept both the absolutist quantifiers and the relativist quantifiers.

This still leaves a gap concerning how one is to justify that it should be the absolutist

quantifier, rather than the relativist quantifiers based on BLV, that must be jettisoned. I

do not intend to give a knock-down argument as to why this should be the case. However,

the capability of the collection of relativist quantifiers to recover large amounts of set

theory, to avoid the bad company problem, and—or so could be argued—to account

for talk of proper classes and indefinite extensibility, is sufficient to make the relativist

quantifiers a worthwhile topic of enquiry.

The adopter of the absolutist quantifiers has some method of justifying a reflection

principle, which, along with some principles of expansion, motivates the expansion to

infinite domains (although, since the quantifiers based on BLV must then be considered

illegitimate, principles of expansion may no longer be available). I hope to have shown

that similar justification is available to the relativist as well, by adopting a schema for

introducing multiple quantifiers which together have the same effect.

20If so, this raises an additional question as to whether there is a problem with such a piecemeal approach.

21Although, even if truth conditions could be given for all sentences containing the new vocabulary (which

would have to be given in a thoroughly non-recursive manner, due to Gödel’s theorems), there might still be

doubts about the determinacy of the domain of quantification for Skolomite reasons. For example, it could be

claimed that if truth conditions were sufficient to determine that the domain of quantification is infinite, then

no amount of further statement of truth conditions could determine the precise cardinality of the domain.



Chapter 9

Conclusion

9.1 Conclusion

I hope that I have done enough in this thesis to provide at least the beginnings of an

alternative to the standard static way of looking at abstraction. That abstraction may

best be conceived of in a broadly expansionist way has been suggested in a few places,

such as Fine (2002). But there has not been much in the way of a detailed working out of

how such a conception of abstraction may proceed. There have been programmes in the

philosophy of mathematics which are clearly influenced by such a view (e.g. Fine, 2005;

Linnebo, ms), but these depart from abstractionism in more ways than just allowing for

domain expansion.

My aim was first to look at the static approach to abstraction for two main purposes:

One was to determine what it is about the standard approach which is distinctively

committed to a static domain. This, I argued in chapter 2, was the characteristic rule

of negative free logic, (E!-I). Secondly, the aim was to provide some motivation for

considering alternative approaches. The main such motivation was the bad company

problem. I argued in chapters 3 and 4 that this problem includes an epistemological

dimension which is not overcome by any of the restrictions commonly considered.

In the second part of my thesis, my aim was to make a start on providing the details

of an expansionist account of abstraction. There were two main aims. The first, philo-

sophical aim was to provide support for the conceptual underpinnings of expansionist

abstraction. These are the claim that it is not possible to quantify over absolutely every-

thing and, more importantly, that there is nothing mysterious in the thought that we can

indefinitely expand our domain of quantification by means of reinterpretting our quan-

tifiers. The second, more technical aim was to provide a formal theory of expansionist

abstraction. As a crucial part of this, I showed that the expansionist approach does

not suffer from the bad company problem (at least, it allows BLV to be used without

threat of inconsistency), and that in this framework it is possible to develop a significant

amount of set theory.

As I wrote in chapter 5, my aim was not to argue decisively that static abstraction

must be rejected in favour of expansionist abstraction. But I hope that I have done

enough to show that an expansionist approach is a viable alternative.

159
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9.2 Outstanding issues

A number of issues have been left open concerning expansionist abstraction which I

feel warrant further investigation, but which would either have constituted too much of

a digression, or to which I could not do justice in the space available.

9.2.1 Other abstraction principles
My emphasis in chapter 7 has been BLV, since it is the abstraction principle for which

theremight bemost concern about inconsistency, and since it is the abstraction principle

which holds the most promise for a powerful foundation of mathematics. But it would

also be desirable to examine the consequences of expansionist abstraction for different

abstraction principles.

One such example would be HP. Since I gave a modal formulation of HP in section

7.2.1, it would be a simple task to make use of this modalised version of HP in place of

the modalised version of BLV. I suspect that the result would be a theory that proves, for

example, that for every number, it is possible to introduce a successor to that number. An

application of the reflection principle would then allow one to derive that it is possible

to expand the domain so that for every number there is a successor.

There is also the question of how abstraction principles in generalmight bemodalised.

One approach would be to provide a general method of constructing a modalised ab-

straction principle out of non-modal abstraction. An alternative would instead be to

provide a general notion of a transworld equivalence relation, which could then serve

as an abstraction relation.

Finally, there are questions to be asked about systems of expansionist abstraction

which feature more than one abstraction principle at once. How would, for example,

the system which consists of suitably modalised versions of HP and NP behave? My

suspicion is that, for finite domains, HP will result in domain expansions, as it would by

itself, and in infinite domains, NP would then result in domain expansions, in a similar

way to how BLV does.

9.2.2 Bad company
As attested to in chapter 8, expansionist abstraction—or, at least, the framework which

surrounds it—faces its own version of the bad company problem, in that there may be

definitions of quantifiers which conflict with one another. Although I have sketched an

outline of how this might be avoided, there is more that could be said.

I suggested that either consistency or a form of strong conservativeness could solve

the problem. But there remains the question as to which of these is preferable, and what

precise form it should take. Moreover, a version of the epistemological bad company

problem arises, which must be dealt with.

Although this problemmust of course be faced by the expansionist, there are reasons

to think that the expansionist conception may fare better than the static conception. For

one thing, the bad company problem only arises when we consider implicit definitions

of quantifiers in general. If we restrict attention to those based on abstraction principles

(as in chapter 6), there is no problem. Moreover, some of the suggestions that I made

about suitable restrictions are plausibly decidable in the right kind of way. Consider,
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for example, consistency relative to a single theory TL. Assuming that TL and the

consequence relation ⊧L are both recursively enumerable, it can easily be checked for a

purported definition D whether D, TL ⊧L �.
To motivate such a requirement would, however, constitute too much of a digression.

Moreover, the resulting view would have to be fairly radical; it would permit a certain

amount of relativism in how we can extend a language, for example.

9.3 Directions for development

As well as issues to be resolved concerning expansionist abstraction directly, there are a

few directions in which I believe some of the aspects of this thesis can be developed.

9.3.1 Other forms of domain expansion
There might be questions, not about other abstraction principles, but about different

forms of domain expansion altogether.

The kind of domain expansion which was discussed in chapter 7 was a kind of

expansion of domains of sets ‘upwards’. That is, BLV↓ was seen as providing a method

of expanding a domain so that what were considered proper classes under one inter-

pretation of the quantifier correspond to sets under an expanded interpretation. The

domain expansion adds sets at the ‘top’ of the set-theoretic universe.

But we might want also to consider domain expansion ‘outwards’, so that the domain

expands to include, say, more subsets of the natural numbers. The reason is that the

technique of forcing in set theory suggests just that. Forcing is a method used to prove

independence results in set theory, and proceeds by showing how a model of set theory

Mmay be expanded to a modelM[G] which verifies some particular statement (e.g.

the continuum hypothesis). This model may be such that, from the point of view ofM,

it contains more subsets of the natural numbers.

Of course, forcing in this sense only concerns set sized models of set theory (more-

over, it can only concern countablemodels without running into additional complica-

tions). But some writers (e.g. Hamkins, 2011) have claimed that a consequence is that

there is no one true universe of sets, but a multiverse of different universes. Forcing
extensions on this view are genuine extension of the (or a) universe. It might then be

asked whether the framework for considering domain expansion by expansion may

apply to domain expansion by forcing.

9.3.2 Quantifier variance
I mentioned briefly in chapter 6 the relationship between generality relativism and

the metaontological view known as quantifier variance. This is the view that many

ontological disputes (for example, that between mereological nihilists—who claim that

there are no composite objects—and their opponents) can be seen as purely verbal

disputes about what meaning the quantifiers have. But there is more to be said about

this. In particular, it seems that the attitude to quantification which I suggested in that

chapter can be utilised to defend quantifier variance against a number of issues.
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In particular, it may be possible to levy the same objections to quantifier variance as

have been levied against generality relativism. I believe that similar arguments could be

given to defend the positions against these objections. In particular, it may be possible

to advocate a modal formulation of quantifier variance, and to explain this modal

formulation in much the same way as I did for generality relativism.

To do this would involve extending the account I give to extra-mathematical settings,

and this brings with it a whole host of challenges. How can we, for example, give

definitions of quantifiers that purport to range over a kind of physical object? What is

the correct account of conservativeness for such definitions, and over what kinds of

theories should conservativeness be considered? These challenges could—I believe—be

overcome.



Appendix A

Modal logic with backtracking
operators

In this appendix I present a proof system for propositional modal logic with the back-

tracking operator ↓. This is sound with respect to a possible worlds semantics which

is essentially that of Hodes (1984b). I then present an extension of the system to one

of second-order logic with abstraction operators and the (◊E!-I) rule. This is EL (for

expansion logic), which will form the background of abstraction with domain expansion.

A.1 Propositional logic

A.1.1 Language
Let Lprop be a typical language for propositional modal logic; it consists of countably

many propositional variables p, q, r, . . ., connectives ∧ and ¬ and a necessity operator

◻. In addition, it shall have a backtracking sentential operator ↓, which will have the

intended effect of exempting what follows it from the scope of the innermost modal

operator from which it is not already exempt (so, for example, p, ◻↓p and ◻◻↓↓p
should all be counted as equivalent). Other sentential connectives ∨,→ and a possibility

operator ◊ can be defined in the usual way.

A.1.2 Model theory
Themodel theory is essentially that of Hodes (1984b), with the main differences being:

(a) Hodes puts forward a logic which is an extension of propositional S5, so that the

accessibility relation is an equivalence, whereas the only restriction on the equivalence

relation here is that it is serial. (b) Hodes only defines satisfaction for a certain class of

sentences, whereas this model theory places no such restriction.

Amodel is a tripleM= ⟨W , R, a⟩, whereW is a set (of possible worlds), R ⊆W×W
is the accessibility relation, and a is an assignment function which assigns to each

propositional variable p at a world w ∈W a truth value a(w , p) ∈ {T , F}.
Only one restraint will be placed on the accessibility relation for now, and that is

that it is serial. So, for any w ∈W there is a w′ ∈W such that wRw′.
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Then, a satisfaction relation is defined, not for eachworld, but for each finite sequence

of worlds of the appropriate type (which I shall call world sequences). Define:

(A.1) WSM = {⟨w1 , . . . ,wk⟩ ∶ k ≥ 1,∀i ≤ k,w i ∈W and ∀i < k,w iRw i+1}

As a result of seriality, for every world sequence there will be a world sequence extending

it (and so there are world sequences of arbitrary length).

Some terminology for members of WSM will be useful. I shall write w⃗ for an

arbitrary member of WSM. Where w⃗ = ⟨w1 , . . . ,wk⟩, then:

w⃗ ,w′ = ⟨w1 , . . . ,wk ,w′⟩

w⃗− = {
⟨w1 , . . . ,wk−1⟩, k > 1
⟨w1⟩, k = 1

t(w⃗) = wk

l(w⃗) = k

Now, satisfaction of sentences at world sequences of WSM is defined as follows:

For propositional variables:

M, w⃗ ⊧ p iff a(t(w⃗), p) = T

For propositional connectives:

M, w⃗ ⊧ ¬ϕ iff M, w⃗ ⊭ ϕ
M, w⃗ ⊧ ϕ ∧ ψ iff M, w⃗ ⊧ ϕ andM, w⃗ ⊧ ψ

For modal operators (including ↓):

M, w⃗ ⊧ ◻ϕ iff for all w′
s.t. t(w⃗)Rw′

, M, w⃗ ,w′ ⊧ ϕ
M, w⃗ ⊧ ↓ϕ iff M, w⃗− ⊧ ϕ

A consequence relation can then be defined:

Definition A.1. Where Γ is a set of sentences in L, and ϕ a sentence of L, then Γ ⊧ ϕ
iff:

For allM and w ∈WM, ifM, ⟨w⟩ ⊧ ψ for each ψ ∈ Γ, thenM, ⟨w⟩ ⊧ ϕ.

A.1.3 Proof theory
I this section I shall describe a natural deduction system for the logic. This will consist of

an introduction and elimination rule for each connective and operator, and a definition

of the notion of a deduction.

An important feature will be that deductions and inference rules will operate on

labelled sentences. A labelled sentence is a pair ϕ; s⃗, where ϕ is a sentence of L, and s⃗
is a (possibly empty) finite sequence of natural numbers. Where the label is empty, I
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shall write ϕ ;−. The same terminology as for world sequences will be used, with the

exception that for labels, where s⃗ = ⟨n1 , . . . , nk⟩ I shall write:

s⃗− = {
⟨n1 , . . . , nk−1⟩, k > 0
⟨⟩, k = 0

The rules are as follows:

ϕ ; s⃗ ψ ; s⃗
(∧-I)

ϕ ∧ ψ ; s⃗
ϕ ∧ ψ ; s⃗

(∧-E1) ϕ ; s⃗
ϕ ∧ ψ ; s⃗

(∧-E2) ψ ; s⃗

[ϕ ; s⃗]
⋮

q ∧ ¬q ; t⃗
(¬-I)

¬ϕ ; s⃗

[¬ϕ ; s⃗]
⋮

q ∧ ¬q ; t⃗
(¬-E)

ϕ ; s⃗

ϕ ; s⃗
(◻-I)

◻ϕ ; s⃗−
◻ϕ ; s⃗

(◻-E)
ϕ ; s⃗, n

(with a restriction on the (◻-I) rule that ϕ ; s⃗ may only depend on assumptions with

labels t⃗ such that s⃗ properly extends t⃗.)

ϕ ; s⃗
(↓-I)

↓ϕ ; s⃗, n
↓ϕ ; s⃗

(↓-E)
ϕ ; s⃗−

With these rules, rules for the defined connectives and operators can be deduced.

In particular, rules for ◊ will be:

◊ϕ ; s⃗

[ϕ ; s⃗, n]
⋮

ψ ; t⃗
(◊-E)

ψ ; t⃗
ϕ ; s⃗, n

(◊-I)
◊ϕ ; s⃗

(with no restriction on the introduction rule, and a restriction on the elimination rule

that the label s⃗, n is not already in use).

Since deductions in the system will involve discharging assumptions and restrictions

on which assumptions are allowed, the notion of a deduction rule corresponding to each
inference rule—which will specify how assumptions are to be discharged—is needed (cf.

Prawitz, 1965). Deduction rules are n-tuples of the form ⟨⟨Γ1 , θ1 ; s⃗1⟩, . . . , ⟨Γk , θk ; s⃗k⟩⟩,
which say that when θ1 ; s⃗1 , . . . θk−1 ; s⃗k−1 have been derived using undischarged assump-

tions Γ1 . . . Γk−1 respectively, then ϕk ; s⃗k can be derived with undischarged assump-

tions Γk . For example, the deduction rule corresponding to (¬-I) will be ⟨⟨Γ, p ∧
¬p ; t⃗⟩, ⟨Γ/{ϕ},¬ϕ ; s⃗⟩⟩.

Two notions of proof-theoretic consequence can then be defined—one for labelled

sentences, and one for unlabelled sentences (which is the one of primary importance):
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DefinitionA.2. Let ∆ be a set of labelled sentences ofLprop, and ϕ ; s⃗ a labelled sentence
of L. Then ∆ ⊢ ϕ ; s⃗ iff there is some sequence of ordered pairs:

⟨⟨∆1 , θ1 ; t⃗1⟩, . . . , ⟨∆n , θ ; t⃗n⟩⟩

such that:

• ∆n = ∆ and θn ; t⃗n is ϕ ; s⃗

• For i ≤ n, either:

– θ i ; t⃗ i ∈ ∆ i , or

– There are j, k < i such that ⟨⟨∆ j , θ j ; t⃗ j⟩, ⟨∆k , θk ; t⃗k⟩, ⟨∆ i , θ i ; t⃗ i⟩⟩ is an in-

stance of one of the deduction rules corresponding to the inference rules.

Definition A.3. Where Γ is a set of (unlabelled) sentences of L, and ϕ a sentence of

L, then Γ ⊢ ϕ iff Γ∗ ⊢ ϕ ;−, where Γ∗ is the set of labelled sentences resulting from

replacing each ψ ∈ Γ by ψ ;− (i.e. ψ together with an empty label).

A.1.4 Soundness
In this section I shall prove the soundness of ⊢ with respect to ⊧. That is, that for any

set of sentences Γ and sentence ϕ, if Γ ⊢ ϕ then Γ ⊧ ϕ.
This will go by way of defining a model-theoretic consequence relation for labelled

sentences, analogous to the corresponding proof-theoretic consequence relation. Before

defining this, I shall need to define a certain type of homomorphism from labels to

(possibly empty) world sequences.

Definition A.4. A function f ∶ N<ω → WSM ∪ {⟨⟩} is a homomorphism iff, for all

s⃗, t⃗ ∈ Nω :

• s⃗ properly extends t⃗⇔ f (s⃗) properly extends f (t⃗)

• l( f (s⃗)) = l(s⃗).

A few important consequences of this definition are:

1. For any model, there will be at least one such homomorphism.

2. For any f , s⃗ and n, f (s⃗, n) = f (s⃗),w′ for some w′ such that t( f (s⃗))Rw′.

3. If l(s⃗) > 0 then (w , f (s⃗))− = (w , f (s⃗−)).

Proof. 1. Since models are serial, there is an infinite sequence of worlds ⟨w1 ,w2 , . . .⟩

such that w iRw i+1 for all i ∈ N. Now, simply define f (s⃗) = ⟨w1 , . . . ,w l(s⃗)⟩. It is simple

to check that this satisfies the required properties.

2. l( f (s⃗, n)) = l( f (s⃗)) + 1 and f (s⃗, n) extends f (s⃗) since s⃗, n extends s⃗. So, f (s⃗, n) =
f (s⃗),w for some w. The accessibility requirement follows since f (s⃗, n) ∈WSM.

3. Suppose l(s⃗) > 0, so s⃗ = ⟨n1 , . . . , nk⟩, k ≥ 1. Since l( f (s⃗)) = l(s⃗), f (s⃗) = ⟨w1 , . . . ,wk⟩.

So w , f (s⃗) = ⟨w ,w1 , . . . ,wk⟩. So (w , f (s⃗))− = ⟨w ,w1 , . . . ,wk−1⟩ = (w , f (s⃗−))
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We now define a model-theoretic consequence relation for labelled sentences.

Definition A.5. Let ∆ be a set of labelled sentences, and ϕ ; s⃗ a labelled sentence. Then

∆ ⊧ ϕ ; s⃗ iff for everyM, w ∈WM and homomorphism f ∶ N<ω →WSM,

if w , f (t⃗) ⊧ ψ for each ψ ; t⃗ ∈ ∆ then w , f (s⃗) ⊧ ϕ

I shall write w , f ⊧ ∆ from now on to mean that, for all (ψ ; s⃗) ∈ ∆, w , f (s⃗) ⊧ ψ.
Now, a soundness theorem can be proved for labelled formulas:

Proposition A.1. Let ∆ be a set of labelled formulas and ϕ ; s⃗ a labelled formula. Then

If ∆ ⊢ ϕ ; s⃗ then ∆ ⊧ ϕ ; s⃗

Proof. First, it needs to be checked that each deduction rule is sound. That is, when

⟨⟨Γ1 , θ1 ; s⃗1⟩, . . . , ⟨Γk , θk ; s⃗k⟩⟩ is an instance of a deduction rule, then if Γi ⊧ θ i ; s⃗ i for
each i < k, then Γk ⊧ θk ; s⃗k .

That this is so for the propositional connectives is standard (since the labels do not

really play a role). It can be proved for the rules for operators as follows:

(↓-I):The deduction rule for (↓-I) is ⟨⟨Γ, ϕ ; s⃗⟩, ⟨Γ, ↓ϕ, ; s⃗, n⟩⟩. Suppose that Γ ⊧ ϕ ; s⃗, so
that for any w , f , if w , f ⊧ Γ, then w , f (s⃗) ⊧ ϕ. Now, consider w , f such that w , f ⊧ Γ,

and we wish to show that w , f (s⃗, n) ⊧ ↓ϕ. Since f is a homomorphism, f (s⃗, n) =
f (s⃗),w′ for some w′ such that t( f (s⃗))Rw′. So, w , f (s⃗, n) ⊧ ↓ϕ iff w , f (s⃗),w′ ⊧ ↓ϕ iff

w , f (s⃗) ⊧ ϕ, which we already have.

(↓-E): The deduction rule is ⟨⟨Γ, ↓ϕ ; s⃗⟩, ⟨Γ, ϕ, ; s⃗−⟩⟩. There are two cases to consider:

Firstly, when s⃗ is empty, so that s⃗− is also empty, and secondly when s⃗ is not empty.

Consider the first case. Suppose that Γ ⊧ ↓ϕ ;− so that for any w , f , if w , f ⊧ Γ then

⟨w⟩ ⊧ ↓ϕ (since s⃗ is empty, f can be safely ignored). Now consider some w , f such that

w , f ⊧ Γ and so ⟨w⟩ ⊧ ↓ϕ. So, by the definition of ↓, ⟨w⟩ ⊧ ϕ, which is as required.

Suppose that s⃗ is not empty. Suppose Γ ⊧ ↓ϕ ; s⃗ so that for all w , f , if w , f ⊧ Γ then

w , f (s⃗) ⊧ ↓ϕ. Now consider w , f such that w , f ⊧ Γ, so w , f (s⃗) ⊧ ↓ϕ. By definition of

↓, (w , f (s⃗))− ⊧ ϕ. But, since l(s⃗) > 0, (w , f (s⃗))− = w , f (s⃗−). So w , f (s⃗−) ⊧ ϕ which

is what is required.

(◻-E):The deduction rule is ⟨⟨Γ,◻ϕ ; s⃗⟩, ⟨Γ, ϕ ; s⃗, n⟩⟩. Suppose that Γ ⊧ ◻ϕ ; s⃗, so that

for all w , f , if w , f ⊧ Γ then w , f (s⃗) ⊧ ◻ϕ. Now consider w , f such that w , f ⊧ Γ, and

we wish to show that w , f (s⃗, n) ⊧ ϕ. By the properties of f , f (s⃗, n) = f (s⃗),w′ for some

w′ such that wRw′. But, since w , f (s⃗) ⊧ ◻ϕ and by the definition of ◻, for any w′ such

that wRw′, w , f (s⃗),w′ ⊧ ϕ. So, w , f (s⃗, n) ⊧ ϕ as required.

(◻-I):The deduction rule is ⟨⟨Γ, ϕ ; s⃗⟩, ⟨Γ,◻ϕ ; s⃗−⟩⟩ with the restriction that if ψ ; t⃗ ∈ Γ
then s⃗ properly extends t⃗. Suppose that Γ ⊧ ◻ϕ ; s⃗ for such a Γ. So, for any w , f , if
w , f ⊧ Γ then w , f (s⃗) ⊧ ϕ.

Now, consider w , f such that w , f ⊧ Γ. We wish to show that w , f (s⃗−) ⊧ ◻ϕ.
Suppose not, then for some w′ such that t( f (s⃗−))Rw′, w , f (s⃗−),w′ ⊭ ϕ.

Now, it is clear that a homomorphism f ′ can be defined such that:

• f ′(t⃗) = f (t⃗) for all t⃗ which s⃗ properly extends
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• f ′(s⃗) = f (t⃗−),w′

and allowed to take any other permitted value elsewhere.

So, w , f ′(s⃗) ⊭ ϕ. So, w , f ′ ⊭ Γ. So, there is ψ ; t⃗ ∈ Γ such that w , f ′(t⃗) ⊧ ¬ψ. Now,
by the restriction on the deduction rule, s⃗ properly extends t⃗. But then, f ′(t⃗) = f (t⃗),
but w , f (t⃗) ⊧ ψ.

Now, since each deduction rule is sound, it is simple to show the result by induction

on lengths of deductions.

Finally, a soundness result can be given for the kind of entailments which are of

principal importance—those between unlabelled sentences (since entailments between

labelled sentences is supposed to be purely instrumental):

Proposition A.2. Let Γ be a set of sentences of Lprop and ϕ a sentence of Lprop. Then:

If Γ ⊢ ϕ then Γ ⊧ ϕ

Proof. All that is needed for the proof is that if Γ∗ ⊧ ϕ ;−, then Γ ⊧ ϕ (where Γ∗ is as in

definition A.3). Suppose that Γ∗ ⊧ ϕ ;−. Consider some w ∈WM such that ⟨w⟩ ⊧ ψ for

each ψ ∈ Γ. Then clearly w , f (s⃗) ⊧ ψ for each ψ, s⃗ ∈ Γ∗, since s⃗, and so f (s⃗) is empty in

each case. So w , f (⟨⟩) ⊧ ϕ. I.e. ⟨w⟩ ⊧ ϕ as required.

The soundness result then follows easily.

A.1.5 Strengthening the logic
In developing a logic suitable for the background theory of abstraction without absolute

generality, the logic will need to be strengthened to at least s4 (if not stronger). With

the presence of the ↓ operator in the language, however, this is not simple. For example,

consider the (4) axiom scheme:

(4) ◻ϕ → ◻◻ϕ

Where ϕ is ↓ψ for some formula ψ, this has as an instance:

◻↓ϕ → ◻◻↓ϕ

In the presence of such an axiom, it is simple to derive ψ → ◻ψ, resulting in a modal

collapse.

Similarly, the (4) axiom could be added by strengthening the (◻-I) rule, so that the

premise may depend on assumptions, as long as they are of the form ◻ψ. This has the

same undesirable result.

The unrestricted (T) axiom (or a corresponding rule) could also cause problems. If

the necessitation of the (T) axiom is also added (as would be expected), then it would

have the following instance:

◻(◻↓ϕ → ↓ϕ)

which is equivalent to ◻(ϕ → ↓ϕ). This can be seen to entail ◊ϕ → ϕ, again resulting in

a modal collapse.
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In order to add such axioms or strengthened rules, restrictions must be added on

the kind of formulas which define instances.1

Define the degree of a sentence recursively as follows:2

• For atomic p, deg(p) = 0

• deg(ϕ ∧ ψ) = max(deg(ϕ), deg(ψ))

• deg(¬ϕ) = deg(ϕ)

• deg(◻ϕ) = deg(ϕ) � 1

• deg(↓ϕ) = deg(ϕ) + 1

where n�m = max(n−m, 0). Intuitively speaking, the degree of a formula is the depth

of backtracking operators which are not cancelled out by a modal operator. So, for

example, deg(◻↓↓p) = 1, since it features two scoping operators, only one of which is

paired with a modal operator.

The following lemma will then be useful:

Lemma A.3. Let ϕ be any sentence. Then, for any model M and world sequence
⟨wm , . . . ,w0⟩ (note the reversed order), with m ≥ deg(ϕ),

⟨wm , . . . ,w0⟩ ⊧ ϕ iff ⟨wdeg(ϕ) , . . . ,w0⟩ ⊧ ϕ.

Proof. This can be proved by induction on the complexity of sentences.

The base case, where ϕ is an atomic sentence p, is simple. Then deg ϕ = 0, and

⟨wm , . . . ,w0⟩ ⊧ p iff ⟨w0⟩ ⊧ p is immediate, as required.

Suppose ϕ is ψ ∧ θ, and deg(ϕ ∧ ψ) = n. Without loss of generality, suppose that

deg(ψ) = n and deg(θ) = k ≤ n. Then,

⟨wm , . . . ,w0⟩ ⊧ ψ ∧ θ
iff ⟨wm , . . . ,w0⟩ ⊧ ψ and ⟨wm , . . . ,w0⟩ ⊧ θ
iff ⟨wn , . . . ,w0⟩ ⊧ ψ and ⟨wk , . . . ,w0⟩ ⊧ θ (by the inductive hypothesis)

iff ⟨wn , . . . ,w0⟩ ⊧ ψ and ⟨wn , . . . ,w0⟩ ⊧ θ (by the inductive hypothesis)

iff ⟨wn , . . . ,w0⟩ ⊧ ψ ∧ θ

as required. The proof for negation is similar.

Suppose that ϕ is ◻ψ. There are two cases: where deg(ψ) = deg(◻ψ) = 0 and where

1Another approach to restricting these axioms is given by Parsons (1983b, Appendix 1.2) for a slightly

different language. Parsons’ approach is not however readily applicable to the language featuring ↓. His

language features scoping operators which, instead of exempting a subformula from some fixed number of

modal operators, signify that some subformula falls under the scope of some fixed number of modal operators.

2This is the same definition as Hodes (1984b, p. 426) gives.
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deg(ϕ) > 0. Suppose that deg(ψ) = deg(◻ψ) = 0. Then,

⟨wm , . . . ,w0⟩ ⊧ ◻ψ
iff for all w′

s.t. w0Rw′
, ⟨wm , . . . ,w0 ,w′⟩ ⊧ ψ

iff for all w′
s.t. w0Rw′

, ⟨w′⟩ ⊧ ψ (by the inductive hypothesis)

iff for all w′
s.t. w0Rw′

, ⟨w0 ,w′⟩ ⊧ ψ (by the inductive hypothesis)

iff ⟨w0⟩ ⊧ ◻ψ

as required.

Suppose that deg(ψ) = n > 0. Then,

⟨wm , . . . ,w0⟩ ⊧ ◻ψ
iff for all w′

s.t. w0Rw′
, ⟨wm , . . . ,w0 ,w′⟩ ⊧ ψ

iff for all w′
s.t. w0Rw′

, ⟨wn−1 , . . . ,w0 ,w′⟩ ⊧ ψ (by the inductive hypothesis)

iff ⟨wn−1 , . . . ,w0⟩ ⊧ ◻ψ

as required.

Suppose that ϕ is ↓ψ and deg(ψ) = n. Then,

⟨wm , . . . ,w0⟩ ⊧ ↓ψ
iff ⟨wm , . . . ,w1⟩ ⊧ ψ
iff ⟨wn+1 , . . . ,w1⟩ ⊧ ψ (by the inductive hypothesis)

iff ⟨wn+1 , . . . ,w0⟩ ⊧ ↓ψ

as required.

Now, the rules for ◻ can be strengthened so that restricted versions of (T), (4) and

(G) are provable. We add the following rules for (4) and (T):

◻ϕ ; s⃗
(◻-R)

◻ϕ ; s⃗, n
◻ϕ ; s⃗

(◻-E′)
ϕ ; s⃗

both with the restriction that deg(ϕ) = 0. In the presence of both these rules, (◻-

E) becomes redundant. ((◻-R) stands for necessity reiteration, after a similar rule in

Siemens (1977)).

There will be corresponding derived rules for possibility rather than necessity. These

are:

◊ϕ ; s⃗
(◊-R)

◊ϕ ; s⃗−
ϕ ; s⃗

(◊-I′)
◊ϕ ; s⃗

It is simple to check that these are derivable in the presence of the corresponding rules

for necessity.

That these are sound in transitive and reflexive frames can then be proved using the

lemma:
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Proposition A.4. LetM be a model. If the accessibility relation R is transitive, then
(◻-R) is sound. If R is reflexive then (◻-E′) is sound.

Proof. (◻-R): Suppose that w , f (s⃗) ⊧ ◻ϕ, and we aim to show that w , f (s⃗, n) ⊧ ◻ϕ. I.e.
that for anyw′ andw′′ such that t( f (s⃗))Rw′ andw′Rw′′,w , f (s⃗),w′ ,w′′ ⊧ ϕ. But, since
deg(ϕ) = 0, and by lemma A.3, this is equivalent to w′′ ⊧ ϕ, and again by the lemma,

this is equivalent to w , f (s⃗),w′′ ⊧ ϕ. By transitivity, t( f (s⃗))Rw′′, so w , f (s⃗),w′′ ⊧ ϕ
by the definition of ◻, as required.

The proof for (T) is similar.

So get the logic s4.2, either the axiom:

(G) ◊◻ϕ → ◻◊ϕ

or the corresponding rule:

◊◻ϕ ; s⃗
(G)

◻◊ϕ ; s⃗

can be added, again with the restriction that deg(ϕ) = 0.3 It is again simple to check

that this is sound for directed frames.

A.2 Expansion Logic

The aim of this section will be to develop the propositional logic of the previous sections

into a logicEL, for expansion logic. This will be the logic which will serve as a background

logic for introducing modal abstraction principles.

Let L2 be a second-order language whose propositional part (i.e. the connectives

and modal operators) is that of Lprop. Add object variables x , y, z, . . ., concept variables
F ,G ,H, . . ., quantifiers and an identity symbol. The language can also feature non-

logical constants of various kinds. In particular, it may feature one or more abstraction
operators § such that, where T is a monadic concept term—i.e. a monadic concept

variable, a predicate or, where the language features them, a lambda term—§T is an

object term.

An additional formation rule which the language will feature is that ↓may attach to

object terms as well as formulas. So, where t is an object term, ↓t is also an object term.

The intended affect is for the (possibly non-rigid) term to be exempted from the scope

of the innermost modal operator for the purposes of evaluating reference.

A.2.1 ModelTheory
A model is a 4-tupleM = ⟨W , R,D, δ, I⟩ where W and R are as in the propositional

case. D is a domain, and δ ∶W → P(D) such that⋃w∈W δ(w) = D. Let D2 = { f ∶W →
P(D) ∶ f (w) ⊆ δ(w)}. D2 will be the domain of second-order variables.4 Finally, I is

3The rule may be formulated in various other ways, avoiding the appearance of two nested modalities in

the premise and conclusion. But nothing is lost in having such nested modalities, and the resulting rule is

much simpler.

4This particular definition will mean that the semantics will validate that for any term t, ∀F[Ft → ∃y(y =
t)]. I.e. any atomic sentence containing t formed from a concept variable will ensure that the referent of t
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a mapping from non-logical constants to objects of the appropriate type. For example,

in the case of individual constants c, I(c) ∈ D, for monadic predicates P, I(P) ∈ D2,

and—of particular interest—in the case of abstraction operators, I(§) is a function
I(§) ∶W × D2 → D.

For the purposes of EL, models will also be restricted to those in which the accessi-

bility relation is reflexive, transitive and directed, and where the domain is increasing, in

the sense that ifwRw′, then δ(w) ⊆ δ(w′). It will be convenient to treat the accessibility

as an ordering relation, and so I will write ≤ in place of R from now on.

As in the propositional case, satisfaction will be defined for world sequences. First,

the interpretation must be extended to all terms. Let a be an assignment of appropriate

items to first- and second-order variables. Then, a valuation of each object term and

concept term at a world sequence ⟦⋅⟧w⃗ ,a can be defined as follows:

• For object variables, ⟦x⟧w⃗ ,a = a(x),

• For constants, ⟦c⟧w⃗ ,a = I(c),

• For concept variables, ⟦F⟧w⃗ ,a = a(F),

• For predicates, ⟦P⟧w⃗ ,a = I(P),

• Where t is an object term, ⟦↓t⟧w⃗ ,a = ⟦t⟧w⃗−,a ,

• Where § is an abstraction operator andT a concept term, ⟦§T⟧w⃗ ,a = I(§)(t(w⃗), ⟦T⟧w⃗ ,a).

(Similar valuations can be given for other non-logical constants.)

Now, satisfaction at a world sequence relative to a variable assignment can be defined.

The clauses for connectives and modal operators are as for the propositional case.

The additional clauses which are needed are:

w⃗ , a ⊧ s = t iff ⟦s⟧w⃗ ,a = ⟦t⟧w⃗ ,a ∈ δ(w′) for some w′
s.t. t(w⃗)Rw′

w⃗ , a ⊧ Tt iff ⟦t⟧w⃗ ,a ∈ ⟦T⟧w⃗ ,a(t(w⃗)) and ⟦t⟧w⃗ ,a ∈ δ(w′) for some w′
s.t. t(w⃗)Rw′

w⃗ , a ⊧ ∀xϕ iff w⃗ , axd ⊧ ϕ for every d ∈ δ(t(w⃗)

w⃗ , a ⊧ ∀Fϕ iff w⃗ , aFf ⊧ ϕ for every f ∈ D2

Where axd is the assignment that differs from a only in assigning d to x (and similarly

for second-order variables).

Semantic consequence is then defined in just the same way as before.

A.2.2 Proof theory
The proof theory is very similar to the propositional case, but with the addition of the

following rules and axioms:

• Suitable rules for quantifiers (free-logical for the first order quantifiers, and non-

free for the second-order quantifiers)

will fall within the current range of the quantifiers. This partly goes against the rejection of a negative free

logic. However, such a result will not be derivable in the proof theory, and the semantics could be modified to

remove the validity. However, this semantics is simpler, and will do for the purpose to which it is being put.

Alternatively, D2 could be given as the set of all functions f ∶W → P(D).
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• An elimination rule for identity:

ϕ(s) ; s⃗ s = t ; s⃗
ϕ(t) ; s⃗

• A strong comprehension for concepts:

∃F◻∀x(Fx ↔ ϕ)

• The converse Barcan Formula:

◻∀xϕ → ∀x◻ϕ

• The (◊E!-I) rule:

ϕ(t) ϕ atomic
(◊E!-I)

◊∃x(x = ↓t)

• The following rules and axiom governing ↓ as applied to terms:

↓s = ↓t ; s⃗
(↓ =-E)

s = t ; s⃗−
s = t ; s⃗

(↓ =-I)
↓s = ↓t ; s⃗, n

(RV) x = ↓x (where x is a variable)

One derived axiom which is very useful in appendix B is the following:

(NNE) ◻(E!x → ◻E!x)

which follows fairly immediately from CBF.

Soundness is then relatively simple to prove. The non-standard cases are for (◊E!-I)
and the rules for ↓ applied to terms. That (◊E!-I) is sound is a simple consequence of

the unusual clauses for atomic formulas. That the rules of ↓ applied to terms are sound

is a simple consequence of the definition of ⟦↓t⟧, and that ⟦x⟧ does not depend on the

world at which it is evaluated (so variables are rigid).
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Appendix B

Formal proofs

Proposition 7.1:
Assume y = εF. We aim to prove x ∈ y↔ (Fx ∧ E!x). The right to left direction follows

almost immediately:

1) Fx ∧ E!x ;− (Assumption )

2) y = εF ;− (Assumption )

3) ∃G∃z(y = εG ∧ x = z ∧ Fz) ;− (From 1,2 and ∃-I )

4) ◊∃G∃z(y = εG ∧ x = z ∧ Fz) ;− (T )

5) x ∈ y ;− (def. )

For the left to right direction:

6) x ∈ y ;− (Assumption )

7) ◊∃G∃z(y = εG ∧ x = z ∧ Fz) ;− (Def. )

8) y = εG ∧Gx ∧ E!x ; 0 (Assumption for ◊-E and ∃-E )

9) εG = ↓εF ; 0 (Both are y, from 8, main assumption )

10) ∀z(Gz↔ ↓(Fz ∧ E!x)) ; 0 (BLV↓ )

11) ↓(Fx ∧ E!x) ; 0 (From 8, 10 by ∀-E and↔-E )

12) Fx ∧ E!x ;− (11, (↓-E))

Proposition 7.3:
We need to show ◻∀x(x ∈ y↔ ↓x ∈ y). For the left to right direction:

1) E!x ; 0 (Assumption )

2) x ∈ y ; 0 (Assumption )

3) ◊∃F∃z(y = εF ∧ Fx ∧ x = z) ; 0 (2, Definition )

4) ◊∃F∃z(y = εF ∧ Fx ∧ x = z) ;− (◊-R )

5) x ∈ y ;− (4, Definition )

6) ↓(x ∈ y) ; 0 (5, ↓-I. )

7) x ∈ y → ↓(x ∈ y) ; 0 (2,6,→-I, discharging 2 )

Then, for the right to left direction:

175
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8) ↓(x ∈ y) ; 0 (Assumption )

9) x ∈ y ;− (8, ↓-E )

10) ◊∃F∃z(y = εF ∧ Fx ∧ x = z) ;− (9, definition )

11) y = εF ∧ Fx ∧ E!x ; 1 (Assumption for ◊-E and ∃-E )

12) ◻∀x(Gx ↔ ↓(E!x ∧ Fx)) ; 1 (Assumption, from comprehension )

13) ∀x(Gx ↔ ↓(E!x ∧ Fx)) ; 10 (12, ◻-E )

14) εG = ↓εF ; 10 (13, BLV↓ )

15) y = ↓εF ; 10 (11, ↓-I, RV )

16) y = εG ; 10 (14, 15, =-E )

17) E!x ; 10 (11, NNE )

18) ↓(E!x ∧ Fx) ; 10 (11, ↓-I )

19) Gx ; 10 (13,17,18, ∀-E and↔-E )

20) ∃F∃z(y = εF ∧ Fx ∧ x = z) ; 10 (16,17,19, ∃-I )

21) ◻∃F∃z(y = εF ∧ Fx ∧ x = z) ; 1 (20, ◻-I )

22) ◊◻∃F∃z(y = εF ∧ Fx ∧ x = z) ;− (21, ◊-I. We can now discharge 11 )

23) ◻◊∃F∃z(y = εF ∧ Fx ∧ x = z) ;− (22, G )

24) x ∈ y ; 0 (23, ◻-E, definition )

25) ↓(x ∈ y) → x ∈ y ; 0 (7, 24→-I, discharging 7 )

Finally, we can bring the whole thing together:

26) ◻∀x(x ∈ y↔ ↓x ∈ y) ;− (discharge 1)

Proposition 7.5:
Assume x ∈1 y. Then we want to show that x ∈0 y↔ (E!x ∧ Set0(y)). The left to right

direction is trivial and follows directly from the definition. For the right to left direction,

we assume E!x ∧ Set0(y) and show x ∈0 y:

1) x ∈1 y ;− (Assumption )

2) E!x ;− (Assumption )

3) Set0(y) ;− (Assumption )

4) ∃F(y = εF) ;− (Def. of Set0 )

5) y = εF ;− (Assumption for ∃-E )

6) ◊∃G(y = εG ∧Gx ∧ E!x) ; (Def., from 1 )

7) y = εG ∧Gx ∧ E!x ; 0 (Assumption, for ◊-E and ∃-E )

8) εG = ↓εF ; 0 (Both are y, from 5,7 )

9) ∀z(Gz↔ ↓(Fz ∧ E!z)) ; 0 (BLV↓ )

10) ↓Fx ; 0 (From 7, 9 by ∀-E and↔-E )

11) Fx ∧ y = εF ∧ E!x ;− (From 2,5,10 by ↓-E and ∧-I )

12) ∃F∃z(y = εF ∧ z = x ∧ Fx) ;− (From 11 by ∃-I )

13) x ∈0 y

Assumptions 5 and 7 can then be discharged by ∃-E and ◊-E, and then the final result is

easily assembled by conditional proof, discharging the other assumptions.

Proposition 7.6:
Suppose Set1(x). Then, for the left to right direction, we have the following formal

proof:
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1) ∃F(x = εF) ;− (Assumption. Is definition of Set0(x))
2) x = εF ;− (Assumption for ∃-E)

3) E!y ; 0 (Assumption)

4) y ∈ x ; 0 (Assumption)

5) y ∈ x ;− (By R1-∈)

6) ◊∃G∃z(z = y ∧ x = εG ∧Gy) ;− (Definition of ∈)

7) x = εG ∧ E!y ∧Gy ; 1 (Assumption for ◊-E and ∃-E)

8) εG = ↓εF ; 1 (2,7, =-E)

9) ∀y(Gy↔ ↓(Fy ∧ E!y)) ; 1 (BLV↓ )

10) ↓(Fy ∧ E!y) ; 1 (7,9, ∀-E,→-E)

11) E!y ;− (10, ↓-E)

12) ↓E!y ; 0 (↓-I)

13) y ∈ x → ↓E!y ; 0 (→-I, discharge 4)

14) ◻∀y(y ∈ x → ↓E!y) ;− (∀-I, ◻-I, discharge 3)

15) ◻∀y(y ∈ x → ↓E!y) ;− (Discharge 2,7 by ◊-E and ∃-E)

For the right to left direction, we have the following formal proof:

1) ◻∀y(y ∈ x → ↓E!y) ;− (Assumption )

2) ◊∃G(x = εG) ;− (Definition of Set1(x) )
3) x = εG ; 0 (Assumption for ∃-E and ◊-E )

4) ∀y(y ∈ x → ↓E!y) ; 0 (1, ◻-E )

5) ◻∀y(Fy↔ y ∈ x) ;− (Assumption, from comprehension )

6) E!y ; 0 (Assumption )

7) Gy ; 0 (Assumption )

8) y ∈ x ; 0 (3, 7 and corollary 7.2)

9) ↓E!y ; 0 (From 4,6,8 )

10) E!y ;− (↓-E )

11) y ∈ x ;− (8, R1-∈ )

12) Fy ; 0 (From 5,10,11 )

13) Gy → ↓(E!y ∧ Fy) ; 0 (From 7,10,12, discharge 7 )

14) ↓(E!y ∧ Fy) ; 0 (Assumption )

15) E!y ∧ Fy ;− (↓-E )

16) y ∈ x ;− (From 5, 15 )

17) y ∈ x ; 0 (16, R1-∈ )

18) Gy ; 0 (corollary 7.2)

19) ∀y(Gy↔ ↓(E!y ∧ Fy)) ; 0 (13, 14, 18, Discharge 6)

20) εF = εG ; 0 (BLV↓ )

21) x = εG ;−

22) ∃F(x = εF) ;−

23) now discharge everything
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Proposition 7.7:
Assume that ϕ is such that ◊Rx

0 -ϕ and ◻Rx
1 -ϕ. Now, let F be such that ◻∀x(Fx ↔ ϕ)

by comprehension, and we have ◊∃y(y = εF) by (◊E!-I). Start by assuming y = εF ; 0
and we show ◻(y = εF) ; 0.

First, we set up some basics:

1) ◊◻∀x(ϕ(x) ↔ ↓(E!x ∧ ϕ(x))) ;− (by ◊Rx
0 - )

2) ◻∀x(ϕ(x) ↔ ↓(E!x ∧ ϕ(x))) ; 0 (Assumption for ◊-E )

3) ◻∀x(Fx ↔ ϕ(x)) ;− (Assumption, by comprehension )

4) ◻∀x(Fx ↔ ϕ(x)) ; 0 (◻-R )

5) y = εF ; 0 (Assumption )

Now, we aim to prove ◻(y = εF) ; 0 by means of BLV:

6) E!z ; 00 (Assumption )

7) Fz ; 00 (Assumption )

8) ϕ(z) ; 00 (By 4,6,7 )

9) ↓(ϕ(z) ∧ E!z) ; 00 (By 2,6,8 )

10) ϕ ∧ E!z ; 0 (↓-E )

11) Fz ∧ E!z ; 0 (By 3,10 )

12) Fz → ↓(Fz ∧ E!z) ; 00 (7,11, discharge 7)

13) ↓(Fz ∧ E!z) ; 00 (Assumption )

14) Fz ∧ E!z ; 0 (↓-E )

15) ϕ(z) ∧ E!z ; 0 (By 3,14 )

16) E!z ; 00 (NNE )

17) ↓(ϕ ∧ E!z) ; 00 (15, ↓-I )

18) ϕ(z) ; 00 (By 2,16,17 )

19) Fz ; 00 (By 4,16,18 )

20) ↓(Fz ∧ E!z) → Fz ; 00 (13,19, discharge 13 )

21) ∀z(Fz↔ ↓(Fz ∧ E!z)) ; 00 (6,12,20, discharge 6 )

22) εF = ↓εF ; 00 (BLV↓ )

23) y = εF ; 00 (5,22,↓-I )

24) ◻(y = εF) ; 0 (◻-I )

Now, we continue the proof to arrive at ◻∀x↓(x ∈ y↔ ϕ) ;−:

25) E!x ; 1 (Assumption )

26) ◻◊E!x ;− (From 25, by NNE and G )

27) x ∈ y ;− (Assumption )

28) x ∈ y ; 0 (By Rx
1 - ∈ )

29) ◊E!x ; 0 (By 26, ◻-E )

30) E!x ; 01 (Assumption, for ◊-E )

31) x ∈ y ; 01 (By Rx
1 - ∈ )
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32) y = εF ; 01 (By 24 )

33) Fx ; 01 (By 30,31,32 and corollary 7.2 )

34) ϕ(x) ; 01 (By 4,30,33 )

35) ϕ(x) ∧ E!x ; 0 (By 2,30,34. We can now discharge 30 )

36) ϕ(x) ∧ E!x ;− (By 2)

37) x ∈ y → ϕ(x) ;− (27, 36, discharge 27 )

38) ϕ(x) ;− (Assumption )

39) E!x ;− (By Rx
0 -ϕ )

40) ϕ(x) ; 0 (By Rx
0 -ϕ )

41) E!x ; 0 (By Rx
0 -ϕ )

42) Fx ; 0 (By 3,40,41)

43) ∃F(y = εF ∧ E!x ∧ Fx) ; 0 (By 5,41,42 )

44) ◊∃F(y = εF ∧ Fx) ;− (By 43, ◊-I)

45) ϕ → x ∈ y ;− (By 38,43, def., discharging 38 )

The rest of the proof is then simple.

Proposition 7.12:
The aim is to prove that ◻∀x((x ⊆ u)◊ ↔ ↓(x ⊆ u)◊). For the left to right direction:

1) E!x ; 0 (Assumption.)

2) x ⊆◊ y ; 0 (Assumption.)

(we now aim to prove x ⊆◊ y;−, i.e. ◻∀z↓(z ∈ x → z ∈ y);−)

3) E!z ; 1 (Assumption.)

4) z ∈ x ;− (Assumption.)

5) z ∈ x ; 1 (By R1- ∈)

6) ◻(z ∈ x ∧ E!z) ; 1 (NNE and R1- ∈)

7) ◊◻(z ∈ x ∧ E!z) ;− (◊-I)

8) ◻◊(z ∈ x ∧ E!z) ;− (G)

9) ◊(z ∈ x ∧ E!z) ; 0 (◻-E)

10) z ∈ x ∧ E!z ; 00 (Assumption for ◊-E)

11) z ∈ x ; 0 (By R1- ∈)

12) z ∈ y ; 0 (By 2)

13) z ∈ y ;− (By R1- ∈)

Now, assumptions can be discharged via ◻-I and ∀-I to get:

14) ◻∀z↓(z ∈ x → z ∈ y) ;− (Discharging 3,4)

15) ◻∀x(x ⊆◊ y → ↓x ⊆◊ y) ;− (Discharging 1,2)

Finally, 10 can be safely discharged by (◊-E).

For the right to left direction:

1) E!x ; 0 (Assumption.)

2) x ⊆◊ y ;− (Assumption.)

(we now aim to prove x ⊆◊ y; 0, i.e. ◻∀z↓(z ∈ x → z ∈ y); 0)
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3) E!z ; 00 (Assumption.)

4) z ∈ x ; 0 (Assumption.)

(we can’t use R1- ∈ directly here to get z ∈ x;−, so the next 5 lines do this by going via
the ◊-R rule)

5) z ∈ x ; 00 (By R1- ∈)

6) ◊(z ∈ x ∧ E!z) ; 0 (3,5, ◊-I)

7) ◊(z ∈ x ∧ E!z) ;− (◊-R)

8) z ∈ x ∧ E!z ; 1 (Assumption for ◊-E)

9) z ∈ x ;− (By R1- ∈)

10) z ∈ y ;− (By 2)

11) z ∈ y ; 0 (By R1- ∈)

Now, assumptions can be discharged via ◻-I and ∀-I to get:

12) ◻∀z↓(z ∈ x → z ∈ y) ; 0 (Discharging 3,4)

13) ◻∀x(x ⊆◊ y → ↓x ⊆◊ y) ; 0 (Discharging 1,2)

Finally, 8 can be safely discharged by (◊-E).

Proposition 7.13:
First, we show as a lemma, ◻(∃F(y = εF) → ◻∀x((x ⊆ y)◊ → ↓∃F(x = εF)). This can

be done as follows:

1) ∃F(y = εF) ; 0 (Assumption. )

2) E!x ; 00 (Assumption. )

3) x ⊆◊ y ; 00 (Assumption. )

4) x ⊆◊ y ; 0 (By Rx
1 -x ⊆

◊ y )
5) ◻∀z↓(z ∈ x → z ∈ y) ; 0 (Def. )

we now aim to prove ∃F(x = εF) by proving ◻∀z(z ∈ x → E!z) and using proposition

7.6

6) z ∈ x ; 01 (Assumption. )

7) E!z ; 01 (Assumption. )

8) z ∈ x ; 0 (by Rx
1 - ∈ )

9) z ∈ y ; 0 (by 5)

10) z ∈ y ; 01 (by Rx
1 - ∈ )

11) ◻∀z(z ∈ y → ↓E!z) ; 0 (by proposition 7.6 for y, and 1 )

12) ↓E!z ; 01 (by 10, 11)

13) E!z ; 0 (↓-E )

14) ◻∀z(z ∈ x → ↓E!z) ; 0 (Discharge 6, 7. )

15) ∃F(x = εF) ; 0 (By proposition 7.6 for x)

finally, we discharge assumptions using (→-I) and (◻-I)

16) ◻∀x(x ⊆◊ y → ↓∃F(x = εF)) ; 0 (Discharge 2,3)

17) ◻(∃F(y = εF) → ◻∀x(x ⊆◊ y → ↓∃F(x = εF)) ;− (Discharge 1)
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Now, using the lemma, proposition 7.12 and (∗), we can prove the result. There

are two cases. One where ¬ Set(y), and one where Set(y). A proof for the first case is

omitted; in this case the result is vacuous. The second case can be proved as follows:

1) ◊∃F(y = εF) ;− (Definition of Set(y) )
2) ∃F(y = εF) ; 0 (Assumption for ◊-E and ∃-E )

3) ◻∀x(x ⊆◊ y → ↓E!F(x = εF)) ; 0 (From above lemma )

4) ◊∀FE!↓εF ; 0 (∗ )

5) ∀FE!↓εF ; 00 (Assumption for ◊-E )

we now prove ◻∀x(x ⊆◊ y → ↓E!x); 00

6) E!x ; 000 (Assumption )

7) x ⊆◊ y ; 000 (Assumption )

(the following few lines are to make use of the (4) axiom to shorten the label)

8) ◊(E!x ∧ x ⊆◊ y) ; 00 ((◊-I) )

9) ◊(E!x ∧ x ⊆◊ y) ; 0 ((◊-R) )

10) E!x ∧ x ⊆◊ y ; 01 (Assumption for ◊-E )

11) ∀x(x ⊆◊ y → ↓∃F(x = εF) ; 01 (From 3 and ◻-E )

12) ↓∃F(x = εF) ; 01 (∀-E and→-E )

13) ∃F(x = εF) ; 0 (↓-E )

14) x = εG ; 0 (Assumption for ∃-E )

15) x = ↓εG ; 00 (↓-I )

16) E!x ; 00 (By 5)

Now, assumptions can be discharged by ◻-I and→-I:

17) ◻∀x(x ⊆◊ y → ↓E!x) ; 00 (Discharge 6,7)

18) ◊◻∀x(x ⊆◊ y → ↓E!x) ; 0 (◊-I)

19) ◊◻∀x(x ⊆◊ y → ↓E!x) ;− (◊-R)

Finally, assumptions 2, 5, 10 and 14 can be discharged by ◊-E and ∃-E
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