
University of Sheffield

Optimising IDS Configurations for IoT

Networks using AI Approaches

Abdulmonem Alshahrani

Supervisors:

Prof. John A. Clark
Prof. Hamish Cunningham

A thesis submitted for the degree of Doctor of Philosophy

in the

Department of Computer Science
The University of Sheffield

July 24, 2023

Declaration

All sentences or passages quoted in this document from other people’s work have been specif-
ically acknowledged by clear cross-referencing to author, work and page(s). Any illustrations
that are not the work of the author of this report have been used with the explicit permis-
sion of the originator and are specifically acknowledged. I understand that failure to do this
amounts to plagiarism and will be considered grounds for failure.

Name:

Signature:

Date:

i

Abstract

The number of internet-connected smart objects, known as the Internet of Things (IoT),

has increased significantly in recent years. The low cost of manufacturing has enabled a

proliferation of smart devices across many tasks and domains. Such devices, however, are

typically resource constrained. This has led to the emergence of Low-Power and Lossy Net-

works (LLNs) which require efficient communication protocols. The Routing Protocol for

Low-Power and Lossy Networks (RPL) has been designed for such a purpose. The RPL

is the de-facto standard routing protocol for the IoT. Nevertheless, RPL-enabled networks

are susceptible to many attacks as these devices are unattended, resource-constrained, and

connected via unreliable networks.

Deploying Intrusion Detection Systems (IDSs) in such a large and resource-constrained

environment is a challenging task. The resource-constrained nature of many devices and

nodes restricts what tasks those nodes can realistically expect to perform. There may be

a great many choices as to what detection functionality is allocated and where. There are

cost/benefit trade-offs between them and inappropriately favouring one over the another

may cause an ineffective IDS deployment. In this research, we investigate the use of a meta-

heuristic-based optimisation method, namely a Genetic Algorithm (GA), to discover optimal

IDS placements and configurations for the Low Power and Lossy Networks (LLNs). To the

best of our knowledge, this is the first attempt to optimise IDS configurations for emerging

and constrained networks while incorporating a wider set of aspects than currently considered.

Our approach seeks to optimise and balance detection performance (either detection rate or

F1 score), coverage (nodes are monitored by an appropriate number of probes), feasibility

cost (nodes host detection functionality within their capability), and deployment cost (seeking

ii

iii

to reduce the number of probes deployed). We propose a framework that makes trades-offs

between these functional and non-functional constraints.

A genetic algorithm-based optimisation approach is developed to address the IDS optimi-

sation task. However, the fitness function is evaluated in part via a computationally expensive

simulation. We show how a neural network can be used as a surrogate fitness function eval-

uation, providing better results more cheaply. Experimental results show that the proposed

function approximation is more computationally efficient. Our approximation-based GA sys-

tem is 1.6 times faster than the corresponding simulation-based GA system. It also gives

better results. Furthermore, when used repeatedly to generate candidate placements and

configurations the resource costs per generation reduce drastically.

The surrogate model is valuable as it significantly reduces the evaluation time and com-

putation. However, generality is still a limitation. Therefore, we propose a transfer-learning

Deep Neural Networks (DNNs) approach, that harnesses the experience of previously trained

neural networks, to develop a general proxy model for evaluating IDS configurations of variant

newly-presented networks more accurately.

Acknowledgement

First and foremost, I thank God (Allah) who has given me strength throughout all the

challenging moments of completing this Ph.D. study.

I would like to express my deepest gratitude to my supervisor, Professor John A. Clark,

who generously provided me with knowledge and expertise, and guided me throughout this

research. Further, I extend my appreciation to my panel members, Professor Hamish Cun-

ningham (my second supervisor) and Dr Prosanta Gope (panel chair), for their valuable

feedback during my panel meetings.

I would be neglectful if I don’t mention my parents, my wife, my son, my daughter, my

brothers and sisters, and my friends. Their existence, prayers and belief in me have kept my

spirits and motivation high during this entire journey.

I would like to extend my sincere thanks to my labmates in the Security of Advanced

Systems research group for being amazing people to work with.

Lastly, I am also grateful to my scholarship provider, King Khalid University. This

endeavour would not have been possible without their support.

iv

Contents

1 Introduction 1
1.1 Problem statement and motivation summary 2
1.2 Research hypotheses . 3
1.3 Contributions . 5
1.4 Structure of the thesis . 5
1.5 Publications . 6

2 Literature Review 8
2.1 Overview of IoT . 8

2.1.1 IoT architecture and layers . 9
2.1.1.1 Perception layer . 10
2.1.1.2 Network layer . 10
2.1.1.3 Processing layer . 10
2.1.1.4 Application Layer . 11

2.1.2 Securing the IoT . 11
2.1.2.1 Securing IoT versus conventional networks 11

2.1.3 Security challenges in IoT . 13
2.1.3.1 Integration . 13
2.1.3.2 Heterogeneity . 13
2.1.3.3 Resource constraints . 14
2.1.3.4 Privacy . 15
2.1.3.5 Large scale/scalability . 15
2.1.3.6 Trust management . 15

2.1.4 Security goals . 16
2.1.4.1 Confidentiality . 16
2.1.4.2 Integrity . 16
2.1.4.3 Availability . 16
2.1.4.4 Authenticity . 17
2.1.4.5 Non-Repudiation . 17

2.1.5 The need for an efficient routing protocol 17
2.2 RPL . 17

2.2.1 Threats to RPL-based Internet of Things 19
2.2.1.1 Sinkhole, Blackhole and Selective forwarding 20
2.2.1.2 DIS Flooding . 20
2.2.1.3 Increase Rank . 23

v

CONTENTS vi

2.2.1.4 Wormhole . 23
2.2.1.5 Worst parent . 24
2.2.1.6 DIO suppression . 26
2.2.1.7 Sybil attack . 26
2.2.1.8 Replay attack . 28

2.2.2 RPL-based IoT security vulnerability 28
2.3 Intrusion Detection Systems in the IoT/RPL 29

2.3.1 Monitoring source . 31
2.3.2 Intrusion detection architectures . 32

2.3.2.1 Distributed IDS (DIDS) . 32
2.3.2.2 Centralised IDS (CIDS) . 32
2.3.2.3 Hybrid IDS (HIDS) . 34

2.3.3 Detection methodologies . 35
2.3.3.1 Signature-based approach . 36
2.3.3.2 Anomaly-based approach . 36
2.3.3.3 Specification-based approach 37
2.3.3.4 Hybrid-based approach . 38

2.3.4 Response . 38
2.3.5 Intrusion detection performance metrics 38

2.3.5.1 Functional metrics . 39
2.3.5.2 Non-functional metrics . 40

2.3.6 IDS proposals for RPL-based IoT . 40
2.4 IDS configurations optimisation . 44

2.4.1 Genetic Algorithm overview . 45
2.4.1.1 preliminary . 47
2.4.1.2 Initialisation . 48
2.4.1.3 Evaluation . 49
2.4.1.4 Selection . 49
2.4.1.5 Crossover . 51
2.4.1.6 Mutation . 51
2.4.1.7 Termination . 52

2.4.2 Related work in IDS configuration optimisation 52
2.5 Function approximation . 58

2.5.1 Overview . 58
2.5.2 Fitness approximation via neural networks 61

2.5.2.1 Feedforward Neural Network 62
2.6 Summary . 65

3 The Work of This Thesis 66
3.1 Brief motivation statement . 66
3.2 Research originality . 67

4 IDS Configuration Optimisation using Evolutionary Algorithm 68
4.1 Background . 68
4.2 Our contributions and organisation of the chapter 70
4.3 Related works . 71

CONTENTS vii

4.4 Threat model . 72
4.4.1 Blackhole attack . 72
4.4.2 Selective forwarding attack . 72
4.4.3 DIS flooding attack . 73

4.5 Intrusion Detection System (IDS) model . 74
4.5.1 Monitoring technique . 75
4.5.2 Detection method . 76
4.5.3 Decision approach . 76

4.6 Proposed GA-based IDS configuration . 76
4.6.1 Single-Objective Optimisation (SOO) 81

4.7 Performance evaluation . 83
4.7.1 Experiments settings . 83

4.7.1.1 GA Oriented Settings . 83
4.7.1.2 Network settings . 85

4.7.2 Results . 86
4.8 Interpreting IDS configuration samples . 91
4.9 Discussion . 92
4.10 Summary . 97

5 Fitness Approximation of IDS Fitness Evaluation 98
5.1 Introduction . 98
5.2 Related work . 100
5.3 System detail . 100

5.3.1 GA-based IDS configuration optimisation 101
5.3.2 FNN based fitness approximation . 102

5.4 Dataset preparation . 104
5.5 Experiments and results . 107

5.5.1 FNN model evaluation . 107
5.5.2 FNN as fitness evaluation . 108

5.6 Brief discussion . 111
5.7 Summary . 113

6 A Transfer Learning Approach to Discover IDS Configurations 114
6.1 Introduction . 114
6.2 Rule-based IDS to detect greyhole attacks . 115
6.3 Dataset creation . 116

6.3.1 Fitness measurement . 116
6.4 Experimental set-up . 118

6.4.1 Network simulation . 118
6.4.2 Network generator . 118
6.4.3 Feature engineering . 120
6.4.4 Neural Network building . 120
6.4.5 Transfer Learning . 122

6.5 Results . 123
6.5.1 Experiment 1: retraining model vs transfer learning model 124
6.5.2 Experiment 2: Other ML models vs transfer learning model 127

CONTENTS viii

6.6 Summary . 128

7 Conclusions and Future Work 130
7.1 Contributions evaluation . 131
7.2 Future work . 133

7.2.1 A multi-objective framework for optimising IDS configurations 133
7.2.2 Rigorous evaluation metrics . 133
7.2.3 Mobile environment . 133
7.2.4 Dedicated sniffers placement optimisation 134
7.2.5 Collaborative intrusion detection . 134
7.2.6 Intrusion Prevention System (IPS) . 134
7.2.7 Dynamic reconfiguration . 134
7.2.8 Explicable Machine Learning for Optimal Configurations 135
7.2.9 Relaxing simplifying assumptions . 135

7.3 Final remarks . 135

List of Figures

2.1 Internet of Things architecture and protocol stacks 9
2.2 RPL DAG . 19
2.3 A taxonomy of the most common RPL attacks 20
2.4 Sinkhole, blackhole and selective forwarding attacks 21
2.5 DIS flooding attack . 22
2.6 Increase rank attack . 23
2.7 Wormhole attack . 24
2.8 Worst parent attack . 25
2.9 DIO suppression [1] . 26
2.10 Sybil attack . 27
2.11 IDS components . 30
2.12 IDS classification . 31
2.13 Typical distributed IDS . 33
2.14 Typical centralised IDS . 34
2.15 Typical hybrid IDS . 36
2.16 Local and global optima. (A) shows an example of a minimisation problem

with multiple objectives; (B) shows an example of a maximisation problem
with one objective). 45

2.17 Flow chart of a basic GA . 47
2.18 Two common selection methods: (A) Roulette wheel selection (B) Tournament

selection . 49
2.19 The crossover and mutation operators . 51
2.20 Three directions to reduce expensive optimisation costs [2]. 59
2.21 An illustration of a trade-off between fidelity (approximation accuracy) and

computational cost. Usually, high-fidelity fitness evaluations are more time-
consuming. By contrast, low-fidelity fitness evaluations are often less time-
consuming [3]. 60

2.22 An Example of a surrogate model that has a large approximation error but is
adequately good for evolutionary search [4]. 60

2.23 An illustration of learning iterative fitness evolutionary process using neural
networks for predicting converged fitness value [3]. 61

2.24 An illustration of the Overfitting-to-noise issue.[5] 62
2.25 Example of the activation functions . 63
2.26 Architecture of an ANN model . 64

ix

LIST OF FIGURES x

4.1 Illustration of the blackhole and variants of selective forwarding attacks. . . . 74
4.2 The Difference in DIS intervals between normal and malicious scenario. . . . 74
4.3 The monitoring node, s1, promiscuously overhears the communication of node

s3. 75
4.4 The IDS candidate configuration representation. 77
4.5 The conceptual architecture of the framework. 84
4.6 The best found IDS sensor placement (random 64-node network with w1=0.5,w2=0.15,

w3=0.15 and w4=0.2). 86
4.7 The evaluation of the objectives and the fitness function over generations for

different networks with w1=0.5, w2=0.15, w3=0.15 and w4=0.2 (Fit1 as de-
tection rate (top two figures) and Fit1 as f1-score (bottom two figures)). . . . 89

4.8 An example of high-performing IDS configurations 92
4.9 The number of times a node is enabled for 5 different runs 93
4.10 The number of times rule 1 is selected on each node over 5 different runs . . . 93
4.11 The number of times rule 2 is selected on each node over 5 different runs . . . 94
4.12 The number of times rule 3 is selected on each node over 5 different runs . . . 94
4.13 The number of times rule 4 is selected on each node over 5 different runs . . . 95
4.14 An Illustration of the number of times a node is chosen for probe placement

over 5 different runs . 95
4.15 A Comparison between the Random search and Genetic Algorithm on finding

optimal candidate solutions. (64-random nodes with w1 = 0.7(detection rate),
w2 = 0.1,w3 = 0.1,w4 = 0.1). 96

5.1 The GA-Sim evaluation process . 100
5.2 The conceptual architecture of the IDS configurations fitness approximation

framework . 103
5.3 The process of balancing the GA-based dataset 106
5.4 The FNN model evaluation. 108
5.5 The number of reduced evaluations to reach a high fitness value (on average)

between (5 runs of) the GA-Sim with a random initial population (A) and
initial population produced by GA-FNN (B) 111

6.1 Example of IDS sensor configuration representation. 117
6.2 High-level overview of IDS configurations optimisation, generation and prepa-

ration. 119
6.3 Learning process of transfer learning. 122
6.4 Performance illustration between retraining and transfer learning approaches

using different dataset sizes (on Network 28). 125
6.5 The Mean Absolute Errors and Mean Square Errors of the transfer learning

and retraining approaches using different training set sizes (on Network 28). . 127
6.6 The prediction performance between the transfer learning, retraining, RFR

and SVR models on a combined configuration dataset of six networks 128

List of Tables

2.1 The difference in characteristics between IoT and WSN 13
2.2 IDS confusion matrix . 39
2.3 IDS deployment techniques. 42
2.4 Optimisation-based IDS proposals. 55

4.1 Related works . 71
4.2 Genetic Algorithm parameters . 83
4.3 The network simulation parameters . 85
4.4 Various parameter and weight values and their achieved fitness values (%)

using SOO . 90

5.1 Genetic Algorithm hyperparameters . 102
5.2 The Neural Network hyperparameters . 104
5.3 Performance evaluation of the IDS configuration-based fitness approximation

neural network model . 108
5.4 The difference between the GA-FNN and GA-Sim (in accuracy and time) for

evaluating ten configurations . 109

6.1 The Neural Network hyperparameters . 121
6.2 Genetic Algorithm hyperparameters . 123
6.3 Performance evaluation of the retraining and transfer learning approaches. . . 126
6.4 Performance evaluation of different schemes. 128

xi

Nomenclature

ACRONYMS

R2 R-Square

6BR IPv6 Boarder Router

6LoWPAN IPv6 over Low power
and Wireless Personal Area
Networks

ACK ACKnowledgement

AES Advance Encryption Standard

AI Artificial Intelligence

ANNs Artificial Neural Networks

AODV Ad hoc On-Demand Distance
Vector Routing

AUC Area Under the Curve

CCI Correctly Classified Instances

CEP Complex Event Processing

CIDS Centralised Intrusion Detection
System

CoAP Constrained Application
Protocol

DAG Directed Acyclic Graph

DAO Destination Advertisement
Object

DDS Data Distribution Service

DIDS Distributed Intrusion Detection
System

DIO DODAG Information Object

DIS DODAG Information Solicitation

DNNs Deep Neural Networks

DODAG Destination Oriented Directed
Acyclic Graph

DoS Denial of Service

DPO Distress Propagation Object

DS Detection Sniffers

DTR DIS Transmitting Rate

DT Decision Tree

EA Evolutionary Algorithm

EC Evolutionary Computations

EMS Event Management System

EOP ExpensiveOptimisationProblem

ETX Expected Transmission Count

FNN Feedforward Neural Network

FNR False Negative Rate

FN False Negative

FPR False Positive Rate

FP False Positive

GA Genetic Algorithm

GPS Global Positioning System

GP Genetic Programming

HIDS Host-based Intrusion Detection
Systems

HPC High Performance Computing

HR High Resourced

IA Information Assurance

ICS Industrial Control Systems

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IoT Internet of Things

IPsec Internet Security Protocol

IPS Intrusion Prevention System

LLN Low Power and Lossy Network

xii

Nomenclature xiii

LR Low Resourced

MAE Mean Absolute Error

MAPE MeanAbsolutePercentageError

ML Machine Learning

MOGA Multi Objective Genetic
Algorithm

MOO Multi Objective Optimisation

MQTT Message Queue Telemetry
Transport

MR Moderate Resourced

MSE Mean Square Error

NFC Near Field Communication

NIDS Network-based Intrusion
Detection Systems

NN Neural Network

NS2 Network Simulator 2

NSGA Non-Dominated Sorting Genetic
Algorithm

OF Objective Function

PDR Packet Dropping Ratio

RBAC Rule Based Access Control

RBF Radial Basis Function

ReLU Rectified Linear Unit

RFID Radio Frequency Identifier

RFR Random Forest Regression

RMSE Root Mean Square Error

RNG Random Network Generator

RPL Routing Protocol for Low Power
and Lossy Network

RS Random Search

SCADA Supervisory Control And Data
Acquisition

SLA Service Level Agreement

SMOGN Synthetic Minority Over-
sampling with Gaussian Noise

SMOTER Synthetic Minority Over-
sampling Technique for
Regression

SMOTE Synthetic Minority Over-
sampling Technique

SN Super Node

SOO Single Objective Optimisation

SPEA Strength Pareto Evolutionary
Algorithm

SVM Support Vector Machine

SVR Support Vector Regression

TN True Negatives

TP True Positives

VANET Vehicular Ad hoc NETwork

WBGA Weight Based Genetic
Algorithm

WSN Wireless Sensor Networks

SYMBOLS

ŷ predicted value

B number of bins

b granularity value

C Evaluation cost

cov coverage value

D number of samples

dBm decibel-milliwatts

f fitness value

fit fitness function

freq frequency

g counter

k target of monitoring nodes

l number of participants for GA se-
lection

m number of neighbouring nodes

mrj maximum number of rules

mJ megajoule

ms milliseconds

N Number of evaluation

n number of nodes

np number of packets

O Time complexity

P list containing configurations

p probability value

Nomenclature xiv

PL parallel computing

R number of rules

rj current number of rules

S set of nodes

s seconds

T threshold value

Thr threshold bits

v number of monitoring nodes

W wight value

y actual value

Dedicated to my family, without whose endless love and support, I could not

achieve this.

Chapter 1

Introduction

Computer and network security is an ever-growing research area. There are many proposals

and techniques to enhance protection against malicious activities, for example, access control,

authentication, firewalls and others. However, an attacker on occasion may bypass these

mechanisms and, hence, there is a need for a second line of defence.

The first attempt to detect intrusions was in 1980 by Anderson [6]. He suggested methods

to analyse audit logs for signs of intrusion. This sort of system would become known as an

Intrusion Detection System (IDS). Heberlein et al.[7] extended the idea to scrutinise not only

historic logged data in a host-based manner but also stream data to monitor the network

traffic for any security violations.

Even though intrusion detection systems have succeeded in detecting various threats in

an efficient and effective way in traditional networks, the emergence of new paradigms such

as ubiquitous computing, embedded systems and wireless communications have introduced

further difficulties [8].

The Internet of Things (IoT), as one type of rapidly growing and adopted modern network,

includes a large number of interconnected and heterogeneous devices with limited resources in

terms of power, computation, storage and communication capabilities [9, 10]. Such networks

are known as low-power and lossy networks (LLNs). Resource efficiency is a critical issue

in some systems. Routing efficiency has emerged as a particularly important problem for

1

CHAPTER 1. INTRODUCTION 2

IoT LLNs. The Routing Protocol for Low-power and lossy networks (RPL) is proposed as

the IETF standard IPv6 routing protocol for large-scale LLNs [11]. However, the devices

in LNNs are resource-constrained. This means these devices may not be able to support

complex defence mechanisms. RPL nodes are not tamper-resistant and are vulnerable to

several attacks1.

These limitations in capabilities have to be taken into consideration when designing an

IDS for RPL-based IoT because they may affect its detection capabilities. One of the least

studied fields in IDS is how to determine optimal configurations where not all the nodes are

sufficiently well-resourced to host sophisticated (or even any) IDS functionality [12]. In this

PhD research, we investigate the use of a specific type of optimisation approach, namely

Evolutionary Algorithms (EAs), to find effective and efficient IDS sensors2 placement and

configuration for the RPL-based IoT constrained networks. We also investigate means of

decreasing the resources needed to perform optimisation searches.

1.1 Problem statement and motivation summary

IoT is emerging as one of the most exciting architectural developments in modern-day net-

working technology [13]. The provision of intrusion detection services for RPL-based IoT is

a natural development that researchers have begun to address. Many of the state-of-the-art

IDS proposals for the RPL-based IoT tend to focus on the functional criteria such as in-

creasing the detection rate and reducing false alarms. These are (unsurprisingly) prominent

evaluation metrics for intrusion detection systems. However, in a constrained and vulnerable

network, other non-functional metrics are important too. The non-functional metrics include

the study of where these IDS sensors are placed, what are the resources available on the

hosted nodes, and how many monitoring nodes are needed to maintain resiliency.

There is a real issue as to how high-performing IoT/RPL IDS deployments may be deter-

mined. One means is via optimisation-based approaches. Optimisation methods have been

1The terms attack, adversary, intruder, and malicious node are used interchangeably throughout this thesis
2The terms IDS sensor, probe, and monitoring node are used interchangeably throughout this thesis

CHAPTER 1. INTRODUCTION 3

widely applied in many real-world complex problem domains. They explore relevant search

spaces seeking to optimise a fitness function or minimise a cost function. Most real-world

applications involve complicated factors and parameters to determine how a system performs

[14]. The search landscape will often be non-linear and require nonlinear optimisation ap-

proaches to be applied. These often require significant computing power [15]. This is indeed

the case with application to IDSs. This is particularly so when the usefulness of a specific can-

didate IDS configuration is evaluated via a simulation. Attacks are launched on a simulation

of the system to be protected and measures are taken as to how a candidate IDS performs.

The attacks will generally follow some hypothesised distribution. A single evaluation may re-

quire the simulation of a significant number of attacks. Using a simulation environment in the

context of a nonlinear search may be computation-expensive and time-consuming. Resource

usage is important and we need to minimise the amount of effort involved in determining a

high-performing configuration.

In this PhD thesis, we aim to provide an optimisation-based framework to produce high-

performing IDS configurations for RPL-based IoT networks, and do so rapidly. To make

this practical and much more useful, we are going to address the efficiency and effectiveness

aspects.

1.2 Research hypotheses

IoT is a complex distributed network with resource-deficient electronic devices. The

environment is known to be self-configured and mostly operates unattended [16]. RPL-

based IoT networks are susceptible to both cyber (logical) and physical attacks. Finding

optimal IDS configurations, in terms of both the functional (e.g., detection rate) and non-

functional (e.g., deployment cost) criteria, for such a constrained and vulnerable network

is an important and difficult task. We investigate whether evolutionary optimisation can

automatically determine high-performing IDS configurations. Evolutionary approaches have

proven to be an effective tool for deriving intrusion detection components [17]. However,

there is no comprehensive application in the configuration of IDS for the RPL-based IoT

CHAPTER 1. INTRODUCTION 4

ecosystem. The first hypothesis of this thesis is as follows:

Hypothesis 1: Evolutionary algorithms can discover resource-efficient and detection-capable

security configurations for intrusion detection systems that are suitable for RPL-based

Internet of Things networks.

Even though Evolutionary Algorithms (EAs) can provide us with optimal (or near-

optimal) IDS configurations and be able to reconfigure them as needed, it is time-consuming

and computation-expensive. EAs often require thousands of function evaluations to locate a

near-optimal solution3[18]. We propose that the computation complexity of function evalu-

ation can be radically reduced by seeking to employ function approximation. One technique

is by using Artificial Neural Networks (ANNs) to learn the underlying function via mapping

inputs to outputs using historical or available observations from the domain. The ANNs

can approximate a complex or unknown function with high-fidelity [19, 20]. Accordingly,

we propose a Feedforward Neural Network (FNN) technique for IDS configuration function

approximation. The second hypothesis is as follows:

Hypothesis 2: Machine learning approaches can allow us to perform function approxima-

tion for the framework’s fitness evaluation function and so greatly reduce the time and

computation taken to produce near-optimal security configurations using such a frame-

work.

Accelerating the optimisation evaluation of the IDS configurations for a network is advan-

tageous and important. However, when dynamically changing environments (or in general,

newly presented networks) require optimising, the costly optimisation process needs to be

started from scratch again. It is, therefore, beneficial to build an approximation model (a

fast proxy) that can make accurate fitness evaluations not only for one specific network but

also for new networks. As such, there is a need for a generalised function approximation

technique. The third hypothesis is given next:

3The terms chromosomes, individuals, solutions and candidate solutions are used interchangeably through-
out this thesis

CHAPTER 1. INTRODUCTION 5

Hypothesis 3: A transfer learning based deep neural networks approach can provide a

highly efficient fitness approximation with acceptable fidelity for newly-presented RPL-

based Internet of Things networks.

Thus, we seek to develop an approach whose fitness approximation is not tied to a specific

network, i.e. it is more generally applicable.

1.3 Contributions

This thesis has the following contributions:

• An IDS optimisation framework for RPL-based constrained networks. This finds opti-

mal placements and configurations of the IDS sensors. It incorporates a much wider

set of constraints than other IoT IDS researchers consider. The studied objectives in

this research are comprehensive and valuable for any IDS deployment. Further, the

framework is extendable and further objectives can be included if desired.

• A function approximation surrogate model. This provides an extremely efficient ap-

proximate evaluation of IDS configurations for the network under consideration, greatly

reducing the resources required for an IDS configuration evaluation.

• A generalised proxy model. We extend the capability of the function approximator

model using the transfer-learning method to make possible fast, efficient and accurate

IDS configurations evaluation for new variant networks.

1.4 Structure of the thesis

The rest of the thesis is organised as follows:

• In Chapter 2, we start with a brief background of the IoT and RPL. We then cover

some security issues of these technologies. We also present a detailed description of

the IDSs and related works concerning the deployment of the IDS in RPL-based IoT

CHAPTER 1. INTRODUCTION 6

networks. Further, we address some optimisation issues of IDS configurations and the

usage of evolutionary algorithms to solve the problem. Then we describe the function

approximation concept and its usage in fitness evaluation.

• In Chapter 3, we summarise the originality of the research contributions given the

literature review, indicating how the research hypotheses follow from it.

• In Chapter 4, we present a Genetic Algorithm (GA)-based IDS optimisation frame-

work. This includes the architecture, implementation and evaluation of our optimisa-

tion framework. This chapter details the building blocks of the fitness function and

objectives to be optimised the configuration of IDS sensors for RPL-based constrained

networks.

• In Chapter 5, a surrogate-assistant-based Neural Network (NN) to accelerate the optimisation-

based discovery of IDS configurations is described. We show how a Feed-forward Neural

Networks (FNNs) model is built, trained and adopted to replace the expensive evaluator

for the IDS configurations.

• In Chapter 6, we discuss the usage of a transfer-learning Deep Neural Network (DNN)

to overcome the generalisation issue (i.e., a surrogate-model trained to make IDS eval-

uation for only one specific network). This is to generate high-performing IDS configu-

rations for different networks. We show how a transfer-learning DNN model performs

better than a stand-alone DNNs model (and other ML-based regression models) for

enabling IDS configuration evaluation with reduced error.

• In Chapter 7, we evaluate the evidence produced in our investigation of the research

hypothesis. We present a summary of the thesis and identify potential future work.

1.5 Publications

Research in this thesis has appeared in the following publications:

• On Optimal Configuration of IDS for RPL Resource-Constrained Networks Using Evo-
lutionary Algorithm.

CHAPTER 1. INTRODUCTION 7

Alshahrani, A., Clark, J.A.
Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022. Lecture Notes in
Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-
18458-1 35

• Neural Network Approximation of Simulation-based IDS Fitness Evaluation
Alshahrani, A., Clark, J.A.
25th IEEE International Conference on Computational Science and Engineering (IEEE
CSE 2022).

• Transfer Learning Approach to Discover IDS Configurations Using Deep Neural Net-
works
Alshahrani, A., & Clark, J. A. (2022, October). In 2022 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI) (pp. 1-8).
IEEE.l Conference on Communications, Computing, Cybersecurity, and Informatics
(CCCI 2022).

The following paper is a collaboration work with others in the Security of Advanced Systems
research group:

• Intrusion detection systems in RPL-based 6LoWPAN: a systematic literature review
Pasikhani, A. M., Clark, J. A., Gope, P., & Alshahrani, A.
IEEE Sensors Journal,2021.

Chapter 2

Literature Review

2.1 Overview of IoT

The world is much smarter thanks to the Internet of Things (IoT). It is defined as the

collection of connected uniquely identifiable smart objects that communicate via the global

internet. IoT services have increased rapidly in recent years and are set to continue to play a

significant role [21]. The number of IoT-connected devices is expected to reach 83 billion by

2024 [22]. These smart objects and technologies have assisted companies increasing revenue

and lowering costs, creating $200−$500 billion in profits per year by 2025 [23]. The IoT

ecosystem connects people, machines, tablets, smartphones and other smart objects via very

large-scale interconnected networks to innovate intelligent applications and services.

Some emerging applications are the smart home, smart city, smart health, cyber-physical

systems, smart transportation, connected cars and smart grids. The things are physical sen-

sors and actuators that gather information about the social life of humans or the environment

in general to provide intelligent services. The IoT enables communication between heteroge-

neous smart devices, automobiles, fridges, ovens and other items or things through different

networks at any time and from anywhere [24]. The flexible connectivity between humans and

things is provided by the so-called 6A vision: Anywhere, Anytime, Anyone, Anything, Any

network/path and Any service.

8

CHAPTER 2. LITERATURE REVIEW 9

Figure 2.1: Internet of Things architecture and protocol stacks

Due to the rapid increase in the number of interconnected IoT smart objects and the

resource-constrained nature of these nodes, The Internet Engineering Task Force (IETF) has

formed a Working Group (WG) called ROLL (Routing Over Low power and Lossy networks)

to work on the standardisation of efficient protocols to support IPv6 communication across

wireless sensor or IoT networks. The standard routing protocol for the Internet of Things

is the RPL (Routing Protocol for Low Power and Lossy Networks)[8]. It is an efficient

routing protocol designed for Low Power and Lossy networks (LLNs). These networks include

resourced-constrained nodes in terms of memory, power and CPU processing. In section 2.2,

we will provide more details about the RPL protocol.

2.1.1 IoT architecture and layers

There are several proposed architectures of the IoT ecosystem; however, there is no agreed

standard [25]. The most common architecture consists of four layers as shown in Figure 2.1.

These are Perception Layer, Network Layer, Processing Layer and Application Layer. A brief

introduction to each one is provided next.

CHAPTER 2. LITERATURE REVIEW 10

2.1.1.1 Perception layer

This layer involves the physical devices and actuators that connect and communicate with

each other. Most nodes or devices here are sensors, which is why this layer is sometimes called

the sensing layer. They collect and gather information about the surrounding environment

such as humidity, temperature and personal movements [26]. Identifying the analogue data

and then digitising it is basically how this layer works. Some of the adopted technologies

at this level are Radio Frequency Identifier (RFID) tags, Global Positioning System (GPS),

sensor gateways, temperature sensors, and surveillance cameras. In some studies, this layer

is further divided into two sub-layers: perception nodes (responsible for controlling data) and

network nodes (used to send data to the controller and which connect the network layer)[27].

2.1.1.2 Network layer

This layer is above the sensors level and responsible for transmitting the acquired and digitised

data from the sensors layer to the upper level. It is network communication software and

physical components with receiving, transmitting and routing capabilities [9]. Data can be

transmitted through a wired or wireless channel; some of these technologies are 3G, DSL,

LTE, WiFi, Near-Field communication (NFC), and Bluetooth. Some of the routing protocols

that have been adopted in this layer are the RPL and AODV (ad hoc on-demand distance

vector).

2.1.1.3 Processing layer

Before information reaches end users, it has to be processed through this supporting layer.

It is where a tremendous amount of data is processed, analysed and stored [28]. Some main

technologies involved are cloud computing and big data processing [29]. Some researchers

have combined it with the application layer since it works near the applications demanded

by users.

CHAPTER 2. LITERATURE REVIEW 11

2.1.1.4 Application Layer

This is where users and organisations visually interact and communicate with the gathered

information via the services provided. Many IoT applications enable smart cities, smart

transportation, smart healthcare, smart homes etc. The application layer supports standard

transfer protocols such as CoAP (Constrained Application Protocol), MQTT (Message Queue

Telemetry Transport), Extensible Messaging and Presence Protocol (XMPP) and DDS (Data

Distribution Service). These protocols enable the constrained devices that run on low-power

networks to communicate efficiently.

2.1.2 Securing the IoT

Integrating smart objects and devices with the physical world poses many security issues.

Daily activities are sensed, recorded, processed, and transmitted through untrusted networks

creating an excellent opportunity (i.e., multiple attack surfaces) for attackers to intercept

information and destroy resources [29].

Attacks on critical systems such as Supervisory Control and Acquisition Systems (SCADA)

and Industrial Control Systems (ICS), where IoT has been embraced, will have hazardous

consequences for whole cities or even countries [30]. The IoT-embedded devices are shipped

with weak configurations (e.g. with default passwords) and provide critical functions (e.g.

door locking). Compromising these devices became easy and serious. For instance, tests on

popular smart home appliances show the vulnerability of these devices to being compromised

and leaking some sensitive personal information [31]. The adversary can exploit the wire-

less medium that connects these devices and exfiltrate information from the payload of the

transmitted packets. This may reveal some information about the users and their activities.

2.1.2.1 Securing IoT versus conventional networks

There are several key security and privacy differences between IoT networks and other wired

networks. IoT networks are deployed over Low Power and Lossy Networks (LLNs). In

contrast, other networks employ more powerful devices and have secured communication

CHAPTER 2. LITERATURE REVIEW 12

[32]. Embedded devices in LLNs are resource constrained. They are limited in processing

capability, storage capacity and power supply (mostly battery-based) [13]. For traditional

networks, these constraints are not particularly important considerations. In LLNs, however,

inadequate computation power and insufficient storage capacity make applying cryptography

solutions and other high-level security mechanisms impractical [32]. Lightweight encryption

and security mechanisms are preferred to secure communication between IoT nodes and the

global internet.

Additionally, the IoT era brings with it novel communication protocols such as the CoAP,

which is similar in function to the HTTP in conventional networks, and the MQTT, which

utilises a publish/subscribe mechanism that supports energy-efficient communication. An-

other unstable (in terms of security development) protocol is the RPL which directs the

traffic flows efficiently between the tiny devices. IPv6 over Low power and Wireless Personal

Area Networks (6LoWPAN) enables constrained devices to connect to the Internet through

IPv6 standard [33]. These newly developed communication protocols and standards require

further effort regarding security.

The most obvious building blocks of the IoT ecosystem are Wireless Sensor Networks

(WSNs). WSNs are mostly used for gathering data such as monitoring and surveillance

services. The collected data is transmitted to a sink node via multi-hop communication.

Communication is mostly in one direction (the reverse direction serves principally to manage

the sensor) and does not seek to have any effect in the physical world (i.e., largely reading

information and passing it back) [29]. WSNs often consist of homogeneous sensors whereas

heterogeneity is common in IoT systems [34]. This raises interconnection and security chal-

lenges. Furthermore, WSNs are peer-to-peer wireless networks where each WSN is mostly

separated from other WSNs and enables different applications. Contrarily, the IoT connects

many domains, applications, autonomous systems, and ad hoc networks, with WSNs as a

part of it (often at a very large scale). In IoT networks, the sensors are globally identifiable

by IPv6 addresses [8], which means they can interact with external agents. Table 2.1 outlines

the main differences between IoT and WSN.

CHAPTER 2. LITERATURE REVIEW 13

Attacks on IoT and WSN could be similar. However, the aforementioned extra features

of the IoT network make designing effective security solutions a tricky task.

Table 2.1: The difference in characteristics between IoT and WSN

Characteristics IoT WSN

Physical world Coupling High Medium
Power constraints Medium High
Memory constraints Medium high

Heterogeneity High Low
Scalability High Medium
Mobility High Low
Privacy High Medium

Globally identifiable High Low

2.1.3 Security challenges in IoT

It is important to develop and improve IoT security solutions to protect sensitive data and

critical information, and to gain user and industry confidence. However, there are some

critical challenges as described in the following subsections.

2.1.3.1 Integration

The cyber-world is intertwined with the physical world. Any threats to any part of the

IoT system will affect (have a negative impact on) the whole process. Another integration

issue is when IoT applications are integrated with Cloud computing [35]. This coupling

raises security concerns such as the trust of service providers, knowledge about the Service

Level Agreement (SLA) and the physical location of data. In addition, there are some cases

where legacy devices (with an old OS version) are still used and not updated [36]; that weak

link could be used to compromise the cyber world. There is a need to study access control

techniques that restrict the rapid propagation of security breaches [37].

2.1.3.2 Heterogeneity

Most IoT appliances run across a diverse range of operating systems deployed on different

hardware specifications using various communication channels [38]. Each one has its own

CHAPTER 2. LITERATURE REVIEW 14

security methods and mechanisms, and such heterogeneity makes conventional security so-

lutions unsuited to IoT systems. IoT networks consist of different devices with different

computation capabilities. According to [39], a smartphone is capable of running an advanced

learning method while a simple sensor can only perform a simple learning method. Conse-

quently, the security level and learning outcomes required for each part of an IoT system

differ. These multiple devices are provided by many companies with a variety of operating

systems that require different security solutions.

Seamless interoperability is another related challenge. Interconnected devices are made

of different entities connected through different communication protocols. They still need to

function and interact as requested, no matter the circumstances. All levels and components

of the IoT ecosystem have to be secured efficiently regardless of their hardware and software

capability.

There are many potential entry points for attackers to break into and compromise an IoT-

based system. Adversaries may choose to attack via the weakest link and so a comprehensive

approach to security is needed. Securing IoT-based systems is often very hard.

2.1.3.3 Resource constraints

There will be more than 83 billion connected IoT devices on the Internet by 2024 [10]. The

reason behind the rapid spread of IoT systems is that the companies that produce these

devices make them low-cost yet resource-constrained. They have small memory space, low

computation capability, low communication bandwidth and limited battery power.

The limited capabilities of IoT devices often mean they cannot afford complex cryptogra-

phy algorithms due to their computation cost, energy consumption (mostly battery-powered),

and limited storage [40]. Moreover, as these devices are resource-deficient, the Internet Secu-

rity Protocol (IPsec) at the network level may not efficiently function because the negotiation

is computationally heavy and the data overhead is high [41]. Furthermore, other conventional

cryptography approaches to preserve data integrity such as Advance Encryption Standard

(AES) are inadequate too. Therefore, lightweight solutions, either IDS, firewall or crypto-

CHAPTER 2. LITERATURE REVIEW 15

graphic, should be deployed on resource-constrained devices.

2.1.3.4 Privacy

IoT devices generate a huge amount of data that can be further analysed and processed

for decision-making. There are many applications such as smart surveillance cameras and

patient monitoring devices where penetrating the sensitive recorded information may lead

to dangerous consequences. These pieces of personal information are sometimes revealed to

the outside world and may be exposed by intruders. Mutual authentication protocols, strong

(yet lightweight) cryptography and effective access control policies are required to preserve

privacy in the dynamic and large-scale constrained IoT system. As stated by [42], we do not

yet have comprehensive standard privacy policies that specifically address the IoT paradigm.

2.1.3.5 Large scale/scalability

The interactions between heterogeneous devices complicate possible security solutions and

deployments. Moreover, IoT ecosystems are scalable by their nature; thus there is a need

for scalable and resilient security solutions. In some IoT applications, updating an enormous

number of devices cannot be performed in a short time due to large-scale and incompatibility

issues [36]. Another challenge is regarding “automatic control.” Most IoT nodes are not

controlled and supervised by humans. Therefore, they need to involve self-configuring, self-

optimising, self-management, self-healing and self-protecting mechanisms.

2.1.3.6 Trust management

Preserving trust relationships between nodes in IoT ecosystem is still challenging. Cross-

layer trust is required to achieve user acceptance of IoT services and applications. Gaining

trust is based on the stability of identity management and access control mechanisms [43].

In addition, the associations and connections between IoT devices are changing; they may

be replaced or moved (i.e., mobility aspect) over time. This makes the design of trusted

solutions complicated.

CHAPTER 2. LITERATURE REVIEW 16

2.1.4 Security goals

As aforementioned, the beauty of the IoT era is that exchanged information can be accessed

anywhere at any time. Moreover, smart devices can interact with each other with minimal

human intervention. In fact, they provide new applications and services to end users such as

smart homes, smart transportation, etc. However, for these smart nodes to provide continued

benefits, they must meet and consider the five pillars of Information Assurance (IA). These

are now addressed below.

2.1.4.1 Confidentiality

Keeping transmitted information confidential is crucial for the Internet of Things ecosystem.

It means only authorised parties can disclose the data. Access to information must be re-

stricted to those who are eligible to view it. Adversaries can discover the communicated data

and violate data confidentiality [44]. Thus, transmission should be secured and encrypted for

the IoT network.

2.1.4.2 Integrity

The message in transit (or even at rest) must be secured from being altered or modified.

The data has to reach the receiver device in the same condition as it was sent from the

sender node. Integrity ensures that an attacker or unauthorised party has not changed the

information while in transmission.

2.1.4.3 Availability

Availability is all about providing data or services as needed. The resources and information

should not be unavailable whenever nodes or users request. In the IoT ecosystem, nodes

are talking to each other. They need each other’s data to satisfy the main goal of the IoT

paradigm. Attackers can affect the availability of devices and servers by overwhelming the

network bandwidth with significantly increased network traffic making resources unavailable

upon request. Such attacks that compromise availability are denial of service (DoS), flooding,

CHAPTER 2. LITERATURE REVIEW 17

and jamming attacks.

2.1.4.4 Authenticity

To ensure that only authenticated parties are allowed to access specific resources, authenticity

requires proof of identity. Nodes should be able to authenticate each other to communicate.

The authentication process is invoked to ensure access is restricted to identified legitimate

parties.

2.1.4.5 Non-Repudiation

Generally, non-repudiation means ensuring that a sender and receiver cannot deny what they

send or receive. Therefore, nodes in IoT networks should not be able to repudiate packets or

data they have previously initiated (e.g., via clone-ID/sybil attack).

2.1.5 The need for an efficient routing protocol

The Internet Engineering Task Force (IETF) created the IPv6 low-power wireless personal

area networks (6LoWPAN) as an adaption layer (as shown in Figure 2.1) to allow sensor nodes

to implement the Internet protocol (IP) stack and become accessible by other devices on the

network. These adaption layers enable these nodes to implement routing protocols at the

network layer and provide end-to-end connection, allowing for a wide range of applications.

With the Internet’s exponential expansion and the emergence of the vast number of resource-

constrained IoT nodes, traditional routing protocols can no longer be used. As a result, the

RPL was standardised specifically for the IoT-constrained environment and recently gained

favour in the research community. Currently, many researchers accept it as the routing

protocol for the IoT [45].

2.2 RPL

The Routing Protocol for Low Power and Lossy Networks (RPL) creates efficient routes

between the devices to preserve their resources [46]. In LLNs networks, the nodes are resource-

CHAPTER 2. LITERATURE REVIEW 18

constrained in terms of memory and processing and they usually operate using a battery-

enabled energy source. The communication between these devices incurs a low packet delivery

ratio (PDR) and high packet loss (or dropped packets) due to a high collision rate. In general,

LLNs that use RPL as a routing protocol inherit two features: a meagre data rate and very

high collision/dropping packet rates, which negatively impact the application throughput.

The RPL-based network uses a distance vector routing mechanism to construct a hi-

erarchical structure in a tree topology called Destination Oriented Directed Acyclic Graph

(DODAG). The RPL creates the Directed Acyclic Graph (DAG) based on the ranks assigned

to the nodes. These ranks are imposed by the IPv6 Boarder Router (6BR). The ranks are

calculated using different methods such as Link Quality (LQ), Expected Transmission Count

(ETX) and Hop-Count. The 6BR usually has a rank of 1 and the nodes in the DAG are

assigned ranks based on their distance from the 6BR. The closer the nodes are to the 6BR,

the lower the rank and the more valuable they are. Nodes that are close to the 6BR become

parents to other nodes down the tree. An example of a DAG is illustrated in Figure 2.2.

The DODAG is created based on several exchanged control messages as follows:

• DODAG Information Object (DIO): during the RPL network initialisation, the

6BR or root node starts the process by multicasting the DIO messages to all its neigh-

bouring nodes. The DIO includes important information such as the rank, RPL in-

stance, parent list, siblings list and others. Based on the rank, a receiver node will

choose a parent node, in this case, the 6BR. Then, nodes that are in radio range of the

6BR and have received its DIOs, become parent nodes to other nodes by advertising

their new calculated ranks in their DIO messages.

• Destination Advertisement Object (DAO): The receivers of the DIO packets

respond with unicasted DAO messages to confirm the sender as a parent node.

• DAO-acknowledgement (DAO-ACK): The parent nodes reply with DAO-ACKs to

each child node as an acknowledgement of parenthood.

• DODAG Information Solicitation (DIS): For new nodes to join the DAG, they

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.2: RPL DAG

need to multicast DIS messages to discover the neighbourhood for any DIO messages,

i.e., a possible parent node.

The process of exchanging these control messages continues until the DAG is formed and

completed.

2.2.1 Threats to RPL-based Internet of Things

RPL is the most common and standardised routing protocol for IoT networks [11]. However,

the network is vulnerable for two fundamental reasons. First, the RPL protocol standards

do not provide a routing security mechanism when configuring the network [47]. Thus,

malicious nodes can carry out their activities while packets are being routed, allowing various

types of attacks on the routed data. Second, the nodes are not tamper-proof and are easy

to compromise [48]. The previously applied countermeasures to the traditional IP-enabled

networks may not work well in RPL-based IoT networks for several reasons: the computation

capabilities for the devices or nodes are limited, the power supply is restricted, a vast number

of devices are interconnected via unreliable and lossy connections, and the storage or memory

size of these constrained devices is insufficient. These limitations make the RPL networks

more vulnerable than other conventional networks.

Figure 2.3 presents a taxonomy of the most common attacks. We can see that the ad-

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.3: A taxonomy of the most common RPL attacks

versary could target the nodes’ resources by draining their energy, the network topology by

creating an unoptimised routing path, the nodes’ ID by impersonating them, or the commu-

nication by dropping application packets. Consequently, integrity, confidentiality, availability

and non-repudiation are at risk. Next, we detail the common attacks targeting RPL networks.

2.2.1.1 Sinkhole, Blackhole and Selective forwarding

In the sinkhole attack, the attacker node advertises a fake rank when multicasting the DIO

messages. This rank is higher than that of the neighbouring nodes to mislead the nodes in the

neighbourhood to select it as a parent node. This attack affects the optimised path created

by the RPL where the child nodes of the attacker nodes choose it as a preferred parent to

deliver their packets. As shown in Figure 2.4, the blackhole takes a step further and drops

all received packets. On the other hand, the selective forwarding attack drops some of the

received packets and forwards others. The selection of which to forward or drop is based on

either the sender ID, the packet type or just random. Algorithm 1 demonstrates the process

of these attacks.

2.2.1.2 DIS Flooding

The aim of this attack is to increase the network overhead by generating a huge number

of exchanged control messages. As presented in Figure 2.5 and Algorithm 2, the DIS-based

attacker node overwhelms the network with many DIS control messages. It continuously

CHAPTER 2. LITERATURE REVIEW 21

Figure 2.4: Sinkhole, blackhole and selective forwarding attacks

Algorithm 1: Sinkhole, Black-hole, Selective forwarding attacks

1 Initialisation
2 A: Attacker node
3 N: Neighbour list ⊂ legitimate LLN nodes
4 B: a neighboring node ∈ N
5 P: Current packet
6 R: a lower more powerful rank, usually assigned as the sink node rank
7 Attack type = {Sinkhole, Black-hole, Selective forwarding}
Input: “A” receives DIOs from A.N and calculates Min(advertised ranks)
Output: “A”obtains a lower, malicious rank and multi-casts it with DIO to all

nodes, ∀ node ∈ A.N
if (P is DIO) ∧ (P.sender id ∈ A.N) then

if P.sender id ∈ A.N ∧ P.sender id ̸= root id then
if DIO.rank ≤ A.malicious rank then

A.malicious rank ←− R

if (A.received(DIS from B)) ∨ (A trickle timer activated) then
A.multicast((DIO with malicious rank) to node ∀nodes ∈ A.N)
B.receive(DIO from A)
if DIO.rank < B.rank then

B nominate A as preferred parent

B unicast application packets to its preferred parent, which is “A” now, in order
to transfer it to the destination

if Attack type is Sinkhole then
A collect packets from B and transfer it to next hop

else if Attack type is Blackhole then
A collect packets from B then drop all of them

else if Attack type is Selective forwarding then
A collect packets from B and selectively or randomly drop some and transfer
others to next hop

broadcasts DIS packets to all its neighbours (in case of a multicast DIS flooding) or to a

specific neighbour node (in case of a unicast DIS flooding). This affects the resources of the

CHAPTER 2. LITERATURE REVIEW 22

neighbouring nodes as they need to reply with DIO messages every time they receive DIS

packets. As mentioned in Section 2.2, the DIS control messages are only used by either a

node that lost its connection or a new node that wants to join the network. They use the

DIS to discover the area searching for a DODAG to connect to.

Figure 2.5: DIS flooding attack

Algorithm 2: DIS Flooding attack

1 Initialisation
2 A: Attacker node
3 N: Neighbour list
4 I: Current node id
5 B: a neighboring node ∈ N
6 V: Victim list
7 P: Current packet
8 Attack type = {Unicast DIS Flooding, Multicast DIS Flooding}
9 Control Packet = {DIO, DAO, DIS, DAO-Ack}
Input: “A” uni-casts or multi-casts DIS to node(s), ∀ nodes ∈ A.N
Output: “B” uni-casts or multi-casts DIO message
if A.Attack type is Unicast DIS Flooding then

A.unicast(DIS =⇒ B, B ∈ A.N)
B.unicast(DIO =⇒ A)

else if A.Attack type is Multicast DIS Flooding then
A.Multicast(DIS, ∀B ∈ A.N)
for ∀B ∈ A.N do

B.Multicast(DIO, ∀node ∈ B.N)

CHAPTER 2. LITERATURE REVIEW 23

2.2.1.3 Increase Rank

This attack targets the resources of LLN nodes, causing victim nodes to run out of energy.

It also disrupts the communication within the LLN. The intruder starts the attack, as shown

in Figure 2.6 and illustrated in Algorithm 3, by raising its rank and multicasting this fake

rank (less valuable) to its neighbouring nodes via the DIO messages. This forces the children

to look for a new parent to reach the border router (6BR). When the children locate a new

parent after generating a significant network overhead, the adversary node returns back to

the old rank or broadcasts a lower (better) rank to entice the neighbours to re-nominate it

as a parent.

Figure 2.6: Increase rank attack

2.2.1.4 Wormhole

The adversary nodes (usually more than one node) create an unoptimised route to the 6BR

for the neighbouring nodes. Two or more distributed wormhole nodes create a private tunnel

between them to pass in the collected packets/information from each part. In this kind of

attack, the attacker node attracts the neighbouring nodes by advertising a wider radio range

capability (i.e., lower rank). The collected packets from one part of the network are then sent

to the other wormhole node via the private channel. Figure 2.7 and Algorithm 4 present a

demonstration of such an attack.

CHAPTER 2. LITERATURE REVIEW 24

Algorithm 3: Increase rank attack

1 Initialisation
2 A: Attacker node. N: Neighbour list. P: Current packet. R1: is the initial, legitimate

rank. R2: is a high, less valuable rank.
Input: “A” increases its rank to much higher rank and multi-casts it with DIO
Output: “A” receives a DIO containing a lower rank from a neighbouring node,

then decreases its rank and multi-casts it with DIO
if (P = DIO) ∧ (P.sender id = A.id) then

if A.rank = R1 then
A.rank ⇐= R2

else if A.rank ̸= R1 then
A.rank ⇐= R1

A.Multicast(DIO to A.N)

if (P is DIO) ∧ (P.senderid ∈ A.N) then
if (P.Rank < A.Rank) ∧ (P.sender id ̸= rootnode id) then

A.rank ⇐= R1

A.Multicast(DIO, ∀ nodes ∈ A.N)

Figure 2.7: Wormhole attack

2.2.1.5 Worst parent

As the name indicates, the intruder selects the worst possible parent rather than the one

with the optimal (lowest) rank. This means the route of the packets will go through a long

path to reach the border router (6BR). An illustration of this attack is given in Figure 2.8

and Algorithm 5. This attack affects not only the compromised node, but also the children

nodes of it, especially if it was in a strategic position with many children nodes.

CHAPTER 2. LITERATURE REVIEW 25

Algorithm 4: : Wormhole attack

1 Initialisation.
2 A1, A2 :Attacker 1 and 2. N: Neighbour list. B: a neighboring node ∈ N. P:

Current packet
3 Control Packet = {DIO, DAO, DIS, DAO-Ack}
Input: B Multi-casts Control Packet to nodes, ∀ node ∈ B.N
Output: A1orA2 transfer the received Control Packet from B to its counterpart
if (P is Control Packet) then

if P.source id ∈ A1.N then
A1.transfer(P to A2)
A2.multicast(P, ∀ node ∈ A2.N)

else if P.source id ∈ A2.N then
A2.transfer(P to A1)
A1.multicast(P, ∀ node ∈ A1.N)

Figure 2.8: Worst parent attack

Algorithm 5: Worst Parent Attack

1 Initialisation
2 A: Attacker node
3 N: Neighbour list
4 P: Current packet
5 Control Packet = {DIO, DIS, DAO, DAO-Ack }
Input: “A” discovers the neighbouring node with the highest, least valuable rank,

providing the worst OF
Output: ”A” selects the discovered worst parent as the preferred parent to reduce

routing performance
if (P = DIO) ∧ (P.sender id ∈ A.N) then

if (A.preferred parent[rank] < Node.Rank, ∀ Nodes ∈ A.N) then
A.preferred parent = Node.id

CHAPTER 2. LITERATURE REVIEW 26

2.2.1.6 DIO suppression

The DIO suppression attack aims to slow down the transmission of DIO packets in the

network. To make this happen, the attacker exploits the Trickle mechanism as illustrated

in Figure 2.9. The intruder sends DIO messages continuously that are considered consistent

by the neighbouring nodes. After receiving enough of the same DIO messages, neighbouring

nodes suppress their own DIO messages [1]. The DIO, in general, is required to inform the

internal nodes about the DODAG information, as described in Section 2.2. However, this

continuous suppression leads to some nodes and routes not being discovered.

Figure 2.9: DIO suppression [1]

2.2.1.7 Sybil attack

The Sybil attack in the conventional internet is when an adversary controls several accounts

(e.g. on Twitter) to perform malicious activities. Similarly. In the RPL network, the Sybil

adversary clones identities (MAC or IP address, rank,...etc.) of several victim nodes to

function as them. The same malicious node operates with multiple identities, as demonstrated

in Algorithm 6. Later, the attacker node multicasts or unicasts the control messages of those

cloned nodes.

CHAPTER 2. LITERATURE REVIEW 27

Algorithm 6: Sybil Attack

1 Initialisation
2 A: Attacker node.
3 N: Neighbour list.
4 P: Current packet.
5 L: Target List.
6 S: sender node
7 Control Packet = {DIO, DIS }
8 Attack Types = {Sybil, Clone Id}
Input: Control packet initiated by victim node(s)
Output: “A” steals victim nodes credentials, then uni-casts or multi-casts control

packets with their identities
if (P ∈ Control Packet) ∧ (P.sender id ∈ A.N) then

//attacker can select the victim(s) selectively or target its children
if (S.node id ∈ A.children list) then

if (Attack Type = Sybil) then
if (S.node id ∈ A.L) then

A.clone(S.credential)

A.Multicast(Control Packet =⇒ A.N) ∨ A.Unicast(Control Packet =⇒
A.N[node id])

else if (L.length = 1 ∧ Attack Type = Clone Id) then
A.clone(S.credential)
A.Multicast(Control Packet =⇒ A.N) ∨ A.Unicast(Control Packet =⇒
A.N[node id])

Figure 2.10: Sybil attack

CHAPTER 2. LITERATURE REVIEW 28

2.2.1.8 Replay attack

The intruder collects some control packets (such as DIO, DAO and DIS) from its neighbouring

nodes. Subsequently, it distributes these recorded messages among the neighbouring nodes.

The process is given in Algorithm 7. These packets contain old information and multicasting

them could cause unoptimised routes and wrong node information such as parent and sibling

lists. A similar attack is called a neighbour attack (or DIO replay attack) where the malicious

node multicasts the received DIO messages (without update) to its neighbouring nodes [49].

They consider these nodes, the sender of these DIO messages, as their neighbours (while they

are not). Consequently, they may update their routes to the out-of-range neighbours. This

leads to creating wrong routes, disrupting the DAG topology, or consuming more energy.

Algorithm 7: Replay Attack

1 Initialisation
2 A: Attacker node N: Neighbour list P: Current packet L: Target List R: List of

recorded control packets
3 Control Packet = {DIO, DIS, DAO, DAO-Ack }
Input: “A” records Control Packet initiated by ”L”
Output: “A” multi-casts R
if (P ∈ Control Packet) ∧ (P.sender id ∈ A.N) then

//attacker can select the victim(s) selectively or target its children
if (P.sender id ∈ A.L) then

Add(R ⇐= P)

if (Attack triggertimer.status = Activated) then
A.multicast(R, ∀ nodes ∈ A.N)

2.2.2 RPL-based IoT security vulnerability

The IoT infrastructure involves four layers. Compromising any one of them may have a

significant impact on the others. It is essential to consider security at each layer: security

measures at the physical layer to ensure the confidentiality and integrity of the gathered data;

security measures at the network layer to protect the transmitted data; Security measures

at the processing layer to provide trustworthy decision-making about the supplied data; and

security measures at the application layer to maintain secure and beneficial operation.

CHAPTER 2. LITERATURE REVIEW 29

Focusing on the network layer where the routing protocol lies, community researchers

have proposed many projects to enhance the security side of the RPL-based IoT network.

This is to provide strong defence mechanisms to maintain data confidentiality, integrity and

availability. Some of these defence mechanisms are cryptography [50], authentication [51], and

trust-based [52]. The architecture has to be highly secured and privacy should be preserved

to gain users’ satisfaction to deploy and utilise the IoT applications.

However, because the RPL nodes are resource-deficient and lack tamper-resistance [48],

intruders may find novel ways of penetrating provided defence mechanisms and countermea-

sures. Therefore, the RPL-based IoT networks require another line of defence to provide

continuous protection. Intrusion Detection Systems (IDSs) exist to serve such a purpose.

2.3 Intrusion Detection Systems in the IoT/RPL

An Intrusion Detection System (IDSs) are tools or software to detect unauthorised access to

a network or system. IDSs have been around for over three decades to efficiently provide

security solutions for traditional IP networks. The concept was first introduced in 1980

by James P. Anderson [6], a pioneer in information security and regarded by many as the

founder of the Intrusion Detection System field. IDSs gather information about a system or

network to execute a security status diagnosis. The aim is to identify security breaches or

open vulnerabilities that might result in breaches.

The IDS can detect both internal and external attacks. Internal intrusions are launched

on the network by compromised nodes that are part of a network. On the other hand,

external intrusions are initiated by third parties from outside the network. As depicted in

Figure 2.11, there are three main components of most IDSs [53]. The first module is the

IDS Sensor or Data Collection module. It is responsible for monitoring the network and

collecting data. Generally, sensing capability can be distributed (DIDS) on the network or

centralised (CIDS) at a specific collection point. The second module is the Detector engine

where the data collected is then analysed to detect any unauthorised activities. It uses the

knowledge, whether this is previous attacks’ fingerprints or anomaly training, to make a

CHAPTER 2. LITERATURE REVIEW 30

Figure 2.11: IDS components

decision. The Response module is the third component. It generates an alert or else takes an

action concerning malicious activities. If the latter, then this is called an Intrusion Prevention

System (IPS), which can function alongside the IDS.

The IDS is an effective extra line of defence when other security measures, such as authen-

tication, access control and others, fail to protect the target assets. However, the constrained

nature of many IoT network devices and nodes makes the deployment of IDSs difficult and

sometimes impossible. Devices integrated into IoT networks have limited processing capa-

bility, low storage capacity, and lower battery life. Therefore, hosting an IDS agent (e.g.,

ML-based) on these constrained nodes is sometimes inapplicable, or else it may affect the

fundamental operational function of these IoT devices (e.g., sensing the environment) [54].

Another issue is related to the communication techniques of IoT networks. Unlike tradi-

tional networks where nodes communicate and are connected to a specific router or access

point to forward packets, nodes in IoT mostly communicate hop-by-hop and each node can

both forward messages and act as an end-system. Therefore, there is a need for in-network

distributed monitoring. Another difficulty is related to the protocols used explicitly for

IoT-constrained networks, which are still in their infancy. Some of the protocols are IEEE

802.15.4, RPL, 6LoWPAN, Constrained Application Protocol (CoAP),and Message Queuing

Telemetry Transport (MQTT). Each of these protocols has its specific vulnerabilities and

requires a specially designed IDS.

CHAPTER 2. LITERATURE REVIEW 31

Figure 2.12: IDS classification

The following section provides an overview of several techniques integrating the IDS into

the IoT/RPL network. All reviewed IDS proposals are summarised in Table 2.3. The struc-

ture of any RPL-IDS is classified into four main categories: monitoring source, deployment

architecture, detection methods, and response. Intrusion detection taxonomy is demonstrated

in Figure 2.12.

2.3.1 Monitoring source

IDSs are classified, based on the data source they monitor, into Host-based IDSs (HIDSs)

and Network-based IDSs (NIDSs) [55].

• In the HIDS approach, the detection system is installed in a device or node to protect

the system from any malicious activities. It monitors the audit trails of system logs

and calls, file system changes and application logs.

• The NIDS, on the other hand, captures and analyses the network packets looking for

intrusions. It is either connected to intersection points of the network traffic, such as

routers, or distributed over the network.

CHAPTER 2. LITERATURE REVIEW 32

2.3.2 Intrusion detection architectures

The system architecture can be classified based on where the monitoring module (i.e., the

probe) and analysis module (i.e., decision-making) are located. The placement strategy for

the IDS modules can be divided into three categories: distributed, centralised, and hybrid.

Next, we detail each one of them.

2.3.2.1 Distributed IDS (DIDS)

In this architecture, distributed monitor nodes hold all IDS components such as sniffing,

analysis and reporting modules. The detection agent could be placed at different locations

(either on network’s sensor nodes themselves or on separate stand-alone nodes) in the IoT

network. Every monitoring node is responsible for monitoring itself and the neighbour nodes

for possible attacks. The decision on an intrusion could be taken locally. As such, the

communication overhead might be decreased, yet, it requires more resources such as storage,

processing and energy for each node. Therefore, detection modules need to be optimised to

reduce the resources usage while maintaining high detection rate. Figure 2.13 presents an

example of such deployment.

Cervantes et al. [56] propose an approach targeting the detection of Sinkhole attacks on

6LoWPAN where each node is responsible for monitoring its neighbours (i.e., in a watchdog

mode). When a node detects an attack, it broadcasts a message to alert the other nodes and

isolates the compromised node. This approach organises the network into clusters to maintain

scalability. The network’s nodes are divided into free nodes (not belonging to any cluster

and can move around), member nodes and leaders. However, all nodes including leaders are

responsible for monitoring neighbours. Their proposal aims to address the mobility issue of

IoT networks.

2.3.2.2 Centralised IDS (CIDS)

In this strategy, there are two approaches. The first approach is when the information-

gathering modules are distributed on the network for either system monitoring or network

CHAPTER 2. LITERATURE REVIEW 33

Figure 2.13: Typical distributed IDS

packet inspection. The analysis engine is hosted at a centralised powerful device for either

carrying out correlations or mining further information. In RPL-based IoT networks, analysis

modules are usually placed in the border router, while the sniffing modules are hosted either

in the IoT sensors themselves or in separate sensor nodes. It may create a communication

overhead as these monitor nodes need to send network or neighbour status periodically to a

centralised analysis device.

This technique is used by [57] where they propose an IDS framework for IoT that has a

monitoring system and detecting engine. It is targeted at the 6LoWPAN networks. They

introduce IDS probes to sniff packets and provide information to the IDS. They adopt the

Suricata (an open-source IDS), but since it cannot support 6LoWPAN protocols, they imple-

ment a crafted decoder to inspect the incoming packets. The Suricata works as a detection

model and Prelude (Event monitoring system/Security information and event management

(SIEM)) as a management module.

The second centralised approach places the IDS (both monitor and analysis units) in

the border router (i.e., 6BR) where all network traffic (those going to the global/external

networks) passes. An example of such a topology is illustrated in Figure 2.14. This approach

could eliminate the communication overhead and allow the IDS to inspect and analyse the

network traffic travelling between internal nodes and the global network. Nevertheless, the

CHAPTER 2. LITERATURE REVIEW 34

multi-hop aspect of the RPL-based network allows the nodes to communicate internally

without border router knowledge. Thus, a compromised node could spread malware or nasty

packets inside the network. In the research presented in [58], the IDS instance is placed

on the edge. They propose the integration of Complex Event Processing (CEP) with the

detection module to improve the real-time detection of malicious traffic. The authors deploy

the IDS processing at the edge since it offers low response time, incurs reduced bandwidth

and provides high computation capabilities.

For both approaches and since the heavy-duty work is centralised, traffic inspection for

each node will be reduced and processing capacity will be increased. Yet it represents a single

point of failure.

Figure 2.14: Typical centralised IDS

2.3.2.3 Hybrid IDS (HIDS)

This type of deployment combines the two previously discussed strategies. It seeks the best

of both approaches. In the hybrid deployment architecture, there are two approaches that

have been discussed in the literature.

The first is when the network is divided into two or more groups or clusters. One dedicated

node in each cluster hosts the IDS agent to monitor other nodes in its group. This node is

called a cluster head and is usually resourced with more energy and processing capabilities.

Each member node periodically sends information about itself and its neighbours to the

CHAPTER 2. LITERATURE REVIEW 35

cluster head. Figure 2.15 shows an example of such deployment. A watchdog or leader node

has a set of detection techniques to decide whether the nodes in its region are compromised

or not. According to [59], a leader node is often more robust. The authors in [60] have

adopted this approach. In order to maintain the resources of the cluster heads, they make

the members send their status to cluster heads at each time interval rather than having them

overhear all network traffic.

Another way of adopting the hybrid deployment approach is by having different lightweight

detection modules on different nodes (i.e. probes) for monitoring/detection purposes and ded-

icating a more resourced node or nodes (i.e. a centralised analysis unit) for further detection.

The distributed modules are able to make local decisions. Yet, they might need the cen-

tralised units for correlation and aggregation purposes. In an IoT-based IDS proposal called

SVELTE [8], the IDS functionality is hosted in both the border router (6BR) and each net-

work node. It has a sense of centralisation where the intensive work, like intrusion detection

by analysing gathered data, is at the border router (6BR). The other nodes hold lightweight

detection tasks like sending routing-based data to the border router and informing it about

any malicious traffic they notice. Another research that embraced this method is proposed by

[61]; they deploy two modules: local and global. In the local stage, detection sniffers (DS) are

distributed, in promiscuous mode, to classify the network traffic (packet counts) based on a

decision tree classifier to generate Correctly Classified Instances (CCIs). When the calculated

CCI is sent by a DS to the Super Node (SN), the global stage collects CCIs and applies Iter-

ative Linear Regression to create a time-based profile and threshold to differentiate between

malicious nodes and normal ones.

2.3.3 Detection methodologies

There are four intrusion detection methods: signature-based, behaviour-based, specification-

based (also known as rule-based) and hybrid-based. Next we detail each one of them.

CHAPTER 2. LITERATURE REVIEW 36

Figure 2.15: Typical hybrid IDS

2.3.3.1 Signature-based approach

In the signature-based, also known as misuse-based, approach, the IDSs can detect attacks

based on their previous signatures stored in a database. Essentially, a signature-based detec-

tor looks for known patterns (fingerprints) of malicious behaviours. This technique is very

accurate and can effectively detect known intrusions. However, attacks change and new at-

tacks emerge rapidly over time and this approach can not generally detect previously unseen

threats (i.e., zero-day attacks). Furthermore, the number of attacks signatures stored in a

database will increase over time requiring more storage capacity [62], which is usually not

available in the RPL-based IoT networks. The misuse-based method has been used in [63]

to protect IoT devices against internal and external attacks especially DoS types of attacks.

They use the Cooja simulator for their experiments and target the RPL protocol. They

conclude that these attacks affect IoT devices’ availability and power consumption.

2.3.3.2 Anomaly-based approach

Unlike the signature-based approach, the Anomaly-based method, also known as Behaviour-

based, has the ability to detect some new threats. It compares traffic and activities with the

profile of ‘normal’ behaviour. If system activities or network behaviour exceed a predefined

normal threshold, it generates an alert indicating suspicious activity. However, this approach

CHAPTER 2. LITERATURE REVIEW 37

considers all activities that do not match normal behaviour as intrusions to the system. This

may raise the false positives rate [53]. The idea of the intrusion detection technique proposed

by [64] is to look for any contradiction in the network by monitoring the specification of

1-hop communication such as packet size and data rate. The system then can distinguish

normal from abnormal behaviour. Furthermore, they propose an internal anomaly detection

mechanism integrated with RPL (the routing protocol). They utilise a Distress Propagation

Object (DPO) control message to report the anomaly to parent nodes and then to the edge-

router. The latter performs periodic consistency checks. It processes the received information

from nodes to make a decision and issue a report to users. The system involves three modules:

monitoring, reporting and isolating.

2.3.3.3 Specification-based approach

The term specification-based refers to a set of rules (with thresholds) applied to distinguish

network or system normal activities and malicious ones based on the behaviour of the net-

work/system when it deviates from specified behaviour. This method is sometimes referred

to as rule-based IDS. Thus, it is an anomaly-based approach that raises an alarm whenever

network behaviour deviates from a specified normal state. Network administrators mostly

define these specifications (protocols) manually [62]. Alternatively, these rules can be gen-

erated or evolved using Artificial Intelligence (AI) techniques such as Genetic Programming

(GP) and Decision Trees (DTs). This approach is claimed to have lower false positive rates

and be less computation-hungry than anomaly-based approaches.

Le et al. [60] utilise a specification-based IDS to detect topology-based attacks in RPL-

based networks. A set of specifications of RPL are obtained based on profiling the nodes’

behaviours and are deployed (as rules) on the IDS agents. The work was motivated by the

authors’ assessment that anomaly detection is not feasible for topology-based attacks. They

divided the network into clusters where the head of each cluster hosts an IDS. Based on a

set of implemented rules, cluster heads monitor members in their clusters. The members are

required to report their current state to their cluster head at each time interval. The authors

CHAPTER 2. LITERATURE REVIEW 38

involve Finite State Machines in profiling RPL operation. During the simulation, they run

the network normally and record the state and transitions in a trace file.

2.3.3.4 Hybrid-based approach

The fourth approach aims to achieve the best outcomes and minimise the drawbacks of

signature and anomaly-based approaches [53]. One of the most effective hybrid approaches

for IoT networks is Kalis [65]. This knowledge-based system is able to detect attacks in real

time. Knowledge is shared between the network nodes to make better decisions. The design

does not require changing the IoT nodes’ software since it can be deployed in a separate device

as a standalone tool. It can work with multiple protocols and the performance overhead is

reduced compared to other traditional IDSs and Snort [66]. Another relevant proposal is

SVELTE[8]; it uses a hybrid detection method and hybrid placement strategy as stated

earlier.

More related works and details are presented in Section 2.3.6 and Table 2.3.

2.3.4 Response

The IDS recognises malicious activities or violations and provides alerts to the network ad-

ministrator. Intrusion detection reaction could be either passive or active.

• In passive responses, the IDS logs abnormal activities and alerts a user or network

administrator about the detected behaviour.

• An active IDS, in addition to logging and alerting, may initiate specific countermeasures

against perceived suspicious or malicious behaviour, for example by arranging for the

blocking of a specific node’s communications. This is known as an Intrusion Prevention

System (IPS).

2.3.5 Intrusion detection performance metrics

There have been many IDSs developed by either industry or the research community. A

confusion matrix, also known as an error matrix, is often used to evaluate their performance.

CHAPTER 2. LITERATURE REVIEW 39

It represents, in a tabular format, how many predictions a classifier algorithm made correctly

and incorrectly. It is a technique to effectively derive the functional metrics and compare

different kinds of IDSs performance. However, the effectiveness of any IDS is based not only

on these functional measures such as detection rate and false positive rate but also on other

non-functional metrics such as deployment cost and resource consumption.

2.3.5.1 Functional metrics

The following evaluation metrics, as also illustrated in Table 2.2, are calculated to measure

the ability of an IDS to distinguish malicious events from normal activities:

• True Positive (TP): when a malicious event is correctly classified as malicious.

• True Negative (TN): when a normal event is correctly classified as normal.

• False Positive (FP): when a normal event is incorrectly classified as malicious.

• False Negative (FN): when a malicious event is incorrectly classified as normal.

Table 2.2: IDS confusion matrix

Normal(Actual) Attack(Actual)

Normal(Predicted) TN FN

Attack(Predicted) FP TP

The following basic metrics are the commonly used performance measures:

Accuracy =
TP + TN

TP + TN + FN + FP
(2.1)

Detection Rate(True Positive Rate/Recall) =
TP

TP + FN
(2.2)

Precision =
TP

TP + FP
(2.3)

F1score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.4)

CHAPTER 2. LITERATURE REVIEW 40

False Positive Rate =
FP

FP + TN
(2.5)

False Negative Rate =
FN

FN + TP
(2.6)

2.3.5.2 Non-functional metrics

Due to the resource-deficiency of the RPL networks, other non-functional metrics need to be

considered for the IDS deployment. Some of the non-functional criteria are:

• Deployment cost: Any extra IDS sensor placement incurs an extra cost [67]. This cost

could be management cost, financial cost or communication cost. So we need to reduce

the number of IDS sensor placements while maintaining the functional criteria.

• Feasibility cost: The RPL-based IoT networks involve heterogeneous nodes with different

capabilities. We need to take into consideration the resources available on the nodes.

Some of them may be able to hold a heavyweight detection mechanism while others

may not.

• Coverage: In the case of a distributed IDS deployment, which is the preferred architecture

for the RPL networks [68, 69], nodes are usually used to monitor their neighbouring

nodes for any malicious activity. Nodes may be attacked themselves or may go into

sleep mode, thus we need the deployment to be resilient. In other words, the monitored

nodes need to be monitored by at least two monitoring nodes.

2.3.6 IDS proposals for RPL-based IoT

In this section, we will present some of the common proposals of IDS for IoT/RPL networks.

Table 2.3 illustrates the techniques used in each proposal.

Amouri et al. [61] deploy detection sniffers and super-nodes. The detection sniffers are

distributed on the network to collect data from neighbour nodes. These probes employ

a decision tree mechanism to classify packets being exchanged in their radio range. The

CHAPTER 2. LITERATURE REVIEW 41

classified instances are then sent to the super node. The latter performs linear regression to

identify the malicious nodes based on the classified instances received from sniffers.

The work in [57] proposes a framework that has monitoring probes and an analysis engine.

They utilise Suricata as their IDS or detection engine and integrate a decoder since Suricata

cannot interpret WSN and 6LoWPAN protocols. To protect their IDS probes from DoS

and jamming attacks, they connect them via an Ethernet cable. The evaluation is based

on physical IoT devices and the PenTest approach using Linux Metasploit to launch DoS

attacks, flooding attacks. However, the framework may consume the IoT nodes’ resources

and degrade the overall performance [49]. Moreover, it cannot detect novel attacks.

The authors in [56] present INTI, a routing-based IDS to detect attacks in 6LoWPAN

networks. The main contribution is to detect Sinkhole attacks in a mobile and dynamic

environment. Node roles change over time based on the network configuration and attacks.

The monitoring node measures the probability of a node being abnormal by counting the

incoming and outgoing streams of packets. They use Cooja simulator to evaluate their work.

They claim it outperforms SVELTE [8] in achieving low false positive and false negative

rates. They did not address the effect of their proposal on nodes with memory and power

constraints.

Another work [64] allocates the detection modules between the monitoring nodes (i.e.

probes) and the bridge router. Probes work in a cooperative way to watch their neighbours’

behaviour. An alert is sent to a centralised analysis unit if an anomaly is detected. The latter

correlates alerts from monitoring nodes and makes the final decision.

SVELTE [8] has two main components: a 6LoWPAN mapper (6Mapper) and an IDS.

They utilise the Boarder Router (6BR) to hold the analysis engine of the IDS. Distributed

lightweight detection modules are hosted in the IoT nodes. 6mapper is used to construct

the DODAG tree. It checks for inconsistencies in the network routing state and for the

authenticity of each node to avoid Sybil and Clone ID attacks. To protect the constrained

nodes from global attacks, they introduce a mini-firewall to each node. They evaluate their

proposal using Cooja simulation and test it against Sinkhole and Selective forwarding attacks.

CHAPTER 2. LITERATURE REVIEW 42

Table 2.3: IDS deployment techniques.

Ref
Monitoring source Detection method Placement architecture Evaluation strategy

HIDS NIDS SG SP AN HD CIDS DIDS HIDS Functional Non-functional

[61] - ✓ - - - ✓ - ✓ - ✓ ×
[57] - ✓ ✓ - - - ✓ - - ✓ ×
[56] - ✓ - - ✓ - - - ✓ ✓ ×
[64] - ✓ - - ✓ - - - ✓ ✓ ×
[8] - ✓ - - ✓ - - - ✓ ✓ ✓ –

[65] - ✓ - - - ✓ ✓ - - ✓ ✓ –

[59] - ✓ ✓ - - - - - ✓ ✓ ✓ –

[70] - ✓ - - ✓ - - - ✓ ✓ ✓ –

[71] - ✓ - - - ✓ - - ✓ ✓ ✓ –

[58] - ✓ ✓ - - - ✓ - - ✓ ✓ –

[72] - ✓ - - ✓ - - ✓ - ✓ ✓ –

[73]* - ✓ - ✓ - - ✓ - - ✓ ✓ –

[74]* - ✓ - ✓ - - - - ✓ ✓ ×
[75]* - ✓ - ✓ - - - ✓ - ✓ ✓ –

[76]* - ✓ - - ✓ - - ✓ - ✓ ×
[77]* - ✓ - ✓ - - - ✓ - ✓ ×
[78]* - ✓ ✓ - - - ✓ - - ✓ ×
[79]* - ✓ - ✓ - - - - ✓ ✓ ✓ –

[80]* - ✓ - ✓ - - ✓ - - ✓ ×
[81]* - ✓ ✓ - - - - - ✓ ✓ ×
[82]* - ✓ - - - ✓ ✓ - - ✓ ×
SG: Signature. SP: Specification. AN: Anomaly. HD: Hybrid
* Taken from our joint literature review paper [55] and not detailed in this thesis. ✓ –Partially

Their proposal demonstrates effective and efficient results in terms of detection rate, power

consumption and memory usage. However, it has some false positive alarms [69]. Also, they

consider a static-nodes-based environment, which is not common in IoT networks.

The authors in [65] design an IDS that can derive knowledge from a network and attack

features to detect intrusions. The IDS can configure dynamically to provide proper detection

mechanisms for the monitored network. In order not to affect the IoT nodes’ performance,

the detection, analysis and reporting modules are hosted in a separate (external) device

placed near IoT devices. The detection process is based on signature, rules and anomaly

detection. They involve different IoT network constraints such as heterogeneity, mobility,

dynamicity and scalability. Even though Kalis, their proposed system, can detect routing

and DoS attacks effectively, a single point of failure is still a concern.

This work [59] proposes an adaptive NIDS with a set of configured rules deployed on

watchdog nodes to monitor the traffic pattern of neighbour nodes. The monitoring node runs

CHAPTER 2. LITERATURE REVIEW 43

in promiscuous mode to sniff packets sent from one node to another. In case packets match a

set of a predefined set of rules, an alert is generated. An Event Management System (EMS)

correlates alerts and decides on an intrusive node. Since the network is heterogeneous, they

provide different rules for different monitor nodes. The IDS power consumption and the kind

of attacks detected are not identified.

In another work [70], the intrusion detection modules are divided between the 6BR and

distributed sensor nodes. The latter cooperate to detect any changes in their neighbourhood.

Any malicious behaviour is sent to the border router for further analysis. The detection

mechanism is based on the location and neighbour information. Also, signal strength is

used to identify attacker nodes. During the deployment, the location information is set and

monitoring nodes store information about their neighbour nodes. Any deviation is considered

an indication of intrusion. Moreover, as the network is static, if the neighbours of a monitoring

node are not in its transmission range that means an attack. They target the detection of

wormhole attacks. In this attack, many DIO control messages are sent from one node to

another. However, they deploy random placement with random detection modules. Even

though they show how efficient their IDS is in terms of power consumption and memory

usage, they focus only on one kind of attack.

The proposal in [71] is an extension of SVELTE [8] by incorporating dedicated detection

modules to monitor the ETX metrics of each monitored node. These have already been

defined by the network owner. Parent nodes always have lower ETX values and any changes

are considered anomalies. They declare that this approach can effectively detect routing

attacks and is efficient in memory usage and battery consumption.

An intrusion prevention system based on Complex Event Possessing (CEP) mechanism

is proposed in [58]. CEP is a method of inferring a meaningful conclusion from a data

stream by analysing its patterns. It aggregates different information to derive cause-and-

effect relationships in real-time. The mechanism generates CEP rules that are used to detect

DDoS attacks, namely SYN flooding, ICMP flooding, UDP flooding, and port scanning.

They adopt a centralised architecture where the IDS resides at the network edge. To generate

CHAPTER 2. LITERATURE REVIEW 44

traffic, they run the IDS on a Raspberry Pi node with five desktop computers. Even though

the proposed technique could effectively analyse a large stream of data, it has not been

evaluated on low-resourced devices.

The work presented in [72] exploits the distributed passive monitored approach to detect

anomalies in RPL networks. The monitoring nodes are dedicated to intrusion detection to

preserve nodes’ resources. They monitor the network for any topology attacks and incon-

sistencies. However, they do not consider the optimal placement of the passive monitors as

well as the minimum required number to collect and make a decision. They require only that

every node be within range of one monitoring node. Here, we investigate imposing require-

ments for higher levels of resilience (i.e. requiring each node to be within the range of k > 1

monitoring nodes).

2.4 IDS configurations optimisation

In large networks such as the Internet of Things, the configuration of an Intrusion Detection

System (IDS), including sensors’ placement, plays an important role in detecting unauthorised

activities [83]. The resource-constrained nature of many devices and nodes restricts what

tasks those nodes can realistically expect to perform. There may be a great many choices as

to what detection functionality is allocated and where.

Placement problems of intrusion detection nodes have been intensively researched in the

context of traditional networks. The problem is known to be computationally intractable and

defining the best placement of a node is NP-complete [17]. Furthermore, finding the optimal

configuration makes it even harder. There are several proposals for achieving the optimal

IDS placement (and configuration to some extent) in WSNs (e.g.[17] and [84]). However, to

the best of our knowledge, there is no such work in the field of RPL-based IoT.

There are different optimisation approaches in the literature. A major one is a branch

of evolutionary algorithms (EAs) known as the Genetic Algorithm (GA). Next, we give a

detailed overview of this algorithm followed by some related work in the context of IDS

configurations optimisation.

CHAPTER 2. LITERATURE REVIEW 45

Figure 2.16: Local and global optima. (A) shows an example of a minimisation
problem with multiple objectives; (B) shows an example of a maximisation problem
with one objective).

2.4.1 Genetic Algorithm overview

The Genetic Algorithm (GA) is a stochastic-based and meta-heuristic optimisation approach

inspired by the natural selection (biological evolution) concept. The GA is a one type of

the evolutionary algorithms (EAs) which is based on the principle of “survival of the fittest”

that was first laid down by Charles Darwin. Moving the idea to solving real-world optimi-

sation problems was first introduced by John Holland in his book “Adaptation in Nature

and Artificial System” in 1975 [85]. This laid the foundation for later developments. How-

ever, the technique was not popular due to the lack of computation capabilities at that time.

Nowadays, the algorithm is extensively used to solve a wide range of complex optimisation

problems [86]. GAs are robust optimisation approaches that are different from other tradi-

tional optimisation methods in several fundamental ways [87, 88]:

• GAs search from a population of points, not a single point.

• GAs use payoff (objective function) information, not derivatives or other auxiliary

knowledge.

• GAs use probabilistic transition rules, not deterministic rules.

• GAs may converge to an optimal solution regardless of the chosen initial population.

Conventional approaches, such as (gradient-based) hill-climbing, often get stuck in local

CHAPTER 2. LITERATURE REVIEW 46

optima.

• GAs is a high-level problem-independent algorithmic (i.e., metaheuristic).

• GAs involve effective operators to avoid being stuck in suboptimal or local optimal

solutions (see Figure 2.16).

Global optima are not guaranteed, but GAs have been found to give excellent results over

a great range of optimisation problems. We opted here for a GA, and not any other meta-

heuristic approaches, for the following reasons:

• It has flexible representations.

• It is easy to use (prototype) and implement.

• It is able to handle multiple criteria and able to handle more/fewer criteria as appro-

priate.

• It can facilitate the use of different multi-objective approaches (e.g., weighted sum or

Pareto Front based approaches).

• It is computationally efficient [89].

• We are concerned with placement and configuration problems and has been considerable

success in using GA from the direct literature [90, 91] or other areas.

Here we adopt a GA. However, the results of our work have good chances of applying to

any optimisation approach for our target problem. For example, in Chapter 5, although our

NN-based function approximation model provides fitness evaluation assistance to a hybrid

GA-NN approach, the created approximation model can also be used similarly by simulated

annealing to make simulated annealing more efficient via a hybrid SA-NN approach.

The flowchart in Figure 2.17 and the Algorithm 8 demonstrate the whole GA process.

CHAPTER 2. LITERATURE REVIEW 47

Figure 2.17: Flow chart of a basic GA

2.4.1.1 preliminary

In a genetic algorithm, each possible solution to a problem that needs to be solved is repre-

sented as a chromosome. A chromosome contains genes and alleles, which are the parameters

of the problem at hand. The genes are the location of the solution’s components while the

alleles are the values taken by those components.

Encoding and decoding the chromosomes are crucial steps to mapping a genotype to a

phenotype. A genotype (e.g., a string of bits) may be decoded into a phenotype (a poten-

tial solution from the solution space). The phenotype may then be evaluated. Some of the

representation (encoding) methods are binary representation (a string of bits), real number

representation, and integer representation. An example of a binary representation of a pop-

ulation is given in Figure 2.19. In this research, we adopt the binary (bitwise) representation

for two main reasons:

• It is simple and easily manipulated.

• Many of our configuration (placement) issue is based on On/Off decisions.

CHAPTER 2. LITERATURE REVIEW 48

Algorithm 8: Classical Genetic algorithm

Input: Population size, Popsize;

Generation size, Gensize;

Chromosome length, Chromsize;

Mutation rate, Mutrate;

Crossover rate, Crosrate

Output: Global best solution, Yb
1 Generate initial population of Popsize chromosomes Yi of length chromsize,

(i = 1, 2, ..., Popsize);

2 Compute fitness of each solution Yj ;

3 Set counter t = 0;

4 Save them in the population Popt;

5 while t < Gensize do ▷ Or any other termination criterion

6 Select solutions from Popt to Popt+1 ; ▷ Based on the selection method

7 for j = 1 to Popsize/2 do

8 Select two pairs of chromosomes from Popt+1;

9 Apply crossover by Crosrate ; ▷ Based on the crossover method

10 for j = 1 to Chromsize do

11 Select one chromosome from Popt+1;

12 Apply mutation by Mutrate; ▷ Based on the mutation method

13 Replace Popt with Popt+1;

14 Compute fitness of each solution in Popt+1;

15 Increment t by 1;

16 Return best solution Yb;

2.4.1.2 Initialisation

The algorithm typically starts by initialising a set of candidate solutions randomly. (Less

often, this set may be generated by some another technique.) Based on the specified number

of population (Popsize), this will construct a diverse population to form the first generation.

The length of the chromosomes (Chromsize) is based on the set of parameters that defines a

candidate solution to the problem to be solved or optimised.

CHAPTER 2. LITERATURE REVIEW 49

Figure 2.18: Two common selection methods: (A) Roulette wheel selection (B)
Tournament selection

2.4.1.3 Evaluation

A fitness function needs to be defined to interpret the objectives being optimised. Each

possible solution is evaluated against a fitness function. This will assign a fitness value to

each solution that represents its goodness among other solutions in the population. Based on

the optimisation requirements, there are some problem domains where the fitness function

is either maximised (e.g. objective function), minimised (e.g. constraints) or both (multi-

objective function).

2.4.1.4 Selection

Selection is one of the GAs’ core operators (together with crossover and mutation) that helps

the algorithm to find its way to optimal solutions. This is where the idea of “survival of the

fittest” takes place. Two or more candidates (parents), with large fitness values, are selected

to create a mating pool and pass on their genetics to the next generation. There are a couple

of selection methods for the GAs. The most widely used approaches are the roulette wheel

and tournament.

In the roulette wheel method, all individuals in the population are given a probability-

of-selection value based on their fitness value. The larger the fitness value, the higher the

probability-of-selection value they receive. For instance, in Figure 2.18 (A), there are 5

CHAPTER 2. LITERATURE REVIEW 50

Algorithm 9: Algorithm of roulette wheel selection

Input: Population size, Popsize

Output: Selected individuals

1 for j = 1 to Popsize do

2 sum fit ← fitness

3 prob = (fitness/sum fitness)

4 r = random (0,1)

5 if prob > r then

6 select jth individual

7 create offspring

Algorithm 10: Algorithm of tournament selection

Input: Population size, Popsize

Output: Selected individuals

1 for j = 1 to Popsize do

2 selected = select k individuals

3 for i = 1 in selected do

4 if ith individual > others then

5 select ith individual

6 create offspring

candidate solutions that have been assigned with a probability value (converted here into

percentage). The wheel will spin and the particular slot that it rests in will be chosen.

Clearly, solution number 2 will be selected more frequently. This gives a chance (though it is

low) for other chromosomes to be selected as well. The probability a specific individual will

be selected is:

pi =
fi∑n
j=1 fj

where fi is the fitness value of the ith individual and n is the number of individuals.

Tournament selection, on the other hand, is much simpler (see Figure 2.18 (B)). As

the name indicates, a l (tournament size) number of solutions from the population enters

CHAPTER 2. LITERATURE REVIEW 51

Figure 2.19: The crossover and mutation operators

a tournament game and the winner (i.e., the one with the highest fitness value) is selected,

with or without replacement, to contribute to the mating pool. The common size of the

tournament selection scheme is ≤ 4 (this is to avoid duplicate candidates [92]). Setting the

size to 1 will lead to random selection while a large value may lead to a loss of diversity [93].

Whichever method is chosen, the algorithm will repeat the selection process until the

number of the specified population is met.

2.4.1.5 Crossover

Sets of two parents from the mating pool are randomly nominated to undergo the crossover

(also known as recombination) process by swapping their genes to generate new offspring.

It is likely that the combined good parents will create better new individuals. The created

offspring, of the exchanged parents, will form the population of the next generation. Common

methods of conducting the crossover method are the simple crossover (single-point, two-points

and multi-point cuts) and random crossover. Figure 2.19 shows an example of a simple

crossover method, more specifically the single-point crossover.

2.4.1.6 Mutation

The main concept of mutation is to randomly alter a value (i.e., allele) of one or more genes.

This is an important step so that the new generation might be different from their parents

and create diversity within the population. For binary representation, the value of a gene will

CHAPTER 2. LITERATURE REVIEW 52

be mutated in a way that 0 becomes 1 and vice versa (as shown in Figure 2.19). Real numbers

encoding mutation can be done by replacing the current allele with a random number from a

range of min-max values of the problem. Mutation of an integer encoding could be performed

by inversion, insertion or displacement mutation [86].

Choosing optimal parameters of the crossover and mutation rates is crucial for the GAs to

converge to compelling results. For stability reasons, the mutation rate (Mutrate) is preferred

to be set to a very small value such as 0.01 [94]. Thereby, the algorithm will have more local

search capability. A high mutation rate leads the search to be random. On the other hand, it

is preferred to set the crossover rate (Crosrate) to a high value to create more diversity in the

population (i.e., more global search capability). For instance, the “0.03MR0.9CR” approach

is a well-known predefined parameter setting for the crossover and mutation rates [94].

2.4.1.7 Termination

There are various termination criteria that will make the GA stop further searching. This is

when any of the following is reached:

• Threshold or high fitness value.

• Maximum number of generations.

• High usage of computation resources.

• No further improvements after successive iterations (or specified delay).

• Manual interruption.

• Combinations of any of the above.

Unlike other search-based optimisation techniques such as brute force or random search,

the GA is computationally cost-efficient [89].

2.4.2 Related work in IDS configuration optimisation

In this section, we present some relevant work on optimising the IDS configurations.

CHAPTER 2. LITERATURE REVIEW 53

The authors in [17] propose a model to find the optimal placement and configuration

of the distributed network-based intrusion detection system (NIDS) in WSNs. Their work

is motivated by the infeasibility of deploying a single IDS in WSNs as the devices involved

are constrained and there are a variety of IDS modules (tuning parameters). They used a

heuristic-based search method to find the optimal solution. The model analyses and consid-

ers the trade-offs between the computation cost (e.g. resource consumption) and detection

rate. However, it is only a mathematical model with no real attack evaluation. In addition,

heterogeneity is not considered.

Another remarkable work is provided by [84] to help wireless sensor network operators to

select the right detection configurations for their specific application. They propose a frame-

work to obtain semi-automatic optimal IDS configurations in terms of detection accuracy

and memory usage. They utilise the evolutionary algorithms (EAs), more specifically the

eoEasyEA algorithm, to optimise the IDS configurations. They adopt the idea of majority

voting where monitoring nodes overhear their neighbours and decide whether any of their

neighbours are malicious or benign based on the number of packets received and forwarded.

They consider one type of attack, selective forwarding.

Researchers in [95] propose algorithms to decide on either enabling or disabling the IDS in

a specific node. Having all the nodes sniff all the packets passing through consumes significant

resources. Thus, they propose minimising the number of activated IDSs that inspect packets

while ensuring that every packet forwarded from a source node to a sink node is inspected

at least once.

Multi-objective Genetic Algorithm (MOGA) has been presented by [90] to optimally find

the IDS placement. The fitness function maximises the detection rate and minimises the

number of nodes, false alarm rate, and communication costs. As they stated, different kinds

of attack yield different optimal placements. The evaluation of any placement is either by

information gain (e.g., location of the firewall and servers) or attack simulation. Therefore,

they simulate a network and intrusive behaviour using NS2 where client and server nodes are

grouped into different clusters. They aim to protect the more critical asserts; hence servers.

CHAPTER 2. LITERATURE REVIEW 54

Their proposal, however, considers placement with no configurations.

Introducing a logic-based model to describe a network and its possible intrusions is pro-

posed by [96]. Accordingly, it provides a suitable decision about the IDS sensors’ placement

and information needed to detect an attack. The properties of the network have been anal-

ysed and implemented in Prolog to infer the solutions. As they stated, NIDS comprises many

sensors distributed on the network to monitor the traffic. Yet, to detect topology-dependent

attacks, it is better to understand the underlying network topology. The model can auto-

matically determine the location and/or the information needed by a NIDS sensor to detect

the attack. They address the placement and configuration in general but not in constrained

networks.

The authors in [97] propose using an attack graph to find the best location for placing

nodes that hold an IDS. They adopt the idea of placing the IDS sensors only within the

attack paths to critical mission assets. It might reduce the number of sensors deployed, and

as a result, reduce the cost and overheads. The network configuration, including hosts, OS,

applications and vulnerabilities, is scanned and then the predicted path is formed. They

propose using a greedy algorithm to find the optimal selection of placements that covers all

vulnerable connections for the attack graph. The more paths passing through a node, the

more opportunity of placing the IDS at that node. Finally, they prioritise the alerts based

on the distance of the attacker from the critical assets. Such that the closer to any valuable

resources, the higher the priority. Nevertheless, the attack path approach may not address

the optimal placements in a dynamic environment. Moreover, the detection technique and

configuration are not discussed.

The authors in [67] define the characteristics of a network and nodes to determine the best

deployment of IDS sensors in a network. The characteristics of the network are location type,

load factor, risk profile and disruption cost. The characteristics of the sensors are interaction

ability, efficiency and cost. Based on that, they specify the deployment value of a sensor. As

they stated, the higher the deployment flexibility to minimise the potential risk, the lower

the deployment cost. In other words, optimal IDS sensor placement aims to maximise the

CHAPTER 2. LITERATURE REVIEW 55

Table 2.4: Optimisation-based IDS proposals.

Ref
IDS sensor placement Targeted domain

Minimising placement Resilient placement Heterogeneous network Constrained environment

[90] ✓ × × ×
[17] ✓ × × ✓
[98] × × × ×
[84] ✓ × × ✓
[99] × × × ✓
[100] × × ✓ ✓
[101] × × ✓ ✓
[102] ✓ × ✓ ✓
[95] ✓ × ✓ ✓
[96] × × × ×
[67] × × × ×
[97] ✓ × × ×
[103] ✓ × × ✓

deployment value.

An essential criterion of an intrusion detection system (IDS) is that to be effective. It

should identify a high proportion of threats while maintaining an acceptable false alarm

rate. To achieve this goal, the IDS’s model and algorithm must be calibrated or configured

accordingly. The authors in [98] provide sveral variables that influence the ideal configuration.

The first element is the IDS’s performance as demonstrated by its ROC (receiver operating

characteristics), which is a curve that combines detection accuracy and false alarm rate. The

second element is the firm’s cost of employing the IDS. The third component is the hackers’

strategy. The possibility that a hacker will be detected influences their behaviour, which

is dependent on the configuration of the IDS. The authors provide an optimisation model

based on game theory that gives insights into optimum IDS configuration. They study the

incorporation of strategic interactions between IDS, firm, and hackers in the development of

optimal configuration and algorithm.

Another notable work is provided by [84]. The authors propose a framework to achieve

semi-automatic optimal IDS configurations in terms of detection accuracy and memory us-

age. To perform the optimisation they use a population-based algorithm, an Evolutionary

Algorithm (EA); more specifically, the eoEasyEA algorithm. They adopt the idea of majority

voting where monitoring nodes overhear their neighbours and decide whether a neighbour

CHAPTER 2. LITERATURE REVIEW 56

is malicious or benign based on the number of packets received and forwarded. The aim is

to optimise the following objectives: false positives, false negatives and memory usage. A

weighted single-objective optimisation is used to solve the trade-offs between the objectives.

The work is extended in [99] via the use of a multi-objective optimisation algorithm. They

demonstrate the effectiveness of NSGA-II over SPEA2 in terms of speed of convergence and

the number of evaluations. Their work does not incorporate minimising the number of de-

ployed IDS sensors. Here, we investigate how to minimise the number of IDS sensors or

monitoring nodes (generally leading to reduced costs of installing, managing, maintaining

nodes and reducing communications traffic in collaborative approaches).

The authors of [100, 101] provide a genetic algorithm based optimisation technique for

finding optimal cooperative IDS monitoring nodes in the constrained WSN. Different valu-

able properties such as energy consumption, event reporting delay, network coverage and data

accuracy are studied to provide an optimal monitoring approach. They targeted a one-hop

attack (i.e., a malicious node can only attack nodes within its radio range) of the following

attacks: SYN/ICMP flooding, port scanning, and web exploits. These attacks could either

exhaust resources, scan for open ports or disclose information. The authors consider a hetero-

geneous network where nodes have three levels of resources. These are, from less resourced

to more powerful, Joined or orphan nodes, aggregators and leaders. As such, three types

of intrusion detection engines are considered: lightweight (LWDS), medium (RE-DS), and

heavy (HW-DS). They are employed by joined and orphan nodes, aggregators, and leaders

respectively. They consider the network to be clustered and the cluster leader node is always

powerful to operate heavy-duty intrusion detection. Networks can be in variant topologies

such as mesh or star. Furthermore, this assumption of a clustered network with a more

powerful cluster head cannot be always guaranteed in many LLN networks.

A proposal in [102] utilises anomaly-based distributed watchdogs to detect attacks tar-

geting Bluetooth mesh networks. The detection of the Denial of Service attacks is based on

observing each received packet by the watchdogs in N observation windows and calculating

a set of features such as the average number and standard deviation of packets per source

CHAPTER 2. LITERATURE REVIEW 57

and destination address. The authors determine the optimal placement of the watchdogs

based on some already recommended locations. However, there is a need for investigating

all locations based on performing a series of placements experiments. This will ensure the

generality of the evaluation where all locations are considered. Furthermore, they propose

dedicated powerful devices for intrusion detection purposes; however, this is not always the

case when it comes to constrained networks such as the LLNs where ordinary nodes may

assign some monitoring and detection tasks.

The authors in [103] investigate the use of a neighbouring-based monitoring approach

(i.e. watchdog) to detect blackhole attacks in Ad hoc On-Demand Distance Vector Routing

(AODV) based networks. Nodes listen promiscuously to the transmissions of their neighbours

and determine whether they correctly forward the packets they receive. If the monitored node

does not transmit the received packets in a threshold time (t), the node is considered to be

malicious, i.e. a blackhole node. To preserve the monitoring nodes’ energy, they listen to

their neighbours periodically and not continuously. The selection of the watchdogs takes place

during the initialization phase based on the connectivity level. Nodes with more neighbouring

nodes are assigned the duty of monitoring and intrusion detection. While this might be

effective with slowly arranged networks, on other networks, where the density of information

is different, this technique may fail. Monitoring nodes should be placed at locations that

best achieve stated goals, such as a high detection rate, and not placed using properties such

as the level of connectivity. (We appreciate the implied correlation but believe it is more

beneficial to evaluate configurations based on direct measures of actual sought achievement

rather than proxy measures.)

More limitations of the above works are presented in Table 2.4.

CHAPTER 2. LITERATURE REVIEW 58

2.5 Function approximation

2.5.1 Overview

The expensive optimisation problem (EOP) is a term used to describe an issue where evaluat-

ing potential solutions is extremely expensive or perhaps unaffordable [2, 104]. This problem

is common and applies to optimisation based approaches to the solution of many real-world

applications. Evolutionary Algorithms (EAs) have been effectively utilised to optimise many

hard real-world problems. (Later in this thesis we too will adopt a GA, a form of EA.) How-

ever, two main issues stated by [104] make deploying EAs to complex optimisation problems a

difficult task. First, the processing time required for an optimisation algorithm to evaluate a

huge number of fitness functions before converging to an adequate solution is high. Secondly,

individual evaluations may be computationally expensive.

The overall cost of using EA for solving the EOP can be expressed as [2]:

total cost = O(N)×O(C) = O(N × C) (2.7)

where the O(N) is the time complexity of the algorithm to solve the problem (N is the number

of evaluations needed to converge to a satisfactory solution) and O(C) is the average cost of

every expensive evaluation.

The aim is to solve EOP with a minimal cost. This is made by decreasing the O(N) and

O(C) as much as possible while maintaining acceptable solutions. To reduce the expensive

optimisation cost, there are three directions to follow (as illustrated in Figure 2.20): problem

approximation and substitution (to reduce O(C)), algorithm design and enhancement (to

reduce O(N)) and parallel and distributed computation (say this is PL, the Equation 2.7

becomes O(N × C)/PL, where PL ≥ 1).

Therefore, the function approximation, as one branch of problem approximation and

substitution, seeks to define a function that closely matches (“approximates”) an original

function more cheaply. Approximating a function is needed for two main reasons:

• The underlying function is unknown and needs to be defined with the available data

CHAPTER 2. LITERATURE REVIEW 59

Figure 2.20: Three directions to reduce expensive optimisation costs [2].

points.

• The computation of the original function is expensive.

In many real-world optimisation problems, there is no analytical fitness function for ac-

curately evaluating the fitness of a candidate solution [3]. Instead, there is either a more

accurate or less accurate fitness evaluation mechanism. Thus, this creates a trade-off be-

tween the computation cost and the fidelity, as shown in figure 2.21.

Even though approximation techniques can reduce the expensive evaluation cost, they

may not evaluate the candidate solutions accurately (i.e., incur some estimation error). How-

ever, they can be useful in the evolutionary search (see Figure 2.22).

Many researchers have proposed using an approximation model (a surrogate model or

meta-model) with evolutionary optimisation. The fitness approximation model has been

used for fitness evaluation to reduce each fitness calculation or evaluation cost [105]. As

a result, it may reduce the overall computation cost and time consumption. The fitness

evaluation may involve an expensive simulation with a long iterative process. Many useful

data points (or samples) are produced during the simulation process that can be used to train

a surrogate model for predicting a fitness value for a candidate solution. An example of such

an approach is given in Figure 2.23.

To obtain a global function approximation, the work in [104] asserts two measurements

to be taken. The first one is that the original fitness function should be included within

CHAPTER 2. LITERATURE REVIEW 60

Figure 2.21: An illustration of a trade-off between fidelity (approximation accu-
racy) and computational cost. Usually, high-fidelity fitness evaluations are more
time-consuming. By contrast, low-fidelity fitness evaluations are often less time-
consuming [3].

Figure 2.22: An Example of a surrogate model that has a large approximation
error but is adequately good for evolutionary search [4].

the function approximation model, this is called model management or evolution control.

Secondly, given a limited number of data, the performance of the approximation model

should be enhanced as much as possible. A reduced quality could be due to poor choice

of a model, training method, weights and error parameters. There are some obstacles that

may affect the utilisation of an approximate model for fitness evaluation such as the high

dimensionality of the optimisation space and the limited number of training samples.

The most widely used function approximation models are the polynomial model, the krig-

ing model, the feed-forward neural network (multi-layer perceptron) and the support vector

machine (SVM). In this PhD research, we target using NNs as a surrogate model for function

CHAPTER 2. LITERATURE REVIEW 61

Figure 2.23: An illustration of learning iterative fitness evolutionary process
using neural networks for predicting converged fitness value [3].

approximation, which is now addressed below

2.5.2 Fitness approximation via neural networks

Artificial Neural Networks (ANNs) have been proven to be an effective approach to approx-

imate nearly any function to any degree of accuracy [19, 20, 104]. According to [106], Deep

Neural Networks (DNNs), i.e. with several layers, are more efficient in function approxima-

tion than shallow neural networks (i.e. a single layer) even with a high number of neurons.

In other words, extra hidden layers (depth) may exponentially reduce the number of neurons

(size) for approximating a large class of functions.

Many proposals [106, 107] have adopted ANNs as a function approximator because of

their powerful characteristics such as self-learning (adaptivity), nonlinearity, parallelism, fault

tolerance and generalisation capability to map inputs to outputs [5]. When using ANNs for

function approximation purposes, the model learns by training the algorithm on input-output

samples to approximate the underlying rules connecting the inputs to the outputs. However,

CHAPTER 2. LITERATURE REVIEW 62

Figure 2.24: An illustration of the Overfitting-to-noise issue.[5]

there is a need for regulating the model complexity to avoid overfitting (as shown in figure

2.24).

2.5.2.1 Feedforward Neural Network

Feedforward Neural Networks (FNN) are a subset of Artificial Neural Networks (ANNs).

An ANN network consists of nodes or neurons and layers. As shown in Figure 2.26, the

information is passed from the input layer to the output layer passing via the hidden layer.

Most of the calculations and computations happen in the hidden layer. In this layer, the

nodes include the so-called activation function. This decides whether a neuron should be

activated or not.

There are several activation functions in the literature, but here we will describe the most

commonly used ones: Rectified Linear Unit (ReLU), Hyperbolic Tangent function (Tanh)

and Sigmoid. As illustrated in figure 2.25, the difference between these activation functions

is in the output they produce or the conclusion they draw. The output of a node employing

RelU as the activation function ranges between 0 to +infinity while the output of Tanh and

Sigmoid ranges between -1 to 1 and 0 to 1, respectively. This function determines whether a

node is “activated” (”fires”) based on the weighted sum of its inputs.

A node i in layer l calculates its output Sj as:

Sj = σj

(k∑
i=1

wij × l + bj

)
(2.8)

CHAPTER 2. LITERATURE REVIEW 63

Figure 2.25: Example of the activation functions

where Sj is the output of node i, σ is the activation function, l is the jth input to the

node i, wij is the connection weight between the node and input l, and bj is the bias of the

layer l. The NNs learn to map the input to the output via a comprehensive iterative process

based on trial and error. In fact, there are two passes in the process of the neural network:

forward propagation pass and backpropagation pass. The former is to fit the data to the NNs

with some initial parameters (mostly randomly generated). Then based on the error rate (i.e.

loss), between the predicted value (or classified class) and the actual value, the parameters are

updated accordingly using the backpropagation method. This is used to adjust the weights,

biases, learning rate (this controls how much these parameters should be changed with respect

to the received error) and other parameters. This is called hyperparameter tuning or fine-

tuning. It takes the gradient descent approach, using some optimisation algorithms such as

Adam [108] and stochastic gradient descent (SGD)[109], to reduce the error to a minimal

value. Each two-passes process (i.e., forward and backward) is called an epoch and many of

them are performed until a satisfactory output (or a maximum number of specified epochs)

is achieved. There are several loss functions (also known as cost functions) such as mean

square error (MSE) and mean absolute error (MAE) for regression problems, and accuracy

for classification problems.

CHAPTER 2. LITERATURE REVIEW 64

Figure 2.26: Architecture of an ANN model

The MSE measures the average of the squares of the errors or residuals. That is the

average squared difference between the predicted value ŷi and the actual value yi.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the number of observations.

The MAE measures the average of the errors or residuals. In other words, the average

absolute difference between the predicted values ŷi and the actual value yi.

CHAPTER 2. LITERATURE REVIEW 65

MAE =
1

n

n∑
t=1

| yi − ŷi |

In general, function approximation, or surrogate models, have been used to efficiently

reduce the computation complexity for the EoP. However, it is also known that they may

not provide accurate fitness evaluations. Therefore, there is a need to regulate the approach,

mainly by increasing the number of training samples, to enhance the fidelity as much as

possible while maintaining low computation complexity. In terms of the IDS configuration

optimisation, we obtain the training samples via an expensive network simulation. This lies

in the “2D full simulation” as shown in Figure 2.21.

2.6 Summary

IoT networks are adopted in many critical real-world applications, including health care,

smart cities, smart homes, and industrial contexts. The nodes are resource-constrained and

require efficient routing protocols to enable them to communicate their information efficiently.

The RPL is proposed as the most commonly utilised routing protocol for the IoT. However,

it is vulnerable to a variety of routing attacks. In this chapter, we detailed the RPL-based

networks and their most common attacks. Furthermore, IDS proposals to mitigate such

attacks for such a network were reviewed. We revealed the need for a specifically optimised

IDS configuration (in terms of both functional and non-functional criteria) to satisfy the

LLNs’ requirements. IDS solutions for traditional networks cannot be simply utilised in the

RPL networks due to the difference in the attack characteristics and available resources. We

then provided a description of the evolutionary algorithm as a possible optimisation approach

to optimise the IDS configurations along with some related work. Finally, a brief introduction

to the field of fitness approximation and some applications were presented. Approximation

models can be used in evolutionary algorithms with the aim to reduce the computation

required.

Chapter 3

The Work of This Thesis

3.1 Brief motivation statement

Every detection of an attack improves security and any undetected attack may be costly. As

demonstrated in Chapter 2, RPL networks are prone to many attacks. Intrusion detection

systems are the security solution when other mechanisms fail to protect against attacks.

However, they need to be configured appropriately to satisfy the resource constraints of IoT

networks.

In Section 2.3.6 we reviewed many IDS proposals for IoT/RPL networks to establish

the state-of-the-art. Usually, the presented IDS solutions focus on functional criteria such as

enhancing the detection rate and reducing false alarm rates but omit non-functional measures

such as the deployment cost.

There may be a huge number of possible configurations for an IDS for a system. Find-

ing an optimum or excellent one may present significant computational difficulty. Section

2.4.2 showed that several attempts have been made to seek optimal IDS configurations for

either conventional networks or WSNs but not for the RPL-based networks. To this end,

an optimisation approach is explored in this thesis to optimise the IDS configurations for

RPL-based IoT networks. Furthermore, although optimisation-based approaches have been

highly successful across many domains, the computational costs may be prohibitive for cer-

66

CHAPTER 3. THE WORK OF THIS THESIS 67

tain applications. Making the search more efficient remains a challenge. In this thesis, we

explore how leading concepts in function approximation (using a neural network) and model

reuse (transfer learning) can be beneficially exploited. Thus, we bring leading contemporary

machine learning concepts to bear on our target problem.

3.2 Research originality

The principal research hypotheses of this Ph.D thesis are restated below:

Hypothesis 1: Evolutionary algorithms can discover resource-efficient and detection-capable

security configurations for intrusion detection systems that are suitable for RPL-based

Internet of Things networks.

Originality: We propose an extensible optimisation framework that incorporates a much

wider set of constraints (functional and non-functional) than other IoT/RPL IDS researchers

consider. This is an original contribution in itself, but the framework also serves to generate

data as input for the following work on approximation and transfer learning.

Hypothesis 2: Machine learning approaches can allow us to perform function approxima-

tion for the framework’s fitness evaluation function and so greatly reduce the time and

computation taken to produce near-optimal security configurations using such a frame-

work.

Hypothesis 3: A transfer learning based deep neural networks approach can provide a

highly efficient fitness approximation with acceptable fidelity for newly-presented RPL-

based Internet of Things networks.

Originality (Hypo 2+3): To the best of our knowledge, there is no use of fitness ap-

proximation in the context of IDS configurations optimisation for IoT/RPL networks in the

literature. Its use here is therefore original in its own right and the refinement via transfer

learning is consequently also an original contribution.

Chapter 4

IDS Configuration Optimisation

using Evolutionary Algorithm

As stated in the literature review chapter, Chapter 2, RPL-enabled Low Power and Lossy

Networks (LLNs) involve constrained, unattended, and globally identifiable devices which

require more optimised IDS solutions than traditional networks. In this chapter, we explore

the application of a Genetic Algorithm (GA), a meta-heuristic-based optimisation technique,

to identify the best IDS placement and configurations for LLNs. The effort is to optimise

IDS settings for vulnerable and constrained networks while taking into account important

objectives. The detection rate, F1 score, coverage, feasibility cost, and deployment cost are

the objectives that our strategy aims to balance and optimise. We develope a framework

that incorporates these functional and non-functional requirements.

4.1 Background

The Routing Protocol for Low Power and Lossy Networks (RPL) is the standardised routing

protocol for the Internet of Things (IoT)[110]. It is used for the IP-connected wireless sen-

sors that enable IPv6 over Low Power Wireless Personal Area Networks (6LoPANs). Such

networks are also known as Low Power and Lossy Networks (LLNs). For these constrained

68

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 69

devices to share their data to the outside world via the IPv6 border router (6BR) while

preserving their power, they communicate in a multi-hop way. RPL-based networks are sus-

ceptible to several internal threats [111]. The nodes in LLNs lack effective self-protection due

to low capabilities and resources [60]. Once an adversary gains access to a node, they may

manipulate the node’s functionality and operation to compromise the performance or the op-

timality of a network’s topology. Some of the widely discussed attacks on RPL networks are

Rank-based attacks (e.g. Blackhole and Selective Forwarding) and Denial-of-Service (DoS)

attacks (e.g. DIS Flooding).

The Intrusion Detection System (IDS) is an important countermeasure when other secu-

rity solutions fail to protect against attacks. It consists of several sensors or monitoring nodes

distributed across the network for monitoring and detection purposes. As described in Sec-

tion 2.3.1, IDSs are commonly divided into Host-based IDS (HIDS) and Network-based IDS

(NIDS). The NIDS has a (often large) number of sensors to monitor the network. Effective

intrusion detection for a large Internet of Things (IoT) network requires multiple monitoring

sensors [112]. Detecting internal threats such as topology or routing-based attacks requires

the IDS sensors to be placed not only on the gateway but throughout the network. The

placement of the IDS sensors plays an important role in the accurate and timely detection of

unauthorized activities [67][83]. Moreover, a more detailed configuration of these monitoring

nodes (or probes) enhances their detection of malicious incidents.

Deciding where to place and how to configure IDS probes on a large network is a demand-

ing task. The optimisation of several criteria may be simultaneously sought, e.g., maximising

the detection rate while minimising deployment cost. The presence of conflicting criteria

increases the difficulty of obtaining effective and efficient IDS. Furthermore, when it comes to

a heterogeneous network such as the IoT [113], hosting the monitoring and detection tasks on

constrained nodes may either be impractical or at least affect their principal functional oper-

ation. Last, but not least, in a rule-based IDS where rules are dependent on threshold values,

finding effective thresholds is a difficult task, especially in dynamic environments [114]. A

lower threshold value may increase the false positives while a higher one may come at the

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 70

cost of more false negatives. To this end, we investigate the use of a meta-heuristic-based

optimisation technique to discover excellent IDS placements and configurations with respect

to chosen evaluation criteria. Specifically, we investigate the use of the GA to search the

space and find optimal IDS sensors placements as well as their configurations. To the best

of our knowledge, this is the first attempt to optimise IDS configurations for emerging and

constrained networks such as the LLNs while incorporating a wider set of constraints than

considered so far.

4.2 Our contributions and organisation of the chapter

In this chapter, we propose a meta-heuristic method based on a Genetic Algorithm (GA)

to investigate IDS probes placement and configurations. The contributions of this work are

summarised as follows:

• We present a GA-based framework for optimising the IDS sensors’ placement and con-

figuration.

• We present an effective fitness function targeting several valuable objectives such as:

– Maximising the detection rate and F1 score.

– Minimising the number of IDS sensor nodes.

– Minimising the hosting of resource-heavy intrusion detection tasks on the most

constrained nodes.

– Maximising the number of nodes within range of a specified number k of monitoring

nodes (a detection resiliency measure).

• We investigate the allocation of the detection rules as well as finding effective firing

threshold values for those rules.

• We investigate probe placement and configuration using predefined numbers of monitor-

ing nodes and also investigate the automatic determination of the number of monitoring

nodes by the framework itself.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 71

Table 4.1: Related works

Ref Scalability Adaptive
detection
threshold

Constrained
environment

Resiliency Rules
allocations*

Optimising
placement

Parametrisable
placement**

Heterogeneity

[103] × × ✓ × × × × ×
[72] × ✓ ✓ × × × × ✓
[90] ✓ × × × × ✓ × ×
[17] ✓ × ✓ × ✓† ✓ × ×
[98] × ✓ × × × × × ×
[84] ✓ ✓ ✓ × ✓ ✓ × ×
[99] ✓ ✓ ✓ × ✓ × × ×
[100] ✓ ✓ ✓ × ✓ × × ✓
[101] ✓ ✓ ✓ × ✓ × × ✓
[102] × ✓ ✓ × × ✓ × ×

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
*Or rules selection. **In terms of the number of IDS probes. †They consider different detectors (detection modules)
allocations.

• We compare the results with the Random Search technique and show the effectiveness

of the GA.

The chapter is organised as follows. In Section 4.3 we discuss the related work empha-

sising monitoring approaches and placements and configurations of IDS sensors. Section 4.4

describes our threat model and attacks targeted in this work. An overview of the IDS model,

including the adopted monitoring approach, detection method and decision technique, are

detailed in Section 4.5. The proposed GA-based IDS configuration is described in Section

4.6 followed by the performance evaluation and results in Section 4.7. Discussions and some

future insights are given in Section 4.9. Section 4.10 summarises the chapter.

4.3 Related works

There have been several attempts to optimise the IDS placements and configurations in the

literature. Chapter 2 presents an overview of the literature that relates to the work presented

in this chapter along with their limitations. A more detailed comparison of related works is

provided in Table 4.1

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 72

4.4 Threat model

Low Power and lossy networks (LLNs) (as in RPL-based networks) are resource-constrained

by nature and are susceptible to several attacks [111]. Adversaries aim to disrupt the network

communication and topology. The targeted attacks discussed in this work are the Blackhole,

Selective forwarding and DIS flooding attacks. They affect the network in different ways, as

described next.

4.4.1 Blackhole attack

Here, the attack has two stages. First, the attacker node decreases its rank in order to attract

more nodes and traffic towards it. Neighbour nodes of the attacker node will be misled by the

advertised low rank. Thus, they choose this node as their parent node and send their data

via it. Next, it drops all the received packets. Algorithm 11 illustrates the process. In our

experiments, we recorded its behaviour and effect on the network. The most disruptive and

affected network performance metric is throughput. (All packets routed via the malicious

Blackhole node are dropped.) Therefore, we monitor the Packet Dropping Ratio (PDR) to

detect this attack.

4.4.2 Selective forwarding attack

Here the malicious behaviour is similar to the blackhole attack. However, the adversary

node drops only selected packets to avoid being detected. As can be seen from Fig. 4.1 and

Algorithm 11, the attacker could choose the probability of dropping and forwarding (i.e.,

low/high selective forwarding attack). The selective forwarding (also known as grey hole

attack) is hard to detect in the context of LLN networks as packet loss, due to erroneous

data transmission or network congestion, is naturally incurred in these networks [115]. To

detect this attack the Packet Dropping Ratio (PDR) is carefully monitored.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 73

Algorithm 11: Blackhole and Selective forwarding attacks

1 Initialisation
2 A: Attacker node, N: Neighbour list ⊂ legitimate LLN nodes
3 B: a neighboring node ∈ N, P: Current packet
4 R: a lower more powerful rank,
5 Attack type = {Black-hole, Selective forwarding}
Input: “A” receives DIOs from A.N and calculates Min(advertised ranks)
Output: “A” obtains a lower, malicious rank and multi-casts it with DIO to all

nodes, ∀ node ∈ A.N
if (P is DIO) ∧ (P.sender id ∈ A.N) then

if P.sender id ∈ A.N ∧ P.sender id ̸= root id then
if DIO.rank ≤ A.malicious rank then

A.malicious rank ←− R

if (A.received(DIS from B)) ∨ (A trickle timer activated) then
A.multicast((DIO with malicious rank) to node ∀nodes ∈ A.N)
B.receive(DIO from A)
if DIO.rank < B.rank then

B nominate A as preferred parent
B unicast application packets to its preferred parent, which is “A” now, in
order to transfer it to the destination

if Attack type is Blackhole then
A collects packets from B then drops all

else if Attack type is High Selective Forwarding then
A collects packets from B and randomly drops ≈ 70%− 90% of the received
packets and transfers others to next hop

else if Attack type is Low Selective Forwarding then
A collects packets from B and randomly drops ≈ 20%− 40% of the received
packets and transfers others to next hop

4.4.3 DIS flooding attack

The attacker node in this kind of attack overwhelms the network with many DIS control

messages. This affects the neighbouring nodes of the malicious node in terms of power

consumption, more collided packets, and delay in the end-to-end packet delivery. Every time

neighbouring nodes receive these DIS packets, they need to respond with broadcasted DIO

control messages. In the normal scenario, the transmission of DIS messages happens when a

new node wants to join the DODAG topology. They send enough DIS control messages to

discover the neighbourhood and find parent nodes to connect to. However, the compromised

node sends these control messages continuously. Furthermore, the attacker node may adjust

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 74

Figure 4.1: Illustration of the blackhole and variants of selective forwarding at-
tacks.

Figure 4.2: The Difference in DIS intervals between normal and malicious sce-
nario.

the RPL trickle timer to increase the rate at which malicious DIS messages are sent and so

cause more disruption to the network [75]. Fig. 4.2 illustrates such a technique and Algorithm

12 describes the process. Therefore, to detect the DIS flooding attack, we monitor the DIS

Transmitting Rate (DTR).

4.5 Intrusion Detection System (IDS) model

In this section, we will describe the architecture of our proposed system. These are the moni-

toring technique, detection method and decision approach. These are the major components

of our IDS model.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 75

Algorithm 12: DIS Flooding attack

1 Initialisation
2 A: Attacker node, N: Neighbour list
3 B: a neighboring node ∈ N, P: Current packet
4 Attack type = {Multicast DIS Flooding}
5 Control Packet = {DIO, DAO, DIS, DAO-Ack}
Input: “A” multi-casts DIS to node(s), ∀ nodes ∈ A.N
Output: “B” multi-casts DIO message
if P is DIS and A.Attack type is Multicast DIS Flooding then

A.Multicast(DIS, ∀B ∈ A.N)
set DIS interval to very low
set time to infinity
for ∀B ∈ A.N do

B.Multicast(DIO, ∀node ∈ B.N)

Figure 4.3: The monitoring node, s1, promiscuously overhears the communica-
tion of node s3.

4.5.1 Monitoring technique

Wireless sensors utilise their radio range for transmitting and receiving packets. These packets

can be sniffed for either security or malicious purposes. We exploit this fact to investigate the

placement of monitoring nodes or probes on the network. Each monitoring node (or watchdog

[116]) monitors its neighbours within its radio range [117]. We are mainly adopting a Network-

based Intrusion Detection System (NIDS) approach to monitor the network communication

(i.e. packet traffic) and identify any abnormality. As can be seen from Fig. 4.3, a monitoring

node s1 can snoop on the in-bound and out-bound link from node s3. The range of monitoring

nodes may overlap. When calculating the functional evaluation metrics, detection rate and

precision, we ensure that there is no “double counting” of malicious events.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 76

4.5.2 Detection method

In this work, we adopt a rule-based intrusion detection approach to detect the aforemen-

tioned attacks. The rule-based detection approach is regarded as an effective and lightweight

mechanism to detect RPL attacks [60]. A set of designed rules act as a baseline for normal

activities and if any activity exceeds a developed threshold value (T), it will be reported as

an intrusion. A rule for detecting a blackhole or selective forwarding attacks would require

the monitoring nodes to generate an intrusion alert if:

EXIST a node x in any IDS sensor neighbourhood such that PDR(x) ≥ T in t sec.

The rule is to be varied to generate other rules to detect each of low/high selective

forwarding attack; e.g., EXIST a node x in any IDS sensor neighbourhood such that PDR(x)

< Tmax & PDR(x) ≥ Tmin in t sec.

An alert will be generated by a probe for DIS flooding attacks if:

EXIST a node x in any IDS sensor neighbourhood such that DTR(x) ≥ T in t sec.

4.5.3 Decision approach

The monitoring nodes detect malicious behaviours locally and independently. This is for

illustrative purposes; a variety of collaborative decision-making schemes can be incorporated

into the framework. Furthermore, we are concerned solely with intrusion detection and not

intrusion response.

4.6 Proposed GA-based IDS configuration

According to Goldberg [87], one of the pioneers of evolutionary algorithms, Genetic Algo-

rithms (GAs) are robust search-based optimisation techniques. They are distinct from other

traditional optimisation methods in several ways such as searching from a population rather

than a single point and searching using stochastic or non-deterministic operators. It involves

effective operators, such as crossover and mutation, to generate more diverse and fitter new

individuals that can discover global optimum and avoid trapping in local optima. More

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 77

benefits are given in Section 2.4.1.

Problem formulation: Placement problems of intrusion detection nodes have been

researched in the context of traditional networks. The problem is known to be computation-

ally intractable [17]. There are a great many choices as to what detection functionality is

allocated and where. Hence, there are a great number of IDS configurations. The complexity

has three sources: any node in the network is a potential placement of the probes and the

resources available on each node affect the decision, each probe node could host any num-

ber of rules or even none depending on the resources available, and each rule has a (global)

configurable threshold.

Encoding the problem: Candidate solutions have a binary encoding. The solution

format is shown in Fig. 4.4. For each node the solution records which rules are active at that

node: 1 indicates that the corresponding rule is activated and 0 means that it is idle. The

solution also contains a binary representation of the (global) threshold value for each rule.

The number of the rules-related bits is based on the number of investigated rules. The

bits at the end of each candidate configuration are for the threshold value to be applied

to a corresponding rule. These are to be decoded into a non-negative integer value when

implemented. For the node referencing, when all rules’ indices of a node are 0s (i.e. Off),

this indicates that there is no monitoring on this specific node. When the index of at least

one rule is 1, then a monitoring-detection task is assigned to that node and is running the

rule that is turned into ON. Therefore, the length of the chromosome is calculated based on

the number of nodes, rules and threshold indices.

Figure 4.4: The IDS candidate configuration representation.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 78

Initial population: The GA starts with a randomly generated initial population.

This will allow the approach to start with a diverse set of feasible solutions. The length of

the chromosome is calculated as follows. Let S={s1,s2,s3,. . . ,sn} be the set of the network

nodes where n is the total number of nodes. sj is the jth node. Let R be the number of

implemented rules. Each threshold value, Tj , is represented by a b-bit field, where b depends

on the granularity needed to convert a binary set into a non-negative decimal number. The

number of bits required for the threshold is then Thr = b × R. Therefore, the chromosome

length = (n × R) + Thr. The initial population is comprised of randomly generated bit-

strings of this length.

Fitness function: To evaluate each possible solution, a fitness function is required. The

fitness function evaluates each solution in terms of its performance regarding both functional

criteria (here, detection rate and f1 score) and non-functional criteria (here, deployment cost,

coverage and feasibility cost). In particular, we aim to optimise the following four objectives.

Detection rate and F1-score : Candidate configurations should provide a high capa-

bility of detecting attacks. Configuring the threshold value of the rules correctly, selecting

the rules properly and placing the IDS sensors deliberately contribute to increasing the True

Positives (TP) and reducing both False Negatives (FN) and False Positives (FP). We take

into account the synchronization of the detected attacks where monitoring nodes work in a

cooperative manner to eliminate the “double counting”.

The detection rate (recall), is the fraction of actual attacks that give rise to alerts. It is

a common and critical performance measure. However, high detection rates are practically

traded off against precision (the fraction of alerts that are actual attacks). In our experiments,

we trial two explicit targets: detection rate only, but also record the precision that results;

and F1 score, which gives an explicit equal weighting to detection rate and precision. In the

latter, we explicitly target precision too. (F1 score is usually defined in the machine learning

community using the more general term recall in place of our more application-specific term

detection rate. It is the harmonic mean of recall and precision.) The detection rate, precision

and F1 score are calculated as indicated by the following equations:

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 79

Detection rate(recall) =
TP

TP + FN

Precision =
TP

TP + FP

F1 score = 2× Recall × Precision

Recall + Precision

where TP indicates the correctly detected attacks, FN indicates the missed attacks, and

FP indicates the incorrectly classified normal traffic as malicious.

Now, the first objective function will be formed as the following:

Objective1 = maximise fit1 = Detection rate

or

maximise fit1 = F1 score

(4.1)

Coverage cost: As stated earlier in Section 4.5.1, each monitoring node or probe moni-

tors its immediate neighbourhood for any anomalous behaviour. As the targeted network is

susceptible to many attacks and as these nodes (i.e. possible monitoring nodes) operate with

low energy capabilities, they may turn off due to running out of energy or even being attacked

themselves. We need to ensure the placement of the monitoring nodes is resilient. For this

reason, we investigate requiring that each node be monitored by more than one monitoring

node. We aim to incorporate a level of resilience into our monitoring operations and so we

target k as the desired number of monitoring nodes within range of any node. Each node

should be within the range of k monitoring nodes.

For each node sj , let vj be the number of monitoring nodes within the range of sj . So, vj

is in the setj = {0, 1, 2, ...,m} where m is the number of neighbouring nodes. Let k be the

target number of monitoring nodes within range, then ∀ sj ∈ S we calculate the coverage of

sj as:

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 80

cov(sj) =

k, if vj ≥ k.

vj , otherwise.

There is no “reward” for additional coverage, i.e. for a node being within range of more

than k monitoring nodes. Our requirement is viewed as a “satisficing” one. (We note also

that it would be possible to adopt node-specific values for k, should there be compelling

system-specific reasons to do so, but we do not do so here.)

We now build the second objective function:

Objective2 : maximise fit2 =
1

n× k

∑
sj∈S

cov(sj) (4.2)

Feasibility cost: to depict the real-world scenario of IoT networks, we consider a

network of heterogeneous nodes. All the nodes are static in nature. These nodes differ in

their capabilities; mainly in energy. As adopted by other researches (e.g., see[118]), we study

three types of nodes: low-level energy (LE), medium-level energy (ME) and high-level energy

(HE). Nodes at the high level are equipped with sufficient energy to hold more rules. Nodes

at the low level cannot hold a probe. Nodes at the moderate level can hold a probe but with

only a subset of the rules enabled (e.g., half of the ruleset R) and nodes at the high level can

hold all rules. For practical purposes, nodes may be overloaded. Thus, we allow tradeoffs to

be made with the understanding that if the loading on a node is ‘infeasible’ there may be

significant effects on other aspects of that node’s operation.

Let rj be the number of rules that sj is hosting and mrj be the maximum number of rules

that sj can host; then, ∀ sj ∈ S the feasibility cost is calculated as:

fCost(sj) =

0, if rj ≤ mrj .

(rj −mrj), otherwise.

Where R is set to the total number of rules introduced to the system, the third objective

function is defined as the following:

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 81

Objective3 : minimise fit3 =

∑
sj∈S fCost(sj)∑
sj∈S |R−mrj |

(4.3)

Deployment cost: There is always a cost for introducing an IDS sensor to a network,

e.g., for installing, configuring or maintaining the sensor [67]. We assume here that all sensors

incur the same deployment cost. Each node in the network is a potential placement of the

IDS probes. We need to find the minimum number of probes placement and still fulfil k

coverage. The next binary variables define the cost of hosting a probe on a node sj :

depCost(sj) =

1, if sj is selected as a probe placement.

0, otherwise.

minimise
∑
sj∈S

depCost(sj)

subject to:

vj ≥ k (4.4)

The constraint (4.4) ensures that each node sj is covered by at least k monitoring nodes.

Therefore, equation (4.5) defines the fourth objective as:

Objective4 : minimise fit4 =
1

n

∑
sj∈S

depCost(sj) (4.5)

4.6.1 Single-Objective Optimisation (SOO)

We next form our proposed fitness function. The above objectives may conflict with each

other. Sometimes one needs to be maximised and others need to be minimised. Our fitness

function works in a way that accepts the trade-offs by using a “weighted sum” method [119]. It

is a well-known approach for converting a Multi-Objective Optimisation (MOO) function into

a single scalar objective function. Furthermore, by varying the weight values, we illustrate

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 82

Algorithm 13: The implementation of GA

Input: Popsize, Gensize, Crossrate, Mutrate,Chromnode,Chromthre, Nnodes,Rrules,
Tthresh

Output: Best individuals
for (x=1 to ((Nnodes × Rrules) + Tthresh) do

Pop0 ← generate initial population()

evaluate initial population(Pop0) (4.6)
initialise generation counter(): g ← 0
while (g < Gensize) do

select from population(Pop0): Popg+1 ← Pop0
for i = 1 to (Popsize/2) do

select two parents()
r ← random number generator()
if r < Crossrate then

//Chromnode is the rules allocation part
rc ← random(1,Chromnode)
crossover(P1, P2) on rc
//Chromthre is the threshold part
rc ← random(Chromnode,Chromthre)
crossover(P1, P2) on rc

if r < Mutrate then
rm ← random(1,Chromnode)
mutate(P1andP2) at rm
rm ← random(Chromnode,Chromthre)
mutate(P1andP2) at rm

add to population (P1andP2)

evaluate new population(Popg+1) (4.6)
increment generation counter(): g ← g + 1

output best individual()

the importance of each objective. As such, we build the fitness function as follows:

maximise→ fitness = (W1×fit1)+(W2×fit2)+(W3×(1−fit3))+(W4×(1−fit4)) (4.6)

where W1 +W2 +W3 +W4 = 1

i.e., fitness =
(
W1 × detection rate or F1 score

)
+
(
W2 ×

(1

n× k

∑
sj∈S

cov(sj)
))

+

(
W3 ×

(
1−

∑
sj∈S fCost(sj)∑
sj∈S |R−mrj |

))
+
(
W4 ×

(
1− 1

n

∑
sj∈S

depCost(sj)
))

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 83

Table 4.2: Genetic Algorithm parameters

Parameter Value Parameter Value

Population size 100 Population type Bit strings
Number of Generation 200 Selection method Tournament
Crossover method Two-point Crossover probability 0.9
Mutation method Bitflip Mutation probability 0.01

4.7 Performance evaluation

We study the placement and configuration of the IDS from different perspectives. We study

the placement of the IDS sensors where there are a specific number of them and we need to

find the optimal placement and configurations. This will eliminate the deployment cost as

we do not need to search for the minimum deployed probes. Also, we investigate letting the

framework decide on the number of probes. As stated earlier, we investigate the optimisation

of the IDS in terms of a diverse and constrained network such as the LLN networks. Meaning,

nodes incur variant levels of resources (i.e., a heterogeneous network).

4.7.1 Experiments settings

In this section, we will detail the settings used to conduct the experiments of the GA-based

IDS framework and the network simulation to evaluate each possible IDS configuration.

4.7.1.1 GA Oriented Settings

We implement the Genetic Algorithm (GA) using its well-known genetic operators. these are

selection, crossover and mutation. As illustrated in Algorithm 13, it starts with the random

generation of possible solutions. A particular number of these (the population size) forms

the initial generation of the population. These candidate solutions are evaluated using the

fitness function described in Equation 4.6. Candidates are selected to go forward to the next

generation using their fitness values, implementing the “survival of the fittest” aspect of the

genetic algorithm. We adopt the tournament selection method. As advised in Section 2.4.1.4,

it is more effective to set the tournament size to a relatively low value (but not 1). Thus, we

set the tournament size to l = 3. This means 3 candidates are randomly selected from the

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 84

Figure 4.5: The conceptual architecture of the framework.

current population and the fittest of them forms the next offspring, going forward to the next

generation of the population. Tournaments are held repeatedly (with replacement) until the

next generation is complete.

The GA’s crossover operation allows candidate solutions to “exchange DNA”. Single-

point crossover is applied to the rule allocations part of the genome and also to the threshold

part. Thus, a point along the rule allocation part of the genome is selected for a pair of

candidate solutions and the rule allocation elements to the right of that point are swapped

between the genomes. Similarly with the threshold parts of the genome pair.

Our crossover points are chosen randomly with a high crossover probability to engage

more parent candidate solutions to participate in the genetic recombination and form the

new offspring.

Finally, since we adopt a bit-oriented representation for a solution (see Fig. 4.4), the GA’s

mutation operator is implemented as a bit-flip. Each bit in a solution can be flipped with a

small probability. Table 4.2 illustrates the list of GA parameters used in our experiments.

The high-level overview of the framework is given in Fig. 4.5. The GA optimisation engine

generates a set of feasible solutions to be evaluated. Each candidate solution is evaluated via

a set of packet traces and log files generated from the network simulator. The optimisation

engine computes the fitness function which involves the set of aforementioned objectives. A

fitness value will be assigned to each individual which represents the goodness of the current

IDS configuration in terms of both functional and non-functional criteria.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 85

4.7.1.2 Network settings

We carried out the RPL network and attack simulations using NetSim v12.1 [120]. This is to

construct the nodes’ connections, protocols, communications, and attacks implementations.

NetSim is a well-known network simulator of modern networks such as WSN and IoT. The

RPL per RFC6550 [46] is supported in Netsim. We simulated a network of 64 nodes running

the RPL as the routing protocol in the network layer. Nodes are heterogeneous in terms

of energy. We simulated the heterogeneity as such 10% of the nodes were from the low-

level energy nodes and 10% were from the medium-level energy nodes. Nodes are randomly

assigned to either of these levels. The rest are assigned to the high-level energy nodes.

The latter does not mean powerful nodes that can host a powerful IDS but rather powerful

enough to hold the experimented 4 rules. (All nodes are assumed to be resource-constrained

and hence adopting the rule-based IDS approach as it’s known to be efficient (and effective)

for the RPL-based networks [60].)

Table 4.3: The network simulation parameters

Parameter Value Parameter Value

Simulator NetSim v12.1 Node Type IoT sensors

Number of Nodes 64 and 1 gateway Channel Type Wireless channel

Routing Protocol RPL Transport Proto-
col

UDP

Area 400m x 400m Simulation Time 500s

Packet Generated
at Source

500 application
packets

Nodes initial en-
ergy

Varied
(6480mJ,32400mJ,64800mJ)

Receiver sensitiv-
ity

-77 dBm Distance between
nodesuniform

50m

DIS initial delay 200ms DIS
intervalsnormal

1000ms

DIS intervalsattack 100ms Traffic type Sensing

Topology Uniform/Random

We also acknowledge that the distance between the nodes affects the performance, and we

want to evaluate the robustness of the framework on variant networks in terms of topology.

Thus, we investigated a random and uniform placement of the wireless sensor nodes. The

distance between the nodes in the uniform scenarios is 50m. Precisely, the received sensitivity

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 86

Figure 4.6: The best found IDS sensor placement (random 64-node network with
w1=0.5,w2=0.15, w3=0.15 and w4=0.2).

is set to -77dBm which makes the radio range of the nodes be ≈ 50m. Sensors are configured

to send data packets constantly to a destination server node at the rate of 1 per second.

This will allow us to study the behaviour of forwarding packets and monitor the normal and

anomalous behaviour properly. The packets are transmitted in a multi-hop way in order to

reach the IPv6 Border Router (6BR). Table 4.3 lists the network simulation parameters.

4.7.2 Results

To evaluate the proposed framework properly, we conducted an extensive set of experiments.

The required computation to run these experiments is significant; thus we used our university

High-Performance Computing (HPC) cluster. The execution time complexity for each single

IDS configuration evaluation can be represented as O(n×np×R); where it scales significantly

with respect to the number of nodes n, the number of packets np and the number of rules R.

We have carried out extensive simulations, with each node in turn playing the role of

attacker. This is because we aim to be resilient against any node’s compromise. We run the

attack with different attacking rates, blackhole attacks and low and high selective forwarding

attacks. Hence, variant rules and in total four rules are investigated (as described in Section

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 87

4.5.2). Similarly, and as stated in Section 4.4, the transmission interval of the DIS control

packets is varied between the normal nodes (i.e. new nodes that want to join the network)

and DIS flooding-based attacker nodes. This is to study the ability of the framework to find

optimal rule firing-threshold values as well as rules allocations. Thresholds are determined

on a rule-type basis; there is a threshold for each rule type and all deployed instances of

that rule type have the same threshold. This is for illustrative purposes only; node-specific

rule-thresholds could be adopted.

From Table 4.4, we can find that the threshold value is evolved and that the algorithm

was able to converge to a high detection rate and f1 score; especially when they were more

highly weighted. Our approach was able to discover high-performing threshold values for

the aforementioned attacks. In Fig. 4.6, the proposed IDS sensors placement and rules

allocation are presented with respect to the given weights for each objective. Rules allocation

is dependent on the resources available on the node a probe is placed on. We set the mrj =

0, R/2 and R to the nodes in low-resourced, moderate-resourced and high-resourced levels

respectively. To avoid overwhelming the network with monitoring nodes and still provide a

plausible measure of resilience, our target monitoring coverage was set to k = 2, i.e. each

monitored node should be within a range of two monitoring nodes.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 88

(a) 64-Node (Random)

(b) 64-Node (Uniform)

(c) 64-Node (Random)

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 89

(d) 64-Node (Uniform)

Figure 4.7: The evaluation of the objectives and the fitness function over gener-
ations for different networks with w1=0.5, w2=0.15, w3=0.15 and w4=0.2 (Fit1
as detection rate (top two figures) and Fit1 as f1-score (bottom two figures)).

We investigate different placement-configuration approaches. One approach is when we

have a fixed number of probes, and we want to find the optimal placements and configurations.

Another approach is when we do not restrict the number of monitoring nodes and let the

framework decide on the number of them. We furthermore, consider different weights to

illustrate the importance of each objective and how they can be varied to satisfy specific

system needs.

From Table 4.4, we can see that when there is a parametrised number of probes we omit

the deployment cost as the framework does not have control over that (i.e. to increase or

decrease it). Hard-coding the number of monitoring nodes may fail to achieve appropriate

coverage and detection (i.e. if the number is too low), or otherwise be wasteful (if the number

is too high). Allowing the framework to choose the optimal number of them may be more

efficient as it will take into consideration all objectives. However, if an administrator has a

specific financial or operationally practical budget in mind, then fixing the number of probes

may serve a useful purpose. This further illustrates the flexibility offered by our approach.

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 90

T
a
b
le

4
.4
:
V
a
ri
o
u
s
pa
ra
m
et
er

a
n
d
w
ei
gh
t
va
lu
es

a
n
d
th
ei
r
a
ch
ie
ve
d
fi
tn
es
s
va
lu
es

(%
)
u
si
n
g
S
O
O

D
et
ec
ti
on

ra
te

as
F
it
1

F
1
sc
or
e
as

F
it
1

W
ei
gh

t
va
lu
es

R
an

d
om

U
n
if
or
m

R
an

d
om

U
n
if
or
m

N
o.

W
1

W
2

W
3

W
4

F
it
1
(P

r*
)
F
it
2

F
it
3

F
it
4

F
it
1
(P

r)
F
it
2

F
it
3

F
it
4

F
it
1
(D

t,
P
r)
*

F
it
2

F
it
3

F
it
4

F
it
1
(D

t,
P
r)

F
it
2

F
it
3

F
it
4

10
0.
1

0.
45

0.
45

-
70

.1
(8
0.
2)

60
.9

0.
0

15
.6

34
.0
(7
6.
8)

57
.8

0.
0

15
.6

79
.6
(6
7.
4,
97

.2
)

60
.9

0.
0

15
.6

49
.4
(3
3.
2,
96

.1
)

57
.8

0.
0

15
.6

0.
4

0.
3

0.
3

-
70

.4
(7
5.
8)

60
.9

1.
0

15
.6

36
.1
(7
8.
0)

57
.8

0.
0

15
.6

80
.8
(6
9.
3,
96

.9
)

60
.9

0.
0

15
.6

51
.2
(3
5.
5,
91

.7
)

57
.8

0.
0

15
.6

0.
8

0.
1

0.
1

-
74

.6
(8
3.
4)

60
.9

16
.7

15
.6

39
.3
(6
9.
6)

57
.8

9.
8

15
.6

81
.8
(7
1.
3,
95

.8
)

60
.9

15
.7

15
.6

52
.7
(3
6.
2,
97

.1
)

57
.8

0.
0

15
.6

30
0.
1

0.
45

0.
45

-
81

.6
(8
0.
5)

88
.3

0.
0

46
.9

71
.9
(8
2.
8)

74
.2

0.
0

46
.9

88
.0
(8
0.
2,
97

.5
)

88
.9

0.
0

46
.9

80
.6
(6
8.
6,
97

.5
)

74
.2

0.
0

46
.9

0.
4

0.
3

0.
3

-
87

.9
(8
6.
3)

88
.3

3.
9

46
.9

73
.8
(7
1.
4)

74
.2

0.
0

46
.9

90
.1
(8
3.
7,
97

.6
)

88
.9

2.
0

46
.9

81
.1
(6
9.
4,
97

.5
)

74
.2

0.
0

46
.9

0.
8

0.
1

0.
1

-
95

.4
(8
1.
5)

88
.3

23
.5

46
.9

77
.0
(8
1.
1)

74
.2

11
.7

46
.9

95
.3
(9
3.
3,
97

.5
)

88
.9

20
.6

46
.9

86
.9
(7
8.
2,
97

.7
)

74
.2

11
.8

46
.9

60
0.
1

0.
45

0.
45

-
84

.5
(8
9.
0)

10
0

1.
0

93
.8

88
.2
(7
2.
7)

97
.7

1.
0

93
.8

89
.2
(8
2.
9,
96

.6
)

10
0

1.
0

93
.8

92
.2
(8
8.
1,
96

.7
)

97
.7

1.
0

93
.8

0.
4

0.
3

0.
3

-
87

.1
(7
4.
9)

10
0

2.
9

93
.8

89
.4
(8
1.
5)

97
.7

1.
9

93
.8

90
.5
(8
4.
3,
97

.6
)

10
0

1.
9

93
.8

93
.4
(8
9.
6,
97

.6
)

97
.7

2.
9

93
.8

0.
8

0.
1

0.
1

-
95

.4
(7
5.
3)

10
0

23
.5

93
.8

96
.6
(8
2.
3)

97
.7

24
.5

93
.8

95
.3
(9
3.
3,
97

.5
)

10
0

20
.6

93
.8

95
.7
(9
3.
6,
97

.8
)

97
.7

13
.7

93
.8

-
0.
1

0.
3

0.
3

0.
3

72
.3
(8
0.
0)

89
.8

0.
0

50
.0

73
.0
(8
1.
6)

81
.3

0.
0

60
.9

84
.6
(7
4.
8,
97

.4
)

87
.5

0.
0

43
.8

75
.7
(6
1.
6,
98

.2
)

77
.3

0.
0

53
.1

-
0.
3

0.
25

0.
25

0.
2

85
.5
(8
2.
2)

96
.9

2.
0

67
.2

86
.6
(8
2.
2)

92
.2

1.
0

82
.8

87
.7
(7
9.
5,
97

.7
)

96
.7

0.
0

67
.2

90
.2
(8
4.
4,
96

.8
)

89
.4

0.
0

78
.1

-
0.
5

0.
15

0.
15

0.
2

91
.4
(8
1.
2)

87
.5

12
.7

43
.8

91
.4
(8
0.
8)

92
.2

7.
8

82
.8

92
.4
(8
7.
7,
97

.4
)

87
.5

7.
8

43
.8

90
.4
(8
3.
3,
96

.6
)

87
.5

1.
0

73
.4

-
0.
7

0.
1

0.
1

0.
1

94
.6
(7
8.
9)

92
.2

22
.5

56
.2

94
.3
(7
4.
6)

93
.7

18
.6

85
.9

92
.5
(8
8.
0,
97

.4
)

89
.8

11
.8

50
.0

95
.0
(9
2.
3,
97

.8
)

92
.2

13
.7

82
.8

-
0.
9

0.
04

0.
03

0.
03

96
.5
(8
9.
0)

96
.8

35
.3

67
.2

98
.1
(8
1.
0)

96
.7

53
.9

92
.3

96
.1
(9
4.
9,
97

.2
)

96
.9

35
.3

67
.2

96
.7
(9
5.
7,
97

.7
)

96
.7

24
.5

90
.6

*
N
o.

(N
u
m
b
er

of
p
ro
b
es
),
P
r
(P

re
ci
si
on

)
an

d
D
t
(D

et
ec
ti
o
n
ra
te
)

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 91

A list of objectives and fitness evaluations of different networks with different weights is

provided in Fig. 4.7.

We compared the results of the Genetic Algorithm with the Random search (RS). As can

be seen from Fig. 4.15, the GA approach outperforms the RS approach. Exhaustive search,

as one of the common search techniques, could be brought to bear; however, brute force is

simply infeasible, especially when there are many parameters to tune [121]. Given enough

time, RS explores all possible combinations; nevertheless, it could not achieve the high-

performing configurations obtained by the GA in the given number of evaluations. Even for

networks of moderate size, some heuristic approach must be used.

4.8 Interpreting IDS configuration samples

In this section, we consider 5 examples of high-performing solutions found in this work and

look for points they share. These high-performing configurations are taken from 5 runs of

the optimisation framework on the same network. Figure 4.8 indicates what each bit of each

configuration represents. The number of times a specific node is enabled for probe placement

is illustrated in Figures 4.9 and 4.14 (with w1 = 0.5, w2 = 0.15, w3 = 0.15 and w4 = 0.2).

We can clearly see that there are nodes (e.g., 31, 33 and 43) in strategic locations that have

been enabled for probe placement in all runs. On the other hand, there are only few nodes

that are never chosen for probe placement (e.g., 2, 3 and 13). Figures 4.10, 4.11, 4.12 and

4.13 show the number of times a rule is selected on each node over the 5 different runs.

Most nodes have at least one rule enabled. Very few have none enabled. This might seem a

little unusual but there are good reasons why this is so. For example, the requirement to have

redundancy in monitoring inevitably leads to more nodes hosting probes. Additionally, we

make an assumption that all nodes share the same wi-fi range. Deployments are a function of

that range. If the wi-fi range were larger, then the patterns of rule distributions might change

significantly. Even if significant patterns of deployment could be identified for this network

with its specific parameter choices, it is far from clear that they would remain applicable

when those parameters are changed. Also, if different nodes had different wi-fi ranges then

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 92

this would add further difficulty to extracting high-performing and generalised deployment

and configuration patterns.

It is clear from the results reported in this section that for a specific network there will

be a large degree of commonality in the configurations obtained by repeated runs. However,

determining a generalised characterisation of high-performing configurations would require

analysis of very many runs over many different networks with varying parameters. Such anal-

ysis would typically require an ML-based approach to characterisation. Our considerations

here would suggest that optimal configuration mining is potentially a fruitful task for the

Explicable Machine Learning community. Indeed, we recommend it to that community.

Figure 4.8: An example of high-performing IDS configurations

4.9 Discussion

Overall, when problems get sufficiently complex there is often no feasible alternative to adopt-

ing a heuristic of some form. In this work, we have shown that optimisation-based approaches

can be adopted to advantage to address problems of considerable significance in modern-day

networks. Were we to significantly extend the number of probes or the number of available

rules, it seems unlikely that any other approach could identify high-performing deployments

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 93

Figure 4.9: The number of times a node is enabled for 5 different runs

Figure 4.10: The number of times rule 1 is selected on each node over 5 different
runs

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 94

Figure 4.11: The number of times rule 2 is selected on each node over 5 different
runs

Figure 4.12: The number of times rule 3 is selected on each node over 5 different
runs

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 95

Figure 4.13: The number of times rule 4 is selected on each node over 5 different
runs

Figure 4.14: An Illustration of the number of times a node is chosen for probe
placement over 5 different runs

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 96

with the flexibility of an optimisation-based heuristic.

The weighting profiles used express a form of relative importance. Security management

will need to experiment with different weightings and decide for themselves which outcomes

they prefer. Our approaches, however, will furnish management with high-performing out-

comes given specific input weighting profiles.

Figure 4.15: A Comparison between the Random search and Genetic Algo-
rithm on finding optimal candidate solutions. (64-random nodes with w1 =
0.7(detection rate), w2 = 0.1,w3 = 0.1,w4 = 0.1).

For illustrative purposes we have chosen to fix certain aspects of the problem, e.g. we have

adopted global thresholds for rule threshold values. These constraints can readily be lifted,

i.e., node-specific thresholds can be evolved for the rules. It would be prudent to position

such node-specific thresholds alongside corresponding node information in the representation

shown in Fig. 4.4.

Additional objectives can be adopted. The ones given here are for illustrative purposes;

they are plausibly motivated, but we do not maintain they are always the best for specific

system circumstances. Detection rate, for example, is an important metric for IDS. However,

there are other plausible evaluation criteria for binary classifications; detection rate is an IDS

form of what is referred to as “recall” in machine learning, but “False Positive Rate (FPR)”,

“False Negative Rate (FNR)” “accuracy”, “Area Under the Curve (AUC)”, and others are

all reasonable evaluation objectives that could readily be adopted. Likewise, alternative or

CHAPTER 4. IDS CONFIGURATION OPTIMISATION 97

further cost-related objectives can be incorporated. Such flexibility is a major strength of

optimisation-based approaches.

Finally, although we have been concerned solely with intrusion detection, we are aware

that aspects of intrusion response configuration may also be targeted by our optimisation-

based framework. We recommend further consideration of optimisation-based approaches to

system configuration to the research community.

4.10 Summary

In this chapter, we presented an optimisation framework based on a Genetic Algorithm for

IDS configuration on RPL networks. These networks are now of major importance in many

sectors. We have investigated the trade-offs between detection rate, F1 score, coverage,

feasibility, and deployment costs. We investigated a single-objective weighted sum approach.

We have also investigated both fixed and variable numbers of probes. The performance

of the framework has been evaluated using extensive simulations with different networks,

weights and numbers of monitoring nodes. Our framework can determine high-performing

(and potentially optimal) configurations. The framework is also flexible; incorporating further

objectives or dropping current ones will often be easy. The approach does, of course, assume

that there is some underpinning notion of a gradient in the objective function. For many

useful objectives this is the case.

Overall, the work shows that a major network administration task can be effectively

automated, achieving levels of performance unattainable by manual means, and freeing the

administrator to focus on critical higher-level tasks.

Chapter 5

Fitness Approximation of IDS

Fitness Evaluation

In Chapter 4, we built a framework to help network administrators optimise IDS configura-

tions based on a set of useful objectives. The framework is extendable and further desired

objectives can be included. However, obtaining optimal (or near-optimal) configurations is

time-consuming and computation-intensive. In this chapter, we aim to reduce the complexity

by adopting a fitness approximation technique (i.e, surrogate modelling).

5.1 Introduction

As discussed in Chapter 4, developing high-performing IDS configurations in the presence

of conflicting objectives is a hard task, particularly in the context of resource-constrained

networks. An optimisation-based approach such as an Evolutionary Algorithm (EA), more

specifically the Genetic Algorithm (GA), is a natural avenue to pursue. However, and as

stated in [105], deploying an EA to complex optimisation problems is far from straightforward.

The fitness evaluation of a huge number of candidate solutions before converging to an optimal

solution is computationally very intensive and time-consuming.

The evaluation of the fitness function for determining high-performing IDS configuration

98

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 99

may be computationally highly intensive. Our research aims to find an efficient proxy for the

fitness evaluation that is far less computationally intensive, yet still usefully accurate. In this

chapter, we investigate Neural Networks (NNs) for such a purpose. (Technically we seek to

use NNs as function approximators for the fitness function used.) The research questions we

address are:

• Can optimisation-based approaches to search for high-performing IDS configurations

be made more computationally efficient by the adoption of neural networks as fitness

approximators for the fitness functions they use?

• To what extent can fitness approximation models used for fitness evaluation be accurate

and efficient?

Our main contribution is the development of a fitness approximation model (also known

as a meta-model [122]) based on an Artificial Neural Network (ANN), specifically the Feed-

forward Neural Network (FNN). This model allows us to radically reduce the time and com-

putation complexity to produce near-optimal IDS configurations. We will use multiple runs

of a GA-based approach to solve this problem. Initially, we use a simulator to provide the

cost function. The individuals (configurations) in the populations that arise during these

runs are evaluated and recorded along with their fitness values. These are used to train the

surrogate fitness model. Once trained, this proxy fitness function can be used directly in GA

runs, replacing the actual simulation-based approach.

We refer to the GA system using the simulator as GA-Sim (as illustrated in Figure. 5.1),

and the GA system with the proxy as GA-FNN. The latter is vastly faster than GA-Sim (as

we shall show). Of course, the fitnesses obtained via GA-FNN are approximate. Generally, we

aim to find better solutions more quickly. GA-FNN can be used in different ways practically.

It can be used to generate high-performing configurations that can be used directly in the

system of interest. It can be used to generate a set of individuals with high approximate

fitness that can then be evaluated using the simulator (time-wise equivalent to an evaluation

of an initial population using GA-Sim). The final population of a GA-FNN run can also be

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 100

Figure 5.1: The GA-Sim evaluation process

used to seed a run of GA-Sim with a high-performing initial population. The above set of

uses is not exhaustive.

The rest of the chapter is organised as follows. Section 5.2 presents some relevant previous

work concerning optimising IDS configurations. The procedure taken to build the GA and

FNN, and to collect the IDS configurations is detailed in section 5.3. The data sampling

technique for preparing the training dataset for the FNN is described in section 5.4. Exper-

imental results are given in section 5.5. Discussions and some future insights are given in

section 5.6. Section 5.7 concludes the chapter.

5.2 Related work

The literature, as detailed in Chapter 2, proposes various effective approaches to finding

optimal configurations of IDS, but they still suffer from significant computation cost issues

(which will ultimately limit their usefulness as systems scale up). Below, we propose a

computationally efficient approach for optimising IDS configurations.

5.3 System detail

In this section, we will detail the GA-based framework and the NN-based surrogate model.

The former is used to optimise the IDS configurations based on set valuable objectives. The

generated candidate configurations together with their evaluated fitness measures are then

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 101

used to train the latter, i.e., the NN model.

5.3.1 GA-based IDS configuration optimisation

The building blocks of the framework (i.e., the dataset generator), which is based on a genetic

algorithm to optimise the IDS configurations based on four objectives, are detailed in Section

4.6.

Fitness function: This is designed as a single scalar fitness function (to be maximised).

It is presented in the following equation.

fitness = ((W1 × fit1) + (W2 × fit2) + (W3 × (1− fit3)) + (W4 × (1− fit4)))× 100 (5.1)

It is convenient to scale all objective results by a factor of 100, as shown in Equation 5.1.

(Other factors could easily be used.). We assign W1=0.5, W2=0.15, W3=0.15, and W4=0.2.

These are the weights used in this chapter and are given for example only. Different system

analyst priorities will give rise to different weights.

The framework generates thousands of IDS configurations where some have high fitness

and others do not. As illustrated in Figure. 5.1 and Figure. 5.2 (phase 1), each candidate

configuration is evaluated against log traces of network packets generated during simulation.

These are processed to provide a fitness evaluation. These configurations are in binary for-

mats and represent the nodes (i.e., possible locations of the IDS probes), which detection

rules are deployed at each node and the threshold values used in the rules, as illustrated in

Figure. 4.4. Along with their fitness values, all candidate solutions are logged to be used in

our dataset. The GA-Sim framework is computationally intensive and time-consuming. To

run the experiments, we used HPC facilities at the University of Sheffield.

Hyper-parameters of the GA: The GA runs for 100 generations, with a population

size of 100 candidate configurations (bitstrings). It has the standard mutation and crossover

routines (see Table 5.1). It uses a 3-tournament selection (i.e., with 3 candidates in each

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 102

Table 5.1: Genetic Algorithm hyperparameters

Parameter Value

Population size 100
Population type Bit strings

Number of Generation 100
Selection method 3-Tournament
Crossover method Two-point

Crossover probability 0.9
Mutation method Bitflip

Mutation probability 0.01

tournament) with fitness value computed using Equation 5.1. The full list of parameters is

given in Table 5.1. The evolution will continue until a termination criterion (in our case,

completion of 100 generations) is met.

5.3.2 FNN based fitness approximation

To reduce complexity, we have developed a Feedforward Neural Network (FNN) model to

approximate the actual fitness function mentioned in Equation 5.1 which is used in the genetic

algorithm framework to optimise the IDS configurations. The neural networks method, in

general, and FNN in specific, is chosen as it is known for its accuracy in approximating

any nonlinear function [19]. The network’s learning rule is to utilise the steepest descent

approach to fine-tune the network’s weights and biases via backpropagation to minimise the

error. In regression problems different loss functions are available, e.g. Mean Square Error

(MSE) or Mean Absolute Error. A variety of optimisation methods may be used to manage

the process, e.g. Adam or Stochastic Gradient Descent. The learning process of the neural

networks is shown in Figure. 5.2 (phase 2). Firstly, the signal is transferred from the input

layer to the output layer via the hidden layer, and the difference between the true value and

the predicted value is calculated. Secondly, the output error is then transmitted from the

output layer to the input layer (i.e., backpropagation), and the weights of the neurons are

modified in accordance with the error. Finally, the new weight is applied to the signal and

the error is calculated again. This process is repeated until a satisfactory minimised error is

obtained or the number of epochs (iterations) is reached.

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 103

F
ig
u
re

5
.2
:
T
h
e
co
n
ce
p
tu
a
l
a
rc
h
it
ec
tu
re

o
f
th
e
ID

S
co
n
fi
gu
ra
ti
o
n
s
fi
tn
es
s
a
p
p
ro
xi
m
a
ti
o
n
fr
a
m
ew

o
rk

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 104

Table 5.2: The Neural Network hyperparameters

Parameter Value Parameter Value

Input neurons 280 Optimiser Adam
Hidden neurons 190 Activation function ReLU
Output neurons 1 Output activation

function
Linear

Dataset size 30,000(+5,999
sampled)

Layers 3

Training set 80 % (20% validation) Epochs 1000
Testing set 20% Learning rate 0.01
Batch size 32 Cost/loss function MSE

Phase 2 and 3 (in Figure. 5.2), which are the aim of this research, are dependent on phase

1 where we have to generate a great number of IDS configurations along with their fitness

values to be used as a dataset for training the FNN. Then the pre-trained FNN model is used

as a fitness approximation (i.e., meta-model) to replace the use of the network simulator as

fitness evaluation.

Hyper-parameters of the FNN model: We use Keras library v.2.7 [123] to develop

the neural networks model. It is a Python-based sub-library inherited from the TensorFlow

backend. The optimal number of neurons and learning rate is chosen by the KerasTuner hy-

perparameter tuning library [124]. Several search techniques are implemented in KerasTuner

and we adopt the Random Search method. We employ the ReLU activation function for

the hidden layers as it is the most commonly utilised activation function for modern neural

networks [125]. As this is a regression problem, we use the linear activation function for the

output layer. We adopt the Mean Square Error (MSE) as the loss function, but we keep

track of the other evaluation metrics as will be demonstrated in section 5.5. The complete

list of the hyperparameters is shown in Table 5.2.

5.4 Dataset preparation

We run the GA-Sim twice (with different seeds) with a generation and population size of 100.

During the genetic algorithm evolution, we log the candidate configurations at each generation

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 105

Algorithm 14: Inverse sampling for balancing a dataset based on bins

Input: datasetimbalanced, B,Bwidth

Output: datasetsemi−balanced

1 begin
2 datasetimbalanced.sort();
3 datasetimbalanced.divide(B,Bwidth);
4 freqi ← size(bi);
5 for i = 1 to D do
6 Randomly select bin bi ; ▷ Based on Pi

7 if freqi < n then
8 / ∗ n decided experimentally ∗ /

datasetimbalanced ← randomly uniformly select from within bi

along with their fitness values. In other words, the GA-based dataset, which includes 20,000

candidate configurations, is taken from the populations of the genetic algorithm. The key

optimisation technique of the algorithm is to keep the best solutions to move on to the next

generation; this is called the “survival of the fittest”. Consequently, we obtained a skewed

dataset where many solutions in the later generations exhibit little improvement in fitness

value (i.e., the target variable in our dataset). The dataset, as can be seen in Figure. 5.3 (A),

is highly negatively skewed. Consequently, the model may lean more toward the more highly

represented instances; and this leads to poor model performance [126].

There have been several methods to deal with skewed datasets in the machine learning

community. One of the common techniques for solving imbalanced target distribution is called

SMOTE (Synthetic Minority over-sampling Technique) [127]. However, this is intended for

classification problems and not for regression problems. Log transformation and square root

transformation are other methods, but they usually work well with positive-skewed label

problems. We are also aware of the other techniques such as SMOTER and SMOGN [128],

Cox-Box [129], but implementing them did not provide satisfactory results.

Therefore, we built a technique based on inverse sampling or inverse probability trans-

formation to enhance the distribution of the samples. We intend to oversample the low

represented instances (in classification problems this is called the minority class) and under-

sample the highly represented instances (in classification problems this is called the majority

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 106

Figure 5.3: The process of balancing the GA-based dataset

class) to create a balanced dataset. We divided the dataset into different bins and calculated

the probability of selection based on the frequency of each bin. Thus, we select inversely

according to the frequency of fitness values of each bin. For instance, let B is the number

of bins and D is the number of samples on the intended dataset, ∀bi ∈ B, the ratio of how

often bin bi is sampled is calculated as 1
freqi

, where freqi refers to the number of samples of

di in bi. The probability of each bin is then calculated as the following equation:

Pi =

1
freqi∑B

j=1
1

freqj

(5.2)

We adopted 10 bins with equal fitness ranges (i.e., bin’s widths) as shown in Figure. 5.3

(A). The number of instances is not uniform across bins. Thus, some fitness ranges are

more highly represented than others. Such imbalances may lead to a poorly trained FNN.

Accordingly, we have chosen a biased sampling regime for the generation of the dataset to be

used for FNN training. To select which instance to be sampled back to the dataset, we first

select a bin with a probability inversely proportional to the number of instances that bin has,

and then select uniformly from the selected bin. We only select from bins, b, with freq <2000.

The procedure is demonstrated in Algorithm 14. The reason behind this threshold value is

that the sampling technique based on bin probability creates many duplicate instances from

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 107

those bins with low freq trying to balance the bins. However, this did not allow successful

training of the model. Therefore, the sampling from any bin is based on a threshold. Our

approach mixes a strict inverse sampling regime (to some extent) with keeping some samples

(i.e., those in a bin that is above the threshold n) to avoid loss of information on the high-

performing solutions. Accordingly, the distribution of the dataset is slightly enhanced as

shown in Figure. 5.3 (C).

Furthermore, in order to include candidate configurations not generated by the GA-based

approach, we randomly generated 10, 000 evaluated configurations and combined them with

the GA-based dataset (see Figure. 5.3 (B)). Note random search alone could not reach near-

optimal or optimal candidate solutions as obtained by the GA. This has been illustrated

in Section 4.7.2. Having low- and high-performing samples is important to train a model

effectively.

5.5 Experiments and results

We applied the genetic algorithm IDS configurations optimisation framework on a 64-node

random network. We carried out the network simulation using NetSim v12.1 [120]. We used

the university HPC to run the GA-Sim framework to generate the set of IDS configurations.

We run the experiments of building, training and using the FNN on a Windows machine

with the following specifications: Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz, 3000 Mhz, 8

Core(s), 8 Logical Processor(s), and with 16 GB of RAM available.

5.5.1 FNN model evaluation

The dataset (i.e., a set of IDS configurations) is saved as a CSV file to train the FNN model.

We use Mean Square Error (MSE) as the loss function for training but also provide the results

of evaluating the model on the most common evaluation metrics for regression problems. The

IDS configuration-based FNN model has demonstrated excellent performance as reported in

Table 5.3 and visualised in Figure. 5.4.

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 108

Figure 5.4: The FNN model evaluation.

Table 5.3: Performance evaluation of the IDS configuration-based fitness approx-
imation neural network model

Metric value

Mean Square Error (MSE) 1.003

Root Mean Square Error (RMSE) 1.002

Mean Absolute Error (MAE) 0.788

Mean Absolute Percentage Error (MAPE) 0.015

Coefficient of Determination (R2) 0.997

5.5.2 FNN as fitness evaluation

The work presented in this chapter investigates the effectiveness of using the neural network

as a fitness approximation meta-model to reduce the time and computation required for the

traditional optimisation techniques when optimising the IDS configurations. We have studied

two approaches:

Approach 1: We can now replace the costly fitness evaluation function with the model.

We run the GA with the pre-trained FNN model (GA-FNN) as a fitness evaluation, as shown

in Figure 5.2 (phase 3). Table 5.4 includes examples of 10 configurations taken from the last

population of the GA-FNN. We demonstrate the significantly reduced time for evaluating a

single configuration using the FNN model with a small error. On average, the time taken to

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 109

Table 5.4: The difference between the GA-FNN and GA-Sim (in accuracy and
time) for evaluating ten configurations

Samples GA-FNN⋆ Time∗ GA-Sim⋆ Time∗ Error Time ratio

config1 85.7 0.026 81.1 30.0 4.6 1153:1
config2 85.5 0.028 81.2 29.0 4.3 1035:1
config3 85.9 0.028 81.4 29.0 4.5 1035:1
config4 85.8 0.026 81.4 29.0 4.4 1115:1
config5 85.9 0.026 81.4 29.0 4.5 1115:1
config6 85.9 0.028 81.4 29.4 4.5 1035:1
config7 85.9 0.027 81.4 29.0 4.5 1074:1
config8 84.0 0.026 81.1 29.3 2.9 1126:1
config9 85.9 0.030 81.4 29.0 4.5 966:1
config10 85.2 0.028 81.4 28.9 3.8 1032:1
⋆ Fitness value. ∗Evaluation time (in seconds).

evaluate one configuration and retrieve the fitness value via the simulator is ≈ 29.2 seconds

while via the FNN is ≈ 0.027 seconds. The ratio of the reduced time of evaluating each single

configuration can be represented as ≈ 1:1081 times.

Furthermore, we can find that the GA-FNN model, running for 200 generations and 200

populations, was able to find high-performing configurations (i.e., fitness value = 81.4 as

can be seen in Table 5.4 compared to the highest score achieved over 5 averaged extended

(500 generations) runs of the GA-Sim = 80.6 as shown in Figure 5.5 (A)). Note that, the

approximation-based scores here systematically overestimate the performance but the corre-

sponding configurations are still high performing when evaluated using the simulator. The

approximation is simply a means to an end. Of course, we have had to invest a considerable

amount of time in generating test data to develop the approximation function. The over-

all cost required to obtain this high fitness value is calculated as the following: the 30.000

candidate configurations (i.e., the dataset), generated via the GA-Sim and random, cost ≈

30.000 × 29.2 seconds (on average) = 243.3 hours. The time required to train the FNN

model is 4.6 hours. Running the GA-FNN algorithm costs ≈ (200 × 200) × 0.027 seconds

(on average) = 18 minutes. Therefore, the total running time is ≈ 248.2 hours. On the other

hand, the GA-Sim could not reach the high fitness value obtained by the GA-FNN even after

500 iterations; this costs ≈ (500 × 100) × 29.2 seconds = 405.6 hours. Showing that the

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 110

Algorithm 15: The implementation of GA-based FNN/Sim fitness evaluation

Input: ngen, npop, ngene, crossrate,mutrate
Output: Best configuration

1 // The GA initialisation and detailed process follow what in Algorithm 13
2 begin
3 last pop[] ; ▷ Record last pop configurations

4 g ← 0
5 initialise config(Pg)
6 evaluate via FNN(Pg)
7 while ngen < g do
8 Pparent(g+1) ← P (g).selectParent()
9 for c = 1 to (npop/2) do

10 Pchild(g+1) ← Crossover(Pparent(c), Pparent(c+1)) by crossrate
11 Pchild(g+1) ←Mutate(Pparent(c) and Pparent(c+1)) by mutrate

12 Pg+1 ← creatNextGeneration(Pchild(g))
13 g ← g + 1
14 last pop.add(gngen);
15 / ∗Next start the GA− Sim ∗ /
16 g ← 0
17 last pop(Pg) ; ▷ configurations from above

18 evaluate via sim(Pg)(5.1);
19 / ∗ Same evolution (while loop) process as above ∗ /
20 return(Best configuration)

GA-FNN is faster by a factor of over 1.6.

Approach 2: We extended this work by combining the two evaluation approaches (i.e.,

the GA-Sim and GA-FNN). This was done by using the FNN-based model as the first eval-

uation method (i.e., a surrogate model). The last population, which is filtered and obtained

by the FNN model, is used as the initial population of the GA-Sim method using the true

fitness evaluation. Algorithm 15 demonstrates the process. This will have two benefits. One

is that we will obtain true (simulator-based) optimal solutions (rather than optimal as judged

by the approximated fitness). Second, the low-performing candidate configurations will be

quickly filtered out, and this will result in reducing the number of configurations evaluated.

The GA-Sim will start from a much better population rather than being random. Figure 5.5

(B) illustrates the much better starting point for the GA-Sim. Therefore, it was able to

reach new optimal solutions in fewer generations. We have run the GA-Sim and GA-FNN

five times and taken the average maximum fitness value of each generation.

As far as time is concerned, the time taken to form the initial population using GA-

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 111

Figure 5.5: The number of reduced evaluations to reach a high fitness value (on
average) between (5 runs of) the GA-Sim with a random initial population (A)
and initial population produced by GA-FNN (B)

FNN, with 200 generations and 100 populations (9 minutes), is ≈ 248.1 hours (as detailed

in approach 1). Running the GA-Sim (with 100 generations and 100 populations) consumes

≈ 10.000 × 29.2 seconds = 81.1 hours + 248.1 hours = 329.2 hours. On the other hand, the

whole GA-Sim consumes 50.000 × 29.2 seconds ≈ 405.6 hours.

5.6 Brief discussion

The evaluation of a solution via a meta-model is faster than evaluation using simulation soft-

ware because it involves the use of surrogate models or approximations that can provide an

estimate of the system’s behaviour. Surrogate models are typically simpler and computation-

ally less expensive. They capture the essential features and behaviour of the system while

sacrificing some level of accuracy. This simplification allows for faster evaluations compared

to running the full-scale simulations. There are several reasons why Machine Learning (ML),

and Neural Networks in particular, can make provide faster predictions than simulations:

• ML models are trained on large data samples to learn patterns and relationships within

the data. Once the training is complete, the model is optimised and ready for inference.

During making the evaluation, the model utilises the learned parameters and structure

to make predictions efficiently. The prediction process often entails performing a series

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 112

of fast mathematical operations, such as calculations within neural network layers,

which can be executed quickly.

• Many ML frameworks and libraries are designed to take advantage of parallel processing

capabilities of modern hardware, such as multi-core CPUs or GPUs. These frameworks

can efficiently distribute the computational workload across multiple cores, allowing for

faster prediction times.

• ML frameworks and libraries often provide optimised implementations of common al-

gorithms and operations used in ML models. These implementations are usually highly

optimised and fine-tuned to take advantage of hardware-specific features, such as vec-

torised instructions or GPU acceleration. This optimisation significantly speeds up the

prediction process.

The above characteristics of surrogate-models make the evaluation of a single IDS config-

uration 1000x faster than a simulation-based evaluation.

In our case, we are motivated in significant part by a desire to allow configurations to

change regularly. This is needed when ‘fingerprinting’ of the system is perceived to be a

problem. If attackers can learn the configuration of the IDS system they can exploit that

knowledge to their advantage. Shifting configuration regularly makes such fingerprinting more

difficult. With such multiple uses, the performance enhancements provided by our approach

become overwhelming.

We have adopted straightforward objectives in our work. However, detection strategies

may become collaborative and far more complex. In such cases, the complexity of the simu-

lation will increase and so the need for fast approximation will become greater.

Further performance criteria can easily be added. These could include diversity criteria to

ensure the generation of configurations is sufficiently different to previously used ones. The

evaluation of plausible diversity metrics will likely be computationally insignificant compared

to aspects of system simulation.

The GA-FNN is trained to approximate a fitness landscape for one specific 64-node net-

CHAPTER 5. FITNESS APPROXIMATION OF IDS FITNESS EVALUATION 113

work. As future work, it would be highly desirable if the learning for one particular network

can be reused for another. This could radically reduce the overall costs of approximation (the

greatest part of which is in generating training data). In the next Chapter we investigate

whether transfer learning, a well-established concept in Deep Learning, can be harnessed to

provide such benefits for fitness approximation.

5.7 Summary

IDS probe placement and configuration is a promising target for optimisation-based ap-

proaches. Evolutionary algorithms have been developed, by ourselves and others, that are

quite effective at making the important multi-criteria tradeoffs. However, these are always

computationally highly intensive and time-consuming.

In this chapter, we have shown how our approximation-based approach GA-FNN is faster

(more than 1.6x) and produces better results than the simulation-based GA-Sim. This means

that advanced applications, such as regular changing of configuration to avoid fingerprinting,

will not be impaired by the speed of optimisation. Furthermore, for such applications, the

speed of response (finding an appropriate new configuration) may be more important than

squeezing out the last ounce of performance. Either way, the excellent level of performance

of GA-FNN will prove highly beneficial.

Approximating complex simulation-based fitness functions using neural networks for gen-

erating high-performing IDS configurations has been shown to be feasible, enabling better

solutions to be obtained more quickly. We believe the need for further approximations re-

search in this area will grow.

Chapter 6

A Transfer Learning Approach to

Discover IDS Configurations

Reducing the computation required for a simulation-based optimisation technique to obtain

high-performing IDS configurations for a particular network is achieved in Chapter 5. How-

ever, when it comes to new networks, we would then need to run the process again, from

scratch. Here, in this chapter, we aim to build a generalised fitness approximation model

that can produce high-performing IDS configurations not only for one specific network but

also for variant networks.

6.1 Introduction

Runs of the optimisation algorithm are computationally intensive and time-consuming [105].

As networks scale, the resource consumption problem increases. Furthermore, analysts may

desire to have multiple runs of an algorithm and compare the results before making a specific

choice. It may also be desirable to be able to generate many possible high-performing config-

urations to allow the IDS deployment to evolve, e.g., where a static configuration might lead

to ‘fingerprinting’. The major cost in all search approaches is evaluating the performance of

a configuration, which for difficult criteria such as detection rate may require a simulation.

114

CHAPTER 6. A TRANSFER LEARNING APPROACH 115

The surrogate model has been shown to be effective and efficient in optimising the IDS

configurations for a specific network. The generalisation of the approach is still a limita-

tion. The main contribution of this chapter is to build a generalised IDS fitness approxima-

tion model using a transfer learning Deep Neural Networks (DNNs) approach. The transfer

learning method allows prior experience of evaluation of other networks to provide a more

accurate and efficient means of evaluating newly presented networks. First, we use a specific

evolutionary-based optimisation method -- a Genetic Algorithm (GA) -- to generate a set of

evaluated IDS configurations for various network typologies. We use these as the training set

for our DNN model. We test the ability of the pre-trained model to approximate the fitness

function of IDS configurations on unseen networks. The evaluation using such a model is

extremely fast and can significantly reduce the computational expense of traditional optimi-

sation approaches. The knowledge learned by a model trained on a set of variant networks is

transferred to a model trained on a smaller number of networks (i.e., fewer data samples). We

show how transfer-learning-assisted DNNs can perform better (with fewer training epochs)

than standalone DNNs. This reduces the training time while maintaining high prediction

accuracy (or minimum error).

The remainder of this chapter is organised as follows. A brief explanation about the IDS

and the targeted attack is presented in Section 6.2. In Section 6.3, we present the fitness

function adopted in this chapter, which involves the objectives detailed in Section 4.6. The

same framework is used to produce the data for our DNN training. Section 6.4 details the

network simulation, the network generator, feature engineering, DNN implementation and

the transfer-learning technique. The results are given in section 6.5. Section 6.6 presents a

summary of the chapter.

6.2 Rule-based IDS to detect greyhole attacks

In this chapter, we investigate how NIDS can best discover RPL attacks, more specifically

the Greyhole attacks (also known as selective forwarding attacks). The IDS sensors monitor

their neighbourhood for any malicious activities. We also adopt the rule-based IDS as it

CHAPTER 6. A TRANSFER LEARNING APPROACH 116

is effective in detecting RPL attacks and efficient for resource-constrained networks [130].

The adversary node selectively drops packets; hence, we monitor the Packet Dropping Ratio

(PDR) of each node in the network. This is the threshold value and is encoded into a binary

format as shown in Figure 6.1. Thus, a rule in our system fires if:

EXIST a node x in an IDS sensor neighbourhood such that PDR(x) ≥ T in t seconds.

6.3 Dataset creation

In this section, we describe the building blocks of the optimisation framework that is used to

find optimal IDS configurations. These are mainly used to generate datasets to be used to

train a deep learning model to approximate a fitness function. This reduces the computation

complexity required by the optimisation mechanism. Further, we show how transfer learning

can help achieve better results than a standalone deep learning model.

In order to train the DNN model, we need to generate a dataset. Our dataset includes a

set of IDS configurations. Each configuration is evaluated against four objectives as described

in Section 4.6. These are optimised using a framework based on an Evolutionary Algorithm

(EA). (Our dataset needs to include high-performing configurations and an EA optimisation

approach is a good way of obtaining them. Randomly generating configurations will not

suffice, as shown in Section 4.7.2). Configurations are stored in a binary format and they

describe the nodes, probe placement and a threshold value (used to define when a specific

rule should ‘fire’). Figure 6.1 illustrates the IDS configuration representation.

6.3.1 Fitness measurement

The fitness of each configuration is assessed by its ability to satisfy a set of objectives as

detailed in Section 4.6. In this work, we adopt the detection rate for the first objective.

Regarding the feasibility cost objective, we have two different types of nodes, low-energy-

nodes and moderate-energy-nodes. Thus, this objective will punish (and so discourage)

CHAPTER 6. A TRANSFER LEARNING APPROACH 117

Figure 6.1: Example of IDS sensor configuration representation.

placing IDS sensors on the low-energy-nodes. We target only one rule (R = 1) hosted

by a probe with the aim of detecting selective forwarding attacks. However, the objective

is generalised and can be used with a wider set of hostable rules. We therefore either host

(place) a probe or we do not. We set the mrj (in Equation 4.6) of the low-energy-nodes to 0

and to 1 for moderate-energy-nodes.

Fitness Function: We adopt aWeight Based Genetic Algorithm (WBGA) [131], formulating

a multi-objective problem as a single-objective one. The objective functions are weighted by

a vector of scalars (weights). Different system analyst priorities will give rise to different

weights. For illustration purposes, we have used the following weighting values: W1 =

0.5,W2 = 0.15,W3 = 0.15 and W4 = 0.2. The fitness function, which is a combination

of the Objectives 4.1 - 4.5, is defined as follows.

maximise→ fitness = 100×((W1×fit1)+(W2×(1−fit2))+(W3×fit3)+(W4×(1−fit4)))

(6.1)

We note that each objective fj can reach an optimum of 1 or 0, depending on whether it

is to be maximised or minimised. It is convenient to scale all objective results by a factor of

100, as shown in Equation 6.1. (Other factors could easily be used.) Since the weights are

sum to 1, the overall fitness function is seen to lie between 0 and 100. However, because of the

CHAPTER 6. A TRANSFER LEARNING APPROACH 118

interaction between the objectives, we cannot know for sure what the achievable maximum

is.

6.4 Experimental set-up

6.4.1 Network simulation

We use Netsim v12.1 [120] to simulate our experimental networks. The whole network consists

of 32 wireless nodes. These nodes differ in terms of available energy. 20% of the nodes are

low-energy and the rest are moderate-energy. All nodes generate two types of packets: the

control message packets, which are used to construct the DODAG topology and connections,

and application packets. The radio range between the nodes is set to 78 dBM which means

they can communicate within a distance of ≈ 50 meters. We have experimented with each

node being attacked for the sake of finding the best placement wherever an attacker node

happens to be.

6.4.2 Network generator

To evaluate the DNN-based approximator on different networks, we designed a Random

Network Generator (RNG). This takes as an input a configuration file (xml format) of a

specific network and generates random topologies of the same network size (see Figure 6.2).

In total, we generated 33 random networks. Nodes can be placed on any location on a 200 x

200 meter plane (except the border router which is fixed in the centre). The RNG takes into

consideration an important condition, which is that the nodes are not closer than a predefined

minimum distance (i.e., distance > 10 meters). In a Wireless Sensor Network (WSN), if the

radio ranges of two or more nodes are significantly overlapped and they transmit or broadcast

packets at the same time, this may cause packet collision [132]. To maintain the connectivity

between the nodes, each node should be within range of at least one node to avoid any node

being disconnected from the network. This is checked via the network simulation.

CHAPTER 6. A TRANSFER LEARNING APPROACH 119

F
ig
u
re

6
.2
:
H
ig
h
-l
ev
el

o
ve
rv
ie
w

o
f
ID

S
co
n
fi
gu
ra
ti
o
n
s
o
p
ti
m
is
a
ti
o
n
,
ge
n
er
a
ti
o
n
a
n
d
p
re
pa
ra
ti
o
n
.

CHAPTER 6. A TRANSFER LEARNING APPROACH 120

6.4.3 Feature engineering

We have extracted two main features that were important factors when optimising the IDS

deployment for RPL networks. These are the number of neighbouring nodes and the rank

of each node. The rank of each node is calculated based on the location of a node from the

border router (6BR). The lower the rank, the closer to the 6BR. Thus, the rank indicates the

location of the node in the DODAG.

The current configurations are in a binary format. However, the number of neighbouring

nodes and the ranks are integer inputs. Thus, to avoid the model being impacted by these

large values, we normalised the extracted features (i.e., min-max scaling between 0 and 1).

Figure 6.2 illustrates the whole process of generating networks, optimising the IDS con-

figurations of each network, extracting the configuration, and feature engineering.

6.4.4 Neural Network building

We use Keras [123] to build the DNN model. It is a Python-based library that is imple-

mented on top of the TensorFlow framework. The whole network configuration is reported

in Table 6.1. We adopt the Mean Absolute Error (MAE) as a performance loss function.

We recorded other evaluation metrics such as Mean Square Error (MSE), Root Mean Square

Error (RMSE), Mean Absolute Percentage Error (MAPE) and R2 square. These are detailed

next.

MSE (Mean Square Error). This measures the average of the squares of the errors

or residuals. That is, the average squared difference between the predicted value ŷi and the

actual value yi.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the number of observations.

MAE (Mean Absolute Error). This measures the average of the absolute error or

residual values. In other words, the average absolute difference between the predicted value

ŷi and the actual value yi.

CHAPTER 6. A TRANSFER LEARNING APPROACH 121

Table 6.1: The Neural Network hyperparameters

Parameter Value Parameter Value

No. input neurons 100 Optimiser Adam

No. hidden neurons 67 (in each layer) Activation function
(hidden layers)

ReLU

Cost/loss function MAE Activation function
(output layer)

Linear

No. output neurons 1 No. hidden layers 3

Learning rate 0.001% Batch size 32

Epochs 500

Dataset size
(source-model)

270,000 Dataset size*
(target-model)

10.000

Dataset size† 60,000

Training set* varied (20% validation) Testing set* varied

Training set† 50 % (20% validation) Testing set† 50 %

*Experiment 1. † Experiment 2

MAE =
1

n

n∑
t=1

| yi − ŷi |

RMSE (Root Mean Squared Error). While MSE measures how far the predicted

values are from the regression line (i.e., prediction error), RMSE shows how spread out these

errors are.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

MAPE (Mean Absolute Percentage Error). This measures how accurate a predic-

tion model is.

MAPE =
1

n

n∑
i=1

∣∣∣∣(yi − ŷi)

yi

∣∣∣∣
R2 (R-squared). This is also called the coefficient of determination. It measures the

relationship between the dependent and independent variables. In other words, in a regres-

sion model, it represents how much variance in a dependent variable is explained by the

independent variable(s).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2

CHAPTER 6. A TRANSFER LEARNING APPROACH 122

Figure 6.3: Learning process of transfer learning.

ȳ indicates the mean of the actual data and is calculated as ȳ = 1
n

∑n
i=1 yi

6.4.5 Transfer Learning

In Machine Learning (ML), transfer learning seeks to transfer the knowledge gained from one

problem to a different yet related one (see Figure 6.3). The benefit of using such a technique

is to reduce network training time while maintaining high accuracy. Deep transfer learning

is classified into four categories [133]: instances-based deep transfer learning, mapping-based

deep transfer learning, network-based deep transfer learning, and adversarial-based deep

transfer learning.

We adopt the network-based deep transfer learning which refers to the re-use of parts of

the neural networks of the source domain pre-trained model (including the network structure

and parameters) on the target domain deep neural network. As illustrated in Figure 6.3, we

transfer the hidden layers’ parameters of a neural network model (i.e., source model), that

we train on a large set of IDS configurations of many randomly generated RPL networks,

into a neural network model (i.e., target model) trained on fewer new RPL networks. Here

we hope that with fewer data samples and with the help of transfer learning, we will still

obtain an excellent prediction model (i.e., with low error).

CHAPTER 6. A TRANSFER LEARNING APPROACH 123

Table 6.2: Genetic Algorithm hyperparameters

Parameter Value

Population size 100
Population type Bit strings

Number of Generation 100
Selection method 3-Tournament
Crossover method Two-point

Crossover probability 0.9
Mutation method Bitflip

Mutation probability 0.01

6.5 Results

We have trained a DNN model on a large set of IDS configurations generated from 27 ran-

domly generated RPL networks. For each network, we run the genetic algorithm optimisation

to optimise the set of objectives mentioned in Section 4.6. The parameters used during the

genetic algorithm process are presented in Table 6.2. We have run our genetic algorithm,

with a population size of 100 (i.e., 100 candidate configurations). The population is evolved

over 100 generations. This generates 10,000 IDS configurations with a fitness value assigned

to each one that represents its goodness in terms of the studied functional and nonfunctional

objectives. For 27 training networks (this is from Network 1 - 27 of the total 33 networks),

we have obtained 270,000 IDS configuration samples. This forms the dataset used to train

the source model. This is the pre-trained model we utilised for the transfer learning method.

The aim here is to study and compare the ability of two approaches, namely the standalone

and transfer learning DNN approaches, to approximate a fitness function for new variant

networks. This is to show the ability of a model that has been trained over a set of variant

network configurations to accurately predict the fitness value of new networks. We try to

solve a generalisation problem here using a cheap (yet approximated) model to replace the

traditional complex and expensive optimisation methods. We study the problem using the

two approaches outlined below.

CHAPTER 6. A TRANSFER LEARNING APPROACH 124

6.5.1 Experiment 1: retraining model vs transfer learning model

As mentioned in Section 6.4.5, the benefit of transfer learning is when there is limited access

to training data samples. This is the case with newly presented networks where there is no

knowledge/data about the IDS configurations for these networks unless running the expensive

optimisation technique. Therefore, we evaluated the performance of the retraining model and

the transfer learning model over different dataset sizes. An explanation of each technique is

given next.

The standalone (retraining) model: This is a DNN model that is trained from

scratch. Meaning, there is no prior knowledge about the problem at hand and the neural

network parameters are initiated randomly.

The transfer learning model: Here, we have trained a source DNN model on very

large configuration samples of 27 networks (i.e., 270,000 samples). The general process of the

transfer learning approach is illustrated in Figure 6.3 and the hyperparameters are presented

in Table 6.1. We then transfer the knowledge (i.e., the trainable parameters such as weights

and biases) from this model to support a target DNN model during the training. Therefore,

these parameters will start from some enhanced values, based on the harvested knowledge of

the source model, rather than random.

Both models were trained on different training set sizes of IDS configurations. Here we

have access to limited samples to train the models. Figure 6.4 demonstrates the prediction

accuracy of the two schemes. The transfer learning based model was able to make a more

accurate fitness evaluation than the retraining model over all training set sizes. We trained

the models on the specified training sets (i.e., 10%, 20%...etc) and tested on the rest. Fur-

thermore, during the training, the transfer learning approach was able to quickly converge

to a low training error (as shown in the right-hand side of Figure 6.4) in a fewer number of

epochs than the retraining approach. Note, the usage of the early-stopping technique [134]

breaks off the training in fewer epochs than specified (500 epochs); this is used to prevent

the model from over-fitting. More error measures are reported in Table 6.3.

Figure 6.5 shows the mean absolute error (MAE) and mean square error (MSE) with

CHAPTER 6. A TRANSFER LEARNING APPROACH 125

Figure 6.4: Performance illustration between retraining and transfer learning
approaches using different dataset sizes (on Network 28).

CHAPTER 6. A TRANSFER LEARNING APPROACH 126

Table 6.3: Performance evaluation of the retraining and transfer learning ap-
proaches.

Traning data (%) Metric Retraining Transfer-learning

MSE 1.126 0.66
RMSE 1.061 0.812

10 MAE 0.596 0.24
R2 0.948 0.969

MAPE 0.007 0.003

MSE 0.707 0.408
RMSE 0.841 0.638

20 MAE 0.272 0.09
R2 0.97 0.983

MAPE 0.004 0.001

MSE 0.965 0.465
RMSE 0.983 0.682

30 MAE 0.393 0.1
R2 0.962 0.982

MAPE 0.005 0.002

MSE 0.994 0.442
RMSE 0.997 0.665

40 MAE 0.308 0.102
R2 0.964 0.984

MAPE 0.004 0.002

Network1† MSE 0.998 0.398
RMSE 0.999 0.631

50 MAE 0.159 0.093
R2 0.963 0.985

MAPE 0.003 0.002

MSE 0.962 0.299
RMSE 0.981 0.547

60 MAE 0.193 0.077
R2 0.964 0.989

MAPE 0.003 0.001

MSE 0.983 0.37
RMSE 0.991 0.608

70 MAE 0.189 0.089
R2 0.967 0.988

MAPE 0.003 0.002

MSE 0.94 0.472
RMSE 0.97 0.687

80 MAE 0.153 0.091
R2 0.972 0.986

MAPE 0.003 0.002
† This is Network 28 of the total 33 networks.

CHAPTER 6. A TRANSFER LEARNING APPROACH 127

Figure 6.5: The Mean Absolute Errors and Mean Square Errors of the transfer
learning and retraining approaches using different training set sizes (on Network
28).

respect to the training set size. The errors tend to be reduced as the training set size

increases. The mean absolute errors and mean square errors produced by transfer learning

are lower than those produced by the retraining approach

6.5.2 Experiment 2: Other ML models vs transfer learning model

To evaluate the performance further, we compared the results of the transfer learning ap-

proach (and the retraining model for completeness purposes) with two common machine

learning models for regression problems, namely Random Forest Regression (RFR) and Sup-

port Vector Regression (SVR). To reduce the confusion of showing many evaluation metric

values and illustrations, we evaluated the performance of the models on a dataset that com-

bines the IDS configuration datasets of 6 networks (this is from Network 28 - 33). The models

were trained on 50% of the dataset and tested on the other 50%.

The hyperparameters of the transfer learning model (and the retraining model) are the

same as presented in Table 6.1. The two important parameters of the RFR model are the

number of regression trees and the depth of each tree. We set the former to 500 and the

latter to 5 and 10. As a kernel function for the SVR, we used Radial Basis Function (RBF)

and polynomial. These kernels are known to be effective for non-linear high-dimensional

feature spaces [135]. The evaluation performance is reported in Table 6.4 and Figure 6.6.

CHAPTER 6. A TRANSFER LEARNING APPROACH 128

Figure 6.6: The prediction performance between the transfer learning, retraining,
RFR and SVR models on a combined configuration dataset of six networks

The transfer learning approach outperforms both of them.

Table 6.4: Performance evaluation of different schemes.

Metric Retraining Transfer-learning SVR RFR

RBF Polynomial 5∗ 10∗

MSE 3.294 0.609 5.148 1.442 9.272 2.896
RMSE 1.815 0.78 2.269 1.201 3.045 1.702
MAE 0.562 0.195 0.526 0.244 1.361 0.5
R2 0.947 0.99 0.917 0.977 0.85 0.953

MAPE 0.009 0.003 0.01 0.004 0.019 0.008

*Depth of the tree.

6.6 Summary

Using evolutionary algorithms for optimising IDS configurations is computationally expen-

sive. Our function approximation model based on deep learning evaluates IDS configura-

tions vastly quicker (and so can be used as a proxy fitness evaluation in optimisation-based

searches). However, when a new network requires optimising, the process starts from scratch

CHAPTER 6. A TRANSFER LEARNING APPROACH 129

again. We have shown how a transfer-learning approach achieves better results than a stan-

dalone (i.e., from scratch) model for generalising the function approximation for variant

networks. Thus, previous experience can be effectively harnessed to efficiently generate high-

performing deployments for newly presented networks. The approach can be generalised with

the addition of further objectives.

Chapter 7

Conclusions and Future Work

In this PhD thesis, we introduced an optimisation methodology for IDS placement and con-

figuration for the RPL networks based on a Genetic Algorithm (GA). These networks are

currently quite significant in many industries. The RPL is designed to make the commu-

nication of the nodes efficient. These devices are resource-constrained in terms of power,

memory and processing. Deploying a heavy intrusion detection mechanism might not be

applicable. Furthermore, the deployment incurs trade-offs between different functional and

non-functional criteria. The GA is described to solve the problem. However, IDS configu-

ration evaluation is computationally expensive and time-consuming. Therefore, we investi-

gated fitness approximation as a means to reduce the evaluation complexity. This is called

meta-modelling or surrogate modelling. Neural Networks (NNs) are utilised to build fitness

approximation models to accelerate the fitness evaluation of the IDS configurations. The

approach targets a specific supplied network. However, we wished to exploit previous ex-

perience when presented with new networks. This motivated our investigation of transfer

learning. The harnessed knowledge of training a model over different networks shows effec-

tive outcomes. An evaluation section is provided next to illustrate how the accomplished

contributions provide evidence for our research hypothesis.

130

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 131

7.1 Contributions evaluation

The three research hypotheses for this thesis are as follows:

Hypothesis 1: Evolutionary algorithms can discover resource-efficient and detection-capable

security configurations for intrusion detection systems that are suitable for RPL-based

Internet of Things networks.

Chapter 4: RPL networks are resource-constrained, making IDS placement and con-

figuration an especially challenging task. In general, when a task becomes highly complex,

there is sometimes no practical alternative to applying some sort of heuristic. We have

demonstrated that optimisation-based approaches can be used effectively to address issues

of substantial significance in widely adopted and constrained networks. The research pro-

vided in this chapter shows that optimisation-based methodologies have a lot to offer. It

appears unlikely that any other approach could discover high-performing allocations with

the flexibility of an optimisation-based heuristic.

In our genetic algorithm optimisation framework, we targeted four important objectives.

These are the classification measure (detection rate or F1 score), coverage, feasibility cost,

and deployment cost. We investigated how to find optimal or excellent combinations of

these objectives. A single-objective weighted sum technique (i.e., a Weight Based Genetic

Algorithm (WBGA)) was developed to solve the problem. We heavily use the weightings

of objectives. Different weightings correspond to different aims and priorities and give rise

to different outcomes. However, mapping such profiles to de facto notions of importance

as judged by analysts remains a tricky task. In practice, security management will need to

experiment with different weightings and decide for themselves which outcomes they pre-

fer. Our approach, however, will furnish management with high-performing outcomes given

specific input weighting profiles.

Hypothesis 2: Machine learning approaches can allow us to perform function approxima-

tion for the framework’s fitness evaluation function and so greatly reduce the time and

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 132

computation taken to produce near-optimal security configurations using such a frame-

work.

Chapter 5: We demonstrated that using machine learning for fitness approximation is a

valid approach to be used as a surrogate model to accelerate the convergence of the genetic

algorithm to optimal or excellent IDS configurations. The Genetic Algorithm-based Feed-

forward Neural Network (GA-FNN) strategy, based on approximation by a FNN, is faster

(more than 1.6x faster) and yields better results than the simulation-based GA. This means

that the speed of optimisation won’t affect complex applications, such as frequent changes of

configurations to prevent fingerprinting attacks. It has been demonstrated that it is possible

to approximate sophisticated simulation-based fitness functions using neural networks to

produce high-performing IDS configurations. This makes it possible to find better solutions

more quickly. A great deal of time is expended in generating appropriate data (configurations

and their evaluations) on which to train the approximator. If multiple candidate solutions are

required by the analyst then this resource consumption can be amortised over such multiple

(and possibly a great many) uses.

Hypothesis 3: A transfer learning based deep neural networks approach can provide a

highly efficient fitness approximation with acceptable fidelity for newly-presented RPL-

based Internet of Things networks.

Chapter 6: In this contribution, we generalised the fitness approximation surrogate

model. Therefore, we utilised the benefit of a transfer-learning approach to gain knowledge

from variant networks and be able to find IDS configurations for other new networks. We

showed how a transfer learning DNN outperforms a stand-alone DNN. The technique provides

better results (even with variant dataset sizes) with very low error (mean absolute error).

Furthermore, we evaluated the transfer learning approach with the most common state-of-

the-art machine learning regression models: support vector regression (SVR) and random

forest regression (RFR). With different regression evaluation metrics, the transfer-learning

still provides the best performance. This shows that the transfer-learning is an effective eval-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 133

uation approach to produce optimal (or near-optimal) IDS configurations for newly presented

networks. We think there will be a growing demand for more studies on approximations in

this field.

7.2 Future work

As a future direction, we aim to target the following:

7.2.1 A multi-objective framework for optimising IDS configurations

The problem involves competing objectives and we adopted a weighted-sum optimisation-

based approach. We can, however, avail ourselves of various multi-objective optimisation

frameworks. One of the widely adopted approaches is called the Non-dominated Sorting

Genetic Algorithm (NSGA-II) where objectives are optimised independently and a non-

dominated set of solutions is sought, usually referred to as a Pareto Front. (A solution

is non-dominated if every other solution in that set has at least one fitness component with

worse performance.)

7.2.2 Rigorous evaluation metrics

The detection rate is the prominent evaluation metric for intrusion detection systems. How-

ever, we can enrich the framework by making richer use of the underpinning true and false

positive and negative measures. The framework is extendable and that allows us to include

more functional or non-functional objectives as desired.

7.2.3 Mobile environment

RPL-based networks are currently stationary environments [8]. However, there are some

extensions to the protocol to be used for mobile networks. One example is Co-RPL: RPL

routing for mobile low-power wireless sensor networks using the Corona mechanism [136].

Our work could be extended by the inclusion of mobile nodes and adopting the framework

accordingly to find optimal IDS configurations.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 134

7.2.4 Dedicated sniffers placement optimisation

Rather than hosting the IDS sensors in the networks’ nodes, IDS probes could be placed

on separate stand-alone nodes that can have more placement options on the network. Of

course, this will require more equipment (and thus a greater financial budget) yet the hosting

nodes can have more resources available and therefore the ability to perform heavy and more

sophisticated intrusion detection mechanisms.

7.2.5 Collaborative intrusion detection

The subject of optimising the configuration of Collaborative IDS sensors is an interesting

research topic to target in the future. There are many strategies that could be adopted as

to where and how detection decisions are made. Collaborative decision-making is technically

more complex and our underpinning simulation-based evaluation may be the only feasible

means of evaluation in many cases.

7.2.6 Intrusion Prevention System (IPS)

Although we have been solely concerned with intrusion detection, we are aware that aspects of

intrusion response configuration may also be targeted by our optimisation-based framework.

We note that one response to a suspected attack would be to reconfigure the IDS to provide

more evidence regarding specific hypotheses

7.2.7 Dynamic reconfiguration

We have observed earlier that highly efficient determination of effective configurations is

particularly important when repeated use of the framework is envisaged. It would be possible,

for example, to repeatedly shift to a new configuration after a period of time as a means of

preventing an adversary exploiting information learned about the current one during that

period. This approach will raise issues, e.g. repeated change may impair a system manager’s

understanding of the operation of the system, but we believe the approach is worthy of

investigation.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 135

7.2.8 Explicable Machine Learning for Optimal Configurations

In Chapter 4, we argued that extracting insight from sets of reached configurations could

be highly beneficial. In particular, we indicated that patterns of high performing solutions

could be extracted. We argued that extracting such patterns was not easy and, indeed, an

ML-based approach would be best suited to handle the inevitable complexity that would arise

from network parameter variation (e.g., node wifi-range). This will likely be a challenging

task for the Explicable Machine Learning community and a significant research topic in its

own right.

7.2.9 Relaxing simplifying assumptions

For reasons of establishing proof of concept, we have made some simplifying choices. Most

obviously, we adopted a very small set of very simple rules that could be deployed at a

probe. These are simple representatives of detection capability. We could greatly extend

the number and complexity of such rules. These rules could even be evolved as part of an

advanced framework. Thus, we would not only evolve placement and rule choice, the very

nature of those could be determined. A good deal of work has been done in this direction

already (e.g. using genetic programming and grammatical evolution). Bring together place-

ment, rule selection and rule nature under one optimisation-based framework will likely be

computationally hugely intensive, but is a worthwhile goal.

Some simplifying assumptions can be easily relaxed. For example, we used single (global)

thresholds for rule firing. Node-specific thresholds can readily be incorporated. Similarly, it

is readily possible to use node-specific coverage levels.

7.3 Final remarks

We have explored the effectiveness and efficiency of an optimisation-based framework for IoT

RPL network IDS configuration and have provided efficiency enhancements based on neural

network models. Our approach has been shown to be beneficial and the future work above

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 136

indicates that a great deal more can be done. We recommend the area of optimising IDS

configurations to the IoT IDS research community.

Bibliography

[1] P. Perazzo, C. Vallati, G. Anastasi, and G. Dini, “Dio suppression attack against routing
in the internet of things,” IEEE Communications Letters, vol. 21, no. 11, pp. 2524–2527,
2017.

[2] J.-Y. Li, Z.-H. Zhan, and J. Zhang, “Evolutionary computation for expensive optimiza-
tion: A survey,” Machine Intelligence Research, vol. 19, no. 1, pp. 3–23, 2022.

[3] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future chal-
lenges,” Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 61–70, 2011.

[4] C. Sun, Y. Jin, J. Zeng, and Y. Yu, “A two-layer surrogate-assisted particle swarm
optimization algorithm,” Soft computing, vol. 19, no. 6, pp. 1461–1475, 2015.

[5] I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing,
design, and application,” Journal of microbiological methods, vol. 43, no. 1, pp. 3–31,
2000.

[6] J. P. Anderson, “Computer security threat monitoring and surveillance,” Technical
Report, James P. Anderson Company, 1980.

[7] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber, “A
network security monitor,” in Proceedings. 1990 IEEE Computer Society Symposium
on Research in Security and Privacy. IEEE, 1990, pp. 296–304.

[8] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the
internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[9] T. Rao and E. Haq, “Security challenges facing iot layers and its protective measures,”
International Journal of Computer Applications, vol. 179, pp. 31–35, 03 2018.

[10] M. Centenaro, C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, “A survey on
technologies, standards and open challenges in satellite iot,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 3, pp. 1693–1720, 2021.

[11] S. Sennan, R. Somula, A. K. Luhach, G. G. Deverajan, W. Alnumay, N. Jhanjhi,
U. Ghosh, and P. Sharma, “Energy efficient optimal parent selection based routing
protocol for internet of things using firefly optimization algorithm,” Transactions on
Emerging Telecommunications Technologies, vol. 32, no. 8, p. e4171, 2021.

137

BIBLIOGRAPHY 138

[12] Z. A. Khan and P. Herrmann, “Recent advancements in intrusion detection systems for
the internet of things,” Security and Communication Networks, vol. 2019, 2019.

[13] B. B. Gupta and M. Quamara, “An overview of internet of things (iot): Architec-
tural aspects, challenges, and protocols,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 21, p. e4946, 2020.

[14] X.-S. Yang, S. Koziel, and L. Leifsson, “Computational optimization, modelling and
simulation: Recent trends and challenges,” Procedia Computer Science, vol. 18, pp.
855–860, 2013.

[15] J. Lewis, X. Zhong, and H. Rea, “A neural network approach to the robot inverse
calibration problem,” in Second International Conference on Intelligent Systems Engi-
neering, 1994, 1994, pp. 342–347.

[16] J. Zhang, M. Ma, P. Wang, and X.-d. Sun, “Middleware for the internet of things:
A survey on requirements, enabling technologies, and solutions,” Journal of Systems
Architecture, vol. 117, p. 102098, 2021.

[17] J. E. Tapiador and J. A. Clark, “The placement-configuration problem for intrusion de-
tection nodes in wireless sensor networks,” Computers & Electrical Engineering, vol. 39,
no. 7, pp. 2306–2317, 2013.

[18] Y. S. Ong, P. Nair, A. Keane, and K. Wong, “Surrogate-assisted evolutionary op-
timization frameworks for high-fidelity engineering design problems,” in Knowledge
Incorporation in Evolutionary Computation. Springer, 2005, pp. 307–331.

[19] C. Yan, M. Li, W. Liu, and M. Qi, “Improved adaptive genetic algorithm for the
vehicle insurance fraud identification model based on a bp neural network,” Theoretical
Computer Science, vol. 817, pp. 12–23, 2020.

[20] P. Petersen and F. Voigtlaender, “Optimal approximation of piecewise smooth functions
using deep relu neural networks,” Neural Networks, vol. 108, pp. 296–330, 2018.

[21] S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza, and L. Patrono, “Internet
of things (iot): Opportunities, issues and challenges towards a smart and sustainable
future,” Journal of Cleaner Production, vol. 274, p. 122877, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095965262032922X

[22] Hampshire. (2020) Iot connections to reach 83 billion by 2024, driven by maturing
industrial use cases. [Online]. Available: https://www.juniperresearch.com/press/
iot-connections-to-reach-83-bn-by-2024

[23] J. Kandpal and A. Singh, “Opportunity and challenges for vlsi in iot application,” in
5G Internet of Things and Changing Standards for Computing and Electronic Systems.
IGI Global, 2022, pp. 245–271.

[24] J. G. Monicka and C. Amuthadevi, “Smart automation, smart energy, and grid man-
agement challenges,” The Industrial Internet of Things (IIoT) Intelligent Analytics for
Predictive Maintenance, pp. 59–87, 2022.

https://www.sciencedirect.com/science/article/pii/S095965262032922X
https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-by-2024
https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-by-2024

BIBLIOGRAPHY 139

[25] N. M. Karie, N. M. Sahri, and P. Haskell-Dowland, “Iot threat detection advances, chal-
lenges and future directions,” in 2020 workshop on emerging technologies for security
in IoT (ETSecIoT). IEEE, 2020, pp. 22–29.

[26] P. M. Chanal and M. S. Kakkasageri, “Security and privacy in iot: a survey,” Wireless
Personal Communications, vol. 115, no. 2, pp. 1667–1693, 2020.

[27] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the internet of things:
perspectives and challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–2501, 2014.

[28] I. Ali, S. Sabir, and Z. Ullah, “Internet of things security, device authentication and
access control: a review,” arXiv preprint arXiv:1901.07309, 2019.

[29] K. Sha, W. Wei, T. A. Yang, Z. Wang, and W. Shi, “On security challenges and open
issues in internet of things,” Future Generation Comp. Syst., vol. 83, pp. 326–337, 2018.

[30] H. H. Addeen, Y. Xiao, J. Li, and M. Guizani, “A survey of cyber-physical attacks
and detection methods in smart water distribution systems,” IEEE Access, vol. 9, pp.
99 905–99 921, 2021.

[31] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,
A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your smart home activities, even
encrypted!” in Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2020, pp. 207–218.

[32] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of things security:
A survey,” Journal of Network and Computer Applications, vol. 88, pp. 10–28, 2017.

[33] T. Watteyne, P. Thubert, and C. Bormann, “Rfc 8930: On forwarding 6lowpan frag-
ments over a multi-hop ipv6 network,” Internet Engineering Task Force, 2020.

[34] Y. M. Haddad and H. H. Ali, “A dynamic approach for managing heterogeneous wire-
less networks in smart environments,” in 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2020, pp. 1–7.

[35] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure integration of iot and
cloud computing,” Future Generation Computer Systems, vol. 78, pp. 964–975, 2018.

[36] S. Rizvi, R. Orr, A. Cox, P. Ashokkumar, and M. R. Rizvi, “Identifying the attack
surface for iot network,” Internet of Things, vol. 9, p. 100162, 2020.

[37] M. Alramadhan and K. Sha, “An overview of access control mechanisms for internet
of things,” in 2017 26th International Conference on Computer Communication and
Networks (ICCCN). IEEE, 2017, pp. 1–6.

[38] W. Kassab and K. A. Darabkh, “A–z survey of internet of things: Architectures, pro-
tocols, applications, recent advances, future directions and recommendations,” Journal
of Network and Computer Applications, vol. 163, p. 102663, 2020.

[39] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in the internet of
things: Finite resources and heterogeneity,” IEEE Access, vol. 4, pp. 7063–7073, 2016.

BIBLIOGRAPHY 140

[40] B. Al-Duwairi, W. Al-Kahla, M. A. AlRefai, Y. Abedalqader, A. Rawash, and R. Fah-
mawi, “Siem-based detection and mitigation of iot-botnet ddos attacks,” International
Journal of Electrical and Computer Engineering, vol. 10, no. 2, p. 2182, 2020.

[41] T. Gebremichael, L. P. I. Ledwaba, M. H. Eldefrawy, G. P. Hancke, N. Pereira, M. Gid-
lund, and J. Akerberg, “Security and privacy in the industrial internet of things: Cur-
rent standards and future challenges,” IEEE Access, vol. 8, pp. 152 351–152 366, 2020.

[42] M. Amiri-Zarandi, R. A. Dara, and E. Fraser, “A survey of machine learning-based
solutions to protect privacy in the internet of things,” Computers & Security, vol. 96,
p. 101921, 2020.

[43] P. Shi, H. Wang, S. Yang, C. Chen, and W. Yang, “Blockchain-based trusted data
sharing among trusted stakeholders in iot,” Software: practice and experience, vol. 51,
no. 10, pp. 2051–2064, 2021.

[44] O. Kayode and A. S. Tosun, “Analysis of iot traffic using http proxy,” in ICC 2019-2019
IEEE International Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[45] H. Kharrufa, H. A. Al-Kashoash, and A. H. Kemp, “Rpl-based routing protocols in iot
applications: a review,” IEEE Sensors Journal, vol. 19, no. 15, pp. 5952–5967, 2019.

[46] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J.-P. Vasseur, R. K. Alexander et al., “Rpl: Ipv6 routing protocol for low-power and
lossy networks.” rfc, vol. 6550, pp. 1–157, 2012.

[47] Z. A. Almusaylim, A. Alhumam, and N. Jhanjhi, “Proposing a secure rpl based
internet of things routing protocol: A review,” Ad Hoc Networks, vol. 101, p.
102096, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1570870519308388

[48] A. Althubaity, T. Gong, K.-K. Raymond, M. Nixon, R. Ammar, and S. Han,
“Specification-based distributed detection of rank-related attacks in rpl-based resource-
constrained real-time wireless networks,” in 2020 IEEE Conference on Industrial Cy-
berphysical Systems (ICPS), vol. 1. IEEE, 2020, pp. 168–175.

[49] F. Medjek, D. Tandjaoui, M. R. Abdmeziem, and N. Djedjig, “Analytical evaluation
of the impacts of sybil attacks against rpl under mobility,” in 2015 12th International
Symposium on Programming and Systems (ISPS). IEEE, 2015, pp. 1–9.

[50] R. Stenhuis, “Rpl attack analysis: Evaluation of a cryptography-based sybil defence in
ieee 802.15. 4,” Delft University of Technology, Tech. Rep., Jul. 2021.

[51] A. B. Ordu, M. Bayar, and B. Örs, “Rpl authenticated mode evaluation: Authenticated
key exchange and network behavioral,” in 2022 Thirteenth International Conference on
Ubiquitous and Future Networks (ICUFN), 2022, pp. 167–173.

[52] D. Airehrour, J. A. Gutierrez, and S. K. Ray, “Sectrust-rpl: A secure trust-aware rpl
routing protocol for internet of things,” Future Generation Computer Systems, vol. 93,
pp. 860–876, 2019.

https://www.sciencedirect.com/science/article/pii/S1570870519308388
https://www.sciencedirect.com/science/article/pii/S1570870519308388

BIBLIOGRAPHY 141

[53] O. Can and O. K. Sahingoz, “A survey of intrusion detection systems in wireless sensor
networks,” in 2015 6th International Conference on Modeling, Simulation, and Applied
Optimization (ICMSAO). IEEE, 2015, pp. 1–6.

[54] M. Alsharif and D. B. Rawat, “Study of machine learning for cloud assisted iot security
as a service,” Sensors, vol. 21, no. 4, p. 1034, 2021.

[55] A. M. Pasikhani, J. A. Clark, P. Gope, and A. Alshahrani, “Intrusion detection systems
in rpl-based 6lowpan: a systematic literature review,” IEEE Sensors Journal, 2021.

[56] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of sinkhole attacks
for supporting secure routing on 6lowpan for internet of things,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM). IEEE, 2015, pp.
606–611.

[57] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spirito, “An ids
framework for internet of things empowered by 6lowpan,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. ACM, 2013, pp.
1337–1340.

[58] A. M. da Silva Cardoso, R. F. Lopes, A. S. Teles, and F. B. V. Magalhães, “Real-time
ddos detection based on complex event processing for iot,” in 2018 IEEE/ACM Third
International Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 2018, pp. 273–274.

[59] J. P. Amaral, L. M. Oliveira, J. J. Rodrigues, G. Han, and L. Shu, “Policy and network-
based intrusion detection system for ipv6-enabled wireless sensor networks,” in 2014
IEEE International Conference on Communications (ICC). IEEE, 2014, pp. 1796–
1801.

[60] A. Le, J. Loo, K. Chai, and M. Aiash, “A specification-based ids for detecting attacks
on rpl-based network topology,” Information, vol. 7, no. 2, p. 25, 2016.

[61] A. Amouri, V. T. Alaparthy, and S. D. Morgera, “Cross layer-based intrusion detec-
tion based on network behavior for iot,” in 2018 IEEE 19th Wireless and Microwave
Technology Conference (WAMICON). IEEE, 2018, pp. 1–4.

[62] T. Sherasiya and H. Upadhyay, “Intrusion detection system for internet of things,” Int.
J. Adv. Res. Innov. Ideas Educ.(IJARIIE), vol. 2, pp. 2244–2259, 2016.

[63] P. Loulianou, V. Vasilakia, I. Moscholios, and M. Logothetis, “A signature-based in-
trusion detection system for the internet of things,” Information and Communication
Technology Form, 2018.

[64] N. K. Thanigaivelan, E. Nigussie, R. K. Kanth, S. Virtanen, and J. Isoaho, “Distributed
internal anomaly detection system for internet-of-things,” in 2016 13th IEEE Annual
Consumer Communications & Networking Conference (CCNC). IEEE, 2016, pp. 319–
320.

BIBLIOGRAPHY 142

[65] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis—a system for knowledge-
driven adaptable intrusion detection for the internet of things,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 656–666.

[66] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa, vol. 99,
no. 1, 1999, pp. 229–238.

[67] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen, “A deployment value
model for intrusion detection sensors,” in International Conference on Information
Security and Assurance. Springer, 2009, pp. 250–259.

[68] B. Farzaneh, M. A. Montazeri, and S. Jamali, “An anomaly-based ids for detecting
attacks in rpl-based internet of things,” in 2019 5th International Conference on Web
Research (ICWR). IEEE, 2019, pp. 61–66.

[69] M. Yadollahzadeh Tabari and Z. Mataji, “Detecting sinkhole attack in rpl-based in-
ternet of things routing protocol,” Journal of AI and Data Mining, vol. 9, no. 1, pp.
73–85, 2021.

[70] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack detection in
internet of things,” International Journal of Computer Applications, vol. 121, no. 9,
2015.

[71] D. Shreenivas, S. Raza, and T. Voigt, “Intrusion detection in the rpl-connected 6lowpan
networks,” in Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security. ACM, 2017, pp. 31–38.

[72] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder, “Using the rpl
protocol for supporting passive monitoring in the internet of things,” in NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016, pp.
366–374.

[73] S. Sonavane, “Design and implementation of rssi based intrusion detection system for
rpl based iot network,” Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 12, pp. 1–9, 2020.

[74] C. Pu, “Sybil attack in rpl-based internet of things: analysis and defenses,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 4937–4949, 2020.

[75] A. Verma and V. Ranga, “Mitigation of dis flooding attacks in rpl-based 6lowpan
networks,” Transactions on emerging telecommunications technologies, vol. 31, no. 2,
p. e3802, 2020.

[76] D. B. Gothawal and S. Nagaraj, “Anomaly-based intrusion detection system in rpl
by applying stochastic and evolutionary game models over iot environment,” Wireless
Personal Communications, vol. 110, no. 3, pp. 1323–1344, 2020.

[77] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem, I. Romdhani, and L. Mackenzie,
“Addressing the dao insider attack in rpl’s internet of things networks,” IEEE Com-
munications Letters, vol. 23, no. 1, pp. 68–71, 2018.

BIBLIOGRAPHY 143

[78] A. Verma and V. Ranga, “Elnids: Ensemble learning based network intrusion detection
system for rpl based internet of things,” in 2019 4th International conference on Internet
of Things: Smart innovation and usages (IoT-SIU). IEEE, 2019, pp. 1–6.

[79] S. Choudhary and N. Kesswani, “Cluster-based intrusion detection method for internet
of things,” in 2019 IEEE/ACS 16th International Conference on Computer Systems
and Applications (AICCSA). IEEE, 2019, pp. 1–8.

[80] E. Aydogan, S. Yilmaz, S. Sen, I. Butun, S. Forsström, and M. Gidlund, “A central
intrusion detection system for rpl-based industrial internet of things,” in 2019 15th
IEEE International Workshop on Factory Communication Systems (WFCS). IEEE,
2019, pp. 1–5.

[81] J. Li, Z. Zhao, R. Li, and H. Zhang, “Ai-based two-stage intrusion detection for software
defined iot networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2093–2102,
2018.

[82] J. Foley, N. Moradpoor, and H. Ochenyi, “Employing a machine learning approach to
detect combined internet of things attacks against two objective functions using a novel
dataset,” Security and Communication Networks, vol. 2020, 2020.

[83] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen, “Characterising intrusion
detection sensors,” Network Security, vol. 2008, no. 9, pp. 10–12, 2008.

[84] A. Stetsko, T. Smolka, V. Matyáš, and M. Stehĺık, “Improving intrusion detection
systems for wireless sensor networks,” in International Conference on Applied Cryptog-
raphy and Network Security. Springer, 2014, pp. 343–360.

[85] H. Jh, “Adaptation in natural and artificial systems,” Ann Arbor, 1975.

[86] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past,
present, and future,” Multimedia Tools and Applications, vol. 80, no. 5, pp. 8091–8126,
2021.

[87] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[88] K. Deb, “An introduction to genetic algorithms,” Sadhana, vol. 24, no. 4, pp. 293–315,
1999.

[89] S. A. Haroun, B. Jamal et al., “A performance comparison of ga and aco applied to
tsp,” International Journal of Computer Applications, vol. 117, no. 20, 2015.

[90] H. Chen, J. A. Clark, S. A. Shaikh, H. Chivers, and P. Nobles, “Optimising ids sensor
placement,” in 2010 International Conference on Availability, Reliability and Security.
IEEE, 2010, pp. 315–320.

[91] S. K. Gupta, P. Kuila, and P. K. Jana, “Genetic algorithm approach for k-coverage and
m-connected node placement in target based wireless sensor networks,” Computers &
Electrical Engineering, vol. 56, pp. 544–556, 2016.

BIBLIOGRAPHY 144

[92] Y. Fang and J. Li, “A review of tournament selection in genetic programming,” in
International Symposium on Intelligence Computation and Applications. Springer,
2010, pp. 181–192.

[93] G. Acampora, A. Chiatto, and A. Vitiello, “Training variational quantum circuits
through genetic algorithms,” in 2022 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2022, pp. 1–8.

[94] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, and V. S.
Prasath, “Choosing mutation and crossover ratios for genetic algorithms—a review with
a new dynamic approach,” Information, vol. 10, no. 12, p. 390, 2019.

[95] F. Anjum, D. Subhadrabandhu, S. Sarkar, and R. Shetty, “On optimal placement of
intrusion detection modules in sensor networks,” in First International Conference on
Broadband Networks. IEEE, 2004, pp. 690–699.

[96] M. Rolando, M. Rossi, N. Sanarico, and D. Mandrioli, “A formal approach to sensor
placement and configuration in a network intrusion detection system,” in Proceedings
of the 2006 international workshop on Software engineering for secure systems. ACM,
2006, pp. 65–71.

[97] S. Noel and S. Jajodia, “Attack graphs for sensor placement, alert prioritization, and
attack response,” in Cyberspace Research Workshop, 2007, pp. 1–8.

[98] B. Mishra and I. Smirnova, “Optimal configuration of intrusion detection systems,”
Information Technology and Management, pp. 1–14, 2021.

[99] M. Stehlik, A. Saleh, A. Stetsko, and V. Matyas, “Multi-objective optimization of
intrusion detection systems for wireless sensor networks,” in ECAL 2013: The Twelfth
European Conference on Artificial Life. MIT Press, 2013, pp. 569–576.

[100] A. Hassanzadeh and R. Stoleru, “Towards optimal monitoring in cooperative ids for
resource constrained wireless networks,” in 2011 Proceedings of 20th International Con-
ference on Computer Communications and Networks (ICCCN). IEEE, 2011, pp. 1–8.

[101] Hassanzadeh, Amin and Stoleru, Radu, “On the optimality of cooperative intrusion
detection for resource constrained wireless networks,” Computers & Security, vol. 34,
pp. 16–35, 2013.

[102] M. Krzysztoń and M. Marks, “Simulation of watchdog placement for cooperative
anomaly detection in bluetooth mesh intrusion detection system,” Simulation Mod-
elling Practice and Theory, vol. 101, p. 102041, 2020.

[103] U. Ghugar, J. Pradhan, and M. Biswal, “A novel intrusion detection system for de-
tecting black hole attacks in wireless sensor network using aodv protocol,” IJCSN-
International Journal of Computer Science and Network, vol. 5, no. 4, 2016.

[104] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary computa-
tion,” Soft computing, vol. 9, no. 1, pp. 3–12, 2005.

BIBLIOGRAPHY 145

[105] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven evolutionary op-
timization: An overview and case studies,” IEEE Transactions on Evolutionary Com-
putation, vol. 23, no. 3, pp. 442–458, 2018.

[106] S. Liang and R. Srikant, “Why deep neural networks for function approximation?”
arXiv preprint arXiv:1610.04161, 2016.

[107] S. Yang, T. Ting, K. L. Man, and S.-U. Guan, “Investigation of neural networks for
function approximation,” Procedia Computer Science, vol. 17, pp. 586–594, 2013.

[108] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[109] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[110] O. Iova, P. Picco, T. Istomin, and C. Kiraly, “Rpl: The routing standard for the internet
of things... or is it?” IEEE Communications Magazine, vol. 54, no. 12, pp. 16–22, 2016.

[111] A. M. Pasikhani, J. A. Clark, P. Gope, and A. Alshahrani, “Intrusion detection systems
in rpl-based 6lowpan: A systematic literature review,” IEEE Sensors Journal, 2021.

[112] A. Ferdowsi and W. Saad, “Generative adversarial networks for distributed intrusion
detection in the internet of things,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

[113] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H.
Gandomi, “I-sep: An improved routing protocol for heterogeneous wsn for iot-based
environmental monitoring,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 710–717,
2020.

[114] A. Ghafouri, W. Abbas, A. Laszka, Y. Vorobeychik, and X. Koutsoukos, “Optimal
thresholds for anomaly-based intrusion detection in dynamical environments,” in Deci-
sion and Game Theory for Security, Q. Zhu, T. Alpcan, E. Panaousis, M. Tambe, and
W. Casey, Eds. Cham: Springer International Publishing, 2016, pp. 415–434.

[115] M. Mahyoub, A. S. H. Mahmoud, M. Abu-Amara, and T. R. Sheltami, “An efficient rpl-
based mechanism for node-to-node communications in iot,” IEEE Internet of Things
Journal, vol. 8, no. 9, pp. 7152–7169, 2020.

[116] M. Jamshidi, S. S. A. Poor, A. Arghavani, M. Esnaashari, A. A. Shaltooki, and M. R.
Meybodi, “A simple, lightweight, and precise algorithm to defend against replica node
attacks in mobile wireless networks using neighboring information,” Ad Hoc Networks,
vol. 100, p. 102081, 2020.

[117] M. Alzubaidi, M. Anbar, and S. M. Hanshi, “Neighbor-passive monitoring technique
for detecting sinkhole attacks in rpl networks,” in Proceedings of the 2017 International
Conference on Computer Science and Artificial Intelligence, 2017, pp. 173–182.

BIBLIOGRAPHY 146

[118] M. Amjad, M. K. Afzal, T. Umer, and B.-S. Kim, “Qos-aware and heterogeneously
clustered routing protocol for wireless sensor networks,” IEEE Access, vol. 5, pp. 10 250–
10 262, 2017.

[119] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic
algorithms: A tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp.
992–1007, 2006, special Issue - Genetic Algorithms and Reliability. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832005002012

[120] Tetcos: NetSim - Network Simulation Software, “Netsim,” 2021. [Online]. Available:
https://www.tetcos.com/

[121] A. Rasch, M. Haidl, and S. Gorlatch, “Atf: A generic auto-tuning framework,” in 2017
IEEE 19th International Conference on High Performance Computing and Communi-
cations; IEEE 15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2017, pp.
64–71.

[122] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K. Giannakoglou, “Meta-
model—assisted evolution strategies,” in International Conference on parallel problem
solving from nature. Springer, 2002, pp. 361–370.

[123] F. Chollet et al., “Keras,” https://keras.io, 2015.

[124] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi et al., “Kerastuner,”
https://github.com/keras-team/keras-tuner, 2019.

[125] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[126] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning with oversampling
and undersampling techniques: overview study and experimental results,” in 2020 11th
international conference on information and communication systems (ICICS). IEEE,
2020, pp. 243–248.

[127] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[128] P. Branco, L. Torgo, and R. P. Ribeiro, “Smogn: a pre-processing approach for imbal-
anced regression,” in First international workshop on learning with imbalanced domains:
Theory and applications. PMLR, 2017, pp. 36–50.

[129] G. E. Box and D. R. Cox, “An analysis of transformations,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 26, no. 2, pp. 211–243, 1964.

[130] A. Le, J. Loo, K. K. Chai, and M. Aiash, “A specification-based ids for detecting
attacks on rpl-based network topology,” Information, vol. 7, no. 2, 2016. [Online].
Available: https://www.mdpi.com/2078-2489/7/2/25

[131] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case prioritization
using genetic algorithms,” IEEE Access, vol. 7, pp. 126 355–126 375, 2019.

https://www.sciencedirect.com/science/article/pii/S0951832005002012
https://www.tetcos.com/
https://keras.io
https://github.com/keras-team/keras-tuner
https://www.mdpi.com/2078-2489/7/2/25

BIBLIOGRAPHY 147

[132] S. Pandey and S. Varma, “A range based localization system in multihop wireless sensor
networks: A distributed cooperative approach,” Wireless Personal Communications,
vol. 86, no. 2, pp. 615–634, 2016.

[133] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer
learning,” in International conference on artificial neural networks. Springer, 2018,
pp. 270–279.

[134] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics:
Conference Series, vol. 1168, p. 022022, feb 2019. [Online]. Available: https:
//doi.org/10.1088/1742-6596/1168/2/022022

[135] S. Shamshirband, D. Petković, H. Javidnia, and A. Gani, “Sensor data fusion by support
vector regression methodology—a comparative study,” IEEE Sensors Journal, vol. 15,
no. 2, pp. 850–854, 2014.

[136] O. Gaddour, A. Koubäa, R. Rangarajan, O. Cheikhrouhou, E. Tovar, and M. Abid,
“Co-rpl: Rpl routing for mobile low power wireless sensor networks using corona mecha-
nism,” in Proceedings of the 9th IEEE international symposium on industrial embedded
systems (SIES 2014). IEEE, 2014, pp. 200–209.

https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022

	Introduction
	Problem statement and motivation summary
	Research hypotheses
	Contributions
	Structure of the thesis
	Publications

	Literature Review
	Overview of IoT
	IoT architecture and layers
	Perception layer
	Network layer
	Processing layer
	Application Layer

	Securing the IoT
	Securing IoT versus conventional networks

	Security challenges in IoT
	Integration
	Heterogeneity
	Resource constraints
	Privacy
	Large scale/scalability
	Trust management

	Security goals
	Confidentiality
	Integrity
	Availability
	Authenticity
	Non-Repudiation

	The need for an efficient routing protocol

	RPL
	Threats to RPL-based Internet of Things
	Sinkhole, Blackhole and Selective forwarding
	DIS Flooding
	Increase Rank
	Wormhole
	Worst parent
	DIO suppression
	Sybil attack
	Replay attack

	RPL-based IoT security vulnerability

	Intrusion Detection Systems in the IoT/RPL
	Monitoring source
	Intrusion detection architectures
	Distributed IDS (DIDS)
	Centralised IDS (CIDS)
	Hybrid IDS (HIDS)

	Detection methodologies
	Signature-based approach
	Anomaly-based approach
	Specification-based approach
	Hybrid-based approach

	Response
	Intrusion detection performance metrics
	Functional metrics
	Non-functional metrics

	IDS proposals for RPL-based IoT

	IDS configurations optimisation
	Genetic Algorithm overview
	preliminary
	Initialisation
	Evaluation
	Selection
	Crossover
	Mutation
	Termination

	Related work in IDS configuration optimisation

	Function approximation
	Overview
	Fitness approximation via neural networks
	Feedforward Neural Network

	Summary

	The Work of This Thesis
	Brief motivation statement
	Research originality

	IDS Configuration Optimisation using Evolutionary Algorithm
	Background
	Our contributions and organisation of the chapter
	Related works
	Threat model
	Blackhole attack
	Selective forwarding attack
	DIS flooding attack

	Intrusion Detection System (IDS) model
	Monitoring technique
	Detection method
	Decision approach

	Proposed GA-based IDS configuration
	Single-Objective Optimisation (SOO)

	Performance evaluation
	Experiments settings
	GA Oriented Settings
	Network settings

	Results

	Interpreting IDS configuration samples
	Discussion
	Summary

	Fitness Approximation of IDS Fitness Evaluation
	Introduction
	Related work
	System detail
	GA-based IDS configuration optimisation
	FNN based fitness approximation

	Dataset preparation
	Experiments and results
	FNN model evaluation
	FNN as fitness evaluation

	Brief discussion
	Summary

	A Transfer Learning Approach to Discover IDS Configurations
	Introduction
	Rule-based IDS to detect greyhole attacks
	Dataset creation
	Fitness measurement

	Experimental set-up
	Network simulation
	Network generator
	Feature engineering
	Neural Network building
	Transfer Learning

	Results
	Experiment 1: retraining model vs transfer learning model
	Experiment 2: Other ML models vs transfer learning model

	Summary

	Conclusions and Future Work
	Contributions evaluation
	Future work
	A multi-objective framework for optimising IDS configurations
	Rigorous evaluation metrics
	Mobile environment
	Dedicated sniffers placement optimisation
	Collaborative intrusion detection
	Intrusion Prevention System (IPS)
	Dynamic reconfiguration
	Explicable Machine Learning for Optimal Configurations
	Relaxing simplifying assumptions

	Final remarks

