
Multi-output Gaussian Processes for
Large-scale Multi-class Classification

and Hierarchical Data

Chunchao Ma

Department of Computer Science
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

July 2023

To my family.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Chunchao Ma
July 2023

Acknowledgements

First and foremost, I would like to thank my supervisor Mauricio A. Álvarez for his invaluable
guidance, patience and support in my journey of studying for a PhD. I was very new
to the computer science world and was struggling with English writing. I was eager to
make algorithms work and improve my writing skills. Hence, I would like to express my
sincere gratitude to Mauricio for his detailed guidance, essential feedback, and continuous
encouragement. Further, I also thank him for encouraging me to free my mind, kiss life, and
subtly change my thinking style. I was very fortunate to join his group.

I would like to thank my advisor and current supervisor Eleni Vasilaki for her support
and encouragement. I really enjoyed our coffee and lunchtime together. I would also like to
thank my panel chairs: Sebastian Ordyniak, Pan Peng and Mike Stannett for discussing my
research. I really enjoyed beer and hiking with Sebastian and Pan.

I would like to thank Pablo A Alvarado, Pablo Moreno-Muñoz and Zhenwen Dai for all
the discussion on Gaussian processes. Also, thanks to Will for giving me a chance to work
with him on an applied project. I also thank Kat for proof reading my thesis.

I would like to thank my friends and colleagues in office 136 in Regent Court who let
me experience a wonderful journey: Juan, Chao, Tianqi, Fariba, Senee, Wil, Mike, Arthur,
Tom, Magnus, Areeb, Yan, Li, Shuo, Lawrence, Peizhen, Sina , Paul, August, Nada, Doyna,
George, Ali, Abdulaziz.

The past four years have been one of the most challenging and rewarding periods of my
life. This journey was made possible by the astonishing people I have met: Meizhu, Zexun,
Wenyan, Xuefeng, Aplian, Helen, Chengyu, Zanjia, Meng, Yuanbo, Zhijia. Thanks.

I am so thankful to the Computer Science Department for providing an excellent working
environment, and the helpful staff for always providing solutions to problems.

Finally I would like to thank my family for their unconditional love and support.

Abstract

Multi-output Gaussian processes (MOGPs) can concurrently deal with multiple tasks by
exploiting the correlation between different outputs. MOGPs have been mostly used for
multi-output regression datasets, where the responses of each output are continuous values.
However, MOGPs have inferior performance in some complex structured datasets. For
example, MOGPs demand a large computational complexity in large-scale multi-class
classification. The most common type of data in multi-class classification problems consists
of image data, and MOGPs are not specifically designed to handle image datasets so MOGPs
have poor performance on image data that has the nature of high dimensionality. Most
applications of MOGPs are restricted to regression problems with a reduced number of
outputs; and particularly, MOGPs present a limited performance on hierarchical datasets,
i.e., datasets where the observations are connected to each other by means of parent-child
relationships forming a tree structure.

In this thesis, we address the aforementioned issues by proposing three new extensions
of MOGPs separately. First, we develop a novel MOGP model to deal with large-scale multi-
class classification by subsampling both training data sets and classes in each output. Second,
we propose a novel model to deal with image input data sets by incorporating a convolutional
kernel, which can effectively capture information from images, into our developed model
above. Finally, we present a new hierarchical MOGP model with latent variables to handle
hierarchical datasets, where we use a hierarchical kernel function to capture the correlation
within hierarchical data structures and use latent variables to explore dependencies between
outputs.

The new models are applied in various synthetic and real datasets. The results of this thesis
indicate that our proposed models can improve prediction performance in corresponding
datasets.

Table of contents

List of figures xv

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Motivation and Research Questions . 2
1.2 Outline of the Thesis and Contributions 3

2 Gaussian Processes Overview 7
2.1 Gaussian Process Regression . 7
2.2 Covariance Functions . 11
2.3 Gaussian Process Classification . 13
2.4 Inducing Variables Framework . 15
2.5 Variational Inference for Gaussian Processes 16
2.6 Bayesian Gaussian Process Latent Variable Model 18
2.7 Multi-output Gaussian Process Overview 19

2.7.1 Intrinsic Coregionalisation Model 21
2.7.2 Linear Model of Coregionalisation 22

2.8 Summary . 25

3 Multi-output Gaussian Processes for Large-scale Multi-class Classification 27
3.1 Related Work . 29
3.2 Methodology . 30

3.2.1 Linear Model of Coregionalisation 30
3.2.2 Augmenting Model by Noise Data 32
3.2.3 Scalable Variational Inference . 34

3.2.3.1 Inducing Points for MOGPs-AR 34

xii Table of contents

3.2.3.2 Reducing Computational Complexity by Subsampling . . 36
3.2.4 Prediction of MOGPs-AR . 38

3.3 Experiments . 40
3.3.1 B matrix evaluation . 41
3.3.2 Synthetic Data . 42
3.3.3 Single-output GP Classification: Four Real Datasets 44
3.3.4 Multi-output GP Classifications: UJIIndoorLoc 46

3.4 Summary . 49

4 Multi-output Convolutional Gaussian Processes for Images 51
4.1 Related Work . 52
4.2 Methodology . 52

4.2.1 Extending MOGPs-AR by Including a Convolutional Kernel 53
4.2.2 Scalable Variational Inference . 55

4.3 Omniglot Dataset . 57
4.3.1 Ojibwe and Blackfoot Alphabets 57
4.3.2 All Alphabets . 61

4.4 Summary . 63

5 Hierarchical Multi-output Gaussian Processes with Latent Information 65
5.1 Related Work . 67
5.2 Methodology . 68

5.2.1 Hierarchical Multi-output Gaussian Processes with Latent Variables
for the Same Input . 68

5.2.2 Scalable Variational Inference . 71
5.2.3 More Efficient Formulation . 73
5.2.4 Prediction . 75

5.3 Hierarchical Multi-output Gaussian Processes with Latent Variables for
Different Inputs . 75
5.3.1 More Efficient Formulation . 76

5.4 Experiments . 77
5.4.1 Synthetic Data . 79

5.4.1.1 First Synthetic Dataset 80
5.4.1.2 Second Synthetic Dataset 82
5.4.1.3 Evaluation the Dimension of latent variables 84

5.4.2 Real Datasets . 85
5.4.2.1 Gene Dataset . 86

Table of contents xiii

5.4.2.2 Motion Capture Database 88
5.5 Summary . 91

6 Conclusions and Future Work 93
6.1 Summary of Contributions . 93
6.2 Limitations . 94
6.3 Future Work . 95

References 97

Appendix A 103
A.1 Joint, Marginal and Conditional Probability 103
A.2 Gaussian Identities . 104

Appendix B Complete Derivation of the Lower Bound L 105

Appendix C 109
C.1 The Lower Bound of The Log Marginal Likelihood 109
C.2 Derivation of F Given the Same Input Datasets 110
C.3 More Efficient Formulation . 111

C.3.1 More Efficient Formulation Given the Same Input Datasets 112
C.3.2 More Efficient Formulation Given the Different Input Datasets . . . 113

C.4 Derivation of F Given Different Input Datasets 114

List of figures

1.1 Three different data structures: (a) a classification dataset; (b) an image data;
(c) a hierarchical dataset where there are D outputs and each output has R
replicas. 2

2.1 (a): Samples from the prior distribution of f. (b): Samples from the posterior
distribution of f after receiving some data observations. 10

2.2 (a): RBF with σ2
RBF = 0.1 and lRBF = 0.1; (b): RBF with σ2

RBF = 0.1 and lRBF

= 1; (c): RBF with σ2
RBF = 1 and lRBF = 0.1; (d): RBF with σ2

RBF =1 and
lRBF = 1. 13

3.1 Left: Sample data points corresponding to latent parameter functions f1 and
f2, respectively; Right: The synthetic dataset consists of data points with a
value of one on the y-axis belonging to class one, while data points with a
value of zero belong to class two. 41

3.2 Left: the training time in MG-M and MOGPs-AR model in S-20 (MOGPs-
AR(5) means that MOGPs-AR with a subset of classes Sd ⊆{1, . . . ,Cd}\{yd(x)}
with size |Sd|= 5 (|S|= |Sd|+1) and we use yd(x) and Cd for notation con-
sistency but here there is only one output); Right: the recall weight between
MG-M and MOGPs-AR with a different number of samples (e.g., 5 means
|Sd|= 5). 43

3.3 Recall-Weighted in S-20 (MOGPs-AR(5) with a different number of inducing
points). 44

3.4 Performance in five folds cross-validation (mean ± standard deviation) in
Balance, CANE9 and Mediamill datasets (Three fixed training/test datasets
in the Bibtex). (a): Balance data results; (b): CANE9 data results; (c):
Mediamill data results; (d): Bibtex data results. 45

3.5 Performance in cross-validation (mean ± standard deviation). 47

xvi List of figures

3.6 Hinton diagram of a few coregionalisation matrices. (a) and (b) are Hinton
diagrams of B4 and B6 for the UJIIndoorLoc dataset during the second fold
cross-validation where the blue, red and cyan colours are the index of each
floor in Buildings I, II and III. 47

3.7 Global absolute coregionalisation matrix of UJIIndoorLoc dataset. 49

4.1 An example of two images for our kernel inputs. The two images are two
characters in the Ojibwe alphabet (please see section 4.3 for more detail).
We consider two characters as two classes. The two images are one data
point for each class separately. Left: The whole image is considered as an
input data point x and the blue grid represents the p-th patch x[p]. Right:
The whole image is considered as an input data point x′ and the blue grid
represents the p′-th patch x′[p′]. 55

4.2 Both the Ojibwe and the Blackfoot alphabets have 14 characters each. For
each character, we only illustrate two typical samples. 58

4.3 Image: Performance in five folds cross-validation (mean ± standard devia-
tion). We compare MOCGPs-AR with other models for all the models. . . . 59

4.4 Recall-Weighted Performance in cross-validation (mean ± standard devia-
tion). 60

4.5 Hinton diagrams of a few coregionalisation matrices. (a) and (b) are Hinton
diagrams of B12 and B14 for both Ojibwe and Blackfoot alphabets during
the first fold cross-validation where the red and blue colours are the index
of 14 classes for Ojibwe and Blackfoot alphabets, respectively. The white
and black squares represent the positive and negative correlation values
respectively, where the magnitude of each value is represented by the size of
each square. 60

4.6 Global absolute coregionalisation matrix of Ojibwe and Blackfoot alphabets. 61
4.7 Performance in cross-validation in evaluation alphabets (left) and background

alphabets (right). In both diagrams, each circle is the mean of recall-weighted;
the error bar is the standard deviation of recall-weighted. 62

5.1 (a): a hierarchical dataset has one output and the output has R replicas. (b): a
hierarchical GP model . 66

5.2 Visualisation of a surface plot of hd and projected a filled contour plot under
it when QH = 2. 70

5.3 How our kernel matrix is built. KX
ff contains the hierarchical structure of our

model; KH
ff contains the correlation between each output 70

List of figures xvii

5.4 (a): the way to build our kernel matrix for inducing variables, where ZX and
ZH are associated with the inputs X and the latent variables H, respectively;
(b): the way to build our kernel matrix for between observations and inducing
variables . 72

5.5 (a): red represents training data points and blue represents test data points in
the first dataset. (b): red represents training data points and blue represents
test data points in the second dataset . 79

5.6 Mean predictive curves associated with their 95% credible intervals for the
third output (top row) and seventh output (bottom row) with three replicas
each, coming from the synthetic dataset. Locations of training points (in
black) and testing points (in red) are specific to each output. 80

5.7 Prediction performances (mean ± standard deviation) for the first synthetic
dataset. For both NMSE and NLPD values, the lower the better. 81

5.8 A DHGP model . 82
5.9 Top row: the result of the 14th output with four replicas; Middle row: the

result of the 24th output with four replicas; Bottom row: the result of the 40th

output with four replicas. The black and red colour represents the train and
test data points, respectively. 83

5.10 Prediction performances (mean ± standard deviation) for the second syn-
thetic data with one missing replica in each output. For both NMSE and
NLPD values, the lower the better. 84

5.11 Left: The performance of HMOGP-LV on synthetic data based on the di-
mensions of the latent vectors; Right: The performance of HMOGP-LV on
synthetic data based on the number of inducing points in ZH 85

5.12 Gene dataset with four gene expressions 85
5.13 Gene dataset with no missing replicas . 86
5.14 Mean predictive curves associated with their 95% credible intervals for all

outputs and replicas of the gene dataset. Locations of training points (in
black) and testing points (in red) are specific to each output. Gene dataset
with one missing replica in each output (HMOGP-LV performance) 87

5.15 Gene dataset with one missing replica in each output 88
5.16 Mean predictive curves associated with their 95% credible intervals for all

outputs and replicas of the MOCAP-9 dataset. Locations of training points
(in black) and testing points (in red) are specific to each output. 90

xviii List of figures

5.17 Prediction performances (mean ± standard deviation) for the MOCAP-8,
MOCAP-9, MOCAP-64 and MOCAP-118 datasets. For both NMSE and
NLPD values, the lower the better. 91

List of tables

3.1 Setting and parameters of different GP models in different datasets. All the
models for all datasets use 100 inducing variables and 200 mini-batch sizes.

“# of Folds” indicates the number of folds for cross-validation. “Q” refers to
the optimal number Q of latent functions U. 39

3.2 The values of B matrix and Recall-Weighted in each fold. 42

4.1 Omniglot data: we show the number of data points and classes for each
alphabet in the Omniglot dataset. The columns of the background set and
evaluation set show 30 and 20 alphabets, respectively. 56

4.2 Setting and parameters of different GP models in Omniglot. There are three
cross-validations for all models and the optimal number Q ∈ [10,15,20] of
latent functions U for MOGPs-AR. “M” indicates the number of inducing
variables or inducing patches; “B” refers to the size of mini-batch. “Con-K”
means convolutional kernel. 58

5.1 Setting and parameters of different GP models in MOCAP dataset. MX

indicates the number of inducing points in ZX . MH indicates the number of
inducing points in ZH . Neither DHGP or NN make use of inducing variables. 89

Nomenclature

Generalities

v dimension of the input space

D number of outputs

N number of data points per output

X input space

Y output space

C number of classes for all outputs C = ∑
D
d=1Cd where D≥ 1

M number of inducing points

X input training data, X = {xi}N
i=1 or X = {Xr}R

r=1

Xr input training data at the r-th replica, Xr = [x(1)r , · · · ,x(N)
r]⊤ ∈ RN×v where x(i)r

is the i-th data pint in the r-th replica

Zq set of inducing points per latent function uq(·), Zq = {z(m)
q }M

m=1

QH dimension of the latent space

Q number of latent functions uq(·)

y output training data, y = {yd}D
d=1, where yd = [yd(x1), · · · ,yd(xN)]

⊤

N∗ number of test data points

X∗ input test data, X∗ = {x∗ j}N∗
j=1

Operators

E [·] expected value

xxii Nomenclature

cov [·, ·] covariance operator

⊗ Kronecker product

||t|| Euclidean length of vector t, i.e.,
(
∑i=1 t2

i
) 1

2

Functions

f (·) latent parameter function f (·) : X→ R

m(·) mean function m(·) : X→ R

k(·, ·) covariance or kernel function k(·, ·) : X×X→ R

f c(xi) f c(xi) is the latent parameter function corresponding to the class c evaluated at
input data points xi

fd(x) latent parameter function in d-th output evaluated at x

f(x) vector-valued function, f(·) : X→ RD and f(x) = [f1(x), · · · , fD(x)]⊤ ∈ RD

K(x,x′) vector-valued function K(·, ·) : X×X→ RD×D where K(x,x′) ∈ RD×D is a
positive semi-definite matrix

uq(x) q-th latent function evaluated at x

ui
q(·) i-th sample of ui

q(·) drawn independent and identically distributed

f c
d (x) c-th latent parameter function in the d-th output evaluated at x

f̃d(x) vector-valued function, f̃d(x) =
[

f 1
d (x), · · · , fCd

d (x)
]⊤
∈ RCd×1

f(x) vector-valued function, f(x) =
[̃
f1(x), · · · , f̃D(x))

]⊤
∈ RC×1

kq(x,x′) Gaussian process covariance function of uq(x)

k f c
d f c′

d′
(x,x′) covariance between latent functions f c

d (x) and f c′
d′ (x

′)

kH(·, ·) kernel function

khierarchy(·, ·) kernel function

Vectors and Matrices

IN identity matrix of size N

Nomenclature xxiii

f∗ f∗ = [f (x∗1), · · · , f (x∗N∗)]⊤

fC,i set of latent parameter functions { f c(·)}Cc=1 evaluated at xi and stacked in a
column vector, fC,i =

[
f 1(xi), f 2(xi), · · · , fC(xi)

]⊤ ∈ RC×1

fC vectors {fC,i}N
i=1 stacked in a column vector

uq uq(x) evaluated at Zq, uq =
[
uq

(
z(1)q

)
, · · · ,uq

(
z(M)

q

)]⊤
u vectors {uq}Q

q=1 stacked in a column vector

fd fd(xi) evaluated at all xi ∈ X, fd = [fd(x1), · · · , fd(xN)]
⊤

f f =
[
f⊤1 , · · · , f⊤D

]⊤ ∈ RDN×1

B positive semi-definite matrix B ∈ RD×D, where a⊤Ba≥ 0 for all a ∈ RD

Kq covariance matrix with entries given by kq

(
z(i)q ,z(j)

q

)
with z(i)q ,z(j)

q ∈ Zq

Kuu block-diagonal matrix based on Kq as each block

Kfc
dfc′

d′
covariance matrix with entries given by k f c

d f c′
d′
(xn,xm) with xn,xm ∈ X

H latent variables, H = [h1, . . . ,hD]
⊤ with hd ∼N(0,IQH)

KH
ff covariance matrix with entries given by with kH

(
hi,h j

)
with hi,h j ∈H

KX
ff covariance matrix with entries given by with khierarchy

(
x(i)r ,x(j)

r′

)
with x(i)r ,x(j)

r′ ∈
X

U inducing variables, U ∈ RMX×MH with MX,MH ∈ R

ZH inducing outputs, ZH =
[
zH

1 , . . . ,z
H
MH

]⊤
, zH

m ∈ RQH

ZX inducing inputs, ZX = {ZX
r }R

r=1 and ZX
r =

[
zX

r,1, . . . ,z
X
r,Mr

]⊤
in which zX

r,m ∈Rv

and Mr ∈ R

KH
UU covariance matrix with entries given by kH

(
zH

i ,zH
j

)
with zH

i ,zH
j ∈ ZH

KX
UU covariance matrix with entries given by khierarchy

(
zX

r,i,zX
r′, j

)
with zX

r,i,zX
r′, j ∈ ZX

KH
fU cross-covariance matrix with entries kH

(
hi,zH

j

)
evaluated at H and ZH

xxiv Nomenclature

KX
fU cross-covariance matrix with entries khierarchy

(
x(i)r ,zX

r′, j

)
evaluated at X and

ZX

Abbreviations

GP Gaussian process

MOGPs multi-output Gaussian processes

RBF Radial Basis Function

MCMC Markov Chain Monte Carlo

KL Kullback-Leibler

ELBO Evidence Lower Bound

GPLVM Gaussian Process Latent Variable Model

ICM Intrinsic Coregionalization Model

LMC Linear Model of Coregionalization

MOGPs-AR Multi-output Gaussian Processes with Augment & Reduce

RBF-ARD The radial basis function kernel with automatic relevance determination

i.i.d. Independent and identically distributed

G-M Gaussian processes for multi-class classification

G-A Gaussian processes multi-class classification with additive noise model

MG-M Multi-output Gaussian processes for multi-class classification problems

S-20 A generated synthetic data has 20 classes

MOCGPs-AR Multi-output Convolutional Gaussian Processes with Augment & Reduce

HMOGP-LV Hierarchical Multi-output Gaussian Processes with Latent Variable

HGP Gaussian process with a hierarchical kernel matrix (two-layer)

HGPInd HGP with inducing variables

DHGP Gaussian process with a hierarchical kernel matrix (three-layer)

Nomenclature xxv

LVMOGP Multi-output Gaussian processes model that uses latent information to refer to
the correlation between each output

Chapter 1

Introduction

Many tasks in machine learning can be modelled by the means of an underlying function
that maps our data observations. We can build or infer such a function using existing data
and then use it to predict new data. To infer the underlying function, we are bound to assume
a particular class of functions due to an infinite number of possible candidates. A usual
trade-off happens when assuming the function; for example, if we decide to use a simple
model based on a linear function where the output adjusts proportionally to the input, then our
model arguably remains too restrictive leading to poor predictions; if we choose a complex
model based on a non-linear function that has enough flexibility to provide a good fit of the
data, then we could incur in over-fitting that deteriorates the generalisation performance.
It is unclear how to choose the underlying function to properly model our data. Thus, the
application of the Gaussian process allows us to consider a broader set of functions and select
them with higher probabilities whilst helping to tackle the issues of poor performance and
over-fitting.

A Gaussian process (GP), derived from the conception of a Gaussian distribution, is a
flexible non-parametric distribution over non-linear functions used to solve unsupervised
tasks, and supervised problems for either regression or classification tasks (Williams and
Rasmussen, 2006). Such a non-parametric distribution refers to a prior distribution that
incorporates prior knowledge or beliefs about the functions. On the other hand, there is a
likelihood function that can provide information for observations. By combining the prior
distribution and the likelihood function, our knowledge can be updated through a distribution
known as a posterior distribution that could predict unobserved points.

Gaussian processes can properly tackle single-output problems, however, solving multi-
output problems simultaneously involves dependencies between the related tasks that limit
their predictive performance. A multi-output Gaussian processes (MOGPs) model (Álvarez
et al., 2012) is a generalisation framework of Gaussian processes to deal with multiple

2 Introduction

problems together such as multiple classifications, multiple regression problems. This model
could exploit dependencies between the related outputs, where each output corresponds to a
problem (e.g., regression or classification). This could lead to an improved prediction for
each output and cope with the scenario of data scarcity (Álvarez et al., 2012). For example,
in a student’s mathematics performance (Cortez and Silva, 2008), there is a strong correlation
between students’ marks in the first and final periods. This correlation could assist to predict
marks in the first and final periods simultaneously. Since MOGPs follow the elegant Bayes’
theorem, it can provide the uncertainty for each output.

1.1 Motivation and Research Questions

The main motivation of this thesis is to use MOGPs to exploit correlations between outputs
where each output is a multi-class classification problem or a regression problem. In such
problems, MOGPs have poor performance in some complex structured datasets. MOGPs
scale badly in large-scale multi-class datasets (see Figure 1.1 (a)). MOGPs also have
weak performance in image datasets in classification problems because of the curse of high
dimensionality (see Figure 1.1 (b)). Finally, current MOGPs approaches do not perform well
on hierarchical datasets due to the complex structure of the dataset where such hierarchical
dataset are considered to have a two-layer top-down tree-like data structure, where we refer
to instances in tree-leaf nodes on the same hierarchy as replicas (see Figure 1.1 (c) for more
detail).

class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

class 10
class 11
class 12
class 13
class 14
class 15
class 16
class 17
class 18
class 19
class 20

Fig. 1.1 Three different data structures: (a) a classification dataset; (b) an image data; (c) a hierarchical dataset
where there are D outputs and each output has R replicas.

In terms of classification problems, MOGPs have been used to address a single-output
multi-class classification problem (Chai, 2012; Dezfouli and Bonilla, 2015). Additionally,
Moreno-Muñoz et al. (2018) use MOGPs to tackle multi-output multi-class classification
problems. However, the approaches described above scale poorly when the number of classes
is large (e.g., on the order of tens). Further, most common types of data in multi-class
classification problems consist of image data. However, MOGPs are not specifically designed

1.2 Outline of the Thesis and Contributions 3

for image data. Therefore, we first develop a new MOGP model that aims to deal with
large-scale multi-class classification datasets and then derive another novel MOGP model for
the image classification datasets.

With regard to regression problems, there are many research works using various MOGP
models, such as the intrinsic coregionalisation model (Bonilla et al., 2008), linear model
of coregionalisation (Álvarez et al., 2012). Generally, these MOGPs models assume a flat
correlation structure between the outputs. However, such a formulation does not account
for more elaborate relationships, for instance, if several replicates were observed for each
output (which is a typical setting in biological experiments) like hierarchical datasets. A
hierarchical dataset can generally be represented as a top-down tree-like architecture. We
refer to all leaf nodes of the same level as replicas since they inherit from the same parent
node. The authors of (Kalinka et al., 2010) proposed a dataset where gene expression is
observed through eight replicas. Gene expression is a biological process indicating how
the information of a particular gene can affect the phenotype, and many practitioners aim
to understand this phenomenon better. In real-world applications, many datasets present a
hierarchical structure, such as the one observed in this gene expression dataset. However,
it is unclear how to use MOGPs to study this kind of dataset. Further, if there is a missing
replica for the same gene, it is unknown how to use MOGPs to predict this missing replica.
Thus, we aim to develop MOGPs for a hierarchical structure dataset.

As mentioned above, it is not obvious how to employ MOGPs in those complex structured
datasets: large-scale multi-class classification datasets, image datasets and hierarchical
structure datasets. Hence, the main goal of this thesis is to use MOGPs to exploit correlations
between outputs in the aforementioned datasets. We provided extensions of MOGPs to deal
with said datasets.

1.2 Outline of the Thesis and Contributions

The structure of this thesis along with research contributions are presented below:

• Chapter 2: “Gaussian Processes Overview” contains background knowledge relat-
ing to the research in this thesis. This chapter starts by describing Gaussian processes
(GPs) regression, covariance functions and GP classification. It then shows one induc-
ing variables framework to reduce the computational complexity of GPs and variational
inference to approximate intractable posterior distribution for GPs. Additionally, this
chapter presents the Bayesian Gaussian process latent variable model where we inte-
grate this methodology to obtain latent variables in Chapter 5. Finally, this chapter
explains multi-output GPs which will be the foundation of our developed models.

4 Introduction

• Chapter 3: “Multi-output Gaussian Processes for Large-scale Multi-class Classi-
fication” is concerned with MOGPs in large scale multi-class classification datasets.
We extend multi-output Gaussian processes to deal with the classification problems
by subsampling both training input data and classes in each output. The scalability
of our model is achieved by using stochastic variational inference (Hensman et al.,
2013a; Moreno-Muñoz et al., 2018) and by choosing a softmax likelihood function via
Gumbel noise error for all outputs. We show empirically that our proposed model out-
performs single-output Gaussian processes in terms of different performance metrics
and multi-output Gaussian processes with respect to scalability, both in synthetic and
in real classification problems.

• Chapter 4: “Multi-output Convolutional Gaussian Processes for Images” is about
applying MOGPs to image classification datasets. A novel MOGP model is developed
by integrating the convolutional kernel (Van der Wilk et al., 2017) into our proposed
model in Chapter 3. To show that the model can deal with large-scale classification
and image data, we apply our model to an example with the Omniglot dataset that
has 1623 varied handwritten characters from 50 distinct alphabets, which means that
there are 50 outputs with a total of 1623 classes. Our model is superior in this dataset
compared to single output GP models and the model in Chapter 3.

• Chapter 5: “Hierarchical Multi-output Gaussian Processes with Latent Informa-
tion” focuses on MOGPs in hierarchically structured datasets where a new MOGP
model is derived. In the proposed model, to encapsulate the structure of the input do-
main, we create a GP with a hierarchical structure where the GP’s mean is another GP.
To reduce computational complexity, the proposed model also applies variational infer-
ence. We conduct experiments on the new model to show its performance compared
to the single-output and multi-output Gaussian processes models and also illustrate
predicting missing replicas well.

• Chapter 6: “Conclusions and Future Work” summarises the contributions of this
thesis and also presents some ideas to improve and extend our models for future work.

Throughout my Ph.D. journey, I have delivered the following presentations and published
a paper:

• Presentation: Multi-output Gaussian Processes with Transfer Learning, Machine
Learning Retreat - Sheffield - 06/2019

• Poster presentation: Multi-output Gaussian Processes with Transfer Learning, Machine
Learning Summer School - London - 07/2019

1.2 Outline of the Thesis and Contributions 5

• Presentation: Multi-output Gaussian Processes for Large-scale Multi-class Classifica-
tion and Hierarchical Data, Machine Learning Retreat - Sheffield - 07/2022

• Journal article: Ma, C., & Álvarez, M. A. (2023). Large scale multi-output multi-class
classification using Gaussian processes. Machine Learning, 1-30. The work presented
in Chapter 3 and Chapter 4 is based on this journal.

Chapter 2

Gaussian Processes Overview

This chapter aims to show the background of Gaussian processes (Rasmussen and Williams,
2006) and multi-output Gaussian processes (MOGPs) (Álvarez et al., 2012). It first introduces
Gaussian processes (GPs), also known as single-output GPs, for regression problems. GPs
can obtain a tractable posterior distribution for inference due to the property of Gaussian
distributions in regression problems with a Gaussian likelihood (Rasmussen and Williams,
2006), as discussed in Section 2.1. The next section describes covariance functions that
play a significant role in GPs. In Section 2.3, we focus on GPs for classification problems
where the posterior distribution is intractable. The following section discusses an inducing
variables framework that can reduce the computational complexity of GPs to handle large-
scale datasets. Section 2.5 goes on to present a variational inference to handle the posterior
distribution with non-Gaussian likelihood. Further, Section 2.6 describes latent variable
models in which we could consider the inputs as unobserved; we have only observed outputs
in GPs. Finally, we explain how single-output GPs become MOGPs and present various
current MOGP models in Section 2.7.

2.1 Gaussian Process Regression

A Gaussian process (GP) is a non-parametric stochastic process that allows us to place a prior
distribution on an unknown mapping function f (·) called a latent parameter function. Using
a number of observed data points and Bayes’ rule, we can convert the prior distribution into
a posterior distribution of f (·) in order to fit the data. Through learning the latent parameter
function f (·), a GP can address different kinds of problems (e.g., regression, classification
and dimensionality reduction). It can be formally defined as (Rasmussen and Williams,
2006):

8 Gaussian Processes Overview

Definition 1. “A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.”

GPs constitute the generalisation of an infinite multivariate Gaussian distribution over
functions (Rasmussen and Williams, 2006). Through the marginalisation properties of
this type of distribution, we can work only with a finite collection of function evaluations
f = [f (x1), · · · , f (xN)]

⊤ ∈RN that are evaluated from an input dataset of X = [x1, · · · ,xN]
⊤ ∈

RN×v where N is the number of data points and v is the dimension of each point xi. The
input dataset also belongs to the input feature space X. There is a latent parameter function
f (·) :X→R. The output data y= [y1, · · · ,yN]∈RN , a vector of observed outputs (continuous
values), also belongs to an output space Y. The S refers to the N input-output pairs dataset:
S = (X,Y) = (x1,y1) , . . . ,(xN ,yN). A Gaussian process is specified by its mean function
m(x) and covariance function k(x,x′), with x ∈ Rv and x′ ∈ Rv. The function f (·) follows a
Gaussian process (E refers to the notation of expectation):

f (x)∼ GP(m(x),k(x,x′)), (2.1)

m(x) = E[f (x)], (2.2)

k
(
x,x′

)
= E

[(
f (x)−m(x)

)(
f
(
x′
)
−m

(
x′
))]

. (2.3)

We usually assume the mean function m(x) is zero. The covariance function k(·, ·) : X×X→
R is positive semi-definite and determines the characteristics of the process, e.g., periodicity
and smoothness. There are various forms and hyper-parameters of covariance functions,
where hyperparameters denote the parameters of kernel functions. Covariance functions are
described in Section 2.2.

For the case of regression in the dataset S, each entry of yi is assumed to be equal to each
function f (xi) corrupted with a Gaussian noise ε ∼N(0, σ2):

yi | f (xi)∼N
(

f (xi) ,σ
2) , independently for i = 1, . . . ,N, (2.4)

where σ2 is a Gaussian noise variance. This leads to the likelihood function:

y|f∼N
(
f, σ

2IN
)
, (2.5)

where IN is an identity matrix of size N. The Gaussian likelihood function helps handle
regression problems. Other kinds of likelihood functions can deal with different problems
(e.g., softmax likelihoods for classification). Besides the likelihood function, the prior

2.1 Gaussian Process Regression 9

distribution of the vector f is given as

p(f) =N
(
0, k(X,X)

)
= (2π)−

N
2 |k(X,X)|−

1
2 exp

(
−1

2
f⊤k(X,X)f

)
, (2.6)

where k(X,X) is a N×N covariance matrix built from evaluations of the covariance function
between all pairs of data points X and (k(X,X))i, j = k(xi,x j). The prior distribution expresses
the possible behaviour of the latent parameter function f before obtaining any data point (see
Figure 2.1 (a)). The log of the prior is

log p(f) =−N
2

log2π− 1
2

log |k(X,X)|− 1
2

f⊤k(X,X)f. (2.7)

The kernel function is usually determined by a set of parameters that we refer to as
hyper-parameters. We can select the optimisation hyper-parameters and a parameter in GPs,
which are the hyper-parameters of the covariance function and the Gaussian noise variance
in Eq. (2.4), using the maximum of log marginal likelihood. The marginal likelihood is
obtained by integrating out the latent parameter function f in the likelihood function (2.5).
Since both prior and likelihood are Gaussian distributions, the marginal likelihood is tractable.
Then the corresponding log marginal likelihood is:

log p(y | θ) = log
∫

p(y | f) p(f)df

= logN
(
y | 0,k(X,X)+σ

2IN
)

=−1
2

y⊤
(
k(X,X)+σ

2IN
)−1 y− 1

2
log
∣∣k(X,X)+σ

2IN
∣∣− N

2
log2π, (2.8)

where |A| represents the determinant of A (A is a matrix), θ refers to all hyper-parameters
for the kernel k and σ . Optimising the θ is to maximise the expression in Eq. (2.8).

After obtaining the optimisation parameters θ , we can employ a posterior distribution to
make a prediction. Based on the Bayesian theorem, we obtain the posterior distribution of f:

p(f | y) = p(y | f)p(f)
p(y | θ)

∝ N
(
y | f,σ2IN

)
N (f | 0,k(X,X)) . (2.9)

The posterior distribution is proportional to the product of the likelihood function with the
prior distribution. The posterior distribution can incorporate the observed data information
into the latent parameter function f. It is also tractable since the prior distribution and the

10 Gaussian Processes Overview

likelihood function are both Gaussian. Figure 2.1 shows samples from the GP prior and GP
posterior of f. The samples in the posterior distribution have a clear shape along with the
data points as expected in Figure 2.1 (b).

Sam ples

Mean

-2.0 -1.5 -1.0 -0.5 0.0 1.0 1.5 2.00.5

4

3

2

1

0

-1

-2

-3

(a)

Sam ples

Data points

-2.0 -1.5 -1.0 -0.5 0.0 1.0 1.5 2.00.5

3

2

1

0

-1

-2

-3

(b)

Fig. 2.1 (a): Samples from the prior distribution of f. (b): Samples from the posterior distribution of f after
receiving some data observations.

This is another way to derive the posterior distribution. Since both the likelihood function
and the prior distribution are Gaussian distributions, the joint vector y and f follows a joint
Gaussian distribution with[

f
y

]
∼N

(
0,

[
k(X,X) k(X,X)

k(X,X) k(X,X)+σ2IN

])
. (2.10)

Due to the properties of a Gaussian distribution (see appendix A.2), the posterior distribution
of f is

p(f | y) =N
(
f | k(X,X)

(
k(X,X)+σ

2IN
)−1 y,

k(X,X)− k(X,X)
(
k(X,X)+σ

2IN
)−1

k(X,X)
)
. (2.11)

To make predictions for unknown data points or test data points, we can apply this
formalism to test data points. Suppose X∗ = {x∗ j}N∗

j=1 ∈ RN∗×v is a test set and f∗ =
[f (x∗1), · · · , f (x∗N∗)]⊤ ∈ RN∗ , where N∗ is the number of test data. We can incorporate
f∗ into our model. For example, f∗ can be included in the prior (2.6). Then the joint
distribution of p(f) and p(f∗) is[

f
f∗

]
∼N

(
0,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
, (2.12)

2.2 Covariance Functions 11

where k(X∗,X∗) ∈ RN∗×N∗ is the covariance matrix built for the test data points, e.g.,
(k (X∗,X∗))i, j = k

(
x∗i,x∗ j

)
. k(X,X∗) ∈ RN×N∗ is the covariance matrix between train-

ing and test data points, such as (k(X,X∗))i, j = k(xi,x∗ j), and k(X∗,X) is the transpose of
k(X,X∗), i.e., k(X∗,X) = k(X,X∗)⊤. Similarly, the joint distribution of f∗ and y is:[

f∗
y

]
∼N

(
0,

[
k(X∗,X∗) k(X∗,X)

k(X,X∗) k(X,X)+σ2IN

])
. (2.13)

Again, through the properties of a Gaussian distribution, the predictive posterior distribution
of f∗ is:

p(f∗ | y) =N
(
f∗ | k(X∗,X)(k(X,X)+σ

2IN)
−1y,

k(X∗,X∗)− k(X∗,X)(k(X,X)+σ
2IN)

−1k(X,X∗)
)
. (2.14)

This distribution provides the predictive mean and variance for the test data points.

2.2 Covariance Functions

As the above section shows, a Gaussian process is defined by its mean (usually selected as
0) and covariance function. This section is devoted to describing the covariance function
which plays an important role in the Gaussian process. A covariance function, also called
a kernel, encapsulates inputs into a real function: k(·, ·) : X×X→ R and k(·, ·) must be a
positive semi-definite. A kernel can measure the similarity between data points. For example,
if data points are close to one another, those points have a high correlation and behave
similarly. Kernels broadly fall into two groups: stationary kernels and non-stationary kernels.
A stationary kernel function is a function of τ = x− x′ (Rasmussen and Williams, 2006).
This thesis only considers stationary kernels. In the area of Gaussian processes, one of the
research focuses is on kernel functions, e.g., we construct a new kernel to build a novel
multi-output Gaussian process in Chapter 5.

There are many different kernels with various formulas and hyper-parameters such as
radial basis function (RBF), Matérn class of kernels (e.g., Matérn 32 kernel), periodic
kernels and polynomial kernels (Rasmussen and Williams, 2006). Each kernel has its own
property. For instance, RBF is infinitely differentiable and captures more smooth functions,
Matérn 32 kernel has finite differentiability. Further, each kernel function has its own
hyper-parameters. For example, the RBF and Matérn 32 kernel have two hyper-parameters,

12 Gaussian Processes Overview

respectively
(
variance (σ2

RBF, σ2
Matérn32) and length scale (lRBF, lMatérn32)

)
:

kRBF
(
x,x′

)
= σ

2
RBF exp

(
−||x−x′| |2

2l2
RBF

)
, (2.15)

kMatérn32
(
x,x′

)
= σ

2
Matérn32

(
1+

√
3||x−x′||
lMatérn32

)
exp

(
−
√

3||x−x′||
lMatérn32

)
. (2.16)

Figure 2.2 shows that hyper-parameters influence the correlation between data points
in the RBF. We generate samples (x ∈ [−2,2]) from a normal distribution where the mean
is always zero and covariance is RBF with different scale hyper-parameters. The samples
change faster with the smaller length scale (see Figures 2.2 (a) and (c)), while with the larger
length scale, the functions or samples change much slower and become flat (see Figures 2.2
(b) and (d)). This indicates that samples probably have a high correlation. In terms of the
magnitude of variance, the smaller the variance, the smaller the magnitude of the samples.

There is one particular kernel function called a convolutional kernel (Van der Wilk et al.,
2017), which is designed for image data. In image data, we usually assume x ∈ RW×H is
an image data point where W and H are the width and height of the data point, respectively.
Further, there are E = w×h patches for each data point, where w and h are the width and
height of each patch, respectively. In total, there are P = (W −w+1)× (H−h+1) patches
for each image. Then, the convolutional kernel is

kconv
(
x,x′

)
=

P

∑
p=1

P

∑
p′=1

k
(

x[p],x′[p
′]
)
, (2.17)

where the k is a kernel function and x[p] is the p-th patch of the image x. This convolutional
structure is more suitable for the image dataset. To extend the convolutional structure, Van der
Wilk et al. (2017) also add weight to the expression (2.17):

kwconv
(
x,x′

)
=

P

∑
p=1

P

∑
p′=1

wpwp′k
(

x[p],x′[p
′]
)
, (2.18)

where wp is the weight along with x[p]. In Chapter 4, we combine this kernel into our model.

2.3 Gaussian Process Classification 13

Samples

Mean

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

-0.5

-1.0

(a)

Samples

Mean

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

(b)

Samples

Mean

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

(c)

Samples

Mean

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

3.0

2.0

1.0

0.0

-1.0

-2.0

(d)

Fig. 2.2 (a): RBF with σ2
RBF = 0.1 and lRBF = 0.1; (b): RBF with σ2

RBF = 0.1 and lRBF = 1; (c): RBF with σ2
RBF

= 1 and lRBF = 0.1; (d): RBF with σ2
RBF =1 and lRBF = 1.

2.3 Gaussian Process Classification

Gaussian processes can not only deal with regression problems but can also handle other
kinds of problems, such as classification. In a regression problem, the observed outputs
are continuous values, e.g., y = {yi}N

i=1 ∈ RN while the outputs in a classification problem
are categorical values, e.g., yi ∈ [1,2, · · · ,C], and C is the number of classes. Classification
problems are classified as binary (C = 2) or multi-class (C > 2). Multi-class classification is
a generalisation of binary classification. This section focuses on multi-class classification
problems.

Generally in classification problems based on a Gaussian process model, the likelihood
function is not a Gaussian distribution. Therefore, the posterior distribution is intractable
because the Gaussian process prior is not conjugate to the likelihood function. Thus it is
necessary to approximate the posterior distribution. Many approximation methods exist in the
literature such as Markov Chain Monte Carlo (MCMC) sampling (Neal, 1997), variational

14 Gaussian Processes Overview

approximation (Gibbs and MacKay, 2000; Hensman et al., 2015a), expectation propagation
(Minka, 2013), and the Laplace approximation (Barber and Williams, 1996). In this chapter
and throughout the thesis, we use variational inference because it is expected to be faster
than traditional approximation methods (Blei et al., 2017). We describe variational infer-
ence for approximating intractable integrals (more detail in Section 2.5) and reducing the
computational complexity (more detail in Section 2.4) for GPs.

There are several likelihood functions that can be used for multi-class classification such
as the softmax likelihood (Galy-Fajou et al., 2020; Kim and Ghahramani, 2006; Williams and
Rasmussen, 2006), the multinomial probit likelihood function (Girolami and Rogers, 2006),
the step function (Hernández-Lobato et al., 2011). This section will describe the softmax
likelihood function that will be used in Chapters 3 and 4.

Since there are C classes, we assume there are C latent parameter functions. Suppose
f c(xi) is the latent parameter function corresponding to the class c evaluated at input data
points xi, fC(xi) is a set of latent parameter functions { f c(·)}Cc=1 evaluated at xi and are
stacked in a column vector fC(xi) =

[
f 1(xi), f 2(xi), · · · , fC(xi)

]⊤ ∈ RC×1, where the C
latent parameter functions are uncorrelated. Then fC represents fC(·) evaluated at X:

fC =
[

f 1(x1), f 1(x2), · · · , f 1(xN), f 2(x1), · · · , f 2(xN), · · · , fC(x1), · · · , fC(xN)
]⊤
∈ RCN×1.

If x is the input for the class c, ideally f c(x) = argmax
c

fC(x). The corresponding softmax

likelihood function is defined as:

p(yi | fC (xi)) =
exp(f yi (xi))

∑
C
c=1 exp(f c (xi))

. (2.19)

Based on the conditional independence assumption, the likelihood function over the whole
training dataset is:

p(y | fC) =
N

∏
i=1

p(yi | fC (xi)) =
N

∏
i=1

exp(f yi (xi))

∑
C
c=1 exp(f c (xi))

. (2.20)

The prior function is:

fC ∼N
(
0, J
)
, (2.21)

where the covariance matrix J is a block diagonal matrix with J1, · · · ,JC. It is a block diagonal
matrix because we assume C latent parameter functions are independent of each other and
each Jc presents a covariance matrix for the latent parameter function f c (·) evaluated at X

2.4 Inducing Variables Framework 15

(
f c (X) = [f c(x1), · · · , f c(xN)]

⊤ ∈ RN×1
)

. The independence assumption will be relaxed
in Chapters 3 and 4 by using multi-output Gaussian processes. Combining the likelihood
function and the prior distribution through the Bayesian rule, the posterior distribution is:

p(fC | y) =
p(fC)∏

N
i=1 p(yi | fC(xi))∫

p(fC)∏
N
i=1 p(yi | fC(xi))df

=
N(fC | 0,J)

p(y)

N

∏
i=1

exp(f yi (xi))

∑
C
c=1 exp(f c (xi))

. (2.22)

The posterior is intractable due to the non-Gaussian likelihood function. The variational
inference method approximates the posterior distribution, the detail of which is explained in
Section 2.5. The predictive posterior distribution at a test data point x∗ (the corresponding
class y∗ = c) is:

p(fC(x∗) | y) =
∫

p(fC(x∗) | fC) p(fC | y)dfC,

p(y∗ = c | y) =
∫

p(fC(x∗) | y) p(fC | y)dfC. (2.23)

The predictive posterior distribution is intractable so we use the approximated posterior
distribution (2.22) through variational inference to approximate it.

2.4 Inducing Variables Framework

Before introducing the variational inference method for approximating the posterior distri-
bution, we describe the computational complexity for Gaussian processes and the inducing
variables framework to deal with it. The computational complexity is O(N3) for inverting the
covariance matrix k(X,X) ∈ RN×N and storage is O(N2), where N is the number of training
data points. It is intractable when N is large, limiting the application of Gaussian processes.

To tackle this kind of problem, sparse approximation methods have arisen to reduce the
computational complexity (Hensman et al., 2013a; Snelson and Ghahramani, 2006; Titsias,
2009; Williams and Rasmussen, 2006). Gaussian processes, including the sparse approxima-
tion method, are referred to as sparse Gaussian processes. One popular method is to approxi-
mate the covariance matrix by introducing a set of inducing variables u= [f (z1), · · · , f (zM)]⊤.
The set of inducing variables u that contain values of the latent parameter function f (·) are
evaluated at an unknown inducing input set Z = {zm}M

m=1 ∈RM×v where M≪ N. It can ease
the computational complexity to O(NM2) and storage to O(NM) (Snelson and Ghahramani,
2006; Titsias, 2009). To demonstrate this method, we first augment the GP prior as:

16 Gaussian Processes Overview

[
f
u

]
∼N

(
0,

[
k(X,X) k(X,Z)
k(Z,X) k(Z,Z)

])
, (2.24)

where k(Z,Z)∈RM×M is the covariance matrix built for the inducing points, k(X,Z)∈RN×M

is the covariance matrix between training data observations and inducing points. By applying
the properties of a Gaussian distribution (see appendix A.2) and p(f,u) = p(f | u) p(u), the
prior distribution of the inducing points p(u) and the conditional distribution p(f | u) are:

u∼N (0,k(Z,Z)) , (2.25)

p(f | u) =N
(
f | k(X,Z)k(Z,Z)−1u,

k(X,X)− k(X,Z)k(Z,Z)−1k(Z,X)
)
. (2.26)

Equation (2.26) shows that we only need a computational complexity O(NM2) (e.g., a
product like k(X,Z)k(Z,Z)−1) to derive a conditional distribution p(f|u), which is key for
sparse GPs. To some extent, the set of inducing inputs Z = {zm}M

m=1 and inducing variables u
represent the real input X and function f. After obtaining the conditional distribution p(f | u),
it will be used to derive a marginal likelihood and a predictive distribution, which is discussed
in the next section.

2.5 Variational Inference for Gaussian Processes

This section aims to introduce a variational inference strategy. Variational inference in-
troduces a family of distributions feasible to approximate difficult-to-compute probability
densities (Blei et al., 2017). In our case, the variational inference method can be imple-
mented to approximate the predictive posterior distribution given a non-Gaussian likelihood
function such as the intractable posterior distribution in Section 2.3. Additionally, we can
combine variational inference with the inducing variable framework (Hensman et al., 2013a;
Titsias, 2009) to address the computational complexity of Gaussian processes as mentioned
in Section 2.4.

As the above section mentioned, there is a joint distribution p(f,u) = p(f | u) p(u)
in the inducing variable framework. Further, the posterior distribution is p(f,u | y) =

p(f | u) p(u | y). Then, the marginal likelihood of sparse Gaussian processes is defined as

p(y) =
∫∫

p(y | f)p(f | u)p(u)dfdu. (2.27)

2.5 Variational Inference for Gaussian Processes 17

If the likelihood function is a non-Gaussian likelihood function like Equation (2.20) in
Section 2.3, both the integral above (2.27) and posterior distribution p(f,u | y) are intractable.
To approximate the marginal likelihood (2.27) and obtain an approximation for the true
posterior distribution, the variational inference introduces a variational distribution q(f,u) =
p(f | u)q(u) where q(f,u) ≈ p(f,u | y). More precisely, q(u) = N(u |m,S) is a Gaussian
distribution with mean m and variance S. q(u) is a variational distribution of u and aims to
approximate p(u). By applying Jensen’s inequality, we add q(f,u) into the log of marginal
likelihood of y:

log p(y) = log
∫∫

p(y | f)p(f | u)p(u)dfdu (2.28)

= log
∫∫

q(f,u)
p(y | f)p(f | u)p(u)

q(f,u)
dfdu (2.29)

≥
∫∫

p(f | u)q(u) log
p(y | f)p(f | u)p(u)

p(f | u)q(u)
dfdu (2.30)

=
∫∫

p(f | u)q(u) log
p(y | f)p(u)

q(u)
dfdu (2.31)

= Ep(f|u)Eq(u)

{
log
(

p(y | f)p(u)
q(u)

)}
(2.32)

= Ep(f|u)Eq(u){log p(y | f)}+Eq(u)

{
log
(

p(u)
q(u)

)}
(2.33)

= Eq(f){log p(y | f)}−KL(q(u)∥p(u)), (2.34)

where KL(q(u)∥p(u)) = −Eq(u)

{
log
(

p(u)
q(u)

)}
is the called Kullback-Leibler divergence

between q(u) and p(u), and q(f) =
∫

p(f | u)q(u)du refers to the approximation of the
posterior distribution of f. The predictive posterior distribution (2.23) can be obtained by
applying q(f).

To obtain the optimisation parameters and hyper-parameters of the Gaussian process,
we optimise the lower bound of log marginal likelihood, also called evidence lower bound
(ELBO), with respect to parameters and hyper-parameters.

To apply GPs to large datasets, we can apply stochastic variational inference for GPs,
which is described in subsection 2.7.2 for multi-output Gaussian processes. Based on
Hensman et al. (2013a), we can factorise the ELBO so we can perform optimisation using
a small number of mini-batch of training samples to reduce the computational complexity
from O(N3) to O(M3) and reduce the storage from O(N2) to O(M2) where M≪ N.

As the approximation of the posterior distribution q(f) =
∫

p(f | u)q(u)du and the ap-
proximated posterior q(u) =N(u |m,S), the approximated predictive posterior distribution

18 Gaussian Processes Overview

q(f∗) is

q(f∗) =
∫

p(f∗ | u)q(u)du

=N
(

f∗ | k(X∗,Z)k(Z,Z)−1m, (2.35)

k(X∗,X∗)+ k(X∗,Z)k(Z,Z)−1 (S− k(Z,Z))k(Z,Z)−1k(Z,X∗)
)
. (2.36)

The posterior distribution q(f∗) provides mean and variance for the test data points X∗.

2.6 Bayesian Gaussian Process Latent Variable Model

In this section, we describe a Gaussian process model, Bayesian Gaussian process latent
variable model (Bayesian GPLVM) (Titsias and Lawrence, 2010), to handle a dataset with
only inputs. We assume there are latent variables in a low-dimensional space to represent the
inputs. In Chapter 5, we build a multi-output Gaussian process model with the basic idea of
latent variables. This section aims to show the idea of how Gaussian processes handle latent
variables.

Suppose the observed inputs X∈RN×v are associated with latent variables H= {hi}N
i=1 ∈

RN×QH where QH ≪ v. We assume there is a normal prior distribution over the latent
variables

p(H) =
N

∏
n=1

N (hn | 0,IQH) , (2.37)

where IQH is an identity matrix of size QH . The GPs are independently defined across the
features in X so the likelihood factorises across feature dimensions:

p(X |H) =
v

∏
j=1

p
(
x j |H

)
, (2.38)

where x j refers to the j-th column of X. As in all Bayesian models, we are interested in
computing the posterior distribution p(H | X). However, the computation of the posterior
distribution in closed form is intractable since the marginal likelihood p(X) =

∫
p(X |

H)p(H)dH cannot be computed in closed form. To deal with this problem, Titsias and

2.7 Multi-output Gaussian Process Overview 19

Lawrence (2010) provided a sparse GP formulation (Bayesian GPLVM), as in Section 2.4:

p
(
x j |H, f j,u j

)
= p

(
x j | f j

)
p
(
f j |H,u j,Z

)
p
(
u j | Z

)
, (2.39)

p
(
x j | f j

)
=N

(
x j | f j,σ

2IN
)
, (2.40)

p
(
f j | u j,H,Z

)
=N

(
f j | k(H,Z)k(Z,Z)−1u j, (2.41)

k(H,H)− k(H,Z)k(Z,Z)−1k(Z,H)
)
, (2.42)

p
(
u j | Z

)
=N

(
u j | 0,k(Z,Z)

)
, (2.43)

where each x j is assumed equal to a corresponding vector of latent parameter function values
f j corrupted with a zero-mean Gaussian noise and σ2 variance. For each f j, there is an
inducing variable u j evaluated at a set of inducing inputs Z ∈ RM×QH . As in Section 2.4, we
need to approximate the true posteriors p(f j,u j | x j,H) = p

(
f j | u j,x j,H

)
p
(
u j | x j,H

)
and

p(H); the variational formulation is

q
(
f j,u j

)
= p

(
f j | u j,H

)
q
(
u j
)
, (2.44)

q(H) =
N

∏
n=1

N (hn | µµµn,Sn) , (2.45)

where µµµn and Sn are the variational parameters that follow the notation as in Titsias and
Lawrence (2010). Those variational formulas bring a tractable lower bound for p(X) (Titsias
and Lawrence, 2010). Similar to Section 2.5, it is possible to derive an evidence lower
bound of the log marginal distribution. Refer to Titsias and Lawrence (2010) for a detailed
derivation of the lower bound. In Chapter 5, we apply latent variables to our model, an idea
which originates from Bayesian GPLVM. Therefore, we explain the key part to derive latent
variables in this section and we encourage the reader to refer to Titsias and Lawrence (2010)
for more detail such as a predictive distribution.

2.7 Multi-output Gaussian Process Overview

Previous sections describe the background of Gaussian processes while this section focuses
on multi-output Gaussian processes (MOGPs) (Álvarez et al., 2012). Nowadays, many model
applications require solving several decision making or prediction problems to be solved
simultaneously. The aim of multi-task learnings is to leverage useful information contained
in multiple related tasks to improve the performance of all the tasks (Zhang and Yang, 2017).
The MOGP is a kind of multi-task learning that can make several predictions at the same
time. It manages to improve predictions of each output by using the relationship between

20 Gaussian Processes Overview

several tasks (Álvarez et al., 2012; Bonilla et al., 2008). MOGP models exist in various
areas such as geostatistics (Goovaerts et al., 1997), latent force models (Alvarez et al., 2009),
and medicine (Alaa and Van Der Schaar, 2017). Many models exist, including the intrinsic
coregionalisation model (ICM), the semiparametric latent factor model, the linear model
of coregionalisation (LMC), and process convolutions. We refer the reader to Álvarez et al.
(2012) for a comprehensive review of these models. Today, there are many advanced MOGPs
models, including MOGPs with spectral mixture kernels (Parra and Tobar, 2017), MOGPs
with heterogeneous outputs (Moreno-Muñoz et al., 2018), non-linear process convolutions
(Álvarez et al., 2019), and nonstationary MOGPs (Altamirano and Tobar, 2022). This section
briefly explains the LMC and ICM since our models are based on them.

The MOGP model is a generalisation of GPs, entailing a dependence on their own kernel
function. Compared with single-output GPs, multi-output GPs have a multi-output function.
This is known as a vector-valued function, with a corresponding reproducing kernel.

Suppose there is a multi-output dataset:

S = {Sd}D
d=1 = {X,y} (2.46)

where X=[X⊤1 , · · · ,X⊤D]⊤ and, for notation simplicity, we assume all different input datasets
have the same input set and each dataset has N data points. For example, Xd = X =

[x1, · · · ,xN]
⊤ ∈ RN×v for d ∈ {1, · · · ,D}; then yd=[yd(x1), · · · ,yd(xN)]

⊤ ∈ RN is the d-th
output dataset, yd(xn) is the n-th data point for the d-th output dataset and y=[y⊤1 , · · · ,y⊤D]⊤.

Each latent parameter function corresponds to each output. In MOGPs, those latent
parameter functions are stacked into a vector-valued function f(·) = { fd(·)}D

d=1 (f(·) : X→
RD): f(x) = [f1(x), · · · , fD(x)]⊤ ∈ RD, where fd(x) is a latent parameter function in the
d-th output evaluated at x. The vector-valued function f(·) is assumed to follow a Gaussian
process:

f(x)∼ GP
(
m(x),K(x,x′)

)
, (2.47)

where m(·)={md(·)}D
d=1 and md(·) is the mean function for d-th output. Those mean func-

tions are usually assumed as 0. K(·, ·) refers to a reproducing kernel and is also a matrix-
valued function K(·, ·) : X×X→ RD×D where K(x,x′) ∈ RD×D is a positive semi-definite
matrix and (K(x,x′))d,d′ ∈ R expresses the correlation between fd(x) and fd′(x′) where
d,d′ ∈ {1, · · · ,D}.

2.7 Multi-output Gaussian Process Overview 21

2.7.1 Intrinsic Coregionalisation Model

This subsection describes one of the well-known MOGP models: the intrinsic coregionali-
sation model (ICM) (Álvarez et al., 2012), which is also known as the multitask GP model
(Bonilla et al., 2008). ICM has a special multi-output kernel that can be divided into two
parts: one part is for a kernel function to encode input space knowledge only; the other is
another kernel to capture correlations among outputs.

The multi-output kernel can be written as

(K(x,x′))d,d′ = kT (d,d′)× k(x,x′), (2.48)

where kT : {1,2, · · · ,D}×{1,2, · · · ,D}→ R and k(·, ·) : X×X→ R are kernels for output
space and input space respectively. Then,

K(x,x′) = B× k(x,x′), (2.49)

with

B =


B1,1 . . . B1,D

B2,1 . . . B2,D
...

BD,1 . . . BD,D

 , (2.50)

where B ∈ RD×D is a positive semi-definite matrix and Bd,d′ ∈ R (d,d′ ∈ {1,2 · · · ,D})
describes the correlation between fd(x) and fd′(x′).

Similar to the single-output Gaussian process, there is also the prior distribution of the
vector f:

f∼N
(
0,K(X,X)

)
, (2.51)

where f is f = [f1, · · · , fd, · · · , fD]
⊤ is a vector function in which fd = [fd(x1), · · · , fd(xN)]

⊤

and fd(xi) is the function fd(·) evaluated at xi; K(X,X) is a semi-positive definite matrix:

K(X,X) = B⊗ k(X,X) (2.52)

where ⊗ is Kronecker product and k(X,X) ∈ RN×N is a positive semi-definite matrix.

22 Gaussian Processes Overview

For a regression problem, the likelihood function often takes a Gaussian distribution for
each output, so

y|f(X)∼N
(
f(X),ΣΣΣ

)
, (2.53)

where ΣΣΣ= Σ⊗IN , Σ is a diagonal matrix with elements {σ2
d}D

d=1 in the diagonal and {σ2
d}D

d=1

are the variances of the noise for each output.
Similar to single-output Gaussian processes, based on Bayesian theorem and the prop-

erties of a Gaussian distribution, the predictive distribution for an input test point x∗ in all
outputs is

p(f(x∗)|y) =N(f(x∗)|m∗, V∗), (2.54)

with

m∗ = K⊤ (x∗,X)(K(X,X)+ΣΣΣ)−1 y, (2.55)

V∗ = K(x∗,x∗)−K(x∗,X)(K(X,X)+ΣΣΣ)−1 K⊤ (x∗,X) , (2.56)

where m∗ ∈ RD and V∗ ∈ RD×D are the mean and variance for the vector value function’s
predictive distribution evaluated at x∗. K(x∗,X) ∈ RD×ND has entries (K(x∗,xi))d,d′ for
i ∈ {1, · · · ,N} and d,d′ ∈ {1, · · · ,D}.

The ICM model also suffers from computational complexity and intractable posterior
distributions. The ICM model demands a large computational complexity similar to the
single GPs (O(N3)) but increased by the number of D outputs. Its computational complexity
is O((ND)3) and its storage is O((ND)2). In terms of different likelihood functions, the
posterior distribution is intractable. By using the knowledge of sparse GP and variational
inference, we can speed up the computation in the MOGP to address the large computational
complexity and intractable posterior distribution (Moreno-Muñoz et al., 2018), the detail of
which is described in the next subsection.

2.7.2 Linear Model of Coregionalisation

The above subsection described ICM, a special case of the linear model of coregionalisation
(LMC) (Álvarez et al., 2012). This subsection focuses on LMC.

Suppose there is a vector value function f(·) = { fd(·)}D
d=1, where each output function

is represented as a linear combination of a group of Gaussian processes, then each fd(x) is

2.7 Multi-output Gaussian Process Overview 23

described as

fd(x) =
Q

∑
q=1

Rq

∑
i=1

ai
d,qui

q(x), (2.57)

where ai
d,q ∈ R, ui

q(x) is an independent and identically distributed (i.i.d) sample from GPs

uq(·)∼ GP
(
0,kq(·, ·)

)
. uq(·) refers to the q-th latent function in U(·) = {uq(·)}Q

q=1 and uq(·)
is independent of each other. Suppose the mean function of any function fd(x) is zero and
the cross-covariance between any two output functions is

k fd fd′
(
x,x′

)
=cov

[
fd(x), fd′

(
x′
)]

=
Q

∑
q=1

Q

∑
q′=1

Rq

∑
i=1

Rq

∑
i′=1

ai
d,qai′

d′,q′ cov
[
ui

q(x),u
i′
q′(x

′)
]
, (2.58)

where d,d′ ∈ {1, · · · ,D} and cov[·, ·] represents covariance operator. The k fd fd′ (x,x
′) is the

same as (K(x,x′))d,d′ above. Because ui
q(·) is i.i.d drawn from uq(·) and U(·) are mutually

independent, the above function (2.58) can be represented as

(
K(x,x′)

)
d,d′ = k fd fd′

(
x,x′

)
=

Q

∑
q=1

Rq

∑
i=1

ai
d,qai

d′,qkq
(
x,x′

)
=

Q

∑
q=1

bq
d,d′kq

(
x,x′

)
, (2.59)

where bq
d,d′ = ∑

Rq
i=1 ai

d,qai
d′,q. Similar to Eq. (2.49), we can write K(x,x′) here as:

K
(
x,x′

)
=

Q

∑
q=1

Bqkq
(
x,x′

)
, (2.60)

where each Bq ∈ RD×D is also a positive semi-definite matrix and is referred to as a core-
gionalisation matrix. When Q = 1, the above function is the same as expression (2.49). Since
we assume all outputs have the same input dataset X, the kernel matrix K(X,X) can be
expressed as a sum of Kronecker products:

K(X,X) =
Q

∑
q=1

Bq⊗ kq (X,X) . (2.61)

Following the same idea as ICM, we can obtain our predictive posterior distribution. For
simplicity, we assume Rq = 1.

Similar to single-output Gaussian process, the multi-output Gaussian processes also
suffers from computational complexity and has an intractable posterior distribution when

24 Gaussian Processes Overview

dealing with a non-Gaussian likelihood function. Here we use the methodology of stochastic
variational inference (SVI) to cope with these problems (Moreno-Muñoz et al., 2018), which
is also implemented in Chapter 3. SVI reduces the computational complexity from O((ND)3)

to O
(
QM3 +DNQM2) and reduces the storage from O((ND)2) to O

(
QM2 +DNQM

)
. It

can also approximate the posterior distribution given different types of likelihoods so it can
handle heterogeneous outputs, i.e., a mix of classification and regression outputs.

To apply SVI in MOGPs, we employ the inducing variable framework in Section 2.4 into
a multi-output Gaussian process format. We define a group of inducing points Z = {Zq}Q

q=1

and each set of M inducing points Zq =
[
z(1)q , · · · ,z(M)

q

]⊤
∈RM×v is associated to each latent

function uq(·). Each uq =
[
uq

(
z(1)q

)
, · · · ,uq

(
z(M)

q

)]⊤
refers to uq(·) evaluated at Zq. Then,

we assume u =
[
u⊤1 , · · · ,u⊤Q

]⊤
∈ RQM×1. Due to the mutual independence of U(·), the

distribution p(u) is expressed as p(u) =N (u | 0,Kuu) = ∏
Q
q=1 p

(
uq
)

and uq ∼N
(
0,Kq

)
,

where in Kq ∈RM×M each entry is kq

(
z(i)q ,z(j)

q

)
with z(i)q ,z(j)

q ∈ Zq. Kuu is a block-diagonal
matrix with each diagonal block shown as Kq. Suppose now fd is fd(xi) evaluated at all
xi ∈ X, fd = [fd(x1), · · · , fd(xN)]

⊤ and assume f =
[
f⊤1 , · · · , f⊤D

]⊤ ∈ RDN×1. Each output fd

are conditionally independent given u.
Now, we assume the joint distribution between outputs f and inducing variables u as:

q(f,u) = p(f | u)q(u) =
D

∏
d=1

p(fd | u)
Q

∏
q=1

q
(
uq
)
, (2.62)

where p(f | u) = N
(
f |KfuK−1

uu u,Kff−KfuK−1
uu Kuf

)
, Kff is the covariance matrix for the

input X (see equation (2.61)) and Kfu is the covariance matrix between the input X and

inducing variables; q
(
uq
)
= N

(
uq | µµµuq

,Suq

)
and

{
µµµuq

,Suq

}Q

q=1
are considered as the

variational parameters to be optimised.
The log-marginal likelihood is

log p(y) = log
∫ ∫

p(y, f,u)dfdu

= log
∫ ∫ p(y, f,u)q(f,u)

q(f,u)
dfdu

≥
∫ ∫

q(f,u)log
p(y, f,u)
q(f,u)

dfdu

=
∫ ∫

q(f,u)log
p(y, f,u)
q(f,u)

dfdu

= L, (2.63)

2.8 Summary 25

where L is also called a variational lower bound. We can simplify L further:

L=
∫ ∫

p(f|(u)q(u)log
p(y|f)p(f|u)p(u))

p(f|(u)q(u)
dfdu

=
∫ ∫ D

∏
d=1

p(fd | u)q(u)log
p(y|f)p(u))

q(u)
dfdu

=
∫ ∫ D

∏
d=1

p(fd | u)q(u)logp(y|f)dfdu−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

=
D

∑
d=1

Eq(fd) [logp(yd | fd)]−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

, (2.64)

where ∑
D
d=1Eq(fd) [logp(yd | fd)] is also valid across data points. Therefore, the lower bound

can be expressed as

L=
D

∑
d=1

N

∑
n=1

Eq(fd) [logp(yd(xn) | fd(xn))]−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

. (2.65)

By maximising L, we can obtain the optimisation hyper-parameters in LMC. Further, since
L factorises across data observations, it allows the use of a small number of mini-bath of
samples to perform optimisation so that it reduces the computational complexity of LMC
(Moreno-Muñoz et al., 2018).

To make a prediction, the approximate posterior distribution q(f) is

q(f) =
∫

p(f | u)q(u)du

=N
(

f |KfuK−1
uu µµµ,Kff +KfuK−1

uu (S−Kuu)K−1
uu K⊤fu

)
, (2.66)

where µµµ =
[
µµµ⊤u1

, · · · ,µµµ⊤uQ

]⊤
and S is a block diagonal matrix with blocks given as Suq .

2.8 Summary

In this chapter, we review the background of Gaussian processes and multi-output Gaussian
processes. First, the basics of the Gaussian process frameworks are described. For example,
we introduce Gaussian processes for regression and classification problems and Gaussian
processes with latent variables such as the Bayesian Gaussian process latent variable model.
As the non-Gaussian likelihood leads to intractable computation and computational complex-
ity limits the application of Gaussian processes, variational inference and inducing variables

26 Gaussian Processes Overview

strategies are described. Second, the basic multi-output Gaussian process frameworks are
explained. We introduce two traditional MOGP models: the intrinsic coregionalisation model
(ICM) and the linear model of coregionalisation (LMC). Further, we describe the stochas-
tic variational inference for MOGPs to deal with larger-scale datasets and heterogeneous
outputs. In the following chapters, we take these base models or strategies as fundamental
elements to build advanced multi-output Gaussian process models to deal with large-scale
multi-class classification (Chapter 3), large scale multi-class image classification (Chapter 4)
and hierarchical structure data regression (Chapter 5) problems.

Chapter 3

Multi-output Gaussian Processes for
Large-scale Multi-class Classification

Multi-output Gaussian processes (MOGPs) can solve multiple problems concurrently and
exploit the correlations not only with the input variables but also with output variables
(Alvarez, 2011; Álvarez et al., 2012; Bonilla et al., 2008; Dahl and Bonilla, 2019; Nguyen
et al., 2018; Wistuba et al., 2018). For example, in a sensor network, prediction of missing
signals from some sensors may be done by exploiting dependencies with signals obtained
from nearby sensors (Osborne et al., 2008).

Our main purpose in this chapter1 is to use MOGPs to study the problem of multiple
outputs where each output is a multi-class classification problem. The setting considered
here goes beyond multi-label classification since we allow each output to potentially have its
own inputs moving into the multi-task setting.

MOGPs have mainly been used for multi-output regression to predict continuous variables
(Álvarez et al., 2012; Bonilla et al., 2008; Dai et al., 2017). In this setting, the assumption
is that each output follows a Gaussian likelihood and the mean of the Gaussian likelihood
is given by one output of the MOGP. Due to the properties of the Gaussian distribution,
Bayesian inference is tractable in this case.

Beyond the muti-output regression problem, there is some research on other types of
outputs in MOGPs. For example, Skolidis and Sanguinetti (2011) use MOGPs to model
a setting where each output corresponds to a binary classification problem. Each binary
outcome is modelled using a probit likelihood. The MOGP corresponds to the so called
intrinsic coregionalisation model (ICM) (Bonilla et al., 2008). Since Bayesian inference is

1This chapter is based on Ma, C., & Álvarez, M. A. (2023). Large scale multi-output multi-class classifica-
tion using Gaussian processes. Machine Learning, 1-30.

28 Multi-output Gaussian Processes for Large-scale Multi-class Classification

intractable in this model, the authors approximate posterior distributions using expectation-
propagation and variational Bayes.

Several research works have addressed the case of multi-class classification using GPs.
Previous works have used the softmax likelihood (Galy-Fajou et al., 2020; Kim and Ghahra-
mani, 2006; Williams and Rasmussen, 2006), the multinomial probit likelihood function
(Girolami and Rogers, 2006) and the step function (Hernández-Lobato et al., 2011). Recently,
Liu et al. (2019) have used all of the above likelihoods through additive noise terms. The pa-
rameters in these likelihood functions are assumed to follow independent Gaussian processes.
Another strand of works generalise this setting by allowing correlated Gaussian processes
for the latent parameters of the likelihood functions, typically using MOGPs. Both Dezfouli
and Bonilla (2015) and Chai (2012) use an ICM for a single-output multi-class classification
problem modelled through a multinomial logistic likelihood, i.e. the softmax likelihood. In
terms of Bayesian inference, Chai (2012) proposes a variational sparse approximation for
the posterior distribution, and based on scalable automated variational inference, Dezfouli
and Bonilla (2015) approximate the posterior distribution using a mixture of Gaussians.
Moreno-Muñoz et al. (2018) build a heterogeneous multi-output Gaussian process, where
each output has its own likelihood, through a linear model of coregionalisation (LMC) (Ál-
varez et al., 2012). Moreno-Muñoz et al. (2018) use a stochastic variational approach for
Bayesian inference.

The approaches for single-output multi-class classification described above are restricted
to the case where the number of classes is small. They scale poorly when the number of
classes go beyond a few tens. Scalability is also poorly handled by the more general model
of Moreno-Muñoz et al. (2018) for the multi-output multi-class classification case, where
once again, problems that go beyond a few tens of classes are out of reach.

Our main contribution in this chapter is that we introduce a new extension of multi-output
GPs able to handle large scale multi-output multi-class classification problems, typically in
the range of hundreds and even thousands of classes. We achieve scalability by subsampling
both training input data and classes in each output, by using stochastic variational inference
(Hensman et al., 2013a; Moreno-Muñoz et al., 2018) and by choosing a softmax likelihood
function via Gumbel noise error for all outputs. We refer to this model as multi-output
Gaussian processes with augment & reduce (MOGPs-AR)2.

2The model is implemented based on Python 3.7, mainly depending on the library GPflow 2.1.3 which
was built on the library TensorFlow 2+. Our code is publicly available in the repository https://github.com/
ChunchaoPeter/MOGPs-AR.

https://github.com/ChunchaoPeter/MOGPs-AR
https://github.com/ChunchaoPeter/MOGPs-AR

3.1 Related Work 29

3.1 Related Work

As mentioned earlier, the multi-class classification problem has mainly been studied using
single-output GPs (Girolami and Rogers, 2006; Hernández-Lobato et al., 2011; Kim and
Ghahramani, 2006; Liu et al., 2019; Williams and Rasmussen, 2006). The model introduced
in this paper, MOGPs-AR, uses the softmax likelihood through additive noise errors, which
is the same as Liu et al. (2019). However, MOGPs-AR solves multiple output problems
together, while the model used by Liu et al. (2019), like all single-output GPs, only solves
single-output problems. Regarding single-output problems, MOGPs-AR can also improve
prediction using a correlation between all latent parameter functions whereas single-output
GPs cannot capture the correlation.

The works more relevant to this study are Chai (2012); Dezfouli and Bonilla (2015);
Moreno-Muñoz et al. (2018); Skolidis and Sanguinetti (2011). Both Chai (2012) and Dezfouli
and Bonilla (2015) can only handle a single-output multi-class classification problem even
if they use MOGPs. Nevertheless, our model can tackle multiple outputs where each
output is a multi-class classification problem. Skolidis and Sanguinetti (2011) only solve
multi-output binary classification problems, which is different to ours. Compared with
Skolidis and Sanguinetti (2011), our inference method is also suited to large scale datasets.
Moreno-Muñoz et al. (2018) can tackle multi-output multi-class classification problems and
have developed a stochastic variational inference method similar to us. However, we are
different to Moreno-Muñoz et al. (2018) since we can cope with a large number of classes by
subsampling classes.

The work by Panos et al. (2021) is very relevant to us since we use a similar subsampling
method. Panos et al. (2021) extend a semiparametric latent model, a special case of LMC,
to address the multi-label problem by using sigmoidal/Bernoulli likelihood for each latent
parameter function. Panos et al. (2021) can doubly subsample data points and classes
to reduce computational complexity based on stochastic variational inference, which is
analogous to us. However, our work is different in other aspects. First, we solve multi-class
classification problems using the softmax likelihood instead of multi-label problems using
sigmoidal/Bernoulli likelihood. Further, our model can deal with multi-output problems
rather than only tackling single-output problems.

30 Multi-output Gaussian Processes for Large-scale Multi-class Classification

3.2 Methodology

In this section, we derive the MOGPs-AR model. We first define the LMC model. We then
define the softmax likelihood through augmenting noise data. Finally, we describe stochastic
variational inference and the approximated predictive distribution for our model.

We assume there are D different outputs. The vector y(x) ∈RD groups all the D different
outputs:

y(x) = [y1(x),y2(x), · · · ,yD(x)]⊤ , (3.1)

where x ∈ Rv. Each output yd(x) ∈ {1, · · · ,Cd}(Cd ≥ 2 and d ∈ {1, · · · ,D}) is a categorical
variable and Cd is the number of classes in the d-th output. Like Moreno-Muñoz et al.
(2018), we assume that those outputs are conditionally independent given parameters θθθ(x) =
[θ1(x),θ2(x), · · · ,θD(x)]⊤, where θθθ(x) is defined by latent parameter functions:

f(x) =
[

f 1
1 (x), f 2

1 (x), · · · f
C1
1 (x), f 1

2 (x), f 2
2 (x), · · · , fCD

D (x)
]⊤
∈ RC×1, (3.2)

where C = ∑
D
d=1Cd and f c

d (x) is c-th latent parameter function in the d-th output evaluated
at x. We then obtain:

p(y(x)|θθθ(x)) = p(y(x)|f(x))

=
D

∏
d=1

p(yd(x)|θθθ d(x))

=
D

∏
d=1

p
(

yd(x)|̃fd(x)
)
, (3.3)

where f̃d(x) =
[

f 1
d (x), · · · , fCd

d (x)
]⊤
∈ RCd×1 is a group of latent parameter functions defin-

ing the parameters in θθθ d(x).

3.2.1 Linear Model of Coregionalisation

We use the linear model of coregionalisation (LMC). The LMC is a popular model in MOGPs,
where each output is expressed as a linear combination of a collection of Gaussian processes
(Álvarez et al., 2012).

We set up mutually independent latent functions U(·) =
{

uq(·)
}Q

q=1 where uq(·) follows
a Gaussian process and each latent parameter function f c

d (·) is a linear combination of
the latent functions U(·). Each function uq(·) is drawn from an independent GP prior:
uq(·)∼ GP

(
0,kq(·, ·)

)
, where kq(·, ·) can be any kernel function. In this chapter, we use the

3.2 Methodology 31

radial basis function kernel with automatic relevance determination (RBF-ARD) (Williams
and Rasmussen, 2006):

kard
(
x,x′

)
= σ

2
ard exp

−1
2

v

∑
j=1

(
x j− x′j

)2

l2
j

 , (3.4)

where x j is the j-th dimension of x, σ2
ard is a variance parameter and l j is the length scale for

the j-th input dimension. When all length scales are the same, the kernel is called radial basis
function kernel (RBF) (Lawrence and Hyvärinen, 2005). Hence, each f c

d (x) is defined as

f c
d (x) =

Q

∑
q=1

Rq

∑
i=1

ai
d,c,qui

q(x), (3.5)

where ai
d,c,q ∈ R can be considered as a weight on U and we assume {φq}Q

q=1 are the

hyperparameters for {kq(·, ·)}Q
q=1. Rq represents the number of latent functions ui

q(x) that are
sampled independently and identically from the Gaussian processes uq(·)∼ GP

(
0,kq(·, ·)

)
.

With q = 1, ...,Q and i = 1, ...,Rq, the function ui
q(x) have a zero mean and covariance

cov
[
ui

q(x),ui′
q′(x

′)
]

= kq (x,x′) if i = i′ and q = q′. Let the mean function of f c
d (x) be zero

and the cross-covariance function of f c
d (x) be

k f c
d f c′

d′

(
x,x′

)
=cov

[
f c
d (x), f c′

d′
(
x′
)]

=cov

[
Q

∑
q=1

Rq

∑
i=1

ai
d,c,qui

q(x),
Q

∑
q′=1

Rq

∑
i′=1

ai′
d′,c′,q′u

i′
q′(x

′)

]

=
Q

∑
q=1

Q

∑
q′=1

Rq

∑
i=1

Rq

∑
i′=1

ai
d,c,qai′

d′,c′,q′ cov
[
ui′

q(x),u
i′
q′(x

′)
]
. (3.6)

Because ui
q(·) is independently and identically drawn from uq(·) and U(·) are mutually

independent

k f c
d f c′

d′

(
x,x′

)
=

Q

∑
q=1

bq
(d,c),(d′,c′)kq

(
x,x′

)
, (3.7)

where bq
(d,c),(c′,c′) = ∑

Rq
i=1 ai

d,c,qai
d′,c′,q. For simplicity in the presentation, we assume that all

outputs yd(x) have a collection of the same input vectors X = {xn}N
n=1 ∈ RN×v. Our model

also works for each output with a different input dataset. Then yd=[yd(x1), · · · ,yd(xN)]
⊤ ∈

RN is the d-output dataset and y=[y⊤1 , · · · ,y⊤D]⊤ is the dataset for all outputs. For notation

32 Multi-output Gaussian Processes for Large-scale Multi-class Classification

simplicity, we define

fc
d = [f c

d (x1) , · · · , f c
d (xN)]

⊤ ∈ RN×1 (3.8)

f̃d =

[(
f1
d
)⊤

, · · · ,
(

fCd
d

)⊤]⊤
∈ RCdN×1 (3.9)

f =
[
f̃⊤1 , · · · , f̃⊤D

]⊤
∈ RCN×1 (3.10)

The prior distribution of f is given by f∼N(0,K), where K is a block-wise matrix based on{
Kfc

dfc′
d′

}D,D,Cd ,Cd′

d=1,d′=1,c=1,c′=1
as each block and Kfc

dfc′
d′

has entries computed using k f c
d f c′

d′
(xn,xm)

with xn,xm ∈ X. K can be formulated as a sum of Kronecker products K = ∑
Q
q=1 AqA⊤q ⊗

Kq = ∑
Q
q=1 Bq⊗Kq as well, where Aq ∈ RC×Rq and Bq have entries

{
ai

d,c,q

}D,Cd ,Rq

d=1,c=1,i=1

and
{

bq
(d,c),(d′,c′)

}D,D,Cd ,Cd′

d=1,d′=1,c=1,c′=1
, respectively. Kq ∈ RN×N has entries computed using

kq (xn,xm) for xn,xm ∈ X. Each matrix Bq ∈ RC×C is known as a coregionalisation matrix
and it controls the correlation between each latent parameter function.

3.2.2 Augmenting Model by Noise Data

In this section, we generalise the model in the last subsection to cope with the multi-
output multi-class classification problem using the softmax likelihood. We derive a softmax
likelihood function through Gumbel noise error for a generic output yd .

We take the d-th output yd(x) with the latent parameter function f̃d(x) = [f 1
d (x), f 2

d (x),
· · · , fCd

d (x)]⊤. We first add a Gumbel noise error to each latent parameter function in f̃d(x)
to get a new vector function hd(x) =

{
hc

d(x)
}Cd

c=1 for each of the classes in the d-th output.
We thus obtain:

hc
d(x) = f c

d (x)+ ε
c
d,i, (3.11)

yd(x) = argmax
c

hc
d(x), (3.12)

where εc
d,i is the i-th i.i.d. Gumbel noise error for class c in the d-th output. We define

hd(xi) =
(

h1
d (xi) , · · · ,hCd

d (xi)
)⊤
∈RCd×1. We then employ the internal step likelihood (Liu

3.2 Methodology 33

et al., 2019):

p(yd (xi) |hd(xi)) = ∏
c̸=yd(xi)

H
(

hyd(xi)
d (xi)−hc

d (xi)
)

= ∏
c̸=yd(xi)

H
(

f yd(xi)
d (xi)+ ε

yd(xi)
d,i − f c

d (xi)− ε
c
d,i

)
, (3.13)

where H(z) = 1 when z > 0; otherwise, H(z) = 0; yd (xi) is i-th point in d-th output. By
integrating hd(xi) out, we get

p
(

yd (xi) |̃fd(xi)
)
=
∫

p(yd (xi) |hd(xi)) p
(

hd(xi)|̃fd(xi)
)

dhd(xi)

=
∫

φG

(
εd,i
)

∏
c̸=yd(xi)

ΦG

(
εd,i + f yd(xi)

d (xi)− f c
d (xi)

)
dεd,i, (3.14)

where φG(·) and ΦG(·) are the probability density function and the cumulative distribu-
tion function of the Gumbel distribution, respectively. (NB: We drop out the c in εc

d,i for
convenience since all the εc

d,i are from the same Gumbel error distribution). Now, we as-
sume the Gumbel error εd,i ∼ φG(εd,i|0,1) so we obtain φG(εd,i) = exp

(
−εd,i− e−εd,i

)
and

ΦG(εd,i) = exp(−e−εd,i). Eq. (3.14) can be obtained by eliminating εd,i from Eq. (3.15)
through marginalization. The log-joint of Eq. (3.15), involving a sum over possible classes c,
allows unbiased estimates of the log probability and its gradient (Ruiz et al., 2018).

p
(

yd (xi) ,εd,i|̃fd(xi)
)
= φG

(
εd,i
)

∏
c̸=yd(xi)

ΦG

(
εd,i + f yd(xi)

d (xi)− f c
d (xi)

)
. (3.15)

From expression (3.14), we recover a softmax likelihood (Liu et al., 2019; Ruiz et al., 2018):

p
(

yd (xi) |̃fd(xi)
)
=

exp
(

f yd(xi)
d (xi)

)
∑

Cd
c=1 exp

(
f c
d (xi)

) . (3.16)

The softmax likelihood is a common likelihood used in multi-class classification with
Gaussian processes (Williams and Rasmussen, 2006). As mentioned in expression (4.3), all
outputs are conditionally independent given the corresponding latent parameter functions so
each output has its own likelihood expression (3.14).

Since our work shares similarities with the works of Liu et al. (2019) and Ruiz et al.
(2018), we would like to emphasize the differences between our work and theirs here. Ruiz
et al. (2018) employed stochastic subsampling over both training data sets and classes for a

34 Multi-output Gaussian Processes for Large-scale Multi-class Classification

single output problem. Our approach is similar in that we also subsample both training data
and classes. To some extent, we consider that we generalise a parametric model from Ruiz
et al. (2018) to our non-parametric model. MOGPs-AR uses the softmax likelihood with
additive noise errors, which is the same as Liu et al. (2019). However, MOGPs-AR solves
multiple output problems simultaneously, whereas the model used by Liu et al. (2019) only
solves single-output problems and does not apply stochastic subsampling over classes.

3.2.3 Scalable Variational Inference

We have derived the LMC model and used the softmax likelihood. However, a computational
challenge exists if there are a very large number of classes and training instances in each
output. We thus use scalable variational inference to reduce the computational complexity
using the techniques of inducing points and subsampling, where we refer our model to
multi-output Gaussian processes with augment & reduce (MOGPs-AR). Inducing points
can ease the computational complexity of the inversion of a kernel matrix from O

(
N3) to

O
(
NM2), where N is the number of data points per output and M is the number of inducing

points (M≪ N). Subsampling reduces the computational complexity of our model using a
subset of both training data and classes for each output during hyperparameter and parameter
optimisation.

3.2.3.1 Inducing Points for MOGPs-AR

We first define a group of inducing points Z = {Z1}Q
q=1 and each set has a collection of

M inducing points (Hensman et al., 2013a) Zq =
{

zm
q
}M

m=1 ∈ RM×v for each latent func-

tion uq. We then obtain uq =
[
uq

(
z(1)q

)
, · · · ,uq

(
z(M)

q

)]⊤
evaluated at Zq. We assume

u =
[
u⊤1 , · · · ,u⊤Q

]⊤
∈ RQM×1. Since the latent functions U(·) =

{
uq(·)

}Q
q=1 are mutually

independent, the distribution p(u) factorises as p(u) = ∏
Q
q=1 p

(
uq
)
, with uq ∼ N

(
0,Kq

)
,

where Kq ∈ RM×M has entries given by kq

(
z(i)q ,z(j)

q

)
with z(i)q ,z(j)

q ∈ Zq. The latent parame-
ter functions fc

d are conditionally independent given u. We therefore obtain the conditional
distribution p(f|u)

p(f|u) =
D

∏
d=1

Cd

∏
c=1

p(fc
d|u)

=
D

∏
d=1

Cd

∏
c=1

N
(

fc
d|Kfc

duK−1
uu u,Kfc

dfc
d
−Kfc

duK−1
uu K⊤fc

du

)
, (3.17)

3.2 Methodology 35

where Kuu ∈ RQM×QM is a block-diagonal matrix based on Kq as each block.
Based on Liu et al. (2019); Moreno-Muñoz et al. (2018), we obtain the lower bound L

for log p(y):

log p(y) = log
∫ ∫ ∫

p(y,ε, f,u)dfdεdu

= log
∫ ∫ ∫ p(y,ε, f,u)q(f,u,ε)

q(f,u,ε)
dfdεdu

≥
∫ ∫ ∫

q(f,u,ε)log
p(y,ε, f,u)
q(f,u,ε)

dfdεdu

=
∫ ∫ ∫

q(ε|f,u)q(f,u)log
p(y,ε, f,u)

q(ε|f,u)q(f,u)
dfdεdu

= L, (3.18)

where

q(f,u) = p(f | u)q(u) =
D

∏
d=1

Cd

∏
c=1

p(fc
d | u)

Q

∏
q=1

q
(
uq
)
,

where q
(
uq
)
= N

(
uq | µµµuq

,Suq

)
and we refer

{
µµµuq

,Suq

}Q

q=1
as the variational hyperpa-

rameters that need to be optimised. Further, we get (see Appendix B for detail):

L=
D

∑
d

N

∑
i

〈
log p

(
yd (xi) |̃fd(xi),εd,i

)〉
q(̃fd(xi))q(εd,i |̃fd(xi))

−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))
−

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i |̃fd(xi)
)
∥p
(
εd,i
))

, (3.19)

where q
(

εd,i |̃fd(xi)
)

approximates the posterior p
(

εd,i|yd (xi) , f̃d(xi)
)

:

p
(

εd,i|yd (xi) , f̃d(xi)
)

∝ p
(

yd (xi) |̃fd(xi),εd,i

)
p
(
εd,i
)
, (3.20)

p
(

yd (xi) |̃fd(xi),εd,i

)
= ∏

c̸=yd(xi)

ΦG

(
εd,i + f yd(xi)

d (xi)− f c
d (xi)

)
,

= ∏
c̸=yd(xi)

exp
(
−e−εd,i− f

yd(xi)
d (xi)+ f c

d (xi)

)
. (3.21)

36 Multi-output Gaussian Processes for Large-scale Multi-class Classification

p
(
εd,i
)

is a probability density function of the standard Gumbel distribution. q
(̃

fd(xi)
)

approximates the marginal posterior for f̃d(xi):

q
(̃

fd(xi)
)
=
∫

p
(̃

fd(xi)|u
)

q(u)du

=N
(̃

fd(xi)|Kf̃d(xi)u
K−1

uu µµµu,

Kf̃d(xi)̃fd(xi)
+Kf̃d(xi)u

K−1
uu (Su−Kuu)K−1

uu K⊤f̃d(xi)u

)
, (3.22)

where µµµu =
[
µµµ⊤u1

, · · · ,µµµ⊤uQ

]⊤
and Su is a block diagonal matrix with blocks given as Suq .

After calculation (NB: detail can be found in Appendix B), we obtain:

L=−
D

∑
d=1

N

∑
i=1

log
(
Pd,i +1

)
−

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

, (3.23)

where

Pd,i = exp

ν
f

yd(xi)
d

(xi)

2
−µ

f
yd(xi)
d

(xi)

 ∑
c̸=yd(xi)

exp

(
ν f c

d
(xi)

2
+µ f c

d
(xi)

)
, (3.24)

where µ f c
d
(xi) and ν f c

d
(xi) are the mean and variance of q

(
f c
d (xi)

)
, respectively.

3.2.3.2 Reducing Computational Complexity by Subsampling

To reduce the computational complexity of our model, we use only a subset of the data
observations and a subset of the classes to estimate the parameters and hyperparameters. The
optimal parameters and hyperparameters are chosen by maximising an unbiased estimator
of L (3.23), where the unbiased estimator is obtained through a subset of both training data
points (one sum: ∑

N
i=1 in L) and classes in each output (another sum: ∑c̸=yd(xi) in L).

In our model, the hyperparameters are Z,
{

ac,q
}C,Q

c=1,q=1, {φq}Q
q=1, {wp}P

p=1 and the

variational parameters are
{

uq,Suq

}Q
q=1 for {q

(
uq
)
}q=Q

q=1 . We refer to all those parameters as
Θ. To obtain the optimal values of Θ, we use a gradient descent to maximise L with respect
to Θ:

3.2 Methodology 37

∇ΘL=−∇Θ

D

∑
d=1

N

∑
i=1

log
(
Pd,i +1

)
−∇Θ

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

=−∇Θ

D

∑
d=1

N

∑
i=1

log

((
ψyd(xi) ∑

c̸=yd(xi)

γd,c(xi)

)
+1

)

−∇Θ

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

, (3.25)

where, for notation simplicity, we define

ψyd(xi) = exp

ν
f

yd(xi)
d

(xi)

2
−µ

f
yd(xi)
d

(xi)

 , (3.26)

γd,c(xi) = exp

(
ν f c

d
(xi)

2
+µ f c

d
(xi)

)
. (3.27)

We then estimate ∇ΘL by randomly sampling a subset of data points B= {b1, ...,b|B|} ⊆
{x1, . . . ,xN} of size |B| and a subset of classes S= {s1, ...,s|S|} ⊆ {1, . . . ,Cd}\{yd(x)} with
size |S| (“\” means {yd(x)} is excluded from {1, . . . ,Cd}) for each multi-class classification
output:

∇ΘL̃=−∇Θ

D

∑
d=1

∑
xi∈B

N
|B|

log

(
K−1
|S|

(
ψyd(xi) ∑

c∈S
γd,c(xi)

)
+1

)

−∇Θ

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

. (3.28)

∇ΘL̃ is an unbiased estimator for ∇ΘL where the computational complexity of MOGPs-AR
is dominated by optimising the parameters by maximising L.

Our sampling strategy is in Algorithm 1. The computational complexity of MOGPs-AR
mainly depends on the inversion of Kuu with complexity O(QM3) and products like Kf̃u
with complexity O

(
D|S||B|QM2); if we do not use the subsampling of classes, we have to

calculate products like Kfu with a cost of O
(
C|B|QM2), where the notations are defined as

below:

38 Multi-output Gaussian Processes for Large-scale Multi-class Classification

f̃ =
[
f̃⊤1,B, · · · , f̃

⊤
D,B

]⊤
∈ RD|S||B|×1 (3.29)

f =
[
f⊤1,B, · · · , f

⊤
D,B

]⊤
∈ RC|B|×1 (3.30)

f̃d,B =
[
fS1
d,B, · · · , f

S|S|
d,B

]⊤
∈ R|S||B|×1 (3.31)

fd,B =
[
f1
d,B, · · · , f

Cd
d,B

]⊤
∈ RCd |B|×1 (3.32)

fc
d,B =

[
f c
d (b1) , · · · , f c

d
(
b|B|

)]⊤ ∈ R|B|×1. (3.33)

We observe that D|S| ≪ C (C = ∑
D
d=1Cd) so MOGPs-AR alleviates the computational

complexity of the product Kf̃u from O
(
C|B|QM2) to O

(
D|S||B|QM2).

Algorithm 1 Sampling strategy

1: Input: data (X, y), minibatch sizes |B| and |S|
2: Output: parameters Θ

3: Initialise all parameters and hyperparameters
4: for iteration t = 1, 2, 3,...,until convergence do
5: # Sampling minibatches
6: Sample a minibatch of data, B⊆ {x1, . . . ,xN}
7: for i ∈B do
8: # Sampling Classes
9: Sample a set of classes, Sd,i ⊆ {1, . . . ,Cd}\{yd(xi)}, d ∈ {1, ...,D}

10: Compute q
(

f c
d (xi)

)
, where c ∈ Sd,i∪{yd(xi)}, d ∈ {1, ...,D} and |S|= |Sd,i|+1

11: end for
12: Gradient step on parameters: Θ←Θ+α∇ΘL̃

13: end for

3.2.4 Prediction of MOGPs-AR

In this subsection, we derive the predictive distribution of MOGPs-AR. Considering a new
test input x∗ in the d-th output, we assume p(u|y) ≈ q(u) and approximate the predictive
distribution p(yd (x∗)) by

p(yd (x∗) |y)≈
∫

p
(

yd (x∗) | f̃d (x∗)
)

q
(̃

fd (x∗)
)

d̃fd (x∗) , (3.34)

3.2 Methodology 39

where q
(̃

fd (x∗)
)
=
∫

p
(̃

fd (x∗) | u
)

q(u)du = ∏
Cd
c=1 q

(
f c
d (x∗)

)
. The approximated latent

parameter functions q
(̃

fd (x∗)
)

are mutually independent, so we obtain

p(yd (x∗) |y)≈
∫

p
(

yd (x∗) | f̃d (x∗)
)

q
(̃

fd (x∗)
)

d̃fd (x∗)

=
∫ exp

(
f yd(x∗)
d (x∗)

)
∑

Cd
c=1 exp

(
f c
d (x∗)

) Cd

∏
c=1

N
(

f c
d (x∗) | µ

c
fd (x∗) ,ν

c
fd (x∗)

)
d̃fd (x∗) . (3.35)

We can use Monte Carlo to approximate the integral in the same way as Liu et al. (2019).

Table 3.1 Setting and parameters of different GP models in different datasets. All the models for all datasets use
100 inducing variables and 200 mini-batch sizes. “# of Folds” indicates the number of folds for cross-validation.
“Q” refers to the optimal number Q of latent functions U.

Dataset Model Q # of Folds
S-20 MOGPs-AR [5, 10, 15, 20] 5
S-20 MG-M [5, 10, 15, 20] 5

Balance MOGPs-AR (1) [1, 2, 3] 5
Balance MG-M [1, 2, 3] 5
Balance G-A None 5
Balance G-M None 5
CANE MOGPs-AR (5) [6, 9] 5
CANE MG-M [6, 9] 5
CANE G-A None 5
CANE G-M None 5

Mediamill MOGPs-AR (5) [10, 15, 20] 5
Mediamill MG-M [10, 15, 20] 5
Mediamill G-A None 5
Mediamill G-M None 5

Bibtex MOGPs-AR (20) [5, 10, 15, 20] 3
Bibtex G-A None 3
Bibtex G-M None 3

UJIIndoorLoc MOGPs-AR (2) [4, 8, 12] 3
UJIIndoorLoc G-A None 3
UJIIndoorLoc G-M None 3

40 Multi-output Gaussian Processes for Large-scale Multi-class Classification

3.3 Experiments

In this section, we evaluate MOGPs-AR in various datasets. We apply MOGPs-AR in a
synthetic dataset to show its scalability in the number of classes compared to multi-output
Gaussian processes. We also compare MOGPs-AR to other models in different real datasets.

Baselines: We compare the MOGPs-AR with the following two single-output and one
multi-output Gaussian process models: 1) A Gaussian process for multi-class classification
model (G-M), an independent Gaussian process using the softmax likelihood. 2) A Gaussian
process multi-class classification with additive noise model (G-A), an independent Gaussian
process using the softmax likelihood via Gumbel noise. 3) A multi-output Gaussian process
model for multi-class classification problems (MG-M), a standard linear model of coregion-
alisation for MOGPs using the softmax likelihood. All models are trained by 4000 iterations
using the Adam optimiser with 0.01 learning rate (Kingma and Ba, 2014). We use the same
80% training and 20% validation dataset to choose the optimal number Q of latent functions
U, where we re-optimise all hyperparameters during cross-validation, for MOGPs-AR and
MG-M.

Evaluation Metrics: There are three different evaluation metrics in this chapter, preci-
sions weighted, recall weighted and F1 weighted:

Precision-Weighted =
1

∑l∈L
∣∣Ol

true
∣∣ ∑

l∈L

∣∣∣Ol
true

∣∣∣P(Ol
prediction,O

l
true

)
, (3.36)

Recall-Weighted =
1

∑l∈L
∣∣Ol

true
∣∣ ∑

l∈L

∣∣∣Ol
true

∣∣∣R(Ol
prediction,O

l
true

)
, (3.37)

F1-Weighted =
1

∑l∈L
∣∣Ol

true
∣∣ ∑

l∈L

∣∣∣Ol
true

∣∣∣F1

(
Ol

prediction,O
l
true

)
, (3.38)

P(Ol
prediction,O

l
true) =

|Ol
prediction∩O

l
true|

|Ol
prediction|

, (3.39)

R(Ol
prediction,O

l
true) =

|Ol
prediction∩O

l
true|

|Ol
true|

, (3.40)

F1(Ol
prediction,O

l
true) = 2

P(Ol
prediction,O

l
true)×R(Ol

prediction,O
l
true)

P(Ol
prediction,O

l
true)+R(Ol

prediction,O
l
true)

, (3.41)

where Otrue and Oprediction are separate sets of true and predicted pairs (input data point,
class) (e.g., Otrue,n = (xn,ytrue,n) where xn is the n-th input data point and ytrue,n is the
corresponding class for xn. The Ol

true and Ol
prediction are separate subsets of Otrue and

3.3 Experiments 41

Oprediction (e.g., Ol
true = {(xn,ytrue,n) ∈Otrue | ytrue,n = l,n ∈ N}). The L and N are the sets

of classes and input data points, respectively. The formulas use P(Ol
prediction,O

l
true) = 0 or

R(Ol
prediction,O

l
true) = 0 if Ol

prediction = /0 or Ol
true = /0.

The synthetic data experiment was performed on a Dell PowerEdge C6320 with an Intel
Xeon E5-2630 v3 at 2.40 GHz and 64GB of RAM. All real data experiments were performed
on a PowerEdge R740XD server with NVIDIA Tesla v100 32GB GDDR.

3.3.1 B matrix evaluation

In this subsection, we evaluate the B matrix in our model on a synthetic data. We created
a synthetic two-class classification dataset and fit our model to the dataset. After training,
we obtained B =

(11.24525249 −11.57961005
−11.57961005 11.92390914

)
. The absolute values of each element in B are

very similar to each other, and the covariance is negative (e.g., -11.57961005). Following
this, we create a two-class classification synthetic dataset by sampling latent parameter
functions (f (.)) from a normal distribution with zero mean and covariance matrix B

⊗
K,

where K ∈ RN×N has entries computed using k (xn,xm), which is assumed to be RBF with
0.1 lengthscale and 1 variance and xn or xm ranges between -10 and 10. Figure 3.1 (Left)
shows sample points for two latent parameter functions, f1 and f2, respectively. If a point in
f1 is greater than its corresponding point in f2 for the same input, the sample belongs to class
one; otherwise, it belongs to class two. The total number of data points is 2000, as shown in
Figure 3.1 (Right).

1

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

0

A two-class classification dataset

2

1

0

-1

-2

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Samples for
Samples for

Fig. 3.1 Left: Sample data points corresponding to latent parameter functions f1 and f2, respectively; Right:
The synthetic dataset consists of data points with a value of one on the y-axis belonging to class one, while data
points with a value of zero belong to class two.

To check the robustness of the B estimation, we performed five-fold cross-validation on
the synthetic dataset using our model. To make it easy to compare the estimated B with the
true B, we set the number of latent functions, U(·) =

{
uq(·)

}Q
q=1, to one (Q = 1). Table 3.2

42 Multi-output Gaussian Processes for Large-scale Multi-class Classification

Table 3.2 The values of B matrix and Recall-Weighted in each fold.

Order of fold B Recall-Weighted

1st fold
(8.21637951 −8.40607578
−8.40607578 8.60015167

)
0.995

2nd fold
(11.82047399 −12.08549469
−12.08549469 12.35645729

)
0.99

3rd fold
(13.68672327 −14.18900248
−14.18900248 14.70971447

)
1.0

4th fold
(13.26049788 −13.80302979
−13.80302979 14.36775851

)
0.9925

5th fold
(14.31689019 −14.75963664
−14.75963664 15.21607492

)
0.9975

shows our Recall-Weighted performance and B estimation results. We observed that the
values of B in the second fold are much closer to the true B values. However, they are not
identical to the true B, possibly due to the non-convex nature of our model and the presence
of multiple parameters, such as inducing variables. Nonetheless, the main pattern of B in all
folds matches the true B: all absolute values for each element in the B-matrix are similar and
the correlation between latent parameter functions is negative.

3.3.2 Synthetic Data

In this subsection, we compare the performance of MOGPs-AR with MG-M on synthetic
data where we generate a single-output classification synthetic dataset.3 We also run an
experiment on the synthetic dataset to explain the choice of the number of inducing points
in our model. We create a 20-class dataset by assigning a cluster of 100 points normally
distributed, where each data point has five features, to each class. In total, there are 2000
samples. Since the synthetic data has 20 classes, we refer to it as S-20. We use 20 classes to
compare MOGPs-AR with MG-M in terms of scalability. MOGPs-AR and MG-M use the
same parameter setting (see Table 3.1) apart from that MOGPs-AR use a different number of
subset classes.

3This data is generated from scikit-learn (Pedregosa et al., 2011)

3.3 Experiments 43

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 5 9 12 15

0.56

0.58

0.60

0.62

0.64

Training time

R
ec

al
l-

W
ei

gh
te

d

T
he

 tr
ai

n
in

g
tim

es
 (

10
00

 s
ec

on
ds

)

Number of samplesModels
MOGPs-AR(1)

MG-M
MOGPs-AR

MG-MMOGPs-AR(9)MOGPs-AR(5) MOGPs-AR(15)MOGPs-AR(12) MOGPs-AR(17)

 Recall-Weighted in S-20

17

Fig. 3.2 Left: the training time in MG-M and MOGPs-AR model in S-20 (MOGPs-AR(5) means that MOGPs-
AR with a subset of classes Sd ⊆ {1, . . . ,Cd}\{yd(x)} with size |Sd |= 5 (|S|= |Sd |+1) and we use yd(x) and
Cd for notation consistency but here there is only one output); Right: the recall weight between MG-M and
MOGPs-AR with a different number of samples (e.g., 5 means |Sd |= 5).

We compare MOGPs-AR with MG-M in terms of training time and recall-weighted
performance. Figure 3.2 shows the mean training time for MOGPs-AR is less than MG-M in
five folds cross-validation. This is because the computational complexity of MOGPs-AR
is less than MG-M. As mentioned in 3.2.3.2, compared to MG-M, MOGPs-AR reduce the
computational complexity of the product Kf̃u from O

(
C|B|QM2) to O

(
D|S||B|QM2) where

D|S| ≪C. Figure 3.2 empirically shows the mean training time of MOGPs-AR (1) with 596s
is nearly one-sixth of MG-M with 3641s. The mean training time in MOGPs-AR increases
as the number of |Sd| increases but it is still less than MG-M. While MOGPs-AR has less
training time than MG-M, it performs similarly in recall-weighted with MG-M for S-20.
Even if we use a small subset of classes, e.g., five classes, MOGPs-AR also has a close
performance to MG-M (see Figure 3.2 right panel). The recall-weighted of MOGPs-AR
slightly increases as the number of samples increase. Further, we notice that MOGPs-AR
(17) has a better performance than MG-M. In theory, MOGPs-AR should have the same
performance as MG-M, however, we can not perform convex optimisation for both MG-M
and MOGPs-AR; so, in practice, MOGPs-AR may outperform MG-M in various performance
metrics.

In general, the number of inducing points can be determined using cross-validation
strategies. In our case, to identify a reasonable number of inducing points for our model, we
use the S-20 dataset and implemented MOGPs-AR(5) with a range of inducing point values,
varying from 10 to 200. Figure 3.3 illustrates the Recall-Weighted of MOGPs-AR(5) with
different numbers of inducing points on S-20, demonstrating the robustness of our model to
the number of inducing points. Surprisingly, our results show that the number of inducing
points of 40 provides the best performance, despite the expectation that more inducing points

44 Multi-output Gaussian Processes for Large-scale Multi-class Classification

would result in better performance. This might be due to the fact that our model is a non-
convex model. The chapter’s primary focus is on presenting a new MOGP extension capable
of handling large-scale multi-output multi-class classification problems, such as those with
hundreds of classes. Therefore, we employed a fixed number of inducing points for all GP
models in each experiment to ensure consistency across all datasets. Specifically, we selected
100 inducing points, which is the same number used in Moreno-Muñoz et al. (2018) study, on
which our model is based. This choice was also influenced by computational cost. Similarly,
we determined other parameters such as the mini-batch size based on computational cost
considerations.

MOGPs-AR(5)

10 20 30 40 50 60 70 80 90 100 200

0.625

0.620

0.615

0.610

0.605

0.600

0.595

0.590

0.585

Fig. 3.3 Recall-Weighted in S-20 (MOGPs-AR(5) with a different number of inducing points).

3.3.3 Single-output GP Classification: Four Real Datasets

We use the following four real datasets to test the performance of the different GP classifiers:
1) Balance (Dua and Graff, 2017) is a dataset for the results of psychology experiments.
There are 625 data points with four discrete variables: Left-Weight, Left-Distance, Right-
Weight and Right-Distance. The value of all four discrete variables ranges from one to five.
The dataset consists of three classes: the balance scale tipped to the right (R), tipped to the
left (L) or balanced (B). 2) CANE9 (Dua and Graff, 2017) contains 1080 documents of
free text business descriptions of Brazilian companies. Those documents are divided into
nine different categories. Each document has 856 integer variables (word frequency). 3)
Mediamill (Snoek et al., 2006) is a multi-label dataset for generic video indexing. To apply
multi-classification, we only maintained one label, which is the first label to appear, for
each data point. Further, we only use part of this dataset since the original dataset is highly
imbalanced. We then obtain the number of data points for each class ranged from 31 to
545. In total, we have 6689 data points with 120 numeric features and 35 classes. 4) Bibtex
dataset (Katakis et al., 2008) is also a multi-label data that contains 7395 Bibtex entries with
1836 variables. Similarly, we only maintained one label, which is the first label to appear,
obtaining 148 classes.

3.3 Experiments 45

In all three performance measures, MOGPs-AR outperforms G-A and G-M on all four
datasets (see Figure 3.4). This is because MOGPs-AR can use each latent parameter function
in f, which is a linear combination of latent functions U, to predict each class. The underlying
function of the latent functions U and Bq can transfer knowledge between each class in the
same output. However, G-A and G-M only have independent Gaussian processes that cannot
capture the similarity between each class. Further, Figure 3.4 indicates that using a small
subset of classes (e.g., MOGPs-AR(1) or MOGPs-AR(5)), MOGPs-AR obtains a similar
result as MG-M for Balance, CANE9 and Mediamill datasets as discussed as in 3.3.2.

Compared with single-output Gaussian processes, MOGPs-AR can achieve around 10%
improvement in terms of three performance metrics on Balance and CANE9 dataset (Figure
3.4 upper panel). The optimal number (Q) of latent functions U is two and nine for the
Balance and CANE9 datasets, respectively. Those latent functions share the knowledge
between each class and help to improve the performance. There is also a connection between
single output and multi-output Gaussian processes. Considering an extreme case, we assume
there is only one class, Q=1 and Bq = 1, in theory, MOGPs-AR and MG-M have the same
structure as G-A and G-M, respectively.

0.00

0.10

0.15

0.20

0.25

0.30

0.35

(a) (b)

(d)(c)
0.00

0.10

0.15

0.20

0.25

0.30

0.35

Precision-Weighted Recall-Weighted F1-Weighted Precision-Weighted Recall-Weighted F1-Weighted

Precision-Weighted Recall-Weighted F1-Weighted Precision-Weighted Recall-Weighted F1-Weighted
0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

G-A
G-M
MG-M

MOGPs-AR(1)

G-A
G-M

MG-M
MOGPs-AR(5)

G-A
G-M

MG-M
MOGPs-AR(5)

G-A
G-M

MOGPs-AR(20)

0.05 0.05

Fig. 3.4 Performance in five folds cross-validation (mean ± standard deviation) in Balance, CANE9 and
Mediamill datasets (Three fixed training/test datasets in the Bibtex). (a): Balance data results; (b): CANE9 data
results; (c): Mediamill data results; (d): Bibtex data results.

46 Multi-output Gaussian Processes for Large-scale Multi-class Classification

Regarding both Mediallmill (35 classes) and Bibtex (148 classes), MOGPs-AR has
excellent performance compared to the single-output Gaussian processes and MG-M. For
the Mediamill dataset, based on capturing dependency between each class, MOGPs-AR is
nearly six times better than G-A and four times better than G-M in terms of F1-Weighted,
where the mean of F1-Weighted is 0.04 for G-A, 0.08 for G-M and 0.25 for MOGPs-AR.
Further, we cannot apply MG-M in the Bibtex dataset since it is not able to compute Kfu
(out of memory). However, MOGPs-AR scales well since it only uses a subset of classes
(MOGPs-AR (20)) for prediction.

3.3.4 Multi-output GP Classifications: UJIIndoorLoc

To compare the performance of MOGPs-AR in multi-output multi-class classification prob-
lems, we apply MOGPs-AR to UJIIndoorLoc dataset (Torres-Sospedra et al., 2014). There
are 21048 instances that rely on a WIFI fingerprint for three buildings of Universitat Jaume I
where Building I and Building II each has four floors and Building III has five floors. Each
instance has 520 features based on signal strength intensity. We randomly sample 200 data
points from each floor so there are 800 data points each for Building I and Building II and
1000 data points for Building III. Further, we standardise the dataset for each building. We
make predictions for each floor depending on the 520 features. Since Universitat Jaume I has
three buildings, we assume there is a strong correlation between each building. We regard
each building as its own output and different floors as different classes in our model. The
UJIIndoorLoc is considered as a multi-output multi-class classification problem. In this and
the following experiment, we do not apply the MG-M model due to its computational com-
plexity. MOGPs-AR can be an alternative model for MG-M so we only consider MOGPs-AR
and two single-output GP models.

Figure 3.5 shows that MOGPs-AR outperforms single-output Gaussian processes in
Buildings I, II and III in all three performance measures. For example, MOGPs-AR can
achieve around 50% improvement in terms of recall-weighted on Building I compared with
single output Gaussian processes. The reason is that MOGPs-AR can capture intra- and
inter-dependencies in all three buildings. The dependencies can help improve the prediction
for all buildings. The single-output Gaussian process cannot use the dependency so it does
not perform well in UJIIndoorLoc.

We built Hinton diagrams of coregionalisation matrices to analyse the estimated hyperpa-
rameters and correlations between classes. A coregionalisation matrix Bq can have positive
or negative entries, indicating positive or negative cross-covariances. In the Hinton diagram
of any Bq, the white and black squares represent the positive and negative correlation values,
respectively, and the magnitude of each value is represented by the size of each square (see

3.3 Experiments 47

Figure 3.6). In each fold of cross-validation, there are different training and test datasets and
our model is also a non-convex model so we could obtain different parameters for our trained
model for each fold. Hence, we obtain different Hinton diagrams for the same dataset in
the different folds. We still obtain a similar pattern in different folds for the same dataset
probably because the training and test datasets are from the same distribution. Figure 3.6
shows Hinton diagrams of a few different coregionalisation matrices and the UJIIndoorLoc
dataset. Figure 3.6 (a) and (b) indicate that Building III correlates less with Building I and II.

0.30

0.40

0.50

0.60

0.70

0.80

0.85
Performance in Building I

G-A

G-M

MOGPs-AR(2)

0.60

0.70

0.80

0.85

Performance in Building II

G-A

G-M

MOGPs-AR(2) 0.50

0.60

0.70

0.80

0.85
Performance in Building III

G-A

G-M

MOGPs-AR(2)

Precision-Weighted Recall-Weighted F1-Weighted Precision-Weighted Recall-Weighted F1-WeightedPrecision-Weighted Recall-Weighted F1-Weighted

Fig. 3.5 Performance in cross-validation (mean ± standard deviation).

Fig. 3.6 Hinton diagram of a few coregionalisation matrices. (a) and (b) are Hinton diagrams of B4 and B6 for
the UJIIndoorLoc dataset during the second fold cross-validation where the blue, red and cyan colours are the
index of each floor in Buildings I, II and III.

48 Multi-output Gaussian Processes for Large-scale Multi-class Classification

To investigate the correlation between intra- and inter-output, we create a global absolute
coregionalisation matrix. First, we create absolute coregionalisation matrices

{
Babs

q
}Q

q=1,

where Babs
q ∈ RC×C, by taking the absolute value of each entry in Bq. We use the absolute

value of the entries to avoid the cancellation of positive or negative values when summing
them together, which indicates the absence of the correlation. Second, we obtain the mean
of those absolute coregionalisation matrices: B = 1

Q ∑
Q
q=1 Babs

q and B ∈ RC×C. Since we are
performing K-fold cross-validation, we have different K mean absolute coregionalisation

matrices:
{

Bi
}K

i=1
, where Bi ∈ RC×C refers to the mean absolute coregionalisation matrices

during the i-th fold cross-validation. Further, we calculate the mean of
{

Bi
}K

i=1
for all K-fold

cross-validations so B̃ ∈ RC×C = 1
K ∑

K
i=1 Bi:

B̃ =


(
B̃
)

1,1 . . .
(
B̃
)

1,D(
B̃
)

2,1 . . .
(
B̃
)

2,D
...(

B̃
)

D,1 . . .
(
B̃
)

D,D

 , (3.42)

where
(
B̃
)

i, j ∈ RCi×C j indicates the correlations for all latent parameter functions between
i-th output and j-th output. Finally, in order to find the correlation for outputs independently,
we calculate a scalar B̃i, j =

1
CiC j

∑m ∑n

{(
B̃
)

i, j

}
m,n

, which represents dependence between

i-th output and j output. We therefore define a global absolute coregionalisation matrix
(GACM ∈ RD×D) as the following:

GACM =


B̃1,1 . . . B̃1,D

B̃2,1 . . . B̃2,D
...

B̃D,1 . . . B̃D,D

 . (3.43)

Figure 3.7 shows the correlation between each building captured by our model. We can
see that there is a strong correlation between the different buildings. Building I and Building
II have a relatively strong correlation compared to Building I and Building III or Building II
and Building III. Building II has the strongest intra-output correlation while Building III has
the smallest intra-output correlation among those three buildings.

3.4 Summary 49

B
u
ild

in
g
 I

B
u
ild

in
g
 I
I

B
u
ild

in
g
 I
II

Building I Building II Building III

Fig. 3.7 Global absolute coregionalisation matrix of UJIIndoorLoc dataset.

3.4 Summary

In this chapter, we have introduced MOGPs-AR, a novel framework that allows the use of
multi-output Gaussian processes for multi-output multi-class classification. MOGPs-AR can
tackle large scale datasets and a large number of classes in each output.

We show experimentally that MOGPs-AR has a similar result to MG-M, which is a linear
model of coregionalisation and uses a similar stochastic variational inference method to
us. However, the training time of MOGPs-AR is less than MG-M. Experimental results
in various datasets also indicate that MOGPs-AR significantly improves the performance
compared to single-output Gaussian processes.

In the next chapter, we will propose an extension of MOGPs-AR via integrating a
convolutional kernel (Van der Wilk et al., 2017) to replace the RBF-ARD. Compared to
the MOGPs-AR, the novel extension can effectively extract features from image data, and
therefore its performance is superior to that of MOGPs-AR in image classification problems.

Chapter 4

Multi-output Convolutional Gaussian
Processes for Images

Our main contribution in this chapter 1 we provide an extension of the MOGPs-AR called
multi-output convolutional Gaussian processes with augment & reduce (MOCGPs-AR)2.
We incorporated a convolutional kernel into our model to handle image datasets. The
MOCGPs-AR also inherits the properties of MOGPs-AR, allowing it to deal with large-scale
classification of images by subsampling both training datasets and classes for each output.

In Chapter 3, we introduced MOGPs-AR, which is a new extension of MOGPs, that
handles large scale multi-output multi-class classification. However, the most common type
of data in multi-class classification problems consists of image data, and MOGPs-AR is not
specifically designed to handle such high-dimensional data.

In this chapter, we introduce MOCGPs-AR and enable it to allow downsized images as
input data. To efficiently deal with downsized images, we employ convolutional kernels
(Van der Wilk et al., 2017), computing the entries of the kernel matrices using kernels over
patches of the images and integrating these kernels within a MOGP. Since our model is able
to capture both intra- and inter-output dependencies, it also provides a means to perform
transfer learning in the multi-task setting. We show an example of the multi-task learning
ability of our model in the Ommiglot dataset. To the best of our knowledge, this is the first
time that a multi-task multi-class Gaussian process model has been used over such a dataset.

1This chapter is based on Ma, C., & Álvarez, M. A. (2023). Large scale multi-output multi-class classifica-
tion using Gaussian processes. Machine Learning, 1-30.

2The model is implemented based on Python 3.7, mainly depending on the library GPflow 2.1.3 which
was built on the library TensorFlow 2+. Our code is publicly available in the repository https://github.com/
ChunchaoPeter/MOGPs-AR.

https://github.com/ChunchaoPeter/MOGPs-AR
https://github.com/ChunchaoPeter/MOGPs-AR

52 Multi-output Convolutional Gaussian Processes for Images

4.1 Related Work

Several research works have dealt with multi-class classification with image datasets using
single-output GPs (Blomqvist et al., 2019; Hensman et al., 2015b; Krauth et al., 2016;
Van der Wilk et al., 2017). Hensman et al. (2015b) proposed an inference scheme that can
help GPs deal with classification problems by combining variational and MCMC methods.
The work of Krauth et al. (2016) used a leave-one-out objective function for optimising the
hyper-parameters and a radial basis function kernel with automatic relevance determination
(RBF-ARD). Van der Wilk et al. (2017) introduced a convolutional kernel that made Gaussian
processes more suited to data with high-input dimension like images. In terms of MNIST
dataset, Van der Wilk et al. (2017) obtained a better accuracy performance than Hensman
et al. (2015b) and Krauth et al. (2016). Based on Van der Wilk et al. (2017), Blomqvist
et al. (2019) proposed a deep Gaussian process with convolutional structure. Similarly, our
model (MOCGPs-AR) is built on that of Van der Wilk et al. (2017). However, different from
single-output GPs, our model can boost predictions by exploiting the correlation between all
latent parameter functions. Further, our model can cope with multiple output problems while
single-output GPs can only tackle single-output problems.

MOGPs-AR is the most relevant work to MOCGPs-AR so the related work in Chapter 3
also relates to the work in this Chapter to some extent. In terms of structure, MOGPs-AR is a
special case of MOCGPs-AR. MOCGPs-AR is a MOGPs-AR with convolutional structure
or convolutional kernel (Van der Wilk et al., 2017). Because of the convolutional kernel, to
reduce the computational complexity, MOGPs-AR uses the inducing points method while
MOCGPs-AR uses the inducing patches method. The difference between inducing points
and inducing patches is the dimension size. The dimensions of the inducing points are the
same as the input data, whereas the dimensions of the inducing patches match the patch of
the images. In terms of a practical application, compared to MOGPs-AR, MOCGPs-AR can
effectively deal with downsized images through convolutional kernels (Van der Wilk et al.,
2017).

4.2 Methodology

In this section, we will derive the MOCGPs-AR model. We first develop the LMC model with
a convolutional kernel. We then describe stochastic variational inference for MOCGPs-AR.
MOCGPs-AR use the same likelihood function and prediction as MOGPs-AR (please see
Sections 3.2.2 and 3.2.4 for more detail)

4.2 Methodology 53

Similar to Chapter 3, we assume there is the vector y(x) ∈ RD to represent different D
outputs:

y(x) = [y1(x),y2(x), · · · ,yD(x)]⊤ , (4.1)

where x ∈ Rv. The latent parameter functions are:

f(x) =
[

f 1
1 (x), f 2

1 (x), · · · f
C1
1 (x), f 1

2 (x), f 2
2 (x), · · · , fCD

D (x)
]⊤
∈ RC×1. (4.2)

The connection between y(x) and f(x) is

p(y(x)|f(x)) =
D

∏
d=1

p
(

yd(x)|̃fd(x)
)
. (4.3)

For the notation and more detail please see Section 3.2.

4.2.1 Extending MOGPs-AR by Including a Convolutional Kernel

We combine the linear model of coregionalisation (LMC) (Álvarez et al., 2012) with the
convolutional kernel. The convolutional kernel (Van der Wilk et al., 2017) can effectively
exploit features in an image dataset.

Invariances can help us constrain models to generalise well in high-dimensional datasets
(Van der Wilk, 2019) so incorporating invariances into GPs can help them deal with images
well. GPs’ prior constrains the GP models via kernel functions where traditional kernel
functions (e.g., RBF-ARD) depend on local metrics, such as the Euclidean distance, to
constrain variations. Van der Wilk (2019) provides a way to encode invariance over patches
in images into kernels to handle images, as small patches can contain a lot of information for
image labels. The general idea is to divide each image into a group of patches first. Then,
each patch is applied to the same function (the function follows a GP prior); further, they
sum over all the patches’ responses for each image. Based on this structure, a translation
invariant kernel (the same as Equation 2.17) has been developed, which is invariant to the
image including the same patches. However, in the translation invariant kernel, for image
classification, the different class labels could have the same feature but in different locations
for the image input. To elude this situation, Van der Wilk (2019) added weight for each patch
response, resulting in the new kernel, as in Equation 2.18.

Following Van der Wilk (2019)’s idea, we construct a convolutional structure for mutually
independent latent functions U(·) =

{
uq(·)

}Q
q=1 (a set of Q GPs). Here, we assume x∈RW×H

is an image data point that has a v =W ×H size where W and H are the width and height

54 Multi-output Convolutional Gaussian Processes for Images

of the image, respectively. We also assume x[p] is the pth patch of x with patches of size
E = w×h where w and h are the width and height of each patch, respectively.

After dividing an image into patches, we get a total of P = (W −w+1)× (H−h+1)
patches. We begin with a patch response function uq

(
x[p]
)

: Rw×h→R, which maps a patch
of size E = w× h to a real number in R. Then we add weight with each patch response
function and get a latent function uq(x) : RW×H → R, where uq(x) is the sum of all patch

responses with weights: uq(x) = ∑p wpuq

(
x[p]
)

. Each function uq(·) is drawn from an

independent GP prior: uq(·) ∼ GP
(
0,kq(·, ·)

)
, where kq is the radial basis function kernel

with automatic relevance determination (RBF-ARD) (Williams and Rasmussen, 2006) in this
chapter:

kard

(
x[p],x[p

′]
)
= σ

2
ard exp

−1
2

E

∑
j=1

(
x[p]j − x[p

′]
j

)2

l2
j

 , (4.4)

where x[p]j is the j-th dimension of x[p], σ2
ard is a variance parameter and l j is the length scale

for the j-th input dimension. Then, each f c
d (x) is defined as

f c
d (x) =

Q

∑
q=1

Rq

∑
i=1

ai
d,c,qui

q(x) =
Q

∑
q=1

Rq

∑
i=1

ai
d,c,q

(P

∑
p=1

wpui
q(x

[p])

)
, (4.5)

where ai
d,c,q ∈R and we assume {kq(·, ·)}Q

q=1 have hyperparameters {φq}Q
q=1. The difference

between the convolutional kernel model and a more classic kernel, e.g., RBF, is that we use
the convolutional structure term ∑

P
p=1 wpui

q(x[p]) instead of solely ui
q(x). Further, f c

d (x) has
a zero mean and the cross-covariance function of f c

d (x) is

k f c
d f c′

d′

(
x,x′

)
=cov

[
f c
d (x), f c′

d′
(
x′
)]

=
Q

∑
q=1

bq
(d,c),(d′,c′)

[
P

∑
p=1

P

∑
p′=1

wpwp′kq

(
x[p],x′[p

′]
)]

, (4.6)

where bq
(d,c),(c′,c′) = ∑

Rq
i=1 ai

d,c,qai
d′,c′,q. Our model works for each output with different input

datasets but now we assume all output has the same input vector for simplicity in the
presentation. Now, the kernel can be represented as:

K =
Q

∑
q=1

Bq⊗Kq, (4.7)

4.2 Methodology 55

Fig. 4.1 An example of two images for our kernel inputs. The two images are two characters in the Ojibwe
alphabet (please see section 4.3 for more detail). We consider two characters as two classes. The two images
are one data point for each class separately. Left: The whole image is considered as an input data point x and
the blue grid represents the p-th patch x[p]. Right: The whole image is considered as an input data point x′ and
the blue grid represents the p′-th patch x′[p

′].

where Bq has elements
{

bq
(d,c),(d′,c′)

}D,D,Cd ,Cd′

d=1,d′=1,c=1,c′=1
. Kq ∈ RN×N has elements computed

using ∑
P
p=1 ∑

P
p′=1 wpwp′kq

(
x[p]n ,x[p

′]
m

)
for xn,xm ∈ X and each Bq ∈ RC×C is a coregionali-

sation matrix.

4.2.2 Scalable Variational Inference

Similar to MOGPs-AR, MOCGPs-AR also suffer from computational complexity. To reduce
the computational complexity, we use inducing patches and subsampling techniques. The
subsampling strategy here is the same as MOGPs-AR (see Section 3.2.3.2 for more detail).

Since we use image datasets in this section we define the inducing patches (Van der

Wilk et al., 2017) at the latent functions U(·). Let Zq =
{

z(m)
q

}M

m=1
∈ RM×E be a set of M

inducing patches (Van der Wilk et al., 2017) for each latent function uq and Z = {Z1}Q
q=1.

Let u =
[
u⊤1 , · · · ,u⊤Q

]⊤
∈ RQM×1 be a set, where each latent function is assumed to have its

own inducing patches and uq =
[
uq

(
z(1)q

)
, · · · ,uq

(
z(M)

q

)]⊤
evaluated at Zq.

Except for u =
[
u⊤1 , · · · ,u⊤Q

]⊤
, the lower bound L for log p(y) for MOCGPs-AR is the

same as MOGPs-AR (see Section 3.2.3.1 for more detail).

56 Multi-output Convolutional Gaussian Processes for Images

Table 4.1 Omniglot data: we show the number of data points and classes for each alphabet in the Omniglot
dataset. The columns of the background set and evaluation set show 30 and 20 alphabets, respectively.

Omniglot-evaluation Ndata classes Omniglot-background Ndata classes
Angelic 400 20 Alphabet-of-the-Magi 400 20

Atemayar-Qelisayer 520 26 Anglo-Saxon-Futhorc 580 29
Atlantean 520 26 Arcadian 520 26

Aurek-Besh 520 26 Armenian 820 41
Avesta 520 26 Asomtavruli-(Georgian) 800 40
Ge-ez 520 26 Balinese 480 24

Glagolitic 900 45 Bengali 920 46

Gurmukhi 900 45
Blackfoot (Canadian-
Aboriginal-Syllabics)

280 14

Kannada 820 41 Braille 520 26
Keble 520 26 Burmese-(Myanmar) 680 34

Malayalam 940 47 Cyrillic 660 33
Manipuri 800 40 Early-Aramaic 440 22

Mongolian 600 30 Futurama 520 26
Old-Church-Slavonic

(Cyrillic)
900 45 Grantha 860 43

Oriya 920 46 Greek 480 24
Sylheti 560 28 Gujarati 960 48

Syriac-(Serto) 460 23 Hebrew 440 22

Tengwar 500 25
Inuktitut-(Canadian-
Aboriginal-Syllabics)

320 16

Tibetan 840 42 Japanese-(hiragana) 1040 52
ULOG 520 26 Japanese-(katakana) 940 47

Korean 800 40
Latin 520 26

Malay-(Jawi-Arabic) 800 40
Mkhedruli-(Georgian) 820 41

N-Ko 660 33
Ojibwe-(Canadian-

Aboriginal-Syllabics)
280 14

Sanskrit 840 42
Syriac-(Estrangelo) 460 23

Tagalog 340 17
Tifinagh 1100 55

4.3 Omniglot Dataset 57

4.3 Omniglot Dataset

In this section, we apply MOCGPs-AR to the Omniglot image dataset (Lake et al., 2015). The
Omniglot dataset includes 1623 various handwritten characters from 50 distinct alphabets.
Each of the 1623 characters was drawn by 20 different people (the total number of images is
32460). In terms of the number of data points and classes for each alphabet in the Omniglot
dataset, please see the detailed explanation in Table 4.1. Although traditional MOGPs are
not specifically designed to deal with image data, MOCGPs-AR can handle image data by
incorporating a convolutional kernel (Van der Wilk et al., 2017). The size of each image is
105× 105 pixels. To help speed up the computation and reduce the computational complexity
in the convolutional kernel, we resize the images from 105 × 105 to 20 × 20 as per Santoro
et al. (2016). We regard each alphabet as an output in our model. Each alphabet has different
characters which are considered as different classes. Therefore, we consider the Omniglot
dataset as multi-output multi-class classification problems. We compare MOCGPs-AR with
MOGPs-AR, G-M, G-A and MG-M from Chapter 3. The evaluation metrics are precision-
weighted, recall-weighted and F1-weighted as in Chapter 3. All data experiments were
performed on a PowerEdge R740XD server with NVIDIA Tesla v100 32GB GDDR.

4.3.1 Ojibwe and Blackfoot Alphabets

To compare the performance of MOCGPs-AR in multi-output multi-class classification
problems and image input data, we first consider Ojibwe and Blackfoot alphabets as two
different multi-class classification problems (see Figure 4.2). Since the two alphabets are
from Canadian Aboriginal syllabics, we assume there is a strong correlation between them.
Our model can capture the correlation through joint modelling of the two alphabets to
improve predictive performance for each multi-class classification problem. There are 14
different characters in each output so there are 14 classes, and each class has 20 data points.
We compare MOGPs-AR with MOCGPs-AR. Table 4.2 shows the parameter setting in the
Omniglot dataset: Regarding the number of inducing points, we chose 40 inducing points
for the Ojibwe and Blackfoot dataset since the dataset has 280 data points for each alphabet.
This number of inducing points is sufficient for a total of 280 data points. We chose 100
inducing patches for the Ojibwe and Blackfoot dataset to maintain consistency with Chapter
3, where we used 100 inducing points. For the other datasets, we chose 200 inducing patches
as we wanted relatively large inducing patches to provide more information, based on a
relatively small mini-batch size of 9.

Figure 4.3 shows that MOCGPs-AR outperforms single-output Gaussian processes in both
alphabets in terms of the convolutional kernel or RBF-ARD. The reason is that MOCGPs-AR

58 Multi-output Convolutional Gaussian Processes for Images

can capture the dependency between the two alphabets. The dependency can help improve
the prediction for both alphabets. The single-output Gaussian processes cannot use the
dependency so the single-output Gaussian process with either the convolutional kernel or
RBF-ARD does not perform well in both Ojibwe and Blackfoot. The size of the mini-batch
is too small that has also a negative influence on the single-output Gaussian processes (Figure
4.4). Especially, the values of the three performance metrics are closed to 0.05 for G-A with
the convolutional kernel on Ojibwe.

Character

Ojibwe
 alphabet

Blackfoot
alphabet

One Two Three Fourteen...

...

...

Fig. 4.2 Both the Ojibwe and the Blackfoot alphabets have 14 characters each. For each character, we only
illustrate two typical samples.

Table 4.2 Setting and parameters of different GP models in Omniglot. There are three cross-validations for
all models and the optimal number Q ∈ [10,15,20] of latent functions U for MOGPs-AR. “M” indicates the
number of inducing variables or inducing patches; “B” refers to the size of mini-batch. “Con-K” means
convolutional kernel.

Dataset Model Kernel patch-size M B
Ojibwe & Blackfoot MOGP-AR (1) Con-K 3 * 3 100 50/70/90
Ojibwe & Blackfoot G-A Con-K 3 * 3 100 50/70/90
Ojibwe & Blackfoot G-M Con-K 3 * 3 100 50/70/90
Ojibwe & Blackfoot MOGP-AR (1) RBF-ARD None 40 50/70/90
Ojibwe & Blackfoot G-A RBF-ARD None 40 50/70/90
Ojibwe & Blackfoot G-M RBF-ARD None 40 50/70/90

All alphabets MOGP-AR (1) Con-K 8 * 8 200 9
Background alphabets MOGP-AR (1) Con-K 8 * 8 200 9
Evaluation alphabets MOGP-AR (1) Con-K 8 * 8 200 9

MOCGPs-AR outperforms MOGPs-AR in both alphabets in terms of three performance
metrics (see Figure 4.3). For example, compared to MOGPs-AR, MOCGPs-AR improves the
recall-weighted from 0.468 to 0.714 on the Blackfoot alphabet. Moreover, we also combine G-
M and G-A with the convolutional kernel and they also have stronger performance compared

4.3 Omniglot Dataset 59

with RBF-ARD. In particular, G-M with the convolutional kernel obtains 0.5858 compared
with 0.0857 using RBF-ARD in terms of recall-weighted on the Blackfoot alphabet. The
performance of G-M with the convolutional kernel (0.5858) is better than MOGPs-AR
(0.468) on the Blackfoot alphabet. The reason is that the convolutional kernel is captures
image-level features more effectively than the RBF-ARD kernel.

Performance in Ojibwe Performance in Blackfoot

Precision-Weighted Recall-Weighted F1-Weighted Precision-Weighted Recall-Weighted F1-Weighted

G-A (RBF-ARD)

G-M (RBF-ARD)

MOGPs-AR (1)

G-A (Convolution)

G-M (Convolution)

MOCGPs-AR (1)

G-A (RBF-ARD)

G-M (RBF-ARD)

MOGPs-AR (1)

G-A (Convolution)

G-M (Convolution)

MOCGPs-AR (1)

Fig. 4.3 Image: Performance in five folds cross-validation (mean± standard deviation). We compare MOCGPs-
AR with other models for all the models.

To investigate the effects of mini-batch size, we set up another experiment. We train the
exact same models with the parameters initialised in the same way as the experiment above
but using different mini-batch sizes (e.g., 50, 70, 90). Since the convolution kernel provided
better results in the previous experiments, we only show the results using MOCGPs-AR,
G-A and G-M with the convolution kernel and the recall-weighted performance measure
for both alphabets. Figure 4.4 shows that the size of the mini-batch has more influence on
single-output Gaussian processes than MOCGPs-AR. A small size number for the mini-batch,
e.g., 50, has a negative impact on G-M and G-A. However, MOCGPs-AR has a slight increase
in performance or maintains a similar result with the mini-batch size increasing. G-A and
G-M improve the performance as the mini-batch size grows from 50 to 90. When the size of
the mini-batch is 90, G-M has a similar performance with MOCGPs-AR. However, when
we consider the mini-batch of size 50, MOCGPs-AR still can achieve good performance
compared to single output GPs. Moreover, MOCGPs-AR as with a larger number of outputs,
the performance would significantly improve (see Section 4.3.2).

60 Multi-output Convolutional Gaussian Processes for Images

To analyse the estimated hyperparameters and correlations between classes, we analyse
the coregionalisation matrices through Hinton diagrams. We intend to obtain the values
of a few different coregionalisation matrices Bq to investigate the correlation between the
classes. Figure 4.5 shows Hinton diagrams of different coregionalisation matrices for Ojibwe
and Blackfoot alphabets, with (a) and (b) indicating that the Ojibwe alphabet has a strong
correlation with the Blackfoot alphabet.

Different Minibatch Sizes in Different Models

R
e
ca

ll-
W

e
ig

h
te

d

G-A (Convolution) in Ojibwe

G-M (Convolution) in Ojibwe

MOCGPs-AR (1) in Ojibwe

G-A (Convolution) in Blackfoot

G-M (Convolution) in Blackfoot

MOCGPs-AR (1) in Blackfoot

Minibatch Sizes

Fig. 4.4 Recall-Weighted Performance in cross-validation (mean ± standard deviation).

Fig. 4.5 Hinton diagrams of a few coregionalisation matrices. (a) and (b) are Hinton diagrams of B12 and B14
for both Ojibwe and Blackfoot alphabets during the first fold cross-validation where the red and blue colours are
the index of 14 classes for Ojibwe and Blackfoot alphabets, respectively. The white and black squares represent
the positive and negative correlation values respectively, where the magnitude of each value is represented by
the size of each square.

4.3 Omniglot Dataset 61

We plot a global absolute coregionalisation matrix in Figure 4.6 to analyse the estimated
hyperparameters and correlations between each output for Ojibwe and Blackfoot alphabets.
Figure 4.6 indicates that our model captures the correlation between each alphabet. Since
both alphabets are from Canadian Aboriginal syllabic we expect that they have a strong
correlation. Figure 4.6 indeed shows there is a similar global correlation between intra- and
inter- output for both alphabets, which indicates that our model has the capacity to capture
the underlying correlation among those related datasets.

B
la

ck
fo

o
t

a
lp

h
a
b

e
t

Blackfoot alphabetOjibwe alphabet

O
jib

w
e
 a

lp
h
a
b
e
t

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

Fig. 4.6 Global absolute coregionalisation matrix of Ojibwe and Blackfoot alphabets.

4.3.2 All Alphabets

In our final experiment, we apply MOCGPs-AR in 50 alphabets in the original dataset. There
are 50 outputs with a different number of classes in each output (for more detail on the
number of classes in each output see Table 4.1). The total number of classes in the 50 outputs
is 1623. We follow Lake et al. (2015) and split the 50 alphabets into two sets: a background
set and an evaluation set, where the background set has 30 alphabets (with a total of 964
classes) and the evaluation set has 20 alphabets (with a total of 659 classes). In order to apply
MOCGPs-AR in all 50 alphabets, we use a mini-batch size of nine data points for each output
to train our model. The small mini-batch size has a negative impact on G-M and G-A so we
only apply MOCGPs-AR in this experiment. We apply MOCGPs-AR for three different sets
of alphabets: all alphabets, the background alphabets and the evaluation alphabets.

62 Multi-output Convolutional Gaussian Processes for Images

Trained by evaluation alphabets

Trained by all alphabets

Trained by background alphabets
Trained by all alphabets

0.3 0.4 0.5 0.6 0.7 0.80.3 0.4 0.5 0.6 0.7 0.8
Recall-Weighted Recall-Weighted

Angelic

Atemayar

Atlantean

Aurek

Avesta

Ge-ez

Glagolitic

Gurmukhi

Kannada

Keble

Malayalam

Manipuri

Mongolian

Old-Church-
Salvonic

Oriya

Sylheti

Syriac

Tengwar

Tibetan

ULOG

Magi

Anglo-Saxon-Futhorc

Arcadian

Armenian

Asomtavruli

Balinese

Bengali

Blackfoot

Braille

Burmmese

Cyrillic

Early-Aramaic

Futurama

Grantha

Greek

Gujarati

Hebrew

Inuktitut

Japanese(hiragana)

Japanese(katakana)

Korean

Latin

Malay

Mkhedruli

N-Ko

Ojibwe

Sanskrit

Syriac(Estrangelo)

Tagalog

Tifinagh

Fig. 4.7 Performance in cross-validation in evaluation alphabets (left) and background alphabets (right). In both
diagrams, each circle is the mean of recall-weighted; the error bar is the standard deviation of recall-weighted.

In Figure 4.7, we empirically (50 different outputs and a total of 1623 classes of image
data) show that MOCGPs-AR has better scalability than traditional multi-output Gaussian
processes.

MOCGPs-AR has obtained the scalable property of MOGPs-AR so it can cope with
large-scale classification through not only stochastic variational inference but also a softmax
likelihood with Gumbel noise error in each output. Figure 4.7 also indicates that MOCGPs-
AR obtains good performance even if we choose a small size of mini-batch (nine) and only a

4.4 Summary 63

small number of classes (one) in each output since it captures both intra- and inter-output
correlation.

In most predictions, our model trained with the data of all alphabets could outperform
one trained with the data of part of the alphabets. For example, our model trained using
all alphabets improves the recall-weighted from 0.6096 to 0.6692 for the Aurek alphabet,
compared with one using evaluation alphabets for training. The extra alphabets can help our
model improve its performance.

However, there are exceptions to the scenario in the last paragraph. For example, for the
Syriac (Estrangelo) alphabet, the values of the recall-weighted 0.5174 is less than 0.5283
where only background alphabets are used to train our model. One likely reason is that
our model assumes a correlation with all alphabets. However, the correlation with those
alphabets may not exist or the correlation may hinder the predictive performance. Although
there may be no correlation between the alphabets, our model assumes that the outputs share
commonalities. If this assumption is not met, the model’s performance could be worse than
that of a single-output Gaussian process model. To avoid this scenario, we could increase
the number of latent functions. This is because when the number of latent functions is
greater than or equal to the number of outputs, MOGPs could automatically collapse into
independent GPs in the absence of a correlation between each output (Li and Kontar, 2022).

4.4 Summary

In this chapter, we have introduced MOCGPs-AR, a novel stochastic scalable framework
that allows the use of multi-output Gaussian processes for images. MOCGPs-AR is an
extension of MOGPs-AR, replacing RBF-ARD with convolutional kernels (Van der Wilk
et al., 2017) and substituting inducing points with inducing patches, while it can also tackle
large-scale datasets and a large number of classes in each output due to inheriting the
scalable property of MOGPs-AR. We have conducted experiments to show that MOCGPs-
AR significantly improves the performance compared to MOGPs-AR and single output
Gaussian processes in terms of image classification problems. In the next chapter, we focus
on multi-output Gaussian processes for the hierarchically structured datasets. To this end,
we drive a hierarchical framework of multi-output Gaussian processes where one Gaussian
process is the mean of another and each has its own covariance functions. We conduct
different experiments to display the property of our framework, which exploits the structure
of the datasets, against other single- or multi-output Gaussian process models.

Chapter 5

Hierarchical Multi-output Gaussian
Processes with Latent Information

Our main contribution in this chapter is to provide a new extension of the multi-output Gaus-
sian process to cope with hierarchical datasets, known as hierarchical multi-output Gaussian
processes with latent variables (HMOGP-LV)1. HMOGP-LV controls the correlation between
each output through latent variables (Dai et al., 2017) and captures the hierarchical structure
of the dataset through a hierarchical kernel (Hensman et al., 2013b). Since our inducing
variables can keep the information of all replicas from outputs, our model can also predict
missing replicas. When predicting a missing replica from one output, the inducing variables
can use information from the corresponding replicas in other outputs.

In Bayesian statistics, hierarchical models take hierarchical data structure into considera-
tion. The hierarchical dataset has the characteristics of top-down tree-like data architecture,
i.e., Figure 5.1 (a) presents a hierarchical dataset that has two-layer tree-like data. We refer
to the datasets in tree-leaf nodes on the same hierarchy as replicas since they inherit from the
same parent node. In the real world, there are many datasets that have hierarchical structures,
such as gene expression. Gene expression is the process in which information from a gene
is used to effect a phenotype. In this dataset, each gene has eight replicas (Kalinka et al.,
2010). In a hierarchical model, the prior distribution of some parameters depends on other
parameters that also have their own prior distribution (Gelman et al., 2013). For example,
Figure 5.1 (b) shows a hierarchical GP model that is the same as Hensman et al. (2013b),
where R latent parameter functions in the second layer are drawn from a GP whose mean is a
GP on the top layer. Simple non-hierarchical models often do not fit largely hierarchical data

1The model is implemented based on Python 3.7, mainly depending on the library GPflow 2.1.3 which
was built on the library TensorFlow 2+. Our code is publicly available in the repository https://github.com/
ChunchaoPeter/HMOGP-LV.

https://github.com/ChunchaoPeter/HMOGP-LV
https://github.com/ChunchaoPeter/HMOGP-LV

66 Hierarchical Multi-output Gaussian Processes with Latent Information

well with few parameters or are often overfitting with many parameters (Gelman et al., 2013).
Whereas, hierarchical models can efficiently fit hierarchical data through enough parameters.
Further, in hierarchical models, the hierarchical structure is considered, therefore, overfitting
can be avoided (Gelman et al., 2013). Hierarchical models can model the correlation within
the dataset, e.g., the correlation between each tree-leaf node data or replica. They can
purposefully predict data in the corresponding replica (Gelman et al., 2013).

Hierarchical models in the area of GPs that have been studied in the literature (Damianou
and Lawrence, 2013; Flaxman et al., 2015; Hensman et al., 2013b; Lawrence and Moore,
2007; Li and Chen, 2018). Lawrence and Moore (2007) introduced a hierarchical Gaussian
process model for dimensionality reduction. Hensman et al. (2013b) built a hierarchical GP
model through a new hierarchical kernel to handle gene expression (Kalinka et al., 2010).
Damianou and Lawrence (2013) established a deep-layer model where each layer was based
on a Gaussian process mapping. Flaxman et al. (2015) introduced a hierarchical model
through a prior distribution over kernel hyperparameters and used MCMC for inference.
Li and Chen (2018) proposed a hierarchical Gaussian process where they extracted latent
features through the Gaussian process latent variable model from the input dataset and
derived a Bayesian inference to generate output based on those latent features.

(a) (b)

One
Output

1st
Replica

2nd
Replica

Rth
Replica

GP

1st 2nd Rth

Fig. 5.1 (a): a hierarchical dataset has one output and the output has R replicas. (b): a hierarchical GP model

However, those GP models with the hierarchical structure mentioned above are not
specific designs for a hierarchical dataset where there are multiple outputs and each output
corresponds to a hierarchical structure. Therefore, they cannot sufficiently capture the
correlation between each replica.

In this chapter, we introduce HMOGP-LV to deal with hierarchical datasets. Specifically,
we show how HMOGP-LV can be used to handle two different types of hierarchical datasets:
all different outputs have the same input data; all different outputs have different input data.

5.1 Related Work 67

5.1 Related Work

As mentioned earlier, there is abundant research on hierarchical models using Gaussian
processes (Damianou and Lawrence, 2013; Flaxman et al., 2015; Hensman et al., 2013b;
Lawrence and Moore, 2007; Li and Chen, 2018). In this chapter, our model HMOGP-LV
has a two-layer hierarchical kernel matrix. To construct this kernel matrix, we assume
there is a latent parameter function drawn from a zero-mean GP in the first layer. The
latent parameter function is the mean of another GP in the second layer, where other latent
parameter functions follow the GP, which is the same as Hensman et al. (2013b). However,
their model cannot predict missing replicas since they do not apply the inducing variables
framework. In our model, the inducing variables have all information for all replicas so we
can predict missing replicas from this information. Further, our model uses latent variables
to capture the correlation between each output. Lawrence and Moore (2007) introduce a
hierarchical model for unsupervised learning while our model is for supervised learning. The
model proposed by Li and Chen (2018) assumes latent variables corresponding to each data
point but our model assumes latent variables corresponding to each output. Deep Gaussian
processes (Damianou and Lawrence, 2013) cannot capture the correlation between replicas
since their kernel is not designed to support this. The hierarchical model derived by Flaxman
et al. (2015) presents a prior distribution over kernel parameters. However, our hierarchical
model builds through a prior distribution over latent parameter functions.

As mentioned in the introduction, multi-output Gaussian processes can improve predic-
tion by exploiting the correlation between each output. Multi-output Gaussian processes
mainly use the coregionalisation matrix B to control the correlation between each output,
for example, the intrinsic coregionalisation model (ICM) in Section 2.7.1 and the linear
model of coregionalisation (LMC) in Section 2.7.2 (Álvarez et al., 2012; Bonilla et al.,
2008). The coregionalisation matrix B is a finite fixed matrix, which means that it can only
represent the correlation between fixed outputs. However, our model uses a different method
to exploit the correlation. To learn the correlation between each output, our model replaces
the coregionalisation matrix B with a kernel matrix so that we can extend the dimension of
our kernel matrix by adding latent variables. The methodology more relevant to ours is Dai
et al. (2017) because we use the same method to build a kernel matrix to learn the correlation
between each output; however, ours is different: HMOGP-LV introduces a hierarchical kernel
matrix that captures the similarity between tree-like structures.

68 Hierarchical Multi-output Gaussian Processes with Latent Information

5.2 Methodology

In this section, we derive the hierarchical multi-output Gaussian processes with latent
variables (HMOGP-LV). We first develop the HMOGP-LV to deal with different outputs
where all outputs have the same input dataset, we then describe scalable variational inference
for the model. We further define the predictive distribution for our model and finally we
generalise HMOGP-LV to deal with different outputs where each output has its own input
dataset.

We assume y(x) contains D different outputs:

y(x) =
[
y⊤1 (x),y

⊤
2 (x), · · · ,y⊤D(x)

]⊤
, (5.1)

where x ∈ Rv and each output represents a hierarchical structure. Since we have already
considered the data points in each tree-leaf node as a replica, we assume each output has the
same number of R replicas, for example,

yd(x) =
[
y1

d(x),y
2
d(x), · · · ,yR

d (x)
]⊤

, (5.2)

where yr
d(x) is the r-th replica in the d-th output evaluated at x where r ∈ {1, · · · ,R} and

d ∈ {1, · · · ,D}. For simplicity, we assume each replica has the same number of N data points.
In fact, each replica can have a different number of data points. Each replica yr

d(x) can be
modelled as a latent parameter function f r

d(x) corrupted with εd that follows a Gaussian
noise with a zero mean and σ2

d variance:

yr
d (x) = f r

d (x)+ εd, f r
d(x)∼ GP

(
0,k f

(
x,x′

))
, εd ∼N

(
0,σ2

d
)
. (5.3)

We take Xr = [x(1)r , · · · ,x(N)
r]⊤ ∈ RN×v as a collection of all r-th input data points. yr

d =

[yr
d

(
x(1)r

)
, · · · ,yr

d

(
x(N)

r

)
]⊤ ∈RN denotes the vector of all data points in the r-th replica in the

d-th output. The d-th input and output data are denoted as X = {Xr}R
r=1 and yd =

{
yr

d

}R
r=1,

respectively. The vector y = [y⊤1 , · · · ,y⊤D]⊤ refers to all outputs.

5.2.1 Hierarchical Multi-output Gaussian Processes with Latent Vari-
ables for the Same Input

In this section, we assume all outputs have the same input and our model is derived to deal
with this dataset. To cope with all replicas in each output, we suppose there is an underlying
function for the replicas. The underlying function g(x) draws from a zero mean GP with

5.2 Methodology 69

covariance kg (x,x′):

g(x)∼ GP
(
0,kg

(
x,x′

))
. (5.4)

Then, we assume all latent parameter functions are drawn from a Gaussian process with
mean g(x) and covariance k f (x,x′), where our model’s hierarchical structure is the same as
that of Hensman et al. (2013b). We thus obtain

g(x)∼ GP
(
0,kg

(
x,x′

))
, (5.5)

f r
d(x)∼ GP

(
g(x),k f

(
x,x′

))
, (5.6)

yr
d (x) = f r

d (x)+ εd. (5.7)

The above functions show that all the parameter functions share the information for the input
through kernel functions kg (·, ·) and k f (·, ·).

In order to replace the fixed coregionalisation matrix with a kernel matrix, we assume
there is a continuous latent vector hd that corresponds to an output yd and the correlation
between these latent vectors will be ultimately measured through a kernel matrix, where
hd ∈ RQH and the QH is pre-defined. The latent variable is extracted from observations
via maximising marginal likelihood. Latent variables of all outputs are stacked in H =

[h1, . . . ,hD]
⊤ and each of them follows the same prior distribution, e.g. a normal distribution.

Therefore, we obtain

g(x)∼ GP
(
0,kg

(
x,x′

))
, (5.8)

f r
d(x)∼ GP

(
g(x),k f

(
x,x′

))
, (5.9)

yr
d(x) = f r

d (x,hd)+ εd,hd ∼N(0,I). (5.10)

Figure 5.2 depicts the visualization of the plot of hd in both 3-D and 2-D, assuming its
dimension is two and it follows a bivariate normal distribution. The two axes at the bottom,
ranging from -3 to 3, represent the two dimensions of hd respectively. The vertical axis,
ranging from 0 to 0.2, shows the probability density of the bivariate normal distribution.

There are many different ways to build our kernel based on the expression in Eq. (5.10).
To explain the correlation between input and output, respectively, we build our kernel matrix
through a Kronecker product as shown in Section 2.7.1.

70 Hierarchical Multi-output Gaussian Processes with Latent Information

Fig. 5.2 Visualisation of a surface plot of hd and projected a filled contour plot under it when QH = 2.

Fig. 5.3 How our kernel matrix is built. KX
ff contains the hierarchical structure of our model; KH

ff contains the
correlation between each output

Figure 5.3 shows how we build the kernel matrix. We first build a kernel matrix for the
outputs:

KH
ff =


KH

1,1 . . . KH
1,D

...
KH

D,1 . . . KH
D,D

 , (5.11)

where KH
i, j = kH

(
hi,h j

)
describes the correlation between i-th and j-th outputs and kH(·, ·)

is a kernel function. Now, we develop a kernel matrix for the inputs. Since there is a linearly
hierarchical structure for our latent parameter functions, if two input points are from the same
output with the same r-th replica, e.g., x(i)r and x(j)

r , then they follow a Gaussian distribution
with a zero mean and covariance k f

(
x(i)r ,x(j)

r

)
+ kg

(
x(i)r ,x(j)

r

)
. If two input points are from

different replicas, e.g., x(i)r and x(j)
r′ , they will follow a Gaussian distribution with a zero mean

5.2 Methodology 71

and covariance kg

(
x(i)r ,x(j)

r′

)
. Then the kernel function for the input is

khierarchy

(
x(i)r ,x(j)

r′

)
=

kg

(
x(i)r ,x(j)

r′

)
+ k f

(
x(i)r ,x(j)

r′

)
r = r′,

kg

(
x(i)r ,x(j)

r′

)
r ̸= r′,

(5.12)

where x(i)r ,x(j)
r′ ∈ X. We also consider khierarchy(·, ·) as a hierarchical kernel function that

naturally fits the hierarchical data and captures dependencies within the data structure.
Further, the hierarchical kernel matrix KX

ff is

KX
ff =


[
kg (X1,X1)+ k f (X1,X1)

]
. . . kg (X1,XR)

...
kg (XR,X1) . . .

[
kg (XR,XR)+ k f (XR,XR)

]
 . (5.13)

Finally, the covariance matrix of our proposed model is defined as

Kff = KH
ff ⊗KX

ff, (5.14)

where ⊗ means the Kronecker product between matrices. Based on Eq. (5.14), we obtain
our prior function and likelihood function:

p(y | f) =N (y | f,ΣΣΣ) , p(f | X,H) =N (f | 0,Kff) , (5.15)

where ΣΣΣ ∈RNRD×NRD is a diagonal matrix with σ2
d = σ2 (here, we assume σ2

d is the same as
σ2 for all outputs for simplicity) and f=

[
f⊤1 , . . . , f

⊤
D
]⊤ in which fd = [f 1

d (X1), ..., f R
d (XR)]

⊤ ∈
RNR. Thus, the corresponding marginal likelihood is

p(y | X) =
∫

p(y | X, f,H) p(f) p(H)dfdH. (5.16)

5.2.2 Scalable Variational Inference

Since the integral of the marginal likelihood (5.16) of given latent variables is intractable, we
derive the lower bound of the log marginal likelihood by inducing variables. Our method,
which is based on Dai et al. (2017) using similar notations, can also deal with large-scale
datasets.

72 Hierarchical Multi-output Gaussian Processes with Latent Information

Fig. 5.4 (a): the way to build our kernel matrix for inducing variables, where ZX and ZH are associated with
the inputs X and the latent variables H, respectively; (b): the way to build our kernel matrix for between
observations and inducing variables

We first introduce inducing variables U ∈ RMX×MH and U: = vec(U). The notation
“:” represents the vectorisation of a matrix. We assume there is a prior distribution for
U:: p(U:) = N (U: | 0,KUU). We also assume KUU has a similar format as Eq. (5.14):
KUU = KH

UU⊗KX
UU (see Figure 5.4 (a)). We obtain KH

UU using kH(·, ·) evaluated at inducing

outputs ZH =
[
zH

1 , . . . ,z
H
MH

]⊤
, zH

m ∈ RQH . Similarly, we obtain KX
UU using kernel function

khierarchy(·, ·) evaluated at inducing inputs ZX where ZX = {ZX
r }R

r=1. ZX
r corresponds with

the r-th replica and ZX
r =

[
zX

r,1, . . . ,z
X
r,Mr

]⊤
in which zX

r,m ∈ Rv, and Mr is the number of
inducing input points in the r-th replica and MX = Mr×R.

Like the inducing variables framework in Section 2.4, the conditional distribution of f
here is:

p
(
f | U,ZX ,ZH ,X,H

)
=N

(
f |KfUK−1

UUU:,Kff−KfUK−1
UUK⊤fU

)
, (5.17)

where KfU = KH
fU⊗KX

fU (see Figure 5.4 (b)). KX
fU is the cross-covariance computed between

X and ZX with khierarchy(·, ·); KH
fU is the cross-covariance computed between H and ZH with

5.2 Methodology 73

kH(·, ·). Like the covariance matrix (5.13), we obtain

KX
UU =


[
kg
(
ZX

1 ,Z
X
1
)
+ k f

(
ZX

1 ,Z
X
1
)]

. . . kg
(
ZX

1 ,Z
X
R
)

...
kg
(
ZX

R ,ZX
1
)

. . .
[
kg
(
ZX

R ,ZX
R
)
+ k f

(
ZX

R ,ZX
R
)]
 , (5.18)

KX
fU =


[
kg
(
X1,ZX

1
)
+ k f

(
X1,ZX

1
)]

. . . kg
(
X1,ZX

R
)

...
kg
(
XR,ZX

1
)

. . .
[
kg
(
XR,ZX

R
)
+ k f

(
XR,ZX

R
)]
 . (5.19)

To approximate f and H, we introduce variational posteriors q(f | U:,H) = p(f | U:,H),
and q(H). To obtain the optimal parameters and hyperparameters of our model, we can
maximise the lower bound of log p(y). After calculation, we obtain (see appendix C.1 for
more detail):

L= F−KL(q(U:)∥p(U:))−KL(q(H)∥p(H)), (5.20)

where we assume q(U:) =N
(

U: |M:,ΣΣΣ
U:
)

is another variational posterior distribution to

approximate p(U:), in which M: and ΣΣΣ
U: are variational parameters, and F (see appendix

C.2 for more detail) is

F =− DRN
2

log2πσ
2− 1

2σ2 y⊤y− 1
2σ2 Tr

(
K−1

UUΦK−1
UU

(
M:M⊤: +ΣΣΣ

U:
))

+
1

σ2 y⊤ΨK−1
UUM:−

1
2σ2

(
ψ−Tr

(
K−1

UUΦ
))

, (5.21)

where Tr[·] is a trace of a matrix, Φ =
〈
K⊤fUKfU

〉
q(H)

, Ψ = ⟨KfU⟩q(H) and ψ = Tr⟨Kff⟩q(H).

Notice the computational complexity of the lower bound is dominated by the product K⊤fUKfU

that is O
(
NDRM2

XM2
H
)
.

5.2.3 More Efficient Formulation

In this subsection, we reduce the computational complexity by exploiting the Kronecker
product decomposition based on ideas, as in Dai et al. (2017). To fully utilise its properties,
we assume there is a Kronecker product decomposition of the covariance matrix of q(U:),
ΣΣΣ

U: = ΣΣΣ
H:⊗ΣΣΣ

X: and this format can reduce variational parameters from M2
XM2

H to M2
X +M2

H

74 Hierarchical Multi-output Gaussian Processes with Latent Information

in q(U:). We also reformulate Φ, Ψ, ψ as

Φ = Eq(H)

[
K⊤fUKfU

]
= Φ

H⊗Φ
X , (5.22)

Φ
H = Eq(H)

[(
KH

fU
)⊤KH

fU

]
, (5.23)

Φ
X =

(
KX

fU
)⊤KX

fU, (5.24)

Ψ = Eq(H)

[
KH

fU⊗KX
fU
]
= Eq(H)

[
KH

fU
]
⊗KX

fU = Ψ
H⊗KX

fU, (5.25)

ψ = Tr
(
Eq(H) [Kff]

)
= Tr

(
Eq(H)

[
KH

ff ⊗KX
ff
])
. (5.26)

Using the property of the Kronecker product decomposition, we obtain a new format of the
lower bound (for more detail see appendix C.3.1):

F =− NDR
2

log2πσ
2− 1

2σ2 y⊤y

− 1
2σ2 Tr

(
M⊤

(
KX

UU
)−1

Φ
X (KX

UU
)−1 M

(
KH

UU
)−1

Φ
H (KH

UU
)−1
)

− 1
2σ2 Tr

((
KH

UU
)−1

Φ
H (KH

UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

Φ
X (KX

UU
)−1

ΣΣΣ
X:
)

+
1

σ2 y⊤
(

KX
fU
(
KX

UU
)−1 M

(
KH

UU
)−1 (

Ψ
H)⊤)

:
− 1

2σ2 ψ

+
1

2σ2 Tr
((

KH
UU
)−1

Φ
H
)

Tr
((

KX
UU
)−1

Φ
X
)
. (5.27)

Similarly, the KL-divergence between q(U:) and p(U:) can also benefit from the above
decomposition (see appendix C.3.1 for more detail):

KL{q(U:) | p(U:)}=
1
2

(
MX log

∣∣KH
UU
∣∣∣∣ΣΣΣH:
∣∣ +MH log

∣∣KX
UU
∣∣∣∣ΣΣΣX:
∣∣ +Tr

(
M⊤

(
KX

UU
)−1 M

(
KH

UU
)−1
)

+Tr
((

KH
UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

ΣΣΣ
X:
)
−MHMX

)
. (5.28)

The computational complexity of L is led by the product
(
KH

fU
)⊤KH

fU and
(
KX

fU
)⊤KX

fU with
a cost of O

(
DM2

H
)

and O
(
NRM2

X
)
, respectively, which is more efficient than Eq. (5.21).

Further, we can extend the lower bound with the mini-batch method to improve its scalability
(Moreno-Muñoz et al., 2018).

5.3 Hierarchical Multi-output Gaussian Processes with Latent Variables for Different Inputs75

5.2.4 Prediction

In this subsection, we derive the predictive distribution of HMOGP-LV. For existing outputs
and a test set of inputs X∗, we have q(H) so we obtain:

q(f∗ | X∗) =
∫

q(f∗ | X∗,H)q(H)dH, (5.29)

where

q(f∗ | X∗,H) =
∫

p(f∗ | U,X∗,H)q(U:)dU:

=N
(

f∗ |Kf∗UK−1
UUM:,Kf∗f∗−Kf∗UK−1

UUK⊤f∗U +Kf∗UK−1
UUΣΣΣ

U:K−1
UUK⊤f∗U

)
,

(5.30)

with Kf∗f∗ = KH
f∗f∗⊗KX

f∗f∗ and Kf∗U = KH
f∗U⊗KX

f∗U. Eq. (5.29) is intractable, however, we
can obtain the first and second moment of f∗ in q(f∗ | X∗) (Titsias and Lawrence, 2010).

5.3 Hierarchical Multi-output Gaussian Processes with La-
tent Variables for Different Inputs

In the above section, we have derived a model that can deal with all different outputs with
the same input dataset, however, in the real world, each output normally has its own input. In
this section, we generalise our model to deal with a dataset where all outputs have different
inputs.

We can also think that we have a large set of inputs and each output associated with
a subset of the inputs is observed. For d-th input, the input data with replicated data is
Xd =

{
Xd,r

}R
r=1, where Xd,r = [x(1)d,r , · · · ,x

(Nd)
d,r]⊤. There is a different noise variance σ2

d

for each output. Similarly, we obtain the lower bound of the log marginal likelihood (see
appendix C.1 for more detail):

L= F−KL(q(U:)∥p(U:))−KL(q(H)∥p(H)), (5.31)

76 Hierarchical Multi-output Gaussian Processes with Latent Information

where F is reformulated as (for more detail see appendix C.4):

F =
D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd +

1
σ2

d
y⊤d ΨdK−1

UUM:

− 1
2σ2

d

(
ψd−Tr

[
K−1

UUΦd
])
− 1

2σ2
d

Tr
[
K−1

UUΦdK−1
UU

(
M:M⊤: +ΣΣΣ

U:
)]

, (5.32)

where Φd = Eq(hd)

[
K⊤fdUKfdU

]
, Ψd = Eq(hd)

[
KfdU

]
and ψd = Tr

(
Eq(hd)

[
Kfdfd

])
. The two

KL divergence parts in the lower bound (5.31) are still the same since they do not depend on
input and output datasets. The product K⊤fdUKfdU with O(NdRM2

XM2
H) plays a key role in the

computational complexity of the lower bound (5.31).
Eq. (5.32) is different from Eq. (5.21). First, Eq. (5.32) can use a different noise variance

for each output. Further, in practice, it is computationally more expensive than Eq. (5.21)
since we need to calculate the expectations of the covariance matrix Φd , Ψd , ψd for each
output. Finally, Eq. (5.32) allows the use of different input datasets.

5.3.1 More Efficient Formulation

Similar to subsection 5.2.3, we reformulate Φd , Ψd , ψd as

Φd = Eq(hd)

[
K⊤fdUKfdU

]
= Eq(hd)

[(
KH

fdU⊗KX
fdU
)⊤ (KH

fdU⊗KX
fdU
)]

= Φ
H
d ⊗Φ

X
d , (5.33)

Φ
H
d = Eq(hd)

[(
KH

fdU
)⊤KH

fdU

]
, (5.34)

Φ
X
d =

(
KX

fdU
)⊤KX

fdU, (5.35)

Ψd = Eq(hd)

[
KH

fdU⊗KX
fdU
]
= Eq(hd)

[
KH

fdU
]
⊗KX

fdU = Ψ
H
d ⊗KX

fdU, (5.36)

ψd = Tr
(
Eq(hd)

[
Kfdfd

])
= Tr

(
Eq(hd)

[
KH

fdfd
⊗KX

fdfd

])
. (5.37)

We also reduce the computational complexity by using the property of the Kronecker product
decomposition (for more detail see appendix C.3.2):

5.4 Experiments 77

F =
D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd

− 1
2σ2

d
Tr
(

M⊤
(
KX

UU
)−1

Φ
X
d
(
KX

UU
)−1 M

(
KH

UU
)−1

Φ
H
d
(
KH

UU
)−1
)

− 1
2σ2

d
Tr
((

KH
UU
)−1

Φ
H
d
(
KH

UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

Φ
X
d
(
KX

UU
)−1

ΣΣΣ
X:
)

+
1

σ2
d

y⊤d
(

KX
fdU
(
KX

UU
)−1 M

(
KH

UU
)−1 (

Ψ
H
d
)⊤)

:
− 1

2σ2
d

ψd

+
1

2σ2
d

Tr
((

KH
UU
)−1

Φ
H
d

)
Tr
((

KX
UU
)−1

Φ
X
d

)
. (5.38)

The computational complexity of the lower bound (5.31) is mainly controlled by
(

KX
fdU

)⊤
KX

fdU

with O
(
NdRM2

X
)
. Like Moreno-Muñoz et al. (2018), we can also extend L (5.31) by applying

the mini-bath method to make our model more scalable.

5.4 Experiments

In this section, we evaluate HMOGP-LV in both synthetic and real datasets. We show that
HMOGP-LV outperforms other single- and multi-output Gaussian process models with
regard to two evaluation metrics to evaluate the predictive accuracy in regression problems:
normalised mean square error (NMSE) and negative log predictive density (NLPD). In terms
of both NMSE and NLPD, smaller values lead to a better model.

Baselines: In terms of hierarchically structured datasets, we compare our model with
three GP models that have a hierarchical kernel matrix like ours. We also compare our model
with two multi-output GP models, one of which has a finite coregionalisation matrix; the
other has a coregionalisation matrix with a kernel matrix like ours. The compared models are:
1) A Gaussian process with a hierarchical kernel matrix (Hensman et al., 2013b) (HGP); 2)
A Gaussian process the same as HGP except that it has inducing variables like section 5.2.2
(HGPInd); 3) A Gaussian process with a deep hierarchical structure (three-layer) (Hensman

78 Hierarchical Multi-output Gaussian Processes with Latent Information

et al., 2013b) (DHGP):

g(x)∼ GP
(
0,kg

(
x,x′

))
, (5.39)

ed(x)∼ GP
(
g(x),ke

(
x,x′

))
, (5.40)

f r
d(x)∼ GP

(
ed(x),k f

(
x,x′

))
, (5.41)

yr
d (x) = f r

d (x)+ ε, (5.42)

where ed(x) follows a Gaussian process with mean g(x) and covariance ke (x,x′), ε ∼
N
(
0,σ2); 4) A standard linear model of coregionalisation that has a finite coregionalisation

matrix (for more detail see Chapter 2.7.2) (LMC); and 5) A multi-output Gaussian process
model that uses latent information to refer to the correlation between each output (Dai et al.,
2017) (LVMOGP). We also compared our method to a Neural Network (NN), with 2 layers
of 200 units and a ReLU activation, to handle a single output. HGP and HGPInd can only
handle single outputs and each output has its own replicas. DHGP can handle multiple
outputs, and each output has its own replicas, together. LMC and LVMOGP can also handle
multiple outputs, where we stack all replicas in the same output in a vector as one output,
i.e., the d-th output is yd =

[
(y1

d)
⊤, · · · ,(yR

d)
⊤]⊤ ∈ RNR. We use the Adam optimiser for

maximising the lower bound of log marginal likelihood (i.e., L in Eq. (5.31)) with a 0.01
learning rate (Kingma and Ba, 2014) to train HMOGPLV with 10,000 iterations. We also use
the Adam optimiser with the same parameters setting to train LMC. Other models are trained
with 10,000 iterations using the L-BFGS-B algorithm in SciPy (Virtanen et al., 2020).

Computational Complexity: We compare the computational complexity of our model
with other models. For simplicity, we assume all the outputs have the same input, so the total
number of data points is NR. HMOGPLV has the same computational complexity as LV-
MOGP since our model is derived from it, i.e., O(max(NR,MH)max(D,MX)max(MH,MX))

(Dai et al., 2017). The computational complexity of LMC is O
(
QM3 +DNRQM2) (see sec-

tion 2.7.2) when using mini-batch. We also could extend our model through mini-batch
learning. The computational complexities of HGP (Hensman et al., 2013b) and HGPInd are
O
(
(NR)3) and O

(
NR(MHMX)

2), respectively. The DHGP has computational complexity
O
(
(DNR)3) and can be reduced to O

(
(ND)3) by summing each kernel matrix corresponding

to each replica together rather than a large matrix corresponding to all replicas (see Hensman
et al. (2013b) for more detail).

Evaluation Metrics: To measure predictive accuracy, we choose two evaluation metrics
in this chapter: one is the normalised mean square error (NMSE) which takes account of the
predictive mean; the other is the negative log predictive density (NLPD) which takes both

5.4 Experiments 79

predictive mean and predictive variance into account. The following are the two metrics:

NMSE =
1
N ∑

N
i=1 (yi− ŷi)

2

1
N ∑

N
i=1 (yi− ȳtest)

2 , (5.43)

NLPD =
1
2

1
N

N

∑
i=1

((
yi− ŷi

σ̂i

)2

+ log σ̂
2
i + log2π

)
, (5.44)

where ŷi and σ̂2
i are the predictive mean and variance for the test data point i and yi is the

actual test value for that instance. The average output value for test data is ȳtest .
All experiments were performed on a Dell PowerEdge C6320 with an Intel Xeon E5-2630

v3 at 2.40 GHz and 64GB of RAM. We take three repetitions for each experiment. Regarding
no missing replicas’ experiments, we take 50% of the data points in each replica for training
data and the other 50% as test data for all experiments. HGP and DHGP do not have inducing
variables. QH is set as two for HMOGP-LV and LVMOGP in all experiments.

5.4.1 Synthetic Data

In this subsection, we compare the performance of HMOGP-LV with other models on two
synthetic hierarchical datasets: (a) the first dataset where for each replica in the output, part
of the data points in each replica are used as training data and the task is to predict the
remaining part per replica (see Figure 5.5 (a)); and (b) the second dataset where for each
output, we predict a single missing replica using the remaining whole replicas as training data
(see Figure 5.5 (b)). Regarding the parameter settings, HMOGP-LV, HGPInd, LVMOGP, and
LMC use MX=3 three in each output for the first synthetic datasets. For the second dataset,
we need to predict missing replicas so we choose MX as six. HMOGP-LV and LVMOGP
take MH as five for those two datasets.

1st
Output

1st
Replica

2nd
Replica

Rth
Replica

Dth
Output

1st
Replica

2nd
Replica

Rth
Replica

1st
Output

1st
Replica

2nd
Replica

Rth
Replica

Dth
Output

1st
Replica

2nd
Replica

Rth
Replica

(a) (b)

Fig. 5.5 (a): red represents training data points and blue represents test data points in the first dataset. (b): red
represents training data points and blue represents test data points in the second dataset

80 Hierarchical Multi-output Gaussian Processes with Latent Information

5.4.1.1 First Synthetic Dataset

To show that our model can exploit the correlation in hierarchical data structures and corre-
lation between each output, we generated our synthetic data by sampling from a Gaussian
process with zero mean and covariance in Eq. (5.14). The kernel function is combined by
two kernels: kernel kH(·, ·) for outputs (two-dimensional space) Kronecker product with a
hierarchical kernel. There are two kernels in the hierarchical kernel: kg(·, ·) is a Matérn 32
kernel (2.16) having 1.0 length scale and 0.1 variance; k f (·, ·) is another Matérn 32 kernel
(2.16) having 1.0 length scale and 1.0 variance. Each output also has a different input dataset.
Further, an observation noise with a variance of 0.02 is added to the dataset. The generated
synthetic dataset has 50 outputs, each with three replicas where each replica has 10 data
points. For example, in Figure 5.6, the first row shows the available data (training and test
datasets) for the third output. In the first row, there are three graphs representing the first,
second and third replicas in the third output, respectively.

Fig. 5.6 Mean predictive curves associated with their 95% credible intervals for the third output (top row) and
seventh output (bottom row) with three replicas each, coming from the synthetic dataset. Locations of training
points (in black) and testing points (in red) are specific to each output.

5.4 Experiments 81

Figure 5.6 shows that HMOGP-LV can make excellent predictions on the test dataset
even if we only have a few training data points. For example, our model efficiently predicts
the result of the test data points in the first replica in the third output and the second replica
in the seventh output (see Figure 5.6). This is because HMOGP-LV can not only exploit
the correlation intra- and inter-output by using latent variables but can also capture the
hierarchical information from the dataset by using the hierarchical kernel matrix. The top
and bottom rows show plots of the third and seventh output with three different replicas
respectively, where the black and red data points are training and test data points.

Fig. 5.7 Prediction performances (mean ± standard deviation) for the first synthetic dataset. For both NMSE
and NLPD values, the lower the better.

HMOGP-LV outperforms single-output GPs (HGP and HGPInd). These single-output
GPs can use their hierarchical kernel matrix to exploit the nature of the hierarchical dataset.
Nevertheless, they cannot use other outputs to boost performance. In our model, we can use
the latent variables to transfer knowledge between each output to improve performance. The
HGP and HGPInd cannot capture any correlation between each output, leading to higher
variability across different folds and resulting in large error bars (Figure 5.7). Regarding NN,
it presents lower performances in terms of RMSE and noticeably high variability in results.
Moreover, NN does not provide uncertainty quantification and cannot be evaluated in terms
of NLPD.

82 Hierarchical Multi-output Gaussian Processes with Latent Information

Fig. 5.8 A DHGP model

In terms of multi-output Gaussian processes, our model outperforms other models in
both NMSE and NLPD in this synthetic dataset. Neither LVMOGP nor LMC performs well
since they are non-hierarchical models that cannot capture the hierarchical structure from the
dataset. Our model and DHGP are suitable for the hierarchical dataset. DHGP can deal with
multi-output datasets where it assumes the multi-output datasets have three-layer tree-like
data (see Figure 5.8). It has a three-layer hierarchical kernel, where the top layer (Eq. (5.39))
can capture the correlation between different outputs and the other two-layer (Eq. (5.40)
and (5.41)) capture the correlation between replicas. However, the top layer (Eq. (5.39))
with a few hyper-parameters could not efficiently capture the correlation among outputs. By
employing latent variables via a kernel function, our model uses more hyper-parameters and
parameters than DHGP to exploit the correlation.

5.4.1.2 Second Synthetic Dataset

To show the ability of HMOGP-LV in the missing replicas’ dataset, we designed a synthetic
dataset with a missing replica in each output. Similar to the dataset above, we generate 50
outputs and each output has four replicas where each replica has 10 data points. In each
output, we assume there is one missing replica, therefore, there are three replicas for training
and we need to predict the missing replica for each output. For example, in Figure 5.9, the
black points mean the training data points and the red points mean the missing replica data
points. In the 14th output, the first, third and fourth replica are observed, whereas the second
replica is missing. In this case, the aim of our model is to predict the second replica in the
14th output.

Figure 5.9 shows our model’s performance in the 14th, 24th and 40th outputs with missing
replicas. The first row shows our model has an excellent prediction for the missing replica
in the 14th output. This is because the missing replica has a strong correlation with replicas
in all outputs. Our model captures the correlation and can transfer it using our inducing
variables when we predict missing replicas.

5.4 Experiments 83

We compare our model against others in the two evaluation metrics, where the NMSE and
NLPD are computed for all missing replicas in all the outputs and HMOGP-LV is superior
to others (see Figure 5.10). HGP cannot make predictions for missing replicas since they
cannot be trained without all replicas. HGPInd uses other replicas in the same output to
obtain the information for the missing replica and all the information kept in the inducing
points. However, it cannot use other outputs as extra information whereas our model can fully
leverage the information between each output. Both LVMOGP and LMC can predict missing
replicas since they do not distinguish replicas in each output that has a hierarchical structure.
Nevertheless, HMOGP-LV can keep information of all replicas in inducing variables that can
improve the performance of prediction.

Fig. 5.9 Top row: the result of the 14th output with four replicas; Middle row: the result of the 24th output with
four replicas; Bottom row: the result of the 40th output with four replicas. The black and red colour represents
the train and test data points, respectively.

84 Hierarchical Multi-output Gaussian Processes with Latent Information

Fig. 5.10 Prediction performances (mean ± standard deviation) for the second synthetic data with one missing
replica in each output. For both NMSE and NLPD values, the lower the better.

5.4.1.3 Evaluation the Dimension of latent variables

To explore the influence of QH , we generated synthetic datasets by sampling from a Gaussian
process with zero mean and covariances. This covariance function is a combination of two
kernels: kH(·, ·) for outputs (two-dimensional space) Kronecker-times a hierarchical kernel.
Two kernels are also involved in the hierarchical kernel design: kg(·, ·), which is assumed
to be Matérn(3/2) with 1.0 lengthscale and 0.1 variance; and k f (·, ·) defined as another
Matérn(3/2) kernel with 1.0 lengthscale and 1.0 variance. Each output is generated from a
specific input set. In addition, a Gaussian noise term with a 0.02 variance is added to each
data sample. One synthetic dataset consists of 10 outputs with five replicas each, while each
replica comprises 10 data points.

Figure 5.11 (Left) shows the performance of HMOGP-LV, in the synthetic data based on
different dimensions of latent vectors in terms of both NMSE and NLPD. The performance
in both NMSE and NLPD will get worse as the dimension of latent vectors increases. This
may be because when the dimension of hd increases, the term kH(hi,h j) cannot adequately
capture the correlation between i-th and j-th output. Our model performs similarly when the
dimensions lie between one and four. To decide which dimension to use, we followed the
recommendation of Dai et al. (2017), whose research provided the basis for our model, and
chose to use two dimensions.

In theory, increasing the number of inducing points in ZH should improve the performance
of HMOGP-LV. However, as shown in Figure 5.11 (Right), both the NMSE and NLPD
performance of HMOGP-LV deteriorate as the number of inducing points increases. This
may be due to difficulty in obtaining sufficiently optimized variational parameters and
hyperparameters for our model when using a large number of inducing points in ZH . In this
case, we choose a relatively small number of inducing points in ZH .

5.4 Experiments 85

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

NMSE
NLPD

NMSE
NLPD

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

The dimension of latent vectors The number of inducing points in

Fig. 5.11 Left: The performance of HMOGP-LV on synthetic data based on the dimensions of the latent vectors;
Right: The performance of HMOGP-LV on synthetic data based on the number of inducing points in ZH .

5.4.2 Real Datasets

In this subsection, we compare the performance of HMOGP-LV against other GP models in
two real datasets, gene and motion capture datasets, for multi-output regression problems.

− 1

0

1

− 1

0

1

− 1

0

1

− 1

0

1

Gene CG12723

Gene CG13196

Gene CG13627

Gene Osi15

1st replica 2nd replica 3rd replica 4th replica 5th replica 6th replica 7th replica 8th replica

1st replica 2nd replica 3rd replica 4th replica 5th replica 6th replica 7th replica 8th replica

1st replica 2nd replica 3rd replica 4th replica 5th replica 6th replica 7th replica 8th replica

1st replica 2nd replica 3rd replica 4th replica 5th replica 6th replica 7th replica 8th replica

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Time (hours)

N
o
rm

a
lis

e
d

 G
e
n
e
 e

x
p

e
re

ss
io

n

Fig. 5.12 Gene dataset with four gene expressions

86 Hierarchical Multi-output Gaussian Processes with Latent Information

5.4.2.1 Gene Dataset

To test the performance of different GP models, we predict temporal gene expression in a
gene dataset on Drosophila development (Kalinka et al., 2010). There are six species and
each species’ gene expression has been measured in eight replicas at different time points.
Kalinka et al. (2010) explore 3695 genes. Our experiments focus on one of six species’
(melanogaster) development where there are eight replicas for each gene. We consider each
gene as one output so each output has eight replicas in this dataset. Figure 5.12 shows some
of the examples of this dataset, where replicas can contain a different number of data points.
Following Hensman et al. (2013b), this chapter uses the data corresponding to the following
genes: ‘CG12723’, ‘CG13196’, ‘CG13627’, ‘Osi15’ (see Figure 5.12). Therefore, we have
four outputs, each with eight replicas, wherein the total number of data points for the eight
replicas in each output is 56. Since the dataset is small, we use MX as 14 for HMOGP-LV,
HGPInd, LVMOGP, and LMC in the no missing replica case; we choose MH as the number
of half of all training datasets for those models in the missing replicas case. HMOGP-LV
and LVMOGP use MH=2.

Figure 5.13 shows that DHGP, LVMOGP, and LMC have excellent performance since
they can exploit the correlation between each output. Further, DHGP can also exploit the
hierarchical structure of the dataset through a hierarchical kernel. However, HMOGP-LV has
a slightly better performance in terms of NMSE and NLPD. HMOGP-LV not only exploits
the hierarchical structure of the gene dataset but also leverages the correlation between each
output through the latent information H.

Fig. 5.13 Gene dataset with no missing replicas

5.4 Experiments 87

To compare the performance of HMOGP-LV in the missing replicas problems, we apply
HMOGP-LV in the gene dataset where we assume there is one missing replica in each output
in the gene dataset. We randomly choose a missing replica per output so there are now seven
replicas in each output as training datasets. We provide in Figure 5.14 the visual results of
HMOGP-LV in this experiment where one can observe that the entirely missing replicas are
remarkably reconstructed with high accuracy and confidence. From Figure 5.15, we can see
that multi-output Gaussian processes approaches (e.g. LVMOGP and LMC) also provide
excellent results, comparable to our method. In contrast, the performances of HGPInd appear
notably poor in this context.

Fig. 5.14 Mean predictive curves associated with their 95% credible intervals for all outputs and replicas of the
gene dataset. Locations of training points (in black) and testing points (in red) are specific to each output. Gene
dataset with one missing replica in each output (HMOGP-LV performance)

88 Hierarchical Multi-output Gaussian Processes with Latent Information

Fig. 5.15 Gene dataset with one missing replica in each output

5.4.2.2 Motion Capture Database

To test the performance of our model to predict missing replicas, we apply HMOGP-LV
into the motion capture database (MOCAP) from the CMU motion capture database.2 We
consider four different categories of movement: walking, running, golf swing and jumping.
We only consider part of the body. Regarding walking, we take subject 8 with trials 2, 3, 8
and 9, where we consider each trial as a replica. We take the right-hand (humerus, radius,
wrist, femur and tibia) and there are 16 positions in total. Additionally, we normalise the
input and output data points to zero mean and unit variance, respectively. We take each
position as each output and take outputs whose signal-to-noise ratio is over 20 dB. Therefore,
there are 16 outputs and each output has four replicas (MOCAP-8). For running, we take
subject 9 with trials 1, 2, 3, 5, 6, and 11. We take the head and foot (lower-neck, upper-neck,
head, femur, tibia and foot), then there are 16 outputs and each output has six replicas
(MOCAP-9). With golf swing, we look at subject 64 with trials 3, 4, 5, 7, 8 and 9. We take
the left and right-hand (humerus, radius and wrist). There are nine outputs and each output
has six replicas (MOCAP-64). Regarding jumping, we choose subject 118 with trials 3, 4, 11
and 17. We choose the foot (femur, tibia and foot) so there are 12 outputs and each output
has four replicas (MOCAP-118). Because each replica has many data points (e.g., around
1000 data points), we have not applied this dataset for training and test data points for each
replica but for missing replicas experiments. In all settings, each replica is observed over 200
time points except MOCAP-9 (in MOCAP-9, each replica is observed over 100 time points

2The CMU Graphics Lab Motion Capture Database was created with funding from NSF EIA-0196217 and
is available at http://mocap.cs.cmu.edu.

http://mocap.cs.cmu.edu

5.4 Experiments 89

since its replica has around 140 times). We show the parameters settings in those datasets for
GP models in Table 5.1.

Table 5.1 Setting and parameters of different GP models in MOCAP dataset. MX indicates the number of
inducing points in ZX . MH indicates the number of inducing points in ZH . Neither DHGP or NN make use of
inducing variables.

Dataset Model MH MX

MOCAP-8

HMOGP-LV
2

6
LVMOGP
HGPInd

None
LMC

MOCAP-9

HMOGP-LV
5

5
LVMOGP
HGPInd

None
LMC

MOCAP-64

HMOGP-LV
5

5
LVMOGP
HGPInd

None
LMC

MOCAP-118

HMOGP-LV
3

6
LVMOGP
HGPInd

None
LMC

90 Hierarchical Multi-output Gaussian Processes with Latent Information

Train

Train Train Train Train

-2 -1 0 1 2

5th output 1st replica 5th output 2nd replica 5th output 3rd replica 5th output 4th replica 5th output 5th replica 5th output 6th replica

1st output 1st replica 1st output 2nd replica 1st output 3rd replica 1st output 4th replica 1st output 5th replica 1st output 6th replica
Test Train

Test

Train Train Train

Train

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2-2 -1 0 1 2

-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

0

-1

-2

1

0

-1

-2

1

0

-1

-2

1

0

-1

-2

1

0

-1

-2

1

0

-1

-2

1

Fig. 5.16 Mean predictive curves associated with their 95% credible intervals for all outputs and replicas of the
MOCAP-9 dataset. Locations of training points (in black) and testing points (in red) are specific to each output.

As highlighted in Figure 5.17, HMOGP-LV outperforms other methods in most situations,
where DHGP and LVMOGP present comparable results. In particular, the results of the
MOCAP-9 experiment, for which the improvement provided by our method is the most
prominent, are illustrated in Figure 5.16. One can notice how our model retrieves adequately
the overall pattern for the missing replica at no cost in terms of uncertainty. As displayed, it
seems that sharing information at different levels, both among outputs and replicas, allows the
prediction to remain accurate regardless of the sub-sample of data that is removed. It is worth
mentioning that both multi-output methods (LMC and LVMOGP) also exhibit excellent
performance in those task, although HMOGP-LV seems to remain the most sensible choice
overall.

In some cases, the performance of HMOGP-LV is similar to other models. For example,
regarding MOCAP-64 and MOCAP-118, HMOGP-LV has similar performance as LMC and
LVMOGP in terms of NMSE (see Figure 5.17 for detail). One possible reason is that we
assume there is a strong correlation between each replica and a hierarchical structure in the
dataset. However, the hierarchical structure may not exist so our model cannot exploit it, or
the correlation may decrease our model’s predictive performance.

5.5 Summary 91

Fig. 5.17 Prediction performances (mean ± standard deviation) for the MOCAP-8, MOCAP-9, MOCAP-64
and MOCAP-118 datasets. For both NMSE and NLPD values, the lower the better.

5.5 Summary

In this chapter, we have introduced HMOGP-LV, a novel framework of multi-output Gaussian
processes to deal with multiple regression problems in hierarchically structured datasets.
HMOGP-LV uses latent variables to capture the correlation between multiple outputs and a
hierarchical kernel matrix to capture the dependency in replicas for each output. If there are
any missing replicas, HMOGP-LV can predict them using inducing variables which retain

92 Hierarchical Multi-output Gaussian Processes with Latent Information

replicas information. We experimentally show that HMOGP-LV has better performance than
other models in terms of NMSE and NLPD in both synthetic and real datasets.

Chapter 6

Conclusions and Future Work

This chapter summarises the work developed in the thesis, discusses its limitations, and
provides some ideas for future work. In Section 6.1, we conclude the work carried out across
the thesis. n Section 6.2, we examine the limitations of our work. In Section 6.3, we outline
some insights for future work.

6.1 Summary of Contributions

In this thesis, we have extended multi-output Gaussian processes (MOGPs) to better cope
with three different types of datasets: large-scale classification datasets, relatively high
dimensional input datasets and datasets with a hierarchical structure in the context of GPs.
To handle those datasets in the area of GPs, we proposed different generalisations of MOGPs.
We chose a softmax likelihood function through Gumbel noise error in MOGPs to reduce
the computational complexity in classification problems (Chapter 3). We integrated a
convolutional kernel into MOGPs to deal with a relatively high-dimensional dataset (Chapter
4). Finally, we designed a novel MOGP for datasets with a hierarchical structure (Chapter 5).

• In Chapter 3, we strive to address a challenge for the scalability of MOGPs in the
case of a large number of classes. We provided an extension of the MOGP model
known as MOGPs-AR that can deal with large-scale classification by subsampling both
training input data and classes in each output. Our model applies stochastic variational
inference and chooses a softmax likelihood function via Gumbel noise error for all
outputs so it can handle large-scale multi-output, multi-class classification problems
through subsampling both training dataset and classes in each output. Through the
experiments in both synthetic and real classification problems, we showed that MOGPs-

94 Conclusions and Future Work

AR outperforms multi-output Gaussian processes regarding scalability and single-
output Gaussian processes regarding different performance metrics.

• In Chapter 4, we presented a new MOGP model called MOCGPs-AR that can cope
with relatively high-dimensional input data classification problems by integrating a
convolutional kernel into MOGPs-AR. In the multi-class classification problems, image
data are the most common type of data and MOGPs are not suitable for handling image
data. Our model incorporated a convolutional kernel into MOGPs-AR so it can deal
with downsized image input datasets. It then inherits the scalability of MOGPs-AR
so it can also handle large-scale multi-class classification datasets. Thanks to the
convolutional kernel, our model outperforms MOGPs-AR in terms of classification
accuracy on the Omniglot dataset.

• In Chapter 5 we developed a novel MOGP model named HMOGP-LV that can han-
dle hierarchically structured datasets. MOGPs are not specifically designed for the
aforementioned datasets. We proposed a hierarchical structure of MOGPs, where we
developed a hierarchical kernel through the structure. The hierarchical kernel can be
divided into two parts: 1) one kernel that encapsulates the hierarchical structure for in-
put data points; 2) another kernel that encodes the interaction between outputs through
latent variables. We also derived a variational inference framework for HMOGP-LV.
We empirically show that HMOGP-LV outperforms single-output and multi-output
Gaussian processes in terms of normalised mean square error and negative log pre-
dictive density. By means of inducing variables, our model can make predictions for
missing replicas in which we do not have any data at all.

By proposing three extensions of MOGPs in this thesis, we help MOGPs to handle
the multi-class classification problem, alleviate the curse of dimensionality, and cope with
hierarchically structured data.

6.2 Limitations

We analyse the limitations of our work in this section.
MOGPs-AR can not deal with a multi-label problem where each data point belongs to

multiple classes because of using the softmax function which is only suited to each instance
associated with a single class (Chapter 3). Then, MOCGP-AR only handles downsized image
data, however, the practical application of Gaussian process models to realistic image recog-
nition tasks is still an open research problem. For example, in terms of accuracy performance

6.3 Future Work 95

in a realistic RGB set CIFAR-10 (Krizhevsky et al., 2009), the accuracy performance of
Gaussian processes (Blomqvist et al., 2019; Van der Wilk et al., 2017) is not as high as the
state-of-the-art like deep learning (Chapter 4). Next, HMOGP-LV only addresses regression
problems so far since the likelihood considered is Gaussian; HMOGP-LV is also limited
to two layers of hierarchy when accounting for correlations where, in many cases, some
datasets have deeper hierarchical structure (Hensman et al., 2013b) (Chapter 5). Therefore,
there are various future directions to possibly solve current limitations.

6.3 Future Work

We envisage various directions for future work based on this thesis, as described in this
section.

• In terms of the limitation MOGPs-AR, Panos et al. (2021) extend a semiparametric
latent model to handle the multi-label problem by using sigmoidal/Bernoulli likelihood
for each latent parameter function in single-output problems. It would be an interesting
direction for future research to explore whether we can generalise MOGPs-AR for
the multi-label problem, a problem that has a strong correlation with the extreme
classification problem.

• Regarding realistic image recognition tasks in MOCGP-AR, a potential extension
would be to consider integrating the structural properties of deep learning architectures
into our model by using deep kernel learning (Wilson et al., 2016).

• Concerning the limitation of HMOGP-LV in regression problems and two-layer hierar-
chical structure for input space, a potential extension would be to generalise our model
for heterogeneous multi-output prediction by combining different kinds of likelihoods
and scalable variational inference (Moreno-Muñoz et al., 2018). Another possible
extension would build a deep hierarchical structure for input space, e.g., a three-layer
hierarchical structure (Hensman et al., 2013b).

References

Alaa, A. M. and Van Der Schaar, M. (2017). Bayesian inference of individualized treatment
effects using multi-task Gaussian processes. Advances in neural information processing
systems, 30.

Altamirano, M. and Tobar, F. (2022). Nonstationary multi-output Gaussian processes via
harmonizable spectral mixtures. In International Conference on Artificial Intelligence and
Statistics, pages 3204–3218. PMLR.

Alvarez, M., Luengo, D., and Lawrence, N. D. (2009). Latent force models. In Artificial
Intelligence and Statistics, pages 9–16. PMLR.

Alvarez, M. A. (2011). Convolved Gaussian process priors for multivariate regression with
applications to dynamical systems. PhD thesis, The University of Manchester (United
Kingdom).

Álvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued
functions: A review. Foundations and Trends® in Machine Learning, 4(3):195–266.

Álvarez, M. A., Ward, W., and Guarnizo, C. (2019). Non-linear process convolutions for
multi-output Gaussian processes. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1969–1977. PMLR.

Barber, D. and Williams, C. (1996). Gaussian processes for Bayesian classification via hybrid
Monte Carlo. Advances in neural information processing systems, 9.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877.

Blomqvist, K., Kaski, S., and Heinonen, M. (2019). Deep convolutional Gaussian pro-
cesses. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 582–597. Springer.

Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task Gaussian process prediction.
In Advances in neural information processing systems, pages 153–160.

Chai, K. M. A. (2012). Variational multinomial logit Gaussian process.
The Journal of Machine Learning Research, 13:1745–1808.

Cortez, P. and Silva, A. M. G. (2008). Using data min-
ing to predict secondary school student performance. In
Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC), pages
5–12. EUROSIS-ETI.

98 References

Dahl, A. and Bonilla, E. V. (2019). Grouped Gaussian processes for solar power prediction.
Machine Learning, 108(8-9):1287–1306.

Dai, Z., Álvarez, M. A., and Lawrence, N. D. (2017). Efficient modeling of latent information
in supervised learning using Gaussian processes. arXiv preprint arXiv:1705.09862.

Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian processes. In Artificial
intelligence and statistics, pages 207–215. PMLR.

Dezfouli, A. and Bonilla, E. V. (2015). Scalable inference for Gaussian process models with
black-box likelihoods. Advances in Neural Information Processing Systems, 28:1414–
1422.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Flaxman, S., Gelman, A., Neill, D., Smola, A., Vehtari, A., and Wilson, A. G. (2015). Fast
hierarchical Gaussian processes. Manuscript in preparation.

Galy-Fajou, T., Wenzel, F., Donner, C., and Opper, M. (2020). Multi-class Gaussian
process classification made conjugate: Efficient inference via data augmentation. In
Uncertainty in Artificial Intelligence, pages 755–765. PMLR.

Gelman, A., Carlin, J. B., Stern, H. S., Vehtari, A., and Rubin, D. B. (2013). Bayesian data
analysis, 3rd edition. Chapman and Hall/CRC.

Gibbs, M. N. and MacKay, D. J. (2000). Variational Gaussian process classifiers. IEEE
Transactions on Neural Networks, 11(6):1458–1464.

Girolami, M. and Rogers, S. (2006). Variational Bayesian multinomial probit regression with
Gaussian process priors. Neural Computation, 18(8):1790–1817.

Goovaerts, P. et al. (1997). Geostatistics for natural resources evaluation. Oxford University
Press on Demand.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013a). Gaussian processes for big data. arXiv
preprint arXiv:1309.6835.

Hensman, J., Lawrence, N. D., and Rattray, M. (2013b). Hierarchical Bayesian modelling
of gene expression time series across irregularly sampled replicates and clusters. BMC
bioinformatics, 14(1):252.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015a). Scalable variational Gaussian
process classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR.

Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. (2015b). MCMC for
variationally sparse Gaussian processes. Advances in Neural Information Processing
Systems, 28.

Hernández-Lobato, D., Hernández-lobato, J., and Dupont, P. (2011). Robust multi-class Gaus-
sian process classification. Advances in neural information processing systems, 24:280–
288.

References 99

Kalinka, A. T., Varga, K. M., Gerrard, D. T., Preibisch, S., Corcoran, D. L., Jarrells, J., Ohler,
U., Bergman, C. M., and Tomancak, P. (2010). Gene expression divergence recapitulates
the developmental hourglass model. Nature, 468(7325):811–814.

Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multilabel text classification for auto-
mated tag suggestion. In Proceedings of the ECML/PKDD, volume 18, page 5. Citeseer.

Kim, H.-C. and Ghahramani, Z. (2006). Bayesian Gaussian process classification with
the EM-EP algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(12):1948–1959.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Krauth, K., Bonilla, E. V., Cutajar, K., and Filippone, M. (2016). AutoGP: Exploring the
capabilities and limitations of Gaussian process models. arXiv preprint arXiv:1610.05392.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images. Technical report, Citeseer.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

Lawrence, N. and Hyvärinen, A. (2005). Probabilistic non-linear principal component analy-
sis with Gaussian process latent variable models. Journal of machine learning research,
6(11).

Lawrence, N. D. and Moore, A. J. (2007). Hierarchical Gaussian process latent variable
models. In Proceedings of the 24th international conference on Machine learning, pages
481–488.

Li, M. and Kontar, R. (2022). On negative transfer and structure of latent functions in multi-
output gaussian processes. SIAM/ASA Journal on Uncertainty Quantification, 10(4):1714–
1732.

Li, P. and Chen, S. (2018). Hierarchical Gaussian processes model for multi-task learning.
Pattern Recognition, 74:134–144.

Liu, H., Ong, Y.-S., Yu, Z., Cai, J., and Shen, X. (2019). Scalable Gaussian Process Classifi-
cation with Additive Noise for Various Likelihoods. arXiv preprint arXiv:1909.06541.

Minka, T. P. (2013). Expectation propagation for approximate Bayesian inference. arXiv
preprint arXiv:1301.2294.

Moreno-Muñoz, P., Artés, A., and Álvarez, M. (2018). Heterogeneous multi-output Gaussian
process prediction. In Advances in Neural Information Processing Systems, pages 6712–
6721.

Neal, R. M. (1997). Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification. arXiv preprint physics/9701026.

100 References

Nguyen, T. N. A., Bouzerdoum, A., and Phung, S. L. (2018). Stochastic variational hierarchi-
cal mixture of sparse Gaussian processes for regression. Machine Learning, 107(12):1947–
1986.

Osborne, M. A., Roberts, S. J., Rogers, A., Ramchurn, S. D., and Jennings,
N. R. (2008). Towards real-time information processing of sensor network
data using computationally efficient multi-output Gaussian processes. In
2008 International Conference on Information Processing in Sensor Networks (ipsn 2008),
pages 109–120. IEEE.

Panos, A., Dellaportas, P., and Titsias, M. (2021). Large Scale Multi-Label Learning using
Gaussian Processes. Machine Learning.

Parra, G. and Tobar, F. (2017). Spectral mixture kernels for multi-output Gaussian processes.
Advances in Neural Information Processing Systems, 30.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning.

Ruiz, F. J., Titsias, M. K., Dieng, A. B., and Blei, D. M. (2018). Augment and reduce:
Stochastic inference for large categorical distributions. arXiv preprint arXiv:1802.04220.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T.
(2016). Meta-learning with memory-augmented neural networks. In
International conference on machine learning, pages 1842–1850.

Skolidis, G. and Sanguinetti, G. (2011). Bayesian multitask classification with Gaussian
process priors. IEEE Transactions on Neural Networks, 22(12).

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In
Advances in neural information processing systems, pages 1257–1264.

Snoek, C. G., Worring, M., Van Gemert, J. C., Geusebroek, J.-M., and Smeulders, A. W.
(2006). The challenge problem for automated detection of 101 semantic concepts in mul-
timedia. In Proceedings of the 14th ACM international conference on Multimedia, pages
421–430.

Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes.
In Artificial Intelligence and Statistics, pages 567–574.

Titsias, M. and Lawrence, N. D. (2010). Bayesian Gaussian process latent variable model.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 844–851. JMLR Workshop and Conference Proceedings.

Torres-Sospedra, J., Montoliu, R., Martínez-Usó, A., Avariento, J. P., Arnau, T. J., Benedito-
Bordonau, M., and Huerta, J. (2014). UJIIndoorLoc: A new multi-building and multi-floor
database for WLAN fingerprint-based indoor localization problems. In 2014 international
conference on indoor positioning and indoor navigation (IPIN), pages 261–270. IEEE.

References 101

Van der Wilk, M. (2019). Sparse Gaussian process approximations and applications. PhD
thesis, University of Cambridge.

Van der Wilk, M., Rasmussen, C. E., and Hensman, J. (2017). Convolutional Gaussian
processes. In Advances in Neural Information Processing Systems, pages 2849–2858.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature methods, 17(3):261–272.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Deep kernel learning. In
Artificial intelligence and statistics, pages 370–378. PMLR.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2018). Scalable Gaussian process-based
transfer surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78.

Zhang, Y. and Yang, Q. (2017). A survey on multi-task learning. arXiv preprint
arXiv:1707.08114.

Appendix A

In this appendix, we provide some basic maths formulas about joint, marginal, conditional
probability and Gaussian identities.

A.1 Joint, Marginal and Conditional Probability

The marginal probability of x given by:

p(x) =
∫

p(x,y)dy. (A.1)

The conditional probability function is defined as:

p(x|y) = p(x,y)
p(y)

. (A.2)

The Joint probability is defined as :

p(x,y) = P(x|y)p(y)

= p(y|x)p(x). (A.3)

The Bayes’ theorem is defined as:

P(x|y) = P(y|x)P(x)
P(y)

(A.4)

104

A.2 Gaussian Identities

Based on a joint Gaussian distribution N(x|µ,Σ), x1 and x2 are two disjoint subsets of x.
There are

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (A.5)

Then the conditional distribution is:

p(x1|x2) =N(x|µ1−Λ
−1
11 Λ12(x−µ2), Λ

−1
11), (A.6)

where Λ is named as the precision matrix and Λ = Σ−1:

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
(A.7)

The marginal distribution of x1 is:

p(x1) =N(x1|µ1,Σ11). (A.8)

We assume a marginal distribution for x and a conditional distribution for p(y|x):

p(x) =N(x|µ,Σx) (A.9)

p(y|x) =N(y|Ax+b,Σy). (A.10)

We can obtain the marginal distribution of y and the conditional distribution of p(x|y):

p(y) =N(y|Aµ +b,Σy +AΣxA⊤) (A.11)

p(x|y) =N(x|ΣA⊤Σ
−1
f (y−b)+Σ

−1
x µ,Σ), (A.12)

where Σ = (Σ−1
x +A⊤Σ

−1
f A)−1.

Appendix B

Complete Derivation of the Lower
Bound L

To compute the derivation of the lower bound L in Chapter 3, we begin with the following:

L=Eq(f,u,ε)

[
log

p(y, f,u,ε)
q(f,u,ε)

]
=
∫ ∫ ∫

q(ε|f)p(f|u)q(u)log
p(y|f,u,ε)p(u)p(ε)

q(ε|f)q(u)
dfdεdu

=
∫ ∫ ∫ D

∏
d=1

N

∏
i=1

q(εd,i|̃fd(xi))
Cd

∏
c=1

p(fc
d|u)

Q

∏
q=1

q(uq)

× log
∏

D
d=1 ∏

N
i=1 p

(
yd (xi) | f̃d(xi),εd,i

)
∏

Q
q=1 p

(
uq
)

∏
D
d=1 ∏

N
i=1 p(εd,i)

∏
D
d=1 ∏

N
i=1 q(εd,i |̃fd(xi))∏

Q
q=1 q

(
uq
)

dfdεdu

=
∫ ∫ ∫ D

∏
d=1

N

∏
i=1

q(εd,i|̃fd(xi))
Cd

∏
c=1

p(fc
d|u)

Q

∏
q=1

q(uq)

× log
D

∏
d=1

N

∏
i=1

p
(

yd (xi) | f̃d(xi),εd,i

)
dfdεdu

−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))
−

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i |̃fd(xi)
)
∥p
(
εd,i
))

, (B.1)

106 Complete Derivation of the Lower Bound L

where q(f,u,ε) = p(f|u)q(u)q(ε|f). We assume q(f)≈ p(f | y) so we obtain

q(f)≈ p(f | y)

=
∫

p(f | u)q(u)du

=
∫ D

∏
d=1

Cd

∏
c=1

p(fc
d | u)

Q

∏
q=1

q
(
uq
)

du

=
D

∏
d=1

Cd

∏
c=1

Eq(u)

{
p
(

fc
d |
{

uq
}Q

q=1

)}
=

D

∏
d=1

q
(̃

fd

)
=

D

∏
d=1

Cd

∏
c=1

q(fc
d) =

N

∏
i=1

D

∏
d=1

Cd

∏
c=1

q(f c
d (xi)). (B.2)

The above function means the latent parameter functions are mutually independent in q(f).
Then, we obtain:

L=
∫ ∫ D

∏
d=1

N

∏
i=1

q(εd,i|̃fd(xi))q(f)log
D

∏
d=1

N

∏
i=1

p
(

yd (xi) | f̃d(xi),εd,i

)
dfdε

−
Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))
−

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i |̃fd(xi)
)
∥p
(
εd,i
))

=
D

∑
d

N

∑
i
Eq(̃fd(xi))q(εd,i |̃fd(xi))

[
log p

(
yd (xi) |̃fd(xi),εd,i

)]
−

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))
−

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i |̃fd(xi)
)
∥p
(
εd,i
))

. (B.3)

The q
(

εd,i |̃fd(xi)
)

approximates the posterior p
(

εd,i|yd (xi) , f̃d(xi)
)

(similar to Liu et al.
(2019)):

p
(

εd,i|yd (xi) , f̃d(xi)
)

∝ p
(

yd (xi) |̃fd(xi),εd,i

)
p
(
εd,i
)

= φG

(
εd,i
)

∏
c̸=yd(xi)

ΦG

(
εd,i + f yd(xi)

d (xi)− f c
d (xi)

)
= exp

(
−εd,i−

(
1+ ∑

c̸=yd(xi)

e f c
d (xi)− f

yd(xi)
d (xi)

)
e−εd,i

)
c
= Gumbel

(
εd,i| logθ

∗
d,i,1

)
, (B.4)

107

where θ ∗d,i = 1+∑c̸=yi e f c
d (xi)− f

yd(xi)
d (xi)=∑

Cd
c=1 e f c

d (xi)− f
yd(xi)
d (xi). The optimal p

(
εd,i|yd (xi) , f̃d(xi)

)
does have exact analytic form. However, L will be intractable by using an analytic form.
We thus take a more general distribution q

(
εd,i |̃fd(xi)

)
= Gumbel

(
εd,i| logθd,i,1

)
, which

satisfies θd,i > 1, also including the optimal distribution. Then the L is:

L=
D

∑
d

N

∑
i
Eq(̃fd(xi))q(εd,i |̃fd(xi))

[
log p

(
yd (xi) |̃fd(xi),εd,i

)]
−

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))
−

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i|̃fd(xi)
)
∥p
(
εd,i
))

. (B.5)

We first consider the inner expectation in the double-expectation term in L:

Eq(εd,i |̃fd(xi))

[
log p

(
yd (xi) |̃fd(xi),εd,i

)]
= ∑

c̸=yd(xi)

∫ +∞

−∞

q
(

εd,i |̃fd(xi)
)

logΦG

(
εd,i + f yd(xi)

d (xi)− f c
d (xi)

)
dεd,i

=− ∑
c̸=yd(xi)

∫ +∞

−∞

e

(
−(εd,i−logθd,i)−e−(εd,i−logθd,i)

)

e
−
(

εd,i+ f
yd(xi)
d (xi)− f c

d (xi)

)
dεd,i

= ∑
c̸=yd(xi)

θd,ie f c
d (xi)− f

yd(xi)
d (xi)

(1+θd,iu)e−θd,iu

θ 2
d,i

∣∣∣∣∣
+∞

0

=− 1
θd,i

∑
c̸=yi

e f c
d (xi)− f

yd(xi)
d (xi), (B.6)

where u = e−εd,i . We second consider the outside expectation. Because of

q
(̃

fd(xi)
)
=

Cd

∏
c=1

q(f c
d (xi)) =

Cd

∏
c=1

N
(

f c
d (xi) |µ f c

d
(xi),ν f c

d
(xi)
)
, (B.7)

108 Complete Derivation of the Lower Bound L

we take expression B.7 and expression B.6 to obtain

Eq(̃fd(xi))q(εd,i |̃fd(xi))

[
⟨log p

(
yd (xi) |̃fd(xi),εd,i

)]
=− 1

θd,i

∫
e− f

yd(xi)
d (xi)q

(
f yd(xi)
d (xi)

)
d f yd(xi)

d (xi)

× ∑
c̸=yd(xi)

∫
e f c

d (xi)q(f c
d (xi))d f c

d (xi)

=− 1
θd,i

exp

ν
f

yd(xi)
d

(xi)

2
−µ

f
yd(xi)
d

(xi)

 ∑
c̸=yd(xi)

exp

(
ν f c

d
(xi)

2
+µ f c

d
(xi)

)
. (B.8)

Calculating the KL divergence ∑
D
i=d ∑

N
i=1 KL

(
q
(

εd,i |̃fd(xi)
)
∥p
(
εd,i
))

term, we have

D

∑
i=d

N

∑
i=1

KL
(

q
(

εd,i|̃fd(xi)
)
∥p
(
εd,i
))

=
D

∑
i=d

N

∑
i=1

(
logθd,i +

1
θd,i
−1
)
. (B.9)

Then, the closed-form L is reorganized as

L=
D

∑
d=1

N

∑
i=1

{
− 1

θd,i
Pd,i− logθd,i−

1
θd,i

+1
}
−

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

, (B.10)

where Pd,i = exp

(
ν

f
yd(xi)
d

(xi)

2 −µ
f

yd(xi)
d

(xi)

)
∑c̸=yd(xi) exp

(
ν f c

d
(xi)

2 +µ f c
d
(xi)

)
. To get a tight

bound, we derivative L with respect to θd,i,

∂L

∂θd,i
=

D

∑
d=1

N

∑
i=1

1
θ 2

d,i

(
Pd,i +1

)
− 1

θd,i
= 0. (B.11)

We thus obtain the optimal value θ ∗d,i = Pd,i +1. After substitution of θd,i by θ ∗d,i, there is

L=−
D

∑
d=1

N

∑
i=1

log
(
Pd,i +1

)
−

Q

∑
q=1

KL
(
q
(
uq
)
∥p
(
uq
))

. (B.12)

Appendix C

In this appendix, we present the detail about deriving the lower bound of the log marginal
likelihood and exploiting kronecker product decomposition to obtain efficient formulations
for F in Chapter 5.

C.1 The Lower Bound of The Log Marginal Likelihood

In this section, we derive the lower bound of the log marginal likelihood of our model. We
assume variational posterior distributions are q(H), q(U:) and q(f | U:,H) = p(f | U:,H).
Then we obtain:

log p(y) = log
∫ ∫ ∫

p(y, f,H,U:)dfdHdU:

= log
∫ ∫ ∫ p(y, f,H,U:)q(f,H,U:)

q(f,H,U:)
dfdHdU:

≥
∫ ∫ ∫

q(f,H,U:) log
p(y, f,H,U:)

q(f,H,U:)
dfdHdU:

= L. (C.1)

Then,

L=Eq(f,H,U:)

[
log

p(y, f,H,U:)

q(f,H,U:)

]
=
∫ ∫ ∫

p(f | U:,H)q(U:)q(H)log
p(y|f,H,U:)p(f | U:,H) p(U:)p(H)

p(f | U:,H)q(U:)q(H)
dfdU:dH

=
∫ ∫ ∫

p(f | U:,H)q(U:)q(H)log
p(y|f,H,U:)p(U:)p(H)

q(U:)q(H)
dfdU:dH. (C.2)

110

Finally,

L=
∫

q(H)

[∫
q(U:)

[
Ep(f|U:,H)[log p(y | f,H)]+ log

p(U:)

q(U:)
+ log

p(H)

q(H)

]
dU:

]
dH

=

F︷ ︸︸ ︷
Eq(f,U:,H)[log p(y | f,H)]−KL(q(H)∥p(H))−KL(q(U:)∥p(U:)). (C.3)

C.2 Derivation of F Given the Same Input Datasets

In this section, we show details for deriving F using the same input datasets:

F = Ep(f|U:,H)q(U:)q(H) [log p(y | f,H)]

=
∫

q(H)
∫

q(U:)
∫

p(f | U:,H) log p(y | f,H)df︸ ︷︷ ︸
LF

dU:dH

=
∫

q(H)
∫

q(U:)LFdU:︸ ︷︷ ︸
LU

dH

=
∫

q(H)LU dH︸ ︷︷ ︸
LH

. (C.4)

First, we calculate LF :

LF =
∫

p(f | U:,H) log p(y | f,H)df

= logN
(
y |KfUK−1

UUU:,σ
2)− 1

2σ2 Tr
[
Kff−KfUK−1

UUK⊤fU
]
, (C.5)

where p(f | U:,H) = N
(
f |KfUK−1

UUU:,Kff−KfUK−1
UUK⊤fU

)
and Tr[·] is a trace of a matrix.

Second, we calculate LU :

LU =
∫

q(U:)LFdU:

= logN
(
y |KfUK−1

UUM:,σ
2)− 1

2σ2 Tr
[
Kff−KfUK−1

UUK⊤fU
]

− 1
2σ2 Tr

[
ΣΣΣ

U:K−1
UUK⊤fUKfUK−1

UU

]
. (C.6)

where q(U:) =N
(

U: |M:,ΣΣΣ
U:
)

in which U: and M: are variational parameters. Finally, we
consider LH :

C.3 More Efficient Formulation 111

LH =
∫

q(H)LU dH

=Eq(H)

[
logN

(
y |KfUK−1

UUM:,σ
2)]− 1

2σ2 Tr
[
⟨Kff⟩q(H)−K−1

UUEq(H)

[
K⊤fUKfU

]]
− 1

2σ2 Tr
[
ΣΣΣ

U:K−1
UUEq(H)

[
K⊤fUKfU

]
K−1

UU

]
=−DNR

2
log2πσ

2− 1
2σ2 y⊤y︸ ︷︷ ︸

C

+
1

σ2 y⊤Eq(H) [KfU]︸ ︷︷ ︸
Ψ

K−1
UUM:

− 1
2σ2 M⊤: K−1

UUEq(H)

[
K⊤fUKfU

]
︸ ︷︷ ︸

Φ

K−1
UUM:−

1
2σ2 Tr

(
Eq(H) [Kff]

)︸ ︷︷ ︸
ψ

+
1

2σ2 Tr

K−1
UUEq(H)

[
K⊤fUKfU

]
︸ ︷︷ ︸

Φ

− 1
2σ2

d
Tr

ΣΣΣ
U:K−1

UUEq(H)

[
K⊤fUKfU

]
︸ ︷︷ ︸

Φ

K−1
UU


=C+

1
σ2 y⊤ΨK−1

UUM:−
1

2σ2

(
ψ−Tr

[
K−1

UUΦ
])

− 1
2σ2 Tr

[
K−1

UUΦK−1
UU

(
M:M⊤: +ΣΣΣ

U:
)]

, (C.7)

where
Ψ = Eq(H)

[
KH

fU⊗KX
fU
]
= Eq(H)

[
KH

fU
]
⊗KX

fU = Ψ
H⊗KX

fU, (C.8)

ψ = Tr
(
Eq(H) [Kff]

)
= Tr

(
Eq(H)

[
KH

ff ⊗KX
ff
])
, (C.9)

Φ = Eq(H)

[
K⊤fUKfU

]
= Eq(H)

[(
KH

fU⊗KX
fU
)⊤ (KH

fU⊗KX
fU
)]

= Φ
H⊗

(
KX

fU
)⊤KX

fU. (C.10)

C.3 More Efficient Formulation

We can reduce the computational complexity in F and Kullback–Leibler divergence by taking
the advantage of the Kronecker product decomposition.

112

C.3.1 More Efficient Formulation Given the Same Input Datasets

In this section, given the same input datasets, we re-define F and Kullback–Leibler divergence
by using the Kronecker product decomposition.

F =− NDR
2

log2πσ
2− 1

2σ2 y⊤y

− 1
2σ2 Tr

((
KH

UU⊗KX
UU
)−1 (

Φ
H⊗Φ

X)(KH
UU⊗KX

UU
)−1 M:M⊤:

)
− 1

2σ2 Tr
((

KH
UU⊗KX

UU
)−1 (

Φ
H⊗Φ

X)(KH
UU⊗KX

UU
)−1 (

ΣΣΣ
H:⊗ΣΣΣ

X:
))

+
1

σ2 y⊤
(
Ψ

H⊗KX
fU
)(

KH
UU⊗KX

UU
)−1 M:−

1
2σ2 ψ

+
1

2σ2

(
Tr
((

KH
UU⊗KX

UU
)−1 (

Φ
H⊗Φ

X)))
=− NDR

2
log2πσ

2− 1
2σ2 y⊤y

− 1
2σ2 Tr

(((
KH

UU
)−1

Φ
H (KH

UU
)−1
)
⊗
((

KX
UU
)−1

Φ
X (KX

UU
)−1
)

M:M⊤:
)

− 1
2σ2 Tr

(((
KH

UU
)−1

Φ
H (KH

UU
)−1

ΣΣΣ
H:
)
⊗
((

KX
UU
)−1

Φ
X (KX

UU
)−1

ΣΣΣ
X:
))

+
1

σ2 y⊤
(

Ψ
H (KH

UU
)−1⊗KX

fU
(
KX

UU
)−1
)

M:−
1

2σ2 ψ

+
1

2σ2

(
Tr
((

KH
UU
)−1

Φ
H⊗

(
KX

UU
)−1

Φ
X
))

=− NDR
2

log2πσ
2− 1

2σ2 y⊤y

− 1
2σ2 Tr

(
M⊤

(
KX

UU
)−1

Φ
X (KX

UU
)−1 M

(
KH

UU
)−1

Φ
H (KH

UU
)−1
)

− 1
2σ2 Tr

((
KH

UU
)−1

Φ
H (KH

UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

Φ
X (KX

UU
)−1

ΣΣΣ
X:
)

+
1

σ2 y⊤
(

KX
fU
(
KX

UU
)−1 M

(
KH

UU
)−1 (

Ψ
H)⊤)

:
− 1

2σ2 ψ

+
1

2σ2 Tr
((

KH
UU
)−1

Φ
H
)

Tr
((

KX
UU
)−1

Φ
X
)
. (C.11)

We also assume there is a Kronecker product decomposition of the covariance matrix
of q(U:), ΣΣΣ

U: = ΣΣΣ
H: ⊗ΣΣΣ

X: so the KL-divergence between q(U:) and p(U:) can also take
advantage of the decomposition:

C.3 More Efficient Formulation 113

KL{q(U:) | p(U:)}=
1
2

(
log
∣∣∣KH

UU⊗KX
UU
(
ΣΣΣ

H:⊗ΣΣΣ
X:
)−1
∣∣∣

+Tr
((

KH
UU⊗KX

UU
)−1
(

M:M⊤: +ΣΣΣ
H:⊗ΣΣΣ

X:−
(
KH

UU⊗KX
UU
))))

=
1
2

(
log
∣∣∣KH

UU
(
ΣΣΣ

H:
)−1⊗KX

UU
(
ΣΣΣ

X:
)−1
∣∣∣

+Tr
((

KH
UU⊗KX

UU
)−1
(

M:M⊤: +ΣΣΣ
H:⊗ΣΣΣ

X:
))
−MHMX

)

=
1
2

(
MX log

∣∣∣KH
UU
(
ΣΣΣ

H:
)−1
∣∣∣+MH log

∣∣∣KX
UU
(
ΣΣΣ

X:
)−1
∣∣∣

+Tr
(

M⊤
(
KX

UU
)−1 M

(
KH

UU
)−1
)

+Tr
((

KH
UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

ΣΣΣ
X:
)
−MHMX

)

=
1
2

(
MX log

∣∣KH
UU
∣∣∣∣ΣΣΣH:
∣∣ +MH log

∣∣KX
UU
∣∣∣∣ΣΣΣX:
∣∣ +Tr

(
M⊤

(
KX

UU
)−1 M

(
KH

UU
)−1
)

+Tr
((

KH
UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

ΣΣΣ
X:
)
−MHMX

)
. (C.12)

C.3.2 More Efficient Formulation Given the Different Input Datasets

In this section, given the different input datasets, we re-define F using the Kronecker product
decomposition.

F =
D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd

− 1
2σ2

d
Tr
((

KH
UU⊗KX

UU
)−1 (

Φ
H
d ⊗Φ

X
d
)(

KH
UU⊗KX

UU
)−1 M:M⊤:

)
− 1

2σ2
d

Tr
((

KH
UU⊗KX

UU
)−1 (

Φ
H
d ⊗Φ

X
d
)(

KH
UU⊗KX

UU
)−1 (

ΣΣΣ
H:⊗ΣΣΣ

X:
))

+
1

σ2
d

y⊤d
(
Ψ

H
d ⊗KX

fdU
)(

KH
UU⊗KX

UU
)−1 M:−

1
2σ2

d
ψd

+
1

2σ2
d

(
Tr
((

KH
UU⊗KX

UU
)−1 (

Φ
H
d ⊗Φ

X
d
)))

114

=
D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd

− 1
2σ2

d
Tr
(((

KH
UU
)−1

Φ
H
d
(
KH

UU
)−1
)
⊗
((

KX
UU
)−1

Φ
X
d
(
KX

UU
)−1
)

M:M⊤:
)

− 1
2σ2

d
Tr
(((

KH
UU
)−1

Φ
H
d
(
KH

UU
)−1

ΣΣΣ
H:
)
⊗
((

KX
UU
)−1

Φ
X
d
(
KX

UU
)−1

ΣΣΣ
X:
))

+
1

σ2
d

y⊤d
(

Ψ
H
d
(
KH

UU
)−1⊗KX

fdU
(
KX

UU
)−1
)

M:−
1

2σ2
d

ψd

+
1

2σ2
d

(
Tr
((

KH
UU
)−1

Φ
H
d ⊗

(
KX

UU
)−1

Φ
X
d

))
=

D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd

− 1
2σ2

d
Tr
(

M⊤
(
KX

UU
)−1

Φ
X
d
(
KX

UU
)−1 M

(
KH

UU
)−1

Φ
H
d
(
KH

UU
)−1
)

− 1
2σ2

d
Tr
((

KH
UU
)−1

Φ
H
d
(
KH

UU
)−1

ΣΣΣ
H:
)

Tr
((

KX
UU
)−1

Φ
X
d
(
KX

UU
)−1

ΣΣΣ
X:
)

+
1

σ2
d

y⊤d
(

KX
fdU
(
KX

UU
)−1 M

(
KH

UU
)−1 (

Ψ
H
d
)⊤)

:
− 1

2σ2
d

ψd

+
1

2σ2
d

Tr
((

KH
UU
)−1

Φ
H
d

)
Tr
((

KX
UU
)−1

Φ
X
d

)
. (C.13)

C.4 Derivation of F Given Different Input Datasets

In this section, we show details for deriving F using different input datasets:

F = Ep(f|U:,H)q(U:)q(H) [log p(y | f,H)]

=
∫

q(H)
∫

q(U:)
∫

p(f | U:,H) log p(y | f,H)df︸ ︷︷ ︸
LF

dU:dH

=
∫

q(H)
∫

q(U:)LFdU:︸ ︷︷ ︸
LU

dH

=
∫

q(H)LU dH︸ ︷︷ ︸
LH

. (C.14)

C.4 Derivation of F Given Different Input Datasets 115

Now, we calculate LF :

LF =
∫ D

∏
d=1

p(fd | U:,H) log
D

∏
d=1

p(yd | fd,H)dfd

=
D

∑
d=1

∫
p(fd | U:,H) log p(yd | fd,H)dfd

=
D

∑
d=1

(
logN

(
yd |KfdUK−1

UUU:,σ
2
d
)
− 1

2σ2
d

Tr
[
Kfdfd −KfdUK−1

UUK⊤fdU

])
, (C.15)

where p(fd | U:,H) =N
(

fd |KfdUK−1
UUU:,Kfdfd −KfdUK−1

UUK⊤fdU

)
. Then, we consider the

LU :

LU =
∫

q(U:)LFdU:

=
∫

q(U:)
D

∑
d=1

(
logN

(
yd |KfdUK−1

UUU:,σ
2
d
)
− 1

2σ2
d

Tr
[
Kfdfd −KfdUK−1

UUK⊤fdU

])
dU:

=
D

∑
d=1

(
logN

(
yd |KfdUK−1

UUM:,σ
2
d
)
− 1

2σ2
d

Tr
[
Kfdfd −KfdUK−1

UUK⊤fdU

]
− 1

2σ2
d

Tr
[
ΣΣΣ

U:K−1
UUK⊤fdUKfdUK−1

UU

])
, (C.16)

where q(U:) =N
(

U: |M:,ΣΣΣ
U:
)

. Further, we obtain LH :

LH =
∫

q(H)LU dH

=
D

∑
d=1

Eq(hd)

[
logN

(
yd |KfdUK−1

UUM:,σ
2
d
)]

− 1
2σ2

d
Tr
[
Eq(hd)

[
Kfdfd

]
−Eq(hd)

[
KfdUK−1

UUK⊤fdU

]]
− 1

2σ2
d

Tr
[
ΣΣΣ

U:K−1
UUEq(hd)

[
K⊤fdUKfdU

]
K−1

UU

]
.

116

Then,

LH =
D

∑
d=1
−NdR

2
log2πσ

2
d −

1
2σ2

d
y⊤d yd︸ ︷︷ ︸

Cd

+
1

σ2
d

y⊤d Eq(hd)

[
KfdU

]︸ ︷︷ ︸
Ψd

K−1
UUM:

− 1
2σ2

d
M⊤: K−1

UUEq(hd)

[
K⊤fdUKfdU

]
︸ ︷︷ ︸

Φd

K−1
UUM:−

1
2σ2

d
Tr
(
Eq(hd)

[
Kfdfd

])︸ ︷︷ ︸
ψd

+
1

2σ2
d

Tr

K−1
UUEq(hd)

[
K⊤fdUKfdU

]
︸ ︷︷ ︸

Φd

− 1
2σ2

d
Tr

ΣΣΣ
U:K−1

UUEq(hd)

[
K⊤fdUKfdU

]
︸ ︷︷ ︸

Φd

K−1
UU


=

D

∑
d=1

Cd +
1

σ2
d

y⊤d ΨdK−1
UUM:−

1
2σ2

d
M⊤: K−1

UUΦdK−1
UUM:−

1
2σ2

d
ψd

+
1

2σ2
d

Tr
[
K−1

UUΦd
]
− 1

2σ2
d

Tr
[
ΣΣΣ

U:K−1
UUΦdK−1

UU

]
=

D

∑
d=1

Cd +
1

σ2
d

y⊤d ΨdK−1
UUM:−

1
2σ2

d

(
ψd−Tr

[
K−1

UUΦd
])

− 1
2σ2

d
Tr
[
K−1

UUΦdK−1
UU

(
M:M⊤: +ΣΣΣ

U:
)]

, (C.17)

where q(H) = ∏
D
d=1 q(hd) and

Ψd = Eq(hd)

[
KH

fdU⊗KX
fdU
]
= Eq(hd)

[
KH

fdU
]
⊗KX

fdU = Ψ
H
d ⊗KX

fdU (C.18)

ψd = Tr
(
Eq(hd)

[
Kfdfd

])
= Tr

(
Eq(hd)

[
KH

fdfd
⊗KX

fdfd

])
, (C.19)

Φd = Eq(hd)

[
K⊤fdUKfdU

]
= Eq(hd)

[(
KH

fdU⊗KX
fdU
)⊤ (KH

fdU⊗KX
fdU
)]

= Eq(hd)

[(
KH

fdU
)⊤KH

fdU

]
⊗
(
KX

fdU
)⊤KX

fdU

= Φ
H
d ⊗

(
KX

fdU
)⊤KX

fdU. (C.20)

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Outline of the Thesis and Contributions

	2 Gaussian Processes Overview
	2.1 Gaussian Process Regression
	2.2 Covariance Functions
	2.3 Gaussian Process Classification
	2.4 Inducing Variables Framework
	2.5 Variational Inference for Gaussian Processes
	2.6 Bayesian Gaussian Process Latent Variable Model
	2.7 Multi-output Gaussian Process Overview
	2.7.1 Intrinsic Coregionalisation Model
	2.7.2 Linear Model of Coregionalisation

	2.8 Summary

	3 Multi-output Gaussian Processes for Large-scale Multi-class Classification
	3.1 Related Work
	3.2 Methodology
	3.2.1 Linear Model of Coregionalisation
	3.2.2 Augmenting Model by Noise Data
	3.2.3 Scalable Variational Inference
	3.2.3.1 Inducing Points for MOGPs-AR
	3.2.3.2 Reducing Computational Complexity by Subsampling

	3.2.4 Prediction of MOGPs-AR

	3.3 Experiments
	3.3.1 B matrix evaluation
	3.3.2 Synthetic Data
	3.3.3 Single-output GP Classification: Four Real Datasets
	3.3.4 Multi-output GP Classifications: UJIIndoorLoc

	3.4 Summary

	4 Multi-output Convolutional Gaussian Processes for Images
	4.1 Related Work
	4.2 Methodology
	4.2.1 Extending MOGPs-AR by Including a Convolutional Kernel
	4.2.2 Scalable Variational Inference

	4.3 Omniglot Dataset
	4.3.1 Ojibwe and Blackfoot Alphabets
	4.3.2 All Alphabets

	4.4 Summary

	5 Hierarchical Multi-output Gaussian Processes with Latent Information
	5.1 Related Work
	5.2 Methodology
	5.2.1 Hierarchical Multi-output Gaussian Processes with Latent Variables for the Same Input
	5.2.2 Scalable Variational Inference
	5.2.3 More Efficient Formulation
	5.2.4 Prediction

	5.3 Hierarchical Multi-output Gaussian Processes with Latent Variables for Different Inputs
	5.3.1 More Efficient Formulation

	5.4 Experiments
	5.4.1 Synthetic Data
	5.4.1.1 First Synthetic Dataset
	5.4.1.2 Second Synthetic Dataset
	5.4.1.3 Evaluation the Dimension of latent variables

	5.4.2 Real Datasets
	5.4.2.1 Gene Dataset
	5.4.2.2 Motion Capture Database

	5.5 Summary

	6 Conclusions and Future Work
	6.1 Summary of Contributions
	6.2 Limitations
	6.3 Future Work

	References
	Appendix A
	A.1 Joint, Marginal and Conditional Probability
	A.2 Gaussian Identities

	Appendix B Complete Derivation of the Lower Bound L
	Appendix C
	C.1 The Lower Bound of The Log Marginal Likelihood
	C.2 Derivation of F Given the Same Input Datasets
	C.3 More Efficient Formulation
	C.3.1 More Efficient Formulation Given the Same Input Datasets
	C.3.2 More Efficient Formulation Given the Different Input Datasets

	C.4 Derivation of F Given Different Input Datasets

