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Abstract

Self-assembling modular robotic systems comprise multiple agents which form connec-
tions with each other to create different arrangements to suit their current task. Existing
control algorithms for these systems typically do not consider the forces in the connec-
tions between agents, potentially leading to damage to the robots due to unacceptably
high forces. This thesis considers how force-aware methods can be used to guide the
agents into self-assembling structures that will not break. As an example scenario where
force-aware control shows great potential, the self-assembly of a bridge across a gap in
the terrain is considered. This would enable a group of robots to explore otherwise un-
reachable environments, but requires careful consideration to ensure the bridge does not
collapse under its own weight. This process is split into three stages, and separate al-
gorithms are developed to allow each stage to be completed: each algorithm runs in a
distributed manner across each agent, and responds to measurements of forces made by
the agents to produce strong structures that are not designed in advance by a human. A
cantilever is first constructed from one side of the gap until the other is reached, where-
upon the structure is optimised by removing agents that are no longer providing support.
Finally, the bridge is deconstructed when it is no longer required. The algorithms are
first verified in simulation, then a novel hardware platform is developed to demonstrate
their applicability in real life. The cantilevers and bridges built are found to be close to
the optimal with respect to the number of agents required to build a stable structure of
a given length. The forces within the structures can be controlled by choosing suitable
allowable limits. This work hopes to inspire future researchers to explore how force-aware
methods can be applied to other problems in self-assembling modular robotics.
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Chapter 1

Introduction

Throughout history, humans have relied on technological innovations to improve their
quality of life. From ancient mechanisms such as the Archimedes Screw, through the boom
of steam powered machines during the Industrial Revolution, to the mass availability of
electric devices seen today, engineering advancements have made many laborious tasks
easier. Robotics is one such technology that has shown great potential to be applied to
a wide range of scenarios. In the last century, robots have become ubiquitous in settings
such as factories and warehouses, where they perform repetitive tasks in well-defined
environments efficiently around the clock. They are also increasingly being deployed
outside of these controlled arenas, with applications such as medical devices and self-
driving cars showing the potential of robotics in more complex domains. With such
diverse possible applications, there is a great demand for robust and capable robotic
hardware, controlled by safe and reliable algorithms.

Humans are capable of great things individually, but can work together to achieve
even more. The same is true for robots, who can collaborate to form a multi-robot system
(MRS) which has several advantages [1]. An MRS could be more suitable for tasks too
complex for a single robot to perform. When multiple tasks can be completed in parallel,
an MRS is able to finish all of them faster than a single robot tackling them sequentially;
MRSs are particularly advantageous when these tasks are distributed across a large area,
as the time spent moving between the task locations is reduced. Using one robot could
also leave the system vulnerable to a single point of failure, increasing the risk of the task
not being completed: MRSs are potentially more robust through increased redundancy.
Designing a single robot with a wide range of capabilities is often more challenging than
several robots that are more specialised. Finally, using multiple robots increases the
flexibility of the system, as the number of robots deployed and their precise capabilities
can be varied depending on the task at hand.

A popular branch of MRS research is modular reconfigurable robotics [2, 3]. This ap-
proach considers systems comprising multiple relatively simple robotic modules, which
form physical connections between each other and thus create different structures based
on the current task. These systems are therefore highly versatile, scalable, and typically
robust to the failures of individual agents. Their modules are either arranged into a partic-
ular design by a human or are able to do so themselves in a process called self-assembly [4].
The work in this thesis considers such self-assembling modular robots. They have a wide
range of possible applications, as they could be arranged to create configurations suitable
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Introduction Motivation

to tackle virtually any problem that can currently be solved by single-robot systems, while
also sharing many of the same advantages of MRSs.

One area in which self-assembling modular robots show great potential is in all-terrain
navigation. Robots that could autonomously convert between different locomotion modes
depending on the scenario could be very beneficial in moving over unpredictable and
varied terrain: for example, a car configuration could drive quickly around flat areas,
while a snake shape could fit through small gaps or pipes. This could be particularly
advantageous while searching for survivors underneath the rubble of collapsed buildings
[5]. MRSs are attractive for this application in general, as they can spread out over a large
search area; this area may be hazardous and so cause damage to a number of agents, so the
redundancy of MRSs is also beneficial. Deploying self-assembling modular robots could
be particularly advantageous as they would be able to configure themselves differently to
suit the wide range of terrains encountered.

Further applications of self-assembling modular robotics are almost limitless. The
versatility of manufacturing facilities could be increased by replacing existing specialist
robotic manipulators with self-assembling modular systems capable of a wider range of
functionalities [6]. Self-assembling robotic furniture would allow residents of small prop-
erties to get the most out of their limited living space, and similar benefits could be seen
by companies applying the same technology to their offices [7]. Self-assembling modular
robots also show great potential in space applications, as their versatility would minimise
the total payload required to be sent into space to accomplish a number of tasks; they
could be applied both to routine operations involving satellites around Earth, or more
futuristic missions to other worlds [8].

In addition to their wide range of applications, self-assembling modular robots are
also attractive as they could promote sustainable practices in robotics, something that
is of paramount importance in all aspects of life [9]. The versatile nature of modular
robotic platforms reduces the consumption of resources when manufacturing robots to
perform different functions. Modular robotic systems also allow for faulty parts to be eas-
ily replaced without discarding the whole system, further reducing waste. By introducing
self-assembly into these systems, their ease of use is increased, making the technology
more accessible to users without specialist knowledge.

1.1 Motivation

Despite the huge potential of self-assembling modular robotic systems outlined above,
they are rarely used outside of the laboratory [10]. Many factors contribute to this, includ-
ing the cost and availability of suitable robotic platforms, which are typically prototype
systems with low technical readiness levels. Another important aspect is that the con-
trol algorithms are often developed in idealised simulations that do not consider every
salient real-world limitation. This is understandable, as it allows researchers to focus on
the details of specific problems relating to this challenging field. However, it potentially
increases the challenges in modifying the resulting control algorithms to the real world.
There is therefore a great need for the development of algorithms that account for a wide
range of real-world phenomena to ease the transition from simulated to real systems.

One particularly important limitation of real-world self-assembling modular robots
is that the connections between agents have a finite strength, so will break if forces

2
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within them get too high. This could cause damage to the modules, potentially leaving
them unable to complete their task. Despite this, many studies assume that these links
are sufficiently strong that they will not break under normal use. The deployment of
self-assembling modular robots in the real world would therefore greatly benefit from
acknowledging this limitation and developing algorithms to account for it. If robots
could detect the current or expected loading, they could autonomously self-assemble into
different shapes to ensure this load could be supported, while not wasting modules building
structures that are stronger than necessary. Such force-aware methods of control would
make them significantly more versatile and applicable to real-world problems.

Using measurements of force to influence the control of robotic systems is a widely em-
ployed method in certain applications, most commonly the control of robotic manipulators
[11]. Attempting to complete tasks by specifying positions to move a manipulator into
can lead to unacceptable forces being generated either within the robot itself or between
the robot and its environment. By utilising force-aware control schemes, a wide range
of functions can be achieved without causing damage to the robot or objects within its
environment. Robotic manipulators using such methods can therefore operate in less well-
structured scenarios than those relying on pure position control, and can also collaborate
with humans in a safer manner.

Construction is one very promising application of robotics, and MRSs in particular,
that lends itself to force-aware control. Construction sites are potentially hazardous envi-
ronments, containing multiple tasks that can be completed independently of each other,
so therefore the parallel and robust nature in which MRSs operate is advantageous [12].
The construction of structures by an MRS could be achieved by having a human de-
sign a structure which the robots find a suitable method to build [13]. By incorporating
force-aware methods, safe assembly sequences can be found that ensure forces within the
structure are kept at acceptable levels throughout construction [14].

Having robots build structures designed by humans requires different arrangements to
be defined depending on the situation. A more adaptive approach is to specify a high-
level task which the robots complete by determining both a suitable structure and its
construction sequence themselves. Force-aware control is highly suited to this scenario, as
it can be used to ensure the structure is strong enough to allow the robots to complete their
specific task. Funes and Pollack showed how computers can produce strong structures
through an evolutionary process, which are also verified to be stable when constructed by
hand in real-life [15]. This work was expanded by Brodbeck and Iida, who demonstrated
how such structures could be both autonomously designed and constructed by a robotic
manipulator [16]. A similar approach has also been demonstrated with MRSs, illustrating
how a group of robots can build a structure together while incorporating local force
measurements to ensure it does not collapse [17].

Incorporating force-aware control methods into self-assembling modular robots could
benefit the system in many ways. Suzuki et al. have shown how a group of self-assembling
robots can move together to achieve collective motion, while including measurements of
force within the connectors to prevent them from breaking [18]. Robotic manipulators
formed from self-assembling modular robots could incorporate force measurements to
ensure they are suitable for the task at hand, potentially recruiting additional modules
to match the strength of the machine to the current loading. The same idea could be
applied to modules arranged to move in a walking gait: the number and strength of the
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legs could vary depending on any load that the modules are transporting, or the nature
of the terrain they are moving across.

An area in which force-aware control could be very beneficial to self-assembling mod-
ular robots is in constructing bridges to enable the group of robots to cross a gap in the
terrain several bodylengths wide. One method of achieving this task could be for each
agent to jump, but this requires a relatively large amount of energy per agent and is hard
to perform accurately, especially if robots must coordinate to avoid mid-air collisions [19].
Constructing a bridge that can be used by agents to cross the gap would therefore po-
tentially be more suitable. Such a bridge could be built from external building materials:
while this could be cost-effective, it either relies on specialist materials which must be
delivered to the construction site [20], or for there to be suitable materials nearby [21].
Self-assembling the bridge from the robots themselves means the building material effec-
tively transports itself to the structure, increasing the range of environments the approach
could be applied to. The robots could also autonomously reconfigure the structure based
on the current requirements and deconstruct it when it is no longer required, further
increasing the efficiency of this approach.

Force-aware methods of self-assembling bridges are currently not widely researched,
despite the potential benefits of this approach. In 2000, Inou et al. performed some of
the first work in this area, showing how a group of force-aware robots could self-assemble
into a bridge to transport a load from one side of a gap to another [22]. Their approach
demonstrated the potential of force-aware control to adaptively self-assemble structures
depending on the current loading. However, it only allowed a single agent to add to the
structure at a time, resulting in long construction times. Furthermore, a large number of
messages are required to be reliably passed between agents, reducing both the robustness
of the approach to the failure of modules, and its scalability. The authors continued this
work by considering how the resulting bridges could be deconstructed when the load has
passed to the other side of the gap [23]. Safe deconstruction is an important aspect of self-
assembled structures, however the described method occasionally results in an unresolved
deadlock, where agents repeatedly add and remove from the same locations and thus
progress towards task completion stalls. In both works, the algorithms were validated in
limited simulations, and not compared to any baselines, such as the minimum number of
agents required to span a gap of a given length without structural failure.

More recently, the ReactiveBuild algorithm has been proposed to bring about force-
aware self-assembly of a variety of static structures, including bridges and towers [24]. In
this approach, robots move towards a goal location, and are able to call adjacent agents
to stop and provide reinforcement when they sense their links are close to breaking. This
is a promising method, but can result in the creation of large support structures, which
slows the growth of the structure towards the goal, thus preventing it from being reached
with a limited number of modules. As in the work of Inou et al., construction takes a
long time as agents are added to the structure one by one.

Force-aware self-assembly shows great potential, though further research must be per-
formed to realise these benefits in a robust manner and on real-world systems. While
previous works have shown how structures can be self-assembled without collapse, they
only allow agents to add themselves to the structure one at a time, therefore making
the self-assembly process slower than if multiple agents could build on the structure at
once. Research into how structures could be modified in response to changing scenarios
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has not been considered, and the problem of how structures can be safely deconstructed
without deadlock remains unsolved. Furthermore, while platforms capable of measuring
force in connectors have been developed, force-aware self-assembly has only been shown
in simulation, not on real-life robotic systems.

1.2 Problem Definition

This thesis examines how self-assembling modular robots can use a force-aware ap-
proach to self-assembly to exploit the possible advantages explored above. As an example
scenario where force-aware methods would be beneficial, the problem of how a group of
robots can cross a gap in the terrain is considered. This scenario might be encountered by
such a group when exploring unstructured environments, such as when performing search
and rescue operations after a natural disaster.

The specific problem considered in this thesis is as follows. A group of self-assembling
modular robots are required to complete a task on the other side of a gap in their terrain.
To reach this task, they must self-assemble a bridge across the gap, which can be crossed
by other agents. The first stage of this is cantilever construction, in which the agents
self-assemble a structure connected to only one side of the gap that extends towards
the opposite side. When the other side is reached, bridge optimisation can occur, in
which agents within the structure that are no longer providing support are removed so
that they can work on completing the main task. Eventually, the bridge will no longer
be required as either all the agents have crossed the gap, or the task is complete and
they have all returned to the original side. At this point, bridge deconstruction begins:
agents are first added to the structure to reinforce it so that it will not collapse when
it is disconnected from one side of the gap, then the bridge is deconstructed. At all
stages during the construction, optimisation, and deconstruction, the agents are guided
by measurements of forces within the structure to ensure that links between agents do
not break and cause the structure to collapse. A human is not required to design specific
structures to create bridges of a given length or strength, but rather these designs emerge
from agents responding to local measurements of forces within the structures.

1.3 Aims and Objectives

Given the problem definition above, the overall aim of this thesis is to develop algo-
rithms that will enable self-assembling modular robots to form bridges. These bridges
shall not be preplanned, but should be strong enough such that they will not collapse
during the self-assembly process or while in use.

The specific objectives that will be met to fulfil this aim are:

� To create a simulation environment that will enable the development of control
algorithms for self-assembling modular robots that is able to rapidly and accurately
model and calculate the forces between modules in the structure. This environment
shall be restricted to a 2D grid for simplicity.

� To develop novel algorithms to enable the self-assembling modular robots to form
bridges across a gap without collapsing. These algorithms should first allow the
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structure to be built from one side until the other is reached. When this occurs,
the additional support will enable a second stage where the number of agents in
the structure is safely reduced so they can complete other tasks. Finally, when the
structure is no longer required, it should be able to be safely dismantled.

� To calculate optimal structures against which to compare the performance of the
algorithms. A cantilever of N agents is considered optimal if it safely spans the
maximum distance possible for this N . Optimal bridges are defined as those that
safely span a given length with the minimum number of agents.

� To verify and analyse the performance of these algorithms with a large number of
robots in simulation.

� To develop suitable novel robotic hardware to deploy these algorithms on in real-life.
As in the simulations, this hardware shall be designed only to create 2D, grid-based
structures.

� To demonstrate the real-world applicability of these algorithms through deployment
on a physical robotic platform.

1.4 Preview of Contributions

The contributions of this thesis are as follows:

� A novel distributed algorithm to allow the force-aware construction of cantilevers
from self-assembling modular robots that add themselves to the cantilever one at a
time. The algorithm incorporates local force measurements to ensure the structure
does not collapse during construction. It does not require a human to design the
structure: agents instead use the measured force information to produce a suitable
shape. Two variants are developed, one in which agents within the structure co-
ordinate to inform the agent that is currently placing of the maximum forces in
each column, and another where this agent only receives the force measurements in
links connected to agents on the perimeter of the structure. Simulation studies with
large numbers of agents show that both variants build cantilevers close to the pre-
computed optimal length for a given number of agents for different link strengths;
performance is not significantly diminished by reducing the amount of information
passed to the currently-placing agent.

� An extension of the aforementioned algorithm to allow multiple agents to move
around the structure simultaneously as they self-assemble cantilevers. This algo-
rithm also contains behaviours to resolve collisions between agents travelling in
opposite directions to ensure the continual construction of the cantilever. It is val-
idated in simulation, and shown to construct cantilevers of comparable length and
strength to the previous algorithm, but significantly faster.

� A further distributed and force-aware self-assembly algorithm that enables the num-
ber of agents within the bridge to be reduced when the cantilever reaches the other
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side of the gap. This algorithm optimises the structure by removing and reposition-
ing agents while ensuring it is still able to support itself. It allows for multiple agents
to move around the structure at once, and does not produce designs preplanned by
a human. Bridges resulting from the previous cantilever construction algorithm are
used as starting configurations in simulation to verify that the algorithm can reduce
the number of agents in bridges to almost the precomputed optimal number in a
wide range of scenarios.

� An additional algorithm to deconstruct these bridges when they are no longer re-
quired. This algorithm is again distributed and force-aware to ensure that it is scal-
able and builds structures that will not collapse; multiple agents can move around
the structure at a time and preplanned structures are not built. Elastic beam theory
is used to enable agents to approximate what the force distribution in the structure
would be if one of the supports were disconnected. This algorithm is also verified
in simulation for a range of scenarios. It is shown to be able to reliably deconstruct
all bridges tested, requiring a similar number of agents than were used by the initial
cantilever construction algorithm to span the gap. The maximum forces within con-
nections during the operation of this algorithm are found to be comparable to those
during the initial construction of this bridge, and more than during the subsequent
optimisation stage.

� The design and manufacture of a novel hardware platform on which to deploy these
algorithms in the real world. This is based on the existing HyMod system [25],
but it is extensively modified to incorporate the specific features necessary for these
algorithms. In particular, novel force-aware versions of the HiGen connector [26] are
developed to allow agents to measure the forces within their links to determine how
close they are to failure. Two modules are designed: a passive module to allow the
verification of the algorithms in real-life, and an active metamodule to demonstrate
how modules would move around the structure in a fully autonomous system. Ten
passive modules and one active metamodule are manufactured and characterised.

� Verification of the algorithms in real life, demonstrating how they provide a viable
method of using self-assembling modular robots to create bridges while ensuring
structures are able to support their own weight. Modules are moved around the
structure by hand, and decide for themselves how the structure should be built
based on the force information received, following the developed algorithms. The
performance in real-life is evaluated and similar trends are observed to those seen
in simulation.

1.5 Publications

This thesis contains original contributions the author has made to scientific knowledge.
The work presented in this thesis has so far led to two peer-reviewed publications:

� E. Bray and R. Groß, “Distributed Self-Assembly of Cantilevers by Force-Aware
Robots,” in International Symposium on Multi-Robot and Multi-Agent Systems
(MRS), 2021, pp. 110–118 (winner of conference’s Best Student Paper award)
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� E. Bray and R. Groß, “Distributed Optimisation and Deconstruction of Bridges
by Self-Assembling Robots,” in Robotics: Science and System, 2022

These publications were presented orally by the author at their respective conferences:
these were held in Cambridge (UK) and New York (USA).

1.6 Thesis Outline

The remainder of this thesis is organised as follows:

� Chapter 2 contains related works and a discussion of the field of self-assembling
modular robots to date. Section 2.1 begins the chapter by introducing inspiration
from biological systems. Current hardware platforms are described in Section 2.2,
before an overview of existing algorithms is given in Section 2.3. Existing force-
aware self-assembly algorithms are then discussed in detail in Section 2.4. Section
2.5 summarises and concludes the chapter.

� Chapter 3 presents the cantilever construction stage of the self-assembly of bridges.
Section 3.1 formally defines the problem, then the simulation environment used to
evaluate the algorithms is presented in Section 3.2. Optimal cantilevers are com-
puted in Section 3.3 to compare the performance of the self-assembly algorithms
against. These algorithms are presented in Section 3.4: two variants of an algorithm
in which agents place one at a time are first described, then another algorithm in
which multiple agents can move around the structure at once is given. Simula-
tion studies are performed in Section 3.5 to demonstrate the performance of the
algorithms for large numbers of agents. Section 3.6 summarises and concludes the
chapter.

� Chapter 4 presents the bridge optimisation stage of the self-assembly of bridges.
Section 4.1 formally defines the problem, then optimal bridges are computed in
Section 4.3 to compare the performance of the self-assembly algorithm against. The
bridge optimisation algorithm is presented in Section 4.4, and validated extensively
in simulation in Section 4.5. Section 4.6 summarises and concludes the chapter.

� Chapter 5 presents the bridge deconstruction stage of the self-assembly of bridges.
Section 5.1 formally defines the problem. The bridge deconstruction algorithm is
presented in Section 5.2, including a description of the method by which forces in
the bridge if it were to be released from one side are calculated. The algorithm
is validated extensively in simulation in Section 5.3. Section 5.4 summarises and
concludes the chapter.

� Chapter 6 presents a validation of the algorithms with real-life hardware. The design
of the hardware is shown in Section 6.1, and it is characterised in Section 6.2. The
algorithms are slightly modified to deploy them on this hardware, as described in
Section 6.3. Thorough experiments are performed and analysed in Section 6.4.
Section 6.5 summarises and concludes the chapter.

� Chapter 7 summarises the thesis, and discusses the conclusions that can be drawn.
Potential avenues for future work are identified and discussed in Section 7.1.
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Chapter 2

Background

This chapter reviews the existing literature related the work presented in this the-
sis to provide context for the novel developments contained herein. Firstly, Section 2.1
introduces a number of studies from the field of biology that have been inspirational in con-
ceiving the methods explored by researchers developing self-assembling modular robotic
systems. Section 2.2 describes the common challenges faced when designing physical self-
assembling modular robots, and provides an overview of how they have been addressed
by engineers to date. A range of approaches explored by researchers to control the self-
assembly of these robotic platforms are presented in Section 2.3. This thesis specifically
considers force-aware self-assembly, so existing works demonstrating this approach are
explored in depth in Section 2.4. The chapter is concluded in Section 2.5.

2.1 Inspiration from Biological Systems

Roboticists are often inspired by nature when designing robotic systems. Over mil-
lions of years, evolution has resulted in both bodies that are capable of sophisticated
and graceful movements, and brains that help animals to thrive and adapt to different
environments. In many species, animals work together, displaying relatively simple be-
haviours such as flocking [27], or complex coordination such as generating large waves to
wash prey into the ocean [28].

At a high level, this thesis considers how structures can be built by a team of robots.
Groups of animals collaborating to build structures is observed in a wide range of species.
Beavers build dams and lodges in rivers to ensure their safety and food supply [29],
while birds construct nests in which to raise their young [30]. Perhaps some of the
most impressive examples of animals working together to build structures come from
termites, who work together to build nests several metres tall [31]. Despite the limited
intelligence of each individual termite, they are able to follow simple rules based on
indirect communication with other agents through cues left in the environment. This
form of communication is called stigmergy, and has been proposed as the mechanism by
which numerous species display complex emergent behaviours [32].

The structures built by animals that are most relevant to the work contained within
this thesis are the self-assembled structures built by ants. Large numbers of ants are able
to self-assemble into different temporary structures to help the colony thrive, such as rafts
[33], bivouacs [34], towers [35], and pothole plugs [36]. Ants have a very high strength-
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(a) (b)

(c)

Figure 2.1. Examples of bridges built by ants. (a) A cantilever extending from one
support to enable construction of a bridge to a new location, © 2014 Adhi Prayoga /
Solent News. (b) A bridge forming a shortcut between two locations that have previously
been explored. (c) A scaffold built against an inclined surface to stop agents from slipping
down it. Reprinted from [38–40] respectively.

to-weight ratio and are able to attach to each other at arbitrary locations [37], enabling
them to self-assemble into complex shapes: such properties are also very desirable in
self-assembling robots.

The main source of inspiration for this thesis comes from how ants self-assemble bridges
out of their bodies, as in the examples shown in Figure 2.1. The African weaver ant
Oecophylla longinoda has been observed to build bridges by initially extending a cantilever
from one side of a gap until the other is reached [41] (Figure 2.1a). These bridges allow
the colony to reach areas that would otherwise be unreachable, helping them to forage
for new resources. Their construction involves large numbers of ants accumulating on
one side of the gap, who then start to reach out across it. As more ants arrive, a large
ball of ants builds on this support. This acts as a buttress to transfer the load onto the
support, enabling the structure to extend further without collapsing, until eventually the
other side of the gap is reached.

The army ant Eciton hamatum self-assembles bridges which act as shortcuts between
points that the colony has already explored (Figure 2.1b). These bridges adapt to the
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traffic flow over the bridge, and exhibit a cost-benefit trade-off: longer structures will
require more agents, thus reducing the number that can forage, but allow the remaining
foraging agents to do so more efficiently [39]. Eciton burchellii can self-assemble scaffolds
between two points separated by an inclined plane which ants would otherwise slip on [40]
(Figure 2.1c). While these are not true bridges, these structures demonstrate another way
in which ants use self-assembly to navigate their environment in a more efficient manner.
Similar behaviours implemented in robotic systems would enable them to reliably explore
unpredictable real-world environments.

2.2 Self-Assembling Modular Robotic Systems

The physical design of self-assembling modular robots has been an active research topic
for decades. Since Fukuda and Nakagawa launched research into modular reconfigurable
robots with the Dynamically Reconfigurable Robotic System in 1987 [42], researchers have
designed a wide range of robotic platforms capable of self-assembly. All of these platforms
should consider four common challenges:

1. Topology: how the self-assembled agents should be arranged with respect to one
another.

2. Connections: how the physical connections between agents should be made.

3. Actuation: how the agents should move, both around their environment and with
relation to one another.

4. Communications: how the agents should communicate with other agents, a human
operator, or both.

Each of these challenges is considered separately below, and a range of promising solutions
developed to date are presented and discussed. Platforms typically consist of only a
single type of module, thus are called homogeneous. A small number of systems comprise
multiple different types of module, so are referred to as heterogeneous platforms.

2.2.1 System Topologies

The topology of the platform describes how the agents connect to each other. This
affects the possible structures that can be built, and so heavily influences the functionality
of the collective. Systems are traditionally described as chain-type, lattice-type, or mobile
[43]. However, recently a fourth topology has risen in popularity, called freeform. The
advantages and disadvantages of each class are described below, along with some examples
of robotic platforms that fit within them. Some systems exhibit traits of a number of
topologies, so are often referred to as hybrid-type: such systems are mentioned here in the
category that they most-resemble.

2.2.1.A Chain-Type

In chain-type modular robots, agents attach to each other end-to-end, occasionally
employing additional modules to allow separate branches to be made. Each module typi-
cally contains one or more degrees of freedom, and is able to move around the environment
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(a)

(b) (c)

(d) (e)

Figure 2.2. Examples of chain-type self-assembling modular robotic systems: (a) PolyBot
G3© 2007 IEEE, (b) CKBot© 2007 IEEE, (c) CONRO© 2002 IEEE, (d), ModRED1,
and (e) KAIRO 3 © 2014 IEEE. Reprinted from [43, 46–49] respectively.

on their own. The high mobility of agents means that they must go through careful align-
ment procedures while docking, but also leads to highly-manoeuvrable self-assembled
structures. These structures can move around with a variety of gaits, including snake-like
crawling [44] or rolling locomotion [45].

One of the earliest chain-type modular robotic platforms is Polypod [50]. This hetero-
geneous platform comprises two types of module, called segments and nodes. Segments
are nominally cubic with two connectors on opposite faces, and are capable of both pris-
matic and rotational motion of the connectors relative to each other. Nodes are passive
cubes that contain six connectors to allow branches in the chain. These modules can
be arranged in several ways to demonstrate different methods of locomotion, including
walking and caterpillar gaits.

The design of Polypod inspired the authors to develop PolyBot [51] (Figure 2.2a).
This platform is homogeneous, and also comprises robots that are roughly cubic with two
connectors on opposite faces. However, the prismatic actuation is removed to allow the
modules to rotate through a greater range, and to create space for an active connection
mechanism that allows modules to autonomously control their connections to each other.
The motor that actuates the module rotation protruded from the module body in early
versions, but later generations refined the design to fit all the components within a 50mm

1Reprinted with permission from J. Baca, S. G. M. Hossain, P. Dasgupta, C. A. Nelson, and

A. Dutta, “ModRED: Hardware design and reconfiguration planning for a high dexterity modular self-

reconfigurable robot for extra-terrestrial exploration,” Robotics and Autonomous Systems, Reconfigurable

Modular Robotics, vol. 62, no. 7, pp. 1002–1015, 2014
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cube [52]. The CKBot platform builds on PolyBot by incorporating the same kinematic
design, but with simplified hardware to make modules less expensive to manufacture [53]
(Figure 2.2b). Additional modules, such as cameras, can be added to introduce additional
functionality to the system [46].

The CONRO system incorporates a very different module morphology to the previous
systems [47] (Figure 2.2c). These modules comprise two connectors, separated from each
other by the robot body. One connector has connection surfaces on three faces, giving
a total of four possible connections for each module to allow for branching structures.
The body contains two motors to vary the yaw and pitch of the connectors relative to
each other. This platform is able to build highly mobile structures, including snakes or
hexapods.

The above examples all date from the around the turn of the millennium. In the years
since, this topology has fallen out of favour with the research community, though systems
such as ModRED show how novel chain-type systems are still being developed [48] (Figure
2.2d). These modules contain two opposing connectors similar to previous systems, but
each connector has its own rotational degree of freedom, and each module also has a
prismatic joint between the connectors. The reasons for this reduction in popularity are
unclear: it could be that the downsides associated with controlling numerous degrees of
freedom have made chain-type topologies less attractive, or perhaps the versatility offered
by other topologies makes them more attractive. Regardless, chain-type systems still have
an important niche in exploring narrow passageways, for example in pipes. Robots such as
KAIRO [49] (Figure 2.2e) show chain-type modular robotic systems can have important
real-world applications, especially within this niche [54].

2.2.1.B Lattice-Type

The agents in lattice-type self-assembling modular robotic platforms connect to each
other in regular locations within a lattice. The lattice is typically square or cubic, but
some systems incorporate hexagonal [55] or triangular [56] arrangements. The regular
arrangement of modules means alignment of connectors is simplified compared to chain-
type systems, making self-assembly easier. Purely lattice-type modular robots are not able
to independently move outside the lattice in a controllable manner. Example systems are
grouped below by the type of lattice they form, a classification inspired by Parrott [57].

The first type of lattice is the translational lattice. In these systems, modules contain
only prismatic joints. They usually reside in a square 2D grid, and thus can only move
into locations in their von Neumann neighbourhood. Two methods of achieving this
motion have been demonstrated. One approach is for the faces of modules to extend in
order to push them around the lattice, as demonstrated by Crystalline [64] (Figure 2.3a)
and Telecubes [65]. The alternative approach is to slide along the surface of adjacent
modules: Pamecha et al. [66] and the CHOBIE II platform [67] (Figure 2.3b) achieve this
by incorporating tracks within the faces of modules which others can travel along using
wheels, while EM-Cubes use magnets [68].

Systems designed with a rotational lattice arrangement incorporate rotational joints,
allowing them to move to a greater range of locations. Fracta is an early example of such a
system, consisting of hexagonal modules that move in a 2D plane by pivoting about their
corners [55]. There are also several cubic systems that pivot around their edges, such as
3D M-Blocks [60] (Figure 2.3c), Kubits [69], and ElectroVoxels [70]. Similarly, 3D Catoms
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(a) (b) (c)

(d) (e) (f)

Figure 2.3. Examples of lattice-type self-assembling modular robotic systems: (a) Crys-
talline © 2000 IEEE, (b) CHOBIE II © 2008 IEEE (c) 3D M-Blocks © 2015 IEEE,
(d) Roombots © 2010 IEEE, (e) ATRON2, and (f) Pebbles © 2010 IEEE. Reprinted
from [58–63] respectively.

are quasi-spherical modules that form face-centred cubic lattices which they can move over
through rotation [71]. Modules in the M-TRAN system comprise two cubic halves linked
by an additional degree of freedom, enabling them to talk over regular arrangements of
other modules [72, 73]; a similar motion is also possible with Roombots modules, whose
two halves are spherical instead [74] (Figure 2.3d). Other systems, such as ATRON [62]
(Figure 2.3e) or UBot [75], only contain a single rotational degree of freedom so are only
capable of more limited motions on their own. It should be noted that, while these
systems are typically lattice-based, it is also possible for those with internal rotational
joints to form structures resembling chain-type systems. However, they are not considered
chain-type as individual modules cannot move outside of the lattice.

Finally, fixed lattice systems do not incorporate any internal actuation or degrees of
freedom. Modules are instead actuated by some external force. Systems such as Miche
[76] or Pebbles [63] (Figure 2.3f) rely on gravity to remove them from initial configurations
made by a human. Others rely on stochastic excitation of a fluid, either water [77] or
air [78], to self-assemble. Individual modules can influence the self-assembly process by
choosing which connectors to activate. A wide range of structures can be formed, but the
potential applications outside the laboratory are limited.

2Reprinted with permission from E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, “Design

of the ATRON lattice-based self-reconfigurable robot,” Autonomous Robots, vol. 21, no. 2, pp. 165–183,

2006
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(a) (b) (c)

(d) (e) (f)

Figure 2.4. Examples of mobile self-assembling modular robotic systems: (a) M3Express
© 2012 IEEE, (b) iMobot © 2010 IEEE, (c) SMORES-EP3, (d) HyMod, (e) MHP
© 2016 IEEE, and (f) ModQuad © 2018 IEEE. Images excluding (d) reprinted from
[81–85] respectively.

2.2.1.C Mobile

The third class of reconfigurable modular robotic system is the mobile class. These
modules can move around their environment independently, and come together to form
chain- or lattice-type arrangements. One of the first self-assembling modular robots de-
signed, CEBOT, adopted a mobile topology [79]. These modules could drive around a
flat surface using wheels, and dock with other modules to form different structures. Later
systems such as M3 [80] and M3Express [81] (Figure 2.4a) also employ wheels to allow
individual modules move around the environment independently. These systems comprise
a pair of axially-aligned wheels and third orthogonal wheel, with connectors on the face
of each wheel.

Many systems allow modules to work together as a collective after self-assembly. Some
robots are able to demonstrate collective behaviour once assembled despite forming rigid
structures without any internal actuation: for example, the PuzzleBots can cross gaps
too large for an individual agent to drive over [86]. However, internal actuation such as
the wheels of the aforementioned M3 and M3Express is often incorporated to allow the
self-assembled structures to exhibit additional functionalities, such as to enable a hexapot
configuration to walk. Other actuated degrees of freedom commonly included to achieve
this is are central rotating joints. One of the first mobile self-assembling robotic systems
to incorporate these was iMobot [82] (Figure 2.4b). Modules in this system resemble those
of M-TRAN, but with additional rotating faceplates at their ends. These robots are able
crawl with an inchworm gait using their central rotating joints, while the faceplates enable
to them to rotate on the spot or can be used as wheels in a differential drive arrangement.

3Reprinted with permission from C. Liu, Q. Lin, H. Kim, and M. Yim, “SMORES-EP, a modular

robot with parallel self-assembly,” Autonomous Robots, vol. 47, no. 2, pp. 211–228, 2023
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A popular contemporary design is for modules to be roughly cubic, and consist of
two halves which rotate with respect to each other. Modules have connectors on four of
the six faces, while the other two are empty to allow space for this rotation. Wheels are
used both to allow modules to move around their environment and to actuate the self-
assembled structures. A differential drive arrangement is common, as in SMORES [87],
the second-generation SMORES-EP system [83] (Figure 2.4c), and HyMod [25] (Figure
2.4d). Other platforms use different arrangements of wheels to achieve a wider range of
motions: for example, Omni-Pi-Tent uses omnidirectional wheels [88], and CoSMO uses
Archimedes Screws [89].

The aforementioned systems are all land-based, but self-assembly is also possible in
fluids. Robotic platforms designed to operate in these environments typically exhibit
mobile architectures to take advantage of their low friction nature. For example, the
modular hydraulic propulsion (MHP) system consists of square modules which float on
the surface of water [84] (Figure 2.4e). They can route fluid through internal pumps
to move individually, or connect with other modules to create an increased number of
internal fluid pathways and move through complex trajectories [90]. Other systems form
flying structures: modules in the Distributed Flight Array first self-assemble structures
while driving on wheels before flying as a group [91], while the ModQuad can self-assemble
into different structures when airborne [85] (Figure 2.4f).

2.2.1.D Freeform

In the previous three categories of self-assembling modular robot, connections between
modules must be made at discrete points. Freeform systems do not have this limitation,
and instead allow individual modules to dock with each other at any location. This in-
creases the versatility of the system by allowing a wider range of configurations to be
formed than the other topologies, and reduces the need for precise alignment between
connectors. The Swarm-Bots project developed one of the earliest examples of this type
of system [96] (Figure 2.5a). These robots could drive around a range of surfaces using a
combination of tracks and wheels. When required, they could use one or two grippers to
attach to adjacent agents at any point on a ring encircling them. Another system devel-
oped at around the same time was Slimebot [97]. These robots were roughly hexagonal
and coated with Velcro to form connections with each other at any location. A more
recent 2D freeform system is Eciton robotica. These are soft-bodied robots that have
corkscrew grippers to attach themselves to Velcro surfaces, including other modules [93,
98] (Figure 2.5b). Cables running through the soft bodies allow them to deform and move
with a flipping gait, but current designs only allow for controllable motion in 2D, so the
modules operate in a vertical arena between two clear panes of acrylic.

Recent freeform modular robots can self-assemble 3D structures. One method of
achieving this is to create modules out of ferromagnetic shells, which can join to other
modules at any location through magnetism. The first robot to utilise this design was
FreeBOT, which uses a carriage within a ferromagnetic sphere to drive around flat surfaces
of any material, and vertical surfaces made of smooth ferromagnetic materials, including
other modules [94] (Figure 2.5c). The concept has since been expanded to create other
robotic platforms. These include FreeSN, a heterogeneous system comprising active strut
modules that drive around passive spherical ferromagnetic node modules [99], and Snail-
Bot, in which a wheeled carriage is placed on the outside of a ferromagnetic sphere to
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(a) (b)

(c) (d)

Figure 2.5. Examples of freeform self-assembling modular robotic systems: (a) Swarm-
bots© 2006 IEEE, (b) Eciton robotica © 2020 IEEE, (c) FreeBOT© 2020 IEEE, and
(d) FireAnt3D © 2020 IEEE. Reprinted from [92–95] respectively.

self-assemble structures in a similar manner [100].

Another 3D freeform robot is FireAnt3D [95] (Figure 2.5d). Based on a previous 2D
system [101], these robots comprise three spheres arranged in a triangle. The spheres
are coated in a special polymer which melts when current is passed through it due to
Joule heating, causing modules to become bonded to each other. Modules can walk over
each other with a flipping gait, but can only move across surfaces coated in this special
polymer.

2.2.2 Connection Methods

Self-assembling modular robots should be able to form secure connections with their
peers to enable strong and functional structures to be built. Different methods of manag-
ing these connections are described below, categorised by the technology used to achieve
the connection. The majority of designs either exploit interlocking mechanical compo-
nents or electromagnetic interactions. A third section describes the small number of
systems which rely on the phase change of materials as they change temperature to form
connections.

Connectors are often classified based on how the design enables modules to interact.
The three classes described by Parrott et al. [26] are:
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� Gendered: Modules feature two distinct kinds of connector, typically one active
and one passive. They can only form connections with the opposite kind.

� Bi-gendered: Active and passive components are combined into each connector, so
that connections can be formed between all connectors.

� Genderless: All connectors feature active components. This allows either con-
nector forming a connection to disconnect without actuation from the other side,
something not possible in the other classes. This ability allows broken or otherwise
non-functional modules to be removed from the self-assembled structure.

These terms are used to describe the connectors discussed below. In addition to the
gender, other considerations must be made by designers. Factors such as the strength
of the connections, the speed with which connections are made, the energy required
during connection and while connections are active, and the tolerance of the connectors
to misalignment are all important, and are discussed accordingly below.

2.2.2.A Mechanical Connectors

Some of the simplest mechanical connections revolve around the insertion of a peg
into a hole. In systems such as CEBOT [79] and CONRO [47] (Figure 2.2c), latches are
actuated when insertion is complete to lock the two parts together. These connections are
strong, but the gendered design restricts the range of allowable connections. Furthermore,
the latch means only one module is able to disengage the connection: if this module
malfunctions, the connection cannot be broken. A similar design is employed by the
CoBoLD connector [102] (Figure 2.6a) incorporated into the CoSMO system [89]. Each
connector features both pegs and holes, as well as a rotating latch. This bi-gendered
design allows them to attach to any other connector, but they can only disconnect if
both latches are released. Latches such as these only draw power while being actuated,
instead of requiring a constant power draw while connected. This design also includes
force-sensitive resistors to measure the forces in the connector. Similar measurements are
obtained by the connectors in the CHOBIE II system (Figure 2.3b), but strain gauges are
used instead of force-sensitive for their increased reliability [67].

More recent systems have also used peg-and-hole connectors, but with novel features.
The PuzzleBots platform incorporates a bi-gendered design where modules position pegs
within holes, which then engage automatically due to gravity when one module drives over
a gap [86] (Figure 2.6b). Mori also employs a bi-gendered design, where modules align
male and female components on coupling axes on their edges. Latches extend to connect
these parts that are designed to slip if torques in the connector exceed safe limits to prevent
mechanical damage [103] (Figure 2.6c). The latches are extended using shape-memory
alloy, whereas most modern mechanical connectors use electric motors to actuate.

Extendible hooks have become a popular design for mechanical connectors. This is
the approach taken by M-TRAN III [73] and Roombots [106] (Figure 2.6d). M-TRAN
III incorporates a gendered design, where half of the connectors on each module con-
tain extendible hooks that engage with specially designed holes on opposing connectors.
Roombots connectors are bi-gendered, with each connector incorporating both hooks and
slots for them to engage with. Later designs also include include permanent magnets to
aid with the alignment, but not to provide any significant additional strength [7]. The
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(a) (b) (c)

(d) (e) (f)

Figure 2.6. Examples of mechanical connectors for self-assembling modular robotic sys-
tems: (a) CoBoLD © 2011 IEEE, (b) PuzzleBots © 2021 IEEE, (c) Mori © 2019
IEEE, (d) Roombots4, (e) HiGen © 2014 IEEE, and (f) GHEFT5. Reprinted from [26,
86, 102–105] respectively.

hooks of each of these platforms are designed to not be able to rotate unless driven by
the actuating motors, so the motors can be turned off once connections are established
to save energy. They also do not extend far from the surface of the module, meaning
modules must slide against each other when aligning before connection. The hooks of
ATRON modules extend further from the body, leaving gaps between adjacent connected
modules to allow them to rotate within lattice arrangements without colliding with their
neighbours [62].

Further mechanical connectors use hooks in a different manner to the above systems.
Instead of engaging with female slots on opposing connectors, the docking hooks in the
RoGenSiD connector [107] used in the ModRED platform [48] (Figure 2.2d) interface
with identical docking hooks on opposing connectors. Hooks are rotated into contact
during connection, meaning that reversing the rotation of either set releases the link, thus
demonstrating a genderless design. However, the modules only fully disengage when the
hooks are moved apart from each other: ModRED achieves this through a translational
degree of freedom within each module, while the similar connector incorporated by Omni-

5Reprinted with permission from A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. J.

Ijspeert, “Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homo-

geneous modular robot,” Robotics and Autonomous Systems, Reconfigurable Modular Robotics, vol. 62,

no. 7, pp. 1016–1033, 2014
5Reprinted with permission from W. Saab and P. Ben-Tzvi, “A Genderless Coupling Mechanism

With Six-Degrees-of-Freedom Misalignment Capability for Modular Self-Reconfigurable Robots,” Journal

of Mechanisms and Robotics, vol. 8, no. 6, 2016
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Pi-Tent requires modules to drive away on their wheels [88]. The HiGen connector [26]
(Figure 2.6e) used in the HyMod platform [25] (Figure 2.4d) uses similar rotating docking
hooks, but they are also extendible. This means that, similar to ATRON, HyMod modules
can perform in place lattice rotations without collision. This connector is also significantly
faster than RoGenSiD, taking only 0.2 s to actuate, compared to 12 s. RoGenSiD is slower
as the docking hooks are driven through a worm gear, while in HiGen they are connected
directly to the motor. This has the added effect of making RoGenSiD non-backdrivable,
whereas the docking hooks on HiGen can rotate when a moment is applied to them: to
ensure connections do not open prematurely, the controller constantly checks the rotation
of the hooks and occasionally corrects the position through short motor pulses. This
slightly increases the power draw of HiGen compared to RoGenSiD while connections are
active.

Clamps can also be used to create genderless mechanical connections. The SuperBot
platform [108] uses the SINGO connector [109], which has four orthogonal tracks on its
connection face. Jaws move linearly along these tracks driven by a single motor, and
clamp against jaws on the opposite tracks. A similar design is employed by the GHEFT
connectors [105] (Figure 2.6f) used by the STORM system [110]. This design uses only
two clamps which are actuated by a constant lead cam, and provides greater tolerance
to misalignment of the connectors than SINGO. Both designs are not backdrivable, thus
remain strongly connected without constantly drawing power from the actuating motor.
Although they are genderless, they require modules to decide before connection which
jaws will be on the inside of the connector and which will be on the outside, so they
require additional coordination compared to other genderless designs, such as HiGen.

2.2.2.B Electromagnetic Connectors

The simplest method of using electromagnetic forces to connect self-assembling mod-
ular robots is to use permanent magnets. Connections are made quickly and require no
energy to establish or maintain. However, the attractive force cannot be controlled, so
detaching modules requires careful consideration. The attractive force of permanent mag-
nets decreases rapidly as the distance from the magnet increases, so connectors employing
permanent magnets typically disconnect by mechanically moving the opposing magnets
apart from each other. In the M-TRAN and M-TRAN II systems, shape-memory alloy
is used to bring four magnets per connection face towards and away from the edge of the
module [72]. This creates a simple mechanism, but each actuation takes over a minute.
All magnets in a given face are oriented with the same pole facing out, creating a gendered
connection. In later systems, such as SMORES, each connection face incorporates a ra-
dially symmetric arrangement of polarities to create a bi-gendered connector [87] (Figure
2.7a). SMORES modules also have a retractable arm which can protrude from the centre
of one connector at a time for two purposes. Firstly, it enables one face within a connec-
tion to remain stationary while the other is rotated to move the magnets away from each
other and cause disconnection. The second purpose is to provide shear strength, as flat
permanent magnets are typically able to withstand high axial loads but are weak to shear
forces. Other designs that rotate magnets away from each other to control connections
include PPT [111] and Evo-Bots [78]. The freeform connectors based on ferromagnetic
shells employed in FreeBOT [94] (Figure 2.5c) and FreeSN [99] rely on an internal carriage
to raise and lower permanent magnets to control the connection, while SnailBot achieves a
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(a) (b) (c)

(d) (e)

Figure 2.7. Examples of electromagnetic connectors for self-assembling modular robotic
systems: (a) SMORES © 2012 IEEE, (b) Catoms © 2007 IEEE, (c) ElectroVoxels ©
2022 IEEE, (d) Kubits© 2020 IEEE, and (e) 3D Catoms© 2022 IEEE. Reprinted from
[69, 70, 87, 112, 113] respectively.

similar effect through its external chassis [100]. In these freeform designs, the connection
is controlled by a single module, as the ferromagnetic sphere is unable to break connec-
tions made to it. The final modules incorporating permanent magnets that is mentioned
here are 3D M-Blocks [60] (Figure 2.3c): these break the magnetic connections simply by
applying a large torque to overcome the attractive forces.

Applying an electric current to a coil of wire creates a magnetic field that can be
controlled. Such devices are called electromagnets, and have been used in self-assembling
modular robots as they allow small, robust, strong, and versatile connectors. Some sys-
tems, such as the original Catoms [112] (Figure 2.7b) and ElectroVoxels [70] (Figure 2.7c),
create connections using only this phenomena. Others, such as Fracta [55], Molecubes
[114], and EM-Cubes [68], use a combination of electromagnets and permanent magnets.
The latter arrangement reduces energy usage, as fewer electromagnets must be powered
in each active connection.

An important downside of electromagnets is that they constantly draw energy while
activated. This is not the case for electropermanent magnets (EPMs). These are effec-
tively permanent magnets with a coil wrapped around them, through which a current
flows. The magnetic field of the permanent magnets can be turned on and off by pulsing
current through the coils, and remains in this state when the current is removed. This
therefore reduces the energy consumed by the connection. The first modules to use this
technology were the Pebbles in 2010 [63] (Figure 2.3f), and it has since been used by
Lily [77], DONUTs [115], Kubits [69] (Figure 2.7d), and the EP-Face connector [116] of
SMORES-EP [83] (Figure 2.4c). These connectors are all genderless, but require modules
to coordinate to decide on the polarity of the EPMs before connections can be formed.

In addition to magnetic forces, the attraction between charged particles is also an elec-
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tromagnetic phenomenon that can be used to form connections between self-assembling
modular robots. This has been shown at large scales by Karagozler et al. [117], who
demonstrated an electrostatic connector capable of lifting a module weighing 3.5 kg. This
technology shows its greatest potential at small scales as it can be effectively miniaturised,
as demonstrated by the genderless connectors on both 2D Catoms [118] and 3D Catoms
[113] (Figure 2.7e).

2.2.2.C Phase Change Connectors

Instead of employing interlocking mechanical components or utilising electromagnetic
forces, a third option is to apply heat to certain areas of the connectors, causing them to
melt and fuse together. This was first demonstrated by the Soldercubes [119], a system
where exposed printed circuit boards (PCBs) are placed on the connection faces. Pads
on these PCBs are coated with solder, which melt when a current is passed through
them. As the solder cools, connectors placed in contact with each other are strongly
bonded together. This system inspired the design of the freeform FireAnt [101] and
FireAnt3D [95] (Figure 2.5d) platforms, described previously. The main advantages of
this connection method are the high strength that can be achieved and the inherent
genderless properties of this design, but connections are typically slow to form as the
material must cool sufficiently before they reach their full strength.

2.2.3 Actuation Methods

Self-assembling modular robotic systems should include some amount of actuation.
This is used both for modules to move around the environment, and to actuate the self-
assembled structures to enable them to complete different tasks. The choice of actuation
methods included within a given platform is related to its topology: for example, chain-
type and mobile systems require a method of achieving locomotion independent of other
modules, while lattice-type systems only need to consider actuation relative to their neigh-
bours. For this reason, methods of actuation for the platforms mentioned in Section 2.2.1
are only briefly covered again here.

There are several common methods of actuating self-assembling modular robotic sys-
tems, discussed below. Some platforms rely on external actuation to simplify the design
of each module. A common method of actuating mobile systems is to use wheels, while
platforms of all topologies employ internal joints to actuate the self-assembled structures
and for the locomotion of modules around the environment. Electromagnetic forces may
also be used to provide actuation, which is particularly attractive for systems that use
this style of connector, as the same hardware can be used for both purposes. Finally, a
small number of other methods are mentioned.

2.2.3.A External Actuation

The simplest designs for self-assembling modular robotic platforms rely on external
actuation to move individual agents. The earliest examples of engineered self-assembly
utilised external actuation to induce controlled pattern formation in passive building
blocks. Such systems, including those developed by Penrose and Penrose [120], typically
consist of an arena in which the agents operate which can be actuated by an external force.
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PPT [111] and Evo-Bots [78] operate on air tables and are propelled by air currents created
by the random motion of fans on the edge of the table. The Lily robots are placed on
the surface of a liquid, which is agitated with a pump to induce them to move around the
arena [77]. In another example by Jilek et al. [121] the arena is attached to a robotic arm
programmed to move through an inclined elliptical path, which causes the robots to slide
around the arena floor. Other systems use gravity to provide the actuation in a more
simple way: systems such as Miche [76] and Pebbles [63] (Figure 2.3f) are first assembled
by hand into a connected structure, then agents choose to release their connections and
fall away from the structure, leaving behind a desired shape.

Externally actuated systems such as those mentioned above are relatively inexpensive,
robust, and allow for large numbers of robots to be deployed to investigate the scalability
of control algorithms. However, their potential real-world applications are rather limited
due to the specialist arenas they are required to operate in.

2.2.3.B Wheels

A popular method for modules to move around their environment independently is
to use wheels. The most common configuration is to use a pair of wheels arranged as a
differential drive, where each wheel can be controlled independently to allow modules to
be highly manoeuvrable. This configuration is used by CEBOT [79], M3 [80], M3Express
[81] (Figure 2.4a), iMobot [82] (Figure 2.4b), SMORES [87], SMORES-EP [83] (Figure
2.4c), HyMod [25] (Figure 2.4d), and PuzzleBots [86] (Figure 2.6b) as described earlier.

Other systems use different arrangements of wheel-like mechanisms to locomote. For
example, Swarm-bots use a combination of tracks and wheels to perform efficient on-the-
spot rotation and to allow for simpler navigation than regular tracks or wheels [96] (Figure
2.5a). STORM also uses tracks and wheels, but in a different manner: normally, motion
is achieved through the use of tracks, but a set of wheels oriented orthogonal to the tracks
can be raised or lowered to allow agents to also move perpendicular to the tracks, a feature
that is particularly useful while docking with their peers [110]. Other methods of moving
in different directions without rotating the robot body include the omnidirectional wheels
of Omni-Pi-Tent [88], and the Archimedes Screws of CoSMO [89]. FreeBOT can also
drive in any direction without any apparent force applied to the external ferromagnetic
shell as the internal carriage can rotate unseen on wheels to move the module around the
environment [94]. The related FreeSN [99] and SnailBot [100] systems also use wheels to
drive on ferromagnetic surfaces.

In addition to providing a method of locomotion for individual robots, wheels also act
as additional degrees of freedom for self-assembled structures. Incorporating the connec-
tion mechanism into the wheels is a popular design choice made by M3 [80], M3Express
[81] (Figure 2.4a), iMobot [82] (Figure 2.4b), SMORES [87], SMORES-EP [83] (Figure
2.4c), HyMod [25] (Figure 2.4d), and STORM [110].

2.2.3.C Internal Joints

Many robotic platforms include internal joints, both for individual locomotion and to
enhance the functionalities of self-assembled structures. Some systems, including Crys-
talline [64] (Figure 2.3a) and Telecubes [65], incorporate prismatic joints. However, these
joints are typically rotational as these offer more flexibility and are easier to incorporate

23



Background Self-Assembling Modular Robotic Systems

into small robot bodies. Occasionally, the robot morphology allows agents to use these
joints to independently crawl along flat surfaces, as has been shown for ModRED [48]
(Figure 2.2d), iMobot [82] (Figure 2.4b), and SuperBot [108]. Eciton robotica agents can
deform their soft bodies to locomote by flipping [93, 98] (Figure 2.5b), while FireAnt3D
can also move in a similar manner [95] (Figure 2.5d); both these freeform connectors
can only attach to specific surfaces though, so these robots cannot move in arbitrary
environments.

Individual locomotion through internal joints is achieved most successfully in lattice-
type systems, as the lattice simplifies the alignment of connectors, and existing modules
provide a solid base for locomoting agents to rotate around. Modules that span across two
lattice cells can achieve this on their own, such as iMobot [82] (Figure 2.4b), SuperBot
[108], or Roombots [74] (Figure 2.3d). Other systems consist of modules that each occupy
a single cell in the lattice so must form a metamodule of at least two agents to move across
the lattice in this manner: such systems include ATRON [62], UBot [75], SMORES [87],
SMORES-EP [83] (Figure 2.4c), and HyMod [25] (Figure 2.4d).

When several modules are connected together, internal joints allow for the structure to
be carefully actuated as a whole. Several platforms have demonstrated collective motions
in this manner with a variety of morphologies and gaits, such as crawling [122], snake-like
motions [49], rolling loops [45, 123], and walkers [72, 123, 124]. They can also use these
abilities to create structures such as robotic manipulators [7, 25, 125]. Furthermore, the
rotational degrees of freedom can be used as wheels if designed in a suitable manner, as
shown in Roombots [7] and ATRON [125].

2.2.3.D Electromagnetic Forces

Systems that employ magnetic connectors can reuse the same hardware to provide
actuation. This reduces the mechanical complexity of each module, making them less
expensive and easier to manufacture. The basic principle of such systems is to set certain
magnets to attract and others to repel, creating a force that induces a rotation relative
to fixed point. Fracta was one of the first systems to use this effect to move agents to
adjacent lattice positions [55], and it has since been demonstrated with other connectors
that utilise electromagnets, such as Catoms [112] (Figure 2.7b) and ElectroVoxels [70]
(Figure 2.7c). The same principle can also be used with EPMs, as demonstrated by
DONUTs [115] and Kubits [69] (Figure 2.7d). The EM-Cubes [68] use electromagnets to
create translational motions in contrast to the rotational movement exhibited by other
systems.

This approach is also applicable to electrostatic connectors. 2D Catoms demonstrated
how modules can rotate in relation to one another by controlling electrostatic charges
[118], and the same approach is utilised by 3D Catoms [113] (Figure 2.7e).

2.2.3.E Other Methods

The 3D M-Blocks [60] (Figure 2.3c) are a cubic lattice-based platform with a unique
method of locomotion. These modules pivot around their edges by first rotating an
internal flywheel up to a high-speed then applying a sudden brake. The inertia causes the
module to rotate in the direction the flywheel was spinning, and permanent magnets on the
edges ensure the rotation occurs about that axis. The mechanism was first demonstrated
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in 2D [126], before it was modified to allow the flywheel to be reoriented and thus enable
modules to move in 3D.

Robotic systems that operate in fluids face unique challenges due to the low friction
nature of their environment. Aerial systems typically use rotors to generate lift, controlling
their movement by varying the speed and pitch of their blades [85, 91]. The MHP platform
operates on the surface of water and uses internal pumps to route fluid within robots to
control the motion of either individual agents or a self-assembled collective [90].

2.2.4 Communication Methods

The final choice considered by engineers when designing self-assembling modular
robots is how the agents should communicate, either with their peers, a human operator,
or both. The different approaches that are taken can be split into two categories: those
that use electrical contacts, and those that employ wireless methods.

2.2.4.A Electrical Contacts

Using electrical contacts is attractive as they allow for direct communication between
neighbours, good signal quality, and high bandwidth. This approach was popular with
early systems, partly because consumer wireless technology was still in its infancy when
these systems were developed around the turn of the millennium. For example, each
connection face on M-TRAN featured five electrical contacts: four were used for power
and ground connections, while the fifth was used to transmit serial data between modules
and to communicate with a controlling computer [72]. CEBOT realised parallel data
transmission between docked modules through a 14 pin connector [79].

The above systems use custom communication protocols. However, electronic engi-
neers have developed a number of standards to enable wired communication between
devices. By using these standards, researchers can benefit from robust communication
protocols and focus on other factors in the design of robotic platforms. For example,
PolyBot used CAN in 2001 [127], a protocol that uses two conductors to enable commu-
nication between microcontrollers. This is also used by later systems, such as HyMod
[25]. Another popular communication protocol used in networking is Ethernet. It enables
high-bandwidth communications, but requires more wires than CAN. Nevertheless, it has
been used in a small number of self-assembling modular robotic platforms such as CoSMO
[89] and that of White et al. [128].

Forming reliable electrical connections between modules requires each module to be
carefully aligned and strongly held in place. This imposes restrictions on the physical
design of the platform, but can be beneficial for other purposes. An important benefit
of forming electrical connections between modules is that power can be shared across
these interfaces, in addition to data. This increases the operating time of the robots, as
modules that are low on power can draw from their neighbours to avoid shutting down.
This has been demonstrated for several platforms, including SuperBot [78] and Evo-Bots
[129]. Reducing the number of electrical contacts is beneficial as it means they occupy less
space on the connection faces. Power can be transmitted without any additional contacts
through the use of standards such as power over Ethernet [128], or through careful reuse
of pins, as shown by a method developed by Holdcroft et al. which uses just three wires
to transmit power and high-bandwidth data [130].
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Designing methods of forming electrical contacts is particularly challenging in freeform
platforms as there are no specific defined contact points. However, FireAnt allows for
wired communications through the contacts used to transfer current when heating the
polymer coating [101]. Power sharing can be achieved in systems with ferromagnetic
shells by using the shell as an electrical contact [131].

2.2.4.B Wireless Methods

Many platforms use wireless communication, as it places fewer restrictions on the
design of modules than imposed by wired methods. The earliest self-assembling modular
robots that could communicate wirelessly did so through infrared waves, as such systems
are easy to use and widely available. Systems such as CONRO [47], ATRON [62], and
SuperBot [108] all utilised infrared methods to communicate. The infrared LEDs used to
transmit data can also act as beacons to aid modules during alignment. This technology
has been less popular in recent years, but is still used by 3D M-Blocks [60] and Omni-Pi-
Tent [88].

The downsides of infrared communication include its limited range and bandwidth, as
well as its requirement for the transmitter and receiver to be in direct line of sight of each
other. Developments in consumer wireless communication standards in recent decades
have been embraced by designers of self-assembling modular robotic systems, offering
several advantages over infrared methods. Swarm-bots were among the first to utilise
Wi-Fi [96], benefiting from its high bandwidth, relatively long range, ease of deployment
in the laboratory, and strong support from manufacturers and software developers. These
agents also featured multicoloured LEDs and a camera to communicate visually. Wi-Fi
has become very popular in modular robotic platforms recently, and has been used by
systems including PuzzleBots [86], Omni-Pi-Tent [88], STORM [110], and SMORES-EP
[83].

Other wireless standards have also been used in recent platforms. Bluetooth is a well-
known standard used in consumer electronics, which has also been deployed in robotic
platforms such as M3 [80], M3Express [81] and HyMod [25]. Another similar standard is
XBee, as used in ModRED [48].

Wired and wireless approaches are each suitable in certain scenarios. For this reason,
it is common for robotic platforms to use a combination of both methods: modules
communicate with those they are connected to through wires, and with others wirelessly.
Holdcroft et al. recently demonstrated a particularly capable hybrid approach, where
bandwidth and reliability are improved by using a combination of wired and wireless
protocols based on the type of data being sent [132].

The wireless communication methods mentioned above allow modules to communicate
with each other from a distance. Wireless methods can also be used at short ranges to
allow communication between adjacent modules without the precise alignment of elec-
trical contacts. For example, the Eciton robotica agents communicate through vibration
motors, which are used to send messages received by accelerometers [93]. Electromag-
netic induction can also be used to allow modules to communicate wirelessly with their
neighbours. This is particularly common in systems that use electromagnets or EPMs for
connection or actuation, as the same hardware can be used to communicate: applying a
current to the coil of one magnet will induce a similar current in the opposing coil. This
method has been demonstrated by systems including Pebbles [63], Lily [77], DONUTs

26



Background Control of Self-Assembling Robots

[115], and SMORES-EP [116]. Messages can also be sent across electorstatic connectors
in a similar manner, as demonstrated by Karagozler et al. [117] and used on both 2D [118]
and 3D Catoms [113].

2.3 Control of Self-Assembling Robots

At the same time as the hardware required to perform robotic self-assembly is being de-
veloped, the design of algorithms to enable this functionality is also an active research area
[133]. Approaches are often divided depending on whether they use centralised control,
where a single leader instructs other agents what operations to perform, or decentralised
control, where agents make their own decisions. The majority of recent developments have
taken a decentralised approach, due its resilient and scalable nature [134]. The literature
is therefore divided here by the purpose of the algorithms, inspired by Stoy et al. [2]. In
shape-driven self-assembly, robots are tasked to create a shape specified by a human user,
whereas in task-driven self-assembly, the robots are given a high-level task to complete,
from which the structure emerges. A further category of auxiliary algorithms includes
low-level procedures that are necessary to achieve the behaviours taken as a prerequisite
by more high-level algorithms.

The self-assembled structures are often required to actuate themselves, for example
to enable them to walk [50, 135]. This thesis considers the self-assembly process itself, so
the algorithms to enable such coordinated actuation once self-assembly is complete are
not considered here.

2.3.1 Shape-Driven Self-Assembly

Some of the earliest developments into self-assembly algorithms took a shape-driven
approach, often tailored to the geometry of the hardware they were implemented on. For
example, algorithms developed for the Fracta system allowed reconfiguration into desired
shapes in a distributed manner [136], while later research investigated 3D reconfiguration
using the Proteo platform [137]. The former work used a set of pre-compiled local rules
followed by each agent, while the latter used a “goal-ordering” approach, where modules
attempt to reach goal locations assigned in different manners. Other algorithms developed
to reflect the morphology and capabilities of specific robotic platforms include work with
ATRON to find optimal module paths during reconfiguration of structures with relatively
few modules [138], and methods of self-assembling Roombots modules into structures
resembling furniture such as chairs [139].

In addition to algorithms developed with a specific platform in mind, researchers are
often interested in developing algorithms for a generic class of hardware. In these cases,
low-level abstractions are commonly used. One such common abstraction is the sliding
cube model, popularised by Fitch et al. who used it to demonstrate an algorithm that
could create arbitrary shapes by first disassembling an existing self-assembled structure
into a line before the goal structure was built [140]. In this model, modules are cubes
that can slide over their peers in either adjacent or convex translations as shown in
Figures 2.8a & 2.8b. Recent self-reconfiguration algorithms that use this model of object
movement include methods based on virtual forces [141] or Lindenmayer systems [142],
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(a) (b) (c) (d)

Figure 2.8. The sliding (a – b) and pivoting (c – d) cube models, shown in 2D. Each
yellow agent follows the green arrows to move to their next location, shown paler. In
doing so, they sweep out the red areas, which therefore must be empty to avoid collisions.
(a) and (c) show adjacent translations, while (b) and (d) show convex translations.

or a layered reconfiguration process that starts from outermost layer [143]. These works
are all implemented in 2D: reconfiguration in 3D remains a challenge.

The sliding cube model is difficult to realise with physical systems. Adjacent trans-
lations (Figure 2.8a) can sometimes be achieved by single modules, as in translational
lattice platforms such as Crystalline [64] (Figure 2.3a) and CHOBIE II [67] (Figure 2.3b),
or by a metamodule of agents from a pivoting lattice system. However, convex transla-
tions (Figure 2.8b) are more complex, often requiring assistance from additional modules
within the structure. One approach to tackle this is to use a 2 x 2 x 2 metamodule
comprised of modules that can independently perform the adjacent translation to achieve
the more challenging convex translation together. First shown in a centralised manner
[144], work has now progressed into a distributed algorithm more suitable for real robotic
hardware [145].

A more realistic hardware abstraction is the pivoting cube model, which encapsulates
how cubic robotic systems such as 3D M-Blocks [60] (Figure 2.3c), Kubits [69], and
ElectroVoxels [70] move. It has different restrictions on module motion due to the area
swept out during rotation (Figures 2.8c & 2.8d). An interesting theoretical development
has shown that the reconfiguration problem based on this model is NP-complete [146],
something previously shown for chain-type modular robots [147] but still not proved for
the sliding cube model. Researchers have simplified this problem by only allowing a
single module to move at once, and to convert the structure into an intermediary line
configuration before the desired shape is built [148]; this approach has also been extended
to allow the construction of structures with non-convex holes [149]. These algorithms rely
on global control to avoid collisions, whereas other work has shown simple behaviours for
pivoting cube robots in a decentralised fashion [150].

In addition to the precise manner in which modules move, further physical consider-
ations behind self-assembly can be accounted for to improve the real-world applicability
of these algorithms. For example, the most time-consuming step of reconfiguration with
SMORES-EP (Figure 2.4c) is the docking and undocking, so algorithms that reduce the
number of these actions required have been developed [151]. Self-assembly also sometimes
occurs in cluttered environments, prompting researchers to incorporate obstacle avoidance
strategies into their self-assembly algorithms [152].

The Programmable Matter consortium have proposed a robust method of achieving 3D
self-assembly using 3D Catoms [153] (Figure 2.7e). Agents are added to the environment
from a supply called the sandbox, and first build a minimalist approximate structure
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called a scaffold [154]. This facilitates the motion of modules within the structure, and
minimises the number required to represent a given shape. The scaffold is then coated
with a thin layer of agents to produce the final configuration [155]. This approach only
describes the construction of an initial design from the sandbox, so any changes would
require dismantling and completely rebuilding the structure. A more efficient approach
is described in [156]: similar hollow structures are created using metamodules of ten
3D Catoms which can move through unoccupied locations within the bounding box of
other metamodules and wait in specified locations so they can be used to reconfigure the
structure at a later time. Large, low density, metamodules such as these are a promising
method of producing complex motions, such as tunnelling through occupied locations,
using modules with relatively limited motion capabilities [157].

Stochastic self-assembly is another promising research area, in which robots do not
control their motion but instead choose what connections they make. This approach is
massively parallel, creating scalable and robust systems [158]. The Lily platform has
supported a number of works, including self-assembly of defined structures by generating
rules for which connections should be retained when modules are stochastically brought
into contact with each other [159]. The process has also been described using Markov
models to gain insights into the behaviour of such systems [160]. Jilek et al. have also
demonstrated tile-based self-assembly in a similar manner [121].

Instead of creating shapes using self-assembly, a contrasting approach is to use self-
disassembly. Robots start from a highly connected structure, then selectively remove
themselves to leave a desired shape. This was first proposed for the Miche platform
[76] and more recently demonstrated with Kilobot robots [161]. Modules in the initial
structure are guaranteed to be able to communicate with each other, so the reconfiguration
process can be decided upon in a centralised manner before movement commences. Early
work relied on external forces to remove the modules [63, 76], whereas recent developments
have shown how modules can remove themselves at a specified sink location to increase
the versatility of this approach [162].

2.3.2 Task-Driven Self-Assembly

In task-driven self-assembly, a structure emerges as a result of modules attempting to
complete a given task. This leads to self-assembly as modules automatically respond to
the situation, instead of requiring separate pre-programmed shapes to be built to com-
plete different tasks. Early work in this area was performed by Bojinov et al. [163]. They
developed a framework whereby local rules are used with a finite-state machine on each
agent to induce self-assembly of structures that fulfil a specified purpose. Four examples
are presented to demonstrate the flexibility of this approach: construction of a chain,
construction of a branching structure, grasping an object of unknown size, and reconfig-
uration of a table in response to a changing load. This last example uses measurements
of the force within the connections between modules to guide the self-assembly process:
the work presented in this thesis uses similar force-aware methods. For this reason, Sec-
tion 2.4 is dedicated entirely to discussing methods of force-aware construction in the
literature. The remainder of this section discusses other methods of guiding task-driven
self-assembly.

The ATRON platform (Figure 2.3e) has been used to demonstrate task-driven self-
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assembly. Artificial neural nets were developed to build bridges and towers, as well as to
repair broken structures [164]. This approach requires users to manually place attraction
points in an arena containing simulated ATRON modules. These modules move towards
the points in a manner controlled by the artificial neural nets. The final structures are
not predefined by a human, instead arising as a result of the artificial neural nets and the
positioning of the attraction points.

A common use of task-driven self-assembly is to allow a group of agents to move
as a collective across unknown terrain, as demonstrated by the Million Module March
algorithm [165]. Agents move to a target location by following local rules and deforming
to the terrain, without requiring a user to specify what obstacles will be encountered.
A similar algorithm was developed more recently by Zhu et al. and implemented with
real-life robots [166]. The approach has also been applied to simulated freeform spherical
robots based on FreeBOT [167], including making checks to ensure structures do not
topple over [168].

O’Grady et al. demonstrated how a group of Swarm-bots can employ self-assembly to
cross terrain they could not do so individually [169]. In these experiments, when an agent
reaches a hill too steep to climb, it recruits nearby modules for assistance by changing the
colour of its ring of LEDs. This change is seen by nearby agents, and they self-assemble
into a group that can climb the hill together. The shape is not defined by a user, instead
forming naturally as the robots try to aggregate; the freeform connector incorporated by
the Swarm-bots helps with this amorphous shape formation. The same approach was also
demonstrated to help the team cross a small gap in the terrain, and to rescue damaged
agents.

Another recent demonstration of task-driven self-assembly considers the formation of
bridges. Inspired by work investigating how ants self-assemble into bridges to enable
them to shorten the path to a goal location [39] (Figure 2.1b), Malley et al. developed a
task-driven algorithm to allow simulated robots to display similar behaviours [93]. Agents
move along a V-shaped path to a goal, and can step on each other if necessary. While an
agent is stepped on, it believes it is providing a useful shortcut and so remains stationary.
When the agent is uncovered, it waits a short period of time before moving again in case
another agent would also benefit from stepping on it. By varying the rate at which agents
are added to the simulation and the angle of the V-shaped path, stable bridges of different
lengths emerge, which act as shortcuts to allow other agents to reach the end of the track
faster. The approach has also been extended to build structures to locations that can not
be reached by a single agent [170].

2.3.3 Auxiliary Algorithms

In addition to algorithms that explicitly induce self-assembly, additional low-level al-
gorithms may be required. For example, many approaches assume each module has a
unique identity to coordinate with its peers, such as in the work of the Programmable
Matter consortium [153]. Inter-module communications often contain the address of the
intended recipient, which should therefore be compact to reduce the message length. A
method for assigning these identities on static structures is presented in [171], and then
extended to allow for dynamic structures by incorporating unassigned identities that can
be used at a later time [172].
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Many algorithms require agents to know their initial structure so they can decide how
to move to a target structure. A method of discovering this has been demonstrated with
the CKBot [53] and ModRED platforms [173]. The latter work is particularly noteworthy
as it combines different methods of communication, incorporating infrared for local com-
munication between neighbours and XBee to rapidly provide wireless updates throughout
the system. Investigations have also been performed with SMORES-EP robots, where
configurations are matched to an existing library to speed up reconfiguration [174]. In
freeform modular robots, configuration recognition can be even more challenging, as con-
nections are able to be made at any location. Nevertheless, an approach to solving this
for FreeBOT has been developed [175], which models the magnetic field produced by the
connectors using graph convolutional neural networks to determine the locations of the
connections to each agent.

Other auxiliary algorithms consider problems that may occur in the real-world but
not in simulation. For example, when robots break down they may require removal or
replacement [88]. Alternatively, additional modules could be incorporated nearby to main-
tain functionality [176]. Another consideration is whether structures will collapse under
their own weight, as in the problem of self-assembling bridges considered in this thesis;
a method of rapidly predicting forces within self-asembled structures using distributed
computation has recently been demonstrated [177].

2.4 Force-Aware Construction

This thesis considers how bridges can be self-assembled in a force-aware manner such
that they do not collapse under their own weight. As mentioned in Section 2.3.2, this
is an example of task-driven self-assembly. Inou et al. were some of the first researchers
to investigate the force-aware self-assembly of bridges in 2000 [22]. They considered how
a group of simulated agents operating in a 2D grid could self-assemble a cantilever to
support a load as far from a vertical fixed support as possible. Their algorithm compares
the calculated stress within each agent to three values:

� Allowable: the load moves away from the fixed support, and new agents are added
at the tip of the cantilever as it does so, until the stress in an agent in the cantilever
exceeds this limit.

� Call: if the stress in an agent exceeds this value, it is reinforced by adding another
agent below it.

� Out: when the stress in an agent drops below this threshold, it leaves the structure.

The algorithm was tested for different values of the thresholds described above, different
numbers of agents, and different loading configurations. It was found that the algorithm
enabled the self-assembly of cantilevers in a robust manner that adapted to the current
scenario. The stresses are calculated only once agents have been added to the structure, so
the loads applied as agents move around the structure are not considered. Furthermore,
only one agent moves around the structure at a time, making the self-assembly slower
than if multiple agents could explore the structure at once.

Further work considered the communication capabilities required for agents to follow
this self-assembly algorithm [23]. Whenever an agent is added to or removed from the
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structure, messages are passed between all agents within it to determine the next course
of action. Each agent must pass messages to all of their neighbours to build a hierarchical
tree describing the shortest route between the support and either the location where an
agent will be placed or the agent that is being removed. This results in O(N2) messages
being passed to build a structure containing N agents, potentially limiting the scalability
of the approach to large structures, and increasing the probability of communication
failures occurring and affecting the operation of the algorithm.

Inou et al. also considered how these bridges could be deconstructed when the load
has crossed to the other side of the gap. The same algorithm is capable of inducing decon-
struction by relaxing certain constraints. However, several deadlocks occur: one in which
deconstruction stalls when presented with certain configurations is resolved by adding
additional position-based heuristics, while another where agents repeatedly add and re-
move from the same locations remains unresolved. Force-aware methods to deconstruct
self-assembled bridges therefore remains an open challenge.

A promising recent development in force-aware self-assembly is the ReactiveBuild al-
gorithm [24]. This algorithm enables the self-assembly of towers, chains, cantilevers, and
bridges using local force measurements to guide the construction process. Agents add
themselves to the structure one at a time, and move around it until they receive a mes-
sage from a neighbouring agent that it is in need of reinforcement. The agent then joins
the structure here, whereupon another enters the simulation and begins exploring. This
algorithm was validated with simulated FireAnt3D modules, demonstrating how freeform
platforms can benefit from a force-aware approach to self-assembly. Since agents are
added at the first location they encounter that requires reinforcement, it is possible that
they will ignore very high forces far from the root in favour of providing reinforcement to
closer locations where forces are only moderately high. This effect limits the maximum
size of structures that can be constructed.

A force-aware self-assembly algorithm has been developed for the translational lattice-
type CHOBIE II platform [67] (Figure 2.3b). Agents include strain gauges to enable them
to account for force measurements in the structure. Initial algorithmic developments for
this platform enabled a group of CHOBIE II agents to move along a flat surface as a group,
incorporating an important motion constraint of this system: when a module moves along
a row or column, all the modules in that row or column must move with it [178]. This work
also proposed how the strain gauges could be used to build cantilevers that do not break
under gravity, but the idea was not explored in detail. Further developments produced
distributed algorithms to enable modules to self-assemble into a given shape [179], and
this framework was then extended to include considerations of the forces in the structure
[18, 59]. The reconfiguration algorithm chooses leader modules based on how undesirable
the current configuration is, a metric that is calculated from the positions of modules in
its row and column compared to the desired configuration, as well as the current stress
distribution in the structure. Chosen leader modules are permitted to move a row or
column in the manner they believe would benefit the self-assembly process. This is a
promising approach to achieving self-assembly without structural failure, but requires a
high degree of coordination between the agents to move together. Furthermore, while the
algorithms are developed with CHOBIE II in mind, the force-aware approaches are only
demonstrated in simulation.

Researchers considering force-aware robotic construction in scenarios beyond self-
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assembly have also inspired the work in this thesis. Genetic algorithms were used by
Funes and Pollack to produce cantilevers constructed from discrete building blocks that
would not collapse under their own weight [15]. These structures were designed by a
machine and built by hand: later work investigated how stable structures could be de-
signed using a genetic algorithm, then built from wooden blocks and hot-melt adhesive
by a robotic manipulator [16]. A related approach considers how the assembly sequence
of a given structure by a robotic manipulator can be automatically derived by consider-
ing the structural stability at each step [14]. Multi-robot systems have also been used
to demonstrate force-aware construction. The work of Melenbrink et al. has shown how
robots can assemble truss-based cantilevers that do not collapse under their own weight
[17, 180, 181]. A task-driven approach to the construction is taken, where agents react
to the forces at the truss nodes to influence where subsequent assembly occurs. The pro-
cess was validated in simulation, and proof-of-concept hardware was demonstrated, but
extensive real-world trials were not performed.

2.5 Summary

In this chapter, an overview of the field of self-assembling modular robotics has been
presented. A wide range of physical designs of such systems were first shown. As each
has their own advantages and disadvantages, no single platform has emerged as the most
capable. The traditional approach of designing modules with discrete connection points
has been challenged in recent years by the development of freeform connectors, which
offer wider-ranging configurations but with their own unique challenges relating to the
increased configuration space they offer.

On the algorithmic front, a wide range of approaches are taken towards the self-
assembly of specified shapes, or self-assembling structures to complete prescribed tasks;
the latter approach may contribute to an increased utility of self-assembling multi-robot
systems. Of particular note to this thesis are force-aware self-assembly methods. Such
approaches have demonstrated how structures can be self-assembled that do not collapse
under their own self-weight, without a human specifically designing their shape. Con-
struction of cantilevers across a gap is the most common scenario examined, but actions
to modify the structure when it becomes supported by the other side of the gap have not
been considered. The reliable deconstruction of such structures remains a further open
challenge. The approaches also only consider either the reconfiguration of a predefined
number of agents, or situations in which only one agent at a time adds itself to the struc-
ture: algorithms where multiple agents can explore the structure in parallel with each
other have not been developed. These algorithms are typically validated extensively in
simulation, while only limited real-world trials have been performed.
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Chapter 3

Cantilever Construction

In order for a group of robots to self-assemble into a bridge to enable them to cross
a gap, the structure must initially be built from only one side, creating a cantilever. A
simple analysis highlights the difficulty of designing strong cantilever structures. Consider
the cantilever in Figure 3.1, consisting of a beam of length L under a uniformly distributed
load (UDL) of magnitude w per unit length. Examining static equilibrium reveals that
the maximum shear force and moment in the cantilever will occur at the support, denoted
Ss,⊢ and Ms,⊢ respectively. They are given by:

Ss,⊢ = wL (3.1)

Ms,⊢ =
wL2

2
(3.2)

The deflection at the tip ∆ can also be calculated. For a beam made of material with
Young’s modulus E and constant second moment of area along its length I, this can be
taken from standard formulae [182] to be:

∆ =
wL4

8EI
(3.3)

These equations highlight the difficulties in designing long cantilevers. High values of
shear force and moment will lead to high internal stresses. In order for the structure to
not collapse, these stresses must be kept below certain levels, but since Ms,⊢ ∝ L2 this
quickly becomes challenging to achieve as length increases. Engineers therefore typically
carefully design cantilevers to be able to safely withstand significantly higher moments
as the span increases. Compensating for deflection is even more challenging, as ∆ ∝ L4.
High deflections could cause the cantilever to not meet a target location on the other side
of the gap.

This chapter considers how a group of robots can self-assemble into a cantilever span-
ning as far as possible across a chasm. These cantilevers should be as long as possible while
not collapsing: as demonstrated above, keeping this from happening becomes significantly
harder as they grow in length. Force-aware self-assembly algorithms are developed, where
agents use measurements of forces within the structure to inform the choice of where they
should contribute to it themselves.

This chapter is organised as follows. Section 3.1 formally defines the problem of
cantilever construction considered in this chapter. Section 3.2 introduces the simulation
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L

∆

w

Ss,⊢

Ms,⊢

Figure 3.1. A simple cantilever of length L, loaded with a UDL of magnitude w per unit
horizontal length. This loading causes a shear force and moment at the support, denoted
Ss,⊢ and Ms,⊢ respectively, as well as a deflection at the tip ∆.

environment used to develop and validate the distributed force-aware algorithms that
address this problem. In Section 3.3, optimal cantilevers are computed to compare the
performance of the algorithms to. These algorithms are described in Section 3.4: an
algorithm in which only one agent can move at a time is introduced first, which has
two variants. Following this, a second algorithm that allows for multiple agents to move
at once is presented. Section 3.5 describes the simulations performed to verify these
algorithms, and shows how well they perform under a variety of test conditions. Finally,
the chapter is summarised in Section 3.6.

The work on this chapter is based on the author’s published work [183], with certain
aspects expanded upon.

3.1 Problem Formulation

This chapter considers a homogeneous group of N robotic agents that self-assemble
into cantilevers as shown in Figure 3.2. Agents are squares of side length l and weight
W that reside in a 2D grid for simplicity. Positions within this grid are referred to
in (row, column) format, with row number increasing downwards and column number
increasing to the right. A fixed support surface occupies positions {(r, c) | r > 0∧ c = 0},
from which the structure extends rightwards.

A continuous supply of agents is available at position (0, 0) which must find their place
in the structure. Agents are initially active, and become placed when they have reached
a suitable location to place in. Placed agents cannot move, and are not able to become
active again. Active agents can advance one step along the perimeter of the structure in
each timestep using the 2D sliding cube model illustrated in Figures 2.8a – 2.8b: they can
move into an empty space in their Moore neighbourhood as long as this space is in the
von Neumann neighbourhood of another agent or the fixed support. These motions are
illustrated in Figure 3.2. All agents can communicate with others in their von Neumann
neighbourhood.

Cantilevers are restricted to have continuous rows and columns of placed agents. This
is defined to mean that each column must be filled from row 1 without any gaps, and
nc ≥ nc+1, where nx denotes the number of agents in column x. This condition ensures
the resulting structures get progressively thicker towards the root, acting as a brace to
transfer the weight of the structure onto the fixed support.

Agents are assumed to be able to connect to each other on any face, and also to any
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2)

W

Figure 3.2. An example cantilever consisting of square self-assembling robotic agents
(blue) connected to a fixed support (grey). The numbers show the agent location coordi-
nate system. Each agent has a self-weight W , only shown once for simplicity. Row and
column links are shown in cyan and purple respectively, each with orange borders. Active
agents are shown in yellow with their links hidden, highlighting how they can move along
the same row or between adjacent rows by following the paths shown in green.

point of the fixed support. These connections are termed links : links along the same
row and column are called row and column links respectively. The links of column c are
defined as the row links on the left of column c, and the column links within column c.

Each agent has the ability to sense the moment M and axial force F in the links on
each of its four faces. These are compared to allowable limits Mallowable and Fallowable

respectively to calculate the criticalness γ of each link as:

γ = max
(

γM , γF
)

(3.4)

where:

γM =
|M |

Mallowable

(3.5)

γF =
max(F, 0)

Fallowable

(3.6)

γM and γF are referred to as the moment and axial force criticalness respectively. Each
combination of Mallowable and Fallowable is referred to as a limit pair. Links with γ ≥ 1 are
described as critical and are deemed to be near failure, but not necessarily immediately
about to fail. This is analogous to how civil engineers consider safe stress levels in a
building to be considerably lower than the failure strength of the constituent materials.
If no links are critical, the structure is defined as stable, else it is unstable.

It should be noted that (3.5) implies links are strong to moments in all directions,
while (3.6) implies links are strong in compression but weak in tension. It is also as-
sumed by (3.4) that the shear strength of links is large in comparison to the axial and
moment capacity, thus it is not included in this equation. These criteria are chosen to
emulate existing modular robots such as SMORES which also have a high strength in
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Figure 3.3. The conversion of the cantilever in Figure 3.2 to a truss. Agents are shown
as blue members, and links as orange members. A weight of W

4
acts downwards from each

agent node (only shown for one agent). Unmade links are hidden. © 2021 IEEE.

shear compared to in bending and axially [87]. They are also similar to simple mechani-
cal connections such as the press stud, and so serve as a good approximation of a range of
potential mechanical connection mechanisms. While this chapter considers only M and
F for simplicity, the exact failure criteria of a real robotic system will be unique to the
mechanical design of its linkages. Indeed the hardware developed in Chapter 6 uses a
different metric more suitable to the design of its connectors. Nevertheless, using M and
F in this chapter allows a generalised form of the problem to be studied.

The length of the cantilever L is the number of columns it contains. The objective of
the algorithms in this chapter is to self-assemble cantilevers that are as long as possible,
while aiming to correct any unstable configurations that occur during construction as
soon as they arise.

3.2 Simulation Environment

A suitable simulation environment was required to develop these algorithms. This
simulator should be able to calculate M and F for any configuration of agents quickly
and accurately. Existing simulators, including Webots [184] and CoppeliaSim [185] were
considered, but they do not allow for easy calculation of forces at specific locations within
solid bodies. For this reason, a custom simulator was required.

The simulator was written in Python, as it is a powerful cross-platform language with
a large variety of packages to enable different functionalities. In order to calculate M

and F , the structure is modelled as a 2D truss as shown in Figure 3.3, a method inspired
by Brodbeck and Iida [16]. The forces within truss members are calculated using the
anaStruct module for Python [186], and converted into a value of M and F for each link.
A side length of 0.1m is used to reflect an estimate of existing modular robotic platforms
[25, 60, 74, 87]. The weight is conservatively calculated as if each agent were a solid cube
of aluminium to give W = 19.3N, significantly greater than existing modular robots.

While the simulator is able to quickly calculate the static forces within the structure,
it does have certain limitations. Firstly, restricting the environment to a grid simplifies it
considerably, and reduces the range of robotic platforms that the developed self-assembly
algorithms could be applied on. However, as seen in Section 2.2.1.B, lattice-type designs
of modular robot are popular, so a wide range of systems could potentially utilise these
algorithms. The deflection of the structure is also not considered, which could become
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significant for large structures, preventing agents from fitting into the desired locations in
the grid: the simulator assumes that either the agents are sufficiently rigid that this will
not be an issue, or the method agents use to connect to one another is able to correct for
such misalignments. A further limitation is that dynamic forces as agents move around
the structure are neglected. This could be reflected in the real-world by moving agents
slowly so as to not generate large impulses during actuation. Despite these limitations,
the simulator is suitable for the development of the self-assembly algorithms contained in
this thesis, and improvements could be made in future to address these concerns.

More details of the simulator are given in Appendix A. This includes a brief discussion
of other methods of calculating M and F that were explored before choosing the truss
approximation method.

3.3 Offline Structural Optimisation

Optimal cantilevers were calculated offline to measure the performance of the self-
assembly algorithms against. A configuration of N agents and length L bodylengths is
considered optimal if it is stable and no other stable configuration of N agents exists
that has length > L. There may be multiple optimal configurations of N agents. In
this section, the optimisation procedure is first described, before the resulting optimal
cantilevers are presented.

3.3.1 Optimisation Procedure

To find optimal cantilevers, the concept of integer partitioning from number theory
is used [187]. A cantilever configuration of length L bodylengths may be represented by
the number of agents in each column as [n1, n2, ..., nL], hence

∑

c nc = N , and this vector
is a partition of N . Since rows and columns are assumed to be continuous, this vector
uniquely describes a cantilever configuration. For example, the structure in Figure 3.2
can be represented as [3, 3, 2, 1, 1], and this is the only valid structure for this partition.

The number of partitions for a given N scales with O
(

e
√
N
)

. To allow tractable

computation, a different procedure is therefore used for small (N ≤ 50) and large (N > 50)
structures. These procedures are described below.

3.3.1.A Small Structures

For small structures, it is possible to list all the possible cantilever configurations
within a reasonable timeframe. Each partition of N ≤ 50 was calculated then modelled
to find the maximum M and F in all links. A limit pair was then specified and these
precomputed data analysed to find the configurations that result in the longest stable
structures of N agents for all N ≤ 50 for this limit pair. This search is exhaustive, so
optimality is guaranteed.

3.3.1.B Large Structures

For large structures, listing all possible configurations is intractable, so a different
procedure is used for N > 50. The number of configurations that need to be modelled is
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reduced by observing that the optimal arrangement of agents at the tip remains constant
as N and L increase.

The optimisation procedure for large cantilevers begins by specifying a limit pair. A
number of agents Ntest is then chosen that is believed might be able to build a stable
cantilever Lmax+1 agents long, where Lmax is the length of the longest optimal configura-
tion that has been previously found for this limit pair. Exploiting the observation about
the optimal configurations at the tip, all known optimal configurations of N < Ntest and
L > (Lmax− 5) are first considered. The numbers of agents in each column of each stable
configuration are compared to find the longest portion at the tip that is common across
all these configurations. All configurations of this Ntest are then enumerated, as for small
structures. However, those that do not include this shape at the tip are discarded.

Once the reduced list of configurations has been generated, each one is modelled and
any stable configurations of the specified Ntest are saved. The procedure is repeated with
different Ntest until the minimum number of agents required to build a stable structure of
length Lmax + 1 bodylengths containing the precomputed tip configuration with links of
the given strength is found.

Exhaustive search again ensures these cantilevers are optimal, but only under the given
assumption about tip configuration. A verification process is then used to prove that these
structures are indeed optimal. For each pair of Ntest and L believed to be optimal, all
configurations of Ntest−1 agents and length L bodylengths are enumerated and modelled
to find the maximumM and F in links within them. If any stable configurations are found,
then the assumption about the optimal arrangement of agents at the tip was incorrect
in this case, as the same L could be reached with smaller N than in the calculated
optimal structures. All structures of Ntest − a agents and length L bodylengths are then
enumerated and tested, beginning with a = 2 and continuing with incrementing a until
the lowest number of agents required to build a stable structure this length is found. Many
iterations of this procedure with increasingly large a would be computationally expensive,
but the assumption about the configuration at the tip gives a good value of Ntest to use
during this iteration.

3.3.2 Limit Pairs

Optimal structures were calculated for multiple limit pairs to examine how they vary
in a range of scenarios, and to allow the flexibility of the self-assembly algorithms to be
investigated. Each pair is generated by choosing a number of agents Ng, arranging Ng+1
agents in a cantilever of a single row, and measuring M at the root: this will be the
largest M across all the links. It is chosen to set Mallowable to be 10% less than this value,
thus a single-thickness cantilever of length Ng is stable, but close to instability. A single-
thickness cantilever has F = 0 at the root, thus cannot be used to calculate Fallowable.
Instead, this is chosen to be 10NgW .

These limits reflect how certain connections are better able to hold structures vertically
than horizontally. For example, the SMORES robot [87] can hang an average of 11 agents
vertically from a single connector without failure, but can only support a cantilever of 3
agents.

Three limit pairs were chosen for which to calculate optimal structures and test the
algorithms. These are given in Table 3.1, and are described as weak, medium, and strong.
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Name Ng Mallowable (Nm) Fallowable (N)

Weak 3 13.9 579
Medium 6 42.6 1159
Strong 9 86.9 1738

Table 3.1. The limit pairs the self-assembly algorithms were tested with.
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Figure 3.4. The number of agents required to build optimal cantilevers of varying lengths.

3.3.3 Resulting Optimal Cantilevers

The optimisation was carried out for N ≤ 100 agents for each of the three limit pairs.
The results are summarised in Figure 3.4. It was found that higher allowable limits lead
to longer possible stable structures, and that the rate of increase in L slows as agents are
added.

Tables containing complete lists of all the optimal cantilevers are given in Appendix
B, but Figure 3.5 shows examples of them, chosen as the minimum N that can reach the
specified L. Weak links are used in Figures 3.5a & 3.5b, which results in the construction of
cantilevers that are short and thick. There is only one optimal configuration for L = 12,
N = 33, but three for L = 15, N = 62. Figures 3.5c & 3.5d show structures with
strong links, where fewer agents are required to reach equivalent lengths as more slender
cantilevers are possible. Note also how the portions at the tip of structures with the same
link strength are the same, as observed in Section 3.3.1.

The verification process revealed one instance where the assumption about the tip
configuration was invalid. For strong links and L = 30 bodylengths, it was predicted
that the first 6 rows would have lengths [30, 21, 14, 11, 8, 7]. The optimum cantilevers
that satisfy this condition consist of N = 99 agents. However, the verification process
revealed structures of N = 98 agents with top row lengths of [30, 21, 14, 11, 8, 6]. No stable
structures exist for L = 30 bodylengths, N = 97 agents, thus the verification process stops
when a = 2.
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(a) (b)

(c) (d)

Figure 3.5. Optimal cantilevers with a given number of agents for different limit pairs.
(a) A 1.2m cantilever with weak links requires 33 agents. (b) Increasing length to 1.5m
requires 62 agents and results in three stable configurations as shown. (c) Strong links
can reach 1.5m with only 21 agents. (d) An optimal structure of strong links reaching a
length of 2.5m, which requires 62 agents. The common portion at the tip for weak links
is shown in cyan, and for strong links in purple. © 2021 IEEE.

3.4 Algorithm Design

The computation of optimal cantilevers in the previous section gives a target for the
structures that the agents should be able to self-assemble into. This section describes
the self-assembly algorithms the agents follow, with a discussion of the theoretical basis
behind them. Two algorithms are presented, called the sequential and parallel algorithms.
Both algorithms begin with an agent placed in position (1, 1). In the sequential algorithm,
new active agents are released only once the previous one has placed, whereas the parallel
algorithm allows for multiple active agents concurrently. Both algorithms incorporate
measurements of M and F within each link to construct stable structures, and run in
a distributed manner on each agent. Active agents keep track of their movements to
calculate their positions in the coordinate system.

3.4.1 Theoretical Basis

Here, a result from structural mechanics which influences the design of the self-
assembly algorithms is introduced.

Theorem 1. Consider a cantilever of length L whose height h(x) is a continuous and
monotonically decreasing function of the distance x from a fixed support, as shown in
Figure 3.6. The cantilever has constant breadth b into the page, and the only load is a
UDL of magnitude w per unit horizontal length. For such a cantilever, increasing the
height h(x) at a distance x = x0 from the support causes a decrease in the maximum
longitudinal stress experienced in the cross-section here, σmax(x0).

Proof. Such a cantilever can be analysed using elastic beam theory [188]. A cut through
the cross-section is made at x (Figure 3.6b) to reveal the internal moment M̃(x). This
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Figure 3.6. (a) Profile of a cantilever (blue) with continually-varying height h(x) a
distance x from the root extending from a fixed support (grey). The only load is a UDL
of magnitude w per unit horizontal length. (b) A cut through this cantilever at x, showing
the internal shear force S(x) and moment M̃(x) on the exposed cross-section. The dashed
line shows the neutral axis, which is assumed to be in the centroid of the cross-section.
© 2021 IEEE.

can be found from static equilibrium to be:

M̃(x) =
w(L− x)2

2
(3.7)

For each x, σmax(x) occurs where the distance y from the neutral axis (assumed to be at
the centroid of the cross-section) is as large as possible. This can therefore be calculated
as:

σmax(x) =
M̃(x)y

I(x)

σmax(x) =
w
2
(L− x)2 · h(x)

2
bh(x)3

12

σmax(x)
3w(L− x)2

bh(x)2
(3.8)

where I(x) is the second moment of area of the cross-section, obtained from a standard
formula [188]. This equation shows that σmax(x0) decreases as h(x0) increases.

These equations are derived for beams where the height is a continuous function along
its length and the only load is a UDL. In contrast, the scenario considered in this chapter
(defined in Section 3.1) concerns cantilevers made of discrete agents under the self-weight
of each agent. The exact equations are therefore not applicable, although the trends are
used to inform the design of the self-assembly algorithms.

3.4.2 Sequential Algorithm

In the sequential self-assembly algorithm, the agents in the structure sample their
sensor readings once an active agent places itself, and hold these values to communicate
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Algorithm 3.1. The message-passing variant of the sequential cantilever con-
struction algorithm.

1 Initialise at (0, 0);
2 while row = 0 and column < L do

// Active (gathering mode)

3 Make one step right;
4 Record M and F from agent below into γα,β

c ;

5 if No link is critical then
// Active (placing mode, to extend)

6 Place at tip;

7 else
// Active (placing mode, to reinforce)

8 Calculate pcolumn(c) from γα,β;
9 while Not placed do

10 ctarget ← sample from pcolumn(c) without replacement;
11 Move to column ctarget;
12 if Valid location then
13 Place here;

14 while True do
// Placed

15 Ml, Fl,Mb, Fb ← M & F in left & bottom links;
16 for α in [M,F ] and ξ in [l, b] do
17 Send upwards max(αβ,self , αξ,agent beneath);

to the next active agent. This effectively means that the weight of the active agent is
not included in the measurements of M and F . Two variants of the sequential algorithm
are developed, called the message-passing and local variants. They differ only in how the
active agent receives the force information from the placed agents.

3.4.2.A Message-passing Variant

The message-passing variant is shown in Algorithm 3.1. Lines 2 – 13 detail the op-
eration of the agent while it is active. During this stage, it moves between two modes.
In the first mode, gathering, it travels to the tip of the cantilever, receiving data from
the agents in row 1. These data contain the maximum M and F observed for any links
belonging to the corresponding columns, obtained by passing messages between placed
agents in a manner that will be explained in due course below. The active agent creates
four arrays

{

γα,β ∀ α ∈ {M,F} ∧ β ∈ {row, column}
}

for the measurements of M and F

in row and column links respectively. These arrays are arranged such that the cth com-
ponent of the appropriate array contains the maximum γM or γF in row or column links
belonging to column c: this component is denoted γα,β

c .

When the tip is reached, the active agent switches to the placingmode. The algorithm
aims to construct cantilevers that are as long as possible, thus the active agent places at
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Figure 3.7. Frames from a cantilever construction sequence for weak links when the
column with the most critical link is chosen to reinforce. The agents (blue) extend from
the fixed support (grey). The most recently placed agent in each frame is shown in purple,
and links are coloured by their criticalness.

the tip if it believes the structure is stable based on the force information it has received
(Line 6). Otherwise, it chooses a column to reinforce. Agents reinforce the bottom of
columns in an effort to better transfer the load onto the fixed support.

Placing in a column will increase the height of this column, which according to Theo-
rem 1 causes a reduction in the maximum longitudinal stress on its left-hand face. This
suggests that a good approach could be to add to the bottom of columns that have high
γα,row such that this reduced longitudinal stress also causes a reduction in M and F .
However, the case analysed in Theorem 1 is that of a cantilever of continually varying
height under a UDL, so this cannot be used directly in the situation considered here where
the cantilever comprises discrete agents with their own self-weights. Indeed, it was found
that always increasing the thickness of the column containing the link of highest γ quickly
led to situations where the algorithm would repeatedly place in the same column without
any benefit to the stability of the structure.

Figure 3.7 gives an example of this näıve approach for weak links. A stable structure
of L = 10 bodylengths is successfully built with N = 22 agents. This can therefore
be extended by the next agent (N = 23), which makes the structure unstable. The
subsequent agent (N = 24) places in column 5 to provide reinforcement to the link in the
structure with the highest γ, which belongs to this column. The highest γ then occurs in
the row link at the top of column 1, but placing agents in this column does not reduce γ

in this link. The construction therefore enters a livelock, where agents repeatedly place
in this column instead of a more suitable locations, such as columns 2 or 8.

In order to employ the basic result of Theorem 1 in the scenario of discrete agents each
with their own self-weight, a probabilistic approach was taken. Active agents are more
likely to place in columns with links of high γ, but not guaranteed to. This allows them
to explore a wider solution space so the construction avoids getting stuck in a livelock, as
it did in the example in Figure 3.7. A probability mass function pcolumn(c) describing the
probability of placing in column c is calculated from the γ

α,β arrays in Line 8 as follows:

1. The values in γ
α,column are shifted by one to the right, so that a high γ in column

links is reflected by a high probability of reinforcing in the adjacent column, as this
will be more effective at reducing γ in these links.

2. For each member γα,β
c of each array γ

α,β, an urgency distribution ν
α,β
c is calculated.

This is defined as the Gaussian distribution centred on column c with variance
(

γα,β
c

)−2
, then scaled by a factor of

(

γα,β
c

)2
and sampled for each column in the
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Figure 3.8. An example of how the probability mass function pcolumn(c) is calculated. (a)
A cantilever (blue squares) with weak links, coloured by their criticalness, and the values
of M and F within its links. (b) The urgency distributions να,β

c calculated for the M and
F in each column c, as well as the resulting pcolumn(c).

cantilever x ∈ Z : 1 ≤ x ≤ L. The xth component of να,β
c is thus given by:

ν
α,β
c |x = (γα,β

c )2 · γ
α,β
c√
2π

exp

(

−(γα,β
c )2(x− c)2

2

)

(3.9)

The area underneath this curve is equal to
(

γα,β
c

)2
, so this spreads the impact of

the critical links in column c across the whole cantilever, but priorities the region
around column c for reinforcement the most. It is chosen to square γα,β

c to magnify
the effect of critical links, for which γα,β

c ≥ 1.

3. For a cantilever of length L, there will be 4L urgency distributions. These are
summed to calculate the combined urgency distribution ν̂ as:

ν̂ =
∑

α∈{M,F}

∑

β∈{row,column}

L
∑

c=1

ν
α,β
c (3.10)

4. Finally, pcolumn(c) is calculated by dividing each component of ν̂ by the sum of all
the components.

Example urgency distributions and the resulting probability mass function for a simple
cantilever are shown in Figure 3.8. The cantilever in Figure 3.8a has a critical row link
in column 2. The urgency distributions calculated by the next active agent are shown in
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Figure 3.8b, which are combined to give pcolumn(c) as shown. The probability of placement
is highest in column 2, but also reasonably high in the adjacent columns 1 and 3. Also note
that only columns 1 and 2 are valid placement locations due to the continuity condition.

This probability mass function is sampled from without replacement in Line 10 to
produce a target column ctarget. The active agent travels to the bottom of this column,
and if this placement is locally determined to be valid (meaning row and column continuity
is maintained) it places here. If not, another sample is drawn from the distribution. This
repeats until a valid location is chosen. Column 1 is always valid, thus the while loop
terminates after at most L iterations.

Once the active agent has placed itself, it remains stationary and runs the message-
passing procedure in Lines 14 – 17. Each agent receives the M and F that the agent
below measures in links on its own bottom and left faces, or larger equivalent values from
an agent below that one. These measurements are compared to measurements in the
equivalent links of the agent in question, and the maximum values are passed to the agent
above. If any link is not currently made it reads a value of zero. The agent in the top
row thus receives the maximum M and F in all row and column links belonging to this
column. These messages are passed after one active agent places itself and before another
initialises, therefore the weight of the active agent is excluded.

3.4.2.B Local Variant

The message-passing variant requires coordination between agents that have been
placed to transmit information within the structure. It requires a large number of commu-
nications before each active agent can place itself, which increases the energy consumption
and number of opportunities for a communication failure to occur: communicating the
information to the nth agent requires each placed agent to communicate its force mea-
surements to the agent above, so the total number of communications required to place
N agents, given the symbol φ, scales according to φmessage-passing = O(N2).

The local variant was developed to reduce the amount of inter-agent communication
required by incorporating more knowledge from Section 3.4.1. For the beam considered
in Theorem 1, σmax(x) occurs on the top and bottom of the cross-section as |y| is greatest
here. In the case of a beam of discrete agents with their own self-weights, it can therefore
be predicted that the maximum M and F within links of a given column is likely to occur
in a link connected to an agent on the edge of the cantilever. This means that the active
agent can reasonably approximate how the maximum M and F vary along the length of
the structure by only receiving the measurements of these exterior agents, without the
need for passing messages.

The local variant of the sequential algorithm is shown in Algorithm 3.2: it is very sim-
ilar to the message-passing variant, so the differences are emphasised. In the gathering

mode (Lines 2 – 4), the active agent must traverse the full perimeter of the beam and com-
municate with all exterior agents. It compares the M and F values measured by agents
at the top and bottom of each column and saves the maximum ones to γ

α,β. This makes
the message-passing behaviour in Lines 14 – 17 obsolete, but requires the active agent to
traverse a longer distance to obtain the necessary data. The local variant is important
as it validates the assumption that only the sensors of exterior agents are salient, and is
built upon in the parallel algorithm.

In the local variant, agents continue to be required to coordinate to sample their
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Algorithm 3.2. The local variant of the sequential cantilever construction algo-
rithm, emphasising differences with the message-passing variant (Algorithm 3.1).

1 Initialise at (0, 0);
2 while not (row > 0 and column = 1) do

// Active (gathering mode)

3 Make one step clockwise;
4 Record M and F from agent below or above into γα,β

c ;

5 if No link is critical then

// Active (placing mode, to extend)

6 Place at tip;

7 else

// Active (placing mode, to reinforce)

8 Calculate pcolumn(c) from γ
α,β;

9 while Not placed do

10 ctarget ← sample from pcolumn(c) without replacement;
11 Move to column ctarget;
12 if Valid location then

13 Place here;

14 while True do ...

sensors once an active agent has placed itself, then to hold this value to communicate
with the next agent. It would be possible to read the sensors as the active agent traverses
instead to further reduce the coordination required, but this is not done so that the two
variants are more comparable. Excluding this additional communication, the nth agent
to place only requires 2Ln communications, where Ln is the length of the structure to
which agent n is added. In the worst case, a structure consisting of a single row of
agents, Ln = n−1 so φlocal = O(N2) = φmessage-passing. However, structures will eventually
require reinforcement so typically Ln < n; this difference increases as more reinforcement
is required, so the theoretical worst-case limit will rarely be reached.

3.4.3 Parallel Algorithm

The sequential algorithm has two drawbacks. Firstly, construction takes a long time as
only one agent is active at once. Secondly, the ‘sample and hold’ procedure used in com-
municating the force information to the active agent increases the inter-agent coordination
required and the number of messages that must be reliably sent.

In the parallel algorithm, agents follow a procedure based upon the local variant of
the sequential algorithm, but with allowances made to enable multiple agents to move
at once. Active agents are released at fixed intervals of δ timesteps. If the initialisation
position is still occupied, they are released at the next possible timestep. The agents
advance in a random order each timestep to simulate synchronisation inconsistencies in a
real system. It is assumed that sensing and communication is instantaneous.

The procedure agents use when it is their turn to advance is presented in Algorithm
3.3. Each active agent now transitions through three modes as they find their place within
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Algorithm 3.3. The parallel cantilever construction algorithm.

1 switch mode do

2 case gathering do

3 Record M and F from placed agent above or below into γα,β
c ;

4 if row > 0 and column = 1 then

5 Calculate pcolumn(c) from γ
α,β;

6 ctarget ← sample from pcolumn without replacement;
7 mode ← placing;

8 else

9 Make step*;

10 case placing do

11 if In column ctarget then

12 Attempt placement;
13 if Placement succeeded then

14 Agent no longer active;
15 return

16 else

17 ctarget ← sample from pcolumn(c) without replacement;

18 Make step*;

19 case swapping do

20 mode ← previous mode;

21 if Agent stationary for > δ timesteps then

22 Attempt placement;
23 if Placement succeeded then

24 Agent no longer active;

* Steps made if the agent is not the sole support of another

the structure. On initialisation, they are in the gathering mode (Lines 2 – 9), where they
move around the perimeter of the structure in the same manner as the local variant of the
sequential algorithm. As they move, they communicate with exterior agents to obtain the
maximum M and F currently experienced by their links, as opposed to a value sampled
and held from an earlier timestep. When a gathering active agent begins advancing
below row 0 and in column 1, it calculates the probability mass function pcolumn(c) in the
same way as the sequential algorithm, samples from it without replacement to set a target
column ctarget, and transitions to the placing mode.

In the placing mode (Lines 10 – 18), active agents first check if they have reached
ctarget. If they have, they attempt to place here. If this placement is valid, the agent
places here (Line 14). It is no longer active, and instead waits to communicate the force
information it measures in its links to passing active agents.

In the event of two agents attempting to occupy the same location, they communicate
internal states and ‘become’ one another. For two agents to swap in this manner requires
that each remains stationary for one timestep, modelling the time cost this communication
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Figure 3.9. An example of how the active agent (yellow) connecting to placed agents
(blue) extending from a fixed support (grey) on all adjacent faces hides critical links.
Links are coloured by criticalness, assuming weak links. On the left, the critical link is
hidden as the active agent provides additional support by connecting on its left face.

would have in real life: in the next timestep, each agent is therefore in the swapping mode
(Lines 19 – 20), and does not move. There are a small number of exceptions, as described
in Section 3.4.3.B.

To avoid active agents blocking each other from moving, they attempt to place if they
have been stationary for too many timesteps after advancing (Lines 21 – 24). The number
of timesteps before this timeout is denoted δ.

3.4.3.A Active Links

In the sequential algorithm, M and F are only updated after agents place themselves.
In contrast, the parallel algorithm calculates this at the end of every timestep, thus the
weight of active agents is measured. However, if active agents attach to all adjacent
contact surfaces they could reinforce the structure before their location is finalised and
thus hide critical links. This effect is illustrated in Figure 3.9: if the active agent connects
to the placed agent in (2, 1), the critical row link to the left of (1, 2) is hidden. The active
agent will therefore not measure this link as critical, and will not place itself in a suitable
location. When only connected by the link on its top face, the active agent will correctly
be informed of this critical link.

To prevent active agents from providing reinforcement to the structure, each can only
make one link to the fixed portion of the cantilever. Each active agent is restricted to only
control one of its four possible links at a time, referred to as its active link. By default,
the active link is set to be on the lower face of each active agent if the agent is above
row 1, and on the upper face otherwise. There are four exceptions to this rule where the
active link is set to the left face instead, as shown in Figure 3.10. If the active agent is
above row 1, this only occurs when the agent left of it is also active, and there is no placed
agent beneath (green agent). If the active agent is below or in row 1, this occurs in three
scenarios:

(i) There is no agent above (red agent).

(ii) There is an active agent above, and there is a placed agent to the left (purple agents).

(iii) There is an active agent above that is not swapping, there is an active agent to the
left, and the active agent in question is moving upwards (cyan agent).
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→ ↓
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Figure 3.10. Examples of special cases then the active link is set to the left face. Blue
agents are placed and from a fixed support (grey). Active agents with the default active
link (lower face when above row 1, and upper face otherwise) are shown yellow. Agents of
other colours are active with an active link on their left face. Links have orange borders
and are filled the same colour as the active agent they are controlled by. Arrows show
salient directions of motion. © 2021 IEEE.

3.4.3.B Swapping

Two agents travelling in opposite directions that attempt to move into the same space
will usually exchange information and ‘become’ one another. However, there are three-
scenarios when this does not happen, as outlined below:

� Placing: If the agent that does not initiate the swap is in the placing mode and in
column ctarget, it will attempt to place here before swapping. If successful, the agent
initiating the swap is stationary in this timestep as a penalty. This allows agents to
place as soon as possible, reinforcing the structure and reducing congestion.

� Direction: Agents advance in a random order each timestep, so it is possible that
two agents travelling in the same direction will attempt to swap with each other.
Instead of swapping, the initiating agent will normally abort the swap and remain
stationary (Figure 3.11a). However, if the two agents are connected by an active
link, the initiating agent will step backwards in the next timestep instead to allow
the other agent to vacate this space (Figure 3.11b).

� Around the tip: Agents entering the structure are kept separate from those below
the structure to allow those below to place before additional agents are added. If
an agent in row 1 attempts to swap with one at the tip, it will instead step back in
the next timestep to allow the one at the tip to continue (Figure 3.11c).

If the overridden direction of an agent tells it to move into the fixed support, it will
instead remain stationary in this timestep.

3.5 Simulation Results

In this section, the simulations performed to evaluate the performance of the cantilever
construction algorithms are presented. Due to the stochastic nature of the algorithms,
large numbers of trials were required to be performed to observe the average performance.
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Figure 3.11. Scenarios when active agents should not swap information with each other.
Active agents are shown in yellow, placed agents in blue, and the fixed support in grey.
Active links are shown as small yellow squares with orange borders. Salient directions of
travel are shown by black arrows, and overridden directions in red.

The High Performance Computing facility at The University of Sheffield was used to
perform these simulations in a reasonable timeframe. The algorithms were tested for the
three limit pairs described in Section 3.3.2.

3.5.1 Sequential Algorithm Performance

Both variants of the sequential algorithm were tested for all three limit pairs up to
N = 100 agents. A total of 400 trials were performed with each limit pair to accurately
evaluate the performance of the stochastic algorithms.

To illustrate how the structures are built by the sequential algorithm, selected frames
of the self-assembly sequence generated during one trial of the local variant are shown in
Figure 3.12. At N = 21 agents, the only critical link is a row link in column 4. This
belongs to an exterior agent, so the next active agent receives this information and has
a high pcolumn(4). This agent therefore places in this column, making the structure with
N = 22 agents stable. When N = 29 agents, the most critical link in column 3 does not
belong to an exterior agent, so the next active agent does not become directly aware of it.
However, the link left of the agent at the top of column 2 is critical, so the combination of
the urgency distributions causes the next active agent to place in a location that reduces
the criticalness of the link in column 3 regardless. At each stage, the top left corner has
links of high γ compared to the rest of the structure. This highlights how the root is
where M and F are generally greatest, so requires the most reinforcement.

An example structure with the maximum N tested of 100 agents constructed by the
message-passing variant for links of medium strength is shown in Figure 3.13. It shows
that at this stage γM is larger than γF in most columns, and that row links experience
higher M and F than column links; measurements of all four metrics will, however,
influence pcolumn(c). It is possible that the column links could be ignored, thus realising
an even simpler control scheme. If this was the case, hardware to deploy these algorithms
on could be made less complex, as force sensors would only be required on two faces.
Initial simulations showed that the performance impact of ignoring the forces in column
links was minimal, but further investigation should be performed to explore this effect in
detail.

The average performance for both variants of the sequential algorithm is shown in
Figure 3.14. It can be seen from Figure 3.14a that both variants require similar numbers
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Figure 3.12. Frames from a cantilever construction sequence produced by the local
variant of the sequential algorithm for weak links. The agents (blue) extend from the
fixed support (grey). The most recently placed agent in each frame is shown in purple
when salient, and links are coloured by their criticalness. © 2021 IEEE.
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Figure 3.13. A structure of 100 agents produced by the message-passing variant of the

sequential algorithm with links of medium strength. The agents are shown blue, and links

are coloured by their criticalness. © 2021 IEEE.
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Figure 3.14. Performance comparison between the message-passing and local variants of
the sequential cantilever construction algorithm, presented for 400 trials of each variant.
(a) Lengths of the longest stable structure as more agents are added, compared to the
optimal achievable lengths:. © 2021 IEEE. (b) The maximum moment and axial force
criticalness throughout the construction by each variant. Bars show mean values, and
black lines show the 95% confidence intervals. (c) The number of inter-agent communi-
cations required as more agents are added to the structure. In (a & c), lines show the
mean values across the trials, and the shaded regions show the 5th and 95th percentiles
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of agents to self-assemble a stable structure of a given length: the average length is slightly
below the optimum achievable for a given number of agents, with relatively little variation
between trials. Figure 3.14b shows that the two variants exceed the allowable limits by
similar amounts within each limit pair in all intermediate unstable states. The local
variant hence achieves comparable performance to the message-passing variant. It can
therefore be predicted that the performance of the parallel algorithm will not be hindered
by only transmitting forces within links of exterior agents to active agents.

The amount of inter-agent communication when following each algorithm is shown
in Figure 3.14c. The number of communications required when following the message-
passing variant scales quadratically with the number of agents in the structure, as was
predicted. However, the local variant does not show its theoretical worst-case perfor-
mance. Instead, the number of communications for each additional agent levels off as
more agents are added, meaning the total number of communications is lower than in
the message-passing variant. This effect is more apparent for longer structures and those
with weaker links, as they require more reinforcement and thus exhibit a greater difference
between n and Ln. This will have the effect of reducing the energy usage of the system,
and also decreasing the likelihood of communication errors causing problems with self-
assembly. In addition, the force-aware self-assembly algorithm of Inou et al. also required
O(N2) communications, so the local variant of the sequential algorithm shows advantages
over this approach [23].

Another interesting consideration is how effective the method of calculating the proba-
bility mass function pcolumn(c) is. To investigate, a modified version of the message-passing
variant was also implemented where pcolumn(c) is calculated in a much simpler manner. In
this case, a single simplified combined urgency distribution ν̂

∗ is calculated as:

ν̂
∗|c = max

α∈{M,F},
β∈{row,column}

(

γα,β
c

)

(3.11)

The probability mass function pcolumn(c) is calculated by dividing each component of ν̂∗

by the sum of all the components.
The performance of this simple method of calculating pcolumn(c) compared to the stan-

dard method is shown in Figure 3.15: it shows the simple method builds slightly faster
initially, but the standard method quickly reaches greater lengths for the same number
of agents as more are added. It can also be seen that the maximum γ throughout the
construction process is higher when the simple method is used, meaning the structures
must be built with more conservative estimates of Mallowable and Fallowable to avoid col-
lapse. The slight increase in computation required to implement the standard method is
therefore deemed worthwhile, and carried forward to the parallel algorithm.

3.5.2 Parallel Algorithm Performance

In the previous section, it was demonstrated that the sequential algorithm can con-
struct stable cantilevers of near optimum length, and the idea that agents should place
near columns of high γ was validated. The parallel algorithm extends these concepts.

Frames from an example trial of the parallel algorithm are shown in Figure 3.16. The
trial begins by constructing a cantilever only one agent thick, before reinforcement is
required in row 2. Timesteps 62 – 64 illustrate how two agents travelling in opposite
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Figure 3.15. Performance comparison between the message-passing variant of the se-
quential cantilever construction algorithm with pcolumn(c) calculated using the standard
and or simple methods, presented for 400 trials of each method. (a) Lengths of the
longest stable structure as more agents are added, compared to the optimal achievable
lengths: lines show the mean value across the trials, and the shaded regions show the 5th

and 95th percentiles. (b) The maximum moment and axial force criticalness throughout
the construction by each method. Bars show mean values, and black lines show the 95%
confidence intervals.

directions bypass each other by swapping information. The placing agent has calculated
it can place at the tip to extend the structure, while the gathering agent is trying to reach
column 1. The agents are therefore travelling in opposite directions, so spend timestep 63
in the swapping mode, were they exchange information with each other. In the following
timestep, they are able to continue. The algorithm continues in this manner, correcting
for any unstable configurations that occur by choosing columns to reinforce based on the
force information received. The swapping procedure is able to allow agents to pass each
other and continue with construction, even when active agent congestion occurs. The
final agent places itself in timestep 852, causing the trial to finish.

Figure 3.17 shows a comparison of the sequential and parallel algorithms in which
100 trials of up to N = 100 agents were performed for each of δ ∈ {4, 6, 8, 10, 12, 14}
timesteps. These are compared to the local variant of the sequential algorithm, with two
modifications to allow for a fairer comparison:
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Figure 3.16. Frames from a cantilever construction sequence produced by the parallel
algorithm for links of medium strength, δ = 8 timesteps. Placed agents are shown blue,
and active agents are coloured by their mode: gathering (orange), placing (yellow), and
swapping (red). The fixed support is grey, and links are coloured by their criticalness.

1. Sensors are not sampled and held until the active agent passes over them. Instead,
the active agent has an active link as in the parallel algorithm, and its own weight
is included in the measurements.

2. Each active agent remembers which locations are valid for it to place in as it moves
over the structure. When pcolumn(c) is calculated, it is sampled from repeatedly until
a valid column is found before the active agent starts to move. Consequently, the
active agent can travel directly there.

Figure 3.17a shows that the final length of the structure increases as δ increases,
and is greatest in the sequential case. However, this slight decrease in cantilever length
is compensated for by the significantly lower construction time achieved by the parallel
algorithm (Figure 3.17b). Stronger links tend to require a larger δ before they can achieve
a comparable length to the sequential algorithm. This is partly because agents are more
likely to timeout and place where they are due to congestion for small δ: as shown in
Figure 3.17c, when δ = 4 timesteps, up to around 70% of agents place in this manner, but
this drops to near zero for δ ≥ 10 timesteps, regardless of link strength. The increased
frequency of agent timeout means agents place before they reach their intended placement
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Figure 3.17. Performance comparison between the local variant of the sequential can-

tilever construction algorithm and the parallel cantilever construction algorithm with

varying delay between when agents are added, presented for 100 trials of each setup. (a)
The final length of structure achieved, (b) the number of timesteps taken for all agents

to place themselves, (c) the percentage of agents that placed themselves due to timeout,

and (d) the maximum moment and axial force criticalness throughout the construction.

Bars show mean values, and black lines show the 95% confidence intervals. (a, b, & d)
© 2021 IEEE.

58



Cantilever Construction Summary

Delay (steps)
Seq. 4 6 8 10 12 14 Seq. 4 6 8 10 12 14Seq. 4 6 8 10 12 14

S
af

et
y
 f
ac

to
r

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

0

20

40

60

80

100

P
er

ce
n
ta

ge
 o

f 
tr

ia
ls

re
su

lt
in

g 
in

 f
ai

lu
re

Weak links Medium links Strong links

Figure 3.18. The percentage of trials in which the structure would have failed for a range
of safety factors. As in Figure 3.17, results are shown for both the sequential algorithm
(labelled Seq.) and the parallel algorithm with the given δ.

location. This leads to short and tall structures, which as shown in Section 3.3.3 are good
for weak links, but creates less efficient structures for stronger links.

Another consideration is the maximum γ in the structure as it is assembled (Figure
3.17d). For weak links, the parallel algorithm creates structures that exceed Mallowable and
Fallowable by a greater amount during construction than in the sequential case, but this
exception decreases as δ increases. For strong and medium links, the maximum γ during
the construction sequence is usually less than in the parallel case, and increases with larger
δ. This is another result of the increased rate of agent timeout at low δ creating short
and tall structures. For all link strengths, the maximum γ during construction tends to
a value close to that of the sequential algorithm as δ increases.

Recall that the allowable limits are set below the actual failure strength of the links:
Figure 3.18 explores how much lower these thresholds should be set. A metric called
the safety factor is defined as the factor by which the allowable limit can be exceeded
before links will actually break. It can be seen that a higher safety factor, stronger links,
and lower δ generally results in fewer trials experiencing failure. This reflects the general
trends observed in Figure 3.17d, and is again due to the high rates of agent timeout
creating structures that are short but tall. While no trials with medium and strong links
failed for safety factors greater than 2, higher safety factors were required to ensure this
with weak links: typically a safety factor of 3 is sufficient, but for δ = 6 timesteps a safety
factor of 4 is required, as one trial experienced a maximum γM of 3.95. There was less
variation between trials in the sequential algorithm, so each given safety factor resulted
in failure in either all or no trials.

3.6 Summary

This chapter has demonstrated how cantilevers can be self-assembled by force-aware
robotic agents. Two novel distributed self-assembly algorithms were described, which
consider local force information to ensure links between agents do not break. In the
sequential algorithm, only one agent could move at once. Two variants of this algorithm
were developed, with the local variant requiring agents to coordinate and communicate
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to a lesser degree than the message-passing variant. The parallel algorithm was built
upon the local variant of the sequential algorithm, and allowed for multiple agents to
move simultaneously. A custom simulator was developed to evaluate these algorithms,
which modelled the structure as a truss to efficiently calculate the moment and axial
force in links between agents. Optimal cantilevers were also computed to compare the
performance of the self-assembly algorithms against.

It was found that both algorithms were able to induce self-assembly into stable can-
tilevers, the length of which was shown to be near the optimal length for a given number
of agents. Both variants of the sequential algorithm displayed similar trends, despite the
reduced coordination and communication required. The parallel algorithm was shown to
result in cantilevers of comparable length to the sequential case, but considerably quicker.
The maximum moment and axial force during construction following the parallel algo-
rithm was similar to that occurring during execution of the sequential algorithm.

The self-assembly algorithms presented in this chapter will be verified in real-life in
Chapter 6. Prior to this, the next chapter considers how the structure should evolve
once the other side of the chasm is reached. One can predict that a bridge supported at
both ends will require fewer agents to maintain stability when compared to a cantilever
of equivalent length. The safe deconstruction of the bridge when it is no longer required
will also be considered.
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Chapter 4

Bridge Optimisation

The previous chapter presented distributed algorithms that enable a group of self-
assembling modular robots to build a cantilever that spans across a void (Figure 4.1a).
These algorithms incorporate local force measurements to ensure the structure does not
collapse under its own self-weight. This chapter builds on this work by considering how
the structure can be adapted when it reaches the other side of the void to form a bridge.
Once the structure becomes supported at both ends, it is likely to benefit from bridge

optimisation. This is the name given to the process where agents are removed or repo-
sitioned to produce a stable structure containing fewer agents than when the cantilever
initially reached the other side of the gap (Figure 4.1b). This frees agents to complete
other tasks on the opposite side of the gap, while ensuring the remaining structure is
strong enough to maintain stability as agents cross it.

The effectiveness of this procedure stems from the additional reinforcement offered by
the support on the other side of the gap from which the cantilever was constructed. A
simplified representation of a generic bridge of length L between two supports loaded by
a UDL of magnitude w per unit horizontal length is shown in Figure 4.2. The shear force
and moment at the supports of this bridge, Ss,⊢⊣ and Ms,⊢⊣ respectively, can be obtained
from standard results [189] as:

Ss,⊢⊣ =
wL

2
=

Ss,⊢

2
(4.1)

Ms,⊢⊣ =
wL2

12
=

Ms,⊢

6
(4.2)

These values are compared to their equivalents for a cantilever Ss,⊢ and Ms,⊢, given in
(3.1) and (3.2) respectively. This demonstrates that the extra fixed support significantly
reduces the shear force and moment at each support. The internal stresses will therefore
also be lower, thus the thickness of the structure at certain points can be reduced while
maintaining these stresses at safe levels. This is the aim of the bridge optimisation
algorithm.

This chapter is organised as follows. The problem considered in this chapter is for-
mally defined in Section 4.1, then in Section 4.3 optimal bridges are found to compare
the performance of the self-assembly algorithm to. The distributed force-aware bridge
optimisation algorithm is described in Section 4.4, and verified in simulation in Section
4.5. Section 4.6 summarises the chapter.
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*

(a)

*

(b)

Figure 4.1. (a) The bridge optimisation algorithm starts with a cantilever that has just
reached the other side of a void. (b) Agents reconfigure or remove themselves to leave a
more slender bridge that will not collapse under its own weight. Agents are shown in blue
and the fixed supports in grey. The lighter portion in each diagram shows the narrow
section, while the inflection points are marked with asterisks. Active agents are shown
yellow, and are drawn as a circle when following the paths shown in green to pass through
the structure in the third dimension.

L

w

Ss,⊢⊣

Ms,⊢⊣

Ss,⊢⊣

Ms,⊢⊣

Figure 4.2. A simple bridge of length L, loaded with a UDL of magnitude w per unit
horizontal length. This loading causes equal shear forces and moments at each support,
denoted Ss,⊢⊣ and Ms,⊢⊣ respectively.

The work in this chapter is based on sections of the author’s published work [190],
with certain aspects expanded upon. In particular, this chapter draws from Sections II,
III, IV.A, IV.D, IV.E, V.A, and V.C of this work.

4.1 Problem Formulation

This chapter considers a similar 2D grid of homogeneous agents to that considered in
Section 3.1. There are a number of additions made to this situation as described below.

The cantilever construction algorithms began with a single agent in position (1, 1)
connected to a single fixed support. The starting point of bridge optimisation is an existing
configuration of length L between two fixed supports, occupying positions {(r, c) | r >

0 ∧ c ∈ {0, L+ 1}}.
Agents can again be placed or active. Active agents during cantilever construction

initialised in position (0, 0), but bridge optimisation aims to reduce the number of agents
in the structure, so no more agents are added. Instead, placed agents become active when
they deem it necessary. Active agents become placed when they reach a suitable location.

As for cantilever construction, structures must be continuous. However, the definition
is extended to reflect the additional fixed support: each placed agent must connect to
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the top of its column by a vertical chain of placed agents, and to either fixed support
by a horizontal chain of placed agents. It must also contain a single contiguous region
with only one placed agent in each column, referred to as the narrow section (columns 7
– 9 in Figure 4.1a and columns 4 – 7 in Figure 4.1b). Either side of this, the number of
placed agents in each column increases monotonically, so the centre of the narrow section
is called the inflection point (column 8 in Figure 4.1a and between columns 5 and 6 in
Figure 4.1b). These restrictions are imposed so that the structures resemble arches, a
strong shape commonly found in bridges seen in everyday life. Empty locations with a
placed agent on either side are referred to as canyons. Active agents can move through
canyons, but cannot place in them without violating the requirement for a narrow section.

During cantilever construction, active agents move using a 2D sliding square model,
where in each simulation timestep they can travel around the structure by moving into
an unoccupied cell in their Moore neighbourhood if in doing so they will remain adjacent
to another agent. This remains possible during bridge optimisation, but agents also have
an additional way of moving. Agents must be able to pass between the top and bottom
perimeters of the structure so that they can leave the environment, but this cannot be
done without additional consideration since the structure is supported at both ends. This
could be achieved by coordinating placed agents to shift along the column in question, but
this would require a high degree of inter-agent coordination, so is undesirable. Instead,
it is chosen to allow active agents to move into the third dimension in front of existing
placed agents (Figure 4.1b). Moving into the third dimensions in other scenarios is not
permitted, as constructing 3D structures is beyond the scope of this work.

Agents are once again able to sense the moment M and axial force F in their links.
These data are used to calculate a criticalness γ according to (3.4) to determine if the
structure is stable or unstable. The bridge optimisation algorithm reduces the number of
agents in an initial configuration spanning between the two fixed support surfaces, while
aiming to maintain stability.

4.2 Simulation Environment

The algorithm is evaluated using the same truss-based simulator developed for the
cantilever construction algorithms, described in Section 3.2 and Appendix A. The same
limitations are present here, but the assumption that structures do not deform has an
additional consequence for bridges. When a cantilever reaches the right support, the
deflection can cause the link connecting the tip of the structure to this support to become
critical immediately upon its formation. This is because in reality the cantilever will sag
towards the tip. This means that when the cantilever connects to the right support, it will
sometimes experience high forces within the links near this support that were previously
lower, as these links sustain the forces required to lift the tip to the correct height.

An example of this phenomenon is shown in Figure 4.3. In Figure 4.3a, a structure is
seen before and after connecting to the right support. Note how it is stable before (left),
but the link that connects to the right support is critical (right). The reason for this is
revealed by Figure 4.3b: the cantilever sags towards the tip, but when connected to the
right support these nodes are raised up. This exerts additional forces on them, so the link
forming the connection to the support becomes critical.

This phenomena is acceptable for the simulated structures, but is highlighted here
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Figure 4.3. An example illustrating how the same structure can be stable as a cantilever,
but unstable when the connected to the right support. (a) A structure before and after
connecting to the right support. Agents are shown blue, the fixed supports grey, and links
are coloured by their criticalness assuming weak links. (b) the truss approximation of the
corresponding structures, shown both undeformed (black) and deformed (blue), with the
deformation exaggerated for clarity. The attachments to the fixed supports are shown in
orange.

as it may affect the design of physical robot systems that employ this algorithm. Such
robotic agents should be able to automatically correct for small alignment errors caused
by this sagging when connecting to the right support.

4.3 Offline Structural Optimisation

Optimal bridges were generated offline as a baseline to compare the performance of the
distributed bridge optimisation algorithm against. The optimal configurations of length
L are defined to be those that are stable, continuous as defined in Section 4.1, and consist
of the fewest number of agents N .

4.3.1 Optimisation Procedure

Optimal configurations are generated by exhaustive search, similar to how optimal
cantilevers were found in Section 3.3. The process begins by selecting an L, Mallowable,
and Fallowable, then choosing anN that is believed might be able to build a stable cantilever
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Figure 4.4. The minimum number of agents required to build stable bridges (solid lines)
or cantilevers (dashed lines) of a given length. Dotted lines show the percentage of agents
in an optimal cantilever that can be removed to leave an optimal bridge of the same
length.

of this length and link strength. Configurations are generated by setting the number of
agents in row 1 as L, and specifying the number of agents in the lower rows connected to
the left and rights supports NL and NR respectively. All configurations of NL agents are
enumerated using integer partitioning [187] by iterating over

⌈

N−L
2

⌉

≤ NL ≤ (N−L): the
ith component of each partition represents the number of agents in row i+1 connected to
the left support NL,i ∀ 1 ≤ i ≤ NL. For each of these configurations, all configurations of
NR = N −L−NL are all enumerated, giving the number of agents in row i+1 connected
to the right support NR,i. These partitions are arranged such that NL,i ≤ NL,i+1 and
NR,i ≤ NR,i+1 to satisfy the continuity condition. Configurations in which NL,i +NR,i >

L are discarded as they are non-physical. It is possible that NL,i + NR,i = L, so the
optimisation procedure does not assume that the structure contains a narrow section.

Due to symmetry, these iteration ranges are sufficient to enumerate all possible con-
figurations. Each configuration is analysed to find the maximum γ in all its links. If a
stable configuration is found then L is incremented, otherwise N is incremented. Initially,
it is chosen to set L = N = 1 to find the minimum N required to build stable structures
for all 1 ≤ L ≤ Lmax for this link strength up to a specified Lmax.

4.3.2 Resulting Optimal Bridges

Optimal bridges were generated for weak, medium, and strong links as defined in
Section 3.3.2 for N ≤ 40 agents. As shown in Figure 4.4, this allows for optimal bridges
to be compared to all lengths of optimal cantilever generated in Section 3.3, which are
those with N ≤ 100 agents. As expected, stronger links allow bridges of a given L to be
built with fewer agents. Additionally, fewer agents are required to build stable bridges
than cantilevers of equal L and link strength, with the difference increasing for longer
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structures. For the structures considered here, up to 73% of the agents in an optimal
cantilever can be removed to create an optimal bridge of equal L.

Figure 4.5 shows a selection of optimal bridges, compared to the optimal cantilever
of the same length and link strength; a complete list of optimal bridges is given in Ap-
pendix B. As expected, the optimal bridges are more slender than the equivalent optimal
cantilevers, containing significantly fewer agents. For all optimal bridges found, not just
the bridges shown in this figure, only the first row spans the whole gap. This implies
that additional full rows are inefficient, at least for the range of L and link strengths con-
sidered here. This supports the constraint that all valid bridges produced by the bridge
optimisation algorithm include a narrow section.

4.4 Algorithm Design

This section describes the bridge optimisation algorithm. Firstly, the result derived us-
ing structural mechanics in Section 3.4.1 is extended to consider the case when a structure
is supported from both ends. After this, the algorithm is presented in detail.

4.4.1 Theoretical Basis

In Section 3.4.1, a cantilever with a height that continuously and monotonically de-
creased towards the tip that is loaded by a UDL was analysed. It was shown that in-
creasing the height at a particular location decreases the longitudinal stress at that point.
This inspired the design of the cantilever construction algorithms to place agents at the
bottom of columns near to locations where the links were critical. This result is now
extended to consider structures supported at both ends.

Theorem 2. Consider a bridge of length L between two vertical fixed supports. The height

of the bridge h(x) a distance x from the left support is continuous, and has a single

inflection point, as shown in Figure 4.6. The bridge has constant breadth b into the page,

and the only load is a UDL of magnitude w per unit horizontal length. For such a bridge,

increasing the height h(x) at a distance x = x0 from the left support causes a decrease in

the maximum longitudinal stress experienced in the cross-section here, σmax(x0).

Proof. As for the cantilever in Section 3.4.1, this bridge can be analysed using elastic
beam theory [188]. The first step is to again make a cut through the cross-section at x,
but in contrast to the analysis of the cantilever, the portion left of the cut is retained
(Figure 4.6b). In order to calculate the internal moment M̃(x), the shear force Ss and
moment Ms at the support must be known. Fortunately, the loading configuration is a
standard case so these can both be obtained from [189] as:

Ss =
wL

2
(4.3)

Ms =
wL2

12
(4.4)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5. Optimal structures with a given number of agents for different limit pairs. (a)
An optimal cantilever with weak links requires 22 agents to reach a length of 1m, whereas
a similar optimal bridge (b) requires only 12 agents in three possible configurations. (c)
Increasing the length to 1.7m requires 93 agents in a cantilever, while (d) either of the two
optimal bridges can be built with only 25 agents. (e) An optimal cantilever of this length
constructed with links of medium strength requires 38 agents, whereas three optimal
bridges of this length and link strength can be built with only 19 agents.
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Figure 4.6. (a) Profile of a bridge (blue) with continually-varying height h(x) a distance
x from the left end extending from a fixed support (grey). The only load is a UDL of
magnitude w per unit horizontal length. (b) A cut through this bridge at x, showing the
internal shear force S(x) and moment M̃(x) on the exposed cross-section, as well as the
shear force and moment at the support (Ss and Ms respectively). The dashed line shows
the neutral axis, which is assumed to be in the centroid of the cross-section.

It is now possible to calculate M̃(x) through static equilibrium:

M̃(x) + Ss · x = Ms + wx ·
x

2

M̃(x) =
w

12

(

6x2 − 6xL+ L2
)

(4.5)

As in the analysis for cantilevers, the neutral axis is assumed to be at the centroid of
the cross-section. At each x, σmax(x) occurs at the greatest possible distance from the
neutral axis y. This value can therefore be calculated using the second moment of area
of the cross-section I as:

σmax(x) =
M̃(x)y

I(x)

σmax(x) =
w
12
(6x2 − 6xL+ L2) · h(x)

2
bh(x)3

12

σmax(x) =
w (6x2 − 6xL+ L2)

2bh(x)2
(4.6)

This shows that, just as for cantilevers, σmax(x0) decreases as h(x0) increases in bridges
supported at both ends.

The same caveat that applied to the cantilever analysis also applies here: the equations
are derived for an idealised scenario with a bridge of continuously-varying height under
a UDL. However, this result demonstrates that placing agents at the bottom of columns
where links are critical is expected to reinforce them. For bridge optimisation, it is useful
to note that the opposite is also true: decreasing h(x0) will increase σmax(x0). This implies
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that removing agents from the bottom of a column will likely bring the links in that column
closer to becoming critical. Agents should therefore only reposition themselves if the links
of the column they are in are not close to becoming critical.

4.4.2 Algorithm Description

Two cantilever construction algorithms were designed: the sequential and parallel
algorithms. Implementing a sequential bridge optimisation algorithm would require sig-
nificant coordination and a large number of messages to be passed between placed agents
to ensure only one agent becomes active at a time, so it was chosen to only develop a
parallel algorithm. As in the parallel cantilever construction algorithm, active agents
advance each timestep in a randomised order, and transition through several modes as
described below. While moving, they track their location and the heights of columns that
they visit so as to determine which side of the inflection point they are on. At the end of
each timestep, M and F in links is updated for all agents.

Placed agents on the lower perimeter with an empty cell on their left or right can
become active if they believe they are not significantly contributing to the strength of the
structure: they are therefore called release candidates. Every timestep, each release can-
didate j will release itself from the structure with probability Prelease,j. This is calculated
from the maximum γ across each link of agent j, γj,max, as:

Prelease,j(γj,max) =

{

µe−ϵγj,max for γj,max < 1

0 otherwise
(4.7)

This function has two shape parameters: ϵ affects the rate the function decays with γj,max,
and µ = Prelease,j(0). Throughout this chapter, it is chosen to set ϵ = 10 but to explore
the effect of changing µ to examine how the number of simultaneous active agents in the
simulation affects performance.

Each release candidate that successfully releases itself becomes active and disconnects
all but one of its links. As shown in Figure 3.9, this means it is no longer offering any
support to the structure. This remaining link becomes its active link, the choice of which
is explained more in Section 4.4.2.A. In the next timestep, the newly-active agent begins
to follow Algorithm 4.1.

Active agents start in the releasing mode (Lines 2 – 9). They first check the readings
of M and F in links of the agent above. If the release has caused any of these links to
become critical, they immediately place back where they are. Otherwise, they swap to
the gathering mode and take a step for the first time.

Agents that are gathering move around the lower perimeter of the structure and
communicate with the placed agents above them to obtain the M and F values recorded
by their sensors (Line 11). These are stored in four arrays {γα,β ∀ α ∈ {M,F} ∧ β ∈
{row, column}}, as was the case for cantilever construction. Agents travel left until they
reach column 1, then move right to column L to obtain information about the whole struc-
ture (Line 20). When agents pass over columns they have already visited, the information
in γ

α,β for this column is updated to the most recent values.
When an active agent reaches column L, it decides what to do based on γ

α,β. The
bridge optimisation algorithm aims to remove agents while retaining structural stability.
Active agents therefore swap to the escapingmode if no links were measured to be critical
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Algorithm 4.1. The bridge optimisation algorithm, based on the parallel can-
tilever construction algorithm (Algorithm 3.3)

1 switch mode do
2 case releasing do
3 Record M and F from placed agent above into γα,β

c ;
4 if Agent above has a critical link then
5 Place back here (agent no longer active);
6 return
7 else
8 mode ← gathering;
9 Make step*;

10 case gathering do
11 Record M and F from placed agent above into γα,β

c ;
12 if Agent in column L and Previously visited column 1 then
13 if No measured links critical then
14 mode ← escaping;
15 else
16 Calculate pcolumn(c) from γ

α,β;
17 ctarget ← sample from pcolumn(c) without replacement;
18 mode ← placing;

19 else
20 Make step*;

21 case escaping do
22 if In position (0, L) then
23 Agent leaves simulation;
24 return

25 Make step*;

26 case placing do
27 if In column ctarget then
28 Attempt to place;
29 if Placement succeeded then
30 Agent no longer active;
31 return
32 else if Agent at top of canyon then
33 mode ← escaping;
34 else
35 ctarget ← sample from pcolumn(c) without replacement;

36 Make step*;

37 case swapping do
38 mode ← previous mode;

39 if Agent stationary for > τ timesteps then
40 Attempt placement;
41 if Placement succeeded then
42 Agent no longer active;

* Steps made if the agent is not the sole support of another
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(Line 14). In subsequent timesteps, they pass through the structure here to reach row 0,
then move to the right support, whereupon they exit the simulation (Lines 21 – 25).

If an active agent believes the structure is unstable when it reaches column L, it will
attempt to reinforce it. This process begins by calculating the probability mass function
pcolumn(c) as described in Section 3.4.2.A that represents the probability of placing in
column c based on the received force information: note that active agents calculate this
from measurements of forces from placed agents only on the bottom of the structure,
without considering the values measured by agents on the top of the structure, as was
the case for cantilever construction. This function has a high probability of placement in
columns where high M and F values were recorded and thus should be reinforced. Only
links on the bottom of the structure are considered, but this is sufficient to make informed
placement decisions, as seen when comparing the message-passing and local variants of
the sequential cantilever construction algorithm (Section 3.5.1). The active agent samples
from this distribution without replacement to choose a column to visit ctarget, and switches
to the placing mode (Lines 16 – 18).

The placing mode describes how agents reinforce the structure. Each active agent in
this mode first checks if it has reached ctarget and is directly below a placed agent. If so,
it attempts to place here (Line 28), which will have one of three outcomes:

1. Placing here will not violate the continuity condition or requirement for a narrow
section, therefore it does so (Line 30).

2. The placement location is at the top of a canyon, so placing here would violate the
requirement for a narrow section. Instead, the active agent swaps to the escaping

mode and will pass through the structure here in future timesteps (Line 33). This
decreases the total number of active agents quickly when there is too much traf-
fic to make informed decisions about placement locations. It specifically reduces
congestion around canyons, which otherwise can become significant bottlenecks.

3. Placing in this column violates the continuity condition. In this situation, the agent
will select another ctarget from pcolumn(c) without replacement (Line 35).

If the agent is subsequently still active, it will make a step either towards escaping the
structure, or towards the newly-selected ctarget (Line 36).

When two agents attempt to move in opposite directions past one another, they instead
exchange information in order to ‘become’ the other agent. They enter the swappingmode
for one timestep in which they remain stationary, modelling the real-life time cost of this
communication (Lines 37 – 38). This is explained in more detail in Section 4.4.2.B.

If an agent is stationary for too long, it is deemed to have got stuck due to high
numbers of nearby active agents desiring to travel in different directions. It attempts to
place itself where it is to reduce this congestion (Lines 39 – 42). The number of timesteps
before timeout τ is set to 20 in this chapter. If the agent is at the top of a canyon when
timeout occurs, attempting to place will cause it to swap to the escaping mode to reduce
congestion as described above.

4.4.2.A Active Links

In order to prevent active agents providing support to the structure, they choose a
single face from which to attach to adjacent agents using their active link. If an agent
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↑ ↑

(a) (b) (c)

Figure 4.7. Setting active links in special circumstances. Placed agents are shown in blue,
fixed supports in grey, and active agents in other colours. The active link of each agent
is shown by the small orange-bordered square of matching colour. (a) The situations
considered in cantilever construction (Figure 3.10), and their equivalents shown in paler
colours when the same situation occurs on the other side of the inflection point. (b & c)
An active agent entering then leaving a canyon, where the colour gets paler to denote the
position in subsequent timesteps as the green arrows denoting the motion are followed.

is connected to the active link of another agent then it does not move so as to prevent
the other becoming unsupported. Usually, the active link is set to the bottom face of the
agent when it is above row 1, and on the top face otherwise. Exceptions are made when
there is no agent on the usual connection face, or if connecting on this face would prevent
movement in the next timestep, as shown in Figure 4.7 and described below.

� Escaping the structure: When agents are escaping the structure, they pass through
the dimension perpendicular to the 2D plane containing the majority of the agents.
The active link is therefore set to the face in the direction of this plane.

� Mirroring of cantilever cases: During cantilever construction, when the active
agent is below row 1 its active link is set to the left face in the following situations:

(i) There is no placed agent above.

(ii) There is an active agent above and a placed agent on the left.

(iii) The agent in question is moving upwards, there is an active agent on its left,
and there is an active agent above it that is not swapping.

During bridge optimisation, the mirror of these conditions about the vertical axis
is also included. Active agents therefore set their active link to the right face when
these situations occur right of the inflection point (Figure 4.7a, red, purple, and
cyan agents respectively).

� Canyons: When the active agent is moving past a canyon, it moves up to row 2
then back down to the exit. Agents swap what side of the inflection point they
believe they are on when they reach the top of the canyon. The active link is set
to the top face when at the top of the canyon. Otherwise it is set to the left face
when on the left side of the inflection point and vice versa, as would be the case if
the agent was not in a canyon (Figures 4.7b & 4.7c).
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Figure 4.8. Special behaviours when agents should not swap information with each other.
Active agents are shown in yellow (as a circle if they are passing through the structure),
placed agents in blue, and the fixed supports in grey. Active links are shown as small
yellow squares with orange borders. Salient directions of travel are shown by black arrows,
and overridden directions are shown in red. Agents marked with a red asterisk will skip
over the canyon instead of entering or moving further towards the top of it. Equivalent
behaviours exist for the same situations mirrored about the vertical axis.

4.4.2.B Swapping

If two agents travelling in opposite directions encounter each other, they usually ex-
change information and ‘become’ one another. However, there are certain situations where
they should not swap and instead remain stationary or temporarily turn around to allow
space to be made for another active agent to move into. These situations are shown in
Figure 4.8 and described below.

� Direction: Since agents advance in a random order, it is possible that two agents
moving in the same direction will attempt to swap. In this situation the swap
should not take place. The initiating agent will normally abort the swap and remain
stationary (Figure 4.8a), but if it is attached to the agent it is trying to swap with, it
will step backwards in the next timestep to allow the other agent to vacate this space
(Figure 4.8b). This case also exists for cantilever construction (Section 3.4.3.B).

� Passing through: If an agent is blocked from passing through the structure by
another active agent, it will wait for this space to clear instead of swapping (Figure
4.8c). Agents can only pass through the structure in one direction (upwards), so
this is effectively a special case of the previous situation.
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Link strength
Length (m)

1.2 1.4 1.6 1.8 2.1 2.3

Weak ✓ ✓ ✓ ✗ ✗ ✗

Medium ✗ ✓ ✓ ✓ ✓ ✗

Strong ✗ ✓ ✓ ✓ ✓ ✓

Table 4.1. The combinations of link strength and lengths of structure the bridge optimi-
sation algorithm was tested for.

� Within canyons: Canyons represent a significant bottleneck in agent motions, as
each would like to pass up and down the whole canyon. In order to reduce the time
that colliding agents spend in canyons, such agents do not swap here. Instead, the
lower agent will pass over the canyon without visiting the top. The agents marked
by an asterisk in Figures 4.8d – 4.8f are currently on the left of the canyon and would
normally travel up it when they next advance. However, their path is blocked by
another active agent: instead of swapping with it, they switch to the right side of
the canyon and carry on with their motion. If the lower agent is in the gathering

mode, the higher agent will also share its measurements of M and F in this column
with the lower agent. If the lower agent is in the placing mode and has set ctarget
to this column, it instead draws another ctarget from pcolumn(c).

� Different sides of canyon: It is also possible that active agents could attempt to
swap when they are outside a canyon but on opposite sides of it. If they are not
attached to each other, the agent that is not directly below the canyon will abort
the swap and remain stationary (Figures 4.8g & 4.8h). If the agents are attached,
the lower one will take a step backwards (Figure 4.8i). These behaviours allow the
agent directly below the canyon to vacate this space in the next timestep.

When agents step backwards, they will occasionally be required to move into a fixed
support. In this case, they immediately place at this location instead, so future agents
can step over them.

4.5 Simulation Results

The bridge optimisation algorithm was tested for the same weak, medium, and strong
link strengths defined in Section 3.3.2. The link strengths were tested for initial config-
urations of different lengths as defined in Table 4.1. The number of simultaneous active
agents was varied by setting µ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}. A total of 100 trials were per-
formed for each setting, with simulations stopping when 50 timesteps passed without the
structure changing. Each trial was initialised from a different randomly-selected trial of
the parallel cantilever construction algorithm with δ = 10 timesteps and the appropriate
link strengths when the structure reaches the specified length. Two trials with weak links,
L =1.6m, µ = 0.3 did not finish within a predefined time limit of 50 steps per agent in the
initial bridge. The structures were reduced to 24 agents, but additional agents repeatedly
released and replaced themselves in the same set of locations, resulting in the structure
never settling for the required number of steps. They are excluded from the results below.
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Figure 4.9. Frames from a bridge optimisation sequence for weak links, Prelease(0) = 0.05.
Placed agents are shown blue, and active agents are coloured by their mode: releasing
(peach), gathering (orange), placing or escaping (yellow), and swapping (red). The
fixed support is grey, and links are coloured by their criticalness.

Figure 4.9 shows an example trial for weak links with µ = 0.05. The trial begins
with 62 placed agents, and it takes 32 timesteps for the first agent to probabilistically
release. More agents release as this one gathers the necessary force information, so several
swaps occur before the first agent reaches column L in timestep 60. The link attaching
the structure to the right support is the only critical one measured, so this active agent
calculates a high pcolumn(L) and subsequently places in this column in timestep 61. This
makes the structure stable, so the next agent to reach column L switches to the escaping
mode and passes through the structure to the top, as can be seen in timesteps 69 and
70. The structure at timestep 280 shows agents in the swapping mode, and together with
the snapshot at timestep 465 illustrates how agents are both added to and removed from
the structure as the trial progresses: notice how the portion attached to the right support
grows, shrinks, and changes shape as timesteps pass. The trial ends in timestep 647 when
22 agents remain, representing a 65% reduction. For comparison, the optimal bridge of
this length and link strength contains 18 agents, so the final structure contains only four
more agents than is optimal.

The trial shown in Figure 4.9 is representative of the general trend observed across
all trials. The link connecting the structure to the right support is often critical to begin
with, but is quickly reinforced. Subsequent active agents leave the structure, occasionally
forming queues, particularly around canyons. However, the algorithm is observed to avoid
deadlocks in all trials. Over time, the number of simultaneous active agents decreases
and the changes in the structure becomes more minor. The final configurations contain
significantly fewer agents than the initial configurations.

The average performance of the algorithm across the 100 trials for each situation is
first compared across structures of the same length but different numbers of simultaneous
active agents, controlled by the parameter µ. Figure 4.10 shows how varying this parame-
ter affects the rate at which agents are removed. This figure is drawn for bridges of length
1.6m with links of medium strength, but the behaviour is similar for all tested parameter
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Figure 4.10. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.6m with links of medium strength. Error bars in (a)
show the 5th and 95th percentiles. In (b & c), the 95% confidence intervals are indicated,
and in (c) the initial cantilever construction is included in cyan for comparison.
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settings: see Appendix D for a complete set of graphs for all lengths and link strengths
tested. Figure 4.10a shows that during each trial, the number of agents in the structure
first decreases at a high rate, then slows down as the optimum number of agents is ap-
proached. When agents are more likely to release, the number of agents in the structure
drops at a higher rate, but the effect decreases with larger µ. Another effect of this is
that agents swap more often, increasing congestion around the structure as they interact.
Agents therefore more frequently timeout before they can reach their intended placement
location, whereupon they are either added to the structure or switch to the escaping

mode depending on their location. However, Figure 4.10b shows that timeout is never
a very common occurrence, especially compared to the rates observed during cantilever
construction (Figure 3.17c).

The cost for the faster optimisation observed with larger µ is a higher maximum γ

during construction, as shown in Figure 4.10c. This occurs as there are more agents mov-
ing around the structure without providing support to it at any time, thus the measured
M and F values are typically higher than if there are fewer active agents moving at once.
This means the force information the active agents receive does not accurately reflect
the forces within the structure under only the weight of placed agents, and is also out-
dated by the time they reach a position to reinforce the structure. This figure also shows
that the maximum γ during bridge optimisation is typically lower than during the initial
cantilever construction. This means that, assuming the cantilever construction did not
result in damage to agents within the structure, the bridge optimisation will probably not
either. Finally, it can also be seen that γM is greater than γF during bridge optimisation,
indicating the moment capacity within links guides the behaviour of the algorithm to a
greater degree than the axial force capacity.

The average performance is now compared across structures of different lengths but
with active agents initialising at the same rate. Figure 4.11 shows the results across
different L for µ = 0.2 as a representative example, while Appendix D contains full
results for all values of µ tested. It can be seen in Figure 4.11a that the number of agents
remaining after optimisation is significantly lower than the initial configuration for all
parameter settings. The final number of agents is closer to the optimum for stronger and
shorter structures. Figure 4.11b shows that the maximum γ during the optimisation is
typically larger for structures that are weaker and longer. It also restates the trends seen
in Figure 4.10c: the maximum γ is typically higher during cantilever construction than
bridge optimisation, and γM is higher than γF .

4.5.1 Bridges in Use

The purpose of creating these self-assembled bridges is to allow agents to cross the gap
to accomplish tasks. It would therefore be beneficial for the bridge optimisation procedure
to be able to take place while other agents are crossing the bridge. This would allow more
agents to reach the opposite side quicker, thus aiding in the completion of the tasks there.

The performance of the bridge optimisation algorithm while agents cross it was not
tested systematically, but informal trials were performed. In these trials, active agents
were added in position (0, 0) at regular intervals of δ timesteps at the same time as the
bridge optimisation algorithm operated. These additional agents crossed the bridge and
exited the simulation at the other end.
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Figure 4.11. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.2, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.

An example of a bridge of length L = 1.4m with weak links being optimised using

µ = 0.2 while agents cross it δ = 4 timesteps apart is given in Figure 4.12. It can be

seen that the bridge optimisation algorithm takes 448 timesteps to reduce the number of

agents in the bridge from 64 to 30, a reduction of 53%. In this time, 108 other agents

crossed the bridge and can begin work on the tasks on the opposite side.

The limited trials performed indicate that the algorithm is capable of functioning in

this modified scenario, demonstrating its applicability in a range of situations. In this

case, the total weight of active agents on top of the structure is at most WL, so they

cannot exert loads on the bridge greater than the weight of the bridge itself. Further

tests should be carried out to examine how the bridge optimisation algorithm performs if

agents transport heavy objects across the bridge while the optimisation occurs.
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Figure 4.12. Frames from a bridge optimisation sequence for weak links, Prelease(0) = 0.2,
and active agents initialising in (0, 0) to travel across the bridge every 4 timesteps. Placed
agents are shown blue, and active agents are coloured by their mode: releasing (peach),
gathering (orange), placing or escaping (yellow), and swapping (red). The fixed
support is grey, and links are coloured by their criticalness.

4.6 Summary

This chapter has presented a distributed force-aware algorithm to optimise a self-
assembled bridge across a void. The algorithm reduces the number of agents within the
bridge, while taking into account local force information to ensure the structure will not
collapse under its self-weight. This procedure releases more agents to accomplish different
tasks on the other side of the void. Optimal bridges were also calculated to compare the
performance of the algorithm against.

The algorithm was shown to remove the majority of the agents from initial config-
urations drawn from the cantilever construction algorithm of Chapter 3. The resulting
bridges are near-optimal with respect to the number of agents required to safely span this
gap. The maximum moment and axial force in links during this optimisation compares
favourably with those that occurred during the construction of the initial bridge. Using
fewer simultaneous active agents led to the algorithm creating bridges with fewer agents.
This is because the active agents are able to make decisions about where to place based
on more accurate information, and congestion is reduced so they can reach their intended
placement locations. Longer structures and those with weaker links required more agents
and experienced greater forces in their links throughout the operation of the algorithm.
It was also demonstrated that the algorithm can allow for optimisation when agents are
travelling across the bridge, but further trials are required to investigate the effect of
greater loads crossing.

The next chapter considers the final stage in the lifespan of a bridge: how it should be
deconstructed when it is no longer required. The bridge optimisation algorithm will be
verified in real-life in Chapter 6, along with the other self-assembly algorithms developed
in this thesis.
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Chapter 5

Bridge Deconstruction

In the previous chapters, distributed force-aware self-assembly algorithms were pre-
sented that enable a group of robots to cross a gap by building a bridge across it from
their bodies. These algorithms use local force measurements to inform the motion of
robots and aim to make structures that will not collapse under gravity. The bridges are
built by first extending a cantilever from one side of the void (Chapter 3), then optimised
to reduce the number of agents in the structure (Chapter 4) to leave a bridge similar to
that shown in Figure 5.1a.

This chapter considers how a self-assembled bridge can be safely dismantled when it
is no longer required, referred to as bridge deconstruction. The agents must first convert
the existing bridge to one that will be stable when supported on one side (Figure 5.1b),
before the other side can be released and the structure dismantled (Figure 5.1c). The
difficulty of the initial step is compounded as the guiding force measurements are from a
structure supported on both sides, whereas the agents aim to construct a structure that
will be stable when only supported on one side.

This chapter is organised as follows. A formal definition of the problem is given in
Section 5.1, then the distributed bridge deconstruction algorithm is described in Section
5.2. The algorithm is verified in simulation in Section 5.3, and conclusions are drawn in
Section 5.4.

The work in this chapter is based on sections of the author’s published work [190],
with certain aspects expanded upon. In particular, this chapter draws from Sections IV.B,
IV.C, IV.D, IV.E, V.B, and V.D of this work.

5.1 Problem Formulation

The situation considered in this chapter is almost identical to that for bridge opti-
misation, described in Section 4.1. However, the bridge optimisation procedure always
considered a structure supported at both ends, whereas during deconstruction one of the
supports will eventually be released. After this, the restrictions placed on the structure
are relaxed. The structure is no longer required to have a narrow section or an inflection
point. In addition, the continuity condition is relaxed to require placed agents to be con-
nected to just one of the fixed supports by a horizontal chain of placed agents, instead of
both sides; they are still required to be connected to the placed agent at the top of their
column by a vertical chain of placed agents, but the top of the column is not required to
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(a) (b) (c)

Figure 5.1. (a) The bridge deconstruction algorithm begins with a structure between
two vertical fixed supports: the inset depicts the equivalent unsupported cantilever. (b)
Agents are added to this structure so that it will be stable when one support is released,
then (c) the agents are removed from the structure. Agents are shown in blue and the
fixed supports in grey.

be in row 1. With these modifications, the structure in Figure 5.1c is continuous.
The bridge deconstruction algorithm dismantles an initial structure between the two

vertical fixed supports and recovers agents on the opposite side of the void to where the
initial cantilever extended from. In the case considered here, the cantilevers extended
from the left, so the agents leave the structure above the right support. It is assumed
that there is a continuous supply of agents above the latter support in position (0, L+1)
that have previously crossed the bridge and can add themselves to the structure. In
addition, the agents already within the structure can reposition themselves as in bridge
optimisation.

There is one more addition made to the scenario considered in this chapter: the active
agents are able to measure the shear force S in their links, in addition to the moment M
and axial force F . This is not used to calculate a criticalness or determine the stability
of the structure. Rather, it is used to improve the estimate of the forces in the equivalent
unsupported cantilever, as described in Section 5.2.2. This term refers to the narrow
section and the columns to its right were the link on its left side to be released, leaving it
only attached to the right support (Figure 5.1a).

The aim of the bridge deconstruction algorithm is twofold. Firstly, a structure that will
not collapse when it is detached from the left support should be built. This is achieved
by adding new agents to the structure and repositioning existing ones from left of the
narrow section. In effect, the equivalent unsupported cantilever is extended towards the
left support and reinforced until it is sufficiently strong. The second stage then begins:
the structure is detached from the left support, whereupon agents are removed from
the environment above the right support. The previous algorithms aimed to correct for
unstable configurations as soon as they occur. Here, the agents are not concerned with
the current state of the structure, but rather with building a structure that will be stable
when it is released from the left support.

5.2 Algorithm Design

In this section, the bridge deconstruction algorithm is presented. The algorithm is
first described in detail to demonstrate how the agents move and communicate with one
another (Section 5.2.1). The method by which agents calculate what the forces would be
in the equivalent unsupported cantilever is then explained (Section 5.2.2).
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5.2.1 Algorithm Description

The bridge deconstruction algorithm is shown in Algorithm 5.1, highlighting the dif-
ferences between it and the bridge optimisation algorithm (Algorithm 4.1) it is based on.
Agents transition through broadly the same modes, but with the changes and additions
described below. The deconstruction procedure consists of two phases:

1. Reinforcement: Agents are added to the structure from above the right support to
produce a structure strong enough to not collapse when it disconnects from the left
support (from Figure 5.1a to Figure 5.1b).

2. Removal: The structure disconnects from the left support and agents leave it above
the right support (from Figure 5.1b to Figure 5.1c).

In addition to the releasing, gathering, escaping, placing, and swapping modes
that exist for bridge optimisation, a further mode is introduced. This mode is called
force-releasing, and describes placed agents that should release and become active
regardless of γ in their links (Lines 2 – 6). Active agents may instruct adjacent placed
agents to enter this mode to initiate the removal phase, extend the equivalent unsup-
ported cantilever, or to deconstruct canyons as explained below and illustrated in Figure
5.2. When such an agent releases, they either enter the gathering or escaping mode, de-
pending on the reason they were instructed to release: such agents are therefore described
as force-releasing to gather or to escape respectively. If a force-releasing agent be-
coming active would violate the continuity condition, messages are instead passed down
the column, taking one timestep per row, to switch the lower agents to force-releasing

to gather (Line 6 and Figure 5.2a). Such columns thus deconstruct from the bottom.
Active agents can arise in two further ways. Firstly, placed agents on the lower perime-

ter and the left side of the inflection point with an empty cell on their right are release
candidates as in the bridge optimisation algorithm: they release themselves with proba-
bility Prelease as before, with µ = 0.2 (Lines 7 – 14). Agents on the right of the inflection
point cannot do this, as it is assumed that they are already placed in a satisfactory posi-
tion. Secondly, additional gathering active agents enter the simulation in position (0, L)
a fixed number of timesteps δ apart, assuming this location is unoccupied, until the first
escaping agent occupies this cell. These agents then travel along the top of the structure,
obtaining measurements of M and F in the links of the agents below them as they move
(Line 16). They continue moving until they are above the leftmost column of the narrow
section, which they are informed of by the agent at the top of this column. They pass
through the structure to the lower perimeter at this point. Agents on the lower perime-
ter in the gathering mode immediately move in the direction of column L without first
visiting column 0 (Line 17).

When a gathering agent on the lower perimeter reaches column L, it calculates a
probability mass function pcolumn(c) describing the probability of placing in each column
(Line 18). This is done as described in Section 3.4.2.A, but instead of considering the
current state of the structure, the γ

α,β arrays are modified to estimate what the forces
would be within the equivalent unsupported cantilever. This is calculated by augmenting
the recorded measurements as described in Section 5.2.2. The probability mass function
is set to 0 left of the narrow section. Regardless of the force measurements received,
the active agent switches to the placing mode (Line 23). The behaviour in this mode
depends on what it believes the state of the equivalent unsupported cantilever would be:
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Algorithm 5.1. The bridge deconstruction algorithm, emphasising differences
with the bridge optimisation algorithm (Algorithm 4.1).

1 switch mode do

2 case force-releasing do

3 if Able to release then

4 mode ← escaping;
5 else if Continuity condition would be violated by release then

6 Set agent below to force-releasing;

7 case releasing do

8 Record M and F from placed agent above into γα,β
c ;

9 if Agent above has a critical link then

10 Place back here (agent no longer active);
11 return

12 else

13 mode ← gathering;
14 Make step*;

15 case gathering do

16 Record M and F from placed agent above or below into γα,β
c ;

17 if Agent in column L then

18 Calculate pcolumn(c) from γ
α,β;

19 if Equivalent unsupported cantilever would be stable then

20 ctarget ← leftmost column in narrow section;
21 else

22 ctarget ← sample from pcolumn(c) without replacement;

23 mode ← placing;
24 else

25 Make step*;

26 case escaping do

27 if In position (0, L) then
28 Agent leaves simulation;
29 return

30 Set agent below to force-releasing to escape if required;
31 Make step*;

32 case placing do

33 if In column ctarget then
34 Attempt to place or set adjacent agent to force-releasing;
35 if Placement succeeded then

36 Agent no longer active;
37 return

38 else if Tip was previously released then

39 mode ← escaping;
40 else

41 ctarget ← sample from pcolumn(c) without replacement;

42 Make step*;

43 case swapping do

44 mode ← previous mode;
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Algorithm 5.1. [continued] The bridge deconstruction algorithm, emphasising
differences with the bridge optimisation algorithm (Algorithm 4.1).

45 if In a canyon then

46 Set agent on left to force-releasing to gather;

47 if Agent above force-releasing to escape then

48 ctarget ← list increasing from column to the right;

49 if In position (2, 1) and placed agent on right then

50 Set agent above to force-releasing to escape;

51 if In row 0 or agent on the right is force-releasing to escape then

52 mode ← escaping;

53 if Agent stationary for > δ timesteps then

54 Attempt placement;
55 if Placement succeeded then

56 Agent no longer active;

* Steps made if the agent is not the sole support of another

� Unstable: The active agent draws ctarget from pcolumn(c) to provide reinforcement as
before (Line 22). It then moves to this column and attempts to place here (Line
34).

� Stable: The active agent attempts to make the equivalent unsupported cantilever
longer by first setting ctarget to the leftmost column it believes to be in the narrow
section (Line 20). When it reaches the top of this column it does not place here, but
rather sets an adjacent agent to force-releasing (Line 34). If there is a placed
agent to its left, it is switched to force-releasing to gather (Figure 5.2a). If
instead ctarget = 1 here, the active agent sets the agent above to force-releasing

to escape, initiating the removal phase in the process (Figure 5.2b). In both cases,
the active agent then draws another ctarget from pcolumn(c) without replacement to
reinforce the structure (Line 41) and moves towards it.

As was the case for cantilever construction and bridge optimisation, agents draw a new
value of ctarget from pcolumn(c) without replacement if it was not possible to place in the
original ctarget without violating the continuity condition (Line 41). If the agent reaches
ctarget and finds the tip was already released, it switches to the escaping mode and leaves
the structure (Lines 38 – 39).

The escaping mode is modified to describe agents implementing the removal phase,
where the structure is dismantled columnwise from the left. Before agents make their first
step in this mode, they set the agent below them to force-releasing to escape (Line
30). They then travel up their column and right along the top of the structure to position
(0, L), where they exit the simulation. When the agent that was originally the lowest
placed agent in column c reaches the top of column c + 1, it sets the agent at the top of
this column to force-releasing to escape (Line 30 and Figure 5.2c).

As was the case during cantilever construction and bridge optimisation, agents timeout
if they have been stationary for too many timesteps. Here the timeout period is set to
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Figure 5.2. Situations in which agents enter the force-releasing mode. Placed
agents are shown in blue, active agents in yellow, the fixed supports in grey, and
force-releasing agents have a cream border. (a) The active agent believes the equiva-
lent unsupported cantilever would be stable, so sets the agent left of the narrow section
in row 2 to force-releasing to gather. However, this agent is blocked by others below
them, so it sets these to force-releasing to gather as well: these agents will then release
in the numbered order shown. (b) The active agent believes the equivalent unsupported
cantilever would be stable, so sets the agent at the tip to force-releasing to escape, be-
ginning the removal phase. (c) Agent a is escaping, so sets agent b to force-releasing

to escape when it moves off; when agent b reaches the position shown paler, it will set agent
c to force-releasing to escape. (d) The active agent is in a canyon, so sets the agent on
its left to force-releasing to gather. (e) An active agent finishes advancing in position
(2, 1) with a placed agent to its right, so the agent at the tip is set to force-releasing

to escape and the removal phase begins. (f) Agent d is force-releasing to escape, but
is blocked by agent e below it: this agent is set to force-releasing to gather.

the number of timesteps between adding agents δ (Line 53). Before assessing whether an
active agent should timeout, it checks the cells in its von Neumann neighbourhood to see
if any additional behaviours should be triggered:

� If the active agent is inside a canyon, it will tell the agent on its left to enter the
force-releasing mode to gather (Lines 45 – 46 and Figure 5.2d). This reduces
congestion around canyons, and will also extend the equivalent unsupported can-
tilever if this occurs in row 2.

� If the active agent is below one that is force-releasing to escape, it switches to
the placing mode and sequentially selects ctarget to place in the closest column to its
right that satisfies the continuity condition (Lines 47 – 48). The active agent there-
fore leaves the area below where the removal phase is occurring without obstructing
other agents.

� If the active agent reaches position (2, 1) and there is a placed agent to its right, it
is assumed that the structure is unlikely to get any more stable. The active agent
therefore initiates the removal phase (Lines 49 – 50 and Figure 5.2e).
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(a) (b)

Figure 5.3. Setting active links when around the tip. Placed agents are shown in blue,
fixed supports in grey, and active agents in other colours. The active link of each agent
is shown by the small orange-bordered square of matching colour.

� If the active agent finishes advancing in row 1 or left of an agent that is force-releasing
to escape, it swaps to the escaping mode (Lines 51 – 52). This condition is only
met during the removal phase, so the active agent should leave the structure instead
of continuing to reinforce it.

One final scenario considered is that of a placed agent that is not connected to the
right side of the structure occurring below an agent that is force-releasing to escape. This
can arise either due to timeout, or active agents stepping backwards into the left fixed
support to avoid swapping as described in Section 5.2.1.B. In such situations, the placed
agent will become force-releasing to gather first to maintain continuity (Figure 5.2f).

5.2.1.A Active Links

Active agents are again in control of a single active link, set in the same manner as
during bridge optimisation (Section 4.4.2.A). However, during deconstruction the choice
of active link when agents are around the unsupported tip also needs to be explicitly set.
The active link of the active agent at the unsupported tip is set to the right face (Figure
5.3a, purple). The active link of agents in row 0 is usually the bottom face, but will
be the right face if no agent is below it (Figure 5.3, green). Since the existence of the
unsupported tip means that the removal phase has begun, these agents should all switch
to the escaping mode. Choosing active links in this way facilitates agents in row 0 to
move right if possible, thus removing them from the structure.

5.2.1.B Swapping

Active agents travelling in opposite directions that encounter each other will usually
exchange information and ‘become’ one another. During bridge optimisation, there are
certain scenarios during which they remain stationary or temporarily change direction to
make space for other agents to move into, as described in Section 4.4.2.B. These behaviours
also apply during bridge deconstruction, with the following additions:

� Escaping: If an agent attempts to swap with an escaping agent, it will also switch
to the escaping mode. As explained above, any agents at the unsupported tip
will be in the escaping mode. Therefore, if an agent is attempting to travel down
from row 0 and attempts to swap, it will instead enter the escaping mode and thus
change direction (Figure 5.4a).

87



Bridge Deconstruction Algorithm Design

↓→
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↓×

(b)

Figure 5.4. Special behaviours when agents should not swap information with each other.
Active agents are shown in yellow (as a circle if they are passing through the structure),
placed agents in blue, and the fixed supports in grey. Active links are shown as small
yellow squares with orange borders. Salient directions of travel are shown by black arrows,
and overridden directions are shown in red.

� Passing through: As in bridge optimisation, active agents passing through the
structure that are blocked by another agent wait for this space to clear instead of
swapping. During bridge deconstruction, agents pass through the structure from
top to bottom instead of bottom to top, so the situation is as shown in Figure 5.4b.

� Within canyons: During bridge optimisation, if two agents are attempting to swap
in a canyon (Figures 4.8d – 4.8f) and the lower one is placing with ctarget set to this
column, this agent will draw another ctarget from pcolumn(c) as placing at the top of a
canyon would violate the requirement for a narrow section. During deconstruction,
this swap is allowed to continue if the lower agent believes the structure is stable,
as it will not place itself at the top of the canyon, thus the narrow section will be
maintained. Otherwise, pcolumn(c) is scaled to be 0 in and left of the canyon as
placement should reinforce the equivalent unsupported cantilever. Another ctarget is
then drawn.

5.2.2 Forces in the Equivalent Unsupported Cantilever

During deconstruction, active agents are informed about the force distribution in the
structure when it is supported at both ends. However, these agents are ultimately trying
to build a cantilever that will only be supported from the right side. They should therefore
place themselves so as to reduce what the forces would be in the equivalent unsupported
cantilever. This requires each agent to convert the forces measured by placed agents in
the bridge into what they would be in this cantilever. It would be possible to calculate
this by having each agent model the structure as a truss as in the simulator, but this
typically requires eigenvalue calculation, thus is algorithmically complex and intractable
for the low-powered processors commonly found on modular robotic hardware, especially
for large structures.

A faster calculation can be made by each agent using the principle of superposition
[188]. The bridge in Figure 5.5a can be split on the left face of column 2 to give only
the agents in the equivalent unsupported cantilever (shown darker), which are loaded as
shown in case 1 of Figure 5.5b. Agents measure M and F within links of these agents
under this loading configuration, but would like to obtain M and F under gravity (loading
case 2 ). This can be approximated by subtracting the force distributions under loading
cases 3 – 5 from case 1 .
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Figure 5.5. (a) Cutting off the columns to the left of the narrow section (shown paler)
reveals the internal shear force S, axial force F , and moment M in the equivalent unsup-
ported cantilever. This represents case 1 of (b), which can be decomposed into the sum
of the separate loading cases 2 – 5 . The double-headed arrow g denotes the acceleration
due to gravity, and the fixed supports are shown in grey.
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Figure 5.6. Approximating the force distribution due to an arbitrary known loading (not
shown), with the fixed support shown in grey. (a) The outlines of a collection of agents
arranged as a cantilever, where the filled region denotes the cantilever profile used to
calculate the approximate force distribution. (b) A cut through this cantilever to remove
the paler portion reveals the internal longitudinal stress distribution σ a distance y from
the neutral axis (the dash-dotted line, assumed to be at the centroid of the cross-section).
The highlighted regions of this distribution are used to calculate the equivalent M and F

on the left faces of the agents shown in purple.

The active agent is informed of measurements of S, F , and M made by the placed
agent at the left of the narrow section. Therefore the stress distributions under these
additional loading configurations can be approximated by elastic beam theory [188] once
the active agent reaches column L, having obtained all the available force information and
measured the heights of each column. The structure is modelled as a cantilever whose
height varies continually between these known heights (Figure 5.6a), and is analysed using
elastic beam theory to calculate the distributions of the longitudinal stress σ across the
faces of each column of agents under loading cases 3 , 4 , and 5 . Equivalent M and F in
the links of the top and bottom agents in each face are calculated from these distributions
(Figure 5.6b).

The detailed mathematical analysis of these cases is given in Appendix C. It is shown
that, for these loads, σ is a polynomial function of the geometric parameters of the
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structure and the known loads S, F , and M . The calculation of approximated forces
in the relevant loading case 2 is therefore quick to make. Note that forces can only
be superimposed like this for linear elastic materials deflecting a small amount [188],
and that these calculations are based on a simplified case of the stress distribution for a
structure that is similar but not identical to the actual equivalent unsupported cantilever.
The values will therefore only be approximate, but are still useful in improving pcolumn(c)
so that agents place in columns more suitable to reinforce the equivalent unsupported
cantilever.

5.3 Simulation Results

The bridge deconstruction algorithm was tested for the same link strengths as the
cantilever construction and bridge optimisation algorithms, termed weak, medium, and
strong (Section 3.3.2). Trials began with a bridge chosen at random from the final struc-
tures of the bridge optimisation algorithm with µ = 0.2. For each link strength, trials
were performed for bridges of the same lengths that the bridge optimisation algorithm
was tested for (Table 4.1), and the number of active agents in the simulation at a time
was varied by setting δ ∈ {6, 8, 10, 12} timesteps. A total of 100 trials were performed
for each combination of link strength, length, and δ. Each trial began with the resulting
structure from a different random trial of the bridge optimisation algorithm for µ = 0.2.
Simulations were halted when either no agents remained, 50 timesteps had passed without
the structure changing, or 200 agents had been added to the structure.

This section begins by presenting the results of the trials described above (Section
5.3.1). After this, Section 5.3.2 evaluates the effectiveness of the elastic beam theory cal-
culations at approximating the forces in the equivalent unsupported cantilever as described
in Section 5.2.2; the benefits this approximation brings to the deconstruction algorithm
are also presented. Finally, Section 5.3.3 discusses a possible extension to this algorithm
to enable deconstruction of non-optimised bridges without adding any additional agents.

5.3.1 Bridge Deconstruction Algorithm Performance

An example construction sequence is given in Figure 5.7 for links of medium strength.
The initial structure is 2.1m long, and has small buttresses at both ends. The first active
agent initialises in timestep 1, and passes through to the lower perimeter of the structure
in timestep 19, doing so in column 4 as this is at the left end of the narrow section. When
it switches to the placing mode, it believes that the equivalent unsupported cantilever
would be unstable, so places in position (2, 19) in timestep 41 to provide support. The
placed agent in position (2, 3) also attempts to release itself in this timestep, but this
causes the agent above to have a critical link, so it places back where it was in the next
timestep. This agent tries again in timestep 151, and this time the additional support
provided by the placed agents on the right of the structure means that the link of the
agent above is no longer critical, so this agent becomes active in the gathering mode
in timestep 152. The reinforcement phase continues, with more agents placing on the
right side of the inflection point. In timestep 515, the active agent in position (2, 1) has
decided that the equivalent unsupported cantilever would be stable, so tells the agent
at the tip to release in the subsequent timestep. This agent becomes active in the next
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Figure 5.7. Frames from bridge deconstruction sequence with links of medium strength,
δ = 8 timesteps. Placed agents are shown blue, and active agents are coloured by their
mode: releasing (peach), gathering (orange), placing or escaping (yellow), and
swapping (red). Agents that are force-releasing are shown blue with a peach bor-
der. The fixed support is grey, and links are coloured by their criticalness.

timestep, and therefore begins the removal phase. The release causes more links near the
right support to become critical, but as the removal phase progresses these links quickly
cease to be critical. Note also how in timestep 517 an active agent passes through the
structure in column 2 as it erroneously believes this is the left end of the narrow section
due the randomised order in which agents move in each timestep. During the removal
phase, agents leaving the structure are either adjacent or separated by up to two spaces,
depending on the order in which they update each timestep. The final agent leaves the
simulation in timestep 747, therefore the trial terminates at this point.

Figure 5.7 exemplifies the trends observed in all trials. Active agents place themselves
in locations that reduce γ in the equivalent unsupported cantilever, although these loca-
tions may not be the same ones that reduce γ in the current bridge structure. The highest
γ is observed immediately before and after the structure is released from the left support,
but it is quickly reduced as agents leave the structure in the removal phase. During this
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phase, there is a constant flow of agents exiting the simulation at a high rate.

As for the bridge optimisation algorithm, the average performance of the bridge de-
construction algorithm across the 100 trials for each combination of link strength, length,
and δ is first compared across structures of the same length but different numbers of
simultaneous active agents, in this case controlled by adjusting δ. The effect of varying
this parameter for links of medium strength with L = 2.1m is shown in Figure 5.8, while
the results for different link strengths and L are given in Appendix E. Figure 5.8a clearly
shows the reinforcement and removal phases as the regions where the number of agents in
the simulation increases and decreases respectively. Lower δ results in more agents being
added to the simulation at a faster rate, so they are unable to place in good locations due
to congestion, meaning more agents are required before the removal phase begins. How-
ever, the switch to the removal phase occurs earlier in the simulation as the sheer number
of agents means a stable structure is built faster. Since agents leave the structure at the
same rate regardless of δ, the overall number of timesteps taken for the deconstruction
algorithm to terminate is similar for all δ tested. More agents were required during the
reinforcement phase than in the optimal cantilever of this length, but this discrepancy
decreases with higher δ.

Figure 5.8b shows the percentage of agents in the structure when the removal phase
begins that placed due to timeout: similar to the cantilever construction and bridge
optimisation algorithms, the congestion that a greater number of simultaneous active
agents incurs causes a higher proportion of agents to place due to timeout. The percentage
of agents that timeout is similar to during cantilever construction, and higher than in
bridge optimisation.

It is also interesting to compare the maximum γ throughout the operation of the
algorithm. Figure 5.8c shows this maximum γ is not greatly affected by the choice of δ, and
is usually comparable to the maximum that occurred during prior cantilever construction
and bridge optimisation stages. Both γM and γF are of similar magnitude, indicating
they are both important during deconstruction.

Comparisons are also made across different L and link strengths, shown in Figure 5.9
for δ = 10 timesteps and for other δ in Appendix E. The number of agents in the structure
when the removal phase begins is plotted in Figure 5.9a, illustrating how structures that
are longer or have weaker links require more agents to deconstruct. The number of agents
required is greater than in both the optimal cantilever and the original bridge, but similar
to that in the original cantilever.

Figure 5.9b shows the maximum γ during deconstruction with δ = 10 timesteps,
which allows for comparison between the two phases and against the prior cantilever
construction and bridge optimisation stages. The maximum γ during deconstruction is
higher for longer structures and those with weaker links, and is usually similar or less than
that incurred during prior construction stages. The largest γM typically occurs during the
reinforcement phase, indicating that the agents successfully place themselves in locations
that will reduce γM in the equivalent unsupported cantilever, but that these locations
are not necessarily good for reducing γM at that instant. In contrast, the maximum γF

always occurs during the removal phase, indicating that agents do not place themselves
to efficiently reduce γF in the equivalent unsupported cantilever. This high γF normally
occurs in the top right corner of the structure, as it does in timestep 517 of Figure 5.7.
These behaviours can be explained as the largest errors in the approximated M and F in
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Figure 5.8. The effect of varying the agent insertion delay δ on (a) the rate of decon-
struction, (b) the percentage of agents in the structure when the removal phase begins
that timeout, and (c) the maximum moment and axial force criticalness throughout the
deconstruction. The results are shown for 100 trials for bridges of length 2.1m with links
of medium strength. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the
95% confidence intervals are indicated, and in (c) the initial cantilever construction and
subsequent bridge optimisation are included for comparison in cyan and red respectively.
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Figure 5.9. The effect of varying structure length on (a) the number of agents in the

structure when the removal phase begins, and (b) the maximum moment and axial force

criticalness throughout the deconstruction, showing the differences in the reinforcement

and removal phases. Each bar shows the mean of 100 trials for δ = 10 timesteps, and

vertical red lines show the 95% confidence intervals. In (a) the optimum number of agents

in a stable cantilever of this length is shown by the horizontal red line, and the boxplots

show the number of agents in the prior cantilever construction and bridge optimisation

stages separately. In (b), the boxplots show the maximum criticalnesses during the prior

cantilever construction and bridge optimisation stages combined.
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Figure 5.10. (a) An example bridge highlighting the region corresponding to its equiv-
alent unsupported cantilever (darker): links are weak and coloured by criticalness in the
equivalent unsupported cantilever. (b) The measured values of M and F in row links
along the top and bottom of this structure are compared to the true values that would be
measured in the equivalent unsupported cantilever, and to the values calculated by super-
position. (c) The probability of placing in each column as calculated from the measured
values and from the values calculated by superposition.

the equivalent unsupported cantilever are seen for F in links along the top of the structure
close to the right support (Figure 5.10). These errors mean that agents do not place in
locations that effectively reduce γF in this region.

5.3.2 Forces in the Equivalent Unsupported Cantilever

An example showing how the forces in the equivalent unsupported cantilever are ap-
proximated using superposition is given in Figure 5.10. The structure is shown in Figure
5.10a, and Figure 5.10b shows the values of M and F in row links along the top and
bottom of the structure. The raw values measured by the agents (dotted lines) should
be modified to obtain what they would be in the equivalent unsupported cantilever (solid
lines). The values calculated using the superposition approximation (dashed lines with
crosses) are seen to be close to the true values in the equivalent unsupported cantilever.
The correction is not perfect, but the difference (shown in red) with the values in the
equivalent unsupported cantilever is significantly reduced in almost all links compared to
using the raw measurements from the bridge.

The probability an active agent would calculate of placing in each column is also

95



Bridge Deconstruction Simulation Results

plotted for weak links in Figure 5.10c. The link on the right of column 7 is not critical in
the bridge configuration, but would be critical in the equivalent unsupported cantilever.
When the correction is made, there is a high probability of placing here, which would
reduce γ in this link in the equivalent unsupported cantilever. Without the correction,
the probability distribution is much flatter, meaning it is much harder for agents to
differentiate between columns that it would be effective to place in or not.

To further demonstrate the benefits of this calculation, the deconstruction algorithm
was implemented using just the raw sensor readings, without the superposition correction.
This is called the simple variant to differentiate it from the standard deconstruction
algorithm. As for the standard algorithm, 100 trials of the same link strengths, structure
lengths, and δ were performed. The results are summarised in Figure 5.11, which shows
that the simple variant is able to deconstruct structures up to 323% faster than the
standard deconstruction algorithm, but at a cost of a significantly increased maximum γ

in the structure. The maximum γM was up to 512% greater for the simple variant, so
structures are much more likely to break.

The reason for the simple variant giving faster deconstruction but higher γ is illustrated
by the example in Figure 5.12a. Strong links are used, which are able to sustain an
optimised bridge of length 1.8m a single agent thick along its length. The first active
agent switches to the placing mode in timestep 38. Since none of the links it measured
were critical, it selects to release the left support. This is done in timestep 62, and
immediately M in the link at the right support jumps to 5049Nm, corresponding to
γM = 5.8. This is significantly higher than occurred during the initial construction, and
is likely to cause this link to break. It is only in timestep 87 that this link ceases to
be critical, so there is a long period of time in which this unstable structure must be
sustained, increasing the likelihood of failure. In the standard deconstruction algorithm
this would not happen: the agent calculates that the equivalent unsupported cantilever
would be unstable, and so begins to reinforce the structure at the right support.

Another point to note is that the simple variant failed to finish on one occasion: it was
deemed that construction had stalled as 200 agents were added to the simulation. Stages
of this construction are shown in Figure 5.12b. Construction progresses reasonably well to
begin with, as agents construct a buttress against the right support. However, at timestep
620 it can be seen that the structure has become inefficient, with a large square region
beginning in column 6. This does not provide a large degree of support, but does increase
the weight of the structure. This arises as agents are not able to accurately determine
how best to place in the structure. The simulation terminates in timestep 931 as the
200th agent is added. The resulting structure is very tall, but still has a critical link right
of column 3 that prevents the removal phase from initiating. This trial was repeated so
100 successful trials of the simple variant could be included to compare to the standard
algorithm.

5.3.3 Deconstruction of Non-Optimised Bridges

In the results presented above, the initial bridges were taken from trials of the bridge
optimisation algorithm, and additional agents were added to the structure to make it
stable before the removal phase. Another approach was also informally tested, where the
initial bridges were taken from trials of the cantilever construction algorithm when they
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Figure 5.11. A comparison of the simple variant of the deconstruction algorithm to the

standard version. Heatmaps show the percentage difference between the average values

over 100 trials recorded by the deconstruction algorithms relative to the algorithm with

the lower value. Black squares indicate trials that were not carried out. (a) The number

of timesteps taken for deconstruction to finish. (b & c) The maximum γ
M and γ

F

respectively throughout the whole structure during deconstruction. The largest value in

each heatmap is explicitly stated.
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Figure 5.12. Frames from bridge deconstruction sequences produced by the simple vari-
ant. (a) A trial with strong links, δ = 6 timesteps, and (b) a trial with weak links, δ = 6
timesteps. Placed agents are shown blue, and active agents are coloured by their mode:
gathering (orange), placing or escaping (yellow), and swapping (red). The fixed sup-
port is grey, and links are coloured by their criticalness: the same colour scale is used as
in previous figures, but it is extended in (a) to fade to white above a criticalness of 1.4
to highlight the extreme criticalnesses that occur when using the simple variant.

reached specified lengths. In these trials, it was assumed that all the available agents
were used to construct this initial bridge, so the deconstruction algorithm was not able to
add any additional agents to the structure. Instead, only the existing agents reconfigured
themselves following the deconstruction algorithm.

An example trial demonstrating this situation is shown in Figure 5.13. Links are weak
in this trial, and µ = 0.3 so placed agents are more likely to become active than in the
systematic trials above. Active agents are able to successfully move from the left to the
right of the narrow section in preparation for the release of the left support. However, it
can be seen in timestep 388 that releasing the agent in position (2, 1) causes the remaining
link attached to the left support to become critical, thus this agent will replace itself and
not be released (Lines 9 – 11 of Algorithm 5.1). This means that the algorithm will never
enter the removal phase: even if there are enough agents to build a stable structure, the
placed agents on the right support are not permitted to reconfigure themselves repeatedly
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Figure 5.13. Frames from bridge deconstruction sequence with weak links from a
non-optimised bridge with Prelease(0) = 0.3. Placed agents are shown blue, and active
agents are coloured by their mode: releasing (peach), gathering (orange), placing or
escaping (yellow), and swapping (red). Agents that are force-releasing are shown
blue with a peach border. The fixed support is grey, and links are coloured by their
criticalness.

until this structure is built.

To escape this deadlock, the algorithm is modified in two ways. Firstly, the agent in
position (2, 1) is allowed to release itself even though the agent above has critical links,
which is usually prohibited. This is particularly important as the link connecting the
structure to the left support will often be critical due to the deflection of the structure,
as explored in Section 4.2. The behaviour of the agent in position (1, 1) is also modified
to release itself and thus begin the removal phase when the agent below it moves. This
is necessary as it is more likely that the equivalent unsupported cantilever will never be
stable in this scenario compared to the case when agents could be added to the decon-
structing bridge. It was observed that the deconstruction could usually proceed to this
point without modifying the algorithm, but this final agent often measured the equiva-
lent unsupported cantilever to be unstable, therefore it placed itself and the algorithm
terminated without initiation of the removal phase. This heuristic modification allowed
successful deconstruction to occur in all scenarios tested.

These changes can be seen in timesteps 388 – 390 of Figure 5.13. They enable the re-
moval phase to begin, so the deconstruction can finish in timestep 557. This demonstrates
the flexibility of the algorithm, but further trials are required to quantify the reliability
and effect of the modifications described above. In particular, the rule to allow the agent
in position (2, 1) to release itself when the agent above has critical links may need to be
extended to other agents to avoid deadlocks in similar scenarios.
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5.4 Summary

In this chapter, the deconstruction of a bridge of self-assembled robots between two
vertical fixed supports was considered. The bridge deconstruction algorithm achieved
this in a distributed manner, leaving all agents on the opposite side of the void to where
they began. As with the cantilever construction and bridge optimisation algorithms, this
algorithm incorporates local force information to guide the construction, but these forces
are augmented with elastic beam theory to build a structure that will be stable when one
support is released.

The algorithm is capable of successfully deconstructing all the structures tested, usu-
ally requiring a similar number of agents to the initial bridge between the supports before
optimisation. The maximum moment and axial force experienced during bridge decon-
struction was typically greater than that during the prior bridge optimisation stage, but
comparable to that recorded in the initial cantilever construction. Increasing δ leads to
the algorithm operating with fewer simultaneous active agents, which means fewer agents
are required to build a structure that can safely detach from the left support. However,
the total number of timesteps required for the deconstruction to complete, and the max-
imum γ during this process, are largely unaffected by choice of δ. The algorithm was
also shown to be able to deconstruct bridges without adding any additional agents, but
further testing is required to investigate this ability in detail.

Algorithms have now been presented and tested in simulation to achieve the con-
struction, optimisation, and deconstruction of bridges by self-assembling robots. In the
following chapter, a hardware platform is developed and used to demonstrate these algo-
rithms in real-life.
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Chapter 6

Real-World Implementation

The algorithms for cantilever construction, bridge optimisation, and bridge decon-
struction developed in the previous chapters were developed and verified using a custom
Python simulator. The forces within the structure were calculated using a truss-based
approach, and compared to an allowable bending moment and positive axial force. Fur-
thermore, the motion of the modules was abstracted to a simple sliding square model.
These approximations provide a suitable method for validating the principle of the force-
aware self-assembly algorithms, and provide a template that can be built upon to deploy
the algorithms on physical robots.

In this chapter, the algorithms are implemented on a real-world robotic platform to
evaluate how effectively they can perform in a laboratory environment. As explored in
Section 2.2, there are a wide range of robotic platforms that the algorithms could possibly
be deployed on. HyMod [25] (Figure 2.4d) is chosen for a number of reasons:

� Modules can form square lattice arrangements, emulating the simulated experi-
ments.

� Modules can move around the square lattice by forming a metamodule of two mod-
ules and moving with a flipping gait. To do this, they bend at the central axis of
each module, referred to as the body joint.

� The HiGen connector [26] forms a mechanical connection between agents. Defor-
mations of components that comprise the connector can be measured to calculate a
force within the connection in a simpler manner than for other types of connector,
such as those relying on electromagnetism.

� The retractable nature of the HiGen connector means modules can rotate in place
within the lattice without colliding with their neighbours, reducing the complexity
of moving around the lattice.

Despite these promising attributes, the platform required modifications to be made in
order to verify these algorithms.

Figure 6.1 illustrates how the cantilever construction algorithm could be implemented
with the HyMod platform. A square lattice arrangement of modules extends from a verti-
cal fixed support, which a metamodule of two modules can move along. This metamodule
can walk across a horizontal row of other agents on its own using a flipping gait (Figures
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6.1. Renders showing how an active metamodule (yellow and orange) can move
around a structure extending from a fixed support (grey). The structure consists of the
blue modules, who occasionally become ‘helper’ modules (purple, red, and green) to assist
the metamodule when passing to a different row. The metamodule moves (a – e) one
column to the right, (f – l) past the tip, and (m – p) down a row.
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II

III

I

(a) (b)

Figure 6.2. (a) The new passive HyMod module, and (b) the new active metamodule.
Each module has the three rotational degrees of freedom shown in (a): a central axis (the
body joint, I) and two wheels (II and III)

6.1a – 6.1e). However, it needs assistance from other modules in the structure to pass the
tip (Figures 6.1f – 6.1l) or to move to adjacent rows (Figures 6.1m – 6.1p). The design
of the HyMod system allows modules to rotate in place without collision when adjacent
HiGen connectors are open (Figures 6.1g, 6.1k, and 6.1n). However, modules must tilt
away when rotating next to a connector with its docking hooks extended, as is the case
for the connectors on the fixed support (Figure 6.1o).

This chapter is organised as follows. The custom HyMod hardware designed for these
experiments is described in Section 6.1, and characterised in Section 6.2. In order to
reflect the characteristics of the HyMod platform, the self-assembly algorithms had to be
slightly modified as described in Section 6.3, before the experiments presented in Section
6.4 could be performed. Finally, the chapter is concluded in Section 6.5.

6.1 Hardware Design

The self-assembly algorithms are implemented using an updated version of the HyMod
modular robotic platform. A module from the original version of this platform is shown
in Figure 2.4d: it consists of two half shells that can rotate around a central body joint
by ±90◦, each of which contains a wheel capable of continuous rotation to allow the robot
to move around a flat surface using a differential drive configuration. There are HiGen
connectors [26] at each end and on each wheel so the module can connect to others on
four faces, therefore creating arbitrary structures that reside in a cubic lattice.

This section describes how, using this design as a starting point, new modules were
designed and manufactured with which to verify the self-assembly algorithms in real-life.
Firstly, variants of the HiGen connector were made that allow for the forces within each
connector to be measured (Section 6.1.1). These were included in a passive module (Figure
6.2a) with the same geometry and degrees of freedom as the original HyMod module, but
without motors for actuation, instead requiring a user to manually rotate the body joint
and wheels (Section 6.1.2). Structures built by hand from these modules allow for verifi-
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(a) (b)

Figure 6.3. CAD render of a HiGen connector, shown both (a) closed and (b) open.
The driveshaft is shown in yellow, the docking hooks in pink, the alignment shroud in
peach, the upper outer housing in purple (transparent to reveal the internal components),
and the rear outer housing in cyan. Neodymium magnets aid alignment (grey). In sensed
connectors, small slots in the docking hooks allow wires to be be connected to strain
gauges.

cation of the core concepts of the self-assembly algorithms without being concerned with
refining hardware designs to allow for autonomous operation, a considerable undertaking
in itself. As a proof-of-concept for how the modules would be able to autonomously move
around the lattice structure, a single active metamodule (Figure 6.2b) was constructed,
consisting of two modules permanently attached in the middle and with fully-actuated
body joints in each module (Section 6.1.3).

6.1.1 Force-aware HiGen Connectors

The HiGen connector is a method of forming connections between self-assembling
modular robots designed by Parrott et al. [26] (Figure 6.3). A small DC motor with a
298:1 gear ratio rotates a central driveshaft (yellow), which rotates four docking hooks
(pink). These turn within an alignment shroud (peach), causing both the docking hooks
and alignment shroud to extend out of an outer housing (purple, transparent). Once
extended, the docking hooks continue to rotate to engage with the hooks of the opposite
connector. All the mechanical components save the motor are made from 3D printed
plastic. This design has a number of attractive features:

� Connections can be made between any two connectors in discrete 90◦ intervals,
without concern for the gender of opposing connector. Furthermore, each HiGen
connector in a connected pair can actuate independently of the other one, meaning
if one unit develops a fault the other is still able to disconnect. The connector is
therefore genderless, as defined in Section 2.2.2.

� The physical coupling is fast, taking less than 0.3 s.
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� The mechanical nature of the connection means that energy is only consumed during
actuation, unlike other methods which require energy to be consumed continuously
while connections are active, such as electromagnets.

� The extending actuation means that modules such as HyMod that utilise HiGen
connectors can occupy less space in a lattice arrangement when the connectors are
retracted, hence avoiding collisions while rotating within the lattice.

� The shape of the alignment shroud allows for automatic correction of small misalign-
ments between connectors, which is also aided by the inclusion of small neodymium
magnets in the alignment shroud.

The original HiGen connector also includes a PCB on the alignment shroud with spring-
loaded pins to allow electrical connections between units, enabling communications and
power sharing across the connection. These are not required by the updated HyMod
units, and so are excluded for simplicity. Each connector has a PCB mounted to its
rear, containing the control electronics and two microswitches that are activated by the
driveshaft when at the limits of its motion to inform the controller that the actuation is
complete.

A key component of the self-assembly algorithms is that they require measurements
of the force within the connections between agents. Past robotic platforms have also
incorporated force measurements, such as the CHOBIE II system [67], and the CoBOLD
connector used by CoSMO [102], which incorporated strain gauges and force-sensitive
resistors respectively. Another design by Melenbrink et al. uses low-cost transducers
made from Velostat to measure the forces between robotic modules [17].

To obtain measurements of the forces within the HiGen connectors, strain gauges were
applied to the docking hooks, as they are a reliable method of sensing force commonly
used in engineering applications. However, the readings are highly subjective to proper
installation and careful electronic design, so they are relatively expensive to use. For this
reason, finite element analysis (FEA) using Autodesk Inventor Nastran was performed
to determine the minimum number of strain gauges required to obtain enough data to
accurately inform the self-assembly algorithms, and the location at which they should
be placed. In order to focus the analysis on the deformation of the docking hooks, the
basic geometry of a HiGen connector was modelled as a single part instead of the separate
components, and the base of the connector was thickened to 13mm. The connectors were
meshed with a global spacing of 1.5mm, but a finer mesh spacing of 1mm was used for the
docking hooks to obtain more information about this region. Each connector was modelled
as acrylonitrile butadiene styrene (ABS), a polymer commonly used in 3D printing, using
built-in parameters. Two loading scenarios were considered: an axial tension of 7.95N,
and a combined moment of 0.556Nm and shear force of 7.95N. These represent the loads
associated with supporting an original HyMod module of quoted mass 810 g and lattice
spacing 140mm [25] either vertically or as a horizontal cantilever respectively.

Results of the FEA are shown in Figure 6.4. It can be seen that the positive axial load
is shared approximately evenly between the four hooks, which are all loaded in tension.
When the weight of a simulated cantilevering module is applied to the connector, the
majority of the load is shared between the two hooks in the plane of the rotation, but
with a significant load also taken by the alignment shroud. In both cases, the maximum
deformation occurs near the base of the docking hooks.
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Figure 6.4. Finite-element analysis of a HiGen connector under (a) a positive axial force
of 7.95 N, simulating a hanging HyMod module, and (b) a combined moment of 0.556
Nm and shear force of 7.95 N, simulating a cantilevering HyMod module. The applied
loading is shown by the green arrows.

From these results, it was concluded that two strain gauges are sufficient to obtain
enough data to inform the self-assembly algorithms. These are placed on the docking
hooks that will be in the plane of rotation when modules are arranged as a cantilever.
The gauges are positioned at the base of the outside of the docking hooks so that they
measure the largest deformations while not obstructing the mechanical interface between
opposing hooks.

In a fully-autonomous system, every HiGen connector in each HyMod module would
be capable of actuation, termed active, and sensing force, termed sensed. However, for
simplicity, four different kinds of connector were designed for this work. In addition to the
active connectors, ones that were permanently extended, called passive, were designed, as
were ones without the strain gauges, called unsensed. There are therefore four different
variants of HiGen connectors:

1. Active sensed (Figure 6.5a)

2. Active unsensed (Figure 6.5b)

3. Passive sensed (Figure 6.5c)

4. Passive unsensed (Figure 6.5d)

The strain gauges selected were the LY91-1.5/350 model from Hotttinger, Brüel &
Kjær. These were chosen for their small size and the location of the solder pads next to
the sensing direction, instead of in line with the sensing direction, as is more common.
Each gauge was bonded to its docking hook using Z70 cyanoacrylate adhesive, then the
wires were soldered in place. A small amount of X60 two-component cold curing adhesive
was applied on top of the gauge and solder joints to provide strain relief and to protect
the sensitive strain gauge from wear occurring as components slide over each other during
actuation.
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(a) (b)

(c) (d)

Figure 6.5. The four types of HiGen connector: (a) active sensed, (b) active unsensed,
(c) passive sensed, and (d) passive unsensed.

The design of the components within the active sensed connectors was modified to
ensure that the wires connecting to the strain gauges did not interfere with the mechanism.
A small slot and hole was added to each sensed docking hook (visible in Figure 6.3b) as
well as to the driveshaft and rear cover of the connector to achieve this.

The components, with the exception of the docking hooks, were all 3D printed using
a stereolithography (SLA) printing process from Somos LEDO 6060 resin. It was found
that Z70 adhesive was unable to successfully bond the strain gauges to the resin parts, so
the docking hooks were printed using a fused deposition modelling (FDM) process from
ABS instead.

6.1.2 Passive HyMod Modules

One of the ten passive HyMod modules constructed to verify the self-assembly algo-
rithms is shown in Figure 6.2a. These modules are based on the original HyMod platform
[25] (Figure 2.4d), but without motorised actuation in the body joint or wheels: instead,
these degrees of freedom can be rotated by hand through discrete 6◦ intervals. While the
original design used active unsensed HiGen connectors in each face, these new modules use
a combination of active sensed, active unsensed, and passive sensed connectors to allow
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Figure 6.6. The design of the passive HyMod module. (a) The systems diagram. (b)
A CAD drawing of the complete module, with the external casing transparent to reveal
the locations of the internal components, including PCBs and batteries. (c) The design
of the BLE services and characteristics.

forces to be sensed in at least one connector forming a pair between all modules within
a regular lattice arrangement. A systems diagram is shown in Figure 6.6a, including the
placement locations of each kind of HiGen, while a CAD model revealing the locations of
internal components is shown in Figure 6.6b. All components are 3D printed from Sonos
Ledo 6060 resin with the exception of the docking hooks, which are printed from ABS for
reasons described in Section 6.1.1.

Each module is powered by two 3.7V, 1800mAh lithium-ion batteries connected in
series to give a nominal voltage of 7.4V. These directly power an Arduino Nano 33 BLE
(Bluetooth Low Energy), mounted on a PCB containing a 5V linear voltage regulator and
headers to allow connections to other PCBS within the module.

The four HiGen connectors each have a dedicated PCB mounted on their rear, with
different components depending on the variant of HiGen. The PCBs for active connec-
tors have an H-bridge motor driver which runs the DC motor at the full 7.4V supply
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voltage in a direction controlled by two digital pins on the Arduino; a constant voltage
applied to a reference pin of the motor driver provides a 67% duty cycle pulse-width
modulated signal to set the motor speed to a reasonable level. These PCBs also feature
two microswitches used to determine when the driveshafts are at their clockwise or anti-
clockwise limits. The PCBs for sensed connectors contain resistors to connect each strain
gauge as one leg of their own Wheatstone bridge. The output of each bridge is connected
to an instrumentation amplifier to boost the small voltage differences produced by the
gauges as they deform to a level measurable by the built-in analogue-to-digital converter
on the Arduino. These amplifiers are powered from the regulated 5V signal, and the offset
for each is tuned during assembly by a rotary potentiometer so that the output in the
undeformed state is roughly half of the output saturation voltage. Finally, each HiGen
PCB also includes connections to control a light-emitting diode (LED) on the edge of the
connector for debugging purposes.

The modules are controlled by a central computer through BLE. A graphical user
interface (GUI) was created using Python and Qt6 to allow the motors to be controlled and
the measurements from the strain gauges to be viewed. The communication is structured
as shown in Figure 6.6c. The motor of each active HiGen is allocated a service with
separate characteristics for the requested and actual state of the connector. Each pair
of strain gauges in a sensed HiGen is collated into a single service with a characteristic
for the reading of each gauge. A further service with a single characteristic informs
the user when the 5V voltage regulator is unable to produce a suitable output voltage,
meaning the batteries are so low that the strain gauge readings will be unreliable. In
practice, however, the motors will slow down or stop actuating altogether as the batteries
drain, prompting the user to recharge the batteries before this warning is issued. In
order to simultaneously process HiGen actuation requests and measure the strain gauges,
multithreading is implemented using Mbed OS on the Arduino [191] and QThread on the
central computer [192].

Each active HiGen is actuated by setting the request characteristic of its BLE service.
If the requested state is different to the current state, the motor turns in the required
direction to open or close the connector, and the state characteristic is set to 'a' to
reflect that the motor is active. The motor turns until the corresponding limit switch
mounted on the PCB of the connector is pressed, whereupon the motor actively brakes
for 100ms then is switch off. The state characteristic is then updated to either 'o'

or 'c' for the open and closed states respectively. The actuation is expected to take
less than 2 s, otherwise it is deemed that there is an obstruction. In this case, if the
connector is opening then the motion is stopped, but if it is closing then the direction
of actuation is reversed to open the connector so that the user can realign it. When the
connector is closed, the limit switches are polled every 10 µs to check the appropriate one
is still depressed: if it is not, the motor is briefly actuated to ensure the docking hooks
on opposing connectors remain engaged.

The strain gauges on each HiGen are constantly updated. Ten ADC measurements for
each gauge are recorded at 10ms intervals and averaged, with the resulting values written
to the corresponding BLE characteristics. These values are used to vary the intensity of
the LED adjacent to the connector to provide visual feedback on the current loading, and
are converted to a force by the central computer, as described in Section 6.2.2.
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6.1.3 Active HyMod Metamodule

In addition to the ten passive HyMod modules, a single active metamodule was also
designed and manufactured, shown in Figure 6.2b. The purpose of this metamodule is to
demonstrate how two HyMod modules could cooperate to walk around a lattice of other
modules, thus allowing autonomous self-assembly following the force-aware algorithms
developed in this thesis.

The active metamodule consists of two identical HyMod modules where the HiGen
connectors on one wheel of each module are replaced with a fixed tube to create a perma-
nent link between the two. The opposite wheels both incorporate passive unsensed HiGen
connectors, and there are no other connectors on the other faces. A systems diagram is
shown in Figure 6.7a, and a CAD model revealing the locations of internal components is
shown in Figure 6.7b. Each module contains two of the same 3.7V, 1800mAh lithium-ion
batteries as in the passive modules, again connected in series to give a nominal supply
voltage of 7.4V. Both pairs are connected in parallel to retain the same supply voltage
as a single pair, but allow for a higher capacity and higher current flow. The metamodule
is controlled by an Arduino Nano 33 BLE Sense located in the fixed connection between
the two modules. Each module contains a PCB that controls the joint motors using full-
bridge motor drivers and obtains the measurement from a potentiometer within the body
joint as described below. This board also contains headers to connect the Arduino to the
HiGen controller PCB belonging to the active unsensed connector on the wheel.

The body joint of the each module is actuated through the same mechanism as the
original HyMod modules. Two high-torque DC motors with integrated 154:1 gearboxes
work together to turn the joint through its range of motion, with a further 5:1 gear
reduction obtained through gears attached to the driveshaft of each motor which engage
with others in the body of the module, as shown in Figure 6.7c; the two halves of each
module rotate about a central potentiometer, also visible in this figure, that allows the
controller to obtain the current joint angle. As in the passive modules, all components
except for the ABS docking hooks are printed from Sonos Ledo 6060 resin.

Another Qt6 GUI was created using Python to control the active metamodule through
BLE. The BLE communication is structured as shown in Figure 6.7d. The HiGens are
unsensed, and actuated through the same service as in the passive modules. The joint
is actuated through a separate service. The user sets the request characteristic to the
angle they would like the joint to move to. The state characteristic is set to 'a' to
reflect that the joint is active, and a pulse-width modulated signal is applied to the joint
motors. This begins with a low duty cycle, which is steadily increased until the joint is
moving at a preset speed, determined by the rate of change in voltage across the joint
potentiometer. The duty cycle is constantly updated during motion to ensure the speed
is constant, regardless of whether the joint is acting with or against gravity. The motion
continues until the specified angle is reached, at which point the motors briefly brake
before being turned off. If the potentiometer measurement does not significantly change
for 2 s, it is deemed that the joint has stalled and the motors are turned off. When the
motors are switched off, the state characteristic is set to 's' to show the motion has
stopped. The position characteristic is constantly updated throughout the motion to
report the current joint angle.

The Arduino Nano 33 BLE Sense features an inertial measurement unit (IMU), which
is used to determine the orientation of the metamodule. Since the metamodule is designed
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Figure 6.7. The design of the active HyMod metamodule. (a) The systems diagram.
(b) A CAD drawing of the complete metamodule, with the external casing transparent
to reveal the locations of the internal components, including PCBs and batteries. (c) A
CAD drawing of one half of a module of the active metamodule, showing the motor with
an additional gear (blue) that engages with the teeth on the opposite half to provide a
5:1 gear reduction (orange), and the potentiometer that forms the body joint (yellow).
(d) The design of the BLE services and characteristics.
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(a) (b)

Figure 6.8. The two vertical supports between which the structures were built: (a) the
left support, clamped to a desk, and (b) the freestanding right support.

to be used in two dimensions, this can be described using only the roll angle, reported
by the roll characteristic in the orientation service. This is calculated using only the
accelerometer on the IMU without the complex algorithms required to accurately update
3D orientation, such as the Madgwick filter [193]. This is updated automatically as
joints move, and can also be manually updated with the request characteristic of the
orientation service. The roll angle is used to draw the metamodule on the GUI in the
correct orientation, but could also be used in future to assist with accurate module motion.

6.1.4 Vertical Supports

Specialist vertical fixed supports are required between which the HyMod structures
are built (Figure 6.8). These were constructed from 40×40mm aluminium struts due to
their strength and versatility. Cantilevers initially extend from the left support, which
contains four or five passive unsensed HiGen connectors (Figure 6.5d), depending on the
test being performed. These connectors do not have strain gauges bonded to them, so are
manufactured from Somos LEDO 6060. This support is clamped to a desk, while the other
support is freestanding to allow it to be rapidly repositioned depending on the structure
length. The freestanding support contains two active unsensed HiGen connectors with
their driveshafts modified such that they can be actuated by hand. One support must
utilise active connectors since each pair of opposing faces of the passive HyMod modules
contains one active and one passive HiGen connector. Both supports also have a passive
unsensed HiGen connector oriented horizontally above the vertical surface.
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6.2 Hardware Characterisation

This section describes the tests performed with the hardware to determine its capabil-
ities and limits before implementing the self-assembly algorithms in real-life. The failure
strength of the HiGen connectors was first determined (Section 6.2.1), before the strain
gauges could be calibrated (Section 6.2.2). Finally, tests were performed to determine
how effectively the active metamodule could autonomously walk over surfaces (Section
6.2.3).

6.2.1 HiGen Capacity Testing

The failure strength of the HiGen connectors was measured using a Hounsfield HK100
tensometer set up as shown in Figure 6.9a. An active unsensed HiGen connector was
attached to the crosshead with a frame built from 1.5mm thick mild steel (Figure 6.9b)
through a 1 kN load cell, and a second HiGen connector was attached to the machine bed.
The lower connector was varied between the active unsensed, passive unsensed, or passive
sensed designs, all without the sensing electronics, using the jigs in Figures 6.9c – 6.9e.
This allowed for the different combinations of mechanical interface present in structures
constructed by these modules to be tested. The load cell readings were recorded as the
crosshead was slowly raised until the material failure of one of the connectors occurred.
Two trials were performed for each type of connector attached to the machine bed.

The results for these trials are plotted in Figure 6.10. The mean maximum force
measured before failure was 174N, with a standard deviation of 27.4N. The FEA in
Section 6.1.1 indicates that the purely axial force exerted by the crosshead is spread
evenly across each docking hook, so each has a mean capacity of 43.5N.

In all cases the failure occurred in one or more docking hooks of an active HiGen
connector between the 3D printed layers, as shown by the failed docking hooks in Figure
6.11. This indicates that the parts are weaker when 3D printed from ABS using the FDM
process than the SLA printed LEDO 6060, and that the weakest point is the links between
adjacent layers of ABS. As expected from the FEA modelling (Figure 6.4) the failures
occurred near the bottom of the hooks where the highest stresses are predicted.

6.2.2 Sensor Calibration

The strain gauges in the sensed HiGen connectors required calibration before they
could reliably report the force in their corresponding hook in Newtons. Each gauge was
calibrated individually using the same tensometer as for capacity testing, as shown in
Figure 6.12a. The passive HyMod module in under test is mounted to the bed of the
tensometer using a custom-designed jig shown in Figure 6.12b with the gauge under test
oriented on the top. The jig holds the module in place without the use of any of the
HiGen connectors to reduce the deformation of the module at locations apart from the
connector under test. A modified active unsensed HiGen connector with only one docking
hook (Figure 6.12c) was attached through the 1 kN load cell to only apply force to docking
hook that is being calibrated.

Force was applied to the docking hook under test by slowly raising the crosshead of
the tensometer at the minimum rate of 50mmmin−1 until the load cell reading reached
specified forces, whereupon this force and the measurement in the strain gauge were
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(a)

(b)

(c)

(d)

(e)

Figure 6.9. The hardware used during HiGen connector capacity testing. (a) An example
configuration of the tensometer: an active unsensed HiGen connector (blue) is connected
to the crosshead of the tensometer through a 1 kN load cell (orange). The unit under
test, in this case a passive unsensed HiGen connector (purple), is attached to the machine
bed. (b) The active unsensed connector attached to the load cell. (c – e) The jigs used
to attach the active unsensed, passive unsensed, and passive sensed HiGen connectors
respectively to the machine bed.
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Figure 6.10. The force measured by the load cell during HiGen connector capacity testing
as the tensometer pulled two connectors apart. Lines are coloured by the connector on
the tensometer bed, and the linestyle indicates the trial number.

Figure 6.11. An example failure that occurred during capacity testing. This part was
used during the second trial with a passive sensed connector on the machine bed.
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recorded. The force was varied from 0N to around 30N in increments of roughly 2N to
obtain a calibration for each hook up to a value roughly two standard deviations away from
the mean hook strength. This range is sufficiently wide for the self-assembly algorithms
to be implemented without risking breaking any hooks during calibration. This process
was repeated for each of the six sensed hooks on each of the ten passive modules to obtain
calibration graphs similar to those in Figure 6.13. A straight line is fitted to each set of
points to convert strain gauge readings into forces within each docking hook.

It should be noted that this calibration will not be perfect due to real-world factors
such as backlash within the connector changing the exact loading on each hook. However
this process gives reasonable calibrations, and effectively means that the self-assembly
algorithms are implemented with a moderate amount of sensor noise.

6.2.3 Active Metamodule Motions

The design of the HyMod platform allows a metamodule of two modules to walk
around a lattice of other modules, as shown in Figure 6.1. Experiments were performed
to evaluate how well the active metamodule could demonstrate this behaviour in real-
life. Two scenarios were considered to show the active metamodule moving in a variety
of orientations: walking across the top of a bridge of passive modules between the two
fixed supports, and moving along the bottom surface of this bridge. Experiments to test
passing the tip or changing row (Figures 6.1f – 6.1p) were not performed, as they require
one half of the active metamodule to lift two other modules. Work with the previous
HyMod platform found that a single module was capable of lifting 1.8 other modules
in-line before the 3D printed gear in the body joint and the docking hooks failed [57].
While the stated torques of the motors used in this joint suggest lifting two other modules
would be possible if these components were made stronger, it was chosen not to test this
capacity to avoid damaging the active metamodule.

6.2.3.A Above a Bridge

The first experiment considered how the active metamodule could walk across the top
of a bridge. Two passive HyMod modules were connected in a row between the two fixed
supports. The active metamodule was connected vertically above the left support, as
shown in Figure 6.14a. The active metamodule was controlled to walk rightwards across
the bridge by manually specifying angles for the body joint in each half to be turned to.
The HiGen connectors were actuated remotely when required, and this actuation was re-
peated until successful connections were made. Eleven trials were performed immediately
after each other, each ending when the active metamodule was in a vertical position above
the right support. The batteries were fully charged before the first trial.

Figure 6.14 shows frames from one trial, and is representative of the behaviour ob-
served across all trials. First, note from Figure 6.14a that the initial position is not
exactly vertical: the backlash in the body joint prevents accurate body joint angles from
being achieved using only feedback from the potentiometers in each body joint. From the
initial position, the active metamodule could easily rotate into a horizontal position (Fig-
ures 6.14a – 6.14d). However the alignment between the two HiGen connectors that were
brought into contact by this motion was greater than could be corrected for automatically
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(a) (b) (c)

Figure 6.12. The hardware used during strain gauge calibration. (a) The configuration
of the tensometer: a passive HyMod module (purple) is attached to the tensometer bed
with the HiGen under test facing upwards, and an active unsensed HiGen connector with
only one docking hook (blue) is connected to the crosshead of the tensometer through a
1 kN load cell. (b) The custom jig used to retain the HyMod module in the tensometer.
(c) The active unsensed HiGen connector with a single docking hook.

Gauge reading

HiGen 1, gauge A
HiGen 1, gauge B
HiGen 2, gauge A
HiGen 2, gauge B
HiGen 3, gauge A
HiGen 3, gauge B

300 400 500 6000 100 200

F
or

ce
 (

N
)

0

5

10

15

20

25

30

35

Figure 6.13. Example strain gauge calibrations for one of the passive HyMod modules.
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Figure 6.14. Frames from a trial showing the active metamodule walking along the top
of a bridge.
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by the alignment shrouds due to backlash within the body joints. It was therefore nec-
essary to manually push the connectors into alignment, as shown in Figure 6.14e, before
the connection could be made and the HiGen at the other end of the active metamodule
released (Figure 6.14f). The metamodule then rotated to a vertical orientation success-
fully (Figures 6.14g – 6.14h), and the process repeated until the metamodule reached a
vertical orientation above the right support (Figures 6.14i – 6.14t).

The results show a mixed performance. On the one hand, the body joint could always
lift the full weight of the metamodule and actuate it through the full range of motion, even
after the batteries had drained from the previous trials. Actuation was also fast: rotating
the body joint through its full range of motion took roughly 2 s when unloaded, and
3 s when lifting the other half of the metamodule. On the other hand, backlash within
the body joints prevented autonomous operation and accurate positioning from being
achieved. This could be improved by manufacturing the components from a stronger
material and to tighter tolerances to reduce the clearance required between moving parts.

6.2.3.B Below a Bridge

The second experiment considered how the active metamodule could walk across the
bottom of a bridge. The same bridge as the previous experiment was used, consisting of
two passive modules in a line between the vertical fixed supports. Trials began with the
active metamodule connected to the passive HiGen connector on the left support in row
3, with the body joint by this connector set to a 90◦ angle such that the metamodule
pointed towards the floor, as shown in Figure 6.15a. The metamodule was teleoperated
by a human in the same manner as the previous experiment. It was instructed to rotate to
face the leftmost passive module, connect to it, then move to a vertical orientation below
the other passive module. The experiment took place immediately after the previous one,
so the batteries were partially discharged. Six trials were performed, and the batteries
and were not recharged between trials.

Frames from a representative trial are shown in Figure 6.15. The active metamodule
successfully rotates to face the leftmost passive module, but there is a large gap between
the opposing HiGen connectors of these modules (Figures 6.15a – 6.15d). This gap is due
to the backlash in the body joint discussed above, but is also magnified by backlash in
the HiGen connector supporting the active metamodule. This has to be compensated for
by human intervention (Figure 6.15e). The active metamodule swaps which of its HiGen
connectors is supporting it, then rotates to face the next passive module (Figures 6.15f –
6.15j). Once again, human intervention is required to connect to the next module, shown
in Figure 6.15k. The active metamodule then moves to a downward-facing orientation,
and the trial finishes (Figures 6.15l – 6.15o).

As in the first experiment, the results from these six trials demonstrate the sufficient
strength of the motors within the body joint, but highlight issues with backlash. The
first rotation performed in these trials is the most challenging tested, as it requires one
body joint to lift both halves of the metamodule through 180◦ against gravity. This was
always successful, demonstrating the power in the motors and drive circuitry. However,
the backlash issues are more pronounced here, as gravity reveals the HiGen connectors
move quite significantly when connected. Similar to the body joints, backlash within
the HiGen connectors could be reduced by revising the designs to reduce the clearance
between the moving parts, and manufacturing to tighter tolerances.
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Figure 6.15. Frames from a trial showing the active metamodule walking along the
bottom of a bridge.
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(a) (b)

Figure 6.16. The environment considered in this chapter. The HyMod modules in the
structure (blue) arrange themselves between one or two fixed supports (grey). The active
agent (yellow) moves around the structure to decide its course of action. Two scenarios are
considered based on how the active agent is realised: (a) as a metamodule agent consisting
of two modules oriented vertically above each other, and (b) as a single module. Both
active agents are shown in position {3, 4}. The narrow section is shown paler.

6.3 Algorithm Adaptions

The simulator used to develop the self-assembly algorithms in the previous chapters
models the agents as sliding squares, and calculates an equivalent moment M and axial
force F in links between agents. This is slightly different to the capabilities of the de-
veloped HyMod system, so the algorithms were updated to reflect this. They were then
implemented using the constructed HyMod modules, which were moved around the struc-
ture by hand to validate the core concepts of the algorithms. The situation considered is
broadly the same as for the simulated agents, with the differences explained below.

The physical implementation of the self-assembly algorithms presented here considers
a group of HyMod robots that can occupy locations within a 2D grid. Positions within
this grid are referred to in (row, column) format as in previous chapters.

Individual robots are referred to as modules. The morphology of the HyMod platform
requires modules to move around the grid as a metamodule of two modules, so two
scenarios are considered: one where modules can move on their own, and another where
they move as such a metamodule. The former scenario is less realistic, but allows a wider
range of structures to be built with the limited number of modules manufactured and
thus to validate the algorithms to a greater degree. The term agent is therefore used to
mean either a metamodule or a single module, depending on the scenario. Agents can
either be placed or active as described in previous chapters. Two categories of structure
are constructed: those built by an active metamodule or by a single active module. Placed
metamodules could be oriented vertically or horizontally: the vertical orientation is chosen
here to build shorter and stronger structures than would be built from the horizontal
orientation. Examples of this grid for structures built by an active metamodule and a
single active module are shown in Figures 6.16a & 6.16b respectively.

Positions of agents within the grid are given in braces, where {r, c} refers either to a
single module in (r, c), or a metamodule occupying both (r, c) and either (r+1, c) if r > 0
or (r−1, c) if r ≤ 0. The fixed supports are placed within the grid in the manner described
in earlier chapters. The structure is again restricted to be continuous, and structures with
a fixed support at both ends are once more required to have a single narrow section: this
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is a single module thick for structures built by a single active module, but two modules
thick if an active metamodule is used, as shown in Figure 6.16.

The sensed HiGen connectors are capable of measuring a force in two of their docking
hooks. The FEA indicates that the modules could convert this into a separate moment
and axial force, as an axial force will cause both hooks to extend, while a moment will
cause one to extend and the other to compress (Figure 6.4). However, in practice it
was found that calibrating the strain gauges to accurately report these measurements
separately was not possible due to backlash in the connectors. Instead, it was chosen to
use a single measurement H to represent how close a connector is to failing, taken as the
maximum force measured in either strain gauge of this connector. This is compared to
an allowable value Hallowable to calculate the criticalness γ. The previous equation for γ
(3.4) is therefore changed to:

γ =
H

Hallowable

(6.1)

H is positive when connectors are pulled apart from each other, so this definition assumes
connectors are sufficiently strong in compression that high forces of this type can be
ignored. This is reasonable as compressive forces will be shared along the whole contact
area of the two connecting alignment shrouds. Note that a link consists of two HiGen
connectors. It is therefore possible that the value of γ in a link could be reported differently
by each of the constituent modules depending on differences in their calibration or other
physical factors.

Due to the limited number of modules built, trials were only conducted with one active
agent at a time. The sequential cantilever construction algorithm was therefore imple-
mented, and the bridge optimisation and deconstruction algorithms were modified to also
implement them in a sequential manner. The collision avoidance behaviours incorporated
by the parallel algorithms when multiple agents intend to move into the same location
are therefore not implemented here. Active agents only attach to the structure through a
single active link, but the rules for choosing it are simplified in this single agent case: it is
set to the link on the top or bottom of the agent depending on if it is below or above row
1 respectively. The specific modifications made to each algorithm to implement them in
this real-life scenario are described below.

6.3.1 Cantilever Construction

The cantilever construction algorithm begins with a placed agent in position {1, 1}.
The local variant of the sequential algorithm is implemented with minimal modifications,
as shown in Algorithm 6.1. The only differences stem from a single valueH being recorded
by the active agent from each placed module instead of collecting separate values of M
and F (Line 4). These values are recorded in two arrays

{

γβ ∀ β ∈ {row, column}
}

where
four arrays were previously required. The values of H communicated are those recorded
by the modules on the perimeter in their connectors in row and column links. The original
version of the algorithm takes the maximum measurements in links on the top and bottom
of the module for β = column, but the passive HyMod modules manufactured can only
measure forces in hooks in their bottom connector so this value is always used1.

1Note that when the active agent is on the bottom of the structure, this measurement will be the weight

of the active agent and thus not related to the force distribution throughout the structure. However, this
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Algorithm 6.1. The cantilever construction self-assembly algorithm implemented
on the HyMod platform, emphasising differences with the local variant of the
sequential self-assembly algorithm implemented in simulation (Algorithm 3.2).

1 Initialise at {0, 0};
2 while not (row > 0 and column = 1) do

// Gathering mode

3 Make one step clockwise;
4 Record H from module below or above into γβ

c ;

5 if No link is critical then
// Placing mode, to extend

6 Place at tip;

7 else
// Placing mode, to reinforce

8 Calculate pcolumn(c) from γβ;
9 while Not placed do

10 ctarget ← sample from pcolumn(c) without replacement;
11 Move to column ctarget;
12 if Valid location then
13 Place in column ctarget;

Calculation of pcolumn(c) in Line 8 is slightly different due to the modified data received
by the active agent. Urgency distributions are calculated in the same manner as before,
but they are only calculated for H, not M and F . The distributions are therefore denoted
νβ
c , and the xth component of νβ

c is thus given by:

νβ
c |x = (γβ

c )
2 · γβ

c√
2π

exp

(

−(γβ
c )

2(x− c)2

2

)

(6.2)

There are now only 2L urgency distributions for a cantilever of length L, which are
summed to calculate the combined urgency distribution ν̂ as:

ν̂ =
∑

β∈{row,column}

L
∑

c=1

νβ
c (6.3)

This is converted into pcolumn(c) as before.

The active agent decides where it should place following this procedure. Samples are
drawn from pcolumn(c) without replacement until a valid column is selected. Since there
is only one active agent at a time, this active agent can remember which columns are
valid and thus can place directly in the first valid column drawn as opposed to being
required to move to each column in turn (Line 13). Instead of placing this physical robot
in that location, one or two other passive HyMod modules are placed here, depending
on whether an active metamodule or single active module is being used. This allows the

value is still recorded for consistency with the algorithms tested in simulation.

123



Real-World Implementation Algorithm Adaptions

robot representing the active agent to be reused as the next active agent, thus retaining
consistency between placements.

Another active agent is initialised at {0, 0} when the previous one has been placed,
which requires knowledge of when this occurs. It is not considered how this could be
obtained, but one possible distributed method could be to pass messages throughout the
structure when the previous active agent has placed to inform the module in location
(1, 1) to allow another active agent to pass over it.

6.3.2 Bridge Optimisation

The simulated bridge optimisation algorithm allows for multiple active agents con-
currently, but the version implemented with the real-world robots only allows one active
agent at a time due to the limited number of modules manufactured. The procedure by
which placed agents become active is therefore modified so that a single agent is released
when the previous active agent has placed. Placed agents with an empty space below and
to one side of them are again called release candidates. Whenever there is no active agent
and the trial has not finished, a release candidate is selected to be released as follows. For
each release candidate j, a value Prelease,j is calculated according to (4.7) as before, with
ϵ = 10, µ = 0.3. However, instead of each release candidate becoming an active agent
with this probability, these values are converted into a combined probability mass func-
tion prelease(j) by dividing each by

∑

j Prelease,j. One release candidate is drawn from this
function to become the active agent in the releasing mode. This process is implemented
using a global controller for simplicity, but message-passing could be used instead to make
the algorithm completely distributed. For the case of an active metamodule agent, each
module in the metamodule calculates a separate Prelease,j and if either one is drawn from
prelease(j) then the corresponding metamodule becomes active. As for the real-world can-
tilever construction algorithm, the same physical robot is always used as the active agent
to retain consistency between placements. Released modules are therefore replaced by
this agent.

When an agent is released, it follows the procedure in Algorithm 6.2. This is similar
to the version implemented in simulation, but differences arise because of the choices to
record H instead of M and F and to only allow one active agent at a time. The active
agent records measurements of H to determine whether its release made any links of the
module above critical (Line 3) and when recording the distribution of forces around the
structure into the γβ arrays (Line 11).

When the active agent has traversed the whole lower perimeter of the structure and
reached column L, it decides whether to remove itself from the environment or place itself
to reinforce the structure. If no links are critical, it enters the escaping mode and is
immediately removed (Lines 22 & 23) instead of slowly passing through the structure as
in simulation. If the active agent believes the structure requires reinforcement, pcolumn(c) is
calculated from γβ using the procedure described for the real-world cantilever construction
algorithm (Line 16), then it enters the placing mode. In this mode, it is not necessary
to move the active agent to each column drawn from pcolumn(c) to check whether it is
valid, as was the case in simulation with multiple active agents. The active agent instead
remembers which columns are valid, and draws columns until a valid ctarget is chosen. One
or two modules are then placed in this column (Lines 25 – 29), depending on whether a
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Algorithm 6.2. The bridge optimisation algorithm implemented on the HyMod
platform, emphasising differences with the version implemented in simulation
(Algorithm 4.1).

1 switch mode do
2 case releasing do
3 Record H from placed module above into γβ

c ;
4 if Module above has a critical link then
5 Place back here (agent no longer active);
6 return

7 else
8 mode ← gathering;
9 Make step;

10 case gathering do
11 Record H from placed module above into γβ

c ;
12 if Agent in column L and Previously visited column 1 then
13 if No measured links critical then
14 mode ← escaping;
15 else
16 Calculate pcolumn(c) from γβ;
17 ctarget ← sample from pcolumn(c) without replacement;
18 mode ← placing;

19 else
20 Make step;

21 case escaping do
22 Remove agent from structure;
23 return

24 case placing do
25 while Not placed do
26 ctarget ← sample from pcolumn(c) without replacement;
27 if Valid location then
28 Place in column ctarget;
29 return

30 case swapping do ...
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single active module or active metamodule is being used. The swapping mode and the
timeout are not necessary.

Once an active agent is placed or removed from the structure, another agent is released.
This continues until either there are no more release candidates, indicating the structure
consists of a single row of agents, or an active agent chosen to be released is in the same
location the previous one placed in, indicating the shape of the structure has settled. This
is different to the simulated bridge optimisation algorithm, in which the trial finished when
20 timesteps passed without any change to the structure. The metric is changed to reduce
the time taken to perform each trial.

6.3.3 Bridge Deconstruction

In the simulated version of the bridge deconstruction algorithm, modules are added to
the cantilever from above the left support, and are removed during bridge deconstruction
above the right support; it is assumed that the goal of the bridge is to allow modules to
travel from the left side of the gap to the right side. However, due to constraints with
the fixed supports manufactured (Section 6.1.4), in the real-world implementation the
algorithm both adds and removes modules above the left support. It is therefore instead
assumed that the task on the right side of the gap is completed by a subset of the available
modules, who then travel back over the bridge.

During real-world bridge deconstruction, only one active agent can move around the
structure at a time, as for the other real-world algorithms. Active agents arise by one of
three methods:

1. A new active agent can initialise in position {0, 1}.

2. An existing placed agent in the structure can release itself.

3. The current active agent can flag a placed agent to be released, emulating the
force-releasing mode for this scenario with only a single active agent at a time.

If an agent is flagged for release, it is released at the next opportunity. In order to choose
between the other two options, Prelease,j is first calculated for each release candidate j in
the same manner as the simulated algorithm. Only modules right of the narrow section are
considered release candidates as those on the left are likely in a useful position already, the
mirror of the simulations. Each release candidate j is selected to release with its Prelease,j:
this is similar to the simulated bridge deconstruction algorithm, but different to the real-
world bridge optimisation algorithm. If multiple release candidates are chosen at once,
then one is selected at random to release. If no release candidates are chosen then a new
active agent initialises in {0, 1} instead. As in the previous real-world algorithms, adding
new active agents is achieved through global control, but could be made distributed in
future. In addition, the same physical robots are used as the active agent in each trial for
consistency, which replace the modules that are released from the structure.

The procedure followed by the active agent during the bridge deconstruction algorithm
is shown in Algorithm 6.3. Choosing to measure H instead of M and F (Lines 5 & 13)
results in pcolumn(c) being calculated from the modified data γβ in Line 15, similar to
the other real-world algorithms. This choice also means the raw values of H are used to
determine the stability of the structure in Line 16 instead of attempting to approximate
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Algorithm 6.3. The bridge deconstruction algorithm implemented on the HyMod
platform, emphasising differences with the version implemented in simulation
(Algorithm 5.1).

1 switch mode do
2 case force-releasing do
3 ...

4 case releasing do
5 Record H from placed module above into γβ

c ;
6 if Module above has a critical link then
7 Place back here (agent no longer active);
8 return

9 else
10 mode ← gathering;
11 Make step;

12 case gathering do
13 Record H from placed module above or below into γβ

c ;
14 if Agent in column 1 then
15 Calculate pcolumn(c) from γβ;
16 if No measured links critical then
17 Flag placed agent at bottom of column crelease for release;

18 mode ← placing;

19 else
20 Make step;

21 case escaping do
22 if In column 1 then
23 Flag next placed agent for release;
24 Agent leaves environment;
25 return

26 Make step;

27 case placing do
28 while Not placed do
29 ctarget ← sample from pcolumn(c) without replacement;
30 if Valid location then
31 Place in column ctarget;
32 return

33 case swapping do ...
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the values in the equivalent unsupported cantilever as described in Section 5.2.2. If the
active agent believes the structure is stable upon gathering all the necessary data, an agent
is flagged for release without moving the active agent there as was required in simulation
(Line 17). This agent is the one at the bottom of column crelease, where:

crelease =

{

cn,r if cn,r = L

(cn,r + 1) otherwise
(6.4)

where cn,r denotes the rightmost column in the narrow section. Flagging agents for release
in this global manner removes the need for the force-releasing mode used in simulation
(Lines 2 – 3). Regardless of whether an agent is flagged for release at this time, the
active agent enters the placing mode. As in the previous real-world algorithms, it then
repeatedly samples from pcolumn(c) without replacement until a valid location is chosen:
it is only moved when a valid column is drawn (Lines 28 – 32).

This process repeats until the agent attached to the right support is released. The
removal phase then begins, in which agents are removed columnwise from the top of each
column. In the simulated algorithm, placed agents are switched to the force-releasing
mode as active agents pass over them in this phase. This is simplified in the real-world
implementation: the agent at the top of the rightmost column is released and enters the
escaping mode when the previous active agent reaches the top of column 1 and exits the
environment (Lines 22 – 25). As was the case when active agents are added during the
reinforcement phase, this requires global control. However, it could be made distributed
by using the module in position (1, 1) to send messages to other placed modules instructing
them to release when the previous active agent has passed over it. Due to the simplified
scenario, neither the swapping mode, the timeout period, nor the additional behaviours
based on the position the active agent ends the timestep in, are required.

6.4 Real-World Experimental Results

6.4.1 Experimental Procedures

To perform the trials of the algorithms, a custom Qt GUI consisting of two windows
was created with Python, shown in Figure 6.17. One window shows a digital twin of the
current structure (Figure 6.17a). Modules communicate with a central computer through
BLE which displays this GUI to the user. Inter-agent communication is simulated by
this central computer, instead of requiring individual modules to communicate with each
other through Bluetooth. Implementing the algorithms in this way makes trials faster
to run as modules do not need to continuously pair and unpair with each other when
communicating. It also allows more data to be presented to the user during the trial
and saved for later analysis. The user can arrange the passive HyMod modules in a
configuration reflecting the current state of the structure. They can also see the calibrated
force measurements in each strain gauge within the structure, and actuate the connectors
of each module. A second window shows the active agent (Figure 6.17b). The user can
control its connectors and move it around the structure. As it is moved, measurements of
H recorded by the passive modules in the structure are recorded and plotted in the graph
at the bottom of the window, which also shows the current probability mass function
pcolumn(c).
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(a) (b)

Figure 6.17. The digital twin GUI used during real-world experiments, shown for can-
tilever construction by an active metamodule. (a) The main window visualising the cur-
rent state of the structure, allowing the user to control and stream data from the placed
agents. (b) The active agent window, through which the user controls the active agent
to move around the structure. The graph at the bottom of (b) shows the measurements
of H recorded in real-time as the active agent is moved around the structure, and the
resulting probability mass function pcolumn(c).

Each algorithm was tested forHallowable ∈ {16, 23}N, chosen as three and four standard
deviations respectively from the mean strength of a single docking hook found in Section
6.2.1. This allows differences in behaviour between tests with strong and weak links to
be observed. Separate trials were performed with an active metamodule to demonstrate
how a fully-autonomous system would function, and with a single active module to build
higher-resolution structures with the limited number of modules manufactured. Ten trials
of each algorithm were performed for each Hallowable and both types of active agent. Each
time the algorithm chose to place a module, it was randomly selected from the remaining
unplaced modules2. Whenever the active agent recorded measurements of H from an
adjacent module, the structure was allowed to settle for at least 2 s after instructing
measurements to be recorded before they were actually taken. The locations of all modules
in the structure and the calibrated force measurements in each strain gauge within their
links were also saved at these times for later analysis.

2Two modules had small electrical faults meaning one strain gauge did not work reliably. While the

module selection was random, these were always the last two to be placed.

129



Real-World Implementation Real-World Experimental Results

Algorithm
Active agent

mode
Hallowable (N)

L (bodylengths)
2 3 4 5

Bridge
optimisation

Metamodule
16 ✗ ✓ ✗ ✗

23 ✗ ✓ ✓ ✗

Single module
16 ✓ ✓ ✗ ✗

23 ✗ ✓ ✓ ✓

Bridge
deconstruction

Metamodule
16 ✗ ✓ ✗ ✗

23 ✗ ✓ ✓ ✗

Single module
16 ✗ ✓ ✗ ✗

23 ✗ ✓ ✓ ✓

Table 6.1. The different combinations of active agent mode, Hallowable, and L the bridge
optimisation and deconstruction algorithms were tested for.

6.4.1.A Cantilever Construction Procedure

Trials of the cantilever construction initialised with one or two randomly selected
modules in location {1, 1}, depending on the type of active agent. Trials finished when all
the modules were placed, with the active agent itself added to the structure in the final
step. Trials with an active metamodule therefore consisted of five placement decisions
and finished with a structure of twelve modules, while trials with a single active module
consisted of nine placement decisions and finished with a structure of ten modules. When
the active metamodule was moved around the structure, it was oriented such that rotating
about each body joint would allow it to move to the next position through its flipping
gait. In contrast, the single active module was attached in the same orientation as the
placed agents.

The trials were performed in two groups, with the batteries of all modules fully charged
before each group. The first group consisted of the trials with an active metamodule, and
the second group consisted of the trials with a single active module. Within each group,
trials were alternated between Hallowable = 16N and Hallowable = 23N to mitigate against
any sensor drift or changes in environmental conditions that might occur during the trials.

6.4.1.B Bridge Optimisation Procedure

Each trial of the bridge optimisation algorithm began with a structure randomly chosen
from a trial of the cantilever construction algorithm when it first reached a specified L.
The algorithm was tested for the combinations of active agent mode, Hallowable, and L

shown in Table 6.1. These are all the lengths reached during these trials before the
active agent was placed for L ≥ 3 bodylengths, as well as for a single active module with
Hallowable = 16N and L = 2 bodylengths. Usually, the bridge optimisation algorithm is
not tested for L < 3 bodylengths as the cantilever construction algorithm produced stable
bridges with at most one agent below row 1, so the optimisation would simply remove this
agent: structures with more agents are produced by a single active module for Hallowable =
16N and L = 2 bodylengths, so the algorithm was also tested for these parameters.

Once a trial was selected, the necessary modules were placed in their corresponding
positions, and the rightmost ones were also connected to the freestanding right support.
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Agents selected for removal were replaced by the active agent before any forces were read.
The orientation of the active metamodule was as before, but the single active module was
oriented perpendicular to the placed agents. This allowed it to fit more easily in gaps a
single column wide, which was otherwise tricky in locations with placed agents on both
sides due to the permanently extended passive HiGen connectors.

As for the cantilever construction algorithm, trials of the bridge optimisation algorithm
were performed in two groups split by the type of active agent, and the batteries were
fully charged before each group. Within each group, trials again alternated in a consistent
manner. One trial for each length with Hallowable = 16N was performed in increasing order
of L, then one trial for each length with Hallowable = 23N was performed in increasing
order of L. This order repeated until ten trials of each combination were completed.

6.4.1.C Bridge Deconstruction Procedure

Each trial of the bridge deconstruction algorithm began with a structure randomly
chosen from a trial of the bridge optimisation algorithm of the specified type of active
agent, Hallowable, and L. The bridge deconstruction algorithm was tested for all combina-
tions of Hallowable and L that the bridge optimisation algorithm was tested for, with the
exception of bridges of L = 2 bodylengths (Table 6.1) which were trivial to deconstruct:
such a short bridge was always found to be stable, so the active agent would always im-
mediately place in column 1 and initiate the removal phase. Once a trial was randomly
selected, the required modules were replaced in their locations to create the necessary
bridge. Trials were performed in a similar order to the bridge optimisation algorithm.

6.4.2 Cantilever Construction Results

The cantilever construction algorithm successfully produced a stable structure in all
trials, with no link failures occurring. This demonstrates the advantages of using the
distributed force-aware construction approach of this algorithm. Frames from example
construction sequences are shown in Figures 6.18 & 6.19 for cantilevers built by an active
metamodule and single active module respectively. These figures show how agents are
added to the structure, but do not include the movements of the active agent around
the structure. Agents are seen adding at the tip of the structure if the measurements of
H indicate that it is stable, and otherwise reinforcing the structure at the bottom of an
existing column. Sometimes the weight of the active agent causes the structure to become
unstable while in the gathering mode, leading to a structure that appears stable being
reinforced instead of extended: this occurs when the structures shown in Figures 6.19a &
6.19e are added to. These trials show the longest cantilevers built across all the trials for
each type of active agent. Note how the higher-resolution structure built by the single
active module can extend further than those built by the active metamodule, as modules
can be placed in more efficient positions.

The evolution of the structure as the cantilever construction algorithm runs for each
trial is presented in Figures 6.20 & 6.21. These figures show which structures were built,
how often each was built, and where the active agents chose to add themselves to each
structure. They show that using a single active module results in a higher degree of
variability than an active metamodule, which is to be expected as more choices can be
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(a)

(b)

(c)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.18. Frames from an example cantilever construction sequence with an active
metamodule for Hallowable = 23N. The left of each image shows the digital twin of the
structure on the right, with plots showing the measured criticalness in each strain gauge.
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(d)

(e)

(f)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.18. [continued] Frames from an example cantilever construction sequence with
an active metamodule for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(a)

(b)

(c)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.19. Frames from an example cantilever construction sequence with a single
active module for Hallowable = 23N. The left of each image shows the digital twin of the
structure on the right, with plots showing the measured criticalness in each strain gauge.
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(d)

(e)

(f)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.19. [continued] Frames from an example cantilever construction sequence with
a single active module for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(g)

(h)

(i)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.19. [continued] Frames from an example cantilever construction sequence with
a single active module for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(j)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.19. [continued] Frames from an example cantilever construction sequence with
a single active module for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.

made with the limited number of modules. When a higher Hallowable is used, the algorithm
builds longer and more slender structures for both kinds of active agent.

Graphs summarising the results of the trials are shown in Figures 6.22 & 6.23 for
an active metamodule and single active module respectively. As expected, Figures 6.22a
& 6.23a show that longer cantilevers can be built if Hallowable is greater. The active
metamodule could build structures up to 4 bodylengths long, whereas the single active
module reached five bodylengths in 30% of trials with Hallowable = 23N. This indicates
that the higher granularity of structure built by adding only one module at a time allows
for the modules to be used in a more efficient manner to provide support where required.

Histograms showing the maximum γ measured across all the strain gauges in the
structure at each step are shown in Figures 6.22b & 6.23b. It can be seen that for the active
metamodule, Hallowable was exceeded up by to two times, whereas for a single active module
it was occasionally exceeded by twice this. The active metamodule therefore produces
more conservative structures than a single active module. Using a higher Hallowable led
to structures with a lower mean maximum γ in the active metamodule trials, but to
structures with a higher mean maximum γ in the single active module trials; however,
the difference in the latter case is not statistically significant according to a Mann-Whitney
U test (p = 0.79). Furthermore, trials for both active agents with higher Hallowable also
had a higher proportion of steps in which the structure was stable. This indicates that
a higher Hallowable leads to a ‘high risk, high reward ‘ construction sequence: structures
get close to failure, but only for short periods of time, after which they are successfully
reinforced.

In order to build the longer structures observed for higher Hallowable, the algorithm
is more likely to produce more slender structures (Figures 6.22c & 6.23c). The size of
the vertical fixed support limits the number of rows that are allowed in the structure,
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(a)

(b)

Figure 6.20. Progression of the cantilever construction algorithm for structures built by

the active metamodule for (a) Hallowable = 16N, and (b) Hallowable = 23N. Modules are

shown in blue and the fixed support in grey. Each column contains structures with an

equal number of agents, with longer structures at the top of each column. Structures that

are only built by the other Hallowable are shown paler. The width of arrows is proportional

to the number of trials that take this choice, and the colour is darker proportional to the

percentage of trials in which that configuration was built which took that particular path.
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(a)

(b)

Figure 6.21. Progression of the cantilever construction algorithm for structures built by

the single active module for (a) Hallowable = 16N, and (b) Hallowable = 23N. Modules are

shown in blue and the fixed support in grey. Each column contains structures with an

equal number of agents, with longer structures at the top of each column. Structures that

are only built by the other Hallowable are shown paler. The width of arrows is proportional

to the number of trials that take this choice, and the colour is darker proportional to the

percentage of trials in which that configuration was built which took that particular path.
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Figure 6.22. Results from the cantilever construction algorithm with the active meta-

module. (a) The length of the structure as more modules are added. (b) A histogram

showing the number of steps in which the maximum criticalness measured by any strain

gauge in the structure was as given. (c) The percentage of trials in which different final

structures are built. Lines in (a) show mean values with the area between the 5% and

95% quantiles shaded, and the histogram bin width in (b) is 0.1.
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Figure 6.23. Results from the cantilever construction algorithm with the single active
module. (a) The length of the structure as more modules are added. (b) A histogram
showing the number of steps in which the maximum criticalness measured by any strain
gauge in the structure was as given. (c) The percentage of trials in which different final
structures are built. Lines in (a) show mean values with the area between the 5% and
95% quantiles shaded, and the histogram bin width in (b) is 0.1.
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meaning the active metamodule could only produce two structures, whereas the single
active module produced nine. The structures get thinner towards the tip, as specified by
the continuity condition built-in to the self-assembly algorithm.

6.4.3 Bridge Optimisation Results

All trials of the bridge deconstruction algorithm resulted in the structure reconfiguring
without any links failing. This process is illustrated for an active metamodule in Figure
6.24, showing how the number of modules is reduced. In this example, the structure is
stable at all stages of the optimisation, and the final bridge contains the minimum number
of modules required to span the gap when an active metamodule is used.

In almost all trials, the number of modules in the structure was reduced as the algo-
rithm progressed. There was one exception to this, which occurred during a trial with
a single active module, Hallowable = 23N, and L = 4 bodylengths. The reconfiguration
sequence for this trial is shown in Figure 6.25. The link between positions (1, 2) and (1, 3)
is always reported to be critical. This causes modules to be repeatedly moved from the
left to the right of the narrow section as they attempt to provide support to this link. The
trial eventually finishes when the agent in position (2, 3) repeatedly releases and places
back where it was, as doing so makes the link on the left of the module above critical.
The most likely reason for this anomalous behaviour is that the right support was not
positioned correctly before beginning the trial, introducing a horizontal tension into the
structure that cannot be reduced by repositioning modules. However, this trial illustrates
how the algorithm allows agents to be moved to the right side of the narrow section, and
highlights possible issues that a fully-autonomous system might face.

The results from all trials of the bridge optimisation algorithm are summarised in
Figures 6.26 & 6.27. There are similar trends for trials with both types of active agent,
where the number of modules decreases as each trial continues. For structures of the same
length, a higher Hallowable leads to a faster rate of module removal and a corresponding
lower final number of modules (Figures 6.26a & 6.27a). Longer bridges with the same
Hallowable required more modules in the final structure to remain stable. The trials with an
active metamodule and Hallowable = 23N all progressed in the same way for each structure
length, with the same number of agents at each step. There were two trials with a
single active module for L = 3 bodylengths, Hallowable = 16N in which the structure
was initialised with eight modules, but none were successfully released, resulting in the
high 95% quantile on the corresponding plot in Figure 6.27a. The starting bridge in
these trials had 3 modules in row 1, 2 modules in row 2, and 1 module in rows 3 – 5.
The module in position (4, 1) had a critical link on its left side, so when the module
below released itself, it was replaced immediately due to this critical link. One trial with
the same starting configuration was able to optimise until only three modules remained,
demonstrating how the same initial configuration can lead to different outcomes due to
real-world inconsistencies.

Figures 6.26b & 6.27b show the maximum γ measured by strain gauges across the
whole structure at each step during bridge optimisation. The average maximum γ was
found to be considerably lower than that recorded during the initial cantilever construc-
tion. Furthermore, the bridges were rarely unstable, whereas critical links were common
during cantilever construction. These results indicate that the right support provides sig-
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(a)

(b)

(c)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.24. Frames from an example bridge optimisation sequence with an active
metamodule for Hallowable = 16N. The left of each image shows the digital twin of the
structure on the right, with plots showing the measured criticalness in each strain gauge.
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(a)

(b)

(c)

0.0 0.5 1.0 1.4

Link criticalness

Figure 6.25. Frames from an example bridge optimisation sequence with a single active
module for Hallowable = 23N. The left of each image shows the digital twin of the structure
on the right, with plots showing the measured criticalness in each strain gauge.
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Figure 6.26. Results from the bridge optimisation algorithm with the active metamodule.

(a) The number of modules in the structure as the trial progresses. (b) A histogram

showing the number of steps in which the maximum criticalness measured by any strain

gauge in the structure was as given. (c) The percentage of trials in which different final

structures are built. Lines in (a) show mean values with the area between the 5% and

95% quantiles shaded, and the histogram bin width in (b) is 0.1.
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Figure 6.27. Results from the bridge optimisation algorithm with the single active mod-
ule. (a) The number of modules in the structure as the trial progresses. (b) A histogram
showing the number of steps in which the maximum criticalness measured by any strain
gauge in the structure was as given. (c) The percentage of trials in which different final
structures are built. Lines in (a) show mean values with the area between the 5% and
95% quantiles shaded, and the histogram bin width in (b) is 0.1.
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nificant strength to the structure. The histograms also reveal that the mean maximum γ

was lower for structures constructed with a higher Hallowable when compared against the
results for the same active agent and length.

All trials with the active metamodule for Hallowable = 23N resulted in the minimum
number of modules required to this gap, leaving two complete rows of modules between
the supports (Figure 6.26c): this structure also resulted from all but one of the trials for
Hallowable = 16N. When a single active agent was used, the smallest possible bridge is a
single row of modules between the two supports. This was achieved by at least one trial for
all lengths and Hallowable tested (Figure 6.27c). This shows the algorithm is regularly able
to achieve the smallest possible structure. As is the case during cantilever construction,
the bridge optimisation algorithm is more likely to result in slender structures for higher
Hallowable.

6.4.4 Bridge Deconstruction Results

The bridge deconstruction algorithm was able to successfully deconstruct the bridge
without any links failing in all trials. Figure 6.28 shows how the deconstruction progresses,
demonstrating a trial with an active metamodule agent that uses the optimised bridge
shown in Figure 6.24 as the initial configuration. The initial bridge is stable (Figure
6.28a) but the weight of the first active agent makes the link on the left of the module
in position (1, 1) critical, so it places to reinforce the structure (Figure 6.28b). The next
active agent measures the bridge to be stable, so flags the modules at the tip for release
before placing itself (Figure 6.28c). In the next step, the removal phase is triggered, after
which modules are removed from the structure columnwise (Figures 6.28d – 6.28h).

Figure 6.29 shows a trial with a single active module, initialised with the optimised
bridge of Figure 6.25. The first active is added to the structure above the left support. It
measures the structure to be stable and so extends the equivalent unsupported cantilever
by flagging the module in position (2, 3) to release next step before placing itself (Figure
6.29b). The flagged module then releases itself and becomes active. When it exits the
gathering mode, it also believes the structure is stable, so before placing flags the module
in position (2, 4) to release (Figure 6.29c). Again, the next active agent measures the
structure to be stable after gathering, but the narrow section now extends to the right
support: it therefore flags the module in position (1, 4) to release before placing itself
(Figure 6.29d). The release of the flagged module initiates the removal phase, which
continues until there are no modules remaining (Figures 6.29e – 6.29l).

Figures 6.30 & 6.31 summarise the results from all trials of the bridge deconstruction
algorithm. From Figures 6.30a & 6.31a, it can be seen that the average number of modules
in the structures increases to begin with as structures are reinforced, then the removal
phase begins and this number drops as modules are removed. Trials with structures of
the equivalent length complete faster for higher Hallowable, indicating that fewer modules
need to be added before the removal phase begins. In turn, this results in fewer modules
requiring removal so this phase is also completed faster. As for the bridge optimisation
algorithm, all the bridge deconstruction trials with an active metamodule and Hallowable =
23N progressed in the same way, with the same number of agents in the structure at each
step.

The maximum γ measured across the structure at each step during bridge deconstruc-

147



Real-World Implementation Real-World Experimental Results

(a)
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Figure 6.28. Frames from an example bridge deconstruction sequence with an active
metamodule for Hallowable = 16N. The left of each image shows the digital twin of the
structure on the right, with plots showing the measured criticalness in each strain gauge.
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(d)
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Figure 6.28. [continued] Frames from an example bridge deconstruction sequence with
an active metamodule for Hallowable = 16N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(g)

(h)
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Figure 6.28. [continued] Frames from an example bridge deconstruction sequence with
an active metamodule for Hallowable = 16N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(a)
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Figure 6.29. Frames from an example bridge deconstruction sequence with a single
active module for Hallowable = 23N. The left of each image shows the digital twin of the
structure on the right, with plots showing the measured criticalness in each strain gauge.
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Figure 6.29. [continued] Frames from an example bridge deconstruction sequence with
a single active module for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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(i)

(j)

(k)

(l)
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Link criticalness

Figure 6.29. [continued] Frames from an example bridge deconstruction sequence with
a single active module for Hallowable = 23N. The left of each image shows the digital twin
of the structure on the right, with plots showing the measured criticalness in each strain
gauge.
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Figure 6.30. Results from the bridge deconstruction algorithm with the active metamod-

ule. (a) The number of modules in the structure as the trial progresses. (b) A histogram

showing the number of steps in which the maximum criticalness measured by any strain

gauge in the structure was as given. (c) The percentage of trials in which different struc-

tures are built before the removal phase begins. Lines in (a) show mean values with the

area between the 5% and 95% quantiles shaded, and the histogram bin width in (b) is

0.1.
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Figure 6.31. Results from the bridge deconstruction algorithm with the single active
module. (a) The number of modules in the structure as the trial progresses. (b) A
histogram showing the number of steps in which the maximum criticalness measured by
any strain gauge in the structure was as given. (c) The percentage of trials in which
different structures are built before the removal phase begins. Lines in (a) show mean
values with the area between the 5% and 95% quantiles shaded, and the histogram bin
width in (b) is 0.1.
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tion was generally lower than during the previous construction stages (Figures 6.30b &
6.31b). This is partly due to the high number of steps during the removal phase, in which
structures are short and thick, so will naturally have a low γ. However, it can also be seen
by comparing the equivalent graphs for the prior construction stages that the maximum γ

during deconstruction was generally greater than during bridge optimisation, and of simi-
lar magnitude to during cantilever construction. The average γ for structures of the same
length constructed by the same kind of active agent was lower when a higher Hallowable

was used, reflecting the same trend as was observed during bridge optimisation. It should
also be noted that the strain gauges were only recorded when the active agent was mov-
ing around the structure: the force as soon as the right support was released is therefore
excluded from these results, as it is assumed that the active agent instantaneously moves
to position {0, L− 1} upon release.

The proportion of trials in which different structures were built before the removal
phase begins are shown in Figures 6.30c & 6.31c. A higher Hallowable made it more likely
that structures of a given length comprised fewer agents when the removal phase began,
making them more slender. This is a similar trend to the other algorithms, where higher
Hallowable allows fewer agents to be incorporated into structures of the same length.

Of the 70 trials that were performed, there were two where the limited number of
modules manufactured necessitated the user modifying the self-assembly sequence pro-
duced by the algorithm. This sequence was the same for both trials, and occurred for
Hallowable = 23N with L = 5 bodylengths. It is shown in Figure 6.32. The active agent
repeatedly chooses column 1 to reinforce, despite this having little effect on the stability
of the structure as the critical link is between columns 3 and 4 (Figures 6.32a – 6.32c).
When the algorithm chooses to place the ninth module in position (5, 1), the user places
it in (2, 2) instead (Figure 6.32d). This makes the structure stable, so the next active
agent flags the module by the right support to be released in the next step. It then places
in position (5, 1) and the module at the tip is released (Figure 6.32e). If this change was
not made, modules would have been placed in these locations in the opposite order: since
the fixed support on the left only allows five rows to be created, the only remaining valid
placement location with a module in (5, 1) is (2, 2). Placing in this order would also result
in a stable structure, but it would contain all ten modules manufactured. There would
therefore be no module remaining to act as the active module in the next step: this is
required as the structure would not be stable when the last active agent placed itself, so
the module at the tip would not be released in the next step.

6.4.5 Summary of Results

The real-world performance of the algorithms is summarised in Figure 6.33. Firstly,
the number of modules used during construction, optimisation, and deconstruction of a
bridge of a given length is shown in Figure 6.33a. The bridge optimisation algorithm
considerably reduces the number of modules in structures of each length, Hallowable, and
type of active agent tested. Agents are added to these optimised bridges during bridge
deconstruction, which typically requires slightly fewer modules than during construction
of a cantilever of this length before the removal phase can begin. Furthermore, these plots
show how longer structures built under the same conditions require more modules, and
that those built with a higher Hallowable require fewer modules for the equivalent length.
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(a)

(b)

(c)
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Figure 6.32. The sequence of configurations resulting from the bridge deconstruction
algorithm that required the user to modify the self-assembly sequence. This occurred for
Hallowable = 23N. The left of each image shows the digital twin of the structure, with
plots showing the measured criticalness in each strain gauge. In (d), the circled position
was chosen to place the next module, but this was changed to the location pictured to
allow the algorithm to complete with the ten modules manufactured.
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(d)

(e)
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Figure 6.32. [continued] The sequence of configurations resulting from the bridge de-
construction algorithm that required the user to modify the self-assembly sequence. This
occurred for Hallowable = 23N. The left of each image shows the digital twin of the struc-
ture, with plots showing the measured criticalness in each strain gauge. In (d), the circled
position was chosen to place the next module, but this was changed to the location pic-
tured to allow the algorithm to complete with the ten modules manufactured.
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Figure 6.33. Summaries of the results from the real-world trials. (a) Comparison of
the average number of modules required to construct a cantilever of a given length, the
average number of modules remaining in structures after bridge optimisation, and the
average number of modules required immediately before the removal phase begins during
bridge deconstruction. (b) The maximum criticalness in the structure during cantilever
construction up to the given length, and throughout bridge optimisation and deconstruc-
tion of a structure of the given length. Error bars show the 95 % confidence intervals.
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Finally, using an active metamodule led to structures with more modules for the same
length and Hallowable compared to a single active module.

The maximum γ during these construction stages is shown in Figure 6.33b. The
highest γ for a structure of a given length occurs during the initial cantilever construction.
The forces within links are lower during bridge optimisation as the structure is supported
from both ends. During bridge deconstruction, the structure is also similarly supported
during the removal phase, and during the reconfiguration phase γ is reduced due to the
short and thick structures that result. It is possible that a high γ would occur immediately
upon the right support being released, but due to the assumed instantaneous movement
of the agents when the tip is released, these values are not recorded.

6.5 Summary

This chapter has verified the self-assembly algorithms developed in the previous chap-
ters in the real world. To perform this work, the existing HyMod platform was extensively
modified to build a robotic system with the necessary capabilities. Updated HiGen con-
nectors were first designed which incorporate strain gauges within their docking hooks to
obtain the force information which the algorithms rely upon. A tensometer was used to
measure the breaking strength of these connectors and to calibrate the strain gauges to
give measurements in Newtons. The connectors were incorporated into two new designs
of HyMod module: a passive module to build large structures from, and an active meta-
module to demonstrate how a fully-autonomous system would operate. The design of the
active metamodule shows how two modules can walk with a flipping gait, but modifica-
tions to reduce the backlash in the body joint and HiGen connectors are needed before
fully autonomous reconfiguration can be achieved.

Minor modifications were made to the cantilever construction, bridge optimisation, and
bridge deconstruction algorithms to deploy them on the newly-developed hardware. They
were tested with two values of Hallowable to observe how changing the connector strength
affects the operation of the algorithms. The cantilever construction algorithm was found to
be able to build cantilevers up to 5 bodylengths long without any failures in the links. The
bridge optimisation algorithm could successfully reduce the number of agents in the bridge,
regularly obtaining structures consisting of the minimum number of agents required to
span between the two sides. The bridge deconstruction algorithm effectively deconstructed
the bridge, requiring on average fewer modules than in the original cantilever. A higher
Hallowable led to longer cantilevers being constructed more quickly, fewer agents remaining
in the bridges after optimisation, and fewer modules being required in the structures before
the removal phase of the bridge deconstruction algorithm begins. The highest forces in
the structure typically occurred during the initial cantilever construction, as opposed to
during bridge optimisation and deconstruction. These are the same trends observed when
the algorithms were validated in simulation in previous chapters. This demonstrates a
good transfer of the force-aware self-assembly principles from simulation to the real world,
despite real-world factors associated with the calibration of the strain gauges introducing
noise into the force measurements.

Trials were performed with an active metamodule to demonstrate how a fully au-
tonomous system could achieve self-assembly, and with a single active module to allow
the construction of higher-resolution structures. It was found that a single active module
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could produce longer stable structures for a given number of agents, as they can be placed
in more suitable positions than when an active metamodule is used. The effect of chang-
ing Hallowable and the structure length has similar effects in both cases: longer structures
and those built with a lower Hallowable require more modules.
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Chapter 7

Conclusions

This thesis explored the benefits of using a force-aware approach to control self-
assembling modular robots. The specific task investigated was how a bridge between
two vertical fixed support structures could be self-assembled by such robots to enable
other agents to travel across a gap in the terrain. This is challenging to achieve with-
out forces between agents becoming dangerously high such that they might cause the
structure to collapse. A force-aware approach is therefore highly suited to this scenario.
To examine this scenario, a simulation environment was first developed, in which agents
reside in a square 2D grid. The configurations of agents are approximated as a truss
in order to calculate an equivalent moment and axial force in their links to determine
whether structures are stable or not.

Several algorithms were developed to show how force-aware methods could be applied
to this scenario, each considering a different stage in the lifecycle of the bridge. In each
algorithm, agents responded to measurements of force within the structure to determine
what course of action they should take: whether they should add themselves to the bridge,
and if so where, or whether they can be safely removed to complete other tasks. This
approach means that the agents design the structure as it is built, instead of requiring
a human to design separate structures for each different scenario the robots could be
presented with. The algorithms operate in a distributed manner across each agent, so no
centralised controller is required.

The first stage in self-assembling the bridge was considered in Chapter 3: the con-
struction of a cantilever extending from a single fixed support. Two novel distributed
force-aware self-assembly algorithms were developed to accomplish this. The initial se-
quential algorithm allowed for a single active agent at a time to move around the structure
and decide where to place itself. Two variants of this algorithm were shown, one in which
the agents coordinate to inform active agents of the maximum moment and axial force
in each column of the structure, and another in which active agents only learn of these
values for links belonging to agents on the perimeter of the structure. Optimal cantilevers
were calculated offline through exhaustive search to use as a baseline to compare the per-
formance of the self-assembly algorithm against. It was found that both algorithms are
able to build cantilevers that are close to the optimal length for a given number of agents
while keeping the moment and axial force within links in the structure within safe limits.
There was little difference between the performance of the two variants, indicating that
the increased coordination and communication required to give the active agent additional
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information about the force distribution within the structure does not yield discernible
benefits.

Based on these results, a second cantilever construction algorithm was developed in
which multiple active agents are allowed at once. This algorithm gathers and uses force
information in the same manner as the local variant of the sequential algorithm, as this re-
quires a lesser degree of communication than the message-passing variant and gave similar
results in the earlier trials. The parallel algorithm was found to build structures that are
similarly long to the sequential algorithm, but this construction occurs much quicker. It
was also observed that both the sequential and parallel algorithms produced self-assembly
sequences in which the maximum moment and axial force within the structure was similar.

While following either cantilever construction algorithm, the structure will eventually
reach the other side of the gap. Chapter 4 considered the next stage in the self-assembly.
Now the structure is supported at both ends, it is possible to remove agents from the
structure while maintaining stability so that they can complete other tasks. The bridge
optimisation algorithm was developed to enable this behaviour, which is also force-aware
and runs in a distributed manner across each agent. Following this algorithm, agents
on the lower perimeter of the structure release themselves when they believe they are
not usefully contributing to the structural stability of the bridge. They then gather
information about the state of the structure, and either remove themselves from it or
replace somewhere else to provide reinforcement in a more suitable location.

Optimal bridges were also calculated offline to compare the performance of the bridge
optimisation algorithm against. It was found that the algorithm could reduce the number
of agents in the bridge to nearly the optimal amount. When fewer agents are active
simultaneously, they are able to receive more accurate force information and thus place
in more suitable locations. This means the algorithm is able to produce structures with
closer to the optimal number of agents. The maximum moment and axial force in links
within the structure while running this algorithm was usually less than during the self-
assembly of the cantilever used as a starting point, which was generated from the parallel
cantilever construction algorithm.

Eventually, the bridges will no longer be required. In Chapter 5 the bridge decon-
struction algorithm was developed to enable the bridge to be dismantled in a safe and dis-
tributed manner, once again incorporating local force information in the decision-making
processes. The algorithm begins by reinforcing the structure by adding new agents and
repositioning existing ones; when it is believed the structure is able to safely support itself
from only one side, all agents are removed columnwise. The algorithm was tested for a
range of structures resulting from the bridge optimisation algorithm, and was found to
successfully deconstruct all of them. In most cases, a similar number of agents to the
original cantilever was required before the removal phase could begin. It was also found
that the maximum moment and axial force within the structure during deconstruction
was typically similar to that during the prior cantilever construction stage.

In Chapter 6, a new robotic platform was developed to enable these algorithms to
be verified in real life, based on the design of the existing HyMod robots [25]. The
modules were extensively modified to allow these algorithms to be deployed on them.
The most important modification is that the HiGen connectors these modules incorporate
were enhanced with strain gauges to enable them to sense the force within links between
modules. Two types of module were designed: a passive module to build the structures
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from and hence verify the force-aware algorithms in real-life, and an active metamodule
to demonstrate how two modules could move around the structure in a fully autonomous
system.

The force-aware HiGen connectors were able to reliably measure the force in their indi-
vidual docking hooks through strain gauges. However, reliably converting these readings
to separate measurements of moment and axial force was not possible due to backlash
in the connectors. The passive modules were able to successfully build a wide range of
large structures, indicating the potential the platform has in realising these algorithms in
real life. The active metamodule could autonomously turn all of its joints through their
full range of motion in a variety of orientations, which demonstrates how the design can
achieve the necessary motions to autonomously enact these algorithms in a future version
of the design. However, due to backlash in the body joints it was not possible to reliably
walk along other modules without human intervention.

The algorithms were found to translate well from simulation to the real world. They
were tested for two kinds of active module: an active metamodule to demonstrate how
a fully-autonomous system would function, and a single active module to evaluate the
performance for a larger number of placement decisions. Similar trends were observed to
simulation, with higher allowable forces resulting in longer cantilevers for a given number
of agents, stable bridges of equivalent length containing fewer agents, and fewer agents
required to add to the structure during deconstruction before agents could be safely re-
moved. The highest measured forces in the structure occurred during the initial cantilever
construction. Using a single active module allowed for longer structures to be built with
the same number of modules, as they could be placed in more suitable locations due to
the higher structural resolution they offered.

7.1 Future Work

While this thesis presents a thorough study of how force-aware self-assembly can be
applied to build bridges from modular robots, there are still many avenues in which this
work could be extended. One example is in how columns are chosen to reinforce based
on the received force information. The proposed stochastic method is shown to produce
structures that are close to the optimum, and is likely to be robust to reasonable levels of
sensor noise, as was briefly mentioned for the current hardware implementation. However,
agents occasionally place in locations that a human observer can clearly see are not the
most suitable, resulting in suboptimal structures and increased self-assembly time. Future
work could investigate how this stochastic method could be refined to improve the choice
of placement locations.

Other future work could consider how the framework could be extended to similar
problems. One such extension could be the construction of structures between platforms
of different heights, instead of building horizontal bridges. This would present additional
challenges in correctly supporting the structure when building more complex structures.
Alternatively, further research could consider how to adapt the bridge to support addi-
tional loads. If the agents knew they were to build a bridge capable of supporting loads in
addition to themselves, for example to transport objects across the structure, they could
build stronger bridges, based on the same force-aware methodology. This could either
take place during the bridge optimisation stage, or a further stage could be introduced
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where agents are added back into the structure when it is known that additional loads
should be supported. The principle of superposition could possibly be used again in this
scenario to model what the forces would be under this additional loading, or methods of
calculating suitable allowable forces to support given loads could be devised.

This work considered a 2D grid of square agents, but similar force-aware methods
could enable the construction of bridges in different environments. Extending the algo-
rithms into 3D would be a very interesting avenue of future research, which would make
the structures more suitable to real-world scenarios. It would also be of great interest
to consider other modular robotic topologies, such as freeform systems, to evaluate the
benefits of force-aware control in this upcoming research area.

The algorithms were developed in simulation, and any future improvements are also
likely to be investigated using simulated robots due to the current cost and availability
of self-assembling modular robotic platforms. In order to improve the confidence in the
simulated algorithms, the simulation environment could also be improved. In particular,
future studies could incorporate the deformation of the structure into the simulations,
and develop algorithms which reduce the deflection of the structure under loading, as
well as limiting forces within the links between agents. Another possible improvement
to the simulator would be to model the motions of specific platforms, such as HyMod,
to investigate how the dynamic forces as agents more around the structure affect the
measurements of force. It is possible that agents could exert significant forces on the
structure as they actuate, so the transfer of the algorithms from simulation to the real
world could benefit from the modelling of such forces.

The new HyMod modules developed to demonstrate the algorithms in real life were
suitable for initial proof-of-concept trials, but not capable of creating a fully-autonomous
system. The design could be improved in certain areas, in particular by reducing backlash
in the body joints and HiGen connectors, and manufacturing certain critical components
from stronger materials. This would enable accurate and repeatable motions to be reliably
achieved. It would therefore be possible to implement the algorithms without the need for
a human operator to move the modules around the structure. This would further validate
the algorithms, and truly demonstrate their potential in autonomous systems.

This thesis hopes to inspire future researchers to investigate how force-aware self-
assembly can be applied to a range of problems. The self-assembly of bridges is an
example where these methods are particularly suited, but the concept can be applied to
a broad spectrum of problems. Force-aware modular manipulators could reconfigure to
move loads of different weights. Self-assembling modular robots configured as walkers
could modify their arrangement based on measured forces to allow them to carry objects
across a variety of different terrains. These examples and countless others demonstrate the
potential of force-aware self-assembly, and exploring any of them would bring autonomous
self-assembling modular robots one step closer to realising their huge potential in solving
real-world problems.
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Appendix A

Simulator Design

This appendix describes how the simulator calculates forces within links between mod-
ules by approximating the structure as a truss. It is inspired by the method used by
Brodbeck and Iida [16], which is explained in more detail in [194].

Two additional methods of calculating the forces within a 2D grid of connected agents
were also considered. A first simulator used elastic beam theory to calculate the forces by
considering the structure as an idealised beam [188]. However, this method was not able
to accurately capture how the forces varied due to the discrete nature of the structure. A
second simulator used finite element analysis implemented with Abaqus [195] to calculate
these forces. It was found that this method could calculate a more appropriate force
distribution than using elastic beam theory, but took significantly longer and had issues
where stress concentrations occurred around the sharp corners formed by the discrete
agents [196]. The truss based approach described here is able to accurately calculate the
force distribution for these discrete structures in a reasonable amount of time, typically
taking less than 5 s, even for structures consisting of over 100 agents.

A.1 Creating a Truss

The structure is represented as a two-dimensional truss. Each agent is modelled as a
square of truss members with a cross-bracings on both diagonals, giving each agent six
truss members in total (Nagent = 6). The weight of the agent W is given by:

W = mg (A.1)

where m is the mass of each agent, and g is the acceleration due to gravity, taken to be
9.81 m s−2. This would normally act vertically down through the centre of mass of the
agent, but here it is split evenly between the four corner nodes. Links between agents
are also modelled as cross-braced trusses, but the faces attached to the agents already
have truss members due to the agents themselves, so each link only contains four truss
members (Nlink = 4). Links are modelled as light, so have no weight. An example of how
a cantilever shape of six agents is modelled as a truss is shown in Figure A.1.

This modelling is implemented in Python using the anaStruct package [186], which
allows trusses to be easily created and the internal forces examined. Agents are taken
as cubes of side length lagent = 0.09 m made of solid aluminium, which has density ρ =

183



Simulator Design Calculating Forces and Moments

W W W W

W W

(a)

lagent llink

lagent

llink

W
4

W
4

W
4

W
4

(b)

Figure A.1. Conversion of a cantilever of six agents into a truss. (a) The cantilever
shape, where each agent has weight W : agents are shown blue, and the fixed support in
grey. (b) The truss approximation, showing agents as blue members, links along rows in
cyan, and links down columns in purple: weight is distributed by a force of magnitude W

4

acting downwards from each corner of the agent trusses (only shown once).

2700 kg m−3 and Young’s modulus E = 69 GPa. Therefore W is therefore calculated as:

W = ρl3agentg (A.2)

This gives W = 19.3 N.
Links between agents are modelled as having a length llink = 0.01 m. They have the

same Young’s Modulus as agents, but are assumed to be light in comparison to them
hence have no mass. They also have the same cross-sectional area on the contact face.
The angle between the diagonal members in the links and the ones between agents is
denoted θ.

The length of each truss member is dependent on the node locations, but the cross-
sectional area must be specified. This is approximated so that the sum of the areas of
the members in each agent Aagent or link Alink is equal to the cross-sectional area of the
contact face:

Aagent =
l2agent

Nagent

(A.3)

Alink =
l2agent

Nlink

(A.4)

A.2 Calculating Forces and Moments

The model is now defined, and the internal forces within each member can be calcu-
lated. This is done with the anastruct.solve() function, which calculates the force in
each truss member. Cuts are made through the middle of each link as shown in Figure
A.2 to reveal these internal forces fi ∀ 1 ≤ i ≤ 4. Since pin-jointed truss members can
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Figure A.2. Cuts made to reveal internal forces in links along (a) rows and (b) columns.
Cyan and purple truss members model the links, and blue truss members model the
agents. The directions of the unit vectors n̂⊥ and n̂∥ are also shown.

only carry axial force, the direction of the force can be obtained by trigonometry to give
the vectors Fi. In links along rows, these are given by:

F1 =
[

f1 0
]T

F3 =
[

f3 cos θ −f3 sin θ
]T

(A.5)

F2 =
[

f2 0
]T

F4 =
[

f4 cos θ f4 sin θ
]T

(A.6)

And in links between columns by:

F1 =
[

0 −f1
]T

F3 =
[

f3 sin θ −f3 cos θ
]T

(A.7)

F2 =
[

0 −f2
]T

F4 =
[

−f4 sin θ −f4 cos θ
]T

(A.8)

The total force vector is then calculated as:

Ftot =
4

∑

i=1

Fi (A.9)

This vector can be resolved into a longitudinal component normal to the plane F⊥ and a
shear one parallel to it F∥ by multiplying by the corresponding unit vectors n̂⊥ and n̂∥

respectively:

F⊥ = Ftot · n̂⊥ (A.10)

F∥ = Ftot · n̂∥ (A.11)

The force in each truss member also causes a moment in the link. The moment is
taken about the centre of the link by calculating the cross product of the perpendicular
vector from the centre to the line of action of F1 and F2 (r1 and r2 respectively, giving
the moments M1 and M2 respectively. F3 and F4 can be neglected as they act through
the centre of the link and therefore cause no moment. These are summed to get the total
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moment, Mtot:

Mtot = M1 + M2

Mtot = (r1 × F1) + (r2 × F2) (A.12)

The work of Seitz converts these forces and moments to an equivalent Von Mises stress
[194]. This step is not taken here. Instead the simulator uses the axial force F⊥ defined as
positive when force acts to pull the links apart, and the magnitude of the moment |Mtot|.
These values are given the symbols F and M respectively outside this appendix.

A.3 Validation

The results are validated by considering a simple cantilever consisting of ten agents in
a straight line (Figure A.3a). In this example, static equilibrium can be used to calculate
the values of shear force F∥ and moment Mtot = M at different points along the beam;
the axial force F⊥ will always be 0 in this scenario. Figure A.3b shows a cut made in the
beam n agents from the tip. Each agent has a side length l = lagent + llink. From static
equilibrium, it can be seen that:

F∥ = nW (A.13)

M = nW ·
nl

2
(A.14)

For this system, W = 19.3 N and l = 0.1 m.
Comparisons of F∥ and M as calculated by static equilibrium and the truss approxi-

mation can be made for this simple structure, shown in Figures A.3c & A.3d respectively.
The two methods produce very similar data, with minor differences occurring due to
rounding errors in the calculations. This analysis is only possible for a cantilever of con-
tinuous height, but it still demonstrates the accuracy of the truss approximation method
used by the simulations in this thesis.
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Figure A.3. A comparison between theoretically calculated values of shear force S and
moment M in a simple structure. (a) The structure, with agents shown in blue and the
fixed support in grey. (b) A cut through this structure n agents from the tip to reveal
the moment M and shear force F∥ at this point. (c & d) The distribution of |F∥| and
M respectively within the structure as calculated by static equilibrium and the truss
approximation method.
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Appendix B

Optimal Structures

This appendix contains the optimal configurations of cantilevers and bridges, calcu-
lated for weak, medium, and strong links. Configurations are given for the minimum
number of agents that can achieve a cantilever or bridge of a given length without any
critical links.

Each configuration is represented as a string listing the numbers of agents in each
row in descending order from row 1. The rows are separated by slashes. In cantilevers,
all agents are connected to a single support so the number of agents in each row is
sufficient information to represent the whole structure. However, bridges are connected
to both supports, so each row is split with an underscore to denote the number of agents
connected to the left and right supports respectively; each top row is denoted as X 0 where
X is the number of agents in this row, which is connected to both supports. Examples of
these representations are given in Figure B.1.

(a)

(b)

Figure B.1. Examples of structures and their string representation. (a) A cantilever with
string representation 10/7/4/1, and (b) a bridge with string representation 15 0/3 2/1 0
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Optimal Structures Optimal Cantilevers

B.1 Optimal Cantilevers

Table B.1. Optimal cantilevers with weak links.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1

2 2 2

3 3 3

4 5 4/1

5 7 5/2

6 9 6/3

7 11 7/4

8 15 8/5/2

9 18 9/6/3

10 22 10/7/4/1

11 27 11/8/5/3, 11/8/5/2/1
12 33 12/9/6/4/2

13 41 13/10/7/5/4/2, 13/10/7/5/3/2/1
14 51 14/11/8/6/5/4/3, 14/11/8/6/5/4/2/1,

14/11/8/5/5/4/3/1, 14/11/8/5/4/4/3/2,
14/11/8/5/4/3/3/2/1

15 62 15/12/9/7/6/5/4/3/1,
15/12/9/6/5/5/4/3/2/1,
15/12/9/6/6/5/4/3/2

16 76 16/13/10/7/7/6/5/4/4/3/1,
16/13/10/8/7/6/5/4/3/3/1,
16/13/10/8/7/6/5/4/3/2/2,
16/13/10/7/7/6/5/4/3/3/2,
16/13/10/7/7/6/5/4/3/3/1/1,
16/13/10/8/7/6/5/4/3/2/1/1,
16/13/10/7/7/6/5/4/3/2/2/1,
16/13/10/7/7/6/5/5/4/2/1,
16/13/10/7/6/6/5/5/4/3/1,
16/13/10/7/6/6/5/4/3/3/2/1,
16/13/10/7/6/6/5/4/4/3/2

17 93 17/14/11/8/8/7/7/6/5/4/3/2/1
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Table B.2. Optimal cantilevers with links of medium strength.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 8 7/1

8 10 8/2

9 12 9/3

10 14 10/4

11 16 11/5

12 18 12/6

13 22 13/7/2

14 25 14/8/3

15 29 15/9/4/1

16 33 16/10/5/2

17 38 17/11/6/3/1

18 43 18/12/7/4/2

19 50 19/13/8/5/4/1, 19/13/8/5/3/2,
19/13/8/4/4/2, 19/13/8/4/3/3,
19/13/8/4/3/2/1

20 56 20/14/9/6/4/3, 20/14/9/6/4/2/1,
20/14/9/5/4/3/1

21 63 21/15/10/6/5/4/2, 21/15/10/6/5/3/2/1
22 71 22/16/11/7/6/5/4, 22/16/11/7/6/5/3/1,

22/16/11/7/5/5/3/2,
22/16/11/7/5/4/3/2/1,
22/16/11/7/6/4/3/2

23 79 23/17/12/8/6/5/4/3/1

24 89 24/18/13/9/8/6/5/4/2,
24/18/13/9/7/6/5/4/3,
24/18/13/9/7/6/5/4/2/1,
24/18/13/9/7/7/5/4/2

25 99 25/19/14/10/8/7/6/5/3/2
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Table B.3. Optimal cantilevers with strong links.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 11 10/1

11 13 11/2

12 15 12/3

13 17 13/4

14 19 14/5

15 21 15/6

16 23 16/7

17 27 17/8/2

18 30 18/9/3, 18/9/2/1
19 33 19/10/3/1

20 37 20/11/4/2

21 41 21/12/5/3

22 46 22/13/6/4/1, 22/13/6/3/2
23 51 23/14/7/5/2, 23/14/7/4/2/1,

23/14/7/4/3

24 56 24/15/8/5/3/1, 24/15/8/5/4
25 62 25/16/9/6/4/2

26 68 26/17/10/7/4/3/1, 26/17/10/7/5/3
27 75 27/18/11/8/6/4/1, 27/18/11/8/6/3/2,

27/18/11/8/5/4/2

28 82 28/19/12/9/6/4/3/1, 28/19/12/9/6/5/3
29 90 29/20/13/10/7/6/3/2,

29/20/13/10/7/5/4/2,
29/20/13/10/7/6/4/1,
29/20/13/10/7/5/3/2/1

30 98 30/21/14/11/8/6/5/3,
30/21/14/11/8/6/4/3/1
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B.2 Optimal Bridges

Table B.4. Optimal bridges with weak links.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1 0

2 2 2 0

3 3 3 0

4 4 4 0

5 5 5 0

6 6 6 0

7 7 7 0

8 8 8 0

9 9 9 0

10 12 10 0/2 0, 10 0/1 1, 10 0/0 2
11 13 11 0/1 1

12 14 12 0/1 1

13 17 13 0/2 2

14 18 14 0/2 2

15 21 15 0/3 2/1 0, 15 0/3 3, 15 0/2 3/0 1

16 22 16 0/3 3

17 25 17 0/4 3/1 0, 17 0/3 4/0 1

18 28 18 0/4 4/1 1

19 32 19 0/5 4/3 1, 19 0/5 4/2 2, 19 0/4 5/1 3,
19 0/4 5/2 2

20 36 20 0/6 4/4 1/1 0, 20 0/6 5/3 2,
20 0/5 5/4 2, 20 0/5 5/3 2/1 0,
20 0/5 5/3 2/0 1, 20 0/5 5/3 3,
20 0/5 5/2 3/1 0, 20 0/4 6/1 4/0 1,
20 0/5 6/2 3, 20 0/5 5/2 4,
20 0/5 5/2 3/0 1, 20 0/5 5/2 3/1 0,
20 0/5 5/3 2/0 1

21 39 21 0/6 5/4 3, 21 0/6 6/3 3, 21 0/5 6/3 4
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Table B.5. Optimal bridges with links of medium strength.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1 0

2 2 2 0

3 3 3 0

4 4 4 0

5 5 5 0

6 6 6 0

7 7 7 0

8 8 8 0

9 9 9 0

10 10 10 0

11 11 11 0

12 12 12 0

13 13 13 0

14 14 14 0

15 15 15 0

16 16 16 0

17 19 17 0/2 0, 17 0/1 1, 17 0/0 2

18 20 18 0/1 1

19 22 19 0/2 1, 19 0/1 2

20 24 20 0/3 1, 20 0/2 2, 20 0/1 3

21 25 21 0/2 2

22 28 22 0/4 2, 22 0/3 2/1 0, 22 0/3 3,
22 0/2 4, 22 0/2 3/0 1

23 29 23 0/3 3

24 31 24 0/4 3, 24 0/3 4

25 33 25 0/4 4

26 35 26 0/5 4, 26 0/4 5

27 37 27 0/5 5

28 38 28 0/5 5
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Table B.6. Optimal bridges with strong links.

Length
(bodylengths)

Minimum number
of agents

Optimal configuration(s)

1 1 1 0

2 2 2 0

3 3 3 0

4 4 4 0

5 5 5 0

6 6 6 0

7 7 7 0

8 8 8 0

9 9 9 0

10 10 10 0

11 11 11 0

12 12 12 0

13 13 13 0

14 14 14 0

15 15 15 0

16 16 16 0

17 17 17 0

18 18 18 0

19 19 19 0

20 20 20 0

21 21 21 0

22 22 22 0

23 23 23 0

24 26 24 0/2 0, 24 0/1 1, 24 0/0 2

25 27 25 0/1 1

26 29 26 0/2 1, 26 0/1 2

27 31 27 0/3 1, 27 0/2 2, 27 0/1 3

28 32 28 0/2 2

29 35 29 0/4 2, 29 0/3 3, 29 0/2 4

30 36 30 0/3 3

31 38 31 0/4 3, 31 0/3 4

32 40 32 0/4 4
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Appendix C

Superposition

In order to improve the performance of the bridge deconstruction algorithm (Chapter
5), the agents should be able to determine what the forces within the links of the structure
would be if it was only supported at one end. However, they receive measurements of
forces within the structure supported at both ends. Based on the information the agents
are able to gather, the concept of superposition is used to predict what these values
would be. Assuming the structure is made of a homogeneous linear elastic material and
deformations are small, these deformations and the force distribution within a structure
loaded by multiple forces simultaneously will be equal to the sum of the deformations and
force distributions were the structure to be loaded by each of these forces individually
[188].

The superimposed cases are shown in Figure C.1. The agents measure force informa-
tion in the structure labelled measured, which is supported at both ends and loaded by
an arbitrary distributed load. The desired case is for the same structure under the same
arbitrary distributed load, but only supported one the right side. The force distribution in
the desired case can be found by subtracting the force distributions under the horizontal
and vertical reaction forces, Rh and Rv respectively, and the reaction moment RM from
the measured case. These cases are referred to as cases 1O – 3O respectively.

If the structure is assumed to be comprised of a homogeneous linear elastic material,
elastic beam theory can be used to calculate the force distribution in cases 1O – 3O
[188]. The structure is modelled as shown in Figure C.2: the height h is assumed to be
a continuous function of the distance from the right support x, and the breadth of the
structure b is constant. At a distance x from the support, the second moment of area I

is a function of x:

I =
bh(x)3

12
(C.1)

Each of the cases is analysed below. In each case, the analysis begins with calculating
the distribution of the longitudinal stress σ within the structure based on this loading as
a function of x and the distance from the neutral axis y. The structure with continuously-
varying height approximates a structure made of discrete square agents of side length l,
so the links have a cross-sectional area Alink given by:

Alink = bl (C.2)
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Measured
=

Desired
+

Case 1O

Rh
+

Case 2O

Rv

+
Case 3O

RM

Figure C.1. The superimposed cases considered in this appendix. A generic horizontal
beam is shown, supported on one or both sides. In each case, the beam is loaded by an
arbitrary distributed load, a horizontal force Rh, a vertical force Rv, or a moment RM .

yh(x)

x

b

Figure C.2. A cross-section through a cantilever of continuously-varying height a distance
x from the fixed support on the right. The neutral axis is assumed to be at the centre of
the cross-section, as indicated by the dash-dotted line.

The internal stress distributions are therefore then integrated over the areas comprising
the links on the top and bottom of the structure to produce a resultant moment M iO,η

and axial force F iO,η
, each defined {∀ i ∈ {1, 2, 3} ∧ η ∈ {top, bottom}}. The resultant

M iO,η
and F iO,η

are subtracted from the equivalent measured values to approximate the

values of M and F in the links at the top and bottom of the structure in the desired case.
These values are used by the active agent in the deconstruction algorithm to determine a
course of action when it leaves the gathering mode.

C.1 Case 1O: Horizontal Reaction Force

The horizontal reaction force Rh produces the simplest longitudinal stress distribution.
This case is illustrated in Figure C.3. The force Rh is assumed to be spread evenly over
the whole cross-section, so the longitudinal stress is given by:

σ 1O =
Rh

bh(x)
(C.3)
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Rh x
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L

Figure C.3. A 2D representation of case 1O. The cantilever is shown in blue, and the
fixed support in grey.
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x
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Figure C.4. A 2D representation of case 2O. The cantilever is shown in blue, and the
fixed support in grey. (a) The whole structure, and (b) a free body diagram of a cut
made a distance x from the right support to reveal the internal shear force S 2O(x) and

moment M 2O(x).

C.1.1 Axial Forces

To obtain the axial force, (C.3) is multiplied by the area of each link Alink (C.2),
resulting in:

F 1O,top
= F 1O,bottom

=
lRh

h(x)
(C.4)

C.1.2 Moments

The longitudinal stress distribution is independent of y, so no resultant moment is
produced in any links:

M 1O,top
= M 1O,bottom

= 0 (C.5)

C.2 Case 2O: Vertical Reaction Force

Figure C.4 shows the case for the vertical reaction force Rv. A cut is made a distance
x from the fixed support to reveal the internal shear force S 2O(x) and moment M 2O(x).

The reaction force and moment at the support are denoted R
s, 2O and M

s, 2O respectively.

Vertical force equilibrium for the complete and cut structures yields:

S 2O(x) = R
s, 2O = Rv (C.6)
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Superposition Case 2O: Vertical Reaction Force

Moment equilibrium of the whole structure is then taken to give:

M
s, 2O = −RvL (C.7)

It is now possible to calculate the internal moment by considering moment equilibrium of
the cut structure:

M 2O(x) = R
s, 2Ox + M

s, 2O

M 2O(x) = Rvx−RvL

M 2O(x) = Rv(x− L) (C.8)

The internal moment along the structure allows the calculation of the longitudinal stress
distribution using the standard equation for a linear elastic beam [188]:

σ 2O(x, y) =
M 2O(x)y

I

σ 2O(x, y) =
Rv(x− L) · y

bh(x)3

12

σ 2O(x, y) =
12Rvy(x− L)

bh(x)3
(C.9)

The longitudinal stress distribution across the cross-section at x is shown in Figure C.5.
In order to calculate the resultant axial force f at different points in the cross-section,
this distribution is integrated between two arbitrary points y1 and y2 and multiplying by
the breadth b:

f 2O(x, y1, y2) =

∫ y2

y1

σ 2O(x, y)dy · b

f 2O(x, y1, y2) =

∫ y2

y1

12Rvy(x− L)

bh(x)3
dy · b

f 2O(x, y1, y2) =
12Rv(x− L)

h(x)3

[

y2

2

]y2

y1

f 2O(x, y1, y2) =
6Rv(x− L)

h(x)3
(y22 − y21) (C.10)

C.2.1 Axial Forces

The axial force in the link on the top is calculated by evaluating (C.10) with y1 = h(x)
2
−l

and y2 = h(x)
2

. This gives:

F 2O,top
=

6Rv(x− L)

h(x)3

(

(

h(x)

2

)2

−

(

h(x)

2
− l

)2
)

F 2O,top
=

6Rvl

h(x)3
(x− L) (h(x) − l) (C.11)
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Figure C.5. The shape of the longitudinal stress distribution σ across the cross-section
at x. The blue region is integrated to calculate the resultant axial force.

The longitudinal stress distribution is antisymmetric in the line y = 0, so the axial force
in the bottom link is equal and opposite to that in the top link:

F 2O,bottom
= −F 2O,top

F 2O,bottom
= −

6Rvl

h(x)3
(x− L) (h(x) − l) (C.12)

C.2.2 Moments

Calculating the moment about the centre of the top link requires integrating two
regions to find the forces in this link above and below its centre, f 2O,1 and f 2O,2. These

regions are shown in Figure C.6. The forces are found by substituting appropriate y1 and
y2 into (C.10):

f 2O,1 =
6Rv(x− L)

h(x)3

(

(

h(x)

2

)2

−

(

h(x)

2
−

l

2

)2
)

f 2O,1 =
3Rvl(x− L)

h(x)3

(

h(x) −
l

2

)

(C.13)

f 2O,2 =
6Rv(x− L)

h(x)3

(

(

h(x)

2
−

l

2

)2

−

(

h(x)
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)
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2
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(C.14)

These forces act at the centroid of these regions. These centroids are at distances
ȳ 2O,1 and ȳ 2O,2 from the neutral axis, assumed to be at the centre of the cross-section.
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Superposition Case 2O: Vertical Reaction Force
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Figure C.6. The regions of the longitudinal stress distribution in the cross-section at x

used to calculate the moment in the top link. The forces in the two regions f 2O,1 and f 2O,2

act at distances ȳ 2O,1 and ȳ 2O,2 from the neutral axis in the centre of the cross-section.

For an arbitrary region n bounded by y1 and y2:

ȳ 2O,n
=

1
∫ y2

y1
σ 2O(x, y)dy

∫ y2

y1

yσ 2O(x, y)dy

ȳ 2O,n
=

1
f 2O,n

b
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y ·
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bh(x)3
dy
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=
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h(x)3

[

y3

3

]y2

y1

ȳ 2O,n
=

4Rv(x− L)
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h(x)3

(

y32 − y31
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(C.15)

This equation gives the following distances:

ȳ 2O,1 =
4Rv(x− L)

f 2O,1h(x)3
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−
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h(x)

2
−

l

2

)3
)
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3lh(x)2 − 3l2h(x) + l3
)

(C.16)

ȳ 2O,2 =
4Rv(x− L)

f 2O,2h(x)3
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)

ȳ 2O,2 =
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(
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(C.17)

The moment can then be calculated by combining (C.13), (C.14), (C.16), and (C.17).
These values are combined as follows:

M 2O,top
= f 2O,2 ·

((

h

2
−

l

2

)

− ȳ 2O,2

)

− f 2O,1 ·

(

ȳ 2O,1 −

(

h

2
−

l

2

))

(C.18)
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Superposition Case 3O: Reaction Moment
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Figure C.7. A 2D representation of case 3O. The cantilever is shown in blue, and the
fixed support in grey. (a) The whole structure, and (b) a free body diagram of a cut
made a distance x from the right support to reveal the internal moment M 3O(x).

The moment in the bottom link will be equal and in the same direction to that at the
top:

M 2O,bottom
= M 2O,top

M 2O,bottom
= f 2O,2 ·

((

h

2
−

l

2

)

− ȳ 2O,2

)

− f 2O,1 ·

(

ȳ 2O,1 −

(

h

2
−

l

2

))

(C.19)

C.3 Case 3O: Reaction Moment

The final cases considers the reaction moment RM , illustrated in Figure C.4. By
considering moment equilibrium of the whole structure, it can be seen that:

M 3O(x) = M
s, 3O = RM (C.20)

The longitudinal stress distribution is therefore the same as for the vertical reaction force
in (C.9), but with M 2O(x) = Rv(x− L) replaced by M 3O(x) = RM to yield:

σ 3O(x, y) =
12RMy

bh(x)3
(C.21)

C.3.1 Axial Forces

Continuing the same analysis as in Section C.2.1 but with M 2O(x) = Rv(x − L)

replaced by M 3O(x) = RM gives the axial force in the links on the top and bottom of the
structure as:

F 3O,top
=

6RM l

h(x)3
(h(x) − l) (C.22)

F 3O,bottom
= −

6RM l

h(x)3
(h(x) − l) (C.23)

C.3.2 Moments

The moments are calculated in the same manner as Section C.2.2, but again substi-
tuting M 2O(x) = Rv(x− L) for M 3O(x) = RM . This means the moments in the top and

bottom links are given by:
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Superposition Case 3O: Reaction Moment

M 3O,top
= f 3O,2 ·
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(C.24)

M 3O,bottom
= M 3O,top

(C.25)

where:

f 3O,1 =
3RM l

h(x)3

(

h(x) −
l

2

)

(C.26)

f 3O,2 =
3RM l

h(x)3

(

h(x) −
3l

2

)

(C.27)

ȳ 3O,1 =
RM

2f 3O,1h(x)3
(

3lh(x)2 − 3l2h(x) + l3
)

(C.28)

ȳ 3O,2 =
RM

2f 3O,2h(x)3
(

3lh(x)2 − 9l2h(x) + 7l3
)

(C.29)
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Appendix D

Complete Bridge Optimisation Results

D.1 Varying Prelease(0)

(a)
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(c)

Previous stages

Cantilever

construction

Figure D.1. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.2 m with weak links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.2. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.4 m with weak links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Figure D.3. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.6 m with weak links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.4. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.4 m with links of medium strength. Error bars in (a)
show the 5th and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated,
and in (c) the initial cantilever construction is included for comparison.
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Figure D.5. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.6 m with links of medium strength. Error bars in (a)
show the 5th and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated,
and in (c) the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.6. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.8 m with links of medium strength. Error bars in (a)
show the 5th and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated,
and in (c) the initial cantilever construction is included for comparison.
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Figure D.7. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 2.1 m with links of medium strength. Error bars in (a)
show the 5th and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated,
and in (c) the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.8. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.4 m with strong links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Figure D.9. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.6 m with strong links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.10. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 1.8 m with strong links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Figure D.11. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 2.1 m with strong links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.

210



Complete Bridge Optimisation Results Varying Prelease(0)
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Figure D.12. The effect of varying Prelease(0) (denoted µ) on (a) the rate of agent removal,
(b) the percentage of agents in the initial bridge that timeout, and (c) the maximum
moment and axial force criticalness throughout the optimisation. The results are shown
for 100 trials for bridges of length 2.3 m with strong links. Error bars in (a) show the 5th

and 95th percentiles. In (b & c), the 95 % confidence intervals are indicated, and in (c)
the initial cantilever construction is included for comparison.
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Complete Bridge Optimisation Results Varying Structure Length

D.2 Varying Structure Length
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Figure D.13. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.01, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.
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Complete Bridge Optimisation Results Varying Structure Length
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Figure D.14. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.05, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.
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Figure D.15. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.1, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.
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Complete Bridge Optimisation Results Varying Structure Length
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Figure D.16. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.2, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.
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Figure D.17. The effect of varying structure length on (a) the number of agents remaining

in the bridge after optimisation, and (b) the maximum moment and axial force criticalness

throughout the optimisation. Each bar shows the mean of 100 trials for µ = 0.3, vertical

red lines show the 95% confidence intervals, and boxplots show the equivalent data during

construction of the cantilevers used as the starting configurations. In (a), the optimum

numbers of agents for each bridge are shown by the horizontal red lines.
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Appendix E

Complete Bridge Deconstruction
Results

E.1 Varying Agent Insertion Delay
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Figure E.1. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.2m with weak

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.2. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.4m with weak

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.3. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.6m with weak

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.4. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.4m with links

of medium strength. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the
95% confidence intervals are indicated, and in (c) the initial cantilever construction and

subsequent bridge optimisation are included for comparison.
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Figure E.5. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.6m with links

of medium strength. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the
95% confidence intervals are indicated, and in (c) the initial cantilever construction and

subsequent bridge optimisation are included for comparison.
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Figure E.6. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.8m with links

of medium strength. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the
95% confidence intervals are indicated, and in (c) the initial cantilever construction and

subsequent bridge optimisation are included for comparison.
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Figure E.7. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 2.1m with links

of medium strength. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the
95% confidence intervals are indicated, and in (c) the initial cantilever construction and

subsequent bridge optimisation are included for comparison.
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Figure E.8. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.4m with strong

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.9. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.6m with strong

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.10. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 1.8m with strong

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.11. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 2.1m with strong

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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Figure E.12. The effect of varying the agent insertion delay δ on (a) the rate of decon-

struction, (b) the percentage of agents in the structure when the removal phase begins

that timeout, and (c) the maximum moment and axial force criticalness throughout the

deconstruction. The results are shown for 100 trials for bridges of length 2.3m with strong

links. Error bars in (a) show the 5th and 95th percentiles. In (b & c), the 95% confi-

dence intervals are indicated, and in (c) the initial cantilever construction and subsequent

bridge optimisation are included for comparison.
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E.2 Varying Structure Length
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Figure E.13. The effect of varying structure length on (a) the number of agents in the

structure when the removal phase begins, and (b) the maximum moment and axial force

criticalness throughout the deconstruction, showing the differences in the reinforcement

and removal phases. Each bar shows the mean of 100 trials for δ = 6 timesteps, and

vertical red lines show the 95% confidence intervals. In (a) the optimum number of agents

in a stable cantilever of this length is shown by the horizontal red line, and the boxplots

show the number of agents in the prior cantilever construction and bridge optimisation

stages separately. In (b), the boxplots show the maximum criticalnesses during the prior

cantilever construction and bridge optimisation stages combined.
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Figure E.14. The effect of varying structure length on (a) the number of agents in the

structure when the removal phase begins, and (b) the maximum moment and axial force

criticalness throughout the deconstruction, showing the differences in the reinforcement

and removal phases. Each bar shows the mean of 100 trials for δ = 8 timesteps, and

vertical red lines show the 95% confidence intervals. In (a) the optimum number of agents

in a stable cantilever of this length is shown by the horizontal red line, and the boxplots

show the number of agents in the prior cantilever construction and bridge optimisation

stages separately. In (b), the boxplots show the maximum criticalnesses during the prior

cantilever construction and bridge optimisation stages combined.
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Figure E.15. The effect of varying structure length on (a) the number of agents in the

structure when the removal phase begins, and (b) the maximum moment and axial force

criticalness throughout the deconstruction, showing the differences in the reinforcement

and removal phases. Each bar shows the mean of 100 trials for δ = 10 timesteps, and

vertical red lines show the 95% confidence intervals. In (a) the optimum number of agents

in a stable cantilever of this length is shown by the horizontal red line, and the boxplots

show the number of agents in the prior cantilever construction and bridge optimisation

stages separately. In (b), the boxplots show the maximum criticalnesses during the prior

cantilever construction and bridge optimisation stages combined.
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Figure E.16. The effect of varying structure length on (a) the number of agents in the

structure when the removal phase begins, and (b) the maximum moment and axial force

criticalness throughout the deconstruction, showing the differences in the reinforcement

and removal phases. Each bar shows the mean of 100 trials for δ = 12 timesteps, and

vertical red lines show the 95% confidence intervals. In (a) the optimum number of agents

in a stable cantilever of this length is shown by the horizontal red line, and the boxplots

show the number of agents in the prior cantilever construction and bridge optimisation

stages separately. In (b), the boxplots show the maximum criticalnesses during the prior

cantilever construction and bridge optimisation stages combined.
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