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i. 

ABSTRACT 

Since the early pioneering work of Rosenfeld and Sklansky, 

machine vision has been used successfully in a number of 

practical applications. In this work the areas of application 

have been reviewed to determine the extent to which canputer 

vision has been utilised in industry. Its application so far 

has been restricted principally to the mass production field of 

car manufacture, in the areas of body panel inspection and to a 

lesser degree to unit assembly. 

The develognent of robots for picking unsorted canponents 

fron containers and for inspection depends upon the reliability 

and the speed of the vision control system enployed. 

This project investigates a preliminary approach for fast 

shape recognition of randanly positioned and oriented 

canponents. The results obtained indicate that this goal can be 

achieved by the use of the techniques of contour tracing, 

Fourier and surface texture analysis and shape fron shading 

methods. 
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DECLARATION OF ORIGINALITY 

The work presented is concerned with the acquisition 

and processing of data obtained from a single camera image. 

Previous work on edge detection has been adopted and applied to 

the enhancement of engineering component boundaries; it has been 

shown that the edge detection methods available are adequate for 

this work. 

In the application of the Freeman's code, a look-up 

table has been introduced to accelerate the contour mapping 

process and successfully applied to engineering canponent 

identification. 

To eliminate a fixed geanetry between camera and 

component for robotic use, Fourier Descriptors, texture analysis 

and shading models have been introduced into the identification 

process. 

The adaption of these methods in the field of 

engineering has made a novel contribution to the literature. 



xii. 
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This thesis is presented in accordance with the British 

Standard recarmendations for the Presentation of Thesis; BS4821: 

1972, and with the regulations of the University of Leeds. 

All symbols and nanenclature, wherever possible, are in 

accordance with general and consistent usage and they are fully 

defined at their first appearance. A list of nomenclature is 

also included for ease of reference. 

Equations, figures and tables are designated by the 

chapter in which they occur and by a secondary number denoting 

the order in which they appear in the chapter. Figures and 

table are bound into the thesis near the appropriate text. 

The references cited for the present work are listed at 

the end of the thesis and they are numbered according to the 

order that they are mentioned in every chapter. 

Pages are numbered consecutively through the thesis 

including figures and tables. 
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1. 

CHAPTER 0NE 

Il TRODU rION 

An Introduction to Image Processing and Computer Vision 

is given together with the Research objectives 



a. 

1.1 INTRODUCTION 

Visual data constitutes practically all the estimated 

'one thousand million' bits of information received by human 

sensory receptors every second [1]. Most of the information 

humans receive, learn, remember and use is in graphic form. A 

large area of the brain's cortex is dedicated to vision and this 

is one explanation for the extraordinary capacity that the human 

has for processing pictorial information strategically, i. e. 

according to the specific contextual needs of the observer [2]. 

Interest in digital image processing methods stems from 

two principal application areas: improvement of pictorial 

information for human interpretation, and processing of scene 

data for autonomous machine perception. Since the early 1960's, 

the field of image processing has experienced vigorous growth. 

Digital image processing techniques are used today in a variety 

of problems which, although often unrelated, share a cannon need 

for methods capable of enhancing pictorial information for human 

interpretation and analysis. In medicine, for instance, 

physicians are assisted by computer procedures that enhance the 

contrast or code the intensity levels into colour for easier 

interpretation of x-rays and other biomedical images. Image 

enhancement and restoration procedures have been used to process 

degraded images depicting unrecoverable objects or experimental 

results too expensive to duplicate [3]. Successful applications 
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of image processing concepts can be found in astronomy, biology, 

nuclear medicine, defence and industrial applications. 

The second major application area of digital image 

processing techniques, mentioned earlier, is in problems dealing 

with machine perception. In this case, interest is focused on 

procedures for extracting from an image, information in a form 

suitable for canputer processing. Often, this information bears 

little resemblance to visual features used by humans in 

interpreting the content of an image. Examples of the type of 

information used in machine perception are statistical manents, 

Fourier transform coefficients, and distance measures [4]. 

Typical problems in machine perception which routinely 

employ image processing techniques are: industrial robots for 

product assembly and inspection, automatic character 

recognition, automatic processing of finger prints and military 

recognizance. 

This chapter provides an overview of the image 

processing philosophy and reported applications in computer 

vision. The objectives and the scope of the thesis are also 

presented. 
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1.2 MACHINE VISION 

The general goal of a machine vision system is the 

development of a mechanism for effectively interpreting visual 

image data. Interpreting an image is defined as the process of 

transforming a video image signal into a symbolic representation 

within a canputer. 

Machine vision is based on three related fields: - 

i) Image Processing - the input and output signals are 

both images, with the output image of superior quality 

to that of the monitored image. 

ii) Pattern recognition - the output representation is a 

description of the input image derived from a prior 

knowledge of an expected pattern. The processed visual 

data is correlated with known object silhouettes to 

identify the input image. 

iii) Scene analysis - is concerned with the mapping of 

simple features into abstract descriptions for objects 

that cannot be recognised from pattern matching and 

deals extensively with three-dimensional image 

classification. 
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The motivation behind the use of vision in industry is 

to increase machine versatility and permit more flexible working 

to achieve lower unit costs. The human factor in the hostile 

environment is also significantly reduced with the use of 

machine vision. 

The list of applications where it would be desirable to 

aid or replace human perceptual processing of images by machine 

processing already spans every aspect of life. Machines that 

perceive their enviroriment and perform required tasks have an 

obvious use in many diverse applications. For example machine 

feeding is a tedious task which does not enrich human life. 

This work is often done in an unhealthy environment, sanetimes 

exposing hands and arms to physical danger [5]. Industrial 

assembly and inspection, planetory space exploration , autanated 

medical x-ray screening, the monitoring of the earth's resources 

by remote sensors and a range of military applications are other 

examples in which machine vision has a role to play. They are 

particularly useful when a non-contacting method of inspecting 

solid objects is desired, for example when inspecting flimsy or 

soft objects that could be distorted under pressure. 

Computer vision had its beginning with the advent of 

faster digital computers (1950's). It was recognised that 

visual data could be represented by numbers and, therefore, be 

of suitable form for computer processing. The problem was how 

to process these numbers to obtain usable information. 
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Selfridge [6] proposed "eyes and ears for the 

computer"; Attneave [7], Langdon [8] and Stevens [9] published 

quantitative studies of shape and pattern perception, using a 

psychological approach and humans perceptual models. 

The early work of Roberts [10] processed an image 

composed of children's blocks and Fischer [11] of printed 

characters and this latter task motivated the paradigm of 

'pattern recognition' research. The pioneers in the field were 

Rosenfeld [12] and Sklansky [13] who have published numerous 

papers over the years. The first textbook on computer image 

processing was published as a computer vision Laboratory report 

of the University of Maryland, USA in 1968. 

1.3 THE GENERAL REQUIRE iENIS IN VISION SYSTEMS 

A computer vision system, to be feasible for industrial 

application, must be relatively inexpensive and yet must possess 

the following characteristics: 

i) provide a simple input image 

ii) do processing in real time 

iii) have a low error rate 

iv) be flexible, i. e. be able to accomodate changes in 

products. 



7. 

Past research and experience have shown these four character- 

istics to be key requirements for successful industrial computer 

vision systems [14]. A brief discussion of the above 

characteristics is presented. 

i) Simple input image 

A simple but effective idea is"to provide the computer 

with an image it can analyse easily. This can be done 

by carefully illuminating the object against a simple 

background to produce a less noisy, high-contrast 

image. A simple "line of sight" is also important, 

since most vision systems do not see the object in 

three dimensions, but rather analyse a plan view of it 

in two dimensions. Finally, the "structure" of the 

object must be simple, i. e. it must be viewed in 

isolation and not as a part of a larger assembly. 

ii) Real-time processing 

A conventional mini or microcomputer is inefficient for 

doing iterated feature extraction and pattern matching. 

These real-time operations, the most popular image 

processing techniques in industrial vision systems, 

require specialised hardware, i. e. an image processor. 

An important strategy for improving real-time 

efficiency is to ignore irrelevant areas of the input 

image. Top-down processing methods, guided by models 

of the objects of interest, make it possible to exclude 

such areas. 
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iii) Low error rates 

In order to make the vision system more reliable, those 

features that can be most effectively and reliably 

detected are selected first. Next, suitable feature 

extraction methods are chosen and their performance, 

reliability and processing cost evaluated. 

The system should be designed to be insensitive to 

failures in the feature extraction process. A very low 

error rate can be obtained, for example, if the system 

is made to go on to another feature if the one already 

detected conflicts with the stored model of the object. 

iv) Flexibility 

In medium and low volume production, the type of object 

handled often changes. For medium volume applications, 

a central file of models can be maintained, fron which 

specific models may be drawn. When a new object 

appears at a work station, the appropriate model is 

sent to the station's image processor [151. 

1.3.1 fl Qanonents of Industrial Vision system 

The three major hardware camponents used in industrial 

computer vision systems are the imaging sensor, the image 

processor, and the central processor. A brief discussion on 

each of the canponents is presented. 
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i) Imaging Sensor 

Because they are relatively inexpensive and widely 

available, standard television cameras using vidicons 

are the most commonly used imaging sensors. Other less 

widely used sensors include solid state linear and area 

sensors, laser scanners, and image dissector cameras. 

ii) Image Processor 

In most industrial vision systems (16), the image 

processing is performed in real time, synchronised with 

the frane rate of television cameras (1/30 of a second 

in the USA, 1/25 of a second in Britain). To achieve 

such speeds of processing, most image processors used 

in industrial systems would have to employ a locally 

parallel image processor. 

iii) Central Processor 

Until recently, special-purpose Central Processing 

Unit (CPU) hardware had to be designed for each 

application. The rapid progress of large Scale 

Integration (LSI) technology, however, has now made it 

cost-effective to use general-purpose micros and minis 

as central processors in industrial vision systems. An 

example of the efficient configuration of imaging 

sensor, image processor, and central processor into an 

industrial vision system is the group-controlled system 

[17] shown in Figure 1.1. Here, a central processor 

supports several image processors and many imaging 

sensors. 
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Figure 1.1 A group-controlled system. 

IMAGING SENSOR 
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1.4 RCBCYr TECHNOLOGY 

The industrial robot has its origins in both the 

teleoperator and the numerically controlled machine tool. The 

former is a remote handling device to permit an operator to 

perform a task at a distance, while the latter shapes metal 

autanatically, based on digitally encoded cutting data. 

Developments in robotics, machine vision, sensors, 

manipulators, expert systems and artificial intelligence 

concepts are being canbined to create the integrated 

manufacturing system. A part of this development is the "spart" 

robot [18] that will be designed to increase productivity and 

improve the quality of manufactured products. A robot that can 

'see' and 'feel' will be able to perform a greater variety of 

more canplex tasks with the minimum of human intervention [19]. 

A typical arrangement might be as shown in Figure 1.2. 

A robot may be considered to be a mobile machine and 

this can introduce an extra dimension to machine vision. This 

mobility allows the location fron which the next image is taken 

to vary and even to be dependent upon the results of analysing 

the current image. It could be programmed to direct its image 

processing capability to features that will identify particular 

components [20] and help minimise confusion between object and 

shadow. 



Figure 1.2 The role of computer vision in robot control. 

12. 
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1.5 THE ROLE OF ARTIFICIAL INTELLIGENCE (AI) IN INDUSTRIAL 

VISION SYSTEMS 

Artificial Intelligence (AI) is the study of 

intelligence using the ideas and methods of computation, i. e. 

information processing and information representation abilities. 

These are attributes that form an inherent part of the machine 

vision systems. Neumann [21] demonstrates that when an 

industrial vision system is designed without a 'knowledge-base' 

approach, major shortcanings and limitations in performance will 

result. It is argued that by the employment of AI concepts, 

systems with extended application capabilities and predictable 

performance can be designed and developed [22]. 

The rule based recognition systems developed, can 

reduce the regions to be searched and- associated pattern 

matching times [23]. Magee and Nathan [24] have developed a 

system which represents the topology of two and three 

dimensional structures using a rule-based approach. By 

exploiting natural constraints and the manner in which edge 

types may join at junctions to form higher level objects, a set 

of rules that describe known models is developed. There is, 

however, no mention of the difficulty that may be experienced in 

expanding the approach developed for a curved and more canplex 

surface by the addition of further rules. 
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Rule-driven machine vision requires a significant 

knowledge base and a specialised AI canputer language, developed 

primarily for list processing and symbolic manipulation. The AI 

method is computationally more canplex, requires more processing 

power and as yet is not available at a price that would be 

acceptable for most industrial applications. 

1.6 OBJECTIVES AND SCOPE OF 11-IIS THESIS 

The work presented in this thesis is centred on the 

belief that vision systems utilising relatively simple binary 

image processing algorithms (image processing/camera-based 

systems) show the capability of supporting robotic manipulation, 

essentially for two dimensional non-overlapping objects; and 

that using range data and modelling techniques, three 

dimensional object handling and limited scene analysis is 

possible. 

The state of the art in image processing research for 

computer vision technology, a study of the algorithms for edge 

and boundary detection and an extension of the existing 

techniques, are presented in the first three chapters. 

Developments are made in two-dimensional pattern recognition and 

orientation estimation and further data reductions are made by 

use of Fourier analysis and techniques in three-dimensional 

object recognition. These make up the remaining four chapters. 
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The thesis organisation is: 

Chapter 2A literature review is presented and 

industrial systems employing vision techniques at various levels 

of sophistication for a varied range of applications are 

discussed. 

Chapter 3 An existing processing rig, modified by the 

author to meet the particular requirements of the vision 

algorithms developed, is reviewed. Sub-programs are written for 

edge detection techniques to test the strengths and weaknesses 

of the available algorithms. 

Chapter 4 The Freeman's [25) chain code is employed in 

two dimensional contour tracking and the data generated used for 

object identification and orientation measurement in a pattern 

recognition algorithm. 

Chapter 5 An approach is described, based on Fourier 

analysis, for the fast shape recognition of randomly positioned 

and oriented components. Two methods are investigated and both 

methods suggest, for the shapes considered, that the recognition 

of components can be achieved reliably with a relatively all 

nunber of normalised Fourier Coefficients. 
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Chapter 6 Surface texture analysis techniques are 

employed to recognise simple objects. Feature vectors, using 

the power spectra of the images, are developed and the 

similarities between the corresponding vectors are measured to 

determine recognition. 

Chapter 7 Methods used in image synthesis for 

developing surface normals are examined in this chapter. In an 

attempt to recognise the differences in the geometry of simple 

objects, surface normal vectors are obtained and their 

effectiveness in recognition procedures are discussed. 

Chapter 8 The observations made throughout the project 

are sumnarised and discussed. 

Chapter 9 The major conclusions that can be drawn from 

the thesis are presented. 
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CHAPTER TWO 

LITERATURE REVIEW 

A survey of work relating to the field of image processing and 

computer vision is presented, and a prime selection of 

industrial vision systems incorporating such techniques and 

principles are discussed. 
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2.1 I ax rION 

The subject of digital image analysis and processing is 

constantly increasing its spectrum of potential applications, 

being now an established subject of research and development. 

New image processing systems are constantly under development 

[1,21. Consequently, new algorithms and new digital system 

architectures must be developed to handle the enormous flow of 

data from the new imaging systems with proper precision and 

adequate throughput. 

Computer vision, with digital image processing as its 

nucleus, has been introduced into manufacturing for canponent 

inspection and robot control. Both these uses of computer 

vision are beginning to change manufacturing methods, with sane 

systems now in production [3]. 

There is a large number of possible vision tasks, 

involving essentially two-dimensional image analysis techniques 

for feature extraction, segmentation, shape analysis and model 

matching. Few papers exist, however, that describe the problems 

and techniques involved in three-dimensional scene analysis and 

object recognition. 

This chapter will give a general indication of the 

state of the technology; discussing briefly, a selected number 

of existing systems. The chapter begins with an overview of 



19. 

two-dimensional techniques and applications and continues with a 

review of the published literature on three-dimensional 

techniques; addressing problems involved and possible 

theoretical and engineering approaches for simple three- 

dimensional object recognition. 

2.2 1 -DIN ION1 L ANALYSIS 

Over the years, two-dimensional image processing 

techniques for pattern recognition and orientation measurement, 

as well as improving and enhancing pictorial data have become 

well established research areas. The early work of Roberts 

[4], Sobel [5] and Prewitt [6] on edge detection and image 

segmentation, followed by coding techniques such as Freeman [7], 

paved the way for developing algorithms dealing with simple 

object recognition and orientation estimation for applications 

in robot technology. Further, introducing digital signal 

processing techniques into the field brought more interesting 

research and application areas and played an important role in 

todays state of the technology [8]. 

One of the most important and widely used signal 

processing technique is the application of Fourier analysis. 

2.2.1 Fourier Analysis Applications 

The contour representation of shape by use of Fourier 

analysis has been attracting the attention of many researchers 

in recent years. 
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Surface representation techniques and pattern 

recognition algorithms have been developed using Fourier 

descriptions of the image contour by Nikravan et al. [9]. 

Recognition techniques which are independent of the image size 

and object orientation, are shown to have potential engineering 

use. 

Arking and Rosenfeld [10] have developed both time and 

frequency domain techniques for the estimation of cloud motion. 

Results are presented for both simulated data and data fron 

weather satellites. 

Badreldin and Wong [11] have developed shape 

descriptors for curves and trajectories. They have extended the 

one-dimensional Fourier analysis to n-dimensional contours by 

extending the one-dimensional procedure. They do not, however, 

discuss how the coordinate values are obtained and work from a 

premise that data measured from an orthogonal coordinate system 

exist as a parametric representation (X(1)(1), X(2)(1), .... 

X(n)(1) = Z(1)), where 1 is the arc length with reference to a 

starting point XK = (X(K), X(K) , .... X(K) 

Every location (X(1), X(2), ...., X(n)) of the 

curve can be expressed as a function of arc length, each of 

these functions is expressed as a Fourier series: 

(i) M (i) (i) 

c öi +I [ate cos (2L 1K) +b sin (2 1K 
N=1 
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where: 

m (1) (1) 
2 

(2) (2) 2 (n) (n) 2 
= ' (X + -X) (X -X) + ..... +(X -x 

K K=1 K+1 K K+1 K K+1 K 

m= total nunWr of points 

i=1,2, ...., n 

M= number of coefficients 

N=1,2, ...., M 

L= total length of the trajectory 

Wallace and Wintz [12] have developed a technique, 

based on their Normalised Fourier Descriptors (NFD), for 

three-dimensional Aircraft recognition. In their procedure a 

three-dimensional object is represented by a library of 

projections, whose NFD's are compared to the NFD of the unknown 

projection. An interpolation procedure on NFD's enables more 

accurate determination of the angle at which the unknown object 

is viewed than can be achieved by methods which simply take the 

orientation to be that of the nearest library projection. Their 

work is mainly concerned with the tracking environment. 
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2.3 3D CONCEPTS: PROBLEMS, DEFINITIONS, NEmODS AND 

SySIEMS 

The basic two-dimensional techniques all break down, at 

least to same extent, when applied to 3D problems, i. e. 

recognising the individual elements in a bin of parts. In this 

quoted example the image cannot be thresholded because the 

illumination can not be adequately controlled, and the parts 

cast shadows from one to another [13]. Edge detection would 

give confusing results, since there is no easy way to 

distinguish the edges of objects fron the edges of shadows. 

Clearly, when an object is rotated in 3D space, the shape of its 

silhouette can change drastically, hence, any results fron image 

segmentation cannot be considered reliable because no unique 

model can exist for canparison. Each change in object 

orientation would require a different "learnt" model to be 

available. 

Rosenfeld [14] explains that the interpretation of the 

3D image becomes much easier if the "topography" of the visible 

surfaces can be determined. Inevitably, problems can still 

arise with overlapping objects and this condition is referred to 

as 21 dimensional [14]. Recognising this limitation, it can be 

argued that topographical information should be a sound 

engineering basis on which to develop a scene analysis 

processing technique for industrial application. 
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2.3.1 Deduction of 2} Dimensional Information for 3D object 

Recognition 

The most straightforward way for obtaining 21 

dimensional information is by direct measurement. Sensors have 

been developed that will measure directly the distances to all 

visible points in the field of view [15,16]. The output from 

these sensors [17] is a "range image", that is, an array that 

represent range values rather than brightness. One approach is 

to illuminate one point at a time with a coherent beam of light, 

the phase shift of the reflected light is measured [18] and fron 

this value the range to the point can be computed. A second 

approach is to project a grid pattern of light onto the scene 

and the distortion of this pattern is analysed to deduce shape 

[191. 

An alternative range measurement approach is to use two 

images taken fron different view points. If corresponding scene 

points in the two images can be identified, range data is 

estimated by "triangulation". The difficulty with stereamapping 

is that it is not always possible to find pairs of corresponding 

points. on a smooth, featureless surface, the best that can be 

done is to try to match up pairs of distinctive points, such as 

points that lie on edges [14). 



24. 

With only 2D image data available, 3D object 

information can be extracted. For example, surfaces generally 

reflect light diffusely and by employing the change in 

brightness around a chosen image point, the surface curvature 

can be estimated point by point [20]. An approach known as 

"shape fron shading" (sfs) because of the inferred 3D surface 

information. This method could have numerous engineering 

applications and will be used later in the Thesis. This idea is 

extended to a technique called "photanetric stereo", in which 

two or more images are taken of a scene, using the same camera 

position but changing the direction of illumination. The 

shading in each image imposes constraints on the attitude of the 

surfaces and from these the orientations are uniquely identified 

[21]. 

In other work for the recovery of three-dimensional 

shapes and surface orientations fron single two-dimensional 

contours, Augusteijn and Dyer [22] take a model-based approach 

and derive algorithms using contours and point patterns. 

If a surface has regular markings, its orientation can 

be deduced from the way the pattern of markings is distorted by 

perspective; this idea is called "Shape frccn texture. " Kanade 

[23] has developed interesting results using algorithm based on 

this technique and shadow geometry. Surface texture will also 

be used later in the Thesis. 
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Finally, if an object is known to have rectangular 

surfaces, its orientation can be estimated fran the way the 

shapes of these rectangles are distorted in the image; a 

technique known as "shape from shape", that is , inference of 

21 D surface orientation of shape fron the 2D shapes of regions 

in the image [131. 

2.3.2 Processing of Surface Information for 3D object 

Recognition 

When the 21 D shapes of an object in the scene are 

known, shape description or matching techniques may be used to 

inspect the surfaces, or to identify the objects to which the 

surfaces belong. For example, bumps or dents in a surface can 

be detected if they give rise to high surface curvature (24]. 

Objects can be recognised by comparing properties of the 

observed shape with the expected property values for the 

objects. For example, a polyhedral object can be characterised 

by the shapes of its faces and the angles at which the faces 

meet. 

The image analysis described give rise to a 

decanposition of the image into regions, or of the scene into 

objects. A "literal" description of the image or scene can, 

therefore, be given in the form of a relational structure in 

which the nodes correspond to features, regions or objects, 
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labelled by lists of their property values (shape, texture, 

colour etc. ) and the arcs correspond to relations (adjacency, 

relative position, etc. ) [25). This type of "semantics-free" 

description is usually not what is wanted, generally object 

recognition is achieved by comparing descriptions to stored 

"models", which are generalised features defining object 

class. 

Model formulation is difficult because constraints on 

the allowable property value and relationships cannot be defined 

with confidence. 

The most extensive work on 3D object recognition from 

2D images is the ACRONYM system, developed by Brooks [25]. 

This system incorporates methods for predicting the two- 

dimensional appearance (shape, shading, etc. ) of an object in an 

image for a given camera location. Conversely, it provides a 

means of defining constraints on 3D properties that could give 

rise to a given image, and for manipulating constraint data. 

These capabilities are incorporated in a prediction/verification 

process which uses the image to make predictions about the 

object and verifies that the image does arise fron an object 

that satisfies the resulting set of constraints [26]. 

There are, however, many problems associated with the 

model matching task. The pioneering work on the inference of 
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relational structure models from examples was done by Winston 

[26]. For a set of models, it is not clear how to choose 

combinations for comparison with the object; the selection is 

known as "indexing" problem. A method suggested by Rosenfeld 

[14], is to use the models to control the image analysis process 

and design the process to eliminate most of the possible models 

at an early stage in the analysis. 

2.3.3 Hierarchical Modelling and the Syntactic Approach 

In an environment where a priori knowledge of objects 

is available together with a suitable data base, it is 

appropriate, to model regions or objects hierarchically [27]. 

Regions or objects are composed of parts arranged in particular 

ways, where the parts themselves are arrangements of subparts, 

and so on. There is an analogy between this type of 

hierarchical representation and the use of grammer to define a 

language. In defining languages a sentence is composed of 

phrases which are in turn composed of clauses, etc. Based on 

this observation the process of recognising an object as 

belonging to a given hierarchically defined class of objects is 

analogous to recognising a well-formed sentence as belonging to 

a given language. This "syntactic" approach to object or 

pattern recognition has been extensively studied by Fu [28]. It 

has been used successfully for recognition of two-dimensional 

shapes, patterns, and textures; it is not, however, appropriate 

for 3D object recognition, since no mechanise exists for 

relating 2D images to 3D objects. 
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In the following sections shape fran (i) Shadows, 

(ii) Texture, and (iii) Shading is reviewed. 

2.4 SEDCJWS: BASIC CONSIDERATIONS AND APPLICATIONS 

Image shadows provide information which is useful for 

determining the 3D shapes and orientations of an object in a 

scene. The interpretation of shadows involves three distinct 

phases: - 

(a) locating the shadow regions 

(b) determining which object has cast each shadow 

region 

(c) Geometrically deducing information from the 

identified object and shadow pairs. 

Knowledge gained from (b) and (c) can be used to improve (a) 

with noise present [29,30]. 

Techniques for finding shadow regions, have been 

proposed by many researchers usually by looking for regions of 

low intensity with a similar 'hue' to a neighbouring region 

[29]. A close examination of region contours will reveal that 

shadows due to the sun will have a slightly bluer hue than 

illuminated portions of the sane surface. Lowe and Binford [31] 

proposed criteria to identify edges of shadow regions. Witkin 

[32] investigated shadow edges. Waltz [33] developed a method 

for labelling lines in line drawings as shadow edges, using 

local geometric criteria at vertices. 
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The correspondence problem has been explored primarily 

by Lowe and Binford [31]. They describe several properties of 

this correspondence, and include descriptions of special points 

from which degenerate cases arise. O'Gorman [34] proposed a 

heuristic method for finding correspondences in the 'blocks 

world' under orthography. 

Geometric interpretation of shadows have been made by 

Lowe and Binford [31], using shadows from aerial views to 

determine height. They measure the distance in the image 

between the outline of an object and the outline of its shadow, 

and use similar triangles to conclude that this distance is 

proportional to the height of the object's edge above the 

ground. Quam [35] has also used shadows to determine depth 

information. These techniques have also been employed in manual 

photo-interpretation of aerial photographs [29]. 

2.5 TEXTURE ANALYSIS AND ITS APPLICATIONS IN SCENE 

UNDERSTANDING 

The concept of texture relates to no rigid description, 

however, a dictionary definition of texture is 'sanething 

composed of closely interwoven elements'. The description of 

interwoven elements in hinting to the texture resolution, that 

is the average number of pixels for each distinct texture 

element. If this number is large, it may be possible to 

describe the individual elements in sane detail [36]. As this 
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number nears unity, however, it becanes increasingly difficult 

to characterise these elements individually and they merge into 

less distinct spatial patterns. 

Texture can provide important information for image 

analysis [37]. Textural features are used to classify images, 

and differences in texture is used to detect objects in an 

image. Three-dimensional information such as depth, slope and 

curved surface measurements can be derived from texture 

gradients. Therefore, the problems of texture analysis are 

classified as 

(a) Measurement of textural features 

(b) Measurement of texture gradient 

(C) The segmentation of texture images 

2.5.1 Measurement of Textural Features and Texture Gradient 

A number of textural features have been proposed by 

researchers in recent years [37,38,391. Most of them were 

developed for the purpose of classifying images (or previously 

extracted portions of an image) on the basis of texture. They 

can be used in addition for region segmentation or gradient 

measurement. Texture analysis focuses on models of texture 

synthesis, such as statistical models [40], structural models 

[41], time-series (autoregression) models [42] and randan mosaic 

models [36]. 
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2.5.1.1 Analysis in spatial-da®ain 

Texture analysis methods in the spatial danain can be 

classified, based on the unit considered for the analysis, as 

follows: 

(a) Pixel 

Sane textural features of an image can be derived fron 

statistics of the grey-level distribution of pixels. 

Haralick [43] camputed a co-occurance matrix, each 

element (i, j) of which is the probability that a pixel 

separated by a fixed displacement a, 8= (r, 0) , (r and 

0 in polar coordinates) fron a pixel of grey level i 

will have grey level j. Weszka [40] has canputed a 

difference statistics (histogram) k-th elanent of which 

is the probability that two pixels separated by 

displacement d will have a grey-level difference k. 

Galloway [44] canputes a 'run length' matrix each 

elanent (i, j) of which is the frequency with which j 

pixels of grey level i continue in direction 6. 

(b) Edge Element 

Edge elements are detected by a gradient operator. An 

edge is characterised by the edge value, the edge 

direction and the edge size. The average values of 

edge size (edge density) are correlated with the 

coarseness of the texture [451. Rosenfeld [46] has 

measured the slope of surfaces fron the gradient of 

local average edge values. 
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(c) Extrema 

Mitchell [47] has used local maxima and minima of 

grey-level (extrema) which are detected by scanning an 

image in the horizontal and vertical directions. An 

extrema is characterised by the size (corresponding to 

the contrast of the texture), and the frequency of 

extrema of different sizes is computed. 

2.5.1.2 Analysis in frequency domain 

If a texture is at all spatially periodic or 

directional, its power spectrum will tend to have peaks for the 

corresponding spatial frequencies. These peaks [36] can form 

the basis for a pattern recognition discriminator. Another way 

is to partition Fourier space into zones. Two kinds of zones 

are carnonly used, namely radial and angular. See Figure 2.1 

These spaces, together with the power spectrum are used 

to define features. 

2.5.2 Segmentation of texture images 

In images where a variety of textures exist, the 

regions corresponding to each texture can be detected to assist 

in the study and the analysis of surface properties as well as 

eliminating simple shadows in the image. 
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Rosenfeld [48] developed a technique based on 

calculating the difference of average grey level between each 

pair of neighbourhoods in the image and calculated the best size 

and direction of the texture edges as well as the corresponding 

edge values. 

Tanita (41] proposed an averaging operator whose 

neighbourhoods for averaging are variable from point to point. 

This method preserved the texture edges between regions. 

2.6 SHAPE FROM SHADING 

Display and analysis of three-dimensional data are 

important in several different disciplines. They are useful if 

there is a need or desire to visualise 3D surface. This is the 

case in many situations of practical importance. Shaded surface 

displays are a two-dimensional representation of a three- 

dimensional surface. Shaded surface displays have been success- 

fully employed in the algorithms developed for Robot vision and 

inspection techniques as well as medical reconstructive surgery 

[491 and computerised Tanography [50], where the 3D nature of 

the surface is conveyed with the aid of visual cues such as 

perspective, shading, texture, shadowing, etc. 

However, shaded surface displays are not really 

suitable for immediate full visualisation of the 3D volume. 

That is, they require sane preprocessing of the 3D data in order 
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to extract the desired surfaces. In most algorithms, the 

surfaces are described in terms of patches which join to form 

the complete surface. Several investigators [51) have employed 

'contextual' shading schemes wherein the shading of a displayed 

face depends on the orientation of its neighbours, its distance 

fran the observer (i. e. range), and the incident angle of the 

light. Each face is represented by its contour and the 

'smoothness' of the contour is controlled by a linear factor 

controllable by the system user. Details of contour tracing and 

reconstruction techniques and also, the smoothing consider- 

ations, are included in Chapter 5. 

2.7 INDUSTRIAL SYSTEiS AND APPLICATIONS 

Lothar Rossol [52] has characterised the universe of 

vision machines as shown in Figure 2.2. Essentially, most 

vision systems operate in the y=0 plane, that is they are 

restricted to shades of grey and cannot deal with colour picture 

data. Furthermore, commercially available machines are 

positioned along the Z-axis, that is, they are capable of 

processing black and white or binary picture data only. Tasks 

of substantial canplexity can be solved with those machines, so 

long as the visual scene can be thresholded, resulting in a 

binary picture. 
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The difficulty is, of course, that the majority of 

industrial tasks do not fall on the z-axis. Significant 

variations in light reflectance fran part to part will usually 

complicate the task. The major problem in industrial vision 

tasks, that of object background separation, or segmentation, is 

thus generally not solvable by simple thresholding. The 

alternative approach is to use structured lighting. 

In the late 1970's and early 1980's the work on two 

state of the art vision systems were completed at General Motor 

Research Laboratories, USA. CONSIGHT [53] which is a visually" 

guided robot system uses structured light, while KEYSIGHT [54] 

which is for the inspection of valve spring assemblies on engine 

heads for the presence of valve spring cap keys, is an example 

of a computer vision system that processes grey level picture 

data. The structured lighting of CONSIGHT converts a difficult 

grey level vision problem into an inherently simpler binary 

problem. CONSIGHT, however, differs from conventional binary 

systems in that three-dimensional structure can be calculated 

directly, rather than having to be inferred from light reflect- 

ivities [53). It is shown that structured light used in 

conjunction with stereo vision, results in highly reliable 

three-dimensional vision systems [36]. KEYSIGHT demonstrates a 

shortcoming of the grey level inspection systems: they are not 

easily prograninable, especially when compared to binary systems 

[541. 

UNIVERSITY LIBRARY LEEDS 
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Two earlier vision systems, namely SIGHT-I [55] and GCA 

[56] (Grid Circle Analyser), were developed at the same 

Laboratories in 1976 and 1978 respectively. SIGHT-I, a 

forerunner of many vision systems used by the electronic 

industry, automatically aligns and inspects integrated circuit 

chips, an operation which was performed manually at General 

Motors factories prior to the installment of the vision system. 

The key to a clear understanding of sheet metal 

formability is the measurement of surface strains after a 

stamping operation. Steel manufacturers have developed a 

surface strain measurement method which involves printing a grid 

of small circles into approximate ellipses. Measurement of 

these ellipses provides the data necessary to calculate the 

surface strain. The GCA autcmates this measurement [56). 

Researchers at Carnegie-Mellon University (CMU) have 

developed an Autonomous Land Vehicle (ALV) whose initial task 

was to follow roads and sidewalks and on the University campus 

and avoid obstacles such as trees, humans, and traffic cones 

(57]. The vehicle, is equiped with three types of sensors: two 

colour television cameras for stereo vision which give 

reflectance information to find road edges; a sonar ring, which 

is a collection of 24 sonars for measuring distances; and a 

scanning laser rangefinder which has the ability to find both 

the road boundaries and measure distances, and is used to 

cross-check the data obtained by the other sensors. The 
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research vehicle, called the Terregator (short for Terrestrial 

Navigator) has been designed and built at CMU, the work for 

which started in 1984 and became operational by the end of 1986. 

A structured design approach has been adopted to allow 

development of individual modules (58]. 

A Waseda University (Japan) project team have built an 

intelligent robot, Wabot-2 which can play an electric piano, 

using the fingers and feet, while reading printed music (59]. 

The software developed uses a hierarchical data structure for 

printed music and the robot vision system has to distinguish 

between the black and white keys as well as the relative 

position of each note. These processing ideas are extended to a 

conversation mode by using a voice synthesizer. It has been 

reported [59] that pertinent data can be recognised in 

approximately 15 seconds, with close to 100% accuracy. 

2.8 DISCUSSION AND FINAL REMARKS 

The field of computer vision is another example of how 

changes in technology will make existing industrial practices 

obsolete. Since 1970 computer vision has been studied 

extensively at all three levels of: basic research, application 

oriented research and practical system development [601. 



40. 

The development of machine vision will open up another 

approach to industrial mechanisation at a time when manufac- 

turers are looking both for higher levels and greater flexi- 

bility in automation since improved product quality is essential 

in the modern production process [61]. 

Vision systems are beginning to have an impact in 

canponent inspection [ 2,271. These references indicate a 

great diversity of applications, not only the visual examination 

for defects, but also measurement of dimensions, counting, 

checking and part orientation on conveyor belts. Still state of 

the art and mostly in the future are applications to control 

robots (guidance), vehicles, sorting and transport [57]. The 

requirements for robot vision are different in many respects 

fran the need of inspection and quite different types of system 

will have to be developed. 

The requirements for fewer plant operatives together 

with the need to introduce more flexible manufacturing scheues, 

will inevitably lead to a major increase in the use of machine 

vision in the next decade. 
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CHAPTER THREE 

PRE-PROCESSING AND SYSTEM HARDWARE 

A number of edge detection techniques are documented and 

assessed for their strengths and weaknesses. The systern 

hardware and the computational power are also discussed. 
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3.1 

Image edge detection, identified by a sudden change in 

grey level, is one of the most important properties used in 

machine vision. It permits an image to be separated fram its 

background, the first step towards the analysis or description 

of the image. 

This chapter docunents a number of basic, classical and 

modern edge detection procedures. They include gradient 

methods, template matching, and a more recent class of edge 

detection operator. 

To be able to investigate the different published 

techniques, computer programs have been written and developed 

for use on a Digital Equipment Corporation VAX 8600 digital 

computer and schematic diagrams have been produced to help in. 

the detailed description of the hardware used. 

3.2 IMAGE PROCESSING: SYSTEM HARTRE DESCRIPTION 

Described is the equipment used for processing and 

analysis of the image data. The equipment is developed to allow 

a non-contacting method for gathering data fron specialised 

experiments that are on-line to the department's computing 

facility. 
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A schematic representation of the data collection 

equipment and a photograph showing the main instruments are 

given in Figures 3.1 and 3.2, respectively, and a brief 

description of each instrument follows. 

3.2.1 The ISI-11/23 Mini-Computer 

The LSI-11/23 is a 16-BIT mini-canputer manufactured by 

Digital Equipment Corporation (DEC). The LSI-11/23 provides 

over 400 instructions, 16-BIT (word) or 8-BIT (byte) addressing, 

8 high speed general purpose registers, a hardware stack and a4 

level fast vectored interrupt capability [1). The Optional 

Memory Management System (OMMS) allows up to 256K bytes of 

protected multi-user program space. The LSI-11/23 system used 

for the data collection included an LSI-11/23 micro-processor 

with floating point option (for faster manipulation of floating 

point data), 256K bytes of randan access memory (RAM), 4 serial 

input lines, a programmable clock (KWV11-A) and a high speed 

direct memory access (DMA) interface (DRV11-B) connected to the 

DR11W on the VAX 8600. The image processing boards, which are 

connected directly to the ISI-11 Q-BUS, include a Matrox QFGO1 

frame grabber which is capable of digitising an image of 256 * 

256 pixels, each pixel having available a grey level range of 1 

to 256 values. Included are two units of QRGB-256 frame store 

which are capable of storing the digitised information and the 

system runs under a modified RSX11M multi-user operating system. 

The data storage is provided by 'virtual disks' which are files 
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located on the high speed disks of the VAX 8600. The DRV11-B to 

DR11W connection and associated software provided the link 

between the ISI-11/23 and the 'virtual disks' used for data 

storage, with the programs written in Fortran and PDP11 

assembler code. 

3.2.2 The TV Camera and the Attenuator 

To send a picture to the LSI-11/23 as a video signal, a 

standard 625 line monochrome camera, type LINK 109A, is used. 

The camera has an internal attenuator and has a maximum scanning 

rate of 50 frames/sec. The attenuator unit of the camera 

reduces the amplitude of the signal before it goes to ISI-11/23. 

The LSI-11/23 does not accept a signal with an amplitude in 

excess of 1 volt. 

An oscilloscope unit is used to adjust the camera lens 

aperture in order to obtain the best dynamic range in the video 

signal. A monitor redisplays the signal fron the LSI-11/23 as a 

picture on the screen, it is used to examine the contrast of the 

picture and also to check the positions of the digitised objects 

in the scenes. 

3.3 DATA SIZE AND THE SPEED OF DATA TRANSFER 

The camera produces 2 interlaced half images every 40 

ms. This means that continuous frame grabbing produces 64K 

bytes of new data every 40 ms. The data has to be read fron the 
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frame store into the LSI-11/23's memory and then transferred to 

the VAX for processing. The transfer rate required to do this 

is greater than 1.6M bytes per second; a rate not obtainable in 

practice. 

The maximun transfer rate of the LIMA link between the 

VAX and LSI-11/23 is 250K words/sec. Allowing for the time the 

LSI-11/23 requires to access the data fron the frame store and 

for the software overhead for each computer, a practical limit 

of about 13K bytes per second is obtained. 

The two alternatives, therefore, are to send complete 

frames at a less frequent period or to send only part images 

every 40 mS. It should be noted that a 25 Hz sampling rate 

results in a Nyquist frequency of 12.5 Hz so that with real time 

data capture and transfer, the frequencies that can be monitored 

without aliasing are limited. 

3.4 EDGE DEI X IION: DEFINITIONS AND TECHNIQUES 

Discontinuities of intensity in an image are called 

edges, and are a basic part of image information. Experiments 

with the human visual system have shown that image boundaries 

are extremely important; often an object can be recognised fron 

only a crude outline [2]. This fact provides the principal 

motivation for representing objects by their boundaries, the 

boundary representation being incorporated into the object 

recognition algorithm. 
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The algorithms employed for edge detection vary in 

canplexity and the suitability of sane only becomes evident when 

applied to a scene. 

Numerous researchers have developed methods for 

detecting boundaries and edges and a review of the classical 

approaches may be found in [3]. This chapter proceeds by 

dividing the techniques into the following categories and 

examining each category separately: - 

A) Differential operators: 

i) first order operators, eg. Roberts, Sobel, 

Prewitt. 

ii) Second 'order operators, eg. Laplacian 

operator. 

B) Template matching, eg. Prewitt, Kirsch, Robinson. 

C) New class of operators, eg. Frei and Chen 

approach. 

Examples of the results to be obtained fran programs written to 

solve these algorithus are presented for completeness. 
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3.5 DIFFERENHAL OPERATWS FOR EDGE DETECTION 

These operators are divided into the two types, first 

and second order. Amongst the first order types, Roberts [4], 

Sobel [51 and Prewi tt [6] are the most commonly used. If the 

rate of change of grey levels, Dl and D2 in two perpendicular 

directions are known, then the maximum rate of change (the 

gradient) in any direction is given by (D12 + D22)1 and the 

direction of this maximum is tan-'(D2/Dl). For canputational 

simplicity, one may use I D1 I+I D21 or max (I D1 I, 1D21), 

although the first definition, that is (D12 + D22) has been 

used throughout this work. 

Let IP (x, y) represent a pixel in the digitised image, 

Robert's operator uses: Dl (x, y) = IP(x, y) - IP(x+l, y+l), and 

D2(x, y) = IP(x+l, y) - IP(x, y+l). 

Sobel operator uses: D1(x, y) = [IP(x-1, y+l) + 21P(x-1, y) + 

IP(x-1, y-1)] - [IP(x+l, y+l) + 2IP(x+l, y) + IP(x+l, Y-1)] 

and D2(x, y) _ [IP(x-1, y+l) + 21P(x, y+l) + IP(x+l, y+l)] - 

(IP(x-1, y-1) + 21P(x, y-1) + IP(x-1, y-1)]. 

Prewitt operator (differential type) uses: 

Dl(x, y) _ [IP(x-1, y+l) + IP(x-1, y) + IP(x-l, y-1)] - 

[IP(x+l, y+l) + IP(x+l, Y) + IP(x+l, Y-1)] 

and 

D2(x, y) _ [IP(x-1, y+l) + IP(x, y+l) + IP(x+l, y+l)] - 

[IP(x-1, Y-1) + IP(x, Y-1) + IP(x-l, Y-1)]. 

The Laplacian [7] operator is classed as a second order 
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operator. Three different types of convolution masks are used 

to implement the operator, and these are shown in Figure 3.3. 

The manner in which these convolution masks, for both 

this operator and for the template matching operators of the 

next section, are applied to the image is shown in Figure 3.4. 

The effect of signal differentiation is shown in Figure 3.5, and 

results obtained using the Robert's and the Laplacian operators 

to detect an image edge are shown in Figures 3.6 and 3.7 for a 

hunan face and engineering ccmponents. 

3.6 TFMPIAIE MATCHING OPERATORS 

These methods, known also as spatial convolution 

operations, are used to calculate the variation in pixel 

brightness around the point of processing. The movanent across 

the image is pixel by pixel, and the output image data relative 

locations match that of the input image exactly. The 

calculation is different, however, with the output pixel 

brightness being dependent on the group of pixels surrounding 

the one being processed. As is illustrated in Figure 3.4, for 

every pixel in the input image a value for the output image 

pixel is estimated by calculating a weighted average of it and 

its surrounding neighbours. 

The most accepted and widely used template matching 

operators are the Prewitt [6], Kirsch [81 and Robinson [9] 
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TYPE 1 TYPE 2 TYPE 3 

0 -1 0 

-1 4 -1 

0 -1 0 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

1 -2 1 

-2 4 -2 

1 -2 1 

Figure 3.3 Three different types of Laplacian convolution masks. 

(PIXEL KI) x (A) + 

(PIXEL w2) x (B) + 

(PIXEL 03) x (C) + 

(PIXEL *4) x (D) + 

(PIXEL *5) x (E) + 

(PIXEL *6) x (F) + 

(PIXEL 07) x (G) + 

(PIXEL 08) x (H) + 

(PIXEL 09) x (J) 

MALISE TO 0 TO 255 RA 

) 

Figure 3.4 Convolution mask calculation flow representation. 

INPUT IMAGE 

OUTPUT IMAGE 
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Figure 3.6 Edge detected images using Robert's operator. 
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Figure 3.7 Edge detection by z pp1yinca the Laplacian operator. 
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operators. In each of these methods eight masks are to be 

considered for convolution, see Figure 3.8. 

Each of the 8 edge detectors are applied to the 3 by 3 

square of pixels in the way presented in Figure 3.4, and the 

highest output fron the 8 detectors is found and normalised, 

within the range of 0-255. This value represents the pixel 

value of the output image in the same location as the centre 

pixel under the convolution mask. 

Figure 3.9 shows experimental results using the Kirsch 

operator. 

3.7 NEW CLASSES OF EDGE DETER TION OP£RAIt S 

Examination of the techniques described, indicate that 

similarities exist that reveal an underlaying principle. From 

this information, Frei and Chen [101 have developed sets of 

orthogonal functions which are closely related to distinctive 

image features. The properties of these functions suggest ways 

to minimise the amount of canputations and improve decision 

criterion. Of these, the one chosen by this author for testing 

is shown in Figure 3.11. 

Let the data in local region be labelled B, mask data 

labelled T, and the product value of the mask and local region 
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M4 

1 -1 -1 

1 -2 -1 

1 1 1 

M8 

11 1 11 

I-i -2 1 

-1 -1 1 

M4 

-3 -3 -3 

5 0 -3 

5 5 -3 

M8 

-3 5 5 

-3 0 5 

-3 -3 -3 

M4 

0 -1 -2 

1 0 -1 

2 1 0 

M5 M6 M7 MS 

-1 -2 -1 

0 0 0 

1 2 1 

-2 -1 0 

-1 0 -1 

012 

-1 0 1 

-2 0 2 

-1 0 1 

0 1 2 

-1 0 1 

-2 -1 0 

Figure 3.8 Convolution masks M1 to M8 for (a) Prewitt (template type) 
(b) Kirsch 
(c) Robinson 
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Figure 3.9 Edge detection by applying the Kirsch operator. 
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Figure 3.10 Edge detection by apply irxi ti i'rei sir i C3cn technique. 
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-1 -/ -1 
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12- 0 -/2- 

1 0 -1 

Figure 3.11 The orthogonal bases (masks) used by Frei and Chen. 
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be (B, T). If Tl...... Tn2 are orthogonal base masks and 

T1..... Te of these constitute an edge subspace, the projected 

angle on the edge subspace is expressed as: 
2 

en 
9= arc cos (B, T2 / (B, Tj)2 j} 

ý_ý j=1 

When the value of 8 is small, the central pixel is regarded as 

an edge. If T1 and T2 are the masks of average gradient; the 

edge magnitude is given by :- 

2 

BP(IX, IY) _ (B, Ti)2/(B# B) 

i=1 

where BP(IX, IY) represents the edge detected image. The 

results of using these algorithms are shown in Figure 3.10. 

Based on the results obtained using FRbert's and Sobel 

operators and the relatively fast differential operators, an 

algorithm is developed by this author to provide "options" for 

the user. The program can be made sensitive to the edges in 

(i) horizontal direction (ii) vertical direction, or 

(iii) a combination of both horizontal and vertical directions, 

the program prompts the user to choose between the ABS 

(absolute) form or the averaged form of the edge magnitude to be 

output, see section 3.5 . The values of the terms Dl and D2 aro 
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calculated fron: - 

D1(x, y) = IP(x, y+l) - IP(x, y) and 

D2(x, y) = IP(x+l, y) - IP(x, y) 

The weighting functions for this operator i. e. alternative 

gradient and Robert's gradient operator are shown in Figure 

3.12; results using the above operator are shown in Figure 3.13. 

3.8 DISCUSSION 

The two images chosen to investigate the routines were 

the human face and engineering tools. They were chosen because 

of their very different properties. It is evident from the 

results that sane operators are more sensitive to noise and 

others detect the weak edges better. These results confirm that 

the attributes of a good edge detection techniques are: 

(1) Sensitivity to noise to be minimal 

(2) Subtle edges to be detected 

(3) Oanputing cost to be kept low 

(4) Dark area edges to be detected 

(5) Strong edges to be detected as thinner lines. 

Thinning edges involves searching the pixel arrays to find edges 

whose widths are more than one pixel wide. The maximum 

intensity pixel across the width of the edge is found and the 

coordinates stored. A program listing; using this technique and 
the Kirsch template matching method for edge detection is given 
in Appendix Al. 
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Robert's Gradient 

1001 

0 -1 -1 0 

Alternative Gradient 

-1 1 -1 0 

0010 

Figure 3.12 Weighting functions for two gradient 
type edge detection operations. 



Figure 3.13 Applying the alternative gradient type edge operator. 
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The techniques tested all have individual strengths 

that can be exploited, e. g. sensitivity to noise can be reduced 

as seen in Figure 3.13. No one technique, however, was 

significantly superior to the others and each different image 

processing situation will require separate study. Zb help in 

this, a surinary is given in Figure 3.14 indicating the relative 

performance of each technique under the heading listed (1) to 

(4) above. Although each technique has been ranked 

subjectively, the listing does give a good guide as to the 

effectiveness of the edge detection methods studied. 
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CHAPTER FOUR 

PATTERN RECOGNITION AND ORIFNrATION ESTIMATION 

USING FREEMAN'S CODE 

A qualitative study is made of the application of 

Freanan's coding model in image recognition and 

orientation measurement 
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4.1 

In pattern recognition the input is an object image and 

the output is a description of that image based on a priori 

knowledge of the expected pattern. The aim of the data 

processing is to identify the input as one of a usually small 

set of possibilities depicted in two dimensions. It will be 

assumed that the part is of a fairly simple shape and can be 

characterised by a two-dimensional projection, as provided by a 

single canera view. 

The approach adopted is based on the assunption that 

boundary shape is adequate to recognise the object and that 

Freeman's coding model [1] will describe the spatial invarient 

property of the object. To improve user confidence in the 

object recognition, Geisler [2] estimated the additional 

properties of object boundary length, area and centre of area. 

4.2 OBJECT RECOGNITION 

Segmentation is adopted to aid object recognition. The 

picture stored in the computer memory is partitioned into 

connected regions, each region is homogeneous in acme sense and 

is identified by a unique label. In this application the grey 

scale is not important, the stored picture is segmented into 

object and background by choosing a threshold in brightness. A 

pixel brightness above the threshold is defined as object and 
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below the threshold as background, i. e. a binary picture 

results. The object contour is traced and chain encoded [2]. 

The perimeter length and area enclosed by the contour are 

computed as global features and the shape is described by a 

"contour curvature" which is a function of contour length. 

A hierarchical 2-stage classification is used for 

object recognition. First, checks are made as to whether an 

object of similar perimeter length and area are stored. If no 

reference object is found, the object is rejected and classified 

as unknown. Otherwise, a match is made between the contour 

curvatures of all the objects with similar global features. If 

no object with similar curvature is found (within the acceptable 

tolerance to be explained in section 4.5)" the object is 

rejected. - 

The orientation is computed as the rotation angle 

between the object and its stored reference image. The 

computing approach to the data processing is based on modular 

software to allow individual sub-program development and 

algorithm changes to be made independently of the main program. 

Figure 4.1 shows the simplified Flow chart of the 

approach adopted. 
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Capture the second 
picture 

Choose threshold 
based on the Binary picture Trace and chain 
background grey level created encode object contour 
histogram 

Compute features: Do y Develop curvature 
i) Perimeter length objects of similar element series for 
ii) Area features exist (Perim. this second image 
iii) Centre of area area) 

--ºi 

Compare the developed Is the Object is recognised 
series with that of the tolerance within the and orientation may be 
identified object acceptable table calculated 

range 

N 

This is a new object 
learn it. i. e. store 
its features 

Figure 4.1 Flow chart for object recognition algorithm. 
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4.3 AIDORITEM DEVEIDPNENP 

Prior to considering the algorithm for orientation 

estimation it is important to realise the need for and the 

essential characteristics of any coding method: - 

(i) reducing the size of the arrays containing image data 

reduces the computational time for data analysis 

(ii) the coding system must be spatially invarient, i. e. the 

sequential order of the elements in an object chain 

code representation must not change with object 

rotation, only its start point should change. This 

condition is satisfied by use of the Freeman code 

[2,3,4]. 

4.3.1 The Freeman Code 

Freeman 's work ai two-dimensional boundary encoding and 

processing is used by many researchers because the resulting 

image information form is readily accessible and directly 

amenable to interpretation. 

Figure 4.2 shows the three employed types of boundary 

lines as identified for a binary image: 

(i) the geanetric boundary, separating the area of black 
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Figure 4.2 The three types of boundary lines as 
identified for a binary image. 
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Figure 4.3 Freeman codes. 
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elements fron that of white elements, 

(ii) the black boundary elements, the black elements that 

border on white elements and are obtained by connecting 

the centres of adjacent black elements, 

(iii) the white boundary elements. 

" It is observed that unlike the geometric boundary line, 

the upper and lower boundary lines can be either of length equal 

to the element width or equal to �2 times that width. The lines 

may be collinear or make angles in multiples of 450 with each 

other. 

In the coding scheme of Figure 4.3, the eight possible 

directions that the boundary may take in going from one boundary 

element to the next are assigned the octal digits 0 to 7 

rotating in a counter-clockwise sense. The resulting number 

sequence, called the chain of the boundary curve, implicitly 

preserves the direction of the boundary. 

4.3.2 Threshold Selection 

The background pixels are separated fron the object 

pixels by a grey level threshold. A number of ways for 

selecting the threshold value were examined and the approach 

chosen is based on the analysis of a grey level histogram. 
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Figure 4.4 shows a typical histogram for a white object on a 

black background. Two distinct peaks are shown in the figure, 

one at a grey level of 25, very close to pure black and one at a 

grey level of 120, a dirty white. If the illumination is well 

controlled, the best threshold value (mid-way between object and 

background) will remain sensibly constant and can be chosen 

interactively during system set up. For the unreliable 

illumination case, the computer may be required to analyse the 

distribution of grey levels over the area of interest, mean 

value plus or minus one standard deviation, to choose an 

appropriate threshold value. 

Incorrect choice of the threshold value will introduce 

errors in the contour tracing. Too small a value for the 

threshold level will result in a noisy object boundary; too high 

a value will cause a loss of information and breaks in the 

traced contour, these effects are shown in Figure 4.5. 

Camera sensitivity does change fron the centre of the 

picture to the edges due to parabolic distortion and/or 

vignetting, a global threshold. may be difficult, therefore to 

maintain. Figure 4.5(a) shows a strip of white pixels at the 

left side of the figure and investigation showed this to be due 

to incident light saturation. By monitoring the level of light 

i. e. using an oscilloscope to monitor the analogue signal out of 

the camera, it can be corrected for at system set-up. The three 

possible lighting conditions are superimposed and presented in 

Figure 4.6. 
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Figure 4.4 Histogram of a picture with a mixture of 
black and white pixels. 

0 50 100 150 200 250 
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(b) 

Figure 4.5 Effects of selecting a wrong threshold value 
(a) small threshold, noisy contour trace 
(b) high threshold value, breaks in contour 

trace. 
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Initially it was thought that a single threshold would 

not provide sufficient performance and local thresholds would 

have to be chosen [5]. It became increasing evident, however, 

the problems experienced were due largely to light saturation 

and these problems could be eliminated by: - 

( i) controlling the illumination by adjusting the camera's 

aperture and/or by changing the environment lighting 

when necessary, or 

(ii) disregard the corners and the edges of the frame as 

invalid data before the start of the boundary search. 

4.3.3 Search, Trace and Encoding the Qontours 

The picture array is scanned top to bottom and right to 

left until an object pixel is detected (the first contour 

pixel). From this pixel the object contour is traced in a 

counter clockwise direction. The elements of the chain code are 

related to the directions fron one contour pixel to the next by 

the available angles shown in Figure 4.3. The chain code is 

then stored in an array for further processing and the 

coordinates of the contour elements are stored in a separate 

array. 
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The method adopted by this author for deriving the 

curvature elements, defined as the angle between the adjacent 

contour pixels, makes full use of chain encoding system. 

The method is based on Table 4.1 which indicates the 

relative rotation of ordinal elements in the chain code. The 

derived curvature elements of Table 4.1, are based on: - 

ABS (Ordinal No. (n) - Ordinal No. (n-1)) 

Note that the chain encodes are spatially variant while the 

curvature elements are rotation invariant. The sequence of 

curvature elements (L) describes the shape, e. g. L=11,12,.... 

.. ln, In being the last curvature element. This sequence has 

the following characteristics: 

(a) The sequence is periodic with a period of n elements 

1i+n = 1i where i=1 to n 

(b) a rotation of an object causes a shift of K places of 

the curvature elements, i. e. li > fi+K where 

F=fi,......., fn represents the shifted sequence of the 

curvature elements, the rotation angle depending on the 

numerical value of K. 
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0 
r- 

.1 
z° 

2 

0 3 

4 

5 

6 

7 

Ordinal No. (n) 

01234567 

0 1350 900 45° 180° 450 900 1350 

135° 0 135° 90° 45° 180° 450 900 

90° 135° 0 135° 90° 45° 180° 450 

45° 900 135° 0 135° 90° 450 180° 

180° 450 90° 135° 0 135° 90° 450 

45° 180° 450 90° 135° 0 135° 90° 

90° 45° 180° 45° 90° 135° 0 135° 

135° 90° 450 180° 45° 90° 135° 0 

*not realizable (a) 

Difference in Ordinal No. 0 1 2 3 4 5 6 7 

Curvature Element 0° 135° 90° 45° * 450 900 135 

* not realizable (b) 

Table 4.1 (a) Deriving curvature elements using chain encodes. 

(b) Deduction of curvature elements using (a). 
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4.4 ORIF ]ATION MEASUREMENr 

The reference coded object image can be canpared with 

the actual coded image by defining a similarity term [2): 

d(j) _1i f1. 
+J 

j=0,1, ......., n-1 
i=1 

where fi+j represents a shift in the fi element. Shifting all 

elements by a similar amount is equivalent to the reorientation 

of the actual object image. Minimisation of the similarity 

term, Min. d(j), will give the best match between reference 

object and actual object. The rotation is measured as the angle 

between the vectors joining the centre of area to the points 

1 iand fi+j respectively. 

The canputer flow diagram for estimating the 

reorientation angle value, after obtaining the "best fit" 

between the actual and reference objects, is given in Figure 

4.7. 

4.5 RECOGNITION THRESHOLD 

Assuming that the unknown object with the sequence F 

belongs to the object class of the learnt object with the 

sequence L, it is most likely that a contour point Fi+k is 

situated in the reference contour interval i to (i±l). As 
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Capture Image Estimate threshold 
value 

Calculate curvature 
elements 

ccupute the centre of 
area of the shape 

Search, trace and 
chain encode the 
contour of the 
binary image. 

Develop time series 
for the elements 

has the \ 
rotated version been 
. read in? / 

N 

Input rotated 
version of the 
image 

Calculate and output 
the rotation angle. 

Y 

Using the centre of area of 
the image and two other points, 
one on each version of the 
shape: 

Figure 4.7 Flow diagram for object reorientation estimation. 
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consecutive curvature elements are correlated, the value fi+k 

will be found in the interval i to (i+l). The maximum possible 

difference is measured as: 

d= 
Ili -i i+1 

2 

This difference can occur at each point i=1, ...., n and the 

maximtin value for objects belonging to the same class is: 

n 
sund =12 

il 
li li+1 

Geister [2] argues that this formula makes no allowance 

for errors caused by angle canputation using a square grid, 

hence he chooses the rejection threshold to be 

RTHRS =2 (stand) 

This was found to be unreliable for sane shapes, and shapes not 

belonging to the same class were incorrectly recognised. A more 

reliable threshold, found experimentally, is: 

RTEIRS = 3/2 (sund) 

Figure 4.8 shows the correlation between the curvature 

elements of various shapes. The correlelograms are obtained by 

calculating the sunnation of the difference between the two 
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"curvature element series" of the two shapes being canpared, 

keeping the reference series stationary and shifting the one 

being compared to it an element at a time (thereby simulating a 

rotation). 

As can be seen in Figure 4.8, the two shapes being 

compared are not in the same class, i. e. two essentially 

different patterns, the sum of the difference 'd' is greater 

than 'RTHR. S', i. e. dsum> RTHRS, and the new shape is rejected. 

'dsum' being the summation of all the differences in the two 

series of curvature elements. 

4.6 RESULTS AND DISCUSSION 

There are limitations in using Freeman's model for 

coding. The most significant are: - 

(i) In following the boundary the algorithm searches for 

changes in directions of one boundary pixel to another, 

and due to the resolution of the square grid these 

changes may not always depict the true shape of the 

object. To avoid confusion the object's area should 

include at least 1% of the total number of pixels, i. e. 

sizeable object against the mesh or grid, for 64 K 

pixel elements, object area always exceeded 640 pixels. 
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(ii) Changes in perimeter occur after rotating an object due 

to the square grid approximation, hence there is a 

feature tolerance before rejecting an object on the 

basis of having a different perimeter length and area 

to that of a learnt object. Table 4.2 gives evidence 

of perimeter length and area changes after rotation due 

to the grid approximation; changes of up to 8% are 

observed. 

Figure 4.9 shows two arbitrary shapes, 35 by 35 pixels 

in dimension, identical patterns with one rotated through 900. 

This is an exanple of 'ideal' inputs and is used for testing the 

algorithms. The curvature elements are derived using Table 4.1, 

curvature matching is also presented to measure the angle of 

rotation. 

Figure 4.10 represents the matching of the curvatures 

of two triangles, when one is rotated through 90°, (a) using 

Table 4.1 to derive the curvature elements, and (b) calculating 

the curvature elements by measuring the angle between the 

successive boundary pixels. Figure 4.11 estimates the rotation 

of the triangle when the actual orientation is 450. 

Orientation estimation, in the trials conducted, based 

on an average of ten runs, for various rotations, using two 

identical shapes, is accurate to within 2.5%. 
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Boundary 
Shape 

Area Perimeter 

Before 
rotation 
(Pixels) 

After 
rotation 
(Pixels) 

Before 
rotation 
(Pixels) 

After 
rotation 
(Pixels) 

Square 8582 8537 400 420 

Ellipse 7100 6825 368 398 

Triangle 7766 7766 484 484 

Star 7194 7805 425 455 

Pentagon 8610 8590 495 482 

Table 4.2 Area and perimeter changes as a result of rotation; 

rotations are either 900 or 450 where rst changes 

were evident. 
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To increase the efficiency of the algorithms, and to 

take advantage of the full field of view, the algorithn is made 

capable of dealing with more than one object in the frame. 

After detecting and chain encoding a contour boundary, search is 

continued for more objects in the frame, each boundary detected 

and successfully chain coded is stored in a separate array 

location for further processing and comparison with future 

patterns. In such environments or scenes, the order of the 

patterns is not important as the new object is compared to each 

of the separately stored arrays of curvature elements, and the 

analysis for the best match is carried out. Figure 4.12 

represents a scene with four objects for simultaneous analysis. 

4.7 CONCLUSIONS 

The algorithus developed asst. ea continuous contour. 

If there is a break in the object boundary the program 

terminates with an error message. The algorithm for contour 

searching is, also prone to error if the edges of the shapes are 

not well defined. It is, therefore, helpful to run an edge 

detection routine on the shapes before contour searching 

resumes. Sane edge detection routines, as explained and 

examined in the previous chapter, were tried for this purpose. 

They included : Robert's operator, Sobel operator and Laplacian 

(template and gradient) methods; with Robert's operator giving 

some of the best results in an optimum time. 
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Figure 4.12 A scheme of four objects for recognition 

analysis. 
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A further point to note is that the shapes are 

digitised in a square grid, hence, a rotation causes the number 

of pixels occupied by the shape to alter, in some cases this can 

be up to 8% change as shown in the previous section. This may 

cause an error in the curvature matching method if the total 

number of contour pixels in both the original and rotated 

versions are assumed to be the same. As a safe guard, the total 

number of contour pixels in both the original and rotated 

versions must be found and the matching calculations should only 

be taken for as, far as the lower number of pixel counts. 

The canputational time, depending on the method used 

for feature extraction and edge detection, is relatively short 

(60 to 100 ms cpu time). 
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CHAPTERFIVE 

THE FOURIER DESCRIFIOR IN CLOSED CURVE 

REPRESENTATION FOR OBJECT RECOGNITION 

An approach, based on Fourier analysis, for the fast shape 

recognition of randanly positioned and orientated canponents is 

described. Two methods are investigated, with both methods 

suggesting that a small number of normalised Fourier 

Coefficients are sufficient to reliably identify and recognise 

the components. 



92. 

5.1 INMDUCrION 

The method most frequently used to describe the closed 

boundary of a manufactured object is either based on the chain 

code of Freeman [1] or the polygon approximation of Pavlidis 

[2]. 

Theoretical and experimental evidence available, 

however, indicates that the Fourier Descriptor (FD) is a more 

powerful way to classify a closed contour , [3,4]. Features 

which are invariant with respect to translation, rotation and 

object size (i. e. scale) can be uniquely represented by a 

normalised FD and this can lead to a significant reduction in 

object recognition data over the chain code and polygon 

approximation based methods. 

To demonstrate the benefits of this object 

classification procedure, existing data records, for a nunber of 

objects, have been adopted for computing the FD values. Two 

methods have been considered. In the first, the coordinate 

values of the contour pixels are used and in the second the 

actual orientation vectors of the Freeman chain code are 

employed. 
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5.2 FOURIER DESCRIPTORS 

The cdevelopment of slope and curvature codes for use in 

boundary description has led to the more general concept of the 

intrinsic equation [5]. The nature of contour data satisfies 

the mathematical constraints for shape representation by Fourier 

descriptors since any single-valued periodic function may be 

expressed as a Fourier Transform. 

In the first approach using cartesian coordinates, the 

two discrete series x(m), y(m), m=0,1,2,.... L-1, are obtained 

by image segmentation and edge tracking; and since the 

boundaries are closed curves x(L) = x(O) and y(L) = y(O). 

The analysis involves the derivation of the 

"descriptors" based on the Fourier series for each of the two 

series x(m) and y(m) defined as 

x(m) = X(n) ein`0 (5.1) 
n=-ý 

y(m) =I Y(n) ein öm (5.2) 
n=-co 

where wo =L and X(n) and Y(n) are the complex Fourier 

coefficients, i. e. X(n) = an - jbn. The data interval, used in 
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the evaluation of the expressions, is taken as the pixel length, 

and the coefficients are estimated fron: 

L-1 
X(n) =L1 x(m) e on``'o (5.3) 

m=o 

1 L-1 
Y(n) =LI y(m) e ýn`i'ö (5.4) 

m=0 

where the parameter L is the number of pixels representing the 

closed contour. it is clear fron the analytical derivation, 

that the Fourier coefficients (X(n), Y(n)) contain no 

information relating to the translation and orientation of the 

object. Therefore the descriptor defined as: 

R(n) = 
{uxcni2 

+ IY(n)12) (5.5) 

is independent of the orientation and this is confirmed by data 

given in Table 5.1. 

The descriptors defined by Equation (5.5) although 

invariant to object rotation, are influenced by object size. To 

overcome this weakness, a normalised descriptor, independent of 

both orientation and size, can be used and is defined as: 

S(n) = R(n)/R(1) (5.6) 

where R(1) is the first descriptor value computed. 

Results to support the use of Equation (5.6) are given in Table 

5.2. 
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a: Fourier Coefficients for 'TRIANGLE' 

X, xa 1ý, 
Real 
Part 

Imaginary 
Part 

Real 
Part 

Imaginary 
Part 

(I XnI2+IYnI2) 

-29.36 -0.42 -2.30 23.15 37.46 
-6.62 -0.32 -1.12 -5.75 8.85 

-0.60 0.11 -1.50 0.43 1.67 

-2.56 -0.17 -1.63 1.41 3.35 
-1.27 -0.06 -1.31 -0.84 2.01 

-0.64 0.07 -1.48 0.27 1.64 

-1.18 -0.09 -1.54 0.50 2.00 
-0.77 0.01 -1.34 -0.21 1.56 
-0.58 0.05 -1.46 0.24 1.59 
-0.86 -0.03 -1.51 0.28 1.76 

-0.60 0.04 -1.40 -0.01 1.52 

-0.57 0.07 -1.45 0.26 1.58 

-0.71 -0.02 -1.44 0.25 1.62 

-0.54 0.09 -1.38 0.08 1.49 
-0.56 0.05 -1.44 0.24 1 1 1.57 

b: Fourier Coefficients for 'TRIANGLE Rotated' by 600 

Xnyn Ph 

Real 
Part 

Imaginary 
Part 

Real 
Part 

Imaginary 
Part 

(IXn12+IYn12) 

-20.33 -12.73 -16.31 24.26 37.81 
-6.10 2.37 -3.46 -5.63 9.29 
-0.92 0.42 -0.90 -0.07 1.35 
-1.91 -0.89 -2.29 1.55 3.47 

-1.73 0.26 -1.17 -0.70 2.22 
-0.90 0.24 -0.85 0.02 1.27 
-1.14 -0.27 -1.47 0.47 1.94 
-1.17 0.07 -1.01 -0.19 1.56 

-0.88 0.20 -0.90 0.07 1.28 

-0.93 -0.09 -1.24 0.26 1.58 
-0.99 0.10 -0.94 -0.01 1.37 
-0.90 0.19 -0.88 0.10 1.28 
-0.89 0.00 -1.13 0.17 1.45 
-0.91 0.10 -0.95 0.08 1.32 
-0.88 0.16 -0.88 0.15 1.26 

Table 5.1 Influence of rotation on Fourier Coefficients. 
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"T IAN= 
Rn 
nS 

37.46 1.00 
8.85 0.24 
1.67 0.04 
3.35 0.09 
2.01 0.05 
1.64 0.04 
2.00 0.05 
1.56 0.04 
1.59 0.04 
1.76 0.05 
1.52 0.04 
1.58 0.04 
1.62 0.04 
1.49 0.04 
1.57 0.04 

'L' Shape 
R Sn 

55.06 1.00 
15.60 0.28 

7.46 0.14 
5.41 0.10 
2.20 0.04 
0.36 0.01 
1.63 0.03 
0.68 0.01 
1.02 0.02 
0.99 0.02 
0.70 0.01 
0.37 0.01 
0.60 0.01 
0.34 0.01 
0.52 0.01 

15.42 1.00 
4.30 0.28 
3.28 0.21 
2.16 0.14 
2.16 0.14 
1.66 0.11 
1.90 0.12 
1.62 0.11 
1.74 0.11 
1.58 0.10 
1.63 0.11 
1.50 0.10 
1.54 0.10 
1.43 0.09 
1.44 0.09 

'TRIANGLE Rotated' 
R Sn 

37.81 1.00 
9.29 0.25 
1.35 0.04 
3.47 0.09 
2.22 0.06 
1.27 0.03 
1.94 0.05 
1.56 0.04 
1.28 0.03 
1.58 0.04 
1.37 0.04 
1.28 0.03 
1.45 0.04 
1.32 0.03 
1.26 0.03 

Rn Sn 
'half sized L' 

28.22 1.00 
7.92 0.28 
4.30 0.15 
2.79 0.10 
1.81 0.06 
0.86 0.03 
1.42 0.05 
0.89 0.03 
1.16 0.04 
0.97 0.03 
1.04 0.04 
0.84 0.03 
0.98 0.03 
0.82 0.03 
0.92 0.03 

'Quarter sized L' 

n RnS 

Table 5.2 Effect of scaling or contour dilation on Fourier 
coefficients 
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5.3 RFX ONSZRUCTION OF BOUNDMUES USING FOURIER DE CRIFJXORS 

It is not obvious from Table 5.1 how many Fourier 

coefficients will be necessary to enable an object to be 

iaentified with confidence. In an attempt to clarify this 

point, Equations (5.1) and (5.2) with a finite number of 

coefficients, are used to recreate varying approximations to the 

original object data. Although these expressions will not 

provide enough information to allow a virtually continuous 

series to be obtained, they will allow all the discrete values 

of x(m) and y(m) to be regained exactly if all the Fourier 

coefficients are employed. 

Figure 5.1 illustrates the reconstruction of a 'triangle' 

for different numbers of terms in the expressions, Dquations(5.1) 

and (5.2). These figures suggest that no sensible improvement 

will result from the use of terms in excess of 2 for this shape. 

A subjective assessment of Table 5.1 would support these results 

because of the dominance of the first two terms over the 

remainder listed. The results demonstrate very clearly the 

compression of the boundary data that can be expected and 

illustrates the power of the descriptor as an aid to simple 

shape recognition. In this example six hundred pairs of contour 

coordinate values have been compressed to two descriptor values. 
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5.4 SIMILARITY MEASMMENr AND RECOGNITION ML DRI M 

The normalised Fourier descriptor vector S for a 

particular boundary shape could change marginally as a result of 

scaling and rotation, and to accarnodate this likely variation 

an improved reference feature vector can be obtained by 

averaging the S descriptor vector that is, 

1N 
Frn -N 

i=1 1 
(5.7) 

where Frn is the reference feature vector whose elements are the 

normalised Fourier Descriptors averaged over N object specimens 

of different sizes and orientation. Identifying the feature 

vector of the test shape as Stn, the similarity between the two 

independent vectors, Frn and Stn, is estimated from the error: 

r 

E __ K1 iK 
1 

} 

(Fri - Sti) 2 (5.8) 

where K is the number of elements in each vector. In an 

environment where more than one shape is to be tested for 

recognition, the parameter E must be evaluated for all the test 

vectors, the minimum value found yielding the recognised shape. 

In the test study conducted, 10 descriptors in each 

feature vector were adopted and the results are shown in Figure 

5.2. In the first, Figure 5.2 (a) a triangle is canpared with the 
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other simple shapes listed and the minimum value of Em clearly 

indicates the presence of the rotated triangle. In Figure 5.2 

(b) the outcane of a trial with an 'L' shaped contour, shows it 

to be a member of the family labelled 1 and 2 in the figure. 

The corresponding FD's are listed in Table 5.2. in the raw and 

normalised form. Appendix A2 gives a program listing for 

boundary search, orientation estimation, FD calculations and the 

similarity measurements between two objects. 

5.5 DERIVATION OF THE FOURIER DESCRIPTORS USING TM 

ORIEPTrATION VEICIORS OF WE FREEMAN CODE 

To take into account all the information stored in a 

Freeman chain code contour representation, allowance is made, 

in the second approach, for the perimeter length between contour 

pixels. 

Consider the chain code C with k elements: 

C= a1 a2 a3 a4 ...... ak 

where each element ai is an integer number between 0 and 7. The 

direction of the vector labelled ai is given by: 

(ai) _ (ir/4)ai 

If the perimeter length of a contour is t, the length of each 
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code vector, i. e. link, A ti is: 

At i=1 if ai is an even number 

At i=�2 if ai is an odd nunber (5.9) 

From the definition of the chain code, the 'time' 

required to traverse the first q links at 'constant unit speed' 

as proposed in [61 is given by 

tq = Ati 
i=1 

(5.10) 

and the period of the chain code is defined as tk. The changes 

in the x, y coordinate values, as the chain elements ai are 

traversed are: 

Axi = Sgn (6 -ai) Sgn (6 - ai) 

Ayj = Sgn (4 - ai) Sgn (ai) 

where 

1; Z>0 

Sgn(Z) =0; Z=0 

-1 ;Z<0 

If the first chain code element is positioned at the 
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origin of the x-y axes, the projections on the x and y axis of 

the first q links are: 

x= ax (5.11) 
q i=1 i 

q 
yq _ pyi (5.12) 

i=1 

respectively. 

Adopting the Fourier representation for a discrete 

series, the derivative of x(t) is given by: 

I 
00 

an cos 
27rn t+ ßn s 

2nn 
t (5.13) 

n=1 
I 

tk tk 

where tk 

a x (t) cos 
27rn t dt 

n tk 
o 
t}c 

ß=? x (t) sin 
2Trn 

t dt 
n tk tk 

0 

then for the interval tq_1 4tttq 

t 
2 k Ax q 2nn 

a =- -- 
s cos t dt 

n tk q=1 At tk 
q tq 

_1" 
-1 k 2nn 2"rtn 

- L sin t- sin t 
in q=1 At tk q tk q-1 

q 

and similarly 

1k Ax 21rn 2nn 
Bn =-I cos t- cos t1 

nn 
q=1 

Atq t 
-K 

q- q_ 
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The time derivative of the Fourier series for x(t) can 

(by definition) be written 

00 
x(t) 27rn 

a sin 
27rn 

t-b cos 
2nn 

t (5.14) 
tk 

n=1 n tk n tk 

and equating like teens in Equations (5.13) and (5.14) , yields the 

terms of the complex Fourier coefficients an and bn 

ßn=2 an , and on rearrangement this gives 

k Ax 
an _2I cos 

2k tq - cos 
L7rn q-1 (5.15) 

2ý n q-1 q 
t7c 

Similarly, 

b=ký sin 
2ýn t- sin 

2nn t (5.16) 
=1 

pq tk q tk 4-1 n 2r2n2 q= 

For the y(t) series, expressions having the same form 

can be obtained. 

Applying these expressions to a "triangle" and a 

"wrench" generated the results shown in Figure 5.3 and Figures 

5.4(a) and 5.4 (b); these demonstrate that a progressive improvement 

in 'fit' can be achieved with an increasing number of 

descriptors. The degree of similarity between objects will 

dictate the number of Fourier descriptors necessary to identify 

an object. The associated descriptor values are given in Table 

5.3 for information. 
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TRIANGLE WRE Oi 

n % Sn % Sn 

1 73.562 1 99.407 1 

2 16.528 0.225 12.643 0.127 

3 2.696 0.037 15.536 0.156 

4 4.648 0.063 6.603 0.066 

5 2.023 0.028 2.559 0.026 

6 1.162 0.016 1.549 0.016 

7 1.414 0.020 2.254 0.023 

8 0.651 0.009 0.810 0.008 

9 0.696 0.009 1.854 0.019 

10 0.643 0.009 1.163 0.018 

11 0.226 0.003 0.302 0.003 

12 0.528 0.007 0.768 0.008 

13 0.283 0.004 0.337 0.003 
14 0.096 0.001 0.056 0.000 

15 0.387 0.005 0.342 0.003 

16 0.142 0.002 0.478 0.005 

17 0.062 0.001 0.437 0.004 
18 0.240 0.003 0.082 0.000 

19 0.118 0.002 0.112 0.001 

20 0.073 0.001 0.290 0.003 

21 0.161 0.002 0.297 0.003 

22 0.062 0.001 0.164 0.002 

23 0.115 0.002 0.142 0.001 

24 0.085 0.001 0.109 0.001 

25 0.055 0.001 0.160 0.002 

26 0.093 0.001 0.155 0.002 

27 0.036 0.000 0.220 0.002 

28 0.059 0.001 0.047 0.000 
29 0.060 0.001 0.084 0.000 

30 0.061 0.001 0.172 0.002 

Table 5.3 A list of 30 Fourier Descriptors for the triangle 

and wrench Raw and Normalised versions. 
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5.6 ERROR APPROXIMATION AS A FUNCTION OF THE NUMBER OF 

FOURIER COEFFICIENTS EMPIDYED 

To obtain an indication of the sub-optimum number of 

descriptors necessary to ensure object recognition, an error 

function has been developed. 

N 
Let icN(t) = ao +Ia1 cos 

2T'ß t+ bn sin 
2T 'L t 

n= 1 

N 
yN(t) = co + 

ný1cn 
cos 

2Tnt 
+ d1 sin 

2T 'L t 

be the Fourier series truncated after N terms for the x(t) and 

y(t) series and let the actual error AE 
a 

be defined as: 

tEa = Max 
=1x 

Ix(t) - xN(t)" ly(t) - yN(t)I (5.17) 

where k is the nunber of chain code elements available. 

Tb predict the error directly from the chain code data 

it has been shown by Giardina and Kohl [6] that tE can be 

approximated by the expression: 

T 
AE 4 T2 

max v 
2ir-N Lo 

T 
(X (t) I, V (y (t) ) 

O 
(5.18) 

where the total variation of the 'time' derivative A(t) has been 
TT 

symbolised as V (is(t)) and of the derivative y(t) as V (« t)). 
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In this context the time period T is equal to tk. These 

derivative values are estimated fron: 

Ox Dy 1, yi = for for the Freeman code element of ai 
Ati 

The total variations of x(t) and '(t) are 

Tk 
v (X)(t)) _ (ý IXi - ki-11) + IXk -X11 ' 
02 

Vk (y(t)) _( IYi Yi-11) + IYk - Y1)I 
02 

respectively. The actual error tEa, for the triangle, evaluated 

using Equation (5.17) a, is shown in Figure 5.5. The predicted 

error, AEp estimated frcan Equation (5.18) , is superimposed on the 

same plot and for canpleteness a similar error estimation based 

on the first method has been made for the results of section 

5.2, and this is shown in Figure 5.5 (b). 

An error curve has also been generated for the wrench, 

Figure 5.6, and both figures indicate that the primary shape can 

be recognised by 10 descriptors with a high degree of 

confidence. It is apparent that as the contour becomes more 

complex, the predicted boundary becomes more conservative and 

Kuhl and Giardina [6] have suggested incorporating a heuristic 

weighting, for example, a function of the number of large 

angular changes in the contour. 
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5.7 ENGINEERING APPLICATION 

The results obtained for the simple shapes have been 

extended to include two engineering components, photographs of 

which are given in Figure 5.7 for reference. The expected error 

curves, Figure 5.8, again indicate that 10 to 15 descriptorswill 

identify the principle shape of the canponent and that the error 

measure Table 5.4, evaluated using 12 descriptors, is an 

effective standard of comparison for object recognition. In 

this table the error scale demonstrates the potential of the 

method as a means for detecting faulty components typically 

missing blades or part blades. In general, the higher error 

values are associated with the greatest defects. 

The CPU time (VAX 8600) for tracing the fan boundary 

was 40 ms (4 blades) and 60 ms (7 blades) for the two 

engineering canponent shown, Figure 5.7. 

The CPU time using a simple Fast Fourier Transform 

algorithm [7] for the evaluation of 50 descriptors using 

Equations (5.15) and (5.16) was 15 ms for the 7 bladed fan and 

10 ms for the 4 bladed fan. 

The CPU times stated are within the normal 

manufacturing and assembly time scales for most industrial 

applications. The figures, Figures 5.9 and 5.10, show the 

change in the reconstructed shape of the silhouette contour, for 



Figure 5.7 Simple engineering coniponents. 
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FIRST ME I 

Nature of Caparison Error 
Measure 

Fan with 7 blades capared 0.7 to its rotated version. 

Fan with 7 blades ccapared 
to its rotated version with 0.8 
a different size. 

Fan with 7 blades cxz pared 
to its scaled version 0.8 
i. e. much smaller version. 

2/3 of two of the 7 bladed fan masked 
and oapared with a version where 2 1.0 of the blades were ccxpletely masked 
out. 

1/3 of two of the blades of fan 
with 7 blades masked and compared 1.1 
to its original version. 

1/3 of two of the 7 blades masked and 
conpared to a version where 2/3 of 2 1.1 
of the 7 blades were masked. 

1/3 of 2 of the 7 blades masked 
compared to a version where 2 blades 1.9 
were carpletely masked out. 

Original 7 bladed fan oaqared to a 
version where 2/3 of 2 of the blades 2.0 
were masked. 

Original fan with 7 blades compared 
to a version where 2 blades were 2.6 
ompletely masked out. 

Fan with 4 blades compared to 7 
bladed fan when 2 of the 7 blades 3.7 
were masked out. 

7 bladed fan oarpared to the 4 bladed 
fan. 3.4 

snoccro EXPEIUMu r 

Nature of Caparison Error 
Measure 

Fan with 4 blades compared 0.2 to its scaled version. 

Fan with 4 blades compared 
to its rotated version with 0.3 
a different size. 

Fan with 4 blades compared 
to its rotated version. 0.3 

1/3 of two of the 4 blades 
masked out and cc pared to the 0.6 
original 4 bladed fan. 

2/3 of 2 of the 4 bladed fan masked and 
ccepared to a version where 1/3 of 2 of 0.6 
the blades were masked. 

2/3 of 2 of the 4 blades masked and 
capered to a version where 2 of the 0.7 
4 blades conpletely masked. 

2/3 of 2 of the 4 blades masked and 
oarpared to the original 4 bladed 1.1 
fan. 

1/3 of 2 of the 4 blades masked and 
capered to a version where 2 blades 1.2 
were ornpletely masked. 

Original 4 bladed fan compared to a 
version where 2 of its blades 1.6 
ca pletely masked out. 

Original 4 bladed fan compared to a 
version of 7 bladed fan where 4 of its 3.6 
blades were 1/3 of the way masked. 

4 bladed fan compared to the 7 bladed 
fan. 3.4 

Table 5.4 Similarity measured for the two engineering objects, i. e. the 
seven bladed and four bladed fans, for different sizes and 
positions with parts being masked (invisable to camera). 
Error measure as calculated by Equation (5.8) 
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each fan, as the number of descriptors is increased and these 

give a further guide to the number of descriptors necessary to 

achieve a given precision in the object recognition operation. 

For reference a typical histogram, Figure 5.11, shows the 

contrast between background and object for the image processing 

carried out in the investigation. 

5.8 DISCUSSION AND CONCLUSIONS 

The results clearly demonstrate the value of the 

normalised Fourier Descriptor as a method for classifying 

objects by virtue of their shape. Extensive contour data can be 

condensed to a relatively small nunber of numerical values which 

are independent of the object size and location relative to a 

fixed set of reference axes. 

Both simple 2D shapes and more complex engineering 

components have been studied and in the latter case the 

silhouette has been shown to be adequate for recognition and 

identification purposes. 

In the derivation of the Fourier Descriptors two 

alternative approaches have been taken and canparisons have been 

made between the two methods based on the reconstructed shape. 

The first method based on the coordinates of the object boundary 

gives a rapid test approximation to the object shape but does 
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not possess the convergence and higher accuracy of 

reconstruction exhibited by the second method when a larger 

number of Fourier descriptors are employed. The second method 

based on the Freeman chain code can, therefore, be reccrmended 

particularly for the classification and recognition of more 

complex shapes. 

In order to judge the degree of similarity between 

objects the concept of a reference feature vector has been 

established. The lack of similarity is measured by means of an 

error function based on the differences in the normalised 

Fourier descriptor vectors for the reference and test object. 

This has been successfully employed in the identification of a 

number of different geometrical shapes. 

To predict in advance the sub-optimum number of Fourier 

descriptors necessary for reliable recognition and identifi- 

cation, a theoretical error function based on the truncated 

Fourier series for the boundary data has been established and 

tested for a range of objects. The error magnitude has been 

shown to decrease rapidly with increasing number of Fourier 

descriptors before finally levelling out. This indicates the 

possibility of establishing an optimum gradient for 

automatically assessing the required size of the Fourier 

descriptor vector. 
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CHAPTER SIX 

OBJECT RECOGNITION FROM TEXIURAL FEATURES ANALYSIS 

Methods and applications of shape and textural analysis are 

examined with particular emphasis on application to object 

recognition. 
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6.1 Iw'r1 JCrION 

Although the approach of Chapter Five will allow the 

recognition of simple engineering shapes based on silhouettes, 

it is unable to detect the relatively major textural details, 

e. g. the texural details of fan blades, which can vary from one 

side of the object to the other, and hence is unable to detect 

which side is being viewed by the camera. To overcame this 

problem, this chapter examines the problems associated with 

simple shape representation and image pattern recognition. 

The technique adopted by this author is based on the 

analysis of the objects surface texture (perceived structure) 

which permits the adoption of some of the ideas of the previous 

chapters. An attempt is made to use the developed 2D methods on 

simple objects and the problems that are most likely to be 

encountered by adopting this approach in an engineering 

environment are highlighted. 

6.2 SURFACE TEXTURE ANALYSIS: REVIEW 

In published literature, few researchers have used 

texture analysis for object surface definition and surface 

analysis using canera based methods [1,2,3]. In their work, 

range data has been employed as an additional cue for 

segmentation and detection of surface orientation. Laser range 

finders are often used to obtain the required data, and 
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specialised hardware designed to analyse them [ll. Object 

recognition using texture analysis, under study here, has 

attracted the attention of a very few researchers and the 

techniques and numerical analysis employed by this author to 

overcame various problems at different stages are therefore 

believed to be original. 

6.2.1 Statement of the Problem 

A strategy for recognition using the developed texture 

analysis methods is required. The basic notion of recognition 

strategy is the feature vector. The feature vector V is a set of 

measurements {vl, v2 ........, m} which condenses the 

decription of relevant properties of the image into a Euclidean 

feature space of m dimensions. 

Each point in feature space represents a value for the 

feature vector applied to a differrent image (or subimage). The 

measurement values for a feature should be 'ccmpared' with its 

class membership. 

Different means of 'ccmparison' are developed and 

results are qualitatively studied. 
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6.3 TEXtURE: ANALYSIS TIXHNIQUFS AND APPLICATIONS 

To develop feature vectors which contain the surface 

attributes to be used in object recognition, texture analysis is 

conducted in either the spatial or frequency danain, the choice 

is largely dictated by the application objectives. 

6.3.1 Spatial Danain 

The spatial dcmain oriented techniques normally employ 

one of the following methods: 

i) Statistics of the grey level distribution of pixels 

(i. e. 2D histograns) [4]. 

ii) Detecting and characterising local grey level extrema 

(minima and, maxima) by scanning an image in the 

horizontal and vertical directions [5]. 

iii) Detecting edge elements using a gradient operator [6]. 

These methods all involve two-dimensional tasks and this author 

has used the methods presented in the earlier chapters, e. g. 

edge detection, histogram routines and Fourier analysis, to 

determine if usable feature vectors can be identified. 
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Data contained in the normal object pixel voltage array 

does contain surface details and the displays of Figures 6.1 and 

6.2 are typical of these arrays. A weakness to be recognised, 

however, is illustrated for a gear-wheel in Figure 6.2(c). The 

reflections fron the wheel centre are more significant than 

those fron the dull toothed outer edge. Therefore, sane object 

pre-treabuent may be necessary in a production environment. The 

3D intensity histograms developed are shown in Figure 6.3 for 

three engineering components. These were created by scanning 

each row of the image and obtaining the grey level histogram for 

it, i. e. the total number of pixels for each of the grey levels 

present is recorded and plotted. No obvious way of extracting a 

feature vector fron any of these histograms is apparent and the 

only obvious use to which these might be put is to study 

contrast between object and background, indicating changes in 

reflective properties. 

6.3.2 Frequency Danain 

Texture analysis techniques in the frequency domain use 

the periodicity properties of the texture in a surface [1]. If 

a surface is at all spatially periodic or directional, its 

'power spectrum' will tend to have peaks for corresponding 

spatial frequencies [7]. These peaks are available to form the 

basis of a pattern recognition discriminator if an interpre- 

tation algoritlun can be found. 
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The power spectrum, which might provide a basis for the 

development of a feature vector can be obtained as follows. 

The Fourier transform of the original image is obtained 

by calculating a pseudo two-dimensional transform [8]. Firstly, 

the traditional Fourier transform of each row of the image data 

(Xi, 
j 

) is calculated to generate a second 2D array of Fourier 

coefficients. Each column of this array is used as data for a 

second series of Fourier transform operations and the resulting 

array is described as a two-dimensional Fourier transform for 

the image. 

The power spectrun of the Fourier transformed image is 

defined as: - 

PS(i, j) = [AR(i, 3)]2 + [AI(i, j)] 
2 

where: 

AR(i, j) is the real part of the Fourier transformed 

image 

AI(i, j) is the imaginary part of the Fourier 

transformed image 

where i, j is the pixel 2D array number; with maximum dimensions 

of 256 by 256 in this study. 

Examples of the developed power spectra are shown in 

Figures 6.4 and 6.5 for a single cube, gear wheel, four bladed 

fan, seven bladed fan and a collection of objects in the image 
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scene. The spectral displays for the first four objects listed 

are very similar and only indicate the presence of an object. 

The spectral display can be used, however, to provide 

information that indicates a more canplex canposite-shaped 

object or a number of objects are in a scene. For the four 

objects in the scene, i. e. the plan view of the two fans, the 

cube and a cylinder, the power spectrum, Figure 6.5(a), is quite 

distinct and different fron the previous Figures. The peaks are 

associated with the four objects and the remaining regions 

represent the featureless surfaces. Figures 6.5(b) and 6.5(c) 

show the power spectra of the same four shapes when rearranged 

and ordered differently (as viewed by the camera) in the scene. 

It is evident from these two Figures that the location of the 

peaks has been altered as a result of the rearrangement of the 

objects, but still no other useful information may easily be 

derived fron this type of spectra representation. 

One approach to the creation of a feature vector is to 

partition the Fourier representation of an object scene into 

danains or bins [9]. The data reduction operation is 

permissible because of the symmetry of the Fourier transformed 

image. Two types of danains have been proposed: radial and 

angular, with feature vectors established for each danain. The 

number of sub-divisions, i. e. zones (Figure 6.6), are, however 

chosen arbitrarily. For the 'simple' objects considered, and 

for the size of pixel array available i. e. 256 by 256, five 
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radial and twenty angular divisions were chosen as appropriate. 

In a practical application, trials to arrive at the optimum 

number would be necessary. 

Shown in Figures 6.7 and 6.8 are 

the plan views of the cylinder, the cubE 

bladed fans corresponding to radius-angle 

transformed plane. Five feature vectors, 

with 20 elements each, can be extracted 

transforms displayed. 

the power spectra of 

>, the four and seven 

zones in the Fourier 

one per radial strip 

frcan the partitioned 

Figure 6.8 (b) shows the spectrun of a rotated version 

of the seven bladed fan for the same pixel array partitions, and 

supports the results of chapter 5. 

For these simple engineering shapes, the feature 

vectors remain sensibly constant with object rotations. 

Although the feature vectors do change for the seven bladed fan 

if the reverse side is viewed, it is still classified by this 

method as a member of the 7 bladed fan family. For more canplex 

shapes, additional trails will be necessary to confirm this 

property. Scaling, however, changes the power-spectra, and 

therefore the obtained feature vectors, see Figure 6.8 (c). 

Hence normalisation was considered and performed before the 

recognition process. 
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The foundation of the recognition process is, 

therefore, based on the actual grey level propagation of the 

unprocessed image. That is, the resulting feature vectors of 

identical objects would not be similar as a result of lighting 

alterations or the presence of shadows. 

To measure the variation in the lighting conditions and 

to get a better feel for the relative changes in the light 

intensity as the light sources were moved, thereby simulating a 

condition where controlled lighting would not be possible and 

where objects cast shadows on the background, a light meter was 

used to obtain Table 6.1. Enhancement and segmentation of the 

object image were, therefore considered and performed prior to 

the recognition process to minimise the undesirable effects of 

illumination changes such as low ob3ect/background contrast and 

shadows. 

Enhancement was based on the distribution of the grey 

levels obtained fron the two-dimensional image histogrm by 

increasing the separation between the two peaks appearing in 

this display. 

Segmentation, to minimise the impact of shadows, was 

performed by a technique based on Rosenfeld's method [6], where 

the difference of average grey level between each pair of 

neighbourhoods were calculated. Thereby attempting to have a 

segmented image which would be invarient to changes in lighting 

condition. The size of a neighbourhood being dictated by the 

detail in the image. 
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6.4 SFX ATION OF TEXTURE IMAGES 

When an image includes a variety of textures, regions 

corresponaing to a texture condition can be created by means of 

grey level averaging (segmentation). 

To detect "texture edges", that is, where the average 

values of local picture properties change rapidly, pairs of 

adjacent neighbourhood grey levels are merged to create a single 

grey level region. The Rosenfeld' s technique uses the difference 

of average grey levels between each pair of neighbourhoods to 

detect the existance of a texture edge. To calculate the 

average grey level in a neighbourhood, the image is partitioned 

into-square regions and the average grey level estimated fron: 

X+2K-1_1 Y+2K-1_1 

K 
(X'Y) =I K-1 

1 
K-1 

K*K (6.1) 
i=X-2 j=Y-2 

where: 

a(x, y) denote the grey level at point (x, y) 

K specifies the nunber of pixels in a side length 

When locating the texture edges within partitioned image, of 

side length 2K pixels in direction 0 degrees, the edge value is 

obtained fron: 

EK, e (x, y) = JAK(x+2K-l cose, y-2K-1 sine) - 

AK(x-2K-1 cos6, y+2K-1 sine) (6.2) 
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A ccanbination of horizontal and vertical search is required to 

generate the boundary pattern for the whole image. A value of K 

=4 is shown to be appropriate for the type of objects 

considered, and the results of applying Equations (6.1) and 

(6.2) are shown in Figures 6.9. In this Figure, images of 

uniform grey level (within the square neighbourhoods), are 

created by forming groups of constant hue and the texture edges 

detected are illustrated. 

6.5 RECOGNITION PROCESS 

Using the developed radius-angle power spectra analysis 

on the images of the objects, with r=5 and 6= 20, i. e. 5 

radii and 20 angular divisions, five feature vectors with twenty 

elements in each vector, are obtained. 

That is, V. {v 
il' vif vi3' """'' vi20} i=1 to 5 

Tests are conducted to determine what light variations can be 

tolerated and still retain the recognition properties of the 

five feature vectors proposed for the simple shapes adopted. 

By normalising these five vectors in the manner as 

described in Chapter 5, they are made independent of object 

size. Two methods of comparison are reviewed for object 
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Figure 6.9 Image segmentation and uet.. cl. 't 1011 texture edges. 
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recognition. The first of these employs the method of Chapter 5 

and requires the minimisation of: 

20 1 
D1 20 [1Il IV1r 

1tI2] 

where Vlr is the first feature vector of the reference object 

Vlt is the first feature vector of the test object 

and D1 is the measured difference of the first feature 

vectors 

D2 to D5 are obtained in the same way. The largest of these 

five values of D (Dm ) is used as the error measure datum. To 

test that the technique is independent of object orientation and 

size, appropriate measurements were taken for the sane object. 

An object with a significantly greater value of Dm is rejected 

and not recognised. 

The second approach is based on the evaluation of a 

correlation coefficient [10], defined as: 
20 

(V1r mV1r) (V1t mV1t) 

_ 
i=1 

p1 

1Z 

20 2} 

i20 
(V1r mV1r) (V1t IV1t) 

= i=1 

where: mVlr is the arithmetic mean of the first reference 

vector 

mVlt is the aritlinetic mean of the first test vector. 
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As the value of p approaches unity, the more correlated are the 

reference and test objects. 

The criterion established and used for recognition, was 

to determine if all five correlation coefficients were greater 

than 0.6 and the arithmetic mean of the five was greater than 

0.7, in which case recognition could be made with confidence. 

Typical results are shown in Figures 6.10 to 6.13, for the 

recognition of the seven bladed fan. By examining these results 

it becomes apparent that object recognition process improves 

considerably as a result of normalising the feature vectors. 

Also in these experiments, the lighting conditions were changed 

from time to time, and the results provided, confirmed that 

segmentation was a good technique for eliminating the effects of 

lighting variations. 

6.6 DISCUSSION AND CONCLUSIONS 

Texture analysis methods were developed in this chapter 

and it was shown that sane irifotmation can be extracted fron the 

3D histograms and pixel voltage displays. These types of 

display do not, however, provide information that can be used in 

general image recognition. Techniques based on the power 

spectra of the object images and the partitioned Fourier 

transformed space were developed and the resulting feature 

vectors were shown to provide sane basis for the recognition of 

objects. Segmentation is shown to be effective in minimising 

possible confusion caused by the presence of shadows and 

lighting variations. 
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It is also confirmed, as expected, that texture edges 

when used do not provide good feature vectors for object 

recognition, as most of the texture information is disregarded. 

Segmented images (the averaged neighbourhood partitions) 

provided a good basis for the'resulting feature vectors, whilst 

texture edges could be useful in sane other aspects of this type 

of study, e. g. contour tracking. 

As a 'first check', prior to developing the feature 

vectors for the recognition process the 'canpactness factor' of 

the images were considered. It is noted that for a given shape 

approximated by the square grid the factor of (perimeter)2/area 

remains sensibly constant, even after scalings and rotations. 

It was shown in Chapter 4 that changes of up to 8% can be 

expected in area and perimeter measurements due to the square 

grid approximation and as a result of rotation. Therefore, in 

the recognition process the compactness factor of the test shape 

was obtained and checked against that of the reference shape. A 

change of up to 10% was tolerated, to allow for the errors due 

to the approximations and bad lighting conditions (thereby 

causing errors in perimeter and area approximations); if a 

change of greater- that 10% occurred the recognition process was 

not continued. This is a much quicker 'first check' than that 

of tracking the boundary and developing Fourier Descriptors for 

recognition of the outer boundary, as described in the previous 

chapter. 
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The techniques developed for the recognition of objects 

takes the whole image into consideration and not the outer 

contour as it did in the previous chapter. The feature vectors 

developed are based on the surface textures of the object, yet 

the method is unable to distinguish which side of the 7 bladed 

fan is viewed, i. e. it could not recognise the textural 

differences in the boss geometry which vary from one side to the 

other. Methods used in image synthesis, e. g. developing surface 

normal vectors and the study of surface reflectivity and 

spectral properties, might provide the extra information to 

overcome this recognition problem for a simple engineering 

component. 
. 
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CHAPTERSEVEN 

APPLICATION OF SHADING MODELS IN IMAGE ANALYSIS 

The techniques utilized in 'shape fron shading' are exanined and 

an attempt is made to employ image synthesis methods to 

discriminate between various components. 
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7.1 IlIT cucrION 

It was shown in the previous chapter that the methods 

developed for the analysis of images, using surface features, 

could not recognise the differences in the boss geometry of the 

seven bladed fan. Image synthesis techniques search for 

attributes which provide extra information that might be 

employed to discriminate between surfaces of different 

properties (reflection and spectral properties) as well as for 

different surface shapes of the same property. 

This chapter exanines the 'shape fron shading' 

technique that could replace the need for direct surface 

measurenents and in addition provide information for surface 

recognition. Several models for surface shading prediction are 

examined and the process of applying these surface shading 

models for image analysis and depth preception is presented. 

7.2 SHAPE F1i4 SURFACE SHADING 

The prediction of shape fran surface shading is an 

important attribute that might aid image synthesis. It involves 

the assignment of a grey level value to every picture element in 

the image, thereby simulating the viewing situation. 
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The shading of a surface point depends on the surface 

reflection characteristics, the surface geanetry, and the 

lighting conditions [1]. Each of these properties must be 

ponsidereci in the developnent of a surface shading model. 

The most important property in describing the 

contribution of the surface geanetry to surface shading is the 

'surface normal vectors' at the point of intersection of the 

incident light [2]. The normal vector is proportional to the 

reciprocal of the gradient of the surface at the point. Hence, 

if i, 1, and k are the unit vectors in the x, y and z direction 

and n is the normal vector for a plane surface, f, represented 

by: 

f(x, y, z) = ax + by + CZ +d=0 

then, the normal vector is [3]: - 

n_ 
afi+ of +afk äx - ay äz 

or 

n=ai + bi + ck 

A secorrm characteristic of a surface is the reflection 

property corresponding to 'a given surface type. Surface 

properties include: spectral reflectance, determining how the 

surface reflects light of specific wavelengths; texture, 

determining the 'diffusivity' and 'specularity' canponents of 

reflection; and transparency, which determines the amount of 

i 



151. 

light that is refracted by the surface. These characteristics 

of surfaces identify the shading model required for surface 

emulation [1]. 

The shading models most frequently encountered in the 

literature are, 

(i) Lambert's Law for diffuse reflectors [4]. 

(ii) Phong' s model for simulation of specular reflectors 

[5]. 

Lambert's Law states that a surface will diffuse 

incident light equally in all direction. For a Lambertian 

surface, the quantity of reflected light is proportional to the 

anount of incident light. The intensity of a surface point (I) 

may then be modelled by the cosine of the angle between the 

normal vector (n) to the surface point and the light source 

vector (1), see Figure 7.1. The cosine of this angle (0) may be 

canputed by the inner product of the two vectors. The 

L mbertian nadel may, therefore, be sumnarised by [4): 

cos 0 -it/2<0<7/2 
I= (7.1) 

0 otherwise 

Phong's model for simulating the reflection 

characteristics of a specular surface suggests that more light 

is reflected in the direction of the source, fonning an equal 
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normal vector 
n 

1 light source vector 

0 

surface 

Figure 7.1 Iambert's law for diffuse reflector. 

norral vector 
reflection vector n 

r7 
lllý view vector 

V 
1 light source 

vector 

0 

surface 

Figure 7.2 Phong's nxx]el for specular reflection. 
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but opposite angle to the normal vector, see Figure 7.2. This 

reflection vector may be determined by solving: 

r= 2-2) n-1 

where 0 is the angle between 1 and n. The intensity of a point 

on a specular surface is dependent on the viewing geanetry, 

unlike an ideal Lambertian surface. For a mirror-like 

surface, the intensity as seen by the camera, would be zero 

everywhere except for the points which reflect the light exactly 

in the direction of the camera. For a duller surface, the 

intensity falls as the angle between the viewing vector and 

reflection vector increases. The relationship between the 

intensity and the angle ý, i. e. the angle between the view 

and the reflection vectors, may be modelled by [5]: 

cos ¢ -n/2<ý<1r/2 
2= (7.2) 

10 otherwise 

where the coefficient, m, is a measure of the shininess of the 

surface. A mirror-like surface would correspond to a larger 

value of m, and a duller surface would exhibit a value near 

unity. Typical values for surfaces such as nickel would be 

between 10 and 100, depending on the surface condition [6], i. e. 

dull and matt to cleaned and polished. 

Most real surfaces are neither ideal diffuse reflectors 

nor ideal specular reflectors [7]. A model which carbines the 

effects of diffuse and specular reflectance with ambient light 

produces good synthesized images. The ambient canponent is 
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light which is assured to be uniformly distributed over the 

surface and the canbination of these components yields the 

reflection model: 

I=a cos(4) +b cos M+c (7.3) 

The terms a, b and m depend upon material and surface roughness 

and c is the ambient or natural light term. The received 

intensity deperris on these paraneters, as well as the surface 

and viewing geometries (7]. The intensity, I, will have to be 

in the range of 0 to 1 to satisfy the inverse cosine 

requirement, the sum of the coefficients a, b and c must, 

therefore, never exceed unity. Most materials, such as copper 

or bronze, when smooth and glossy, have a large specular 

component and a snail diffuse component (b = 0.7 to b=1.0 and 

a=0.0 to a=0.3). Rough non-metallic surfaces, such as 

carbon or rubber, have large diffuse canponents and a snail 

specular component. 

The three models described by Equations (7.1), (7.2) and 

(7.3) may be used to obtain three-dimensional information that 

represent the surface shape by examining the observed intensity 

of a set of surface points. 
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7.3 APPLICATION OF THE SURFACE SHADING MODELS FOR SURFACE 

GEC1 EIRY DEFINATIONS 

The shading of surface in image synthesis is modelled 

by functions of the surface geometry hence it is possible to 

derive the surface geometry from the shading information. Horn 

[3] suggests that the intensity of a surface point identifies 

the solution space for the normal vector to the surface at that 

point if the viewing geanetry and lighting conditions are known. 

The process of determining the surface normal at a point 

consists of performing an inverse process of image synthesis. 

This process has been applied to polyhedral objects by Macworth 

[2] and shown to give good results for surfaces in which the 

reflection characteristics are known. McPherson [1] , also, uses 

the surface shading models discussed in the previous section to 

obtain the surface geantry of an object fron the shading of the 

surface in the image. 

Generally, the technique of surface measurement fran 

surface shading provides a set of normal vectors for the surface 

points that are viewed by the camera. Unfortunately, the data 

obtained is not in the form of discrete surface point 

coordinates and hence the derivation of surface geanetry is not 

simply a problem of curve fitting. 
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Most man-made objects can be described by multiple 

intersecting planes (polygonal solid), by multiple intersecting 

quadrics, or a canbination of planes and quadrics [8]. Having 

obtained a function that describes the surface and estimates of 

the surface vormals, the unknown parameters of the surface 

tangent at a point on the surface can be evaluated. Zb achieve 

this, the first derivative of the surface function is equated to 

the derived surface vector at the measured data point. The 

coordinates of the centre of the canera lens and a knowledge of 

the canera characteristics provide further data and subsequently 

permits the unknown parameters of the mathematical model of the 

surface to be calculated [1]. 

7.4 SURFACE NO MAL VECTOR ESTIMATION AND APPLICATION IN 

SURFACE REXXX ITION 

The Lambertian model for diffuse surfaces, Equation 

(7.1) measures the intensity of a surface pixel by the cosine of 

the angle between the light source vector and the normal vector 

to the surface at that point. The equation may be rewritten, 

for the arrangement shown in Figure 7.3, as: 

I=Cos (a - ß) 

Clearly, for any intensity (pixel voltage) there are to 

possible solutions for the angle 6 i. e. (a -ß). If the 

direction of the light source (a) is known, then two possible 
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light source vector 

normal. vector 
a rº 

Figure 7.3 Angles associated with diffuse model. 

light source vector 
1 

normal vector 
n 

view vector 
v 

reflection vector wo aßr 

Figure 7.4 Angles associated with specula rx del. 
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solutions exist for the direction of the normal vector (ß) . Tb 

be able to identify the correct notmal vector, two different 

positions of the light source must be used and the cannon value 

fron the data is the true normal. 

For the specular model, if the angular displacement of 

the view vector, V in Figure 7.4, is represented by -y and the 

angular displacement of the reflection vector (r) by p, 

Equation (7.2) becanes: 

I=cos (Y -W) (7.4) 

Hence, for the specular model, as shown in Figure 7.4, the 

direction of the normal vector (ß) is halfway between the 

reflection vector (W) and the light source vector (a 

therefore: 

ß= (ip+(X) 
2 

or 
i, = 20 -a 

Substituting for W in Dquation(7.4)the specular model of surface 

shading becanes: 

I=cos (2ß-a-y) 



159. 

Für both models the direction of the surface normal is 

obtained fron: 

(I) (diffuse) ß=a± cos -1 (7.5) 

(specular) ß=2 [a +y± cos 
1 ((I)h/m)] (7.6) 

In an attempt to distinguish between the different 

sides of a canponent, experiments were carried out to estimate 

the directions of the surface nonnals at points of interest. In 

the first experiment a white matt cardboard cube was exanined. 

The reflectance properties of such surface finishes resemble 

. those of the tertian type. These artificially created 

surfaces do not have ideal diffuse reflection properties, 

therefore values of m=l, m=2 and m=4 were chosen for the 

specular shading model of Equation (7.6), and the direction of 

surface normal vectors for the plan view of the cube were 

obtained, i. e. with a priori knowledge that they should be close 

to 90 . To identify the true direction of the surface normal, ° 

the light source was initially positioned vertically above the 

cube, whence, 

1, _ j- or a= 900 
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The second position of the light source made an angle 

(a) of 120° with the top face, yielding 

1= -0.5i + 0.866] 

The viewing position, i. e. the camera's position, 

remained unaltered throughout, at an angle of y= 450 to the 

face, i. e. 

v=0.7071+0.707] 

The 'mean' and 'standard deviation' values for the 

pixel voltage distribution, in the face considered, were 

calculated to examine the light variation in the flat surface as 

the light source position was altered. The standard deviation 

remained within the range of 0.002 to 0.02 fron the mean value, 

or in percentage terms, 0.2% to 2.3% + or - the mean, exhibiting 

a uniform light distribution over the surface. The pixel values 

were normalised to fall within the range of zero to unity 

whereby each pixel was divided by the maximum pixel value 

detected on the surface region. The separate regions were 

monitored to give some indication of the spread of results to be 

expected. Table 7.1 sunmarises the results obtained. 

The trials were repeated for the fans shown in Figure 

5.7, in an attempt to identify differences in blade curvature 

between opposite sides. It was anticipated that the concave and 

convex surfaces would have different reflective properties and 
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KEY 

MEAN: Mean of the grey levels. 
STANDARD DEVIATION: Standard deviation of the grey levels. 
I: Intensity of the point being considered. 
NV: Estimate direction of the Normal Vectors. 
Df: Diffuse'Modle. 
Sp: Specular Model. 
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hence the sets of derived nonnals would be unique for each side 

of the fan blades. 

The maximun curvature changes occur at the tips of the 

blades, i. e. fran inlet to outlet of the cross-section. Table 

7.2 is provided to confirm this property. The Table is obtained 

by measuring the surface normal directions, directly fron a 

trace of the blade surface being exanined, using a Talycontor. 

A variation of up to 300 is evident in the normal directions of 

the concave side of the blade tips, and up to 20° for those of 

the convex face. Hence, in calculating the surface nonnals only 

the cross-section of the tips were exanined. 

Table 7.3 illustrates a typical set of results obtained 

for one of the four blades of the four bladed fan. The two 

shading models, and different values for 'm' in the specular 

model have been used to investigate which model and shininess 

factor would result in estimated normal directions close to 

those of Table 7.2. The lighting and canera position rEmained 

unchanged fron those of the previous Tables. An average value 

for the direction of the vormals has been calculated where the 

light variation could not result in deriving an identical 

solution for the angle ß, Equations (7.5) and (7.6). 

In the trials of the above experiments the position of 

the canera and the light source directions i. e. a and y, are 

constant and the only variable is the intensity of the surface 
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KEY 

I Intensity of the point being considered. 
CV Concave side of the blade. 
CX Convex side of the blade. 
NV Estimated direction of the Normal Vectors. 
Df Diffuse model. 
Sp Specular model. 
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pixel. For the fan blades considered, the radii of curvature 

are not snail enough, for the lighting conditions tried, to 

produce intensity changes which could result in a better 

estimation of the nounal directions , i. e. concavity and 

convexity of the blades are not sufficiently obvious. However, 

as the technique is intended to be used as an extension to the 

previous recognition processes, Chapters 4,5 and 6, the shading 

of the surface is required to be minimun thereby avoiding high 

density shadows. It was stated in the previous Chapter, that 

the effects of low density shadows, in the recognition process 

could be minimised by segmenting the textured image. High 

aensity shadows cannot however, be tolerated in the recognition 

process, and whilst they provide useful criteria for the image 

sythesis techniques their effect on the recognition methods 

could be detrimental. 

Table 7.4 is provided to present the possible shading 

effects which may be obtained for the sane blade, by altering 

the lighting conditions. The snail light source makes an angle 

of 150 0 with the horizontal in this trial. The light variation 

on the surface provides a good basis for deriving normal 

directions which are distinct for each side of the blade, 

thereby recognising the different faces. Upon exanining the 

surface intensities listed in Table 7.4, it becanes evident that 

changes of up to 40° are detected in calculating the surface 

normal directions using the diffuse model, and up to 25° using 
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the specular model, i. e. by keeping light source direction and 

camera's position unchanged and considering the inverse cosine 

of the listed intensity levels. Figure 7.5 is provided to 

summarise the results obtained in Tables 7.2,7.3 and 7.4. 

7.4.1 The Effect of Shadows in the Recognition Process and 

Further Application of the Specular Model 

As discussed above, the presence of high density 

shadows cannot be tolerated in any of the recognition processes 

developed in the previous Chapters. Ib substantiate this fact, 

the four bladed fan was again examined to establish the effects 

of the presence of the heavy shadows, as used in deriving the 

intesity levels in Table 7.4, on the recognition processes. The 

'similarity measure' of Chapter 5, rejected the fan when 

compared to its original shape, i. e. with 'normal' lighting 

condition. The sane lighting condition, i. e. the presence of 

shadows, was repeated on the 7 bladed fan, and the recognition 

process in this case identified the fan as being close to the 4 

bladed fan. These miscalculations resulted after thresholding 

the image to obtain a binary, object/background, image. Further 

investigations showed that intensity variations i. e. shading, of 

up to 10% could be tolerated, and the shadows presented could 

then be classed as being of low density. In Table 7.4, changes 

in intensity of up to 60% are present, well outside this 

allowable range. However, the shadows could still provide 

useful information by adopting a two stage recognition strategy. 
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normal directions 
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That is, the recognition of the canponent must be confirmed 

under lighting conditions which will minimise the presence of 

shadows. Then, lighting may be adjusted to use the surface 

geometry details to create shadows and utilize the shading models 

to distinguish between the different faces of the object. 

The specular model may be used to derive further 

information regarding the surface geometry even when the light 

intensity does not change significantly over the surface. As 

mentioned earlier, the snail variations in the direction of the 

normals, Table 7.3, are due to the shall changes in intensity 

and can be determined from the term cos-'{ (1) 1 /m 
} of the 

Equation (7.6). Tb study these variations and to investigate the 

impact of the shininess factor, i. e. m, on the calculation of the 

surface normal directions for the four bladed fan, Table 7.5 has 

been provided. In this, the shininess factor has been altered 

by: first, masking the tip of the blade being considered by 

shiny masking tape, thereby making the surface more reflective; 

secondly, the blade considered was sprayed with thin transparent 

oil, making the surface even more reflective. The value of m 

was estimated, respectively, as 20 and 30. The percentage 

changes in Table 7.5 were obtained by considering, only, the 

cosine term of the specular model and by taking the snallest 

intensity point as the datun, calculating the percentage 

variations fron this datun point. 
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Mean value of 0.8438 concave 
the grey levels 
on the surface 0.8280 convex 

Standard deviation of 0.0205 concave 
C) l l h e grey eve s on t 

the surface 0.0168 convex 
M 

term (c s 11 03° 10 30° 14° 9 10.67° 11.40° R o rv ce) . . . 

% change 3.2% 9.6% 19.8% 6.4% 0 

Cosine term 11.38° 10.67° 12.06° 11.03° 10.30° (convex face) 

% change 5.6% 11.5% 0 8.5% 14.6% 

Mean value of 0.8460 concave 
the grey levels 
on the surface 0.8679 convex 

Standard deviation of 0.03 concave 
c the grey levels on 
N the surface 0.03 convex 

N 

e term o in 8.54° 7.55° 
I 

5.88° 7.03° 7.81° 
evt face) s (c 

% change 0 11.6% 31.1% 17.7% 8.5% 

Cosine teä 7.29° 6.47° 5.23° 7.29° 7.55° 
n ) (con 

% change 3.4% 14.3% 30.7% 3.4% 0 

Mean value of 0.9100 concave 
the grey levels on 
the surface 0.9040 convex 

Standard deviation of 0.01 concave 
r) the grey levels on 

the surface 0.01 convex 

Cosine term 4.80° 5.05° 3.98° 4.27° 
0 

4.79 (concave face) 

% change 0 5.2% 17.1% 11.0% 0.2% 

Cosine rm 4.54° 5.28° 4.27° 4.54° 4.80° 
net 

% change 14.0% 0 19.1% 14.0% 9.1% 

Table 7.5 Ecamining the changes in the cosine teen of the specular 
model for estimating the normal vectors of the opposite 

sides of the 4 bladed fan, as the shininess is altered. 
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7.5 DISCUSSION AND FINAL REMARKS 

Two different models for surface shading are presented 

that are easy to apply experimentally. A list of criteria for 

the selection of the most appropriate model, however, has not 

yet been established in the literature. 

For the trials conducted on opposite sides of the fan 

blades, the variations in direction of the estimated surface 

nozmals have been shown to be not significantly different from 

one side to another when low values of shading, necessary for 

good object recognition, exist on the surface. These 

differences are not sufficient to provide a basis for discrim- 

ination between the two sides, further, they do not follow the 

actual trend of the measured normals, given in Table 7.2. This 

is due to the shape of the blades and the lighting conditions 

chosen. The impact of the lighting variations and the presence 

of shadows, first on the recognition processes and then on the 

surface normal estimations, have also been discussed. A further 

application of the specular model, has been evaluated which 

considers the percentage changes in the cosine term only of the 

model across the blade surface. The results obtained, Table 

7.5, could provide a basis for distinguishing the opposite sides 

of the fan considered, even though the intensity variations are 

shall. 
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A two--stage recognition process is suggested. In the 

first, the shading of the surface and the presence of shadows 

must be kept to a minimum for good recognition. Für the second 

stage, the lighting conditions must be arranged to provide 

maximum shading models. However, to establish a general model 

for the type of surfaces exanined, and to arrive at an optimun 

value for the surface shading models to provide sensible 

estimation for the direction of the notmal vectors, requires 

further investigation. 
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CHAPTER EIGHT 

DISCUSSION 

The most important observations made in the forgoing chapters 

are suttnarised and discussed. 
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8.1 LITERATURE REVIEW 

The goals of the machine vision system, namely the 

effective interpretation of visual data for canponent inspection 

and robot control, are reported in the literature, as having 

been achieved in limited task capabilities with operational 

environment restrictions. 

The initial published work, (Chapter 1, references 

[6-9]), concentrates on quantitative studies of shape and 

pattern perception, by adopting a psychological approach and 

human perceptual models. This work does not provide a 

cmpletely acceptable solution to the industrial applications 

identified. Based on these initial observations a number of 

workers, (Chapter 1, references [10-13]), have detailed 

algorithms and schemes which could be incorporated into basic 

industrial vision tasks. 

Artificial Intelligence concepts and the knowledge-base 

approach have been used in information representation and 

processing. Support for the inclusion of the rule-based 

approach in the design of industrial vision systems to overcane 

some of the observed shortcomings in performance has been 

suggested (Chapter 1, references [21-24]). The complexity of the 

computational methods and the non-versatility of the canputer 
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languages employed, together with the relatively large data- 

base requirement and high processing power needed, would not, in 

this author's opinion, make them suitable for immediate 

industrial application. 

A number of researchers, (Chapter 2, references 

(52-59]), have designed and developed industrial vision systems 

for inspection and robot control, performing tasks of various 

degrees of canplexity. These examples provide a good basis for 

canparison between systems incorporating specialised hardware, 

typically stereo vision and range finder sensors, and systems 

using only a single camera for image data acquisition. 

8.2 PRE-PROCESSING AND CONTOUR TRACING 

Illumination plays a critical part in most image 

processing applications. It is, indeed, for this reason that 

industrial vision systems have been defined as 'ccnputer vision 

with controlled lighting'. Digital image processing methods are 

at the heart of any ccmputer vision system, that improves and 

processes pictorial data for use in automatic machine 

perception. A basic part of the image information is in its 

edge or boundaries. It has been shown by experiments on human 

vision systems that the image boundary is of major importance in 

recognition, (Chapter 3, reference [2]). For the object 

recognition algorithms, where the boundary representation has 
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been incorporated into, image enhancement and techniques for 

detecting the subtle edges are of principal importance. Chapter 

3 documents the principle edge detection techniques and canpares 

the performance of different methods. It has been shown in this 

chapter, that no one technique was significantly superior to the 

others and the choice would be dictated by the image processing 

situation. 

Techniques have been developed whereby the outer 

contour of the object image is traced and coded. The codes 

described are independent of object orientation. One such 

technique, which has potential applications in an engineering 

environment, is the Freeman's code, (Chapter 4, reference [1]). 

Codes which are spatially invariant are used for both object 

recognition, and the estimation of object orientation 

Image enhancement together with the edge detection 

routine will ensure that the boundaries are well defined and 

distinct fron the background. These preprocessing procedures 

are performed in addition to thresholding, to minimise the 

effects of shadows and to give a better defined contour for 

recognition purposes. 

8.3 FOURIER ANALYSIS IN OBJEX T RIXXX ITION 

The use of Freeman's code to represent the contour of a 

shape results in the generation of a numerical series which 
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significantly reduces the number of data points to be processed 

compared with the original pixel array, whilst still retaining 

the contour properties of the shape. The resulting series were 

used, Chapter 4, for subsequent identification of an object and 

its orientation estimation. Further additional data reduction 

is achieved by Fourier analysis of this chain code data. 

In the work presented in Chapter 5, features which are 

invariant with respect to translation, rotation and object size 

were obtained fron the use of normalised Fourier Descriptors 

(FD). Theoretical and experimental evidence is available, 

(Chapter 5, reference [3,41), which indicates that the FD is 

more powerful than other boundary representation techniques, 

such as the polygon approximation. Two methods were 

investigated for the evaluation of Fourier Coefficients. The 

coordinate values of the contour pixels were used in the first, 

and the actual orientation vectors of the Freeman's chain code 

were used in the second method. The inverse Fourier transforms 

were developed and the reconstruction of the shapes confirmed 

that only a small number of Fourier Coefficients were needed to 

reproduce the shape for reliable recognition. Methods were 

developed whereby the error due to the approximation of the 

boundary by a shall number of FD could be predicted. 

al 
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The proposed procedure for the selection of the 

sub-optimun number of FD necessary for reliable recognition, 

will be particularly advantageous in applications where a large 

number of objects are to be identified and the images monitored 

are to be checked against a reference library of shapes. 

8.4 SURFACE TAURE ANALYSIS AND IMAGE SYNTHESIS 

Contour tracing and coding of the boundary to represent 

shapes are shown to be useful for identification of some 

objects. It is generally believed, however, that additional 

features will, in many circuiistances, be necessary in a real 

engineering enviror¢nent to allow for the differences in front 

and back faces of an object to be recognised. 

As a step forward, surface features and properties 

relating to the surfaces were investigated. Texture analysis 

for surface definition has been used by a number of researchers, 

(Chapter 6, references [1-3]). In most of the published 

literature, range data measurements have been employed to aid 

the segmentation of the textured image and to detect surface 

orientation, using data Pram specially designed hardware in the 

analysis. 

The technique adopted by this author, Chapter 6, was 

based on the analysis of a perceived structure and was built by 
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extending the methods described earlier. An object's surface 

was studied and useful features were extracted fron the obtained 

power spectra. The impact of shadows, the application of 

enhancement and segmentation were demonstrated. For the 

recognition process itself, two different methods for the 

canparison of the feature vectors were investigated. 

Textural analysis, useful as it is for the 

identification of simple engineering components, has a weakness 

in that it could not detect relatively major surface features. 

It could not for exanple distinguish between the opposite sides 

of the fans used in Chapter 5. Attributes which provide extra 

information that could be used to discriminate between surfaces 

of different properties, can be found by using image synthesis 

techniques. Several models for the prediction of surface 

shading were exanined, Chapter 7, and the process of applying 

these models for surface feature detection was presented. For 

the fans employed in the study, the large radius of curvature 

prevented the concavity and convexity of the opposite sides 

being detected, using the two shading models discussed, unless 

high density shadows were created on the surface. It was 

established for the recognition processes developed earlier, 

high density shadows, i. e. intensity variations of over 10% on 

the surface being considered, could not be tolerated. As a 

result of this, a two stage recognition process would be 

required if both methods are necessary in component identifica- 

tion. 
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In a final attempt to extract usable information from 

the small changes in the light intensity levels over the 

surface, the variant term in the models, namely the 'cosine 

term' was monitored. The Tables obtained, Chapter 7, suggest 

that the percentage changes in the cosine term could be 

adopted to provide a basis for distinguishing the opposite sides 

of the components considered. 
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CHAPTER NINE 

CONCLUSIONS 
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9.1 CONCLUSIONS 

The major conclusions that can be drawn fron this work 

are: - 

(1) Image edge detection should normally proceed the 

boundary following algorithn. 

(2) Freeman's chain code provides useful spatially invariant 

sequences for use in object recognition and orientation 

estimation. 

(3) Fourier analysis allows Descriptors to be derived which 

are independent of an object's silhouette size and 

orientation. The contour data is significantly 

condensed and aids multiple object recognition. 

(4) Surface textural features will generate extra data 

applicable to the object recognition process. 

(5) Shapes fron shadings and the models utilised will 

distinguish between various surfaces. The lighting 

conditions required for the shading models will, 

however, differ fron those needed for object 

recognition; hence, multi-stage strategies may have to 

be employed. 
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(* This program detects the edges of an input image 
(* using the KIRSCH operator . It also thins the edges 
(* detected by substituting the edge pixels by one 
(* pixel value (the brightest edge pixel detected) 

PROGRAM EDGESEAR( INPUT, OUTPUT ); 
CONST MAX - 256; 

THRESH - 134; 
TYPE LINE = ARRAY[1.. MAX] OF CHAR; 

INT = INTEGER; 
POINTS - ARRAY(1.. 200] OF INTEGER; 
THIN - ARRAY[1.. 20000,1.. 3] OF INTEGER; 
NUMOFDOTS - INTEGER; 
EDGEOP - ARRAY[1.. 3,1.. 24] OF INTEGER; 
ACC = ARRAY[O.. 179,0.. 363] OF INTEGER; 
BLOCK-ARRAY[1.. MAX, 1.. MAX] OF INTEGER; 
PICT=ARRAY[1.. MAX, I.. MAX) OF CHAR; 

VAR RMIN, RMAX, EDGE, TTH, I, J, K, L, X, Y, R: INTEGER; 
N: NUMOFDOTS; 
STORE: THIN; 
A : EDGEOP; 
IX: LINE; 
IY2, RESULT: BLOCK; 
IY: ARRAY(1.. MAX, 1.. MAX) OF CHAR; 

(* The image is input by calling the external FORTRAN 
(* developed for loading an image from the VAX aux. 

PROCEDURE FOPEN(%REF CH: INTEGER); FORTRAN; 
PROCEDURE FCLOSE(%REF CH: INTEGER); FORTRAN; 
(* CLOSES FILE ON CHANNEL 1 *) 

*) 

programs *) 
discs. *) 

PROCEDURE GETDAT(%REF CH, NUM: INTEGER; %REF IL: LINE); FORTRAN; 
(* READS NUM VALUES FROM CHANNEL CH INTO ARRAY IL *) 

PROCEDURE IPSAVE( IP: PICT ); FORTRAN; 
PROCEDURE FINDEDGES(I, J: INTEGER; VAR IY2: BLOCK ); 
VAR X, Y, LAR, H: INTEGER; 

SUM: ARRAY[1.. 8] OF INTEGER; 
BEGIN 

FOR N: -l TO 8 DO 
SUM[N]: -0; 
FOR N: -l TO 8 DO 
FOR X: -1 TO 3 DO 
FOR Y: -l TO 3 DO 
SUM[N]: -SUM(N] + IY2(I+X-1, J+Y-1]*A[ 

(* Multiplies array element by corresponding 
LAR: -SUM[1]; 
FOR H: -2 TO 8 DO 
IF SUM[H) >- LAR THEN LAR: -SUM(H]; 
IY2[I, J): - LAR ; 
(* Max. response of applying all the 
IY2[I, J]: -( IY2(I, J] + 3825 )DIV 30; 
(* Normalise to range 0-255 *) 

END; (* PROC Findedges *) 

X, Y + (N-1)*3 ]; 

mask element and sums *) 

masks *) 

PROCEDURE THINEDGES(VAR IY2: BLOCK; STORE: THIN; N: NUMOFDOTS); 
VAR X, Y, I, J, OPTX, OPTY, E: INTEGER; 

BEGIN 
(* Initialise array *) 

FOR I: -i TO 20000 DO 
FOR J: -l TO 3 DO 
STORE[I, J]: -0; 
WRITELN('Thinning edges ....... '); WRITELN; 
N: -O; 
(* Scanning horizontally *) 

FOR Y: -6 TO 250 DO 
BEGIN 

X: -6; 
REPEAT 

X: -X+1; 
IF (IY2(X, Y]>-THRESH) 
BEGIN 

AND (IY2[X-1, Y]<THRESH) THEN 



203. 

(* START OF EDGE *) 
E: =X; 
OPTX: -X; 
N: =N+1; 
REPEAT 

X: -X+1; 
IF X>250 THEN X: -250; 

UNTIL (X-250) OR (IY2(X, Y]<THRESH); 
(* WIDTH OF EDGE - X-E *) 

FOR J: - (E+1) TO X DO 
IF IY2[J-1, Y]<IY2[J, Y] THEN OPTX: -J; 
STORE(N, 1): -OPTX; STORE[N, 2]: -Y; STORE(N, 3): -1Y2(OPTX, Y]; 

END; (* IF *) 
UNTIL (X-250); 

END; (* FOR *) 
(* Scanning vertically *) 

FOR X: =6 TO 250 DO 
BEGIN 

Y: =6; 
REPEAT 

Y: =Y+1; 
IF (IY2[X, Y]>=THRESH) AND (IY2[X, Y-1]<THRESH) THEN 
BEGIN 

E: =Y; 
OPTY: =Y; 
N: -N+1; 
REPEAT 

Y: =Y+1; 
IF Y>250 THEN Y: -250; 

UNTIL (Y=250) OR (IY2(X, Y]<THRESH); 
FOR J: - (E+1) TO Y DO 
IF IY2(X, J-1]<IY2(X, J] THEN OPTY: =J; 
STORE(N, 1]: =X; STORE[N, 2]: -OPTY; STORE(N, 3]: -IY2[X, OPTY]j 

END; (* IF *) 
UNTIL (Y-250); 

END; (* FOR *) 
FOR I: =1 TO 256 DO 
FOR J: =1 TO 256 DO 
IY2[I, J]: -0; 
WRITELN('No. of edge pixels found -', N: 5); WRITELN; 
FOR X: -l TO N DO 
IY2[( STORE(X, 1] ), ( STORE(X, 2) )]: -STORE(X, 3); 
FOR X: -l TO 256 DO 
FOR Y: =1 TO 256 DO 
IY2(X, Y]: -255; 
FOR X: -l TO N DO 
IY2( ( STORE(X, 1] ), ( STORE(X, 2] ) 1: -0; 

END; (* EDGETHIN *) 

BEGIN 
(* INTIALISE VARIABLES *) 
A(1,11: --5; A[1,2]: -3; A[1,3]: -3; 
A[2,1]: --5; A[2,2]: -O; A[2,3]: -3; 
A(3,1]: --5; A[3,2]: -3; A(3,3]: -3; 

A(1,4): -3; A[1,5]: -3; A[1,6]: -3; 
A(2,4]: -3; A[2,5]: -O; A[2,6]: -3; 
A(3,41: --5; A[3,51: --5; A[3,61: --5; 

A(1,7]: -3; A[1,8]: -3; A(1,91: --5, 
A(2,7]: -3; A[2,8]: -O; A[2,91: --5; 
A(3,7]: -3; A(3,8]: -3; A[3,9]: --5; 

A(1,10]: --5; A(1,11]: --5; A(1,12]: --5; 
A(2,10]: -3; A(2.11]: -O; A(2,12]: -3; 
A[3,10]: -3; A(3,11]: -3; A(3,12): -3; 
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A[1,13]: --5; A[1,14]: --5; A(1,15): -3; 
A[2,13]: --5; A(2,14): -O; A(2,15): -3; 
A[3,13]: -3; A[3,14]: -3; A(3,15): -3; 

A[1,16]: -3; A[1,17]: -3; A(1,18): -3; 
A[2,16]: -3; A[2,17]: -O; A[2,18]: --5; 
A[3,16]: -3; A[3,17]: --5; A[3,18]: --5; 

A(1,19]: -3; A(1,20]: -3; A(1,21]: -3; 
A[2,19]: --5; A[2,20]: -0; A(2,21]: -3; 
A[3,19]: --5; A[3,20]: --5; A[3,21]: -3; 

A[1,22]: -3; A[1,23]: --5; A(1,24]: --5; 
A[2,22]: -3; A[2,23]: -O; A[2,24]: --5; 
A[3,22]: -3; A[3,23]: -3; A(3,24): -3; 

I: -1; 
L: -MAX; 
FOPEN(I); 
FOR J: -1 TO MAX DO 
BEGIN 

GETDAT(I, L, IX); 
FOR K: -1 TO MAX DO 
(* STORES IMAGE IN 

IY[J, K): -IX(K); 
ARRAY IY *) 

END; 
FCLOSE(I); 
(* CONVERT CHAR ARRAY TO INTEGER ARRAY *) 

FOR I: -i TO 256 DO 
FOR J: -1 TO 256 DO 
IY2[I, J]: -ORD( IY(I, J] ); 
WRITELN; 
WRITELN('Processing picture 
FOR I: -i TO 253 DO 
FOR J: -1 TO 253 DO 

FINDEDGES(I, J, IY2); 
THINEDGES(IY2, STORE, N); 
FOR Y: -1 TO 256 DO 
FOR X: -1 TO 256 DO 
IY[X, Y]: -CHR(IY2(Y, X] ); 
IPSAVE(IY); 

END. 

using edge operator ...... '); WRITELN; 
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APPENDIX A2 

Canputer program listing for contour tracing, chain encoding, 

Fourier Descriptors development and similarity measurement. 
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(} t} tY t#}**********}** YtYtYtRttYtR t} t Y# Y t***} R Y# Y* R Y# Y) 

(* This program traces the contour of input shapes , chain *) 
(* encodes the boundary , estimates the orientation when *) 
(* compared to another version of the shape , calculates *) 
(" the Fourier Descriptors of the traced contour , using *) 
(* the boundary pixel coordinates , and measures the simi- 

larity between two shapes being considers . *) 
(} }*tt*R**}**}*#}R#*t*#******ttt********YY#*Rtt*#*YR* Y) 

PROGRAM SEARFOUR (INPUT, INFILE, FCHAIN, OUTPUT, OTFILE); 
COST MAX-256 ; 

PI-3.141593 
%INCLUDE 'PASGKS_PAR/LIST' 

TYPE VECTOR-ARRAY[1.. 200] OF REAL; 
INTVECTOR - ARRAY[1.. 13] OF INTEGER ; 
CHTABLE - PACKED ARRAY[1.. 20,1.. 12] OF CHAR ; 
VICTORY-ARRAY[l.. 10000] OF INTEGER; 
VIC-ARRAY(l.. 10000] OF REAL; 
MATRIX-ARRAY[l.. MAX, I.. MAX] OF CHAR; 
CHAINMAT-ARRAY[-1.. 1, -1.. 1] OF INTEGER; 
STRING20-PACKED ARRAY [1.. 20] OF CHAR; 
STRING-VARYING[40] OF CHAR; 
LINE-ARRAY[1.. MAX] OF CHAR; 
%INCLUDE 'PASGKS_INC/LIST' 

VAR INFILE, FCHAIN, OTFILE : TEXT; 
FILE1 : PACKED ARRAY[1.. 20] OF CHAR ; 
I, J, COUNT1, CA, CB, MK, Z, X, II, JJ, KK, LL, Y, RT, SHIFT, K, N, L, M, STARTER: INTEGER; 
XCG, YCG, RMIN, RMAX, CMIN, CMAX, XR, YR, 000NT2, MF, COUNT, COUNT3 : INTEGER; 
XMIN, XMAX, YMIN, YMAX, CE, DMIN, A, B, AS, BS, CS, ANG, ANGD, DSUM, RTHRS : REAL; 
CR, SS, AT, COA, SIA, TAA, DMAX, AM, AMMAX, CXTEMP, SXTEMP, CYTEMP, SYTEMP : REAL; 
XAV, YAV, XAVTEMP, YAVTEMP, EUCDISTMP, EUCTMP, EUCDIS : REAL ; 
ANS : CHAR; 
IX: LINE ; 
R, C, R1, C1, NR1, NRT, NCI, NCT, PX, PY, CHAIN : VICTORY 

CEI, SEC, D, RXSUM, IXSUM, RYSUM, IYSUM : VIC; 
XORD, YORD, RFINAL, SFINAL, TDRXY, TDIXY, ANGRADF, ANGDEGF, SFINAL2, RFINAL2: VIC; 
CHAINNUM: CHAINMAT; 

FILENAME: STRING20; 
LAB1: STRING; 
FILNM: STRING; 
PIXEL: ARRAY(1.. MAX, I.. MAX] OF CHAR; 
XO, DX, XSP, YO, DY, YSP : REAL ; 
IXW, IYW, IXD, IYD, IXF, IYF, TNR, HARMONICS, COUNTMIN : INTEGER ; 
XVEC, YVEC : ARRAY[1.. 10000] OF REAL ; 
ZVEC, WVEC : ARRAY[1.. 10000] OF REAL ; 

--------------------------------------------------- 
% INCLUDE 'SYS$LIBRARY: TEKINT. PAS/LIST' 

--------------------------------------------------- 
(* The following Procedure traces the outer contour of a pattern *) 

PROCEDURE BOUNDARYSEARCH( VAR RP, CP, CODE: VICTORY; 
VAR CAP, CBP, MKP: INTEGER; 
A: MATRIX; CODENUM: CHAINMAT; 
VAR COUNTER: INTEGER); 

VAR N, K, H : INTEGER; 
(* RP(N] t CP(N) are coordinates of centre point, N no. Of last pixel *) 

BEGIN (* Column search, CA always on left *) 
N: -COUNTER; 
H :- CAP-1 
K :- RP[N)-2 ; 
REPEAT 

H H+1 ; 
REPEAT 

K K+1 ; 
IF (ORD(A(K, H])>(ORD(A((K+1), H]))) THEN 

BEGIN 
IF (K<>RP[N]) OR (H<>CP(N)) THEN 

BEGIN 
IF (K<>RP[N-1]) OR (H<>CP(N-1)) THEN 

BEGIN RP[N+1]: -K; 
CP[N+l]: -H; 
MKP: -1; 
CODE[N+1]: -CODENUM[RP(N+1]-RP(N], CP[N+1)-CP[N]); 
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COUNTER: -COUNTER+l; 
END; 

END; 
END 

ELSE IF (ORD(A[(K+l), HJ)>(ORD(A(K, H]))) THEN 
BEGIN 

IF ((K+1)<>RP[NJ) OR (H<>CP(N]) THEN 
BEGIN 

IF ((K+1)<>RP(N-l)) OR (H<>CP(N-1J) THEN 
BEGIN RP[N+1]: -K+1; 
CP[N+1]: -H; 
MKP : -l; 
COUNTER: -COUNTER+l; 
CODE(N+1]: -CODENUM(RP[N+1]-RP[N], CP(N+11-CP[N]]; 
END 

END; 
END; 

UNTIL (K - RP [N]) OR (MKP 
IF (MKP<>l) THEN 

K :- RP(N]-2 ; 
UNTIL (H-CBP) OR (MKP-1); 

(*-- Now Row search i. e. if no boundary found in Column search --*) 
IF(MKP<>l)THEN 

BEGIN 
K: -RP(N]-2; 
REPEAT 
K: -K+l; 
IF(ORD(A(K, CBP])>(ORD(A(K, CAP]))) THEN 

BEGIN 
IF (K<>RP(N]) OR (CBP<>CP(N]) THEN 

BEGIN 
IF (K<>RP(N-1]) OR (CBP<>CP(N-1]) THEN 

BEGIN 
RP(N+1]: -K; MKP: -l; CP(N+1]: -CBP; 
CODE[N+1]: -CODENUM(RP[N+1]-RP(N], CP(N+1]-CP[N]]; 
COUNTER: -COUNTER+l; 

END; 
END; 

END 
ELSE IF (ORD(A(K, CAPJ)>(ORD(A[K, CBP]))) THEN 

BEGIN 
IF (K<>RP(N]) OR (CAP<>CP(N]) THEN 

BEGIN 
IF (K<>RP[N-1]) OR (CAP<>CP(N-1)) THEN 

BEGIN 
RP[N+1]: -K; MKP: -1; CP[N+1]: -CAP: 
CODE[N+1]: -CODENUM(RP(N+1]-RP(N], CP(N+1)-CP[N]]p 
COUNTER: -COUNTER+l; 

END 
END; 

END; 
UNTIL (K - RP(N]+1) OR (MKP - 1) ; 

END; 
END; 
(" --------------------------------------------------------------- 
(* This Procedure uses the developed DFT routine to evaluate the *) 
(* Fourier Coefficients, the inverse of Fourier analysis is also *) 
(* performed to get back to the original contour points . *) 

--------------------------------------------------------------- *) 
PROCEDURE BNDFT(COUNTERS : INTEGER; 

VAR RSP, CSP : VICTORY; 
VAR RXSUMS, IXSUMS, RYSUMS, IYSUMS tVIC 
VAR XORDS, YORDS : VIC) _ 

VAR N, M : INTEGER ; 
ALPHA : REAL ; 
RXSTEMP, IXSTEMP, RYSTEMP, IYSTEMP : VIC ; 

BEGIN 
L: -COUNT-2 ; 
FOR N: - 1 TO L DO 

BEGIN 
R1(NJ :- RSP(N+2] ; 
Cl(N) :- CSP(N+2] ; 
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END ; 
FOR N: -l TO (L-1) DO 

BEGIN 
RXSUMS[N) :-0; 
IXSUMS[NJ :-0; 
RYSUMS(N] :=0; 
IYSUMS[N] :-0; 
ALPHA :- N*2*PI/L 
FOR M :-1 TO (L-1) DO 

BEGIN 
CXTEMP :- COS(ALPHA * M) 
SXTEMP :- SIN(ALPHA * M) , 
CYTEMP COS(ALPHA * M) ; 
SYTEMP :- SIN(ALPHA * M) ; 
RXSUMS(N] :- RXSUMS(N] + R1(M] * CXTEMP ; 
IXSUMS(N] :- IXSUMS(N] + Rl(M] * SXTEMP ; 
RYSUMSIN] :- RYSUMS(NJ + C1(M] * CYTEMP ; 
IYSUMS[N] :- IYSUMS[N] + C1[M] * SYTEMP ; 

END ; 
TDRXY[N] :- (RXSUMS(N) + IYSUMS[N])/(L-1) ; 
TDIXY[N] :- (RYSUMS(N] - IXSUMS[N])/(L-1) ; 
ANGRADF[N] ARCTAN((TDIXY[N])/(TDRXY[N])) ; 
ANGDEGF[N] (ANGRADF[N] *180)/PI : 
RXSUMS[N] :- RXSUMS[N]/(L-1) ; 
IXSUMS(N] -IXSUMS[N]/(L-1) ; 
RYSUMS[N] :- RYSUMS(N]/(L-1) ; 
IYSUMS(N] -IYSUMS[N]/(L-1) ; 

END ; (* End of implementing the Fourier Analysis *) 

(* The following routine is to test the accuracy of the Fourier 
(* Descriptors , starting by finding the averages of the Boundary *) 
(* coordinates. The first few (6 - 10) descriptors are sufficient 
(* to obtain the original coordinates to reconstruct the boundaries *) 
(* ***************************************************************** *) 
XAVTEMP :-0; 
YAVTEMP :-0; 
FOR M: - 1 TO L-1 DO 

BEGIN 
XAVTEMP :- XAVTEMP + R1(M] ; 
YAVTEMP :- YAVTEMP + Cl(M] ; 

END ; 
XAV :- XAVTEMP/(L-1) ; 
YAV :- YAVTEMP/(L-1) ; 
WRITELN('X AV. is ', XAV: 10: 2, 'Y AV. is ', YAV: 10: 2) ; 
(* Now find the XiY coordinates ****** *) 

WRITELN ; 
WRITELN(' ENTER THE NUMBER OF HARMONICS 
READLN(HARMONICS) ; 
MF :- HARMONICS ; 
FOR M: - 1 TO L DO 

BEGIN 
XORDS(M] :-0; 
YORDS[M] :-0; 
RXSTEMP(M) 0; 
IXSTEMP(M] :-0= 
RYSTEMPCM] :-0; 
IYSTEMP(M) 0; 
ALPHA :- (M*2*PI)/L ; 
FOR N: - 1 TO MF DO 

BEGIN 
CXTEMP :- COS(ALPHA * N) ; 
SXTEMP :- SIN(ALPHA * N) ; 
RXSTEMP(M] :- RXSTEMP(M] + RXSUMS(N) * CXTEMP ; 
IXSTEMP(M] :- IXSTEMP(M) + IXSUMS(N] * SXTEMP ; 
RYSTEMP[M] :- RYSTEMP(MJ + RYSUMS(N] * CXTEMP ; 

IYSTEMP(M) :- IYSTEMP(M) + IYSUMS(N) * SXTEMP ; 
END ; 

XORDS[M) :- (XAV) +2* (RXSTEMP(M]) -2* (IXSTEMP(M)) ; 
YORDS(M] (YAV) +2* (RYSTEMP(MJ) -2* (IYSTEMP(MJ) ; 

END ; 
END ; 
(* --------------------------------------------------------------- 
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(* The images are input to the program using the developed FORTRAN *) 
(* programs , called here as external fiels 

PROCEDURE FOPEN(%REF CH: INTEGER); FORTRAN; 
PROCEDURE FCLOSE(%REF CH: INTEGER); FORTRAN; 
PROCEDURE GETDAT(%REF CH, NUM: INTEGER; %REF IL: LINE); FORTRAN; 
BEGIN (* MAIN PROGRAM *) 

-------------------------------------------------------------- 
(* Read in from FCHAIN. DAT Code elements (Freeman's Codes) 

(* FCHAIN. DAT holds the octal codes correspondind to Freeman's *) 
OPEN (INFILE, 'FCHAIN. DAT', OLD); 
RESET (INFILE); 
FOR I: -i TO 3 DO 
BEGIN 

FOR J: -l TO 3 DO 
READ(INFILE, CHAINNUM(I-2, J-2)); 
READLN(INFILE); 

END; 
CLOSE (INFILE); 

(* Read FCHAIN. DAT completed *) 
(* The following routine prints the 
(* to check if the codes have been 

FOR I: -l TO 3 DO 
BEGIN 

FOR J: -l TO 3 DO 
WRITE(CHAINNUM(I-2, J-2)); 
WRITELN; 

Freeman's code on the screen *) 
read correctly 

END; 
-------------------------------------------------------------- 

Read in picture file(s) required 
RT represents the no. of files read in. 

RT: -1 
WHILE RT<-2 DO 

BEGIN 
II: -l; 
LL: -MAX; 
FOPEN(II); 
FOR JJ: -l TO MAX DO 
BEGIN 

GETDAT(II, LL, IX); 
FOR KK: -l TO MAX DO PIXEL(JJ. KK]: -IX(KK]; 

END; 
FCLOSE(II); 

(* Picture file has now been input *) 
-------------------------------------------------------------- 

(* The main program for detecting the boundary and Chain_Encoding *) 
(* the Contour starts from here. *) 

Search for the first pixel on Boundary starts 
(* The search starts from the 10th line and the 10th column *) 
(* The corners of the frame ignored as invalid data Chapter 4 *) 

I: -10; 
COUNT: -2 ; 

REPEAT 
J: -10; 
WHILE(J<MAX) AND (ORD(PIXEL(I, J))-0) DO 

J: -J+1; 
I: -I+1; 

UNTIL ORD(PIXEL((I-1), J])-l; 
R(COUNT): -I-1; C(COUNTJ: -J; 

(* End of first pixel search. 
(* First step in search, initially to left around boundary. 

MK: -0; CB: -C(COUNT); CAz-CB-l; 
BOUNDARYSEARCH(R. C, CHAIN, CA, CB. MK, PIXEL, CHAINNUM, COUNT); 
IF MK<>l THEN 

BEGIN CA: -CA+l; CB: -CB+1; 
BOUNDARYSEARCH(R, C, CHAIN, CA, CB, MK, PIXEL, CHAINNUM, COUNT) 

END; 

.ý 

.ý 

End of first boundary search 
------------------------------------------------------------ 

At this point it has already been decided which way ") 
(* The search is to be continued in , i. e. left or right. 

REPEAT 
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(* Complete boundary search *) 
MK: "0; 
IF (R[COUNT]-R[COUNT-1])<-0 THEN 

BEGIN 
MK: -0; CA: -C[COUNT]; CB: -CA+1; 
BOUNDARYSEARCH(R, C, CHAIN, CA, CB, MK, PIXEL, CHAINNUM, COUNT) 

END 
ELSE BEGIN 

MK: -0; CB: -C(COUNT); CA: -CB-1; 
BOUNDARYSEARCH(R, C, CHAIN, CA, CB, MK, PIXEL, CHAINNUM, COUNT) 

END; 
IF ((R[COUNT]-R(COUNT-1]) <-0) AND (MK<>l) THEN 

BEGIN CB: -C[COUNT]; CA: -CB-1; 
BOUNDARYSEARCH(R, C, CHAIN, CA, CB, MK, PIXEL, CHAINNUM, COUNT) 

END; 
IF (MK<>l) THEN 

BEGIN 
CA: -CA+1; CB: -CB+l; 

BOUNDARYSEARCH(R, C, CHAIN, CA, CB, MK, PIXEL, CHAINNUM, COUNT) 
END; 

UNTIL (C[COUNT]-C[2])AND(R[000NT]-R[2]); 
WRITELN('***SEARCH COMPLETED***': 40) ; 
-------------------------------------------------------------------- 

(* The following section calculates the curvature elements, by using *) 
(* the Table developed in Chapter 4, and plote the developed series. *) 

XMIN: -3 ; XMAX: -COUNT ; 
YMIN: --180 ; YMAX: -180 ; 
GRAT(XMIN, XMAX, YMIN, YMAX); 
XLABEL(34,25, 'CONTOUR POINTS'); 
YLABEL(12,4, 'CONTOUR ELEMENTS'); 
PLOT(XMIN, YMIN, 0); 
FOR X: -3 TO COUNT-1 DO 

BEGIN 
Y :- ABS (CHAIN[X+1] - CHAIN(X]) ; 
CASE Y OF 
0. CE: -O ; 
1: CE: -135 ; 
2. CE: -90 ; 
3 CE: -45 ; 
4: CE: -1B0 ; 
5. CE: -45 , 
6: CE: -90 ; 
7. CE: -135 ; 
END (* CASE *) ; 

PLOT (X, CE, 1); 
IF RT-1 THEN 

BEGIN 
CEI[XJ: -CE ; 
NR1[X]: -R[X]; 
NC11X]: -C[XJ; 
COUNT1: -COUNT; 

END 
ELSE BEGIN 

SEC(X]: -CE ; 
NRT(X]: -R[XJ; 
NCT(X]: -C(X]; 
COUNT2: -COUNT; 

END; 
END; 

DEND; 
(* By this point the contour points have been stored in separate *) 
(* arrays , and the curvature elements also stored and plotted *) 

WRITELN(I* COUNT IS ... *', 000NT); 
RT: -RT+l; 
END (* WHILE *); 

(* By this point two shapes have been contour traced , and the curvature*) 
(* elements are also developed for the two shapes. The following section *) 
(* developes the correlelograms to compare the shapes for recognition. *) 
FOR J: -1 TO COUNT DO 

D(J]: -O ; 
FOR J: -O TO COUNT-3 DO 

BEGIN 
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FOR I: -S TO COUNT-2 DO 
BEGIN 

K: -I+J ; 
IF (K)>(COUNT-2) THEN BEGIN 

K: -K-(COUNT-2); 
D[J+1): -D[J+1]+ABS(CEI[I]-SEC[K]); 
END 

ELSE D(J+1]: -D[J+11+ABS(CEIII]-SEC(I+J]); 
END; 

END; 
DMIN: -D[l); 
SHIFT: -O; 
FOR J: -2 TO COUNT-2 DO 

BEGIN 
IF (D(J))<(DMIN) THEN 

BEGIN 
DMIN: -D[J); 
SHIFT: -J; 

END; 
END; 

DMAX: -D(1] ; 
FOR J: -2 TO COUNT-2 DO 
BEGIN 

IF (D[J])>(DMAX) THEN 
DMAX: -D[J] ; 

END; 
(* *********************************************************** *) 
(* The following section plots the correllelograms between the *) 
(* two contour curvature element series developped *) 
(*"************************************* f* *******************" *) 

XMIN :-0; 
XMAX :- COUNT1 ; 
YMIN :-0; 
YMAX :- DMAX + (DMAX/10) ; 
WRITELN ('Picture file required ? y/n 
READLN (ANS) ; 
GKS_OPKS (6) ; 
GKS_OPWK (1,0,201) ; 
GKS_ACWK (1) ; 
(* THE FOLLOWING THREE COMMANDS CLEAR THE SCREEN *) 

WRITE (CHR(29)) ; 
WRITELN (CHR(27), CHR(12)) ; 
GKS_CLRWK (1, GALWAY) ; 
IF (ANS - 'Y') OR (ANS - 'y') THEN 
BEGIN 

WRITELN ('INPUT PICTURE FILENAME') ; 
READLN (FILENAME) ; 
GKM_OPEN (12, FILENAME, TRUE) 
GKS_OPWK (2,12,50) ; 
GKSACWK (2) ; 

END ; 
(* THE FOLLOWING INSTRUCTION IS TO SET THE VIEW PORT *) 
GKS_SVP (1,0,1,0,1) ; 
TEK_SET (XMIN, XMAX, XO, DX, IXF, XSP, IXD) ; 
TEK_SET (YMIN, YMAX, YO, DY, IYF, YSP, IYD) ; 
IXW :-3; 
IYW :-4; 
IXD :-0; 
IYD :-0; 
XO :-0; 
TNR 1; 
TEK_AXIS(TNR, XO, YO, XMIN, XMAX, YMIN, YMAX, XSP, YSP, IXW, IXD, IYW, IYD, DX, IXF, DY, IYF); 
FOR J :-1 TO COUNT1 DO 
BEGIN 

XVEC(J) :-J; 
YVEC[J] :- D[J) ; 
ZVEC[J) :-J; 
WVEC[J] :- D[J] ; 

END : 
COUNT3 :- COUNT1 - 25 ; 
GKS_SPLI (5) : 
GKS_PL (COUNT3, XVEC, YVEC) 
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TEK_YLABEL (-60,500, 'CORRELATED VALUES') 
TEK_XLABEL (150, -500, 'CONTOUR PIXELS') ; 
GKSUWK (1, GPERFO) ; 
IF (ANS - 'Y') OR (ANS - 'y') THEN 
BEGIN 

GKS_DAWK (2) ; 
GKS_CLWK (2) ; 
GKM CLOSE (12) ; 

END ; 
GKS_DAWK (1) ; 
GKS_CLWK (1) , 
GKS_CLKS ; 
(* Calculate AMmax . To be used in rejection decision *) 

DSUM: -0.0 ; 
FOR X: -5 TO COUNT-2 DO 

BEGIN 
AM: -(0.5)*(ABS(CEI[X]-CEI[X+1J)) ; 
DSUM: -AM+DSUM ; 

END; 
RTHRS :- DMAX ; 
WRITELN('* DMIN IS ...... *', DMIN), 
WRITELN('* DSUM is ...... *', DSUM); 
WRITELN('* RTHRS is ..... *', RTHRS); 
WRITELN('* SHIFT IS *', SHIFT: 40); 
(* Calculating the angle of rotation, by first obtaining the 
(* centre of the area of the patterns . *) 

RMIN: -NR1[6] ; 
RMAX: -NR1[6] ; 
FOR I: -7 TO COUNT1-2 DO 

IF NR1[I]>RMAX THEN 
RMAX: -NR1(I]; 

CMIN: -NC1[6]; 
FOR I: -7 TO COUNT1-2 DO 

IF NCl[I]<CMIN THEN 
CMIN: -NC1[I]; 

CMAX: -NC1[6]; 
FOR I: -7 TO COUNT1-2 DO 

IF NC1[I]>CMAX THEN 

CMAX: -NC1[I]; 
Z: -O; 
FOR N: -l TO COUNT1 DO 
BEGIN 

PX(N]: -O ; PY[N]: -0 ; 
END ; 
FOR N: -6 TO COUNT1-1 DO 
BEGIN 

Z: -Z+1; 
PX[N+1]: =NR1[N]+l+PX[N]; 
PY[N+1]: -NC1(N]+l+PY(N]; 

END; 
XCG: -TRUNC((PX[COUNT1])/Z) ; YCG: -TRUNC((PY[COUNT1J)/Z); 

WRITELN(' X of C of A IS .. ', XCG: 40); 
WRITELN(' Y of C of A IS .. ', YCG: 40); 

(* CALCULATE THE ANGLE OF ROTATION BASED ON THE COSINE RULE *) 
WRITELN(' INPUT REF. POINT CO-ORDINATES (X, Y) '); 
READLN (XR) , 
READLN (YR) ; 

AS: -SQR(NR1[XR]-XCG)+SQR(NC1[YR]-YCG) ; 
A: -SQRT(AS) ; 
BS: -SQR(NRT(XR+SHIFT]-XCG)+SQR(NCT(YR+SHIFT]-YCG) ; 
B: -SQRT(BS) ; 
CS: -SQR(NRT[XR+SHIFT]-NR1[XR])+SQR(NCT[YR+SHIFTJ-NC11YR]) ; 
CR: -SQRT(CS) ; 
COA: -(AS+BS-CS)/(2*A*B) ; 
SS: -(A+B+CR)/2 ; 
AT: _SQRT(SS*(SS-A)*(SS-B)*(SS-CR)) ; 
SIA: _(2*AT)/(A*B) ; 
TAA: -SIA/COA ; 
ANG: -ARCTAN(TAA) ; 
ANGD: _(ANG*180)/PI ; 
WRITELN('XR IS ... ', XR: 40); 
WRITELN('YR IS ... ', YR: 40); 
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WRITELN('NR1(XR] IS ... ', NR1(XR): 40); 
WRITELN('NC11YR] IS .. ', NC1(YR]: 40); 
WRITELN('NRT(XR+SHIFT) IS .. ', NRT(XR+SHIFTJ: 40) ; 
WRITELN('NCT(YR+SHIFT) IS .. ', NCT(YR+SHIFTJ: 40) ; 
WRITELN('THE ROTATION IS ... ', ANGD: 50: 2); 

(* Call thr DFT routine to obtain the Forier Descriptors 
(* and also the derived contour points, no. of harmonics to *) 
(* be used is to be inputed by the user. 

BNDFT(COUNT1, NR1, NC1, RXSUM, IXSUM, RYSUM. IYSUM, XORD, YORD); 

(* Use the derived coordinates to reconstruct the boundary *) 
GRAT (1,256,1,256) ; 
PLOT (1.1.0) ; 
PLOT (XORD(l], YORD(i], 0) ; 
FOR N :-2 TO L DO 
PLOT (XORD(N], YORD[N], 1) ; 
DEND ; 
(* This section is to derive the Descriptors which are not shift *) 
(* or rotation variant *) 

FOR N :=1 TO (L-1) DO 
RFINAL(N] :-0; 

FOR N: - 1 TO (L-1) DO 
BEGIN 

RFINAL[N] :- SQRT((SQR(SQRT(SQR(RXSUM(N]) + SQR(IXSUM[N])))) 
(SOR(SQRT(SOR(RYSUM[N]) + SQR(IYSUM(N]))))) ; 

SFINAL[N] :- RFINAL(N] / (RFINAL[1]) ; 
END ; 

WRITELN(' Enter file name for ALL invariant descriptors ') ; 
READLN (FILE1) ; 
OPEN (OTFILE, FILE1, HISTORY :- NEW) ; 
REWRITE (OTFILE) ; 
FOR N: - 1 TO (L--1) DO 
WRITELN (OTFILE, RFINAL(N]: 15: 2, SFINAL[N]: 15: 2) ; 
CLOSE (OTFILE) ; 

(* Perform the same Fourier routine on the second shape *) 
(* ***************************************************** *) 

BNDFT(COUNT2, NRT, NCT, RXSUM, IXSUM, RYSUM, IYSUM, XORD, YORD); 

(* Create new output files for derived cc ordinates ** *) 

WRITELN (I ENTER COORDINATES FILE NAME') ; 
READLN (FILE1) ; 
OPEN (OTFILE. FILE1, HISTORY :- NEW) ; 
REWRITE (OTFILE) ; 
FOR N: - 1 TO 20 DO 
WRITELN (OTFILE, XORD(N]: 15: 3, YORD[N]: 15: 3) ; 
CLOSE (OTFILE) ; 
(* Use the derived coordinates to reconstruct the boundary ** *) 

GRAT (1,256,1,256) ; 
PLOT (1,1,0) ; 
PLOT (XORD(1J, YORD(l], 0) ; 
FOR N :-2 TO L DO 
PLOT (XORD[N), YORD(NJ, 1) ; 
DEND ; 
(* This section is to derive the Descriptors which are not shift *) 
(* or rotation variant *) 

FOR N :-1 TO (L-1) DO 
RFINAL(NJ :-0; 

FOR N: - 1 TO (L-1) DO 
BEGIN 

RFINAL2(N] :- SQRT((SOR(SORT(SQR(RXSUM(N]) + SQR(IXSUM(N])))) 
(SQR(SORT(SQR(RYSUM(N]) + SQR(IYSUM(NJ))))) ; 

SFINAL2(NJ :- RFINAL21NJ / (RFINAL2(1]) ; 
END ; 

WRITELN(' Enter file name for ALL invariant descriptors ') ; 
READLN (FILE1) ; 
OPEN (OTFILE, FILEI, HISTORY :- NEW) ; 
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REWRITE (OTFILE) ; 
FOR N: - 1 TO (L-1) DO 
WRITELN (OTFILE, RFINAL2[N]: 15: 2, SFINAL2[N): 15: 2) ; 
CLOSE (OTFILE) ; 
(* FIND THE MIN. DISTANCE BETWEEN THE TWO ALL-INVARIANT COEFFICIENTS *) 

USING EUCLIDEAN DISTANCE MEASUREMENT. 
EUCDISTMP :=0; 
FOR N: - 1 TO 15 DO 

BEGIN 
EUCTMP := SOR(ABS(SFINAL(N] - SFINAL2(N])) ; 
EUCDISTMP :- EUCDISTMP + EUCTMP ; 

END ; 
EUCDIS :- SQRT(EUCDISTMP) ; 
WRITELN ('EUCDIS IS ....... EUCDIS: 10: 2) ; 
END. 


