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Abstract 

Mining activities are distributed spatially across sub-Saharan Africa (SSA) and are in close 

proximity to the forestlands. Deforestation and forest degradation caused by mineral excavation  

is underreported especially in the SSA region, which has become a mining hub, because of its 

abundant mineral reserves. This study focuses on the primary and secondary impact of mining on 

areas of biodiversity richness, the location of 469 mines were identified and mapped in SSA and a 

database of mining locations was created using geospatial techniques. The dynamics of these 

mines were assessed to quantify how much they have expanded over time from 2001 to 2020 and 

the hotspots of mining were identified. Proximity analysis was conducted to ascertain the level of 

threat the mines pose to areas of conservation interest, results showed that the mines that are < 10 

km to the protected areas had doubled in size from < 50,000 ha in 2000. The abundant reserve of 

key minerals in SSA has made it a major mining hub, especially at the turn of the millennium when 

over 260 mines were created in less than 20 years. Mining caused deforestation and forest 

degradation, a comparative analysis was conducted using matching to compare forest losses 

around locations with mines (treatments) and locations without mines (controls) over time at 

various buffer distances from the mines, using two sets of data: the global forest change (GFC) 

and the tropical moist forest (TMF). The result showed that treatments had lost 726,887 ha 

compared to 427,700 ha in the controls. In addition, the rates of deforestation and forest 

degradation pre- and post-mine creation were assessed, the rates of forest loss had increased 

significantly from an annual average of 1,318 ha pre-mine to 2,418 ha post-mine creation, this is 

an indication that mining drives forest loss. The key commodities driving deforestation in SSA are 

gold and copper, with annual mean loss rates of 1,462 ha and 556 ha, respectively. Sustainable 

mining is a prerequisite for reducing deforestation and forest degradation, and the reduction of 

GHG emissions attributable to mineral extraction. Furthermore, the impact of mining on the forest 

can be minimised through forest restoration and offsetting of biodiversity loss. 
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Chapter 1: General Introduction 

About one third of the Earth’s land surface is covered by forests (Sanchez et al., 2019); they      

represent one of the largest terrestrial carbon sinks. It was estimated that about 45% of global 

carbon and 80% of terrestrial biomass is stored in them (Romijn et al. 2015; Morales-Hidalgo, 

Oswalt, & Somanathan, 2015), more than one billion people worldwide depend on the forest for 

their livelihoods (WWF 2022; Cell press, 2020). Forests play vital roles in terms of biodiversity 

conservation and other ecosystem services; especially the tropical forest, which constitute wide 

areas of rich biodiversity and species endemicity that are unique to the tropics (Poorter et al., 2015; 

Laurance et al., 2012). The spatial attributes of the tropical forests, coupled with its varying 

altitudinal zonation makes it highly diverse, with thousands of plants species and hundreds of 

amphibians, birds, mammals, and reptiles’ species (Ribeiro et al., 2009), and many more species 

still unknown (Lewinsohn and Prado, 2005). Biodiversity has allowed for immense food 

production for the sustenance of human livelihood and natural materials for industrial use (IUCN 

& ICMM, 2004). Global forests are highly threatened by the various anthropogenic activities 

which arise from converting forestlands to other land uses, which often leads to deforestation and 

forest degradation (Garzuglia et al., 2018), these activities include logging, mining, agriculture, 

and  

Natural habitats are fragmented as a result of anthropogenic activities which often trigger land use 

changes that threatens conservation (Senior, Hill, & Edwards, 2019), the deforestation caused by 

these activities are more prominent within the pantropical regions of the world, where about 52% 

of global permanent forest lands are found (FAO, 2016). The rate of forest loss in the tropics has 

become more alarming in recent years, for instance between 1990 and 2020 there was a loss of 

about 178 million ha of forest globally (FAO, 2020). Between 2000 and 2010, the annual net rate 

of deforestation was 5.25 million hectares in the neotropics (FAO, 2020) and 1.1 million ha in 

Insular Southeast Asia (Miettinen et. al., 2011). According to the Global Forest Watch, the world 

lost 42.2 million hectares of tree cover in 2020 alone (GFW, 2020). The Consequence of 

deforestation goes far beyond the immediate precinct of the forest, as carbon released from the 

felled trees contribute to global warming (Kayet et al., 2021), the carbon released from tropical 

deforestation was estimated to be about 2 billion tonnes of carbon annually (Gibbs et al., 2007).    
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Drivers of deforestation  

Forests globally are highly threatened by the various anthropogenic activities which arise from 

converting forestlands to other land uses, leading to deforestation and forest degradation 

(Garzuglia et al., 2018). These activities include, but are not restricted to, logging, mining, 

agriculture, and infrastructure development (Kissinger et al., 2012). 

Agriculture: The conversion of forests into agricultural land is a major cause of deforestation, 

land cover is usually converted to the land use that provides people with the highest economic 

return (von Thunen, 1966). Forests are often cleared to make way for crops, such as soybeans, 

palm oil, and cattle grazing. Agricultural expansion is identified as a main driver of deforestation 

in the tropics (Gibbs et al., 2010; Hosonuma et al., 2012; Rudel et al., 2009),  cropland expansion 

was responsible for about 3.6 million hectares of deforested in the Brazilian Amazon, between 

2001 and 2004 (Morton et al., 2006). Mechanised agriculture, cattle ranching, and small-scale 

agriculture were identified as proximate causes of deforestation in Bolivia by Müller et al 2012, 

resulting in the loss of 1.88 million hectares of forest between 1992 and 2004. It was estimated 

that Agriculture is responsible for 80% of deforestation globally (Kissinger et al., 2012). The future 

prices for agricultural products will determine the land available for agricultural expansion, 

Lambin and Meyfroidt, 2011 projected that cropland may expand by an additional 2.7-4.9 million 

hectares per year, based on the current population growth and subsequent enhancement of food 

production to meet up with increasing demand. As globalisation increased, the impact of 

agriculture on local forests has also changed tremendously. The ability of highly capitalised 

farmers to grow at large scale to supply distant markets has weakened the historically strong 

relationship between local population growth and forest cover (Rudel et al., 2009). 

Logging: While logging is not the only driver of deforestation, it is a significant contributor.  

Commercial logging is responsible for about 32 million hectares of forest loss per year, which 

represents approximately 10% of total global deforestation (WWF, 2018). Illegal logging and legal 

logging for commercial purposes can cause significant damage to forest ecosystems, leading to 

degradation and deforestation. Selective logging is another form of systematic forest disturbance 

which affects intact forest cover which facilitates deforestation and forest degradation (Hethcoat 

et al., 2022).  Forests are often logged to provide economic capital from ecological capital (Asner 
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et al., 2006), a heavily logged forest leads to degradation and subsequently to gross deforestation 

due to improper management and lack of control of anthropogenic activities (Putz and Redford 

2010). Logged forests have the potential to regenerate if properly managed unlike those affected 

by other drivers of deforestation. Logging creates road networks that greatly increase access to 

intact forests for farmers, ranchers, and hunters. (Laurance et al., 2001), in addition, logging greatly 

increase the vulnerability of forests to fires (Nepstad et al., 2008), At the end of the last millennium, 

the Brazilian Amazonia was losing between 10,000 to 15,000 km² of its forest to logging annually 

(Nepstad et al 1999), between 1999 and 2002 the areas logged ranged from 12,075 to 19,823 km² 

per year (Asner et al 2005). Illegal logging and unsustainable forestry practices remain a significant 

problem in many African countries, leading to deforestation and forest degradation (FAO, 2020). 

In addition, illegal logging costs Africa about $17 billion annually (Browne et al., 2022). 

Infrastructure development: The volume of deforestation due to infrastructure development 

varies depending on the region and the type of infrastructure (Geist & Lambin, 2002). For instance, 

in the Amazon Forest, 96% of deforestation occurs within 5.5km of roads (Barber et al., 2014). 

However, some studies provide estimates of the amount of forest loss associated with specific 

infrastructure projects (Sloan et al., 2018). The construction of roads, dams, and other 

infrastructure can also lead to deforestation and degradation, as they often require the clearing of 

large areas of forest (Baehr, BenYishay, & Parks, 2021), between 2000 and 2012, infrastructure 

development in the tropics was responsible for the loss of approximately 1.7 million hectares of 

forest per year, with roads and highways accounting for the largest share of this loss (Laurance et 

al., 2014).  

Fuelwood and charcoal:  Trees are cut down to provide fuel for cooking, heating, and other 

household uses, and this has led to the loss of millions of hectares of forested land, as well as the 

associated loss of biodiversity, soil erosion, and increased greenhouse gas emissions. Deforestation 

and forest degradation caused by the production and consumption of fuelwood and charcoal is a 

significant environmental issue in many parts of the world. Fuelwood and charcoal are the primary 

sources of energy for cooking and heating in many developing countries, particularly in rural areas 

where access to electricity and modern fuels is limited. As a result, the demand for these fuels is 

high, and the unsustainable harvesting of trees for fuel has led to deforestation and forest 

degradation in many parts of the world. Fuelwood is the main driver of forest degradation in Africa 
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(Hosonuma et al., 2012). The demand for industrial wood and fuelwood increased 35% in the 

tropics since 1990, principally in poorer countries (Sloan & Sayer, 2015). Apart from domestic 

uses, charcoal is also utilized by extractive industries in the conversion of iron-ore into steel 

(Sonter et al., 2014),  

Mining: Mining is one of the contributors to deforestation and environmental degradation, 

particularly in tropical forests where valuable minerals and resources are abundant (Giljum et al., 

2022). The loss of forest cover and habitat destruction caused by mining activities can have serious 

consequences for biodiversity and local communities. Mining activities, such as oil and gas 

extraction, coal mining, and gold mining, often require the clearing of forests to access the minerals 

and materials that lie beneath the soil, resulting in deforestation and environmental degradation 

within and beyond the boundaries of the mines (Sonter et al., 2017). Mining associated activities 

and infrastructure expansion are also responsible for forest loss and degradation in the tropics 

(Pacheco et al., 2021; Ranjan 2019),  

Deforestation and Forest Degradation in sub-Saharan Africa Afrotropic recorded an annual 

forest loss rate of 3.4 million ha between 2000 and 2010, the rate increased to 3.9 million ha 

annually during the succeeding decade (2010 to 2020) in the region. This was in contrast to the 

other regions of the globe, where records showed a declining trend in deforestation compared to 

the preceding decade, the SSA recorded a net deforestation of 74,038,200 ha (10%) of its forest 

cover between 2000 and 2020 (FAO, 2020). These growing forest losses and forest degradation in 

the Afrotropic are attributed to various anthropogenic activities in the region i.e., agriculture, 

urbanisation, mining, logging, and fuelwood (Edwards et al., 2014; Hosonuma et al., 2012). The 

Afrotropic has some of the worlds’ important and unique terrestrial and aquatic habitats in the 

protected and reserved areas, which are home to most endangered and rare species of flora and 

fauna which attracts international tourism (Balmford et al., 2002; Aleman et al., 2018; Laurance 

et al., 2015). However, there is generally a reduction in biodiversity across the African continent 

and this affects ecosystems that support the habitats, because of indiscriminate deforestation and 

forest degradation (Aleman et al., 2018; Adam Smith Int'l., 2015).    
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Critical conservation and development issues in sub-Saharan Africa 

The quest for better living conditions in most developing countries of the tropical regions has led 

to the encroachment of forestlands for the development of various industries, which in turn 

provides employment, trade, and some better means of livelihood to the populace (Jianhua & Jr, 

2014). A typical case is the SSA where most of the countries have low incomes and rely on the 

land for their survival (Malinga 2018; Ndoye & Tieguhong 2004). The United Nations Food and 

Agriculture Organization (FAO) in its 2015 annual forest assessment, reported that there has been 

tremendous encroachment into the forests leading to a loss of over 84.6 million ha from 1990 to 

2015. However, there are conflicting figures about the amount of forest lost generally in sub-

Saharan Africa (Potapov et al., 2012) and especially from 1900 to 1980 (Aleman et al., 2018), this 

was due to the dearth of knowledge on forest inventory procedures and the lack of correct baseline 

data. Nevertheless, the advancement in knowledge has made it much easier to quantify and monitor 

deforestation and forest degradation accurately in present days using reliable approaches, tools, 

and satellite images (Aleman et al., 2018), thereby eliminating uncertainties in the outcomes. It 

was projected that by the year 2030 Africa would have lost 15% of its remaining production forest 

(d’Annunzio, et al., 2015), if the situation around the forests is not changed from the business-as-

usual scenario.  

 

1.1 Mining-induced Forest disturbances in sub-Saharan Africa 

This thesis is focused on both primary and secondary deforestation and forest degradation caused 

by mining in SSA, with the specific objective of identifying the location of mines and quantifying 

the areal loss of forest cover within and beyond the footprint of the mines. The deforestation caused 

by mining beyond the immediate footprint is referred to here as secondary deforestation, which 

includes but is not limited to infrastructural development, settlements expansion, agriculture, and 

hunting. Mining is a major economic venture in Africa, with about 30% of known global mineral 

deposits spread in various parts of the continent (Edwards et al., 2014), thus, making it a hub for 

mineral exploration. Most mining activities globally are located within the tropical region 

(Swenson et al., 2011a) and expanding rapidly into the remote areas, thereby attracting major 

infrastructural development to support the smooth operation of the mines which in most cases 
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causes fragmentation of habitats with high biodiversity richness. The consistent rise in the prices 

of minerals due to high demand globally, has been identified as another factor that has led to the 

expansion of existing mines and the creation of new ones exponentially (Arndt et al., 2017; Hund 

et al., 2013). 

Mining causes about 7% of global deforestation (Hund et al., 2017), but other findings have shown 

that most figures for mining induced deforestation were from the primary effect at the immediate 

footprint of the mines (Sonter et. Al., 2017), without taking account of the secondary deforestation 

which occurs beyond the mine’s extent, which in most cases are larger than the primary 

deforestation (Alvarez-Berrios and Aide, 2015). Mining and its attributable activities are among 

the known drivers of deforestation that have not been studied explicitly using spatial data and 

modern techniques (Ferretti-Gallon & Busch, 2014). Mining attributable infrastructures and 

settlement expansions are sometimes left out in those reports (secondary effect), whereas these are 

features that sprang up because of the mines’ creation. The destruction done to the environment 

by these mines is too enormous, ranging from soil degradation to air and water pollution and forest 

loss which leads to anthropogenic carbon emissions (Hund et al., 2013).  

1.2 Economic worth of mining in sub-Saharan Africa 

The extractive industry in Africa has a current market value of $248 trillion, making it the second 

largest globally (African Mining IQ, 2022). Mining is a multibillion-dollar industry in SSA 

(Janneh & Ping, 2011), it employs millions of people directly and indirectly and contributing 

immensely to the gross domestic product (GDP) of countries in the region (Signé & Johnson, 

2021), most SSA nations rely solely on proceeds from minerals for their revenues. Therefore, the 

discovery of high-value minerals such as gold, diamond and petroleum led to the abandoning of 

agriculture and other trades in these countries. In Nigeria for instance the discovery of petroleum 

in 1956 changed the narrative from an Agrarian economy to an oil-based mono economy (Odularu, 

2008). This shift in paradigm is very evident in other minerals producing countries too, the 

Democratic Republic of Congo (DRC) depends largely on income from mining, as it plays a key 

role in the supply of mineral resources for global uses (Yager, 2007), its mining operations are 

dominated by both the large-scale mining and the artisanal and small-scale mining (ASM) which 

employs around 12.5 million people, the DRC  has about 47% of global Cobalt reserve (Barazi et 

al., 2017).   



18 
 

In Zimbabwe, the discovery of high-value minerals such as diamond and gold shifted focus from 

a vibrant and highly productive agricultural-based economy in the 1990s to a mineral resources-

dependent country (Malinga, 2018). The future of mining in the SSA appears to be very promising, 

considering the abundant reserve of untapped key minerals with high potentials for demand in the 

near future. This is already attracting huge investments from the existing and new industry players 

who are willing to join the booming mineral industry in SSA (Deloitte, 2015). 

 

1.3 Long-term effect of forests destruction on climate change 

Undoubtedly, deforestation and forest degradation contribute significantly to changing the climate 

globally, to remedy this challenge several initiatives have been introduced by governments and 

other organisations to reduce the carbon emitted from deforestation and forest degradation. Some 

of the initiatives are incentive based, such as the clean development mechanism (CDM) as 

launched by the Kyoto Protocol which allows the investment in projects that are geared towards 

reducing emissions in developing countries (UN, 1998). These were done through organisations 

such as the Carbon fund (CF), Green climate fund (GCF), Forest carbon partnership facility 

(FCPF) and the United Nations Reducing Emissions from Deforestation and Forest Degradation 

plus (UN-REDD+) (Turubanova et al., 2018; Kissinger et al., 2012). Efforts were also made on 

forest and landscape restoration through the Bonn challenge which is targeted at restoring 350 

million hectares of forestland globally by 2030, this is expected to generate about $170 billion per 

annum (Laestadius, et al., 2015). The African Union with the support from other partners is 

building the Great green wall with the aim of restoring about 50 million ha of forestland in Sub-

Saharan Africa (Sacande, et al., 2018). These above measures are aimed at reducing global 

warming which subsequently results in distortions of the climate, but it may be counterproductive 

or jeopardised if drastic actions are not taken to checkmate some of the overlooked deforestation 

caused indirectly by mining. 
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1.4 Thesis overview 

Forests play key roles in sequestering carbon from the atmosphere and providing habitats for flora 

and fauna to flourish. The importance of forests in mitigating the impact of climate change cannot 

be overemphasised. However, the pristine forests of SSA are depleting at alarming rates; between 

2000 and 2015 about 45 million ha of forest was lost in SSA (FAO, 2016). The anthropogenic 

activities within or in close proximity to the forest are often responsible for deforestation and forest 

degradation. Among the drivers of deforestation, mining seems to be neglected as it is wrongly 

perceived as a minor driver. In this study I mapped out the mining locations in SSA to establish 

how close they are to the areas of conservation interest, in addition to creating a database of mines 

with their years of establishment and commodity mined. Secondly, I evaluated the amount of 

deforestation and forest degradation the mines have caused post creation by comparing the losses 

around the mines to matched locations with no mines, but with similar attributes (controls). Lastly, 

I identified the hotspots of mining and assessed the forest losses and changes caused by key 

individual commodities mined at various buffer distances. 

1.4.1 Chapter 2: Where are mines located in sub-Saharan Africa and how have they expanded 

overtime? 

Mining locations across sub-Saharan Africa were identified and mapped to explore their 

distribution and areal extents, to then understand the potential threats that they pose to 

conservation. Over 200 major mines and numerous ASMs became operational between 2001 to 

2020 out of the 469 mapped in the study region, with high potential of an associated increase in 

mining-induced land use change. The hotspots of mining activity are identified near the regions of 

high carbon stocks and high value to biodiversity conservation, suggesting susceptibility to 

deforestation and other negative environmental consequences. The objectives of this chapter were 

to ascertain (1)  where the location of mining hotspots are in SSA? (2) what minerals are they 

extracting and how have these mines expanded overtime? and (3) how close are these mines to 

forests and protected areas? 
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1.4.2 Chapter 3: How much deforestation and forest degradation has been driven by the 

primary and secondary effects of mining? 

The database of mining locations in SSA had been established in chapter 2, and it was used to 

identify the locations of mining activities within or in close proximity to the areas of biodiversity 

richness. Focus was on the mines that were created post 2000, matching technique was used to 

quantify the amount of forest area that was either deforested or degraded around the mines. The 

objectives of this chapter were to (1) evaluate the amount of deforestation and forest degradation 

in locations with mines (treatments) compared to locations without mines (controls) at various 

buffer intervals from 2001 to 2020; and (2) compare the annual rates of deforestation before and 

after mine creation (i.e., across time) with distance from mine (i.e., across space). 

1.4.3 Chapter 4: How different mined commodities impact deforestation and forest 

degradation in sub- Saharan Africa. 

The impacts of mining on the environment and especially on forestlands varies considerably 

among the minerals being mined. Variance in impacts of commodity extraction on the total 

deforestation and degradation was assessed using a matching protocol following chapter 3 to 

compare the loss/ changes in the treatments to their corresponding matched controls. The following 

objectives were tackled in this chapter: (1) Identify the key commodities mined and their spatial 

distribution; (2) evaluate the amount of deforestation and forest degradation caused by each 

commodity mined versus their matched controls; (3) assess the change in the rates of deforestation 

and forest degradation before and after the creation of mines at various buffer distances from the 

mines. 
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 2.1 | Abstract 

Mining is a multi-billion-dollar industry spread across sub-Saharan Africa (SSA). From major to 

small-scale and artisanal mines, SSA is now the global epicentre for investors in the extractive 

industry. Here, 469 mines were identified and mapped across SSA to explore their distribution and 

areal extents, and to then understand the potential threats that they pose to conservation. The 

dominant eight commodities in SSA are gold, copper, iron, limestone, uranium, diamond, bauxite, 

and petroleum, making up 405 mines and occupying 85% of the 305,500-ha total areal extent. 

Mining expanded substantially between 2000 and 2018, with 260 (58%) new mines created and 

major areal expansion of many older mines. Hotspots of mining activity are apparent in the copper-

belt of the Democratic Republic of Congo and Zambia, Ghana, and the Niger-delta region of 

Nigeria. These mining ‘hotspots’ are distributed in close proximity to regions of high carbon stocks 

and high value to biodiversity conservation, with the areal extent of mines more than doubling 

between 2000 and 2018 to 119,200 ha within 10 km of a protected area, suggesting susceptibility 

to deforestation, forest degradation and other negative environmental consequences. The 

identification of mines and their changing spatial extent is imperative for use in monitoring future 

encroachments in SSA and to conservation and habitat recovery. Furthermore, Africa needs to 

introduce sustainable mineral development policies to safeguard and protect its forests, especially 

reducing the frequency of protected area downgrading, downsizing and degazettement (PADDD) 

events.  

Keywords: Mining locations, sub-Saharan Africa, ecological zones, protected areas, biodiversity 

conservation.  
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2.2 | Introduction 

Mining is an important industry globally. It is a multibillion-dollar industry (Janneh & Ping, 2011) 

in sub-Saharan Africa (SSA), and a key source of employment and income for governments of 

most countries in the region. Mineral resources such as metals (including precious commodities 

[e.g., gold and PGM] and industrial commodities [e.g., copper, bauxite, tin, and iron-ore]), 

gemstones, limestone, and many other industrial minerals, e.g., manganese and uranium (Taylor 

et al., 2009), can be found in large quantities and good quality within the tropical region of SSA, 

making it among the world’s major mineral producers (Yager et al., 2015; Kinnaird, Nex, & 

Milani, 2016). In addition, the region is increasingly recognised as being petroleum rich. 

The global demand for mineral and petroleum resources is increasing (Hammarstrom et al., 2006), 

attracting the major mining players to SSA where they invest heavily and develop infrastructure 

(Janneh & Ping 2011; Edwards et al., 2014). This investment has led to an unprecedented upsurge 

in mining activities in SSA. For instance, Chinese investments in African mining grew from $15 

billion to $150 billion between 2000 and 2012 (CDF, 2016; Platform, 2016), while Canada, 

Australia, Brazil, and others have also increased their investments within the last 20 years by an 

additional $50 billion in over 600 mining projects in Africa (Edwards et al., 2014; Weng et al., 

2013; Woods and Lane, 2015). Though these huge investments are often (but not always, i.e., if 

they cause the ‘resource curse’) laudable from a socio-economic perspective, they also pose great 

threats to biodiversity conservation and climate change-mitigating carbon-stocks in the tropical 

regions of Africa. 

In sub-Saharan Africa, artisanal and small-scale mining (ASM) occurs profusely, in part because 

of the prevalent poverty rate of the region. In most cases, ASM operates in very inaccessible 

locations within the forest (Durán, Rauch, & Gaston, 2013). Nonetheless, mineral extraction is not 

counted as a major driver of deforestation (Sonter et al., 2017; Alvarez-Berrios and Mitchell Aide, 

2015), because it occupies areas perceived as small when compared to other drivers of 

deforestation, especially agricultural expansion (Kissinger et al., 2002; Ferretti-Gallon & Busch, 

2014). The need to conserve forests and protected areas from mining by monitoring encroachments 

and its associated activities cannot be overemphasised. A key necessity therefore is to thoroughly 

inventory known existing mining locations, with emphasis on their proximity to forest and 

protected landscapes. 
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Previous studies have enumerated the occurrences of minerals on the continent (Durán et al., 2013; 

Edwards et al., 2014a). For instance, Edwards et al. (2014a) identified over 4,000 mineral 

occurrences in the Congo region, although the vast majority of such occurrences will not represent 

a mineable deposit. Not much is known about the present-day distribution of active mines, with 

very few geodatabases (e.g., MMSD Nigeria, USGS, globalforestwatch.org and 

Africaopendata.org) with comprehensive data about mining locations and dynamics. The lack of 

both coordination of the numerous field datasets and adding it up to interpret the full impacts of 

mining are some of the challenges faced in studying the secondary impacts of mining, such as 

deforestation and population immigration (Chatham House, 2015).  

Some past studies on mining-induced deforestation in Africa were done at national level (e.g., 

DRC, (Schure, Ingram, Chupezi, & Ndikumagenge, 2011); Nigeria, (Merem et al., 2017)), others 

were commodity specific (e.g., gold, (Klubi, Abril, Nyarko, & Delgado, 2018). Furthermore, a 

review of previous baseline surveys on ASM in some African countries (Heemskerk, Drechsler, 

Noetstaller, & Hruschka, 2004) showed a lack of reckonable data on the size and location of mines. 

The need for spatially accurate digital maps of the location and size of active and abandoned mines 

is principal, as part of enhanced measures for monitoring forest encroachment.  

Key to quantifying the potential impacts of mines on environmental conservation is to understand 

whether their distribution overlaps with important habitats and protected areas. In the Peruvian 

Amazon, for example, gold mines were expanding at a rate of 2,170 ha per annum before 2008, 

but this suddenly rose to 6,150 ha per annum after the 2008 global economic crisis (Asner et al., 

2013) with ~15,500 ha of forest lost to mining between 2003 and 2009 (Swenson et al., 2011). 

More broadly, across the Neotropics ~168,000 ha of forest was lost to gold mining sites from 2001 

to 2013 (Alvarez-Berrios & Mitchell Aide, 2015), while between 2001 and 2014, districts in India 

that produced coal, iron and limestone lost about 44,800 ha more forest cover.  However, Ranjan 

(2019) showed that not all mineral extractions caused deforestation in India with, for instance, 

some of the districts that produced dolomite and manganese recording an increase in the forest 

area or an insignificant reduction.  

Vulnerable to mining expansion are forests, both protected and unprotected, in regions where there 

are high concentrations of mineral occurrences (Edwards et al., 2014), and especially within 

countries where political influence plays a leading role in mineral licensing. For instance, Golden 
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Kroner et al. (2019) showed that between 1960 and 2018, globally there were 3749 events (2898 

between 2008 and 2018) of protected area downgrading, downsizing, and degazettement 

(PADDD), of which 62% are caused by resource extraction. The Amazonia region had 440 events, 

with the Ecuadorian government removing over 200,000 ha of land between 1990 and 2013 from 

PAs to allocate them for mining (Qin et al., 2019). Within SSA, the Democratic Republic of Congo 

enacted 41 PADDD events between 1960 and 2018 to enable mineral extraction (Golden Kroner 

et al., 2019). These among other factors were suggested to have  led to  forest cover loss in the 

DRC (Butsic et al., 2015), such events have occurred more broadly across SSA (Edwards et al., 

2014). 

In this study, the critical information gap about the spatial location and distribution of mines across 

SSA was addressed, and in turn identified the hotspots of mining and their proximity to areas of 

high biodiversity value. The areal extents of individual mines were delineated and measured to 

show their current extents using recently acquired high-resolution imageries (World Imagery 

ESRI, 2019) for 2009 to 2019. The data was used to address the following questions: (Q1) Where 

are mining hotspots in SSA? (Q2) What minerals are being extracted and how have these mines 

expanded overtime? (Q3) How close are these mines to forests and protected areas?  

 

2.3 | Methods 

2.3.1 Description of Study Area and Workflow  

The study covers the tropical forest and woodland savannah regions of sub-Saharan Africa, 

comprising thirty-seven countries as defined by the Food and Agricultural Organization (FAO, 

2015). The study region (Figure 2.1a) covers an area of 2,025 million ha, which is ~67% of the 

entire African continent and has an estimated population of over 1 billion people (World Bank, 

2018). Ecologically, there are four main lowland ecological zones (ecozones) in the region (Figure 

2.1b): tropical rainforest (TRF), tropical moist deciduous forest (TMDF), tropical dry forest 

(TDF), and tropical shrublands (TSL) at the transition zones into the Sahara to the north and the 

Kalahari to the south. In addition to lowland ecozones, there is also the tropical montane system 

(TMS) with high elevations and mixed vegetation mostly found in Ethiopia, Kenya, Rwanda, 

Burundi, DRC, Cameroon, and Nigeria.  
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Figure 2. 1 
(a) Map of the countries covered in the study, (b) Ecological map of sub-Saharan Africa as defined by the Food 

and Agricultural Organization (FAO, 2016), tropical rainforest (TRF), tropical moist deciduous forest 

(TMDF), tropical dry forest (TDF), tropical montane system (TMS) and tropical shrublands (TSL). 

  

To address the research questions, a workflow was drawn (Figure 2.2) on how to move from the 

input to processing and output stages, and a loop for backward movement when the need arose for 

quality control (QC) and validation. This resulted in three final outputs [MLD_SAF], 

[MDB_SAF_QC] and [MDB_PD_pre-2000 and post-2000], and one preliminary output 

[MDB_SAF_prelim]. 
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2.3.2 Mine Locations: Secondary Input Data, Quality Control 

The input data used for the study (Figure 2.2) were derived from various sources (Table 1) in a 

range of file formats.  As a consequence of the acquisition approaches used in each case, these 

data often exhibited: (i) omissions (e.g., several mines in Africa were missing entirely); (ii) 

incomplete statistics (e.g., type of mineral mined, and dates open/closed); (iii) unreliable location 

data (e.g., unclear mine locations and names); and (iv) some mineral occurrences were also listed 

as mines. As a result, detailed quality checks were undertaken on all mine locations, thus data 

listed in Table 1 (from ML1 to ML6) were cleaned and subsequently standardised into a format 

for use elsewhere (e.g., Excel, ArcMap, and R). Quality checks were carried out thoroughly on the 

data to check for errors in the data such as repetitions, inaccurate and unmatched locations, and 

incorrect spellings. 
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Figure 2. 2 

 
Flow diagram highlighting key stages taken in the workflow and the outputs to address the research questions; a). 

(Q1) Where are mining locations and hotspots in SSA?  b & c). (Q2) What minerals are being extracted and how 

have these mines expanded overtime? d). (Q3) How close are these mines to forests and protected areas?  

 

 

The checks were done by searching the internet, especially the websites of mine operators and 

other relevant stakeholders in the mining industry, to verify the names of the mines and 

commodities mined. At the end of the QC process, the irrelevant and redundant entries were 

rejected, and some of the locations were mineral occurrences that are not yet operational (e.g., data 
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labelled ML1 in Table 1). The resulting output was a Mine Location Database for Sub-Saharan 

Africa [MLD_SAF]; (see stage A in Figure 2.2). This was used to derive associated point 

shapefiles which encompassed the following attributes: the commodity mined, the mine operator, 

the year established and the geo-location. 

Table 1. 

 List of data sources used in the workflow outlined in Figure 2.2 [ML = Used in the determination 

of mine locations MLD_SAF and compilation of the mine database MDB_SAF_prelim; QC = 

used as part of the quality control and checking procedures required to generate MDB_SAF_QC]  

 

Use   Source Data Type        Years 

ML1 USGS Mineral facilities operators 2006 to 2010 

ML2 MMSD-Nigeria Mines in Nigeria Up to 2017 

QC British Geological survey  Mineral deposits Up to 2018 

QC ESRI High resolution imageries  2009 to 2019 

ML3 Mining-atlas.com List of mines Up to 2018 

ML4 OpenAFRICA.com List of mines Up to2016 

ML5 IndustryAbout.com List and coordinates of mines Up to 2018 

ML6 Mindat.org location of mineral deposits Up to 2017 

QC  Global Forest Watch Cadastre of mine fields Up to 2017 

QC Google Earth High and medium resolution 

imageries 

Availability 

(online) 

 

2.3.3 Mapping of mine locations: Digitising polygons for each mine footprint 

The input data for stage B (see figure 2.2) were: (i) the [MLD_SAF] database; (ii) 100 km x 100 

km sample grids; and (iii) high resolution World Imagery base map which are ESRI-derived 
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satellite data (Figure 2.2).  The digitization of the areal extent of mines were undertaken using 

ESRI-derived high-resolution World Imagery (World Imagery ESRI, et.al, 2019). These data 

comprise satellite imagery with spatial resolutions ranging from 0.3 m (e.g., IKONOS) to 15 m 

(e.g., SPOT) and dates of acquisition from 2009 to 2019 (World Imagery ESRI, et.al, 2019). 

Automated classification approaches, such as the use of Support Vector Machine (SVM), can be 

used to map mines in smaller regions (e.g., Isidro et al., 2017) where mining locations are known. 

However, the use of these and similar methods over large areas is not straightforward, and an 

entirely automated method for identifying mining locations with high accuracy is yet to be 

established (Lobo et al. 2018). Thus, considering the size of the study area and the difficulty of 

adopting reliable automated processes using available data, a more systematic manual encoding 

method was adopted. This was specifically designed to avoid misclassification of mining locations 

where land uses with similar spectral values (such as airstrips, roads, construction sites and areas 

cleared for agriculture) were apparent (Isidro et.al., 2017).  

The basis of this approach is similar to that used by Swenson et.al (2011), whereby the exact spatial 

locations of mines and their actual areal extents were derived across SSA. For this study, the 

Swenson et.al (2011) approach was developed further to allow mine digitising to take place at a 

consistent scale of 1:5000 to reduce known errors associated with excessive overshooting of 

polygons and to create a reliable baseline inventory of mines polygon. To facilitate this, a sample 

grid of 100 x 100 km was devised to cover the entire study region (see Figure 2.2a).  

These grids were manually encoded as follows: 

(a) The spatial locations of mines derived from [MLD_SAF] were used as the starting 

reference for the manual mine encoding method. From this, the mines were digitised 

systematically in an eastward direction by moving from western sub-Saharan Africa (e.g., 

Senegal), to eastern countries (e.g., Somalia) through the central parts of the tropical 

African region and down to the southernmost countries (e.g., Mozambique).  

(b) Each grid square was systematically scanned and surveyed for (i) both existing and new 

mine occurrence, and (ii) to check/validate all mine locations flagged in [MLD_SAF]. 

(c) Grid squares were categorised as either (MY) symbolising that the quadrat had been 

mapped and a mine was found within the quadrat, or (MN) mapped but no mine was found 
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within the quadrat. At this stage, all mines were digitised as polygons and attribute data 

was generated in each case.  

(d) This method yielded an additional 134 mines that were not initially listed on the 

[MLD_SAF] database. To accommodate these, live updates to the core mining database 

took place. For these sites, the Google Earth coordinates were used to investigate if they 

were actually mining sites. Where positive evidence was obtained (e.g., infrastructure, 

equipment, proximal settlements, rapid land-use change), these were entered into the 

known mine location data, and tagged accordingly.  

(e) Upon digitising all the polygons, the resulting output was the sub-Saharan Africa Mine 

database [MDB_SAF_prelim], created with various attribute fields specifically, 

coordinates (dd), size (ha), year opened/closed, type of mineral mined method of mining 

and status (active/abandoned) for easy analysis and access to current information (see 

Figure 2.2).  

 

2.3.4 Validation and cross-checking of mine location polygons, and heat maps 

At this stage the [MDB_SAF_prelim] data were validated, and cross checked using other readily 

available high-resolution remote sensing data spanning multiple years. The process ultimately 

involved directly intercomparing mine location footprints from the [MLD_SAF] database with 

available resources Google Earth (data spanning 1972 to present); these data were used for the 

good availability of cloud free, multi-temporal, high spatial resolutions imagery. At this stage, 

additional information about each mine (including name of mine, commodity, the operator, and 

other relevant attributes) were also checked and updated by searching internet resources 

exhaustively using the names of settlements in close proximity to the defined mine footprint. This 

process was also used to update any missing information apparent in the [MDB_SAF_prelim] 

database, especially dates of mine establishment, dates of mine closure and the present operational 

status of the mines.  

Using this approach, the digitised polygons of the mines were themselves validated manually via 

Google Earth to check for any changes in the size of the polygons resulting from likely mine 

expansion over time as some of the ESRI World Imagery scenes for some locations were either 

older or coarser in resolution than the Google Earth scenes and vice versa. At the end of stage C, 
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the [MDB_SAF_QC] database includes additional attributes: such as area, commodity, time/date, 

precise location, and mine operator (see Figure 2.2). 

Finally, the polygons of the mining locations were imported into ArcMap and converted to point 

shapefiles, before using the density tool in the spatial analyst to generate a kernel density map 

(heat map) with a radius of 185 km from each point, this was classified into seven classes with an 

interval of five points. This output denotes the spatial concentration of mines in the study area and 

clearly reveals the regions with high and low mine density. 

2.3.5 Estimating mine proximity to forests and protected areas. 

Input data for this part of the workflow (stage D; Figure 2.2) included (i) [MDB_SAF_QC], (ii) 

data from FAO eco-zones, and (iii) data from WDPA (see Figure 2.2; Table 1). Proximity analysis 

was conducted on these data to ascertain how close the mine footprints identified in 

[MDB_SAF_QC] were to key protected areas and regions of conservation interest within the 

region. The analysis was undertaken using two time slices that allowed analysis of: (i) mines 

created before the year 2000, and (ii) mines created post-2000. This was done to see if any 

increased risk from recent mining activity was apparent – i.e., whether new mines (post-2000) 

were being created significantly closer to PAs than older (pre-2000) mines. 

Overall, the proximity analysis was undertaken using the following approach:  

(a) The world database of protected areas (WDPA; IUCN, 2016) was initially cleaned to 

remove any non-relevant or redundant data - i.e., those PAs whose status includes, ‘not 

reported’, ‘proposed’ and ‘recommended’, plus others that were not within the study area. 

Overall, (as per Durán et al., 2013) only those PA polygons that were deemed directly 

relevant to the study were utilised. In addition, the dataset of the Ecological Zones of Africa 

(FAO, 2015) was also added to the workflow to operate as a guide for the identification of 

both forest and non-forest zones.   

(b) The three thematic layers (SAF_MDB_QC, FAO_Eco-zones and WDPA) were input into 

the near tool of the proximity analysis toolset (ESRI ArcGIS 10.6) to calculate the nearest 

distance (in a range from 0 to 100 km) from the boundaries of the mines to the nearest PAs 

within specified ecozones.  

(c) Buffer zones were then created from the above process based on the distance between 

mines and PAs, and these zones were ascribed to four key vulnerability categories as 
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follows: (i) red zone for mines that are at the distance of (0<10 km) to the boundaries of 

the PAs; (ii) amber zone for mines that are at a distance of (>10<20 km) to the PAs; (iii) 

brown zone for mines that are at a distance of (>20<30 km); (iv) grey zone for mines that 

are at a distance of (>30<40 km); and (v) green zone for mines that are at a distance of 

(>40<100 km) to the PAs.  The colours assigned to the zones provides some guide as to 

the level of vulnerability of forest/protected areas in that zone to mining-induced 

deforestation. The outer limit of 100 km distance from PAs was chosen because it was 

assumed that the secondary effect of mining (e.g., infrastructure development) might not 

be properly ascertained at distances of above 100 km; except in a few exceptional cases 

where mines are to be linked to the ports for export of commodities through the 

construction of hundreds of kilometres of roads and rails (e.g., Simandou in Guinea and 

Mbalam in Cameroon). The output data from stage D of the workflow were defined as 

[MDB_PD_Pre2000 and MDB_PD_Post2000] database (Figure 2.2). 

(d) In addition to the proximity data, a series of attributes were also extracted, including the 

type of commodity mined, year of establishment, and other statistics (e.g., size of the 

polygons according to commodity mined). 

 

2.4 | Results   

2.4.1 Where are the mines located? 

The locations of 469 mines were mapped in this study area, of which 134 (29%) mines were not 

present in other readily accessible databases to the conservation community. The hotspots of mines 

were identified in the DRC, Nigeria, and Ghana, with other concentrations of mines in Guinea, 

Zambia, and Zimbabwe (Figure 2.3a). These six countries accounted for 52% of the mines mapped 

in SSA. The least mined locations were Malawi, Djibouti, and Guinea Bissau with only five mines 

in combination. 
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Figure 2. 3 
(a) Mining hotspots for 2018 showing DRC, Zambia, Nigeria, Ghana, and Guinea as the main hubs of mining activities 

in sub-Saharan Africa. Hotspots were identified using the kernel density map with a radius of 185 km from each 

mining location and classified into 7 regular classes at 5 points intervals. (b) The spatial distribution of the location of 

mines in the various ecozones of sub-Saharan Africa as defined by the FAO. 

A total of 322 mines are located within the two important ecozones where most of Africa’s intact 

habitats are situated: the TRF and the TMDF having 42% and 32% of mines, respectively (Figure 

2.3b). Additionally, the TDF ecozone, which is also considered as an important ecozone in 

conservation based on its canopy cover and tree species, had 68 mines where gold is the main 

commodity.  

The TSL ecozone may be regarded as the least important ecozone in terms of habitat and ecosystem 

conservation, because of the sparse tree cover, a large expanse of savanna and grassland and a lack 

of endemic species. This ecozone had only 33 mines. The TMS ecozone had the least number of 
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mines (27), most of which were mines for limestone, uranium, and phosphate, which is potentially 

positive given the high endemism in these montane regions.  

                 

Figure 2. 4 
 (a) The distribution of the number of mining sites mapped by commodity mined, (b) The number of mines created 

overtime in the study area (based upon records of mining initiation). 

 

2.4.2 What minerals are being extracted and how have the mines expanded overtime? 

In total 26 minerals were mapped, occupying a land area of about 305,500 ha (Figure 2.4a).  The 

top six by number included the low bulk-high value commodities gold (25%) and diamond (10%), 

the high bulk-low value commodities copper (13%), limestone (10%) and iron (7%), and 
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petroleum (12%), making a total of 377 mines. These six commodities accounted for 75% of the 

total areal extent of mines mapped. The results showed that commodities with the least number of 

mines in the SSA are lithium, tantalum, and iron-pyrite, which each had only 1-3 mines. Gold is 

the most mined commodity, with the highest number of mining sites (127) spread across the region 

(Figure 2.4a) and occupying a land area of about 32% (99,800 ha) of the total areal extent of mines 

mapped in SSA. Important minerals such as bauxite, iron-ore, coal, gemstones, cobalt, and 

tantalum are also mined in enormous quantities in the study area, among others.  

Two hundred and sixty (58%) of the mines in the study area were established between the year 

2000 and 2018 (Figure 2.4b). Within this time period, copper and limestone had 35 and 25 new 

mining locations, respectively, while iron-ore and diamond had 27 new locations each. 

Furthermore, with the use of historic data from Google Earth, it was discovered that most of the 

existing mines for high-value commodities (e.g., gold, and diamond) that were created pre-1980 

have expanded remarkably during the period under review (2000-2018). For example, the Tarkwa 

gold mine in Ghana, which used to be less than 300 ha in areal extent in the 1980’s, has expanded 

to over 3,000 ha, and the Thsibwe diamond mine in the DRC, which used to be 50 ha in the 1980’s, 

had become over 400 ha. Overall, there was a total expansion of 189,200 ha in the areal extent of 

mines in SSA in the period under review, with gold having the largest expansion by area with an 

additional 77,000 ha in land area.  

It was found that in total the DRC had the highest number of mines (63), while Zambia had the 

largest areal extent representing 13.2% (40,300 ha) of the total area mined in SSA. Many new 

extractive projects came on board in the period under review. Some of the notable new ones were 

uranium (e.g., Niger; Dasa Mine 2017) and limestone (e.g., Zimbabwe; Dangote – Ndola 2015 and 

Nigeria; Obu/Okpella 2017), as well as petroleum and gas explorations in six new locations (e.g., 

South Sudan had four new projects; Palouge 2003 and Thar-Jath 2002).      

2.4.3 How close are the mines to forests and protected areas?  

Over time, it can be seen that a consistently substantial proportion of the reported mining activities 

occurred in close proximity to PAs (Figure 2.5 a, b, c). Indeed, there was a substantial increase in 

mining area since the year 2000 in each category of buffer zones, especially in the red zone (0<10 

km from PAs; Figure 2.5 a, b), which shows that this zone remains a constant focus for mining 

activities (Figure 2.5c), with the areal extent of mines having more than doubled from 49,800 ha 



43 
 

pre-2000 to 119,200 ha for those created post 2000; with a corresponding 250% increase in total 

number of mines. For instance, gold mining extent had expanded from 4,400 ha to 23,300 ha in 

this zone. The occurrence of mineral commodities mined in the red zone have also significantly 

increased in number in the period under review, most prominently: copper (from 13 to 29 mines), 

diamond (from 15 to 27 mines), gold (which rose from 15 to 48 mines) and iron-ore (from 7 to 27 

mines). In the amber zone, there was a substantial increase in the number of mines from 33 in 2000 

to 67 by 2018, resulting in an increase in areal extent by 250% in the zone (Figure 2.5b). 
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Figure 2. 5 
Mines and their proximity to protected areas.  (a) A map of the study area showing the proximity of mines to 

the PAs (via different buffer zones) in 2019 (b) The distribution of total mine numbers in the different buffer 

zones of proximity to the forests and protected areas, noting increased mine numbers in the post-2000 period 

for all buffer zones, and (c) the distribution of the relative proportion of mines (mine numbers expressed as a 

proportion of the total) in each buffer zone for the two time-slices, noting the consistent appearance of mining 

activity in the red buffer zone regions. Labels are: (i) red zone is for mines that are at a distance of (0<10 km), 

(ii) amber zone is for mines that are at a distance of (>10<20 km), (iii) brown zone is for mines that are at a 

distance of (>20<30 km); (iv) grey zone is for mines that are at a distance of (>30<40 km); and (v) green zone 

is for mines that are at a distance of (>40<100 km) to the PAs. 
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The brown zone is considered as the transition zone between the areas with high vulnerability and 

the areas of low vulnerability to mining-induced deforestation and habitat degradation. An increase 

of 19 new mining locations were found in this zone, with the grey and green zones having a total 

of 44 and 147 mining locations, respectively, in all the phases of the analysis (pre- and post-2000; 

Figure 2.5a). Generally, from the post 2000-era analysis, an increase of 270% was discovered in 

the number of mining locations (Figure 2.5b), translating to about expansion in the areal extent of 

mines in the study area by 189,200 ha.  

 

2.5 | Discussion 

The results have established that mining sites are located in most parts of sub-Saharan Africa, 

regardless of the ecological region. However, the proximity of mines to areas of high 

environmental value suggests that they pose significant threats to forest and ecosystem 

conservation in SSA, especially considering the rapid rates of expansion of existing mines and the 

creation of new ones. Over 200 major mines and numerous ASMs have been established within 

the last 20 years in the study region, with high potential of an associated increase in mining-

induced deforestation and degradation in SSA. This study fills a core need for an accurate database 

of mining hotspots (Figures 2.3 & 2.4), enabling the continuous monitoring of identified mining 

hotspots that can help to reduce deforestation caused by mine encroachment.  

2.5.1 Mine expansion 

The findings revealed that 58% of mines in the study area were established between the year 2000 

and 2018 (figure 2.5) and most of those established pre-2000 had expanded significantly. This 

development can be attributed to the growth in mineral demand and as a direct manifestation of 

the recent huge investments in the mining sector of Africa (Janneh & Ping, 2011; Edwards et al., 

2014b; Woods & Lane, 2015). Incidentally, the last two decades were the era when the global 

economy rose from about $33 trillion to over $80 trillion (World Bank, 2018), and coincidentally 

the period when Africa’s forests were depleted by over 45 million ha (FAO, 2015), with mining 

identified as one driver of deforestation. 

In the Neotropics, gold mining has expanded rapidly into new regions between 2001 and 2013, 

with 168,000 ha of forest lost to the new mines created (Alvarez-Berrios & Mitchell Aide, 2015), 
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with existing Huepetuhe, Delta-1 and Guacamayo gold mines in south-western Peru expanding by 

over 500,000 ha between 1999 and 2012 (Asner et al., 2013). Such a greater rate of expansion may 

be expected in the future in sub-Saharan Africa, especially if deposits are exhausted elsewhere.  

The areal extent of most mines for commodities such as gold, copper, iron-ore, diamond, and 

uranium are larger than 1,000 ha, including all structures within the mining sites (see also: Durán 

et al., 2013; Swenson et al., 2011; Alvarez-Berrios & Mitchell Aide, 2015).  However, these classes 

of mines are also likely to have attracted the expansion and creation of new settlements around 

them, in addition to the artisanal and small-scale mining activities thriving around their vicinities, 

which remain an unquantified major potential negative consequence for the environment (Spittaels 

& Hilgert, 2013). Poor dwellers in such settlements are likely to hunt for food and extract enormous 

quantities of fuelwood, extirpating wildlife and resulting in local deforestation or degradation.   

The activities of ASM and the informal miners are scattered around the region. Their mostly far 

smaller areal extent (Asner et al., 2013; Hund et al., 2013; Heemskerk et al., 2004) means that 

measuring the size of these mines (and indeed locating them) using optical satellite imagery is 

often not feasible (e.g., Landsat; Nigeria-SAT & SENTINEL), especially when working at a large 

area with the presence of tree canopies around the mines (Asner et al., 2013). The exceptions may 

be in those cases where the ASM are concentrated within one vicinity, creating a large aggregate 

areal extent. For example, the Banankoro diamond mine in Guinea and the Asankrangwa belt 

mines in Ghana, which stretches down the entire length of the Ofin river, making it the largest 

ASM gold mine in Ghana and the SSA at large. 

 

2.5.2 Conservation impacts 

Many mines were located close to areas of conservation concern. This finding mirrors those of 

Edwards et al. (2014) who found 964 mineral occurrences inside or within a distance of 10 km of 

the protected areas of Central Africa and of Durán et al. (2013) who found that, globally, 482 

mines for metals (bauxite, copper, iron, and zinc) are within or at a distance of up to 10 km from 

protected areas. However, this study represents a major advance, in that it deals with mines and 

not occurrences, and covers most of SSA rather than solely the Congo Basin (as per Edwards et 

al., 2014). This study has also identified 200 more mines than Durán et al. (2013) in the study 

region, who were only able to study four mineral types and focused on designated protected areas. 
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In addition, they were unable to detect impacts in the west and central Africa regions where a 

concentration of mines with proximity to areas of concern were identified, both PAs and forests 

more generally.  

Mines have advanced towards areas of conservation interest overtime: of great concern are mines 

within the green buffer zone in countries including Nigeria, Angola, and the DRC where the 

Chinese and others are increasingly investing in gold, copper, limestone, and gemstones (e.g., 

Schure, et al., 2011; Edwards et al., 2014; Executive Research Associates (Pty) Ltd, 2009). These 

may represent substantial upcoming threats because of the ongoing prospecting and exploration 

for minerals in nearby locations that are more proximate to areas of conservation concern. This is 

likely to attract more infrastructure development and bring in ASM miners.  

There is a dearth of strong laws in the region and lack of commitment on the governments of most 

countries in the SSA on the need to maintain and protect the PAs (Edwards et al. .2014). For 

instance, the DRC government granted mining concessions in locations that overlapped with 

important protected areas in the region; in 2018, it proposed to enact PADDD to downsize two of 

its important PAs (Virunga and Salonga National Parks) by about 400,000 ha to enable mineral 

extraction in the area (Qin et al., 2019).  

The encroachment of mining and its related activities within or near to PAs will likely significantly 

negatively affect the capacity of PAs to perform their core conservational functions (Dudley, 

2010), with changes in habitat landscapes close to PAs having direct influence on the ecosystem 

within PAs (Laurance et al., 2012). Furthermore, in most cases, new mines require new 

infrastructures which leads to linear clearing of forests the effect of which can be enormous 

(Laurance et al., 2009). In tropical Africa, for instance, hunting of animals in primary forest has 

increased in close proximity to roads and is driving the most endangered species towards extinction 

(Laurance et al., 2009) at the same time as impacting tree seed dispersal and recruitment (Terborgh 

et al., 2008). 

 

2.6 | Conclusion  

In total, 469 mines were identified and mapped across SSA to explore their distribution and areal 

extents, and to then understand the potential threats that they pose to conservation. Hotspots of 
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mining activity are in close proximity to regions of high carbon stocks and high value to 

biodiversity conservation, suggesting susceptibility to deforestation and other negative 

environmental consequences. Without effort by conservationists, policymakers, and international 

funders of mining to bring renewed rigour to environmental standards, there is significant danger 

that mining in SSA will result in major conservation losses, both within and outside of PAs. In 

particular, we need a much more robust approach to the increasing frequency of PADDD events 

to make way for mining.       
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Chapter 3: How much deforestation has been driven by the primary 

and secondary effects of mining? 
 

 

3.1 | Abstract 

Sub-Saharan Africa (SSA) has become a mining hub, attracting major players in the mining 

industry because of its abundant mineral reserves. A key question is, to what degree does the 

creation of new mines and expansion of existing ones generate off-site deforestation and forest 

degradation? Firstly, a comparative analysis was performed to quantify deforestation and forest 

degradation between 2001 to 2020 at 0-10 km buffer distance by matching locations with mines 

(treatments) and those with no mines (controls) but with similar environmental attributes, and then 

assess the rates of annual change before and after the mines were created. Using the global forest 

change (GFC) dataset revealed that mining caused 726,887 ha of deforestation, 41% more than the 

matched controls, equating to a mean annual loss of 36,500 ha in treatments versus 21,384 ha in 

controls. For mines created between 2009 and 2011 (the median years), the rates of deforestation 

increased by 2,100 ha per year (307%) after mine creation. Mining drives substantial deforestation 

beyond the spatial extent of the mine, indicating the urgent need for the mining sector to account 

for these broader environmental costs in their impact assessments, carbon accounting, and 

associated investments in conservation protection.  
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3.2 | Introduction 

Sub-Saharan Africa (SSA) has an enormous volume of high-grade minerals across the region 

(Edwards et al., 2014a), making it a mining hub and global epicentre of mine expansion. Coupled 

with the global rise in demand for precious metals, gemstones, and industrial minerals, mining has 

become a major source of revenue for most countries globally (World Bank, 2016) and a means 

of livelihood for local inhabitants. SSA has recorded remarkable increases in mining investments 

by major industry players over the last 2 decades (Janneh & Ping 2011; Weng et al., 2014), and in 

2018, the region produced minerals worth about $350 billion (Republic of Austria, 2020).  

The unprecedented financing into the mining sector, has led to the creation of new mines post 2000 

as well as major expansion of existing ones. Some of these mines are expanding into areas of high 

biodiversity value, causing environmental loss and major risks for conservation e.g., Artisanal 

mining (Ahmed et al., 2020; Barazi et al., 2017; Edwards et al., 2014; Weng et al., 2014; Schure 

et al., 2011). Mining is not regarded as a foremost cause of primary deforestation, because the area 

of land involved in some cases is relatively small (Chakravarty, Ghosh, & Suresh, 2011), yet 

mining-induced habitat disruptions are being underestimated or neglected in some countries 

(Alvarez-Berrios & Mitchell Aide, 2015; Sonter et al., 2017), despite evidence from satellite 

images (Swenson et al., 2011; Asner et al., 2013). Mining causes deforestation, forest degradation 

and associated habitat fragmentation, and the subsequent loss of intact terrestrial habitats, which 

houses a hyperdiversity of tropical species (Frelich, 2014.; Sonter et al., 2017; Curtis et., al. 2018; 

Tegegne et al., 2016; Lobo et al., 2016). For instance, in the Neotropics, gold mining was 

responsible for the loss of ∼130,300 ha of tropical moist forest biome (TMFB) between 2007 and 

2013 (Alvarez-Berrios & Mitchell Aide, 2015). In the South-eastern Peruvian Amazon alone, gold 

mines expanded threefold between 2008 and 2012 to 6,154 ha per year (Asner et al., 2013), causing 

64,586 ha of forest loss from 2010- 2017, which is twice the area lost in the previous 26 years 

(1985-2009) (Caballero et al., 2018). In Indonesia, ∼220,000 ha of forest land was lost between 

2001 and 2016 as a result of increased mining activities in the country (Austin et al., 2019), mining 

induced deforestation increased 2.77 times from 2000 to 2008 in Guyana (Chakravarty, Ghosh, & 

Suresh, 2011). 

These studies focused on the core mine area, yet mining causes and facilitates environmental losses 

outside of the mine boundaries largely due to deforestation during the construction of mining 
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support infrastructure (roads, rails, seaports, workers settlements), in addition to subsequent 

deforestation by the mining settlements for agricultural activities(Edwards et al., 2014; Durán, 

Rauch, & Gaston, 2013; Sonter et al., 2017) and forest degradation (within-forest impacts) via 

selective logging for timber or fires. These ‘secondary’ impacts of mining can occur in distant 

forests and intact habitats. For example, in the Brazilian Amazon between 2005 and 2015, mining 

caused ∼1.2 million ha of deforestation at distances of 0-70 km away from the boundary of mining 

leases relative to matched controls (Sonter et al., 2017). In addition, the coal mines in Kalimantan 

in Indonesian Borneo, caused secondary deforestation at distances up to 50 km in radius from the 

centre of the mine (Sievernich et al., 2021).  

Two key unknowns are the severity of secondary impacts of mining on deforestation and on forest 

degradation in Sub-Saharan Africa. In this study, the severity of mining-induced losses and 

changes from deforestation and forest degradation were assessed. The database of 225 mines 

which were created post 2000 in SSA (Ahmed et al, 2020) was utilised, i deployed a suite of 

geospatial environmental data and tools (ArcGis, Google Earth Engine (GEE), QGIS) combined 

with statistical matching techniques using R package (Matchit). Doing so, two core objectives 

were tackled: (1) evaluate the amount of deforestation and forest degradation from 2001 to 2020 

in the locations with mines (treatments) compared to locations without mines (controls) at various 

buffer intervals; and (2) compare the annual rates of deforestation before and after mine creation 

(i.e., across time) with distance from mine (i.e., across space).  

3.3 | Materials and Methods  

3.3.1 Study Region 

This study covers sub-Saharan Africa, with prominence on the Afrotropic region which comprises 

of four ecological zones (ecozones): the tropical rainforest (TRF), tropical moist deciduous forest 

(TMDF), tropical dry forest (TDF), and tropical shrubland (TSL). These ecozones cover a land 

area of 1,300 million ha (Fig. 3.1), which is 64% of SSA’s total land area coverage comprising 37 

countries (FAO, 2016). The region is endowed with the largest mineral reserves and deposits 

globally (Edwards et al., 2014a), and with a population of ∼1.1 billion (World Bank, 2020). SSA 

is faced with political and socio-economic challenges including arm conflicts and environmental 

degradation which has made it one of the most economically impoverished regions in the world 

(IMF, 2021).  
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Figure 3. 1 
Map of the study region showing mine locations in red dots and the ecological zones of sub-Saharan Africa as defined 

by the Food and Agricultural Organisation (FAO, 2016), tropical rainforest (TRF), tropical moist deciduous forest 

(TMDF), tropical dry forest (TDF) and the tropical shrublands (TSL).                                
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3.3.2 Forest, deforestation, and forest degradation in sub-Saharan Africa 

Forest 

The most common definition of forest used in many countries of SSA is an area of >0.5 ha with 

>10% canopy cover of trees at >5 m height, or trees with potential to grow to these thresholds 

(FAO, 2006). Forests may thus include natural primary habitats and secondary habitats consisting 

of newly planted trees, naturally regenerating forests, and forestry plantations. Forest types in SSA 

are mainly the evergreen forest, deciduous forest, bamboo, mangrove forest, and plantation forest, 

among others.  

 

Deforestation  

When a forested land has been converted into a non-forest, the land is said to have been deforested 

and where there is a decline in the capacity of the forest to produce (Quy et al. 2018). Though the 

definition of deforestation varies by regions and studies, Hosonuma et al. (2012) depicted 

deforestation as the conversion from forest into other land uses, thereby assuming that the forest 

is not anticipated to regrow without artificial means. In this study, the measures of deforestation 

incorporate definitions following Hansen et al (2013) ‟Forest loss as a stand-replacement 

disturbance or the complete removal of tree cover canopy at the Landsat pixel scale” and 

Vancutsem et al (2021) ‟Deforestation is the permanent conversion of forest into non-forested 

land and was observed over more than 2.5 years and no vegetative regrowth was detected”.  

Forest degradation 

Forestlands where habitats had been disrupted and tree cover canopy fragmented can be referred 

to as degraded forests (FAO, 2010). Such forest degradation often results in reduced quality of 

ecosystem goods and services provided by the forest (Nick et al., 2014), but such degradation is 

transient because forests may recover with time (Hosonuma et al. 2012). When the altered forest 

is observed for a maximum period of 2.5 years with no notable change, the area is termed as 

degraded forest (Vancutsem et al., 2021). Defining forest degradation could also be a complex 

task, as there are diverse perspectives on which forest characteristics are the most significant 

(Thompson et al., 2013). 
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The transition from undisturbed forest to deforested land cover usually takes place when the intact 

forest has been degraded by anthropogenic activities and subsequently deforested over time. 

Matricardi et al 2020 reported that the size of degraded forest in the Brazilian Amazon was greater 

than the deforested land between 1992 to 2014, thereby making it an important metric for 

monitoring and evaluating forest change. Although difficulty lies in the fact that the degradation 

of forests is a gradual process that usually comprises small modifications that are hard to quantify, 

particularly with the moderate level of detail offered by satellite imagery commonly utilized in 

worldwide forest monitoring systems. 

 

3.3.3 Data and Broad Approach 

To evaluate the effect of mining on environmental losses in the study area, The counterfactual 

scenario was assessed by comparing deforestation and forest degradation in the locations with 

mines versus those without mines. To achieve this, the open-access, high-resolution maps of the 

21st-Century Global Forest Change (GFC) dataset (Hansen et al. 2013), and the freely available 

Tropical Moist Forest (TMF) dataset from (Vancutsem et al., 2021) were used. The GFC dataset 

comprises various forest layers, i.e., tree cover 2000, loss year, loss, and gain.  The GFC dataset 

was used to extract the tree cover statistics for the baseline year of the study (TC_2000) at 10% 

canopy threshold, the loss and loss year layers were also used to extract the annual forest cover 

loss statistics from 2001 to 2020. The GFC dataset has been used by numerous studies for 

monitoring and reporting of forest dynamics especially in the tropics (Galiatsatos et al., 2020). 

In addition, the TMF dataset was used, which is most suitable for calculating the annual change in 

degraded forest because of its improved capability and temporal resolution when monitoring forest 

over time (Silva et al. 2021). The TMF dataset offers a comprehensive description of the changes 

in land cover over a period of time, starting from the baseline year and extending up to the year 

2020. This dataset is composed of multiple layers representing various categories of forest, 

including moist forest, wet forest, and rain forest. Notably, the dataset encompasses the four 

distinct Global Ecological Zones (GEZs) that are commonly found in Sub-Saharan Africa, namely 

“tropical rainforest”, “tropical moist forest”, “tropical mountain system”, and “tropical dry forest”. 

Mines created post 2000 and are within the forested area of SSA (n=225) from Ahmed et al., 2021, 

were used to generate the buffer rings at 1 km to 10 km radius from the centroid of the mines (i.e., 
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0-1 km, 1-2 km, and so on to 9-10 km). Mine locations (treatments) were matched with non-mining 

(controls) locations of similar biophysical and social traits (matching variables). The amount of 

deforestation and forest degradation over time were compared between the treatments and their 

corresponding matched controls. In addition, the rates of annual change in deforestation and forest 

degradation post mine creation were computed within the treatments.  

 

3.3.4 Matching Analysis 

Matching studies of deforestation typically seek to compare areas that have experienced 

deforestation with areas that have not, to identify the causal effects of deforestation on various 

outcomes (Braber et. al., 2018; Sonter at al., 2017). In this study, the matching statistical technique 

was utilised in evaluating the impact of having a mine close to the forest and not having a mine by 

comparing forest loss between the treatment and matched control locations. The goal of using 

matching analysis is to identify control locations that are as similar as possible to treatment 

locations in terms of key characteristics that may influence deforestation. In this study, the 

locations were matched using key variables that may influence deforestation.  

To do this, it is important to select suitable variables for use in the matching process. Previous 

studies have shown some of the variables that are likely to influence forest disruptions (Curtis et 

al., 2018; Ferretti-Gallon & Busch, 2014; Laurance et al., 2012), and are categorised into the 

following:  (i) Geographic Characteristics; (ii) Land Use and Land Cover; (iii) Socioeconomic 

Factors; (iv) Environmental Factors; and (v) Political and Institutional Factors. Some of the 

variables may include, elevation, terrain, vegetation, climate, land use, and population density. 

Table 2 shows how they impact deforestation and their relevance to this study.  
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Table 2. 

Useful variables in matching studies of deforestation and their relevance to this study.  

Category Variables Impact on 

deforestation 

Relevance to this study 

 

Geographic 

Characteristics 

Elevation Lowlands are more suitable 

for agriculture (Oakleaf et 

al., 2019; Tegegne et al., 

2016; Laurance et al., 

2014). 

Derived TWI and TPI are two 

factors that would determine the 

suitability of the area to 

agriculture when mining is 

established. 

Slope Determinant for land 

suitability for agriculture, 

housing and infrastructure 

development (Bavaghar, 

2015; Ahmadi, 2018; 

Kayet et al., 2021). 

The steeper the slope the less 

suitable for crop production, 

similar to TPI, 

Soil type Soil quality determines its 

suitability for crop 

production. This leads to 

forest loss.  (Witcover et 

al., 2006; Ahmadi, 2018; 

Kayet et al., 2021). 

Not of much significance to this 

study. 

Distance to roads Forests nearer to roads are 

more susceptible to 

deforestation (Bavaghar, 

2015; Laurance et al., 

2009; L.S. Ng et al., 2020; 

Rosa et al., 2013) 

An important variable but was 

not used in this study due to the 

scale of the study region and the 

accuracy of data. 

Distance to waterways Forests nearer to 

waterways are  susceptible 

to degradation and 

deforestation (Aleman, 

Jarzyna, & Staver, 2018). 

Not of much significance to this 

study 
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Land Use and Land 

Cover 

Forest type Primary and secondary 

forest may have different 

rates of distortion due to 

their varied biodiversity 

richness (J. Barlow et al., 

2012; Gardner et al., 2009; 

WWF, 2021). 

An important variable for 

comparing rates of forest loss in 

different locations, VCF data 

was used. 

Agriculture Forestland suitable for 

agriculture is most likely 

to be converted (Müller et 

al., 2012; Laurance et al., 

2014). 

As a key driver of deforestation, 

it is a significant variable  

Urbanization Settlements often expand 

into forests (Barbier, 2013; 

Chakravarty et al., 2011; 

Jianhua & Jr, 2014) 

Settlements are most likely to 

grow towards the forestlands, 

making it an important variable 

 

Socioeconomic 

Factors 

 

Population density The growth in population 

may lead to expansion of 

settlements into the forests 

(Potapov et al., 2012; 

Ferretti-Gallon & Busch, 

2014; Morales-Hidalgo et 

al., 2015). 

A key variable used in this 

study, an increase in population 

density would lead to the 

expansion of settlements, 

agriculture, and infrastructure. 

Poverty levels The income of people 

around the forest may 

decide the fate of the forest 

as most may resolve to 

cutting down the trees for 

economic gains (den 

Braber et al.,2018; 

Ferretti-Gallon & Busch, 

2014; Lamb et al.,2005; 

Witcover et al., 2006). 

An important variable for 

comparing how the inhabitants 

may destroy the forest to earn a 

living. 
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Access to amenities and 

infrastructure 

Accessibility to alternative 

sources of energy may 

save the forest from being 

used as a source of 

fuelwood and charcoal for 

domestic uses. (Hosonuma 

et al., 2012; Sloan & 

Sayer, 2015; Thompson et 

al., 2013). 

An important variable for 

comparing the standards of 

living among settlements, and 

how it contributes to  

deforestation. 

 

 

 

 

 

Environmental 

Factors 

Climate Continuous change in 

climate may lead to aridity 

and subsequent forest loss 

(Laurance, 1998; Creese & 

Pokam, 2016). 

An important variable for 

comparing rates of forest loss in 

different years 

Rainfall  Rainfall patterns may 

cause drought, prolonged 

droughts can stress trees 

and increase their 

susceptibility to diseases 

and insect infestations may 

lead to degradation (Kayet 

et al., 2021; Nepstad et al., 

2008; Müller et al., 2012). 

An important variable for 

comparing rates of forest loss in 

different years and at various 

locations 

Temperature Higher temperatures can 

increase the risk of forest 

fires. (Kayet et al., 2021; 

Nepstad et al., 2008; et al., 

2018). 

An important variable for 

comparing rates of forest loss in 

different years and at various 

locations 
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Natural disasters Earthquakes and landslides 

can cause distortion in the 

forests (Sar et al., 2018). 

Not a relevant variable in this 

study 

 

Political and 

Institutional Factors 

Land tenure Forest on lands with 

poorly defined tenure 

rights may lead to 

deforestation (Laestadius 

et al., 2015; Ferretti-

Gallon & Busch, 2014; 

Forrest et al., 2015; 

Tegegne et al., 2016; Geist 

& Lambin, 2002) 

Not a relevant variable in this 

study 

Government policies Weak government policies 

will always lead to illegal 

activities which causes 

deforestation (Newman et 

al., 2018; Hund et al., 

2017) 

An important variable in 

measuring how certain policies 

can have impact over forests 

Protected areas Forest within protected 

areas are less likely to be 

depleted. (Forrest et al., 

2015; Mascia et al., 2014; 

Andam et al.,  2008) 

An important variable in 

measuring and comparing the 

impact of policies and controls 

over forest 

 

The variables selected for this research were: (a) elevation derived from the digital elevation data 

at 225 m spatial resolution (GMTED2010, from the USGS), (b) vegetation cover from the 

vegetation continuous fields (VCF, from MODIS) for the year 2000 at 250 m spatial resolution 

from (DiMiceli et al., 2015), the (c) topographic positioning index (TPI) and  (d) topographic 

wetness index (TWI) both indexes were generated using the digital elevation data in the QGIS 

3.18, and (e) population density, using the 1 km Gridded Population of the world Density for 2000 

(CIESIN, 2018). These variables were used in the matching analysis to identify control locations 

that are as similar as possible to treatment location. They were selected based on the criteria listed 
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in Table 2 and their suitability and relevance. Based on previous research and scientific 

understandings, the variable selection process is best done without using the observed outcomes 

(Andam et al 2008; Rubin, 2001; Braber et. al., 2018; Sonter et al., 2017).  

These variables are believed to be relatively constant during the period under review, even though 

the population density data which is dynamic and the only endogenous variable which is found to 

transform rapidly (Lemma 2020). Matching was used because of its ability to eliminate bias in the 

selection and pairing of treatment and control units (Andam et al., 2008) and is suitable in 

balancing covariates (Ho et al., 2011). It is widely applied in the assessment of causal inference 

(Imbens, 2004; Stuart, 2010) and in conservation studies (Schleicher et al., 2019). By carefully 

selecting control locations that are as similar as possible to treatment locations, we can better 

isolate the effects of mining on deforestation and draw more reliable conclusions about its impact. 

Several matching methods were applied using the Matchit package in R, the Genetic matching 

method was adopted because it yielded better covariate balances (Stuart, 2010; Ho et al, 2007; 

Rubin, 2007). 

 Genetic matching uses an algorithm that best matches each covariate and balances the output 

optimally (Diamond and Sekhon, 2006). The propensity scores matching (PSM) was used to 

facilitate the construction of matched sets with similar distributions and summarised all of the 

variables into one scalar grouping of individuals with similar scores (Rosenbaum and Rubin,1983; 

Stuart, 2010). 

    Propensity score: [P(X) = Pr (d=1|X)]                                                          (1)  

Where P indicates the Propensity score, X is the covariate value, Pr is the probability and d is the 

unit in the treatment and control groups. 

The Control points: 

Random points were generated (n=30,000), they were evenly distributed across the SSA region at 

a minimum interval of 10 km for use as controls following (Devenish et al,. 2022). The subset of 

the control points by country was created, subsequently, country specific matching without 

replacement was performed to pair the matched treatments and controls that fall within the same 

country. This was to avoid bias and eliminate the error of wrongfully matching treatments with 
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controls across (sometimes several) country boundaries, given that mining and habitat protection 

laws and regulations differ by country.  

 

Assessing the balance of matching: 

The quality of outputs from the matching analysis were checked using the covariate balance, this 

was assessed using the cobalt package in R (Greifer, 2021). We diagnosed the balance using the 

standardized mean differences (SMD) as suggested by Schleicher et al., (2019), Zhang et al. 

(2018), and Stuart (2010). A better balance with few large numbers will yield less bias in treatment 

effect estimates; SMD values of < 0.25 were used as acceptable balance for treatments and controls 

(Stuart et al., 2013). 

SMD =     
𝑋𝑋₁−   𝑋𝑋₂

�(𝑆𝑆12+𝑆𝑆22
2

)/2
                                                                                (2) 

where X̅₁ and X̅₂ are sample means, while 𝑆𝑆12 and 𝑆𝑆22 are sample variance for both the treatments 

and controls. 

 

 3.3.5 Evaluating the impact of mining on deforestation and degradation over time and across 

various buffer intervals.  

I evaluated the amount of forest lost and the expansion of degraded forest in the treatment and 

control locations, with the hypothesis that control locations are unaffected by mining as indicated 

by Sonter et al (2017), hence the counterfactual. The GFC and the TMF datasets were used, both 

were generated from Landsat images at medium spatial resolution of 30 metres and suitable 

temporal resolutions. Even though the GFC dataset had some temporal discrepancies, it is still a 

good dataset for measuring deforestation due to its good spatial resolution (Palahi et al., 2021). 

The forest degradation layer of the TMF dataset (DegradedForest) was used, which encompasses 

the closed evergreen forest area that has been temporarily disturbed by anthropogenic activities. 

The paired matched points were utilised to create buffer rings at 1 km intervals for distances of 1 

to 10 km radius from the centroid of the points; these buffer rings were used to measure forest loss 

and degradation at various distances from the points. Using the Google Earth Engine (GEE) open-
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source tool, both the tree cover for the baseline year (TC_2000) and the annual forest loss were 

extracted from the GFC dataset for 2001 to 2020, for individual buffer rings for the treatments and 

controls (Table S1). The 10% tree canopy cover threshold was adopted as the average for the study 

area to balance the disparity in national forest definitions by the various countries in the SSA 

region (FAO, 2010). 

The forest layers of the TMF dataset have different labelling from that of the GFC dataset, 

however, the aggregation of three layers of the TMF dataset (degraded forest, forest regrowth, and 

undisturbed forest) for the year 2000 can be equated to the tree cover 2000 (TC_2000) layer of the 

GFC dataset, considering the 10 % tree canopy cover for an area >0.5 ha and height of >5m. These 

buffer rings were used to extract the forest cover for the baseline year from the TMF data and 

subsequently extracted annual deforestation and degraded forest from 2001 up to 2020 for both 

treatments and controls using the same buffer rings generated above for analysis and comparison 

with the GFC dataset. 

Using the TMF dataset, we calculated the actual amount of forest that was degraded annually for 

the treatment and control locations to analyse the extent of forest degradation. This was done by 

subtracting the degraded forest value of the preceding year from the degraded forest value of the 

current year. Specifically, the formula used was: 

Xa year = (Xd year - Xd year -1)                                                  … (3) 

Xa year =  actual degraded forest in year X,  

Xd year =  degraded forest value in current year, 

 Xd year -1 = degraded forest value in the previous year. 

For instance, the actual degraded forest for 2002 was determined by subtracting the degraded 

forest value in 2001 from the degraded forest value in 2002. To assess the normality of the data, a 

normality test was performed, and the obtained p-value was < 0.05 for both control and treatment 

locations. This indicates that the data is not normally distributed. Therefore, the Mann-Whitney U 

test statistical technique, which is most suitable for analysing non-asymmetric data, was 

implemented.  
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The test was used to evaluate whether there is a significant difference in forest loss and the 

deforestation + forest degradation between the control and the treatment locations. The null 

hypothesis (H₀: there are no significant differences in forest loss/ degradation between the controls 

and treatments). The p-value was compared to the significance level of 0.05 to either accept or 

reject the null hypothesis. 

 

Regression model (Generalized additive model)  

To analyse the relationship between mining and deforestation, the Generalized additive model 

(GAM) , a likelihood-based regression model was adopted. The GAMs are useful for modelling 

non-linear relationships between variables and for handling large datasets with multiple predictors 

(Hastie and Tibshirani, 1986); the mgcv package (Woods, 2021) in R was used to fit the model. 

GAM has the ability to give a sensible prediction and confidence interval, especially considering 

the variation in the dataset used for this study due to the new mines which obviously have few 

years data. GAM was also used to model the proportion of initial forest cover that was deforested 

within the buffer rings before and after the creation of mines, and to estimate and predict the 

proportion of forest area loss in treatment locations relative to the controls for each buffer ring i.e., 

0-1 km, 1-2 km, 2-3 km, etc. I used both datasets (GFC and TMF) to identify at what distance the 

mines have a more severe impact on forest disruption and modelled the trend of loss/ changes in 

deforestation and forest degradation. In summary, a GAM is a powerful tool for forecasting future 

deforestation rates, especially when there are non-linear relationships between the response 

(deforestation) and (mining) predictor variables. By carefully collecting and analysing historical 

data, fitting a robust model, and evaluating the accuracy of forecasts, we can better understand the 

drivers of deforestation and make informed decisions about how to prevent or mitigate its impacts. 

 

3.3.6 Change in the rates of deforestation and forest degradation before and after the mine 

creation (i.e., across time) with distance from mine (i.e., across space). 

A comparative analysis of change in the rates of annual deforestation and forest degradation was 

done, by quantifying the rates of deforestation from n-years before mines were created to n-years 

after mine creation. The difference in the annual mean of both (before and after) is the change in 
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deforestation rates post-mine creation for the study area. In the analysis of all the mines (n=225), 

some mines were less than 4 years old (i.e., 1, 2 or 3 years old) making it difficult to fit them into 

the GAM model, considering the sparse data available. To address this issue, a supplementary 

analysis was conducted using the median years of the study (2009, 2010, and 2011) to create a 

subset of the data, which consisted of 51 mines, representing 23% of the total mines. The subset 

of the treatments allows for sufficient data (i.e., ∼10 years before/after) and a better understanding 

of whether the rates of deforestation have increased significantly after the creation of the mines. 

The datasets used in the study were non-normally distributed (with a p-value < 0.05), this means 

that the data did not conform to the normal distribution pattern. To test whether there were 

significant changes in forest loss or degradation after the creation of mines, I employed a non-

parametric test (Mann-Whitney U test), to compare two groups of data to determine whether there 

is a significant difference between them. The null hypothesis (H₀) states that there are no 

significant changes in forest loss or degradation after the creation of mines. In this context, if the 

p-value obtained from the Mann-Whitney U test is greater than 0.05, then the null hypothesis 

would be accepted, indicating that there is no significant difference between the rates of forest loss 

or degradation before and after mine creation. Conversely, if the p-value obtained is less than 0.05, 

then the null hypothesis would be rejected, suggesting significant changes in forest loss or 

degradation after the creation of mines. 

 

3.4 | Results 

3.4.1 Impacts of mining on total deforestation and forest degradation. 

Deforestation in the controls versus treatment locations (GFC). The analysis conducted on 

deforestation for the two decades revealed that there was a cumulative loss of 1,210,600 ha of 

forest cover within the sum of the 0-10 km buffers from the matched treatment plus control points 

using the GFC dataset. The study found that the cumulative deforestation recorded at the treatment 

locations was 726,887 ha (Figure 3.2A), indicating a loss of 12.6% of the total tree cover within 

the treatment  buffers. On the other hand, the cumulative forest loss within the control buffers was 

427,699 ha (8% of the tree cover 2000). The results showed that net deforestation was significantly 

higher in the treatment locations compared to their matched controls,  the average annual rate of 
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deforestation was 3,231 ha in the treatment locations versus 2,149 ha in the matched control 

locations (Figure 3.2B, W = 19297, p-value = 0.00001297. Therefore, the null hypothesis was 

rejected (H₀: there are no significant differences in forest loss in the controls and treatments) and 

it was concluded that there was a significant difference in deforestation between the controls and 

treatments in the period under review.  

The subset analysis, focusing on the 51 mines created between 2009-2011 revealed that the average 

annual rate of net deforestation in the treatments from the time of mine creation to 2020 was 3,213 

ha, while  the control locations had an average net deforestation of 1,755 ha. Further analysis of 

the median deforestation values for both the treatments and controls showed a significant 

difference with the treatments having a median deforestation of 2,408 ha this differs significantly 

from the median deforestation of the controls which was 1,158 ha (Figure 3.2C, W = 807, p-value 

= 0.0009686). The null hypothesis was also rejected since the p-value < 0.05, which means that 

there was a significant difference in deforestation between the controls and treatment locations. 
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Figure 3.2 

The impacts of mines on deforestation in sub-Saharan Africa from 2001 to 2020. Plots showing the cumulative forest 

loss in controls and the treatment locations using the GFC dataset, deforestation (A) and   the mean and median loss/ 

change for all the 225 mines and their matched controls (B). While plot Cis the mean and median of the subset analysis 

of 51 mines (Mann Whitney U-Test p-value < 0.05). 

Proportion of forest area deforested through time in the treatment locations within the 10 

km buffer (GFC). Here, the proportion of forest area that was deforested over time in the 

treatment locations within the 10 km buffer was analysed and modelled using the GAM. This was 

achieved by dividing the annual net deforestation by the total forest area in the buffer as shown in 

Figure 3.3, the proportion of forest area deforested for most mines at -10 years since mine creation 

was < 0.1, while at 0 years it was 0.1and > 0.25 at 15 years and above in most of the treatments. 
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However, at the same time there were mines who recorded negative losses (forest gain) through 

the years post mine creation.  

 

Figure 3.3 

 Proportion of buffer forest cover deforested (GFC). GAM plot for estimated proportion of forest area deforested 

through time (years before and after mine creation) within a 10 km buffer of treatment locations, the black lines refer 

to the 225 mines and the red horizontal line represents the fitted GAMs at the confidence intervals.   

 

 

Proportion of initial forest cover deforested (GFC). Estimating the proportion of initial forest 

cover deforested in the treatment locations relative to the controls for the periods of 5 years pre-

mine creation up to 10 years post-mine creation, using the GFC dataset revealed that the proportion 

of initial forest cover (treecover_2000) deforested at 5 years pre-mine creation was 1.8%, 0.4%, 

and -0.1% at the 0-1 km, 1-2 km, and the 9-10 km buffer rings, respectively (Figure 3.4A). At the 

year of mine creation, the proportion deforested was 5.8 % at the 0-1 km buffer ring and it declined 

further down to 0.7% at the 9-10 km buffer ring (Figure 3.4C). In comparison, during the 5 years 
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post-mine creation it was observed that within the 0-1 km buffer ring the proportion of 

deforestation was 13.5%, the 1-2 km buffer ring was 8%, and it was 5% at the 2-3 km buffer ring. 

Thereafter, the severity of deforestation declined to a rate of 3% at the 3-4 km buffer ring and then 

stabilised to a rate of < 3% between the 4-5 km and 9-10 km buffer rings (Figure 3.4E).  At 10 

years post-mine creation, the proportion of initial forest cover deforested stood at 17%, 8%, and 

4% at the 0-1 km, 1-2 km, and 5-6 km buffer rings, respectively, the trend remained at 3% from 

the 6-7 km to the 9-10 km buffer rings (Figure 3.4G). The GFC dataset revealed that there was 

substantial loss/ change of forest cover in the treatments relative to the controls, in most cases 

deforestation decreases with an increase in distance from the treatment locations at 95% 

confidence interval.  

Proportion of initial forest cover deforested + degraded (TMF). Using the TMF dataset it 

showed that the proportion of initial forest cover deforested + degraded at 5 years pre-mine 

creation was 0.04% to 0.01% from the 0-1 km buffer ring up to the 9-10 km buffer ring (Figure 

3.4B). The changes at the year of mine creation were not significantly high as the proportion of 

change was 0.1% at the 0-1 km buffer ring; this declined to 0.05% at the 2-3 km buffer ring and 

declined steadily to 0.03% at the 9-10 km buffer ring (Figure 3.4D). The changes that occurred 

post-mine creation were not substantial, as the proportion of change at 5 years post-mine creation 

was 0.18% at the 0-1 km buffer ring; this declined to 0.1% at the 2-3 km buffer ring and declined 

further at the 9-10 km buffer ring to 0.08% (Figure 3.4F). After 10 years of mine creation, the 

proportion of forest cover that were deforested + degraded was 0.22% at the 0-1 km buffer ring 

and declined further down to 0.08% at the 9-10 km buffer ring (Figure 3.4H).  The TMF dataset 

showed no significant change in deforestation + degradation from the periods before mine creation 

versus post-mine creation at 95% confidence intervals. 
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Figure 3.4 

 Proportion of initial forest cover deforested/ degraded relative to control (%) [GFC and TMF]. Plots from the 

GAM regression for 5 years pre-mine (A, B), year of creation (C, D) and 5 years post-mine creation (E, F), and 10 

years post-mine creation (G, H) within the 0-1 km, 1-2 km, …, 9-10 km buffer rings in SSA from 2001 to 2020. We 

used the GFC dataset (A, C, E, G) to estimate the proportion of initial forest cover deforested pre and post mine 

creation in SSA, and the TMF dataset was used to estimate the proportion of forest cover deforested + degraded over 
the same period (B, D, F, H). The error bars represent the 95% confidence intervals of the estimated proportion of 

initial forest cover loss/changed (derived from the upper and lower CIs of the buffer rings), the dotted line marks the 

reference points and the values below zero indicate a negative forest cover loss/ change (i.e., forest gain).  
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3.4.2 Change in rates of deforestation and forest degradation before and after the mine 

creation (i.e., across time) with distance from mine (i.e., across space). 

The rates of deforestation before and after mine creation (GFC). The annual rates of 

deforestation were calculated and compared for before and after mine creation using the GFC 

dataset. The results showed that the mean annual rate of deforestation before the commencement 

of mining operations was 1,058 ha, the forest loss doubled to 2,172 ha post mine creation (Figure 

3.5A, W = 32042, p-value = 1.072e-06). The statistical analysis suggests that the creation of mines 

is responsible for the increment in the rates of deforestation in the treatment, thereby rejecting the 

null hypothesis (H₀).        

Here, I calculated and compared the rates of deforestation before and after mine creation, using 

the GFC dataset and the subset of mines (n=51) that were created in the median years of the study. 

The results showed that the average annual deforestation in the treatments before mines were 

created was 831 ha compared to the mean of 2,100 ha after mine creation (Figure 3.5B, W = 1934, 

p-value = 2.27e-05). The statistical analysis confirms that the creation of mines has caused more 

deforestation in the treatment locations as shown above, thereby the null hypothesis (H₀) was 

rejected. 

The rates of deforestation plus forest degradation before and after mine creation (TMF). 

Rates of annual mean loss/change in deforestation + forest degradation before and after mine 

creation revealed a significant increase after mine creation from an average of 1,159 ha pre-mine 

creation to an average of 2,186 ha afterwards (Figure 3.5C). The result was validated using the 

Mann-Whitney U test to test (W = 22177, p-value = 0.02251), which indicates that the null 

hypothesis (H₀) should be rejected. Therefore, it can be inferred that there is a significant change 

in the rates of deforestation plus forest degradation after mine creation.  

Analysis of the subset of mines (n = 51) that were created between 2009-2011,showed that the 

annual mean rate of deforestation + forest degradation was 1,200 ha before the creation of mines 

and 1,605 ha post mine creation. The statistical analysis showed that the p-value > 0.05 at 95% 

C.I. (Figure 3.5D, W = 1335, p-value = 0.8197) therefore the null hypothesis was accepted, 

contrary to the result in Figure 3.5C using the 225 mines.         
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Figure 3.5 

Change in rates of deforestation and deforestation + forest degradation before and after the mine creation. 

Plots showing the difference in the annual mean rates of deforestation before and after the creation of mines in sub-

Saharan Africa from 2001 to 2020. The metrics calculated were the rates of deforestation before and after mine 

creation using the GFC dataset (A, B), using the TMF dataset. I computed the rates of deforestation + degradation (C, 

D) before and after mine creation. I analysed for all the 225 mines (A, C) and the subset for the mines (n=51) created 

at the median years of the study (B, D). 

 

 



76 
 

3.5 | Discussion 

This study aimed to compare the secondary effect of mining on deforestation and forest 

degradation by matching treatments versus controls and analysing the rates of loss before and after 

the creation of mines within two decades. Here, I used covariates which are established to either 

cause or aid deforestation and forest degradation by proxy and are homogeneous in both the 

treatments and matched control locations of the study region. This drew similarities to previous 

studies  i.e., Sonter et al. (2017), who quantified the extensive deforestation driven by mining in 

the Brazilian Amazon, Andam et al. (2008), who assessed the effectiveness of protected area 

networks in reducing deforestation and Davis et al. (2020), who assessed the Tropical Forest loss 

enhanced by large-scale land acquisitions. The cumulative forest loss  for the treatments versus the 

corresponding controls were compared side by side, the results showed that the impact of mining 

extends beyond the immediate footprint of the mines to a distance of up to 10 km. The outcomes 

of the analysis derived from the GFC dataset revealed a total difference of 302,291 ha in 

deforestation between the treatment locations versus controls locations. Using the TMF dataset, a 

cumulative change of 1.02 million ha was recorded in deforestation + degradation between 2001 

to 2020, out of which 55% occurred within the treatment locations. However, this study was 

restricted to mines established post-2000 due to the unavailability of reliable forest cover data for 

the study region pre-2000.    

The annual average deforestation rates in the study locations increased by 83% post-mine creation 

compared to 1,318 ha pre-mine creation (GFC). At local scale, there was a cumulative 

deforestation of 7,880 ha at the Akyem mine in Ghana and 53% of this was lost in the 7 years post-

mine creation, which was similar to the figure by World Bank (2019). The trend was similar using 

the TMF dataset, where the rate increased by 34% post-mine creation, these significant losses, and 

changes in forest cover throughout Central Africa confirms the existence of the impacts of mining 

on forest loss as observed by Sonter et al (2017). Forest cover loss/ change in the treatments were 

marginally higher compared to control using the GFC dataset. For instance, the proportion of loss 

at 5 years pre-mine creation ranged between -1% to 1.8% within the 0-1 km up to the 9-10 km 

buffer rings. This is similar to the trend recorded in the DRC from 2005-2010 (Potapov et al., 

2012). However, these changed drastically after mine creation, within the 0-1 km buffer ring the 
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proportion of loss was 13.5% and 17% at 5- and 10-years post-mine creation, respectively. 

Deforestation dropped to about 3% at the 9-10 km buffer ring for post-mine creation years, an 

indication that forest loss declines with an increase in buffer ring distance. 

TMF dataset showed that between 2006 and 2010 deforestation was 73% of the total forest change 

(deforestation + forest degradation). However, from 2016 to 2020 there was a reversal in the 

inclination of change, as 62% of the disruption was recorded as degraded forest. Although there 

was a decline in the annual mean rates of change (forest degradation) in a few treatment locations 

towards the end of the study period, this was as a result of transformation of those areas into 

deforested land after 2.5 years of observation as degraded forest (Vancutsem et al., 2021). This is 

an indication that existing mines will continue to cause forest degradation at a higher proportion 

than deforestation, as has been recorded at individual mines previously i.e., Teberebie mine in 

Ghana and mine and Twangiza Mine in the Democratic republic of Congo. Matricardi et al 2020, 

also reported that the area affected by forest degradation is now greater than deforestation in the 

Brazilian Amazon. 

3.5.1 Impacts of mine expansion on forest conservation   

One-fourth of Earth’s functional mines are located within a 10 km radius of protected or 

conservation areas globally (Hund et al., 2013). The findings of this study revealed there was a 

surge in deforestation within one to three years after the creation of mines, especially those created 

after 2008 which corresponds to the global financial crisis (Grant & Wilson, 2012; Megevand, 

2013). The expansion and establishment of mines have severe consequences on conservation and 

ecological integrity of forests and the environment more broadly (Davis et al., 2020). Furthermore, 

the observed increase  in the average rates of deforestation in SSA between 2008 and 2012 aligns 

with the result of Turubanova et al., (2018) who also recorded a peak deforestation in the DRC in 

2010.  

The mining industry in Africa attracted huge investments at the beginning of the millennium and 

increased immensely after the 2008 global financial crisis (Alvarez-Berrios & Mitchell Aide, 

2015). In 2018 alone, the region produced minerals worth a staggering $350 billion (Republic of 

Austria, 2020). It is noteworthy that the results of recent studies indicate that forest loss in the 

region reached its peak in 2017, with the results from this study showing a loss of 73,161 ha in 
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that year. These financial inflows thus have negative consequences on the forest and biodiversity 

conservation in SSA, as a result of heightening expansion of mines into forested land and 

development of mining supporting infrastructure, such as roads, rail, seaports, housing, and other 

support services (Hund et al., 2013; Chakravarty, Ghosh, & Suresh, 2011).  

In SSA, a variety of roads and railways are currently under construction to connect the mines to 

industries and seaports that are situated several kilometres away (Laurance et al., 2009; Weng et 

al., 2013). For instance, the Lobito Road corridor, which is a significant transportation network in 

Central Africa. This corridor connects the copper belt region of the DRC and Zambia to the seaport 

in Lobito, Angola, cutting through the vast tropical forest (AfDB, 2017; Weng et al., 2013). The 

associated ‘secondary’ deforestation as a result of mining activities is of great concern,  particularly 

since mine owners are inclined to negate responsibility for such disruptions. This issue poses 

significant threats to the ecological stability and sustainability of the environment in Sub-Saharan 

Africa. 

3.5.2 Role of Monitoring and Conclusions  

The study illustrates a core role for the application of geo-spatial techniques and utilisation of 

available data to quantify deforestation and forest degradation spatially explicitly in the Afrotropic. 

The study has added to the prior literature in the application of matching techniques to compare 

changes in the forest landscape among treatments and controls, unlike others who only quantified 

deforestation in the mining locations (Merem et., al 2017; Nunda 2013) without comparing them 

to controls. Mines for all types of commodities were also covered here, unlike previous studies 

who looked at deforestation caused by a single commodity (e.g., gold; Alvarez-Berrios & Mitchell 

Aide, 2015; Swenson et al., 2011). A major remaining question is how the type of commodity 

mined alters deforestation or forest degradation, which may be expected given that different 

commodity classes (e.g., low-value, high-bulk vs high-value, low-bulk) require different 

infrastructures (Werner et al., 2019). This assessment was also a major advancement because it 

included the use of two high-resolution satellite products (the GFC and the TMF). This approach 

can guide the monitoring, reporting, and verification of forest changes and carbon loss studies, and 

in the study of other drivers of deforestation. 
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In conclusion, this study demonstrates that mining-induced deforestation is a major conservation 

concern. Given the scale of the problem, it is essential to strengthen environmental and mining 

laws in sub-Saharan Africa, which will go a long way in curbing deforestation and forest 

degradation in the region. However, this may be a tough task for governments, considering their 

reliance on minerals mining for revenues. Forest restoration efforts need to be intensified by the 

authorities upon the mining operators after the abandonment of mining sites. Such restoration 

activities would kick-start the long-term process of forest regeneration provided former mining 

areas are protected from other anthropogenic activities that tend to follow abandoned mining sites 

e.g., agriculture, tourism, logging etc. It is therefore crucial for governments and other stakeholders 

to work collaboratively towards sustainable mining practices and forest conservation in Sub-

Saharan Africa. 
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Chapter 4: How different mined commodities impact deforestation 

and forest degradation in sub- Saharan Africa 

 

 

4.1 | Abstract 

The demand for minerals in sub-Saharan Africa (SSA) is driving deforestation and forest 

degradation, however the effect of mining on the forest varies by commodities mined. 

Therefore, it is imperative to quantify the specific impact caused by different commodities 

mined in SSA, focusing on mining hotspots where the density of mines exceeds 12 within a 100 

km radius. The 5 key commodities analysed in this region are copper, diamond gold, iron-ore, 

and limestone. The correlation between commodity type and the rates of deforestation was 

investigated by matching treatments and controls and using a paired t-test. The generalised 

additive model (GAM) was utilised to examine both pre-mine and post-mine creation scenarios. 

Results from the global forest change (GFC) dataset showed that gold mines had caused 

246,420 hectares of deforestation within the 10 km buffer zone, and copper mines were 

responsible for the deforestation of 172,751 hectares. The tropical moist forest (TMF) dataset 

showed a change of 58,216 ha of deforestation plus forest degradation around the mines for 

copper within the 10 km buffer zone, compared to 9,795 ha in the matched controls. The global 

demand for minerals will continue to drive deforestation and forest degradation, especially the 

mines for key minerals. It is crucial for mineral excavation to be conducted in a sustainable and 

ecologically viable manner, with industries responsibly sourcing minerals to minimize or 

eliminate their impact on forests. 
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    4.2 | Introduction 

The extraction of minerals and metals through mining is the source for almost all the raw 

materials used for production globally (ICMM, 2014). Mining of the Earth's mineral resources 

continues to drive the global economic growth directly and indirectly (Ranjan 2019). In sub-

Saharan Africa (SSA), mining is a significant source of income for governments and a means 

of livelihood for many of the populace in the region (Janneh & Ping, 2011). According to 

current state of knowledge, about 30% of global mineral resources are located within the 

African continent (USGS, 2018) the Afrotropic is prominent for its occurrence of several 

minerals in abundance (Edward et al., 2014), such as precious minerals, metals, and other 

industrial commodities [e.g., bauxite, gold, gemstones, copper,  tin, and iron-ore etc.] which 

can be found in large quantities and in good quality. Mining in the region is dominated by both 

the large-scale mine operators (LSM), as well as the artisanal and small-scale mines (ASM) 

(Taylor et al., 2009) depending on the commodity. Despite its economic importance, mineral 

extraction generates direct or indirect negative impacts on the environment and the forest in 

particular.  

Over the past two decades, there has been a significant increase in the demand for minerals on 

a global scale (Hammarstrom et al., 2006; World bank, 2019).  This  may be connected to the 

rapid industrial and technological growth worldwide, as well as the associated demand for the 

relevant minerals to power these emerging sectors (Chatham House, 2020). In fact, there 

remains a large gap in the supply of minerals for various industries, with metals such as copper 

and iron being identified as key energy transition metals (ETMs) which are predicted to be in 

high demand as low-carbon energy technologies  continue to emerge (Lèbre et al., 2020). 

Despite efforts to promote resource efficiency through recycling and reusing of metals and their 

associated products. These actions remain very inadequate in reducing the demand for mineral 

commodities and move towards a more sustainable and circular production (Ali et al., 2017; El-

Mahallawi and El-Raghy, 2013).  

Investments in mining have also increased substantially in the SSA region over the past two 

decades (Republic of Austria, 2020), with projections indicating that there will be even more 

finances for the sector in the nearest future (Barazi et al., 2017; Weng et al., 2014). As a result, 
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it is imperative to examine the impact of mining on the environment, especially the forest, which 

is most often affected by mining activities. 

The presence of significant deposits of some important minerals in close proximity of the 

critical forest landscapes poses a considerable risk of deforestation and forest degradation 

(Devenish, 2022; Maddox et al., 2019). This combination of factors contribute to approximately 

10-15% of carbon dioxide emissions in the tropics (Nakakaawa et al. 2011), as well as causing 

biodiversity loss (Edwards et al. 2014; Boadi et al., 2016). In the past two decades, it was 

reported that the mining industry has expanded remarkably into biodiversity-rich ecosystems, 

exacerbating direct and indirect forms of deforestation and forest degradation (Luckeneder et 

al 2021).  

Recent analyses have revealed the  alarming extent of deforestation caused by mining activities 

in sub-Saharan Africa (SSA). Within a 10 km buffer zone around mine footprints, a total of 

726,887 ha of forest have been lost due to 225 mines in the region (Chapter 3). However,  the 

approach of using a matching protocol that contrasts mine locations with control locations 

reveals that mining activities have driven an additional 243,174 ha of deforestation above the 

controls using the GFC dataset. Analysing the impact of mining on deforestation beyond its 

immediate precinct (so called, ‘secondary’ impacts of mines), revealed that 93% of the 

deforestation occurred beyond 2 kilometres from the mines.  

The impacts of mining on the environment and especially on forestlands varies considerably 

among the minerals being mined (World bank, 2019), especially in terms of the secondary and 

cumulative impacts of mining via infrastructural developments, population immigration, and 

associated development. In the SSA region, mining of the low-value high-bulk commodities 

such as iron-ore, copper, and bauxite are done at industrial-scale by the LSM operators, as these 

mines require the construction of major infrastructure for operation to commence. For example, 

the Vale mine in Mozambique extended and completed the construction of a 912 km railway 

which traversed through the tropical forest from the Moatize mine to Nacala port, for the export 

of minerals and other commodities. However, mining of the low-bulk high-value commodities 

attracts both the LSM and ASM operators. The proliferation of informal (sometimes referred to 

as ASM) miners in the SSA region is very worrisome to conservation, as the locations for 

mining of high-value commodities are easily accessible by footpaths. For instance, gold and 
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diamond often attract large numbers of such miners, for example, the Geita mine in Tanzania 

attracted over 35,000 workers (mostly ASM) between the year 1987 and 1997 (Merket, 2019). 

It is thus imperative to analyse the differential impacts of mined commodities on deforestation 

and forest degradation. 

In order to comprehensively examine the varying impacts of commodity extraction on 

deforestation and forest degradation in sub-Saharan Africa, a detailed assessment was 

conducted, encompassing spatio-temporal (before and after) dimensions. The study primarily 

focused on the five crucial commodities mined within the Afrotropic region, as outlined by 

Ahmed et al. (2020): namely, gold, copper, diamond, limestone, and iron-ore. To facilitate a 

rigorous analysis, a matching protocol was employed, following the established methodology 

outlined in Chapter 3, which entailed comparing the extent of forest loss or changes in the 

treatment areas with their corresponding matched controls. 

The following interconnected objectives were tackled: (1). Identify the key commodities being 

mined and delineate their spatial distribution across the sub-Saharan African landscape. This 

preliminary step provided essential insights into the geographical patterns and concentrations 

of mining activities pertaining to each specific commodity; (2). Evaluate and quantify the 

magnitude of deforestation and forest degradation directly attributed to the extraction of each 

individual commodity, in comparison to their respective matched controls. This rigorous 

assessment allowed for a comprehensive understanding of the distinct environmental impacts 

associated with the mining operations for different commodities; (3). Assess the temporal 

dynamics of deforestation and forest degradation. Specifically, the investigation aimed to 

analyse and compare the rates of these detrimental processes before and after the establishment 

of mines at varying buffer distances from the mining sites. By examining temporal changes, the 

study aimed to ascertain the specific effects of mine creation on the surrounding forested areas 

over time. 

By pursuing these comprehensive objectives, the study aimed to shed light on the intricate 

relationship between commodity extraction and the associated environmental consequences 

(deforestation and forest degradation), ultimately contributing to a more nuanced understanding 

of the challenges and implications posed by mining activities in sub-Saharan Africa. 
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4.3 | Data and Methodology 

4.3.1 Scope and limitation 

 

 The study focused on analysing the extent of deforestation and forest degradation specifically 

attributed to different commodities within the Afrotropic region between 2001 and 2020. The 

scope of the study was confined to mines situated within or in close proximity to the Afrotropic 

region, considering the unique ecological and geographical characteristics of this area. By 

narrowing down the study to this specific area, it was aimed to provide a more localized and 

contextually relevant understanding of the environmental consequences associated with mining 

operations. Furthermore, the study was also limited to mines that were created post 2000. This 

temporal restriction was imposed due to practical constraints, such as the limited availability of 

reliable geospatial data with sufficient resolution for mines created prior to 2000 in the sub-

Saharan Africa (SSA) region. 

 

4.3.2 Data 

 

The freely available high-resolution global forest change (GFC) dataset developed by Hansen 

et al (2013) was utilised for the analysis of deforestation patterns. To assess deforestation + 

forest degradation, the tropical moist forest (TMF) dataset from Vancutsem et al (2021) was 

employed. . The sub-Saharan Africa mine database compiled by Ahmed et al (2020) provided 

the necessary mines for the analysis. To extract  forest cover and forest loss/ change statistics 

from the GFC and TMF datasets, this research leveraged on the capabilities of the Google 

Earth Engine (GEE) platform. For statistical analysis and modelling purposes, we utilized R 

(version 4.2.1), a widely used programming language and software environment. 

Additionally, we employed ArcGIS 10.7, a comprehensive geographic information system 

(GIS) software, for proximity analysis and mapping of mining hotspots. This approach 

allowed me to investigate the specific contributions of different commodities and mining 

operations to environmental changes in this area, while considering the unique ecological and 

geographical characteristics of the region. 
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It is important to note that the availability and utilization of reliable geospatial data prior to 

the year 2000 posed practical challenges for the study. Therefore, the  analysis was focused on 

mines established after the year 2000 in the sub-Saharan Africa (SSA) region, where adequate 

and trustworthy data were accessible. By setting this temporal restriction, it was aimed to 

ensure the accuracy and reliability of the findings while acknowledging the limitations 

imposed by data availability. 

 

4.3.3 Study Area 

The sub-Saharan Africa region, encompassing 37 countries, spans a vast area of 2,025 million 

hectares (Figure 4.1). Within this expansive region, it boasts the second largest tropical 

rainforest in the world, covering approximately 64% of the sub-Saharan Africa (SSA) territory, 

as documented by Potapov et al. (2012). This remarkable expanse of lush rainforest contributes 

significantly to the region's ecological diversity and global carbon sequestration efforts. Apart 

from its rich natural resources, the sub-Saharan Africa region is known for its abundance of key 

mineral deposits, as highlighted by Edwards et al. (2014). These minerals play a crucial role in 

various industries, driving economic activities such as agriculture, mining, timber production, 

fishing, and more. However, alongside the potential economic benefits, the extraction and 

exploitation of these minerals have had significant ramifications for the region. 

Unfortunately, the sub-continental region has recently gained notoriety due to its involvement 

in armed conflicts, often triggered by the presence of valuable minerals in the affected areas. 

The study conducted by Butsic et al. (2015) sheds light on this disturbing trend. These conflicts, 

driven by the allure of high-value minerals, have not only ravaged mining communities but also 

spilled over into non-mining areas, resulting in widespread violence and instability. The 

devastating consequences of these conflicts extend far beyond immediate casualties and 

destruction. They have detrimental effects on political stability and impede economic 

development, exacerbating the already precarious socio-economic conditions prevalent in the 

region. As a result, the sub-Saharan Africa region finds itself among the most impoverished 

regions globally, grappling with persistent economic hardships that hinder progress and quality 

of life for its inhabitants. 
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Figure 4.1 
 

Map of the study region showing mining locations for the 5 key commodities mined (copper, diamond, gold, iron-ore, 

and limestone), and the ecological zones of sub-Saharan Africa. 
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Table 3.  Commodities and number of mines in SSA 

                   Commodity       Number of mines 

Bauxite 6 

Limestone 22 

Coal 4 

Cobalt 2 

Copper 39 

Diamond 27 

Gemstone 1 

Gold 78 

Graphite 2 

Iron-ore 20 

Phosphate 1 

Manganese 4 

Nickel 3 

Petroleum 6 

Lithium 2 

Tantalum 2 

Tin 1 

Titanium 2 

Uranium 1 

Zinc 1 

Mineral Sands 1 

          

 

4.3.4 Matching and post-matching analyses 

Matching was applied, in the assessment of commodity induced deforestation and deforestation 

+ forest degradation, by comparing the losses and changes occurring in mining and non-mining 

locations. Matching is a suitable statistical tool for causal inference (Imbens, 2004; Stuart, 

2010) and in conservation studies (Schleicher et al., 2019). I matched locations with mines 

(treatments) to corresponding locations that do not have mines (controls) but have the same or 



98 
 

very similar characteristics and environmental variables. The variables used are homogeneous 

in the study region and are suitable for studying forest disruptions as shown in previous studies 

(Andam et al 2008) and chapter three of this research. These variables include:  (a) elevation 

derived from the digital elevation data at 225 m spatial resolution (GMTED2010, from the 

USGS); (b) vegetation cover from the vegetation continuous fields (VCF, from MODIS) for the 

year 2000 at 250 m spatial resolution from (DiMiceli et al., 2015); (c) population density, using 

the 1 km Gridded Population of the world density for year 2000 (CIESIN, 2018), (d) 

topographic positioning index (TPI), and (e) the topographic wetness index (TWI), both indices 

were derived using the digital elevation data in QGIS 3.18. 

 

Post-matching statistical analysis. 

To assess the differences in total deforestation and deforestation plus forest degradation 

between the treatment and control groups for each commodity, I conducted statistical tests. 

Specifically, I employed the paired t-test to determine if there was a significant difference in 

total loss/change between the treatment group and the matched controls. My hypothesis, 

denoted as Ho, stated that there would be no difference in the mean values between the 

treatments and controls. Furthermore, I utilized the analysis of variance (ANOVA) statistical 

technique to examine whether there were any significant differences in the amount of extra 

deforestation caused by commodities compared to the control group. The null hypothesis (Ho) 

in this case was that there would be no significant difference between the means of the variables 

(control vs treatment) concerning extra loss/change. In addressing the second objective, which 

involved examining the rates of loss/change before and after mine creation, I employed a 

generalized additive model (GAM). This model enabled me to investigate whether the rates of 

deforestation varied over time and space for the different commodities.  

By employing these statistical methods, I aimed to determine the presence of significant 

differences in deforestation and forest degradation between the treatment and control groups. 

These analyses allowed me to assess the impact of different commodities and mining operations 

on the environment, providing valuable insights into the rates and patterns of deforestation in 

relation to time and spatial factors.  
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4.3.5  Identifying the key commodities, their spatial distribution, and mining hotspots in SSA. 

The database of mines from Ahmed et., al 2020, was utilised to identify the types of 

commodities being extracted in the study area. Based on the number of mines per commodity 

and the extent of deforestation and forest degradation associated with these commodities, the 

key commodities were identified. This was achieved by considering two factors, firstly, the 

number of mines per commodity, which indicated the level of mining activity for each specific 

commodity. Commodities with a higher number of mines were given more weight in the 

analysis. Secondly, the size of deforestation and forest degradation associated with each 

commodity. The spatial distribution of mines helped in identifying the mining hotspots in the 

study area. This information helped in understanding the environmental impact of the mining 

activities and prioritize the commodities that had the greatest contribution to deforestation and 

forest degradation.  

 

4.3.6  Evaluate and compare the amount of deforestation and forest degradation caused by 

each commodity mined versus their matched controls. 

To conduct this evaluation, the analysis was narrowed down to the mines for the key 

commodities identified above.  Then assessed the deforestation and forest degradation around 

these mines. The total losses and changes from 2001 to 2020 at 4 km, and 10 km buffer distances 

were calculated, the choice of buffer distances was based on previous findings in the study 

(chapter 3), it showed that impact of mining on deforestation is more severe within 0 to 4 km 

distance from the mines. Additionally, the study set a limit of a 10 km buffer for this particular 

analysis. The GFC and TMF datasets were used to analyse and compare the difference in forest 

change between the control and treatment locations for each commodity, i hypothesised that 

commodity type is not responsible for forest disruption if the means of both variables (treatment 

and control) are equal we should accept the null hypothesis (H₀) when p-value > 0.05. 

 

4.3.7  Difference between the amount of extra deforestation and forest degradation caused by 

individual key commodities (relative to control). 

The differences in the extra deforestation and forest degradation caused by individual 

commodities were calculated by subtracting the total changes in forest cover observed in the 
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control areas from the total changes observed in the treatment areas within the 4 km and 10 km 

buffers around the mines. The mean of these differences were then computed, this provided an 

average measure of the additional impact caused by each commodity relative to their control 

areas. To assess the statistical significance of these means, the analysis of variance (ANOVA). 

ANOVA was employed as a statistical test to determine whether these differences were 

statistically significant or simply due to random variation. The statistical significance of the 

means provides insights into whether the additional deforestation and forest degradation caused 

by individual commodities were significantly different from the control areas. This analysis 

helps to identify commodities that have a more pronounced impact on deforestation and forest 

degradation, compared to others. 

 

4.3.8   Deforestation and forest degradation of initial forest area caused by commodity mining 

within the various buffer distances at 10 years pre-mine and post-mine creation relative to 

controls. 

Here, the rates of loss and change pre-mine and post-mine creation were quantified for  each of 

the five key commodities within the 4 km and 10 km buffer distances. To assess these rates, the 

GFC and the TMF datasets were utilized. In addition, the study employed the generalized 

additive model (GAM) to compute the proportion of forest area that experienced disruption 

within the buffers. This helped to estimate the proportion of forest that was affected by mining 

activities from a certain number of years before mine creation to a certain number of years after 

mine creation. This analysis provided insights into the patterns and extent of forest disruption 

caused by each commodity, considering both the pre-mine and post-mine creation periods. 
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4.4 | Results 

4.4.1  The spatial distribution of mines and the mining hotspots for the key commodities mined 

in SSA. 

In this study, the focus here was on the spatial distribution of mines and mining hotspots for 

key commodities in Sub-Saharan Africa (SSA). It began by identifying the number of mines 

associated with each of the 21 commodities listed in Table 3, as enumerated by Ahmed et al. in 

2020. The mines were then grouped according to the commodity they were associated with, I 

computed the annual deforestation and deforestation plus forest degradation within 4 km and 

10 km buffer distances from these mines. To narrow down the analysis, I selected commodities 

that had cumulative deforestation greater than 25,000 hectares from 2001 to 2020, as 

determined using the Global Forest Change (GFC) dataset (as shown in Figure 4.2a). This 

threshold was set to identify commodities that had a significant impact on deforestation and 

forest degradation. 

Out of the 21 commodities, a total of six commodities met the deforestation threshold and were 

included in the analysis. These commodities were bauxite, copper, diamond, gold, iron-ore, and 

limestone. Together, they accounted for 85% of the mines in the study area and were responsible 

for 91% of the total deforestation observed in the treatment locations during the study period. 

However, bauxite was dropped from further analysis as it had only six mines, which would not 

be suitable for statistical analyses and modelling of loss/change considering the spatial and 

temporal aspects of the study. 
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Figure 4.2 

Deforestation by commodity mined in SSA at 10 km buffers using the global forest change dataset (GFC), and    

deforestation plus forest degradation by commodity mined using the tropical moist forest dataset (TMF). 

 

4.4.2  Mining hotspots in sub-Saharan Africa 

The hotspots for mining in the study region were identified, based on the concentration of mines 

within the 100 km buffer zone. Central Africa exhibited a higher concentration of mines (>20) 

within an area of 10,000 hectares, particularly in the southern parts of the Democratic Republic 

of Congo (DRC) and the north of Zambia, known as the Central African Copperbelt 

(Luckeneder et al., 2021). These regions are characterized by a significant presence of mining 

activities. The west Africa sub-region also showed a concentration of mines (>16) within the 

defined buffer area, specifically in countries such as Ghana, Guinea, and Liberia (Figure 4.3). 

These areas have a notable number of mining hotspots, indicating the intensity of mining 

activities in those regions. Other parts of the SSA had varying numbers of mines within the 

defined buffer ranging from 3 and 15 mines.  
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Interestingly, many of these mining hotspots are located in close proximity (<100 km) of the 

Afrotropic forests, particularly the Congo and the Guinean forests. 

 This proximity suggests a potential impact of mining activities on these important forest 

ecosystems. It is worth noting that some of these mines in the identified hotspots produce 

multiple commodities, especially the metal ore mines (Maus et al., 2020). However, for the 

purpose of this study, the focus was on the main commodity or ore (by volume) being mined in 

these locations. For example, at the Kansanshi mine in Zambia, where gold, copper and cobalt 

are extracted from the same location, copper was considered as the main commodity. Figure 

4.3 illustrates the mining hotspots for the five key commodities identified in the study, 

providing a visual representation of the spatial distribution of these mining activities within 

sub-Saharan Africa. 

 

                   

Figure 4. 3 
Mining hotspots in sub-Saharan Africa, showing locations with density of >2 mines within the 100 km radius of each 

other, the colours indicate the density of mines within the designated radius with dark green having the least mines 

and dark red having the highest number of mines. 
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4.4.3   Evaluate the amount of deforestation and forest degradation caused by the key 

commodities mined versus their matched controls. 

In evaluating the amount of deforestation and forest degradation caused by the key commodities 

mined in Sub-Saharan Africa (SSA) compared to their matched control areas, the study found 

that these key commodities were responsible for a significant portion of the total deforestation 

in the region. The results of this study revealed that, the total deforestation caused by the 21 

commodities mined in SSA  from 2001 to 2020 at the 10 km buffer distance, was 726,887 

hectares as previously discussed in Chapter 3. Out of this total, the 5 key commodities 

mentioned above accounted for 86% of the deforestation. Analysing the distribution of forest 

loss by commodity using the GFC dataset, the study revealed that gold mining had the highest 

deforestation impact. Within a 4 km buffer distance, gold mining caused 46,574 ha of 

deforestation. Within a 10 km buffer distance, the impact increased to 246,420 ha. These figures 

demonstrate the significant deforestation associated with gold mining activities.  

The TMF dataset showed that, at the 10 km buffer distance, gold mining accounted for 64% of 

the total deforestation plus forest degradation, while copper mining accounted for 13% of the 

total.. The results of the analysis indicated that there were significant differences in the mean 

of the total loss/change between the control areas and the treatment areas for each commodity. 

This suggests that the mining activities had a discernible impact on deforestation and forest 

degradation. Below is the breakdown of the results from the analysis of loss/change by 

commodity for both datasets (GFC and TMF). 

 

| Copper: 

In the case of copper mining in SSA, the study found that there were significant differences in 

the amount of deforestation and forest degradation between the mining sites and their matched 

control areas. According to the analysis using the Global Forest Change (GFC) dataset, the 39 

copper mines in the study area exhibited a mean deforestation of 839 hectares (ha) per mine 

within a 4 km buffer distance from 2001 to 2020. In contrast, the corresponding control 

locations had a mean deforestation of 285 ha during the same period. The difference in 

deforestation between the mining sites and control areas was statistically significant (p-value = 

0.00000292, 95% confidence interval) (Figure 4.4A).Similarly, within a 10 km buffer distance, 
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the copper mines caused a mean deforestation of 4,429 ha, whereas the matched control areas 

had a mean deforestation of 1,761 ha. Again, this difference was found to be statistically 

significant (p-value = 0.00000108, 95% confidence interval) (Figure 4.4B). 

The analysis also considered the combined impact of deforestation and forest degradation using 

the tropical moist forest (TMF) dataset. It was found that copper mines caused a mean change 

of 7,031 ha more deforestation plus forest degradation than the control areas within a 4 km 

buffer distance (p-value = 0.0458, 95% confidence interval) (Figure 4.4C). Within a 10 km 

buffer distance, the difference increased to 48,420 ha more deforestation plus forest degradation 

caused by copper mining compared to the control areas (p-value = 0.0271, 95% confidence 

interval) (Figure 4.4D). 

 

| Diamond. 

The diamond mines in SSA resulted in a total deforestation of 14,702 hectares (ha) and 80,302 

ha within the 4 km and 10 km buffers, respectively, based on the analysis using the Global 

Forest Change (GFC) dataset from 2001 to 2020. On average, each diamond mine contributed 

to a deforestation of 544 ha within the 4 km buffer and 2,974 ha within the 10 km buffer in the 

treatment areas. In comparison, the corresponding control areas experienced a total 

deforestation of 7,388 ha within the 4 km buffer and 53,170 ha within the 10 km buffer during 

the same period using the GFC dataset. The statistical tests showed a significant result at the 4 

km buffer (p-value = 0.0009926, 95% confidence interval) and also a significant result at the 

10 km buffer (p-value = 0.024, 95% confidence interval) (Figure 4.4A and 4.4B) for 

deforestation using the GFC dataset. This suggests that the difference in forest loss between the 

diamond mining sites and the control areas was statistically significant at both the 4 km buffer 

and 10 km buffer distances. 

The analysis also considered the combined impact of the total deforestation plus forest 

degradation using the TMF dataset, the diamond mines caused a loss of 2,806 ha at the treatment 

locations compared to 11,903 ha at the control locations within the 4 km buffer. Within the 10 

km buffer, the changes were 25,562 ha for the treatments and 81,500 ha for the controls. The 

statistical tests for total deforestation plus forest degradation were statistically significant at 
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both buffer distances, with p-values of 0.035 (95% confidence interval) for the 4 km buffer and 

0.031 (95% confidence interval) for the 10 km buffer (Figure 4.4C and 4.4D). 

 

| Gold 

Gold mining in SSA resulted in significant forest losses. Within the 4 km buffer distance, gold 

mines caused deforestation of 11,038 hectares (ha), while within the 10 km buffer distance, the 

deforestation extent increased to 246,420 ha. On average, each gold mine accounted for a loss 

of 597 ha within the 4 km buffer and 3,159 ha within the 10 km buffer. The statistical analysis 

revealed a significant result at the 4 km buffer (p-value = 0.00234, 95% confidence interval), 

indicating that the difference in forest loss between the gold mining sites and the control areas 

was statistically significant (Figure 4.4A). However, at the 10 km buffer, the result was 

statistically insignificant (p-value = 0.0496, 95% confidence interval) (Figure 4.4B), suggesting 

that the difference in forest loss between gold mining sites and control areas was not statistically 

significant at this distance. 

Analysing the TMF dataset, the study found that gold mines caused a total deforestation plus 

forest degradation that was 8,269 ha higher than the control areas within the 4 km buffer, and 

61,919 ha higher within the 10 km buffer. However, the statistical tests for deforestation plus 

forest degradation were not statistically significant within both the 4 km buffer (p-value = 0.3, 

95% confidence interval) and the 10 km buffer (p-value = 0.16, 95% confidence interval) 

(Figure 4.4C and 4.4D). 

 

| Iron-ore 

The total deforestation caused by the iron-ore mines in SSA was 11,038 ha and 90,562 ha at the 

4km and 10 km buffers respectively from 2001 to 2020, the mean deforestation per mine was 

551 ha for the 4 km buffer and 4,528 ha for the 10 km buffer. The corresponding controls had 

total deforestation of 10,336 ha at the 4 km buffer and 63,531 ha for the 10 km buffer during 

the same period. The statistical test showed non-significant results for both the 4 km buffer (CI 

= 95%, p-value = 0.817, Figure 4.4A) and the 10 km buffer (CI = 95%, p-value = 0.164, Figure 
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4.4B). In the same light, the results for the deforestation plus forest degradation showed that 

iron-ore had caused 7,007 ha at the 4 km buffer and 50,695 ha at the 10 km buffer. The matched 

controls had a change of 12,635 ha and 94,502 ha at the 4 km and 10 km buffers, respectively. 

The statistical test showed that the influence of iron-ore mining on the changes recorded was 

statistically non-significant at 4 km buffer (CI = 95%, p-value = 0.203, Figure 4.4C) and the 10 

km buffer (CI = 95%, p-value = 0.114, Figure 4.4D). 

 

| Limestone 

The limestone mines in SSA resulted in forest losses of 7,108 hectares (ha) and 38,255 ha 

within the 4 km and 10 km buffers, respectively, based on the GFC dataset. On average, each 

limestone mine contributed to a loss of 323 ha within the 4 km buffer and 1,738 ha within the 

10 km buffer in the treatment areas. In comparison, the matched control areas experienced 

losses of 2,524 ha and 20,731 ha within the 4 km and 10 km buffers, respectively. The 

statistical analysis indicated a significant result at the 4 km buffer (p-value = 0.01322, 95% 

confidence interval), suggesting that the difference in forest loss between the limestone 

mining sites and the control areas was statistically significant (Figure 4.4A). However, at the 

10 km buffer, the result was statistically non-significant (p-value = 0.08352, 95% confidence 

interval) (Figure 4.4B), indicating that the difference in forest loss between limestone mining 

sites and control areas was not statistically significant at this distance. 

Considering the total deforestation plus forest degradation using the TMF dataset, the 

limestone mines caused a combined loss of 6,044 ha within the 4 km buffer and 34,042 ha 

within the 10 km buffer. In comparison, the control areas experienced losses of 2,743 ha and 

16,041 ha within the 4 km and 10 km buffers, respectively. However, the statistical tests for 

deforestation plus forest degradation were not statistically significant at both the 4 km buffer 

(p-value = 0.297, 95% confidence interval) and the 10 km buffer (p-value = 0.195, 95% 

confidence interval) distances (Figures 4.4C and 4.4D). 
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Figure 4. 4 
Plots for paired test showing the mean deforestation between treatments and controls dataset for the 5 key commodities 

mapped using the GFC at (A) 4 km and (B) 10 km and the mean deforestation plus forest degradation using the TMF 

dataset at (C) 4 km and (D) 10 km. The black dots signify the outliers (observations with greater values than the 

majority), the circle cross are the mean values for the commodity (control and treatment) and the whiskers signify the 

variation in the group. 

 

4.4.4   Difference between the amount of extra deforestation and forest degradation caused by 

individual key commodities (relative to control). 

The difference in the mean of the extra deforestation caused by individual commodities mined 

from inception were calculated and compared to their respective matched controls. An analysis 

of variance (ANOVA) was conducted to determine the statistical significance of the mean 
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differences. Within the 4 km buffer, analysing the Global Forest Change (GFC) dataset, it was 

found that copper had the highest mean difference in deforestation relative to the control group, 

amounting to 554 hectares. On the other hand, iron-ore had the smallest mean difference, with 

only 35.1 hectares of deforestation (p-value = 0.0105, Figure 4.5A). Moving to the 10 km 

buffer, copper again exhibited the highest mean difference, with 2668 hectares of additional 

deforestation, while gold had the lowest mean difference at 762 hectares (p-value = 0.0323 ha, 

Figure 4.5B).  The result showed that these differences in means were statistically significant 

at both buffer distances. 

Examining the TMF dataset, within the 4 km buffer, the mean differences in extra deforestation 

plus forest degradation caused by the mined commodities demonstrated interesting patterns. 

Copper, gold, and limestone exhibited negative mean differences, indicating lower levels of 

deforestation compared to the control group (-180 ha, -106 ha, and -150 ha respectively). 

Conversely, diamond and iron-ore showed positive mean differences, with 337 ha and 281 ha 

respectively (p-value = 0.0268, Figure 4.5C). Shifting to the 10 km buffer, the deforestation 

and forest degradation patterns did not significantly differ from those observed within the 4 km 

buffer for most commodities in comparison to their respective control groups (p-value = 

0.0039,Figure 4.5D).      
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Figure 4. 5 

 The mean of the difference in extra deforestation relative to control at 4 km and 10 km buffers GFC dataset (A, B), 

and deforestation plus forest degradation at 4 km and 10km buffers TMF dataset (C, D). The black dots signify the 

outliers (observations with greater values than the majority), the circle cross are the mean points for the commodity 

and the whiskers signify the variation in the group. 

 

4.4.5 Changes in commodity caused deforestation and forest degradation pre-mine and post-

mine creation with distance from mine. 

Using the Global Forest Change (GFC) dataset, the study analysed the proportion of forest area 

deforested pre-mine and post mine creation. Specifically, the focus was on the relationship  

between distance from the mine and the extent of deforestation and forest degradation. For the 



111 
 

4 km buffer, the analysis revealed that copper mining resulted in losses ranging from -0.1% to 

0.18% during the 10 years leading up to mine creation (Figure 4.6A). Similarly, at the 10 km 

buffer, the proportion of forest loss caused by copper mining ranged from -0.08% to 0.11%. 

Turning to diamond mines, some losses were observed at both buffer distances, with 

proportions ranging from 0.1 to 0.5 prior to mine creation. Following mine establishment, the 

proportions increased to -0.08 to 0.2 at both buffers between 1 and 17 years after mine creation 

(Figures 4.6B & 4.6G). 

Regarding gold mines, the proportion of loss within the 4 km and 10 km buffers ranged from -

0.1 to 0.1 before mine creation. However, this trend shifted post-mine creation, with most mines 

exhibiting losses between 0.02% and 0.35%. It is worth noting that not all gold mines 

experienced significant losses, as some locations even showed an increase (gain) in forest cover 

at a proportion greater than 0.2% within the 4 km and 10 km buffers after mine creation (Figures 

4.6C & 4.6H). In the case of iron-ore mines, a mix of gains and losses was observed within both 

buffer distances in the 1 to 8 years preceding mine creation. After mine establishment, the trend 

continued, with proportions ranging from -0.18 to 0.39, indicating both gains and losses 

(Figures 4.6D & 4.6I). As for limestone mines, there were relatively few losses before mine 

creation at both buffer distances. However, post-mine creation, the proportion of loss increased, 

ranging from 0.01 to 0.3 within the 4 km buffer, and a gain of approximately 0.04 with losses 

up to 0.2 within the 10 km buffer at 1 and 10 years after mine creation (Figures 4.6E & 4.6J). 
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Figure 4. 6          
Proportion of forested are deforested within the 4 km (A, B, C, D, E) and 10 km (F, G, H, I, J) buffers in SSA by 

commodities (GFC dataset), The black lines refer to the number of mines for each commodity and the thick coloured 

horizontal lines represents the fitted GAMs at the confidence intervals for each commodity. 
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The proportion of deforestation plus forest degradation of forest cover pre-mine and post-

mine creation by commodity within the 4 km and 10 km buffers. Using the TMF dataset,  

Within the 4 km buffer of copper mines, the proportion of change ranged from -0.05 to 0.13 

during the 1 to 8 years leading up to mine creation. Following mine establishment, the 

proportion of change increased to -0.25 to 0.5 at 5 to 15 years post-mine creation (Figure 4.7A). 

At the diamond mines within the 4 km buffer, the proportion of change ranged from -0.5 to 0.2 

before mine creation, and from -0.45 to 0.02 after mine creation at 1 to 15 years post-mine 

(Figure 4.7B). Gold mines exhibited a consistent increase in the proportion of change, both pre-

mine and post-mine creation, ranging from -0.5 to 0.6. This trend was observed approximately 

10 years before mine creation and up to about 14 years after mine creation (Figure 4.7C). Within 

the 4 km buffer of iron-ore mines, the proportion of change ranged from -0.1 to -0.3 in the 1 to 

10 years preceding mine creation. However, post-mine creation, the proportion shifted to a 

range of 0.2 to -0.5, with more mines showing gains rather than losses (Figure 4.7D). The 

proportion of change at limestone mines was initially low, ranging from -0.05 to 0.2 before 

mine creation. However, post-mine creation, the proportion increased to a range of -0.2 to 0.5 

(Figure 4.7E). 

Interestingly, the analysis revealed that within the 10 km buffer, there was no significant 

difference in the proportion of deforestation plus forest degradation compared to the values 

observed within the 4 km buffers for all five key commodities (Figures 4.7F, 4.7G, 4.7H, 4.7I, 

and 4.7J). 
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Figure 4. 7 
The proportion of forested area that was deforested plus degraded within the 4 km (A, B, C, D, E) and 10 km (F, G, 

H, I, J) buffers in SSA by commodities (TMF dataset). The black lines refer to the number of mines for each 

commodity and the thick coloured horizontal lines represent the fitted GAMs at the confidence intervals for each 

commodity. 
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4.4.6  Deforestation and forest degradation of initial forest area caused by commodity mining 

within various buffer distances at 10 years post-mine creation relative to controls. 

 

Estimating the proportion of initial forest area deforested (GFC dataset). For each of the 

5 key commodities, the proportion of initial forest area that was deforested after 10 years of 

mine creation within each of the 1 to 10 km buffers was modelled, the result showed a loss of  

40% of  forest area within the 0-1 km buffer ring around the copper mines relative to control 

(Figure 4.8A), this drastically dropped to 11 % at the 1-2 buffer ring and continued declining 

further away from the mines to 7% at the 9-10 km buffer ring. The mines for diamond and gold 

had 15% and 18% initial forest areas losses respectively, relative to control within the 0-1 km 

buffer ring; they both recorded a similar pattern of decline, from 10% within the 1-2 km buffer 

ring to < 5% at the 9-10 km buffer ring (Figures 4.8C & 4.8E). The iron-ore mines had initial 

forest area losses of 3% within the 0-1 km buffer ring and -1% at the 3-4 km buffer ring relative 

to control, the loss increased to 5% at the 8-9 km buffer ring (Figure 4.8G).  The limestone 

mines had lost 8% of its initial forest relative to control at the 0-1 km buffer ring and this 

declined steadily to 2% further away within the 9-10 km buffer ring (Figure 4.8I). 

Estimating the proportion of initial forest area deforested plus degraded (TMF dataset). 

The TMF dataset and the GAM, were used to estimate the proportion of initial forest cover that 

has changed within the various buffer rings at 10 years post mine creation relative to controls. 

The result showed that the copper mines had an average of 5% change in their initial forest 

cover relative to control within all the buffer rings (Figure 4.8B), the diamond mines had an 

average change of -5% relative to control within the 0-1 km,, up to the 9-10 km buffer rings 

(Figure 4.8D).  The gold mines had changes of 2% at the 0-1 km buffer ring and 5% at the 3-4 

km buffer ring, the rest of the buffer rings had changes of < 4% of their initial forest cover 

relative to control (Figure 4.8F). The iron-ore had a change of -5% at the 0-1 km buffer ring 

relative to control and this declined steadily by distance to -12% at the 9-10 km buffer ring 

(Figure 4.8H), the mines for limestone had changes in their initial forest area of between 5% 

and 3% within the 0-1 km up to the 9-10 km buffer rings (Figure 4.8J). 
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Figure 4. 8 
The proportion of buffer area that was deforested at 10 years post mine creation within a distance of 0 to 10 km from 

the mines GFC, (A, B, C, D, E) and deforested plus degraded TMF (F, G, H, I, J) buffers in SSA by commodities 

(TMF dataset). The error bars represent the 95% confidence intervals of the estimated proportion of initial forest cover 

loss/changed (derived from the upper and lower CIs of the buffer rings), the dotted line marks the reference points and 

the values below zero indicate a negative forest cover loss/ change (i.e., forest gain). 
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4.5 | Discussion 

4.5.1 |Mining locations and their density (mining hotspots). 

This study assessed the variation of total deforestation and forest degradation based on the 

commodity mined. One of the aspects analysed was the density of mines within a 100 km radius, 

identifying locations with a high concentration of mines within this defined distance. These 

locations are referred to as mining hotspots in sub-Saharan Africa. The presence of a greater 

number of mines in these hotspots suggests they are more susceptible to disruption compared 

to areas with fewer mines, irrespective of the specific commodity being extracted. However, it 

should be noted that some areas with fewer mines may coincide with biodiversity hotspots, 

which are crucial for conservation priorities according to Myers et al. (2000). These biodiversity 

hotspots harbour numerous important plant and animal species (IUCN, 2012). The density of 

mines and their proximity to regions of high biodiversity richness pose significant threats to 

biodiversity conservation, as highlighted by Cabernard and Pfister (2022) and Sonter et al. 

(2020). 

For example, the high density of artisanal small-scale mining (ASM) and large-scale mining 

(LSM) operations in Ghana has resulted in substantial deforestation and forest degradation in 

mining areas. Between 2000 and 2019, this led to a loss of 21,300 hectares of forest (Giljum et 

al., 2022). Another notable mining hotspot is the Central African Copperbelt (CAC), which 

contains over 25 mines within a 100 km radius. In the Democratic Republic of Congo (DRC) 

and Zambia, industrial mining in the CAC caused the loss of 9,900 hectares and 9,500 hectares 

of forest, respectively from 2000 to 2019 (Giljum et al., 2022). These findings indicate that a 

significant proportion of mines in the CAC are located within 1-10 km of protected areas and 

biodiversity habitats. This observation aligns with Durán et al. (2013), who reported that 27% 

of mines globally are situated within a 10 km radius of protected areas. It underscores the 

potential threats posed by mineral extraction to areas of high biodiversity value and emphasizes 

the need for regulated mining practices to prevent the expansion of mining activities into intact 

habitats, thereby mitigating the risk of extensive deforestation in sub-Saharan Africa. 
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4.5.2  Variation in habitat changes by commodity.  

The findings of this study indicate that the extent of deforestation and forest degradation varied 

significantly depending on the specific commodity being mined. Copper mining within the 10 

km buffer led to 251 % more deforestation compared to the matched controls. Similarly, gold 

and diamond mining resulted in 130 % and 150 % more deforestation respectively compared to 

their controls. A similar trend was recorded for iron-ore and limestone too.  

Certain key commodities exhibited a tendency to expand into areas of high biodiversity value. 

For example, gold mining often involves open-cast artisanal small-scale mining (ASM) 

practices,  the use of mercury, and the continuing exploration and prospecting of new frontiers 

driven by its increasing market value. Copper (and associated Cobalt)  is anticipated to be in 

high demand in the near future due to its applications in technology and electricity generation 

(Ali et al., 2017).This demand will likely lead to the expansion of existing mines and the 

establishment of new ones at the expense of the forest.  Although this research focussed on five 

different commodities, this approach is similar to Sonter et al. (2014b) who investigated land-

use change from the increased demand for steel. 

 In summary, the findings indicate that the type of commodity being mined plays a crucial role 

in determining the extent of deforestation and forest degradation. Some commodities, such as 

copper, gold, diamond, iron-ore, and limestone, exhibit higher impacts on forest cover, raising 

concerns about their encroachment into biodiverse regions. Additionally, the increasing demand 

for certain commodities and their associated market value may drive further expansion of 

mining activities, contributing to ongoing forest loss.  

 

4.5.3  Habitat changes over time and distance from mine. 

Results from the GAM model showed that the rates of biodiversity loss increased significantly 

at 10 years post mine creation with increasing distance from the mines. Gold and diamond 

mines were particularly responsible for substantial deforestation within a 10 km buffer zone. 

For example, in 2010, the average annual deforestation caused by gold mining was 62 hectares, 

while for diamond mining it was 40 hectares. By 2020, these numbers had risen to 291 hectares 

and 173 hectares, respectively. These losses were most prominent in countries such as Ghana, 

Tanzania, Zambia, and the Democratic Republic of Congo (DRC). This was also evidenced in 
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the neotropics where gold mining was responsible for the loss of 1,915 ha of forest per year in 

the Peruvian Amazon between 2006-2009 (Swenson at al., 2011), and in recent years in Guiana 

shield in the Amazon basin (Kalamandeen et. al., 2020). When comparing these findings with 

the work of Alvarez-Berríos and Mitchell Aide (2015), it becomes evident that gold mining has 

significantly increased from 2001 to 2020, indicating a steady expansion of gold mines and a 

surge in mining activities overall (e.g., Luckeneder et al., 2021). This finding suggests that gold 

is a major driver of deforestation beyond the immediate extent of the mines in SSA.  

Mines that extract low-value, high-bulk commodities such as iron ore and limestone are 

typically large in size, and necessitate supporting infrastructure (i.e., electricity, roads, and rails) 

which often extends to several kilometres away from the mine (Chatham House, 2020); thereby 

instigating secondary deforestation beyond the mining footprint. Extraction of other commodity 

types also caused notable levels of deforestation in SSA post-mine creation when compared to 

their controls. The findings indicate that the rates of deforestation are higher within the 0 to 4 

km buffer rings than beyond (5 to 10 km buffer rings) for all commodities. Forest loss around 

iron-ore mines differed from other commodities at these distances, as it showed higher losses 

beyond the 5 km buffer. This could be because iron-ore is wholly exported as a bulk product 

for processing at industries unlike other commodities that are processed at source, and so iron-

ore mines are unlikely to require supporting infrastructure and cause secondary deforestation. 

Diamond and limestone mines do not pose significant threats to biodiversity beyond the 5 km 

buffer zone. Additionally, limestone mining has the lowest proportion of mines located within 

forests, and it is processed at source.  

Overall, these findings highlight variation in habitat change over time and distance from mines, 

with gold mining being a major driver of deforestation beyond the immediate mine sites in sub-

Saharan Africa. Mines extracting low-value, high-bulk commodities can lead to secondary 

deforestation due to the infrastructure development required. Deforestation rates are generally 

higher within the 0 to 4 km buffer zones compared to the 5 to 10 km buffer zones for all 

commodities, except for iron ore mines, which show higher losses beyond the 5 km buffer. 

Diamond and limestone mines have less impact on biodiversity beyond the 5 km buffer zone, 

with limestone mining having the lowest proportion of mines located within forests and 

processing occurring at the source. 
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4.5.4  Caveats 

There are important caveats to consider in this study regarding the approach used and the data 

utilized. Firstly, the TMF dataset was utilized for assessing deforestation plus forest 

degradation. To create a simplified classification, the Undisturbedforest and ForestRegrowth 

layers were aggregated into a single category called "forest," while the DeforestedLand and 

DegradedForest layers were grouped as "deforested plus degraded forest." This aggregation 

technique may introduce some discrepancies in the data and should be considered when 

interpreting the results. Secondly, the analysis did not include certain commodities, such as 

bauxite, coal, and cobalt, which have growing demand. This exclusion was due to the limited 

number of mines associated with these commodities in the database used for the study. 

Consequently, modelling the past, present, and future forest disruptions related to these 

commodities was not feasible. Their absence from the analysis should be considered when 

assessing the overall impact of mining activities on deforestation and forest degradation. 

These caveats highlight the need for further research and data collection to improve the 

accuracy and comprehensiveness of studies examining the environmental effects of mining 

activities. 

 

4.6 | Management Implications and Conclusions 

The hotspots of mining are in close proximity to the areas of biodiversity richness, indicating 

the vulnerability of these habitats to further deforestation and forest degradation. The increasing 

demand for key commodities globally may lead to the rapid increase of mining activities across 

the SSA in the near future, leading to extensive deforestation and forest degradation, and the 

loss of biodiversity richness. It is crucial for mine operators to take responsibility  for both 

onsite and offsite effects triggered by mineral extraction, especially the mines for commodities 

whose method of extraction requires heavy forest clearing and movement of earth, such as 

copper and gold. Deforestation caused by mining should be followed by habitat restoration 

efforts, including soil recovery and tree planting initiatives. Additionally, measures should be 

taken to offset any biodiversity loss by protecting nearby forests. 
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Poor mining operation can be curtailed by the regulatory agencies of government, by making it 

mandatory for operators to commit to implementing the regulations spelt out in the 

environmental impact assessment (EIA) before the commencement of exploration. Mineral 

producing countries and those with prospects of mineral exploration, need robust mining 

regulations that prioritize forest protection, biodiversity conservation, and the mitigation of 

deforestation and forest degradation caused by mining activities in SSA. Compliance can be 

achieved through the enactment of stringent mining laws and binding them to monetary bonds. 

These laws should be regularly reviewed to align with current circumstances, as penalties and 

fines may become outdated over time.  

Regulations prohibiting mining-related deforestation should also extend to industrialised 

nations where these commodities are used. This approach aims to minimise the use of resources 

that were obtained through extensive deforestation. Habitat fragmentation caused by mining 

leads to atmospheric carbon dioxide (CO2) emissions, therefore, mining EIAs should include 

assessments of carbon emissions and plans for carbon uptake. This is particularly important in 

SSA, where numerous large-scale mineral excavations are being proposed in areas of high 

biodiversity richness of pan tropical regions (ELAW, 2010). It is established that mineral 

exploration is driven by increased demand and high commodity prices (Lobo et. al., 2016; Asner 

et. al., 2013; Swenson et al., 2011), therefore, sustainable mining practices should be promoted 

and the use of alternative commodities with lesser environmental impact should be encouraged. 

In turn, the recycling and reusing of metal products should be highly emphasised by all 

stakeholders, and governments can introduce incentives such as tax waivers or reductions to 

encourage industries to use recycled metals, thereby moving towards a circular economy (Ali 

et al., 2017). In addition, the rollbacks by some governments on environmental and social 

safeguards in order to allow large-scale mining in areas of biodiversity richness (Dil et al., 2021) 

is counterproductive, and it undermines the earlier efforts on conservation (e.g., the Democratic 

Republic of Congo) Furthermore, policies should be developed to incorporate and register 

artisanal and small-scale mining (ASM) operators as part of the formal mining stakeholders, as 

this would make them take responsibility for their own share of habitat disruptions.  
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Overall, the analysis highlighted the substantial contribution of the key commodities to 

deforestation and forest degradation in SSA. Gold mining emerged as the leading driver of 

deforestation, while copper mining also had a notable impact. The findings underscore the need 

for effective management of mining activities in SSA. This requires a comprehensive approach 

that includes strong regulations, enforcement of environmental impact assessments, habitat 

restoration measures, carbon emission considerations, promotion of sustainable practices, 

recycling of metals, and the inclusion of ASM operators. These measures will help mitigate the 

negative impacts of mining-induced deforestation and forest degradation, protect biodiversity, 

and move towards a more environmentally responsible mining industry. 
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Chapter 5: General discussion 

5.1 Summary 

Understanding the intricate dynamics between natural resource abundance, mining activities, 

deforestation and forest degradation, and socio-economic challenges in the sub-Saharan Africa 

region is crucial for formulating effective strategies to promote sustainable development, and 

poverty alleviation. By delving into the complexities of this multifaceted issue, policymakers and 

stakeholders can work towards addressing the root causes of conflict and implementing inclusive 

and equitable policies that prioritize the well-being and prosperity of the region's population. The 

growing demand for commodities globally, will give rise to the expansion and creation of new 

mines. Given that such development will cause negative impact on the environment (Luckeneder 

et al., 2021) and considering the need to reduce the socio-ecological impacts of mining into intact 

areas of conservation interest. It is imperative to adopt sustainable methods that would minimise 

the impact of mining on forest and biodiversity conservation, because most mineral deposits occur 

within or near the forests.  

Numerous comprehensive studies have thoroughly addressed and shed light upon the prevailing 

uncertainties surrounding mining as a key driver of deforestation, employing robust empirical 

indicators to ascertain its ecological ramifications (Geist & Lambin, 2002; Sonter et al., 2017; 

Sonter et al., 2014a). These scholarly endeavours have significantly contributed to our 

understanding of the multifaceted impacts of mining on forest ecosystems, particularly in the vast 

expanse of pantropical regions that encompass diverse geographical locations and ecosystems 

teeming with invaluable biodiversity (Chakravarty, Ghosh, & Suresh, 2011). However, it is crucial 

to acknowledge that the magnitude of such impacts attributed to mining operations exhibits 

considerable variability contingent upon the distinctive contexts of individual countries as well as 

the specific commodities being extracted, thereby necessitating nuanced assessments and analyses 

(Luckeneder et al., 2021; Chuhan-Pole et al., 2017).  

The advent of cutting-edge geospatial and remote sensing technologies has revolutionized our 

ability to precisely pinpoint the spatial distribution of mining sites nestled within intricate forest 

landscapes, thereby facilitating rigorous empirical evaluations of their ecological footprints and 

subsequent impacts on habitats (Ferretti-Gallon & Busch, 2014). These advancements have 
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empowered researchers to delve deeper into the intricate dynamics between mining activities and 

forest ecosystems, enabling a more comprehensive understanding of their interconnectedness.  

This research focused on the identification of mines and their proximity to areas of biodiversity 

richness, and the quantification of forest disruptions caused by mining from 2001 to 2020. The 

results in this study have shown that a substantial number of mines are quite close to protected 

areas of biodiversity richness in SSA, and how much relative deforestation and forest degradation 

they have caused post creation. The distance of mines to areas of biodiversity conservation and the 

type of commodity mined are important factors in studying the impact of mining on the forest. 

 

5.2 Mining activities in forested landscape in sub-Saharan Africa. 

The comprehensive database of the spatial location of mines and their dynamics in sub-Saharan 

Africa (SSA) was very scarce in the public domain, as it was difficult to distinguish between a 

mine and a bare surface using satellite images. However, data was collected from various 

repositories, and through the utilization of remote sensing techniques, 469 mining locations were 

identified. In addition to the geo-location of the mines, the data on the year of establishment, 

commodity mined, active or abandoned and the operators of the mines were also added to the 

database, although ownership changes over time could make it challenging to provide up-to-date 

information on current ownership status. A notable finding was that over 58% of the mapped mines 

in SSA were established between 2000 and 2020, indicating a significant expansion of existing 

mines to meet the growing demand for certain commodities. Artisanal and small-scale mining 

(ASM) occurs more rampantly in SSA than any other region of the globe because of its high 

poverty rate.  

In many cases the ASM operates in very inaccessible locations within the forest (Durán, Rauch, & 

Gaston, 2013). Consequently, mapping the precise locations of these ASM mines can be 

challenging due to their size and the transient nature of their operations, they move rapidly to 

different locations without a specific pattern, it is difficult to ascertain their ownership (Heemskerk 

et al 2004). To effectively monitor and mitigate the impacts of mining on deforestation and forest 

degradation in the Afrotropic region, the use of geospatial techniques and remote sensing becomes 

imperative. Continuous monitoring of mining activities using these tools can contribute to reducing 
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the negative environmental consequences associated with mining-induced deforestation and forest 

degradation in the region. By establishing a robust database of mining activities and utilizing 

remote sensing technologies for ongoing monitoring, it becomes possible to enhance our 

understanding of the spatial distribution and dynamics of mining in SSA. This knowledge can 

inform policy and management strategies aimed at promoting sustainable mining practices, 

mitigating environmental impacts, and preserving the valuable forested landscapes of sub-Saharan 

Africa. 

 

5.3 Mining as driver of deforestation and forest degradation 

Mining is one driver of deforestation and forest degradation that is overlooked globally, attention 

is mostly given to the impacts caused at the immediate extent of the mines. Despite the economic 

role of mining as a key source of employment and income for governments of most countries, it 

has some negative consequences on the environment when not responsibly managed. The findings 

of this study indicate that a substantial portion of the mapped mines, approximately 68%, are 

located within ecologically important zones characterized by high biodiversity richness. These 

zones primarily include tropical rainforests and tropical moist deciduous forests (FAO, 2010). The 

proximity of these mines to forested areas has resulted in negative consequences over time, as 

mining operations have expanded into conservation areas, causing secondary impacts on forests 

located several kilometres away. In fact, the number of mines mapped within the red zone (mines 

situated within 0 to 10 km of protected areas) increased by 250% during the study period, with 

their physical footprints more than doubling in size between 2000 and 2020. 

 This clear illustration demonstrates the gradual but significant expansion of mining activities into 

forested lands, even though the rates of expansion may not have been readily noticeable. The 

depletion or degradation of forests due to mining activities has far-reaching implications. Forests 

play a crucial role in providing ecosystem services and maintaining carbon balance. When forests 

are depleted or degraded, their capacity to provide these services is compromised. Furthermore, 

the process of deforestation and forest degradation releases substantial amounts of carbon into the 

atmosphere, contributing significantly to greenhouse gas emissions (Bebbington et al., 2018; 

Briber et al., 2015; Gibbs et al., 2007). It is therefore imperative to address all drivers of 
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deforestation seriously and take measures to mitigate their effects, regardless of the proportion of 

deforestation they may cause. Considering the substantial impact of mining on forested landscapes 

and its associated environmental consequences, there is a pressing need for responsible and 

sustainable mining practices. Effective management strategies should be implemented to minimize 

the negative impacts of mining on forests and ensure the preservation of vital ecosystem services. 

This includes considering the ecological sensitivity of mining locations, implementing 

comprehensive environmental impact assessments, and enforcing stringent regulations to promote 

responsible mining practices. Additionally, efforts to restore and rehabilitate degraded mining sites 

and offset biodiversity loss should be prioritized to mitigate the long-term impacts on forest 

ecosystems. By adopting a holistic approach and integrating conservation priorities into mining 

activities, it is possible to strike a balance between economic development and environmental 

sustainability.  

 

5.4 Key commodities driving forest loss. 

The extraction of key commodities in SSA,  such as bauxite, copper, diamond, gold, and iron-ore, 

has resulted in significant loss of forest cover. However, there are variations in the volume of loss 

caused by the mining for each commodity, for instance it was discovered that mines for gold and 

copper were the leading causes of forest disruptions in the Afrotropic. Looking ahead, there is a 

projected rapid increase in the demand for these key commodities in the near future. This surge in 

demand can be attributed to their vital role in the manufacturing of technological equipment and 

gadgets (Signé & Johnson, 2021; Phadke, 2018). Consequently, this increase in demand is 

expected to drive the expansion of existing mines and potentially lead to the establishment of new 

mining operations. Unfortunately, this expansion and creation of mines will come at the expense 

of the region's forests and areas of intact biodiversity. The impacts of mining on forest loss are 

especially concerning given the ecological significance of the affected areas. Forests are vital 

ecosystems that provide numerous benefits, including habitat for biodiversity, carbon 

sequestration, and regulation of water cycles. The loss of forest cover due to mining not only 

disrupts these ecosystem services but also contributes to greenhouse gas emissions and the loss of 

valuable biodiversity. 
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Addressing the environmental consequences of mining-induced deforestation and forest 

degradation requires a multi-faceted approach. It is crucial to promote sustainable mining practices 

that prioritize environmental protection and minimize the ecological footprint of mining 

operations. This includes implementing rigorous environmental impact assessments, adhering to 

robust regulatory frameworks, and adopting responsible land reclamation and restoration practices. 

Furthermore, efforts should be made to encourage the use of alternative commodities and promote 

the recycling and reuse of metals to reduce the reliance on resource-intensive mining activities. 

Collaboration between governments, mining companies, and other stakeholders is essential in 

addressing the negative impacts of mining on forest ecosystems. Sustainable mining practices 

should be prioritized and integrating conservation considerations into decision-making processes, 

it is possible to strike a balance between economic development and the preservation of valuable 

forest resources in sub-Saharan Africa. 

 

5.5 Mitigating the impact of mining on biodiversity loss. 

Addressing the detrimental effects of mining-induced deforestation and forest degradation in sub-

Saharan Africa (SSA) requires effective measures to mitigate biodiversity loss. One approach that 

shows promise is the adoption of modalities for offsetting forest loss through the implementation 

of a no net loss (NNL) policy, as exemplified in countries like Madagascar (Devenish, 2022). 

However, it is important to recognize that governments in the global South may face challenges in 

allocating sufficient resources for conservation due to the growing economic hardship in the 

region. Therefore, new sources of  funding and partnerships are highly required for biodiversity 

conservation (IUCN & ICMM, 2004). The concept of NNL would ensure that the amount of forest 

loss caused by mining would be compensated for in other locations in greater amounts, even 

though this initiative is not new. The implementation of NNL is not widely practised in SSA 

(Johnson & Howell, 2019), as the cost of attaining the NNL is a burden to the poor communities 

around the offsets (Devenish, 2022).  

The success of this mitigation process requires active monitoring by governments civil 

conservation groups and the mine operators (Chakravarty, Ghosh, & Suresh, 2011), even though 

the strategies for achieving success may vary from country to country, it is most important to have 
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effective implementation. It is worth emphasizing that if greenhouse gas emissions resulting from 

mining-induced deforestation and forest degradation continues at the current rates, it will 

contribute to increased temperatures and exacerbate climate change which would be devastating 

to most species (Achard et al., 2014). Therefore, it is important for stakeholders worldwide to 

support the initiatives aimed at the reduction of carbon emissions such as the United Nations 

Reducing Emissions from Deforestation and Forest Degradation (REDD+) program (Hund et al., 

2017). This approach can be particularly effective in curbing emissions in the tropical regions and 

safeguarding forests (Silva Junior et al., 2021). By promoting the preservation and sustainable 

management of forests, REDD+ not only helps mitigate climate change but also protects 

biodiversity and the valuable ecosystem services provided by forests. 

 

5.6 Conclusion and Recommendations     

In conclusion, this study has provided evidence that mining activities contribute significantly to 

deforestation and forest degradation, highlighting the urgent need for conservation efforts in 

mining regions. The application of geospatial techniques, as demonstrated in this study, allows for 

the quantification, monitoring, and mitigation of mining-related deforestation and forest 

degradation.  The availability of free satellite data and other ancillary data required, has made it 

possible to observe forest in near real-time to ensure that the excesses of mining operators are 

curtailed. Both the primary and secondary effects of mining can be monitored spatially explicitly 

at various distances from the mines. The strengthening of Environmental regulations on mining 

should be strengthened in developing countries of the global south, this would help in curbing 

habitat fragmentation and loss of biodiversity in the region. Efforts on projects to restore the 

disrupted forestlands need to be increased by all stakeholders, especially the governments and 

mine operators who need to synergize to monitor and minimise forest losses in SSA. 

Mine operators should take responsibility for both onsite and offsite forest disruptions caused by 

mineral extraction, particularly in cases where heavy forest clearing and earth movement are 

involved, such as in copper and gold mining. Deforesting mines should prioritize habitat 

restoration immediately after mine closure, including initiatives for soil recovery and tree planting. 

Furthermore, these mines should consider offsetting any biodiversity loss by protecting nearby 
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forests. By actively engaging in habitat restoration and biodiversity conservation, mine operators 

can contribute to mitigating the environmental impacts of their activities. Informal mining 

operations that contribute to forest fragmentation can be reduced and formalised through the 

involvement of regulatory agencies of government. By integrating artisanal miners as part of the 

formal mining stakeholders, this would make them responsible for their own share of forest loss. 

This approach encourages responsible mining practices among artisanal miners and helps reduce 

their negative impact on forests. 

In light of these findings, it is recommended that all stakeholders, including governments, mine 

operators, and regulatory bodies, increase their efforts to restore disrupted forestlands. 

Collaborative projects should be initiated to restore the ecological integrity of mined areas through 

soil recovery, reforestation, and the protection of nearby forests. Moreover, ongoing monitoring 

and evaluation of mining activities and their environmental impacts should be prioritized to ensure 

compliance with environmental regulations and to guide future conservation efforts. In summary, 

addressing the environmental consequences of mining in SSA requires a multifaceted approach 

that involves strengthened regulations, responsible mining practices, habitat restoration, and the 

involvement of all relevant stakeholders. By implementing these recommendations, it is possible 

to mitigate the impact of mining on forest loss and protect the valuable biodiversity of sub-Saharan 

Africa for future generations. 

 

5.6.1 Future research 

Future research on mining-induced deforestation and forest degradation should prioritize several 

key areas to enhance our understanding of this critical issue. Firstly, there is a need for 

comprehensive studies that delve into the long-term ecological impacts of mining activities on 

forest ecosystems. These studies should take into account the need to always identify a matched 

control location at the beginning of any mining exploration in the future, these would serve as a 

baseline for comparing the effect of the mining on the environment over time. This would enhance 

the monitoring of forest loss in near real-time as the mine develops. Future studies should also 

encompass a broader temporal scope, tracking the changes in forest cover and biodiversity over 

extended periods following mine creation and closure. By examining the post-mining landscape, 
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researchers can assess the effectiveness of restoration and reclamation efforts, identify any 

lingering ecological vulnerabilities, and determine the long-term resilience of forest ecosystems. 

Secondly, further investigations should focus on understanding the underlying drivers and 

mechanisms that contribute to varying levels of deforestation and degradation associated with 

different mining commodities. By examining the unique characteristics of various commodities 

and their extraction processes, researchers can unravel the specific factors that exacerbate 

environmental impacts. This knowledge will enable the development of targeted mitigation 

strategies tailored to different mining sectors, ensuring more effective environmental management 

practices. Thirdly, future research should explore the socio-economic dimensions of mining-

induced deforestation and degradation. This includes assessing the socio-economic factors driving 

mining activities in forested areas, studying the impacts on local communities and indigenous 

populations, and analysing the trade-offs between economic development and environmental 

conservation. By adopting an interdisciplinary approach, researchers can generate valuable 

insights into the complex interplay between mining, livelihoods, and sustainable development, 

informing more holistic and inclusive policies and practices. 

Furthermore, advancements in remote sensing and geospatial technologies offer promising 

avenues for future research. Leveraging high-resolution satellite imagery, LiDAR data, and other 

cutting-edge tools can provide more accurate and detailed assessments of mining footprints, 

allowing for precise mapping of deforestation and forest degradation. Integrating these remote 

sensing techniques with field observations and on-the-ground data collection will enhance the 

accuracy of impact assessments, enable the monitoring of environmental changes in near real-time, 

and support evidence-based decision-making for sustainable mining practices. Lastly, it is crucial 

to examine the potential role of innovative solutions and alternative approaches to mining that 

minimize environmental impacts. This includes investigating the feasibility and effectiveness of 

green mining technologies, such as eco-friendly extraction methods and efficient waste 

management systems.  

Finally, exploring the potential for circular economy practices within the mining industry, such as 

recycling and reusing mineral resources, can contribute to reducing the overall demand for new 

extraction and alleviate pressure on forest ecosystems. In conclusion, future research on mining-

induced deforestation and forest degradation should encompass long-term ecological assessments, 
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explore the drivers, and impacts of different mining commodities, incorporate socio-economic 

perspectives, leverage remote sensing technologies, and investigate innovative approaches for 

sustainable mining. By addressing these research gaps, we can develop a more comprehensive 

understanding of the complex interactions between mining and forests, ultimately informing more 

effective conservation strategies and promoting sustainable development in mining regions. 
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