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Abstract

Speech technology has developed to levels equivalent with human parity through the use

of deep neural networks. However, it is unclear how the learned dependencies within these

networks can be attributed to metrics such as recognition performance. This research focuses

on strategies to interpret and exploit these learned context dependencies to improve speech

recognition models. Context dependency analysis had not yet been explored for speech

recognition networks.

In order to highlight and observe dependent representations within speech recognition

models, a novel analysis framework is proposed. This analysis framework uses statistical

correlation indexes to compute the coefficiency between neural representations. By compar-

ing the coefficiency of neural representations between models using different approaches, it

is possible to observe specific context dependencies within network layers. By providing

insights on context dependencies it is then possible to adapt modelling approaches to become

more computationally efficient and improve recognition performance. Here the performance

of End-to-End speech recognition models are analysed, providing insights on the acoustic and

language modelling context dependencies. The modelling approach for a speaker recognition

task is adapted to exploit acoustic context dependencies and reach comparable performance

with the state-of-the-art methods, reaching 2.89% equal error rate using the Voxceleb1

training and test sets with 50% of the parameters. Furthermore, empirical analysis of the

role of acoustic context for speech emotion recognition modelling revealed that emotion

cues are presented as a distributed event. These analyses and results for speech recognition



viii

applications aim to provide objective direction for future development of automatic speech

recognition systems.
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1.1 Speech Technology

Speech is a fundamental mode of human communication, enabling the exchange of informa-

tion, thoughts and ideas. Until the 1970s, speech technology lacked the human skills to be

able to listen, understand and learn speech. They instead relied upon input methods such as

keyboards, joysticks and other physical hardware. The introduction of automated systems

instead propelled communication between humans and machines to occur as autonomously

as possible. Key fields that encompass speech technology are automatic speech recogni-

tion (ASR), speaker recognition, diarisation, speech emotion recognition (SER) and speech

synthesis. The topics that are focused on within this research are the latest developments
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within ASR, SER and speaker recognition. These areas are interconnected topics within the

field of speech technology with distinct objectives, but share common methodologies and

applications, where advancements in one area often benefit the others. Combinations of these

systems are also often used in industries such as finance, retail, hospitality and manufacturing

for automated customer interaction, telemarketing optimisation, speech analytics and product

insights.

Modern speech technology systems have utilised distinct computational modules to

compute specific task objectives, for example, pronunciation and language modelling. The

majority of systems typically include signal processing techniques, acoustic modelling,

language modelling and hypothesis searches to enable the interface for recognition. These

techniques have relied heavily on domain knowledge of linguistics, signal processing tech-

niques and computational model engineering. Modelling domain knowledge includes a

scientific understanding of speech, sound and language while utilising concepts of probability

and pattern recognition to deconstruct or construct the speech signals.

Specifically, ASR systems attempt to encode speech representations of the domain

knowledge so that it can be understood by a human (such as text transcriptions) or for

a down-stream task. Regarding the task speech-to-text recognition, this understanding is

represented by the production of text in the target language that could be understood by a

human reading it. The performance of these ASR systems is widely measured by the word

error rate (WER) or character error rate (CER) which compares the predicted output of the

network with the ground truth.

Speaker recognition systems attempt to recognise and identify speakers from their speech

or voice. This can include non-speech vocalisations produced that does not have linguistic

context such as coughing, laughing, groaning or clicking. The components of a speaker

recognition system include speaker modelling and feature extraction to represent a speaker

based on the extracted speech features. The performance of a speaker recognition system
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is widely measured using false acceptance rate (FAR), false rejection rate (FRR) and equal

error rate (EER). EER is where FAR is measured against FRR.

ASR and speaker recognition are closely related and can benefit from each other, for

example, ASR systems can adapt models to individual speaker features to improve their

performance [18]. Speaker segmentation techniques can also be crucial for ASR systems

to adapt to multi-speaker scenarios or where there is overlapping speech present, which is

referred to as diarisation. By identifying different speakers within an audio stream, ASR

systems can be trained to output appropriate labels to each speaker’s speech [19].

Speech emotion recognition (SER) systems attempt to recognise and classify the emotion

states from a speakers speech or voice, including non-speech vocalisations. Emotions play an

essential role in human communication and affects the understanding of context and meaning.

Harmonics of vowels and consonant sounds add paralinguistic cues. Emotion perception can

be culturally or linguistically dependent and is typically evaluated with either a categorical

or dimensional metric.

ASR and SER systems both attempt to extract meaningful information from the speech

signal. ASR models have been shown to contribute to improved SER model performance

by jointly training both models [20]. A correlation between SER and ASR systems has also

been explored where features learned in some model layers for both tasks were found to be

applicable to each other, particularly in the initial model layers [21]. Speaker recognition

systems also intersect in relation to SER systems as they both use similar techniques to

attempt to extract voice characteristics and features for different classifiers.

Following huge advances in the fields of computational technology (high performance

cluster computing, GPU architectures etc.) and speech technology (parallel computation,

accessible libraries etc.), the robustness of modelling approaches to noise and conversational

speech is arguably reaching “human parity” [22, 23], thus resulting in an explosion of scien-

tific and public interest. As well as combined systems, modern speech technology advances
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have increased industry market interest with developments including personal assistants

(Amazon’s Alexa , Apple’s Siri, Microsoft’s Cortana, Google’s Assitant etc.), dictation

systems, information retrieval systems, and military and security systems. These systems

typically use various combinations of neural networks, modelling techniques and modern

hardware. Due to the computational requirements of training ASR, SER and speaker recogni-

tion systems, many model components can be pre-trained and saved for later integration into

systems.

The focus of current research within the field of ASR, SER and speaker recognition

is to increase recognition performance, build systems for multiple domains and to reduce

some of the modelling requirements for domain knowledge. The pre-trained models provide

the domain knowledge and are able to tune models to achieve higher performance without

needing to train the entire system from scratch. This has given rise to frameworks referred

to as End-to-End. The aim of End-to-End frameworks is to train model components jointly

from only the input speech, without relying on pre-trained aspects, which is useful for

applications where low latency is required or where domain knowledge is limited. In practice,

many End-to-End frameworks partly integrate pre-trained components, such as language

models, to improve performance. End-to-End approaches are not yet able to achieve the

same performance as models that use mostly pre-trained components; performance decreases

as the vocabulary size grows and where there are speaker variations, such as accents, dialects,

emotive and interrupted speech. There are also considerations that are still non-trivial to

model within End-to-End approaches, such as context and semantic constraints, without

requiring computational capabilities that are currently unfeasible.

Context modelling in speech technology refers to the incorporation of contextual infor-

mation to improve the system robustness or accuracy. This can consider linguistic or acoustic

context in order for the system to infer the correct interpretation. Typically this leverages

information gathered from previous or succeeding words, features or speech patterns to
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overcome ambiguity and improve accuracy. Context modelling within speech applications

has been improved by the integration of techniques, such as attention mechanisms and deep

neural networks (DNNs). Attention-based models are dependent upon the mapping of non-

linear dependencies across the input speech and DNNs are often regarded as “black-boxes”.

How the network arrives at the output and the relationship of neuron dependencies to map the

latent representation space are typically not well understood. Due to a lack of understanding,

modelling approaches not easily adapted for different tasks. The performance of speech

technology is still highly dependent on increasing the training data resources and parameter

space to capture higher quality representations.

1.2 Hypotheses and Research Questions

Due to the nature of human speech and communication, context within the speech signal is

able to provide a model with more information for specific tasks, such as speaker specific

dependencies or linguistic context. Models for ASR, speaker recognition and SER that are

able to utilise these variations and exploit them, are more robust to noise and variability across

tasks and domains. For End-to-End frameworks, the task of modelling context dependencies

is an ongoing focus of research that is still in the early stages of development and there has

been little analysis done. By exploring the dependencies within End-to-End frameworks, it

may be possible to utilise these insights to improve modelling approaches across the domains

of speaker recognition and SER.

To determine the limitations of models for End-to-End frameworks, there is no defined

solution. A point of contention within the scientific community has been "what determines

an End-to-End framework?” As this term is not explicitly defined, there are several interpreta-

tions and published models, with some approaches incorporating pre-trained modules, while

others have attempted to completely remove the reliance on external domain knowledge

and train the models with only one optimisation strategy. The dependencies of modelling
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approaches on pre-trained modules is not clearly understood with regard to performance met-

rics and also interpretability. For example, how does the model adapt the latent representation

space with the incorporation of a pre-trained module?

Despite the variation in definition and approaches, a further question poses, does the

specification of End-to-End matter for specific recognition tasks? On one hand, the spec-

ification becomes important to distinguish when publishing approaches with regards to

specific attributes, such as model size or resource requirements. On the other hand, par-

allel GPU optimisation and developments in computational technology are exponentially

driving models with increased parameters and more computationally demanding algorithms,

allowing for “on-the-fly” training of expanded models. These developments will continue

to improve model performance, while still being within the domain of End-to-End. One of

the major benefits that remains of reducing the need for reliance on external domain data

and pre-training is that the models are able to be used for resource constrained tasks, such as

where there are limited labelled datasets.

As the use of attention within modelling approaches is a relatively recent research

development, little work has been done regarding the effect of modelling approaches and

dependent neural representations upon the recognition performance of the system and ability

to observe the changes in latent space.

The research questions that this work aims to address are:

• Is it possible to analyse the latent space of neural representations of ASR networks

to provide some interpretation of how the representations relate to recognition perfor-

mance? This is explored in Chapter 3.

• Can analysis of the dependencies of neural representations be used to understand the

impact of specific modelling approaches for speech technology? These techniques and

dependencies are discussed and evaluated in Chapters 4 and 5.
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• Is it possible to exploit acoustic or linguistic context dependencies modelled by

attention-based techniques in order to improve model performance without increasing

the computational requirements? Experiments are presented in Chapters 5 and 6 that

evaluate this for End-to-End ASR and speaker verification.

• How does the choice of technique for modelling context dependencies affect the perfor-

mance across speech applications, such as speaker recognition or emotion recognition?

This hypothesis is explored for speaker verification in Chapter 6 and for SER in Chapter

7.

1.3 Contributions

In order to explore dependencies within End-to-End approaches, an analysis framework to

conduct statistical correlation analysis of representations within neural networks for ASR has

been developed (presented in Chapter 3, Section 3.4). This framework uses state-of-the-art

End-to-End ASR modelling approaches but can be incorporated with other neural network

applications.

In order to determine how to analyse the representations within neural networks, a

comparison study of statistical correlation indexes to measure the coefficiency of neural

representations for ASR is presented in Chapter 3, Section 3.6.3.

Using both of these contributions, Chapter 4, Section 4.3 presents an interpretative analy-

sis of state-of-the-art acoustic modelling techniques for End-to-End ASR has been conducted,

to derive insights of the properties of modelling parameters. These insights can be used to

develop new models and adapt techniques for downstream tasks. Further analysis of state-

of-the-art acoustic modelling for cross-corpora End-to-End ASR has provided knowledge

of cross-corpora dependencies, which is presented in Chapter 4, Section 4.4. These results

indicate that specific layers within the models generalise latent spaces for ASR tasks.
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To explore linguistic context modelling, language modelling with End-to-End ASR model

integration is presented in Chapter 5, Sections 5.3.3 and 5.3.3. This resulted in improving

recognition performance using interpretative analysis to identify cross-domain dependencies.

Where the insights and results from exploring the context dependencies and modelling

approaches have been utilised to improve speaker recognition performance for a speaker

verification task. A novel approach for speaker recognition modelling is proposed (Chapter 7,

Section 6.4) to improve accuracy, and with a focus on reducing computational requirements

(results shown in Chapter 6, Section 6.6.

Finally, building off the exploration of interpretative analysis in Chapters 4, an analysis

approach is developed and presented to observe that current trends in speech recognition mod-

elling should incorporate changes in acoustic context when classifying emotions (presented

in Chapter 7, Section 7.5.

Supporting publications regarding the contributions are:

• [24] Ollerenshaw, A., Jalal, M. A., Hain, T. “Insights on Neural Representations for

End-to-End Speech Recognition.” Proc. Interspeech 2021, pages 4079-4083.

• [25] Ollerenshaw, A., Jalal, M. A., Hain, T. “Insights of Neural Representations in

Multi-Banded and Multi-Channel Convolutional Transformers for End-to-End ASR.”

2022 30th European Signal Processing Conference (EUSIPCO). IEEE, 2022.

• [26] Ollerenshaw, A., Jalal, M. A., Hain, T. “Probing Statistical Representations for

End-to-End ASR.” 2023 31st European Signal Processing Conference (EUSIPCO).

IEEE 2023.

• [27] Ollerenshaw, A., Jalal, M. A., Hain, T. “Dynamic Kernels and Channel Attention

with Multi-Layer Embedding Aggregation for Speaker Verification.” submitted to

2023 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

IEEE.
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• Ollerenshaw, A., Jalal, M. A., Milner, R., Hain, T. “Empirical Interpretation of the

Relationship Between Speech Acoustic Context and Emotion Recognition.” submitted

to 2023 Frontiers in Artificial Intelligence.

1.4 Thesis Organisation

The beginning of each chapter includes a description of the research area and specific gaps

that chapter will explore. Each section of the chapter presents the individual research contri-

butions, which are structured with a subsection depicting the background to the topic, related

works to the modelling or analysis approach, experiments, results and discussion. Each

chapter is summarised with the key findings and discussion points that lead to subsequent

chapters.

Figure 1.1 shows the outline of the thesis structure after the introductory chapter. Chapter

2 discusses the background and foundations of ASR modelling and introduces the model

structures that modern frameworks are comprised of. The different approaches for End-

to-End ASR are detailed and the limitations of these techniques. Chapter 3 presents the

state-of-the-art End-to-End ASR frameworks and evaluates them on a conversational speech

recognition task. This chapter presents model recognition output assessments to outline the

motivations of the neural representation analysis. The analysis framework is also detailed in

Chapter 3, which explores current statistical indexes. The analysis framework in Chapter 3 is

used for the analysis experiments in Chapters 4 and 5. Chapter 4 presents an assessment of

representations learned by End-to-End ASR modelling approaches with different acoustic

contexts. Chapter 5 details the integration of language modelling into End-to-End ASR

frameworks and provides analysis regarding the layerwise dependencies of the models. The

analysis in Chapter 5 is also used to adapt model parameters to improve domain specific

recognition. Chapter 6 describes a proposed modelling approach for improving context

modelling for speaker recognition. The proposed modelling approach improves verification
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results without increasing computational resources required. Chapter 7 describes a proposed

context modelling strategy for speech emotion recognition and details analysis across different

domains. Finally, Chapter 8 concludes the thesis and proposes future work that could be

conducted from the presented research.

Fig. 1.1 Outline of thesis structure
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2.1 Introduction

This Chapter presents a review of speech modelling approaches and introduces the key

background to acoustic and linguistic context. Neural networks for speech recognition are

defined and outlined, which are the foundations to current speech modelling approaches. A

thorough review of End-to-End frameworks is also given, to introduce the terminology for

subsequent Chapters.

2.2 Speech Modelling

Speech modelling is considered a challenging task to automate due to the variability of

speech signals. Automated systems have been built to specialise in recognising a particular

speaker, language, style of speech or within certain environmental constraints. Robustness is

the term for a system’s ability to retain recognition performance despite the introduction of

variables such as noise or unseen data. Accuracy is the measure of the ability of a system to

recognise speech according to an evaluation metric.

There are many nuances to speech that require the recogniser to interpret contextual

information in order to understand and comprehend the meaning of the speech. Words can

have the same pronunciation but their meaning differs given context (homophones), such as

red and read. Additionally there exists context variability at phonemic levels, such as the

phoneme /ee/ within the words beat and meet. Context variability can become increasingly

difficult to interpret as the velocity of speech deliverance increases, which is typical of
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spontaneous conversational speech. Variations in speech velocity can be challenging to

recognise when attempting to model spectral features and temporal information [28]. For

continuous speech recognition tasks, the error rate is typically higher for conversational

speech than for read speech [29]. Conversational speech also consists of more emotive speech

[30–32] and varies in factors such as amplitude, emphasis and articulation style [33, 34]

across cultures [35]. [36] explored another factor affecting the modelling difficulty, which

is speaker variability; where the physical differences between a person’s vocal tract, age,

gender, health, dialect and other individualities can cause variations in speech, challenging

the robustness of recognition systems.

In order to develop an ASR system that is robust and accurate with these variables and

context, the following discussed modelling approaches have been developed that are targeted

to perform a specific aspect of the recognition within a pipeline.

2.2.1 Front-end and Acoustic Modelling

Acoustic modelling for speech processing is mainly concerned with the physical properties

that govern the propagation of sound waves from the vocal tract, as speech is a sound wave

created by vibrations. These theories typically consider variations of the vocal tract shape

through time, excitation of sound, energies of the vocal tract and dispersion across the other

articulators [37]. Human perception of acoustic signals is also motivated by the typical

auditory system [38, 39] and several methods have been developed in order to model acoustic

information for speech recognition applications.

ASR systems need to be able to handle variable length inputs and to integrate the context

variables from speech into the system. There are a vast number of variables to consider in the

implementation of an ASR system, such as speaker specific characteristics: gender; health

and stress, and the speech style within the corpus: formality; language; dialect; accents;

environmental noise; channel distortion; availability of appropriate data and whether there is
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Fig. 2.1 Graph showing triangular filter banks on the Mel scale

a written form of the language [40]. There are signal processing techniques that transform

raw speech audio signals and process them to retain speech, whilst simultaneously removing

distortion and noise.

Factors such as noisy environments, channel distortion and mismatch are typically

addressed using speech enhancement and feature extraction techniques [41]. [42] focused on

techniques that attempt to fix the length of the sequences by clipping, padding or overlapping.

Clipping, padding or overlapping the vectors has a trade-off as performance of the model

decreases, while these methods are relatively computationally inexpensive [43, 44].

Techniques for feature extraction have been developed to transform the speech signal

into vectors to attempt to model speech acoustics [45–47]. Feature vectors, filter banks or

Mel Cepstral Coefficients (MFCCs) can be extracted by converting the audio signal into the

frequency domain. Mel-filter banks [48, 47] are derived by a short-term Fourier transform

across a sliding window between 20 and 40ms in order to capture enough samples from the

frames of the signal and to get a representative spectral estimate. The power spectrum of

each frame is calculated to simulate a human cochlea, which is able to determine the different

frequencies. The spectrum is sorted into filter banks to calculate energy in frequency ranges

according to the Mel scale, a non-linear scale, which simulates human auditory perception.

The frequency is converted to the Mel scale using the formula m = 2959log10(1+
f

700) where

f is the frequency in Hertz, which restricts the higher frequencies and expands the lower
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frequencies. This matches theories of human perception of speech, whereby the auditory

system discriminates more at lower frequencies than higher frequencies. Figure 2.1 shows an

example of triangular filters distributed across the scale.

The MFCC [49, 46, 47] is described as a cepstrum of a signal’s window. As perception

is not a linear scale, the log amplitudes of the filter bank features can be transformed with

a discrete cosine transform (DCT) to result in the cepstral vectors and ensure there are no

overlaps, while typically only retaining 13 of the coefficients. The other coefficients are

considered more redundant for speech recognition applications. Recent research [50] has

suggested that a minimum of 25 coefficients should be used for more modern modelling

approaches. [51] suggested that MFCCs are less susceptible to variation, however [52] found

that filter bands may carry useful information for specific ASR tasks, which could be lost

when converting them into MFCCs.

More recently, deep learning techniques [53] have been used to attempt to capture higher

level features that are more robust. These deep learning models are described in further detail

in Section 2.3.

2.2.2 Language Modelling

Linguistic context refers to the relationships and dependencies between words and phrases

within a given language. To provide this linguistic context and aid recognition, knowledge of

vocabulary, pronunciation, syntax and the semantics of the language are required [54, 55].

[56] showed that greater End-to-End ASR model accuracy can be attained with the use

of a language model (LM) where training corpus size is limited, as this method is able to

introduce domain specific information; thereby increasing the entropy [57].

There are several different approaches to model linguistic context, while for ASR appli-

cations, statistical language modelling is a more common-place solution [58]. A statistical

LM can be introduced to predict the probability of a whole word sequence or the next word



16 Speech Technology

within a sequence by observing the previous word sequences in a text corpus. The sequence

of words (w) is typically referred to as N-gram where the history of words is restricted to

(N −1) words. The simplest LM, where N = 1, is known as a unigram LM. The probability

of a word (w) would be determined by ∏N=1 P(wN). This type of model assumes that the

probability of each word is independent and only provides the statistical probability of the

word occurrence among all words {w1, ...,wk} in the training corpus. The probability of the

next word in the word sequence given the previous N words can be described by:

P(wN
1 )≈

N

∏
n=1

P(wn|wn:N−1) (2.1)

To improve the perplexity of the LM, a large amount of text is required for training [59].

However, the LM is limited in vocabulary to the corpus and sequences of words may exist

that are unknown and therefore have no probability. This can be handled by allocating a

proportion of the overall sequence probability for unseen sequences [60].

Byte Pair Encoding (BPE), proposed by [61], was originally a data compression technique

that has been utilised for sub-word tokenisation. Frequently occurring sub-word pairs are

merged in order to combine character and word level representation sequences, which is able

to handle rare occurring vocabulary that is potentially not present in the training data.

Sub-word LMs are a common choice for training End-to-End ASR models [62, 3, 63] to

reduce computational complexity by only keeping the most frequent words and splitting the

rest into sub-words, again only keeping the most frequent sub-words. All remaining tokens

are separated into characters, to enable conversion with little information loss as proposed in

[64].

Decoding Strategies

For a sequence-to-sequence ASR system to determine the most likely word sequence, given

the observed input, a hypothesis search is required. The hypothesis search utilises the LM
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and acoustic model predictions, where applicable, given the input and thereby models the

most probable output word or character sequence.

Using a greedy classifier, the most likely prediction can be determined very naively

per time-step. However, a greedy classifier does not always find the actual most probable

prediction as it cannot compute the sum of probability paths over targets [65]. Another

method to find the most probable prediction is prefix search decoding [66], which allows

searching through the whole input. However, the search space grows exponentially and is

computationally expensive to calculate. The current most commonly used method is beam

search decoding [67], as this keeps the computation window within the number of n best

candidates so it does not become too expensive to calculate.

2.2.3 Speaker Modelling

The task of a speaker recognition system is to recognise and identify speakers from their

speech or voice [68]. This can include non-speech vocalisations such as laughing, coughing

or exclamations. Speaker recognition is differentiated into speaker identification tasks and

speaker verification tasks. Speaker identification attempts to recognise a speaker from a

known set of speakers in a one-to-many mapping, while verification attempts to authenticate

whether the speaker of an utterance is the target speaker without prior knowledge in a one-

to-one mapping [69]. Speaker identification is typically a closed-set task, as the enrolled

speakers are known [70], while speaker verification is open-set as the system has no prior

information regarding the speakers and simply provides an estimate of whether the utterances

belong to the same speaker. Verification is typically computed using a similarity score with a

threshold that determines whether the speaker is the target speaker [71]. Both recognition

and verification of speakers can be text-dependent or text-independent, where text-dependent

techniques utilise transcripts for the target speakers [72]. Text-independent techniques do not

have constraints on the words permitted to be spoken by the speakers [73].
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A more detailed discussion regarding speaker recognition and the state-of-the-art mod-

elling approaches is explored in Chapter 6, whereby a new approach that builds upon this

previous research is proposed to approximate context for speaker specific modelling.

2.2.4 Speech Emotion Modelling

Within the field of speech recognition, emotion recognition may be considered a branch

that involves similar signal processing, feature extraction and modelling approaches, while

differing in the target output classifiers. Emotion recognition is considered a useful aspect of

speech recognition systems to capture intention and context behind the literal words. This

context information is produced when the speaker varies acoustic properties, such as tone,

speed and emphasis, or linguistics, such as negative or positive sentiment.

Speech emotion understanding between humans and emotion recognition with machines

and humans are complex research areas that contain elements that are not well understood or

agreed upon in the scientific community [74–77]. Current automated modelling approaches

focus on adaption to speech variability, while reducing redundancy in acoustic and linguistic

perceptual cue recognition. These approaches are particularly challenging to develop because

the target labels or the perceived emotion states can be considered very subjective or biased

by cultural and linguistic perception differences. Speech emotion, within the domain of SER,

is typically represented by two approaches: categorical and dimensional. Speech acoustic

segments can be treated as a categorical entity consisting of discrete emotions such as happy,

sad, fear, etc [78]. In the categorical approach, annotators label audio segments as emotion

categories and use them to model speech emotion. The dimensional approach proposes two

fundamental dimensions, valence and arousal, to represent emotion at a given time [79].

Linguistic and cognitive theories regarding a human’s perceived speech emotion and

the currently developed computational modelling methods are explored in further detail in

Chapter 7.
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2.2.5 Evaluation of Accuracy Measures

A performance indicator for the majority of ASR research is a measurement of the amount of

errors produced by the system. Word error rate (WER) and character error rate (CER) have

become standard measures of performance. CER is calculated by comparing the predicted

output characters of a network against the ground-truth labels, and computing the minimum

amount of editing operations to transform the prediction into the true output. The editing

operations are defined as insertions i, substitutions s and deletions d over the total number of

ground-truth characters n, whereby:

CER = [(i+ s+d)/n]∗100 (2.2)

This is also referred to as the edit or Levenshtein distance of the model output. WER is

similarly calculated by summing the amount of inserted, substituted and deleted words, then

dividing over the total amount of words in the ground-truth. These metrics are fairly limited

when attempting to analyse and interpret the performance of ASR models and determine the

reason behind the wrong hypothesis output compared to the ground-truth [80, 81]. These

metrics also do not differentiate between whether an error was potentially worse than another

error or whether despite the error, a human could still differentiate the ground-truth from the

model output.

As frameworks have become larger, more complex and specialised to the domain, the

relationship between internal dependencies on the performance can become less visible.

Therefore it can be useful to understand and extract further information in order to develop

models with improved recognition performance or for specific speech analytic applications.

There has been some research to target more informative performance metrics for ASR

such as Keyword Error Rate (KER), weighted WER and Word Information Lost (WIL).

KER [82] attempted to evaluate the model using keywords rather than words. Keywords are
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determined as being domain-specific verbs or nouns and if a word occurs more frequently

than in a non-domain-specific text. The metric is defined as the sum of falsely recognised

keywords and missed keywords, over the total number of keywords. However [83] found

that there were no significant differences between WER and KER as metrics for speech

understanding applications. Similarly, the weighted WER [84], weights the impact of types

errors on the overall error metric, based upon the hypothesis that specific keywords have

a higher impact on the information retrieval. This metric was developed for speech query

tasks, where each word is weighted during evaluation, to approximate the dependency

upon the intention. The estimation of the weighting approximation is determined by the

information retrieval degradation ratio score for all queries. For many speech recognition

tasks, this evaluation metric is considered to be computationally expensive and is more

suited to retrieval applications. WIL [85] approximates the mutual information between the

hypothesised output and the ground-truth using Shannon Entropy H, where:

WIL = 1− H2

(H + s+d)(H + s+ i)
(2.3)

Entropy is a measure of the average amount of uncertainty in a probability distribution and

quantifies the amount of information contained within the distribution. This metric is suited

to ASR evaluation where the error rates are higher. Despite the development of informative

metrics, currently WER is the most widely accepted metric to evaluate the performance

across the majority of ASR tasks.

For speaker recognition tasks, the evaluation is determined using metrics such as false

acceptance rate (FAR), false rejection rate (FRR) and equal error rate (EER), described in

[86]. EER measures the similarity between the FAR and FRR of the classifications. FAR

is the percentage of speakers recognised that are incorrectly accepted as the target speaker,

while FAR is the percentage of recognition instances where the target speaker is incorrectly

rejected. EER is the point where FAR is equal to FRR.
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Speech emotion recognition modelling accuracy is typically evaluated using weighted

accuracy and unweighted accuracy. Unweighted accuracy calculates the proportion of

correctly classified instances across all emotion classes without considering the distribution

of the class. Each class of emotion is measured equally, providing a general measure of the

system. While weighted accuracy portions the accuracy by weighting the class distribution of

the dataset based on each classes prevalence. It is common for datasets to contain more class

labels for certain emotions, therefore this metric attempts to measure the accuracy of the

classification more acutely, providing a representation of performance to counter imbalanced

class distribution where there may be classes that are underrepresented by the data.

The metrics for SER accuracy do not address the granularity of emotion labelling,

whereby it is a complex task for humans to determine a distinct emotion label [87]. A sample

of human annotators is sometimes used to provide a distribution range for the labelling to

attempt to alleviate some subjective bias.

2.3 Neural Networks for Speech Recognition

Historically, research has attempted to tackle front-end processing issues within speech

modelling systems, such as variable length vectors, continuous speech and audio signal

variability. Since the creation and adoption of early mathematical models of neuron behaviour

in the field of artificial intelligence [88–90]; machine learning research for enabling complex

speech modelling expanded.

The development of neural networks has vastly expanded each area of speech recognition,

speaker recognition and speech emotion recognition due to their ability to learn complex

representations and patterns within speech data. The ability to use neural networks for speech

modelling allows for parameter estimation in order to best approximate the function from

the input signal to the output transcription [91]. The following Section defines and explains

neural networks that are used for speech modelling. This covers the different types of neural
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networks, activation functions between network layers, and training objectives. ASR, SER

and recognition systems are comprised of these elements and sometimes combinations of

these elements. As speech modelling involves capturing the underlying representations

and statistical properties of the speech signal, utilising these techniques enables systems to

understand and classify spoken language, speakers and emotions more accurately.

2.3.1 Feed Forward Neural Networks

Fig. 2.2 Example diagram of a feed forward neural network showing connections between
neurons with weights and biases

Multi-layer perceptrons, commonly referred to as neural networks, are biologically

inspired models. In feed-forward neural networks, training typically occurs through back-

propagating errors iteratively through the layers, typically using input data X . Figure 2.2

shows a simple diagram of an example feed forward network, where the input X is summed

with weights and additional bias to the neuron. The weights W of the network are updated by

an optimisation strategy, such as gradient descent, which is where the output of the network,

given the input xi is compared to the ground truth label yi. Through connected hidden layers,
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the strategy attempts to solve the function that results in the output of the network ŷ being as

close to the ground truth y as possible. This is shown in further detail in Section 2.3.1. The

output of the neuron z j is shown in Equation 2.4, where bi and wi are the bias and weights at

the ith iteration of N input features:

z j = ∑
i=1

wixi +b (2.4)

The weights are model parameters, referred to as θ , that transform the input through

the layers of the network. The inputs to each neuron are multiplied with the weights and

the weights are updated by the training schedule. Biases are added to the weighted sum of

the input in order to delay the activation function. An initialisation strategy of the network

parameters, such as Xavier initialisation [92], can be used to decrease time to convergence

and improve model accuracy. However, in cases where little is known about the search space,

the weight parameters are typically selected using random bounded values from a Gaussian

distribution [93].

Networks typically consist of multiple feed forward layers. The inner layers are referred

to as hidden layers h where layer j can be described as:

h j = σ(w jh j−1 +b) (2.5)

where h j−1 denotes the previous layer output, w j are the weights, b is the biases and σ is the

activation function.

Activation Functions

For each neuron in the network, the inputs are multiplied by the weights and summed to

determine the activation. An activation function is used to determine the desired output of

the network layer. Non-linear activation functions allow the network to learn more complex
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mappings and normalise the output of the neural layers, typically to values between 0 and 1

[94].

Fig. 2.3 Graph of a sigmoid function

The sigmoid function σsigmoid , shown in Figure 2.3, outputs a value between 0 and 1

determined as a weighted sum, z j = ∑i=0 xiwi of inputs to a neuron

σsigmoid(z j) =
1

1+ e−z j
(2.6)

The hyperbolic tangent function σtanh, shown in Figure 2.4, is similar to the sigmoid

function, while it outputs the value between -1 and 1:

σtanh(z j) =
1− e−2z j

1+ e−2z j
(2.7)

The softmax function σso f tmax, shown in Figure 2.5, computes the relative probability,

between 0 and 1, for the outputs of the network over a number of classes. The exponential

function is applied to each element of the neural representation vector in the output layer of

the network, and is then normalised by dividing by the sum of exponential representations:
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Fig. 2.4 Graph of a hyperbolic tangent function

Fig. 2.5 Graph of a softmax function

σso f tmax(z j) =
ez j

∑ j=1 ez j
(2.8)

To update the parameters of the neural network with regard to minimising the error,

the calculation of the gradient information for back-propagation is critical, and as this gets

smaller, training can be inhibited. This is referred to the vanishing gradient problem [95].

Another issue is that the activation function can be computationally expensive to computer,
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Fig. 2.6 Graph of a ReLU function

especially within deeper networks that consists of many layers. Some activation functions,

such as the Rectified Linear Unit (ReLU) function [96] σReLU , attempt to resolve this and

avoid saturation. The function, shown in Figure 2.6, pushes the output to 0 when z j is less

than 0 but keeps the value when z j is greater than or equal to 0:

σReLU(z j) = max(0,z j) (2.9)

To increase the range of the ReLU function, the leaky ReLU function [97] is an extension

of the original function to allow for small negative activation values and further prevent

saturation.

Training Objectives

Training objectives for neural networks can be defined as optimisation strategies that aim

to minimise a defined loss function. Training objectives measure the disparity between

the network’s predicted output and the expected ground truth value. In order to update the

network parameters to train the network to output the target output, the output of the network

ŷi is compared to the target output yi for the ith label, where i ∈ {1,2, ...,N}. Through
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iterative optimisation, cost functions L are used to tune the network parameters through

algorithms, such as backpropogation, where the weights and biases are adjusted to reduce

the cost function.

The Mean Squared Error (MSE) function LMSE measures the loss for linear regression.

In order to minimise the total average error, all outputs of the network ŷi are taken and

compared to true labels yi, shown in Equation 2.10:

LMSE(ŷ,y) =
1
N

N

∑
i=1

(ŷi − yi)
2 (2.10)

MSE measures the average squared difference between the network predicted and true

values for continuous outputs, therefore it is not commonly used as a training objective

for speech recognition tasks, which typically involves discrete outputs, such as characters,

phonemes or words.

The Cross-Entropy (CE) loss function is typically used for speech recognition applications

as it can be used to measure the dissimilarity between the predicted ŷi and true probability

distributions yi over speech units. The CE loss function LCE , shown in Equation 2.11, can be

defined as:

LCE(ŷ,y) =−
N

∑
i

yi log(ŷi) (2.11)

By using a criterion such as CE, the parameters of an ASR model are trained to maximise

the log probability of the actual output sequence [98].

Scheduled sampling [99] is often used in conjunction with CE optimisation in ASR

models to alleviate overfitting issues caused by the subsequent decoding strategies. After the

initial few epochs at each decoder step, the prediction from the ASR model is used as the

next label with a specified probability.

CE is similar to Kullback-Leibler (KL) divergence LKL, shown in Equation 2.12, which

measures the the difference between two distributions over the input xi, where Q is the

predicted probability with density q(x) and P is the target value with p(x):
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LKL(P|Q) =
N

∑
i=1

p(xi)log(
p(xi)

q(xi)
) (2.12)

The type of objective function selected for a neural network is dependent upon the

interpretation of the output either being a probability distribution or a specific value.

Backpropogation

Back-propagation [100, 101] is used to derive the gradient to adjust the weights with respect

to reducing the cost function. As the network is trained, the objective is to drive the cost

function as low as possible, so typically gradient descent is used. To find the values of the

new network parameters θi that minimise the cost function, gradient descent is defined as:

θi = θi − γ
∂

∂θi
L(θ) (2.13)

where ∂

∂θi
L(θ) is the gradient scaled by the learning rate γ . The learning rate is a chosen

scalar value that is small enough to avoid overfitting [102]. In many practical approaches,

the learning rate is initially set higher and is reduced to an optimal solution using a decay

technique, such as [103, 104]. In order to back-propagate from the output layer to the

hidden layers, the derivatives of the loss function with regard to the output are computed;

the derivatives of the activation function of the output layer are computed and the input of

the hidden layer with regard to the weight of the output layer are computed and the gradient

can thus be deduced using the chain rule. The new weights are obtained by taking the

old weight values within each layer and subtracting the gradient values. Once the gradient

becomes smaller than a designated threshold, training is stopped as the network is considered

converged.
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Fig. 2.7 Diagram showing high-level architecture of a convolutional neural network (CNN)
for speech recognition

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) first introduced in [105–107] were initially used for

image recognition tasks [108]. While feed-forward neural networks connect all neurons

between adjacent layers, CNNs employ local receptive fields and shared weight parameters

to enable the extraction of spatial and temporal information. CNNs process the input with

a grid-like structure, while preserving the spatial relationship. As shown in Figure 2.7, for

speech applications, feature representations from windows over the input speech spectogram

can be learned. Typical CNN models consist of alternating layers of convolutions and pooling

layers with a final fully connected layer. Pooling layers downsample the features to preserve

salient information. Batch normalisation and dropouts are added between layers to optimise

model performance [109]. Each convolutional layer is comprised of a set of convolutional

kernels, which divide the input into windowed sections to aid feature extraction, referred to

as the receptive field. As the kernel is moved in steps (strides) across the width and height of

the window representation of the input, an activation map is produced. The kernel acts as a

filter so when matrix multiplication is computed, fewer parameters are required to represent

the “most meaningful” information. For each activation map, the convolution neurons are
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constrained to the same weight set, which contributes to the CNN having the property of

equivariance to translation. When the input is shifted, the features are preserved but their

locations in the activation maps are correspondingly shifted, allowing the CNN to capture

local spatial features regardless of their position in the input.

The convolution is derived by two functions f [x] and g[x] over a continuous variable x to

produce another function y[t] that describes the amount of overlap that shifts one function to

the other. Over an infinite interval, the convolution can be described as:

f (x)∗gx =
∫ +∞

−∞

f (τ)×g(x− τ)dτ (2.14)

where τ refers to the continuous time step, × is the ordinary multiplication and ∗ is the

convolution operator. Where t is discrete time and f and g are functions, the convolution of

g over f can be described as:

y[x] = f [x]∗g[x] =
+∞

∑
t=−∞

f [x]×g[x− t] (2.15)

This represents the discrete convolution operation for higher dimensions whereby the input

and filters are multi-dimensional arrays. As they are computed with regard to frequency and

time, this shows how feature maps are computed to capture relationships between the input

and filters.

2.3.3 Recurrent Neural Networks

There are several extensions of neural networks such as Recurrent neural networks (RNNs)

[110, 100] and Long Short-Term Memory networks (LSTMs) [111]. When combined with

adapted ASR modelling techniques, these approaches have been shown to significantly

reduce recognition error rates [112, 113, 91]. These ASR specific approaches are described

in Section 2.4.
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Fig. 2.8 Diagram showing a recurrent neural network (RNN) hidden layer and output layer

RNNs have similar components to a feed forward network and consist of an input layer,

output layer and multiple hidden layers. Unlike feed forward networks, the hidden layers

of the RNN are calculated from the input values and previous time-step values and weights,

shown in Figure 2.8. xt represents the input at the current time-step t, while xt−1 represents

the input at the previous time-step and xt+1 the next time-step. Equation 2.16 describes the

hidden layer h:

ht = σ(Whxxt +ht−1Whh +bh) (2.16)

where Whh ∈ RF×F are the weights between neurons within the hidden layer, Whx ∈

RF×F are the weights for the inputs to the hidden layer, bh ∈R1×F is the bias and σ is the acti-

vation function. F refers to the feature dimension of the input signal X = {x1,x2, ...,xT},xt ∈

R1×F .

The output layer yt can be defined as:

yt = htWhy +by (2.17)

where Why ∈RF×F are the weights and by the biases of the output layer.
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The recurrent structure of the network is useful to capture longer-term contextual infor-

mation from the input signal with respect to time, which is suited for continuous modelling

applications. However they can become computationally unstable with longer sequences,

which can impact the performance of a model for applications such as speech recognition.

This is caused by the “vanishing/exploding gradient problem”, discovered in [114], which is

due to the propogation of low gradients through time when calculating gradient descent. As

the gradient becomes too small or too big, it can become more difficult to train the weights

throughout the whole network as the gradient diminishes or explodes exponentially. To

address this, it is possible to place an arbitrary threshold on the gradient and to initialise

the network to reduce the potential for exploding or vanishing gradients. This led to the

development of a related approach to the RNN, the LSTM.

Fig. 2.9 Diagram showing the composition of a long short-term memory network (LSTM)

LSTM modelling aimed to alleviate some of the limitations of RNNs with the introduction

of memory cells. The memory cells capture information about the training data by separating

the hidden states into long-term and short-term. This is referred to as 3 gates: an input gate;

forget gate and output gate, which are constructed with sigmoid functions. The forget gate

h f , shown on the left side of Figure 2.9, similar to the RNN hidden layer, is described by the

hidden state at the previous time-step ht−1, the input xt at time-step t, the weight vectors for
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the current layer W, and the sigmoid activation function σ :

h f = σ(Wxt +Wht−1) (2.18)

Parallel to this, the input gate hi, shown in the middle section of Figure 2.9, determines

the information to store in the cell state, which can be described by:

hi = σ(Wxt +Wht−1) (2.19)

The memory cell candidates C̃t to add to the cell state can be described by:

C̃t = σtanh(Wxt +Wht−1) (2.20)

where the activation function σ is typically the tanh function. To identify information to

forget from the cell state, the previous state ct−1 updates the new state ct by multiplying

the previous state with the forget gate h f and the input gate hi with the potential candidate

values:

ct = h f ∗ ct−1 +hi ∗ C̃t (2.21)

The output gate ho, shown on the right side of Figure 2.9, is described by:

ho = σ(Wxt +Wht−1) (2.22)

which is then multiplied to the candidate values ct to determine the output of the neural

layer ht:

ht = ho ·σtanh(ct) (2.23)

LSTM networks can be compiled to be uni-directional or bi-directional. Bi-directional

LSTMs (BLSTMs) [113] allow the input to flow from both directions by adding an additional
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layer to handle the reverse information flow. The outputs of the layers can be combined by

concatenation or summation. Recognition performance of the BLSTM model improves when

using future context frames, which is commonly done frame-wise, taking the output from a

lower layer as the input to the current frame. The BSLTM model for speech recognition is

described with diagrams in Chapter 3 Section 3.4.

Hardware acceleration for training recurrent-based systems can become challenging as

as the sequence needs to be input sequentially, given that the previous state input is required

to compute the current state. This can lead to incompatibilities with memory bandwidth

and training parallelisation. Therefore LSTM-based models have become less popular for

state-of-the-art modelling research in recent years due to the development of convolutional

models [108, 11] and transformer models [1], discussed further in the next sections.

2.3.4 Transformer Networks

Published in [1] and previously formulised in [115], the transformer model does not use the

time-steps for sequential data in order. The diagram 2.10 shows the published overview of

the transformer, which introduces the concept of an encoder-decoder network. The following

section will define and explain the components of this model and the attention mechanism,

which are the current state-of-the-art modelling approaches for speech modelling. The

encoder-decoder network is explained in further detail in Chapter 3 Section 3.4.

The input signal is converted into latent space representations and a positional encoder is

used to provide the sequential context:

PEk,2i = sin
k

10000
2i
d

(2.24)

PEk,2i+1 = cos
k

10000
2i
d

(2.25)
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Fig. 2.10 Diagram showing the transformer model architecture from [1]

where the positional encoding function PE for an input at the kth position in the input

sequence and the ith index vector to map to the sine (sin) and cosine (cos) functions. The

positional encoding, proposed in [1], is based upon a decaying sinusoidal function and allows

the network to learn where each element of the sequence came from despite not having any

recurrent connections.

A combination of the input embedding and the positional vector encoding passes to an

encoder block, the left side of Figure 2.10, where it is fed to a self-attention layer. The input

to this attention layer is comprised of 3 inputs referred to as query Q, key K and value V.

The input is passed through 3 separate linear layers with independent weights to form Q, K

and V. The attention is performed in parallel with each attention head ci, j described by:
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ci, j = so f tmax(
Q,K√

dk
)V (2.26)

where
√

dk is a scaling factor and denotes the embedding size. A scaling factor is used to

prevent the dot-product operation becoming too large in magnitude. Figure 2.11 illustrates

the attention mechanism whereby elements of the input xt are selectively weighted to adjust

their influence upon the hidden states of the next layers. The attention weights are determined

by the dot-product operation of the keys K and the queries Q. The softmax function ensures

the attention weights do not exceed the value of 1. The values V are summed according to

the attention weights.

Fig. 2.11 The composition of the transformer attention layer from [1]

The self-attention output is passed to a feed-forward layer which propagates the output

to the next encoder layer. Both the attention and feed-forward layers have skip-connections

followed by layer normalisation. The output of the encoder is an encoded representation for
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each point of the input sequence with attention scores. For each encoder layer, the attention

scores are accumulated into the representation. The self-attention mechanism is aiming

to solve the relevance of the ith window of the input sequence compared to the rest of the

sequence and provide context information. The produced attention vector is aiming to encode

the relationship between the windows and the sequence. Each attention process is referred

to as an attention head, which occurs in parallel. Transformers are able to capture global

dependencies from the input as the entire context is visible to the attention mechanism.

The output of the encoder passes to the each decoder layer in the decoder block, shown

in the right side of Figure 2.10. The decoder layer shares a similar structure to the encoder,

however the initial self-attention layer receives input from the previous decoder and is forced

to attend to only the previous positions in the sequence by attention masking. This masked

attention hides the future states of the output sequence from the model to allow learning to

occur. A second attention layer, referred to as an encoder-decoder attention layer concatenates

the output of the encoder and the previous self-attention layer, only using the values and

keys from the encoder and the queries from the previous layer. This is followed by a final

feed-forward layer. Layer normalisation and skip connections are between every stage as

similar to the encoder. To train the transformer, CE loss is typically used to compute the

gradients and update the parameter weights via back-propagation. The encoder-decoder

transformer model for speech recognition is described with further diagrams in Chapter 3

Section 3.4.

For speech applications, the self-attention mechanism enables localisation of phonetic

and linguistic information. However the main limitations of utilising the transformer model

for speech modelling is that the self-attention calculations scale quadratically with the length

of the sequence. Some subsequent research, such as [116], has modified the computation

of the attention mechanism by assuming the information in the attention matrix can be
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approximated without a significant effect on the recognition performance, allowing this

approach to be more widely adopted for speech modelling.

2.4 End-to-End ASR Modelling Approaches

The term, “End-to-End”, in the domain of speech-to-text ASR, typically describes models

that have the ability to transcribe words or characters directly from an utterance of speech in

one model. This approach aims to remove the previous complex ASR system decomposition

where the framework is split into separately trained modules. In traditional ASR models,

modules are trained independently due to their complexity, computational constraints, inflex-

ibility, performance dependencies and time constraints, however, optimising in this strategy

may not guarantee the global optimum. One of the main advantages of developing an End-

to-End system is to model the label posterior probabilities and thereby the output sequence,

directly from input speech using a single objective. The objective function is used to optimise

the entire system, without having to train each module individually. In more recent years,

End-to-End approaches have achieved performance parity with traditional hybrid approaches

[117, 118]. These approaches are of particular use for on-device and streaming models

in industrial applications due to their improved latency performance, reduced model size

and that they do not rely on domain expertise to compile [119, 120]. Traditional modular

approaches for ASR are still advantageous in applications where model adaption, robustness

and recognition performance are critical. There are currently three main types of End-to-End

approach that are widely used and customised based on the application: CTC-based models

Figure 2.12, attention-based encoder-decoder models Figure 2.13, and recurrent transducers

Figure 2.15. These approaches are described in further details in the following sections.
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Fig. 2.12 Overview of CTC-based model for End-to-End ASR

2.4.1 CTC Models

[121] proposed the Connectionist Temporal Classification (CTC) algorithm for ASR decoding

with RNNs, which is a discriminative solution to map the input sequence to output label

sequence. The network outputs are transformed into a conditional probability distribution

over possible label sequences, which removes the need to explicitly define the alignment

between the acoustic features and label boundaries. The number of units in the output layer

of the network is equal to the number of labels plus one extra for the the probability of

observing no label, referred to as a blank token. The conditionally independent outputs are

determined into an alignment of network output probabilities for a set of possible labels. The

alignments are the same length as the input sequence, where repeats of labels between blank

tokens are removed before removing the blank token.

As shown in Figure 2.12, the output of the CTC model is a probability distribution

of observing a label yu given the input x at time-step t. The alignment between an RNN

encoder output ht and yu, referred to as π , is defined as a sequence of labels of length T . The

alignment probability is p(π|x) = ∑
T
t=1 yπt

u . There is an assumption that the length of the

target output is equal to or less than the length of the input. Given an input xt and the ground

truth label yu, the objective function can be described as:
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L(xt ,Y ′) = ∑
π∈Y ′

p(π|xt) (2.27)

where Y ′ is the set of labels including the blank token. This is computed using the

forward-backward algorithm as described in [121]. Once the most likely encoded sequence

has been predicted by the decoding search algorithm, the duplicate characters and blank

tokens are then removed, leaving the system output.

Computing the cost function with the blank token allows for alignment where the input

and output sequence lengths vary, however this is limited by the length of the input and is

inherently conditionally independent. Alignments in purely CTC models are monotonic

and cannot utilise contextual information, however some recent strategies have attempted to

overcome this [122, 123] by using a wider range of context dependent symbols and masking

methods. The recognition performance of models that only decode with CTC is limited

when compared with other techniques. However the performance of CTC-based models

can also be improved when used in conjunction with an attention mechanism, known as a

hybrid approach, which is described in more technical detail in Section 2.4.2. Work in [67]

added contextual dependencies to an LSTM CTC-based model for an English to French

translation task. This approach introduced LSTMs in an encoder-decoder structure. The

encoder provides a representation of embeddings from the speech input and then the decoder

produces outputs per time-step.

To compare which strategies for ASR encoding performed best for acoustic and language

modelling in CTC-based approaches, [124] extended the encoder-decoder approach for

conversational speech data. By combining the LSTM from [67] with an RNN model the

vanishing gradient issue is alleviated whilst retaining model performance and allowing for

increased model sizes, without causing overfitting. This modelling strategy suited recognition

of conversational, noisy, open-domain tasks due to the ability to increase model resolution;

however the evaluation method lacked consistency and was measured by attempting to
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determine the quality of simulated conversations. The Deep Speech approach from [125]

uses a combination of CNN, bi-directional RNN with CTC decoding and an n-gram LM.

The aim of this approach was to show that it was possible to have a scalable solution that is

trainable “End-to-End” although it was noted that this type of model requires large amounts

of training data and pre-trained LMs in order to improve performance. The approach taken

in [126] aimed to move away from modelling approaches similar to Deep Speech, and

remove the requirement for pretraining and forcing alignments. The approach in [126]

uses lattice-free maximum mutual information [57], which is derived and modelled by full-

left-biphones in a dependency tree. Using a CNN for front-end processing, trained with

lattice-free maximum mutual information and rescored with an RNN LM during decoding;

the network is able to extract phoneme, semantic and syntax information from various layers.

By identifying which structures of the network contain dependent representations, it is

possible to integrate additional techniques to exploit specific contextual information, such as

attention smoothing [127] or local normalisation [122].

The stand-alone CTC algorithm is used to eliminate traditional ASR model complexity

regarding alignments between acoustic modelling and decoding. The neural network doesn’t

need to have the defined alignment mapping between the output sequence and the target

sequence. However this approach does not allow for simple integration of language mod-

elling techniques due to the conditional independence assumptions between the output labels.

Some strategies have attempted to use different networks to exploit the contextual informa-

tion from neural representations within the neural network layers to improve recognition

performance without changing the CTC objective function, which has inherently added some

complexity into the network that it may not fully benefit from, shown by limited performance

improvements.
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Fig. 2.13 Architecture of attention-based encoder-decoder model for End-to-End ASR

2.4.2 Attention-Based Encoder-Decoder Models

The encoder-decoder approach to sequence modelling attempts to provide the mapping

between an input sequence xt and output label sequence y1:u−1 in three distinct stages. As

shown in Figure 2.13, the first stage is the encoder which encodes the input sequence xt and

propagates it into hidden states ht , often with residual connections. The attention mechanism

computes the frame-wise attention weights cu between the encoder hidden state and the

previous decoder output du−1, where u is the output label index, to generate the context

vector. The context vector is utilised as the initial hidden state for the decoder. The final stage

is the decoder, which functions to predict an output label for each time-step P(yu|xt ,y1:u−1),

by taking the previous output labels y1:u−1 with the context vector, described by Equation

2.28.

P(Y |X) = ∏
u

P(yu|xt ,y1:u−1) (2.28)
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Fig. 2.14 The Bahdanau attention mechanism from [2]

This technique allows for unrestricted differences in length of the input and output

sequence, however it can suffer from “bottle-neck” problems due to the attempt to capture a

large amount of information in the embedding vector [2]. ‘Bottle-necks” can also occur due

to changes in dimensionality between network layers. [2] proposed that attention alleviates

this and the vanishing gradient issue by finding the weighted sum of the hidden states in the

encoder and feeding this to the decoder. As shown in Figure 2.14, the weighted sum of the

hidden states ht are described by attention weights αt,1:T , which are fed to the decoder state

st . This was initially done for translation tasks as the attention mechanism inherently takes

advantage of more relevant words that appear at similar places for each language. To further

improve the alignment between the input speech sequence and the output labels for the ASR

domain, the attention-based encoder-decoder model can be optimised with a CTC model by

sharing the encoder [117]. This is referred to as a hybrid model as it also allows the scoring

to be combined for decoding [128].

Modelling attention mechanisms for recurrent-based End-to-End system solutions is

a challenging task as the mechanism needs to wait for the entire sequence to be encoded
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before alignment and decoding can begin. Empirical results from [4] showed that attention

mechanisms can cause a model to perform poorly when data is corrupted by noise, causing

attention-based models to struggle in real-world environment recognition tasks. [129] showed

that an attention-based ASR model could be separated into two sub-modules whilst still

being trained End-to-End. This approach consists of an acoustic module referred to as the

“Listener”. This is a BLSTM that takes filter banks as inputs. The pyramidal structure of the

BLSTM is a stack on three BLSTMs that successively decrease in resolution in an attempt

to provide higher resolution embeddings and reduce the computational complexity of the

model. The “Speller” section of the model is an attention-based RNN and decodes the output

of the “Listener” to output characters.

The transformer, described in Section 2.3.4, introduced by [1], uses a different attention-

based strategy with an encoder-decoder structure. A query (the previous hidden state) and

key-value pairs (encoder hidden states) are mapped to outputs, which is referred to as “Scaled

Dot-Product attention”. This approach attempted to resolve the “bottleneck” problem as the

query is computed from the previous decoder layer and the keys come from the output of

the encoder, similar to the mechanism proposed in [2]. Self-attention layers were introduced

into the encoder architecture where all the keys, queries and outputs provide a path to all

positions in the encoder and previous layers of the encoder. Finally, is the combination,

referred to as “Multi-Head attention”, where the query and key value pairs are projected into

lower dimensions, each with projected attention computation as a “head”. Each “head” is

then concatenated and transformed then added and normalised to the next layer.

Different network structures for the attention layers were explored in [130] such as

Multi-Head Scaled Dot-Product and Position-Wise feed forward layers. It was claimed that

stacks of self-attention layers are capable of automatically learning the gradual increase of the

receptive field that CTC models are hard-coded with, and using fewer “heads” with restricted

context can enable faster network convergence. The transformer model was first compiled for
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ASR in [131] by integrating CNN layers to view the entire input sequence at once and model

the interactions between speech features at further distances in time before propagating to

the transformer layers. As CNNs require less complex front-end processing [132, 133] than

transformers and BLSTMs, they are able to mitigate the mismatch in length of the generated

feature vector and the target output sequence. This also enables the integration of deeper

encoder layers to extract context dependencies using an attention mechanism that attends to

the time and frequency axes. Using larger models with increased parameter size has been

shown to reduce training time when combined with less computationally complex front-end

processing techniques [131, 134], which is advantageous in the development of End-to-End

approaches. Also while the transformer-based approaches for ASR are capable of modelling

global context across longer ranges, it is difficult to capture local features. The Conformer,

proposed in [133], attempts to improve the local context modelling capabilities of the system

by using convolutional layers to exploit local information, replacing the encoder blocks of the

transformer network. The Conformer blocks are able to learn shared kernel representations

over a local window and when this is combined with multi-headed self-attention, position-

wise local features and global context are able to be learned. The main drawback of this

approach is scalability as recognition performance reduces with smaller models that still

have over 10 million parameters and 16 encoder layers.

Typically, models that are to be used in a commercial setting, require streaming capa-

bilities with lower latency, in order to provide recognition at roughly the same time as the

speaker [135]. In order to enable streaming with attention-based encoder-decoder models,

chunk-wise attention can be applied to the input speech [136, 137], where the encoder is

adapted to receive the input sequence in blocks whilst retaining global feature information.

However this method still requires a defined activation threshold for streaming applications.

In order to stream using a transformer-based approach, the model needs to be adapted to

process the input sequence sequentially. [138] developed an extension to the Transducer
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approach, described in further detail in Chapter 2.4.3, in conjunction with the transformer,

with time-restricted self-attention to limit the context window. The transformer-transducer

approach also facilitated output probabilities based on both the sequential audio input and

also the predicted labels. This approach essentially replaced the recurrent blocks with

transformer blocks and reached the current state-of-the-art ASR performance across several

datasets. The Emformer, proposed in [139], aimed to reduce the need for limiting context

for improved computation efficiency, caused by the self-attention computation that scales

quadratically with left-context size. This is done by utilising augmented memory, whereby

the keys and values are cached from previous layers for the left-context in combination with

GPU parallelisation.

Transformer-based approaches have also been developed for unsupervised ASR, whereby

the audio representations are trained with unlabeled data [140, 141]. The approach by [140]

attempts to degrade the input spectogram by using time-masking and then train the model

to restore the input. While [141] instead explored learning latent representations of the

speech input with the convolutional layers, then masking frames at the transformer layer.

The approach from [141] used a context network to generate representations to solve a

self-supervised prediction task and train the model whilst evaluating on itself.

2.4.3 Recurrent Neural Network-Transducers

The RNN-Transducer (RNN-T), published by [142], was initially developed as an attempt to

move away from the traditional modelling approaches of the time. Considering the limitations

of modelling with only CTC, as discussed in 2.4.1, the RNN-T attempts to model aligned

acoustic and linguistic information within an End-to-End framework but also by adding

contextual dependencies between outputs through time. This can be described by Equation

2.29 and Figure 2.15, where zu,t is the alignment path that maps to the output sequence

y1:u−1, ht is the encoding from input xt , and hu is the encoding from the previous time-step
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Fig. 2.15 Architecture of Recurrent Neural Network-Transducer model for End-to-End ASR

prediction yu−1. zu,t is calculated by an additional network, named the joint network, and

decoded with a beam search algorithm.

p(Y |X) = ∑
zu,t∈Y−1(y)

T ′

∏
t=1

p(zu,t |hthu,yu−1) (2.29)

This approach conditions the output onto the previous output tokens and input sequence,

removing the conditional independence inherent with the CTC algorithm. The RNN-T

can be distinguished in three parts; an encoder, prediction network and a joint network.

The predictor network takes the previous outputs and produces alignments used to predict

the subsequent output. The joint network is typically a feed-forward neural network that

combines the vectors from the encoder and the predictor to output probability distribution

over all output labels. Equation 2.30 describes the output of the joint network zu,t , which

combines the outputs of the encoder ht and predictor hu with weight matrices W, bias b and

non-linear function σ .

zu,t = σ(Wht +Whu +b) (2.30)
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This approach is recently being developed for on-device and streaming applications for

ASR [135, 119, 143] partly due to the more compact model size of the RNN-T but also

because the transcript can be produced whilst receiving the input audio, enabling low latency,

real-time transcription. However, there are some remaining challenges of using RNN-Ts

for on-device ASR solutions as this modelling approach delays the prediction of the output

label until it is more confident, which it achieves by using more future context. Recently,

there have been developments of the RNN-T model to improve training efficiency despite the

large context requirements: single loop recursions [144], function merging techniques [145]

and context limiting approaches [146]. The method developed in [144] enables single loop

recursion for training RNN-T models with the aim of improving the computational efficiency

with hardware acceleration. By vectorising the forward-backward probabilities, the hardware

is able to perform multiple floating point calculations simultaneously, allowing the loop

skewing transformation and recursion to be computed in a single loop. This approach is

limited whereby the computational efficiency improvements are not a scalable solution and

does not address modifications to the training process of the RNN-T to reduce the extensive

context requirements.

Limiting the context for streaming End-to-End ASR models, [146] showed that it is not

necessary to condition the entire output of the ASR model on the full history of predicted

labels, that the same recognition performance can be achieved by using at least the previous

4 predicted labels. A modification to the beam search decoding was also proposed by path

merging to form lattices. This was done by merging paths during decoding by approximation,

for 2 paths that shared the same local history and thereby freeing space.

However, efficiency improvements and reduction in the memory constraints when train-

ing RNN-T models for ASR, the recognition performance was less competitive than the

transformer-based models that were being published at the same time. Work by [145] ex-

plored improving RNN-T ASR performance benchmarks by using an auxiliary task, in this
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case transcriptions for social media video transcription. One of the middle layers of the

encoder is branched into an auxiliary and primary branch to provide posterior distributions

over the output labels. In order to do this [145] utilised KL divergence [147] between the

distributions of the primary and auxiliary branches, in combination with the RNN-T loss,

with the aim of dampening the gradients of the branches and balancing the optimisation.

This approach aims to distill knowledge from both the ASR and auxiliary tasks in order to

improve generalisation and improve recognition performance. RNN-T models have also

shown improved recognition performance from pre-training using the CTC algorithm or CE

criterion [148, 149].

2.5 Summary

This Chapter provided a literature review regarding an overview of speech technology mod-

elling applications in Section 2.2 and neural networks in Section 2.3. Sections 2.4.1, 2.4.2

and 2.4.3 presented and discussed End-to-End ASR and the main approaches. The CTC

approach, described in Section 2.4.1, involves aligning the acoustic information of speech to

phone states, then compresses the search space for conditionally independent hypothesised

labels. This approach does not use any pretrained modules and is the least computation-

ally expensive but the conditional independence potentially loses context information that

improves recognition performance for ASR tasks.

The attention-based encoder-decoder approach, described in Section 2.4.2, first encodes

the acoustic information into hidden states, then utilises a decoder to predict the output at

each time-step. An attention mechanism computes the weights between the encoder hidden

state and previous decoder output, allowing the model to capture contextual dependencies and

improve recognition performance. However, the complexity of the attention-based encoder

decoder approaches scales as the length of the input sequence increases and have a higher

latency, making them less suitable for applications such as streaming.
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The RNN-T approach, described in Section 2.4.3, also uses an encoder to encode acoustic

information to hidden states but also uses a predictor to hypothesise the next output sequence.

A joint network combines the encoder and predictor to output the probability distribution

over the labels. The RNN-T approach has a lower latency so is more suited to streaming

applications, although the recognition performance is lower compared to the attention-based

encoder-decoder models.

As it is unclear exactly how the choice in modelling approach affects the recognition

performance for the task of End-to-End ASR, Chapter 3 explores the performance of state-of-

the-art frameworks using the evaluation metrics described in Section 2.2.5. Chapter 3 Section

3.5 attempts to assess the recognition outputs of a framework and highlight the limitations

of the evaluation metric with regard to the interpretability of different performance results.

Subsequently, Chapter 3, Section 3.6 describes a developed pipeline that attempts to provide

some analysis regarding the relationship between the structures discussed in Sections 2.3.2,

2.3.3 and 2.3.4 and the recognition performance of the model.
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3.1 Introduction

The End-to-End approaches for ASR attempt to simplify the system and model the input

features to characters, phonemes or words [150]. This approach allows the development of a

complete ASR system without the requirement of expert domain knowledge, while attempting

to globally optimise the training process. As the development and integration of End-to-End

approaches have become increasingly popular, many different software frameworks have

been developed [151–153, 62], each comprising of variations of End-to-End approaches, such

as attention-based encoder-decoders, CTC models and RNN-T’s, as described in Chapter 2.

End-to-End ASR frameworks use different strategies for optimising parameters, different

architecture setups and training regimes, with the aim to improve performance on specific

datasets or domains. It is not clear which strategy should be utilised for specific applications

or how the parameters or architecture can be adapted to domains and improve recognition

performance. End-to-End architectures have inherently complex internal dynamics and it

is imperative that the model learns to generalise from the training process, in order to yield

recognition performance improvements [154, 155]. Research from [156] showed that neural

layer depth can attribute to a richer neural representational capacity, but it is still unclear

whether the models were generalising or memorising the training data [157]. The hypothesis,

that increasing neural layer depth increases the richness of representations, does not always

translate to performance improvements in all cases [158] and has had little exploration in the

End-to-End ASR domain.
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The aims of this Chapter are to explore current state-of-the-art frameworks and to evaluate

their performance on recognition of conversational speech, which is a non-trivial task. Several

methods of empirical analysis are introduced in an attempt to assess the performance of

End-to-End ASR frameworks and observe any identifiable patterns in the produced errors.

The identification of error patterns in the modelling approach can aid the development

and adaptation of improved models. As little research has been conducted regarding the

interactions between the training of End-to-End models and speech data, it is unclear how the

dependencies within the model contributes to optimal representations to improve recognition

performance. Statistical analysis techniques are also utilised to observe these relationships

and provide information regarding the interpretability of End-to-End models.

There are many factors within the data that can impact ASR model performance, including

pronunciation, physiology of the speaker [159], infrequent words, word length [160] and

faster or slower speech [161]. It is possible to compare the model’s hypothesised output with

the ground-truth, to observe the performance of an End-to-End ASR model. Potentially there

may be indicators, such as high error rates across shorter words, which could signify the

model is unable to interpret specific cases. If these cases could be identified by analysis of

the recognition outputs, modifications to the architecture could be made to target these errors.

The subsequent experiments were developed to assess the performance of state-of-the-art

End-to-End ASR approaches for conversational speech recognition, as this is a challenging

task with high error rates. Analysing the recognition outputs of the models using several

different metrics may aid the interpretation of indicators that could be used to develop and

improve modelling approaches.

3.2 Data

The Switchboard corpus [6] consists of approximately 260 hours of conversational telephone

speech between 2 speakers. There are around 2400 casual conversations between 543



54 End-to-End ASR Modelling Analysis

speakers, of which 302 are male and 241 are female. An automated handling system provided

recorded prompts, introduced roughly 70 topics for discussion, dialed the speakers and

recorded the conversations.

The test sets, referred to as Swbd and Callhome, are derived from the HUB5’00 corpus

[5] and contain 20 unreleased telephone conversations from Swbd consisting of 2.1 hours of

speech and 20 telephone unscripted conversations from Callhome consisting of 1.6 hours of

speech. conversation on a topic that was selected by a robot operator (Switchboard data), and

a set of unscripted telephone conversations between family members.

The Fisher Corpus transcripts [9] consist of time-aligned transcripts from 2000 hours

of English conversational telephone speech, similar in format to Switchboard [6]. Speakers

made up to 3 10 minute telephone calls, where they were paired with another unknown

speaker to discuss an assigned topic. This was in an attempt to maximise inter-speaker

variability and vocabulary while retaining a high level of formality. The collection contains

various dialects and accents, primarily US-English but also a small amount of non-US

English, Canadian English and foreign-accented English.

3.3 End-to-End ASR Frameworks Performance

Table 3.1 WER % Comparison of End-to-End Frameworks on HUB5’00 Corpus [5]

Method Framework Swbd Callhome
CTC RNN + CTC [162] 14.0 25.3

CTC+AED CTC+Attention LSTM [163] 13.3 24.4
CTC Deep Speech: DNNs+RNN+CTC [125] 12.6 19.3
AED Espresso: LSTM [3] 9.2 19.1
Other LF-MMI [126] 9.3 18.9
Other Hybrid HMM/DNN [164] 8.3 17.3

RNN-T Neural Transducer: RNN-T [165] 8.1 16.4
CTC+AED ESPNet [62]: Transformer + augmentation [166] 6.8 14.1

Other Humans from [167] 5.1 6.8
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This Section introduces the state-of-the-art modelling approaches and a description of

the methods utilised. The methods build upon the elements outlined in Chapter 2, Section

2.4, and are specific to End-to-End ASR modelling for recognising conversational speech.

As methods and their results are compared, this provides the background to motivations for

selecting specific methodologies to analyse in further detail in Section 3.4.

Table 3.1 shows a comparison of the published WER performance for several End-to-End

frameworks and human transcribers [167] evaluated on the HUB5’00 corpus [5]. The column

method refers to Chapter 2, Section 2.4 where the main identified methods were CTC-based,

attention-based encoder-decoders (AED) and RNN Transducers (RNN-T). As can be seen

from the results on the Switchboard test sets, the human transcribers from the experiments in

[167] were conducted by utilising 3 independent transcribers, which were quality checked

by a 4th transcriber to provide the “best” human result. This human result still significantly

outperforms the current state-of-the-art End-to-End ASR frameworks for recognition of

conversational speech although the gap has incrementally reduced.

The Deep Speech approach, outlined in [125], is a multi-layer DNN model with recurrent

layer and trained with CTC decoding. The model was trained with both the Switchboard

training set [6] and Fisher dataset [9] but the approach still has higher WER on both test sets,

12.6% WER on the Swbd set and 19.3% WER on the Callhome set, especially compared to

the approaches that do not use larger amounts of data for training. The framework developed

in [162] used a multi-layer RNN trained with CTC decoding while replacing the blank token

with some additional character dependent symbols to model output tokens by frame and

compress the computation. While this approach yielded high WERs on both the Swbd and

Callhome test sets, of 14.0% and 25.3% respectively, the work was motivated to establish

the modelling power of a neural network without a separate decoding process or additional

dictionary.
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The Lattice-Free Maximum Mutual Information (LF-MMI) model [126] had a related

motivation and is a similar method to the CTC-based approaches as it uses sentence-level

posteriors for training a DNN while also using state-tying decision trees to model the context

dependencies without external language models or dictionaries. The LF-MMI approach

reaches a much better performance on both test sets of 9.3% and 18.9% WER.

The Neural Transducer developed in [165] uses the RNN-T model as described in [142],

incorporating beam search decoding and rescoring with a pretrained LM to achieve improved

performance. The performance of an RNN-T model was also compared without integrating

a language model, which had slightly worse results of 8.5% WER compared to 8.1% on

the Swbd test set and 17.5% WER compared to 16.4% on the Callhome test set. In this

case, as the LM is also trained on the same training set, rescoring during decoding degrades

performance slightly on the Callhome set and has very little impact on performance on the

Swbd set. Compared to the recurrent modelling and CTC approaches, the RNN-T model

reaches a better recognition performance overall, even without rescoring with a LM.

Several of the frameworks listed in Table 3.1 are comprised of attention-based Encoder-

Decoders, such as [163, 3] and [62]. The Espresso framework, links research from FAIRSEQ

[168] with Kaldi software [169], allowing extensions of PyTorch-based modelling [170]. The

LSTM attention-based encoder decoder structure used for this model is from [171] which

utilises stacked convolutional layers with BLSTM layers on the output channels. The decoder

consists of LSTM layers with Bahdanau attention [2].

As the LSTM attention-based encoder-decoder approach is computationally expensive

and can take a long time to train, [163] attempted to modify CTC loss for multitask training

within the attention-based encoder-decoder model. This approach combined the attention

loss with CTC loss to enable joint training, while also exploring variations of loss functions

evaluated on the same task. They found that training with additional CTC loss on the encoder

is able to slightly improve the acoustic model.
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The ESPNet [62] framework includes a similar hybrid approach that is able to achieve

much lower error rates on both conversational speech test sets. The framework combines

several modular strategies for End-to-End speech recognition to enable the development of

open research tasks. The approach in ESPNet uses a hybrid approach of attention combined

with CTC, where the attention mechanism learns the alignments of the speech frames and

output characters, while the CTC algorithm handles the sequential problems.

Comparing the performance of the End-to-End frameworks with a non-End-to-End ASR

system [164], which implemented a HMM/DNN trained with frame-wise CE and beam

search decoding, only the approach in ESPNet achieves the lowest error rates on both test

sets. The DNN is used to predict the probabilities of the given speech frame, while the

HMM minimises the CE loss between the ground-truth label and the model prediction. The

HMM/DNN approach was able to outperform the other frameworks across the Switchboard

and Callhome test sets, however, the implementation in ESPNet in combination with the

augmentation technique from [166] reaches the lowest error rate on both test sets. The

augmentation technique combines time and frequency masking to augment the training data

and improve recognition performance.

Furthermore, recent work from [172] uses the ESPNet model in combination with a

multi-level LM technique during the decoding process, which yields the current state-of-the-

art performance on the Switchboard and Callhome test sets of 5.1% and 9.5% respectively.

The multi-level LM combines sub-word and word-based modelling techniques trained using

the Fisher dataset transcriptions. The performance results of End-to-End ASR frameworks

indicate that joint decoding with externally trained LMs can significantly improve recogni-

tion performance of ASR models for conversational speech, however this strategy moves

away from the objective of End-to-End modelling. Using externally trained LMs could be

considered as using external knowledge to enhance the training optimisation.
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3.4 Experiments

The performance of different strategies for End-to-End ASR varies significantly, even

within similar modelling approaches, such as the frameworks using attention-based encoder-

decoders. The WER or CER metrics used to evaluate their performance does not give any

indication of the causes of the higher or lower error rates, which is crucial to understand

how to detect and modify approaches to improve accuracy. The following experiments

analyse and compare the performance of attention-based encoder-decoder approaches as the

transformer model achieves the best WER performance for conversational speech, while

the LSTM has slightly worse performance. It is unclear how the variation in mechanisms

affects the dependencies of the modelling approaches and thereby their resulting effect upon

recognition performance. Initial experimental analysis is conducted across the outputs of an

LSTM encoder-decoder model and a transformer encoder-decoder model from [3], trained

with the Switchboard training set but without any LM rescoring techniques during decoding.

Removing the LM rescoring techniques degrades WER from the results shown in Table 3.1.

These models were chosen for analysis as they reach a low WER and the Espresso framework

is modular and controllable to ensure any modifications to the software would not break the

training regime.

Fig. 3.1 The Espresso [3] attention-based BLSTM encoder-decoder architecture, which uses
the attention mechanism from [4]
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Figure 3.1 shows an overview of the LSTM encoder-decoder approach where the final

layer of the BLSTM encoder layers is projected to an LSTM decoder from [2] with a context

vector cu generated at each time-step with a Bahdanau attention mechanism [4]. For the

following experiments, 3 encoder layers and 3 decoder layers were used for the LSTM model.

A 3-layer stacked 2-dimensional CNN is utilised on top of the encoder, with a kernel size

(3,3) on both the feature and time axis from [173] to provide acoustic features from the input

x1,x2, ...,xt . The output of the the decoder is the hypothesised output word sequence of the

model ŷ1, ŷ2, ..., ŷt .

Fig. 3.2 Transformer attention-based encoder-decoder architecture from [1] compiled in
Espresso [3]

With reference to Figure 2.10 and Chapter 2, Section 2.3.4, a transformer model from [1],

is complied for the subsequent experiments. Figure 3.2 shows an overview of the connections

between 3 convolutional layers, 12 encoder blocks and 6 decoder blocks containing identical

neural dimensions. Each encoder block has a multi-head self-attention layer and a feed
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forward layer, while each decoder block contains multi-head self-attention layers using the

previous decoder output and also the encoder outputs, as detailed in Chapter 3, Section 2.3.4.

3.5 Empirical Analysis of Recognition Outputs

The following experiments attempt to observe the outputs of both the LSTM and transformer

encoder-decoder models to compare and analyse the performance. It was hypothesised that

by analysing the output errors of the models empirically, it would be possible to observe

patterns between the approaches and thus provide evidence for potential model development.

Firstly, the outputs of both models were categorised into confusion pairs, substitutions,

insertions, and deletions in Section 3.5.1. Errors across speakers were also compared in

Section 3.5.2 to observe whether there existed potential bias. To attempt to expand the

categorical classification of errors, model outputs were also categorised across linguistic

errors, such as homophones and minimal pairs in Section 3.5.3. Finally, the length of each

output error was compared across models to attempt to understand whether errors increase

for shorter or longer words in Section 3.5.4.

3.5.1 Results

Table 3.2 LSTM [2] and Transformer [1] End-to-End ASR model recognition performance
on the HUB5’00 test sets [5]

Switchboard Callhome
Model WER Sub Del Ins WER Sub Del Ins
LSTM 13.3% 9.0% 2.7% 1.9% 25.2% 17.4% 4.3% 3.6%

Transformer 9.5% 6.5% 2.5% 1.6% 20.6% 13.7% 3.8% 3.0%

The performance results of both models are shown in 3.2. The LSTM model reached

13.3% WER on the Switchboard test set, and 25.2% WER on the Callhome test set. While the

transformer model results are 9.5% WER on the Switchboard test set, and a WER of 20.6%
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on the Callhome test set. The transformer model performs slightly better than the LSTM

model on both test sets with lower substitution, insertion, and deletion errors. The WER for

both models are considerably higher than when using a LM, which are the published results

in [2] and [1], which may indicate that the LM is correcting a large proportion of model

hypotheses. This hypothesis is explored further in Chapter 5.

Table 3.3 LSTM End-to-End ASR models [2] most commonly produced substitution confu-
sion pairs on the HUB5’00 test sets [5]

Switchboard Callhome
True Label Hypothesis Count True Label Hypothesis Count

gonna to 21 in and 30
in and 15 was is 20

was is 12 him then 18
and in 10 the a 17
then and 8 he you 17

it that 8 and in 15
that it 8 it that 14
the a 7 a the 14
a the 7 i they 12

him them 6 to a 11

As shown in Table 3.3, the most common confusion pairs for both test sets using the

LSTM model are predominantly short determiners, such as “it, the, a, him”. Confusion pairs

are defined as the hypothesised word that was erroneously predicted by the model and the

target word that it was substituted for. The LSTM model returned 1228 total substitution

errors for the Switchboard test set and a total of 2663 errors for the Callhome test set.

As shown in Table 3.4 the most common confusion pairs for both test sets using the

transformer model are similar to the LSTM model. Errors across the Switchboard and

Callhome test sets were very similar words and confusion pairs, such as where the model has

confused 14 “the”s for “a” and likewise 12 “a”s for “the” on the Callhome test set.

Table 3.5 shows the most commonly substituted words errors, which are very similar for

both test sets, despite the majority of the substitution errors being on the Callhome test set.

The errors across models are also similar words with proportions of errors.
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Table 3.4 Transformer End-to-End ASR models [1] most commonly produced substitution
confusion pairs on the HUB5’00 test sets [5]

Switchboard Callhome
True Label Hypothesis Count True Label Hypothesis Count

gonna to 13 him them 22
in and 11 in and 19
the a 11 was is 18
was is 10 he you 15
and in 9 the a 14
that it 8 a the 12

a the 7 to the 12
him them 5 to a 11
then and 5 and in 10
on in 4 it that 10

Table 3.5 Most common substituted words for both End-to-End ASR models [2, 1] on the
HUB5’00 test sets [5]

LSTM Transformer
Switchboard Callhome Switchboard Callhome

Word Count Word Count Word Count Word Count
and 48 is 92 the 39 is 80
that 40 and 85 is 31 to 71
the 38 to 77 it 29 a 60

gonna 35 in 73 that 29 and 58
in 35 the 70 and 27 the 55
it 29 i 65 to 24 in 54
to 26 it 61 a 23 it 53
a 26 he 53 in 23 i 49
is 25 a 48 yeah 23 he 47

was 24 that 38 gonna 19 you 38

Table 3.6 shows the most common insertion errors, which are similar to the most com-

monly substituted words; predominantly short determiners. Both models had the most

insertion errors on the word “i” across both test sets and have high error rates for words that

are monosyllabic.

The most common deleted words for both models across the test sets are shown in Table

3.7, where there are also some instances of deleted interjections, such as the word “oh”.
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Table 3.6 Most common inserted words for both End-to-End ASR models [2, 1] on the
HUB5’00 test sets [5]

LSTM Transformer
Switchboard Callhome Switchboard Callhome

Word Count Word Count Word Count Word Count
i 20 i 40 i 26 i 40

going 18 do 38 a 19 a 27
it 17 you 36 going 16 you 23

you 15 is 32 it 15 it 22
a 14 a 29 and 14 and 21

and 14 not 24 you 13 is 20
in 13 have 23 are 10 the 20
is 13 the 23 is 9 do 19
do 12 are 18 to 9 to 19

they 11 they 17 do 8 have 18

Table 3.7 Most common deleted words by both End-to-End ASR models [2, 1] on the
HUB5’00 test sets [5]

LSTM Transformer
Switchboard Callhome Switchboard Callhome

Word Count Word Count Word Count Word Count
i 39 i 57 i 37 i 41
a 32 and 43 it 31 and 36

oh 31 a 32 a 28 is 31
you 22 it 32 and 22 it 30
it 20 oh 32 is 18 a 27

and 20 is 30 the 18 to 24
the 19 the 27 you 18 the 23
that 17 to 24 that 16 oh 22
to 15 he 24 oh 13 you 20
is 13 are 18 are 12 he 19

Similar to the insertion errors, the most commonly deleted word for the models is the word

“i” and other monosyllabic words.

Assessing these errors in isolation, out of the context that they were predicted, it is difficult

to intuitively determine the reasoning behind the errors. It would also be non-trivial to design

an automatic analysis strategy to provide further context behind the errors. However, this

could be done manually using external linguistic knowledge to determine an initial baseline
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analysis and determine whether there are any identifiable patterns within the output errors

that could be attributed to a structure within the ASR framework.

3.5.2 Analysis of Speaker Errors

Research from [174] found that ASR systems can bias improved recognition performance to

certain speakers or groups of speakers. To alleviate potential bias, it is common practise to

attempt to create a dataset with speakers of evenly distributed features, such as gender and

amount of speech per speaker. The Switchboard training set contains 543 speakers, of which

302 are male and 241 are female. The Callhome test set contains 32 female and 10 male

speakers, whereas the Switchboard test set contains 19 female and 21 male speakers. Due

to this gender imbalance being biased towards male speakers in the training set but biased

towards female speakers in the test set for Callhome, the models could also be more likely to

recognise the wrong output word for a female speaker.

Figure 3.3 and Figure 3.4 compares the WER across female (F) and male (M) speakers

on the Switchboard and Callhome test sets with the LSTM and transformer encoder-decoder

models respectively. Overall, the WER is higher for female speakers on the Callhome test

set for both models, but it can also be observed that the average error rate for male speakers

on the Switchboard test set is slightly higher. These results are inconclusive to ascertain

whether either model is significantly biasing to recognise a particular gender’s speech more

consistently.

3.5.3 Categorical Analysis of Recognition Outputs

Using a similar root-cause analysis strategy to [175], the output recognition errors from the

LSTM encoder-decoder model [2] were categorised in order to assess whether particular types

of error were more prominent. By identifying errors that the model was more susceptible
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Fig. 3.3 WER across female and male speakers in the Switchboard and Callhome test sets
with the LSTM End-to-End ASR model [2]
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Fig. 3.4 WER across female and male speakers in the Switchboard and Callhome test sets for
the transformer End-to-End ASR model [1]
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to produce, it was hypothesised that it could be possible to modify the model to target the

factors causing these errors. The error categories were defined as follows:

• Homophone errors: e.g. “see/sea”, words that typically have the same pronunciation

but have different spellings and contextual meaning

• Minimal pair errors: e.g. “dog/dug”, a word that has a single phonological difference

to the target word

• Negative errors: e.g. “can/can’t”, words that have the incorrect prefix or suffix to

change the negative particle

• Breached boundary errors: e.g. “very ability/variability”, the boundaries of the word

or words are diverging or converging from the target word

• Verb infection errors: e.g. “laugh/laughed”, modification of the verb conjugation

from the target verb

• Noun inflection errors: e.g. “grape/grapes”, the plural form of the predicted noun is

incorrect

• Determiner errors: prediction of the wrong quantifier e.g. “many/any”, article e.g.

“he/the”, interrogative e.g. “who/whose”, possessive e.g. “her/his” or demonstrative

e.g. “this/that”

• Interjection errors: e.g. “uh/oh” words that represents expressions, exclamations or

fillers

• Derivational suffix errors: e.g. “beauty/beautiful”, where the target word has a

different suffix but the same root

• Unknown errors: these are errors that do not belong to any of the above defined

categories
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Table 3.8 Categorised confusion pairs across Switchboard and Callhome test sets [5] from
the LSTM End-to-End model [2]

Key Swbd # Swbd % Ch # Ch %
Homophones 10 4.07% 21 3.30%
Minimal pairs 26 10.57% 68 10.69%

Negatives 1 0.41% 0 0%
Breached boundaries 6 2.44% 30 4.72%

Verb inflections 21 8.54% 51 8.02%
Noun inflections 0 0% 7 1.1%

Determiners 42 17.07% 177 27.83%
Interjections 10 4.07% 27 4.25%

Derivational suffixes 4 1.63% 7 1.1%
Unknown 126 51.22% 248 38.99%

As can be seen from Table 3.8, 51% of the errors on the Switchboard test set (Swbd) and

39% of the errors on the Callhome set (Ch) were unable to be categorised into the defined

specifications. Speculatively, an increase in homophone errors would indicate that the system

is struggling to model a large enough context to determine the correct spelling of the target

word, whereas an increase in minimal pair errors could indicate that there is a deficiency in

the language modelling strategy. However, the model has produced the majority of errors

with determiners (42 for Swbd and 177 for Ch), minimal pairs (26 for Swbd and 68 for Ch)

and verb inflections (21 for Swbd and 51 for Ch). These results correlate with findings in

[161] where turn-initial words, such as determiners and interjections can be more difficult

to recognise, especially in the conversational speech domain where there are inconsistent

pauses and speaking rates through turn-taking. It was also hypothesised that similar lexical

terms, have similar feature values, although the high rate of minimal pair errors could also

be a factor of various other causes such as low word probabilities for the target word or

pronunciation disfluencies.



3.5 Empirical Analysis of Recognition Outputs 69

3.5.4 Analysis of Word Lengths

The model output errors were extremely high for shorter words, which could indicate that

the models struggle to recognise words that are monosyllabic, words where speech rate is

varying or is confusing the boundaries between phonemes. Shorter words typically result in

a deceleration in speech rate [28], which is also affected by the position of the word in the

speech segment.

However, as the total amount of shorter words spoken during typical conversational speech

is much higher, the frequency of the word errors should be normalised by the frequency

of the occurrence of the word in the dataset. Figure 3.5 shows the frequency of the words

as a function of the number of letters that they contain. The most frequent word length is

between 4 and 7 letters for the Switchboard test set [5]. This directly correlates to Figure 3.6

which displays the substitution errors on the Callhome test set by length of the word. Upon

normalising the frequency of the substitution errors by the total number of occurrences of the

word in the dataset, the error frequency by length of the word changes. Figure 3.7 shows that

the percentage of substituted words is relatively evenly distributed across word length, aside

from an outlier that is 2 letters long, which in this case is the word “is”.

Fig. 3.5 Frequency of words by number of letters in the Switchboard test set from [5]
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Fig. 3.6 Substitution errors by the LSTM End-to-End ASR model [2] on the Callhome test
set [5] by word length

Fig. 3.7 Normalised Callhome [5] substitution errors by word length from the LSTM End-to-
End ASR model [2]

Upon normalising the errors by the frequency of the words in the entire training and test

set, it seems that there is little correlation between frequency of error and the length of the

word.
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3.5.5 Discussion

As the categorisation of errors is binary, analysing model outputs does not necessarily

discriminate between errors that could be attributed to a set of errors. It may be more

informative from an interpretative perspective to classify errors into sets of categories.

However, the major limitation of these methods of analysis is that they simply highlight

patterns of errors but do not give any further causal information to allow interpretation.

Trial-and-error improvements to the modelling approach would still need to be performed

based on these results, which can be inefficient and computationally expensive. These factors

attributed to the development of the analysis framework described in Section 3.6. It is also

unclear if one aspect of the modelling approach is altered to target a specific error, whether

the modification will have an unknown effect on another downstream process and adversely

affect the performance. This hypothesis is investigated further in Chapters 4 and 5.

3.6 Experimental Framework for Representation Analysis

As it is unclear how the model architecture or residual connections within the models,

described in Sections 2.3.2, 2.3.3 and 2.3.4, contribute to more optimal representations,

the neural representations can be analysed with regard to the recognition performance. By

generating a method to view a window into the behaviour of neural representations within

the network, this was hypothesised to provide information on the interaction between the

modelling approaches and the training data.

The following analysis using similarity indexes focuses on interpreting the similarity of

the neural representations and providing answers to questions such as: given the same speech

input, how similar are the learned representations throughout training epochs? Do specific

architectures have a higher representation similarity? Is neural representation similarity

correlated with model performance?
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Using correlation analysis techniques from [176] and [177], the key contributions of this

Section are summarised as follows:

• The development of a framework to enable representation correlation analysis with

multiple indexes using state-of-the-art End-to-End architectures, Section 3.6.

• Similarity index comparison on an ASR task, Section 3.6.4.

• Verification that neural representation analysis of End-to-End network structures can

be used to visualise pathological aspects of adaptations for conversational telephone

speech recognition models.

• Discussion regarding the interpretation of representations of End-to-End architectures

and potential future work that would aid and develop these findings, Section 3.6.4.

This work was published as [24].

3.6.1 Related Work

Current correlation analysis techniques from [177] and [176] have been used to compare

representations within DNNs for various applications such as image recognition and language

modelling. Populations of neural representations have been compared and evaluated using

several methodologies with the aim of interpreting or explaining relationships between and

across neural layers [177, 176, 178]. Correlation analysis provides information regarding how

different or similar neural representations are throughout a model layer. When correlation

has been conducted through model training iterations, correlations between neural layers

and models has allowed interpretation of the dependent neurons upon specific tasks. For

example, where correlation is high between neural layers of 2 models trained on a divergent

tasks, the neural representation space is similar and potentially independent of the particular

task. Interpretation is non-trivial where multiple context dependencies are enveloped in the
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same representations, such as End-to-End ASR, therefore it was not clear which aspects of

representations should be compared or which similarity index would be a suitable measure.

In order to compare network representations of DNNs, Canonical Correlation Analysis

(CCA) [179] and Centered-Kernel Alignment (CKA) [176] have been used as statistical

correlation indexes, which are described in more detail in Section 3.6.2. CCA and CKA

enabled the identification of shared structures across representations. For SVCCA [177],

Singular value decomposition (SVD) is computed before the CCA index to reduce the

dimensionality of the neural representations, in order to compare representations across

networks. Using SVCCA for an image classification task [180] established that network

solutions diverged predominantly in the intermediate neural layers. SVCCA has also been

used as an index in order to observe the development of linguistic features during encoding

in language models [178]. As neural layer depth was increased, the correlations within the

encoded network representations decreased, which indicated the representation spaces of

deeper layers were more dependent on the linguistic features investigated. Additionally,

CKA was used to observe that task-specific trained neural layers develop more similar neural

representations, shown by higher correlations of neural dependencies.

Correlation indexes have not yet been used to analyse neural representations of End-to-

End architectures with speech data for speech recognition tasks. The following experiments

present a comparative study of neural representation indexes with state-of-the-art End-to-End

ASR networks.

3.6.2 Similarity Indexes for End-to-End ASR Modelling

Due to the undefined separation of modules within End-to-End ASR networks, it is relatively

unclear which, what and where the originally separate ASR system context information is

learned, such as acoustic or language modelling. The internal parameter dependencies upon
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the structures of the model, and their effect upon the resulting performance, are ambiguous

and inherently complex.

Fig. 3.8 Overview of neural layers L1 and L2 showing the activation output vector for each
layer zL

i

Using statistical correlation analysis methods, it is possible to relate two sets of ob-

servations within a network to find their correlation relationship. As shown in Figure 3.8,

for the dataset X = {x1, ...,xN} and neuron i in layer L, the activation output vector is

zL
i = (zL

i (x1), ...,(zL
i (xN)). By conducting correlation analysis techniques that are invari-

ant to affine transforms, this enables comparisons between different neural networks and

observations on the dynamic behaviour.

Singular-Value Decomposition with Canonical Correlation Analysis (SVCCA)

CCA [179] is used to find bases w,s for two matrices such that, when the original matrices

are projected onto these bases, their correlation ρ is maximised:

ρCCA(L1,L2) =
wT

∑L1L2 s√
wT ∑L1L1 w

√
sT ∑L2L2 s

(3.1)
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where ∑L1L1,∑L1L2 ,∑L2L2 are the covariance and cross-covariance of layer 1 L1 and layer 2

L2. In the case of ASR neural networks, this is between the neural layers for N data points

where L1 = {zL1
1 , ...,zL1

N } and L2 = {zL2
1 , ...,zL2

N }. The covariance matrix of the layers is a

measurement of the variation within the layer activation outputs, while the cross-covariance

matrix is a measurement of the variation between the activation outputs of different layers.

These are calculated by finding 1
N · (L1 − L̃1)

T · (L1 − L̃1) and 1
N · (L1 − L̃1)

T · (L2 − L̃2)

respectively, where L̃ denotes the mean vector of the layer.

The projected views of L1 and L2 are then obtained to be the top 99% representative

dimensions, using SVD, in an attempt to reduce potential noise in the representations, to

form subspaces L′
1 ⊂ L1,L′

2 ⊂ L2 [177]. CCA [181] is used to maximise the correlation of

the projections of the linear transform of L′
1,L

′
2 by identifying vectors w,s to maximise:

ρSVCCA(L1,L2) =
⟨wT L′

1,s
T L′

2⟩
||wT L′

1|| ||sT L′
2||

(3.2)

The correlations ρ are higher when the representations have encoded more similar informa-

tion.

Centred Kernel Alignment

CKA, first introduced in [182], is another similarity metric that has been used to measure the

similarity of neural representations. CKA resembles CCA but is weighted by the eigenvalues

of the corresponding eigenvectors. It is also similar in effect to SVCCA but incorporates the

weighting symmetrically and doesn’t require matrix decomposition. Instead of comparing

multivariate features of the neural layers, the coefficiency between every pair of examples

in each representation is measured, then the correlation computation is conducted. This is

based on the Hilbert-Schmidt Independence Criterion (HSIC), which is defined as:

HSIC(F,G) =
1

(n−1)2 tr(FHGH) (3.3)
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where Fi, j = f (zL1
i ,zL1

j ) and Gi, j = g(zL2
i ,zL2

j ) are two kernels of the ith and jth layerwise

neural representations zL1 and zL2 , n is the dimension of the representations, and H is the

centering matrix. The centering matrix is defined as H = In − 1
nII

T [182]. The HSIC [183] is

used to measure the statistical independence between two distributions of activations. This

attempts to measure the pairwise similarity between examples and between features by taking

the sum of the squared dot products between every pair.

To measure the similarity index between the internal representations, the correlation ρCKA

is determined to be a normalisation of HSIC [176]:

ρCKA(K,L) =
HSIC(F,G)√

HSIC(F,F)HSIC(G,G)
(3.4)

which enables CKA to be invariant to the orthogonal permutation of neurons and invariant to

scaling, which can allow comparison between layers of neural representations [176].

Projected Weighted Canonical Correlation Analysis

Another method to reduce the sensitivity of the CCA, is to replace the SVD operation within

SVCCA by a weighted mean with CCA, referred to as PWCCA [184]. This allows the

canonical correlations to have a higher weight if they are more influential to the underlying

representation, based on the hypothesis that CCA vectors that account for a greater proportion

of the original outputs are likely to be more important to the underlying representation.

Where L1 has output activation vectors (zL1
1 ,zL1

2 , ...,zL1
N ) and CCA vector a=(w)T

∑
−1/2
L1,L1

L1,

the approximate weight α̃i can be determined by the measure of the output that is accounted

for by each ai:

α̃i = ∑
j
|⟨ai,z j⟩| (3.5)
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By normalising with ∑i αi = 1, the PWCCA can be determined as a distance:

ρPWCCA(L1,L2) = 1−∑
i=1

αiρCCA (3.6)

with reference to Equation 3.6.2.

PWCCA alleviates potential accrued errors when pruning with SVD, by taking the

weighted average of the vectors to reduce the sensitivity of the analysis, although does

not represent the irregularities within the internal representations. This approach is also

outperformed by CKA in [176] and is not invariant to networks with different initialisations

and architectures either.

3.6.3 Experimental Setup

Both the LSTM and transformer encoder-decoder models described in Section 3.4 were

used for the following statistical analysis experiments. While the error outputs can be

observed for each model after training, there currently exists no strategy or tools to attempt

to understand the internal representations of End-to-End models. By understanding the

dependencies of optimising parameters, different modelling approaches, and training regimes

it is hypothesised that these insights could be used to improve model performance for specific

datasets or domains.

To investigate the dependencies of the neural representations within End-to-End models,

SVCCA and CKA, described in Section 3.6.2, were applied to the activation outputs of

each model layer across training epochs. In order to conduct a consistent analysis for each

model and index, several further steps were necessary: firstly, the model parameters were

preserved at each epoch of the ASR task; and then they were fed to a separate pipeline for

the extraction of the activation embeddings for each neuron. To ensure consistency, this was

done by feeding in a controlled input of 100 speech frames to all architectures and extracting
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the activation output at each neuron, enabling the representation analysis methods to be

conducted concurrently. The input features were 80-dimensional filter banks. Where neural

layers did not have the same dimensionality, such as between the 2D convolutions and the

1st encoder layer, linear interpolation of the narrower layer to the same dimensionality as the

wider layer was conducted due to the different spatial dimensions of the neural layers and

thereby data-points, as both SVCCA and CKA methods require representation vectors to be

the same dimensions. To compare the correlation coefficiency across the number of layers in

the network, the spatial dimensions of the activation outputs were flattened into the number

of data-points, in order to provide a spatial representation of each data-point.

3.6.4 Results and Analysis

The proposed analysis framework allowed the observation of the layer-wise representation

analysis methods across scaled convolutional layers within an ASR task. Comparison across

layers allows the observation of the converged layer correlations, while comparison across

epochs shows the hierarchical representations within the layers as the models are trained. In

this case, convergence occurs when further training does not improve the recognition perfor-

mance of the model. Upon evaluation with the Hub5’00 set [185], the WER performance

of this architecture is displayed in Table 3.9. Increasing the neural depth of the CNN layers

improved accuracy slightly up to 3 layers but results varying the spatial dimensions of each

layer showed little improvement. The performance was observed to be limited when varying

the dimensionality of each layer across the variable sized CNN architectures, shown in Table

3.9, with the best WER performance achieved with a 3 layer CNN.

Figure 3.9 shows the CCA correlation coefficiency through each layer for all models with

differing numbers of network layers (from 1 to 6) once each model has been trained. Upon

comparing the correlation coefficiency across the layers within each model, the models with

more layers have more variation in the neural representations than the other models. The
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Table 3.9 Variable sized CNN layers for LSTM End-to-End ASR model [2] evaluated on the
Hub5’00 test sets [5]

CNN Architecture SWBD WER% Clhm WER%

6 layers 11.4 22.4
5 layers 10.7 21.3
4 layers 10.9 21.2
3 layers 10.5 20.8
2 layers 10.6 20.9
1 layer 11.6 22.5

models with 2 and 3 layers also had slightly better performance results, which corroborates

with results in [176]. However the 6 layer CNN model had similar coefficiency but worse

performance than the other models; this instigated further investigation to understand the

representation space relationship with the training regime.

Fig. 3.9 The converged model CCA coefficiency across all the End-to-End ASR models with
increasing amounts of layers

During the training process, Figure 3.10 shows that as the number of the layers increased,

the coefficiency of each layer approached 1 at different rates but in parallel. Using SVCCA
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Fig. 3.10 CNN neural representations of the LSTM encoder-decoder model [2] evaluated
with SVCCA (top) and CKA (bottom) through time as performance converges

analysis, described in Section 3.6.2, to correlate the activations across the training epochs, it

was observed that layers 1, 2 and 3 converge together at epoch 17, whereas deeper layers

(layers closer to the output) converged slightly later. Where the coefficiency rate is closer to

1, this indicates that the representations within that layer between each epoch are relatively

consistent, highlighting the relationship between the neural representation space and the

training regime.

In order to understand whether different insights could be uncovered using other statistical

indexes, Figure 3.10 also shows the CKA coefficiency, described in 3.6.2, of the CNN

architecture. It was observed that the SVCCA analysis is more sensitive to the initialisation

parameters of the model than CKA as there is a much greater distribution of coefficiency at

the first epoch across all the layers. With both strategies, a hierarchical correlation within the

layers across training can be observed, although the CKA results suggest that there is some
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unstable behaviour present in deeper layers; for example the small spikes in coefficiency

across layer 6. The CKA results potentially differ from the SVCCA results, due to the

pruning of the SVD component of SVCCA while also assuming that all the coefficiency

vectors are equally important to the representation of the ASR task.

Fig. 3.11 LSTM [2] correlation coefficients of neural representations evaluated with SVCCA
(top) and CKA (bottom) through time as performance converges

The LSTM neural representations, within the encoder-decoder model [2], are displayed

in Figure 3.11. Comparing the SVCCA correlation results with the CKA results, it can be

observed that the correlation is slightly under-estimated by the SVCCA implementation,

although both techniques display similar attributes. By comparing the internal representations

with SVCCA and CKA, the behaviour of the internal dynamics of the neural representations

within a model can be observed to be invariant to transformations, in a robust method. The

coefficiency across epochs suggests that there is an observable bottom-up behaviour within

the LSTM representations due to recurrence, with convergence across all layers occurring

around epoch 22.
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Fig. 3.12 Transformer [1] correlation coefficients through epochs as performance converges
produced with SVCCA (top) and CKA (bottom)

The transformer model [1] layer encoder output representations, shown in Figure 3.12,

emphasise the attending mechanism pathology present after the self-attention and linear

operator. It can be observed that the higher layers of the Transformer encoder are less

susceptible to the attention pathology than the deeper layers, which don’t converge completely

even after 80 epochs. There is a more noticeable distinction that can be ascertained from
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the CKA analysis, which retained more distributed results, that there is similar overall

hierarchical learning dynamics as was observed in the CNN layers in Figure 3.10.

3.6.5 Discussion

By using SVCCA as a method of analysing the internal representations for an End-to-End

ASR framework, it is possible to observe the dynamics of the neural network representation

behaviour, although the pruning operation appears to under-represent the neural represen-

tations compared to using CKA. This is partly due to the assumption that all of the CCA

vectors are equally important to the neural representation but also the SVD component of the

SVCCA technique in Section 3.6.2 relies on the reflection of class information, which, for

End-to-End speech recognition, is a potential limitation. By implementing the CKA analysis

method in Section 3.6.2 it is possible to visualise the pathology of neural representations

during training, particularly in the Transformer model, Figure 3.12, which is indicative of the

dependencies upon context dependencies, particularly for wider layers.

The techniques described in Section 3.6.2, allow the observation of hierarchical behaviour

of CNN and Transformer neural representations across training, Figures 3.10 and 3.12, whilst

also providing insight on the bottom-up representation behaviour within the LSTM layers

(without residual connections), shown in Figure 3.11. The dependencies between layers

across epochs exhibit similar learning dynamics as language models [186]. The similarity

indexes could also be used in future work to compare the correlation of the trained neural

layers of various modelling approaches across different speech datasets, such as noisy or

augmented data, to observe how the neural layers respond dynamically during the training

process. These experiments could then be directly correlated with the performance results.

Additionally, it has been noticed that scaling the depth of the convolutional layers had

a limited effect upon model performance in the case of the LSTM approach, as shown in

Table 3.9. Expanding the results from [184], Figure 3.9 provides some evidence that better
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performing models converged to similar solutions, however the 6 layer CNN suggests this is

not always the case. The poorer performance of the 6 layer CNN could be attributed to an

over-fitting issue and to investigate this further, the potential memorisation within the neural

representations would be need to be undertaken. These results can be expanded to further

develop and explore better architecture solutions for End-to-End ASR performance, whilst

gaining some insight of the effect architecture changes have upon network dynamics.

Further investigation of the attributes for the dependencies would be required, for in-

stance, do the unstable deeper layer neural representation correlations correspond to noisy

components within ASR task? Furthermore, an extension to this work could be the analysis

of neural representations on out of domain data, as the structural properties of the different

layers could be beneficial to building models for few-shot-learning in ASR.

3.7 Summary

This Chapter aimed to investigate state-of-the-art End-to-End ASR frameworks, where

Section 3.3 discussed the current state-of-the-art End-to-End frameworks and compared the

recognition performance. It was found that attention-based encoder decoder models are able

to reach the best recognition performance on a conversational test set Hub5’00 [5].

Experiments conducted in Sections 3.5.2, 3.5.3, and 3.5.4 attempted to understand

whether there were any underlying patterns within the model output errors using current

evaluation metrics. This was to investigate whether different attention encoder-decoder

models produce outputs with specific types of errors. These experiments highlighted the

fundamental flaws of using the current evaluation metrics when attempting to interpret the

relationship between model approach and underlying causes for predicted errors. It is difficult

to observe model output errors and therefore difficult to adapt an approach to target those

errors.



3.7 Summary 85

Instead, Section 3.6 attempted to understand how the modelling approach can contribute

to more optimal representations for End-to-End ASR performance. It is argued that it is

important to be able to interpret internal dependencies of modelling approaches to develop

more informed improvements and have confidence in the behaviour of a chosen modelling

approach.

A framework was developed in order to enable neural representation analysis with

correlation indexes, described in Section 3.6.2. This framework extracted activation outputs

of LSTM and transformer encoder-decoder models during training. The activation outputs

were compared through layers, shown in Figures 3.9, 3.11 and 3.12 and it was found that

models exhibit a layerwise hierarchy when trained with conversational speech data. The

correlation of the hierarchies was observed to be an indicator of recognition performance,

where the results of Section 3.6.4 showed that model with highest coefficiency of converged

neural layers performed the best.

These insights aim to progress interpretive analysis of modelling for End-to-End ASR and

potentially provide techniques that could be utilised in multiple domains. In order to further

understand the relationship between neural representations, Chapter 4 extends the analysis

with acoustic modelling techniques using different approaches and domains of data. Chapter

5 extends the analysis using different LM regimes to attempt to explain the dependencies of

neural representations and highlight dependencies of specific layers to particular contextual

information.
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4.1 Introduction

Different acoustic modelling techniques are often required for different domains of data,

thereby orchestrating research to explore new approaches. This chapter explores the imple-

mentation of scalable multi-band CNN models to capture longer-term acoustic dependencies,

inspired by a mixture of experts (MoE), which has been shown to be effective in natural lan-

guage processing [187] [188] and vision domains [189]. This approach involves partitioning

the modelling (experts) to create more specialised sub-modelling, where the outputs of each

expert is combined by taking the weighted average. Using this approach aims to improve

acoustic representation modelling while keeping the inference cost constant by applying a

subset of parameters to each sample.

As it is unclear how the these models adapt to the learned features, the neural representa-

tions of the proposed models are compared to observe the interaction between the developed

techniques and the data, building upon previous work from [24]. SVCCA has been used

previously [177] to compare DNN representations, while this work aims to provide further

insights on the similarity of the learned representations across training and provide a discus-

sion on the distinct representations that occur within convolutional-transformer models and

the adaptive memorisation capability of the transformers. The following work is comprised

of experiments published in [25].

4.2 Related Work

Particular focus of current developments with attention-based models have involved data

augmentation techniques [166], [190], [191] and vastly increasing model depths [192], [156]

in an attempt to provide richer representations. However, it is not always clear whether these
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models are generalising to the data or memorising the data and the performance improvements

are not attributed to the structures within the actual model architecture. Generalisation refers

to the ability of the model to perform well on unseen or new data that was not part of the

training data, where the model has developed representations that represent the relationship

between the data domain and output. While memorisation refers to the concept of model

overfitting, where the model memorises the input-output mapping of the training set and

struggles to generalise to new or unseen data. It was argued in [178] that by comparing the

similarity of LM representations, it was possible to observe when a LM was memorising

data by training models with specific and randomised topics, then comparing the layerwise

representations.

The current state-of-the-art approach, described in [133], utilises the combination of

CNNs and a transformer to provide further improved ASR performance. It is hypothesised

that this is due to the ability of CNNs to capture richer local feature representations while the

transformer is better able to capture global context. The approach from [116] attempted to

approximate the information in the attention matrix of the original transformer model. This

was done by linearly scaling the attention by projecting the embedding matrix into lower

dimension space then computing the inner product. A further attempt from [193] aimed

to remove the independence assumptions during modelling to capture long-term context

dependencies for End-to-End models. This approach used a knowledge distillation technique,

where a model trained with different data distills knowledge into another model. In this

case, a hierarchical transformer model handles utterance level contextual information and

discourse level information independently, while sharing the learned dependencies with

another model.

Regarding statistical indexes to analyse models for speech applications, [194] investigated

contextual word representation similarity in order to understand how representations from

different models and layers could capture different properties. Several similarity metrics
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were considered for this task, while CCA was utilised for the assessment of representation-

level similarity and was able to provide insights on layerwise representation dependencies.

SVCCA was used in a comparative study [195] on state-of-the-art self-supervised algorithms.

The similarity index was used to interpret the similarity between representations learned by

different models and also to estimate how training loss correlated with model performance for

downstream tasks. It was found that the objective of the self-supervision task had a greater

impact upon the similarity of learned representations than the model architecture and the

authors were able to discern a relationship between the correlation between self-supervised

loss and speaker classification performance.

A comparative study of statistical correlation indexes for End-to-End ASR representation

analysis was shown in Chapter 3 and published in [24]. SVCCA and CKA indexes showed

similar results for correlation analysis of neural representations. This method of representa-

tion analysis has not been conducted to assess acoustic context for End-to-End ASR models

and could provide insight on context dependencies within these models.

4.3 Acoustic Modelling for End-to-End ASR Transformers

When CNNs are combined with models for ASR, the spectogram of the audio signal can

be processed in segments. Combing with recurrent-based models allows local feature

information to be captured progressively [196], while the transformer model is more able

to capture longer range global contexts [1]. Similar approaches, as in [133], combine

the self-attention mechanism of the transformer with convolutions to improve recognition

performance for ASR tasks. However, it is unclear how the neural representations in models

such as the LSTM [2] or transformer [1] adapt to the features learned by the CNN.

As CNNs process the entire spectogram of the audio signal with the same time-frequency

resolutions, number of filters, and dimensionality reduction, previous work [197] has shown

that higher resolution features can be extracted if the lower frequency bands are processed
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with high frequency resolution filters and high frequency bands with high time resolution

filters. This is determined by the theory that there is more “voice information” in the lower

frequency bands than the higher bands. Furthermore, [198] found that deeper transformer

layers dilute audio features, and that the distinction is more profound with spontaneous

conversational speech. It is hypothesised that by adapting the CNN layers to learn different

representations of the same feature space, that this would cause the dependent representations

within the transformer layers to adapt and potentially improve recognition performance for

conversation speech.

4.3.1 Proposed Acoustic Modelling Approaches

Multi-Band (mband) Modelling Approach

A multi-band CNN model (mband) is proposed to learn different representations of features

for ASR. The multi-band features mi are defined as having C sub-bands. The ith filter bank

of the jth band of the frame of speech can be described by:

m( j)
i = f T

C x( j)
C (4.1)

where fC is the discrete cosine transform function:

fC =

√
2
C

cos
[
(k−0.5)

iπ
C

]
(4.2)

and where k is the channel energy amplitude.

By modifying the CNN layers with separate filters, features can be extracted separately

at multiple levels of the frequency spectrum. The output layers can then be concatenated

together. The proposed architecture is shown in Figure 4.1, where the input is passed to 3

band-pass filters that evenly split over the spectral frequency. The output of the filters then

passes to CNN layers which are then concatenated and output to the encoder layer.
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Fig. 4.1 Multi-band CNN architecture: frequency filters applied in parallel through multiple
CNN layers

Multi-Channel Modelling Approach (mchan)

Along a similar methodology, a multi-channel (mchan) approach takes the entire input

into parallel convolutional blocks, without band-pass filters, in an attempt to learn different

representations of the same acoustic signal. This will also allow a comparison between models

with multiple channels but without the additional filtering methodology. The representations

are then aggregated using MoE in the same method as the mband approach. As shown in

Figure 4.2, instead of taking the frequency bands as different streams, the whole input is

taken in multiple streams.

Transformer End-to-End ASR Model

Transformer models are currently the predominant choice for a multitude of domains, such

as image recognition and speech recognition due to their state-of-the-art performance [133,

141, 199]. The model published in [1] has especially been utilised for End-to-End speech

recognition tasks due to its ability to create a more accessible parallel training method which

has allowed End-to-End solutions to make use of larger amounts of data. As transformer



4.3 Acoustic Modelling for End-to-End ASR Transformers 93

Fig. 4.2 Multi-channel CNN architecture: model with 3 separate streams

End-to-End ASR models are the current state-of-the-art, the implementation in [3] was used

for the following representation analysis.

4.3.2 Representation Analysis Method

The hypothesis is that the representations learned by the mband and mchan approaches will

diverge from representations learned by a standard CNN model, as in Chapter 3, Section 3.6.4.

When the output is passed to the transformer layers, it is unclear whether the transformer

layers generalise to the different representations. Therefore, the SVCCA analysis index

used in Chapter 3, Section 3.6 can be used to directly compare the similarity of the learned

representations throughout the transformer layers. The activation embeddings of each neuron,

at each epoch were extracted using a separately developed pipeline. To ensure consistency,

this was done by passing a controlled input of 100 speech frames through each trained model,

and extracting the activation output at each neuron. To aggregate the correlation coefficiency

across layers, the spatial dimensions of the activation output vectors were flattened, which

provided spatial representation of each neuron.
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4.3.3 Experiments

The mband and mchan models were trained with the Switchboard dataset [6] with 300

hours of transcribed conversational telephone speech and evaluated on the Hub5’00 [5] and

English RT03 [200] test sets. The Switchboard and Hub5’00 data are described in Chapter

3 Section 3.2. The English RT03 set consists of approximately 6 hours of transcripts from

conversational telephone speech from the Switchboard and Fisher collection [6, 9].

80-dimension feature filter banks were extracted, using the Kaldi [169] data preparation

software, from 25ms windows with a stride of 10ms.

Acoustic Modelling Results and Analysis

The mband and mchan models were compiled with the ESPRESSO framework [3]. 80-

dimension filter banks were extracted with a 25ms window and 10ms stride to gain more

detailed spectral information. The baseline CNN-transformer model has a multi-layer stacked

2-dimensional CNN with dimensionality from 1 to 128 dimensions, with kernel size 3 x 3 and

stride 1 and batch normalisation between each CNN layer [173]. The final convolutional layer

is projected to a transformer encoder, described in Chapter 3, Section 3.3. The transformer

model has 12 stacked encoder layers with embedding dimensions of 512 x 2048 and 6

decoder layers.

Table 4.1 CNN-transformer [1] architectures performance on Hub5’00 Switchboard and
Callhome test sets [5]

Model Swbd Clhm

CNN + transformer 10.7 20.2
Mchan CNN + transformer 10.4 20.4
Mband CNN + transformer 10.5 20.5

Mband CNN + dropout + transformer 10.6 20.2

As can be observed in Table 4.1, the mband and mchan models perform comparatively

well to the baseline CNN-transformer model on the Hub5’00 test sets [5]. The mband
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Table 4.2 CNN-transformer architectures performance on RT03 Switchboard and Fisher test
sets

Model RT03 S RT03 F

CNN + transformer [1] 21.2 13.3
Mchan CNN + transformer 23.5 15.2
Mband CNN + transformer 23.3 14.9

Mband CNN + dropout + transformer 23.5 15.5

model achieves a lower WER on the Switchboard test set but slightly worse on the other

test sets, while the mchan model performs similarly on both test sets. A mband model with

dropout regularisation of 0.1 for each band was also included, in an attempt to improve the

generalisation of the network, based on work from [166]. While this showed to improve the

performance on the Callhome test set, the Switchboard set showed no improvement.

Furthermore, as can be observed in Table 4.2, the performance of the mband and mchan

models are both also worse using the RT03 test sets [200]. The mband model with dropout

had the highest WER on the RT03 Fisher (RT03 F) set and on the RT03 Switchboard set

(RT03 S). The mchan model had slightly better WER results than the mband models but the

results were very similar, while the basline CNN transformer model reached a much lower

WER for both RT03 test sets.

Figure 4.3 displays the WER over the validation set across epochs. It can be observed

that, initially there is a large spike in WER on all models, although this is significantly higher

on the baseline CNN-transformer model. The mband with dropout and mchan models had the

smallest spikes in WER during training, which could be partly attributed to the regularisation

effect of the dropout parameter with the mband model. All models converged to roughly the

same error rate on the validation set a similar epoch.
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Fig. 4.3 Validation set WER across all models during training on Switchboard data [6]

Analysis

The graph in Figure 4.4a shows the neural representation correlation coefficiency across

the layers of the baseline CNN-transformer model through training. There is a hierarchical

behaviour to the representation correlations observed without clear convergence even in the

earlier layers of the network. The unstable curve suggests that parameter re-weighting for the

context information is occurring in the deeper layers, represented by the yellow gradient lines.

Very similar patterns can be observed through the mband and mchan models, Figures 4.4b

and 4.4c respectively, as both present the same instability of the deeper layers throughout the

epochs during training. However, one of the only distinctions is that the convergence of the

earlier layers appears to occur earlier, at epoch 5, with the mchan model. Despite these small

differences in the neural representations across the earlier layers of each model, the models

performed similarly on the Hub5’00 test set [5].
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(a) Baseline transformer [1] SVCCA correlation coefficients

(b) Multi-band transformer (mband) SVCCA correlation coefficients

(c) Multi-channel transformer (mchan) SVCCA correlation coefficients

Fig. 4.4 Implementations of different transformer models’ correlation coefficients as perfor-
mance converges with Switchboard data [6]
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4.3.4 Discussion

The scenarios in these experiments are set with CNNs, multi-channel CNNs, and multi-band

CNNs to explicitly distinguish the input layers for the following encoder-decoder transformer

layers. The mband model explicitly modelled different frequency bands of the acoustic signal

separately and aggregated them. The mchan model learned different representations of the

same acoustic signal with a MoE approach to aggregate these representations. Although

there was a small difference in convergence speed during training, the overall representation

learning and performance remain similar on the Switchboard training set [6]. Thus it can

be hypothesised the transformer layers adapted different types of input representations to

a similar average representational space, which highlights the memorisation capability of

the transformers rather than the generalisation. The performance of the CNN, multi-channel

CNN and multi-band CNN models varied in the Callhome and RT03 test sets [5, 200]. As

the models were trained with Switchboard data, if the transformer layers had generalised

the input acoustic signal and the target categorical lexicon distribution mapping, the result

patterns on other test sets should have been similar. These performance results, combined

with the analysis showing the similar representation correlations through all models, indicate

that the transformers do more memorisation than generalisation with the training data.

As the approaches were trained with the same dataset, it is unclear whether the models

would learn a similar representation space for different domains of speech data. There has

been little research conducted regarding the representation spaces learned across corpora and

the representation dependencies upon performance across corpora.

4.4 Cross-Corpora Modelling Analysis

End-to-End ASR frameworks are typically data-driven and often fine-tuned to the corpora in

order to improve the recognition performance [62, 3, 63]. The ability to use larger amounts of
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training data can also significantly improve the recognition performance [201] however, this

can be limited by computational resources or data availability. These factors have influenced

techniques to improve the representation capacity of the network structures [202, 166]. By

learning representations of speech that are robust across various acoustic conditions and

variability, inter-speaker and intra-speaker variance, the general recognition performance of

a model should improve without the requirements for increased resources.

The following experiments aim to provide some explainability regarding the dependencies

of internal acoustic representations. Despite numerous variations of acoustic modelling

structures, there has been little exploration of the ambiguous internal dependencies and

their relationship to model recognition performance across different speech corpora. The

cross-corpora modelling analysis aims to explore the relationship between performance and

salient structures of attention-based End-to-End ASR models with cross-corpora training

data. These insights are important for the development of models to exploit hierarchical

dependencies and improve recognition performance. Using different corpora and recording

scenarios, it is possible to develop diverse representations within the same model structures

and observe the changes in these representations. It is hypothesised that statistical analysis

can also be used to highlight neural representation dependencies and interpret their ability to

generalise, by observing the relationship between the correlation coefficients of neural layers

and their cross-corpora recognition performance.

4.4.1 Experimental Setup

The LSTM encoder-decoder architecture from [2] and transformer encoder-decoder architec-

ture from [1] were used as the ASR models. Further details regarding the architecture of this

approach can be found in Chapter 3, Section 3.4. The modelling approaches were kept the

same for the experiments in order to directly compare the learned representation spaces for

different datasets.
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The CNN architecture from [173] was used in combination with the LSTM and trans-

former architecture for feature extraction. This model was comprised of 4 stacked 2d

convolutions, with kernel size (3,3) on both the feature and time axes, stride of 1 and batch

normalisation between each layer. For the LSTM model, the convolutional layer was pro-

jected to the 3 bi-directional encoder layers, which had 2688×320 neurons in the first layer

while the second and third layers had a dimensionality of 640×320. The dimensions of the

3 layer decoder consisted of 688×320 for the first layer with the second and third layers at

960×320.

The same CNN architecture was used for acoustic feature extraction with the transformer

model [1]. The final convolutional layer was then projected to the 12 stacked encoder blocks

with embedding dimensions of 512×2048 and 6 decoder layers with positional embeddings.

4.4.2 Data

For the cross-corpora investigations, three of the most frequently published on datasets for

ASR were chosen: Librispeech [8]; Switchboard [6] and Wall Street Journal (WSJ) [7]. All

datasets are US-English to avoid cross-lingual incompatibilities during recognition. The

Switchboard corpus contains conversational telephone speech, Librispeech is a compilation

of read audiobooks and WSJ contains read news. This variation of domains is hypothesised

to lead to the generation of speaker-specific and domain-specific contextual embedding

representation during training. The test sets are the Hub5’00 sets [5], referred to as Swbd and

Callhome. To ensure performance results and network structures were completed by training

on proportionate data, the model trained with Switchboard used up-sampled data (to 16kHz).

The Librispeech dataset [8] consists of 1000 hours of read English audiobooks, mostly

from Project Gutenberg [203]. The data has been segmented to be aligned between the read

speech and the book text. The training data of the full dataset is split into a 360 hour clean

set, and 100 hour other set, where other refers to a predetermined challenging set of data for



4.4 Cross-Corpora Modelling Analysis 101

automatic systems to recognise. The models in the following experiments that are trained

with Librispeech [8] were trained using the train-clean-360 subset and not the full training

set. This will have some impact upon the overall performance of these models, although these

steps should make the experiments more comparable for the analysis process, rather than

being affected by training resources. The remainder of the dataset is split across development

and test sets that are not utilised for the following experiments.

The WSJ dataset is a compilation of read news articles from the WSJ archive from 1987

to 1989, often referred to as WSJ0 and WSJ1. The total number of speakers reading the

articles were split evenly across males and females. The article texts are between 5000 and

20000 words with variable perplexities, speaker-dependent sets and speaker independent sets.

The speaker dependent distinction was given to the data in order to train systems for speaker

adaptation. The training set for the models trained with WSJ [7] is the 71 hour si284 set

(284 speakers), with the Dev93 set for validation and Eval92 for testing. Naturally, further

datasets could be suitable for cross-corpora training also and could be explored in future

research. Training End-to-End ASR models can be computationally expensive and these

results candidly aim to provide initial insights into the learned representations within the

model structures.

4.4.3 Results

Table 4.3 WER of all End-to-End ASR models across the Hub5’00 [5], WSJ [7] and Lib-
rispeech [8] test sets

Model Trained Swbd Callhome Dev93 Eval92 Test-clean Test-other
LSTM Switchboard 13.6% 24.4% 26.5% 25.0% 32.6% 62.5%
LSTM WSJ 77.7% 82.0% 15.3% 12.9% 41.2% 71.1%
LSTM Librispeech 69.9% 76.1% 29.6% 25.9% 14.7% 38.9%

Transformer Switchboard 10.7% 21.1% 28.0% 33.3% 40.7% 64.2%
Transformer WSJ 72.0% 78.6% 17.6% 14.2% 40.2% 63.0%
Transformer Librispeech 63.3% 70.7% 26.1% 22.1% 14.0% 33.0%
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The focus of this experiment is to explore the variability among cross-corpora speech

representations and not to optimise ASR performance over all corpora. Therefore, the same

model architecture has been used with same number of parameters to train all the models

and test on a cross corpora regime.

Fig. 4.5 LSTM model [2] correlation coefficients through epochs. The legend depicts the
data the model was trained with and the index of the model layer

Table 4.3 shows the performance results, for each LSTM and transformer model trained

with the corpora and evaluated across all of the test sets. All of the models performed

relatively poorly on the Librispeech Test-other set (over 33% WER), likely due to the more

challenging speech data not present in any training sets. The models trained with WSJ [7]

and Librispeech [8] also resulted in poor recognition performance on the Callhome and

Switchboard sets [5]. It can be determined that all of the models struggled to recognise

conversational telephone speech unless specifically trained with this type of data, shown by

results on the Switchboard and Callhome test sets [5] being over 60% WER.

The LSTM models had slightly worse performance than the transformer models when

testing with conversational speech test sets [5], however, the models trained with WSJ [7]

and Librispeech [8] have such significantly poor results that it’s ambiguous to derive whether
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(a) Transformer model SVCCA correlation coefficients when trained with WSJ data

(b) Transformer model SVCCA correlation coefficients when trained with Switchboard data

(c) Transformer model SVCCA correlation coefficients when trained with Librispeech data

Fig. 4.6 Transformer model SVCCA correlation coefficients through time, as performance
converges, when trained with WSJ [7] (a), Switchboard [6] (b) and Librispeech [8] (c). The
legend depicts the index of the neural layers

either model outperformed the other. Across the Dev93 and Eval92 test sets the LSTM

models trained with Switchboard and WSJ showed slight performance improvement to the
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transformer models. Finally, across the Librispeech Test-clean set, the LSTM model trained

with Switchboard data achieved lower WERs% than the transformer model also trained

with the same data, however only the models trained with the Librispeech data managed

to reduce the recognition error rate significantly. These results indicate that training with

conversational speech and evaluating on cross-domain data using an LSTM model [2] reaches

a lower WER than training with read speech and evaluating using cross-domain data using

a transformer model [1]. The poor results across all test sets compared to other published

models [62, 133] also suggest that the modelling approaches require tuned parameters in

order to reach significantly lower error rates. This is explored further in Chapter 5, Section

5.3.3.

Figure 4.5 shows the correlation coefficients of the neural representations through epochs

for the LSTM models [2] trained across the datasets. This aims to show a representation of

how each layer of the models changes through time and provide a comparison between each

model. The solid lines represent the layers of the model trained with Switchboard [6] data, the

dashed lines represent the layers of the model trained with WSJ [7] data, and the dotted lines

represent the layers of the model trained with Librispeech [8] data. The black lines are the

1st layer of the models, the red lines are the 2nd layer of the models, and the blue lines are the

3rd layer of the models. Despite the random initialisation of the neural layers, there appears

to be more similar representations learned within the neural layers of the models trained with

WSJ and Librispeech, shown by the parallel pattern of each layer in Figure 4.5. Both of these

models’ neural representations have parallel correlations through the epochs, while the same

model trained with Switchboard [6] data does not exhibit the same pattern, especially during

the initial 10 epochs. The LSTM model trained with Switchboard reached a lower WER on

the Hub5’00 test sets [5] and the the representations of all neural layers are very similar across

epochs. The LSTM model trained with Librispeech data reached the lowest WER on the

Librispeech test sets while the representations in layer 1 have a lower correlation coefficiency
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in earlier epochs, then become more correlated in later epochs. The representations in layer 3

of the LSTM model trained with Librispeech remain more uncorrelated than the other layers

but this model only reached a lower WER for the Librispeech test sets and not the other test

sets. There were similar results and representation correlation coefficiency for the LSTM

model trained with WSJ and similarly this model only achieved lower WERs on the WSJ

test sets. Overall the LSTM model trained with Switchboard data seemed to generalise the

best and the representation correlation coefficiency of the layers is higher.

Figure 4.6 displays the correlation coefficients within the transformer model [1] represen-

tations. Similar to the LSTM model, the model trained with Switchboard data [6] exhibits

contrasting behaviour to the models trained with Librispeech [8] and WSJ [7]. Layers 1-5

of the transformer model trained with Switchboard seem to be more correlated throughout

training than layers 6-11. Layers 6-11 also appear to be less consistently correlated, but

still hierarchically correlated through epochs than for the other transformer models. All

correlations within the layers of the models trained with WSJ and Librispeech seem to be

relatively parallel but in mirrored order to the model trained with Switchboard, with the

initial layers being less correlated than the deeper layers. The transformer layers in the

model trained with Librispeech also display much less variation in the correlation through

the first 10 epochs. The transformer models trained with Librispeech and WSJ have similar

performance when evaluated with out-of-domain data and the representations within the

transformer layers have a higher correlation coefficiency. This indicates that the transformer

models are not creating generalised representations, a similar result to the results shown in

Section 4.3.3.

4.4.4 Discussion

The neural representation analysis in Section 4.4.3 found that in the layers of the LSTM

model [2] trained with Switchboard [6] (Figure 4.5), the internal representations among
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layers over epochs were more highly correlated than the layers of the models trained with

WSJ [7] or Librispeech [8]. [176] suggested that architectures with more significant variation

within the higher layer neural representations have poorer recognition performance, which

appears to corroborate with the results in Table 4.3. The results also suggest that model

parameters would need to be adapted for the particular dataset used for training in order to

improve the performance. [166] showed that models with different amounts of augmentation

have improved recognition performance with different data domains, such as noisy or conver-

sational speech data. Modelling approaches in [62, 3, 63] tune parameters, such as neuron

dimensionality, to datasets. These tuned model parameters may affect the correlation within

the layers and contribute to representation spaces that are more optimal when evaluating with

specific data.

The analysis observations between the models trained with read-speech show that the

neural representations are learned quite differently to the representations analysed in models

trained with conversational telephone speech, however using the correlation index SVCCA

[177] it was possible to highlight the neural representation similarities and distinctions. The

correlation coefficients within the LSTM layers of the models trained with read-speech

in Figure 4.5 also appear to show hierarchies of learned representations. The SVCCA

correlations shows a pattern of convergence through the network training, which corroborates

the theory that the neural layers learn the latent representations by first maximising the

mutual information between the input data and the latent representations, then minimising

the mutual information between the layer representations and output categorical distribution

[178].

The models trained with Switchboard appeared to generate overall more generalised

latent representations within the neural layers compared to the other models, as can be seen

by the recognition results across all the datasets. This is potentially attributed to features

of conversational speech, such as hesitations or incomplete utterances, that can contribute
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to model robustness. However, the transformer models seemed to not learn generalised

representations, despite the similar correlation coefficiency observed for the models trained

with Librispeech and WSJ. This corroborates with findings in [25].

4.5 Summary

Chapter 4 aimed to explore how to represent acoustic information for End-to-End ASR by

using mixture of experts approaches and parameter augmentation. Multi-band and multi-

channel CNN-transformer models, described in Section 4.3, have been implemented for an

End-to-End ASR task, with comparable results to a baseline CNN-transformer model, shown

in Section 4.3.3. These results showed that current developments in acoustic modelling

techniques do not directly translate to improved performance for an End-to-End ASR task. In

order to observe whether the chosen modelling approach was learning an enhanced represen-

tation space, analysis of neural representations across the model layers was conducted, also in

Section 4.3.3. The analysis results provided insight into the potential memorisation behaviour

of the transformer model, which was discussed in Section 4.3.4. Future extensions to this

work were proposed regarding the analysis of neural representations within End-to-End

models on augmented or noisy data to observe the properties of different layers.

Secondly, a cross-domain analysis has been undertaken for an End-to-End ASR task with

results and discussion on the performance of LSTM and transformer models when varying

training data and model structure. Using SVCCA as a correlation index has also highlighted

several aspects of the relationships between the models trained across different corpora and

the layerwise neural representations whilst relating the impact these have upon recognition

performance. Interpretative analysis is important to develop future modelling approaches

with meaningful strategies. Expanding the scope of the investigation into the attributes and

potential learned features that could be classified within the layers would provide a deeper

understanding of the properties of these architectures.
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As the analysis results on acoustic modelling for End-to-End ASR models were able to

provide some insights and interpretation regarding the memorising behaviour of transformer

models, Chapter 5 introduces methods for modelling language with End-to-End models. A

similar approach was undertaken, where the LM approach was varied using the same ASR

model, in order to observe modelling dependencies and provide an interpretative analysis.
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5.1 Introduction

While Chapter 4 explored acoustic modelling, another technique that potentially impacts

ASR model performance is the integration of LMs. However, it is not clear what effect the

integration of LM techniques with End-to-End models has upon the performance or internal

representations. End-to-End ASR models aim to learn a generalised speech representation to

perform recognition and there has been little research done to analyse internal representation

dependencies and their relationship to training with LMs. This Chapter investigates cross-

domain LM dependencies within transformer encoder-decoder models [1] using SVCCA

[177] and uses these insights to exploit the modelling approaches and improve recognition

performance. Section 5.2 covers methods of integrating LMs within End-to-End ASR models,

while Section 5.2.2 focuses on a technique called LM fusion and provides experiments with

reference to the performance dependencies. Section 5.2.3 provides some discussion regarding

the results, leading into Section 5.3.2 which highlights the reliance of integrating LMs upon

the performance of End-to-End ASR models. Analysis in Section 5.3.3 provide interpretative

results to visualise the dependencies used to develop models in Section 5.3.3, with improved

performance and how further interpretative analysis may aid development of future models

for ASR. The findings within this Chapter have been submitted in [26].

5.2 End-to-End ASR with Language Modelling

The typical approach to develop a an ASR system has been to use DNNs to model acoustic

features in order to enable recognition of graphemes or phonemes, replacing the requirement

for distinctly-optimised modules, such as LMs or pronunciation models. Using End-to-End

modelling approaches reduces the need for expert domain knowledge as it aims to train

the model jointly while adapting to diversity of speech. However, it has become common

practise for End-to-End ASR frameworks to include a pre-trained LM integration technique
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in order to improve recognition performance [125, 3, 62, 63]. This somewhat contradicts

the intention of End-to-End ASR framework applications and it’s unclear whether the LM

complexity can limited by the joint modelling approach. Techniques have been developed

that are able to improve recognition performance of the ASR system but it remains unclear

how dependent End-to-End ASR models are upon the LM integration technique chosen.

Fig. 5.1 End-to-End ASR encoder-decoder with LM shallow-fusion rescoring

LMs can be integrated and adapted for End-to-End ASR with techniques such as shallow-

fusion [204], cold fusion [205] or component fusion [206]. Cold fusion incorporates an

external LM using a gating attention-based mechanism. The first stage is to augment the

decoder with the gating mechanism, allowing it to selectively utilise the language model at

each time-step iteration and enable flexibility. The LM hidden state is then replaced with the

LM probability projected into a common embedding space, allowing for the integration of

different LMs without state discrepency.
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Component fusion [206] integrates an external trained neural network LM with attention-

based ASR frameworks by modifying the ASR system to equip an LM component, which

can be replaced during decoding. The LM component is incorporated by concatenating the

hidden states of the outputs of both the ASR system and the pre-trained LM. Similar to cold

fusion, a gate mechanism controls the importance of the contribution of the hidden state of

the LM. The main aim of this method was to strengthen the usability of large text-based

corpora and allow faster domain adaptation of systems.

Shallow-fusion [204] is a technique to rescore an n-gram LM at decoding to bias the

model towards independent context. This was originally presented for neural machine

translation where the LM was used to rescore the system’s output probabilities at each

time-step. In the case of ASR, the ASR system outputs a set of candidate words, then the

candidates are scored according to the weighted sum of the scores given by the ASR model

and the LM. As shallow-fusion requires lower computational resources, once the LM has

been pre-trained, this technique was chosen to be explored in combination with End-to-End

ASR models to show how an End-to-End ASR model benefits exactly from LM integration

techniques.

With reference to Chapter 2, Section 2.4.2, Figure 5.1 shows how LM rescoring is

structured with an encoder-decoder model, where x1:T are the inputs to the model, h1:T are

the hidden states of the encoder, cu are the attention weights, du are the decoder outputs, gu

is the output prediction of the LM based on the previous output labels yu−1. Shallow-fusion

decoding computes the weighted sum of a pair of posterior distributions over sub-words;

using one from the ASR model du and one from the sub-word LM gu. The sub-word LM is

an LSTM-based LM trained with restricted computational complexity, by only keeping the

most frequent sub-words and splitting the rest into characters, to enable conversion with low

information loss. The LM outputs gu is logP(yu) and the decoding is rescored by a log-linear
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combination:

logP(yu) = logP(du)+β logP(yu) (5.1)

where yu are the output labels, du is the decoder output and β is a scalar LM fusion weight.

Another technique called label smoothing [207, 208] has been used across multiple

domains, as well as ASR, to calibrate and improve model recognition accuracy. Label

smoothing modifies the CE loss with a weighted mixture of one-hot targets from the dataset.

There are 3 common types of label smoothing: uniform smoothing is where the mixture is

(1− p) of the one-hot targets and the remainder of the probability is distributed uniformly

across the vocabulary; unigram smoothing is a mixture using an LM trained on gold tran-

scripts; and temporal smoothing is a mixture using the distribution of neighbouring tokens

in the transcript. These approaches are used to aid the beam-search process and to help the

model recover from errors.

5.2.1 Related Works

A study in [198] probed language embeddings in attention-based approaches [141, 140] with

different types of speech: native read speech, native spontaneous speech and non-native

speech. One aspect of their study included the analysis of features within different layers of

the transformers to interpret semantic and syntactic features. Some layers of the ASR models

learned particular features, which were able to be extracted to improve the performance of a

speaker recognition task and a phone classification task. This approach extracted embeddings

from each layer of the transformer and then used a probing model to derive a predicted

feature to compare with features extracted directly from the raw speech. This study showed

the value of interpreting linguistic features for specific ASR model layers for downstream

applications.

Similar work from [209] attempted to adapt a LM to differing attention-based End-to-End

ASR model domains by pretraining the decoder and augmenting the LM. However, none
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of these studies have focused on how End-to-End ASR models could adapt to different LM

domains using a current fusion integration and smoothing techniques or whether interpretative

insights can be derived from the analysis of layerwise representations.

5.2.2 Language Model Fusion Experiments

The integration of LMs within End-to-End architectures has been used to supervise the

training optimisation and also for decoding rescoring to aid recognition performance. For the

following analysis experiments, a sub-word LM is integrated by shallow-fusion decoding

[204, 208] and unigram label smoothing [207] techniques.

An LSTM encoder-decoder model with Bahdanau attention is used in combination with

a 4-layer stacked CNN. The CNN layers kernel size is (3,3) on both feature and time axes,

stride of 1 and batch normalisation between each layer. The final convolutional layer is

projected to 3 BLSTM encoder layers, which had 2688 x 320 neurons in the initial layer and

640 x 320 neurons in the subsequent layers. The decoder dimensionality is 688 x 320 in the

initial layer and 960 x 320 neurons in the 2 subsequent layers.

The ASR model was trained with the si284 WSJ training dataset [7], described in further

detail in Chapter 4 Section 4.4.2, and decoded using shallow-fusion with an LSTM word-

based LM from [15]. The LSTM structure consists of 3 layers of 1200 x 1200 neurons. The

perplexity on the Dev93 validation set is 72.48 and the perplexity on the Eval92 test set is

59.55.

As can be seen from Table 5.1, the models with LM fusion weighting at 0.7 to 0.9

performed significantly better. The amount of substitution errors reduces for both test sets

decreases as the fusion weighting increases, however from a fusion weighting of approxi-

mately 0.6 the amount of deletion and insertion errors increases slightly. This could be due

to the LM hypothesis not taking into account longer sequence context that the ASR system is

better able to handle. The model using an LM fusion weighting of 0.8 achieved the lowest
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Table 5.1 LM fusion experiments using an LSTM model trained with WSJ and LM from [15]

LM EVAL92 DEV93
Fusion β WER% Sub% Ins% Del% WER% Sub% Ins% Del%
0.0 11.98 9.57 1.31 1.10 14.65 11.82 1.35 1.48
0.1 9.27 7.11 1.15 1.01 10.97 8.68 1.03 1.25
0.2 7.28 5.62 0.94 0.73 9.44 7.40 0.97 1.07
0.3 6.56 4.87 1.05 0.64 8.63 6.63 0.87 1.13
0.4 5.60 4.22 0.85 0.53 7.68 5.89 0.78 1.01
0.5 5.12 3.81 0.82 0.50 7.06 5.37 0.77 0.92
0.6 4.66 3.54 0.73 0.39 6.45 5.02 0.69 0.74
0.7 4.39 3.33 0.67 0.39 6.28 4.83 0.72 0.73
0.8 4.11 3.17 0.64 0.3 6.41 4.72 0.78 0.91
0.9 4.22 3.15 0.6 0.46 6.55 4.72 0.90 0.92

WER on the Eval92 test set while the model with an LM fusion weighting of 0.7 achieved

the lowest WER on the Dev93 test set.

5.2.3 Discussion

The shallow fusion decoding experiments aimed to explore how recognition performance

changed when rescoring a model with shallow fusion. The results shown in Section 5.2.2

suggest that the End-to-End ASR model is not powerful enough to model linguistic context

alone and recognition performance can be improved by up to 77% relative by incorporating an

LM using shallow fusion. The performance is improved when the fusion weight is increased

to an average of 0.75, while any higher weight degrades recognition performance, shown by

an increase in insertion and deletion errors in Table 5.1. Incorporating a LM with shallow

fusion reduces substitution errors, while not as effective at reducing insertion or deletion

errors. These results correspond with results from [210] that showed unigram smoothing acts

as a regulariser to penalise low entropy predictions.

By simply assessing the performance results, it remains unclear how the LM affects the

properties of the ASR model. It is also unclear if End-to-End ASR models can be adapted
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to improve performance on specific domains or whether the properties are independent of

cross-domain linguistic features.

5.3 Cross-Domain Language Modelling

As transformer encoder-decoder modelling approaches achieve state-of-the-art results for

End-to-End ASR, and transformer models have been utilised for the previous studies in

Chapters 3 and 4, the subsequent experiments aim to understand whether ASR models trained

with cross-domain LMs learn a similar representation space. It is hypothesised that it would

be possible to observe how representations in transformer models adapt to out-of-domain

LMs by analysing correlation of the representation across layers. Put simply, the relationship

between End-to-End ASR performance and the LM dependent neural representations is

explored. Using unmatched sub-word LMs, it is possible to observe the dependencies of

the layerwise representations and observe the impact of variations. Experiments in Section

5.3.3 show that observing the representation dependencies is important to develop intuitive

modelling approaches and improve recognition performance.

The implementation of cross-domain LMs in End-to-End ASR models has been defined

in Section 5.2 and the representation analysis experiments are shown in Section 5.3.3.

Experiments analysing the adaptation of transformer model parameters are conducted in

Section 5.3.3 with the results discussed in further detail in Section 5.3.4. Altogether, this

chapter provides analysis of the modelling approaches affecting contextual LM dependencies

and ASR performance, and can be used to create or adapt better performing End-to-End ASR

models and also for downstream applications.
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5.3.1 Related Works

Despite numerous variations of modelling approaches, there has also been little exploration

of the internal model representations, and their relationships, in order to model recognition

performance across different LM domains. It is unclear how the internal dependencies of the

End-to-End models handle latent LM representations and whether there are similar learned

representation spaces that are robust across different domains. By training models with

cross-domain LMs, it is possible to observe these dependencies by comparing models with

SVCCA analysis.

Layer-wise analysis of models has been used to interpret modelling approaches and

relationships between representations in multiple domains [176, 184, 24] and in Chapters

3 and 4. SVCCA analysis techniques have been used to highlight neural representations

with respect to their ability to generalise to different acoustic conditions, by observing the

relationship between the correlation coefficients of neural layers during training [25].

5.3.2 Experimental Setup

The following experiments use a transformer-based End-to-End ASR model from [1], which

consists of 12 stacked transformer encoder blocks with embedding dimensions of 512×2048

and 6 decoder layers with positional embeddings. A CNN front-end is incorporated with the

transformer layers for feature extraction. The input features were 80-dimensional Mel-filter

banks with a 10ms stride and 25ms window.

The framework developed in [24] was utilised to investigate the relationships between

internal dependencies and retain the models during training for analysis. This approach is

described in further detail in Chapter 3, Section 3.6. For all the experiments, the transformer

models and LMs were trained using the ESPRESSO framework [3]. The analysis was

conducted for all models by extracting the activation outputs of each neural layer of the
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encoder for each training epoch. A controlled input of 100 frames of unseen speech data was

fed through the layers, whilst simultaneously extracting the activation outputs for each layer.

For the following experiments, two common US-English datasets from differing domains

for ASR were chosen: Switchboard (conversational) [6, 9] and [8] and WSJ (read news) [7].

This data is described in further detail in Chapter 4 Section 4.4.2.

5.3.3 Cross-Domain Language Modelling Analysis

Correlation analysis of the neural representations across the transformer model layers is used

to measure and analyse the changes in correlation when cross-domain LMs are integrated with

LM fusion. Figure 5.2 shows the difference in SVCCA coefficients, as training converges,

between the encoder layers of two transformer models [1]. This involves calculating the

SVCCA correlation of each model and then subtracting one from the other to compare

the representations through time. The models were both trained with Switchboard data

[6] but one model uses an in-domain Fisher [9] sub-word LM, and the other model uses

an out-of-domain WSJ [7] sub-word LM. These models are both trained with sub-word

units using SentencePiece [211] and integrated during the training process using the label

smoothing method [207] and decoded with shallow-fusion [204], as described in Section 5.2.

The correlation analysis shows very little difference in coefficiency between layers 1 to 6 (top

graph of Figure 5.2), aside from in the initial epochs which could be attributed to the random

initialisation of parameters. This suggests that the neural layers of both of these models are

converging to similar representation spaces. However, between layers 7 to 12 (bottom graph

of Figure 5.2), the differences in coefficiency are much larger throughout training. This

suggests that the representations learned in these deeper layers are more dependent upon the

LM domain.

Figure 5.3 displays the standard deviations of the coefficiency between the models trained

with cross-domain LMs. This aims to show the variation in coefficiency by layer more clearly,
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Fig. 5.2 Difference in correlation coefficients as performance converges within transformer
layers [1] 1 to 6 (top) and layers 6 to 12 (bottom), between a model trained with a Fisher [9]
LM and a model trained with a WSJ [7] LM

where the standard deviations in layers 10, 11 and 12 are highest. The top graph of Figure

5.3 shows the variance in coefficiency within the neural layers of a model trained without

label smoothing [207] or shallow-fusion decoding [204] compared to the model trained with

the Fisher [9] sub-word LM. This suggests that a similar observation can be made for LM

specific representations, whereby the variance is higher overall and the coefficiency of layers
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Fig. 5.3 Standard deviation of correlation coefficiency across transformer model [1] layers
with and without a LM (top) and with unmatched LMs (bottom)

8 to 12 deviates the most. The results in Figure 5.3 also imply that layers 1 to 4 have very

little dependency on LM representations. These insights suggest that encoder layers 1 to 4 of

the transformer model can be frozen when fine-tuning with LMs and the optimisation regime

of End-to-End ASR models can be adapted to improve downstream tasks.

Regarding performance, the model that was trained with the Fisher LM reached 9.5%

WER on the Switchboard test set and 19.1% on the Callhome test set, while the model
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that was trained with the WSJ LM was 10.7% and 21.1% respectively. The differences in

recognition performance are attributed to the domains of the LMs and the test sets used for

evaluation.

End-to-End ASR Model Adaptation

Typically, in order to optimise the parameters for state-of-the-art End-to-End ASR models,

many iterations are trained with slight parameter modifications. This is partly due to the

ambiguity of the optimal dimensionality of layers and parameters required to learn neural

representations that contribute to the best performance. Often small changes to the parameters

can be made incrementally to observe their effect on model performance. Optimisation of

model parameters to specific datasets to achieve the best recognition performance possible, as

in several frameworks [3, 62, 63], is referred to here as tuned. For example, the dimensionality,

number of layers and also the hyperparameters have been observed to impact the recognition

performance. As shown in Table 5.2, using a transformer model [1] with the same parameters

and composition for several datasets does not achieve the lowest WER across all of the

datasets. These tuned models are typically reached by extensive hyperparameter optimisation

techniques [212], which are computationally expensive and considerably time consuming.

For End-to-End ASR, optimisation is typically conducted without providing observational

evidence regarding the dependencies of certain parameters upon the recognition performance.

Using cross-corpora correlation analysis while varying the parameters, it is possible to

interpret these dependencies in a more meaningful way and provide some observational evi-

dence to reduce the future need for extensive hyperparameter optimisation when developing

new models or fine-tuning trained models. By understanding the representation dependen-

cies, this can potentially reduce the computational resources required to improve speech

recognition model architectures. Table 5.2 shows the results of 3 transformer models with

variations in model parameters that are used in state-of-the-art End-to-End ASR frameworks.
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All models are the same transformer-based encoder-decoder architecture with the following

variations:

• Model 1 has an embedding dimension of 512, a feed forward embedding dimension of

2048, 4 attention heads, and an attention dropout of 0.25.

• Model 2 has an embedding dimension of 256, a feed forward embedding dimension of

1024, 4 attention heads, and attention dropout of 0.25.

• Model 3 has an embedding dimension of 512, a feed forward embedding dimension of

2048, 8 attention heads, and an attention dropout of 0.1.

To observe the relationship between the learned representations of the adapted models and

attribute these adaptations to improved recognition performance with specific data, the model

performance was assessed across all test sets, as shown in Table 5.2. For the Switchboard

and Callhome test sets (Swbd, Chm), the recognition performance of model 1 is the best,

while model 2 reaches slightly worse performance on the Callhome set and model 3 has the

highest WER for both test sets.

Table 5.2 Transformer model WER on Hub5’00 [5], WSJ [7] and Librispeech [8] test sets
with tuned parameters

Hub5’00 [5] WSJ [7] Librispeech [8]
Model Swbd Chm Eval92 Dev93 Test-cln Test-oth

M1 9.5 19.1 4.59 7.54 3.5 8.51
M2 9.6 20 4.13 6.3 3.99 8.72
M3 10.4 21.6 4.52 7.43 1.9 3.9

Figure 5.4 displays the SVCCA coefficients for each model trained with the Switchboard

dataset. Model 2’s mean coefficiency, across layerwise representations, are substantially less

correlated than the other models, as shown by Figure 5.4 b. The standard deviations of the

correlations within these layers also vary significantly higher than Model 1, Figure 5.4 a, or

Model 3, Figure 5.4 c. Model 3’s mean coefficiency across layerwise representations is fairly
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(a) Transformer Model 1 (M1) SVCCA correlation coefficients when trained with Switchboard data

(b) Transformer Model 2 (M2) SVCCA correlation coefficients when trained with Switchboard data

(c) Transformer Model 3 (M3) SVCCA correlation coefficients when trained with Switchboard data

Fig. 5.4 Transformer layer [1] correlation coefficients as performance converges across all
models when trained with Switchboard data [6]. The legend depicts the index of the neural
layers

similar for all layers with very small standard deviation. It is observed that correlations within

the layers of Model 2 have lower coefficiency, and the recognition performance of this model
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is lower for the Hub5’00 test sets [5]. Also, there are little hierarchical coefficiency patterns

throughout the layers of model 3, and this model also has a slightly worse performance,

which corroborates with results from [24]. Model 1 has lower coefficiency within layers 8-12

and has the best recognition performance.

5.3.4 Discussion

The findings in Section 5.3.3 correlate with findings from [198] where semantic and syntax

level features of speech are predominantly dependent upon deeper layers of transformer-

based models, while acoustic and fluency features are predominantly dependent on the

shallower layers. In the case of End-to-End transformers for ASR tasks, the LM-dependent

representations are shown to be primarily dependent within layers 7-12. The cross-domain

LM-dependent representations are observed within layers 10-12. Further experiments training

with the WSJ dataset with Fisher and WSJ sub-word LMs showed very similar observed

behaviours across layer coefficiency. These observations can be used to check for possible

biases in the modelling process that affect recognition performance, without the need for

extensive training requirements, to improve joint optimisation. The analysis also aids in the

interpretability of the impact of representation dependencies within End-to-End ASR models.

The experiments in Section 5.3.3, attempt to show these internal dependencies with

regard to the model parameters within the same modelling approaches. As shown in Figure

5.4 b, Model 2 used shallower embedding dimensions than model 1, shown in Figure 5.4

a, which has caused the coefficiency of many of the layers to become highly uncorrelated.

Model 3, shown in Figure 5.4 c, is observed to have very highly correlated layers, however

there are little distinct hierarchies in the neural representations when the attention heads

are increased to 8 and the attention dropout is reduced. By adapting the parameters of

transformer models, the layers with the most dependency for representing domain-specific

information are altered. These changes in hierarchical representations have been observed
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to impact recognition performance, and further suggests a relationship between correlated

hierarchical representations and the ability for the model to generalise, particularly for cross-

domain speech recognition. Increasing the attention dropout is theorised to improve model

robustness [166], where typical features of conversational speech are boundary uncertainties

and hesitations. In the case of End-to-End conversational speech recognition, the results

show that using substantial attention dropout in transformer models is important to produce

correlated hierarchies in dependent layers but also utilise a model with sufficient embedding

dimensionality that the coefficiency of representations within context-critical layers don’t

become too uncorrelated.

5.4 Summary

This Chapter aimed to investigate how ASR model performance is related to rescoring

weight with LM fusion and also to assess whether models trained with different LMs learn a

similar representation space. Section 5.2 detailed the methods used to integrate LMs with

End-to-End ASR models, while Section 5.3.3 detailed the impact of weighted integration

of an LM for an LSTM encoder-decoder ASR model. It was found that increasing the LM

fusion weighting significantly improves the recognition performance of the model and thus

argued that that ASR model is not powerful enough to model linguistic context alone.

Using the SVCCA analysis framework developed in Chapter 3 Section 3.6, has high-

lighted several aspects of the relationships between the neural representations, transformer-

based modelling parameters and the impact these have upon recognition performance, in

Section 5.3.3. The analysis indicated that ASR models trained with different domain LMs

learn different representation space. Using the insights on the dependencies of representations

across data from different domains, Section 5.3.3 adapted model parameters to improve

recognition performance for specific data.
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It is argued that interpretative analysis is important to develop future modelling ap-

proaches for meaningful improvement strategies. Expanding the scope of the investigation

into the attributes and potential learned features that could be classified within the layers

would provide a deeper understanding of the properties of these dependencies and how these

could be further exploited. The insights into the dependencies of the neural representations

can be used for the development of models for few-shot learning and downstream tasks for

End-to-End ASR.
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6.1 Introduction

Subsequent to exploratory analysis in Chapters 3, 4 and 5, techniques for modelling context

within speech, could be applied to speaker recognition models to improve recognition

performance. The following Chapter presents an approach to model context information

for speaker recognition applications. The first Section 6.2 provides a summarised literature

review of speaker recognition systems and the main approaches that have directed this

domain. This section also outlines the specific scope that the proposed approach is attempting

to address within a speaker verification task. The current advances in context modelling and

state-of-the-art speaker verification approaches are compared in Section 6.3. Section 6.4

introduces the proposed modelling approach to improve capturing context information for

speaker verification with dynamic convolutions, described in Section 6.4.1. Experiments are

described in Section 6.5 that explore the results of the proposed model topology compared to

other state-of-the-art approaches for a speaker verification task, whilst also providing results

regarding the computation requirements. These results are discussed further in Section 6.6.

Finally Section 6.7 provides a summary of the chapter and the observed results. The findings

of this Chapter have been submitted in [27].

6.2 Background

Prior approaches for speaker identification and verification modelling have involved using

Gaussian mixture models (GMMs) [213–215] to map between spoken utterances and speak-

ers. GMMs are probabilistic models comprised of Gaussian density functions, which can

be used to model the speaker-independent distributions of features. GMMs were used in ap-

proaches, such as [214], in combination with a Universal Background Model (UBM), which
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is trained with speech from many speakers in order to provide more robust acoustic references

to adapt the target model. Due to the sensitivity of GMM-based models to variance and noise

in the data, subsequent research focused on extracting speaker features [216, 217]. [217]

introduced i-vectors, which are intermediate representation vectors representing speaker and

channel variabilities extracted from a projection matrix. These i-vector speaker features are

fixed-length and can be compared directly using a similarity metric such as probabilistic

linear discriminant analysis (PLDA) [218]. PLDA scoring also reduces the dimensionality

of the vector using linear discriminant analysis (typically to 25% of the original size), in

order to further distinct the embedding subspace. The class can then be determined by the

maximum probability of the utterance coming from the same class as a known set. For

speaker verification tasks, the score is further determined using a metric such as equal error

rate (EER), described in [86], which measures the similarity between the FAR and FRR of

the classifications. FAR is the percentage of speakers recognised that are incorrectly accepted

as the target, while FAR is the percentage of recognition instances where the target speaker

is incorrectly rejected. EER is the point where FAR is equal to FRR.

More recently, DNNs have been incorporated with modelling approaches to enable to

construction of deeper models, trained with larger amounts of data, to improve speaker

recognition [219, 10, 173, 69]. The X-vector approach, shown in Figure 6.1, from [10]

uses a time-delay neural network (TDNN) to extract segment-level speaker embeddings.

The TDNN layers capture temporal information from the MFCC input features, while the

pooling layer aggregates the frame-level information into a single vector. The recording

layers provide dimensionality reduction and contain information that represents the entire

utterance. Typically the final layer of the recording layers is taken as the x-vector speaker

embedding. The output layer provides the probability distribution of each training speaker

given the input. The probabilities are then used to optimise the weights of the layers during

model training.
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Fig. 6.1 X-vector model architecture from [10]

The x-vector DNN approach was shown to outperform the i-vector approach as it is

capable of exploiting large amounts of data [10].

In more recent research, CNN-based approaches have been introduced for image classifi-

cation tasks [11] and adapted for speaker recognition. ResNets [11], composed of ResNet

blocks shown in Figure 6.2, use skip connections over convolutional layers in an to attempt

to learn more complex context information from the input data. ResNets were proposed for

training deeper neural networks, which previously suffered from the “vanishing gradient”

problem and degraded network performance. By attempting to learn a residual mapping (the

difference between the input and the target output), using residual connections, information

from different neural layers is directly passed to deeper layers, reducing the “vanishing

gradient”. Skip connections also reduces the number of parameters required by the model.

Fig. 6.2 Residual block of ResNet architecture from [11]

Developments in ResNet modelling approaches such as [220] and [17] contain 4 residual

blocks between a frame-level representation extraction module and an utterance-level aggre-
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gator. The outputs of the residual blocks are fed to attention modules which attempt to learn

the channel dependencies prior to the skip connections. Frame-level speaker representations

are encoded into fixed-length utterance level representations by the aggregator and followed

by softmax layer. For speaker recognition models, this can potentially capture more abstract

and intricate features from the speech data, allowing relevant information to be preserved

and propagated more effectively.

6.3 Related Works

There have been significant developments in modelling speech with respect to expanding

the ability to capture contextual information [10, 221, 222]. Adding context information

so that models can learn the intricacies of these dependencies, has been shown to improve

recognition and verification performance of the system [223, 173]. CNNs, RNNs, LSTMs

and Transformers are utilised to capture various context dependencies as DNNs are capable

of passing history from previous states to improve the recognition performance of a model.

It was hypothesised that simply using deeper architectures to improve modelling is unneces-

sary, and that simpler introductions of context dependent phoneme models using duration

modelling have shown more promising results [224]. Modifications of modelling approaches

to add limited contextual information has also been shown to further improve recognition

results [162, 225]. [162] modelled local and global context information for an ASR system

by replacing the blank symbol in CTC with symbolic characters, such as letter units with

apostrophes and capitalisation. This approach was able to model pronunciation and language

specific context information and reduce the model output errors where traditionally a LM

or pronunciation dictionary would have been used to correct the errors. [225] use triphone

embeddings with a DNN for context dependent modelling, which aims to capture latent

representations from the input speech frames.
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A study on the internal representations were compared across two languages [226], by

taking frame-level features generated by a model, and classifying them into phonemes.

The technique implemented gave some insights as to how the phonetic information across

languages was captured by models of increasing complexity and parameter size. The findings

showed that within the different models, the initial CNN layers improved the quality of the

phoneme representations, but there is a drop in quality of these particular representations

within subsequent layers. These findings suggest that the earlier layers of the network

are capturing specific contextual information, which could be due to later layers ignoring

phonetic information when trained to output characters, thereby representative of globalised

information. Certain linguistic units such as vowels were also more likely to be classified

correctly by all network approaches explored in [226] and features extracted from vowels

were proposed to improve speaker recognition during noisy conditions in [227]. However,

the approaches only regarded phonemes and didn’t consider other potential types of context

representations that could be derived for speaker recognition tasks.

State-of-the-art speaker recognition systems, such as [10, 228–230], have typically fo-

cused on speech enhancement techniques with more training resources, whilst implementing

increasingly deeper (more layers) and wider (number of channels) models to improve their

verification performance. Speech enhancement techniques aim to improve the quality of

the speech, and can be used for speaker recognition modelling to improve performance

with more challenging data [231, 232]. The topology of these models and the embedding

hierarchies are hypothesised to represent different speaker characteristics. ResNet based

models in [11, 233, 17] attempted to learn stronger representations with residual skip con-

nections as this enables the composition of deeper models, with multiple ResNet blocks, and

compensating for vanishing gradients. These speaker embeddings can be further distilled by

learning the salient regions with an attention mechanism. The DNN models using attention

and skip connections [234, 228], such as the Emphasized Channel Attention, Propogation
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and Aggregation TDNN (ECAPA-TDNN) model, proved a considerable improvement over

the traditional x-vectors and i-vector embeddings [10]. Both RNNs and CNNs have been

used to learn temporal dependencies for speaker representations, noting that the CNN-based

models have typically produced better performance with fewer number of parameters than

RNNs [235].

The current state-of-the-art speaker recognition approaches use TDNNs and attention

mechanisms in the convolutional channel outputs, which further improved the performance

results [228]. However, verification tasks are still a challenging and computationally de-

manding task, especially in poor acoustic conditions. Large models, with a large amount

of parameters that have been pre-trained using huge datasets perform well [236]; however,

training and serving these models is becoming increasingly computationally demanding.

Work by [237] introduced the CNN-ECAPA-TDNN, which builds upon the approach in

ECAPA-TDNN from [228], where the convolutional front-end allows the network to con-

struct local, frequency invariant features to integrate frequency positional information. In

order to enable the network to be invariant to small shifts in the frequency domain and to

compensate for the potential intra-speaker variability, 2D convolutions are used to model

at a higher resolution. However, this approach also uses large amounts of training data

(VoxCeleb1 [16], VoxCeleb2 [17], Librispeech [8], Common Voice [238] and DeepMine

[239]), where typically first a pretrained large-scale model is used to then be fine-tuned for

state-of-the-art results. The ResNet-based models [11, 17, 220] can suffer from overfitting

due to the increases in layer dimensionality and it can also take an excessive amount of time

and computational resources (over 30 hours per epoch) to fine-tune the hyperparameters to

improve the performance.

As discussed, the general trend for CNN based architectures has been to increase the

depth and complexity of the network, while simultaneously increasing training data size for

improved accuracy [240, 241]. However, considering the challenges for modelling speech
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data, it is becoming necessary to make systems that are more efficient with regard to size and

training speed. The main contribution of the following approach is to integrate attention-based

dynamic kernels within convolutions for a speaker verification task, which has not previously

been explored. The proposed approach uses parallel dynamic convolutional kernels described

in 6.4.1, which are able to adjust parameters dependent upon the input attention. Dynamic

kernels have shown promising potential for boosting the model representation capabilities

without increasing the computational cost [242].

6.4 Proposed Modelling Approach

The proposed model builds upon the original ResNet model [11], which uses a 2D CNN

based approach. This method can also be integrated into other CNN-based approaches,

such as the CNN-ECAPA-TDNN [237] for potentially further improved speaker verification

performance without the requirement for larger or pretrained models. The main motivation

for using this approach is to improve representation capacity, which is shown in the following

experiments to improve verification performance without increasing the computation. This is

possible with the dynamic convolution approach as the kernels share the output channels, and

it is observed to outperform similar models with increased layers, parameters and training

data. Section 6.6 discusses the results of the experimental models with additional details

regarding the average computation time of each epoch.

6.4.1 Dynamic Convolutions

The dynamic convolution approach proposed in [12], is a technique developed to increase the

model resolution capability without requirements for increasing the model depth or width

to improve accuracy. Dynamic in this case refers to the combination of kernels for the

changing input sequence by the application of input dependent attention weighting. This
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Fig. 6.3 Dynamic kernel convolution block [12], where αk refers to attention weights for the
kth linear function

is integrated by aggregating parallel convolution kernels based on their attention weights,

shown in the model diagram in Figure 6.3. The residual dynamic convolution architecture

is shown in Figure 6.4. Using a dynamic approach, models from other domains, such as

image recognition, have been shown to have greater feature representation capacity for image

classification and human pose estimation, while also being more computationally efficient

due to the kernels sharing the output channels compared to the typical static convolutional

models.

Figure 6.3 describes the dynamic kernel convolution block to show how the input se-

quence xi is propagated to compute the attention weights αi from each convolution. The

computation of the input sequence xi to the target label yi is evaluated during training as a
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mapping function f that minimises the loss between the input and target label:

f (x) = W(x)x+b (6.1)

where W is the weight during linear transformation and b is the bias. By adding the attention

module, the convolution weights become dynamic and a weighted sum of the convolution

kernel information:

W(x) =
k−1

∑
i=0

(αi(x)kerneli) (6.2)

and:

b(x) =
k−1

∑
i=0

(αi(x)bi) (6.3)

where kerneli is the input information in the ith convolution kernel and ∑
K
k=1 αk(x) = 1.

The output is derived after the ReLU activation function and batch normalisation as joint

optimisation is required for all kernels. Figure 6.3 shows the squeeze and excitation [243]

that is applied to compute the kernel attentions, where the global information is squeezed

by attention pooling. The dynamic convolution block is denoted by the term dconv in this

approach and the dconv architecture is shown in Figure 6.3.

6.4.2 Proposed Model Topology

Building upon the original x-vector model, the ECAPA-TDNN [228] used hierarchically

grouped convolutions rather than 1-dimensional convolutions. In this approach, embeddings

from multi-layer residual dynamic kernel convolutions are concatenated, as shown in Figure

6.4. The input features xi are separately chunked and fed into hierarchical layers connected

with skip connections before passing to the next layer’s squeeze and excitation block. The

main motivation for using a skip connection is that is a method of compensation to collect

information from previous layers and thereby the features learned by the current layer. This
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Fig. 6.4 Residual structure of dynamic convolution (dconv) blocks

enables the construction of models without the need to increase the model size (number of

layers, dimensionality of layers) as the model should be able to learn saliency regions.

After the residual dconv layers are concatenated the output passes to a squeeze and

excitation layer, shown in Figure 6.5. Squeeze and excitation blocks were used in [12] which

adjust the context bound frame-level features per channel over time according to the global

utterance properties. A subsequent pooling layer uses channel-wise self-attention to attend to

different speaker characteristics at different time steps for each feature map. The weighted

standard deviation of channel C̃ is shown in Equation 6.4. The output of the attention pooling

layer is a concatenation of the weights W and the standard deviation:
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Fig. 6.5 Overall model pipeline of the proposed dconv network

C̃ =

√√√√ K

∑
k=1

αk(x)b2
k −W(x)2 (6.4)

The proposed implementation of the architecture is described in Section 6.5.

6.5 Speaker Verification Experiment

Speaker verification models aim to determine if a given speaker matches the claimed identity

of that speaker. To do this, normalised 80-dimensional log Mel filter bank coefficients were

obtained with a 25ms window and 10ms frame shift. The spectograms were normalised

by mean and variance on the frequency axis. Random 3 second segments were taken as

mini-batches to form an input dimension of 80 × 300. In the enrollment phase, a unique

embedding is created for each speaker so that the model is able to discriminate between

speakers. During verification, the model receives the input speech signal and compares it

to the stored embeddings of enrolled speakers. The cosine distance is used to measure the

similarity scores, whereby a threshold determines whether the identity is a match or not.

Model performance is evaluated using EER, described in Chapter 2, Section 2.2.5.
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In order to map the voice spectograms into compact embeddings for computation, rel-

atively shallow dconv models were constructed. Models were built with varying layer

dimensions and depth, shown in Table 6.1, to control the parameter computation and observe

the impact upon verification performance, shown in Table 6.2. The training data for each

model was augmented, as described in Section 6.5.1, as this has been shown to create sparsity

and attempts to improve generalisation.

The models were implemented using the PyTorch-based Speechbrain framework [63]

and run on 1 NVIDIA RTX3060 GPU over 10 epochs. The main model pipeline is shown

in Figure 6.5. The details of the model compositions are described in Table 6.1, where

variations of the dconv models were built with two size dimensions of layers; 1024 and 512

dimensions, at depths of 3, 4 and a version with 5 layers. The number of attention channels

for all models remained at 128 and 192 linear neurons. Adam optimisation was used to

initialise the network parameters. Each setup’s learning rate was set at 0.01×10−6 with a

learning decay of 2×10−6 up to a value of 0.001. The similarity scores were measured using

the cosine distance.

Table 6.1 Experimental architecture setup of dconv model implementations

Layer Name Channels Kernel Dilation

Dconv-3 (small) 512 5,3,1 1,2,1
Dconv-3 1024 5,3,1 1,2,1

Dconv-4 (small) 512 (1024) 5,3,3,1 1,2,3,1
Dconv-4 1024 (2048) 5,3,3,1 1,2,3,1
Dconv-5 1024 (3072) 5,3,3,3,1 1,2,3,4,1

6.5.1 Data

VoxCeleb1 and 2 from [16] and [17] were used for training and testing the proposed ap-

proaches as these datasets have widely reported baselines, and thus have multiple models

to compare to. Both datasets are audio-visual clips of human speech taken from interview
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videos. The training and development set is split into 1,211 speakers and the testing set is

split into 40 speakers for VoxCeleb1-O. The total number of utterances is 153,516 with 116

per speaker on average. The development set and evaluation set for the VoxCeleb datasets

contain both monoaural multi-speaker recordings taken from professionally edited Youtube

videos, and general conversation. There are numerous challenging aspects that affect recog-

nition within the dataset such as overlapping speech, background noise, music, laughter,

applause and singing. Comparative cited research for speaker verification tasks also use the

considerably larger VoxCeleb2 dataset [17] for training, which contains 6112 speakers and a

total of 1,128,246 utterances, however these training and serving models with this data is

computationally expensive.

After showing promising results in [244], frequency and time domain data augmentation

was performed for all models using Specaugment [166]. This was used to attempt to increase

the amount of diversity in the training data and improve model generalisation. Reverberation

was convoluted with the original speech using the RIRs from [245]. The augmentations were

randomly chosen between babble, music, noise and reverberation.

6.6 Results and Discussion

Contrary to the typical scenario where the models are trained using large amounts of data,

commonly with both VoxCeleb1 and 2, and extensive computational resources, here all

except one of the dconv models were trained only using VoxCeleb1 training data and 1 GPU.

The motivation for training models using on VoxCeleb1 is to constrain the computation

required, and assess the performance of a model trained with less resources compared to the

state-of-the-art approaches which typically use more resources. The dconv model trained

with both datasets computed one epoch in over 33 hours, while the dconv model with the

same parameter size trained with only VoxCeleb1 took just under 4 hours.



6.6 Results and Discussion 141

The dconv models trained with only VoxCeleb1 achieved better performance compared

to several models trained with both datasets, as shown in Table 6.2. The training results are

also visualised in the graph in Figure 6.6. The x-vector model from [10] and ECAPA-TDNN

from [228] were compiled in the same pipeline as observational baselines to the developed

models and comprised of 4 layers at 512 dimensions. The ECAPA-TDNN is a combination

of convolutional and residual blocks whereby the speaker embeddings are extracted using

attentive statistical pooling [246], which is the current state-of-the-art approach.

The VGG-M [16] is a deep CNN model with an aggregation layer, which aggregates the

features produced by the CNN in the time dimension to produce a fixed length representation

for each input. The ResNet-34 model from [247], consists of multiple layers of residually

connected CNNs and a dictionary-based NetVLAD layer [248], which is discriminatively

trained to aggregate speaker information into a fixed-size descriptor, to improve model

robustness. While the ResNet-34 model from [17] does not use a dictionary-based layer and

instead just contains wider CNN layers with added residual connections.

All the dynamic kernel based convolution models outperformed the x-vector and cited

ResNet models despite not having hyperparameters tuned for optimum performance, as is

commonplace for training ResNet-style architectures. The results also suggest that reducing

the depth of the convolutions but widening the dimensionality of the layers improves the

verification performance of the convolutional network as the 3 layer model with 1024

dimension layers achieved an EER of 2.89% with miniDCF 0.275. The dconv model trained

with both VoxCeleb1 and 2 achieves an EER of 1.62% with miniDCF 0.18 which is a 17%

relative improvement to the ECAPA-TDNN model.

Figure 6.6 displays the error rate per epoch across models with varying layers. The

first observation that can be made is that the x-vector model has a worse performance

despite attaining lower validation loss across epochs, suggesting there is poor generalisation

capability within this model. Another key observation from the Figures, is that the 3 layer
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Table 6.2 Experimental results of models trained using VoxCeleb1 [16] and VoxCeleb2 [17],
evaluated on the VoxCeleb1-O test set

Vox1-O Training set
Model EER% Vox 1 Vox 2 Params

ResNet-34 [247] 10.48 ✓ ✓ 10m
VGG-M [16] 10.2 ✓ x 67m

ResNet-34 [17] 5.04 ✓ ✓ 63.5m
X-vector [10] 4.33 ✓ x 8.2m

ECAPA-TDNN [228] 1.95 ✓ ✓ 22.2m
Dconv-4 (1024) 1.62 ✓ ✓ 21m
Dconv-3 (1024) 1.64 ✓ ✓ 12.1m
Dconv-5 (1024) 2.946 ✓ x 32m
Dconv-4 (1024) 2.926 ✓ x 21m
Dconv-4 (512) 2.935 ✓ x 6.4m

Dconv-3 (1024) 2.89 ✓ x 12.1m
Dconv-3 (512) 2.941 ✓ x 3.9m

Fig. 6.6 Comparison of error rates on validation set for models of varying dimension parame-
ters

and 4 layer dconv models that have a dimension of 1024 perform similarly across validation

loss and error rate, which suggests that within the structure of the embeddings compiled
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by the dynamic kernels, critical context is learned and contained across the dimensionality

of the layers rather than across the depth (number of layers) of the models. Despite the

reduced parameters of the 3 layer (12 million parameters) model compared to the 4 layer (21

million parameters) model, it is possible to retain the modelling accuracy using the proposed

approach by improving the embedding representation capabilities.

Table 6.3 displays the average computation across the dconv models and the X-vector

baseline using an NVIDIA RTX3060 GPU. The average computation time for an epoch using

the X-vector approach took approximately 2 hours, which is slightly faster than an epoch for

the dconv models, however to achieve the EER performance of 4.33%, the number of epochs

was increased to 25. The number of epochs for all dconv models was 10 to attain the results

listed in Table 6.2, therefore while each epoch with a 3 or 4 layer dconv model may take

longer to compute, the models will finish training with less overall time and with a slightly

improved performance. To train the dconv model on both VoxCeleb1 and 2 datasets took an

average of 33 hours per epoch, while the ECAPA-TDNN model took an average of 24 hours

per epoch.

Table 6.3 Average epoch computation time of models training on VoxCeleb1 using an
NVIDIA RTX3060 GPU

Layer Name Average computation time per epoch

X-vector [10] 02:05:12
ECAPA-TDNN [228] 03:04:20

Dconv-3 (512) 02:46:43
Dconv-3 (1024) 03:45:46
Dconv-4 (512) 03:23:27

Dconv-4 (1024) 05:47:35
Dconv-5 (1024) 08:33:18
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6.7 Summary

This Chapter provided some background regarding speaker recognition modelling in Section

6.2 and then investigated the hypothesis that it is possible to capture acoustic context informa-

tion using CNNs. This work was inspired by the acoustic modelling work with transformers,

to attempt to approximate context without vastly increasing the computation. A novel ap-

proach for speaker verification has been proposed in Section 6.4 that provides improved

representational capabilities while controlling network dimensionality, allowing the use of

lower resources for training and computation. This approach is able to assimilate hierarchical

global features for speaker embeddings. The dconv model, described in Section 6.4.1 can be

trained to extract high resolution features while being computationally inexpensive. Several

iterations of the dconv model were evaluated on VoxCeleb 1 and compared to a baseline

x-vector model, which demonstrated the proposed approach’s effectiveness at lowering the

EER with low resources.

Section 6.6 shows that for the task of speaker verification, dynamic convolutional spa-

tial dimensions (width) contribute to a slightly increased performance improvement than

increasing model depth (layerwise). This corroborates with experiments in Chapters 3, 4 and

5 where increasing model parameters does not necessarily lead to improved performance

for ASR tasks and speaker verification tasks. Section 6.6 also explored how modelling

approaches and parameter size affects computation time, which is argued to be an important

factor to consider when serving and training modelling approaches. The proposed modelling

approach could be further extended across different variations of convolutional architectures

and also for other domains such as ASR or diarisation.
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7.1 Introduction

The following Chapter aims to explore the role of acoustic context for SER. Section 7.2

introduces the research domain of SER and the particular research goal of the work, along

with some background information. Section 7.3.1 discusses context modelling in SER and

introduces the idea of overlapping context regions and phone units. Section 7.3.2 presents the

consonant-vowel (CV) boundaries and phonemic overlapped regions and their significance

in speech emotion perception cues and recognition. Section 7.4 explains the underlying SER

model for the interpretation framework and attention. Section 7.5 describes the cross-corpus

data, features, experimental framework, and presents the results and graphs. Section 7.7

discusses the interpretation of the presented results in Section 7.6 and suggested directions for

the development of future work. Finally a summary of the work in this Chapter in presented

in Section 7.8. The findings of this Chapter have been submitted in [249].

7.2 Background

Typically, when a speech emotion corpora is created, each audio segment is labelled as a

specific emotion category by the annotators, and it is assumed that the whole audio segment

signifies that single emotion label or static emotion [250, 14, 13]. Phone boundaries are

the boundaries between individual speech sounds and play a critical role in shaping the

acoustic context. The position of the phone boundary influences the acoustic characteristics

of neighbouring phones and therefore how they are perceived. Coarticulation, where pho-

netic features are assimilated between neighbouring sounds, can affect the acoustic context
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depending on the timing and duration of the boundary. At word-initial boundaries, there may

be acoustic effects, such as aspiration in plosives /t/ /p/ /k/, which results in a brief spike of

noise. Phone boundaries are also important for perceptual segmentation, allowing a listener

to segment the speech into discrete phonetic units. The clarity and distinctiveness of the

boundary is shown to affect the accuracy of perception [251].

It is theorised that the perceptual cues for phone boundaries and acoustic context are

ambiguous as they share information for various emotion states [252, 253]. The acoustic

stimuli change in speech segments are distributed events and can therefore overlap and

present as non-static. From a psycholinguistic perspective, these distributed, continuous

stimuli transitions constitute theories of human perception of SER [252, 253]. The context

cues can be of different lengths, and the perceptual acoustic context can be modelled with

different length acoustic cues. Work from [254] shows that speech emotion can be modelled

with small acoustic cues (200 ms). Therefore, the assumption that each acoustic speech

segment that is attributed to only one emotion state likely negatively impacts recognition

performance. Multiple sub-emotions can be present depending on the contextual variation

between different segment regions, as shown in Figure 7.1. This work focuses on acoustic

perceptual cues and the implication of the length and the distribution of these cues over

speech audio segments for SER.

Fig. 7.1 An example of distributed emotions where labelling an utterance as a single discrete
category could be overlooking other perceived emotions

Previous research for SER mainly focuses on modelling generalised emotion with differ-

ent neural network architectures while adapting to speech variability and reducing redundancy
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for speaker invariance to improve SER capability [255–259]. As the focus of current research

has shifted towards embedding modelling and left-right context cues, work by [260] proposed

a spatial representation learning method with CNNs, to model mid to long-term sequence

dependencies. After the advent of the transformer architecture, the SER models focused

more on transformer-based and multi-head fusion-based modelling approaches [261, 262].

There remains a gap between the psycholinguistic and cognitive theories regarding speech

emotion perceptual cues and the currently developed computational modelling methods.

Research focusing on interpretability is still underdeveloped for SER models, particularly

where the model’s internal intricacies and representations with the corresponding acoustic

segments can be explained. This work attempts to find a mutual accord with the theories

of speech emotion perception cues across multiple disciplines and bridge the gap to speech

emotion models. By projecting model attention weights across different time frames (based

on various acoustic cues) of the acoustic segment, the emotion classification is observed to

shift. Several corpora have been considered to demonstrate the task across various types of

speech emotion data (acted, natural, elicited).

7.3 Related Work

7.3.1 Context Modelling

Context cues for speech emotion can be described as linguistic and paralinguistic. The

linguistic aspects consist of semantic structure of the speech segment and the textual mean-

ing. The nonverbal or paralinguistic aspects provide a rich source of perceptual context

cues that facilitates projecting expressiveness in social discourse in both intra-cultural and

cross-cultural scenarios [263, 264]. Although verbal comprehension mainly dictates social

discourse, perceptual context cues can deliver meaning and emotion independent of the verbal

comprehension using the acoustic changes that influence the speech delivery [265, 266].



7.3 Related Work 149

Work in [252] used psychoacoustic features (such as tempo, prosodic contour, loudness

etc.) for modelling emotion and concluded that different emotional states have different

perceptual cues and that they are subjective to individual contexts despite having a universal

representation of emotion states. Furthermore, the acoustic contexts are not orthogonal, and

the shared information/dimensions represents the redundant acoustic stimuli which provide

context [252, 253]. Naturally, if the acoustic stimuli changes, the perceptual context cue

will also change accordingly. If the acoustic stimuli are redundant for the cues that define

emotion states, these stimuli share overlapping regions. Typically, a “phone” is regarded

as one of the smallest units of an acoustic speech sound. To explore the implication of the

various stimuli regions, the phone boundaries should be explored. The CV boundaries for

context cues are discussed in Section 7.3.2.

The authors in [267] have presented left context (referred to as “forward effects” by the

authors), right context (referred to as “backward effects” by the authors), proximal context and

distal acoustic context cues as in acoustic events over time. The sensory attention emphasises

the change among these acoustic stimuli, which maximises the potential information for

facilitating speech perception [268]. The stimuli changes at a particular time over left-right

time frames to reflect the emotion state and speech perception cue at that given point of time.

Therefore, it can be assumed that emotion is a distributed event in acoustic segments, not

a single discrete emotion category. To investigate this hypothesis, a simple computational

model of left-right modelling with attention has been applied in Section 7.4.

7.3.2 Linguistic Boundaries

Contextual cues, consisting of phonetic characteristics of speech, can be used to aid the

determination of the emotional state at a given time. These characteristics of speech include

phonemes, articulation, vowels, consonants, suprasegmental features and other phonetic

aspects. Suprasegmental features are aspects of pitch, loudness and timing that affects larger
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units and contribute to the prosody of the speech. The phonetic forms can have similarities

and dissimilarities among the phone boundaries. A clear distinction has been found between

the clusters of vowel and consonant phone data points by work from [269, 270]. The

consonant phones play a decisive role in word meaning comprehension, such that removing

initial prosodic variations in vowel phones (referred to as acoustic reduction) has been shown

to enhance the word intelligibility [269]. However, contrasting studies showed that replacing

intermittent consonants with noises or a change in the emphasis on the vowels, increases

the perceived intelligibility of words and sentences to human listeners [271, 272]. It was

argued that vowel phones are potentially more responsible for defining the emotional state

of the speech acoustics, and intelligibility due to stressed vowel regions and wide harmonic

variations [270, 273, 274].

Furthermore, the harmonic variations and variations in the pitch within vowels, change

the CV boundaries over time and thereby the contextual cues related to acoustic perception.

These continuous perceptual context cues are distributed over CV boundaries in acoustic

segments [273]. Thus it may be possible that at different left-right time-frames, different

regions from the same acoustic segment may be labelled differently. This can be described

as the relationship of perceptual CV cues with the acoustics, which has previously been

referred to as acoustic-phonetic context for speech perception [275, 276]. The aim of this

work is to understand the distributed nature of these perceptual acoustic cues which form

an intra-linguistic determinism between the acoustic structure and meaning that humans

perceive as emotion. Here, meaning and intelligibility are explored only from acoustic

segments as no LM or external multi-modal data has been used.

7.4 Model architecture: BLSTMATT

The focus of this work is to explore perceptual acoustic cues and their relationship to current

speech emotion recognition modelling. Developing and training large-scale SER models is
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out of the scope of this work as this approach is to determine the concept of this relationship.

As the previously discussed related theories, regarding speech emotion perception, take into

account past and future context, this can be modelled as a form of left and right acoustic

cues.

Fig. 7.2 BLSTM architecture overview with forward and backward LSTM layers

LSTM networks are unable to exploit the future context and instead they solely focus on

the temporal order of the sequence, whereas BLSTMs [113] comprise of an additional layer

of hidden connections, which allows temporal information to pass in the opposite direction

to exploit future and past contextual information [277]. With reference to Chapter 2, Section

2.3.3, the BLSTM is comprised of a forward and backward LSTM layer, shown in Figure

7.2. The hidden connections between N layers hn are iteratively compiled from n = 1 to N

and t = 1 to T :

hn
t = σ(Whn−1hnhn−1

t +Whnhnhn
t−1 +bn

h) (7.1)

where W defines the weight matrices, σ represents the activation function and b refers to the

bias vector. Using this approach, a temporal feature distribution over the sequence can be

obtained, which is more effective for SER tasks [278].
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Fig. 7.3 The BLSTMATT model pipeline consists of 2 BLSTM layers, with an attention layer
and linear classifier

The chosen modelling approach utilises a BLSTM neural network with a subsequent

attention layer, referred to as BLSTMATT. An overview of the model structure is displayed

in Figure 7.3. The BLSTM layers consist of 2 x 512 dimension hidden layers feeding into

an attention layer, which computes a 128 dimension context vector. For classification, the

network uses a fully-connected linear layer which projects the attention output. In order to

classify over the number of emotions in the target, the output is normalised with a so f tmax

layer before the loss is computed.

An attention mechanism in the attention layer enables computation of longer-term inter-

sequence dependencies. The additive method for computing attention from [279] is applied

for this approach, also referred to as globally contextualised attention (GBA). GBA is a

view-specific attention-based weighting that computes a context embedding over the view

using a memory network. The memory network combines features across all views to provide

a prediction over the current view. Utilising the global mean, the attention mechanism enables

the network to attend to specific parts of itself which in turn captures global information.

The non-linearity function tanh is used to multiply the global mean over the whole temporal
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vector which computes the positional dependency of each element. H denotes the matrix of

output vectors from the LSTM layer, by summing the average time of H across contextual

modalities, the shared memory matrix M can be formed by repetition until it matches the

dimension of Hs, where s refers to the view for the context. Where T refers to iterations, V

denotes the parameters controlling the influence within the view and from the shared memory,

the attending mechanism a can be described by:

a(τ) = tanh(V(τ)
s1 tanh(Hs1)) · tanh(V(τ)

s2 M(τ)) (7.2)

α
(τ)
s = V(τ)T

s3 a(τ) (7.3)

Vs1, Vs2 and Vs3 are parameters used to compute the attention weight α .

7.5 Experiments

7.5.1 Data

The scope for these experiments regards English speaking adult datasets across three emotion

types: one acted dataset, eNTERFACE [250], one natural dataset, MOSEI [13], and one

elicited dataset, IEMOCAP [14]. An overview of the emotion classifications represented in

each dataset are each described briefly below. For each dataset, the big-six emotions [78] are

considered in training and testing: happy, sad, anger, surprise, disgust and fear.

eNTERFACE (ENT) consists of roughly 1 hour of acted English utterances [250]. The

training set is comprised of 38 speakers and the testing set contains the remaining 5 speakers.

The data is split by 8 female speakers and 35 male speakers from 14 different nations.

IEMOCAP (IEM6) comprises of over 12 hours of US-English utterances from 10 speakers

(5 female and 5 male) [14]. There are five dyadic sessions (between two speakers) which

are specifically scripted or contrived to elicit certain emotions. The training data consists of
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the first 4 sessions (4 speakers) and the last session is split for the test set (2 speakers). It

is common for IEMOCAP to be evaluated as four classes: happy, sad, anger and neutral

(where excitement is combined with happy). This test set will be referred to as IEM4.

MOSEI (MOS) is the largest sentiment and emotion dataset with approximately 65

hours of data and more than 1000 speakers [13]. Data is collected from YouTube and the

videos are not specifically designed as an emotion dataset so the emotional speech is seen as

natural. The official training, validation and test splits for the ACL 2018 conference have

been considered, where the training and validation sets are combined for training. These

can be found at https://github.com/A2Zadeh/CMU-MultimodalSDK/blob/master/mmsdk/

mmdatasdk/dataset/standard_datasets/CMU_MOSEI/cmu_mosei_std_folds.py.

7.5.2 Implementation

For SER, research suggests that log-Mel filter bank acoustic features have yielded better

performance over MFCCs [280]. Further experiments from [281] showed how sequence-

based SER systems performed best in terms of unweighted and weighted accuracy with

23-dimensional log-Mel filter bank features.

The BLSTMATT contains two hidden layers of 512 nodes each. The output layer (size

1024) is passed into the attention mechanism computing a context vector (size 128), which is

projected to 1024 nodes. This is then fed into the emotion classifier which linearly projects

to the 6 classes. The cross-entropy loss function is applied, which is preceded by a so f tmax

layer. The BLSTMATT produces a variable length attention vector based on the input segment

length, as mentioned in section 7.4. The attention vectors have been extracted and mapped

with the phones and words in the input segments to be able to interpret the acoustic attention.

https://github.com/A2Zadeh/CMU-MultimodalSDK/blob/master/mmsdk/mmdatasdk/dataset/standard_datasets/CMU_MOSEI/cmu_mosei_std_folds.py
https://github.com/A2Zadeh/CMU-MultimodalSDK/blob/master/mmsdk/mmdatasdk/dataset/standard_datasets/CMU_MOSEI/cmu_mosei_std_folds.py
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7.5.3 Evaluation

Unweighted accuracy (UA) and the weighted accuracy (WA) are the metrics typically applied

for SER evaluation. The UA calculates accuracy in terms of the total correct predictions

divided by total samples, which gives the same weight to each class:

UA =
T P+T N

P+N
(7.4)

where, T P is the number of correct positive correct instances, T N is the number of correct

negative instances, P is the number of positive instances (equivalent to T P+FN) and N

is the number of negative instances (equivalent to T N +FP). As some of the datasets are

imbalanced across the emotion classes, see Tables 7.1, 7.2 and 7.3, the WA is calculated

which weighs each class according to the number of samples in that class:

WA =
1
2
(
T P
P

+
T N
N

) (7.5)

Further details regarding the implementation of the scoring scripts can be found in [279].

7.5.4 Acoustic Context

As discussed in Section 7.3.1 and 7.3.2, the recognition of speech emotion is hypothesised to

be influenced by overlapping perceptual acoustic cues consisting of variation in the phone

boundaries. So, in theory, if the phone boundaries are shifted, the emotion classification

may differ from the previous predicted emotion state that considered the whole segment. To

further explore this hypothesis, the acoustic context is changed in the following series of

experiments.

Experiments are performed removing frames from the end and beginning of the original,

whole test segments. In Tables 7.1, 7.2 and 7.3, this is listed in the first column labelled ‘skip
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frames (left-right)’ where a number of frames are skipped, or removed, from the left and

right (left and right context) of each test segment. For example, 20-200 means 20 frames

have been removed from the left context of each test segment and 200 frames have been

removed from the right context of each test segment. Table 7.1 shows the results where right

frames are skipped, Table 7.2 shows results where only left frames are skipped and Table 7.3

shows results where both left and right frames are skipped. If the length of a test utterance

is less than the length of context frames, the test utterance remains unchanged. Therefore,

when the skip context frames become longer, such as 200-100 (that means a total of 300

frames to be removed), only the test segments with more frames than 300 are used. The

percentage of test corpora that is modified with the context is also reported. For example, in

the SEGS% column, 91.3% means that 8.7% of the test segments from the corresponding

corpora remains the same due to shorter segment length and 91.3% of the test segments

are modified with the corresponding context. The weighted and unweighted accuracy are

reported along with the change in the context length.

As the experiments consider context length variations, the baseline for this work is the

result when no left or right context is removed. This is the first line in all Tables with context

0-0. It is the emotion modelling baseline where one emotion is given for each complete test

utterance. For further details about the validity of the BLSTMATT model, please see work in

[281] and [254].

7.6 Results

The experimental results in Tables 7.1, 7.2 and 7.3 suggest that the SER results would change

when either the left, right or both contexts are changed. For example, the model tested on

MOS has a UA of 73.3% without changing the context length but upon skipping the context

right 100 frames, skip frames 0-100 in Table 7.1, the UA degrades. The same observation of

UA degradation occurs when skipping left frames or both left and right frames, while there is
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Skip
Frames

(left-right)
Unweighted Accuracy (UA %) Weighted Accuracy (WA %)

Percentage of segments (SEGS %)
with modified context

Context ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS
0-0 93.33 69.06 88.79 73.30 88.00 64.57 63.81 54.29 - - - -
0-30 86.89 68.73 88.28 73.55 76.40 63.82 64.44 54.76 100.0 100.0 100.0 100.0
0-100 82.22 68.73 87.94 72.81 68.00 63.45 61.21 54.70 91.3 99.3 99.5 98.0
0-200 86.22 68.09 86.63 71.53 75.20 62.08 61.32 53.63 40.0 77.1 80.2 89.4

Table 7.1 Cross-corpora emotion recognition results with variable context length, where right
frames are skipped.

Skip
Frames

(left-right)
Unweighted Accuracy (UA %) Weighted Accuracy (WA %)

Percentage of segments (SEGS %)
with modified context

Context ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS
0-0 93.33 69.06 88.79 73.30 88.00 64.57 63.81 54.29 - - - -
20-0 91.56 69.22 88.74 73.01 84.80 64.76 63.83 54.13 100.0 100.0 100.0 100.0
30-0 89.33 69.66 88.68 72.97 80.80 65.03 63.83 54.18 100.0 100.0 100.0 100.0
100-0 84.44 69.90 87.66 72.50 72.00 64.60 61.00 54.16 91.3 99.3 99.5 98.0
200-0 87.78 69.38 87.14 71.98 78.00 63.47 61.97 54.07 40.0 77.1 80.2 89.4
300-0 92.89 68.61 86.86 71.11 87.20 62.89 61.66 53.45 8.7 54.5 57.8 80.2

Table 7.2 Cross-corpora emotion recognition results with variable context length, where left
frames are skipped.

Skip
Frames

(left-right)
Unweighted Accuracy (UA %) Weighted Accuracy (WA %)

Percentage of segments (SEGS %)
with modified context

Context ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS ENT IEM6 IEM4 MOS
0-0 93.33 69.06 88.79 73.30 88.00 64.57 63.81 54.29 - - - -
20-200 86.89 68.73 87.49 71.39 76.40 63.11 62.44 53.81 38.7 71.6 73.4 87.6
200-100 92.67 68.25 86.58 71.30 86.80 61.83 61.42 54.00 8.7 54.5 57.8 80.2

Table 7.3 Cross-corpora emotion recognition results with variable context length, where left
and right frames are skipped.

a slight improvement in UA when skipping 30 right frames. In the case of skip frames 0-30,

removing 30 ms from the end of the segment modifies 100% of the segments across all the

test sets. The results for ENT and IEM4 are worse for both UA and WA, but for MOS the

performance improves. For IEM6, the UA degrades whereas the WA improves. The majority

of the results across all the datasets degrade upon varying the context length due to the target

label, supplied with those segments, being a fixed discrete emotion category. This finding

corroborates the initial hypotheses that speech emotion is not a fixed entity that remains the
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Fig. 7.4 A happy MOS [13] utterance with no context removed mislabelled as sad compared
to 20 left frames removed correctly labelled as happy, along with the pitch contour

Fig. 7.5 A happy IEM4 [14] utterance with no context removed mislabelled as anger com-
pared to 100 right frames removed correctly labelled as happy, along with the pitch contour

same over the whole audio segment, and that it is subject to be distributed over different

overlapping shorter context queues.

To observe the relationship between the SER results and the hypotheses regarding the

acoustic segments in more detail, the attention weights were extracted for each test utterance

and mapped to the aligned words and phones. Additionally, the pitch contour was calculated

to understand the pitch correlation with respect to the prosodic utterance using the algorithm
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found at https://github.com/google/REAPER. The attention maps for a sample of the test

utterances are presented in Figures 7.4 and 7.5: the former from the MOSEI corpus and the

latter from the IEMOCAP corpus. Figure 7.4 shows that the attention projection drifts while

changing the phone boundaries from the same audio segment and therefore the emotion state

also changes. With context 0-0, the model incorrectly predicts the emotion sad (attention

weights in Figure 7.4 indicated by red line) whereas removing 20 left frames helps the model

correctly predict the emotion happy (attention weights in Figure 7.5 indicated by blue line).

The attention weights focus more strongly on different portions of the test utterance. Similar

behaviour can be seen in Figure 7.5 where skipping 100 left frames allows the model to make

the correct prediction.

7.7 Discussion

In some datasets, such as ENT and IEM4, the SER change is not very prominent, as can

be seen from the results listed for WA and UA. This is potentially due to several reasons.

The first is that some segments in particular datasets have a length shorter than 200 frames,

and these segments remained unchanged during the context modification. So to properly

interpret the results, the percentage of data that is modified with context at each experiment

should be taken into account. Secondly, the acoustic BLSTMATT model perception is a direct

result of the relationship between the training data and the corresponding labels given by

the annotators, which could have added bias factors and add to recognition uncertainty. To

attempt to mitigate the inherent biases and to attempt to generalise the model perception cues

for these experiments, the model is trained with four different corpora consisting of acted,

natural and elicited emotions. Consequently, it is argued that the results corroborate the

argument that an continuous approach to emotion recognition is the optimal strategy based

on observed acoustic stimuli shift. This work is an attempt to bridge the gap that current SER

https://github.com/google/REAPER
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models have, by explaining the SER model’s internal intricacies and how the representations

correspond with acoustic segments.

Figures 7.4 and 7.5 show the attention weight propensity towards the vowel based regions.

This corroborates with the claims from the linguistic and cognitive theories about speech

emotion recognition and CV boundaries, as proposed in Section 7.3.2, that consonants play a

decisive role in word meaning but vowels are more responsible for the emotion perception

cues as a result of harmonic variations and stressed regions. The vowels are observed to

change the CV boundaries and the context cues for emotion perception causing many hard

boundaries to be redundant. This suggests the cues for phone boundaries and acoustic context

can share information relative to the perceived emotion state.

For the IEM6 dataset, when the context lengths were skipped left frames, there was

a slight improvement in UA or WA, while recognition with the MOS and IEM4 datasets

improved slightly when context lengths were skipped right frames. These results highlight

that where context cues vary in length, it is possible for the acoustic segments to contain

more than one distinct emotion state. As the UA and WA vary positively and negatively

according to context lengths, this suggests overlapping regions where the acoustic stimuli

are more or less informative regarding the emotion state. As future speech emotion datasets

are compiled and annotated, if the labels for emotion classes were adjusted to allow for

overlapping categories, this could potentially aid the recognition performance of current and

future developed models. These results and insights can also be used to modify computational

models and mechanisms that are able to adapt and recognise emotion from various speech

domains to be more in-line with the psycholinguistic theories.

7.8 Summary

In the current trend of SER models, discussed in Section 7.2, emotion labels are treated as

discrete labels attributed over a whole segment. Sections 7.3.1 and 7.3.2 present the published
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related theories regarding context cues and linguistic cues for SER. The problem explored

in this Chapter is regarding the state-of-the-art approaches that assume that an utterance’s

global attributes correlate with the local characteristics over different time frames in the

same segment for learning one discrete emotion category. This is observed to not be the

case most of the time with results in Section 7.6. Vowel-consonant envelopes rapidly change

over time, attributing to different acoustic context. Hence the paralinguistic cue also changes

with acoustic context. The results demonstrate this argument. Moreover, by treating acoustic

segments and emotion correspondence as a context-oriented continuous relationship, this

should aid emotion recognition models across languages and dialects due to the distribution

of acoustic boundaries across models trained on various emotion data. As a result, it could

be possible to learn the variability of acoustic context in speech emotions rather than the

variability of acoustic segments in speech emotions.

Future development of this framework will enable improved emotion modelling by

understanding the intermediate representations and relating audio data with the computational

models. Furthermore, it will help create more accurate annotations for emotion labels,

improving SER corpora generation.

This Chapter argues that discrete categorical emotion classification should not be the

preferred approach to develop future SER models as it has been observed that emotion cues

present as a distributed event, corroborating directly with cognitive linguistic theory that it is

also continuous to recognise. Finding a suitable approach for accurate modelling of emotion

states should be the aim of future research.





Chapter 8

Conclusion

Speech technology aims to aid communication between humans and machines by attempting

to listen, understand and learn speech. Deep learning networks have facilitated the devel-

opment of speech technology to levels reaching human parity. The focus of recent research

has been to increase recognition performance, build systems for multiple domains, and to

reduce some of the modelling requirements for domain knowledge. As research continues,

there has been a corresponding demand to be able to explain deep learning models in order

to predict how networks will behave in real-world scenarios, whether there is any bias within

the model, and to further scientific knowledge. Much like the human brain, the relationship

between how contextual dependencies, such as acoustic and linguistic context dependencies,

are represented within models was unclear.

One of the initial goals of this research was to analyse the latent space of neural represen-

tations within ASR models and to provide some interpretation of how those representations

relate to recognition performance. It was hypothesised that these insights could be used to

understand whether analysis of the dependencies of neural representations can be used to

interpret and improve modelling across speech technology, such as speaker and emotion

recognition. Furthermore, it was unclear whether it was possible to exploit acoustic or lin-

guistic context dependencies with attention-based models across domains to improve model
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performance without increasing computational requirements when training. The final goal

was also to assess how the choice of context modelling technique affects the performance of

models for speech technology.

Chapter 2 provides a literature review regarding current speech, speaker, and emotion

recognition modelling approaches, properties of neural networks and the foundations for

End-to-End speech recognition. As reviewed in Section 2.4, the current End-to-End speech

recognition approaches are CTC-based, attention-based encoder-decoders and RNN-Ts. CTC

approaches do not rely on any domain-specific knowledge, however the approach assumes

conditional independence between the output labels. Recognition performance with purely

CTC-based modelling approaches is limited due to the loss of context information. The

RNN-T approach attempts to model context dependencies between outputs through time

using an encoder network and predictor network. RNN-Ts are typically memory intensive for

many applications as they need to condition on the previous predicted labels. Attention-based

encoder-decoders model acoustic information into hidden states, then use a decoder to predict

the output label for each time-step. An attention mechanism is used to compute the weights

between the hidden states of the encoder and the previous output in order to capture context

dependencies. Transformer models are the state-of-the-art encoder-decoder approach and

are able to capture global context information, however they are difficult to scale due to the

self-attention mechanism, which needs to condition on the previous layer output.

The developed frameworks that utilise the approaches described in Chapter 2 have

variations regarding the training optimisation and setup, but it was not clear how these

contributed to performance within specific domains. Chapter 3, Section 3.3 described several

state-of-the-art frameworks and evaluation results using a conversation telephone speech

task. The results showed that attention-based encoder-decoders reach the lowest WER for

conversational speech recognition. In order to attempt to understand what factors could be

contributing to the modelling errors, empirical analysis, in Section 3.5, attempted to observe
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patterns within the model outputs to potentially target those errors. Despite using several

metrics of empirical analysis, it was not clear whether there were any indicators that could be

used to adapt or improve the modelling approaches. Subsequently, an experimental analysis

framework was proposed in Section 3.6 to attempt to interpret and understand the neural

representation dependencies across approaches. The contributions and findings of Chapter 3

are:

• The development of a framework to enable representation correlation analysis using

state-of-the-art End-to-End models.

• A detailed comparison of similarity indexes where it was found that CKA and SVCCA

produce similar correlation results for an ASR task.

• Neural representation analysis of attention-based encoder-decoder approaches to visu-

alise more optimal learned dependencies for conversational telephone speech modelling.

The correlation of the learned representation hierarchies were shown to be an indicator

of improved recognition performance.

Capturing longer-term acoustic dependencies to improve speech modelling recognition

performance using challenging data, such as conversational speech, was explored in Chapter

4. Using a mixture of experts and augmentation approaches, had been shown to improve

model performance across different tasks and domains. However, the results of the pro-

posed approaches, presented in Section 4.3.3 showed very similar performance results when

evaluated with the in-domain Hub5’00 test sets, an average of 10.5% WER compared to

10.7% on the Switchboard set and an average of 20.4% WER compared to 20.2% on the

Callhome test set. The mixture of experts models produced higher rates of output errors when

evaluated with the RT03 test set, an average of 23.4% WER compared to 21.2% on the RT03

Switchboard set and an average of 15.2% WER compared to 13.3% on the RT03 Fisher test

set. These results showed that the current developments in modelling acoustic context do no
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directly translate to improved performance for an End-to-End ASR task. Upon conducting

representation analysis using the framework developed in Section 3.6, the results indicated

that the transformer approaches were learning the same representation space, indicating

potential memorisation behaviour. Section 4.4 presented cross-domain analysis of LSTM

and transformer models to interpret the relationship between neural representations and the

dependencies upon recognition performance. The results in Section 4.4.3 corroborated with

the results in Section 3.6.4 where more significant variations within the higher layer neural

representations was attributed to poorer recognition performance. The contributions and

findings of Chapter 4 are:

• Incorporation of established mixture of experts approaches for an End-to-End ASR

task, where the disparity in performance was discussed and analysed to observe the

learned representation spaces of transformer models.

– The performance results on the Hub5’00 and RT03 test sets showed that current

developments in acoustic modelling techniques cannot be directly incorporated

into the current state-of-the-art End-to-End ASR modelling approaches.

– SVCCA analysis indicated that the transformer modelling approaches learn the

same representation space and attempt to memorise the data, leading to poorer

recognition performance on out-of-domain testing scenarios.

• Cross-domain SVCCA analysis showed that models with high variations in neural

representations within the higher layers have poorer recognition performance.

• SVCCA analysis between models trained with different data domains is able to observe

that the representations learn different hierarchical latent spaces. The results evaluating

models trained across corpora indicate that model parameters would need to be adapted

for each dataset in order to improve the recognition performance.
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Chapter 5 introduced fusion techniques for incorporating language modelling with End-

to-End ASR models, described in Section 5.2, which were shown to improve recognition

performance of state-of-the-art approaches. However, results from LM fusion rescoring

experiments indicated that improved performance for End-to-End ASR models is highly

dependent upon higher weighting on the LM output. Using the SVCCA analysis framework

to analyse transformer models with cross-domain LMs, it was possible to observe that

the LM-dependent representations are predominantly dependent upon the deeper layers.

Using the insights from Section 5.3.3 and in Section 4.4 the model parameters were tuned

across different domain datasets to improve recognition performance. It was argued that

interpretative analysis is important to develop modelling approaches with knowledge of the

dependencies that contribute to improved performance. The main contributions of Chapter 5

are:

• The LSTM End-to-End ASR model improves recognition performance of 77% relative

to 4.11% WER on the EVAL92 test set and 6.28% WER on the DEV93 test set with an

LM fusion weighting of between 0.7 and 0.8, indicating that the model is not powerful

enough to model linguistic context alone.

• Using SVCCA analysis highlighted that LM-dependent representations could be ob-

served within the deeper half of the transformer model layers. The cross-domain LM

representations could be observed in the deeper final layers of the transformer model.

These results were able to be used to observe representation dependencies that affect

recognition performance.

• By tuning the model parameters of transformer models using evidence from the analysis

experiments, the recognition performance was improved:

– On the Hub5’00 test sets to 9.5% and 19.1% WER.

– On the WSJ test sets to 4.13% and 6.3% WER.
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– On the Librispeech test sets to 1.9% and 3.9% WER.

The hypothesis that modelling context within speech could be applied to speaker recogni-

tion models to improve recognition performance was derived using the insights provided by

Chapters 3, 4, and 5. Initially, the prior approaches for speaker recognition were discussed

where recent developments focused upon capturing context information to improve speaker

recognition and verification performance. Research showed that the current state-of-the-art

models struggle to recognise speakers in poor acoustic conditions and recent developments

rely on large amounts of training data and model parameters to improve performance. Based

on the gathered research, a dynamic convolution approach is proposed in Section 6.4.1

which improved speaker verification performance on the VoxCeleb1-O test set to 1.62% by

improving representation capacity without increasing the computational complexity. The

results in Section 6.6 corroborated with the results from Section 4.4.3 where models with

increased parameters do not necessarily contribute to improved recognition performance.

The main contributions of Chapter 6 are:

• A novel approach for speaker verification using dynamic convolutions was proposed

that improves EER on the VoxCeleb1-O test set to 1.62% when training with both

VoxCeleb1 and 2 training sets.

• The proposed dynamic convolution approach is able to reach a lower EER on the

VoxCeleb1-O test set when training using only the VoxCeleb1 training set to 2.89%.

• The best performing model has a smaller parameter size of 21 million compared to other

state-of-the-art approaches. The average computation time per epoch was increased by

approximately 30% compared to the X-vector model, however the performance was

also improved using a smaller amount of training data.

• For the task of speaker verification, increasing dynamic convolution spatial dimensions

(width) contributes to a slight reduction in EER than increasing model depth (layerwise)
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from 2.946% to 2.89%. Despite the reduced parameters of the 3 layer (12 million

parameters) model compared to the 4 layer (21 million parameters) model, it was

possible to retain the modelling accuracy using the proposed approach by improving

the embedding representation capacity.

The role of acoustic context was also explored for emotion recognition as this research

domain uses similar modelling techniques to ASR and speaker recognition. Chapter 7,

Section 7.2 outlined that emotion labels used for classification are treated as discrete events

over a whole speech segment, similar to how ASR and speaker recognition models output

discrete labels. This was shown to be in contradiction to published psycholinguistic theories

regarding context and linguistic cues for emotion perception. Results in Section 7.5 showed

that when the left or right contexts were changed across multiple corpora, the predicted

emotion target label also changed. The attention weight of the model had a propensity

towards vowel-based regions which corroborated with the theories on consonant-vowel

boundaries. The main findings of Chapter 7 are:

• State-of-the-art SER approaches assume that an utterance’s global attributes directly

correspond with local characteristics across different time frames in order to learn a

discrete emotion label. The analysis results varying context length show that this is a

naive approach and that acoustic segments and emotion classification should be treated

as a continuous relationship to improve recognition.

• The results and hypotheses derived from the analysis provide a previously unexplored

link between cognitive theories of emotion perception and SER, which could direct

future modelling approaches to grounded in more psycholinguistic theory.

• Analysis regarding the distribution of context cues over acoustic segments argues for

future speech emotion datasets to allow for overlapping categories which could aid

recognition performance for SER models.
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Altogether this work aims to explore context modelling in speech technology using novel

and established methods of analysis. This analysis has been used to consider modelling

techniques as well as acoustic and linguistic context to provide insights on representations

and dependencies related to performance.

8.1 Future Work

Potential future works from the research conducted in Chapter 4 could be the further analysis

of neural representations for ASR models trained on augmented or noisy data, in order to

observe the properties of different layers across models. This would be able to direct the

adaptation of models that are more robust to noise.

The scopes of Chapter 4 and 5 could also be expanded to investigate the attributes

and possible learned features that could be classified within the layers or across modelling

approaches. A classification model could be trained alongside the ASR model to model

distributions of features and provide more empirical interpretation of modelling approaches

across different domains. This would contribute to a deeper understanding of the properties

of the representation dependencies which could be used to aid the development of models

few-shot learning or downstream tasks.

The research presented in Chapter 6 could be extended across different variations of

convolutional models. These models could also be evaluated with more challenging data,

such as overlapping speakers or higher levels of noise, which would provide evidence as

to how the proposed modelling approach performs with different acoustic scenarios. The

proposed approach is also not limited to the task of speaker recognition and could be used

for modelling approaches across extended domains such as ASR.

Finally the analysis work in Chapter 7 could be used to develop continuous modelling

approaches that incorporate the cognitive theories of emotion perception to improve state-

of-the-art speech emotion recognition models. These modelling approaches could also aim
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to contribute to networks that more accurately simulate biological systems and behave in a

more human-like manner.
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system description to voxceleb speaker recognition challenge 2019. The VoxCeleb
Speaker Recognition Challenge 2019, 2019.

[234] Yun Tang, Guohong Ding, Jing Huang, Xiaodong He, and Bowen Zhou. Deep speaker
embedding learning with multi-level pooling for text-independent speaker verification.
In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6116–6120. IEEE, 2019.

[235] Yong Zhao, Tianyan Zhou, Zhuo Chen, and Jian Wu. Improving deep cnn networks
with long temporal context for text-independent speaker verification. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6834–6838. IEEE, 2020.

[236] Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian, Chengyi Wang, Shujie Liu,
Yanmin Qian, and Michael Zeng. Large-scale self-supervised speech representation
learning for automatic speaker verification. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6147–6151.
IEEE, 2022.

[237] Jenthe Thienpondt, Brecht Desplanques, and Kris Demuynck. Integrating frequency
translational invariance in tdnns and frequency positional information in 2d resnets to
enhance speaker verification. Interspeech 2021, pages 2302–2306, 2021.

[238] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber.
Common voice: A massively-multilingual speech corpus. International Conference
on Language Resources and Evaluation, 2019.

[239] Hossein Zeinali, Lukáš Burget, and Jan Honza Černockỳ. A multi purpose and large
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