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Abstract

With the rapid development of wireless networks, more and more online services significantly

raise mobile data traffic demands, which causes a massive challenge for wireless network

operators. In addition to deploying more communication facilities to improve the whole

wireless network capacity, real-time observation and prediction of the mobile data traffic

to achieve a dynamic balance of network load can further improve the efficiency of the

services from those operators and reduce energy waste. In general, the accuracy of mobile

data traffic prediction directly impacts the entire network system’s Quality of Service (QoS)

and Operating Expenditure (OPEX). Therefore, mobile network traffic prediction is the main

research direction of this thesis.

Firstly, the user’s Point of Interest (POI) exploration is chosen as a key point for anal-

ysis. This kind of user mobility modelling represents an essential branch of mobile traffic

analysis. By applying machine learning algorithms, clear summaries of the mobility pattern

characteristics of typical wireless users are obtained. Through the analysis of these regu-

lar characteristics, the value of mobility information related to the user’s POI is initially

demonstrated. Subsequently, this thesis introduces a data prediction model based on the

Long Short-Term Memory (LSTM) model, a typical neural network for sequence prediction.

Through verification of predictions using real sampled user data, it further demonstrates that

the user’s POIs tend to be relatively fixed and exhibit periodicity. Additionally, by compar-

ing the prediction results with those of other models, the advantages of neural networks,

particularly LSTM, in sequence prediction are evident.

Subsequently, this thesis aims to enhance the accuracy of wireless data traffic prediction by

exploring location information. Although former researches have indicated that the distance
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relationship may affect the similarity of mobile communication traffic across different base

stations, there is a lack of studies regarding the selection of the training dataset scope for

urban mobile traffic. Building upon the previous research on the user’s POI characteristics,

this thesis verifies that the mobile network data trends of base stations in distant regions could

also exhibit high similarity with applying real-world data, thereby expanding the training

sample range. After that, a multi-task learning framework called MTL-STPN is designed

to incorporate these highly correlated mobile traffic data as auxiliary content for predicting

target region mobile traffic data. The results demonstrate that the designed model achieves

nearly a 10% improvement in mobile traffic prediction compared to the state-of-the-art

traffic prediction models with Root Mean Square Error (RMSE) measurement as prediction

metrics. This outcome substantiates that reasonable correlations between mobile network

traffic samples can be applied to enhance the performance of appropriate algorithms.

Finally, to address the more complex and bursty but highly valuable application-level

mobile network traffic prediction, specifically Instant Messaging (IM), this thesis further

improves upon the characteristics of the sub-models extracted from the multi-task framework

and proposes a novel deep stacked learning architecture called SLIM-TP. After operating the

sub-models for extracting the spatiotemporal dependencies of traffic as well as the mobile

users’ equipment (UEs) behavioural information, the meta-learner is employed to make

optimal decisions regarding these features and effectively retain the factors that can enhance

prediction accuracy. Experimental results based on a large dataset collected from a real

cellular network demonstrate that the proposed model achieves over 40% improvements in

WeChat traffic prediction performance compared to the state-of-the-art traffic prediction mod-

els through RMSE measuring. It shows the effectiveness of incorporating high-dimensional

data such as user location and related traffic as auxiliary features in complex mobile network

traffic prediction scenarios.
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Chapter 1

Introduction

1.1 Background and Motivation

This section provides an overview of the current state of mobile network traffic prediction

from three perspectives. Firstly, the concept of traffic pattern analysis is proposed to explain

the feasibility of modelling and predicting cellular network traffic. Next, various types of

data related to cellular network traffic are listed to illustrate their different characteristics and

applications in mobile traffic prediction. Finally, the machine learning algorithms used in

traffic prediction are introduced to highlight the challenges faced in practical implementations.

1.1.1 Mobile traffic analysis and prediction

Mobile traffic analysis has emerged as one of the most popular research fields in recent

years [1], starting from the analysis of large-scale mobile network traffic datasets since 2006

[2]. With the technical advancement of the cellular network, research based on network

traffic data has benefitted various domains. These research efforts can be broadly categorised

into three main themes based on their focal point, which are network analysis, mobility

analysis, and social analysis [65]. In network analysis, two aspects are mainly studied, one of

which is to understand the dynamic trend of mobile traffic, and another one is to update the

configuration strategy in the mobile network to adapt to the changes of various traffic patterns.
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Many studies [66] have proved that modelling and predicting mobile traffic fluctuations can

greatly reduce OPEX and increase network capacity. Since reducing OPEX and increasing

network capacity are very valuable in terms of practical operation, the research on mobile

traffic prediction becomes critical. The research objects of mobility analysis are individuals,

crowds, and transportation, which is reasonable since mobile traffic is generated by user

behaviour. User crowds with different attributes have various wireless network data usage

habits, resulting in diverse traffic patterns. Therefore, the data of UEs’ behaviour such as

trajectory, user habit, and event affected can be used to assist in understanding and modelling

traffic trends. At present, the historical trajectories can be recorded through the handover log

from the BS or the location information from the local devices [67], which are desensitised

based on the concern of security and concealment. Furthermore, compared to the analysis

of network traffic and user mobility pattern, the relationship and interaction between the

UEs are the focused research direction in the study of the social analysis aspect. Besides, as

aforementioned, event detection is another direction in social analysis, which is mainly used

in anomaly detection of mobile network traffic. Therefore, the analysis of wireless network

traffic could be based on multi-dimensional information related to the network data flow,

which is helpful to understand and predict traffic patterns.

Among the various topics of network analysis, mobile network traffic prediction holds

particular significance. Numerous types of research rely on predicting traffic in advance,

which encompasses network optimisation aspects [3] such as resource deployment, load

balancing, caching, hotspot/blackspot detection, and base station sleep strategies. These

studies emphasise that the ability to anticipate adjustments to infrastructure performance can

have a significant impact on system operational efficiency and energy utilisation efficiency [3].

In other words, the research of mobile traffic analysis and prediction is to enable the above

strategies to be executed earlier to offset the impact of mobile traffic fluctuations. Therefore,

there are two aspects of mobile traffic prediction that have been extensively studied. One is

to improve the accuracy of the prediction, so as to make it more reliable for early deployment.

The other is to improve forecasting efficiency and shorten forecasting time. To improve the

accuracy, it is necessary to improve the completeness of the data set and the capabilities of
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feature extraction of the prediction model. While improving efficiency, it is necessary to

clean the data and simplify the model as much as possible. These aspects together will form

a trade-off strategy, whose parameters need to be carefully adjusted according to the different

purposes and environments.

1.1.2 Data type in mobile traffic analysis and prediction

In mobile traffic analysis, different types of data need to be collected through the nodes,

sensors, and devices in the heterogeneous network [4]. Statistics and analysis are performed

according to the attributes, patterns, and objects of each type of data to obtain effective

information. In terms of network optimisation, the most intuitive and common analysis is

to use aggregate traffic flow data. This kind of data represents the trend of the traffic in

the corresponding range, which is the Key Performance Indicator (KPI) that can directly

represent the current status of the network. According to the location of the recorded data,

aggregate traffic can usually be divided into network-level, cell-level, and application-level

[5]. The aggregate traffic at the network-level refers to the network traffic of the core network.

When it comes to mobile network traffic, it mainly focuses on cell-level and application-level

traffic data obtained on the Radio Access Network (RAN) side. At cell-level, mobile traffic

data is collected according to temporal (time interval) and spatial (BS, grid of the map),

respectively. Such data usually have strong seasonality in general and are more suitable for

modelling traffic in terms of temporal dependencies, so as to predict the traffic in the next

timestamp [70]. The data is usually recorded in the traffic volume (including download and

upload) at each time interval. Moreover, because the cell-level data is obtained from the BS

side, combined with the geographic location of the BS or Point of Interest (POI), it is also

possible to explore spatial features through the traffic pattern [71]. Application-level traffic

is collected by the BS side as well. Unlike cell-level aggregate mobile network traffic, it can

be subdivided by data application types and then can also be expanded into the dimensions

of the spatial-temporal attributes. In this way, under the situation with the same time and

location, different applications have different traffic patterns, which is helpful for the study

of user behaviour. On the other hand, due to the nature of the application, the type of data
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generated from these applications are vary. For example, YouTube, Spotify, and Gmail

mainly generate video, music, and text information respectively, which makes the amount of

data used per unit time different. It is an essential feature in solving the problem of regional

classification [72].

At the same time, due to the different usage scenarios of different applications, their active

time will vary as well. For example, it is shown that IM applications have become one of

the applications that occupy the most time and frequency of the users [73]. Therefore, apart

from the research on the data volume, it can also be used in the study on the daily behaviour

patterns of users. It is worth noting that as the granularity increases, traffic volume is counted

in the increasingly smaller areas, which may result in a decrease in the number of users and

hence increasing randomness of the traffic, especially for the more detailed application-level

datasets. Therefore, how to extract useful features for network traffic modelling will become

a critical research topic.

In addition to considering traffic volume datasets, heterogeneous datasets will be used as

auxiliary information in network traffic forecasting as well. Among them, the most important

one is grabbing geographic location information, such as Global Positioning System (GPS),

which provides better accuracy of the location than the location information provided by

BS. This is helpful for user-related research such as user mobility, POI [74] and urban

transportation [75], and thus feedback on user behaviour patterns for the network optimisation

specifically [3]. Another type of data that can be used in mobile traffic prediction is online

data, which is the public data obtained through the Application Programming Interface (API)

of the applications. It may include the data of geographic tags, user activity, event alarms,

etc. For example, in [64], the author proved that there is a positive correlation between the

social media data (Twitter), the network traffic, and the number of users, which then helps

mobile operators to have new auxiliary information to predict network traffic.

From the above description that explains how to assist traffic forecasting through hetero-

geneous datasets, it can be seen that crowd behaviours are widely considered in the study of

mobile traffic prediction. It is also reasonable to propose that the population and network
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load are related to each other, as a result, the mobile traffic analysis is also commonly used

in population estimation [74]–[78].

To conclude, the studies on cell-level aggregate traffic, application-level traffic, ge-

ographic information capturing, and population distribution play important roles in the

research on mobile traffic analysis and prediction.

1.1.3 Machine learning in mobile traffic forecasting

There are more and more researches that began to follow closely on the deep learning

algorithms in data traffic forecasting. Among the algorithms, the most widely used ones are

the Recurrent Neural Network (RNN) and its specific variants. The reason why RNN has

an impressive performance in sequence prediction is that it can process data according to

sequence changes [79], while the other neural networks are not cable to do so. Moreover,

RNN can use the internal state to store and process sequences. It does not mean that RNN

does not have any disadvantages. In fact, the most concerned one is the gradient vanishing

and exploding problem. Therefore, LSTM, as a modified variant of RNN, are designed to

avoid the long sequence dependency issue [80]. The long-term memory of LSTM makes this

class of algorithms very effective. In conclusion, LSTM is an efficient method to train time

series data and extract temporal features.

In order to further improve the prediction accuracy, spatiotemporal dependencies are

required to be extracted, which requires data structure to change from being sequential to

a matrix, and hence convolutional networks can be applied. Convolutional networks were

initially used for image or video action recognition in deep learning applications. When the

mobile network traffic heat-map of each timestamp in multi-cell is regarded as an object and

analysed in the time domain, the periodic trend of mobile network traffic can be modelled for

the purpose of prediction. Therefore, the convolution network algorithm combined with the

sequence modelling method is widely proposed in network traffic forecasting. The 3D-CNN

and Convolution-LSTM (ConvLSTM) are therefore being widely used [71]. Compared

with CNN, 3D-CNN directly extracts temporal features by increasing the time dimension,

but because of its natural characteristic, the results are only ideal for short-term prediction.
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Compared to that, ConvLSTM has a long sequential memory ability based on its LSTM units

which means it can accept spatial features by turning internal operations into convolution

operations, but the cost is larger computation compared to the former model. Meanwhile, by

proposing novel architectures, such as multi-task learning (MTL) [81] and transfer learning

[71], the training efficiency can be increased and the prediction accuracy can be further

improved as well by treating each sequence prediction as a sub-task.

To conclude, the application of deep learning is currently more popular in traffic prediction

research because of its own specific feature capture ability and the ability to increase feature

dimensions through architecture changes.

1.1.4 Motivation

In recent years, the challenges posed by the increasing demand for mobile network traffic

have become extremely severe. According to a white paper published by Cisco, it is estimated

that by 2022, the total monthly mobile data traffic will reach 77EB, which is seven times

higher than the traffic monthly consumption in 2017 [62]. With the explosive increase of

mobile devices and advanced multimedia functionalities, the number of mobile devices and

cellular network connections is expected to grow by nearly 60% from 2018 to 2023 [63]. It

indicates that significant load pressures may arise at any Access Point (AP), such as Base

Stations (BS), which is necessary to allocate more network resources during peak times.

Therefore, for network operators, balancing OPEX and QoS represents a challenging task.

In addition to upgrading and deploying mobile network infrastructure, analysing the

spatiotemporal characteristics of network traffic to predict mobile network traffic trends

has become another popular direction for increasing mobile network capacity [82]. With

the widespread application of Fifth Generation (5G) mobile networks, cellular networks

need to support capacity increases ranging from 600 to 2500 times [66]. The solution lies

in the dense deployment of small cells, which is an effective approach to address current

limitations in coverage, capacity, and traffic demands. However, such large-scale small cell

deployments can result in significant energy consumption. The current approach of base

station sleep strategies based on local traffic prediction is a common and effective solution
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to mitigate this issue. Moreover, network congestion and resource allocation problems are

increasingly prominent. The Third Generation Partnership Project (3GPP) defines Self-

Organising Networks (SON) as a network that can achieve most functionalities with little or

no manual operation, enabling self-optimisation and self-healing [69] to address these issues.

It means that all these solutions rely on reliable predictions of traffic trends to accomplish

network optimisation. Furthermore, network assistance or emergency functions, such as

base station power [6] or drone base stations [7], also require mobile traffic prediction and

anomaly detection for resource deployment within a region. Therefore, mobile network

traffic prediction has become a key probe for optimising the QoS of this expanding large

cellular data network. It is the reason that it has gained significant value in mobile network

optimisation in both academia and industry in recent years.

In addition, with the proliferation of mobile devices, applications, and small cells, mobile

network traffic is becoming complex. According to statistics, there has been explosive

growth in the variety of software types [8], including IM, online shopping, online gaming,

video/image streaming, etc.. Most of these applications heavily rely on real-time data

throughput. Each application category generates traffic with different patterns. Compared to

traditional aggregated traffic, application-level traffic is more bursty and highly geographic-

dependent, making it more challenging to predict. However, the analysis and prediction

of such data are indeed becoming crucial for wireless network operators. For example,

application-level traffic can be analysed to identify location attributions [9]. Therefore, the

prediction of application-level data needs to be carefully considered. On the other hand, with

the extensive deployment of small base stations, the traffic of each small base station also

needs to be predicted. However, due to the limited monitoring area of each small base station,

the user movements may be more frequent and random, resulting in more unstable traffic

tendency compared to aggregated traffic. Meanwhile, the increasing number of small cells

means more data to be predicted. Therefore, improving prediction efficiency while ensuring

accuracy is a vital challenge in mobile traffic prediction topics.

Besides, the correlation of mobile network traffic data has gained increasing attention

as well, particularly in terms of spatiotemporal correlation. The analysis of mobile network
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traffic initially focused on temporal periodicity, which remains a fundamental aspect in

most traffic prediction approaches[10]. Recently, the spatial correlation has also been

widely discussed [11], primarily studying the traffic characteristics around the target area

and attempting to extract features using neural networks [12]. However, in addition to

traffic, mobile networks also generate information about UEs, such as their locations and

population densities. Current research on this type of data mainly focuses on exploring its

inherent characteristics, such as user POI extraction [13], trajectory prediction [14], and

estimation of epidemic outbreaks [15][16]. Back to mobile networks, user behaviour directly

influences traffic variations. Research has shown that changes in traffic patterns can be

partially attributed to the specific time and location of individual users [17][18]. For example,

the traffic patterns of office employees differ during working hours and non-working hours,

and the traffic patterns in schools in the afternoon may differ from those in central business

districts. It is an interesting connection, indicating that information about future traffic may

not only be derived from historical traffic data but also influenced by other user behaviours.

In terms of prediction models, several mature algorithms have been introduced, primarily

divided into statistical-based models and machine learning-based models. Statistical-based

models aim to describe the characteristics of mobile network traffic, mainly in periodicity and

correlation, and use mathematical models to model these traffic features. Popular models in

this category include Markov modelscite [19], α-stable modelscite [20], and autoregressive

moving average models[21]. However, with increasing observation time and the developing

more complex mobile network, these models face challenges in effectively and promptly

addressing the current traffic prediction problems. As a result, machine learning-based

models have gradually been applied in prediction models. These models are more flexible

and avoid requiring the establishment of complex mathematical models. Traditional machine

learning-based models, such as linear regression (LR) [135] and support vector regression

(SVR) [136], can directly predict data with strong periodicity without the need for data

preprocessing and modelling. In more complex scenarios, neural network-based models,

such as Artificial Neural Networks (ANN), RNN, and even deep neural network models

like Multilayer LSTM, can better fit the data and update traffic features more rapidly [21].
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However, such models rely on large training datasets and long-term training [21]. Due to

limited resources, deeper neural network models or larger training datasets are impractical as

the demand for prediction accuracy increases and more complicated network traffic patterns.

Therefore, there is a trade-off between model complexity and practical constraints, and

finding the right balance between prediction accuracy and resource requirements remains a

challenge in the field of mobile traffic prediction.

In summary, mobile network traffic prediction needs to deal with a range of challenges.

It is important to consider the limitations of current research, as they provide directions

for addressing these challenges. The following are some crucial challenges and limitations

summarized in this thesis:

• The accuracy of mobile network traffic prediction is of paramount importance as

it directly affects the management and operational efficiency of the entire wireless

network.

• Currently, mobile network traffic patterns are becoming increasingly complex as the

granularity rises, which calls for more precise models to accurately predict these

patterns.

• Currently, the inherent characteristics of mobile network traffic and other correlated

information have not been thoroughly extracted, which results in missing content and

user behaviour. It is necessary to study the relevant data generated within the mobile

network, as well as user behaviour.

• Although deep neural network models have gained popularity in effectively extracting

pattern features and correlations, they operate with costs in terms of computational

efficiency and training data volume. Therefore, the efficiency of prediction models

needs to be seriously considered.

To address the challenges, this thesis focuses on analysing the characteristics and correla-

tion of the traffic data and applying them to the proposed deep-learning-based mobile traffic

prediction frameworks to enhance prediction performance.
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1.2 Contributions of the Thesis

Based on the mobile traffic prediction, the main contributions of this thesis are listed as

follows:

• Proposing a POI preference method to enhance the performance of user’s next destina-

tion prediction. It applies clustering algorithms and periodic behaviour detection to

construct individual Points of Interest (POI) based on user behaviour. By leveraging

advanced neural network learning models, the result validates the patterns of mobile

user locations, thereby determining the behavioural characteristics of mobile network

users.

• Developing an effective multi-task learning-based mobile traffic prediction framework

enables improved prediction of small area traffic. The proposed framework is validated

using a series of accuracy testing algorithms. Additionally, the framework significantly

enhances training time and computational efficiency.

• Based on the framework, a high-correlation data search algorithm is proposed. The

algorithm effectively pre-processes large-scale mobile network traffic data, reducing

the training data size and objectively improving the efficiency of the algorithm.

• Based on the excellent characteristics of the multi-task learning framework and the

summarisation of user location features, a mobile network traffic prediction stacked

learning framework is further proposed. This framework incorporates the extraction of

multidimensional data features, where the weights of multiple learners are increased

to extract corresponding data features. The framework also includes a meta-learner, a

Multi-Layer Perceptron (MLP), for further feature selection. It not only models feature

for mobile network traffic and user position information but also improves prediction

accuracy. The proposed framework exhibits outstanding performance in forecasting

highly dynamic application-level mobile network traffic.
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• The designed algorithms are applied and tested using real-world mobile network traffic

datasets. The practical application validates the potential of the algorithm in solving

real-world problems and verifies its respective advantages.

1.3 Structure of the Thesis

The structure of this thesis is introduced as follows:

Chapter 2: Literature review

This chapter has introduced the development and existing work of mobile network traffic

prediction. Then, machine learning techniques applied in mobile network prediction are

discussed.

Chapter 3: Personal POI detection based on periodic pattern mining

In this chapter, a periodic pattern detection algorithm for geographic information is

proposed to uncover the behavioural characteristics of users in the mobile network. The

Periodic Pattern Mining (PPM) algorithm, which is primarily based on spatiotemporal

information, has been widely used for user trajectory prediction. Simultaneously, map-based

POI is no longer limited to providing map-related extension information in the field of

network traffic prediction but should be considered as the subject of user-based research

to establish user location preferences. In this chapter, Bayesian statistical methods are

employed to establish user POI preferences. POI preferences involve classifying the user’s

historical geographic location information based on the information they most frequently

visit and outputting the corresponding likelihood. After that, widely used sequence prediction

models are applied to demonstrate the effectiveness of the proposed method for establishing

individual preferences. Through this algorithm, the periodic visiting characteristics of users

to specific areas are discovered and determined.
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Chapter 4: MTL-STPN: a Multi-Task Learning-based Spatial-Temporal Parallel deep

learning Network

In this chapter, a parallel-based framework for mobile network prediction is proposed.

Existing researches have shown that extracting spatiotemporal features cannot increase

efficiency as the target area expands. Therefore, it is worth investigating how to purposefully

select areas and use more efficient frameworks for modelling. Multi-task learning is a

challenging algorithm that involves multiple inputs and outputs and shares part of parameters

in modelling to improve generalisation performance, making it more suitable for the current

problem. Therefore, a deep learning model based on a parallel structure is proposed, which

applies a multi-task learning architecture to optimise prediction performance. Additionally,

a matching algorithm for detecting relevant areas is proposed based on the characteristic

deduced in Chapter 3, which can select the network traffic of the alternative region with

efficient feature information, thereby further improving accuracy while keeping the system

complexity low.

Chapter 5: SLIM-TP: a deep Stack Learning-based framework for Instant Message

Traffic Prediction

In this chapter, an advanced and fine-grained mobile network traffic prediction framework

is proposed. Due to the different usage habits of users for different applications, the traffic

patterns at the application level are various, especially for IM traffic. Modelling such

patterns with existing aggregated mobile traffic models is quite challenging due to the

small observation areas and high mobility of individuals. Therefore, to deal with highly

bursty patterns, it is necessary to introduce more data to improve the efficiency of feature

capture. Based on the characteristics of IM applications, in addition to basic temporal series

prediction, spatiotemporal correlation models and local population distribution are also

introduced for relevant modelling. Furthermore, following the characteristics of the multi-

task learning framework in Chapter 4, this chapter further enhances the parallel learning



1.3 Structure of the Thesis 13

module for different feature extraction. A meta-learner is also incorporated as the final

feature selection and integration, integrating information extracted from each dimension of

the data to accomplish IM traffic prediction. Additionally, the performance of the proposed

framework in predicting mobile network traffic at other scales is also validated.

Chapter 6: Conclusion & Future work

This chapter provides a summary of the work presented in this thesis and outlines potential

future directions for research.





Chapter 2

Literature Review

2.1 Mobile Network Traffic Prediction

The essence of mobile network traffic prediction is the analysis and feature extraction of the

data flow transmitted in cellular networks. Such data is encapsulated as network packets and

transmitted through wireless radio carriers [21]. It is precisely this physical characteristic

that allows terminals to record the amount of data transmitted within a certain period of time,

thereby understanding the network load [22]. Therefore, research on mobile network traffic

can intuitively reflect the transmission quality of network channels to enable management and

control [22]. This is the fundamental reason for conducting mobile network traffic analysis

and prediction in subsequent network optimisation.

In recent years, cellular communication technology has experienced rapid development.

Both network capacity and network data volume have grown significantly. In terms of

network capacity, the global number of mobile devices and cellular network connections

is projected to rise by nearly 60% from 2018 to 2023, reaching 13.1 billion devices [63].

Moreover, 10% of these devices are expected to be 5G-enabled [63], offering ultra-high

transmission rates and ultra-low latency. Such a tremendous number of connected devices has

contributed to the explosive growth of wireless network traffic. According to a whitepaper

published by Cisco, it is estimated that by 2022, the total monthly mobile data traffic will

increase to 77EB, which is seven times the growth compared to 2017 [62].
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Despite the efforts made by mobile network operators to meet the ever-increasing network

capacity and transmission bandwidth and ensure QoS through extensive deployment of small

cells and technological innovations in communication terminals and channel coding [23], it

remains challenging to keep pace with the explosive expansion of network data demands.

Consequently, optimising, managing, and allocating network resources at the software level

has become a feasible solution [24].

Currently, mobile network traffic prediction primarily focuses on two aspects: increasing

network capacity and reducing OPEX. These aspects include network performance opti-

misation and base station power consumption control. Network performance optimisation

involves preemptively estimating and allocating resources. For example, dynamic resource

allocation [24] and wireless radio spectrum allocation [24]. Furthermore, reliable predictions

of network load and load distribution are necessary for adjusting base station power or

establishing Unmanned Aerial Vehicle (UAV) base stations when the network load becomes

excessive [25]. In 5G networks, network slicing also relies on traffic prediction for flexible

allocation and configuration of virtualised networks [26]. The deployment and resource

management of Multi-Access Edge Computing (MEC) is similar, utilising predictive data to

select functions for local network offloading [27]. Additionally, network traffic prediction

plays a decisive role in self-configuring and self-optimising systems within SON [68]. On

the other hand, power consumption control of base stations primarily assists mobile network

operators in reducing OPEX [28]. One of the most representative approaches is base station

sleep strategies. By predicting the inactive trends of network traffic, base stations can be

powered off or reduced power to achieve energy saving [28]. Conversely, base station admis-

sion control utilises predictions of network traffic peak hours to allocate access among base

stations, ensuring energy balance across the network under heavy loads [28]. It is evident

that mobile network traffic prediction plays a crucial role in supervision, management, and

allocation within the latest networks. Its performance directly impacts the overall system

operation and is particularly significant.
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2.1.1 The Features in Mobile Network Traffic

Due to the significant role of mobile network prediction in network performance and OPEX

control, the characteristics of network traffic have been extensively studied. So far, the

features of network traffic used in prediction models can be primarily classified into two

types: temporal and spatial. When describing temporal characteristics, the focus is mainly on

periodicity. The periodicity of mobile network traffic is initially discovered by observing a

large number of base station traffic logs [10]. Generally, it shows higher traffic consumption

during the daytime and lower consumption at night. Wang et al.. [17], through autocorrelation

analysis, demonstrated the regularity of human activity patterns in wireless network usage.

Additionally, numerous studies have analysed and validated the periodic load of traffic at the

base station aggregation level [3] [8] [9] [11]. It is worth noting that while network traffic

has been recognised as periodicity, the specific scale of the periods still requires detailed

investigation. Xu et al. [29] conducted separate traffic analyses for each day of the week and

discovered differences between weekends and weekdays. Moreover, special periods such as

holidays have also been found to affect traffic trends [30].

On the other hand, the spatial characteristics of mobile network traffic have been gradu-

ally explored as research has progressed. Wang et al. [31] focuses on analysing the traffic

similarity between base stations and utilises the characteristic of high similarity in proximity

to optimise prediction accuracy. Taking a more macroscopic perspective, Zhang et al. [32]

discovers the tidal nature of mobile network traffic within cities. As time progresses through-

out the day, a certain area’s network traffic experiences a synchronised increase or decrease,

indicating a tidal phenomenon. It indirectly verifies the relationship between distance and

traffic similarity between base stations. Additionally, different regions exhibit distinct traffic

patterns. Zhou et al. [32] conducte traffic monitoring in various regions of urban and indi-

cated that the characteristics of different regions affect traffic trends. Furthermore, Qiao et al.

[18] illustrated that the proportion of traffic generated by different applications varies across

different regions through the exploration of application-level traffic data.

Overall, the aforementioned characteristics of mobile network traffic have been proven

to be crucial for the accuracy of predictions. It is through the discovery of these features
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that the prediction of such traffic data becomes possible. Additionally, it should be noticed

the potential influence on feature bias and correlations by sampling from various scales of

network traffic.

2.1.2 The Traffic Data Generated in Mobile Network

Due to the large scale and complex architecture of mobile networks, the traffic data generated

from different sides of the network exhibit distinct characteristics. In general, there are

two kinds of data generated in mobile network: traffic data and extra data. Traffic data is

collected based on different ports and can be classified into network-level, cell-level, and

application-level aspects. Network-level aggregated traffic refers to the traffic at the core

network level [5]. Such data characterised by significant periodicity, can be used for traffic

prediction through statistic-based modelling [22]. Regarding mobile network traffic, the focus

is primarily on cell-level and application-level data obtained from the RAN side. At the cell

level, mobile traffic data is collected based on temporal and spatial aspects. Temporal data

collection typically involves sampling within a certain time frame with uniform time intervals

[22]. The length of the time intervals depends on the overall historical data span and is

usually set at hours [22]. In terms of spatial aspects, the data also needs temporal information

and is annotated with geographic location stamps. The geographic location stamps are

derived through classification or clustering algorithms, as the geographic information is

highly discrete and not suitable for predicting traffic at the base stations or grids in the mobile

network, which would increase computational complexity [34]. Application-level traffic is

collected from the base station side as well. Unlike aggregated mobile network traffic at the

cell-level, application-level traffic is segmented based on the types of data applications. This

segmentation allows for the presentation of not only spatiotemporal characteristics but also

information about traffic composition and application-specific demands [9]. Qiao et al. [18]

combined application usage patterns with spatial information to discover the fundamental

reasons behind variations in data traffic within a region, providing a better explanation for

local base station traffic loads. On the other hand, Li et al. [18] analysed application traffic

characteristics to address region classification and other related issues.
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In addition to considering traffic volume datasets, heterogeneous datasets have also been

used for research purposes to gain insights into mobile network traffic analysis. One of the

most important aspects is obtaining UE’s geographic location information, which provides

real-time user information and is combined with traffic analysis to address issues related to

wireless network access [36]. Sun et al. [37] utilisd users’ path information to assist in user

behaviour classification to apply further analysis of mobile traffic patterns. Another type of

data that can be used in mobile traffic prediction is online data, which is public and obtained

through APIs. It includes geographic tag data, user activity data, event alerts, and so on [3].

For example, Yang et al. [64] demonstrated a positive correlation between social media data

(Twitter), network traffic, and user numbers, which helps mobile operators obtain additional

insights to predict network traffic.

In summary, the type of data in analysing directly influences the direction and granularity

of traffic prediction. Currently, there is a growing emphasis on cell-level and application-

level data, in line with the trend of network refinement. However, it has been found that

working with such traffic is more complex and challenging, as evidenced by former research.

Additionally, the potential correlations between user and base station location information

and traffic characteristics are worth considering and exploring.

2.1.3 The User Mobility Analysis in Mobile Networks

From existing research, it can be observed that user mobility has a potential impact on the

analysis and prediction of mobile networks. For example, it has focused on user mobility

behaviour classification [38] and the analysis of data patterns during group movements.

Although these researches approach user mobility from different perspectives, they both

validate the auxiliary role of mobility analysis in mobile network traffic prediction. From the

user’s perspective, being able to predict the next or multiple steps of entering specific cells

can better forecast the traffic load within those cells [37]. From the group perspective, as

users disperse or gather in a specific area, the traffic also exhibits significant variations [39].

Clearly, both approaches require the delineation of regions and the identification of hotspot

areas that hold predictive value.
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It is necessary to note that the delineation of hotspot areas for user access in mobile

networks should be distinguished from geographical location-based divisions [39]. Due to

the complex nature of urban planning, it is challenging to directly classify user mobility

characteristics based on urban region attributes [40]. Therefore, clustering-based algorithms

on users’ historical visit locations have become a viable approach for delineating regions

related to user mobility, which is the user point of interest approach [34]. Periodic POI-

related patterns are of great help for understanding regular network traffic monitoring, BS

planning[? ], caching strategy[88] and forecasting[89][90]. It is usually seen as important

cross-domain data in scenario classification, which is to help the system modelling features.

The discrete geographical location data in the same destination and the fuzzy of the

user’s location attributes is a constant concern. Whether positioning through GPS or a

wireless network, the geographical location data in the same place is likely to be inconsistent.

Different from handling outliers caused by positioning drift, discrete geographic location

data cannot be averaged by using context information. The widely applied method is to unify

the location data of the destination by establishing a reference spot. The DBSCAN-based

clustering method[103]and the kernel function-based clustering method[104] can determine

the reference spot according to the spatial information and obtain appreciate results. However,

the problem of users’ location attributes is caused by similar user destinations but periodic

behaviour differently. For example, the location of a gym is close to the residential area,

leading to the fusion of a user’s behaviours of different periods in the observation window.

Li et al.[105] performed periodic detection through each spot to distinguish different periods.

Periodic behaviour is capable of portraying a user’s different attributes in the same reference

spot.

Once the POIs are determined, PPM is applied to analyse user mobility behaviour. PPM

typically identifies repetitive patterns in the single object’s trajectory rather than used for

multiple trajectories. Once located periodic behaviour of the object, it can be used to figure

out the relevance of places[97], forecast future movements[85], anomaly detection[98], and

compress trajectory data[95]. It is important to note that, due to the nature of POI clustering,

locations that are visited only once will be overlooked [41]. While this is acceptable, as
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detailed trajectory prediction for every user is impractical due to computational complexity

and network performance limitations [35], it is necessary to extract the most important aspects

from users’ mobility history data, particularly the information with significant periodicity.

This information can be utilised to predict future periodic traffic in mobile network prediction.

Thus, PPM becomes an essential method for mobility prediction [42].

Existing studies have categorised PPM into two key types based on the resource data

being employed, namely: sequence data and spatiotemporal dimensional data. Sequence

data, or called one-dimensional data, can be defined as an ordered list of elements. The

attribute of the order is decided by its application domain, such as by temporal order or

spatial distribution order. For PPM in sequence data, the max-sub pattern hit set [91] is a

feasible method by creating a max sub-pattern tree to mine periodic patterns by two scans of

the time domain sequences. Furthermore, period discovery plays a crucial role in the PPM

of one-dimensional data. Periodic patterns will be more accurate when the more precise

period is detected. Fast-Fourier Transformation and Autocorrelation are the two key types

of period detection [92]. Automatic period detection identifies as many periods as possible,

although this might cause false and redundant periods to emerge. For the spatial domain

sequence that includes spatial distributions, such as spatial cellular network traffic loads

pattern, POI check-in distribution, etc., the researchers choose to model the inner logistic

correlation of geometric characteristics of an item to compensate for the ignored information

in the time domain PPM algorithms. Uday Kiran et al. [93] proposes a flexible model that

can pick the desired partial periodic spatial pattern with three constraints, and then optimises

the computation cost of the proposed model by using the prior knowledge regarding the

neighbours of objectives generated by these spatial patterns.

The spatiotemporal trajectory is represented as the format of location and time, which

is comprised of three-dimensional data (lx, ly, lt) where (lx, Ly) represents the geographic

location while lt represents the visiting timestamp. The set of each three-dimensional element

along time order is a spatiotemporal trajectory dataset. Data integrity is another key limitation

of PPM, which includes the perspectives of time interval, and data sampling rate. Zhang et

al. [100] applied Lomb–Scargle periodogram in binary sequences to handle irregular time
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intervals of the dataset. Other similar issues with PPM historical data include coarse GPS or

wireless network location resolutions[101] and errors in geolocation and positioning devices

which can generate noisy data sets or missing data[102]. The former analogises the process

of wireless network localisation into propagation in a parallel Gaussian noisy channel to

derive the corresponding localisation error bound and the latter proposes a learning algorithm

to predict the missing points based on the Automatic Identification System (AIS) data.

In conclusion, user mobility prediction can provide benefits for mobile network traffic

prediction. Algorithms based on PPM have been widely applied as feasible solutions for

detecting periodic mobility. Currently, there are several factors influencing the performance

of PPM, with the processing of location information being one of the key factors. Therefore,

the challenge lies in how to annotate user location information, such as using POIs, to

better complement PPM in order to discover periodic patterns more effectively for mobility

prediction.

2.2 Machine learning in Mobile Network Traffic Prediction

2.2.1 Supervised and Unsupervised learning

In supervised learning, a training dataset is used to provide both input and output information,

which refers to features and labels, respectively. Typically, labels are assigned manually, to

construct the relationships with the input data. Therefore, supervised learning aims to model

the object information that can best approximate the relationship between input and output

observable in the data based on the training sample dataset. According to such input-output

relationship analysis, it can help to establish a feasible model. Subsequently, the new input

dataset will be fed into the proposed model to make predictions.

The regression and classification problems are two main fields of supervised learning.

The former is to deal with continuous data while the latter maps the inputs to discrete

labels. Logistic regression, naive Bayes, support vector machine (SVM), artificial neural

networks, and random forests are the widely applied algorithms in supervised learning. In

both regression and classification, the goal of these algorithms is to model the features or
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structure in the given dataset effectively and accurately. The performance of the optimal

model will be evaluated under a specific standard. Once it generated appreciated results

through training and testing datasets, it can be treated as an optimal model to map the input

and its labels and to solve the corresponding issues.

Bayes’ Theory: Bayes’ theory plays a key role in the statistical analysis used to calculate

conditional probabilities. The following function reveals the probability that a hypothesis h

will be affected based on the new evidence n.

P(h|n) = P(n|h)P(h)
P(n)

(2.1)

where P(h|n) represents the probability that a hypothesis h will be true in light of the

new evidence n. It is referred to as posterior probability. P(n|h) is the probability that the

new evidence n will impact the hypothesis h, and P(n|h) represents the probability before

considering the new evidence, which is called prior probability. Lastly, P(n) refers to the

probability of evidence n [110].

Through Bayes’ theory, a new understanding of probability has been revealed. It is thus

frequently employed in many areas of study. Mobile network traffic prediction is a specific

scenario which has been widely applied. Akoush et al.[111] is a pioneer in this field by

combining Bayes’ theory with Neural Network (NN) to create an enhanced learning process

by generating parallel outputs and predicting the location of mobile device users. Compared

with computing the probability of multi-outputs, Zhang et al. [? ] directly introduced

the Bayes’ theory in the parameters evaluation of the forecasting model, which can further

improve the efficiency and accuracy of the training process.

Another popular research direction for Bayes’ theory is for classification purposes which

is called Bayes’ classifiers. Moreover, it is often assumed that the inputs are all independent

of each other which helps to create the Naïve Bayes’ classifiers. Bayes’ classifiers have been

used in recent times in the field of anomaly component/cell detection [112][113]. In addition,

naive Bayes classifiers are widely used to detect content-aware information, such as view

counts, and stable and popular User Generated Content (UGC) patterns [114] [115].
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With regard to unsupervised learning, data without using explicitly-provided labels are

learnt to model the inherent structure. As a result, the model needs to generate the form and

value of outputs simultaneously according to the internal relationship between training data

and its external conditions. Therefore, unsupervised learning is useful in exploratory analysis

because it can automatically identify features in the dataset[116]. Due to the unlabelled

training dataset, the samples of the dataset must be classified based on similarities depending

on the measurement methods, such as Euclidean distance, Dynamic Time Warp (DTW),

Pearson coefficient, etc. An optimal system needs to ensure that the similarity between data in

the same class is as high as possible while that of data in different classes is vice versa. Thus

it can provide initial insights for testing individual hypotheses in further studies. For practical

purposes, there are many situations that it is impossible to know the label or categories of the

sample in advance. On the other hand, there is no way to compare model performance but

to evaluate the suitability of analysing scenarios. Clustering algorithms, density estimation

algorithms and representation algorithms are the main directions of unsupervised learning

algorithms[117].

Clustering can be considered the most important unsupervised learning problem, which

involves arranging unlabelled data into groups by measuring similarities between data

samples[116]. The potential patterns can be modelled through clustering algorithms.

K-means: The K-means clustering algorithm is widely applied to identify clusters by

determining the centre point in an unlabelled dataset. It is a typical example of a distance-

based clustering algorithm, in which the similarity evaluation index is calculated based on

the distance between two samples. The equation below can be used to express the K-means

algorithm:

min
K

∑
i=1

∑
x∈(Ci)

||Xi −ui||2 (2.2)

ui =
1
|Ci| ∑

x∈(Ci)

x (2.3)
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In this equation, ui presents the mean vector of a cluster Ci. Additionally, i represents

the order number of clusters. x represents the points in a cluster Ci. K represents the total

number of chosen cluster’s centre points.

The K-means technique has been widely used with various algorithms[118]. Sun et

al.[119] firstly proposes a two-stage method with the combination between K-means and a

Self-organising map, which can identify seven patterns and cluster them to further analyse

the fine-grained patterns in cellular network service. Zahra et al.[120] replaces the distance

measurement with Pearson correlation in UGC clustering to increase the efficiency of

multidimensional data similarity measurement. Nowadays, K-means remains a popular

clustering algorithm for wireless network traffic prediction[121].

On the other side, K-means also has several issues worth exploring. The mean vector of

clusters in K-means is obtained by using the heuristic algorithm. Therefore, the selection of

the initial centroid location will influence greatly the final clustering result and computation

time, which requires an appropriate location selection in the initial point chosen stage.

If the selection is only random, it may lead to slow convergence of the algorithm. K-

means++ algorithm is the optimisation method of K-means on the initialisation of the

centroid. Depending on the intuition, the farther away the clustering centres are from each

other, the better performance of clustering will have. Therefore, the next added cluster

initial points are as far away from the trained mean vector locations as possible to improve

the training efficiency. Wang et al. [122] applied K-means++ in taxi passenger hot spot

mining problem in this method and finds Its superior performance compared to the traditional

K-means.

Density-Based Spatial Clustering Algorithm with Noise (DBSCAN) is in terms of density-

based spatial clustering of applications with noise, which is another widely used clustering

algorithm till now [123]. The density of the database represents the number of points per unit

area. Any area with insufficient density will be considered noise and thus removed while

high-density region will be clustered. It categorises the data points in the region into core

points and boundary points. Two hyper-parameters need to be defined in advance, namely

neighbourhood radius ε and the Minimum number of points (MinPts). If there are at least
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MinPts data points in the ε range of a sample data, this point is regarded as the core point,

otherwise, as the boundary point. If there are other core points in the ε range of a core point,

they will be clustered. The adjustment of such two parameters will affect the size and number

of clusters.

The key difference between K-means and DBSCAN is that the clustering number of the

latter method k does not need to be defined in advance. Moreover, the DBSCAN algorithm

can detect abnormalities during the dynamic clustering [124], which is more robust in a

practical environment. It’s worth noting that considering in predictive power of a single

traffic clustering and minimising the number of clusters in network traffic analysis, DBSCAN

performs better than K-means clustering [125]. Nonetheless, there are some limitations

of this algorithm [126]. Firstly, the non-homogeneous density of data points will affect

clustering performance. Additionally, due to the noisy data handling capability, DBSCAN

requires more processing time compared to K-means clustering especially in analysing large

datasets. Finally, the same as K-means, two hyper-parameters need to be adjusted in model

optimisation. Aftab et al. [127] takes these issues into account, and then proposes a hybrid

framework with a combination of K-means and DBSCAN to improve the efficiency of

clustering. Therefore, these two algorithms need to be employed according to data structure

and applying scenarios.

2.2.2 Machine Learning-based Methods in Cellular Network Traffic

Prediction

Wireless network traffic prediction, due to the nature of its periodic pattern and the OPEX

associated with mobile operators, has attracted a lot of interest from both academia and

industry. The more and more studies have adopted machine learning technologies for mobile

network traffic prediction. Since the first paper on machine learning [128], it has been studied

for over fifty years with many methodologies proposed for various analysis cases. Unlike the

statistic-driven methods, machine learning-based methods package the mathematics models

used for mobile network traffic prediction into opaque or semi-opaque black boxes, which
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need to be trained using historical traffic records [134]. Existing machine learning-based

prediction methods consist chiefly of shallow learning methods and deep learning methods.

In the early stage, Local linear regression (LR) was used in traffic prediction [135]. Since

LR is essentially a linear model, traffic mutations and its heterogeneous non-stationary still

cannot be effectively modelled. SVR uses the inner product kernel function to perform a

non-linear mapping from the input space to the feature space [136]. It realises the capture

of the non-linear relationship to achieve the purpose of prediction. Nevertheless, due to

the limited capability of feature extraction, SVR usually has to rely on the prior knowledge

of the hyper-parameter depending on the input features, therefore these shallow learning

methods cannot cope with complex practical prediction scenarios. Therefore, deep learning

tools, through nested functions to achieve appropriate non-linear mapping, have also been

leveraged for wireless network traffic prediction. Among them, the recurrent neural network

(RNN), designed to convey information from one time step to another, is widely utilized

in the analysis of nonlinear time series, such as natural language processing (NLP), audio

and video processing. Nipun et al. [137] verified the dominance of RNN architectures

in time series forecasting by comparing the performance of other algorithms through real

mobile network traffic databases. Moreover, it demonstrated that long short-term memory

(LSTM), an RNN architecture that alleviated the vanishing and exploding gradient issue by

adding memory units, can further raise the accuracy of network traffic prediction. One of the

state-of-arts methods is considering temporal and spatial dependence. Exploring the cellular

network traffic correlation between the target cell and its adjacent cells, Zhang et al. [138]

proposed a densely connected convolutional neural network (CNN) based model by treating

traffic prediction as an image analysis problem. Similarly, by incorporating convolution

operations into LSTM, Zhang et al. [139] applies convolutional LSTM (ConvLSTM) to

extract spatiotemporal features. Due to the retention of advantages in the time series analysis

from LSTM, it has an enhanced performance compared to traditional CNN. Complex and

functional algorithms and increased cells did achieve the goal of system improvement.

However, due to the existence of the degradation problem in the deep network [140], the
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system performance reached a bottleneck. The proper networks in the above articles are kept

at a small number of layers, which also verifies this.

To solve the aforementioned problem, many researchers have focused on the framework

optimisation of the deep learning-based model. The first kind of attempt is to integrate

various learners to retain their strengths in capturing patterns. Madan et al. [141] utilises

the AutoRegressive Integrated Moving Average (ARIMA) and RNN to process linear and

nonlinear components in traffic, respectively. Then forecasts are merged to get the final

prediction result. The second kind of attempt is to unite similar traffic patterns from other

cells. Zhang et al. [142] introduces a multi-task learning model to share learned features

of similar patterns. Feng et al. [143] designs feature extractors to obtain features from

other similar pattern cells and then applies them to the LSTM model to capture the temporal

information. The third one is to extract more potential dependencies by introducing external

information. Currently, widely used external information are POI, social activity, and other

communication services data (e.g. calling, SMS) [143] [144]

However, most of the existing deep learning-based methods are proposed for the ag-

gregated traffic generated by all the applications, whose variations are relatively stable and

regular. Besides the analysis of aggregated mobile network traffic, some application-level

traffic or microcell traffic depict different patterns with obvious randomness temporally and

different correlations spatially, which makes conventional methods become less effective

or less reliable for such traffic prediction. It is ignored in most of the existing methods.

Therefore, it is worthwhile to explore the prediction models for high-granularity mobile

network traffic data. In the pursuit of optimising prediction performance, researchers have

started exploring additional features and information. However, the specific information that

needs to be extracted is still subject to further validation.

2.2.3 Multi-task Learning Framework

As a data training method, MTL focuses on developing machine learning models in which

shared representations are used to train data from many different sub-tasks simultaneously.

With modelling the shared and independent patterns between these sub-tasks, it can ulti-
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mately raise the system efficiency and even the performance, which addresses the common

weaknesses of other deep-learning frameworks such as modelling multi-dimensional datasets,

computation cost and expanding the pattern extraction. The human learning process is

applied in the concept of the MTL framework, which helps to incorporate information from

various domains[145]. Meanwhile, there are challenges associated with the performance of

multiple tasks according to the structure. Sub-task correlation is one of the most pressing

issues in MTL. Low-correlation sub-tasks may conflict in feature extraction, which leads

to degrade the performance of the system[146]. It is worth noting that in the case of MTL,

two high-correlated sub-tasks are low-correlated to other sub-tasks. Thus how to reduce the

negative impact on the overall system and how to measure the low correlation sub-tasks are

the questions that need to be considered.

MTL has some properties suitable for sequence-related prediction. From the perspective

of spatiotemporal correlation, Qiu et al. [158] and Huang et al. [159] both have verified

that by performing a homogeneous MTL mechanism, using traffic of each cell as sub-tasks,

the result of extracting spatial features can be achieved. It is even better than the results of

convolutional networks, which validate the possibility of using multiple single-feature tasks

to achieve multi-feature mining. In addition, Zhang et al. [142] proved that the similarity of

different traffic will affect the performance of MTL in sequence prediction, and the method

for traffic similarity measurement can effectively maintain the performance by increasing the

sub-tasks. Furthermore, Zhang et al. [160] shows the efficiency of multi-position fusion and

splitting training to transform features in MTL.

Benefit to the unique sharing parameter framework of MTL, it can be utilized in mobile

network traffic prediction by introducing appropriate sub-models for sequence datasets.

MTL leverages the shared parameter learning of correlated features across multiple tasks to

optimise predictions. It not only increases learning efficiency and accuracy but also reduces

the size of the model through parameter sharing. However, current research lacks studies

on how to determine the correlation between sub-tasks, the configuration of sub-tasks in

multi-task learning, and the design of specific frameworks to improve prediction accuracy.





Chapter 3

Personal POI detection based on periodic

pattern mining

This chapter presents a framework for predicting user mobility based on machine learning-

based algorithms and user points of interest features. The framework includes extracting

user POI with historical locations, utilising the periodic pattern Mining algorithm to capture

periodicity features, and finally employing a sequence neural network algorithm LSTM for

next location prediction. Through experimental results comparison, this chapter demonstrates

that the framework improves the current research on predicting the next location for users.

Additionally, it validates the significant potential of LSTM in sequence data prediction and

illustrates the periodic characteristics of mobile device users.

3.1 Introduction

With the development of the internet and mobile communications industries, mobile handheld

devices such as mobile phones are also rapidly being updated. The more and more sensors are

integrated into these devices and improve users’ QoS through these generated data. Among

them, the next destination prediction is one of the most concerning issues. By incorporating

such location predictions into different types of users’ activities, the system can proactively

provide instant services for upcoming activities, such as mobile traffic prediction, context-
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aware recommendation, communication optimisation for ultra-dense populations, smart city

services, etc. The aforementioned services are directly or indirectly related to population

mobility. Therefore, predicting the next destination is crucial for population mobility-related

network services.

Exploring users’ periodic mobility patterns is one of the important factors to improve the

accuracy of the next destination prediction. Research has shown that a significant portion

of users’ visited locations are relatively fixed [43], which aligns with common knowledge

in daily life. By identifying these locations and uncovering the visiting patterns associated

with them, the performance of the next destination prediction can be expected. Therefore,

feature extraction for the next destination prediction can be divided into two aspects: location

extraction and PPM.

User POI can serve as a method for location selection. It is primarily considered due to the

nature of mobile network services and the objective of next destination prediction. Although

there are some issues similar to handover control that require more accurate geographic

coordinates of UEs [44], when it comes to network traffic prediction and related network

services, users are typically expected to stay in an area for a certain period of time to consume

mobile network data. Therefore, the goal of next destination prediction is to identify locations

where users spend a longer time and use a larger volume of data for prediction, rather than

predicting user trajectories based on latitude and longitude information. Hence, in this thesis,

POI extraction is considered for the purpose of identifying hotspots visited by users.

Currently, there are two widely used methods for extracting POI based on geographical

information: statistical models such as Gaussian distribution extension models [162] and

unsupervised machine learning algorithms like K-means and DBSCAN [45]. Among them,

clustering algorithms are more popular because they allow for flexible parameter settings to

determine the range of each POI.

In terms of POI extraction, since geographic location information is generated by mobile

devices through GPS, cellular network base stations, and Wi-Fi Received Signal Strength

Indication (RSSI), there are some fluctuations in the coordinates [46]. Even if users engage

in periodic behaviours, there can be visible variations in their location due to the inherent
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uncertainties in geo-localisation. Therefore, it is necessary to further refine the clustering

range for POI extraction. This paper proposes a statistical-clustering algorithm to optimise

the specific division of POIs and eliminate noisy data for PPM.

Furthermore, most users exhibit repetitive patterns of appearing at specific times and

locations [43], such as working in the office on weekdays or sleeping at night. Certainly, users

may have multiple periodic behaviours during a time interval and the period of repeating the

mobility pattern is various. Hence how to figure out the periodic pattern of such behaviours

is the key element in location prediction research. Detecting multiple periodic patterns and

addressing data incompleteness and random biases in periodic pattern data pose challenges.

Inevitably, users also take some temporary actions, or the period of such actions exceeds the

selected time range. It is hard to get the desired results of such behaviour predictions if only

based on historical timestamps. To predict the stochastic behaviour, it typically requires high

dimensional data, such as labelled POI or event detection to figure out the users’ purposes,

which is not the concern in this thesis

In existing research, there are two main approaches for using POIs in PPM: mathemati-

cal modelling and sequence prediction. Li et al. [162] utilisd probability distributions and

Kullback-Leibler divergence to compute the associations between different POIs and estimate

the likelihood of each POI within a certain time period. However, the generalisability of

data patterns is not discussed. On the other hand, sequence prediction methods mainly focus

on Markov Chains (MC). Rendle et al. [55], first addressed the next-basket recommenda-

tion directly by combining matrix factorisation with Markov chains, known as Factorising

Personalised Markov Chain (FPMC). Cheng et al. [47] extended FPMC with embedded

personalised MC and user mobility constraints to address issues such as user movement noise.

Sequence neural networks, such as RNNs, have been incorporated into some researches to

capture long-term information and provide comprehensive periodic analysis [48].

However, the aforementioned recommendation methods have their own limitations.

Markov chain-based studies must address issues such as long-term periodic pattern discovery

and feature updates. RNN models, due to their inherent drawbacks, are prone to problems

like gradient vanishing and gradient exploding. Additionally, it should be noted that the depth
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of neural networks in these studies increases to achieve more accurate feature modelling,

which poses challenges in terms of computational power and energy consumption.

Recently, the introduction of POI contextual information has further advanced the accu-

racy of prediction. Kong et al. [49] used spatiotemporal context and employs a Hierarchical

LSTM model for the next POI prediction. The novelty of this paper mainly lies in its data

utilisation. In the spatial context, it uses the user’s visit session to fully record the historical

visiting sequence. The importance of capturing temporal context is demonstrated by the

different distributions of continued visits to areas after visiting target locations at different

time intervals. Meanwhile, HST-LSTM uses transition matrices to describe dynamic time in-

tervals and geographical distances. However, it should be acknowledged that these transition

matrices cannot accurately represent the relationship between time and distance, as these are

continuous data in the real world. Moreover, this research primarily focuses on establishing

training data sequences while neglecting other data feature analyses. This presents some

challenges for HST-LSTM to become the optimal solution for the next destination predic-

tion. From these existing studies, it can be concluded that in addition to summarising the

spatial features, the inherent temporal relationship of each POI should also be explored to

supplement the weak temporal contextual information. This thesis investigates the temporal

characteristics of each POI through the analysis of independent access data for reference

regions, guiding the feature extraction of neural network models.

In addition, two fundamental assumptions based on the dataset are proposed to as follows.

• The time interval is fixed, and the location records are not interrupted.

• There is at least one periodic behaviour in the records.

The purpose of this article is to establish a personal POI for users by exploring periodic

behaviours to optimise the performance of next-destination prediction. There are three steps

in this algorithm to detect periodic behaviours and establish personal POI. The first step is

to measure all of the possible periods in the reference region. The clustering algorithm and

kernel method are applied to discover those reference regions. For each reference region, the

movement data is transformed from a spatial sequence to an in/out binary sequence, which
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facilitates the detection of periods by filtering the unconcern location. Besides, according to

our assumption, every period will be associated with at least one reference region. All the

periodic behaviours can be found if I detect all the reference regions in turn. In the second

step, we statistically model the periodic behaviour by the Bayesian function. Based on this

model, underlying periodic behaviours are detected and reconstructed to reference the region

probability list to establish the personal POI. Finally, LSTM is applied to predict the next

destination using POI preference data, which serves as a validation of the effectiveness of the

POI extraction method proposed in this chapter. The major contribution as follows:

• Proposing a suitable algorithm to establish a more delicate reference region by elimi-

nating interference caused by location errors.

• Introducing an algorithm for independent binary analysis of each POI region to uncover

the temporal characteristics of each POI and establish user POI preferences.

• Applying POI preference with contextual information into machine learning algorithms

to improve prediction performance.

• Training by real-world data, demonstrating its effectiveness in improving the accuracy

of next destination prediction compared to existing algorithms.

The rest of the paper is organized as follows. Section 3.1 introduces the outline of the

framework, problem, and dataset. Section 3.2 explains the mobility pattern and constraints.

Section 3.3 describes the method to discover the periodic behaviours (stage 2). Section 3.4

introduces the fundamentals of LSTM and applies it to the next destination prediction by

training proposed POI preference. Section 3.5 shows the prediction results and section 3.6

concludes this framework

3.2 Proposed Model

PPM aims to help the system figure out whether the current position is UE’s destination and

how long it will stay by modelling spatiotemporal features of UE’s historical movement.
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Moreover, due to the characteristic of most people’s daily lives, which usually spend a lot

of time staying in a few regions for working and resting, the system needs to show strong

confidence in the result of prediction in the long-term, multi-times and staying duration.

Periodic mobility patterns, loosely defined as repeating activities at certain locations with

some time interval [162], can be observed virtually by each person and achieve that demand.

Once the period of visiting time is detected, the system can make predictions instantly, and

the staying duration is possible to predict as well if we have enough timestamps. The cost

is to regard non-frequent visiting regions as noise. It is acceptable due to the leak of such

non-frequent visiting records, and the duration of staying in such areas is uncertain, and the

destination can only be predicted with some specific conditions. On the other hand, other

pattern mining models, which are destination recommendation by user’s interest [163], new

event destination by natural language from social media [164], next hour prediction [165],

and specific condition prediction [166], cannot meet one or two of these requires

3.2.1 Problem statement

Su is the set of records of user u, and each record si ∈ Su. It is a 4-tuple si = {lati, loni, ti,wz},

where i represents the i-th record, lati, loni, ti,wz, represent latitude, longitude, time and day

of the week, respectively.

After generating the records, this chapter aims to model user’s periodic patterns through

POI data. Hence, the reference region, a certain area that is frequently visited in the movement,

is built as the user’s POI. These reference region set is denoted as R = {y1,y2, . . . ,yn},

where n represents the number of reference region. Each yn is location segment as yn =

{ylatn,ylonn,ylabn}, which ylatn and ylonn is the center coordinates of the n-th reference

region, and ylabn is the label of n-th region. A period C represents the possible periods in the

reference regions. It can be described as C = {c1
1,c

2
1, . . . ,c

m
n }, where cm

n is the m-th period

time in the reference region rn. The variability in the number of periodic patterns within each

region is attributed to users exhibiting different behaviours in different regions.
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O is the set of user periodic behaviour generated by the proposed PPM framework

as, O = {. . . ,(ti,wi,yn, pn
i ), . . .}, where pn

i represents the probability that the UE is at the

reference spot rlabn, at relative timestamp ti.

Finally, by calculating the pn
i for each specific time within each reference region, it can

obtain the probability of the user visiting a certain region, thereby understanding the temporal

characteristics. Therefore, the following three objectives need to be accomplished to explore

users’ periodic behaviour:

• The locations of region R need to be detected.

• The period set C needs to be measured.

• The user POI preference O needs to be calculated.

It can be known that personal periodic destination detection needs a huge amount of data

to train the system. Four volunteers generated the trajectory data as personal mobility pattern

through Google Map ‘location history’ function on Android operating system, and other sign

in method as back up and propose a novel algorithm to measure three mentioned parameters.

All data is divided along with hourly timestamps. If there is missing data, it will be the same

as the previous state until the position is recorded again. Total data length has 31 days, the

first 28 days dataset is constructed as training data, and last 3 days dataset is constructed as

testing data.

3.2.2 Mobility data and constraints

In this model, si is collected through GPS, usually recording location information in units

of time interval. The geolocation information primarily includes latitude, longitude, and

time. The advantage of using GPS to collect position is that it directly provides latitude and

longitude coordinates, and the recording time interval which can be adjusted, making it easy

to capture user trajectories. However, there are three factors that may affect the data quality

and need to be considered in advance: data missing, data drift, and uneven time intervals.
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Data missing refers to the absence of some records in the sequence dataset. Data drift

is defined as sudden significant deviations in latitude and longitude or random distribution

within a certain area. These two issues are mainly caused by signal interference or problems

with recording devices’ computational capabilities [50]. Currently, such problems have been

extensively researched, and mature algorithms for data processing exist. Since this paper

involves POI extraction and is not highly sensitive to geographic location information, and

the research topic does not focus on these issues, this chapter will directly use methods

that have been applied in multiple studies [51] [52], namely mean imputation and velocity

anomaly detection, to address the above-mentioned problems. The former involves using the

average of preceding and succeeding sequence data to find the intermediate value. The latter

calculates the velocity based on the distance and time of preceding and succeeding data, and

if the velocity exceeds a threshold, it is considered an anomaly and will be modified.

Uneven time intervals can indeed affect the validity of modelling. For example, if the

first five sequence data are collected within one hour, while the next five are collected

over several days, it is evident that such sequences cannot provide useful information due

to the inconsistency in temporal dependency. This issue may be due to device issues or

recording strategies. Some devices, for energy-saving purposes, pause the recording of

location information once the user is not moving [41].

Based on the characteristics mentioned above, this chapter applies the method of averag-

ing coordinates. Specifically, within a unit time interval, the existing records are averaged to

address the issue of uneven time intervals. The average coordinate during the time interval j

can be defined as:

lat j =
1
K

K

∑
k=1

lat j,∀kin time interval j (3.1)

lon j =
1
K

K

∑
k=1

lon j,∀kin time interval j (3.2)

where K represents the amount of data in time interval j. If there are no records within

a unit time interval, the calculation of lat j and lon j will be average the positions from the

preceding and succeeding time intervals as follow:
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lat j =
1
2
(lat j−1 + lat j+1) (3.3)

lon j =
1
2
(lon j−1 + lon j+1) (3.4)

Due to the focus of this chapter not being on data pre-processing, the subsequent sec-

tions describe the actual samples using the dataset that has been pre-processed using the

aforementioned methods.

This chapter aims to detect periodic movement patterns and establish POI preference. To

make the model clearer and more reasonable, there are some assumptions and constraints.

First, following the settings of existing research [162][161], it assumes that each region

has at least one independent visit cycle (if there are multiple cycles, the overall cycle will

be the least common multiple of them). In order to detect periodic regions, the proposed

model combines geographic and time information. This is necessary because estimating a

period from mixed periodic information is not possible solely from the location information,

especially when the regions are close to each other. For example, a gym may have three

different classes scheduled once a week, once every three days, and once every eleven

days, respectively. Such mixed and non-multiple periodicities may lead to dispersion and

difficulty in extraction. Therefore, this chapter usually selects the most evident periodicity

for exploration. Furthermore, if a region does not exhibit any visit period, it will not be

considered as a reference region.

Secondly, this chapter focuses on daily periodic behaviours rather than monthly or

yearly behaviours. It is well-known that the most common periodic behaviours occur at

workplaces, restaurants, gyms, entertainment venues, and homes, with daily or weekly

cycles[41]. Additionally, the cost of detecting periodic events, such as data collection,

storage, and training, increases rapidly from daily to monthly, and increases even more

significantly when detecting yearly events, as it requires much longer historical records. In

this model, the historical records are not sufficient to study monthly and yearly periodic

behaviours. Therefore, the standard period cm
n used in this paper is one day (24 hours).
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Finally, the periodicity duration needs to be shorter than a certain threshold compared

to the length of historical data. Through multiple attempts, it has been found that with one

month of historical data, periodic behaviours need to occur at least three times or more to

be detected. Therefore, periodicities with occurrences below three times will not be given

significant attention, unless the historical data time is extended.

3.2.3 Locating reference region

DBSCAN

Data processing

KDE

𝑃𝑂𝐼1
𝑃𝑂𝐼2

𝑃𝑂𝐼3

Fig. 3.1 User trajectory and POI extraction

Due to the periodic movement of objects, certain specific locations will be repeatedly

visited, and spatial information is prioritized for extraction to form reference spots. Reference

regions represent dense areas where users have more historical location records. A common

statistical method to obtain reference regions is by calculating the point density for each

region. However, this approach can be computationally expensive, and neighbouring regions

may interfere with each other.

To address these challenges, this chapter introduces a more intuitive clustering algorithm

that measures the distances between points as the criterion for clustering. This method

initially identifies clusters of data points that are close to each other, while sparse points

are considered as noise and removed. Since the data has been sampled with a unified time
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interval, sparse points are reasonably attributed to short-term stays or ongoing movement,

which are less relevant for mobile network service-based mobility prediction.

In the clustering algorithm, some edge points within data clusters may be included due

to special circumstances. Once independent regions are segmented, density calculation is

performed for each region to determine the exact location of the visited area, further refining

the reference regions.

DBSCAN and K-means are two widely used clustering methods. In this chapter, DB-

SCAN is introduced as the clustering method for two main reasons. Firstly, compared to the

K-means method, DBSCAN does not require a predetermined number of clusters, which

significantly reduces the computational complexity. In K-means, the number of clusters

needs to be set as a hyperparameter or optimised using the Elbow method based on computing

the Sum of Squared Errors (SSE), which involves multiple global computations to find the

optimal solution. It becomes impractical when dealing with large datasets. On the other hand,

DBSCAN does not have such a requirement, making it more efficient for this specific task.

Secondly, DBSCAN’s ability to determine the density of surrounding points helps exclude

low-density points which are considered as noise. In contrast, K-means classifies all points

without distinguishing noise points. In the context of this chapter, the path records in user

movements are useless for periodicity detection and are treated as noise. By reducing the

inclusion of noise points, DBSCAN allows for clearer extraction of periodic patterns, making

it more suitable for the POI establishment purpose of this chapter.

DBSCAN uses two parameters to determine the clustering scope: the radius of the

neighbourhood, denoted as ε , and the minimum number of points required to form the

core point, denoted as MinPts. In DBSCAN, each point is checked within a radius of ε to

count the number of points in its neighbourhood. If the count exceeds MinPts, the point is

considered a core point and can absorb other points into the cluster through density-reachable

and density-connected relationships. Points with a count lower than MinPts and not included

in any cluster are marked as noise. Finally, by finding all the points connected to the core

points, we obtain the clusters and noise in the dataset.
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Indeed, it is important to note that adjusting the two hyperparameters, ε and MinPts, can

significantly affect the number and scope of clusters. Setting these parameters too large or

too small can reduce the clustering efficiency. Currently, the values of ε and MinPts are often

determined empirically based on prior knowledge. Even so, DBSCAN’s efficiency remains

considerable compared to the global computation required by K-means.

Due to the influence of some edge points in DBSCAN, it is possible to include some

neighbouring reference areas’ noise points. Therefore, this chapter further proposes Kernel

Density Estimation (KDE) to determine the centre and the range of reference region. KDE

is a statistical method to estimate the probability density of random samples. Each sample

is considered as generating from some distributions with an unknown density f and it

accumulates a kernel density estimator at each sample. If the user has frequent activities at

one place, this place will have a higher probability to be its periodic behaviour occurrence

region. In this chapter, the normal distribution kernel function is used in KDE. Meanwhile,

because the position of the user is in a two-dimensional space, it is considered as 2D KDE .

Therefore, the probability density estimation value, denoted as f̂ , at coordinates lati and loni,

is calculated as follows:

f̂ (lati, loni) =
1

nh2

n

∑
i=1

K
(

lat− lati
h

,
lat− loni

h

)
(3.5)

Where n represents the number of samples in the dataset. h is called the bandwidth,

which controls the smoothing of the estimation. K(a,b) is typically a normalised probability

density function. The Gaussian kernel is applied here:

K(a,b) =
1

2π
e−(a2+b2)/2 (3.6)

Fig.3.1 shows the process of the proposed method to determine the reference regions.

Firstly, the historically recorded locations of the users are clustered using the DBSCAN

method, which distinguishes different clusters and identifies noise points. After removing

the noise points, for each cluster, the KDE is employed to estimate the probability density.

This approach helps further reduce noise caused by model bias in the clustering model.
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As depicted in the figure, the contour lines represent different probability density levels,

indicating that the reference region can be determined by selecting the contour line with the

top-p% density value. The larger the value of p, the larger the size of the reference region. To

determine the optimal value for p, experimental comparisons are conducted in later sections.

The results demonstrate that an efficiency peak is achieved when p% equals 60%.

3.2.4 Periodic behaviour detection

After detecting a set of reference regions, we further propose a method to obtain the potential

periods within each region. To reduce complexity, in a single region, the user’s mobility

pattern now can be transformed as a binary sequence B = b1 b2. . .bn, where bi = 1 when the

user is within the reference region at ith timestamp and 0 otherwise.

As can be seen in [92], there is a popular method to detect periods in a discrete signal

sequence which uses Fourier transform and autocorrelation. Fourier Transform (FT) is used

to decompose a function from the time domain to the frequency domain. However, it suffers

from a kind of low-resolution problem in the low-frequency region which is caused by the

length of the period. ‘Spectral leakage’ is another issue caused by unsynchronised sampling

frequency and signal frequency, which leads to false positive values in the periodogram.

These problems can be solved by autocorrelation which can accurately estimate both short

and long periods, but it is difficult to determine the essential period due to the issue of

autocorrelation. Therefore, the combination of FT and autocorrelation is to examine whether

the candidate period from the periodogram lies on a hill of the autocorrelation. If it does, we

can consider it as a valid period otherwise it is a false alarm. Hence in this paper, we apply

this method to detect the period of reference region visiting.

In Discrete Fourier Transform (DFT), we transform the sequence B to complex numbers

X1,X2,X3, . . . ,Xn, which is a set of sequence Fourier coefficient X( f k
n
). The periodogram P

is provided by the squared length of each Fourier coefficient:

P( f k
n
) =

∥∥∥X f k
n

∥∥∥2
(3.7)
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Where P( f k
n
) is the power of the frequency k

n . In this equation, the higher power it has,

the larger probability the corresponding frequency is the period. Hence, it can be tested from

the largest P( f k
n
), and we normally check top-four frequencies.

Given periodogram P( f k
n
), autocorrelation needs to be calculated to determine the exact

period in the time domain, because a single value X f k
n

in the frequency domain corresponds

to a range of periods [n
k · · ·

n
k−1 ] in the time domain.

Autocorrelation Function (ACF) is used to examine how the similarity between a sequence

and its previous values for different τ lags:

ACF(τ) =
∑

n
t=τ+1(bt − b̄)(bt−τ − b̄)

∑
n
t=1(bt − b̄)2 (3.8)

Where n is the length of the time series data, bt is the value of the time series at time t,

bt−τ is the value of the time series lagged by k time points, and b̄ is the mean of the time

series data. The autocorrelation function (ACF) takes values between -1 and 1. When the

autocorrelation coefficient is close to 1, it indicates a positive correlation, while close to

-1 indicates a negative correlation. A value close to 0 suggests no linear correlation. The

autocorrelation function is commonly used in time series analysis to assess the presence of

periodicity or trends in the data. In this chapter, it is employed for assisting in the detection

of periodic behaviour.

Therefore, when the periodogram provides a period range [a,b), it can transform them

to [ACF(a),ACF(a+1) · · ·ACF(b−1)) and test whether there is a peak. If there is, time is

treated with a maximum ACF value as a valid period.

3.2.5 The probability of periodic behaviour and duration

Given the period in a specific region, we aim to find the duration of stay in each period. The

method we used to solve this problem is the Bayesian approach which is a kind of machine

learning algorithm that the parameters can be updated with a training database. The value

generated by the Bayesian equation in this paper is to estimate the probability distribution
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p(q|y) over the probability of event occurrence q when the historical records show the event

happened with y times.

Where the meaning of each factor is introduced in Chapter 2. When the probability

distribution is measured, we can calculate the expected value of q under the posterior which

is the probability of behaviour happening in the specific time interval. If there are several

intervals with a high probability of q, we can predict the duration of the user visiting the

region in one period.

In this paper, because it only detects the periodic visiting, it can be separated and analysed

of the behaviour in the reference region instead of the behaviour along the timeline. Hence,

due to the binary record of user visit, it can predict sequence B is a set of samples generated

by a binomial distribution which is the likelihood p(y|q)in the Bayesian function. For prior

distribution, it considers p(q) as the beta distribution which can represent three scenarios

of q. In this chapter, the probability in a binomial distribution is regarded as unknown for

straightly showing the changes of the database. In Bayes’ rule, if a likelihood (binomial) -

prior (beta) pair is conjugate, the posterior has the same form as the prior without considering

the form of margin likelihood p(y) which is:

p(q|y) ∝

N

y

qy(1−q)N−y

×
[

Γ(α +β )

Γ(α)Γ(β )
qα−1(1−q)β−1

]
(3.9)

p(q|y) = Γ(α +β +N)

Γ(α + y)Γ(β +N − y)
qα+y−1(1−q)β+N−y (3.10)

Where α and β are parameters used to control the shape of the resulting density function

which means that both are equal to one in this paper to represent unknown prior. N is the

total number of samples. The expected value of q under posterior is:

Ep(q|y){R}= α + y
α +β +n

(3.11)

Then the system measures the probability of event occurrence in each time interval within

the period. If there are two periodic behaviours in this region, we need to use Equation (3.7)

to estimate the new probability pn
i which is accumulated by two original clusters:
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pn
i =

Cn,1

Cn,1 +Cn,2 + · · ·
qn,1 +

Cn,2

Cn,1 +Cn,2 + · · ·
qn,2 + · · · (3.12)

Where Cn,d is the width of samples in cluster n which is decided by a larger period. For

example, if two periods are daily and weekly, the width of the daily cluster (n,1) is seven

days because the time of weekly periodic behaviour consists of each Monday to each Sunday.

And the width of the weekly cluster Cn,2is the total number of weeks. And if the larger

period is monthly, the width of the daily cluster is thirty days, and Cn,3represents the width of

monthly in the same cluster n. From this equation, it is obvious that with the data increasing,

the probability of larger periodic behaviour will domain the new probability because the

smaller periodic behaviour is ‘predicted’ by the period detection algorithm which has less

confidence than larger periodic behaviour. pn
i is the expected probability for cluster n at i

time slot.

Since there are three sub-tasks in the periodic behaviour mining problem, detecting

the specific region, a period of user’s behaviour pattern detection, and POI preference

establishment. I propose the reference region extraction model shown in Algorithm 1, and

the periodic behaviour pattern detection and POI preference sequence generate shown in

Algorithm 2, in which each stage is used to target a sub-task.

Algorithms 1 and 2 show the general framework in this chapter. In the first stage, we try

to find all the potential reference regions. Since a UE with periodic movement will repeatedly

visit some places if we only consider the spatial information, the reference region will have

a higher density of points than the other regions. Then, for each potential reference region,

the periods are detected. Finally, for every period cm
n , we further measure the probability of

periodic behaviours occurring in each interval and then combine the time of high probability

periodic behaviours to find the duration of it.

3.3 Research process and case study

In this section, we will apply these solutions to analyse the model simulated in the previous

section and estimate the performance. Therefore, according to the outline of the simulation,
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Algorithm 1: Periodic Behaviour Detection and Prediction
Input: A geo-location and timestamp sequence Su, ε , Minpts
Output: Reference region sequence R

1 Initialisation;
2 si ∈ Su;
3 Creating empty sets R and R′ = [] ;
4 n = 0;
5 n′ = 0;
6 Mark all the elements in Su as unvisited;
7 for i < length of Su, i ++ do
8 Find a set of points within the range with si as the centre and radius ε , N;
9 if the number of set N, En ≥ MinPts then

10 Mark si core point ;
11 else
12 end
13 for si marked as core point and unvisited do
14 Mark si as visited and label it as n;
15 for Pick an unvisited point s j in si’s N do
16 if s j is core point then
17 Mark s j as visited and label it as n ;
18 Adding a set of points within the range with s j as the centre and radius ε ,

N′ into N
19 else
20 Mark s j as visited and label it as n
21 end
22 Append all si labelled as n into R′ n++

23 end
24 for si marked as unvisited do
25 Mark si as visited and label it as n;
26 end
27 end
28 for n′<n do
29 Withdraw all the si labelled as n′;
30 Detect potential reference regions in sub-areas based on location stamp density

using Kernel Density Estimator (KDE) with top-p%;
31 Calculate the centre coordinator of these si;
32 Form a sub-set y′n = {ylat ′n,ylon′n,ylab′n} Append y′n into R;
33 n′++
34 end
35 return R
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Algorithm 2: Reference region extraction
Input: Reference region contextual sequence data R, the number of region n′

Output: POI preference sequence O
1 Initialisation;

2 # Stage 1: Periodic behaviour pattern detection;
3 h = 0 B = [] for n = 0, n < n′ do
4 Withdraw all si ∈ R′ have same label n;
5 for h < Historical data duration, H++) do
6 if There is a visiting record at h in location n then
7 Append 1 into B
8 else
9 Append 0 into B

10 end
11 end
12 Find the period of user’s behaviour in each interval and region during the entire

modelling time with B;
13 Record the period at m-th period time in the reference region rn. cm

n ;
14 Append cm

n ,into R
15 end
16 return R and B

17 # Stage 2: Establish POI preference dataset;
18 P = [];
19 for n = 0, n < n′ do
20 for m′ = 0, m′ < m do
21 Withdraw cm

n in R, which is the m-th period time in the region n;
22 Withdraw all the period time slots in B in the region n, according to cm

n ;
23 Use the Bayesian function to measure the probability pn,m

i of the user’s
position in each interval;

24 Append pn,m
i into P

25 end
26 n++;
27 end
28 Merge the elements with the same n and i in P with Equation (3.13);
29 Append P into R
30 return R as O
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we first set the parameters in the model to create a user’s daily mobility trace in 28 days.

Python is used to build this model, and the experiment is performed on a 3.0 GHz Intel i5

system with 8 GB memory. The system is Windows 10.

3.3.1 Dataset pre-processing

Fig. 3.2 A user’s trajectory Geolife dataset
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This thesis introduces a public dataset, called Geolife, collected by Microsoft Research

Asia [53]. The project aims to explore urban user travel patterns and transportation, requiring

location and time information. The dataset spans three years and includes observations

from 182 users, recording their geographic location information at different time slots. The

recorded data includes user IDs, GPS coordinates, and timestamps represented by numerical

IDs, latitude, longitude, and time, respectively. Since this chapter mainly focuses on the

analysis of the mobility patterns of individual users, it primarily retains the location and

time data. Figure 3.9 displays the movement trajectory of a user for one day, with each

point representing a recorded data entry. By overlaying this information on a map, the user’s

mobility can be visually observed.

As mentioned earlier, this dataset also suffers from some issues such as a small number of

data missing, data drift, and irregular time intervals. To address the first two issues, this thesis

employs mean imputation and velocity anomaly detection. For the irregular time intervals,

it uses the mean coordinates to fill in the gaps and re-aggregates the data to record hourly

intervals. Additionally, local time is converted into the day of the week.

Due to the incomplete trajectory records for some users, it is necessary to perform user

selection. In the end, a suitable user’s historical data is identified, consisting of 35 continuous

days with hourly intervals, resulting in 840 data points. Each data point for a specific hour

is represented as si = {lati, loni, ti,wi}, where i ≤ 744. The variables lati and loni represent

the latitude and longitude coordinates, ti denotes the time information, and wi represents the

day of the week. The first 28 days dataset is constructed as training data, and the last 7 days

dataset is constructed as testing data.

3.3.2 Reference region detection

As the previous section introduced, we need to use the density of points to detect the periodic

behaviour regions.

First, as shown in Fig.3.3, DBSCAN is used for clustering. ε is set to 10, indicating a

range of 10 meters, and MinPts is set to 5, requiring at least five neighbouring timestamps

within the specified range. These parameter values are determined based on approximate
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Fig. 3.3 The user historical trajectory clustered by DBSCAN

distance information and empirical knowledge. Four regions are identified as clusters,

denoted as r1, r2, r3, and r4. By comparing with the actual map, it is observed that only r1

corresponds to a residential area with a significant number of timestamps, suggesting it might

be the user’s home. However, the specific user behaviour cannot be determined solely based

on this information; further analysis is required through the detection of periodic behaviours.

Next, KDE is applied to the DBSCAN clustering to locate the scale of the cluster range.

Fig.3.4 shows the KDE distributions of the four regions, respectively, which visually demon-

strates the expansion of the range with increasing top-p%. To evaluate the performance of

POI preferences, five different p values (20, 40, 60, 80, and 100) are selected for experimen-

tation. The goal is to determine the optimal p value that yields the best results in terms of

performance assessment.

3.3.3 Periodic pattern detection

This section explores the periodic behaviour of users in the four reference regions that were

identified in the previous section. It first converts the data from each reference region into

binary sequences representing in and out movements. Then, we use the FFT method to

analyse the frequencies and detect periodic patterns. By combining the Periodogram and
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(1) 𝑟1 (2) 𝑟2

(3) 𝑟3 (4) 𝑟4

Fig. 3.4 The KDE of four reference regions

autocorrelation algorithms, we can efficiently identify the periods in each region while

avoiding spectral leakage. The results are significant, as we have successfully discovered the

corresponding periodic patterns in each region.

r1 stands out as a special case. It is located in a residential area, and the periodicity is

observed daily, with most visits occurring during the night. It is highly likely that this region

represents the user’s home. Moreover, further periodicity exploration in r1 did not yield

additional discoveries.



3.3 Research process and case study 53

𝑝12

𝑝22

𝑝32 𝑝42

24 Hours 168 Hours

(a) Periodogram

(b) autocorrelation

Fig. 3.5 Periodogram and autocorrelation to detect the period of user behaviour in reference
region r2, (a) periodogram of the pattern in r2, (a) autocorrelation of the pattern in r2

Fig.3.5 shows the periodogram and autocorrelation graph in r2. In a, there are four

frequencies with the top-four largest power spectral density (PSD) p12, p22, p32 and p42

which are the potential period of user’s behaviour in r2. However, in b, only p12 and p22

have peak points in the autocorrelation function which are 168 hours (a week) and 24.1 hours

(a day) respectively. Hence, there are two periodic behaviour in r2 which can be explained

by that the user visits this region almost every day but disappears a couple of days regularly

per week.

Fig.3.6 represents the period in r3 which has 168 hours (a week) and 24 hours (a day) as

well by comparing the periodogram and ACF. However, in the autocorrelation graph Fig.3.6
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𝑝13 𝑝23

𝑝33
𝑝43

24 Hours

168 Hours

(a) Periodogram

(b) autocorrelation

Fig. 3.6 Periodogram and autocorrelation to detect the period of user behaviour in reference
region r3, (a) periodogram of the pattern in r3, (a) autocorrelation of the pattern in r3

(b), the value in 24 hours is smaller than the value in 168 hours which is different from the

graph inr2. It shows that the strength of the user’s 24-hour periodic behaviour is weaker than

168 hours which means that the user visits the region for fewer consecutive specific days

per week. On the other hand, p23 is still larger than p13 because the number of samples for

measuring 24 hours period is more than for 168 hours period.

In r4, there is no valid period detected by ACF and DFT, however, in Fig.3.7 (a), we can

find that nearly 95% of total timestamps are within the time from 17:00 to 19:00 every day.
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Hence, if these timestamps are accumulated as a new three-hour interval and then use the

combination of ACF and DFT with the period being 24 hours, it means that the user visits r4

from 17:00 to 19:00 randomly every day (Fig.3.7 (b)).

19:00
17:00

24 Hours

(a) (b)

Fig. 3.7 (a)Timestamps in r4 and (b)the periodogram of three-hour interval timestamps

Table 3.1 shows the period detected in four regions r1,r2,r3andr4.

Table 3.1 The period in four reference regions

Reference region r1 r2 r3 r4
Period 24H 24H,168H 24H, 168H 24H

3.3.4 POI preference establishment

In r1, because the period is 24 hours, the system picks each interval from 0:00 to 23:00 in

28 days and uses Equation 10 to 12 to estimate the probability. And in r4, the method is the

same but the probability in the majority visit time 17:00, 18:00, and 19:00 is not high enough

because a random visit in three hours for an hour disperses the probability. If a user spends

two hours in a restaurant place from 17:00 to 19:00, the probability will be approximately

over 50%which represents a two-hour duration visit. For the probability in r2 andr3, new

probability q
′
needs to be considered due to two periodic behaviour. For the 24-hour cluster,

we use 28-day data through the Bayesian algorithm and accumulate the resulting probability

of 168 hours clusters. Because the occurrence day is mainly on weekday and weekend for r2
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and r3 respectively, there are two summary probability distribution graphs for weekday and

weekend which is Fig.3.8 and Fig.3.9.

Fig. 3.8 Probability of movement on weekday

Fig. 3.9 Probability of movement on weekend
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From Fig.3.8, it can be seen that the user leaves r1 at around 9:00, return at about 20:00

and then has a high probability stay in this region until the next day at 9:00, which has a

similar movement pattern with ‘home’ in the model. However, because of the influence

of coming home later at weekends, the system reduces the probability of 20:00 to 22:00

on both weekdays and weekends. This is a problem for one periodic event which will be

studied in future work. The user visits r mainly on weekdays from 9:00 to 16:00 which is

the workplace in the model. r3 is visited each Saturday and Sunday for two hours where is

the gym. And r4 appears from 17:00 to 19:00 every day with low probability where is the

restaurant placed in the model. Therefore, the designed algorithm in this chapter can be used

to detect the reference region, the period of visiting and the duration of stay in each period.

In Fig.3.8 and Fig.??, the green bar represents the probability in the regions except the major

region. For example, from 0:00 to 8:00, the major region is home (blue bar), and the sum

of the probability of all of the other regions is the green bar because, in this chapter, the

binomial distribution is proposed as likelihood to only estimate the probability of in or out

the detected region. Thus, It cannot know the probability of visiting other regions from the

perspective of the detected region. This problem can be solved by comparing the probability

of all regions at the same time interval, then, choosing the region with periodic behaviour

and the maximum value. Meanwhile, because of the probability density, even if all of the

records are one (means in), the probability cannot be one hundred percent such as 0:00 to

6:00 for home.

Then, Personal POI is established. This list is divided into weekdays and weekends,

respectively represented as Qwd =
{

qwd
j,1,q

wd
j,2,q

wd
j,3...q

wd
j,i | j = 1,2, ...,5

}
and

Qwk =
{

qwk
j,1,q

wk
j,2,q

wk
j,3...q

wk
j,i | j = 1,2, ...,5

}
, where qwd

j,i represents the possibility of j cluster

at the ith hour on weekdays. Each list has a 5X24 dimension, that is, the possibility q
′
j of

each cluster location within 24-time intervals. As a result, the POI list of the past 28 days is

established, and the corresponding regional clusters can be given for the subsequent locations,

as well as the probability of each cluster in the corresponding time period.
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3.4 Next destination Prediction Model based on POI Pref-

erence and LSTM

3.4.1 The Structure of the POI Preference Dataset

Although distinguishing between weekdays and weekends is clear for the analysis, there is a

flaw in the prediction dataset preparation. The LSTM model performs sequence prediction,

rather than input differentiation between weekdays and weekends. Therefore, to address this

issue, we need to combine the probability lists for weekdays and weekends and introduce an

additional dimension to indicate the weekday or weekend label. Base on that, we can merge

both arrays into one cohesive dataset.

The final training dataset O is constructed as follows:

O = {o1,o2, . . . ,og}

og = {ti,wz,yn, p1
i , p2

i , p3
i , p4

i , p5
i }

where ti represents the time, including the hour, the day and the month. Since the time

interval in this chapter is set at the hourly level, ti will always be an exact hour. wz refers to

the day of the week, and z is a positive integer not greater than 7. yn denotes the reference

region information at time ti, and n total clusters number, which is four. pn
i represents the

probability that the nth POI is visited by the user at time ti. The values of pn
i are aggregated

from the qwk
j,i and qwd

j,i obtained in the previous section. Each og records the user’s location,

time, and probability of visiting each of the five regions at the current moment. Thus, we

establish a probability matrix for each hour of the week, each reference region, indicating

the likelihood of user visits, which will serve as the training set for the next destination

prediction model.

The training and testing samples are split into 80% and 20%, which corresponds to 28

days and 7 days, respectively. Training dataset D is composed of segments, each consisting

of l consecutive og elements. The historical window l refers to the number of time periods
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used as input to predict the next user visit location at time g+1. In this case, l is set to 12.

Therefore, D = {(o1,o2,o3, . . . ,o12), . . . ,(og−l,og−l+1,og−l+2, . . . ,og)}. The output data is

the most likely POI ylabn for the next moment. It is important to note that pn
i is actually

calculated based on each time period within a week, so in practice, the historical data can

be used initially, and then updated after a certain period of time to avoid real-time updating

pressure on the system.

3.4.2 LSTM in Proposed POI Preference-based Destination Prediction

tanh

tanh Update gate Output gateForget gate

𝐶𝑡−1

ℎ𝑡−1

𝐶𝑡

ℎ𝑡

ℎ𝑡

𝑋𝑡

𝑓𝑡 𝑖𝑡
𝑜𝑡

ሚ𝐶𝑡

Fig. 3.10 The structure of an LSTM network

The main purpose of this chapter is to validate the improvement in the accuracy of

predicting the next destination using the proposed POI preference, as well as to assess the

predictive performance of the LSTM model on sequence data. The information included

in the proposed POI preference dataset contains much information that goes beyond what
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traditional mathematical modelling or shallow machine learning algorithms can handle.

For example, the MC transition matrix cannot fully describe the relationships between the

possibilities of visiting different regions. It calls for a model that can extract features and

validate the POI preference. LSTM, based on neural network models, can utilise cells to

perform non-linear interactions with the inputs, allowing for the comprehensive exploration

of features in complex elements. Additionally, its unique memory-forgetting mechanism can

selectively retain information for a long time, which is crucial for sequence prediction tasks.

Given these characteristics, this paper chooses LSTM as the model for predicting the next

destination based on POI preference.

The functionality and characteristics of LSTM are worthy of research. Its basic architec-

ture, RNN, achieves information retention by establishing connections between task-specific

parameters in the hidden layers, which is a groundbreaking optimisation. This architecture

has been widely used in natural language processing and sequence prediction tasks. These

tasks emphasise that previous inputs can influence subsequent outputs, highlighting the

importance of handling long-term dependencies. However, RNN suffers from the vanishing

gradient problem [48]. From a mathematical perspective, this problem arises because the

gradient updates exponentially decay to zero due to the increasing layers of backpropagation.

From an information perspective, it occurs because the addition of historical features leads to

feature dilution. LSTM, as an improved architecture of RNN, is designed to address these

issues. The core purpose of LSTM is to replace the recurrent structure in RNN with gate

structures called memory blocks [79]. These memory blocks control the efficiency of passing

long-term information, effectively mitigating the problems of feature dilution and redundancy

caused by the prolonged transmission of features.

Fig.3.10 shows the key components of LSTM, the memory blocks, which is a recurrently

connected subnetwork comprising several functional modules called gates. During each

iteration of the task, these memory modules perform non-linear computations on the features,

allowing for the retention of important information and discarding less relevant information.

This mechanism enables LSTM to selectively retain critical information for an extended
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period, thereby effectively addressing the vanishing gradient problem and handling long-term

dependencies in sequence data.

The gates in LSTM are classified into three types based on their respective functions: the

input gate it , the forget gate ft , and the output gate ot . Additionally, LSTM utilises a cell

state Ct to store network state information from previous inputs. The functionalities of the

gate structures can be summarised as follows:

• The forget gate, through its recurrent connection, controls how much information is

retained in the current state of the memory block. The formula is as follows:

ft = σ(Wx f · xt +Wh f ·ht−1 +b f ) (3.13)

• The input gate controls the amount of new information flowing into the current state of

the memory block. The formula is as follows:

it = σ(Wxi · xt +Whi ·ht−1 +bi) (3.14)

• The representation of the cell state, controlled by both the forget gate and the input

gate, is as follows:

Ct = ft ·Ct−1 + it · tanh(Wxc · xt +Whc ·ht−1 +bc) (3.15)

• The output gate controls how much information is used to compute the output activation

of the memory block, and its representation is as follows:

ot = σ(Wxo · xt +Who ·ht−1 +bo) (3.16)

Where Xt is the input vector, ht is the hidden state, Wx f , Wh f , Wxi, Whi, Wxc, Whc, Wxo,

and Who are the weight matrices for each gate that need to be trained. b f , bi, bc, and bo are

biases to better adapt the model. ⊙ denotes the Hadamard product, ⊕ and ⊗ respectively

represents element-wise addition and dot product of two vectors. σ and φ are activation

functions, where σ is typically the sigmoid function and φ is typically the hyperbolic tangent

(tanh) function. The choice of the sigmoid function is due to its output range from 0 to 1,
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which allows it to control the flow of information through gates and regulate the filtering of

information. The tanh function is chosen to address the vanishing gradient problem, as it

can sustain long-term second derivative functions before approaching zero. The sigmoid and

tanh functions are defined as follows:

σ(x) =
1

1+ e−x (3.17)

tanh(x) =
ex − e−x

ex + e−x (3.18)

The execution process of LSTM involves the previous hidden state ht−1 and the input

value Xt at the current time step. These two parameters are first passed through the forget

gate to determine the information to be discarded, resulting in ft . Next, they are passed

through the input gate to determine the information to be updated, resulting in it , as well as

the current cell state C̃t . Finally, the outputs from the forget gate and input gate are combined

to obtain the long-term memory Ct and short-term memory ht , respectively. These values are

then stored and used as input for the next neuron.

3.4.3 Baseline algorithms

The innovation of this chapter lies in the exploration of user POI preference by leveraging

their historical location and time information. By combining spatial and temporal aspects, we

establish a framework that considers each POI’s spatial characteristics as a reference point,

thereby independently investigating the temporal dependencies of different POIs. Moreover,

we construct a training dataset for POI preference, which includes user visit probabilities,

to better guide the sequence neural network for the next destination prediction. Therefore,

there are three aspects to be addressed to demonstrate the superiority and interpretability of

the proposed method: (1) comparison of data POI extraction methods, (2) comparison of

training data structure, and (3) comparison of different model parameters.

For the comparison of data POI extraction methods, this chapter refers to state-of-the-art

techniques to validate the reliability of establishing preferences. The Periodica [162] and
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DBSCAN models [54]are introduced. The former method involves constructing a bivariate

normal density map to select POIs and then using maximum likelihood estimation to model

the visit probabilities of these locations, which is similar to the type of training data this

chapter is constructing. The latter method relies on taxi driver patterns to extract POIs, further

demonstrating the strong performance of DBSCAN in the context of POIs. Therefore, for

data POI extraction, both of these methods will be used. The former method can be applied

to the training model, while the latter can be used to perform reference region extraction by

masking the KDE proposed in our model.

For the comparison of data types, we will compare the accuracy of predicting the next

destination by establishing training datasets with different elements. Currently, most re-

search focuses on processing POI geographical locations and sequences, which includes

only geographical location information and time information, and focuses on the length

of historical movement trajectories. Studies based on MC [55] and advanced models like

HST-LSTM [49]have used these types of data. There are also studies that have added time

and distance dimensions [56], calculating the time and distance between two points of visit

and incorporating them into the training data construction.

Finally, it will investigate the impact of self-parameters in this chapter, focusing on the

top-p% in KDE on the prediction results. We will choose different values of p, such as 20,

40, 60, 80, and 100, for analysis. When p is set to 100, it is equivalent to using DBSCAN

alone for reference region localisation.

Therefore, this chapter will use the following models and training data types as baselines

to demonstrate the advantages of the proposed framework in prediction:

• Periodica-LSTM [162]. It is a hybrid approach that combines the advanced Periodica

algorithm, which calculates visit probabilities, with LSTM for prediction. While

Periodica was initially designed for detecting periodicity in bird movement data, it

lacks a predictive mechanism for users. Therefore, in this chapter, as a baseline method,

LSTM is integrated into the framework to enable destination prediction based on the

calculated visit probabilities.
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• DBSCAN-only model [54]. As DBSCAN is still considered a crucial technique for

POI extraction, this study verifies the significance of fine-grained POI localisation

in the proposed method by excluding the KDE component. In the DBSCAN-only

model, the DBSCAN algorithm is solely used for extracting reference regions, without

considering the KDE probabilities.

• FPMC [55]. FPMC is the state-of-the-art personalised Markov Chain algorithm for

recommendation or prediction tasks.

• HST-LSTM [49]. This model is an improved version of LSTM, which incorporates

historical data through an encoder-decoder architecture to enhance prediction perfor-

mance.

• LSTM. To validate the impact of incorporating probabilistic data, this method directly

uses LSTM to predict the next destination based on historical POI and time data.

• STGCN [56]. This model enhances the prediction performance by incorporating

contextual information, such as the distance between POIs and time, into the data. The

predictor used in this model is LSTM.

• p=20,40,60,80,100 refer to the proposed model in this paper, which select the region

covered by the top 20%, 40%, 60%, 80%, 100% probability distribution in KDE

(Kernel Density Estimation), respectively.

By comparing the results, the contribution degree of each POI model method to the

prediction algorithm can be evaluated. It has been demonstrated in the literature review that

such strongly correlated auxiliary information can be used to enhance system performance.

3.4.4 Model Configuration

In the LSTM-based model, the length of historical data is set as 12. LSTM has two layers,

and the number of hidden units is set as 16, 32. All models take sequential historical data as

input and output the POI label for the next time step.
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By separately training the data of the first 28 days of the LSTM, It can then predict the

testing data using the next moment prediction, and the accuracy rate is used to evaluate the

performance. In addition, since the data in the early morning (00:00-06:00) is mostly fixed at

home, although it is brought into training and prediction for the dataset completeness, the

result is not included in the accuracy calculation.

To assess the performance of the models, predictive accuracy is applied, which is the

proportion of correct predictions to total predictions made. The accuracy can be defined as

follows:

Accuracy =
1
I

I

∑
i=1

L ˆylabi=ylabi
×100% (3.19)

, where I is the total number of testing data. L ˆylabii=ylabi
represents the number when ith

timestamp, the POI prediction ˆylabi and real data ylabi are the same, which is 1.

3.4.5 Prediction Performance

Fig. 3.11 The performance of the proposed model and baseline models

Fig.3.11 illustrates the prediction performance of the proposed model and the baseline

model.

In order to facilitate comparison with other models, the most suitable value of p is

selected as p = 60. It can be observed that some points clustered as POIs by DBSCAN may
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have a negative impact on predictions. Additionally, as p values approach the minimum

and maximum, the model’s performance tends to decline. This is in line with common

sense, as too small a range may disrupt the continuity of visitation records, while too

large a range may be affected by noise points. Another interesting phenomenon is that

the model’s performance at p = 40 is worse than at p = 20. This could be due to 40%

of the region being in an intermediate zone with partial periodic points. Whether below

40% or above it, the periodicity becomes clearer. This suggests that it may be related to

the user’s periodic behavioural patterns. Overall, the system performs best when p = 60,

with a performance improvement of 7% compared to the worst case of p = 100. This

indicates that KDE effectively discards the edge points of DBSCAN, thereby improving

overall performance. This validates the necessity of researching from the perspective of

spatiotemporal dependence.

Next is the study of the impact of POI preference extraction quality on predictions.

Firstly, there is a clear difference between Periodica-LSTM and the proposed model, which

demonstrates that our proposed model has a better ability in extracting mobility patterns. This

is evident when comparing with the DBSCAN-only model as well. Regarding the comparison

of training data assistance, it can be observed that studying historical visitation sequences

alone may have reached a bottleneck. For instance, in the comparison between LSTM and

the proposed model, there is nearly a 20% difference due to the variation in training data

dimensions. The same situation is observed in the comparison between Periodica-LSTM

and the LSTM model. Although Periodica-LSTM’s information feature extraction efficiency

is lower than ours, it still outperforms LSTM in the models that only focus on historical

visitation sequences. Furthermore, even with algorithm optimisation, it is difficult to further

extract features at a deeper level. The most obvious example is HST-LSTM, which, despite

using a deeper neural network architecture, does not yield significant gains in exploring

historical visitation data compared to the other two models that involve auxiliary information,

STGCN and the proposed model. After comparing the two models that incorporate auxiliary

information, it is evident that the information regarding user visitation probabilities, proposed
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in this study, leads to a more significant improvement in prediction performance, with an

increase in accuracy of approximately 4%.

Another essential point to note is the significant difference between the MC model and

neural network-based models. This can be attributed to the advantages of LSTM/RNN in

extracting sequence features. As seen in the comparison between LSTM and HST-LSTM,

model optimisation can indeed lead to performance improvements. Furthermore, with the

assistance of auxiliary information, data can be more effectively utilized to enhance the

performance of the system model. Therefore, performance optimisation and intrinsic feature

extraction from data are the two key factors in improving model performance.

In summary, auxiliary information can bring surprising improvements to neural network-

based models in sequence prediction tasks. The framework designed in this chapter, which

utilises LSTM for next destination prediction through POI preference, achieves a prediction

accuracy that is 4% higher than the state-of-the-art algorithms and approximately 30% higher

than traditional methods.

3.5 Conclusion

This chapter presents a framework that leverages spatiotemporal dependencies to explore

users’ POI preferences, resulting in auxiliary information for constructing the training

data. By applying this training data, our proposed model exhibits enhanced efficiency in

feature extraction compared to traditional historical geographical coordinate data. Through

validation on real-world datasets, the developed system achieves a 4% improvement in

prediction accuracy over state-of-the-art algorithms and outperforms systems relying solely

on traditional historical geographical coordinate data by 20%. This is a satisfying outcome,

indicating the feasibility of utilizing user-specific POI data to enhance the detection of

periodic behaviours.

Furthermore, individual POI preferences can also serve as location information. For

instance, when the highest probability region remains consistent over a period of time, the

user is likely to stay at the same place. By exploring the time of the next highest probability
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region, the duration of their stay can be determined. This can be beneficial for other network

services, such as network prediction and device-to-device (D2D) communication, which

require devices to maintain relatively stable states.

Furthermore, this study also verified that the addition of auxiliary information can greatly

assist in feature extraction for neural network-based sequence prediction models, thereby

enhancing prediction performance.

The proposed model has two limitations. Firstly, it lacks a mechanism for parameter

adjustment. For instance, as the data volume increases, selecting appropriate KDE parameters

becomes a challenging task. Employing exhaustive search algorithms to find the optimal

value of top-p becomes impractical when the number of POIs grows substantially. To address

this issue, alternative approaches such as Bayesian parameter tuning or using neural network

frameworks for parameter selection could be introduced. Secondly, the model overly relies

on the quantity of historical data for periodicity detection, which is a common challenge

in statistical algorithms. Typically, resolving such problems involves introducing neural

networks for nonlinear modelling, but this could potentially increase complexity.

In conclusion, the proposed algorithm effectively establishes personalised POI prefer-

ences and generates auxiliary information to facilitate the construction of state-of-the-art

sequence prediction models. The algorithm demonstrates strong predictive capabilities,

showing significant improvements over traditional approaches and current advanced methods.

Overall, it successfully enables the establishment of personalised POI prediction and offers

valuable insights for the development of sequence prediction models.



Chapter 4

MTL-STPN: a Multi-Task

Learning-based Spatial-Temporal

Parallel deep learning Network

In the previous chapters, the potential of deep learning models in time series prediction tasks

for mobile networks has been discussed, as well as the importance of feature exploration

based on auxiliary information to optimise the performance of prediction models. According

to these achievements, this chapter proposes a novel framework for mobile network traf-

fic prediction that combines deep learning techniques with the spatiotemporal correlation

of mobile network traffic. This chapter introduces a Multi-Task Learning-based Spatial-

Temporal Parallel deep learning Network (MTL-STPN) that is able to learn nearby highly

correlated mobile traffic by sharing parameters. Complemented by a traffic pattern cluster-

ing method, Spatial-Temporal Pearson traffic Pattern Clustering (STPPC) algorithm, the

framework can autonomously select highly-contributing base station traffic to maintain the

model’s robustness. Numerical results demonstrate that MTL-STPN outperforms existing

prediction algorithms in cell-level mobile traffic prediction tasks. Furthermore, the multi-task

prediction in MTL-STPN enhances the learning efficiency of base learners, reducing the

required training period for parameter training by approximately 60%, while maintaining
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similar or better prediction performance.

4.1 Introduction

Over the last decade, the dramatic development of cellular networks has led to the explosive

demands of mobile traffic. In order to reduce OPEX while guaranteeing the QoS, operators

tend to design a more intelligent and self-organising system, called the SON. It introduces

demand-aware allocation mechanisms of network resources to cope with the fluctuations

in data usage and take preemptive actions, such as Radio Resource Management (RRM),

BS sleep-mode strategy, etc. The operating of these strategies is based on the analysis of

real-time traffic and accurate prediction capabilities [174], which are the major challenge to

implement. Therefore, understanding and forecasting the mobile network traffic patterns are

the basic information in the self-organising system to alleviate the burdens on the network

operator’s infrastructure caused by the massive data transmission, which is valuable from the

perspective of business development as well as user experience.

The short-term prediction of local aggregate mobile internet traffic is an essential subject

in the research. Since such data has strong diurnal patterns and periodicity, time series

analysis and machine learning algorithms have been widely used to model and predict

mobile network traffic. Moreover, to further improve the accuracy of short-term data traffic

prediction, the features of spatiotemporal correlation are extracted inherently. The mobile

traffic in a target cell for the next timestamp forecasting has partially correlated with the

historical traffic and current network traffic both in the target cell and adjacent cells. In the

early research, [175] utilized Conditional Entropy (CE) theory to quantify the predictability

of the traffic under three types of services and concluded the positive correlation between

the knowledge of adjacent cell traffic and the target cell’s predictability. [176] verifies this

conclusion and further shows that similar attribution among different regions, like clustering

by POI, has a positive influence on the result of cellular network traffic prediction in its

framework.
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Due to the complexity of spatiotemporal feature modelling, deep learning-based ap-

proaches have been studied recently including customising the deeper models to fit various

traffic patterns or increasing the receptive field to extract more features in historical data. For

the former method, for example, [177] employed a hybrid deep learning model, including

the global and local autoencoder-based model and LSTM units, to achieve the purpose of

spatiotemporal features modelling. Moreover, the densely connected CNN has also been

applied to extract the spatiotemporal dependencies by treating data traffic snapshots as

images[178]. Furthermore, ConvLSTM is a recently popular deep learning-based method

while considering both characteristics of temporal sequences and spatial correlations[179].

Compared with customising models, increasing the receptive field, or applying other related

types of data, can also get improved results without increasing the complexity of the system.

In [180], by using a stacked structure named Spatial–Temporal Cross-domain neural Network

(STCNet), different types of cellular traffic can be investigated simultaneously to improve

the accuracy of the results. A multi-input framework called Deep Traffic Predictor (DeepTP)

is also proposed in [176], which aimed to discover the unique property of the traffic pattern

in the similar POI and time effect.

However, as the application scenarios become more complex and the observation granu-

larity increases, an increasing number of composite pattern traffics are emerging. Although

their traffic still exhibits relative periodicity, the traffic patterns in different regions are show-

ing significant variations, which has already garnered some attention [57]. Overall, prediction

models need to be robust in predicting different traffic patterns while efficiently identifying

highly correlated traffic to enhance prediction accuracy. Therefore, multi-task learning, as a

promising approach that enables joint learning of different tasks through parameter sharing,

attracts some attention to improve performance. Through jointly introducing the related tasks,

different features are extracted to obtain more effective information for respective predictions.

[181] discusses the impact of different multi-task structures on the RNN-based model and

concluded that the multi-task learning model can indeed improve performance. Meanwhile,

a novel MTL architecture is proposed which has the shared and dedicated learning layers
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separately. It is beneficial to generate and exploit common information while maintaining

the effect of specific task features.

At present, there is a lack of research on the impact of the correlation between tasks on

the results of MTL prediction in the mobile traffic forecasting field. Most of the work directly

apply the nearest N areas as N tasks [181][182]or treats the distance of the target cells as

an essential measurement factor[183]. It limits the scope of task selection. Meanwhile, due

to the different attributes of urban areas, it is possible that nearby low-correlation areas are

included, which will degrade performance. Besides, although the single-task learning model

can be multi-tasked to achieve the purpose of spatiotemporal dependencies extraction, it

cannot avoid that the convolutional-based STL model takes its advantage on spatiotemporal

correlation modelling in traffic prediction.

To fill the aforementioned gaps and address the new challenges in network traffic predic-

tion, a novel deep learning structure named Multi-Task Learning Spatial-Temporal Parallel

deep learning Network (MTL-STPN) is proposed. By deploying proposed framework in

the cloud, it enables real-time monitoring of city traffic and enhances short-term aggregated

mobile traffic prediction performance through the extraction of spatial and temporal features

from multiple regions.

LSTM and 3D convolutional neural networks are connected in parallel to model the

temporal characteristics of the target cell and the spatiotemporal characteristics of neighbor

cells, respectively, and then to predict the traffic of the target cell at the next timestamp

through a fully connected network. In the MTL framework, each related task shares the

LSTM layer to improve the effectiveness of temporal features capturing. Moreover, according

to clustering traffic patterns in the target region, which is composed of target cells and

adjacent cells, a specific region correlation detective method based on temporal and spatial

dependencies is designed to label the relevant regions as tasks for MTL-STPN. By filtering

out low correlation regions, the efficiency of feature modelling is raised while reducing the

complexity of the model.

There are four main contributions of this study:
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• A novel LSTM-3D CNN model is proposed as STL-STPN. The STL-STPN model

combines two algorithms in parallel to capture distinct features: the CNN is employed

to explore spatial features of neighboring traffic, while the LSTM model is utilised to

model the time series traffic, effectively capturing both spatial and temporal contextual

information. The two feature representations are then fused using element-wise

addition to achieve feature integration. Finally, a multilayer perceptron (MLP) is

applied to model the fused features, thereby uncovering the spatiotemporal correlations.

Experimental results demonstrate that this model outperforms the state-of-the-art

CNN-LSTM model, leading to improved performance measured by root mean squared

error.

• A novel MTL framework named MTL-STPN is proposed, which is combined by

multiple STL-STPNs, to further improve the accuracy of traffic prediction. By sharing

the parameters of the temporal feature extraction layer of the MTL model, and then

combining them with the spatiotemporal correlation features extracted by the respective

task dedicated learning layer for prediction, the accuracy can be raised while reducing

the model convergence time.

• A task correlation measurement algorithm named Spatial-Temporal Pearson traffic

Pattern Clustering (STPPC) algorithm is designed to fit the MTL-STPN model. Based

on the classification of different traffic patterns in the target multi-cell and the central

cell traffic similarity measured by the Pearson correlation coefficient, the potential

MTL regions can be sorted.

• The performance of MTL-STPN utilising real-world cellular network traffic traces

collected in Milan is evaluated. Numerical results will validate the advantage of the

MTL-STPN compared with other baseline methods in terms of prediction accuracy

and time consumption.

The remainder of this chapter is organized as follows. Section 4.2 describes the open

dataset from Telecom Italia applied in this chapter and presents the statistical characteristics

of the dataset. Section 4.3 elaborates the structure of MTL-STPN. Section 4.4 introduces the
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detail of the STPPC algorithm. Section 4.5 shows the conducted results of MTL-STPN and

other baseline methods. Section 4.6 gives the conclusion of this chapter.

4.2 Data and challenges

4.2.1 Description of the mobile network traffic trace

In order to validate the performance of the proposed model, the integrity of the dataset is

strictly required. In this experiment, the dataset was collected from Italian telecom in 2015,

which has been widely used in big data analysis projects. It consists of call detail records

(CDR), internet, weather, and social networks in Milan and the Province of Trentino during

November and December 2013. The geographic location of the data matches with standard

WGS84 (EPSG:4326). Internet data in Milan is applied to evaluate the performance of the

proposed model in this chapter.

The data is collected by meshing Milan into 100×100 grids of the same size, and

separately recording the aggregated internet traffic in each cell with a temporal interval of 10

minutes. The size of each cell is 235×235 meters. In this article, I set the coordinate axis

whose origin is at the upper left corner of the whole map to calibrate ID. The data includes

ID, timestamp, and the aggregated traffic in each cell. The time interval is adjusted to hour

by averaging the original data in the one hour period. The spatiotemporal sequence of the

data matrix is D = (Dt|t = 1,2, ...,T ), where T is the number of timestamps. Dt represents

the traffic snapshot matrix at timestamp t and the grid overlay L×W (100×100) cells, which

can be written as:

Dt =


d(1,1)

t d(1,2)
t · · · d(1,W )

t

d(2,1)
t d(2,2)

t · · · d(2,W )
t

...
... . . . ...

d(L,1)
t d(L,1)

t · · · d(L,W )
t


Where d(l,w)

t is the traffic volume in the cell (l,w). The dataset can be denoted as a

spatiotemporal sequence with the tensor D ∈ RT×L×W. Besides, the traffic flow at cell (l,w)

can be represented as f (l,w)tc = {d(l,w)
t |t = 1,2. . .T}.
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Fig. 4.1 Three typical traffic patterns in Milan dataset



76MTL-STPN: a Multi-Task Learning-based Spatial-Temporal Parallel deep learning Network

(a)

(b)

Fig. 4.2 (a)ACF of a typical cell’s traffic (b)Spatial CE in traffic between adjacent cells and
high-correlation

In this subsection, Milan mobile traffic dataset is analysed in traffic patterns perspectives

and spatiotemporal dependencies, respectively. It depicts that traffic pattern has significant

difference depends on its location. However, from the temporal domain, most aggregated

traffic remain periodic patterns. Moreover, the traffic pattern relation between short distance
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Fig. 4.3 Pearson correlation value between a traffic in a target grid and other traffics in all the
grids

cells and long distance cells are demonstrated by spatial CE and Pearson coefficient. From

Fig.4.1, Fig.4.2 and Fig.4.3, there are some observations obtained.

Observation 1: Fig.4.1 demonstrates the two-week-long traffic patterns of three typical

cells, respectively. All these traffic illustrate periodical daily patterns. Besides, it is obvious

that the traffic of some cells changes according to weekdays and weekends, but others

remain the same. Auto-correlation coefficients of the traffic are shown in Fig.4.2 that they
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all have non-zero auto-correlations in the temporal domain which means that the traffic is

predictable through historical data. However, the pattern categories of different cells are

different, especially between weekdays and weekends, which may affect the forecasting

performance.

Observation 2: Fig.4.3 shows the correlation between a traffic of specific cell and the

traffic of other cells in terms of Pearson correlation coefficient ρ , which is a widely used tool

in measuring spatial correlations [31]. It indicates the positive and negative correlation by the

sign of the number, and the magnitude indicates the similarity between the two traffics. As

can be seen from the figure, the correlation of temporal traffic does not only depend on the

distance between two cells. Even if far away from the target cell, there are quite a number of

cells that have similar traffic to the target cell has.

Observation 3: Fig.4.2(b) compares the spatial CE value calculated by the traffic of a

target cell and its high correlation cell and its adjacent cell, respectively. The data is divided

into ten levels and then calculate the CE which is the same as in chapter . It can be found

that the CE value of the similar pattern set is lower than that of the adjacent cell set, which

means that there is not a complete negative correlation between distance and predictability.

In other words, the distance between the cells cannot be a reliable standard in the prediction.

Simply enlarge the spatial range of the observation region may bring a negative influence on

results because of such low-correlation patterns. Spatial and temporal correlations should be

considered simultaneously to enhance the performance of the model.

Based on the above analysis of the spatiotemporal correlation between the cells, it can

be concluded that spatiotemporal features should be involved to help the improvement of

prediction accuracy while the similarity in the traffic pattern should be prioritised instead of

the distance.

4.3 Methodology

This section first describes the structure of a spatial-temporal parallel deep learning model

and its components, and then builds an MTL-STPN model with shared-dedicated structure
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for mobile network flow prediction. Finally, the STPPC algorithm is proposed to select the

strong correlation features between various prediction tasks.
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4.3.1 Spatial-Temporal Parallel deep learning Network

A deep neural network architecture, called Spatial-Temporal Parallel deep learning Network

(STPN), is proposed to apply in aggregate mobile traffic forecasting. The proposed STPN

contains a parallel structure of LSTM and 3D-CNN model, as shown in Fig.4.4.

The goal of this chapter is to predict the specific cell traffic. The traffic in the target

cell (l,w) represents as f (l,w)tc , which is a traffic volume sequence with T elements. Target

region locates the target cell as the centre grid, and the region composed of nnear × nnear

adjacent cells. Therefore, its traffic is a three-dimensional matrix F(l,w)
nnear with the size of

T ×nnear ×nnear, represented as

F(l,w)
nnear =


f
(l− (nnear−1)

2 ,w− (nnear−1)
2 )

tc · · · f
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Although it has been proved that distance and traffic correlation have no significant

relation, the spatiotemporal dependencies still need to be considered because the traffic in

the adjacent cells indeed usually exhibits a strong correlation. Therefore, in this article, the

value of nnear is set to be small, like 3 or 5, which means 3 × 3 grids or 5 × 5grids. nnear

must be an odd number and bigger than 1, which is symmetrical. On the other hand, small

scope of the observation area (input data) can help to reduce the computation of the model.

By cooperating with the characteristic of two algorithms in temporal and spatiotemporal

feature extraction, STPN can be exploited for the further improvement of mobile traffic

forecasting compared to both algorithms. In this case, LSTM and 3D-CNN are fed with

target cell traffic f (l,w)tc and target region traffic D(l,w)
nnear, respectively. Then reconstruct the

data structure to fuse and return these features. The output is fed into a new stacked LSTM

network to further capture the temporal dependencies. In the end, the MLP generates the

prediction value through fully connected layers. The following subsections describe the

operation of each component.

LSTM: The recurrent neural network has been widely used in handling time sequence

forecasting problems. With the observation window recursive slide, the output from the

previous state is fed into the next state with the information captured from the internal

correlations over time. When the recurrent finished, the output is considered to be a summary

through all past observations, which is the prediction result generated. LSTM is a special

kind of RNN, that has been explicitly designed to avoid the long-term dependency issue,

which is the cause of the vanishing gradient problem in normal RNNs [184]. The capability

of learning long-term dependencies is from the delicate control gates as the basic units in

LSTM. A standard LSTM consists of a memory cell ct , input gate it , forget gate ft , and output

gate ot . The memory cell will be updated when the forget gate and the input gate decide

which information should be abandon or save. Then the output is generated by pointwise

operating the updated memory cell value and the output gate value as the new hidden state

and the result. With the help of gates operating, LSTM can extract the long-term temporal

dependencies of mobile traffic.
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In STL-STPN, multiple layers LSTM units are stacked as an LSTM network, that aims

to precisely capture the temporal features of the mobile traffic. It can be pre-set the number

of features in each layer passed to the next layer by controlling the number of units in LSTM.

The depth of the whole network (e.g., the number of layers) will influence the performance

and the efficiency of the mode. For the next-timestamp prediction, the model observes the

historical traffic with a fixed size TS, which is hyperparameter, then predicts the traffic at

the next timestamp T + 1. Therefore, the training inputs can be set as a TS + 1 array, which

means TS observation timestamps and a label. The data has been normalised to optimise the

convergence process.

3D-CNN: Differ from LSTM in the perspective of temporal modelling that can retain

long-term information, 3D-CNN does not enable to have back-propagation through time

(BPTT), which reduces the representatives in single time series feature extraction. However,

the characteristic of the convolutional layer can enable model multi-temporal traffic to capture

the cross-temporal correlations by sharing the weights across different locations in the input.

It can enhance the detecting capability of minor fluctuations in temporal through spatial

dependencies. Besides, batch normalisation (BN) is usually added before the activation

function to normalise the input value of the activation function, to solve the impact of offset

and improve the generalisation ability of the network.

The inputs can be set as a T S×nnear ×nnear ×1 four- dimensional matrix, which means

TS observation timestamps, nnear ×nnear cells and 1 type of data (channel), which the traffic

volume is normalised.

The convoluted feature maps Mc
j = LeackyReLu

(
∑

N
n=1 Mi ∗Wji +b j

)
with a sequence i

of spatiotemporal inputs Mi|i = 1,2,3... * is the convolutional operator and in this research,

Leacky ReLu is applied as activation function.

Fusion layer: To enhance the capability of spatiotemporal features extraction and pre-

diction performance, a fusion layer is added to blend the features captured by both models.

It enables to establish a kind of ensemble system with two dedicated deep learning-based

algorithms to take advantage of both sides, which has been proven in the improvement

of prediction accuracy [177][174]. In this case, both target cell traffic temporal features
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(by LSTM) and its adjacent cells traffic spatiotemporal features (by 3D-CNN) are jointly

exploited to improve the accuracy of the forecasting, which helps to exceed their individually

employing performance, respectively. A problem worth noting is that two types of spatial

information will reduce the effectiveness of feature capturing and weight influence, especially

when the prediction target is a single traffic. ConvLSTM is replaced by the LSTM algorithm

to reduce the complexity of the whole model while maintaining the temporal information

concern. Meanwhile, 3D-CNN is retained to continuously monitor mobile traffic fluctuations.

Moreover, a stack LSTM network at the end of the fusion layer helps to leverage the temporal

features. The inner feature matrix captured from 3D-CNN and LSTM will both be reshaped

the construction to T S× n2
near for element alignment. In the fusion layer, element-wise

addition M f is applied as follows:

M f = LeackyReLu
(
add(OLST M, reshape(O3DCNN))

)
where OLST M and O3DCNN are the features extracted from LSTM and 3D-CNN.

4.3.2 Multi-Task Learning STPN

In [183], it has been proved that the prediction performance enables to be enhanced by jointly

training multiple relevant tasks. In this section, an MTL model based on STPN is proposed

as MTL-STPN, which aims to improve the performance of the prediction task.

According to the meaning of target cell and target region, reference cell is the location

that its traffic flow could be applied in the MTL-STPN as one of the tasks. The traffic in the

reference cell (l′,w′) represents as f (l
′,w′)

rc = ( f (l
′,w′)

rc,1 , f (l
′,w′)

rc,2 , · · · , f (l
′,w′)

rc,T ), which is a traffic

volume sequence with T elements. The spatiotemporal traffic matrix in reference region

constructed by reference cell (l′,w′) and its adjacent cells, represents as F(l′,w′)
nnear .

Since STL-STPN is a parallel structure, the layer on one side can be allocated as the

shared layer, as shown in Fig.4.5. In this study, the LSTM layer is used as the shared

layer. Due to the complicated spatial distribution of traffic, it requires multi-region features

are extracted efficiently. Sharing the temporal feature representations generated by other
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tasks’ LSTM module can help in the development of spatiotemporal feature, which has

introduced in chapter . Compared to single task ConvLSTM algorithm, the efficiency of the

model is increased by extracting the spatial features from the LSTM part, and the amount of

calculation is not increased significantly. For 3D-CNN as a dedicated layer, the shared layer

can not only provide new feature maps of spatial distribution, but also make up for its weak

feature of mode ling long sequences through LSTM.

In MTL-STPN, the training process is that each sub-task individually extracts the features

of f (l,w)tc in its target cell through two LSTM layers to obtain feature matrices Ig where g

is the label of sub-tasks. The tensor of Ig is (T S×Nc), where Nc is the number of cells in

the previous LSTM layer. Next step, these Ig are concatenated before the sharing layer to

obtain a Iall , the shape is T S×gNc, then fed into the sharing layer for capturing the spatial

dependency features. Besides, due to the LSTM module, the shared layer enables to model

the temporal correlations among the tasks as well. Finally, like STL-STPN, the features

obtained by the shared layer are blended with the individual spatiotemporal correlations

obtained by the respective dedicated layers, and then train it through LSTM to capture the

temporal correlation in the merged feature set and finally predict traffic through the dense

network.

Notably, in order to guarantee each task provides an effective contribution to the improve-

ment of the prediction performance, only the top r highest correlated tasks are allowed to

be added into the target multi-task model. When r increases, more tasks are involved that

ideally the performance will be enhanced while the computational complexity will increase
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exponentially. On the other hand, if low-relevance tasks are involved, the extracted features

may adversely affect the accuracy of the results. Therefore, a correlation measurement

algorithm based on spatial-temporal traffic pattern clustering needs to be proposed, which

helps to select regions with useful information features for the whole model.

4.3.3 Spatial-Temporal Pearson traffic Pattern Clustering (STPPC)

In MTL-STPN, since the shared layer is LSTM based network, measuring the traffic tem-

poral similarity in the target cell by the Pearson coefficient has become the prior concern.

Meanwhile, according to the conclusions drawn from the previous observation in section

5.2, the correlation between the traffic of the cells does not mainly depend on the distance,

hence the scope of potential high relevant cell selection extends to the entire map. On the

other hand, due to the influence of the dedicated layer and the fusion layer in each task, the

target region composed of adjacent cells needs to be considered as well. The reason is that

when the traffic in the target cell has high similarity to that in the reference cell, but the

target region and reference region has low correlation, the spatiotemporal feature extracted

in the MTL model, which is mainly done by the dedicated layer (3D-CNN), will weaken

effectiveness of the temporal feature capturing through the shared layer. Therefore, this

problem can be formulated as to calculate the matrix similarity Sim(F(l,w)
nnear F(l′,w′)

nnear ), which

needs to be considered both spatial and temporal dependencies.

First, the traffic of target cell (i, j) is used to calculate Pearson coefficient with all other

cells’ flows except the target region cells’. If the value is lower than a threshold za, the

contrast cell will not be considered in later operating process. The coefficients of remaining

cells will be divided into zv levels with the same interval value and save the level label z(i, j)
(i∗, j∗)

from one (highest) to zv (lowest), where (i*, j*) is the coordinate of contrast cell.

Then, a collection Lreg with all the cell ids of the target region needs to be created. Thus

the target traffic f (i, j)rc can be found at the centre point (target cell(i, j)) as a typical traffic,

and then use this traffic in turn with the traffic f (i∗, j∗)rc of other cells (i*, j*) in the target

region F(i, j)
nnear for Pearson correlation measurement and record the value ρ

(i∗, j∗)
1 . ρ

(i∗, j∗)
l is the

Pearson coefficient value between typical traffic and contrast traffic, which l starts from one.
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The typical pattern cell id will be collected in a set P. When the correlation coefficient is

higher than a threshold zρ , the contrast cell is labelled B1 as the same pattern with the target

cell (i,j). Bk is label of positive integers which starts from one. Meanwhile, this cell’s ID will

be removed from the initial set Lreg. When all the cell have been calculated, the cell with the

lowest correlation coefficient ρ will be the new typical pattern cell. The traffic of this new

typical cell will be applied in the Pearson coefficient calculation with the unlabelled cells’

flows, and put the new typical cell’s ID in the set P. The same process as previous round,

the contract cell that ρ
(i∗, j∗)
2 is higher than zρ will be labelled as B2, and then remove the ID

from Lreg. The remaining unlabelled cells will keep updating the ρ
(i∗, j∗)
l once the new value

higher than old one. The algorithm will keep operating until the number of unlabelled cell is

lower than a threshold zu, and then marking these unlabelled cells as B0.

Then the cells in P are the typical cells that have typical traffic pattern. These patterns

will be measured Pearson correlation with all other cells except target region cells in the

same order and process. The label Bk will be the same as each typical pattern labelling the

target region cells. And then the remaining unlabelled cells will be marked as B0.

At last, the target region with labels Bk will be element-wise compared to the other same

size region, to find the same patterns counted as wl . Then the similarity S(i∗, j∗)
(i, j) can be found

through the function S(i∗, j∗)
(i, j) = wl

nnear×nnear
. The similarity is ordered by z(i, j)s first, and ordered

by S(i∗, j∗)
(i, j) in the same level of z(i, j)

(i∗, j∗).

There are three special cases that need to be considered. First is the importance of za,

which is used to prevent the possible set with high S(i∗, j∗)
(i, j) but low centre traffic similarity.

It will influence the performance of LSTM module. The second is to transformation the

Pearson coefficient as absolute value. Due to the characteristics of the Pearson coefficient,

only when ρ = 0 means the low correlation, otherwise is the positive or negative correlation.

The opposite correlation can be modelled through sequence learning algorithms. The third

is that when z(i, j)s and S(i∗, j∗)
(i, j) are the same, the ordering region needs to has similar number

of labels as the number of labels in the target region. It is to ensure the completeness and

similarity of spatiotemporal feature extraction as much as possible.
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When cell (i, j) is used as a target cell for traffic prediction, STPPC can find the previous

Nsim similar area as sub-tasks in MTL-STPN for traffic prediction.

As a traffic spatiotemporal correlation algorithm suitable for multiple cells, STPPC

can perform correlation calculations for target cell and target region traffic. By marking

and classifying the traffic patterns in the area through the Pearson coefficient, it can find

multiple similar traffic pattern areas. This is very helpful for the extraction of spatiotemporal

information and takes into account its importance for the purpose of predicting the traffic

in the target cell in this study. The required information is the cell id and its the traffic flow

volume.

4.4 Experiment and results

4.4.1 Data processing and hyperparameter configuration

As aforementioned, mobile traffic data in Milan is applied as the model evaluation dataset.

The time interval of the data is aggregated from ten minutes to one hour. The geographic

range of the dataset is the whole Milan city divided in to 100 X 100 square grid. The time

scale is four weeks from November 4th to December 1st, 2013, which has 672 timestamps in

total. First two weeks are constructed as training dataset and last two weeks as the testing

dataset. To accelerate the convergence process, mobile traffic volume is scaled into range of

[0, 1] by Min-Max normalisation method. When predictions are generated, the value will be

re-scaled back to its normal scale.

The timestep TS of training dataset is set as 8. nnear is set as 3. The input data for

3D-CNN is defined as Samples ×T S×nnear ×nnear ×1 which is 324×8×3×3×1. The

input data for LSTM is set as Samples ×T S×1which is 324×8×1.

The hyperparameter configuration in the models is optimised by a random search

method[14]. In the proposed STL-STPN, the candidate number of layers in the LSTM

and 3D-CNN models are from one to eight. The number of cells in each LSTM layer is

chosen from 4,8,16,32,64, and the number of filters in the 3D-CNN layer is 4,8,16,32. The

epoch is set as 150. Because of the small nnear chosen, the kernel size of 3D-CNN is pre-set
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as (3,3,3) with zero padding in convolutional operation. The best result generated by LSTM

layer = 3, 3D-CNN layer = 3, LSTM cell number = {4, 8, 4, 9, 4}, 3D-CNN filter number

= {4,8,1}. The fourth LSTM layer and the last 3D-CNN layer have 9 cells and 1 filter,

respectively, which is for reconstructing the data to fit the element blend in the fusion layer.

When the MTL-STPN is considered, only the LSTM layer after concatenation operation,

which is the third layer, will increase its cell number that depends on the number of tasks.

The MLP is 2 layers with the cell number = {8,1}. In the proposed STPPN, the za and zρ are

0.85, and the zv is 5 that depends on the number of candidate sub-tasks.

4.4.2 Spatial-Temporal Pearson traffic Pattern Clustering test

Fig. 4.6 The order of similarity generated by STPPN, the target cell is (29,71)

In this research, a task is defined as the short-term mobile traffic prediction for one target

region. Because the region contains nnear ×nnear cells. Therefore, the whole city of Milan

composed of 100 × 100 grids can be divided into 100−nnear +1×100−nnear +1, that is,

98 × 98 reference regions. To locate the region with most effectiveness features extraction

for each prediction task, the STPPC algorithm is applied to measure the spatiotemporal

correlation between the target region matrix F(i, j)
nnear and all other reference region matrix

F(i′, j′)
nnear . Then according to the Pearson correlation, spatial pattern and the number of label

between target cell traffic and reference cell traffic are sorted. For example, if the location

of the target cell is set to (29, 71), after STPPC, the region (3,60) can be found in Fig.4.6
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(c)

Fig. 4.7 (a) Traffic comparison between cell (29,71) and (3,60), (b) Traffic comparison
between cell (29,72) and (3,61), (c) 3×3 region centred on (29,71) and (3,60), selected by
STPPC and the correlation between the traffic in central grid and all other 8 traffics

according to the rank. When selecting the closest point (3,60) as the reference cell and region,

it can be seen the target cell traffic from Fig.4.7, and the labelled pattern distribution in this

area, which both show a strong correlation.

By comparing the traffic in each grid in the region, the correlation of the temporal

features of several special traffic patterns in the region can be obtained. Then according

to the comparison of matrix elements, it can find the spatial dependencies, so as to get the

spatiotemporal correlation between the matrices.
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4.4.3 Baseline models comparisons

In order to depict the performance difference of the proposed MTL-STPN with the STPPC al-

gorithm as the task filter, various popular machine learning models are applied and compared

in STL and MTL scenarios. Timestep is set as 8, which is the same as it used in proposed

model, in those baseline models that requires observation window. nnear is set as 3 × 3 for

the spatiotemporal feature extraction models.

• LR: Linear Regression is a classic supervised machine learning algorithm that predicts

the value through trained function.

• SVR: Support Vector Regression is widely used for regression. By seeking to min-

imise the structured risk, it can enhance the generalisation ability and fit non-linearity

requirement. Besides, SVM can solve high dimension feature problems by the convex

quadratic programming.

• STL-LSTM: The structure is the similar to STL-STPN without 3D-CNN layers, which

is a typical stack LSTM networks. It has a single input and output. The configuration

of the hyperparameters is the same as that in STL-STPN.

• STL-3D-CNN: The structure is the similar to STL-STPN without LSTM layers.

• STL-ConvLSTM: It replaces the LSTM layers to ConvLSTM layers compared to

STL-LSTM model. Due to its kernel unit, it can capture long-term temporal feature

and spatial dependencies.

In the MTL scenario, compared to the target region (29,71), top 16 highest correlation regions

are selected through STPPC as sub-tasks for MTL model. All of the MTL models are fed
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these 16 traffic matrices, or the sequences as multitask simultaneously to predict the next

timestamp traffic in these cells, respectively. These 16 traffic matrices and the temporal

sequences are applied to STL models in turn to obtain the prediction value as well.

• MTL-LSTM: The 3D-CNN layers are replaced with LSTM layers compared to MTL-

STPN model. Hence both share layer and dedicated layer are LSTM model.

• MTL-3D-CNN: The LSTM layers are replaced with LSTM layers compared to MTL-

STPN model.

• MTL-ConvLSTM-3DCNN: The LSTM layers are replaced with ConvLSTM layers

compared to MTL-STPN model.

In addition to illustrating the rationality of the proposed framework by modifying the

learners or structures, this chapter also selected three state-of-the-art deep learning algo-

rithms. These three deep learning algorithms are specialised in MTLconvolutional networks,

and temporal sequence networks, respectively. By utilising these algorithms, it aims to

demonstrate the high-performance capabilities of the proposed framework on real-world

data.

• MTL-TCNN [177]. This is a deep learning approach that utilises convolutional residual

networks for time series analysis. It employs dilated causal convolutions to explore

temporal features within sequential data. To prevent model degradation due to in-

creasing layer depth, they apply residual networks to stabilise model optimisation.

Additionally, this research includes basic detection of surrounding traffic, based on

the assumption that "near things are more related than distant things" [58]. However,

this approach does not break away from the limitation of utilising nearby traffic for

multi-task learning.

• DC-CNN [138]. This is a multi-layer CNN prediction model that focuses on deep

exploration of temporal features. Unlike MTL-TCNN, this research chooses to delve
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into the temporal aspect. It utilises parallel multiple CNN dense connection networks

to model traffic in adjacent time periods simultaneously. Then, through a fusion layer,

the features are integrated. This approach effectively utilises CNN models to capture

spatiotemporal dependencies within sequential data.

• STCNet [144]. This model utilises ConvLSTM to model correlated data within a region

and then employs a point addition method for feature fusion. It is a novel approach

that incorporates both deep spatiotemporal exploration through ConvLSTM learners

and the perception of multidimensional data. In this chapter, the multidimensional data

includes calling traffic and SMS records.

4.4.4 Experimental settings and performance metrics

All the numerical experiments of the proposed model and baseline models are trained on the

desktop equipped with i7 6700k CPU, 32 GB memory, and a GeForce GTX 1080 graphic card.

The experiments are implemented by python (version 3.6.3) on Windows 10 operating system.

Scikit-learn, Tensorflow-GPU[185], and Keras[186] are applied in the python libraries.

Root mean squared error (RMSE) is applied to evaluate the model performance:

RMSE =

√
1
N

N

∑
i=1

(Ŷi −Yi)
2 (4.1)

Where Ŷi and Yi are prediction value and ground truth value, respectively. RMSE is used

to measure the deviation between the predicted value of the model and the ground truth,

which expect the smaller result.

4.4.5 Performance of Proposed Model and the Baseline Methods

Fig.4.8 illustrates the performance of the models over 16 regions in terms of RMSE and the

training time consumption. The mean RMSE records the average value of them in 16 regions.

Time refers to the time required for training each batch in each epoch. Since LR and SVR do

not have such records. However, from the results of the SLIM-TP in the previous chapter and
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(a)

(b)

Fig. 4.8 (a)The performance of the similar structure baseline algorithms and proposed model,
(b) The training time of the the similar structure baseline algorithms and proposed model

the experience of reviewing other experiments, their operating time is much lower, almost

negligible, than these deep learning based models. The target cell is (29,71), and all results

are the mean value of 10 repeating experiments.

Firstly, MTL-STPN has the best performance in terms of mean RMSE in these methods,

where RMSE(mean) = 0.052. The second best performance is MTL-ConvLSTM, and the

main reason of being second is due to the complexity, which is revealed from the training



4.4 Experiment and results 93

time. MTL-3DCNN also performs well, with being not much different from the results

of MTL-ConvLSTM, but the characteristic of the model structure makes it as the least

time-consuming model among these MTL models. MTL-LSTM is not as effective as other

MTL models, and STL-LSTM generates similar unsatisfactory result comparing to other

STL models. But from the relative performance of MTL-LSTM to STL-LSTM, the increase

driven by the MTL structure is the most obvious, reaching 22%.

On the other side, in terms of the STL, STL-STPN performed the best. Apart from the

shallow learning model, STL-LSTM has the worst effect, which may be resulted by the fact

that it is the only model of temporal feature. In addition, regarding to the performance of

STL-3DCNN and STL-ConvLSTM, there is no significant difference between the two. It

may be caused by the small spatial range of input data, which leads to reaching the limitation

of the convolutional network. The method of fusing the features of the centre point and

the nearby area can indeed further improve the effect. Finally, from the overall point of

view, MTL-based models are generally performed better than the STL-based models, but

the downside is that the complexity is also drastically increased. However, due to the shared

layer and parallel learning structure, the unit time of the MTL-based model to run once is

less than the time required to repeat the STL-based model fifteen times.

In summary, the structure of share-dedicated layer in proposed MTL model can indeed

significantly improve the performance of the proposed STL model. The reason is that the

shared layer is a temporal feature model, and the features of spatiotemporal can be further

captured through MTL to improve the performance. However, if the model only capture

the spatiotemporal feature, the improvement is not obvious, which has been shown in MTL-

3DCNN and MTL-ConvLSTM results. On the other hand, the MTL-LSTM have a impressed

improvement in the performance compared with STL-LSTM. Therefore, the structure of

temporal, spatial-temporal, and fusion layer can provide good prediction performance while

being limited in complexity increasing.

Fig.4.9 illustrates the performance of the state-of-the-art models in terms of RMSE and

the training time consumption. In the comparison of state-of-the-art methods, DC-CNN has

the highest RMSE because it lacks sufficient exploration of temporal features. It lacks an
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(a)

(b)

Fig. 4.9 (a)The performance of the state-of-the-art baseline algorithms and proposed model,
(b) The training time of the the state-of-the-art baseline algorithms and proposed model

effective module to prevent model degradation, resulting in insufficient depth of the CNN

layers. For time sequence analysis, preserving a sufficient length of historical information is

crucial. On the other hand, MTL-TCNN improves the CNN’s sensitivity to temporal features

through its own residual network and dilated convolutions. However, due to the idea that

proximity implies higher correlation, it cannot discover more effective traffic information.
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This limitation becomes more pronounced when there are significant differences between the

target area and nearby traffic, leading to a decrease in accuracy.STCNet, based on ConvLSTM,

does exhibit similar accuracy to the proposed model, but it lacks an effective spatial filtering

mechanism and suffers from long training times, which are still shortcomings.

MTL-STPN outperforms the baseline methods. On one hand, MTL-STPN employs par-

allel LSTM, 3D-CNN networks, and feature fusion to enhance the extraction of consecutive

spatiotemporal features. On the other hand, MTL-STPN incorporates the STPPC algorithm,

which enhances the ability to extract dependencies between network traffic features in other

grid cells, thereby further improving prediction performance.

4.4.6 The performance of MTL-STPN and other MTL-based models

Fig. 4.10 Performance of four MTL-based model

Fig.4.10 illustrates the traffic prediction performance for the target cell (29, 71) after the

16 regions, which have the largest correlation with the target cell being found by STPPC

sorting, being added to the four models of MTL in turn. First of all, when the first 8 tasks

being added in sequence, they have shown a similar trend of predicting better performance

as tasks increase, which demonstrates that with the increase of sub-tasks, the performance of

each model can be improved, and the MTL-STPN model has the best performance. Then

after the seventh or eighth tasks, all models are negatively affected by the new tasks, which is

likely caused by two reasons. The first reason is that the features of spatiotemporal are already
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redundant in the task. Not only can it not make a positive contribution to the whole system,

but on the contrary it will ’dilute’ the more critical features, and consequently making the

performance worse. And in order to control variables, their number of layers and kernel size

are kept the same as MTL-STPN, therefore, the critical point is also similar to MTL-STPN.

The second reason might be due to the affected data, because it is through sorting that we

find the most relevant area, the model performance declines due to weak spatiotemporal

dependencies in the subsequent data. This issue will be discussed in details in the next

subsection

Another phenomenon worth discussing is that after the start of the eighth task, the differ-

ences between the three models were not significantly different from each other begin to man-

ifest, especially for the MTL-ConvLSTM. Although the performance of MTL-ConvLSTM

is also declining, it is obviously more stable. From the result of the last 15th point, we can

also see that the two models with the convolutional layers performed slightly better than the

MTL-LSTM model which does not have convolutional layers. It can be interpreted as that

the feature extraction of spatiotemporal does require the addition of a convolutional layer,

and it cannot be compensated by structural changes (MTL, Stack learning) alone, which

is another reason of why the dedicated layer must be added to the convolutional layer in

MTL-STPN..

4.4.7 The dependencies of STPPC selected data

According to the conclusion in the previous section, which says that the performance of

the model decreases may be due to the decreasing in data relevance,16 regions are inverted.

Besides, the worst 16 regions searched through the full map are fed into the MTL-STPN

model to check whether the data selected by STPPC is helpful for the feature extraction of

the model.

First of all, It can be seen that the results in the previous section are marked as ‘STPPC

top 16’. As a comparison item, the 16 sub-tasks are reversed and added to the model in turn.

It has shown that the general trend of the data remains relevant to the comparison item, but in

the tasks such as the seventh or eighty-ninth task, the performance is weak with the result not
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Fig. 4.11 Performance of STPPC algorithm in proposed MTL-STPN

being to the ‘bottom’. After that, the RMSE gradually increased. This pattern shows that

the trend is in line with the conclusion in the previous section, which means that the trend

rebound may be due to the feature redundancy. However, the result of 7, 8, and 9 sub-tasks

do not reach the best results, which proves that the correlation is related to feature extraction.

It is the spatiotemporal features extracted due to the similar characteristics of the first eight

tasks that can achieve the best results. However, the features of the last eight data (that is, the

first eight data of ‘STPPC top 16 reverse’) cannot achieve this effect.

In addition, it has been selected the sixteen most irrelevant regions and put them into

the model, and found that the overall effect was not good, and the effect was worsened

with the increase of subsequent tasks, which once again verified the existence of feature

redundancy. From here, it can be seen that the region selected by STPPC does help the

current MTL-STPN model to extract key features, thereby improving the effect.

4.5 Conclusion

In this chapter, a Multi-Task Learning Spatial-Temporal Parallel deep learning Network is

proposed for mobile traffic prediction. Meanwhile, a model based on the parallel structure of

LSTM, 3D-CNN and fusion layer is designed as the basic model for each task in MTL. In

addition, this study also designed a regional temporal and spatial correlation detection algo-

rithm STPPC to select cooperative tasks with effective features for MTL. It has demonstrated
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the effectiveness of the proposed model and algorithm through the Milan open dataset, and

found that MTL-STPN has better prediction accuracy while maintaining a relatively low

system complexity and shorter training time by comparing the performance of the traditional

machine learning algorithms and the latest deep learning based model. Moreover, the struc-

ture of MTL-STPN can indeed discover more spatiotemporal characteristics by increasing the

number of tasks within a certain range, thereby enhancing performance. Lastly, STPPC has

also been proven to be an effective algorithm to find the area with the strongest correlation

with the target cell and provide effective spatiotemporal dependencies for the proposed mode.



Chapter 5

SLIM-TP: a deep Stack Learning-based

framework for Instant Message Traffic

Prediction

In the previous chapter, efficient prediction of small-scale base station-level network traffic

was achieved by deep exploration of the spatiotemporal dependencies within the base station-

level traffic information. Therefore, in complex scenarios, feature extraction from the data is

crucial. In the face of applications with stronger burstiness in network traffic, new highly

correlated data needs to be identified to improve prediction performance. Building upon the

user-population-based feature extraction and the exploration of user periodic behaviour in

Chapter 3, this chapter proposes a deep stack learning-based framework for instant message

traffic prediction (SLIM-TP), based on the excellent architecture of MTL from the previous

chapter. SLIM-TP leverages the advantages of the framework to effectively explore the

spatiotemporal correlations in traffic and the spatiotemporal dependencies between traffic and

population. Moreover, it innovatively captures the characteristics of these explored features

through a meta-learner. After conducting global auxiliary information feature modelling,

SLIM-TP improves instant messageIM traffic prediction by 30
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5.1 Introduction

] Over the last decade, the dramatic development of cellular networks has revolutionised

the way of user communication. IM application, such as WeChat, Whatsapp, and Facebook

Messenger, has been installed in 89 percent of mobile devices and cost roughly half of

the total mobile apps operating hour[168]. Moreover, in the report from WalktheChat in

2018[169], WeChat (the most popular IM app in China) accounts for 34 percent of total

mobile data traffic in China. To reduce the OPEX of application providers, meet the mobile

users’ QoS, or even understand the social behaviours of human beings, traffic prediction for

IM applications, especially for WeChat, will be of great importance in 5G and beyond mobile

networks.

As a classical research topic, mobile network traffic prediction has attracted a lot of

research interest from both academia and industry. Generally, the proposed prediction

methods can be divided into two categories: model-driven methods and machine learning-

based methods. For the first category of prediction methods, the time series of mobile

traffic are fitted to specific mathematical models and the future traffic loads are predicted

based on statistics or probabilistic distributions. In[129], the linear ARIMA model has been

used to capture the short-term correlation in mobile network traffic. As an extension, the

seasonal ARIMA model has been adopted to improve the ARIMA model on long-term traffic

correlation capturing in[170]. Li et al.[131] demonstrated that the mobile traffic loads possess

a strong self-similarity and utilised the -stable model to predict the mobile traffic fluctuations.

However, it is difficult for these model-driven methods to estimate realistic mobile traffic

accurately since mobile traffic is much more complex than mathematical models with various

irregular patterns.

For the second category of methods, more and more studies have adopted machine learn-

ing technologies for mobile network traffic prediction in recent years. In[135] and[136], the

LR and the SVR are proposed to predict the future traffic loads of mobile cells, respectively.

Nevertheless, due to the fact that they cannot perform feature extraction on their own while

relying on some prior knowledge of the input features, these shallow learning methods cannot

cope with many practical prediction scenarios. Powerful deep-learning tools have recently
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been leveraged for mobile traffic prediction. Qiu et al.[81] trained a RNN to predict the

cellular level mobile traffic due to its capability of capturing the spatiotemporal correlations in

traffic load time series. Assuming traffic information of neighbouring cells, Feng et al.[143]

proposed an LSTM network-based prediction model to forecast the traffic loads of a target

cell. Furthermore, based on historical traffic loads generated in all the cells, a CNN based

prediction model[138] and a ConvLSTM network-based prediction model[71] were proposed

to forecast the spatial mobile traffic distribution in a city. However, most of the existing deep

learning-based methods are proposed for the aggregated mobile traffic generated by all the

applications, which vary relatively stable and regularly. Unlike aggregated mobile traffic,

the WeChat traffic pattern has obvious burstiness and randomness. Furthermore, the trend

and volume of WeChat traffic are influenced seriously by the variation of crowd distribution,

which is ignored in most of the existing prediction methods.

Therefore, it is challenging to adopt the existing deep learning-based methods for WeChat

traffic prediction directly since they will cause obvious prediction errors. To fill the above

gaps, I introduce deep stacking learning architecture into mobile traffic forecasting and pro-

pose SLIM-TP, a deep stacking learning-based framework for WeChat (IM) traffic prediction

especially. The main contributions of this work are summarised as follows:

• Through the statistical analyses of conditional distribution entropy, this chapter demon-

strates that the WeChat traffic pattern possesses stronger burstiness and randomness

than the aggregated mobile traffic, and the variation of crowd distribution has an

important influence on the WeChat traffic trend;

• Deep stacking learning is introduced into WeChat traffic prediction and proposed as a

novel prediction framework, SLIM-TP. In SLIM-TP, three base-learners are designed

to forecast the future WeChat traffic load respectively based on the temporal sequence

pattern and spatiotemporal correlations of WeChat traffic as well as the correlations

between the WeChat traffic and the crowd distribution. Considering the burstiness and

randomness of the WeChat traffic pattern, a Gaussian Process(GP)-based referee is

introduced to judge the reliability of each base-learner. Finally, SLIM-TP utilises a



102SLIM-TP: a deep Stack Learning-based framework for Instant Message Traffic Prediction

deep neural network-based meta-learner to automatically extract the features hidden in

the three base-learners’ outputs as well as their reliability, and generate the ultimate

prediction result;

• This chapter also evaluates the performance of SLIM-TP using real-world WeChat

traffic traces collected in Guangzhou. I provide insights into how stacking learning can

improve the framework’s prediction accuracy.

• In this chapter, the model is applied to the real data from the previous chapter, con-

firming the effectiveness of using multidimensional information as auxiliary data in

small-scale network traffic prediction.

The rest of this chapter is organised as follows. Section 5.2 presents the statistical

characteristics of WeChat traffic, followed by a brief introduction to stacking learning

technology. Section 5.3 elaborates the proposed SLIM-TP. In Section 5.4, it evaluates the

performance of SLIM-TP in comparison with some state-of-the-art prediction methods. In

Section 5.5, I summarise this study and discuss future work.

5.2 Data and Challenges

5.2.1 Description of the IM traffic trace

In this chapter, it adapts the real-world traffic records of WeChat, the most popular IM

application in China, generated in Guangzhou from 03/01/2019 to 03/31/2019 provided by

Unicom China. Specifically, the Guangzhou city area is divided into 201×201 grids with

the same size of 100m×75m. Each WeChat record contains information about its timestamp,

geographical grid, and data volume. It refers to each grid as a cell and regards the forecasting

problem of one cell’s future WeChat traffic load as a cellular-level IM traffic prediction task.

Fig. 1 illustrates the normalized WeChat traffic loads and aggregated mobile network traffic

loads in three cells belonging to a commercial district, a residential district, and a market,

respectively, during two weeks.
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(a)

(b)

(c)

Fig. 5.1 The aggregate network traffic at (a)(14,38), (b)(53,34), (c)(94,35)

Specifically, the aggregated mobile traffic load contributed by all the mobile applications

and the mobile user number in each cell during every secular hour from 03/01/2019 to

03/31/2019 are also provided by Unicom China as text documents.

This study does not breach user privacy or raise ethical or legal issues. Indeed, It does not

need to process individual or personal data. Also, the traffic records are strongly anonymized
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(a)

(b)

(c)

Fig. 5.2 The IM traffic at (a)(14,38), (b)(53,34), (c)(94,35)

by the geographical aggregation at the cellular level. All these ensure that the mobile demands

are merged over numerous subscribers.
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(a) (b) (c)

Fig. 5.3 Temporal CE to historical time of WeChat traffic at (a)(14,38), (b)(53,34), (c)(94,35)
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Fig. 5.4 The autocorrelation analysis of WeChat traffic at (a)(14,38), (b)(53,34), (c)(94,35)

5.2.2 Statistical analyses for IM traffic patterns

It sets the time interval resolution at one hour following the settings in [171]. I use ri[t] to

record the WeChat traffic load of cell i generated in the tth time interval. The WeChat traffic

loads are divided into ten levels, and Fig.5.3 demonstrates the average CEs [133] of load level

distribution at each time interval considering various numbers of former time intervals for
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Fig. 5.5 Spatial correlation analysis of WeChat traffic

the WeChat traffic and the aggregated traffic, respectively, in the same three cells in Fig.5.1.

CE reflects the randomness of traffic load distribution when the traffic loads in former time

intervals are given. From Fig.5.1, Fig.5.2, Fig.5.3, Fig.5.4, Fig.5.5and Fig.5.6, it has the

following observations.

Observation 1: The cellular level IM traffic patterns are less regular than the patterns

of the aggregated traffic. The randomness of IM traffic load distribution is also much

larger than that of the aggregated traffic when I know their former loads, which implies
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Fig. 5.6 The spatial CE by nine adjacent grids between WeChat and crowd traffic

that forecasting the future load of IM traffic using previous values is harder than that in

conventional prediction tasks focusing on the aggregated traffic.
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Fig.5.4 displays the autocorrelations of the WeChat traffic in the three cells, while Fig5.5

shows the Pearson correlation coefficients between the market cell (14,38) WeChat traffic

load series and the WeChat traffic load series in its neighbour cells.

Observation 2: The cellular level IM traffic exhibits obvious autocorrelations in time

domain and the spatial correlations indeed exist among the IM traffic patterns generated in

different cells. This indicates that the future IM traffic load in a certain cell may be predicted

through the historical IM traffic loads of this cell and the neighbour cells.

By dividing the traffic loads into ten levels, it can get more detailed information on the

WeChat load distribution (e.g. measures by CE). Fig.5.6 demonstrates CE values of WeChat

load distribution at cells (14,38), (53,34), and (94,35), respectively, when I consider the

historical mobile user distributions or the WeChat traffic loads in each cell’s neighbour cells

during previous time intervals. From Fig5.6, it can clearly observe the following conclusion.

Observation 3: Compared with the historical IM traffic loads in a cell’s neighbour cells,

the mobile user distributions within the cell’s neighbour area in a few of previous time

intervals seem to have a more important influence on this cell’s future IM traffic load.

Due to the high randomness of IM traffic loads and the strong correlation between the

IM traffic patterns and mobile user distributions, the existing prediction methods which

are mainly developed for the aggregated mobile network traffic are not proper in IM traffic

forecasting. Therefore, it is necessary to design a traffic prediction method, especially for IM

applications that can provide highly reliable prediction results based on the autocorrelations

and spatiotemporal correlations of IM traffic patterns as well as the correlations between IM

traffic variation and the mobile user distributions in previous time intervals.

5.3 The Proposed Framework for IM Traffic Prediction,

SLIM-TP

Fig.5.7 shows the structure of the proposed SLIM-TP, which is a deep stack learning based

framework for cellular-level IM traffic prediction. The SLIM-TP consists of five components:

three heterogeneous base-learners that give the unreliable prediction values of the IM traffic
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Fig. 5.7 The architecture of SLIM-TP and the structure of three base-learners

load in the next time interval, a referee that judges the reliability of each base-learner as

well as generates the meta-features for the meta-learner, and a meta-learner that provides the

final reliable prediction result based on the input meta-features. The details of the proposed

framework are introduced as follows.

5.3.1 The Deep Learning Based Base-learners

As presented in Fig.5.7, there are three base-learners in SLIM-TP to roughly predict the IM

traffic load of a certain cell in the next time interval. In order to fully utilise the statistical

properties of the IM traffic observed above, such as autocorrelations, spatiotemporal correla-

tions, and correlations with the historical mobile user distributions, the three base-learners

are designed based on LSTM network, ConvLSTM network, and 3D-CNN, respectively.

LSTM network-based base-learner 1 :

In SLIM-TP, it constructs base-learner 1 as a multi-layer LSTM network with Lb1

layers of LSTM memory blocks to predict the future IM traffic load in a target cell using
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this cell’s historical IM traffic load records. Each LSTM memory block is logically a

recurrently connected subnet containing some functional modules called gates. According

to their corresponding practical functionalities, these gates are classified as input gates,

input activation gate, forget gate and output gate. With the LSTM network’s ability to

model the long-term dependency in time series, base-learner 1 is designed to capture the

autocorrelations of IM traffic patterns.

For a target cell i and a certain time interval t, base-learner 1 will be continuously fed

a sequence of input vectors related to previous Sb1 time intervals, (vi[t −Sb1 +1], ...,vi[t]),

and predict (as the output) the IM traffic load in next time interval t +1. Each input vector

vi[t] consists of three attributes: one is the IM traffic load in this time interval, ri[t], and the

other two attributions, d[t] and h[t], reflect t’s temporal information (which day in a week

and which hour in a day).

ConvLSTM network-based base-learner 2 :

Base-learner 2 in SLIM-TP is designed as a ConvLSTM network-based prediction model

to extract the spatiotemporal correlations of IM traffic loads generated in the target cell and

the adjacent cells.

As can be seen from Fig.5.7, base-learner 2 consists of Lb2 layers of ConvLSTM memory

blocks, followed by a full-connection layer of neural network. The input of base-learner 2 is

a sequence of Sb2 matrices, (Mw
i [t −Sb2 +1], ...,Mw

i [t]). Each matrix has the size of n×n

and records the IM traffic loads in cell i’s n×n adjacent cells in a previous time interval. The

output of base-learner 2 is the predicted value for the target cell’s IM traffic load in the next

time interval t +1.

3D-CNN based base-learner 3 :

It constructs base-learner 3 as a 3D-CNN based prediction model to capture the correla-

tions between a target cell’s future IM traffic load and the mobile user distributions within

this cell’s neighbour area in a few previous time intervals.

The input of base-learner 3 for mobile cell i can be seen as video-like data with Sb3

matrices, (Mm
i [t −Sb3 +1], ...,Mm

i [t]). These matrices are with the same size of n×n and
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record the numbers of mobile users distributed in each of cell i’s n× n adjacent cells in

previous Sb3 time intervals. As shown in Fig.5.7, base-learner 3 comprises Lb3 convolutional

layers and Lb3 pooling layers, and the outputs of the last pooling layer are converted into the

final output value representing the predicted IM traffic load of cell i in time interval t +1 by

a full-connection layer of the neural network.

5.3.2 The GP Based Referee

Considering Observation 1 that the distribution of IM traffic load has strong randomness,

the results of the three base-learners are often unreliable. In SLIM-TP, it uses a GP-based

referee to judge the credibility of each base-learner and generate meta-features for the meta-

learner. The GP, which is an important class of Bayesian non-parametric machine learning

algorithms, encodes domain or expert knowledge into the kernel function and thus has great

interpretability for its outputs [172]. The GP-based referee will provide the expectation and

variance of the IM traffic load of a target cell in the next time interval instead of a specific

prediction value.

Mathematically, the GP-based referee works as follows. Given the IM traffic loads of

the target cell i in previous Sr f time intervals, ri[t − Sr f + 1], ri[t − Sr f + 2], ..., and ri[t],

the posterior distribution of this cell’s IM traffic load in next time interval, ri[t +1], can be

derived as

ri[t +1]∼ N(µ̄,σ) (5.1)

, where ri[t +1]’s expectation and variance are respectively calculated as

µ̄ = kT
∗ ·K−1 · [ri[t−Srf +1],ri[t−Srf +2], . . . ,ri[t]] (5.2)

σ = k∗∗−kT
∗ ·K−1 ·K∗ (5.3)

K is an Sr f ×Sr f kernel matrix, whose element K(a,b) equals k(t −Sr f +a, t −Sr f +b). k∗

is an Sr f ×1 kernel vector, whose ath element equals k(t −Sr f +a, t +1). k∗∗ is a scalar with

the value of k(t +1, t +1). Specifically, k(t1, t2) is the selected kernel function.
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With the output of D( j)
i [t], the credibility of the jth base-learner ( j=1, 2, or 3), C( j)

i [t], is

calculated as ri[t +1]’s probability density at the value of D( j)
i [t]:

C( j)
i [t] =

1
σ
√

2π
e−

(D( j)
i [t]−µ̄)

2

2σ2 (5.4)

Obviously, the more D( j)
i [t] is close to ri[t +1]’s expectation, µ̄ , calculated by the referee,

the larger credibility the jth base-learner will have. Combining the three base-learners’

prediction results with their corresponding credibilities, the meta-features for mobile cell

i in the tth time interval are obtained. These meta-features can be expressed by a vector

containing six elements, (D(1)
i [t],C(1)

i [t],D(2)
i [t],C(2)

i [t],D(3)
i [t],C(3)

i [t]).

5.3.3 The MLP Based Meta-learner

Intuitively, since all of the three base-learners for mobile cell i try to give the prediction values

using only partial characteristics of the IM traffic patterns, their outputs and credibilities in

the tth time interval (the meta-features provided by the referee) will have a strong correlation

with the ground-true IM traffic load in the next time interval, ri[t +1]. In SLIM-TP, an MLP

is used as the meta-learner to non-explicitly extract this correlation and generate the final

prediction result according to the meta-features.

As shown in Fig.5.7, the MLP-based meta-learner has Lm hidden layers, where the

neurons in each hidden layer are densely connected to the neurons in its former or later

layer. The input layer and output layer of the meta-learner have six neurons and one neuron,

respectively, representing the vector of meta-features and the final prediction result of the

IM traffic load for a target cell. With the MLP’s ability of feature extraction and correlation

characterisation [173], the meta-learner is expected to further improve the three base-learners’

prediction accuracy.
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5.3.4 Constructing Training Sets to Train the Base-learners and the

Meta-learner in SLIM-TP

As shown in Fig.5.8, it divides the associated records about the WeChat traffic loads and

mobile user distributions into three periods, each of which comprises T1, T2, or T3 time

intervals, respectively. For an arbitrary target mobile cell i, it constructs the training sets for

the three base-learners as well as the meta-learner in SLIM-TP as follows. A sliding window

with size Sb1 is applied to split the WeChat traffic load series of the ith mobile cell in the first

period, rT1
i = (ri[1],ri[2], . . . ,ri[T1]), and generate the training set of T1 −Sb1 base-samples

for base-learner 1 by labelling each sequence of Sb1 input vectors with cell i’s WeChat traffic

load in next time interval.

This chapter uses a 3D matrix MwT1
i = (Mw

i [1],M
w
i [2], . . . , Mw

i [T1]) with size n×n×T1

to record the WeChat traffic load distributions in the area of cell i’s n× n adjacent cells

during the first period and apply a 3D sliding window with size n×n×Sb2 to split MwT1
i . By

labelling each n×n×Sb2 matrix with cell i’s WeChat traffic load in the next time interval,

it generates the training set of T1 −Sb2 base-samples for base-learner 2. Similarly, it uses

a 3D matrix MmT1
i = (Mm

i [1],M
m
i [2], . . . ,M

m
i [T1]) to record the mobile user distributions in

the area of cell i’s n×n adjacent cells during the first period. It applies a 3D sliding window

with size n×n×Sb3 to split MmT1
i and generate the training set of T1 −Sb3 base-samples for

base-learner 3 by labelling each n×n×Sb3 matrix with cell i’s WeChat traffic load in next

time interval.

After the three base-learners are well-trained using the corresponding training sets, it

generates one meta-sample related to each time interval in the second period by labelling

the meta-features, which are represented by a vector consisting of the outputs of the base-

learners and these outputs’ credibilities, with cell i’s ground-true WeChat traffic load in this

time interval, and finally obtain the training set of T2 meta-samples for the meta-learner in

SLIM-TP. Finally, for mobile cell i, the prediction performance of SLIM-TP is tested using

the WeChat traffic loads of this cell generated in the third period T3.
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Fig. 5.8 The construction of training sets and testing sets for the base-learners and the meta-
learner in SLIM-TP

5.4.1 Experimental Settings

This section evaluates the performance of the proposed framework using the dataset of

real-world IM traffic records as described in Section II. In this experiments, Lb1, Lb2, and

Lb3 are set as 2, while Sb1 and Sb2 are set as 4 and Sb3 is set as 6, respectively. For each

target cell, the input matrices for base-learners 2 and 3 are with the same size of 21 × 21.

The base-learner 1 has three layers, with 9, 16, and 24 neurons. And base-learner 2 has

three layers with 16,32,16 filters, and the kernel is set a 3×3T. he first convolutional layer

of base-learner 3 adopts 16 filters and the second layer adopts 32 filters, while the size of

both kernels is set as 3 × 3 × 6. Specifically, batch normalisation and ReLu unit are used in
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base-learner 3 to accelerate the training process as well as prevent the overfitting problem.

Sr f is set as 168. The kernel function in the GP-based referee is selected as a combination

function which consists of radial-basis function (RBF) and the ExpSine squared kernel. The

meta-learner has 3 hidden layers of sizes 32, 16, and 1, respectively. The batch size is 5

and the learning rate of 0.001. In practice, other structures of the meta-learner as well as

the base-learners can be adopted in the proposed framework. However, finding the optimal

structures for the learning models is outside the scope of this work.

The WeChat traffic loads and mobile user distributions related to a target mobile cell

from 04/03/2019 to 17/03/2019 are used to construct the three base-learners’ training sets

and use the WeChat traffic loads of this cell from 18/03/2019 to 24/03/2019 to construct the

meta-learner’s training set. Finally, the traffic loads generated from 25/03/2019 to 31/03/2019

are utilized to test SLIM-TP’s prediction accuracy.

The performance of SLIM-TP is compared with the existing mobile network traffic predic-

tion methods including LR [135], ARIMA [129], SVR [136], and three deep learning-based

prediction models that have the same structures with the three base-learners in SLIM-TP,

respectively. Additionally, the chapter explores three excellent-performing traffic prediction

models as baseline methods, each based on one of the three base-leaner of SLIM-TP.

• LSTM [59]. In this research, LSTM autoencoders are utilised for network data recogni-

tion and prediction. The model consists of four LSTM layers, with two layers serving

as encoders and the other two layers functioning as decoders (predictors). It is one of

the most classic LSTM models used for sequence prediction.

• ConvLSTM [60]. The research maximises the potential of ConvLSTM by designing

an encoder and decoder that can simultaneously observe multiple time windows. By

modelling traffic from different windows, the model can accelerate feature exploration

in the temporal domain. Moreover, the convolutional part of ConvLSTM provides a

good interpretation of spatial dependencies.

• 3D-CNN [61]. In this research, the unique characteristics of short-term prediction

are leveraged to design a distinctive 3D-CNN application structure. By increasing
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the step size of the 3D-CNN, it can parallelly process each segment of data, reducing

computational time while maintaining prediction performance.

These three traffic prediction models serve as baseline models for the proposed framework.

For a fair comparison, it trains these baseline methods for each target cell using the

corresponding WeChat traffic loads and mobile user distributions generated from 04/03/2019

to 24/03/2019. The Mean Absolute Error (MAE) loss is used as the loss function, while

the adaptive moment estimation (Adam) algorithm [173] with the default learning rate is

utilized to optimise the baseline deep learning-based models as well as the meta-learner

and base-learners in SLIM-TP. RMSE and R2 are adopted to evaluate the accuracy of the

proposed framework as well as the baseline methods. R2 can be calculated as follows:

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − ȳ)2

(5.5)

, where ȳ represents the mean value of the truth values. The coefficient of determination

R2 takes values between -1 and 1, where a value closer to 1 indicates a better fit of the

predictions to the truth values, and a value closer to -1 indicates a poorer fit. In other words,

R2 measures how well the predicted values match the variability of the true values, with 1

being a perfect fit and 0 indicating no fit at all.

5.4.2 Prediction Performance

A comparison of the performance of SLIM-TP and the baseline methods, measured by the

average RMSE and R2, is shown in Fig.5.9. From Fig.5.9(a) and Fig.5.9(b), it can be seen that

ARIMA and LR perform the worst in predicting IM traffic among all the considered methods.

This is because these two linear model-based methods are not capable of capturing the

extremely nonlinear patterns in IM traffic loads. The SVR, which is a nonlinear and shadow

learning-based prediction method, can handle the non-linearity in IM traffic variation and thus

performs better than ARIMA and LR. Due to the ability of complex feature extraction, the

three deep learning-based methods used in SLIM-TP are able to learn the deep dependencies

between IM traffic loads generated in different time intervals, between IM traffic loads
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(a) (b)

(d) (e) (f)

(c)

Fig. 5.9 The performance comparison between SLIM-TP and baselines: a) The RMSE results
of proposed model and baselines on different grids; b) The R-squared value of proposed
model and baselines; c) The ground true WeChat traffic loads generated in cell (57,32) from
25/03/2019 to 31/03/2019 as well as the predicted values of SLIM-TP and two baseline
methods; d) The ground true WeChat traffic loads generated in cell (45,60) from 25/03/2019
to 31/03/2019 as well as the predicted values of SLIM-TP and two baseline methods; e) The
SLIM-TP’s RMSE performance vs. the size of meta-learner’s training set; f) The SLIM-TP’s
R-squared performance vs. the size of meta-learner’s training set

generated in adjacent mobile cells, or between the IM traffic variation and the historical

mobile user distributions, and thus achieve lower RMSE values and higher R2 values than

ARIMA, LR, and SVR. The proposed SLIM-TP obtains the best prediction accuracy among

all the considered methods in terms of the lowest RMSE and the highest R2, attributed to two

reasons. First, the three deep learning-based base-learners in SLIM-TP have the ability to

learn and represent the complex spatiotemporal correlations of IM traffic loads as well as the

deep dependency between the IM traffic variation and the mobile user distributions. Second,

the meta-learner in SLIM-TP, which revises the outputs of the three base-learners according

to their credibilities, makes SLIM-TP more adaptable to IM traffic patterns with obvious

randomness and finally leads to highly reliable prediction results. Compared with the three

baseline deep learning methods (LSTM, ConvLSTM, 3D CNN), SLIM-TP further reduces

the RMSE by about 37 percent, 35 percent, and 31 percent, respectively, while improving
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the R2 by 88 percent, 74 percent, and 58 percent, respectively. Fig.5.9(c) and (d) show the

prediction results of the SLIM-TP and the two conventional baseline deep learning based

methods (LSTM and ConvLSTM) for two randomly selected mobile cells (57,32) and (45,60).

Despite all three baseline models being multi-layer deep learning structures, each model has

limitations in fully exploring the most effective features. LSTM is undoubtedly the weakest

performer among them, mainly due to its focus on exploring only a single sequence. Although

there have been attempts to flatten multidimensional information and input it into LSTM,

the loss of spatial information and interference with temporal patterns may outweigh the

benefits. ConvLSTM, with its capability to simultaneously explore spatiotemporal features,

performs worse than the 3D-CNN network, which focuses on short-term prediction. This

could be due to ConvLSTM’s susceptibility to highly bursty traffic patterns. This proves the

complexity of IM traffic, and that the schema of the data and the robustness of the system

itself are extremely important. The 3D-CNN model outperforms the other baseline models,

including LSTM and ConvLSTM, mainly because it analyses data using multiple segmented

time periods. However, 3D-CNN has its own drawback of not being able to retain long-term

information, which prevents it from becoming the core algorithm for traffic prediction.

It is worth noting that the three basic learning structures of SLIM-TP are simpler than

the three baseline models, yet they achieve significantly better results. This highlights the

importance of introducing highly correlated data as auxiliary information and the efficiency

of the meta-learner in modelling multidimensional features.

All these results clearly show that the SLIM-TP achieves more accurate prediction values

than the baseline methods, especially when the IM traffic pattern has abnormalities or sudden

changes.

It also investigates how the stack learning technology, i.e., the meta-learner in SLIM-TP,

can help the base-learners improve their prediction accuracy. Fig.5.9(e) and (f) show the

average RMSE and R2 achieved by SLIM-TP over the mobile cells in Guangzhou versus

the number of meta-samples used to train each meta-learner corresponding to a target cell in

SLIM-TP. For comparison purpose, the average RMSE and R2 achieved by every base-learner

are also given as constants. From Fig.5.9(e) and (f), it can be seen that SLIM-TP’s prediction
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accuracy increases monotonously as the number of training meta-samples gets large and

the performance of SLIM-TP will exceed that of each base-learner when the meta-sample

number is greater than around 72. Such a finding can be intuitively explained as follows.

When enough meta-samples are accumulated, the meta-learner will acquire the ability to

extract the correlations between the constructed meta-features and the ground-true IM traffic

load in next time interval for a given mobile cell. However, an interesting phenomenon

existing in Fig.5.9(e) and (f) is that when the number of training meta-samples is larger

than 144, the performance of SLIM-TP will increase little as the meta-learner’s training set

continues to augment. This finding implies that it does not need to construct excessively

many meta-samples to train the meta-learner in SLIM-TP in practice.

5.4.3 Complexity Analyses

Fig. 5.10 The comparison of time consumption in training step and testing step between
SLIM-TP and baselines: a) Off-line training time; b) On-line predicting time

The experiments are implemented by python (version 3.6.3) and programmed on the

Windows 10 platform. The experimental computer is equipped with an i7 6700k CPU.
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Tensorflow-GPU is also used to accelerate the training processes of neural networks through

parallel computation.

In Fig.5.10, it demonstrates the average off-line training time needed by the proposed

SLIM-TP and the baseline methods as well as the average on-line predicting time needed to

output the prediction values in each time interval. From the graph, it can observe that the

model-driven or shadow learning-based methods, i.e., the ARIMA, LR, and SVR, require

relatively short off-line training time and on-line predicting time. On the contrary, the three

baseline deep learning-based methods consume much longer time in both the off-line training

and the on-line predicting than the ARIMA, LR, and SVR due to their complex structures.

Consistent with intuition, the proposed SLIM-TP needs the longest off-line training time

and on-line predicting time among all the considered methods. Note that since the three

base-learners and the meta-learner in SLIM-TP only need to be trained once for each target

mobile cell and the average on-line predicting time of SLIM-TP is still much shorter than the

length of a time interval, SLIM-TP is applicable for practical IM traffic load prediction tasks.

5.5 The robustness of Proposed Model

To validate the robustness of SLIM-TP, it was applied to the training Milan dataset introduced

in the previous chapter. To compensate for the missing grid population data, the high

correlation between mobile network traffic and local calling frequencies was demonstrated.

Fig.5.11 shows the correlation between traffic and phone calls within an 11× 11 range.

Therefore, calling frequencies can be used as auxiliary information to enhance the network

traffic prediction algorithm.

In the previous chapter, MTL-STPN, MTL-STPN(no STPPC), and STCNet, with the

ability to explore multidimensional data, are introduced as baseline models. The traffic data

within a 4×4 region, encompassing sixteen grids, was used for the analysis. MTL-STPN

with STPPC enables global search. RMSE was used as the prediction metric to compare the

performance of each model.



5.5 The robustness of Proposed Model 121

Fig. 5.11 The correlation between traffic and calling data in Milan dataset

Fig.5.12 shows the performance of the four models. It can be observed that SLIM-TP

performs slightly better than MTL-STPN, but the difference is not significant. MTL-STPN

(no STPPC), as the only model without high-quality multidimensional auxiliary information,

exhibits the poorest performance. It demonstrates that in mobile network traffic prediction,

data with high correlation needs to be incorporated to enhance prediction performance.

Comparing STCNet and SLIM-TP, the main difference lies not only in the choice of learning
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Fig. 5.12 The performance comparison between SLIM-TP and baselines training by Milan
dataset

models but also in the application of the meta-learner in the framework. Processing features

before modelling may result in information loss, whereas meta-learning directly models the

features, enabling the extraction of global characteristics. Moreover, the quality of features

trained by the meta-learner is crucial. It recalls to the need for filtering and selecting relevant

information about the data and its auxiliary information. The limited difference between

SLIM-TP and MTL-STPN may indicate that the feature modelling bottleneck has been

reached. The information provided by similar traffic or related heterogeneous network data

is also limited.

In conclusion, SLIM-TP demonstrates excellent performance in small-scale mobile

network traffic prediction.

5.6 Conclusions

In this chapter, it makes an initiative attempt to introduce deep stack learning into mobile

network traffic prediction and propose a novel deep stack learning based cellular-level



5.6 Conclusions 123

IM traffic prediction framework, SLIM-TP. Focusing on the IM traffic’s autocorrelations,

spatiotemporal correlations, and correlations with the mobile user distributions, three base-

learners are designed in SLIM-TP to give the rough prediction values for the IM traffic load

of a certain mobile cell. Taking the outputs of the base-learners and their corresponding

credibilities as the meta-features, an MLP based meta-learner is used to further improve the

reliability of prediction results of the IM traffic loads. Experiments with real-world IM traffic

records demonstrate that SLIM-TP can elevate the prediction accuracy by about 31 percent

to 37 percent as compared with the conventional deep learning based methods. Moreover,

an investigation is also carried out on how the stack learning technology can improve the

base-learners’ performance so as to adjust or reduce the operational complexity of SLIM-TP.

The robustness of SLIM-TP is further validated for different types of mobile network

traffic data. The proposed model is applicable to both cell-level and application-level data,

and it outperforms other state-of-the-art models in terms of prediction accuracy. It verifies

the effectiveness of the SLIM-TP framework in small-scale mobile network traffic prediction

with auxiliary information applied.

Additionally, it is worth studying if some other characteristics of the IM traffic can be

regarded as the meta-features in SLIM-TP.





Chapter 6

Conclusion & Future work

Overview

6.1 Conclusion

This thesis aims to predict mobile network traffic by focusing on mobile network user be-

haviour and traffic characteristics. The research is conducted using deep learning-based

frameworks to enhance prediction performance. Mobile network traffic analysis and predic-

tion have become one of the most important research fields in both academic and industry

communities. This is not only due to the abundance of diverse data generated in complex

network environments but also the challenges posed by the increasing complexity of network

environments. Firstly, with the popularity of mobile networks among the population, the

patterns of network traffic are becoming increasingly diverse. Many mathematical models

that were once used to model traffic trends are no longer suitable for the current scenarios.

This necessitates further research and exploration into the characteristics of the data. Sec-

ondly, due to advancements in network technology, the observation granularity of network

traffic has increased, leading to greater randomness in traffic patterns. This requires more

robust models to address data deficiencies. As a result, mobile network traffic prediction has

become a highly discussed topic. In the face of increasingly complex traffic information and
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more demanding prediction requirements, researchers must determine which data features

and technologies need to be applied.

The analysis of mobile network traffic can be divided into three directions: mobility

analysis, network analysis, and social analysis. This thesis focuses on mobility analysis

initially, exploring the periodicity of data and verifying the feasibility of using deep learning

algorithms for sequence-related tasks. Subsequently, this thesis delves into network traffic

prediction, where it conducts further research on the spatiotemporal characteristics of complex

traffic patterns. As a result, a deep learning-based framework is designed, striking a balance

between accuracy and efficiency. Finally, in the context of high granularity and strong

randomness of network traffic, the thesis conducts comprehensive feature analysis and

extraction. It proposes an algorithmic framework tailored to such features, aiming to achieve

accurate predictions for complex traffic patterns. By undertaking these research efforts, it

presents a method to effectively analyse and predict mobile network traffic.

Chapter 3 aims to predict mobility based on user historical data. The spatiotemporal

characteristics of user mobility have always been a focus of mobility prediction, but there is

no consensus on how to explore these features effectively. Through analysis, it was found

that the frequent visitation locations of users often exhibit strong periodicity. Therefore, the

chapter first identifies dense visitation areas for each user, and then analyses and measures

the visitation frequency for each area rather than each user. Next, the PPM is applied to each

reference region to obtain periodic information. Subsequently, based on the visitation records

for each area at different time intervals, conditional probabilities are calculated to derive

the POI preference for each user, consisting of their preference for each reference region.

By incorporating visitation probabilities, the data dimensionality is increased. Furthermore,

the chapter introduces LSTM, a neural network model suitable for sequence prediction, to

predict the next destination for users. Through experimental comparisons, the proposed

POI preference framework effectively enhances user feature modelling, resulting in a 30%

improvement in prediction accuracy for the forecasting model. This approach also improves

computational efficiency and reduces the complexity requirements of the model. Moreover,
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the study highlights the importance of feature analysis for sequential data, leading to a better

understanding of mobility patterns and an enhancement in prediction accuracy.

Next, this thesis focuses on the prediction of mobile network traffic. Regarding densely

base stations in the city, the correlation between different cell traffic has always been a topic

of discussion. However, most research has only concentrated on learning the traffic around

the target area. Inspired by the patterns of user periodic behaviour in the previous chapter, this

chapter employs a correlation-based method to measure traffic correlations in distant regions

and finds that distance is not the sole criterion for judging traffic correlation. Subsequently,

considering the limitations of applying long-distance and large-scale spatiotemporal corre-

lations, the MTL-STPN is proposed, which allows for training and prediction with shared

feature parameters across different regions. Moreover, efficiently locating the target area

becomes a new challenge. To address this, the chapter introduces a task detection method

suitable for MTL-STPN, called STPPC, based on features such as correlation, similarity, and

periodicity. This method improves the prediction efficiency and accuracy of MTL-STPN.

Compared with state-of-the-art algorithms, the predictive performance can be enhanced by

10%.

Building upon the conclusions of Chapter 4, Chapter 5 delves further into the prediction

of mobile network traffic with higher granularity and stronger bursts, focusing on application-

level data, such as IM traffic. This chapter approaches the problem from a data-centric

perspective and seeks to find highly correlated alternative data for traffic with strong bursts

but weak periodicity. By employing conditional entropy and correlation coefficients, it

gains an intuitive understanding of data correlations. Ultimately, it is revealed that the local

population and IM traffic exhibit a strong correlation. Moreover, by applying the multi-task

framework introduced in Chapter 4, it is discovered that training different data separately

using parallel learners can fully exploit the advantages of the learners. Subsequently, the

generated features are subjected to meta-learning, which models the obtained features.

The trained meta-learner can then complement missing features, effectively improving the

robustness of dealing with complex data. As a result, in experiments using real-world data

for training, the predictive accuracy is improved by 30% compared to state-of-the-art models
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6.2 Future work

In this thesis, the research conducted a lot of analysis on mobile network traffic and its related

data, mainly on its temporal and spatial characteristics. Based on the analysis results and

the characteristics of each type of data, it raises several possibilities to enrich the data by

constructing auxiliary information that can be used to improve the performance of the system.

The model of a personal POI based on periodic pattern exploration has been established. And

for the prediction of high burstiness data, a stack deep learning framework is established

through external high correlation information, spatiotemporal feature extraction, and unified

nonlinear measurement. Finally, for the efficiency of spatial feature extraction, a multi-task

learning framework has been proposed to exclude areas with low correlation information.

In Chapter 3, k-means has been used to cluster the location in the very first step. Since

KDE is used in regional planning, the clustering method has not been discussed. In subsequent

research, other clustering algorithms should be studied, as well as the classification algorithm

under supervised learning. Secondly, the periodic complexity of the experimental data in the

case study is not sufficient, and a more complex dataset needs to be found for verification.

Finally, the pattern fusion algorithm needs more in-depth research to avoid being unable to

cope with multiple periodic fusions.

In Chapter 4, STPPC is the part that can be improved. As proved in the final experiment,

when the increase of the tasks exceeds the critical value, feature redundancy is likely to lead

to system degradation. The more intuitive solution should be to use a threshold system so

that once it finds that there are too many tasks or the task relevance is poor, the connection

layer will be cut off, and the excluded parts can do STL on their own to ensure the average

performance of the overall task. However, how to adapt the threshold of task relevance and

how to make the redundancy do STL requires further research. It is difficult for the current

methods to obtain such data through quantification. Transfer learning might be a potential

solution such that through the migration of fine-tuned model parameters and the matching

of the training data similarity, it might be possible to achieve threshold configuration or

adjustment.
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In Chapter 5, the referee module composed of Gaussian processes is worthy of further

study, due to its being more like an unsupervised or semi-supervised learning method. In

fact, other algorithms can also be applied, such as clustering algorithms to classify the results

of the base learner. Secondly, meta-learner is also a part that can be further improved, such

as joining deep learning, which needs to consider a trade-off strategy. As a deeper network

normally implies a further increase in complexity, whether the gain on the performance

improvement has obvious advantages over the loss risen from the increase in complexity

requires further experiments to verify.

In addition to the above-mentioned approaches of system adjustment, the richness of the

data is also one of the directions for future work. For example, in application-level data,

whether the other application data have similar patterns is an open question. Finally, in data

analysis, the similarity detection of spatiotemporal is also a point that needs continuous

attention.
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