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Abstract

This thesis considers structure preserving matrix methods for computations on Bern-

stein polynomials whose coefficients are corrupted by noise. The ill-posed operations

of greatest common divisor computations and polynomial division are considered, and

it is shown that structure preserving matrix methods yield excellent results.

With respect to greatest common divisor computations, the most difficult part is the

computation of its degree, and several methods for its determination are presented.

These are based on the Sylvester resultant matrix, and it is shown that a new form of

the Sylvester resultant matrix in the modified Bernstein basis yields the best results.

The Bézout resultant matrix in the modified Bernstein basis is also considered, and

it is shown that the results from it are inferior to those from the Sylvester resultant

matrix in the modified Bernstein basis.
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Abbreviations and notation

GCD . . . greatest common divisor

AGCD . . . approximate greatest common divisor

LSE . . . least squares with equality

STLN . . . structured total least norm

SNTLN . . . structured nonlinear total least norm

B(f, g) . . . Bézout resultant matrix for the Bernstein polynomials f(x) and g(x)

S(f, g) . . . The conventional form of Sylvester resultant matrix for the Bernstein

polynomials f(x) and g(x)

Sk(f, g) . . . The conventional form of Sylvester subresultant matrix of order k for

the Bernstein polynomials f(x) and g(x)

S(f, g)Q . . . The modified form of Sylvester resultant matrix for the Bernstein

polynomials f(x) and g(x)

Sk(f, g)Qk . . . The modified form of Sylvester subresultant matrix of order k for

the Bernstein polynomials f(x) and g(x)

log x . . . log10 x

‖·‖ . . . ‖·‖2
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7.1 The roots and multiplicities of f̂(x) and ĝ(x) for Example 7.2. . . . 158
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)

for Ex-
ample 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



6.1 The normalized singular values of (a) S(f, g)Q and (b) S(f̆ , ğ)Q for
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1, . . . , 29, for Example 7.3. . . . . . . . . . . . . . . . . . . . . . . . . 162

7.9 The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 29, for Example 7.3. . . . . . . . . . . . . . . . . . . . . . . 163
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)

and (b) S̄(f̃ , α1g̃)Q for
Example 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.2 The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
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Chapter 1

Introduction

1.1 Computer aided geometric design

Computer aided geometric design (CAGD) is a discipline that is concerned with con-

structing, representing and modeling free-form shapes of curves and surfaces. Before

the establishment of CAGD, all design work was done manually, but the introduction

of computers enabled this work to be automated. The techniques of CAGD enable

the shapes of curves and surfaces to be designed to any precision. In addition, these

techniques allow curves and surfaces to be manipulated in an intuitive way. This

means that curves and surfaces can be manipulated easily and in a predictable man-

ner, and knowledge of the underlying mathematics is not required. For example, the

derivative of a Bézier curve can be calculated easily, and the geometry of curves and

surfaces can be stored and reused. The techniques of CAGD are extensively applied

in industry, and this is now considered.

The initial use of CAGD was in ship building and automobile design. The automobile

design industry became interested in CAGD because the increasing commercial and

1



CHAPTER 1. INTRODUCTION 2

public demand urged automobile companies to accelerate the production process in

which the prototype design had to be modified frequently in response to the feedback

from the manufacturing process.

The techniques of CAGD occur in many industries and arise in all stages of the

manufacturing cycle. Furthermore, they are also applied in more recent applications

such as computer graphics, computer animation, geographic information system and

robot path planning. More applications of the techniques of CAGD can be found in

[17, 18].

1.2 The representation of curves and surfaces

This section considers the representation of curves and surfaces in CAGD. Three

types of representation, explicit, implicit and parametric, will be discussed. In addi-

tion, the conversion between the implicit form and parametric form is often required

because both representations are used in CAGD. The conversion between these two

forms is also explained. The explicit form is a particular class of the implicit form.

1.2.1 Three types of representation of curves and surfaces

The first type of representation of curves and surfaces is the explicit representation.

A curve is represented explicitly as y = f(x). For example, y = 3x + 1 represents a

straight line and y = x2 + 1 represents a parabola. A surface is represented explicitly

as z = f(x, y), for example, z = 4x + 2y − 6 represents a plane. For the explicit

representation, it is easy to find a point on the curve or surface and check whether

a point lies on the curve or surface. However, some curves and surfaces can not
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be represented using an explicit equation, for example, a unit circle centered at the

origin x2 + y2 = 1. Solving y in terms of x, we obtain y = ±
√

1 − x2. Two explicit

equations are required to represent this unit circle. As the example shows, the explicit

representation is not suited to represent a closed curve and surface because for the

closed curve and surface, one value of x corresponds to several different values of y,

and multiple explicit equations are needed to represent it.

The second type of representation is the implicit representation. The curve and

surface are represented in the form of f(x, y) = 0 and f(x, y, z) = 0 respectively. For

example, x2 + y2−1 = 0 represents the unit circle and x2 + y2 + z2 −1 = 0 represents

the unit sphere. We can easily check whether a point lies on the curve and surface

represented in the implicit equation. In addition, an implicit representation can define

a closed curve and surface. We can also determine if a point lies inside or outside

the closed curve and surface by checking the sign of the implicit equation. Given the

unit circle x2 + y2 − 1 = 0, the point (u, v) lies outside the circle if u2 + v2 − 1 > 0,

and the point lies inside the circle if u2 + v2 − 1 < 0. Nevertheless, for the implicit

representation, it is not easy to find a point on the curve and surface.

The third type of representation is the parametric representation. A plane curve is

represented parametrically as x = x(t) and y = y(t). For example, the unit circle

centered at the origin is expressed by two parametric equations

x(t) =
2t

1 + t2
and y(t) =

1 − t2

1 + t2
.

A surface is represented in the form of x = x(s, t), y = y(s, t) and z = z(s, t). For

instance, the parametric equations

x(s, t) =
2s

1 + s2 + t2
, y(s, t) =

2t

1 + s2 + t2
, z(s, t) =

1 − s2 − t2

1 + s2 + t2
,
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represent the unit sphere. For the parametric representation, we can obtain a point

on the curve or surface by evaluating coordinate functions at various values of pa-

rameters. Furthermore, the parametric representation can express a closed curve and

surface. In addition, the parametric representation is easy to extend to higher dimen-

sion. If we want to express a space curve, we can simply add a coordinate function

z = z(t) and then
(
x = x(t), y = y(t), z = z(t)

)
represents a space curve. However,

it is difficult to check whether a point lies on the curve and surface expressed in the

parametric equation.

The implicit and parametric representations are most commonly used in CAGD.

From the above discussion, it is obvious that the parametric representation is conve-

nient for obtaining points on a curve and surface, but the implicit representation is

easy for determining whether a point lies on a curve and surface. Therefore, the con-

version from one representation to the other is desired. In addition, the conversion is

also motivated by the intersection problem in surface and solid modeling. Given that

one surface is expressed parametrically by
(
x = x(s, t), y = y(s, t), z = z(s, t)

)
and

the other surface is represented implicitly by f(x, y, z) = 0, the intersection problem

of these two surfaces can be simplified by substituting x = x(s, t), y = y(s, t) and

z = z(s, t) into f(x, y, z) = 0 to yield a single equation f
(
x = x(s, t), y = y(s, t), z =

z(s, t)
)

= 0, which is the curve of intersection expressed implicitly using the param-

eters s and t. The conversion from the parametric to the implicit representation is

called implicitization, and the conversion from the implicit to the parametric repre-

sentation is called parameterization. These two conversions will be discussed in the

next section.
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1.2.2 Implicitization

Implicitization is the process of the conversion from the parametric form of a curve

or surface to its implicit form. Two implicitization approaches, direct substitution

and resultant, are introduced here.

Direct substitution: Direct substitution can be used to convert some curves and

surfaces expressed parametrically to their implicit forms [2]. For example, given a

curve represented by two parametric equations

x = t+ 1 and y = t2 + 3t+ 1,

we can solve t in terms of x to obtain t = x−1, and substitute it into y = t2+3t+1 to

yield its implicit equation x2 +x− y−1 = 0. This method is suitable for the implicit

forms of linear and quadratic curves. However, it can not be applied to curves of

higher degree. A more general approach is to use the resultant of two polynomials.

Resultant: A resultant of a set of polynomials is an expression involving the coeffi-

cients of the polynomials such that the vanishing of the resultant is a necessary and

sufficient condition for the set of polynomials to have a nontrivial common root [47].

Consider two polynomials

f(t) = amt
m + am−1t

m−1 + · · · + a1t+ a0,

and

g(t) = bnt
n + bn−1t

n−1 + · · ·+ b1t+ b0,

where am 6= 0 and bn 6= 0. The Bézout resultant matrix requires deg f = deg g, and

if we assume m ≥ n, then g(t) is padded with m− n leading zero coefficients, that is

g(t) = bmt
m + bm−1t

m−1 + · · ·+ b1t+ b0,
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where bm = 0, bm−1 = 0, . . . , bn+1 = 0. Let Ck = (ak, bk), k = 0, 1, · · · , m, be the

scalar cross product Ci × Cj = (aibj − ajbi). The algorithm to construct the Bézout

resultant matrix of f(t) and g(t) is derived in [29]:

B(f, g) =









b0,0 · · · b0,m−1

...
...

bm−1,0 · · · bm−1,m−1









,

where the element of B(f, g), bi,j is computed using the equation:

bi,j =
∑

p≥max(m−i,m−j)
p+q=2m−i−j−1

Cp × Cq. (1.1)

The following theorem concerning the Bézout resultant of two polynomials is estab-

lished in [29]:

Theorem 1.1. The polynomials f(t) and g(t) have a common root if and only if

detB(f, g) = 0, where detB(f, g) is the determinant of B(f, g).

This theorem enables the Bézout resultant of two polynomials to be used for the

implicitization process. Consider a curve defined by two parametric equations

x = amt
m + am−1t

m−1 + · · · + a1t+ a0,

and

y = bmt
m + bm−1t

m−1 + · · ·+ b1t+ b0.

To implicitize this curve, two auxiliary polynomials need to be created:

fx(t) = amt
m + am−1t

m−1 + · · · + a1t+ (a0 − x),

and

gy(t) = bmt
m + bm−1t

m−1 + · · ·+ b1t+ (b0 − y).

If the point (x, y) lies on the curve, the polynomials fx(t) and gy(t) have at least one
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common root. Therefore, in terms of Theorem 1.1, detB(fx, gy) = 0, and detB(fx, gy)

is the resultant of fx(t) and gy(t). In particular, detB(fx, gy) is a function of x and

y, and thus it is the implicit equation of the curve. We give an example to illustrate

the implicitization of curve.

Example 1.1. Consider a curve defined by two parametric equations

x = 2t2 + t+ 3,

y = t2 + 3t+ 1.

Create two auxiliary polynomials

fx(t) = 2t2 + t+ (3 − x),

gy(t) = t2 + 3t+ (1 − y),

and thus C2 = (2, 1), C1 = (1, 3) and C0 = (3 − x, 1 − y). It follows from (1.1) that

the Bézout resultant matrix of fx(t) and gy(t)

B(fx, gy) =






C2 × C1 C2 × C0

C2 × C0 C1 × C0






=






5 x− 2y − 1

x− 2y − 1 3x− y − 8




 .

The resultant of fx(t) and gy(t) is

detB(fx, gy) = 5(3x− y − 8) − (x− 2y − 1)2

= −x2 − 4y2 + 4xy + 17x− 9y − 41.

Therefore, the implicit form of the curve is x2 + 4y2 − 4xy − 17x+ 9y + 41 = 0. �
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In addition, the implicitization problem can be solved by Sylvester’s dialytic ex-

pansion [47]. This approach considers all the individual monomials of a polynomial

as independent variables. Therefore, t3, t2 and t are considered three independent

variables, even though they are dependent. Multiplying the initial polynomials with

well-chosen independent variables yields auxiliary equations such that the total num-

ber of equations is equal to the total number of independent variables.

For example, given two equations a2t
2 +a1t+a0 = 0 and b3t

3 + b2t
2 + b1t+ b0 = 0, we

initially have two equations with 4 independent variables: t3, t2, t and 1. Multiplying

a2t
2 + a1t + a0 by t2 and t, and multiplying b3t

3 + b2t
2 + b1t + b0 by t, we obtain 5

equations with 5 independent variables: t4, t3, t2, t and 1. These 5 equations can be

written as














a2 a1 a0 0 0

0 a2 a1 a0 0

0 0 a2 a1 a0

b3 b2 b1 b0 0

0 b3 b2 b1 b0





























t4

t3

t2

t

1















= 0 or Ax = 0.

It follows that if two equations a2t
2 + a1t + a0 = 0 and b3t

3 + b2t
2 + b1t + b0 = 0

have a common root, Ax = 0 must have a nontrivial solution. This means that

the coefficient matrix A must be rank deficient and thus detA = 0. Therefore, the

resultant of these two equations is detA. Example 1.2 illustrates the implicitization

of curve using Sylvester’s dialytic expansion.

Example 1.2. Consider the curve in Example 1.1, which is defined by two parametric
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equations

x = 2t2 + t+ 3,

y = t2 + 3t+ 1.

Create two auxiliary polynomials

fx(t) = 2t2 + t+ (3 − x),

gy(t) = t2 + 3t+ (1 − y).

We have two equations fx(t) = 0 and gy(t) = 0 with 3 independent variables: t2, t

and 1. Multiplying fx(t) and gy(t) with t, we obtain 4 equations with 4 independent

variables: t3, t2, t and 1. These 4 equations can be written as











2 1 3 − x 0

0 2 1 3 − x

1 3 1 − y 0

0 1 3 1 − y























t3

t2

t

1












= 0 or Ax = 0.

Similarly, if the point (x, y) lies on the curve, the polynomials fx(t) and gy(t) have

at least one common root. Hence, there exists a nontrivial solution to satisfy Ax = 0

and thus detA = 0. Since detA is a function of x and y, detA is the implicit form

of the curve,

detA = 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 1 3 − x

3 1 − y 0

1 3 1 − y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 3 − x

1 1 − y 0

0 3 1 − y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ (3 − x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 2 3 − x

1 3 0

0 1 1 − y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= x2 + 4y2 − 4xy − 17x+ 9y + 41,

and thus the implicit form of the curve is x2 + 4y2 − 4xy − 17x+ 9y + 41 = 0, which

is the same as Example 1.1. �
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From Examples 1.1 and 1.2, the Bézout resultant and Sylvester’s dialytic expan-

sion yield the same implicit form of the curve, but the only difference is that the

determinant of a 2× 2 matrix is calculated using the Bézout resultant and the deter-

minant of a 4 × 4 matrix is computed for Sylvester’s dialytic expansion.

If a curve is defined by rational parametric equations, we can still adopt the Bézout

resultant and Sylvester’s dialytic expansion to implicitize the curve, but we have to

rewrite the rational parametric equations. For example, given a curve expressed by

two rational parametric equations

x =
a2t

2 + a1t+ a0

c2t2 + c1t+ c0
and y =

b2t
2 + b1t+ b0

c2t2 + c1t+ c0
,

we rewrite these expressions as

fx(t) = (c2x− a2)t
2 + (c1x− a1)t+ (c0x− a0),

and

gy(t) = (c2y − b2)t
2 + (c1y − b1)t+ (c0y − b0),

and then implicitize the curve as mentioned above.

For the implicitization of surface, the following observation is stated in [14]:

Given a surface expressed by three parametric equations x = x(s, t), y = y(s, t) and

z = z(s, t), create three auxiliary equations

Px(s, t) = x(s, t) − x,

Py(s, t) = y(s, t) − y,

Pz(s, t) = z(s, t) − z.
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Then we construct the matrix

P =









Px(s, t) Py(s, t) Pz(s, t)

Px(α, t) Py(α, t) Pz(α, t)

Px(α, β) Py(α, β) Pz(α, β)









,

where α, β ∈ R. If there exist s = s
′

and t = t
′

, which will simultaneously satisfy

Px(s
′

, t
′

) = Py(s
′

, t
′

) = Pz(s
′

, t
′

) = 0, the first row vanishes and thus the equation

detP = 0 is independent of the values of α and β. Also, when s = α, the first two

rows are identical and when t = β, the last two rows are identical. Therefore, if either

s = α or t = β, detP = 0. This means that (s− α) and (t− β) are factors of detP .

Define

δ =
detP

(s− α)(t− β)
,

and δ = 0 for any value of α and β if and only if s = s
′

and t = t
′

. In addition, if the

surface is of degree n in s and degree m in t, δ is of degree n − 1 in s, 2m − 1 in t,

2n− 1 in α and m− 1 in β. Hence, δ can be considered as a polynomial in α and β

whose coefficients are polynomials in s and t:

δ =

2n−1∑

i=0

m−1∑

j=0

fi,j(s, t)α
iβj.

δ is the sum of 2mn polynomials and fi,j(s, t) has 2mn terms. Since δ must vanish

for any value of α and β if and only if s = s
′

and t = t
′

, all of the fi,j(s
′

, t
′

) must
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vanish. In particular, these 2mn polynomials can be written as:

α0β0

...

αiβj

...

α2n−1βm−1















A(0, 0, 0, 0) · · · A(0, 0, k, l) · · · A(0,0,n−1,
2m−1 )

...
...

...
...

...

A(i, j, 0, 0) · · · A(i, j, k, l) · · · A(i,j,n−1,
2m−1 )

...
...

...
...

...

A( 2n−1,
m−1,0,0) · · · A( 2n−1,

m−1,k,l) · · · A(2n−1,m−1,
n−1,2m−1)





























s0t0

...

sktl

...

sn−1t2m−1















= 0,

where A(i, j, k, l) is the coefficient of the term sktl in polynomial fi,j(s, t), which

is the coefficient of αiβj. The formula for computing A(i, j, k, l) is found in [14].

Since there exists a solution s = s
′

and t = t
′

, the determinant of the matrix must

vanish. Therefore, the resultant is the determinant of the matrix, and calculating the

determinant of the matrix yields the implicit form of the surface.

If a surface is defined by three rational parametric equations

D = f(d|sm, tn),

x = f(a|sm, tn)/D,

y = f(b|sm, tn)/D,

z = f(c|sm, tn)/D,

where f(k|sm, tn) is a polynomial with degree m in variable s, degree n in variable t

and the coefficients k0, k1, · · · . We rewrite

xD − f(a|sm, tn) = 0,

yD − f(b|sm, tn) = 0,

zD − f(c|sm, tn) = 0,

then we implicitize the surface as before.
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1.2.3 Parameterization

After solving the implicitization problem, we now consider the conversion of the im-

plicit form of a curve and surface to its parametric form, parameterization. Every

parametric curve and surface has an implicit form. However, the converse is not true,

and some curves and surfaces expressed implicitly by polynomials and rational func-

tions can not be represented in the parametric form. Therefore, the parameterization

includes two distinct parts:

1. Determine if a curve or surface has a parametric representation;

2. If it is representable in the parametric form, find its parametric representation.

For the first part, the following theorem is used to determine if a curve has a para-

metric representation [10]:

Theorem 1.2. An algebraic curve has a parametric rational polynomial representa-

tion if and only if the curve has genus zero.

The genus is calculated using the following formula:

genus =
(n− 1)(n− 2)

2
−
∑

i

ri(ri − 1)

2
,

where n is the degree of the algebraic curve and ri is the multiplicity of the ith

multiple point. A multiple point is the point on a curve through which two or more

branches of the curve pass and its multiplicity is the number of branches involved.

More details can be found in [55].

Since every quadric curve and surface has a parametric representation, the first part

is satisfied, and we only consider finding the parametric forms of a quadric curve and

surface. Let us consider a circle defined by a implicit equation x2 + y2 −R2 = 0. We
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first factor it into

x · x = (R + y)(R− y). (1.2)

Rearranging these terms and introducing the parameter t, we obtain

t =
x

R + y
=
R − y

x
. (1.3)

Solving this equation for x and y in terms of t yields x − ty = Rt and tx + y = R.

From these two equations, we get the parametric form of the circle

x =
2Rt

1 + t2
and y =

R(1 − t2)

1 + t2
. (1.4)

The parameterization problem can be solved using another approach. We first select

a fixed point (R, 0), and a line passing through this point is

y − xt +Rt = 0, (1.5)

where the parameter t is the slope of the line. Substituting t(x − R) for y in x2 +

y2 −R2 = 0, we obtain

x2 + t2(x−R)2 − R2 = 0,

and solving for x gives

x = R and x =
R(1 − t2)

1 + t2
.

Substituting x = R into (1.5) yields

y = 0.

These two equations x = R and y = 0 are not the parametric form of the circle

because they only represent one point on the circle. Substituting x = R(1−t2)
1+t2

into

(1.5) yields

y =
2Rt

1 + t2
.
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Equations x = R(1−t2)
1+t2

and y = 2Rt
1+t2

, which are functions of t, trace out the circle,

and therefore they are the parametric form of the circle. These are the same as (1.4)

with x and y reversed.

This approach can be applied to certain higher degree curves but the selection of

the fixed point must be considered. In particular, the selected fixed point must be

singular of the right multiplicity such that except at the fixed point, the line intersects

the curve at only one other point.

For the parameterization of surface, consider a sphere: x2 + y2 + z2 − R2 = 0. An

auxiliary variable w is introduced:

x2 + y2 = w2 and w2 + z2 = R2.

Following (1.2), (1.3) and (1.4), we solve these two equations and obtain

x =
2ws

1 + s2
, y =

w(1 − s2)

1 + s2
, w =

2Rt

1 + t2
, z =

R(1 − t2)

1 + t2
.

Substituting w = 2Rt
1+t2

into x and y yields the parametric representation of the sphere

x =
4Rst

(1 + s2)(1 + t2)
, y =

2R(1 − s2)t

(1 + s2)(1 + t2)
, z =

R(1 − t2)

1 + t2
.

1.3 Summary

This chapter introduced basic ideas about the techniques of CAGD, and its influence

and applications have been emphasized. Furthermore, this chapter considered three

types of representation of curves and surfaces in CAGD system. The conversion

between two most widely used forms, the implicit and parametric forms, was also

discussed. The next chapter will introduce one important technique of CAGD, the

Bézier curve, which is represented parametrically.



Chapter 2

Bézier curves

In 1959, Paul de Faget de Casteljau began to develop a new method for the design of

curves with the aim of making their design intuitive, in order to facilitate interactive

design. Meanwhile, another mathematician, Pierre Bézier also realized the impor-

tance of the computer representation of curves and developed a system in which a

curve is represented as the intersection of two elliptic cylinders. Although his idea

is different from that involved in the de Casteljau algorithm, the result is identical

to the curve constructed using the de Casteljau algorithm. Pierre Bézier’s work was

extensively published and the curve was then named the Bézier curve.

The new concept in the Bézier curve is the use of its control polygon. Since the curve

follows the control polygon in an intuitive way, we can define and modify the control

polygon instead of constructing and changing the curve directly. The de Casteljau

algorithm is introduced in the next section. Then, the parametric form of the Bézier

curve and its important properties are considered.

16
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2.1 The de Casteljau algorithm

The de Casteljau algorithm can be illustrated by a simple construction of a parabola.

Suppose we have b0, b1, b2 ∈ R
3 and t ∈ R. Construct

b10(t) = (1 − t)b0 + tb1,

b11(t) = (1 − t)b1 + tb2,

b20(t) = (1 − t)b10(t) + tb11(t).

Inserting the first two equations into the third one, we obtain

b20(t) = (1 − t)2b0 + 2t(1 − t)b1 + t2b2.

b
0
(t=0)

b
0
1

b
1

b
1
1

b
2
(t=1)

b
0
2

Figure 2.1: The parabola generated by repeated linear interpolation for t ∈ [0, 1].

As t varies from −∞ to +∞, b20(t) traces a parabola. For t between 0 and 1, b20(t)

is inside the triangle formed by b0, b1, b2. This is illustrated in Figure 2.1.

The generation of the parabola involves repeated linear interpolations. This process
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can be generalized to construct a polynomial curve with arbitrary degree n. The de

Casteljau algorithm is as follows [19]:

de Casteljau algorithm:

Given b0, b1, b2, · · · , bn ∈ R
3 and t ∈ R,

set

bri (t) = (1 − t)br−1
i (t) + tbr−1

i+1 (t), (2.1)

where r = 1, · · · , n and i = 0, · · · , n− r. Set b0i (t) = bi and bn(t) = bn0 (t), then bn0 (t)

is the point with parameter t on the Bézier curve bn.

The vertices b0, b1, · · · , bn are called the control points and the polygon formed by

b0, b1, · · · , bn is called the control polygon.

b
0
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b
0
1
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1
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2
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b
2
1

b
3
(t=1)

b
0
3

Figure 2.2: The cubic Bézier curve b3 generated by de Casteljau algorithm for t ∈
[0, 1].

Figure 2.2 illustrates a cubic Bézier curve b3 as t varies from 0 to 1. For t between

0 and 1, b3 lies inside the control polygon formed by b0, b1, b2, b3.
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The Bézier curve with arbitrary degree n can be generated by the de Casteljau algo-

rithm, but it is desirable to represent the Bézier curve in polynomial form to facilitate

more detailed theoretical research on it. This requires the Bernstein basis, which is

described in the next section.

2.2 Bernstein basis functions

A Bézier curve can be expressed in terms of the Bernstein basis functions. The

Bernstein basis functions of degree n are defined explicitly by

Bn
i (t) =

(
n

i

)

ti(1 − t)n−i, i = 0, · · · , n, (2.2)

where
(

n

i

)
is binomial coefficient. In particular,

B0
0(t) ≡ 1,

and

Bn
i (t) ≡ 0, for i /∈ {0, · · · , n}.

Some properties of the Bernstein basis functions will be examined here because they

are important for the development of properties of a Bézier curve.

Partition of unity: For any value of t,
n∑

i=0

Bn
i (t) = 1. (2.3)

The proof is

1 = [t+ (1 − t)]n =

n∑

i=0

(
n

i

)

ti(1 − t)n−i =

n∑

i=0

Bn
i (t).

Symmetry: It is easy to verify Bn
i (t) = Bn

n−i(1 − t) from (2.2).

Nonnegativity: For t ∈ [0, 1], each Bernstein basis function is nonnegative. Since
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t and (1 − t) are non-negative for t ∈ [0, 1], and the binomial coefficient
(

n

i

)
is non-

negative, the non-negative property follows.

Recursion: The Bernstein basis function with degree n is equal to the sum of two

Bernstein basis functions with degree n− 1,

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t). (2.4)

The proof of (2.4) is

Bn
i (t) =

(
n

i

)

ti(1 − t)n−i

=

(
n− 1

i

)

ti(1 − t)n−i +

(
n− 1

i− 1

)

ti(1 − t)n−i

= (1 − t)

(
n− 1

i

)

ti(1 − t)n−i−1 + t

(
n− 1

i− 1

)

ti−1(1 − t)n−i

= (1 − t)Bn−1
i (t) + tBn−1

i−1 (t).

One important application of the Bernstein basis functions is the definition of a

Bézier curve. The point with position vector bn0 (t) on a Bézier curve with degree n is

a parametric function of the following form:

bn0 (t) =
n∑

i=0

biB
n
i (t), (2.5)

where bi is the vector of the control point and Bn
i (t) is the ith Bernstein basis function.

The properties of a Bézier curve can be derived in terms of the de Casteljau algorithm

and Bernstein basis functions. This will be addressed in the next section.

2.3 The properties of a Bézier curve

In this section, some properties of a Bézier curve are examined using the de Casteljau

algorithm and properties of the Bernstein basis functions [19, 25, 28].

Affine invariance: The Bézier curve is invariant under an affine map, that is, let Φ
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be an affine map, then

Φ

(
n∑

i=0

biB
n
i (t)

)

=

n∑

i=0

Φ(bi)B
n
i (t).

The de Casteljau algorithm involves a sequence of repeated linear interpolations and

the linear interpolation is invariant under an affine map. Since the Bézier curve

is generated by de Casteljau algorithm, the Bézier curve is invariant under affine

map. This property can also be verified in terms of Bernstein basis functions. The

barycentric combination

b =

n∑

i=0

αibi,

where bi ∈ R
3 and α0 + · · · + αn = 1, is invariant under affine map. From (2.3) and

(2.5), the Bézier curve is the barycentric combination of the control points, and it is

therefore invariant under an affine map.

This property means the following two processes yield the identical Bézier curve. Let

Φ be affine map:

1. Compute the Bézier curve from the control points {b0, b1, . . . , bn} and then apply

the affine map to the Bézier curve;

2. Apply the affine map to the control points {b0, b1, . . . , bn} to obtain new control

points {Φ(b0),Φ(b1), . . . ,Φ(bn)} and then compute the Bézier curve from the

new control points.

A practical example can illustrate the function at this property. Suppose we want to

generate a cubic Bézier curve by evaluating 100 points and rotate it using an affine

map. Two processes can be implemented:

1. Evaluate 100 points to generate the Bézier curve and then rotate each of the

100 points.
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2. Rotate the control points and then evaluate the resulting function at 100 points

to generate the Bézier curve.

Due to the affine invariance property, these two processes yield the identical Bézier

curve but the first process needs 100 rotations, and the second only needs 4 rotations.

Invariance under affine parameter transformations: In most cases, the Bézier

curve is defined over interval [0, 1]. However, the Bézier curve can be defined over

any arbitrary interval [a, b]. If a ≤ u ≤ b, the generalized de Casteljau algorithm is

given by

bri (u) =
b− u

b− a
br−1
i (u) +

u− a

b− a
br−1
i+1 (u),

and the generalized Bernstein form of Bézier curve is

bn0 (t) =
n∑

i=0

biB
n
i (t) =

n∑

i=0

biB
n
i

(
u− a

b− a

)

.

Endpoint interpolation: The Bézier curve passes through b0 and bn. In terms of the

de Casteljau algorithm, when t = 0, bri = br−1
i , thus bn0 = bn−1

0 = · · · = b10 = b00 = b0

and when t = 1, bri = br−1
i+1 , thus bn0 = bn−1

1 = · · · = b1n−1 = b0n = bn. From the

Bernstein basis functions, bn0 (0) = b0 and bn0 (1) = bn. The endpoints of the Bézier

curve are two important points. For example, for the design of an escalator using the

Bézier curve, it is essential to create a Bézier curve that connects entrance and exit

points of the escalator accurately. This property enables us to have direct control on

them.

Symmetry: The control points b0, b1, · · · , bn and bn, bn−1, · · · , b0 yield the same

Bézier curve. The only difference is that the direction of the Bézier curve is revered.

Since Bn
i (t) = Bn

n−i(1 − t),
n∑

i=0

biB
n
i (t) =

n∑

i=0

bn−iB
n
i (1 − t).
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This property means that if we want to reverse the direction of the Bézier curve,

we first reverse the order of the control points and then generate the Bézier curve.

Invariance under barycentric combinations: For α + β = 1, we obtain
n∑

i=0

(αbi + βci)B
n
i (t) = α

n∑

i=0

biB
n
i (t) + β

n∑

i=0

ciB
n
i (t).

This property allows us to generate the weighted average of two Bézier curves in two

ways:

1. Compute the weighted average of corresponding points on the Bézier curves;

2. Compute the weighted average of corresponding control points and then gener-

ate the Bézier curve.

Linear precision: If the control points b1, · · · , bn−1 are uniformly distributed on the

straight line joining control points b0 and bn, the Bézier curve generated using these

control points is a straight line from b0 to bn. The proof of this property needs the

relation
n∑

i=0

i

n
Bn

i (t) = t. (2.6)

This relation is verified as following:

t = t× [t+ (1 − t)]n−1

= t

[(
n− 1

0

)

t0(1 − t)n−1 +

(
n− 1

1

)

t1(1 − t)n−2 + · · ·+
(
n− 1

n− 1

)

tn−1(1 − t)0

]

=

(
n− 1

0

)

t1(1 − t)n−1 +

(
n− 1

1

)

t2(1 − t)n−2 + · · · +
(
n− 1

n− 1

)

tn(1 − t)0

=
1

n

(
n

1

)

t1(1 − t)n−1 +
2

n

(
n

2

)

t2(1 − t)n−2 + · · · + n

n

(
n

n

)

tn(1 − t)0

=

n∑

i=0

i

n
Bn

i (t).
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Thus, the linear precision property can be proved using (2.6). Suppose the control

points b1, · · · , bn−1 are uniformly distributed on the straight line joining control points

b0 and bn:

bi =

(

1 − i

n

)

b0 +
i

n
bn, i = 0, · · · , n,

then the Bézier curve bn generated using this set of control points is

bn =
n∑

i=0

biB
n
i (t)

=

n∑

i=0

(

(1 − i

n
)b0 +

i

n
bn

)

Bn
i (t)

= b0

n∑

i=0

Bn
i (t) − b0

n∑

i=0

i

n
Bn

i (t) + bn

n∑

i=0

i

n
Bn

i (t)

= b0 + (bn − b0)t.

Since bn = b0 + (bn − b0)t, the Bézier curve bn is a straight line joining the two

endpoints b0 and bn. Figure 2.3 illustrates this property.

b
0

b
1

b
2

b
3

b
4

Figure 2.3: Linear precision property: The Bézier curve b4 generated using uniformly
distributed control points for t ∈ [0, 1].
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Convex hull: For t ∈ [0, 1], the Bézier curve lies in the convex hull of the control

polygon. We give the definition of the convex hull as follows.

First, the convex set for a set of points is a set that contains the line segment be-

tween any two points in the set. Then, the convex hull is the smallest convex set. In

particular, the convex hull for a set of points x0, x1, · · · , xn is the set of all convex com-

binations of points x0, x1, · · · , xn. The convex combination of points x0, x1, · · · , xn

is

α0x0 + α1x1 + · · ·+ αnxn,

where αi ≥ 0 and α0 + α1 + · · ·+ αn = 1.

The proof of this property is straightforward. Remember the Bézier curve bn =
n∑

i=0

biB
n
i (t). For t ∈ [0, 1], the Bernstein basis polynomial Bn

i (t) is nonnegative and

from equation (2.3),
n∑

i=0

Bn
i (t) = 1. Therefore, for t ∈ [0, 1], the point on the Bézier

curve is the convex combination of control points contained in the convex hull. Figure

2.4 illustrates the convex hull property.

The convex hull property guarantees that the planar control polygon always gen-

erates the planar Bézier curve.

Pseudolocal control: The shape change of the Bézier curve follows the movement

of the control points.

This is the most important property of the Bézier curve. First of all, we can change

the shape of the Bézier curve by moving the control points instead of changing ev-

ery point on the Bézier curve. Furthermore, we can change the shape of the Bézier

curve in a predictable and intuitive way because the Bézier curve follows the control

points. In particular, moving one control point changes the shape of the whole Bézier

curve, which is called global control. This is in contrast with the local control of the
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Figure 2.4: Convex hull property: The convex hull of the control polygon is shaded.
For t ∈ [0, 1], the Bézier curve b4 lies in the convex hull of the control polygon.

B-splines, for which moving one control point alters only part of the curve. As Figure

2.5 shows, if we move one control point b2 from (3, 3) to (3.5, 4), the whole Bézier

curve follows the movement of the control point b2.

Variation diminishing: If a straight line intersects the Bézier curve n times,

then the line intersects its control polygon at least n times. In other words, the

Bézier curve can intersect a straight line no more times than its control polygon does.

Figure 2.6 shows this property.

The properties of Bézier curves are useful for solving computation problems on

Bézier curves. This is demonstrated in the next section, in which one practical com-

putation problem associated with Bézier curves, the intersection problem of Bézier

curves, is considered.
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Figure 2.5: Pseudolocal control property: (a) t ∈ [0, 1], the Bézier curve b3 employs
control points b0(1, 1), b1(2, 3), b2(3, 3) and b3(4, 1); and (b) t ∈ [0, 1], the Bézier curve
b3 employs control points b0(1, 1), b1(2, 3), b2(3.5, 4) and b3(4, 1).

2.4 Intersection problem of Bézier curves

The intersection problem of Bézier curves is a fundamental computation problem

in CAGD. Three major approaches for computing intersections of Bézier curves are

Bézier subdivision [35, 66], interval subdivision [34, 45] and implicitization [48]. Bézier

subdivision and interval subdivision use the geometric property of curves, and implic-

itization is an algebraic approach. The following sections consider these approaches.

2.4.1 Bézier subdivision

Bézier subdivision relies on the de Casteljau algorithm for subdividing a Bézier curve

and uses the convex hull property of a Bézier curve to determine the intersection

points.

Subdivision for a Bézier curve was introduced by de Casteljau [13], and proved by

E. Staerk [50]. Subdivision of Bézier curve is the process of splitting a Bézier curve
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Figure 2.6: Variation diminishing property: Two straight lines intersect one Bézier
curve and its control polygon.

into two segments, and each segment forms its own control polygon. It is seen from

Figure 2.7 that a cubic Bézier curve is split to two segments, and for each segment,

the resulting set of control points forms the control polygon of the segment.

In terms of the convex hull property, a Bézier curve lies entirely within the convex

hull defined by its control points. Hence, if the convex hulls of two curves do not

overlap, two curves do not intersect. Therefore, whether two Bézier curves intersect

can be determined by checking if their convex hulls overlap.

Bézier subdivision involves repeated subdivisions and uses the convex hull property to

compute intersection points of Bézier curves. In particular, given two Bézier curves,

Bézier subdivision begins by comparing the convex hulls of two curves. If they do not

overlap, two curves do not intersect. Otherwise, a subdivision algorithm splits each

curve into two segments, and each segment forms its own control polygon. Then, the

convex hulls of segments are checked for overlap, and segments that do not overlap are

rejected. The overlapped segments are then split into new segments by subdivision
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Figure 2.7: Subdivision for a cubic Bézier curve with control points b0, b1, b2 and b3,
for t ∈ [0, 1]. The points q0, q1, q2 and q3 are the control points of the segment of the
original curve from t = 0 to t = 1

2
, and the points r0, r1, r2 and r3 are the control

points of the segment of the original curve from t = 1
2

to t = 1.

algorithm, and the convex hulls of new segments are checked for overlap. This process

continues until the new curve segment is approximately linear under certain tolerance.

If two approximately linear segments overlap, their point of intersection is accepted

as an intersection of two curves.

2.4.2 Interval subdivision

Interval subdivision is similar to Bézier subdivision. In particular, given two Bézier

curves, each curve is preprocessed to determine its characteristic points such as ver-

tical and horizontal tangents. The curve is then split at characteristic points into

intervals, and every interval has characteristic points at the endpoints. For each

interval, a rectangle whose diagonal is defined by two endpoints of the interval is

computed such that the rectangle bounds the interval completely. This preprocess is
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illustrated in Figure 2.8.

Figure 2.8: Interval preprocess

Because each interval lies entirely within its bounding rectangle, whether two in-

tervals intersect can be determined by comparing their bounding rectangles. If their

bounding rectangles do not overlap, the two intervals do not intersect. If their bound-

ing rectangles overlap, the intervals are subdivided at the middle value of interval,

and the bounding rectangle of each subinterval is computed for overlap checking. As

this procedure proceeds, each iteration rejects intervals which do not contain inter-

section points. The algorithm terminates when the new interval is approximated by

a straight line within a specified tolerance. If two approximately linear intervals over-

lap, their intersection point is considered an intersection point of two curves. More

details and examples about solving the intersection problem of Bézier curves using

interval subdivision are shown in [34, 45].
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2.4.3 Implicitization

As stated earlier, a curve represented parametrically has a corresponding implicit

form, and the Bézier curve is the parametric curve. In order to solve the intersection

problem of two Bézier curves, one Bézier curve is implicitized to obtain its implicit

form using resultant matrices [46], and then the parametric form of the other Bézier

curve is substituted to its implicit form to yield a single equation. The intersec-

tion problem is solved by computing the roots of this equation. In this case, the

intersection problem of Bézier curves is reduced to finding solutions of a univariate

polynomial equation. Some approaches to compute solutions of polynomial equations

are Gröbner bases algorithm [7], homotopy method [27], interval arithmetic [49] and

iterative methods.

2.5 Summary

In this chapter, one important curve representation in CAGD, the Bézier curve, was

introduced. In particular, the de Casteljau algorithm is a process to construct the

Bézier curve with a specified set of control points, and the Bézier curve constructed

in this way can be represented parametrically by the Bernstein basis functions. Some

important properties of the Bézier curve allow it to be easily manipulated in an in-

tuitive way and make the computations associated with it simplified.

Since the Bernstein basis functions are the parametric expressions of a Bézier curve,

computation problems involving the Bézier curve are equivalent to manipulating poly-

nomials defined in the Bernstein basis. In addition, it is demonstrated in [21] that
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the conversion between a Bernstein basis polynomial and its power basis form is ill-

conditioned. Furthermore, in the interval [0, 1], the Bernstein basis is computationally

more stable than the power basis [20], and thus numerical computations performed

in the Bernstein basis should be considered.

It is noted that resultant matrices are widely applied in CAGD. As stated earlier, they

are used for implicitization and intersection problem. Another important problem in

CAGD is to compte the greatest common divisor of two polynomials, which can also

be solved using resultant matrices. This issue is discussed in the next chapter.



Chapter 3

Greatest common divisor

computation

The greatest common divisor (GCD) of two polynomials is a polynomial with the

highest degree that divides both polynomials. The calculation of the GCD of poly-

nomials defined in the power basis is usually considered, and its applications include

image processing [37, 38], control theory [51], computing theory [1] and the computa-

tion of the roots of a polynomial [69]. However, because the Bernstein basis function

is the natural choice for the Bézier curve, and the computation performed in the Bern-

stein basis has computational advantages, it is desirable to consider the computation

of the GCD of polynomials defined in the Bernstein basis. The calculation of the

GCD of Bernstein polynomials is essential and arises in many applications, including

robotics motion planning [8], computer aided geometric design (CAGD) [31, 44] and

computer vision [23, 40].

The major algorithms to compute the GCD of polynomials are Euclid’s algorithm

and resultant matrices. When resultant matrices are used to compute the GCD of

33
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Bernstein polynomials, the form of resultant matrices expressed in the Bernstein basis

must be developed. The rest of the chapter will introduce these algorithms.

3.1 Euclid’s algorithm

Euclid’s algorithm is known as an efficient method for computing the GCD of two

polynomials symbolically and it involves a repeated sequence of polynomial divisions

[54]. Given two polynomials f̂(x) with degree m and ĝ(x) with degree n, where

m ≥ n, we assign ø0(x) = f̂(x) and ø1(x) = ĝ(x), and then compute polynomials

ø2(x), · · · , øm(x) through the sequence

ø0(x) = ø1(x)q1(x) + ø2(x),

ø1(x) = ø2(x)q2(x) + ø3(x),

· · ·

ør−1(x) = ør(x)qr(x) + ør+1(x),

· · ·

øm−1(x) = øm(x)qm(x), (3.1)

where qr(x) and ør+1(x) are the quotient and remainder of dividing ør−1(x) by ør(x).

The division sequence continues until a remainder øm+1(x) vanishes and the GCD of

f̂(x) and ĝ(x) is øm(x).

Example 3.1. Consider two Bernstein polynomials

f̂(x) =

(
3

0

)

(1 − x)3 +
3

2

(
3

1

)

(1 − x)2x+ 2

(
3

2

)

(1 − x)x2 + 2

(
3

3

)

x3

= (x− 2)(x+ 1)2,
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and

ĝ(x) =

(
2

0

)

(1 − x)2 +
4

3

(
2

1

)

(1 − x)x+
4

3

(
2

2

)

x2

= (x− 3)(x+ 1),

whose GCD is
(
1
0

)
(1 − x) + 2

(
1
1

)
x.

Applying Euclid’s algorithm to f̂(x) and ĝ(x) yields the division sequence

f̂(x) = ĝ(x) ×

q1(x)
︷ ︸︸ ︷(

3

(
1

0

)

(1 − x) +
9

2

(
1

1

)

x

)

+

ø2(x)
︷ ︸︸ ︷(

−2

(
1

0

)

(1 − x) − 4

(
1

1

)

x

)

,

ĝ(x) =

ø2(x)
︷ ︸︸ ︷(

−2

(
1

0

)

(1 − x) − 4

(
1

1

)

x

)

×

q2(x)
︷ ︸︸ ︷(

−1

2

(
1

0

)

(1 − x) − 1

3

(
1

1

)

x

)

.

Since the remainder of the second equation is equal to zero, its divisor is the GCD

of f̂(x) and ĝ(x), which is correct because −2
(
1
0

)
(1 − x) − 4

(
1
1

)
x is proportional to

(
1
0

)
(1 − x) + 2

(
1
1

)
x. �

The next section considers an algorithm using resultant matrices for computing

the GCD of Bernstein polynomials.

3.2 Bézout resultant matrix

As mentioned before, two resultant matrices, the Bézout and Sylvester resultant ma-

trices, are used to solve the implicitization and intersection problems. Furthermore,

the GCD of f̂(x) and ĝ(x) can also be computed using the resultant matrices [3]. In

this section and Section 3.3, the construction of the Bézout and Sylvester resultant

matrices for Bernstein polynomials is developed and the algorithm that uses them to

compute the GCD of Bernstein polynomials is explained. The formulae that unite

the Bézout and Sylvester resultant matrices for Bernstein polynomials are established
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in [58].

This section considers the Bézout resultant matrix of two polynomials expressed in

the Bernstein basis and the properties that enable it to be used for computing the

GCD of two Bernstein polynomials. The Sylvester resultant matrix defined in the

Bernstein basis is discussed in Section 3.3.

The following construction of the Bézout resultant matrix of Bernstein polynomials

is presented in [5]:

Consider one Bernstein polynomial f̂(x) with degree m and another Bernstein poly-

nomial ĝ(x) with degree n. It is assumed m ≥ n, and thus the polynomial ĝ(x) is

degree elevated (m− n) times [22]. Then we obtain

f̂(x) =

m∑

i=0

âiB
m
i (x) and ĝ(x) =

m∑

i=0

b̂iB
m
i (x),

where Bm
i (x) is the ith Bernstein basis function. The Bézout resultant matrix

B(f̂ , ĝ) = (bi,j) ∈ R
m×m of f̂(x) and ĝ(x) is defined by

f̂(x)ĝ(l) − f̂(l)ĝ(x)

x− l
=

m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l),

which can be rewritten as
m∑

i,j=0

(âib̂j − âj b̂i)B
m
i (x)Bm

j (l) = (x− l)
m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l).

It is shown in [5] that

x
m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l)

=
(
l + (1 − l)

)
x

m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l)

= xl
m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l) +
m∑

i,j=1

bi,jxB
m−1
i−1 (x)(1 − l)Bm−1

j−1 (l),
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and

l

m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l)

=
(
x+ (1 − x)

)
l

m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l)

= xl

m∑

i,j=1

bi,jB
m−1
i−1 (x)Bm−1

j−1 (l) +

m∑

i,j=1

bi,j(1 − x)Bm−1
i−1 (x)lBm−1

j−1 (l),

hence
m∑

i,j=0

(âib̂j − âj b̂i)B
m
i (x)Bm

j (l)

=

m∑

i,j=1

bi,jxB
m−1
i−1 (x)(1 − l)Bm−1

j−1 (l) −
m∑

i,j=1

bi,j(1 − x)Bm−1
i−1 (x)lBm−1

j−1 (l). (3.2)

Since

xBm−1
i−1 (x) =

i

m
Bm

i (x),

(1 − l)Bm−1
j−1 (l) =

m− j + 1

m
Bm

j−1(l),

and

(1 − x)Bm−1
i−1 (x) =

m− i+ 1

m
Bm

i−1(x),

lBm−1
j−1 (l) =

j

m
Bm

j (l),

(3.2) can be rewritten as
m∑

i,j=0

(âib̂j − âj b̂i)B
m
i (x)Bm

j (l)

=

m∑

i,j=1

bi,j
i

m
Bm

i (x)
m− j + 1

m
Bm

j−1(l) −
m∑

i,j=1

bi,j
m− i+ 1

m
Bm

i−1(x)
j

m
Bm

j (l).

Equalizing the coefficients of Bm
j (l) on both sides of the previous relation, we obtain

m∑

i=0

(âib̂0 − â0b̂i)B
m
i (x) =

m∑

i=1

bi,1
i

m
Bm

i (x), for j = 0,
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and
m∑

i=0

(âib̂j − âj b̂i)B
m
i (x) =

m− j

m

m∑

i=1

bi,j+1
i

m
Bm

i (x) − j

m

m∑

i=1

bi,j
m− i+ 1

m
Bm

i−1(x),

for j = 1, · · · , m− 1. Therefore, from the above relation, the formulae for the entries

of the Bézout resultant matrix of two Bernstein polynomials are

bi,1 =
m

i
(âib̂0 − â0b̂i), 1 ≤ i ≤ m,

bi,j+1 =
m2

i(m− j)
(âib̂j − âj b̂i) +

j(m− i)

i(m− j)
bi+1,j, 1 ≤ i, j ≤ m− 1,

bm,j+1 =
m

m− j
(âmb̂j − âj b̂m), 1 ≤ j ≤ m− 1. (3.3)

The Bézout resultant matrix B(f̂ , ĝ) of f̂(x) and ĝ(x) satisfies the following properties

[5]:

1. The rank loss of B(f̂ , ĝ) is equal to the degree of the GCD of f̂(x) and ĝ(x).

2. The coefficients of the GCD of f̂(x) and ĝ(x) can be obtained by reducing

B(f̂ , ĝ) to upper triangular form, using the QR or LU decompositions.

These two important properties enable us to compute the GCD of f̂(x) and ĝ(x)

using the Bézout resultant matrix.

Example 3.2. Consider two Bernstein polynomials

f̂(x) =

(
3

0

)

(1 − x)3 − 1

2

(
3

1

)

(1 − x)2x+
1

2

(
3

3

)

x3,

and

ĝ(x) =

(
4

0

)

(1 − x)4 − 1

4

(
4

1

)

(1 − x)3x− 1

8

(
4

2

)

(1 − x)2x2

+
1

8

(
4

3

)

(1 − x)x3 +
1

4

(
4

4

)

x4,
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whose GCD is f̂(x) because

ĝ(x) = f̂(x)

((
1

0

)

(1 − x) +
1

2

(
1

1

)

x

)

.

The Bézout resultant matrix of f̂(x) and ĝ(x) is

B(f̂ , ĝ) =












1
2

−1
4

0 1
4

−1
4

1
8

0 −1
8

0 0 0 0

1
4

−1
8

0 1
8












.

The reduction of B(f̂ , ĝ) to row echelon (upper triangular) form yields











1
2

−1
4

0 1
4

0 0 0 0

0 0 0 0

0 0 0 0












,

and thus the degree of the GCD is 3. The coefficients in the last non-zero row of this

matrix yield the GCD

1

2

(
3

0

)

(1 − x)3 − 1

4

(
3

1

)

(1 − x)2x+
1

4

(
3

3

)

x3

=
1

2

((
3

0

)

(1 − x)3 − 1

2

(
3

1

)

(1 − x)2x+
1

2

(
3

3

)

x3

)

,

which is proportional to f̂(x). �

The next section considers the computation of the GCD using another resultant

matrix, the Sylvester resultant matrix.
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3.3 Sylvester resultant matrix

The Sylvester resultant matrix of polynomials defined in Bernstein form is developed

in [61]. Consider two Bernstein polynomials

f̂(x) =

m∑

i=0

âi

(
m

i

)

(1 − x)m−ixi and ĝ(x) =

n∑

j=0

b̂j

(
n

j

)

(1 − x)n−jxj , (3.4)

whose GCD is of degree d̂ > 0, in which case f̂(x) and ĝ(x) have one or more common

divisors t̂(x) of degree one. Let û(x) and v̂(x) be quotient polynomials associated with

t̂(x) and therefore

f̂(x) = û(x)t̂(x) and ĝ(x) = v̂(x)t̂(x), (3.5)

where û(x) and v̂(x) are given by

û(x) =
m−1∑

i=0

ûi

(
m− 1

i

)

(1 − x)m−1−ixi and v̂(x) =
n−1∑

i=0

v̂i

(
n− 1

i

)

(1 − x)n−1−ixi.

It follows from (3.5) that f̂(x)v̂(x) = ĝ(x)û(x), which can be written in matrix form

as

D−1






















â0

(
m

0

)
b̂0
(

n

0

)

â1

(
m

1

) . . . b̂1
(

n

1

) . . .

...
. . . â0

(
m

0

) ...
. . . b̂0

(
n

0

)

...
. . . â1

(
m

1

) ...
. . . b̂1

(
n

1

)

âm

(
m

m

) . . .
... b̂n

(
n

n

) . . .
...

. . .
...

. . .
...

âm

(
m

m

)
b̂n
(

n

n

)











































v̂0

(
n−1

0

)

v̂1

(
n−1

1

)

...

v̂n−1

(
n−1
n−1

)

−û0

(
m−1

0

)

...

−ûm−1

(
m−1
m−1

)






















=






















0

...

0

...

0

...

0






















, (3.6)

where D−1 is

D−1 = diag

[

1

(m+n−1
0 )

1

(m+n−1
1 )

. . . 1

(m+n−1
m+n−2)

1

(m+n−1
m+n−1)

]

. (3.7)
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Let T (f̂ , ĝ) and p(û, v̂) be given by

T (f̂ , ĝ) =






















â0

(
m

0

)
b̂0
(

n

0

)

â1

(
m

1

) . . . b̂1
(

n

1

) . . .

...
. . . â0

(
m

0

) ...
. . . b̂0

(
n

0

)

...
. . . â1

(
m

1

) ...
. . . b̂1

(
n

1

)

âm

(
m

m

) . . .
... b̂n

(
n

n

) . . .
...

. . .
...

. . .
...

âm

(
m

m

)
b̂n
(

n

n

)






















, (3.8)

and

p(û, v̂) =






















v̂0

(
n−1

0

)

v̂1

(
n−1

1

)

...

v̂n−1

(
n−1
n−1

)

−û0

(
m−1

0

)

...

−ûm−1

(
m−1
m−1

)






















, (3.9)

in which case, (3.6) can be expressed as

D−1T (f̂ , ĝ)p(û, v̂) = 0, (3.10)

where D−1 is defined in (3.7), and T (f̂ , ĝ) is the Sylvester resultant matrix when f̂(x)

and ĝ(x) are expressed in the scaled Bernstein basis [57]. If f̂(x) and ĝ(x) have a non-

constant common divisor, there exists a solution of p(û, v̂) satisfying (3.10) and thus

the determinant of D−1T (f̂ , ĝ) vanishes. Therefore, the determinant of D−1T (f̂ , ĝ) is

a resultant of f̂(x) and ĝ(x), and the Sylvester resultant matrix is

S(f̂ , ĝ) = D−1T (f̂ , ĝ). (3.11)
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Similarly, it is shown in [61] that the Sylvester resultant matrix S(f̂ , ĝ) of f̂(x) and

ĝ(x) satisfies the following properties:

1. The rank loss of S(f̂ , ĝ) is equal to the degree of the GCD of f̂(x) and ĝ(x).

2. The coefficients of the GCD of f̂(x) and ĝ(x) can be obtained by reducing

S(f̂ , ĝ)T to upper triangular form, using the QR or LU decompositions.

These important properties establish the relation between the Sylvester resultant

matrix and the computation of the GCD of two polynomials.

Example 3.3. Consider two Bernstein polynomials

f̂(x) = 6

(
2

0

)

(1 − x)2 +
7

2

(
2

1

)

(1 − x)x+ 2

(
2

2

)

x2,

and

ĝ(x) = 6

(
3

0

)

(1 − x)3 +
19

3

(
3

1

)

(1 − x)2x+
16

3

(
3

2

)

(1 − x)x2 + 4

(
3

3

)

x3,

whose GCD is f̂(x) because

ĝ(x) = f̂(x)

((
1

0

)

(1 − x) + 2

(
1

1

)

x

)

.
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The transpose of the Sylvester resultant matrix S(f̂ , ĝ) of f̂(x) and ĝ(x) is

S(f̂ , ĝ)T =















6 7 2 0 0

0 6 7 2 0

0 0 6 7 2

6 19 16 4 0

0 6 19 16 4





























1 0 0 0 0

0 1
4

0 0 0

0 0 1
6

0 0

0 0 0 1
4

0

0 0 0 0 1















=















6 7
4

1
3

0 0

0 3
2

7
6

1
2

0

0 0 1 7
4

2

6 19
4

8
3

1 0

0 3
2

19
6

4 4















.

The reduction of S(f̂ , ĝ)T to row echelon (upper triangular) form yields














1 0 0 1
5

1
3

0 1 0 −37
36

−14
9

0 0 1 7
4

2

0 0 0 0 0

0 0 0 0 0















,

and the coefficients in the last non-zero row of this matrix yield the GCD,
(

4

2

)

(1 − x)2x2 +
7

4

(
4

3

)

(1 − x)x3 + 2

(
4

4

)

x4

= x2

(

6

(
2

0

)

(1 − x)2 +
7

2

(
2

1

)

(1 − x)x+ 2

(
2

2

)

x2

)

.

Deletion of the extraneous factor x2 yields the GCD, f̂(x). �

The next section considers the Sylvester subresultant matrices because the de-

gree of the GCD of polynomials can be determined by calculating the ranks of the
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Sylvester subresultant matrices.

3.3.1 Sylvester subresultant matrices

In this section, we consider the Sylvester subresultant matrices defined in the Bern-

stein basis. A subresultant matrix of the Sylvester resultant matrix is similar to the

Sylvester matrix but it has fewer rows and columns. The Sylvester subresultant ma-

trices expressed in the power basis are considered in [64].

It is assumed that two Bernstein polynomials f̂(x) and ĝ(x) defined in (3.4) have a

GCD of degree d̂ > 0, and thus they possess a common divisor of degree k, where

1 ≤ k ≤ d̂. Therefore, there exists a polynomial d̂k(x) of degree k such that

f̂(x) = ûk(x)d̂k(x) and ĝ(x) = v̂k(x)d̂k(x), (3.12)

where the quotient polynomials ûk(x) and v̂k(x) are

ûk(x) =

m−k∑

i=0

ûk,i

(
m− k

i

)

(1 − x)m−k−ixi,

v̂k(x) =

n−k∑

j=0

v̂k,j

(
n− k

j

)

(1 − x)n−k−jxj ,

respectively, and the common divisor polynomial d̂k(x) is

d̂k(x) =
k∑

i=0

d̂k,i

(
k

i

)

(1 − x)k−ixi.

It follows from (3.12) that f̂ v̂k = ĝûk, that is,

m∑

i=0

âi

(
m

i

)

(1 − x)m−ixi

n−k∑

j=0

v̂k,j

(
n− k

j

)

(1 − x)n−k−jxj

=

n∑

j=0

b̂j

(
n

j

)

(1 − x)n−jxj

m−k∑

i=0

ûk,i

(
m− k

i

)

(1 − x)m−k−ixi,
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and the expression for the coefficients of the product of two Bernstein polynomials

yields an expression for each coefficient of the product [22],

min(m,r)
∑

j=max(0,r−(n−k))

(

âj

(
m

j

)

(
m+n−k

r

)

)

v̂k,r−j

(
n− k

r − j

)

=

min(m−k,r)
∑

j=max(0,r−n)

(

b̂r−j

(
n

r−j

)

(
m+n−k

r

)

)

ûk,j

(
m− k

j

)

, r = 0, . . . , m+ n− k.

It follows that the homogeneous equation

D−1
k






















â0

(
m

0

)
b̂0
(

n

0

)

â1

(
m

1

) . . . b̂1
(

n

1

) . . .

...
. . . â0

(
m

0

) ...
. . . b̂0

(
n

0

)

âm−1

(
m

m−1

) . . . â1

(
m

1

)
b̂n−1

(
n

n−1

) . . . b̂1
(

n

1

)

âm

(
m

m

) . . .
... b̂n

(
n

n

) . . .
...

. . . âm−1

(
m

m−1

) . . . b̂n−1

(
n

n−1

)

âm

(
m

m

)
b̂n
(

n

n

)






















×



















v̂k,0

(
n−k

0

)

...

v̂k,n−k

(
n−k

n−k

)

−ûk,0

(
m−k

0

)

...

−ûk,m−k

(
m−k

m−k

)



















=



















0

...

0

0

...

0



















, (3.13)

where

D−1
k = diag

[

1
(

m+n−k

0

)
1

(
m+n−k

1

) . . .
1

(
m+n−k

m+n−k−1

)
1

(
m+n−k

m+n−k

)

]

, (3.14)
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and D−1
1 = D−1 defined in (3.7) is attained. Let Tk(f̂ , ĝ) and pk(ûk, v̂k) be given by

Tk(f̂ , ĝ) =






















â0

(
m

0

)
b̂0
(

n

0

)

â1

(
m

1

) . . . b̂1
(

n

1

) . . .

...
. . . â0

(
m

0

) ...
. . . b̂0

(
n

0

)

âm−1

(
m

m−1

) . . . â1

(
m

1

)
b̂n−1

(
n

n−1

) . . . b̂1
(

n

1

)

âm

(
m

m

) . . .
... b̂n

(
n

n

) . . .
...

. . . âm−1

(
m

m−1

) . . . b̂n−1

(
n

n−1

)

âm

(
m

m

)
b̂n
(

n

n

)






















, (3.15)

and

pk(ûk, v̂k) =



















v̂k,0

(
n−k

0

)

...

v̂k,n−k

(
n−k

n−k

)

−ûk,0

(
m−k

0

)

...

−ûk,m−k

(
m−k

m−k

)



















, (3.16)

where Tk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2) and pk(ûk, v̂k) ∈ R

m+n−2k+2 respectively.

Equation (3.13) is rewritten as

(

D−1
k Tk(f̂ , ĝ)

)

pk(ûk, v̂k) = 0, k = 1, . . . ,min(m,n), (3.17)

and the kth Sylvester subresultant matrix is

Sk(f̂ , ĝ) = D−1
k Tk(f̂ , ĝ) ∈ R

(m+n−k+1)×(m+n−2k+2), (3.18)

where D−1
k is defined in (3.14) and Tk(f̂ , ĝ) is defined in (3.15). The coefficients of

f̂(x) occupy the first (n− k+1) columns, and the coefficients of ĝ(x) occupy the last

(m− k + 1) columns, of Sk(f̂ , ĝ), and Sk(f̂ , ĝ) is square and reduces to the Sylvester

matrix if k = 1, S1(f̂ , ĝ) = S(f̂ , ĝ). If k > 1, the number of rows of Sk(f̂ , ĝ) is greater
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than its number of columns.

If f̂(x) and ĝ(x) have a common divisor of degree k ≥ 1, then (3.17) possesses a

solution, and Sk(f̂ , ĝ) must be rank deficient. Therefore, if f̂(x) and ĝ(x) have a

common divisor of degree k ≥ 1, the rank of Sk(f̂ , ĝ) is less than (m+ n− 2k + 2).

Now assume that the rank of Sk(f̂ , ĝ) is less than (m + n − 2k + 2), from which it

follows that one or more of its columns are linearly dependent on the other columns.

Therefore, there exist constants hk,0, . . . , hk,n−k, qk,0, . . . , qk,m−k, not all zero, such that

n−k∑

i=0

hk,ick,i −
m−k∑

j=0

qk,jdk,j = 0, (3.19)

where ck,i, i = 0, . . . , n − k, and dk,j, j = 0, . . . , m − k, are the vectors of the first

(n− k+ 1) and last (m− k+ 1) columns of Sk(f̂ , ĝ), respectively. If the polynomials

hk(x) and qk(x) are defined as

hk(x) =
n−k∑

i=0

hk,i

(
n− k

i

)

(1 − x)n−k−ixi,

and

qk(x) =
m−k∑

j=0

qk,j

(
m− k

j

)

(1 − x)m−k−jxj ,

respectively, then (3.19) states that

hk(x)f̂(x) = qk(x)ĝ(x). (3.20)

One important theorem associated with (3.20) must be introduced here.

Theorem 3.1. Let f̂(x) and ĝ(x) be polynomials of degrees m and n respectively,

and let d̂k(x) be a polynomial of degree k. There exist polynomials hk(x) and qk(x),

of degrees n− k and m− k, respectively, that satisfy (3.20), if and only if d̂k(x) is a
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common divisor of f̂(x) and ĝ(x).

Proof. If d̂k(x) is a common divisor of f̂(x) and ĝ(x), there exist polynomials hk(x)

and qk(x) such that

f̂(x)

d̂k(x)
= qk(x) and

ĝ(x)

d̂k(x)
= hk(x),

and (3.20) follows.

Conversely, assume (3.20) holds such that, without loss of generality, hk(x) and qk(x)

are coprime. (If these polynomials are not coprime, any common divisors can be

removed.) It follows that since hk(x) is of degree n− k and ĝ(x) is of degree n, every

divisor of hk(x) is also a divisor of ĝ(x). There therefore exists a polynomial d̂k,1(x)

of degree k such that

ĝ(x) = hk(x)d̂k,1(x), (3.21)

and similarly, consideration of the polynomials qk(x) and f̂(x) leads to

f̂(x) = qk(x)d̂k,2(x), (3.22)

where d̂k,2(x) is of degree k. The substitution of (3.21) and (3.22) into (3.20) shows

that d̂k,1(x) = d̂k,2(x), and thus the result is established.

It follows from Theorem 3.1 that (3.20) shows that f̂(x) and ĝ(x) have a common

divisor of degree k. Therefore, if the rank of Sk(f̂ , ĝ) is less than (m + n − 2k + 2),

then f̂(x) and ĝ(x) have a common divisor of degree k.

From the above discussion, the main theorem is now established.

Theorem 3.2. A necessary and sufficient condition for the polynomials f̂(x) and

ĝ(x) to have a common divisor of degree k ≥ 1 is that the rank of Sk(f̂ , ĝ) is less than

(m+ n− 2k + 2), where Sk(f̂ , ĝ) is defined in (3.18).
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Since the degree of the GCD of f̂(x) and ĝ(x) is d̂ ≥ 1, these polynomials possess

common divisors of degree 1, 2, . . . , d̂, but they do not have a common divisor of degree

d̂+1. Therefore, from Theorem 3.2, the rank of Sk(f̂ , ĝ) can be used to calculate the

degree of the GCD of f̂(x) and ĝ(x):

rankSk(f̂ , ĝ) < m+ n− 2k + 2, k = 1, . . . , d̂,

rankSk(f̂ , ĝ) = m+ n− 2k + 2, k = d̂+ 1, . . . ,min(m,n).
(3.23)

Thus, the determination of the degree of the GCD of f̂(x) and ĝ(x) reduces to the

calculation of the ranks of the subresultant matrices Sk(f̂ , ĝ), k = 1, . . . ,min(m,n).

Example 3.4. Consider two Bernstein polynomials

f̂(x) = 4

(
3

0

)

(1 − x)3 + 4

(
3

1

)

(1 − x)2x+ 3

(
3

2

)

(1 − x)x2 + 2

(
3

3

)

x3

= (x− 2)2(x+ 1),

and

ĝ(x) =

(
2

0

)

(1 − x)2 − 1

4

(
2

1

)

(1 − x)x− 1

2

(
2

2

)

x2

= (x− 2)(x− 1

2
),

whose GCD is of degree 1. The subresultant matrices Sk(f̂ , ĝ), k = 1, 2, of f̂(x) and
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ĝ(x) are

S1(f̂ , ĝ) =















1 0 0 0 0

0 1
4

0 0 0

0 0 1
6

0 0

0 0 0 1
4

0

0 0 0 0 1





























4 0 1 0 0

12 4 −1
2

1 0

9 12 −1
2

−1
2

1

2 9 0 −1
2

−1
2

0 2 0 0 −1
2















=















4 0 1 0 0

3 1 −1
8

1
4

0

3
2

2 − 1
12

− 1
12

1
6

1
2

9
4

0 −1
8

−1
8

0 2 0 0 −1
2















∈ R
5×5,

and

S2(f̂ , ĝ) =












1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1























4 1 0

12 −1
2

1

9 −1
2

−1
2

2 0 −1
2












=












4 1 0

4 −1
6

1
3

3 −1
6

−1
6

2 0 −1
2












∈ R
4×3,

where S1(f̂ , ĝ) = S(f̂ , ĝ). Reducing S1(f̂ , ĝ) and S2(f̂ , ĝ) to their row echelon forms,

we obtain rankS1(f̂ , ĝ) = 4 and rankS2(f̂ , ĝ) = 3, and thus S1(f̂ , ĝ) is rank deficient

and S2(f̂ , ĝ) is of full rank, which implies that the degree of the GCD is 1. �

This section introduced the conventional forms of the Sylvester resultant matrix

and its subresultant matrices. However, new forms of the Sylvester resultant matrix

and subresultant matrices can be developed with the inclusion of a diagonal matrix,

which are considered in the next section. It will be shown in the following chapters

that the new forms of the Sylvester resultant matrix and subresultant matrices yield
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significantly better results than their conventional forms with respect to the determi-

nation of the degree of an approximate GCD, which will be explained in Sections 4.3

and 4.4, and a structured low rank approximation of the Sylvester resultant matrix.

The explanation for the superiority of the new forms of the Sylvester resultant matrix

and subresultant matrices is considered in Section 6.3.

3.4 A new form of the Sylvester resultant matrix

This section considers another form of the Sylvester resultant matrix. In particular,

this new form is obtained with the inclusion of a diagonal matrix, which is discussed

in the following.

The vector p(û, v̂) defined in (3.9) can be written as

p(û, v̂) = Qr(û, v̂), (3.24)

where

Q = diag

[
(

n−1
0

)
· · ·

(
n−1
n−1

) (
m−1

0

)
· · ·

(
m−1
m−1

)
]

∈ R
(m+n)×(m+n), (3.25)

and

r(û, v̂) = [ v̂0 · · · v̂n−1 −û0 · · · −ûm−1 ]T ∈ R
m+n, (3.26)

and thus it follows from (3.10) that

S(f̂ , ĝ)p(û, v̂) =
(
D−1T (f̂ , ĝ)

)
p(û, v̂) =

(
D−1T (f̂ , ĝ)Q

)
r(û, v̂) = 0,
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where D−1 is defined in (3.7) and T (f̂ , ĝ) is defined in (3.8).

Since Q is non-singular, it follows that

deg GCD(f̂ , ĝ) = m+ n− rankS(f̂ , ĝ)

= m+ n− rankD−1T (f̂ , ĝ)

= m+ n− rankD−1T (f̂ , ĝ)Q, (3.27)

and thus

S(f̂ , ĝ)Q = D−1T (f̂ , ĝ)Q, (3.28)

satisfies the rank loss property of the Sylvester resultant matrix. The second property

- the computation of the GCD coefficients from the QR or LU decomposition of
(
S(f̂ , ĝ)Q

)T
= QS(f̂ , ĝ)T - follows because Q is a diagonal matrix that scales the

rows of S(f̂ , ĝ)T , and thus S(f̂ , ĝ)Q is also a resultant matrix. These two properties

allow S(f̂ , ĝ)Q to be used to compute the GCD of f̂(x) and ĝ(x).

Example 3.5. Consider two Bernstein polynomials

f̂(x) = 2

(
3

0

)

(1 − x)3 +
4

3

(
3

1

)

(1 − x)2x− 1

2

(
3

2

)

(1 − x)x2 − 9

2

(
3

3

)

x3,

and

ĝ(x) =

(
2

0

)

(1 − x)2 +
1

4

(
2

1

)

(1 − x)x− 3

2

(
2

2

)

x2,

whose GCD is ĝ(x) because

f̂(x) = ĝ(x)

(

2

(
1

0

)

(1 − x) + 3

(
1

1

)

x

)

.
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The transpose of the Sylvester resultant matrix S(f̂ , ĝ)Q is

QS(f̂ , ĝ)T =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 1





























2 4 −3
2

−9
2

0

0 2 4 −3
2

−9
2

1 1
2

−3
2

0 0

0 1 1
2

−3
2

0

0 0 1 1
2

−3
2





























1 0 0 0 0

0 1
4

0 0 0

0 0 1
6

0 0

0 0 0 1
4

0

0 0 0 0 1















=















2 1 −1
4

−9
8

0

0 1
2

2
3

−3
8

−9
2

1 1
8

−1
4

0 0

0 1
2

1
6

−3
4

0

0 0 1
6

1
8

−3
2















.

The reduction of QS(f̂ , ĝ)T to row echelon (upper triangular) form yields














2 1 −1
4

−9
8

0

0 1
2

2
3

−3
8

−9
2

0 0 −1
2

−3
8

9
2

0 0 0 0 0

0 0 0 0 0















,

and the coefficients in the last non-zero row of this matrix yield the GCD,

−1

2

(
4

2

)

(1 − x)2x2 − 3

8

(
4

3

)

(1 − x)x3 +
9

2

(
4

4

)

x4

= −3x2

((
2

0

)

(1 − x)2 +
1

4

(
2

1

)

(1 − x)x− 3

2

(
2

2

)

x2

)

.

Deletion of the extraneous factor −3x2 yields the GCD, ĝ(x). �

Example 3.5 shows that the degree of the GCD of f̂(x) and ĝ(x) is equal to the

rank loss of their Sylvester matrix S(f̂ , ĝ)Q and the last non-zero row of an upper
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triangular form of S(f̂ , ĝ)Q yields the coefficients of the GCD.

In this section, we introduced the matrix S(f̂ , ĝ)Q and explained that it satisfies the

properties of the Sylvester resultant matrix. Therefore, S(f̂ , ĝ)Q can be considered

another form of the Sylvester resultant matrix. The subresultant matrices of this

modified form of the Sylvester matrix are discussed in the next section.

3.4.1 The subresultant matrices of the modified Sylvester

matrix

This section considers the subresultant matrices of the Sylvester resultant matrix

S(f̂ , ĝ)Q.

The vector pk(ûk, v̂k) defined in (3.16) can be written as

pk(ûk, v̂k) = Qkrk(ûk, v̂k), (3.29)

where Qk ∈ R
(m+n−2k+2)×(m+n−2k+2),

Qk = diag

[
(

n−k

0

)
· · ·

(
n−k

n−k

) (
m−k

0

)
· · ·

(
m−k

m−k

)
]

, (3.30)

and

rk(ûk, v̂k) = [ v̂k,0 · · · v̂k,n−k −ûk,0 · · · −ûk,m−k ]T ∈ R
m+n−2k+2, (3.31)

and thus it follows from (3.17) that

Sk(f̂ , ĝ)pk(ûk, v̂k) =
(

D−1
k Tk(f̂ , ĝ)

)

pk(ûk, v̂k)

=
(

D−1
k Tk(f̂ , ĝ)Qk

)

rk(ûk, v̂k)

=
(

Sk(f̂ , ĝ)Qk

)

rk(ûk, v̂k)

= 0. (3.32)
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Since Qk is non-singular, the rank of Sk(f̂ , ĝ) equals to the rank of Sk(f̂ , ĝ)Qk. There-

fore, it follows from (3.23) that

rankSk(f̂ , ĝ)Qk < m+ n− 2k + 2, k = 1, . . . , d̂,

rankSk(f̂ , ĝ)Qk = m+ n− 2k + 2, k = d̂+ 1, . . . ,min(m,n).
(3.33)

Therefore,

Sk(f̂ , ĝ)Qk = D−1
k Tk(f̂ , ĝ)Qk, (3.34)

satisfies the property of the Sylvester subresultant matrices, and the degree of the

GCD of f̂(x) and ĝ(x) can also be determined by calculating the ranks of the subre-

sultant matrices Sk(f̂ , ĝ)Qk, k = 1, . . . ,min(m,n).

The coefficients of f̂(x) occupy the first (n − k + 1) columns, and the coefficients

of ĝ(x) occupy the last (m − k + 1) columns, of Sk(f̂ , ĝ)Qk, and when k = 1,

Sk(f̂ , ĝ)Qk is square and equals to the Sylvester resultant matrix S(f̂ , ĝ)Q, that is,

S1(f̂ , ĝ)Q1 = S(f̂ , ĝ)Q. If k > 1, the number of rows of Sk(f̂ , ĝ)Qk is greater than its

number of columns.

Example 3.6. Consider two Bernstein polynomials

f̂(x) = 2

(
2

0

)

(1 − x)2 +
1

2

(
2

1

)

(1 − x)x

= (x− 2)(x− 1),

and

ĝ(x) = 2

(
3

0

)

(1 − x)3 + 3

(
3

1

)

(1 − x)2x+ 4

(
3

2

)

(1 − x)x2 + 4

(
3

3

)

x3

= (x− 2)(x+ 1)2,

whose GCD is of degree 1. The subresultant matrices Sk(f̂ , ĝ)Qk, k = 1, 2, of f̂(x)



CHAPTER 3. GREATEST COMMON DIVISOR COMPUTATION 56

and ĝ(x) are

S1(f̂ , ĝ)Q1 =















1 0 0 0 0

0 1
4

0 0 0

0 0 1
6

0 0

0 0 0 1
4

0

0 0 0 0 1





























2 0 0 2 0

1 2 0 9 2

0 1 2 12 9

0 0 1 4 12

0 0 0 0 4





























1 0 0 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















=















2 0 0 2 0

1
4

1 0 9
4

1
2

0 1
3

1
3

2 3
2

0 0 1
4

1 3

0 0 0 0 4















∈ R
5×5,

and

S2(f̂ , ĝ)Q2 =












1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1























2 0 2

1 2 9

0 1 12

0 0 4




















1 0 0

0 1 0

0 0 1









=












2 0 2

1
3

2
3

3

0 1
3

4

0 0 4












∈ R
4×3,

where S1(f̂ , ĝ)Q1 = S(f̂ , ĝ)Q. Reducing S1(f̂ , ĝ)Q1 and S2(f̂ , ĝ)Q2 to their row

echelon forms yields rankS1(f̂ , ĝ)Q1 = 4 and rankS2(f̂ , ĝ)Q2 = 3, and therefore

S1(f̂ , ĝ)Q1 is rank deficient and S2(f̂ , ĝ)Q2 has full rank, which implies that the de-

gree of the GCD of f̂(x) and ĝ(x) is 1. �
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3.5 Summary

This chapter has introduced two classical methods, Euclid’s algorithm and resultant

matrices, to calculate the GCD of two Bernstein polynomials. It was also shown in

this chapter that the degree of the GCD of two Bernstein polynomials can be deter-

mined by computing the ranks of the Sylvester subresultant matrices. Examples have

shown that they provide an unambiguous and correct result in a symbolic computing

environment when Bernstein polynomials are specified exactly.

When these methods are implemented in a floating point environment, however,

roundoff error may suggest that a resultant matrix is non-singular, even if it is

theoretically singular, and an example of this phenomenon is shown in [64]. This

computational problem is more apparent when data errors, which are usually much

larger than roundoff error, are present. The problem caused by data errors for GCD

computations will be shown in the next chapter.



Chapter 4

GCD computation in the presence

of noise

Chapter 3 introduced Euclid’s algorithm, and the Bézout and Sylvester resultant ma-

trices, to compute the GCD of two Bernstein polynomials symbolically. However, in

practical applications, the GCD computation is performed in a floating point envi-

ronment, and polynomials are not often specified exactly due to data errors generated

from previous computation. Because polynomials are often perturbed by data errors

such that inexact forms are usually specified, it is necessary to consider the effect of

data errors on GCD computations. In particular, minor noise applied to the coef-

ficients of polynomials makes their inexact forms coprime such that computing the

GCD of polynomials from their inexact forms is an ill-posed problem, and this phe-

nomena will be shown in Section 4.2.

This chapter first introduces the addition of noise to the coefficients of a Bernstein

polynomial to obtain an inexact form, and then the computation of the GCD of two

exact polynomials from their inexact forms, using the three algorithms described in

58
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Chapter 3, in a floating point environment, is discussed.

4.1 Addition of noise

The Bernstein polynomials f̂(x) and ĝ(x) are defined in (3.4), and noise perturbs

f̂(x) and ĝ(x) to inexact forms f(x) and g(x). Noise δâi and δb̂j is added in the

componentwise sense to the exact coefficients âi and b̂j of f̂(x) and ĝ(x), and thus the

coefficients âi and b̂j are perturbed to âi +δâi, i = 0, . . . , m, and b̂j +δb̂j , j = 0, . . . , n,

respectively,

âi + δâi = âi(1 + riεc) and b̂j + δb̂j = b̂j(1 + rjεc), (4.1)

where ri and rj are uniformly distributed random variables in the range [−1, . . . ,+1],

and 1/εc is the upper bound of the componentwise signal-to-noise ratio. It follows

from (4.1) that

1

εc

≤ |âi|
|δâi|

and
1

εc

≤ |b̂j |
|δb̂j |

,

for i = 0, . . . , m, and j = 0, . . . , n. Therefore, the coefficients âi of f̂(x) and b̂j

of ĝ(x) are replaced by the coefficients of their inexact polynomials f(x) and g(x)

respectively,

âi → âi(1 + riεc), i = 0, . . . , m,

b̂j → b̂j(1 + rjεc), j = 0, . . . , n,

and the inexact polynomials f(x) and g(x) are

f(x) =
m∑

i=0

ai

(
m

i

)

(1 − x)m−ixi and g(x) =
n∑

j=0

bj

(
n

j

)

(1 − x)n−jxj . (4.2)
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In this thesis, we set the componentwise signal-to-noise ratio ε−1
c equal to 108 because

this level of signal-to-noise ratio is typical in practical examples [63, 64].

The next section considers the computation of the GCD of f̂(x) and ĝ(x) from their

inexact forms f(x) and g(x), using Euclid’s algorithm, and the Bézout and Sylvester

resultant matrices, in a floating point environment.

4.2 Computation of GCD of polynomials from their

inexact forms

This section considers computing the GCD of the polynomials f̂(x) and ĝ(x) from

their inexact forms f(x) and g(x) defined in (4.2), using Euclid’s algorithm, and the

Bézout and Sylvester resultant matrices in a floating point environment.

Euclid′s algorithm

Section 3.1 described Euclid’s algorithm in a symbolic environment. However, when

Euclid’s algorithm is implemented in a floating point environment, the vanishing re-

mainder termination criterion is never satisfied precisely due to round off error gener-

ated in each division. Therefore, more concern should be given to the implementation

of Euclid’s algorithm in a floating point environment.

One reasonable termination criterion of Euclid’s algorithm performed in a floating

point environment is to test the norm of remainder ‖ør+1‖ at each division against

a prescribed tolerance ε. If ‖ør+1‖ is less than the tolerance ε, the division sequence

stops and ør(x) is the GCD of polynomials. However, it is shown in [53] that the

remainder norm experiences dramatic and unpredictable changes at each division and
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thus its comparison with a specified tolerance ε is not a reliable indicator for termi-

nating Euclid’s algorithm.

An approach based on Euclid’s algorithm to calculate the GCD of two Bernstein

polynomials is presented in [53]. Given two Bernstein polynomials f̂(x) and ĝ(x), the

approach firstly normalizes the coefficients of each polynomial by the L2 norm of its

coefficients, ‖P‖. The square of the L2 norm of the polynomial coefficients, ‖P‖2, is

given by

‖P‖2 =
1

2n+ 1

n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)

(
2n

i+j

) Cn
i C

n
j , (4.3)

where n is the degree of polynomial,
(

n

k

)
is the binomial coefficient, and Cn

k is the

coefficient of polynomial.

Then, the approach in [53], applies the division sequence (3.1) to f̂(x) and ĝ(x). At

each division, instead of comparing the remainder norm with the specified tolerance

ε, the approach divides f̂(x) and ĝ(x) by ør(x) respectively

f̂(x) = q1(x)ør(x) + r1(x),

ĝ(x) = q2(x)ør(x) + r2(x).

If both remainder norms, ‖r1‖ and ‖r2‖ are less than a specified tolerance ε, the

division sequence stops and ør(x) is the GCD of the polynomials. The reason is that

the divisor ør(x) at each division is a candidate GCD of f̂(x) and ĝ(x), and therefore

the divisor ør(x) that divides both polynomials with remainders whose norms are

sufficiently small is the GCD of polynomials.

Example 4.1. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.17)4(x− 0.56)4(x− 0.72)2,
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and

ĝ(x) = (x− 0.17)3(x− 0.35)4(x− 0.91)2,

whose GCD is of degree 3.

Because of noise, the coefficients of f̂(x) and ĝ(x) are not specified exactly. Therefore,

adding noise with componentwise signal-to-noise ratio ε−1
c = 108 to the coefficients

of f̂(x) and ĝ(x), we obtain their inexact forms f(x) and g(x). Applying Euclid’s

algorithm described above with tolerance ε = 10−8 to f(x) and g(x) yields the result

shown in Table 4.1. It is seen from Table 4.1 that the algorithm stops at stage 10,

and yields the GCD of degree 0, which implies that f(x) and g(x) are coprime.

Table 4.1: Remainder norms on dividing f(x) and g(x) by ør(x) in Example 4.1.

Stage Divisor Degree ‖r1‖ ‖r2‖
1 9 0.8442 3.7396 × 10−15

2 8 0.2512 1.9233
3 7 4.1573 × 103 2.0070 × 103

4 6 0.1906 0.1880
5 5 0.0117 1.2119
6 4 0.0043 0.0246
7 3 3.1435 × 10−4 0.0011
8 2 0.0027 8.4693 × 10−5

9 1 1.6985 × 10−5 6.1524 × 10−5

10 0 0 0

�

This example shows that when the coefficients of f̂(x) and ĝ(x) are perturbed

by noise, Euclid’s algorithm fails to compute the GCD of f̂(x) and ĝ(x) from their

inexact forms f(x) and g(x) because minor noise makes f(x) and g(x) coprime. In

addition, even if Euclid’s algorithm is applied to polynomials in the absence of noise,
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the result obtained is dependent on the selection of the tolerance because of roundoff

error.

Next, we consider the computation of the GCD of polynomials in the presence of

noise, using the Bézout and Sylvester resultant matrices. As stated earlier, given two

polynomials, the rank loss of their resultant matrices is equal to the degree of their

GCD. However, for the GCD computation using the resultant matrices performed

in a floating point environment, in most cases, a row of a matrix will never vanish

identically, because of roundoff error, and thus we adopt a method that observes the

variation of normalized singular values of the resultant matrices in order to determine

the degree of the GCD [11, 15, 26]. In particular, given a matrix A ∈ R
m×n, where

m > n, applying singular value decomposition to the matrix A obtains

A = USV,

where U ∈ R
m×m is an orthogonal matrix, V ∈ R

n×n is an orthogonal matrix, and

S ∈ R
m×n has the form






















σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .

0 0 . . . σn

0 0 . . . 0

. . . . . .

0 0 . . . 0






















.

The singular values of the matrix A are σi, i = 1, . . . , n, which are non-negative

elements in descending order:

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
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Since the orthogonal matrices U and V are non-singular, rankA = rankS. Therefore,

if rankA = r < n, then

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = σr+2 = . . . = σn = 0.

Thus, the rank of the matrix A can be determined by counting the number of its

non-zero singular values. However, when we apply singular value decomposition to

the matrix A in a floating point environment, all of the singular values of the matrix

A are not equal to zero due to roundoff error. But σr+1, σr+2, . . . , σn are very small

and approximately equal to zero, that is

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 ≈ σr+2 ≈ . . . ≈ σn ≈ 0.

Because σr > 0 and σr+1 ≈ 0, there exists a significantly large change between these

two successive singular values. Therefore, the rank of the matrix A is equal to the

value of i for which the significantly large change between two successive singular

values σi and σi+1 occurs.

Bézout resultant matrix

Example 4.2. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.36)4(x− 0.79)3(x− 1.46)3,

and

ĝ(x) = (x− 0.36)2(x− 0.95)4(x− 1.46)5,

whose GCD is of degree 5.

Noise with componentwise signal-to-noise ratio 108 is added to the coefficients of f̂(x)

and ĝ(x) to obtain their inexact forms f(x) and g(x), and then the Bézout matrix

B(f, g) is computed.

Figure 4.1 shows the normalized singular values of B(f, g), and it is seen that B(f, g)



CHAPTER 4. GCD COMPUTATION IN THE PRESENCE OF NOISE 65

is of full rank, which implies that f(x) and g(x) are coprime.
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Figure 4.1: The normalized singular values of B(f, g) for Example 4.2.

�

Sylvester resultant matrix

Example 4.3. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.43)4(x+ 0.93)6(x+ 1.47)5(x− 1.39)4,

and

ĝ(x) = (x− 0.43)5(x− 0.93)4(x+ 1.47)3(x− 1.89)4,

whose GCD is of degree 7.

Noise with componentwise signal-to-noise ratio 108 is applied to the coefficients of

f̂(x) and ĝ(x) to obtain their inexact forms f(x) and g(x), and then two forms of the

Sylvester matrix S(f, g) and S(f, g)Q are computed.

Figures 4.2(a) and (b) show the normalized singular values of S(f, g) and S(f, g)Q
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respectively, and it is seen that both S(f, g) and S(f, g)Q are of full rank, which

implies that f(x) and g(x) are coprime. �
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Figure 4.2: The normalized singular values of (a) S(f, g) and (b) S(f, g)Q for Example
4.3.

These two examples associated with the Bézout and Sylvester resultant matrices

show that when noise is present such that polynomials can not be specified exactly, the

Bézout and Sylvester resultant matrices fail to calculate the GCD of polynomials from

their inexact forms because minor random noise makes their inexact forms coprime.

It is seen from the above examples that if the exact Bernstein polynomials have a non-

constant GCD, their inexact forms are coprime with high probability, which makes

the computation of the GCD of Bernstein polynomials an ill-posed problem. In this

circumstance, the inexact Bernstein polynomials f(x) and g(x) have an approximate

greatest common divisor (AGCD) because they are near their theoretically exact

forms, f̂(x) and ĝ(x) respectively, which are not coprime. Therefore, the GCD

of exact Bernstein polynomials is an approximate common divisor of their inexact

polynomials. The AGCD is considered in the next section.
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4.3 Approximate greatest common divisor

This section discusses an AGCD of inexact polynomials f(x) and g(x), and it will

be shown that it differs from the GCD of their exact forms, f̂(x) and ĝ(x).

It is assumed that f̂(x) and ĝ(x) have a non-constant GCD, and their inexact forms

f(x) and g(x) respectively,

f(x) = f̂(x) + δf̂(x) and g(x) = ĝ(x) + δĝ(x),

are coprime, that is

d̂ = deg GCD(f̂ , ĝ) > 0 and deg GCD(f, g) = 0, (4.4)

and

d = deg AGCD(f, g) > 0. (4.5)

It follows from (4.4) and (4.5) that the computation of the GCD of f̂(x) and ĝ(x) is an

ill-posed problem because random noise imposed on one or both of these polynomials

causes the resulting polynomials f(x) and g(x) to be coprime. However, these inexact

polynomials are near their theoretically exact forms, which are not coprime, and

thus f(x) and g(x) possess an approximate common divisor h(x), that is, h(x) is a

polynomial that divides f(x) and g(x) with a small error in each division,

f(x) = q1(x)h(x) + r1(x) and g(x) = q2(x)h(x) + r2(x),

where ‖r1‖ � ‖q1h‖ and ‖r2‖ � ‖q2h‖.

The GCD of f̂(x) and ĝ(x) is a function of the roots of these polynomials, and an

AGCD of f(x) and g(x) is a function of the roots of these polynomials, but both

these common divisors are independent of arbitrary scalar multipliers that can be
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applied to the polynomials. They therefore satisfy

GCD(f̂ , ĝ) = GCD(γ1f̂ , γ2ĝ) and AGCD(f, g) = AGCD(γ3f, γ4g),

where γ1, γ2, γ3, γ4 ∈ R\0.

The GCD of f̂(x) and ĝ(x) is unique up to a non-zero scalar multiplier but an AGCD

of f(x) and g(x) is not unique. For example, it can be defined as the common divisor

polynomial of maximum degree, assumed to be unique, when the magnitude of the

perturbations applied to the coefficients of f(x) and g(x) is specified, or the common

divisor polynomial, assumed to be unique, obtained when the perturbations of the

coefficients of f(x) and g(x) have minimum magnitude, such that the degree of the

common divisor polynomial is specified. It follows that there are several definitions

of an AGCD in [11, 15, 32, 33, 42]. Each of those definitions formulates the concept

with some of the three characteristics as follows [68]:

(a) Nearness: An AGCD is the GCD of another set of polynomials near the given

ones.

(b) Max-degree: The AGCD has the highest degree among those polynomials sat-

isfying nearness.

(c) Min-distance: The AGCD minimizes the distance between another set of poly-

nomials and the given ones as mentioned in (a).

Each of these definitions is valid, and the definition used depends on the problem to

be solved.

The computation of an AGCD of inexact Bernstein polynomials is rarely considered.

However, substantial works have been spent on developing algorithms for calculating
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an AGCD of inexact power polynomials. It is shown in [4, 32, 39, 43] that modifica-

tions of the Euclidean algorithm are used in order that it can be applied to floating

point numbers. In addition, the QR factorization is considered in [12, 67]. For ex-

ample, the approach in [67] involves the QR decomposition of a matrix derived from

the Sylvester matrix of two polynomials, and an incremental condition estimator is

used to determine the last non-zero row of the upper triangular matrix R in the QR

decomposition. Furthermore, optimization strategies are used in [9, 33]. For example,

the approach shown in [9] formulates and solves a nonlinear least squares problem

to determine the coefficients of an AGCD, assuming that an estimate for its degree

is available. Finally, structured matrix methods involve constructing the resultant

matrices of polynomials and computing the structured low rank approximations of

the resultant matrices, which yield an AGCD of the polynomials [36, 52, 59, 60].

One algorithm for computing an AGCD of inexact power polynomials used by Zeng

is now described [68]:

For any power polynomial

l̂(x) =

m∑

i=0

l̂ix
i,

its kth convolution matrix is

Ck(l̂) =



















l̂0

l̂1
. . .

...
. . . l̂0

l̂m l̂1

. . .
...

l̂m



















∈ R
(m+k+1)×(k+1), k = 0, 1, · · · .



CHAPTER 4. GCD COMPUTATION IN THE PRESENCE OF NOISE 70

For any polynomials p̂(x) and q̂(x) of degrees j and k respectively, if ĥ(x) = p̂(x)q̂(x),

then

ĥ = Ck(p̂)q̂ = Cj(q̂)p̂,

where ĥ, p̂ and q̂ are the vectors containing the coefficients of polynomials ĥ(x), p̂(x)

and q̂(x).

Consider two exact polynomials f̂(x) and ĝ(x)

f̂(x) =
m∑

i=0

âix
i and ĝ(x) =

n∑

j=0

b̂jx
j ,

which have a non-constant common divisor d̂k(x) of degree k. Therefore, there exist

quotient polynomials ûk(x) and v̂k(x) such that

f̂(x) = ûk(x)d̂k(x) and ĝ(x) = v̂k(x)d̂k(x),

where

ûk(x) =
m−k∑

i=0

ûk,ix
i and v̂k(x) =

n−k∑

i=0

v̂k,ix
i.

Then a quadratic system can be established, that is

F (ẑ) = b̂, (4.6)

where

F (ẑ) =









rHd̂k − 1

Ck(ûk)d̂k

Ck(v̂k)d̂k









, ẑ =









d̂k

ûk

v̂k









, b̂ =









0

f̂

ĝ









. (4.7)

The vector r in (4.7) is a scaling vector and rH is the Hermitian adjoint of r. The

vectors f̂ , ĝ, ûk, v̂k and d̂k store the coefficients of the polynomials f̂(x), ĝ(x), ûk(x),

v̂k(x) and d̂k(x), and (4.6) is solved for ûk, v̂k and d̂k.

However, when their inexact polynomials f(x) and g(x) are specified, (4.6) is replaced
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by the approximation

F (z) ≈ b, (4.8)

because f(x) and g(x) are coprime. The vectors F (z), z and b are given by

F (z) =









rHdk − 1

Ck(uk)dk

Ck(vk)dk









, z =









dk

uk

vk









, b =









0

f

g









. (4.9)

In this algorithm, dk(x) is an AGCD of the inexact polynomials f(x) and g(x) with

tolerance ε > 0, if dk(x) is of the highest degree k along with quotient polynomials

uk(x) of degree m − k and vk(x) of degree n − k that form z in (4.9) satisfying

‖ F (z) − b ‖2≤ ε.

As stated earlier, if two polynomials have a non-constant common divisor of degree

k, their kth subresultant matrix is rank deficient. Since the inexact polynomials f(x)

and g(x) are coprime, their subresultant matrices are all of full rank. This algorithm

computes the smallest singular value σk of the kth subresultant matrix Sk(f, g). When

σk ≤ ε
√

2k + 2 occurs, the algorithm assumes Sk(f, g) is close to be rank deficient and

thus there is a possibility that f(x) and g(x) have an approximate common divisor

of degree k within tolerance ε. The algorithm proceeds as follows:

Consider two inexact polynomials f(x) of degree m and g(x) of degree n, where it is

assumed m ≥ n. As stated earlier, the algorithm looks for an AGCD of the highest

degree satisfying the specified tolerance, and the possible highest degree of an AGCD

of f(x) and g(x) is the smaller number of m and n. Since it is assumed m ≥ n, the

algorithm first sets k = n and computes the smallest singular value σn of Sn(f, g). If

σn ≤ ε
√

2n+ 2, the approximation (4.8) is established. Then the vector z is refined
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iteratively by Gauss-Newton iteration, that is

zj+1 = zj − J(zj)
+ [F (zj) − b] ,

where

J(z) =









rH

Ck(uk) Cm−k(dk)

Ck(vk) Cm−k(dk)









,

is the Jacobian of F (z) and J(z)+ =
(
J(z)HJ(z)

)−1
J(z)H is the pseudo-inverse of

J(z).

This iterative refinement terminates when the distance ςn ≡‖ F (zj) − b ‖2 stops

decreasing, and then this refinement stage outputs the nearness ςn and the refined

polynomials dk(x), uk(x) and vk(x) embedded in z = zj. If ςn < ε, then dk(x)

is certified as an AGCD of f(x) and g(x), and the algorithm stops. If ςn ≥ ε,

which implies that there is no approximate common divisor of degree n satisfying

‖ F (z) − b ‖2≤ ε, the algorithm then looks for an approximate common divisor of

lower degree n − 1. Therefore, the algorithm sets k = n − 1 and repeats the above

process.

From the above discussion, the computation of an AGCD needs the definition of an

AGCD to be specified. This is considered in the next section.

4.4 The definition of an AGCD

In the previous section, the concept of an AGCD has been introduced. It has been

mentioned that several definitions of an AGCD exist [11, 15, 32, 33, 42], and they

use one or more of the characteristics of nearness, maximum degree and minimum
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distance. For example, Zeng’s work looks for an AGCD of maximum degree that

satisfies an error criterion as described in Section 4.3. However, these definitions are

not appropriate for the approach that will be introduced in this thesis because these

definitions of an AGCD use an error criterion based on the coefficients of an AGCD.

In this thesis, however, the degree d of an AGCD is computed initially, after which

the coefficients of an AGCD of degree d are calculated. A test for the correctness of

d can not be based on the coefficients of an AGCD, and must be based only on d.

The following definition of an AGCD is therefore used in this thesis.

DEFINITION. The degree d of an AGCD of two inexact polynomials f(x) and g(x)

is defined to be correct when it is equal to the degree d̂ of the GCD of the exact forms

f̂(x) and ĝ(x) of f(x) and g(x), respectively.

This definition of the degree of an AGCD is required because it provides a good

measure of the ability of the proposed approach to compute d̂, and therefore reproduce

in the given inexact polynomials f(x) and g(x) an important property of the exact

polynomials f̂(x) and ĝ(x).

It is seen from the definition of an AGCD that because the degree d of an AGCD

of f(x) and g(x) is defined to be correct when it is equal to the degree d̂ of the GCD

of their exact forms f̂(x) and ĝ(x), the estimate of the degree d̂ of the GCD of f̂(x)

and ĝ(x) is equivalent to the determination of the degree d of an AGCD of f(x) and

g(x).

It was stated above that the computation of an AGCD of f(x) and g(x) proceeds in

two steps:

1. Calculate the degree d of an AGCD of f(x) and g(x).
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2. Given d, calculate the corrections that must be added to the coefficients of f(x)

and g(x), such that these corrected polynomials have a GCD of degree d.

For the first step, the degree d of an AGCD of f(x) and g(x) can be determined using

the Bézout and Sylvester resultant matrices but the preprocessing operations that will

be introduced in the following chapters must be performed on the resultant matrices

such that they are more stable computationally. In addition, the advanced methods

using the first principal angle and the residual of an approximate linear algebraic

equation are also adopted to determine the degree d of an AGCD of f(x) and g(x).

After the first step, based on the estimated degree d of an AGCD of f(x) and g(x),

the perturbations of minimum magnitude applied to the coefficients of f(x) and g(x)

are computed by the method of structured non-linear total least norm (SNTLN) [41].

This approach must be compared with Zeng’s method, which computes AGCDs of

degrees min(m,n), min(m,n)−1, . . ., until an error criterion on the coefficients of the

AGCD is satisfied. It therefore follows that several possible AGCDs are computed,

but the approach described in this thesis requires that only one AGCD is computed,

which is therefore more efficient.

From the above analysis, we should initially address the determination of the degree

d of an AGCD of f(x) and g(x). In particular, this is the most difficult and crucial

part of the calculation of an AGCD. Three methods will be discussed in the following

chapters respectively.

4.5 Summary

This chapter has shown that when noise is present such that polynomials can not

be specified exactly, the classical algorithms, Euclid’s algorithm, and the Bézout and



CHAPTER 4. GCD COMPUTATION IN THE PRESENCE OF NOISE 75

Sylvester resultant matrices, can not be used to compute the GCD of polynomials

in a floating point environment because random noise makes their inexact forms

coprime. Therefore, the concept of an AGCD was introduced. It follows from the

definition of an AGCD specified in Section 4.4 that the computation of an AGCD

should firstly determine the degree of an AGCD. The next chapter will consider

the determination of the degree of an AGCD of two inexact polynomials using the

Bézout resultant matrix, and Chapters 6 and 7 will consider the method based on

the Sylvester matrix and advanced methods using the first principal angle and the

residual of an approximate linear algebraic equation respectively.



Chapter 5

The degree of an AGCD, Part I

This chapter introduces the method for the computation of the degree of an AGCD

of inexact polynomials from their Bézout resultant matrix. It has been shown that

minor random noise added to exact polynomials makes them coprime, and thus their

Bézout resultant matrix is of full rank. In order to determine the correct degree of an

AGCD of inexact polynomials, one preprocessing operation must be performed on

the Bézout resultant matrix. Experiments show that this preprocessing operation is

essential for the accurate estimate of the degree of an AGCD of inexact polynomials.

This preprocessing operation is discussed in the next section.

5.1 Preprocessing operation

It is shown in [24] that computations on a matrix whose entries vary widely in magni-

tude may be numerically unstable and therefore it is desirable to minimize the ratio

of the maximum entry, in magnitude, to the minimum entry, in magnitude. The min-

imization of the ratio of the maximum and minimum entries of matrix, in magnitude,

76
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can be achieved by one preprocessing operation. In particular, the preprocessing op-

eration introduces a parameter θ which transforms the independent variable x to a

new independent variable w. It will be shown that the optimal value of the parameter

θ can be easily calculated by solving a standard linear programming problem.

5.1.1 The transformation of the independent variable

Given two inexact Bernstein polynomials f(x) and g(x) defined in (4.2), it was noted

in Section 3.2 that the polynomial g(x) must be degree elevated m − n times since

it is assumed that m ≥ n, and it is therefore assumed in this section that both f(x)

and g(x) are of degree m,

f(x) =
m∑

i=0

ai

(
m

i

)

(1 − x)m−ixi and g(x) =
m∑

i=0

bi

(
m

i

)

(1 − x)m−ixi.

The preprocessing operation is achieved by the transformation

x = θw, (5.1)

where θ is a parameter whose value is to be determined and w is the new independent

variable. The polynomials f(x) and g(x) are then transformed to

~f(w, θ) =
m∑

i=0

(
aiθ

i
)
(
m

i

)

(1 − θw)m−iwi, (5.2)

and

~g(w, θ) =
m∑

i=0

(
biθ

i
)
(
m

i

)

(1 − θw)m−iwi, (5.3)

respectively, which are expressed in the modified Bernstein basis, the basis functions

of which for a polynomial of degree m are φm
i (w, θ),

φm
i (w, θ) =

(
m

i

)

(1 − θw)m−iwi, i = 0, . . . , m. (5.4)



CHAPTER 5. THE DEGREE OF AN AGCD, PART I 78

The coefficients of ~f(w, θ) and ~g(w, θ) are aiθ
i and biθ

i, i = 0, . . . , m. Therefore, the

optimal value of θ must be defined, which allows the coefficients of ~f(w, θ) and ~g(w, θ)

to be calculated. In particular, the optimal value of θ is determined such that the

ratio of maximum and minimum entries of the Bézout matrix of ~f(w, θ) and ~g(w, θ),

in magnitude, is minimized, which requires that the Bézout matrix of ~f(w, θ) and

~g(w, θ) defined in the modified Bernstein basis be developed. This issue is addressed

in the next section.

5.1.2 The Bézout resultant matrix for the modified Bernstein

basis

It is shown in [5] that the Bézout resultant matrix B(f, g) ∈ R
m×m of the Bernstein

polynomials f(x) and g(x) satisfies

f(x)g(l) − f(l)g(x)

x− l
= B(m−1)T

(x)B(f, g)Bm−1(l), (5.5)

where

B(m−1)T

(x) =

[

Bm−1
0 (x) Bm−1

1 (x) · · · Bm−1
m−1(x)

]

∈ R
m,

and Bm−1
i (x) is the ith Bernstein basis function for polynomials of degree m− 1,

Bm−1
i (x) =

(
m− 1

i

)

(1 − x)m−1−ixi, i = 0, . . . , m− 1.

The Bernstein basis functions and the modified Bernstein basis functions are related

by

Bm−1
i (θw) =

(
m− 1

i

)

(1 − θw)m−1−i(θw)i = θi
(
φm−1

i (w, θ)
)
,

for i = 0, . . . , m− 1, and thus (5.1) and the substitution l = θz transform (5.5) to

~f(w, θ)~g(z, θ) − ~f(z, θ)~g(w, θ)

θ(w − z)
=
(
φ(m−1)T

(w, θ)
)
C(f, g, θ)

(
φm−1(z, θ)

)
, (5.6)
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where C(f, g, θ) ∈ R
m×m is given by

C(f, g, θ) = H(θ)B(f, g)H(θ), H(θ) = diag

[

1 θ · · · θm−1

]

∈ R
m×m, (5.7)

and

φm−1(w, θ) =

[

φm−1
0 (w, θ) φm−1

1 (w, θ) · · · φm−1
m−1(w, θ)

]T

∈ R
m.

It follows from (5.7) that C(f, g, θ) is the Bézout resultant matrix of ~f(w, θ) and

~g(w, θ)

C(f, g, θ) = H(θ)B
(
f, g
)
H(θ), (5.8)

and thus the Bézout resultant matrix of two polynomials expressed in the modified

Bernstein basis is obtained by pre- and post-multiplying the Bézout resultant matrix

of the Bernstein forms of the polynomials by the diagonal matrix H(θ), which allows

the optimal value of θ to be computed.

5.1.3 The optimal value of θ

The calculation of the optimal value of θ requires a general expression for the entries of

C(f, g, θ). In particular, it follows from (5.7) and (5.8) that element (i, j) of C(f, g, θ)

is given by

C(f, g, θ) = bi,jθ
i+j−2, i, j = 1, . . . , m,

where bi,j , which is defined in (3.3), is element (i, j) of the Bernstein Bézout resultant

matrix B(f, g). Since θ0, the optimal value of θ, minimizes the ratio of the maximum

element, in magnitude, to the minimum element, in magnitude, of C(f, g, θ), it follows

that

θ0 = argmin
θ

{
maxi=1,...,m;j=i,...,m |bi,jθi+j−2|
mini=1,...,m;j=i,...,m |bi,jθi+j−2|

}

. (5.9)
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This minimization problem can be written as:

Minimize u
v

subject to

u ≥
∣
∣bi,jθ

i+j−2
∣
∣ , i = 1, . . . , m; j = i, . . . , m,

v ≤
∣
∣bi,jθ

i+j−2
∣
∣ , i = 1, . . . , m; j = i, . . . , m,

v > 0,

θ > 0. (5.10)

The substitutions

U = log u, V = log v, φ = log θ and βi,j = log |bi,j| , (5.11)

where log = log10, enable the minimization problem (5.10) to be written as

Minimize U − V

subject to

U − (i+ j − 2)φ ≥ βi,j , i = 1, . . . , m; j = i, . . . , m,

−V + (i+ j − 2)φ ≥ −βi,j , i = 1, . . . , m; j = i, . . . , m,

which can be expressed as

Minimize
[

U V φ
]









1

−1

0









subject to A









U

V

φ









≥ b, (5.12)

where A ∈ R
r×3, b ∈ R

r and r = m(m + 1). Equation (5.12) can be solved using

linear programming.

If φ0 is the solution of (5.12), then it follows from (5.9) and (5.11) that the optimal



CHAPTER 5. THE DEGREE OF AN AGCD, PART I 81

value of θ is equal to θ0 = 10φ0. Therefore, all computations are performed on the

Bézout resultant matrix B̄(f̌ , ǧ), which is given by

B̄
(
f̌ , ǧ
)

= H(θ0)B
(
f, g
)
H(θ0),

where

f̌ = f̌(w) = ~f(w, θ0) =

m∑

i=0

(
aiθ

i
0

)
(
m

i

)

(1 − θ0w)m−iwi, (5.13)

and

ǧ = ǧ(w) = ~g(w, θ0) =

m∑

i=0

(
biθ

i
0

)
(
m

i

)

(1 − θ0w)m−iwi. (5.14)

Example 5.1. Consider two Bernstein polynomials

f(x) =
1

2

(
3

0

)

(1 − x)3 − 1

4

(
3

1

)

(1 − x)2x+
1

4

(
3

3

)

x3,

and

g(x) =

(
2

0

)

(1 − x)2 − 1

4

(
2

1

)

(1 − x)x− 1

2

(
2

2

)

x2,

whose GCD is g(x) because

f(x) = g(x)

(

1

2

(
1

0

)

(1 − x) − 1

2

(
1

1

)

x

)

.

If the optimal value of θ is θ0 = 2, it follows that

f̌(w) = ~f(w, θ0) =
1

2

(
3

0

)

(1 − 2w)3 − 1

2

(
3

1

)

(1 − 2w)2w + 2

(
3

3

)

w3,

and

ǧ(w) = ~g(w, θ0) =

(
2

0

)

(1 − 2w)2 − 1

2

(
2

1

)

(1 − 2w)w − 2

(
2

2

)

w2.
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The Bézout resultant matrix B̄
(
f̌ , ǧ
)

of f̌(w) and ǧ(w) is

B̄
(
f̌ , ǧ
)

=









1 0 0

0 2 0

0 0 4

















−1 1
4

1
2

1
4

− 1
16

−1
8

1
2

−1
8

−1
4

















1 0 0

0 2 0

0 0 4









=









−1 1
2

2

1
2

−1
4

−1

2 −1 −4









.

The reduction of this matrix to row echelon (upper triangular) form yields








2 −1 −4

0 0 0

0 0 0









,

from which it follows that the degree of the GCD of f̌(w) and ǧ(w) is two. The

polynomial formed from the last non-zero row of this matrix is

2

(
2

0

)

(1 − 2w)2 −
(

2

1

)

(1 − 2w)w − 4

(
2

2

)

w2,

which is proportional to the GCD of f̌(w) and ǧ(w).

It is readily verified that the substitution w = x/θ = x/2 yields g(x). �

5.2 Examples

This section includes three examples to illustrate the computation of the degree d of

an AGCD of inexact polynomials f(x) and g(x) using their Bézout resultant matrix

B̄
(
f̌ , ǧ
)
. The comparison of the results obtained from the Bézout resultant matrix

B(f, g) and B̄
(
f̌ , ǧ
)

is also considered.
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Example 5.2. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.4)2(x− 0.8)4(x− 0.9)5(x− 1.3)4(x− 2.3)4,

and

ĝ(x) = (x− 0.4)4(x− 0.6)3(x− 0.9)4(x+ 1)4(x− 2.3)5,

whose GCD is of degree 10.

Noise with componentwise signal-to-noise ratio 108 is added to the coefficients of f̂(x)

and ĝ(x), and thus we obtain their inexact forms f(x) and g(x). The matrices B(f, g)

and B̄
(
f̌ , ǧ
)

are then computed.

Figures 5.1(a) and (b) show the normalized singular values of B(f, g) and B̄
(
f̌ , ǧ
)

respectively. It is seen from Figure 5.1(b) that the rank loss of the Bézout matrix

B̄
(
f̌ , ǧ
)

is equal to deg GCD(f̂ , ĝ) = 10. The result in Figure 5.1(b) was obtained

with θ0 = 2.1912. However, Figure 5.1(a) shows that the Bézout matrix B(f, g) is of

full rank, which suggests that f̂(x) and ĝ(x) are coprime. �
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Figure 5.1: The normalized singular values of (a) B(f, g) and (b) B̄
(
f̌ , ǧ
)

for Example
5.2.
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Example 5.3. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.45)4(x− 0.98)4(x− 1.23)6(x− 2.34)3,

and

ĝ(x) = (x− 0.45)5(x− 0.98)2(x+ 1.19)5(x− 2.34)3,

whose GCD is of degree 9.

Each polynomial is corrupted by noise with componentwise signal-to-noise ratio 108

to yield their inexact forms f(x) and g(x), and then the matrices B(f, g) and B̄
(
f̌ , ǧ
)

are computed.

Figure 5.2(b) shows that the rank of the Bézout matrix B̄
(
f̌ , ǧ
)

is clearly defined and

equal to 8, which is correct because degGCD(f̂ , ĝ) = 9. The result in Figure 5.2(b)

was obtained with θ0 = 2.116. Figure 5.2(a) shows, however, that the Bézout matrix

B(f, g) is not rank deficient, which implies that f̂(x) and ĝ(x) are coprime. �
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Figure 5.2: The normalized singular values of (a) B(f, g) and (b) B̄
(
f̌ , ǧ
)

for Example
5.3.
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Example 5.4. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.23)4(x− 0.59)4(x− 0.98)4(x− 1.23)3(x− 5.23)3,

and

ĝ(x) = (x− 0.23)3(x− 0.59)5(x− 0.73)4(x+ 2.36)2(x− 5.23)4,

whose GCD is of degree 10.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial to

yield their inexact forms f(x) and g(x), and then we compute the matrices B(f, g)

and B̄
(
f̌ , ǧ
)
.

It is seen from Figures 5.3(a) and (b) that the matrices B(f, g) and B̄
(
f̌ , ǧ
)

yield,

respectively, incorrect and correct results because B(f, g) has full rank and the rank

of B̄
(
f̌ , ǧ
)

is equal to 10. The result in Figure 5.3(b) was obtained with θ0 = 1.2494.

�
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Figure 5.3: The normalized singular values of (a) B(f, g) and (b) B̄
(
f̌ , ǧ
)

for Example
5.4.

It is seen from these three examples that B̄
(
f̌ , ǧ
)

yields better results than B(f, g),
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which shows that the inclusion of the parameter θ improves the computational results.

The results shown in these three examples are consistent with results obtained from

many other examples.

5.3 Summary

This chapter introduced an approach to determine the degree of an AGCD of two

inexact polynomials from their Bézout resultant matrix. The examples in Section 5.2,

which are typical of many other results that were obtained, show that the prepro-

cessing operation allows us to obtain the improved and correct estimate of the degree

of an AGCD of inexact polynomials. In particular, the preprocessing operation in-

troduces a new parameter θ that transforms inexact polynomials expressed in the

Bernstein basis to their corresponding polynomials defined in the modified Bernstein

basis, which requires the modified Bernstein form of their Bézout resultant matrix to

be developed. The optimal value of θ minimizes the ratio of maximum and minimum

elements in magnitude of their Bézout matrix defined in the modified Bernstein ba-

sis.

This chapter considered the determination of the degree of an AGCD of two in-

exact polynomials from their Bézout resultant matrix. However, the degree of an

AGCD of inexact polynomials can also be computed from another resultant matrix,

the Sylvester resultant matrix but three preprocessing operations must be performed

on the Sylvester resultant matrix because of its partitioned structure. This issue is

addressed in the next chapter.



Chapter 6

The degree of an AGCD, Part II

This chapter extends the work of Chapter 5 by considering the Sylvester resultant

matrix for the computation of the degree of an AGCD of two inexact Bernstein poly-

nomials. Previous work [62, 63] has shown that two inexact polynomials expressed in

the power basis must be preprocessed before their Sylvester matrix is used to com-

pute the degree of an AGCD, and it is shown in these references that the inclusion of

these operations improves the result. Therefore, it is desirable to consider the prepro-

cessing operations performed on the Sylvester matrix of two Bernstein polynomials.

In particular, three preprocessing operations are required, and our experiments indi-

cate that these preprocessing operations are necessary for significantly better results.

These preprocessing operations are considered in the next section.

6.1 Preprocessing operations

Consider two inexact Bernstein polynomials f(x) and g(x) defined in (4.2). The

preprocessing operations are:

87
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1. The normalization of f(x) and g(x).

2. The introduction of a parameter α.

3. A transformation of the independent variable x to a new independent variable

w.

It will be shown that these preprocessing operations allow the Sylvester matrix of

f(x) and g(x) to yield the correct estimate of the degree of an AGCD.

It is shown in Chapter 3 that there exist two forms of the Sylvester matrix, S(f, g) and

S(f, g)Q, which are defined in (3.11) and (3.28) respectively, and both forms should

be considered. In particular, the preprocessing operations associated with these two

forms are slightly different. The entries of S(f, g)Q are more complicated than the

entries of S(f, g), and therefore it is convenient to consider the preprocessing opera-

tions for S(f, g)Q because their simplification allows the preprocessing operations for

S(f, g) to be easily obtained.

6.1.1 Normalization of the polynomials

The Sylvester matrix S(f, g)Q of f(x) and g(x) is defined in (3.28),

S(f, g)Q =
























a0(m

0 )(
n−1

0 )
(m+n−1

0 )
b0(n

0)(
m−1

0 )
(m+n−1

0 )
a1(m

1 )(
n−1

0 )
(m+n−1

1 )
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It was noted that the coefficients of f(x) and g(x) occupy the first n columns and

last m columns of S(f, g)Q, respectively, and S(f, g)Q satisfies

S(αf, βg)Q 6= αβS(f, g)Q, α, β ∈ R\0. (6.1)

Equation (6.1) shows that the Sylvester matrix S(f, g)Q is not scale invariant because

of its partitioned structure. If the coefficients of f(x) are much larger or smaller than

the coefficients of g(x), this may cause the Sylvester matrix S(f, g)Q to be unbalanced.

For example, if |ai| � |bj |, i = 0, . . . , m, j = 0, . . . , n, the entries in the first n columns

of S(f, g)Q may be much larger than the entries in the last m columns, in magnitude,

such that the rank of S(f, g)Q is approximately equal to n, even if f(x) and g(x) are

coprime. Similarly, if |ai| � |bj|, i = 0, . . . , m, j = 0, . . . , n, the entries in the first n

columns of S(f, g)Q may be much smaller than the entries in the last m columns, in

magnitude, such that the rank of S(f, g)Q is approximately equal to m. Therefore,

it is necessary to normalize the entries of the first n columns and last m columns of

S(f, g)Q, respectively, to make S(f, g)Q better balanced.

It is advantageous to normalize the entries of the first n columns and last m columns

of S(f, g)Q by the geometric mean of the entries of each part, respectively because it

provides a better average when the entries vary widely, in magnitude [63]. This can

be easily illustrated by the following example.

Example 6.1. Consider a data set v = {10−3, 1, 1015}, and it is seen that the numbers

in data set v vary substantially in magnitude.

The geometric mean of numbers in data set v, GMv, is equal to 104, and the norms

of numbers in data set v, ‖ v ‖p for p = 1, 2,∞, are approximately equal to 1015.

If the first number in data set v, 10−3, is reduced to 10−9, GMv is then equal to 102

but ‖ v ‖p for p = 1, 2,∞, are still approximately equal to 1015.
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This example illustrates that the norms of numbers in data set v are dominated by

the extremely large number, however, the geometric mean treats each number equally

and any change in small value can affect the value of the geometric mean. �

Consider the coefficients ai

(
m

i

)
, i = 0, . . . , m, which occupy the first n columns

of S(f, g)Q. It follows from (3.7), (3.8), (3.25) and (3.28) that the product of the

magnitudes of the terms that contain the coefficient a0

(
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)
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and the product of the magnitudes of the terms that contain the coefficient a1
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)
in

S(f, g)Q is
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Therefore, the product of the magnitudes of the terms that contain the coefficient

ai

(
m

i

)
in S(f, g)Q is
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and thus the product of all the terms in S(f, g)Q that contain the coefficients of f(x)

is
m∏
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∣ai
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.

Since the coefficients of f(x) occur n(m + 1) times in S(f, g)Q, the geometric mean

of these terms is

λ =

{
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i=0

(∣
∣ai

(
m

i

)∣
∣
n∏n−1

r=0

(
n−1

r

)

∏n−1+i

t=i

(
m+n−1

t

)

)} 1
n(m+1)

, (6.2)

and the numerator of this expression simplifies to
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where care must be taken in the computation of these terms in order to prevent

overflow.

Consider the denominator in (6.2),
{

m∏

i=0

n−1+i∏

t=i

(
m+ n− 1

t

)}
1

n(m+1)

,

which can be evaluated efficiently by a recurrence equation. In particular, if Pi is

defined as

Pi =

n−1+i∏

t=i

(
m+ n− 1

t

)

, i = 0, . . . , m, (6.3)

then

Pi+1 =
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and thus
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, i = 0, . . . , m− 1.

The starting value of this recurrence relationship is

P0 =
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(
m+ n− 1

t

)

,

and thus the geometric mean (6.2) of all the terms that contain the coefficients of

f(x) is

λ =

{∏m
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∣ai

(
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r=0

(
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. (6.4)

It follows that the normalized form of f(x) is

f̆(x) =

m∑

i=0

āi

(
m

i

)

(1 − x)m−ixi, āi =
ai

λ
. (6.5)

This analysis can be repeated for g(x), and its normalized form is

ğ(x) =

n∑

j=0

b̄j

(
n

j

)

(1 − x)n−jxj , b̄j =
bj
µ
, (6.6)
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where

µ =

{
∏n

j=0

∣
∣
∣bj
(

n

j

)
∣
∣
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} 1
n+1 {∏m−1

r=0

(
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r
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} 1
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, (6.7)

and

Lj =

m−1+j
∏

t=j

(
m+ n− 1

t

)

, j = 0, . . . , n. (6.8)

The normalized coefficients āi and b̄j in (6.5) and (6.6) enable the Sylvester matrix

S(f̆ , ğ)Q = D−1T (f̆ , ğ)Q, where the matrices D−1, T (f̆ , ğ) and Q are defined in (3.7),

(3.8) and (3.25), respectively, to be computed. The importance of normalization of

polynomials for the correct estimate of their degree of an AGCD is illustrated by the

following example.

Example 6.2. Consider the Bernstein forms of the exact polynomials

f̂(x) = (x− 0.01)3(x− 0.4)4(x− 0.6)3(x− 0.9)3,

and

ĝ(x) = (x− 0.4)2(x− 0.6)2(x− 10)5(x− 12)4,

whose GCD is of degree 4. Noise with componentwise signal-to-noise ratio 108

is added to the coefficients of f̂(x) and ĝ(x), and then the matrices S(f, g)Q and

S(f̆ , ğ)Q are computed.

It is seen from Figure 6.1(b) that the rank of S(f̆ , ğ)Q is clearly defined and equal to

22, which is correct because deg GCD(f̂ , ĝ) = 4. However, Figure 6.1(a) shows that

the rank of S(f, g)Q is equal to 13, which is incorrect, and it is interesting to note that

this implies that f̂(x) is a constant multiple of ĝ(x) because deg f̂(x) = deg ĝ(x) = 13.

�



CHAPTER 6. THE DEGREE OF AN AGCD, PART II 93

5 10 15 20 25 30
−20

−15

−10

−5

0

i

lo
g

1
0
 σ

i 
/ 
σ

1

i=22

(a)

5 10 15 20 25 30
−10

−8

−6

−4

−2

0

i

lo
g

1
0
 σ

i 
/ 
σ

1 i=22

(b)

Figure 6.1: The normalized singular values of (a) S(f, g)Q and (b) S(f̆ , ğ)Q for
Example 6.2.

The above normalization analysis can be repeated for the Sylvester matrix S(f, g) =

D−1T (f, g), and it is easy to see that the normalization constants for f(x) and g(x)

in this matrix are, respectively,

η =

{∏m
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∣ai

(
m

i
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} 1
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} 1
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} 1
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, (6.9)

where Pi and Lj are defined in (6.3) and (6.8) respectively, and thus the polynomials

ḟ(x) and ġ(x) in the matrix S(ḟ , ġ) = D−1T (ḟ , ġ) are

ḟ(x) =
m∑

i=0

äi

(
m

i

)

(1 − x)m−ixi, äi =
ai

η
, (6.10)

and

ġ(x) =

n∑

j=0

b̈j

(
n

j

)

(1 − x)n−jxj , b̈j =
bj
ρ
. (6.11)
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6.1.2 Scaling a polynomial by an arbitrary constant

The second preprocessing operation arises because the GCD of the exact polynomials

f̂(x) and ĝ(x) is defined to within an arbitrary scalar multiplier α ∈ R\0,

d̂ = deg GCD(f̂ , ĝ) = deg GCD(f̂ , αĝ), (6.12)

and

rank S(f̂ , ĝ) = rank S(f̂ , αĝ). (6.13)

It cannot be assumed, however, that these equations are satisfied for all real non-zero

values of α when inexact polynomials in a floating point environment are considered.

For example, the rank of D−1T (f̆ , αğ)Q is a function of α, which is most easily seen

by noting that

lim
α→δ

rankD−1T (f̆ , αğ)Q = deg ğ(x) = n, 0 < |δ| � 1, (6.14)

and

lim
α→±∞

rankD−1T (f̆ , αğ)Q = deg f̆(x) = m. (6.15)

More general examples of the dependence of d, the degree of an AGCD of f̆(x) and

ğ(x), on α for polynomials expressed in the power basis are considered in [63], and it

is shown that d is a function of α, such that an incorrect value of α may yield either

an incorrect value of d, or the value of d cannot be computed because the numerical

rank of the Sylvester matrix is not defined.

It follows from (6.12) and (6.13) that d is given by

d = deg AGCD(f̆ , αğ) = rank loss S(f̆ , αğ),

where, as shown by (6.14) and (6.15), and the examples in [63], α must be chosen with

care. It can therefore be considered a parameter that defines a degree of freedom that
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can be used to obtain a superior estimate of d̂. The criterion for the determination of

the optimal value of α, and its computation, will be considered in the next section,

where the third preprocessing operation is described. Furthermore, it will be shown

that the optimal value of α for D−1T (f̆ , αğ)Q is not equal to the optimal value of α

for D−1T (ḟ , αġ), but the same criterion is used for the determination of these optimal

values.

The first and second preprocessing operations described in this chapter need not be

applied to f(x) and g(x) before computations are performed on the Bézout resultant

matrix B(f, g), due to the bilinear property of every element of B(f, g) [5].

6.1.3 The transformation of the independent variable

As noted earlier, computations on a matrix whose entries vary widely in magni-

tude may cause problems, and it is therefore advantageous to preprocess the matrix,

such that the ratio of the maximum entry, in magnitude, to the minimum entry, in

magnitude, is minimized. This computation, which defines the third preprocessing

operation, is implemented by the substitution (5.1).

The polynomials f̆(x) and ğ(x), which are defined in (6.5) and (6.6) respectively, are

therefore transformed to

f̄(w, θ) =
m∑

i=0

(
āiθ

i
)
(
m

i

)

(1 − θw)m−iwi, (6.16)

and

ḡ(w, θ) =
n∑

j=0

(
b̄jθ

j
)
(
n

j

)

(1 − θw)n−jwj, (6.17)
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respectively, and ḟ(x) and ġ(x), which are defined in (6.10) and (6.11), are trans-

formed similarly to

f̈(w, θ) =

m∑

i=0

(
äiθ

i
)
(
m

i

)

(1 − θw)m−iwi, (6.18)

and

g̈(w, θ) =

n∑

j=0

(

b̈jθ
j
)(n

j

)

(1 − θw)n−jwj. (6.19)

The analysis in this section and the next section only considers the polynomials

f̄(w, θ) and ḡ(w, θ), but it is also applicable to the polynomials f̈(w, θ) and g̈(w, θ).

As stated earlier, the substitution (5.1) transforms the Bernstein basis to the modified

Bernstein basis, whose basis functions for polynomials of degree m are φm
i (w, θ), i =

0, . . . , m, which are defined in (5.4).

The coefficients of f̄(w, θ) and ḡ(w, θ) are āiθ
i, i = 0, . . . , m, and b̄jθ

j, j = 0, . . . , n,

respectively, and therefore the criterion to select the optimal value of θ must be de-

fined in order that the coefficients of f̄(w, θ) and ḡ(w, θ) are computed. As mentioned

in Section 6.1.2, the rank of the Sylvester matrix is a function of α in a floating point

environment, and thus the optimal value of α must be calculated. In particular, the

optimal values of α and θ minimize the ratio of the maximum element, in magnitude,

to the minimum element, in magnitude, of S̄(f̄(w, θ), αḡ(w, θ)), which is the Sylvester

matrix of the modified Bernstein basis polynomials f̄(w, θ) and αḡ(w, θ). The form

of S̄(f̄(w, θ), αḡ(w, θ)) must therefore be developed, which enables the optimal values

of α and θ for this matrix to be calculated. This topic is addressed in the next section.
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6.1.4 The Sylvester resultant matrix for the modified Bern-

stein basis

The substitution (5.1) transforms the Bernstein basis to the modified Bernstein basis,

and it is therefore necessary to consider computations on this basis, and to develop

expressions for the entries of S̄(f̄(w, θ), αḡ(w, θ)).

The addition and multiplication of two polynomials expressed in the modified Bern-

stein basis are very similar to their equivalents for polynomials expressed in the Bern-

stein basis. The development of the Sylvester matrix of the polynomials p̄(w, θ) and

q̄(w, θ) expressed in the modified Bernstein basis,

p̄(w, θ) =

m∑

i=0

(
c̄iθ

i
)
(
m

i

)

(1 − θw)m−iwi,

and

q̄(w, θ) =

n∑

j=0

(
d̄jθ

j
)
(
n

j

)

(1 − θw)n−jwj,

follows closely the development of (3.6). In particular, if p̄(w, θ) and q̄(w, θ) have a

non-constant common divisor, and ū(w, θ) and v̄(w, θ) are quotient polynomials of

degrees m− 1 and n− 1 respectively, then

p̄(w, θ)v̄(w, θ) = q̄(w, θ)ū(w, θ), (6.20)

where

ū(w, θ) =
m−1∑

i=0

(
ūiθ

i
)
(
m− 1

i

)

(1 − θw)m−1−iwi,

and

v̄(w, θ) =
n−1∑

j=0

(
v̄jθ

j
)
(
n− 1

j

)

(1 − θw)n−1−jwj.
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Equation (6.20) can be expressed in matrix form as

(
D−1U(p̄, q̄)

)
s(ū, v̄) = 0, (6.21)

where p̄ = p̄(w, θ), q̄ = q̄(w, θ), ū = ū(w, θ), v̄ = v̄(w, θ), the diagonal matrix D−1 is

defined in (3.7),

U(p̄, q̄) = [ C(p̄) D(q̄) ] ∈ R
(m+n)×(m+n), (6.22)

the Toeplitz matrices C(p̄) and D(q̄) are given by, respectively,
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θm−1

c̄m
(

m

m

)
θm

























∈ R
(m+n)×n,

and

D(q̄) =

























d̄0

(
n

0

)

d̄1

(
n

1

)
θ

. . .

...
. . . d̄0

(
n

0

)

...
. . . d̄1

(
n

1

)
θ

d̄n−1

(
n

n−1

)
θn−1 . . .

...

d̄n

(
n

n

)
θn . . .

...

. . . d̄n−1

(
n

n−1

)
θn−1

d̄n

(
n

n

)
θn

























∈ R
(m+n)×m,
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and s(ū, v̄) ∈ R
m+n is equal to

[ v̄0

(
n−1

0

)
v̄1

(
n−1

1

)
θ · · · v̄n−2

(
n−1
n−2

)
θn−2 v̄n−1

(
n−1
n−1

)
θn−1

−ū0

(
m−1

0

)
−ū1

(
m−1

1

)
θ · · · −ūm−2

(
m−1
m−2

)
θm−2 −ūm−1

(
m−1
m−1

)
θm−1 ]T .

Following (3.24), the vector s(ū, v̄) is written as

s(ū, v̄) = Qt(ū, v̄),

where Q is defined in (3.25), and

t(ū, v̄) =
[
v̄0 v̄1θ · · · v̄n−1θ

n−1 − ū0 − ū1θ · · · − ūm−1θ
m−1

]T ∈ R
m+n.

It therefore follows that (6.21) can be written as

(
D−1U(p̄, q̄)Q

)
t(ū, v̄) = 0,

and a slight modification to the proof of the rank loss property (3.27) shows that

deg GCD(p̄, q̄) = m+ n− rankD−1U(p̄, q̄) = m+ n− rankD−1U(p̄, q̄)Q. (6.23)

This equation is a generalization of (3.27), which is only applicable to the Bernstein

basis and therefore restricted to θ = 1, to arbitrary values of θ, and therefore the

modified Bernstein basis, because U = T if θ = 1, where T is defined in (3.8).

Equation (6.23) and Section 6.1.2 show that the degree d of an AGCD of f̄ = f̄(w, θ)

and ḡ = ḡ(w, θ), which are defined in (6.16) and (6.17) respectively, can be calculated

from

S̄(f̄ , αḡ) = D−1U(f̄ , αḡ) and S̄(f̄ , αḡ)Q = D−1U(f̄ , αḡ)Q,

where U(p̄, q̄) is defined in (6.22), but it must also be shown that the coefficients of

the GCD can be computed from these matrices in order that they satisfy the require-

ments of resultant matrices. This property is easily established for both D−1U and

D−1UQ by a small modification to the proof of Theorem 1 in [12], and thus D−1U
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and D−1UQ are resultant matrices.

This theoretical analysis is valid for arbitrary values of α and θ, but their optimal

values for the calculation of d, that is, the degree of an AGCD of two inexact poly-

nomials in a floating point environment, must be considered. This issue is addressed

in the next section.

6.1.5 The optimal values of α and θ

The degree d of an AGCD of f̄ = f̄(w, θ) and ḡ = ḡ(w, θ), which are defined in (6.16)

and (6.17) respectively, can be calculated from S̄(f̄ , αḡ)Q. In particular,

d = rank loss S̄(f̄ , αḡ)Q = rank loss D−1U(f̄ , αḡ)Q,

and a criterion for the calculation of the optimal values of α and θ must be established.

As stated earlier, computations performed on a matrix whose elements vary widely

in magnitude are unreliable. Therefore, it is desirable to choose α1 and θ1, the

optimal values of α and θ respectively, such that the ratio of the maximum element,

in magnitude, of S̄(f̄ , αḡ)Q to the minimum element, in magnitude, of S̄(f̄ , αḡ)Q is

minimized.

The same criterion is appropriate for S̄(f̈ , αg̈), where f̈ = f̈(w, θ) and g̈ = g̈(w, θ),

which are defined in (6.18) and (6.19) respectively, and the same method can be used

for both S̄(f̈ , αg̈) and S̄(f̄ , αḡ)Q, but the optimal values of α and θ are different.

It is adequate to consider the computation of the optimal values of α and θ when d

is calculated from S̄(f̄ , αḡ)Q because the computation of their optimal values when

S̄(f̈ , αg̈) is used follows easily.
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The general expression for a non-zero element in the first n columns of S̄(f̄ , αḡ)Q is

āj

(
m

j

)(
n−1

i

)
θj

(
m+n−1

i+j

) , j = 0, . . . , m; i = 0, . . . , n− 1,

and similarly, the general expression for a non-zero element in the last m columns of

S̄(f̄ , αḡ)Q is

αb̄j
(

n

j

)(
m−1

i

)
θj

(
m+n−1

i+j

) , j = 0, . . . , n; i = 0, . . . , m− 1.

It is convenient to define the sets ρ(θ) and σ(α, θ) as

ρ(θ) =







∣
∣
∣āj

(
m

j

)(
n−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) : j = 0, . . . , m; i = 0, . . . , n− 1






,

and

σ(α, θ) =







∣
∣
∣αb̄j

(
n

j

)(
m−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) : j = 0, . . . , n; i = 0, . . . , m− 1






,

respectively, and the values α1 and θ1 of α and θ, respectively, minimize the ratio

of the maximum element, in magnitude, to the minimum element, in magnitude, of

S̄(f̄ , αḡ)Q,

α1, θ1 = argmin
α,θ







max
{

max{ρ(θ)},max{σ(α, θ)}
}

min
{

min{ρ(θ)},min{σ(α, θ)}
}






.

This minimization problem can be written as:

Minimize u
v
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subject to

u ≥

∣
∣
∣āj

(
m

j

)(
n−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) , j = 0, . . . , m; i = 0, . . . , n− 1,

u ≥

∣
∣
∣αb̄j

(
n

j

)(
m−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) , j = 0, . . . , n; i = 0, . . . , m− 1,

v ≤

∣
∣
∣āj

(
m

j

)(
n−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) , j = 0, . . . , m; i = 0, . . . , n− 1,

v ≤

∣
∣
∣αb̄j

(
n

j

)(
m−1

i

)
θj

∣
∣
∣

(
m+n−1

i+j

) , j = 0, . . . , n; i = 0, . . . , m− 1,

v > 0,

θ > 0,

α > 0.

The transformations

U = log u, V = log v, φ = log θ, µ = logα, (6.24)

and

ᾱi,j = log

∣
∣
∣āj

(
m

j

)(
n−1

i

)
∣
∣
∣

(
m+n−1

i+j

) , β̄i,j = log

∣
∣
∣b̄j
(

n

j

)(
m−1

i

)
∣
∣
∣

(
m+n−1

i+j

) ,

where log = log10, enable this constrained minimization problem to be written as:

Minimize U − V

subject to

U − jφ ≥ ᾱi,j, j = 0, . . . , m; i = 0, . . . , n− 1,

U − jφ − µ ≥ β̄i,j, j = 0, . . . , n; i = 0, . . . , m− 1,

−V + jφ ≥ −ᾱi,j, j = 0, . . . , m; i = 0, . . . , n− 1,

−V + jφ + µ ≥ −β̄i,j , j = 0, . . . , n; i = 0, . . . , m− 1.

(6.25)
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The counter i appears on the right hand sides only of these inequalities, and thus if

λ̄j, µ̄j, ρ̄j and τ̄j are defined as

λ̄j = maxi=0,...,n−1{ᾱi,j} = maxi=0,...,n−1






log

∣
∣
∣āj

(
m

j

)(
n−1

i

)
∣
∣
∣

(
m+n−1

i+j

)






, j = 0, . . . , m,

µ̄j = maxi=0,...,m−1{β̄i,j} = maxi=0,...,m−1






log

∣
∣
∣b̄j
(

n

j

)(
m−1

i

)
∣
∣
∣

(
m+n−1

i+j

)






, j = 0, . . . , n,

ρ̄j = mini=0,...,n−1{ᾱi,j} = mini=0,...,n−1






log

∣
∣
∣āj

(
m

j

)(
n−1

i

)
∣
∣
∣

(
m+n−1

i+j

)






, j = 0, . . . , m,

τ̄j = mini=0,...,m−1{β̄i,j} = mini=0,...,m−1






log

∣
∣
∣b̄j
(

n

j

)(
m−1

i

)
∣
∣
∣

(
m+n−1

i+j

)






, j = 0, . . . , n,

then (6.25) can be written as:

Minimize U − V

subject to

U − jφ ≥ λ̄j , j = 0, . . . , m,

U − jφ − µ ≥ µ̄j , j = 0, . . . , n,

−V + jφ ≥ −ρ̄j , j = 0, . . . , m,

−V + jφ + µ ≥ −τ̄j , j = 0, . . . , n.

This minimization problem can be written as:

Minimize [ 1 − 1 0 0 ]












U

V

φ

µ












subject to A












U

V

φ

µ












≥ b, (6.26)

where A ∈ R
(2m+2n+4)×4 and

b = [ λ̄0, · · · , λ̄m, µ̄0, · · · , µ̄n,−ρ̄0, · · · ,−ρ̄m,−τ̄0, · · · ,−τ̄n ]T ∈ R
2m+2n+4,
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which is a standard linear programming problem. Since α1 and θ1 are computed from

the solution of (6.26), using (6.24), it follows from (6.16) and (6.17) that S̄(f̃ , α1g̃)Q

is used to compute the degree of an AGCD of the inexact polynomials (4.2), where

f̃ = f̃(w) = f̄(w, θ1) =
m∑

i=0

(
āiθ

i
1

)
(
m

i

)

(1 − θ1w)m−iwi, (6.27)

and

g̃ = g̃(w) = ḡ(w, θ1) =
n∑

j=0

(
b̄jθ

j
1

)
(
n

j

)

(1 − θ1w)n−jwj. (6.28)

This analysis can be repeated for S̄(f̈ , αg̈), but α2 and θ2, the optimal values of α

and θ for S̄(f̈ , αg̈) are different because of the absence of Q, and the normalization

constants λ and µ, which are defined in (6.4) and (6.7), are replaced by, respectively,

η and ρ, which are defined in (6.9). Therefore, the degree of an AGCD of the inexact

polynomials (4.2) can also be computed from S̄(f́ , α2ǵ), where

f́ = f́(w) = f̈(w, θ2) =

m∑

i=0

(
äiθ

i
2

)
(
m

i

)

(1 − θ2w)m−iwi, (6.29)

and

ǵ = ǵ(w) = g̈(w, θ2) =
n∑

j=0

(

b̈jθ
j
2

)(n

j

)

(1 − θ2w)n−jwj. (6.30)

Example 6.3. Consider the Bernstein polynomials f(x) and g(x)

f(x) =

(
3

0

)

(1 − x)3 +
1

2

(
3

1

)

(1 − x)2x− 1

2

(
3

2

)

(1 − x)x2 −
(

3

3

)

x3,

and

g(x) =

(
2

0

)

(1 − x)2 − 1

4

(
2

1

)

(1 − x)x− 1

2

(
2

2

)

x2,

whose GCD is g(x) because

f(x) = g(x)

((
1

0

)

(1 − x) + 2

(
1

1

)

x

)

.

The forms of f(x) and g(x) in the modified Bernstein basis for the value of θ = θ1 = 2,
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are

f̃(w) = f̄(w, θ1) =

(
3

0

)

(1 − 2w)3 +

(
3

1

)

(1 − 2w)2w − 2

(
3

2

)

(1 − 2w)w2 − 8

(
3

3

)

w3,

and

g̃(w) = ḡ(w, θ1) =

(
2

0

)

(1 − 2w)2 − 1

2

(
2

1

)

(1 − 2w)w − 2

(
2

2

)

w2,

and thus the transpose of the Sylvester matrix S̄(f̃ , g̃) = D−1U(f̃ , g̃) is equal to

S̄(f̃ , g̃)T =















1 3 −6 −8 0

0 1 3 −6 −8

1 −1 −2 0 0

0 1 −1 −2 0

0 0 1 −1 −2





























1 0 0 0 0

0 1
4

0 0 0

0 0 1
6

0 0

0 0 0 1
4

0

0 0 0 0 1















=















1 3
4

−1 −2 0

0 1
4

1
2

−3
2

−8

1 −1
4

−1
3

0 0

0 1
4

−1
6

−1
2

0

0 0 1
6

−1
4

−2















.

The reduction of this matrix to row echelon (upper triangular) form yields














1 3
4

−1 −2 0

0 −1 2
3

2 0

0 0 2
3

−1 −8

0 0 0 0 0

0 0 0 0 0















,

from which it follows that the degree of the GCD of f̃(w) and g̃(w) is two. The



CHAPTER 6. THE DEGREE OF AN AGCD, PART II 106

polynomial formed from the last non-zero row of this matrix is

2

3

(
4

2

)

(1 − 2w)2w2 −
(

4

3

)

(1 − 2w)w3 − 8

(
4

4

)

w4,

and the deletion of the extraneous factor w2 yields the GCD,

d̄(w, θ = 2) =

(
2

0

)

(1 − 2w)2 − 1

2

(
2

1

)

(1 − 2w)w − 2

(
2

2

)

w2.

It is readily verified that the substitution w = x/θ = x/2 yields g(x).

Consider now the transpose of S̄(f̃ , g̃)Q,

(
S̄(f̃ , g̃)Q

)T
= QU(f̃ , g̃)TD−1,

where, from (3.25),

Q = diag [ 1 1 1 2 1 ],

because m = 3 and n = 2. It follows that the effect of Q is the multiplication of the

4th row of S̄(f̃ , g̃)T by 2, and thus the reduction of
(
S̄(f̃ , g̃)Q

)T
to upper triangular

form also yields the GCD of f(x) and g(x). �

6.2 Examples

In this section, three examples that illustrate the theory in the previous sections are

considered. The results obtained from S(ḟ , ġ), S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are shown

because they enable the improvement in the computed estimate of d̂ obtained by the

inclusion of α and θ, and Q, to be observed. The matrices S(ḟ , ġ), S̄(f́ , α2ǵ) and

S̄(f̃ , α1g̃)Q are described as following:

• S(ḟ , ġ) is the Sylvester matrix of the normalized Bernstein polynomials ḟ(x)

and ġ(x), which are defined in (6.10) and (6.11) respectively. The second and

third preprocessing operations are not implemented, that is, α = θ = 1.
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• S̄(f́ , α2ǵ) is the Sylvester matrix of the modified Bernstein polynomials f́(w)

and ǵ(w), which are defined in (6.29) and (6.30) respectively, that arise after

the three preprocessing operations have been implemented.

• S̄(f̃ , α1g̃)Q is the Sylvester matrix of the modified Bernstein polynomials f̃(w)

and g̃(w), which are defined in (6.27) and (6.28) respectively, that arise after

the three preprocessing operations have been implemented.

Example 6.4. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 6.1. It is seen that the degree of their GCD

is d̂ = 6.

Root of f̂(x) Multiplicity
0.1300e+000 3
0.4300e+000 2
0.7800e+000 4
-0.8800e+000 3
0.9300e+000 4
1.3400e+000 6
3.2000e+000 1

Root of ĝ(x) Multiplicity
0.1300e+000 4
0.2300e+000 4

-0.3600e+000 2
0.5300e+000 4
0.9300e+000 3

-1.4700e+000 2
2.4700e+000 4

Table 6.1: The roots and multiplicities of f̂(x) and ĝ(x) for Example 6.4.

Noise with componentwise signal-to-noise ratio 108 is added to the coefficients of

f̂(x) and ĝ(x), and then the matrices S(ḟ , ġ), S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are computed.

The normalized singular values of S(ḟ , ġ), S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are shown in

Figures 6.2(a), (b) and (c) respectively. It is seen from Figures 6.2(b) and (c) that

the numerical ranks of S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are clearly defined and equal to 40,

which is correct because degGCD(f̂ , ĝ) = 6. The results in Figures 6.2(b) and (c)

were obtained with α2 = 1.2401 and θ2 = 1.2335, and α1 = 1.2401 and θ1 = 1.2335,
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respectively. Furthermore, it is noted that the numerical rank of S̄(f̃ , α1g̃)Q is more

clearly defined because a significantly larger gap in the singular values of S̄(f̃ , α1g̃)Q

can be observed. However, Figure 6.2(a) shows that the Sylvester matrix S(ḟ , ġ) is

of full rank, which implies that f̂(x) and ĝ(x) are coprime. �

Example 6.5. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 6.2. It is seen that the degree of their GCD

is d̂ = 18.

Root of f̂(x) Multiplicity
-0.3285e+000 5
0.3791e+000 6
-0.7113e+000 6
0.9214e+000 6
2.3125e+000 5
9.1474e+000 6

Root of ĝ(x) Multiplicity
-0.3285e+000 3
0.3791e+000 7
0.5217e+000 3
0.9214e+000 7
1.4397e+000 3
9.1474e+000 3

Table 6.2: The roots and multiplicities of f̂(x) and ĝ(x) for Example 6.5.

Noise with componentwise signal-to-noise ratio 108 is added to the coefficients of

f̂(x) and ĝ(x), and the matrices S(ḟ , ġ), S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are then com-

puted.

Figures 6.3(a), (b) and (c) show the normalized singular values of S(ḟ , ġ), S̄(f́ , α2ǵ)

and S̄(f̃ , α1g̃)Q respectively. It is seen from Figure 6.3(c) that the rank loss of

S̄(f̃ , α1g̃)Q is equal to degGCD(f̂ , ĝ) = 18. The result in Figure 6.3(c) was ob-

tained with α1 = 4.7326 and θ1 = 1.3298. However, it is seen from Figures 6.3(a) and

(b) that f̂(x) and ĝ(x) are coprime because the matrices S(ḟ , ġ) and S̄(f́ , α2ǵ) are

not rank deficient. The result in Figure 6.3(b) was obtained with α2 = 0.1253 and

θ2 = 1.3387. �
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Example 6.6. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 6.3. It is seen that the degree of their GCD

is d̂ = 22.

Root of f̂(x) Multiplicity
0.1000e+000 7
-0.2700e+000 3
0.5600e+000 5
0.7500e+000 6
0.8200e+000 3
1.3700e+000 5
1.4600e+000 4

Root of ĝ(x) Multiplicity
0.1000e+000 8
0.5600e+000 6
0.7500e+000 6
0.9900e+000 5

-1.2000e+000 4
1.3700e+000 4
2.1200e+000 3

Table 6.3: The roots and multiplicities of f̂(x) and ĝ(x) for Example 6.6.

Noise with componentwise signal-to-noise ratio 108 is applied to the coefficients

of f̂(x) and ĝ(x), and the matrices S(ḟ , ġ), S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q are then com-

puted.

The results shown in Figure 6.4 are the same as those obtained in Figure 6.3 for Ex-

ample 6.5. In particular, the matrices S(ḟ , ġ) and S̄(f́ , α2ǵ) yield the incorrect results

respectively, but S̄(f̃ , α1g̃)Q yields the correct result because S(ḟ , ġ) and S̄(f́ , α2ǵ)

have full rank, and the numerical rank of S̄(f̃ , α1g̃)Q is equal to 47. The result in

Figure 6.4(b) was obtained with α2 = 4.6176e+ 002 and θ2 = 1.3771, and the result

in Figure 6.4(c) was obtained with α1 = 2.8062e+ 001 and θ1 = 1.4308. �
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6.3 Discussion

The results of the examples in Section 6.2 are consistent because the matrices S(ḟ , ġ)

and S̄(f́ , α2ǵ) yield incorrect results but S̄(f̃ , α1g̃)Q yields the correct result. There-

fore, it is instructive to consider the superiority of S̄(f̃ , α1g̃)Q with respect to the

matrices S(ḟ , ġ) and S̄(f́ , α2ǵ). We will firstly consider S(ḟ , ġ) and S̄(f̃ , α1g̃)Q.

If A ∈ R
p×q, p ≥ q, is an arbitrary matrix of rank r that is perturbed to A+ δA, then

it is shown in [30] that

|σi(A+ δA) − σi(A)| ≤ ‖δA‖2, i = 1, . . . , q,

where σi(A), i = 1, . . . , q, are the singular values of A. It follows that

|σi(A+ δA) − σi(A)| ≤
(

‖δA‖2

‖A‖2

)

σ1(A), i = 1, . . . , q,

and thus if the errors in σi(A) and ‖A‖2 are

|δσi(A)| = |σi(A + δA) − σi(A)| and ∆A =
‖δA‖2

‖A‖2

,

respectively, then

|δσi(A)|
∆A

≤ σ1(A) = ‖A‖2 ≤
√
q‖A‖1, i = 1, . . . , q, (6.31)

and it follows that the upper bound on the ratio of the absolute error in the singular

values of A to the relative error in ‖A‖2 is decreased by reducing ‖A‖1. The upper

bound in (6.31) is expressed in terms of the 1-norm of A, rather than its 2-norm,

because the diagonal matrix Q postmultiplies S̄(f̃ , α1g̃), and its effect is therefore

most clearly quantified by examining the column sums of S(ḟ , ġ) and S̄(f̃ , α1g̃)Q.

The application of (6.31) to S(ḟ , ġ) and S̄(f̃ , α1g̃)Q yields

|δσi(S)|
∆S

≤
√
m+ n‖S‖1, i = 1, . . . , m+ n, S = S(ḟ , ġ),
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and

|δσi(S̄Q)|
∆(S̄Q)

≤
√
m+ n‖S̄Q‖1, i = 1, . . . , m+ n, S̄Q = S̄(f̃ , α1g̃)Q,

and since ∆S = ∆
(

S̄Q
)

≈ ε, where ε is the componentwise signal-to-noise ratio, it

follows that if

‖S̄Q‖1 < ‖S‖1, (6.32)

the singular nature of S(f̂ , ĝ) is more faithfully preserved when computations are

performed on S̄(f̃ , α1g̃)Q than when computations are performed on S(ḟ , ġ).

Figures 6.5, 6.6 and 6.7 show the column sums of S(ḟ , ġ) and S̄(f̃ , α1g̃)Q,

σj = log

m+n∑

i=1

|S(ḟ , ġ)|i,j, τj = log

m+n∑

i=1

|S̄(f̃ , α1g̃)Q|i,j, j = 1, . . . , m+ n,

for Examples 6.4, 6.5 and 6.6 respectively, where |P |i,j denotes the absolute value of

element (i, j) of P and log = log10. The figures show that the maximum absolute

column sum of S̄(f̃ , α1g̃)Q is significantly smaller than the maximum absolute col-

umn sum of S(ḟ , ġ), and thus the inequality (6.32) is satisfied, which implies that

the inclusion of α1 and θ1, and Q, yields greatly improved computational results.

Furthermore, the column sums of S̄(f̃ , α1g̃)Q span a smaller range than the column

sums of S(ḟ , ġ) by several orders of magnitude. For example, Figure 6.6 shows that

the column sums τj span approximately 3 orders of magnitude, but the column sums

σj span about 10 orders of magnitude.

Consider now the superiority of S̄(f̃ , α1g̃)Q with respect to S̄(f́ , α2ǵ). The above

analysis suggests that it is desirable to examine the absolute column sums of S̄(f́ , α2ǵ)

and S̄(f̃ , α1g̃)Q.

It follows from (3.7), (3.8), (3.25), (3.28), (6.4) and (6.7) that the sums of the absolute

values of the entries in each of the first n columns, and each of the last m columns,
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of S̄(f̃ , α1g̃)Q are

Γj(a) =
1

λ

m∑

i=0

|ai|
(

m

i

)(
n−1
j−1

)
θi
1

(
m+n−1
i+j−1

) , j = 1, . . . , n, (6.33)

and

Γj(b) =
α1

µ

n∑

i=0

|bi|
(

n

i

)(
m−1
j−1

)
θi
1

(
m+n−1
i+j−1

) , j = 1, . . . , m, (6.34)

where

‖S̄(f̃ , α1g̃)Q‖1 = max
j=1,...,n;k=1,...,m

{Γj(a),Γk(b)}. (6.35)

Similarly, it follows from (3.7), (3.8), (3.11) and (6.9) that the sums of the absolute

values of the entries in each of the first n columns, and each of the last m columns,

of S̄(f́ , α2ǵ) are

Σj(a) =
1

η

m∑

i=0

|ai|
(

m

i

)
θi
2

(
m+n−1
i+j−1

) , j = 1, . . . , n, (6.36)

and

Σj(b) =
α2

ρ

n∑

i=0

|bi|
(

n

i

)
θi
2

(
m+n−1
i+j−1

) , j = 1, . . . , m, (6.37)

where

‖S̄(f́ , α2ǵ)‖1 = max
j=1,...,n;k=1,...,m

{Σj(a),Σk(b)}. (6.38)

The above analysis based on S(ḟ , ġ) and S̄(f̃ , α1g̃)Q can be repeated for S̄(f́ , α2ǵ)

and S̄(f̃ , α1g̃)Q, and therefore if

‖S̄Q‖1 < ‖S̄‖1, (6.39)

where S̄Q = S̄(f̃ , α1g̃)Q and S̄ = S̄(f́ , α2ǵ), the singular nature of S(f̂ , ĝ) is more

faithfully preserved when computations are performed on S̄(f̃ , α1g̃)Q than when com-

putations are performed on S̄(f́ , α2ǵ).

It is seen from Examples 6.4, 6.5 and 6.6 that since α1 for S̄(f̃ , α1g̃)Q and α2 for
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S̄(f́ , α2ǵ) are O(1), they are much smaller than terms of the form
(

m

i

)
,
(

n

j

)
and

(
m+n−1

k

)
, they can be set equal to one. In addition, it is seen from these three ex-

amples that θ1 for S̄(f̃ , α1g̃)Q is approximately equal to θ2 for S̄(f́ , α2ǵ), that is,

θ1 ≈ θ2. Therefore, the effect of α1 and θ1 on S̄(f̃ , α1g̃)Q is similar to the effect of

α2 and θ2 on S̄(f́ , α2ǵ), and thus the difference between S̄(f̃ , α1g̃)Q and S̄(f́ , α2ǵ) is

mainly caused by the matrix Q. In particular, since α1 = O(1) and α2 = O(1), and

θ1 ≈ θ2 for Examples 6.4, 6.5 and 6.6, and λ, µ, η and ρ are normalization constants,

it follows that the differences between (6.33) and (6.34), and (6.36) and (6.37), arise

from the combinatorial factors
(

n−1
j−1

)
, j = 1, . . . , n, and

(
m−1
j−1

)
, j = 1, . . . , m, in (6.33)

and (6.34) respectively.

Figures 6.8, 6.9 and 6.10 show the column sums of S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q for Ex-

amples 6.4, 6.5 and 6.6 respectively. It is seen from these figures that the variation

in magnitude of {Γj(a),Γk(b)} is much smaller than the variation in magnitude of

{Σj(a),Σk(b)} for j = 1, . . . , n, and k = 1, . . . , m. In particular, the maximum value

of {Γj(a),Γk(b)} is less than the maximum value of {Σj(a),Σk(b)} for j = 1, . . . , n,

and k = 1, . . . , m, and it therefore follows from (6.35) and (6.38) that (6.39) is satis-

fied. This confirms that the inclusion of Q is important for improved computational

results because it reduces the column sums of S̄(f̃ , α1g̃)Q.

The parameters α1 and θ1 are included in the computation of d in order to minimize

the ratio of the entry of maximum absolute value, to the entry of minimum absolute

value, of S̄(f̃ , α1g̃)Q, where f̃ = f̃(w, θ) and g̃ = g̃(w, θ) are defined in (6.27) and

(6.28) respectively. This objective is consistent with the effect of Q, but there is an

important difference between α1 and θ1, and Q:

• The parameters α1 and θ1 are functions of the Bernstein basis coefficients āi and



CHAPTER 6. THE DEGREE OF AN AGCD, PART II 114

b̄j , combinatorial factors of the forms
(

m

i

)
,
(

n

j

)
and

(
m+n−1

k

)
, and the entries of

Q. The importance of their inclusion therefore increases as the degrees of f(x)

and g(x), and the variation in magnitude of the coefficients āi and b̄j , increase.

• The entries of Q are functions of m and n, but they are independent of the

coefficients āi and b̄j . They therefore mitigate the effects of the combinatorial

factors
(

m

i

)
,
(

n

j

)
and

(
m+n−1

k

)
, for large values of m and n, in a Sylvester matrix.

6.4 Summary

This chapter has introduced the computation of the degree of an AGCD of two

inexact Bernstein polynomials f(x) and g(x) using their Sylvester matrix. It was

shown that in order to obtain the best results, it is necessary to include the diagonal

matrix Q and preprocess the Sylvester matrix S(f, g)Q by three operations, such that

all the computations are performed on the Sylvester matrix S̄(f̃ , α1g̃)Q, where α is

a scaling parameter. The third preprocessing operation introduces the parameter θ,

which transforms the polynomials from the Bernstein basis to the modified Bernstein

basis. The optimal values of α and θ are obtained from the solution of a linear

programming problem.

In Chapters 5 and 6, the degree of an AGCD of inexact polynomials is determined by

observing the variation of the singular values of their Bézout and Sylvester resultant

matrices. Furthermore, some advanced techniques using the first principal angle and

the residual of an approximate linear algebraic equation can also be used to estimate

the degree of an AGCD, which involves the Sylvester subresultant matrices. These

issues are discussed in the next chapter.



CHAPTER 6. THE DEGREE OF AN AGCD, PART II 115

5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

i

lo
g

1
0
 σ

i /
 σ

1

i=40

(a)

5 10 15 20 25 30 35 40 45 50
−20

−16

−12

−8

−4

0

i

lo
g

1
0
 σ

i /
 σ

1

i=40

(b)

5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

i

lo
g

1
0
 σ

i /
 σ

1

i=40

(c)

Figure 6.2: The normalized singular values of (a) S(ḟ , ġ), (b) S̄(f́ , α2ǵ) and (c)
S̄(f̃ , α1g̃)Q for Example 6.4.
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Figure 6.3: The normalized singular values of (a) S(ḟ , ġ), (b) S̄(f́ , α2ǵ) and (c)
S̄(f̃ , α1g̃)Q for Example 6.5.
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Figure 6.4: The normalized singular values of (a) S(ḟ , ġ), (b) S̄(f́ , α2ǵ) and (c)
S̄(f̃ , α1g̃)Q for Example 6.6.
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Figure 6.5: The column sums of (a) S(ḟ , ġ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.4.
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Figure 6.6: The column sums of (a) S(ḟ , ġ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.5.
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Figure 6.7: The column sums of (a) S(ḟ , ġ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.6.
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Figure 6.8: The column sums of (a) S̄(f́ , α2ǵ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.4.
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Figure 6.9: The column sums of (a) S̄(f́ , α2ǵ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.5.
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Figure 6.10: The column sums of (a) S̄(f́ , α2ǵ) and (b) S̄(f̃ , α1g̃)Q, for Example 6.6.



Chapter 7

The degree of an AGCD, Part III

Chapter 6 introduced the determination of the degree of an AGCD from two forms

of the Sylvester matrix, S(f, g) and S(f, g)Q. This chapter extends the work in

Chapter 6 and involves the Sylvester subresultant matrices of S(f, g) and S(f, g)Q,

Sk(f, g) and Sk(f, g)Qk, which are introduced in Chapter 3. In particular, this chapter

considers two methods to calculate the degree of an AGCD of the inexact polynomials

f(x) and g(x). One method uses the first principal angle between a line and a

hyperplane, the equations of which are calculated from the Sylvester subresultant

matrices, and the other method uses the residual of a linear algebraic equation whose

coefficient matrix and right hand side vector are also derived from the Sylvester

subresultant matrices. Before these two methods are introduced, the criteria that

measure the error in a linear algebraic equation must be considered. This issue is

discussed in the next section.

121
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7.1 Measures of the error in a linear algebraic equa-

tion

This section considers two criteria that measure the error in a linear algebraic equa-

tion. One criterion is based on the first principal angle between a line and a hyper-

plane, and the other criterion is based on the residual of a linear algebraic equation.

The concepts of the first principal angle and residual are introduced in this section,

and the computations of the first principal angle and residual will be described in

Sections 7.4.1 and 7.4.2 respectively.

Consider a linear algebraic equation

Ax = b, (7.1)

where A ∈ R
m×n is a matrix, b ∈ R

m is a vector and x ∈ R
n is the solution vector

for this equation. The first principal angle between the vector b and the matrix A

is the smallest angle between b and an arbitrary vector in the space spanned by the

columns of A, and the residual of (7.1) is equal to ‖b − Ax‖, where ‖ · ‖ = ‖ · ‖2.

Equation (7.1) possesses a non-zero solution, and thus b lies in the column space of

A, which implies that the first principal angle between b and the column space of A

and the residual of (7.1) are equal to zero.

However, when

Ax 6= b, (7.2)

is specified, b does not lie in the column space of A because (7.2) does not possess

a non-zero solution, which implies that the first principal angle between b and the

column space of A and the residual of (7.2) are not equal to zero.

The above analysis suggests that the error in a linear algebraic equation can be
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measured by the criteria based on the first principal angle and residual. In addition,

the error measures using the criteria based on the first principal angle and residual

can be used to determine if a linear algebraic equation has a non-zero solution. This

analysis is extended for the Sylvester subresultant matrices, which will be addressed

in the next section.

7.2 The error measures for the Sylvester subresul-

tant matrices

This section considers the error measures using the criteria based on the first prin-

cipal angle and residual for the Sylvester subresultant matrices. Two forms of the

Sylvester subresultant matrices, Sk(f, g) and Sk(f, g)Qk should be considered. The

following analysis is developed for Sk(f, g), and the same analysis can be repeated for

Sk(f, g)Qk.

If the exact Bernstein polynomials f̂(x) and ĝ(x) defined in (3.4) have a GCD of de-

gree d̂ > 0, they possess a common divisor of degree k, where 1 ≤ k ≤ d̂. Therefore,

there exists a polynomial d̂k(x) of degree k such that

f̂(x) = ûk(x)d̂k(x) and ĝ(x) = v̂k(x)d̂k(x), (7.3)

where the quotient polynomials ûk(x) and v̂k(x) are

ûk(x) =
m−k∑

i=0

ûk,i

(
m− k

i

)

(1 − x)m−k−ixi,

v̂k(x) =
n−k∑

j=0

v̂k,j

(
n− k

j

)

(1 − x)n−k−jxj ,
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respectively, and the common divisor polynomial d̂k(x) is

d̂k(x) =
k∑

i=0

d̂k,i

(
k

i

)

(1 − x)k−ixi.

It has been shown in Section 3.3.1 that it follows from (7.3) that f̂ v̂ − ĝû = 0, which

can be written in matrix form as

Sk(f̂ , ĝ)pk(ûk, v̂k) = 0, k = 1, . . . ,min(m,n), (7.4)

where Sk(f̂ , ĝ) is the kth Sylvester subresultant matrix defined in (3.18) and

pk(ûk, v̂k) =



















v̂k,0

(
n−k

0

)

...

v̂k,n−k

(
n−k

n−k

)

−ûk,0

(
m−k

0

)

...

−ûk,m−k

(
m−k

m−k

)



















.

Since the degree of the GCD of f̂(x) and ĝ(x) is d̂ ≥ 1, these polynomials possess

common divisors of degree 1, 2, . . . , d̂, but they do not have a common divisor of degree

d̂+ 1. It has been shown in Section 3.3.1 that (7.4) possesses a non-zero solution for

k = 1, . . . , d̂, but it does not possess a non-zero solution for k = d̂+1, . . . ,min(m,n).

The methods based on the first principal angle and residual of an approximate linear

algebraic equation for the computation of the degree of an AGCD of two polynomials

require that the homogeneous equation (7.4) is converted to a linear algebraic equa-

tion, which can be achieved by moving one column of Sk(f̂ , ĝ) to the right hand side.

For k = 1, . . . , d̂, (7.4) possesses a non-zero solution and therefore Sk(f̂ , ĝ) must be

rank deficient, which implies that at least one column of Sk(f̂ , ĝ) is linearly dependent
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on its other columns. This analysis is expressed as

Lk,ixk,i = lk,i for k = 1, . . . , d̂, (7.5)

for at least one column of Sk(f̂ , ĝ), where lk,i ∈ R
m+n−k+1 is the ith column of Sk(f̂ , ĝ),

Lk,i ∈ R
(m+n−k+1)×(m+n−2k+1) is the remaining matrix of Sk(f̂ , ĝ) after the removal of

the ith column and

xk,i =

[

x1 · · · xi−1 xi+1 · · · xm+n−2k+2

]T

∈ R
m+n−2k+1,

and

pk(ûk, v̂k) =



















v̂k,0

(
n−k

0

)

...

v̂k,n−k

(
n−k

n−k

)

−ûk,0

(
m−k

0

)

...

−ûk,m−k

(
m−k

m−k

)



















=






















x1

...

xi−1

−1

xi+1

...

xm+n−2k+2






















∈ R
m+n−2k+2.

However, there does not exist a column of Sk(f̂ , ĝ), such that

Lk,ixk,i = lk,i for k = d̂+ 1, . . . ,min(m,n). (7.6)

The operation of removing the ith column from Sk(f̂ , ĝ) is achieved by postmultiplying

Sk(f̂ , ĝ) by Mk,i ∈ R
(m+n−2k+2)×(m+n−2k+1), which is equal to the identity matrix after

the removal of the ith column,

Mk,i =

[

ek,1 ek,2 · · · ek,i−1 ek,i+1 · · · ek,m+n−2k+1 ek,m+n−2k+2

]

,

where i = 1, . . . , m + n − 2k + 2, and ek,i ∈ R
m+n−2k+2 is the ith unit basis vector.

The ith column of Sk(f̂ , ĝ) is equal to Sk(f̂ , ĝ)ek,i.
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Example 7.1. Let m = 3, n = 2 and k = 2. Thus S2 = S2(f̂ , ĝ) ∈ R
4×3 is

S2 =












a b c

d e f

g h i

j k l












,

S2M2,1 = S2









0 0

1 0

0 1









=












b c

e f

h i

k l












, S2e2,1 = S2









1

0

0









=












a

d

g

j












,

S2M2,2 = S2









1 0

0 0

0 1






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
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






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


a c

d f

g i

j l
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, S2e2,2 = S2
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0
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0
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
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




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
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
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,

S2M2,3 = S2


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0 0
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
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
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


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










, S2e2,3 = S2









0

0

1









=












c

f

i

l












.

�

This analysis must be compared with the previous work in [63], which considers

the determination of the degree of an AGCD of two power polynomials using the

methods based on the first principal angle and residual. The work in [63] moves

the first column of Sk(f̂ , ĝ) to the right hand side of (7.4). The reason is that for
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k = 1, . . . , d̂, (7.4) possesses a non-zero solution, which stores the coefficients of

the quotient polynomials v̂k(x) and ûk(x). Since the leading coefficient of power

polynomial is non-zero, the leading coefficient of v̂k(x) is non-zero. This implies that

the first element in the solution vector, which is the leading coefficient of v̂k(x), is

non-zero, and therefore the first column of Sk(f̂ , ĝ) is linearly dependent on the other

columns of Sk(f̂ , ĝ). When the first column is moved to the right hand side of (7.4),

the equation is still satisfied. However, since a Bernstein polynomial is a combination

of Bernstein basis functions and the degree of each Bernstein basis function is equal

to the degree of Bernstein polynomial, the leading coefficient of Bernstein polynomial

is not always non-zero. When the methods are performed in the Bernstein basis,

for k = 1, . . . , d̂, (7.4) has a non-zero solution but the first element in the solution

vector, which is the leading scaled coefficient of the quotient polynomial v̂k(x), is not

always non-zero, which implies that the first column of Sk(f̂ , ĝ) is not always linearly

dependent, and therefore we can not guarantee that the equation is satisfied when

the first column of Sk(f̂ , ĝ) is moved to the right hand side of (7.4).

For k = 1, . . . , d̂, (7.5) possesses a non-zero solution for at least one column of Sk(f̂ , ĝ),

which implies that one column of Sk(f̂ , ĝ), lk,i, lies in the space spanned by the

remaining m+n−2k+1 columns of Sk(f̂ , ĝ), Lk,i, for these values of k. However, for

k = d̂ + 1, . . . ,min(m,n), (7.6) does not possess a non-zero solution for any column

of Sk(f̂ , ĝ), and therefore no column of Sk(f̂ , ĝ), lk,i, lies in the column space of Lk,i

for these values of k. As stated in Section 7.1, the first principal angle and residual

can be used to determine if lk,i lies in the column space of Lk,i. Since at least one

column of Sk(f̂ , ĝ), lk,i, lies in the column space of Lk,i for k = 1, . . . , d̂, the first

principal angle and residual between lk,i and Lk,i are equal to zero for these values of
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k. However, for k = d̂+1, . . . ,min(m,n), there does not exist one column of Sk(f̂ , ĝ),

lk,i, such that the first principal angle and residual between lk,i and Lk,i are equal to

zero.

However, when noise is added to the exact polynomials f̂(x) and ĝ(x), such that the

inexact polynomials f(x) and g(x) are specified, Lk,ixk,i = lk,i does not possess a

non-zero solution for all k = 1, . . . ,min(m,n), because f(x) and g(x) are coprime.

As explained above, in the exact case, there may be several columns that are linearly

dependent upon the other columns in Sk(f̂ , ĝ) for k = 1, . . . , d̂. Therefore, when

the inexact polynomials f(x) and g(x) are specified, there exist several columns that

are almost linearly dependent upon the other columns in Sk(f, g) for k = 1, . . . , d̂,

because the noise level is small. It is therefore necessary to choose one column of

Sk(f, g) as the optimal column for k = 1, . . . , d̂, in terms of a specified criterion.

In particular, the optimal column of Sk(f, g), lk,i∗, is defined as the column that

is closest to be linearly dependent upon the other columns in Sk(f, g), such that

Lk,i∗xk,i∗ ≈ lk,i∗ has an approximate solution with smaller error. The optimal column

of Sk(f, g) is selected for each value of k = 1, . . . , d̂, and therefore Lk,i∗xk,i∗ ≈ lk,i∗ has

an approximate solution for k = 1, . . . , d̂, which implies that the first principal angle

and residual between lk,i∗ and Lk,i∗ are not equal to zero but relatively small for these

values of k. However, it was shown in the exact case that there exists no column that

is linearly dependent upon the other columns in Sk(f̂ , ĝ) for k = d̂+1, . . . ,min(m,n).

Therefore, there exists no column that is almost linearly dependent upon the other

columns in Sk(f, g) for k = d̂+ 1, . . . ,min(m,n), when the inexact polynomials f(x)

and g(x) are specified, and thus there does not exist a column of Sk(f, g), such that

Lk,ixk,i ≈ lk,i for k = d̂+1, . . . ,min(m,n). The approximation Lk,ixk,i ≈ lk,i does not
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possess an approximate solution for k = d̂+ 1, . . . ,min(m,n), which implies that the

first principal angle and residual between lk,i and Lk,i are relatively large for these

values of k, and therefore d̂ is equal to the value of k for which the maximum change in

the first principal angle and residual occurs. This analysis suggests that the degree of

an AGCD can be determined by observing the maximum change in the first principal

angle and residual. The analysis is written as

Lk,i∗xk,i∗ ≈ lk,i∗ for k = 1, . . . , d̂,

Lk,ixk,i 6= lk,i for k = d̂+ 1, . . . ,min(m,n); i = 1, . . . , m+ n− 2k + 2,
(7.7)

where i∗ denotes the index of optimal column of Sk(f, g).

Since the optimal column of Sk(f, g) is unknown for k = 1, . . . , d̂, it is necessary to

span each column in Sk(f, g) in order to determine the optimal column yielding the

smaller error in (7.7) for these values of k. The approximation (7.7) is then rewritten

as

Lk,ixk,i ≈ lk,i for k = 1, . . . , d̂; i = 1, . . . , m+ n− 2k + 2,

Lk,ixk,i 6= lk,i for k = d̂+ 1, . . . ,min(m,n); i = 1, . . . , m+ n− 2k + 2.
(7.8)

In addition, the degree d̂ of the GCD is unknown and to be determined, and there-

fore it is necessary to choose the optimal column for k = 1, . . . ,min(m,n). The

approximation (7.8) is then replaced by

Lk,ixk,i ≈ lk,i for k = 1, . . . ,min(m,n); i = 1, . . . , m+ n− 2k + 2, (7.9)

and the largest value of k for which (7.9) has an approximate solution with the smaller

error is equal to d̂. As stated earlier, the error in (7.9) can be measured by the criteria

based on the first principal angle and residual.

The above analysis can be repeated for another form of the Sylvester subresultant



CHAPTER 7. THE DEGREE OF AN AGCD, PART III 130

matrices, Sk(f, g)Qk, which is defined in (3.34), and therefore given the inexact poly-

nomials f(x) and g(x), the approximation

Hk,ixk,i ≈ hk,i for k = 1, . . . ,min(m,n); i = 1, . . . , m+ n− 2k + 2, (7.10)

is established. The vector hk,i ∈ R
m+n−k+1 is the ith column of Sk(f, g)Qk and

Hk,i ∈ R
(m+n−k+1)×(m+n−2k+1) is the remaining matrix of Sk(f, g)Qk after the removal

of the ith column. The largest value of k for which (7.10) has an approximate solution

with the smaller error is equal to the degree of an AGCD.

Computational experiments have shown that two forms of the Sylvester subresultant

matrices, Sk(f, g) and Sk(f, g)Qk, must be preprocessed before computations on them

are performed. In particular, since each of the Sylvester subresultant matrices has

the same partitioned structure as the Sylvester resultant matrix, the preprocessing

operations for the Sylvester resultant matrix described in Chapter 6 are required for

each of the Sylvester subresultant matrices for the same reason. The preprocessing

operations are addressed in the next section.

7.3 Preprocessing operations

Given two inexact Bernstein polynomials f(x) and g(x) defined in (4.2), the pre-

processing operations performed on two forms of the Sylvester subresultant ma-

trices, Sk(f, g) and Sk(f, g)Qk are considered. The three preprocessing operations

shown in Chapter 6, normalization of the coefficients of f(x) and g(x), the in-

troduction of a parameter α and a transformation of the independent variable x

to a new independent variable w, are required to be implemented for Sk(f, g) and

Sk(f, g)Qk. It should be noted that because the entries of the subresultant matrices
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Sk(f, g)Qk, k = 1, . . . ,min(m,n), are different, the three preprocessing operations

must be implemented for each value of k. Similarly, these three preprocessing oper-

ations are necessary to be performed for each of the subresultant matrices Sk(f, g),

k = 1, . . . ,min(m,n).

Because the entries of Sk(f, g)Qk are more complex than the entries of Sk(f, g), it is

better to consider the preprocessing operations associated with Sk(f, g)Qk, and then

the preprocessing operations for Sk(f, g) can be simply obtained from it.

7.3.1 Normalization of the polynomials

It follows from (3.14), (3.15), (3.30) and (3.34) that the coefficients of f(x) occupy

the first (n− k+ 1) columns, and the coefficients of g(x) occupy the last (m− k+ 1)

columns, of Sk(f, g)Qk. As stated earlier, the partitioned nature of Sk(f, g)Qk may

cause computational problems when the coefficients of f(x) are significantly larger or

smaller than the coefficients of g(x). Therefore, it is necessary to normalize the entries

of the first (n−k+1) columns and last (m−k+1) columns of Sk(f, g)Qk, respectively,

to obtain a more balanced matrix Sk(f, g)Qk. The geometric mean normalization was

used in Section 6.1.1 and this form of normalization is also used in this section.

This section develops the general forms of normalization constants for Sk(f, g)Qk,

k = 1, . . . ,min(m,n), and the general forms are functions of k. The following analysis

is a generalization of the analysis in Section 6.1.1, which only considers the calculation

of normalization constants for the Sylvester matrix S(f, g)Q, that is for k = 1 because

S1(f, g)Q1 = S(f, g)Q.

Consider the coefficients ai

(
m

i

)
, i = 0, . . . , m, which occupy the first (n − k + 1)

columns of Sk(f, g)Qk. It follows from (3.14), (3.15), (3.30) and (3.34) that the
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general expression for the product of the magnitudes of the terms that contain the

coefficient ai

(
m

i

)
in Sk(f, g)Qk is

∣
∣
∣
∣
∣

ai

(
m

i

)(
n−k

0

)

(
m+n−k

i

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ai

(
m

i

)(
n−k

1

)

(
m+n−k

i+1

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ai

(
m

i

)(
n−k

2

)

(
m+n−k

i+2

)

∣
∣
∣
∣
∣
· · ·
∣
∣
∣
∣
∣

ai

(
m

i

)(
n−k

n−k

)

(
m+n−k

i+n−k

)

∣
∣
∣
∣
∣
=

∣
∣ai

(
m

i

)∣
∣n−k+1∏n−k

r=0

(
n−k

r

)

∏n−k+i

t=i

(
m+n−k

t

) .

Therefore, the product of all the terms that contain the coefficients of f(x) in Sk(f, g)Qk,

k = 1, . . . ,min(m,n), is

m∏

i=0

(∣
∣ai

(
m

i

)∣
∣n−k+1∏n−k

r=0

(
n−k

r

)

∏n−k+i

t=i

(
m+n−k

t

)

)

,

and since the coefficients of f(x) occur a total of (n−k+1)(m+1) times in Sk(f, g)Qk,

the geometric mean of these terms in Sk(f, g)Qk is

λk =

{
m∏

i=0

(∣
∣ai

(
m

i

)∣
∣
n−k+1∏n−k

r=0

(
n−k

r

)

∏n−k+i

t=i

(
m+n−k

t

)

)} 1
(n−k+1)(m+1)

, k = 1, . . . ,min(m,n).(7.11)

The numerator of this expression simplifies to
{

m∏

i=0

∣
∣
∣
∣
ai

(
m

i

)∣
∣
∣
∣

} 1
m+1

{
n−k∏

r=0

(
n− k

r

)}
1

n−k+1

,

where care must be taken in the computation of these terms in order to prevent

overflow.

Consider now the denominator in (7.11),
{

m∏

i=0

n−k+i∏

t=i

(
m+ n− k

t

)}
1

(n−k+1)(m+1)

,

which can be evaluated efficiently by a recurrence equation. In particular, if Pi,k is

defined as

Pi,k =
n−k+i∏

t=i

(
m+ n− k

t

)

, i = 0, . . . , m; k = 1, . . . ,min(m,n), (7.12)

then

Pi+1,k =
n−k+i+1∏

t=i+1

(
m+ n− k

t

)

=

(
m+n−k

n−k+i+1

)∏n−k+i

t=i

(
m+n−k

t

)

(
m+n−k

i

) ,
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and thus

Pi+1,k = Pi,k

(
m+n−k

n−k+i+1

)

(
m+n−k

i

) = Pi,k

n−k∏

t=0

(m− i+ t)

(i+ 1 + t)
, i = 0, . . . , m− 1.

The starting value of this recurrence relationship, for each value of k = 1, . . . ,min(m,n),

is

P0,k =
n−k∏

t=0

(
m+ n− k

t

)

.

Therefore, the geometric mean (7.11) of all the terms that contain the coefficients

ai

(
m

i

)
is

λk =

(
∏m

i=0

∣
∣ai

(
m

i

)∣
∣

) 1
m+1
(
∏n−k

r=0

(
n−k

r

))
1

n−k+1

{
∏m

i=0 Pi,k}
1

(n−k+1)(m+1)

, k = 1, . . . ,min(m,n).

It follows that the normalized form of f(x) for Sk(f, g)Qk, k = 1, . . . ,min(m,n) is

f̆k(x) =
m∑

i=0

āk,i

(
m

i

)

(1 − x)m−ixi, āk,i =
ai

λk

, (7.13)

where f̆1(x) = f̆(x) which is defined in (6.5), because S1(f, g)Q1 = S(f, g)Q.

This analysis can be repeated for g(x), and its normalized form for Sk(f, g)Qk is

ğk(x) =
n∑

j=0

b̄k,j

(
n

j

)

(1 − x)n−jxj , b̄k,j =
bj
µk

, (7.14)

where

µk =

(
∏n

j=0
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∣
∣bj
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) 1
n+1
(
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(
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r
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1

m−k+1

{
∏n

j=0Lj,k

} 1
(m−k+1)(n+1)

,

and

Lj,k =

m−k+j
∏

t=j

(
m+ n− k

t

)

, j = 0, . . . , n; k = 1, . . . ,min(m,n), (7.15)
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and ğ1(x) = ğ(x) which is defined in (6.6), because S1(f, g)Q1 = S(f, g)Q.

It is noted that the normalization constants λk and µk are functions of k. The nor-

malized coefficients āk,i and b̄k,j in (7.13) and (7.14) enable the subresultant matri-

ces Sk(f̆k, ğk)Qk = D−1
k Tk(f̆k, ğk)Qk, k = 1, . . . ,min(m,n), where the matrices D−1

k ,

Tk(f̆k, ğk) andQk are defined in (3.14), (3.15) and (3.30), respectively, to be computed.

This analysis can be repeated for the subresultant matrices Sk(f, g) = D−1
k Tk(f, g), k =

1, . . . ,min(m,n), and the normalization constants for f(x) and g(x) in Sk(f, g) are,

respectively,

ηk =

(
∏m

i=0

∣
∣ai

(
m

i

)∣
∣

) 1
m+1

(
∏m

i=0 Pi,k

) 1
(n−k+1)(m+1)

, k = 1, . . . ,min(m,n),

and

ρk =

(
∏n

j=0

∣
∣
∣bj
(

n

j

)
∣
∣
∣

) 1
n+1

(
∏n

j=0Lj,k

) 1
(m−k+1)(n+1)

, k = 1, . . . ,min(m,n),

where Pi,k and Lj,k are defined in (7.12) and (7.15) respectively, and thus the normal-

ized forms of f(x) and g(x) for Sk(f, g) are

ḟk(x) =

m∑

i=0

äk,i

(
m

i

)

(1 − x)m−ixi, äk,i =
ai

ηk

, (7.16)

and

ġk(x) =

n∑

j=0

b̈k,j

(
n

j

)

(1 − x)n−jxj , b̈k,j =
bj
ρk

, (7.17)

where ḟ1(x) = ḟ(x) which is defined in (6.10), and ġ1(x) = ġ(x) which is defined in

(6.11), because S1(f, g) = S(f, g).

The subresultant matrices Sk(ḟk, ġk) = D−1
k Tk(ḟk, ġk), k = 1, . . . ,min(m,n), are com-

puted from the normalized coefficients äk,i and b̈k,j in (7.16) and (7.17).
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7.3.2 Scaling a polynomial by an arbitrary constant

It is shown in Section 6.1.2 that when two inexact polynomials in a floating point

environment are considered, the numerical rank of their Sylvester matrix is a function

of α, due to its partitioned structure. Because the subresultant matrices have the same

structure, it is necessary to choose the value of α with care in order to obtain the

best results. Therefore, the subresultant matrices,

Sk(f̆k, αğk)Qk, k = 1, . . . ,min(m,n),

and

Sk(ḟk, αġk), k = 1, . . . ,min(m,n),

should be considered. The computation of the optimal value of α is considered in

Section 7.3.5, after the third preprocessing operation has been introduced.

7.3.3 A transformation of the independent variable

As stated in Chapters 5 and 6, numerical problems may occur when computations

are performed on a matrix whose entries vary widely in magnitude. Therefore, it is

necessary to minimize the ratio of the maximum entry, in magnitude, to the minimum

entry, in magnitude, of each subresultant matrix. As shown in Chapters 5 and 6,

this can be achieved by the introduction of a new parameter θ. In particular, for

the subresultant matrices, Sk(f̆k, αğk)Qk, k = 1, . . . ,min(m,n), this preprocessing

operation is implemented by the substitution (5.1), which transforms the polynomials

f̆k(x) and ğk(x) defined in (7.13) and (7.14) respectively to

f̄k(w, θ) =
m∑

i=0

(
āk,iθ

i
)
(
m

i

)

(1 − θw)m−iwi, (7.18)
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and

ḡk(w, θ) =

n∑

j=0

(
b̄k,jθ

j
)
(
n

j

)

(1 − θw)n−jwj, (7.19)

respectively. It follows from (7.18) and (7.19) that the substitution (5.1) transforms

the Bernstein basis to the modified Bernstein basis, whose basis functions for polyno-

mials of degreem, φm
i (w, θ), are defined in (5.4). Therefore, the subresultant matrices,

Sk(f̆k, αğk)Qk, k = 1, . . . ,min(m,n), which are expressed in the Bernstein basis, are

transformed to S̄k(f̄k, αḡk)Qk, k = 1, . . . ,min(m,n), which are the subresultant ma-

trices of the modified Bernstein polynomials f̄k(w, θ) and αḡk(w, θ).

For the subresultant matrices, Sk(ḟk, αġk), k = 1, . . . ,min(m,n), ḟk(x) and ġk(x),

which are defined in (7.16) and (7.17) respectively, are transformed similarly to

f̈k(w, θ) =
m∑

i=0

(
äk,iθ

i
)
(
m

i

)

(1 − θw)m−iwi, (7.20)

and

g̈k(w, θ) =
n∑

j=0

(

b̈k,jθ
j
)(n

j

)

(1 − θw)n−jwj, (7.21)

and thus the subresultant matrices, Sk(ḟk, αġk), k = 1, . . . ,min(m,n), defined in the

Bernstein basis, are transformed to S̄k(f̈k, αg̈k), k = 1, . . . ,min(m,n), which are the

subresultant matrices of the modified Bernstein polynomials f̈k(w, θ) and αg̈k(w, θ).

The coefficients of f̄k(w, θ) and ḡk(w, θ) are āk,iθ
i, i = 0, . . . , m, and b̄k,jθ

j , j =

0, . . . , n, respectively, and it will be shown that the optimal values of the parameters

α and θ minimize the ratio of the maximum element, in magnitude, to the minimum

element, in magnitude, of S̄k(f̄k, αḡk)Qk. Therefore, the form of S̄k(f̄k, αḡk)Qk must

be developed, and this is considered in the next section.
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7.3.4 The Sylvester subresultant matrices for the modified

Bernstein basis

The substitution (5.1) transforms Sk(f̆k, αğk)Qk, which is defined in the Bernstein

basis, to S̄k(f̄k, αḡk)Qk, which is defined in the modified Bernstein basis, and therefore

it is necessary to develop expressions for the entries of S̄k(f̄k, αḡk)Qk. Section 6.1.4

develops the form of the Sylvester matrix in the modified Bernstein basis, S̄(f̄ , αḡ)Q,

which is a particular case for k = 1 because S̄1(f̄1, αḡ1)Q1 = S̄(f̄ , αḡ)Q.

Consider the polynomials p̂(x) and q̂(x) expressed in the Bernstein basis,

p̂(x) =

m∑

i=0

ĉi

(
m

i

)

(1 − x)m−ixi,

and

q̂(x) =

n∑

j=0

d̂j

(
n

j

)

(1 − x)n−jxj ,

whose GCD is of degree d̂. If ûk(x) and v̂k(x) are quotient polynomials expressed

in the Bernstein basis, and d̂k(x) is a common divisor polynomial of degree k, also

expressed in the Bernstein basis, k = 1, . . . ,min(m,n), then

d̂k(x) =
p̂(x)

ûk(x)
=

q̂(x)

v̂k(x)
, deg ûk < deg p̂ = m, deg v̂k < deg q̂ = n, (7.22)

where ûk(x) and v̂k(x) are of degrees m−k and n−k respectively. The normalization

described in Section 7.3.1 and parameter substitution (5.1) transform (7.22) to

d̄k(w, θ) =
p̄k(w, θ)

ūk(w, θ)
=
q̄k(w, θ)

v̄k(w, θ)
, deg ūk < deg p̄k = m, deg v̄k < deg q̄k = n, (7.23)

where k = 1, . . . , d̂,

p̄k(w, θ) =

m∑

i=0

(
c̄k,iθ

i
)
(
m

i

)

(1 − θw)m−iwi,
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q̄k(w, θ) =

n∑

j=0

(
d̄k,jθ

j
)
(
n

j

)

(1 − θw)n−jwj,

ūk(w, θ) =
m−k∑

i=0

(
ūk,iθ

i
)
(
m− k

i

)

(1 − θw)m−k−iwi,

v̄k(w, θ) =

n−k∑

i=0

(
v̄k,iθ

i
)
(
n− k

i

)

(1 − θw)n−k−iwi,

and

d̄k(w, θ) =

k∑

i=0

(
d̄k,iθ

i
)
(
k

i

)

(1 − θw)k−iwi.

It follows from (7.23) that

p̄k(w, θ)v̄k(w, θ) = q̄k(w, θ)ūk(w, θ), k = 1, . . . , d̂, (7.24)

and then (7.24) can be expressed in matrix form as

(
D−1

k Uk(p̄k, q̄k)
)
sk(ūk, v̄k) = 0, (7.25)

where p̄k = p̄k(w, θ), q̄k = q̄k(w, θ), ūk = ūk(w, θ), v̄k = v̄k(w, θ), the diagonal matrix

D−1
k is defined in (3.14),

Uk(p̄k, q̄k) = [ Ck(p̄k) Dk(q̄k) ] ∈ R
(m+n−k+1)×(m+n−2k+2), (7.26)
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the Toeplitz matrices Ck(p̄k) and Dk(q̄k) are given by, respectively,

Ck(p̄k) =

























c̄k,0

(
m

0

)

c̄k,1

(
m

1

)
θ

. . .

...
. . . c̄k,0

(
m

0

)

...
. . . c̄k,1

(
m

1

)
θ

c̄k,m−1

(
m

m−1

)
θm−1 . . .

...

c̄k,m

(
m

m

)
θm . . .

...

. . . c̄k,m−1

(
m

m−1

)
θm−1

c̄k,m

(
m

m

)
θm

























∈ R
(m+n−k+1)×(n−k+1),

and

Dk(q̄k) =

























d̄k,0

(
n

0

)

d̄k,1

(
n

1

)
θ

. . .

...
. . . d̄k,0

(
n

0

)

...
. . . d̄k,1

(
n

1

)
θ

d̄k,n−1

(
n

n−1

)
θn−1 . . .

...

d̄k,n

(
n

n

)
θn . . .

...

. . . d̄k,n−1

(
n

n−1

)
θn−1

d̄k,n

(
n

n

)
θn

























∈ R
(m+n−k+1)×(m−k+1),

and sk(ūk, v̄k) ∈ R
m+n−2k+2 is equal to

[ v̄k,0

(
n−k

0

)
v̄k,1

(
n−k

1

)
θ . . . . . . v̄k,n−k

(
n−k

n−k

)
θn−k

−ūk,0

(
m−k

0

)
−ūk,1

(
m−k

1

)
θ . . . . . . −ūk,m−k

(
m−k

m−k

)
θm−k ]T .

It follows from (3.29) that the vector sk(ūk, v̄k) is written as

sk(ūk, v̄k) = Qktk(ūk, v̄k),
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where Qk is defined in (3.30), and tk(ūk, v̄k) ∈ R
m+n−2k+2 is equal to

[
v̄k,0 v̄k,1θ · · · v̄k,n−kθ

n−k − ūk,0 − ūk,1θ · · · − ūk,m−kθ
m−k

]T
, (7.27)

and therefore (7.25) can be written as

(
D−1

k Uk(p̄k, q̄k)Qk

)
tk(ūk, v̄k) = 0. (7.28)

Since the degree of the GCD of p̄k(w, θ) and q̄k(w, θ) is d̂ ≥ 1, these polynomials

possess common divisors of degree 1, 2, . . . , d̂, but they do not have a common divisor

of degree d̂+ 1:

rankD−1
k Uk(p̄k, q̄k) < m+ n− 2k + 2, k = 1, . . . , d̂,

rankD−1
k Uk(p̄k, q̄k) = m+ n− 2k + 2, k = d̂+ 1, . . . ,min(m,n),

and

rankD−1
k Uk(p̄k, q̄k)Qk < m+ n− 2k + 2, k = 1, . . . , d̂,

rankD−1
k Uk(p̄k, q̄k)Qk = m+ n− 2k + 2, k = d̂+ 1, . . . ,min(m,n).

It follows from (7.28) that the kth subresultant matrix, S̄k(f̄k, αḡk)Qk, of f̄k(w, θ) and

αḡk(w, θ), which are defined in (7.18) and (7.19) respectively, is

S̄k(f̄k, αḡk)Qk = D−1
k Uk(f̄k, αḡk)Qk, (7.29)

and similarly, it follows from (7.25) that the kth subresultant matrix, S̄k(f̈k, αg̈k), of

f̈k(w, θ) and αg̈k(w, θ), which are defined in (7.20) and (7.21) respectively, is

S̄k(f̈k, αg̈k) = D−1
k Uk(f̈k, αg̈k). (7.30)

The form of S̄k(f̄k, αḡk)Qk is established in (7.29), and a criterion for the calculation

of its optimal values of α and θ is considered in the next section.
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7.3.5 The optimal values of α and θ

This section considers the calculation of the optimal values of α and θ. The criterion

described in Section 6.1.5 is appropriate for both S̄k(f̄k, αḡk)Qk and S̄k(f̈k, αg̈k), but

the optimal values of α and θ are different because of the diagonal matrix Qk. It is

adequate to consider the calculation of the optimal values of α and θ for S̄k(f̄k, αḡk)Qk

because the computation of the optimal values of α and θ for S̄k(f̈k, αg̈k) follows easily.

As stated before, computations performed on a matrix whose elements vary widely in

magnitude may cause computational problems. Therefore, as shown in Section 6.1.5,

it is desirable to choose the optimal values of α and θ respectively, such that the ratio

of the maximum element to the minimum element, in magnitude, of S̄k(f̄k, αḡk)Qk is

minimized.

For the subresultant matrices S̄k(f̄k, αḡk)Qk, k = 1, . . . ,min(m,n), the optimal values

of α and θ must be computed for each value of k. In particular, the calculation of

the optimal values of α and θ for k = 1 is identical to the computation of the optimal

values of α and θ for S̄(f̄ , αḡ)Q shown in Section 6.1.5 because S̄1(f̄1, αḡ1)Q1 =

S̄(f̄ , αḡ)Q.

It follows from (3.14), (3.30), (7.26) and (7.29) that the general expression for a non-

zero element in the first n − k + 1 columns of S̄k(f̄k, αḡk)Qk, k = 1, . . . ,min(m,n),

is

āk,j

(
m

j

)(
n−k

i

)
θj

(
m+n−k

i+j

) , j = 0, . . . , m; i = 0, . . . , n− k,

and similarly, the general expression for a non-zero element in the last m − k + 1

columns of S̄k(f̄k, αḡk)Qk, k = 1, . . . ,min(m,n), is

αb̄k,j

(
n

j

)(
m−k

i

)
θj

(
m+n−k

i+j

) , j = 0, . . . , n; i = 0, . . . , m− k.
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It is convenient to define the sets ρk(θ) and σk(α, θ) as

ρk(θ) =







∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) : j = 0, . . . , m; i = 0, . . . , n− k






,

and

σk(α, θ) =







∣
∣
∣αb̄k,j

(
n

j

)(
m−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) : j = 0, . . . , n; i = 0, . . . , m− k






,

respectively, and the optimal values of α and θ, α1(k) and θ1(k), minimize the ratio

of the maximum element, in magnitude, to the minimum element, in magnitude, of

S̄k(f̄k, αḡk)Qk,

α1(k), θ1(k) = argmin
α,θ







max
{

max{ρk(θ)},max{σk(α, θ)}
}

min
{

min{ρk(θ)},min{σk(α, θ)}
}






, k = 1, . . . ,min(m,n).

This minimization problem is a function of k and Section 6.1.5 considers the same

minimization problem for k = 1. Therefore, the following analysis is similar to the

analysis shown in Section 6.1.5. In addition, it is important to note that the optimal

values of α and θ are functions of k, which must be compared with the situation that

prevails for the power basis because the optimal values of α and θ are independent of

k for this basis.

This minimization problem can be written as:

Minimize u
v
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subject to

u ≥

∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) , j = 0, . . . , m; i = 0, . . . , n− k,

u ≥

∣
∣
∣αb̄k,j

(
n

j

)(
m−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) , j = 0, . . . , n; i = 0, . . . , m− k,

v ≤

∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) , j = 0, . . . , m; i = 0, . . . , n− k,

v ≤

∣
∣
∣αb̄k,j

(
n

j

)(
m−k

i

)
θj

∣
∣
∣

(
m+n−k

i+j

) , j = 0, . . . , n; i = 0, . . . , m− k,

v > 0,

θ > 0,

α > 0.

The transformations

U = log u, V = log v, φ = log θ, µ = logα, (7.31)

and

ᾱi,j = log

∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
∣
∣
∣

(
m+n−k

i+j

) , β̄i,j = log

∣
∣
∣b̄k,j

(
n

j

)(
m−k

i

)
∣
∣
∣

(
m+n−k

i+j

) ,

where log = log10, enable this constrained minimization problem to be written as:

Minimize U − V

subject to

U − jφ ≥ ᾱi,j , j = 0, . . . , m; i = 0, . . . , n− k,

U − jφ − µ ≥ β̄i,j , j = 0, . . . , n; i = 0, . . . , m− k,

−V + jφ ≥ −ᾱi,j , j = 0, . . . , m; i = 0, . . . , n− k,

−V + jφ + µ ≥ −β̄i,j , j = 0, . . . , n; i = 0, . . . , m− k.

(7.32)
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The counter i appears only on the right hand side of these inequalities, and thus if

λ̄j, µ̄j, ρ̄j and τ̄j are defined as

λ̄j = maxi=0,...,n−k{ᾱi,j} = maxi=0,...,n−k






log

∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
∣
∣
∣

(
m+n−k

i+j

)






, j = 0, . . . , m,

µ̄j = maxi=0,...,m−k{β̄i,j} = maxi=0,...,m−k






log

∣
∣
∣b̄k,j

(
n

j

)(
m−k

i

)
∣
∣
∣

(
m+n−k

i+j

)






, j = 0, . . . , n,

ρ̄j = mini=0,...,n−k{ᾱi,j} = mini=0,...,n−k






log

∣
∣
∣āk,j

(
m

j

)(
n−k

i

)
∣
∣
∣

(
m+n−k

i+j

)






, j = 0, . . . , m,

τ̄j = mini=0,...,m−k{β̄i,j} = mini=0,...,m−k






log

∣
∣
∣b̄k,j

(
n

j

)(
m−k

i

)
∣
∣
∣

(
m+n−k

i+j

)






, j = 0, . . . , n,

then (7.32) can be written as

Minimize U − V

subject to

U − jφ ≥ λ̄j , j = 0, . . . , m,

U − jφ − µ ≥ µ̄j , j = 0, . . . , n,

−V + jφ ≥ −ρ̄j , j = 0, . . . , m,

−V + jφ + µ ≥ −τ̄j , j = 0, . . . , n.

This minimization problem can be written as:

Minimize [ 1 − 1 0 0 ]












U

V

φ

µ












subject to A












U

V

φ

µ












≥ b, (7.33)

where A ∈ R
(2m+2n+4)×4 and

b = [ λ̄0, · · · , λ̄m, µ̄0, · · · , µ̄n,−ρ̄0, · · · ,−ρ̄m,−τ̄0, · · · ,−τ̄n ]T ∈ R
2m+2n+4,
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which is a standard linear programming problem. If α1(k) and θ1(k) are the solutions

of the linear programming problem (7.33), then the polynomials (7.18) and (7.19)

become

f̃k = f̃k(w) = f̄k(w, θ1) =
m∑

i=0

(
āk,iθ

i
1

)
(
m

i

)

(1 − θ1w)m−iwi, (7.34)

and

g̃k = g̃k(w) = ḡk(w, θ1) =
n∑

j=0

(
b̄k,jθ

j
1

)
(
n

j

)

(1 − θ1w)n−jwj, (7.35)

respectively, where α1 = α1(k) and θ1 = θ1(k), and the coefficients of these polynomi-

als form the entries of the subresultant matrices S̄k(f̃k, α1g̃k)Qk, k = 1, . . . ,min(m,n).

Because the entries of the subresultant matrices Sk(f, g)Qk, k = 1, . . . ,min(m,n), are

functions of k, the three preprocessing operations must be implemented for each value

of k.

A slight modification to the linear programming problem (7.33) allows the optimal

values of α and θ, α2(k) and θ2(k) for S̄k(f̈k, αg̈k) to be calculated, and therefore the

polynomials (7.20) and (7.21) become

f́k = f́k(w) = f̈k(w, θ2) =

m∑

i=0

(
äk,iθ

i
2

)
(
m

i

)

(1 − θ2w)m−iwi, (7.36)

and

ǵk = ǵk(w) = g̈k(w, θ2) =
n∑

j=0

(

b̈k,jθ
j
2

)(n

j

)

(1 − θ2w)n−jwj, (7.37)

respectively, where α2 = α2(k) and θ2 = θ2(k), and the entries of S̄k(f́k, α2ǵk), k =

1, . . . ,min(m,n), are calculated from the coefficients of these polynomials. Similarly,

since the entries of the subresultant matrices Sk(f, g), k = 1, . . . ,min(m,n), are also

functions of k, each of the subresultant matrices, Sk(f, g), k = 1, . . . ,min(m,n),

must be processed by the three preprocessing operations to obtain the subresultant
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matrices defined in the modified Bernstein basis, S̄k(f́k, α2ǵk).

The degree of an AGCD of the inexact polynomials f(x) and g(x) can be determined

from the subresultant matrices S̄k(f̃k, α1g̃k)Qk and S̄k(f́k, α2ǵk), k = 1, . . . ,min(m,n),

which is considered in the next section.

7.4 The determination of the degree of an AGCD

The preprocessing operations described in Section 7.3 transform the given inexact

polynomials f(x) and g(x) to f̃k(w) and g̃k(w) defined in (7.34) and (7.35) respec-

tively for k = 1, . . . ,min(m,n), and the kth subresultant matrix S̄k(f̃k, α1g̃k)Qk is

computed from the polynomials f̃k(w) and g̃k(w).

As shown in Section 7.2, when inexact polynomials are specified, noise that is added

to the polynomials makes them coprime, and thus S̄k(f̃k, α1g̃k)Qk has full column

rank for all k = 1, . . . ,min(m,n). In order to determine the degree of an AGCD

using the methods based on the first principal angle and residual, the approximation

(7.10) is established.

It was discussed in Section 7.2 that it is necessary to choose the optimal column of

S̄k(f̃k, α1g̃k)Qk for k = 1, . . . ,min(m,n), such that the smallest error in the approxi-

mation (7.10) is achieved. In particular, the smallest error in the approximation (7.10)

for each value of k = 1, . . . ,min(m,n), can be achieved by choosing the column of

S̄k(f̃k, α1g̃k)Qk as optimal column, such that the angle between this column and the

space spanned by the remaining m+n−2k+1 columns of S̄k(f̃k, α1g̃k)Qk is minimum,

which implies that the smaller the angle, the smaller the error in the approximation

(7.10). An alternative method considers the residual of the approximation (7.10) to

calculate the optimal column for each value of k.
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The discussion suggests that two issues must be addressed:

(1) The calculation of the index i = q of the column of S̄k(f̃k, α1g̃k)Qk that defines

the optimal column hk,i in (7.10) for k = 1, . . . ,min(m,n).

(2) The calculation of the degree k = d of an AGCD of f̃k(w) and g̃k(w).

Two methods, one based on the first principal angle and the other based on the

residual of (7.10) are used to solve this problem.

7.4.1 The method of the first principal angle

The first principal angle between the vector hk,i and the matrixHk,i, which are defined

in (7.10), is the smallest angle between the space Lk,i spanned by hk,i, and the space

Hk,i spanned by the columns of Hk,i,

ψk,i = ∠(Lk,i,Hk,i), k = 1, . . . ,min(m,n); i = 1, . . . , m+ n− 2k + 2, (7.38)

where

Lk,i = span{ hk,i },

Hk,i = span{ hk,1 · · · hk,i−1 hk,i+1 · · · hk,m+n−2k+2 }.

The calculation of the degree of an AGCD using the criterion of the first principal

angle firstly chooses the optimal column for each value k = 1, . . . ,min(m,n). Thus,

the minimum value φk of ψk,i for each value of k is calculated,

φk = min {ψk,i : i = 1, . . . , m+ n− 2k + 2} , k = 1, . . . ,min(m,n), (7.39)

and the column i = qφ
k for which each of the min(m,n) minima occurs is recorded,

thereby yielding the vector

qφ =
[

qφ
1 qφ

2 · · · qφ

min(m,n)−1 qφ

min(m,n)

]

∈ R
min(m,n),
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where the superscript φ denotes that these optimal column indices are calculated

using the criterion based on the first principal angle.

It was stated in Section 7.2 that the degree dφ of an AGCD is equal to the index k

for which the change in φk between two successive values of k is maximum,

dφ =

{

k : max
(φk+1

φk

)

; k = 1, . . . ,min(m,n) − 1

}

. (7.40)

Equation (7.40) is stated in terms of the maximum ratio of successive first principal

angles, rather than the minimum value of the first principal angles. The reason for

this criterion is easily seen by considering an example. In particular, let min(m,n) = 7

and let φ ∈ R
7 be the vector of first principal angles φk, k = 1, . . . , 7,

φ :=

[

φ1 φ2 φ3 φ4 φ5 φ6 φ7

]

=

[

2 × 10−12 5 × 10−13 4 × 10−11 7 × 10−12 3 × 10−1 10−3 10−2

]

,

and thus

log φ =

[

−11.7 −12.3 −10.4 −11.2 −0.5 −3 −2

]

.

The variation of the first principal angles logφ1, . . . , logφ4, is relatively minor, such

that these four first principal angles are sufficiently small, which implies that the

vector h
k,q

φ

k

almost lies in the column space H
k,q

φ

k

, and therefore the associated ap-

proximate solutions of (7.10) are acceptable. In particular, these small values show

that the polynomials have approximate common divisors of degrees 1, 2, 3 and 4. The

maximum ratio φk+1/φk, k = 1, . . . , 6, occurs for k = 4, which implies that the first

principal angle between the vector h
k,q

φ

k

and the column space H
k,q

φ

k

is unacceptably

large for k = 5, and thus the degree dφ of an AGCD is equal to four.

Equation (7.40) defines the criterion to calculate the degree of an AGCD using the

first principal angle, but the method to compute ψk,i, which is defined in (7.38), must
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be obtained. The following considers the calculation of ψk,i [56]:

The unit vector uk,i that spans Lk,i is

uk,i =
hk,i

‖hk,i‖
∈ Lk,i, dimLk,i = 1.

The calculation of ψk,i requires an orthonormal basis for Hk,i, which can be obtained

by applying the QR decomposition to Hk,i,

Hk,i = Ok,iRk,i, OT
k,iOk,i = Im+n−2k+1,

where Ok,i ∈ R
(m+n−k+1)×(m+n−2k+1), Rk,i ∈ R

(m+n−2k+1)×(m+n−2k+1) is an upper trian-

gular matrix, and the columns of Ok,i define an orthonormal basis for Hk,i. Therefore,

every vector vk,i ∈ Hk,i can be written as

vk,i = Ok,izk,i,

where zk,i ∈ R
m+n−2k+1, and the cosine of the angle θ between uk,i and vk,i is

cos θ = uT
k,ivk,i, ‖uk,i‖ = ‖vk,i‖ = 1.

The first principal angle ψk,i between Lk,i and Hk,i is defined to be the smallest angle

between uk,i ∈ Lk,i and an arbitrary vector vk,i ∈ Hk,i, and thus

cosψk,i = max
‖vk,i‖=1

uT
k,ivk,i = max

‖zk,i‖=1
(uT

k,iOk,i)zk,i. (7.41)

If the SVD of uT
k,iOk,i is

uT
k,iOk,i = Σk,iW

T
k,i,

where Σk,i ∈ R
1×(m+n−2k+1) and Wk,i ∈ R

(m+n−2k+1)×(m+n−2k+1), then (7.41) yields

cosψk,i = max
‖vk,i‖=1

uT
k,ivk,i = max

‖zk,i‖=1
(Σk,iW

T
k,i)zk,i,

which implies that cosψk,i is equal to the non-zero singular value of uT
k,iOk,i,

cosψk,i = σk,i,1. (7.42)
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It follows from (7.42) that the first principal angle, ψk,i, between Lk,i and Hk,i is given

by

ψk,i = cos−1 σk,i,1.

However, computational problems arise when ψk,i ≈ 0 because

δψk,i = − δσk,i,1

sinψk,i

, (7.43)

and thus |δψk,i| � |δσk,i,1| if ψk,i ≈ 0. Therefore, a stable method for the first principal

angle computation must be developed, which requires the following theorem [56].

Theorem 7.1. Let the columns of W ∈ R
r×p be orthonormal, and letW be partitioned

as

W =






W1

W2




 , W1 ∈ R

r1×p, W2 ∈ R
r2×p, r1 + r2 = r.

Let γ1 ≥ γ2 ≥ · · · ≥ γp be the singular values of W1, and let σ1 ≤ σ2 ≤ · · · ≤ σp be

the singular values of W2, then

γ2
j + σ2

j = 1, j = 1, . . . , p. (7.44)

Proof. Since the columns of W are orthonormal, it follows that

W T
1 W1 +W T

2 W2 = Ip.

If (λ, v) is an eigenpair of W T
1 W1, then

(W T
1 W1)v = λv,

and thus

(Ip −W T
1 W1)v = (1 − λ)v,

that is

(W T
2 W2)v = µv,
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from which it follows that (µ, v) is an eigenpair of W T
2 W2, where

λ+ µ = 1. (7.45)

The jth eigenvalue of W T
1 W1 is γ2

j , j = 1, . . . , p, and thus it follows from (7.45)

that the jth eigenvalue of W T
2 W2 is 1−γ2

j . Since the jth eigenvalue of W T
2 W2 is equal

to σ2
j , it follows that the sum of the jth eigenvalues of W T

1 W1 and W T
2 W2 is equal to

one, and thus (7.44) is established. �

It will be shown that the instability that arises when ψk,i ≈ 0 can be overcome by

computing the orthogonal complements L⊥
k,i and H⊥

k,i, where

Lk,i ∪ L⊥
k,i = R

m+n−k+1 and Hk,i ∪H⊥
k,i = R

m+n−k+1,

and

dimL⊥
k,i = m+ n− k and dimH⊥

k,i = k.

It will be required to calculate orthonormal bases for L⊥
k,i and H⊥

k,i, and these bases will

define the columns of matrices Uk,i ∈ R
(m+n−k+1)×(m+n−k) and Ok,i ∈ R

(m+n−k+1)×k,

respectively. It follows that the columns of Uk,i and Nk,i are given by

Uk,i = [ uk,i Uk,i ] ∈ R
(m+n−k+1)×(m+n−k+1), UT

k,iUk,i = Uk,iU
T
k,i = Im+n−k+1,

(7.46)

and

Nk,i = [ Ok,i Ok,i ] ∈ R
(m+n−k+1)×(m+n−k+1), NT

k,iNk,i = Nk,iN
T
k,i = Im+n−k+1,

(7.47)

respectively, which define orthonormal bases for R
m+n−k+1. The following theorem is

established in [56].

Theorem 7.2. Let Lk,i and Hk,i be subspaces of R
m+n−k+1, and let θj be the jth
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principal angle between them. The unit vector uk,i ∈ R
m+n−k+1 spans the line Lk,i,

and the columns of Ok,i ∈ R
(m+n−k+1)×(m+n−2k+1) define an orthonormal basis for Hk,i.

Also, let the columns of Uk,i ∈ R
(m+n−k+1)×(m+n−k) and Ok,i ∈ R

(m+n−k+1)×k define

orthonormal bases for L⊥
k,i and H⊥

k,i respectively, where (7.46) and (7.47) are satisfied.

Then the singular values of U
T

k,iOk,i ∈ R
(m+n−k)×(m+n−2k+1) and uT

k,iOk,i ∈ R
k are

sin θ1 ≤ sin θ2 ≤ · · · ≤ sin θm+n−2k+1.

Proof. Since Uk,i is an orthogonal matrix and Ok,i has orthonormal columns, the

columns of Wk,i,1 ∈ R
(m+n−k+1)×(m+n−2k+1),

Wk,i,1 = UT
k,iOk,i =






uT
k,iOk,i

U
T

k,iOk,i




 , uT

k,iOk,i ∈ R
m+n−2k+1, U

T

k,iOk,i ∈ R
(m+n−k)×(m+n−2k+1),

are also orthonormal. Also, the singular values of uT
k,iOk,i are γk,i,j = cos θk,i,j, j =

1, . . . , m + n − 2k + 1, and it follows from Theorem 7.1 that the singular values of

U
T

k,iOk,i are

σk,i,j =
√

1 − γ2
k,i,j = sin θk,i,j, j = 1, . . . , m+ n− 2k + 1.

Consider now the vector Wk,i,2 ∈ R
m+n−k+1,

Wk,i,2 = NT
k,iuk,i =






OT
k,iuk,i

O
T

k,iuk,i




 , OT

k,iuk,i ∈ R
m+n−2k+1, O

T

k,iuk,i ∈ R
k.

The singular values of OT
k,iuk,i are cos θk,i,j, j = 1, . . . , m+n−2k+1, and thus it follows

from Theorem 7.1 that the singular values of O
T

k,iuk,i and uT
k,iOk,i are sin θk,i,j, j =

1, . . . , m+ n− 2k + 1. �

Since the singular values of uT
k,iOk,i and U

T

k,iOk,i are σk,i,j = sin θk,i,j, j = 1, . . . , m +

n− 2k + 1, it follows that the principal angles are

θk,i,j = sin−1 σk,i,j, j = 1, . . . , m+ n− 2k + 1,
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and thus the first principal angle is given by

ψk,i = sin−1 σk,i,1.

When ψk,i ≈ 0, then,

δψk,i =
δσk,i,1

cosψk,i

,

from which it follows that if ψk,i ≈ 0, then |δψk,i| ≈ |δσk,i,1|. The first principal angle

ψk,i is therefore stable with respect to changes in σk,i,1 when ψk,i ≈ 0.

7.4.2 The method of the residual

An alternative method to calculate the optimal column is to consider the residual of

(7.10). Let zk,i be the least squares solution of (7.10) and let rk,i = rk,i(Hk,i, hk,i) be

the residual associated with this solution,

zk,i = H†
k,ihk,i, rk,i = hk,i −Hk,izk,i, H†

k,i = (HT
k,iHk,i)

−1HT
k,i, (7.48)

for k = 1, . . . ,min(m,n), and i = 1, . . . , m+ n− 2k + 2, where

‖hk,i‖2 = ‖rk,i‖2 + ‖Hk,izk,i‖2, rT
k,i(Hk,izk,i) = 0.

It follows that ‖rk,i‖ is equal to the perpendicular distance of the point with position

vector hk,i to the point with position vector Hk,izk,i on the plane t = Hk,ixk,i that

defines the column space of Hk,i, which is shown in Figure 7.1.

The determination of the degree of an AGCD using the method based on the

residual also includes two steps, which is similar to the determination of the degree of

an AGCD using the method based on the first principal angle. Firstly, the minimum
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r
k,i

H
k,i

z
k,i

o

A

B

h
k,i

Figure 7.1: The first principal angle ∠ AOB and the residual rk,i between the vector
hk,i and the column space Hk,i.

value of ‖rk,i‖ for each value of k = 1, . . . ,min(m,n), is calculated using (7.48),

rk = min
‖rk,i‖
‖hk,i‖

= min







∣
∣
∣

∣
∣
∣

(

I −Hk,iH
†
k,i

)

hk,i

∣
∣
∣

∣
∣
∣

||hk,i||
: i = 1, . . . , m+ n− 2k + 2






, (7.49)

for k = 1, . . . ,min(m,n). The column i = qr
k for which each of the min(m,n) minima

occurs is recorded, therefore yielding the vector

qr =
[
qr
1 qr

2 · · · qr
min(m,n)−1 qr

min(m,n)

]
∈ R

min(m,n),

where the superscript r denotes that these optimal column indices are calculated

using the criterion based on the residual. The degree dr of an AGCD equals to the

index k for which the change in rk between two successive values of k is maximum,

dr =

{

k : max
(rk+1

rk

)

; k = 1, . . . ,min(m,n) − 1

}

. (7.50)
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It is noted that (7.50) uses the maximum ratio of successive values of the residual,

which is of the same form as (7.40) for the calculation of dφ.

Algorithm 7.1: The calculation of the degree of an AGCD of two inexact

Bernstein polynomials

Input Two inexact Bernstein polynomials f(x) and g(x) defined in (4.2).

Output Two estimates, dφ and dr, of the degree of an AGCD of f(x) and g(x),

and the column indices qφ and qr associated with the first principal angle and residual

respectively, for each value of k = 1, . . . ,min(m,n).

Begin

1. For k = 1, . . . ,min(m,n) % Loop for all the subresultant matrices

1.1 Preprocess f(x) and g(x) to yield their modified Bernstein polynomials

f̃k(w) and g̃k(w), which are defined in (7.34) and (7.35) respectively,

as shown in Section 7.3.

1.2 Compute the kth subresultant matrix, S̄k(f̃k, α1g̃k)Qk, of f̃k(w) and

g̃k(w).

1.3 For i = 1, . . . , m+n−2k+2 % Loop for the columns of S̄k(f̃k, α1g̃k)Qk

(i) Define the column hk,i from S̄k(f̃k, α1g̃k)Qk.

(ii) Define the matrix Hk,i from S̄k(f̃k, α1g̃k)Qk.

(iii) Calculate the angle ψk,i and residual rk,i.

End i

1.4 Calculate φk and qφ
k from (7.39), and rk and qr

k from (7.49).
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End k

2. Calculate two estimates dφ and dr of the degree of an AGCD from (7.40) and

(7.50).

End

The above analysis about the first principal angle and residual can be repeated

for the subresultant matrices S̄k(f́k, α2ǵk), k = 1, . . .,min(m,n), which are computed

from the modified Bernstein polynomials f́k(w) and ǵk(w) defined in (7.36) and (7.37)

respectively. In particular, since the inexact Bernstein polynomials are coprime,

S̄k(f́k, α2ǵk) has full column rank for all k = 1, . . . ,min(m,n). Therefore, the ap-

proximation (7.9) is established.

Similarly, the optimal column for each index k must be calculated, such that the

error in the approximation (7.9) is a minimum. Two criteria, the first principal angle

and residual, are used to select the optimal columns for k = 1, . . . ,min(m,n), and

then the degree of an AGCD is determined using the same procedures described in

Sections 7.4.1 and 7.4.2 respectively.

7.5 Examples

In this section, three examples are illustrated to demonstrate the computation of

the degree of an AGCD from three forms of the subresultant matrices, Sk(ḟk, ġk),

S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, using the methods based on the first principal angle

and residual. These three forms of the subresultant matrices are described as follows:
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• Sk(ḟk, ġk) is the kth subresultant matrix of the normalized Bernstein polynomi-

als ḟk(x) and ġk(x), which are defined in (7.16) and (7.17) respectively. The sec-

ond and third preprocessing operations are not implemented, that is, α = θ = 1.

• S̄k(f́k, α2ǵk) is the kth subresultant matrix of the modified Bernstein polyno-

mials f́k(w) and ǵk(w), which are defined in (7.36) and (7.37) respectively, that

arise after the three preprocessing operations have been implemented.

• S̄k(f̃k, α1g̃k)Qk is the kth subresultant matrix of the modified Bernstein poly-

nomials f̃k(w) and g̃k(w), which are defined in (7.34) and (7.35) respectively,

that arise after the three preprocessing operations have been implemented.

Experiments show that the second and third preprocessing operations, which intro-

duce the parameters α and θ, are important for the correct estimate of the degree of

an AGCD. The importance of the second and third preprocessing operations can be

easily recognized by observing the differences in the results obtained from these three

forms of the subresultant matrices. In addition, it will be shown in the examples that

both S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk return good results. Furthermore, the examples

will also demonstrate that angle and residual yield different optimal columns for some

values of k.
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Example 7.2. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 7.1. It is seen that m = 48, n = 47 and the

degree of their GCD is d̂ = 37.

Root of f̂(x) Multiplicity
0.2792e+000 11
0.3129e+000 4
0.7326e+000 6
0.7912e+000 9
-0.8139e+000 4
1.3741e+000 8
-3.3561e+000 6

Root of ĝ(x) Multiplicity
0.2792e+000 10
0.7326e+000 7
0.7912e+000 11
0.9783e+000 6
1.3741e+000 6

-3.3561e+000 7

Table 7.1: The roots and multiplicities of f̂(x) and ĝ(x) for Example 7.2.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial.
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Figure 7.2: The variation of log10 φk and log10 rk computed from Sk(ḟk, ġk), k =
1, . . . , 47, for Example 7.2.

Figure 7.2 shows the variation of log10 φk and log10 rk computed from the subresul-

tant matrices, Sk(ḟk, ġk), k = 1, . . . , 47. It is seen from Figure 7.2 that the maximum

changes in log10 φk and log10 rk are not clearly defined.
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Figures 7.3 and 7.4 show the variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk)

and S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 47, respectively. It is seen from Figures 7.3 and 7.4

that the maximum gradient in each graph occurs when k = 37, which is correct

because deg GCD(f̂ , ĝ) = 37.
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Figure 7.3: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 47, for Example 7.2.
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Figure 7.4: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 47, for Example 7.2.

Comparing the result obtained from Sk(ḟk, ġk) with the results obtained from

S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk indicates that the second and third preprocessing
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operations, which introduce the parameters α and θ, are important for yielding the

correct estimate of the degree of an AGCD.

Figures 7.5 and 7.6 show the indices of the optimal columns of S̄k(f́k, α2ǵk) and

S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 47, respectively, using the criteria based on the first prin-

cipal angle and residual. Both figures suggest that the criteria do not yield the same

optimal column for all values of k.
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Figure 7.5: The column of S̄k(f́k, α2ǵk) for which the error in (7.9) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.2.
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Figure 7.6: The column of S̄k(f̃k, α1g̃k)Qk for which the error in (7.10) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.2.

�

Example 7.3. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 7.2. It is seen that m = 29, n = 32 and the

degree of their GCD is d̂ = 14.

Root of f̂(x) Multiplicity
0.3569e+000 7
0.4521e+000 7
1.2383e+000 9
-1.3521e+000 6

Root of ĝ(x) Multiplicity
0.8761e+000 9
0.9132e+000 9
1.2383e+000 8

-1.3521e+000 6

Table 7.2: The roots and multiplicities of f̂(x) and ĝ(x) for Example 7.3.

Noise with componentwise signal-to-noise ratio 108 is added to the polynomials in

order to yield their inexact forms.

Figure 7.7 shows the variation of log10 φk and log10 rk computed from Sk(ḟk, ġk), k =
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1, . . . , 29. It is seen from Figure 7.7 that the maximum change in log10 φk occurs for

k = 8, which is incorrect because deg GCD(f̂ , ĝ) = 14, and the maximum change in

log10 rk is not clearly defined, such that the degree of an AGCD can not be determined

from it.
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Figure 7.7: The variation of log10 φk and log10 rk computed from Sk(ḟk, ġk), k =
1, . . . , 29, for Example 7.3.
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Figure 7.8: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 29, for Example 7.3.
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Figure 7.9: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 29, for Example 7.3.

Figure 7.8 shows the variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk),

k = 1, . . . , 29, and Figure 7.9 shows the variation of log10 φk and log10 rk computed

from S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 29. It is seen from Figures 7.8 and 7.9 that the maxi-

mum gradient in each graph occurs for k = 14, which is correct, and that these values

of k are clearly defined. The correct results shown in Figures 7.8 and 7.9 must be com-

pared with the incorrect results shown in Figure 7.7. In particular, S̄k(f́k, α2ǵk) and

S̄k(f̃k, α1g̃k)Qk, which are processed by three preprocessing operations, yield signifi-

cantly better results than Sk(ḟk, ġk), which is only preprocessed by the normalization

operation.
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Figure 7.10: The column of S̄k(f́k, α2ǵk) for which the error in (7.9) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.3.

Figures 7.10 and 7.11 show the column of S̄k(f́k, α2ǵk) for which the error in (7.9) is

minimum and the column of S̄k(f̃k, α1g̃k)Qk for which the error in (7.10) is minimum,

respectively, using the criteria based on the first principal angle and residual. It is

seen from Figures 7.10 and 7.11 that the optimal column selected by the criterion

based on the first principal angle is the same as the optimal column chosen by the

criterion based on the residual for most values of k, and the greatest differences occur

only for small values of k for both criteria.
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Figure 7.11: The column of S̄k(f̃k, α1g̃k)Qk for which the error in (7.10) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.3.

�

Example 7.4. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 7.3. It is seen that m = 27, n = 27 and the

degree of their GCD is d̂ = 17.

Root of f̂(x) Multiplicity
1.3679e-006 6

-2.4583e-005 4
3.6782e-007 5
7.1341e-006 7

-9.4731e-005 5

Root of ĝ(x) Multiplicity
1.3679e-006 7
2.3684e-006 4
3.6782e-007 4
-5.7936e-006 5
7.1341e-006 7

Table 7.3: The roots and multiplicities of f̂(x) and ĝ(x) for Example 7.4.

The polynomials are perturbed by noise, such that the componentwise signal-to-

noise ratio equals to 108.

It is seen from Figures 7.13 and 7.14 that S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk yield the
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correct results because the maximum change in each graph occurs at k = 17, which

is correct because deg GCD(f̂ , ĝ) = 17. However, Sk(ḟk, ġk) returns the incorrect

results because Figure 7.12 shows that the maximum change in log10 φk is not clearly

defined and the maximum change in log10 rk occurs for k = 26. In addition, Figures

7.15 and 7.16 demonstrate that two criteria based on the first principal angle and

residual, yield different optimal columns for most values of k.
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Figure 7.12: The variation of log10 φk and log10 rk computed from Sk(ḟk, ġk), k =
1, . . . , 27, for Example 7.4.
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Figure 7.13: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 27, for Example 7.4.
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Figure 7.14: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 27, for Example 7.4.
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Figure 7.15: The column of S̄k(f́k, α2ǵk) for which the error in (7.9) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.4.
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Figure 7.16: The column of S̄k(f̃k, α1g̃k)Qk for which the error in (7.10) is a minimum,
using the first principal angle •, Method 1, and the residual N, Method 2, against k,
for Example 7.4.

�

7.6 Discussion

It was shown in Chapter 6 that the inclusion of the diagonal matrix Q is important

for the improvement of results because the Sylvester matrix S̄(f̃ , α1g̃)Q yields sig-

nificantly better results than the Sylvester matrix S̄(f́ , α2ǵ). However, it was seen

from the examples in Section 7.5 that when the methods using the first principal

angle and residual are applied to the Sylvester subresultant matrices of S̄(f́ , α2ǵ) and

S̄(f̃ , α1g̃)Q, S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, both S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk

return similar correct results, and the improvement of results caused by the inclusion

of the diagonal matrix Qk is not obvious, which is explained as following.

Consider the computation of the degree of an AGCD using the method of the

first principal angle applied to two forms of the Sylvester subresultant matrices,
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S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk.

Consider the subresultant matrices S̄k(f́k, α2ǵk), k = 1, . . . ,min(m,n). It was shown

in Section 7.4.1 that the selection of the optimal column of S̄k(f́k, α2ǵk) for k =

1, . . . ,min(m,n), requires the calculation of the first principal angle between lk,i and

the column space of Lk,i for i = 1, . . . , m+ n− 2k+ 2, where lk,i is the ith column of

S̄k(f́k, α2ǵk) and Lk,i is the remaining matrix of S̄k(f́k, α2ǵk) after the removal of the

ith column,

Lk,i =

[

lk,1 · · · lk,i−1 lk,i+1 · · · lk,m+n−2k+2

]

∈ R
(m+n−k+1)×(m+n−2k+1).

The calculation of the first principal angle between lk,i and the column space of Lk,i

requires the unit vector of lk,i and an orthonormal basis for Lk,i to be computed. The

unit vector pk,i of lk,i is

pk,i =
lk,i

‖lk,i‖
,

and the orthonormal basis O(Lk,i) for Lk,i is obtained by applying the QR decompo-

sition to Lk,i, which involves the Gram-Schmidt process,

v1 = lk,1, t1 =
v1

‖v1‖
,

v2 = lk,2 −
(
lk,2 · t1

)
t1, t2 =

v2

‖v2‖
,

...

vi−1 = lk,i−1 −
i−2∑

j=1

(
lk,i−1 · tj

)
tj, ti−1 =

vi−1

‖vi−1‖
,

vi+1 = lk,i+1 −
i∑

j=1

(
lk,i+1 · tj

)
tj, ti+1 =

vi+1

‖vi+1‖
,

...

vm+n−2k+2 = lk,m+n−2k+2 −
m+n−2k+1∑

j=1

(
lk,m+n−2k+2 · tj

)
tj , tm+n−2k+2 =

vm+n−2k+2

‖vm+n−2k+2‖
,
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where r · w denotes the inner product of the vectors r and w, and ‖ · ‖ denotes the

2-norm.

The orthonormal basis O(Lk,i) for Lk,i is

O(Lk,i) =

[

t1 · · · ti−1 ti+1 · · · tm+n−2k+2

]

∈ R
(m+n−k+1)×(m+n−2k+1).

It was shown in Section 7.4.1 that the unit vector pk,i of lk,i and the orthonormal

basis O(Lk,i) for Lk,i are used for the calculation of the first principal angle between

lk,i and the column space of Lk,i.

Consider the subresultant matrices S̄k(f̃k, α1g̃k)Qk, k = 1, . . . ,min(m,n), which are

equivalent to postmultiplying S̄k(f̃k, α1g̃k) by the diagonal matrix Qk.

Suppose that the matrix S̄k(f̃k, α1g̃k) ∈ R
(m+n−k+1)×(m+n−2k+2) is

S̄k(f̃k, α1g̃k) =

[

ck,1 ck,2 · · · · · · ck,m+n−2k+1 ck,m+n−2k+2

]

, (7.51)

where ck,i is the ith column of S̄k(f̃k, α1g̃k).

It follows from (3.30) that the entries on the diagonal of Qk are the combinatorial

factors, and postmultiplying S̄k(f̃k, α1g̃k) by the diagonal matrix Qk is equivalent to

multiplying the ith column of S̄k(f̃k, α1g̃k), ck,i, by the ith entry on the diagonal of

Qk, qk,i, that is

S̄k(f̃k, α1g̃k)Qk =

[

hk,1 hk,2 · · · · · · hk,m+n−2k+2

]

=

[

qk,1ck,1 qk,2ck,2 · · · · · · qk,m+n−2k+2ck,m+n−2k+2

]

, (7.52)

where qk,i is a combinatorial factor, ck,i is a vector and hk,i = qk,ick,i.

The selection of the optimal column of S̄k(f̃k, α1g̃k)Qk for k = 1, . . . ,min(m,n), also

requires the calculation of the first principal angle between hk,i and the column space

of Hk,i for i = 1, . . . , m+ n − 2k + 2, where hk,i is the ith column of S̄k(f̃k, α1g̃k)Qk

and Hk,i ∈ R
(m+n−k+1)×(m+n−2k+1) is the remaining matrix of S̄k(f̃k, α1g̃k)Qk after the
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removal of the ith column,

Hk,i =

[

hk,1 · · · hk,i−1 hk,i+1 · · · hk,m+n−2k+2

]

=

[

qk,1ck,1 · · · qk,i−1ck,i−1 qk,i+1ck,i+1 · · · qk,m+n−2k+2ck,m+n−2k+2

]

.

The calculation of the first principal angle between hk,i and the column space of Hk,i

requires the unit vector of hk,i and an orthonormal basis for Hk,i to be computed.

The unit vector uk,i of hk,i is

uk,i =
hk,i

‖hk,i‖
=

qk,ick,i

‖qk,ick,i‖
=

qk,ick,i

qk,i‖ck,i‖
=

ck,i

‖ck,i‖
,

and the orthonormal basis O(Hk,i) for Hk,i is computed by applying the QR decom-

position to Hk,i, which involves the Gram-Schmidt process,

r1 = hk,1 = qk,1ck,1,

e1 =
r1
‖r1‖

=
qk,1ck,1

‖qk,1ck,1‖
=

ck,1

‖ck,1‖
,

r2 = hk,2 −
(
hk,2 · e1

)
e1 = qk,2

(

ck,2 −
(
ck,2 · e1

)
e1

)

= qk,2wk,2,

e2 =
r2
‖r2‖

=
qk,2wk,2

‖qk,2wk,2‖
=

wk,2

‖wk,2‖
,

...

ri−1 = hk,i−1 −
i−2∑

j=1

(
hk,i−1 · ej

)
ej = qk,i−1

(

ck,i−1 −
i−2∑

j=1

(
ck,i−1 · ej

)
ej

)

= qk,i−1wk,i−1,

ei−1 =
ri−1

‖ri−1‖
=

qk,i−1wk,i−1

‖qk,i−1wk,i−1‖
=

wk,i−1

‖wk,i−1‖
,

ri+1 = hk,i+1 −
i∑

j=1

(
hk,i+1 · ej

)
ej = qk,i+1

(

ck,i+1 −
i∑

j=1

(
ck,i+1 · ej

)
ej

)

= qk,i+1wk,i+1,

ei+1 =
ri+1

‖ri+1‖
=

qk,i+1wk,i+1

‖qk,i+1wk,i+1‖
=

wk,i+1

‖wk,i+1‖
,

...
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rm+n−2k+2 = hk,m+n−2k+2 −
m+n−2k+1∑

j=1

(
hk,m+n−2k+2 · ej

)
ej

= qk,m+n−2k+2

(

ck,m+n−2k+2 −
m+n−2k+1∑

j=1

(
ck,m+n−2k+2 · ej

)
ej

)

= qk,m+n−2k+2wk,m+n−2k+2,

em+n−2k+2 =
rm+n−2k+2

‖rm+n−2k+2‖
=

qk,m+n−2k+2wk,m+n−2k+2

‖qk,m+n−2k+2wk,m+n−2k+2‖
=

wk,m+n−2k+2

‖wk,m+n−2k+2‖
.

The orthonormal basis O(Hk,i) for Hk,i is

O(Hk,i) =

[

e1 · · · ei−1 ei+1 · · · em+n−2k+2

]

∈ R
(m+n−k+1)×(m+n−2k+1).

It is seen from the process of calculating the unit vector uk,i of hk,i and the orthonormal

basis O(Hk,i) for Hk,i that the effect of the ith entry on the diagonal of Qk, qk,i, is

canceled out because the process involves normalizing the vector by its 2 norm. The

unit vector uk,i and the orthonormal basis O(Hk,i) are used for the calculation of

the first principal angle between hk,i and the column space of Hk,i, and therefore the

diagonal matrix Qk has no effect on the computation of the first principal angle.

Consider now the computation of the degree of an AGCD using the method of the

residual applied to S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk.

When the subresultant matrices S̄k(f́k, α2ǵk), k = 1, . . . ,min(m,n), are used, it was

shown in Section 7.4.2 that the selection of the optimal column of S̄k(f́k, α2ǵk) for

k = 1, . . . ,min(m,n), requires the calculation of the residual rk,i(Lk,i, lk,i) for i =

1, . . . , m + n − 2k + 2, where lk,i is the ith column of S̄k(f́k, α2ǵk) and Lk,i is the

remaining matrix of S̄k(f́k, α2ǵk) after the removal of the ith column.

It follows from (7.49) that

‖rk,i(Lk,i, lk,i)‖
‖lk,i‖

=

∣
∣
∣

∣
∣
∣

(

I − Lk,iL
†
k,i

)

lk,i

∣
∣
∣

∣
∣
∣

||lk,i||
.
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Consider the method of the residual applied to S̄k(f̃k, α1g̃k)Qk. Similarly, the selec-

tion of the optimal column of S̄k(f̃k, α1g̃k)Qk for k = 1, . . . ,min(m,n), requires the

calculation of the residual rk,i(Hk,i, hk,i) for i = 1, . . . , m + n − 2k + 2, where hk,i is

the ith column of S̄k(f̃k, α1g̃k)Qk and Hk,i is the remaining matrix of S̄k(f̃k, α1g̃k)Qk

after the removal of the ith column.

Suppose that S̄k(f̃k, α1g̃k) is defined in (7.51). The matrix S̄k(f̃k, α1g̃k)Qk is obtained

by postmultiplying S̄k(f̃k, α1g̃k) by the diagonal matrix Qk, which is equivalent to

multiplying the ith column of S̄k(f̃k, α1g̃k), ck,i, by the ith entry on the diagonal of

Qk, qk,i. It therefore follows from (7.52) that

hk,i = qk,ick,i.

Furthermore, if Ck,i ∈ R
(m+n−k+1)×(m+n−2k+1) is the remaining matrix of S̄k(f̃k, α1g̃k)

after the removal of the ith column and Q̄k,i is the remaining matrix of Qk after

removing the ith entry on the diagonal of Qk,

Q̄k,i = diag

[

qk,1 · · · qk,i−1 qk,i+1 · · · qk,m+n−2k+2

]

∈ R
(m+n−2k+1)×(m+n−2k+1),

where qk,j is the combinatorial factor, then

Hk,i = Ck,iQ̄k,i.

It follows from (7.49) that

‖rk,i(Hk,i, hk,i)‖
‖hk,i‖

=

∣
∣
∣

∣
∣
∣

(

I −Hk,iH
†
k,i

)

hk,i

∣
∣
∣

∣
∣
∣

||hk,i||
=

∣
∣
∣

∣
∣
∣

(

I − Ck,iQ̄k,i

(
Ck,iQ̄k,i

)†
)

qk,ick,i

∣
∣
∣

∣
∣
∣

||qk,ick,i||

=
qk,i

∣
∣
∣

∣
∣
∣

(

I − Ck,iQ̄k,i

(
Ck,iQ̄k,i

)†
)

ck,i

∣
∣
∣

∣
∣
∣

qk,i ||ck,i||

=

∣
∣
∣

∣
∣
∣

(

I − Ck,iQ̄k,i

(
Ck,iQ̄k,i

)†
)

ck,i

∣
∣
∣

∣
∣
∣

||ck,i||
.
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Since

(
Ck,iQ̄k,i

)†
=

((
Ck,iQ̄k,i

)T (
Ck,iQ̄k,i

))−1(
Ck,iQ̄k,i

)T

=
(

Q̄T
k,i

(
CT

k,iCk,i

)
Q̄k,i

)−1(
Ck,iQ̄k,i

)T

=
(

Q̄−1
k,i

(
CT

k,iCk,i

)−1
Q̄−T

k,i

)(
Q̄T

k,iC
T
k,i

)

= Q̄−1
k,i

(
CT

k,iCk,i

)−1
CT

k,i,

then

Ck,iQ̄k,i

(
Ck,iQ̄k,i

)†
= Ck,iQ̄k,iQ̄

−1
k,i

(
CT

k,iCk,i

)−1
CT

k,i = Ck,i

(
CT

k,iCk,i

)−1
CT

k,i = Ck,iC
†
k,i.

Thus

‖rk,i(Hk,i, hk,i)‖
‖hk,i‖

=

∣
∣
∣

∣
∣
∣

(

I − Ck,iQ̄k,i

(
Ck,iQ̄k,i

)†
)

ck,i

∣
∣
∣

∣
∣
∣

||ck,i||
=

∣
∣
∣

∣
∣
∣

(
I − Ck,iC

†
k,i

)
ck,i

∣
∣
∣

∣
∣
∣

||ck,i||

=
‖rk,i(Ck,i, ck,i)‖

‖ck,i‖
.

This analysis shows that the normalized value of the 2-norm of the residual between

the remaining matrix of S̄k(f̃k, α1g̃k)Qk after the removal of the ith column, Hk,i, and

the ith column of S̄k(f̃k, α1g̃k)Qk, hk,i, is equal to the normalized value of the 2-norm

of the residual between the remaining matrix of S̄k(f̃k, α1g̃k) after the removal of the

ith column, Ck,i, and the ith column of S̄k(f̃k, α1g̃k), ck,i, and therefore the diagonal

matrix Qk has no effect on the computation.

7.7 Summary

This chapter has introduced the computation of the degree of an AGCD of inexact

polynomials using two methods, one based on the first principal angle and the other

based on the residual of a linear algebraic equation. The computation is performed

on the subresultant matrices S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, k = 1, . . . ,min(m,n),
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which are processed by three preprocessing operations. Experiments show that both

methods yield correct estimates of the degree of an AGCD, and the preprocessing

operations are crucial for the improvement of results. Furthermore, different criteria

used to define the error in the approximate linear algebraic equation (7.9) or (7.10)

may select different optimal columns.

Chapters 5, 6 and 7 present three methods to determine the degree of an AGCD of

inexact polynomials, and it is desirable to compare these three methods to determine

the method yielding the best results. This issue is discussed in the next chapter.



Chapter 8

The comparison of three methods

Chapters 5, 6 and 7 present three methods to determine the degree of an AGCD

of inexact polynomials. It is shown in Chapter 5 that the Bézout resultant ma-

trix defined in the modified Bernstein basis, B̄
(
f̌ , ǧ
)

yields better results than the

Bézout resultant matrix defined in the Bernstein basis, B(f, g). Chapter 6 considers

two forms of the Sylvester resultant matrix defined in the modified Bernstein basis,

S̄(f́ , α2ǵ) and S̄(f̃ , α1g̃)Q. The comparison of the results obtained from S̄(f́ , α2ǵ) and

S̄(f̃ , α1g̃)Q suggests that S̄(f̃ , α1g̃)Q yields better results. In Chapter 7, the methods

based on the first principal angle and residual are implemented on two forms of the

Sylvester subresultant matrices defined in the modified Bernstein basis, S̄k(f́k, α2ǵk)

and S̄k(f̃k, α1g̃k)Qk. Experiments show that both S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk

return good results.

In the following examples, the results obtained from B̄
(
f̌ , ǧ
)
, S̄(f̃ , α1g̃)Q, S̄k(f́k, α2ǵk)

and S̄k(f̃k, α1g̃k)Qk are compared to determine the method yielding the best results.

176
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8.1 Examples

In this section, the results obtained with B̄
(
f̌ , ǧ
)
, S̄(f̃ , α1g̃)Q, S̄k(f́k, α2ǵk) and

S̄k(f̃k, α1g̃k)Qk are shown and it is therefore instructive to review their definitions:

• B̄
(
f̌ , ǧ
)

is the Bézout matrix of the modified Bernstein polynomials f̌(w) and

ǧ(w), which are defined in (5.13) and (5.14) respectively, that arise after the

preprocessing operation shown in Section 5.1 has been implemented.

• S̄(f̃ , α1g̃)Q is the Sylvester matrix of the modified Bernstein polynomials f̃(w)

and g̃(w), which are defined in (6.27) and (6.28) respectively, that arise after the

three preprocessing operations shown in Section 6.1 have been implemented.

• S̄k(f́k, α2ǵk) is the kth subresultant matrix of the modified Bernstein polyno-

mials f́k(w) and ǵk(w), which are defined in (7.36) and (7.37) respectively, that

arise after the three preprocessing operations shown in Section 7.3 have been

implemented.

• S̄k(f̃k, α1g̃k)Qk is the kth subresultant matrix of the modified Bernstein polyno-

mials f̃k(w) and g̃k(w), which are defined in (7.34) and (7.35) respectively, that

arise after the three preprocessing operations shown in Section 7.3 have been

implemented.

Example 8.1. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 8.1. It is seen that m = 22, n = 19 and the

degree of their GCD is d̂ = 12.
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Root of f̂(x) Multiplicity
1.3974e-005 5
2.9147e-006 4
7.1963e-006 8

-8.8579e-005 5

Root of ĝ(x) Multiplicity
1.3974e-005 4
1.9867e-007 6
2.9147e-006 3
-8.8579e-005 6

Table 8.1: The roots and multiplicities of f̂(x) and ĝ(x) for Example 8.1.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial.
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Figure 8.1: The normalized singular values of (a) B̄
(
f̌ , ǧ
)

and (b) S̄(f̃ , α1g̃)Q for
Example 8.1.

The normalized singular values of B̄
(
f̌ , ǧ
)

and S̄(f̃ , α1g̃)Q are shown in Fig-

ures 8.1(a) and (b) respectively. It is seen from Figure 8.1(a) that the Bézout ma-

trix B̄
(
f̌ , ǧ
)

is of full rank, which implies that f̂(x) and ĝ(x) are coprime. The

result in Figure 8.1(a) was obtained with θ0 = 1.6029e − 005. The rank of the

Sylvester matrix S̄(f̃ , α1g̃)Q is, however, clearly defined and equal to 29, which is

correct because deg GCD(f̂ , ĝ) = 12. The result in Figure 8.1(b) was obtained with

α1 = 1.9065e− 007 and θ1 = 7.0564e− 006.
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Figure 8.2: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 19, for Example 8.1.
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Figure 8.3: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 19, for Example 8.1.

Figures 8.2 and 8.3 show the variation of log10 φk and log10 rk computed from

S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 19, respectively. It is seen from Figures

8.2 and 8.3 that the maximum gradient in each graph occurs when k = 12, which is

correct because deg GCD(f̂ , ĝ) = 12. �

Example 8.2. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 8.2. It is seen that m = 38, n = 31 and the
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degree of their GCD is d̂ = 21.

Root of f̂(x) Multiplicity
0.1278e+000 6
0.2374e+000 8
-0.5679e+000 6
0.7937e+000 5
1.7359e+000 9
-2.1455e+000 4

Root of ĝ(x) Multiplicity
0.1278e+000 5
0.2374e+000 7

-0.5679e+000 5
0.9949e+000 6

-2.1455e+000 5
-3.4998e+000 3

Table 8.2: The roots and multiplicities of f̂(x) and ĝ(x) for Example 8.2.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial.
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Figure 8.4: The normalized singular values of (a) B̄
(
f̌ , ǧ
)

and (b) S̄(f̃ , α1g̃)Q for
Example 8.2.

Figure 8.4(a) shows the normalized singular values of B̄
(
f̌ , ǧ
)
, and it is seen that

the Bézout matrix B̄
(
f̌ , ǧ
)

has full rank, which suggests that f̂(x) and ĝ(x) are

coprime. The result in Figure 8.4(a) was obtained with θ0 = 0.7102. Figure 8.4(b)

shows the normalized singular values of S̄(f̃ , α1g̃)Q, and its rank is equal to 48, which
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is correct, and furthermore, it is clearly defined. The result in Figure 8.4(b) was ob-

tained with α1 = 29.3094 and θ1 = 1.07.
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Figure 8.5: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 31, for Example 8.2.
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Figure 8.6: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 31, for Example 8.2.

Figure 8.5 shows the variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk),

k = 1, . . . , 31, and Figure 8.6 shows the variation of log10 φk and log10 rk computed

from S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 31. It is seen from Figures 8.5 and 8.6 that the
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maximum gradient in each graph occurs for k = 21, which is correct, and that these

values of k are clearly defined. �

Example 8.3. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 8.3. It is seen that m = 22, n = 25 and the

degree of their GCD is d̂ = 15.

Root of f̂(x) Multiplicity
0.3473e+000 4
0.5961e+000 6
1.4793e+000 3
-2.6893e+000 4
3.7913e+000 5

Root of ĝ(x) Multiplicity
-0.1124e+000 4
0.5961e+000 7

-1.1794e+000 3
-2.6893e+000 5
3.7913e+000 6

Table 8.3: The roots and multiplicities of f̂(x) and ĝ(x) for Example 8.3.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial.
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Figure 8.7: The normalized singular values of (a) B̄
(
f̌ , ǧ
)

and (b) S̄(f̃ , α1g̃)Q for
Example 8.3.

The normalized singular values of B̄
(
f̌ , ǧ
)

and S̄(f̃ , α1g̃)Q are shown in Figure
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8.7, and similarly the matrices B̄
(
f̌ , ǧ
)

and S̄(f̃ , α1g̃)Q yield, respectively, incorrect

and correct results because B̄
(
f̌ , ǧ
)

has full rank and the rank of S̄(f̃ , α1g̃)Q is equal

to 32. The result in Figure 8.7(a) was obtained with θ0 = 1.0621, and the result in

Figure 8.7(b) was obtained with α1 = 8.2488 and θ1 = 0.9098.
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Figure 8.8: The variation of log10 φk and log10 rk computed from S̄k(f́k, α2ǵk), k =
1, . . . , 22, for Example 8.3.
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Figure 8.9: The variation of log10 φk and log10 rk computed from S̄k(f̃k, α1g̃k)Qk,
k = 1, . . . , 22, for Example 8.3.

Figures 8.8 and 8.9 show the variation of log10 φk and log10 rk computed from
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S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, k = 1, . . . , 22, respectively. It is seen from Figures

8.8 and 8.9 that S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk yield the correct results because

the maximum change in each graph occurs at k = 15, which is correct because

deg GCD(f̂ , ĝ) = 15. �

The comparison between the result obtained from B̄
(
f̌ , ǧ
)

and the results obtained

from S̄(f̃ , α1g̃)Q, S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, indicates that the result obtained

from B̄
(
f̌ , ǧ
)

is inferior to the results obtained from S̄(f̃ , α1g̃)Q, S̄k(f́k, α2ǵk) and

S̄k(f̃k, α1g̃k)Qk. This result may therefore confirm the remark by Bini and Marco [6]

that the additions required for the computation of the entries of the Bézout matrix

may cause numerical cancellation in a floating point environment. This was also

investigated by considering the situation that occurs when noise is not added, and

the Bézout matrix B̄
(
f̌ , ǧ
)

returned the correct numerical rank in most, but not all,

examples, but the Sylvester matrix S̄(f̃ , α1g̃)Q returned the correct numerical rank

in all examples. This shows that S̄(f̃ , α1g̃)Q is numerically superior to B̄
(
f̌ , ǧ
)
, and

it is therefore expected that the result obtained with B̄
(
f̌ , ǧ
)

deteriorates when noise

is added to the coefficients of the polynomials, as shown in the examples.

It is shown that both the Sylvester resultant matrix S̄(f̃ , α1g̃)Q and two forms of

the Sylvester subresultant matrices, S̄k(f́k, α2ǵk) and S̄k(f̃k, α1g̃k)Qk, yield correct

estimate of the degree d of an AGCD, and therefore the definition of d used in this

thesis, which is stated in Section 4.4, is practical because there exist methods for

which this definition of d can be realized. Furthermore, the knowledge of the noise

level is not required for these methods.
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8.2 Summary

This chapter compared three methods to determine the degree of an AGCD of inexact

polynomials, and it was shown that the Sylvester matrix and its subresultant matrices

yield better results than the Bézout matrix.

The determination of the degree d of an AGCD of inexact polynomials has been

considered, and it is therefore desirable to consider the computation of the coefficients

of an AGCD. In particular, the perturbations added to the coefficients of inexact

polynomials are calculated, such that the perturbed forms of inexact polynomials

possess a non-constant common divisor of degree d. This topic is discussed in the

next chapter.



Chapter 9

The coefficients of an AGCD

As stated in Chapter 4, the calculation of an AGCD of inexact polynomials involves

two steps: The degree of an AGCD is determined initially, after which the coefficients

of an AGCD are computed. The determination of the degree of an AGCD has been

covered in Chapters 5, 6 and 7, and the computation of the coefficients of an AGCD

is discussed in this chapter.

It is assumed that the degree d of an AGCD d(x) of two inexact polynomials f(x)

and g(x), which are defined in (4.2), is determined using the methods described in

Chapters 5, 6 and 7. There therefore exist quotient polynomials u(x) and v(x), such

that

f(x) ≈ d(x)u(x) and g(x) ≈ d(x)v(x).

Since

f(x)

u(x)
≈ g(x)

v(x)
,

we obtain

f(x)v(x) − g(x)u(x) ≈ 0,

186
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which can be written in matrix form,

Sd(f, g)






v

−u




 ≈ 0, (9.1)

where Sd(f, g) is the dth subresultant matrix of f(x) and g(x), which is defined in

(3.18), and v, u are the scaled coefficients vectors of v(x) and u(x) respectively.

It was shown in Chapter 7 that the approximate homogeneous equation (9.1) can be

converted to an approximate linear algebraic equation by moving the optimal column

of Sd(f, g), bd,q, to the right hand side of (9.1),

Ad,qx ≈ bd,q, (9.2)

where Ad,q ∈ R
(m+n−d+1)×(m+n−2d+1) is the remaining matrix of Sd(f, g) after the

removal of its qth column, bd,q ∈ R
m+n−d+1, and

x =



















x1

...

xq−1

xq+1

...

xm+n−2d+2



















∈ R
m+n−2d+1,






v

−u




 =






















x1

...

xq−1

−1

xq+1

...

xm+n−2d+2






















∈ R
m+n−2d+2.

The approximation (9.2) must be corrected to induce an exact solution. The structure

preserving method is used here, which adds a matrix F that has the same structure

as Ad,q to Ad,q and adds a vector c to bd,q respectively, such that

(
Ad,q + F

)
x =

(
bd,q + c

)
.
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The perturbation matrix F and vector c are calculated using the method of structured

nonlinear total least norm (SNTLN) [41], which will be considered in the next section.

9.1 The method of SNTLN

This section considers the computation of the coefficients of an AGCD using the

method of SNTLN. Since the determination of the degree of an AGCD of two inexact

polynomials f(x) and g(x) has been introduced in the previous chapters, this section

assumes that the degree d of an AGCD is known. Chapter 7 shows that two forms

of the subresultant matrices defined in the modified Bernstein basis, S̄k(f́k, α2ǵk) and

S̄k(f̃k, α1g̃k)Qk, which are processed by all three preprocessing operations described

in Section 7.3 respectively, yield significantly better results than the Sylvester subre-

sultant matrices defined in the Bernstein basis, Sk(f, g). Therefore, it is desirable to

consider the method of SNTLN implemented on these two forms of the subresultant

matrices. The matrix S̄k(f̃k, α1g̃k)Qk has a more complex form than S̄k(f́k, α2ǵk), and

therefore this section only describes the method of SNTLN for S̄k(f̃k, α1g̃k)Qk, since

the method of SNTLN for S̄k(f́k, α2ǵk) can be easily obtained from it.

It is assumed that the inexact Bernstein polynomials f(x) and g(x), which are defined

in (4.2), are coprime, and the degree d of an AGCD of f(x) and g(x) is known. The

three preprocessing operations described in Section 7.3 transform f(x) and g(x) to

the modified Bernstein polynomials f̃d(w) and α1g̃d(w), which are defined in (7.34)

and (7.35) respectively. Since f̃d(w) and α1g̃d(w) have an AGCD d̃d(w) of degree d,

there exist quotient polynomials ũd(w) and ṽd(w), such that

f̃d(w) ≈ d̃d(w)ũd(w) and α1g̃d(w) ≈ d̃d(w)ṽd(w),
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and ũd(w), ṽd(w) and d̃d(w) are defined as

ũd(w) =
m−d∑

i=0

(
ūd,iθ

i
1

)
(
m− d

i

)

(1 − θ1w)m−d−iwi,

ṽd(w) =

n−d∑

i=0

(
v̄d,iθ

i
1

)
(
n− d

i

)

(1 − θ1w)n−d−iwi,

and

d̃d(w) =

d∑

i=0

(
d̄d,iθ

i
1

)
(
d

i

)

(1 − θ1w)d−iwi,

respectively, where α1 = α1(d) and θ1 = θ1(d) are the solutions of the minimization

problem (7.33).

Since

f̃d(w)

ũd(w)
≈ α1g̃d(w)

ṽd(w)
,

then

f̃d(w)ṽd(w) − α1g̃d(w)ũd(w) ≈ 0,

which can be written in matrix form,

S̄d(f̃d, α1g̃d)Qd






ṽd(θ1)

−ũd(θ1)




 ≈ 0, (9.3)

where S̄d(f̃d, α1g̃d)Qd is the dth subresultant matrix of f̃d(w) and α1g̃d(w), which is

defined in (7.29), and ṽd(θ1) and ũd(θ1) are the coefficients vectors of ṽd(w) and ũd(w)

respectively.

Likewise, it is assumed that hd,q, the qth column of S̄d(f̃d, α1g̃d)Qd, is the optimal

column, which is chosen by the criterion based on the first principal angle or the

residual, and Hd,q ∈ R
(m+n−d+1)×(m+n−2d+1) is the matrix formed after the removal of
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the optimal column hd,q from S̄d(f̃d, α1g̃d)Qd, that is

Hd,q =

[

hd,1 · · · hd,q−1 hd,q+1 · · · hd,m+n−2d+2

]

.

Moving the qth column of S̄d(f̃d, α1g̃d)Qd to the right hand side of (9.3) therefore

yields the approximation

Hd,qx ≈ hd,q, (9.4)

where

x =

[

x1 · · · xq−1 xq+1 · · · xm+n−2d+2

]T

∈ R
m+n−2d+1,

and






ṽd(θ1)

−ũd(θ1)




 =



















v̄d,0

...

v̄d,n−dθ
n−d
1

−ūd,0

...

−ūd,m−dθ
m−d
1



















=






















x1

...

xq−1

−1

xq+1

...

xm+n−2d+2






















∈ R
m+n−2d+2.

It was shown in Section 7.2 that the operation of removing the qth column from

S̄d(f̃d, α1g̃d)Qd is achieved by postmultiplying S̄d(f̃d, α1g̃d)Qd by Md,q, which is equal

to the identity matrix after the removal of the qth column,

Md,q =

[

ed,1 ed,2 · · · ed,q−1 ed,q+1 · · · ed,m+n−2d+1 ed,m+n−2d+2

]

,

where Md,q ∈ R
(m+n−2d+2)×(m+n−2d+1), q = 1, . . . , m+n−2d+2, and ed,q ∈ R

m+n−2d+2

is the qth unit basis vector. Since the qth column of S̄d(f̃d, α1g̃d)Qd is equal to

S̄d(f̃d, α1g̃d)Qded,q, it follows that

Hd,q = S̄d(f̃d, α1g̃d)QdMd,q and hd,q = S̄d(f̃d, α1g̃d)Qded,q,
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and thus (9.4) is rewritten as

S̄d(f̃d, α1g̃d)QdMd,qx ≈ S̄d(f̃d, α1g̃d)Qded,q. (9.5)

In the method of SNTLN, α1 = α1(d) and θ1 = θ1(d), which are the solutions of the

minimization problem (7.33), are the initial values of α and θ respectively. The values

of α and θ are then refined in each iteration for the calculation of the corrected forms

of f̃d(w) and g̃d(w) using α1 and θ1 as the initial values in the iterative refinement

procedure, such that these corrected forms have a non-constant common divisor.

Therefore, the constants α1 and θ1 in S̄d(f̃d, α1g̃d)Qd are replaced by the parameters

α and θ. It follows from (7.29) that the Sylvester subresultant matrix S̄d(f̃d, αg̃d)Qd

of f̃d(w) and αg̃d(w) is given by

S̄d(f̃d, αg̃d)Qd = D−1
d Ud(f̃d, αg̃d)Qd,

where Ud(f̃d, αg̃d) ∈ R
(m+n−d+1)×(m+n−2d+2) is equal to






















ād,0

(
m

0

)
αb̄d,0

(
n

0

)

ād,1

(
m

1

)
θ

. . . αb̄d,1

(
n

1

)
θ

. . .

...
. . . ād,0

(
m

0

) ...
. . . αb̄d,0

(
n

0

)

ād,m−1

(
m

m−1

)
θm−1 . . . ād,1

(
m

1

)
θ αb̄d,n−1

(
n

n−1

)
θn−1 . . . αb̄d,1

(
n

1

)
θ

ād,m

(
m

m

)
θm . . .

... αb̄d,n

(
n

n

)
θn . . .

...

. . . ād,m−1

(
m

m−1

)
θm−1 . . . αb̄d,n−1

(
n

n−1

)
θn−1

ād,m

(
m

m

)
θm αb̄d,n

(
n

n

)
θn






















,

ād,i

(
m

i

)
θi, i = 0, . . . , m, and αb̄d,j

(
n

j

)
θj , j = 0, . . . , n, are the scaled coefficients of f̃d(w)

and αg̃d(w), which are defined in (7.34) and (7.35) respectively, and the matrices D−1
d

and Qd are defined in (3.14) and (3.30) respectively. Then, (9.5) is written as

(

D−1
d Ud(f̃d, αg̃d)Qd

)

Md,qx ≈
(

D−1
d Ud(f̃d, αg̃d)Qd

)

ed,q. (9.6)
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The inexact polynomials f̃d(w) and g̃d(w) are perturbed in order to induce a non-

constant common divisor in their perturbed forms. If the perturbations of the coeffi-

cients of f̃d(w) and αg̃d(w) are

ziθ
i, i = 0, . . . , m and αzm+1+jθ

j , j = 0, . . . , n,

respectively, then Bd = Bd(α, θ, z) ∈ R
(m+n−d+1)×(m+n−2d+2), the dth subresultant

matrix of the perturbations, is

Bd = D−1
d FdQd,

where D−1
d is defined in (3.14) and Fd = Fd(α, θ, z) ∈ R

(m+n−d+1)×(m+n−2d+2) is equal

to





















z0
(

m

0

)
αzm+1

(
n

0

)

z1
(

m

1

)
θ

. . . αzm+2

(
n

1

)
θ

. . .

...
. . . z0

(
m

0

) ...
. . . αzm+1

(
n

0

)

zm−1

(
m

m−1

)
θm−1 . . . z1

(
m

1

)
θ αzm+n

(
n

n−1

)
θn−1 . . . αzm+2

(
n

1

)
θ

zm

(
m

m

)
θm . . .

... αzm+n+1

(
n

n

)
θn . . .

...

. . . zm−1

(
m

m−1

)
θm−1 . . . αzm+n

(
n

n−1

)
θn−1

zm

(
m

m

)
θm αzm+n+1

(
n

n

)
θn






















,

(9.7)

and Qd is defined in (3.30).

If Gd,q = Gd,q(α, θ, z) ∈ R
(m+n−d+1)×(m+n−2d+1) is the matrix that results when the

qth column gd,q ∈ R
m+n−d+1 of Bd is removed, then it follows from the definitions of

Md,q and ed,q that

Gd,q = BdMd,q = D−1
d FdQdMd,q and gd,q = Bded,q = D−1

d FdQded,q,
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and thus (9.6) becomes

D−1
d (Ud + Fd)QdMd,qx = D−1

d (Ud + Fd)Qded,q. (9.8)

Since this equation is solved for α, θ, z and x, it is desirable to change the notation

slightly. Thus, (9.8) is written as

D−1
d

(
Ud(α, θ) + Fd(α, θ, z)

)
QdMd,qx = cd(α, θ) + hd(α, θ, z), (9.9)

where

cd(α, θ) = D−1
d Ud(α, θ)Qded,q and hd(α, θ, z) = D−1

d Fd(α, θ, z)Qded,q.

It is noted that depending on the column q, cd and hd may or may not be functions

of α:

cd = cd(θ) if 1 ≤ q ≤ n− d+ 1

cd = cd(α, θ) if n− d+ 2 ≤ q ≤ m+ n− 2d+ 2

hd = hd(θ, z) if 1 ≤ q ≤ n− d+ 1

hd = hd(α, θ, z) if n− d+ 2 ≤ q ≤ m+ n− 2d+ 2.

If 1 ≤ q ≤ n − d + 1, cd and hd have no dependence on α, and if n − d + 2 ≤ q ≤

m + n − 2d + 2, cd and hd are functions of α. The following theory assumes that

n− d+ 2 ≤ q ≤ m+ n− 2d+ 2.

Equation (9.9) is a non-linear equation that is solved by the Newton-Raphson method.

In general, it has an infinite number of solutions, but the solution that is nearest the

given inexact data is sought. The residual associated with an approximate solution

of (9.9) is

r(α, θ, x, z) = cd(α, θ) + hd(α, θ, z) −D−1
d (Ud(α, θ) + Fd(α, θ, z))QdMd,qx, (9.10)

and thus if r̃ is defined as

r̃ := r(α+ δα, θ + δθ, x+ δx, z + δz),
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then

r̃ = cd(α + δα, θ + δθ) + hd(α + δα, θ + δθ, z + δz)

−D−1
d (Ud(α + δα, θ + δθ) + Fd(α + δα, θ + δθ, z + δz))QdMd,q(x+ δx)

= cd +
∂cd
∂α

δα+
∂cd
∂θ

δθ + hd +
∂hd

∂α
δα +

∂hd

∂θ
δθ +

m+n+1∑

i=0

∂hd

∂zi

δzi

−D−1
d UdQdMd,qx−D−1

d UdQdMd,qδx−
(

D−1
d

∂Ud

∂α
QdMd,qx

)

δα

−
(

D−1
d

∂Ud

∂θ
QdMd,qx

)

δθ −D−1
d FdQdMd,qx−D−1

d FdQdMd,qδx

−
(

D−1
d

∂Fd

∂α
QdMd,qx

)

δα−
(

D−1
d

∂Fd

∂θ
QdMd,qx

)

δθ

−D−1
d

(
m+n+1∑

i=0

∂Fd

∂zi

δzi

)

QdMd,qx,

to first order. It follows that

r̃ = r(α, θ, x, z) −
(

D−1
d

(
∂Ud

∂θ
+
∂Fd

∂θ

)

QdMd,qx−
(
∂cd
∂θ

+
∂hd

∂θ

))

δθ

−
(

D−1
d

(
∂Ud

∂α
+
∂Fd

∂α

)

QdMd,qx−
(
∂cd
∂α

+
∂hd

∂α

))

δα−D−1
d (Ud + Fd)QdMd,qδx

+
m+n+1∑

i=0

∂hd

∂zi

δzi −D−1
d

(
m+n+1∑

i=0

∂Fd

∂zi

δzi

)

QdMd,qx. (9.11)

Example 9.1. If q = n− d+ 3 > n− d+ 1, then cd = cd(α, θ) and hd = hd(α, θ, z),
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and thus

cd =
























0

αb̄d,0(n

0)(
m−d

1 )
(m+n−d

1 )
αb̄d,1(n

1)(
m−d

1 )θ

(m+n−d

2 )
...

αb̄d,n−1( n

n−1)(
m−d

1 )θn−1

(m+n−d

n )
αb̄d,n(n

n)(
m−d

1 )θn

(m+n−d

n+1 )

0m−d−1
























,
∂cd
∂θ

=























0

0

αb̄d,1(n

1)(
m−d

1 )
(m+n−d

2 )
...

αb̄d,n−1( n

n−1)(
m−d

1 )(n−1)θn−2

(m+n−d

n )
αb̄d,n(n

n)(
m−d

1 )nθn−1

(m+n−d

n+1 )

0m−d−1























,

where 0m−d−1 is a column vector of zeros of length m− d− 1, and

∂cd
∂α

=
























0

b̄d,0(n

0)(
m−d

1 )
(m+n−d

1 )
b̄d,1(n

1)(
m−d

1 )θ

(m+n−d

2 )
...

b̄d,n−1( n

n−1)(
m−d

1 )θn−1

(m+n−d

n )
b̄d,n(n

n)(
m−d

1 )θn

(m+n−d

n+1 )

0m−d−1
























.
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The vectors hd,
∂hd

∂θ
and ∂hd

∂α
have similar forms,

hd =
























0

αzm+1(n

0)(
m−d

1 )
(m+n−d

1 )
αzm+2(n

1)(
m−d

1 )θ

(m+n−d

2 )
...

αzm+n( n

n−1)(
m−d

1 )θn−1

(m+n−d

n )
αzm+n+1(n

n)(
m−d

1 )θn

(m+n−d

n+1 )

0m−d−1
























,
∂hd

∂θ
=























0

0

αzm+2(n

1)(
m−d

1 )
(m+n−d

2 )
...

αzm+n( n

n−1)(
m−d

1 )(n−1)θn−2

(m+n−d

n )
αzm+n+1(n

n)(
m−d

1 )nθn−1

(m+n−d

n+1 )

0m−d−1























,

and

∂hd

∂α
=
























0

zm+1(n

0)(
m−d

1 )
(m+n−d

1 )
zm+2(n

1)(
m−d

1 )θ

(m+n−d

2 )
...

zm+n( n

n−1)(
m−d

1 )θn−1

(m+n−d

n )
zm+n+1(n

n)(
m−d

1 )θn

(m+n−d

n+1 )

0m−d−1
























.

The partial derivatives ∂Ud

∂θ
, ∂Ud

∂α
, ∂Fd

∂θ
and ∂Fd

∂α
are calculated in a similar manner. �
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If q > n− d+ 1, the general expression for hd is

hd =
























0q−n+d−2

αzm+1(n

0)(
m−d

q−n+d−2)
( m+n−d

q−n+d−2)
αzm+2(n

1)(
m−d

q−n+d−2)θ

( m+n−d

q−n+d−1)
...

αzm+n( n

n−1)(
m−d

q−n+d−2)θn−1

(m+n−d

q+d−3 )
αzm+n+1(n

n)(
m−d

q−n+d−2)θn

(m+n−d

q+d−2 )

0m+n−2d−q+2
























= αD−1
d









0q−n+d−2,m+1 0q−n+d−2,n+1

0n+1,m+1 G

0m+n−2d−q+2,m+1 0m+n−2d−q+2,n+1



























z0
...

zm

zm+1

...

zm+n+1



















= αD−1
d Pdz,

where D−1
d is defined in (3.14), G = G(θ) ∈ R

(n+1)×(n+1),

G = diag

[
(

n

0

)(
m−d

q−n+d−2

) (
n

1

)(
m−d

q−n+d−2

)
θ · · ·

(
n

n−1

)(
m−d

q−n+d−2

)
θn−1

(
n

n

)(
m−d

q−n+d−2

)
θn

]

,

and

Pd = Pd(θ) =









0q−n+d−2,m+1 0q−n+d−2,n+1

0n+1,m+1 G

0m+n−2d−q+2,m+1 0m+n−2d−q+2,n+1









∈ R
(m+n−d+1)×(m+n+2).

Therefore, it follows that

δhd =
m+n+1∑

i=0

∂hd

∂zi

δzi = αD−1
d Pdδz,
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which enables the penultimate term in (9.11) to be simplified. Also, there exists a

matrix Yd = Yd(α, θ, x) ∈ R
(m+n−d+1)×(m+n+2) such that

(D−1
d Yd)z = (D−1

d FdQdMd,q)x,

for all α, θ, z, x, and this equation is obtained because polynomial multiplication is

commutative. It therefore follows that on differentiating both sides of this equation

with respect to z,

D−1
d Ydδz = D−1

d (δFd|α,θ: const.)QdMd,qx = D−1
d

(
m+n+1∑

i=0

∂Fd

∂zi

δzi

)

QdMd,qx,

and thus (9.11) simplifies to

r̃ = r(α, θ, x, z) −
(

D−1
d

(
∂Ud

∂θ
+
∂Fd

∂θ

)

QdMd,qx−
(
∂cd
∂θ

+
∂hd

∂θ

))

δθ

−
(

D−1
d

(
∂Ud

∂α
+
∂Fd

∂α

)

QdMd,qx−
(
∂cd
∂α

+
∂hd

∂α

))

δα−D−1
d (Ud + Fd)QdMd,qδx

−D−1
d (Yd − αPd)δz. (9.12)

Example 9.2. Let m = 4, n = 3, d = 2 and q = 4. Thus D−1
2 U2Q2 ∈ R

6×5 and

M2,4 ∈ R
5×4,

D−1
2 U2Q2M2,4 =





















ād,0(4
0)(

1
0)

(5
0)

0
αb̄d,0(3

0)(
2
0)

(5
0)

0

ād,1(4
1)(

1
0)θ

(5
1)

ād,0(4
0)(

1
1)

(5
1)

αb̄d,1(3
1)(

2
0)θ

(5
1)

0

ād,2(4
2)(

1
0)θ2

(5
2)

ād,1(4
1)(

1
1)θ

(5
2)

αb̄d,2(3
2)(

2
0)θ2

(5
2)

αb̄d,0(3
0)(

2
2)

(5
2)

ād,3(4
3)(

1
0)θ3

(5
3)

ād,2(4
2)(

1
1)θ2

(5
3)

αb̄d,3(3
3)(

2
0)θ3

(5
3)

αb̄d,1(3
1)(

2
2)θ

(5
3)

ād,4(4
4)(

1
0)θ4

(5
4)

ād,3(4
3)(

1
1)θ3

(5
4)

0
αb̄d,2(3

2)(
2
2)θ2

(5
4)

0
ād,4(4

4)(
1
1)θ4

(5
5)

0
αb̄d,3(3

3)(
2
2)θ3

(5
5)





















,
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c2 =




















0

αb̄d,0(3
0)(

2
1)

(5
1)

αb̄d,1(3
1)(

2
1)θ

(5
2)

αb̄d,2(3
2)(

2
1)θ2

(5
3)

αb̄d,3(3
3)(

2
1)θ3

(5
4)

0




















, zT =

[

z0 z1 z2 z3 z4 z5 z6 z7 z8

]

,

P2 =









01,5 01,4

04,5 G(θ)

01,5 01,4









, G(θ) = diag

[
(
3
0

)(
2
1

) (
3
1

)(
2
1

)
θ
(
3
2

)(
2
1

)
θ2

(
3
3

)(
2
1

)
θ3

]

,

h2 =




















0

αz5(3
0)(

2
1)

(5
1)

αz6(3
1)(

2
1)θ

(5
2)

αz7(3
2)(

2
1)θ2

(5
3)

αz8(3
3)(

2
1)θ3

(5
4)

0




















, xT =

[

x1 x2 x3 x4

]

,

it is easily verified that h2 = αD−1
2 P2z. Similarly, D−1

2 F2Q2 ∈ R
6×5,

D−1
2 F2Q2M2,4 =





















z0(4
0)(

1
0)

(5
0)

0
αz5(3

0)(
2
0)

(5
0)

0

z1(4
1)(

1
0)θ

(5
1)

z0(4
0)(

1
1)

(5
1)

αz6(3
1)(

2
0)θ

(5
1)

0

z2(4
2)(

1
0)θ2

(5
2)

z1(4
1)(

1
1)θ

(5
2)

αz7(3
2)(

2
0)θ2

(5
2)

αz5(3
0)(

2
2)

(5
2)

z3(4
3)(

1
0)θ3

(5
3)

z2(4
2)(

1
1)θ2

(5
3)

αz8(3
3)(

2
0)θ3

(5
3)

αz6(3
1)(

2
2)θ

(5
3)

z4(4
4)(

1
0)θ4

(5
4)

z3(4
3)(

1
1)θ3

(5
4)

0
αz7(3

2)(
2
2)θ2

(5
4)

0
z4(4

4)(
1
1)θ4

(5
5)

0
αz8(3

3)(
2
2)θ3

(5
5)





















,
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and the matrix Y2 is equal to [ yl | yr ], where

yl =



















(
4
0

)(
1
0

)
x1 0 0 0 0

(
4
0

)(
1
1

)
x2

(
4
1

)(
1
0

)
θx1 0 0 0

0
(
4
1

)(
1
1

)
θx2

(
4
2

)(
1
0

)
θ2x1 0 0

0 0
(
4
2

)(
1
1

)
θ2x2

(
4
3

)(
1
0

)
θ3x1 0

0 0 0
(
4
3

)(
1
1

)
θ3x2

(
4
4

)(
1
0

)
θ4x1

0 0 0 0
(
4
4

)(
1
1

)
θ4x2



















,

and

yr =



















α
(
3
0

)(
2
0

)
x3 0 0 0

0 α
(
3
1

)(
2
0

)
θx3 0 0

α
(
3
0

)(
2
2

)
x4 0 α

(
3
2

)(
2
0

)
θ2x3 0

0 α
(
3
1

)(
2
2

)
θx4 0 α

(
3
3

)(
2
0

)
θ3x3

0 0 α
(
3
2

)(
2
2

)
θ2x4 0

0 0 0 α
(
3
3

)(
2
2

)
θ3x4



















.

It is easy to verify that (D−1
2 Y2)z = (D−1

2 F2Q2M2,4)x. �

The initial values of α and θ are α1 and θ1, which are the solutions of (7.33). The

initial value of z is z(0) = 0 because the given data is inexact, and the initial value of

x, is calculated from (9.10),

x0 = argmin
x

∥
∥D−1

d Ud(α1, θ1)QdMd,qx− cd(α1, θ1)
∥
∥ . (9.13)

The jth iteration in the Newton-Raphson method for the calculation of z, x, α, θ, is
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obtained from (9.12),

[

Hz Hx Hα Hθ

](j)












δz

δx

δα

δθ












(j)

= r(j), (9.14)

where r(j) = r(j)(α, θ, x, z),

Hz = D−1
d (Yd − αPd) ∈ R

(m+n−d+1)×(m+n+2),

Hx = D−1
d (Ud + Fd)QdMd,q ∈ R

(m+n−d+1)×(m+n−2d+1),

Hα = D−1
d

(
∂Ud

∂α
+
∂Fd

∂α

)

QdMd,qx−
(
∂cd
∂α

+
∂hd

∂α

)

∈ R
m+n−d+1,

Hθ = D−1
d

(
∂Ud

∂θ
+
∂Fd

∂θ

)

QdMd,qx−
(
∂cd
∂θ

+
∂hd

∂θ

)

∈ R
m+n−d+1,

and the values of z, x, α, θ at the (j + 1)th iteration are











z

x

α

θ












(j+1)

=












z

x

α

θ












(j)

+












δz

δx

δα

δθ












(j)

.

Equation (9.14) is of the form

Cy = e, (9.15)

where C ∈ R
(m+n−d+1)×(2m+2n−2d+5), y ∈ R

2m+2n−2d+5 and e ∈ R
m+n−d+1,

C =

[

Hz Hx Hα Hθ

](j)

, y =












δz

δx

δα

δθ












(j)

, e = r(j). (9.16)

It is necessary to calculate the vector y of minimum magnitude that satisfies (9.15),
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that is, the solution that is closest to the given inexact data is required.

Since
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












z(j+1) − z(0)

x(j+1) − x0

α(j+1) − α1

θ(j+1) − θ1












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣












z(j) + δz(j)

x(j) + δx(j) − x0

α(j) + δα(j) − α1

θ(j) + δθ(j) − θ1












∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= ||Ey − p|| , (9.17)

where E = I2m+2n−2d+5, y is defined in (9.16), and p is equal to

p = −












z(j)

(x(j) − x0)

(α(j) − α1)

(θ(j) − θ1)












.

It is noted that E is constant and not updated between iterations.

The minimization of (9.17) subject to (9.15) is a least squares minimization with an

equality constraint (the LSE problem),

min
y

||Ey − p|| subject to Cy = e,

which can be solved by the QR decomposition [30]. This LSE problem is solved at

each iteration, where C, e and p are updated between successive iterations.

Algorithm 9.1: SNTLN for a Sylvester matrix

Input Inexact Bernstein polynomials f(x) and g(x), which are of degrees m and

n respectively and defined in (4.2), and the degree d of an AGCD of f(x) and g(x).

Output A structured low rank approximation of S̄d(f̃d, αg̃d)Qd.

Begin
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1. Preprocess f(x) and g(x) to yield f̃d(w) and g̃d(w), which are defined in (7.34)

and (7.35) respectively, using the preprocessing operations described in Section

7.3.

2. Calculate the integer q and the matrix Md,q.

3. % Initialize the data

• Calculate the diagonal matrices D−1
d and Qd.

• Set z = z(0) = 0, which yields Fd = ∂Fd

∂α
= ∂Fd

∂θ
= 0 and hd = ∂hd

∂α
= ∂hd

∂θ
= 0.

• Calculate Ud, Yd, Pd, cd,
∂Ud

∂α
, ∂Ud

∂θ
, ∂cd

∂α
and ∂cd

∂θ
for α = α1(d), θ = θ1(d) and

the initial value x0 of x, which is defined in (9.13). Calculate the initial

value of e, which is equal to the residual,

r(α1(d), θ1(d), x0, z
(0) = 0) = cd(α1(d), θ1(d))

−D−1
d Ud(α1(d), θ1(d))QdMd,qx0,

and set the initial value of p, p = 0.

• Define the matrices C and E.

4. % The loop for the iterations

% Solve the LSE problem at each iteration using the QR decomposition

repeat

(a) Compute the QR decomposition of CT ,

CT = QR = Q






R1

0




 .

(b) Set w1 = R−T
1 e.
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(c) Partition EQ as

EQ =

[

E1 E2

]

,

where

E1 ∈ R
(2m+2n−2d+5)×(m+n−d+1), E2 ∈ R

(2m+2n−2d+5)×(m+n−d+4).

(d) Compute

z1 = E†
2(p−E1w1).

(e) Compute the solution

y = Q






w1

z1




 .

(f) Set z := z + δz, x := x+ δx, α := α + δα and θ := θ + δθ.

(g) Update Ud,
∂Ud

∂α
, ∂Ud

∂θ
, Fd,

∂Fd

∂α
, ∂Fd

∂θ
, Yd, Pd, cd,

∂cd

∂α
, ∂cd

∂θ
, hd,

∂hd

∂α
, ∂hd

∂θ
from α, θ, x, z,

and therefore C. Compute the residual

r(α, θ, x, z) = (cd + hd) −D−1
d (Ud + Fd)QdMd,qx,

and thus update e. Update p from α, θ, x and z.

until ||r(α,θ,x,z)||
||cd+hd||

≤ 10−12

End

Algorithm 9.1 terminates when the residual ||r(α,θ,x,z)||
||cd+hd||

is sufficiently small and

yields α∗, θ∗, z
∗ and x∗, where α∗ and θ∗ are the optimal values of α and θ, and z∗ is
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the perturbation vector,

z∗ =






z∗f

z∗g




 ∈ R

m+n+2,

where

z∗f =












z∗0

z∗1
...

z∗m












∈ R
m+1 and z∗g =












z∗m+1

z∗m+2

...

z∗m+n+1












∈ R
n+1.

The elements z∗i , i = 0, . . . , m, in the vector z∗, occupy the first n− d+ 1 columns of

Fd defined in (9.7), and the elements z∗i , i = m + 1, . . . , m + n + 1, in the vector z∗,

occupy the last m− d+ 1 columns of Fd.

The elements of z∗f are added to the coefficients ād,i, i = 0, . . . , m of f̃d(w), and the

elements of z∗g are added to the coefficients b̄d,j , j = 0, . . . , n of g̃d(w) respectively.

Thus, the corrected forms of f̃d(w) and g̃d(w), which are defined in (7.34) and (7.35)

respectively, are

f̃ ∗
d (w) =

m∑

i=0

(
ãiθ

i
∗

)
(
m

i

)

(1 − θ∗w)m−iwi

=

m∑

i=0

(
(ād,i + z∗i )θ

i
∗

)
(
m

i

)

(1 − θ∗w)m−iwi, (9.18)

and

g̃∗d(w) =

n∑

j=0

(

b̃jθ
j
∗

)(n

j

)

(1 − θ∗w)n−jwj

=
n∑

j=0

(
(b̄d,j + z∗m+j+1)θ

j
∗

)
(
n

j

)

(1 − θ∗w)n−jwj. (9.19)

The corrected forms f̃ ∗
d (w) and α∗g̃

∗
d(w) have a non-constant common divisor d̃∗(w)
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of degree d, that is

f̃ ∗
d (w) = ũ∗(w)d̃∗(w) and α∗g̃

∗
d(w) = ṽ∗(w)d̃∗(w), (9.20)

where

d̃∗(w) =

d∑

i=0

(

d̃iθ
i
∗

)(d

i

)

(1 − θ∗w)d−iwi,

the coefficients of the quotient polynomials ũ∗(w) and ṽ∗(w) are obtained from the

vector x∗,



















ṽ0

...

ṽn−dθ
n−d
∗

−ũ0

...

−ũm−dθ
m−d
∗



















=






















x∗1
...

x∗q−1

−1

x∗q+1

...

x∗m+n−2d+2






















∈ R
m+n−2d+2,

and thus

ũ∗(w) =

m−d∑

i=0

(
ũiθ

i
∗

)
(
m− d

i

)

(1 − θ∗w)m−d−iwi,

and

ṽ∗(w) =

n−d∑

j=0

(
ṽjθ

j
∗

)
(
n− d

j

)

(1 − θ∗w)n−d−jwj.

The equations, f̃ ∗
d (w) = ũ∗(w)d̃∗(w) and α∗g̃

∗
d(w) = ṽ∗(w)d̃∗(w), in (9.20) are written

as
min(m−d,i)
∑

j=max(0,i−d)

(
m−d

j

)(
d

i−j

)

(
m

i

) ũjθ
j
∗d̃i−jθ

i−j
∗ = ãiθ

i
∗, i = 0, . . . , m,
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and
min(n−d,i)
∑

j=max(0,i−d)

(
n−d

j

)(
d

i−j

)

(
n

i

) ṽjθ
j
∗d̃i−jθ

i−j
∗ = α∗b̃iθ

i
∗, i = 0, . . . , n,

respectively, which can be expressed in the matrix form,

L−1






ũ(θ∗)

ṽ(θ∗)




 d̃(θ∗) =






f̃(θ∗)

α∗g̃(θ∗)




 , (9.21)

where L−1 ∈ R
(m+n+2)×(m+n+2),

L−1 = diag

[

1

(m

0 )
1

(m

1 )
· · · 1

(m

m)
1

(n

0)
1

(n

1)
· · · 1

(n

n)

]

,

ũ(θ∗) and ṽ(θ∗) are Toeplitz matrices,

ũ(θ∗) =



















ũ0

(
m−d

0

)

ũ1

(
m−d

1

)
θ∗

. . .

...
. . . ũ0

(
m−d

0

)

ũm−d

(
m−d

m−d

)
θm−d
∗

. . . ũ1

(
m−d

1

)
θ∗

. . .
...

ũm−d

(
m−d

m−d

)
θm−d
∗



















∈ R
(m+1)×(d+1),

and

ṽ(θ∗) =



















ṽ0

(
n−d

0

)

ṽ1

(
n−d

1

)
θ∗

. . .

...
. . . ṽ0

(
n−d

0

)

ṽn−d

(
n−d

n−d

)
θn−d
∗

. . . ṽ1

(
n−d

1

)
θ∗

. . .
...

ṽn−d

(
n−d

n−d

)
θn−d
∗



















∈ R
(n+1)×(d+1),

d̃(θ∗) ∈ R
d+1 is the vector of the scaled coefficients of d̃∗(w),

d̃(θ∗) =

[

d̃0

(
d

0

)
d̃1

(
d

1

)
θ∗ · · · d̃d

(
d

d

)
θd
∗

]T

,
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f̃(θ∗) ∈ R
m+1 and g̃(θ∗) ∈ R

n+1 are the coefficient vectors of f̃ ∗
d (w) and g̃∗d(w),

f̃(θ∗) =

[

ã0 ã1θ∗ · · · ãmθ
m
∗

]T

,

and

g̃(θ∗) =

[

b̃0 b̃1θ∗ · · · b̃nθ
n
∗

]T

.

The vector d̃(θ∗) is unknown and can be calculated from (9.21) by solving the least

squares problem, that is

d̃(θ∗) =




L

−1






ũ(θ∗)

ṽ(θ∗)











† 




f̃(θ∗)

α∗g̃(θ∗)




 ,

which stores the scaled coefficients of common divisor d̃∗(w) defined in the modified

Bernstein basis. Then, the common divisor d∗(x) in the Bernstein basis, which is an

AGCD of the inexact polynomials f(x) and g(x), is obtained from the vector d̃(θ∗),

d̃i =
d̃i

(
d

i

)
θi
∗

(
d

i

)
θi
∗

, i = 0, . . . , d, (9.22)

where d̃i, i = 0, . . . , d, are the coefficients of d∗(x).

In addition, the coefficients of the common divisor d∗(x) can also be obtained using

the QR decomposition applied to the Sylvester matrix of f̃ ∗
d (w) and α∗g̃

∗
d(w). It

was shown in Chapter 3 that the coefficients of the GCD of two polynomials can

be obtained from the last non-zero row of upper triangular form of their Sylvester

matrix. Therefore, we can reduce the Sylvester matrix S̄(f̃ ∗
d , α∗g̃

∗
d)Q of f̃ ∗

d (w) and

α∗g̃
∗
d(w) to its upper triangular form. Since the degree of the GCD of f̃ ∗

d (w) and

α∗g̃
∗
d(w), which is equal to the rank loss of S̄(f̃ ∗

d , α∗g̃
∗
d)Q, is known, the last non-zero

row of its upper triangular form can be determined, which yields the coefficients of

the GCD of f̃ ∗
d (w) and α∗g̃

∗
d(w). Thus, the coefficients of the GCD defined in the

modified Bernstein basis are obtained, from which the coefficients of common divisor
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d∗(x) defined in the Bernstein basis are computed using (9.22).

A slight modification of the method of SNTLN for S̄d(f̃d, α1g̃d)Qd yields the method

of SNTLN implemented on S̄d(f́d, α2ǵd). The method of SNTLN for S̄d(f́d, α2ǵd) also

yields α+, θ+, z+ and x+. The values of α+ and θ+ are the optimal values of α and

θ, which are computed using the method of SNTLN with the initial values of α and

θ equal to α2(d) and θ2(d). The vector z+ ∈ R
m+n+2 is the perturbation vector,

z+ =






z+
f

z+
g




 ∈ R

m+n+2,

where

z+
f =












z+
0

z+
1

...

z+
m












∈ R
m+1 and z+

g =












z+
m+1

z+
m+2

...

z+
m+n+1












∈ R
n+1.

The corrected forms of f́d(w) and ǵd(w), which are defined in (7.36) and (7.37) re-

spectively, are obtained by adding the elements of z+
f and z+

g to the coefficients of

f́d(w) and ǵd(w) respectively, that is

f́+
d (w) =

m∑

i=0

(
áiθ

i
+

)
(
m

i

)

(1 − θ+w)m−iwi

=

m∑

i=0

(
(äd,i + z+

i )θi
+

)
(
m

i

)

(1 − θ+w)m−iwi, (9.23)

and

ǵ+
d (w) =

n∑

j=0

(

b́jθ
m+j+1
+

)(n

j

)

(1 − θ+w)n−jwj

=
n∑

j=0

(

(b̈d,j + z+
m+j+1)θ

j
+

)(n

j

)

(1 − θ+w)n−jwj. (9.24)

The corrected forms f́+
d (w) and α+ǵ

+
d (w) have a non-constant common divisor d́+(w)
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of degree d, and the coefficients of the quotient polynomials ú+(w) and v́+(w) are

obtained from the vector x+,



















v́0

(
n−d

0

)

...

v́n−d

(
n−d

n−d

)
θn−d
+

−ú0

(
m−d

0

)

...

−úm−d

(
m−d

m−d

)
θm−d
+



















=






















x+
1

...

x+
q−1

−1

x+
q+1

...

x+
m+n−2d+2






















∈ R
m+n−2d+2.

Then, by following the same procedure described above, the common divisor d+(x),

which is defined in the Bernstein basis, is computed.

9.2 Examples

This section shows the calculation of the coefficients of an AGCD of two inexact

Bernstein polynomials using the method of SNTLN implemented on S̄d(f́d, α2ǵd) and

S̄d(f̃d, α1g̃d)Qd.

As stated earlier, the method of SNTLN involves choosing the optimal column of

the subresultant matrix to move to the right hand side. Two criteria used here are

the first principal angle and the residual described in Section 7.4. Experiments show

that the method of SNTLN using different criteria returns the similar results, and

therefore the examples in this section only show the results that are obtained from

the method of SNTLN using the criterion based on the first principal angle to select

the optimal column.

Furthermore, the coefficients of the computed AGCD d(x) of f(x) and g(x) must be
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compared with the coefficients of the GCD d̂(x) of their exact polynomials f̂(x) and

ĝ(x). The coefficients of d(x) are considered correct when its coefficients are good

approximations to the coefficients of d̂(x). This can be measured by computing the

error between the normalized coefficients of d(x) and the normalized coefficients of

d̂(x), that is

‖d− d̂‖,

where ‖d‖ = ‖d̂‖ = 1 and ‖ · ‖ denotes the 2-norm.

In addition, as described earlier, d(x) can be computed by solving the least squares

problem or using the QR decomposition. We use dls(x) to denote d(x) computed by

solving the least squares problem and use dqr(x) to denote d(x) computed by using

the QR decomposition.

Example 9.3. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 9.1. It is seen that the degree of their GCD

is d̂ = 17.

Root of f̂(x) Multiplicity
0.3279e+000 6
0.6134e+000 4
0.9792e+000 6
-1.3981e+000 3
-3.9166e+000 3
9.7133e+000 2

Root of ĝ(x) Multiplicity
0.3279e+000 5
0.6134e+000 5
0.9792e+000 7
2.3296e+000 2
4.6798e+000 2
9.7133e+000 2

Table 9.1: The roots and multiplicities of f̂(x) and ĝ(x) for Example 9.3.

Noise with componentwise signal-to-noise ratio 108 is added to each polynomial

to yield the inexact polynomials f(x) and g(x). The degree of an AGCD, d = 17,
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is determined using the previous methods introduced in Chapters 6 and 7, which is

correct because d = d̂.

In the method of SNTLN implemented on S̄d(f́d, α2ǵd), the inexact polynomials f(x)

and g(x) are firstly normalized to yield the forms ḟd(x) and ġd(x), which are defined

in (7.16) and (7.17) respectively. Then, ḟd(x) and ġd(x) are transformed to their mod-

ified Bernstein polynomials f́d(w) and ǵd(w) defined in (7.36) and (7.37) respectively,

and the dth subresultant matrix S̄d(f́d, α2ǵd) is computed. The method of SNTLN

is then performed on S̄d(f́d, α2ǵd) and yields the optimal values of α and θ, where

α+ = 7.7050 and θ+ = 2.5012, and f́+
d (w) and ǵ+

d (w), which are the corrected forms

of f́d(w) and ǵd(w). The Sylvester matrix S̄(f́+
d , α+ǵ

+
d ) of f́+

d (w) and α+ǵ
+
d (w) is then

calculated.

It is seen from Figure 9.1(a) that the rank loss of S̄(f́+
d , α+ǵ

+
d ) is equal to 17, which

implies that the degree of the GCD of the corrected polynomials f́+
d (w) and α+ǵ

+
d (w)

is 17. Because f́+
d (w) and α+ǵ

+
d (w) have a non-constant common divisor, (9.21) is

established, and then the coefficients of an AGCD d+
ls(x) of f(x) and g(x) are com-

puted by solving the least squares problem. The error measure ‖d+
ls − d̂‖ is equal

to 0.0030. In addition, the coefficients of an AGCD d+
qr(x) of f(x) and g(x) are

computed using the QR decomposition, and the error measure ‖d+
qr − d̂‖ is equal to

0.4527.

In the method of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd, the inexact polynomials

f(x) and g(x) are initially normalized to obtain the forms f̆d(x) and ğd(x), which

are defined in (7.13) and (7.14) respectively. The polynomials f̆d(x) and ğd(x) are

then transformed to their modified Bernstein polynomials f̃d(w) and g̃d(w) defined

in (7.34) and (7.35) respectively, and the dth subresultant matrix S̄d(f̃d, α1g̃d)Qd is
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computed. The method of SNTLN is then implemented on S̄d(f̃d, α1g̃d)Qd and yields

the optimal values of α and θ, where α∗ = 3.4840e+ 001 and θ∗ = 2.4940, and f̃ ∗
d (w)

and g̃∗d(w), which are the corrected forms of f̃d(w) and g̃d(w).

Figure 9.1(b) shows the normalized singular values of the Sylvester matrix S̄(f̃ ∗
d , α∗g̃

∗
d)Q

of f̃ ∗
d (w) and α∗g̃

∗
d(w), and it is seen that its numerical rank is equal to 30, which

implies that the degree of the GCD of the corrected polynomials f̃ ∗
d (w) and α∗g̃

∗
d(w)

is 17. Therefore, (9.21) is established, and then the coefficients of an AGCD d∗ls(x)

of f(x) and g(x) are calculated by solving the least squares problem. Since the er-

ror measure ‖d∗ls − d̂‖ is equal to 1.7322e − 005, it is much smaller than ‖d+
ls − d̂‖.

This suggests that the coefficients of an AGCD of f(x) and g(x), which are obtained

from the method of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd, are much closer to the

coefficients of the GCD of their exact polynomials f̂(x) and ĝ(x). Furthermore, the

coefficients of an AGCD d∗qr(x) of f(x) and g(x) are computed using the QR decom-

position, and the error measure ‖d∗qr − d̂‖ is equal to 0.4490.

It is noted that the coefficients of an AGCD computed by solving the least squares

problem are more accurate than those calculated using the QR decomposition because

‖d+
ls − d̂‖ and ‖d∗ls − d̂‖ are much smaller than ‖d+

qr − d̂‖ and ‖d∗qr − d̂‖ respectively.
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Figure 9.1: The normalized singular values of (a) S̄(f́+
d , α+ǵ

+
d ) and (b) S̄(f̃ ∗

d , α∗g̃
∗
d)Q

for Example 9.3.

�

Example 9.4. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 9.2. It is seen that the degree of their GCD

is d̂ = 22.

Root of f̂(x) Multiplicity
-0.3285e+000 5
0.3791e+000 6
-0.7113e+000 6
0.9214e+000 6
2.3125e+000 5
9.1474e+000 8

Root of ĝ(x) Multiplicity
-0.3285e+000 3
0.3791e+000 7
0.5217e+000 3
0.9214e+000 7
1.4397e+000 3
9.1474e+000 7

Table 9.2: The roots and multiplicities of f̂(x) and ĝ(x) for Example 9.4.

Uniformly distributed random noise with componentwise signal-to-noise ratio 108

is added to each polynomial to obtain the inexact polynomials f(x) and g(x). The

degree of an AGCD, d = 22, is determined using the previous methods, which is

correct because d = d̂.
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In the method of SNTLN implemented on S̄d(f́d, α2ǵd), the method of SNTLN yields

α+ = 4.6807, θ+ = 1.1281, and f́+
d (w) and ǵ+

d (w), which are the corrected forms

of f́d(w) and ǵd(w). The Sylvester matrix S̄(f́+
d , α+ǵ

+
d ) of f́+

d (w) and α+ǵ
+
d (w) is

computed. Figure 9.2(a) shows the normalized singular values of S̄(f́+
d , α+ǵ

+
d ), and

it is seen that its rank loss is equal to 23, which implies that the degree of the GCD

of the corrected polynomials f́+
d (w) and α+ǵ

+
d (w) is 23. This is incorrect because the

estimated degree of an AGCD, d, is equal to 22.

In the method of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd, α∗ = 1.0123e+ 001, θ∗ =

1.4386, and f̃ ∗
d (w) and g̃∗d(w), which are the corrected forms of f̃d(w) and g̃d(w), are

obtained. Figure 9.2(b) shows the normalized singular values of the Sylvester matrix

S̄(f̃ ∗
d , α∗g̃

∗
d)Q of f̃ ∗

d (w) and α∗g̃
∗
d(w), and its numerical rank is clearly defined and

equal to 44, which implies that the corrected polynomials f̃ ∗
d (w) and α∗g̃

∗
d(w) have

the GCD whose degree is equal to d. The coefficients of an AGCD d∗ls(x) of f(x) and

g(x) are then calculated by solving the least squares problem, and ‖d∗ls − d̂‖ is equal

to 5.3456e − 006. This relatively small error suggests that the coefficients of d∗ls(x)

are close to the coefficients of d̂(x). In addition, the coefficients of an AGCD d∗qr(x)

of f(x) and g(x) can also be calculated using the QR decomposition, and ‖d∗qr − d̂‖ is

equal to 0.3099. The error measure ‖d∗ls − d̂‖ is much smaller than ‖d∗qr − d̂‖, which

implies that the coefficients of an AGCD computed by solving the least squares

problem are more accurate than those calculated using the QR decomposition.
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Figure 9.2: The normalized singular values of (a) S̄(f́+
d , α+ǵ

+
d ) and (b) S̄(f̃ ∗

d , α∗g̃
∗
d)Q

for Example 9.4.

�

Example 9.5. Consider the exact Bernstein polynomials f̂(x) and ĝ(x), whose roots

and multiplicities are specified in Table 9.3. It is seen that the degree of their GCD

is d̂ = 26.

Root of f̂(x) Multiplicity
0.1793e+000 10
0.5615e+000 5
0.7539e+000 9
0.8276e+000 3
1.3741e+000 5
1.4638e+000 4
-3.2719e+000 3

Root of ĝ(x) Multiplicity
0.1793e+000 9
0.5615e+000 6
0.7539e+000 8
0.9913e+000 5

-1.2593e+000 4
1.3741e+000 4
2.1298e+000 3

Table 9.3: The roots and multiplicities of f̂(x) and ĝ(x) for Example 9.5.

Uniformly distributed random noise with componentwise signal-to-noise ratio 108

is added to each polynomial to obtain the inexact polynomials f(x) and g(x). The

degree of an AGCD, d = 26, is determined using the previous methods, which is
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correct because d = d̂.

The values of α+ = 0.2300 and θ+ = 1.9080, and f́+
d (w) and ǵ+

d (w) are obtained

from the method of SNTLN implemented on S̄d(f́d, α2ǵd). The Sylvester matrix

S̄(f́+
d , α+ǵ

+
d ) of f́+

d (w) and α+ǵ
+
d (w) is computed. Figure 9.3(a) shows the normal-

ized singular values of S̄(f́+
d , α+ǵ

+
d ), and it is seen that its numerical rank is not

clearly defined, which implies that the corrected polynomials f́+
d (w) and α+ǵ

+
d (w)

are coprime. Therefore, the coefficients of an AGCD d+(x) can not be computed

because f́+
d (w) and α+ǵ

+
d (w) do not have a non-constant common divisor.

The method of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd yields α∗ = 2.5249e + 002,

θ∗ = 1.6090, f̃ ∗
d (w) and g̃∗d(w). It is seen from Figure 9.3(b) that the rank loss of

the Sylvester matrix S̄(f̃ ∗
d , α∗g̃

∗
d)Q of f̃ ∗

d (w) and α∗g̃
∗
d(w) is equal to 26, which sug-

gests that the degree of the GCD of the corrected polynomials f̃ ∗
d (w) and α∗g̃

∗
d(w)

is equal to d. Then, the coefficients of an AGCD d∗ls(x) of f(x) and g(x) are calcu-

lated by solving the least squares problem, and the error measure ‖d∗ls− d̂‖ is equal to

8.6891e−007. This very small error indicates that d∗ls(x), an AGCD of f(x) and g(x),

is a good approximation to the GCD of their exact polynomials. Furthermore, the

coefficients of an AGCD d∗qr(x) of f(x) and g(x) can also be calculated using the QR

decomposition, and ‖d∗qr − d̂‖ is equal to 1.3852. The coefficients of an AGCD com-

puted by solving the least squares problem are more accurate than those calculated

using the QR decomposition because ‖d∗ls − d̂‖ is much smaller than ‖d∗qr − d̂‖.
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Figure 9.3: The normalized singular values of (a) S̄(f́+
d , α+ǵ

+
d ) and (b) S̄(f̃ ∗

d , α∗g̃
∗
d)Q

for Example 9.5.

�

The three examples in this section compare the results obtained from S̄d(f́d, α2ǵd)

and S̄d(f̃d, α1g̃d)Qd using the method of SNTLN, and it is shown that the method

of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd yields significantly better results. The

results shown in these three examples are consistent with other experiment results.

In addition, the examples also show that the coefficients of an AGCD computed by

solving the least squares problem are more accurate than those calculated using the

QR decomposition.

9.3 Discussion

It was shown in Section 9.2 that when the method of SNTLN is implemented on

S̄d(f́d, α2ǵd) and S̄d(f̃d, α1g̃d)Qd respectively, S̄d(f̃d, α1g̃d)Qd always yields better re-

sults than S̄d(f́d, α2ǵd). The advantage of S̄d(f̃d, α1g̃d)Qd with respect to S̄d(f́d, α2ǵd)

is considered below. Furthermore, the coefficients of an AGCD can be computed by
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solving the least squares problem and using the QR decomposition, and the examples

in Section 9.2 showed that the QR decomposition returns the inferior results. It is

therefore necessary to explain this phenomenon. These two issues are addressed in

the following respectively.

Section 6.3 discussed the superiority of S̄(f̃ , α1g̃)Q with respect to S̄(f́ , α2ǵ) and

explained the computational advantage of the inclusion of the diagonal matrix Q.

This analysis is for k = 1 because S̄(f́ , α2ǵ) = S̄1(f́1, α2ǵ1) and S̄(f̃ , α1g̃)Q =

S̄1(f̃1, α1g̃1)Q1. The same analysis can be repeated for S̄d(f́d, α2ǵd) and S̄d(f̃d, α1g̃d)Qd,

and the diagonal matrix Qd has the same effect on S̄d(f̃d, α1g̃d)Qd, that is, the entries

of Qd mitigate the effects of the combinatorial factors
(

m

i

)
,
(

n

j

)
and

(
m+n−d

k

)
, for large

values of m and n, such that computations performed on S̄d(f̃d, α1g̃d)Qd are more

stable.

The examples in Section 9.2 showed that in the method of SNTLN implemented

on S̄d(f̃d, α1g̃d)Qd, the coefficients of an AGCD are computed by solving the least

squares problem of (9.21) and using the QR decomposition applied to the Sylvester

matrix S̄(f̃ ∗
d , α∗g̃

∗
d)Q of the corrected polynomials f̃ ∗

d (w) and α∗g̃
∗
d(w), and the QR

decomposition yields the inferior results than solving the least squares problem. The

possible explanation is that the corrected polynomials f̃ ∗
d (w) and α∗g̃

∗
d(w) have a non-

constant GCD, and thus the Sylvester matrix S̄(f̃ ∗
d , α∗g̃

∗
d)Q of f̃ ∗

d (w) and α∗g̃
∗
d(w) is

rank deficient, which implies that several columns are linearly dependent on the other

columns in S̄(f̃ ∗
d , α∗g̃

∗
d)Q. It is shown in [16] that the QR decomposition applied to a

matrix with linearly dependent columns is unstable.
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9.4 Summary

This chapter considered the use of the method of SNTLN to calculate the coefficients

of an AGCD of two inexact polynomials. In particular, if the degree d of an AGCD is

determined initially, the method of SNTLN computes structured perturbations, such

that the perturbed forms of the inexact polynomials have a non-constant common

divisor of degree d.

The method of SNTLN is performed on two forms of the dth subresultant matrix,

S̄d(f́d, α2ǵd) and S̄d(f̃d, α1g̃d)Qd. Experiments show that the method of SNTLN im-

plemented on S̄d(f̃d, α1g̃d)Qd returns much better results and recovers a good approx-

imation to the GCD of exact polynomials. In addition, experiments also show that

the method of SNTLN implemented on S̄d(f̃d, α1g̃d)Qd converges to the solution only

after 4 or 5 iterations.

It was shown in this chapter that the method of SNTLN is efficient in the calculation

of the coefficients of an AGCD, and therefore it is desirable to consider its other

applications. The next chapter will discuss solving the deconvolution problem using

the method of SNTLN.



Chapter 10

Deconvolution

Chapter 9 demonstrates the use of the method of SNTLN in the calculation of the

coefficients of an AGCD of two inexact Bernstein polynomials. This chapter considers

another application of the method of SNTLN. In particular, the method of SNTLN

can be applied to compute an approximate deconvolution of two inexact Bernstein

polynomials h(x) and f(x), that is, the division h(x)/f(x) such that the result is a

polynomial and not a rational function.

It is assumed that f̂(x) and ĥ(x) are two exact Bernstein polynomials, and f̂(x) is

an exact divisor of ĥ(x). The presence of the random perturbations δf(x) and δh(x),

f(x) = f̂(x) + δf(x) and h(x) = ĥ(x) + δh(x),

which implies that, with high probability, f(x) is not an exact divisor of h(x). There-

fore, it is required to compute the polynomials zf(x) and zh(x) of minimum magnitude

such that the function

h(x) + zh(x)

f(x) + zf(x)
,

221
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is a polynomial, that is, f(x)+ zf(x) is an exact divisor of h(x)+ zh(x). This chapter

demonstrates the use of the method of SNTLN for the computation of the polynomials

zf (x) and zh(x).

10.1 The division of two Bernstein polynomials

Let f̂(x), ĝ(x) and ĥ(x) be exact Bernstein polynomials of degrees m, n and m + n

respectively,

f̂(x) =

m∑

i=0

âi

(
m

i

)

(1 − x)m−ixi,

ĝ(x) =
n∑

i=0

b̂i

(
n

i

)

(1 − x)n−ixi,

ĥ(x) =
m+n∑

i=0

ĉi

(
m+ n

i

)

(1 − x)m+n−ixi.

It is assumed that f̂(x) is an exact divisor of ĥ(x), and ĝ(x) is the quotient polynomial,

that is, ĝ(x) = ĥ(x)/f̂(x).

The product of f̂(x) and ĝ(x) can be written as
m∑

i=0

n∑

j=0

âi

(
m

i

)

b̂j

(
n

j

)

(1 − x)m+n−i−jxi+j ,

and thus the substitution k = i+ j yields

m+n∑

k=0

min(m,k)
∑

i=max(0,k−n)

âi

(
m

i

)

b̂k−i

(
n

k − i

)

(1 − x)m+n−kxk.

Therefore, the product of f̂(x) and ĝ(x) equals to

m+n∑

k=0

min(m,k)
∑

i=max(0,k−n)

âi

(
m

i

)
b̂k−i

(
n

k−i

)

(
m+n

k

)

(
m+ n

k

)

(1 − x)m+n−kxk,
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and thus the coefficients ĉk of ĥ(x) are given by

ĉk =

min(m,k)
∑

i=max(0,k−n)

âi

(
m

i

)
b̂k−i

(
n

k−i

)

(
m+n

k

) , k = 0, . . . , m+ n.

This equation can be written in matrix form as

(

D̄−1T̄ (f̂)
)

b̂ = ĉ, (10.1)

where D̄−1 ∈ R
(m+n+1)×(m+n+1) is given by

D̄−1 = diag

[

1

(m+n

0 )
1

(m+n

1 )
. . . 1

( m+n

m+n−1)
1

(m+n

m+n)

]

,

T̄ (f̂) ∈ R
(m+n+1)×(n+1), b̂ ∈ R

n+1, ĉ ∈ R
m+n+1 and

T̄ (f̂) =



















â0

(
m

0

)

â1

(
m

1

) . . .

...
. . . â0

(
m

0

)

âm

(
m

m

) . . . â1

(
m

1

)

. . .
...

âm

(
m

m

)



















, b̂ =












b̂0
(

n

0

)

b̂1
(

n

1

)

...

b̂n
(

n

n

)












, ĉ =












ĉ0

ĉ1
...

ĉm+n












.

Chapters 6, 7 and 9 have shown it is numerically advantageous to express the vector

b̂ as the product of a diagonal matrix Q̄ ∈ R
(n+1)×(n+1) and a vector p̂ ∈ R

n+1 of the

coefficients b̂i,

b̂ = Q̄p̂,

where

Q̄ = diag

[
(

n

0

) (
n

1

)
· · ·

(
n

n

)
]

, (10.2)

and

p̂ =

[

b̂0 b̂1 · · · b̂n

]T

,
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and therefore (10.1) can be written as

(

D̄−1T̄ (f̂)Q̄
)

p̂ = ĉ. (10.3)

Since (10.3) has a more complex form than (10.1), for simplicity, this chapter only

considers (10.3). It is necessary to implement one preprocessing operation on (10.3)

before the computation is performed on it. This preprocessing operation is considered

in the next section.

10.2 Preprocessing operation

It is seen from (10.3) that the coefficients of f̂(x) occupy the entries of the matrix

D̄−1T̄ (f̂)Q̄ and the coefficients of ĥ(x) occupy the entries of the vector ĉ respectively.

If the coefficients of f̂(x) are much larger or smaller than the coefficients of ĥ(x) in

magnitude, this may cause both sides of (10.3) to be unbalanced. Therefore, it is

necessary to normalize the entries of the matrix D̄−1T̄ (f̂)Q̄ and the entries of the

vector ĉ respectively, such that both sides of (10.3) are better balanced.

10.2.1 Normalization

The entries of D̄−1T̄ (f̂)Q̄ are normalized by their geometric mean. The computation

of the geometric mean of the entries of D̄−1T̄ (f̂)Q̄ can be easily obtained from the

calculation of normalization constants for the Sylvester matrix S(f, g)Q shown in

Section 6.1.1.

If the geometric mean of all the terms that contain the coefficients of f̂(x) in D̄−1T̄ (f̂)Q̄
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is λ, then it follows that the normalized form of f̂(x) is

f̈(x) =

m∑

i=0

äi

(
m

i

)

(1 − x)m−ixi, äi =
âi

λ
. (10.4)

The entries of the vector ĉ are normalized by their geometric mean, and therefore the

normalized form of ĥ(x) is

ḧ(x) =
m+n∑

i=0

c̈i

(
m+ n

i

)

(1 − x)m+n−ixi, c̈i =
ĉi
µ
, (10.5)

where the geometric mean µ of the coefficients ĉi is

µ =

(
m+n∏

i=0

|ĉi|
) 1

m+n+1

.

Therefore, it follows from (10.4) and (10.5) that (10.3) becomes

(

D̄−1T̄ (f̈)Q̄
)

p̈ = c̈, (10.6)

where p̈ ∈ R
n+1 is

p̈ =

[

b̈0 b̈1 · · · b̈n

]T

,

and the coefficients b̈i of the polynomial g̈(x) are required to be computed,

g̈(x) =
n∑

i=0

b̈i

(
n

i

)

(1 − x)n−ixi. (10.7)

10.3 The method of SNTLN

This section considers the method of SNTLN for the computation of the coefficients

of g̈(x), which are the solution of (10.6), when the inexact Bernstein polynomials f(x)

and h(x) are specified, which are given by

f(x) =
m∑

i=0

ai

(
m

i

)

(1 − x)m−ixi, (10.8)
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and

h(x) =

m+n∑

i=0

ci

(
m+ n

i

)

(1 − x)m+n−ixi. (10.9)

It is therefore assumed that f(x) and h(x) have been preprocessed using the operation

discussed in Section 10.2.

The inexact nature of f(x) and h(x) implies that f(x) is not an exact divisor of h(x),

and thus (10.6) is replaced by

(

D̄−1T̄ (f̈)Q̄
)

p̈ ≈ c̈, (10.10)

where p̈ ∈ R
n+1 and c̈ ∈ R

m+n+1 are, respectively,

p̈ =

[

b̈0 b̈1 · · · b̈n

]T

and c̈ =

[

c̈0 c̈1 · · · c̈m+n

]T

. (10.11)

The approximation (10.10) is converted to an equation by the addition of a matrix

B = B(z) ∈ R
(m+n+1)×(n+1) to T̄ (f̈), and a vector d ∈ R

m+n+1 to c̈,

(

D̄−1
(

T̄ (f̈) +B(z)
)

Q̄
)

p̈ = c̈ + d. (10.12)

The matrix B(z) has the same structure as T̄ (f̈), and B(z) and d are given by

B(z) =



















z0
(

m

0

)

z1
(

m

1

) . . .

...
. . . z0

(
m

0

)

zm

(
m

m

) . . . z1
(

m

1

)

. . .
...

zm

(
m

m

)



















, d =












d0

d1

...

dm+n












,

where the coefficients zi and di of the polynomials

s(x) =

m∑

i=0

zi

(
m

i

)

(1 − x)m−ixi,
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and

t(x) =

m+n∑

i=0

di

(
m+ n

i

)

(1 − x)m+n−ixi,

are computed by the method of SNTLN, such that f̈(x) + s(x) is an exact divisor of

ḧ(x) + t(x).

Equation (10.12) is a non-linear equation that is solved by the Newton-Raphson

method. In general, it has an infinite number of solutions, but the solution that is

nearest the given inexact data is sought. The residual associated with an approximate

solution of this non-linear equation is

r(z, p̈, d) = (c̈+ d) −
(

D̄−1
(

T̄ (f̈) +B(z)
)

Q̄
)

p̈, (10.13)

and thus if r̃ is defined as

r̃ := r(z + δz, p̈ + δp̈, d+ δd),

then

r̃ = (c̈+ (d+ δd)) −
(

D̄−1
(
T̄ (f̈) +B(z + δz)

)
Q̄
)

(p̈+ δp̈)

= (c̈+ (d+ δd)) −
(

D̄−1
(

T̄ +B +

m∑

i=0

∂B

∂zi

δzi

)

Q̄

)

(p̈+ δp̈).

It follows that to first order

r̃ = r(z, p̈, d) + δd−
(

D̄−1(T̄ +B)Q̄
)

δp̈−
(

D̄−1

(
m∑

i=0

∂B

∂zi

δzi

)

Q̄

)

p̈. (10.14)

The simplification of the last term of this expression requires that the polynomial

multiplication
(

n∑

i=0

b̈i

(
n

i

)

(1 − x)n−ixi

)(
m∑

i=0

zi

(
m

i

)

(1 − x)m−ixi

)

, (10.15)

which can also be expressed as
(

m∑

i=0

zi

(
m

i

)

(1 − x)m−ixi

)(
n∑

i=0

b̈i

(
n

i

)

(1 − x)n−ixi

)

, (10.16)
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be considered. It follows from (10.3) that the multiplications (10.15) and (10.16) can

be expressed in matrix form as, respectively,

D̄−1Y (p̈)(Rz) and D̄−1B(z)(Q̄p̈), (10.17)

where Y = Y (p̈) ∈ R
(m+n+1)×(m+1) is a Toeplitz matrix, and

z =

[

z0 z1 · · · zm

]T

∈ R
m+1,

R = diag
[
(

m

0

) (
m

1

)
· · ·

(
m

m

)
]

∈ R
(m+1)×(m+1).

It therefore follows from (10.17) that

Y (Rz) = B(Q̄p̈), (10.18)

and the differentiation of both sides of this equation with respect to z yields

Y (Rδz) =

(
m∑

i=0

∂B

∂zi

δzi

)

(Q̄p̈),

and thus (10.14) simplifies to

r̃ = r(z, p̈, d) + δd−
(

D̄−1(T̄ +B)Q̄
)

δp̈− (D̄−1Y R)δz. (10.19)

Example 10.1. Let m = 4 and n = 3, and thus D̄−1 ∈ R
8×8, B ∈ R

8×4, Q̄ ∈ R
4×4

and p̈ ∈ R
4. The matrices D̄−1 and B, and the vector Q̄p̈ are equal to

D̄−1 = diag

[

1

(7
0)

1

(7
1)

1

(7
2)

1

(7
3)

1

(7
4)

1

(7
5)

1

(7
6)

1

(7
7)

]

,
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B =

























z0
(
4
0

)

z1
(
4
1

)
z0
(
4
0

)

z2
(
4
2

)
z1
(
4
1

)
z0
(
4
0

)

z3
(
4
3

)
z2
(
4
2

)
z1
(
4
1

)
z0
(
4
0

)

z4
(
4
4

)
z3
(
4
3

)
z2
(
4
2

)
z1
(
4
1

)

z4
(
4
4

)
z3
(
4
3

)
z2
(
4
2

)

z4
(
4
4

)
z3
(
4
3

)

z4
(
4
4

)

























and Q̄p̈ =












b̈0
(
3
0

)

b̈1
(
3
1

)

b̈2
(
3
2

)

b̈3
(
3
3

)












,

respectively, and thus D̄−1B(Q̄p̈) is the vector of coefficients of the polynomial formed

from the multiplication
(

4∑

i=0

zi

(
4

i

)

(1 − x)4−ixi

)(
3∑

i=0

b̈i

(
3

i

)

(1 − x)3−ixi

)

.

This polynomial multiplication can also be expressed as
(

3∑

i=0

b̈i

(
3

i

)

(1 − x)3−ixi

)(
4∑

i=0

zi

(
4

i

)

(1 − x)4−ixi

)

,

and thus the vector of coefficients of the product can also be expressed as

D̄−1

























b̈0
(
3
0

)

b̈1
(
3
1

)
b̈0
(
3
0

)

b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)

b̈3
(
3
3

)
b̈2
(
3
2

)

b̈3
(
3
3

)







































z0
(
4
0

)

z1
(
4
1

)

z2
(
4
2

)

z3
(
4
3

)

z4
(
4
4

)















. (10.20)
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Since

R = diag [
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
],

it follows that (10.20) can also be written as

D̄−1Y (Rz) = D̄−1

























b̈0
(
3
0

)

b̈1
(
3
1

)
b̈0
(
3
0

)

b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)

b̈3
(
3
3

)
b̈2
(
3
2

)

b̈3
(
3
3

)

























×R















z0

z1

z2

z3

z4















.
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It follows from (10.18) that this vector is equal to D̄−1B(Q̄p̈), and it is seen that

Y =

























b̈0
(
3
0

)

b̈1
(
3
1

)
b̈0
(
3
0

)

b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)
b̈0
(
3
0

)

b̈3
(
3
3

)
b̈2
(
3
2

)
b̈1
(
3
1

)

b̈3
(
3
3

)
b̈2
(
3
2

)

b̈3
(
3
3

)

























.

�

The jth iteration in the Newton-Raphson method for the calculation of z, p̈ and

d is obtained from (10.19),

[

Hz Hp̈ Hd

](j)









δz

δp̈

δd









(j)

= r(j), (10.21)

where r(j) = r(j)(z, p̈, d),

Hz = D̄−1Y R ∈ R
(m+n+1)×(m+1),

Hp̈ = D̄−1(T̄ +B)Q̄ ∈ R
(m+n+1)×(n+1),

Hd = −I ∈ R
(m+n+1)×(m+n+1),

and the matrix I is an identity matrix. The values of z, p̈ and d at the (j + 1)th
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iteration are








z

p̈

d









(j+1)

=









z

p̈

d









(j)

+









δz

δp̈

δd









(j)

.

The initial values of z and d are z(0) = 0 and d(0) = 0 because the given data is

inexact, the initial value p̈0 of p̈ is calculated from (10.13),

p̈0 = argmin
w

‖D̄−1T̄ (f̈)Q̄w − c̈‖2, (10.22)

where c̈ is defined in (10.11).

Equation (10.21) is of the form

Cy = q, (10.23)

where C ∈ R
(m+n+1)×(2m+2n+3), y ∈ R

2m+2n+3, q ∈ R
m+n+1, and

C =

[

Hz Hp̈ Hd

](j)

, y =









δz

δp̈

δd









(j)

, q = r(j). (10.24)

It is necessary to calculate the vector y with minimum magnitude that satisfies

(10.23), that is, the solution that is closest to the given inexact data is required.

The objective function is
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣









z(j+1) − z(0)

p̈(j+1) − p̈0

d(j+1) − d(0)









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣









z(j) + δz(j)

p̈(j) + δp̈(j) − p̈0

d(j) + δd(j)









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

:= ||Ey − h|| , (10.25)

where

E = I2m+2n+3, h = −









z(j)

p̈(j) − p̈0

d(j)









, (10.26)
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and y is defined in (10.24). It is noted that E is constant and not updated between

iterations.

The minimization of (10.25) subject to (10.23) is a least squares minimization with

an equality constraint (the LSE problem),

min
y

||Ey − h|| subject to Cy = q,

which can be solved by the QR decomposition [30]. This LSE problem is the same

type of problem considered in Chapter 9, and it is solved at each iteration, where C, q

and h are updated between successive iterations.

Algorithm 10.1: Deconvolution of two Bernstein polynomials

Input Inexact Bernstein polynomials f(x) and h(x), which are of degrees m and

m+ n respectively.

Output The polynomial g(x) = h(x)/f(x).

Begin

1. Process f(x) and h(x) to yield f̈(x) and ḧ(x), which are defined in (10.4) and

(10.5) respectively, using the preprocessing operation described in Section 10.2.

2. % Initialize the data

• Calculate the diagonal matrices D̄−1 and Q̄.

• Set z = z(0) = 0, which yields B = 0, and d = d(0) = 0.

• Calculate T̄ , Y and the initial value p̈0 of p̈, which is defined in (10.22).

Calculate the initial value of q,

q(0) = r(0),
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where r(0) is equal to the initial value of the residual,

r(0) = r(z(0) = 0, p̈0, d
(0) = 0)

= c̈−
(
D̄−1T̄ (f̈)Q̄

)
p̈0.

• Define the matrices C and E.

3. % The loop for the iterations

% Solve the LSE problem at each iteration using the QR decomposition

repeat

(a) Compute the QR decomposition of CT ,

CT = QR = Q






R1

0




 .

(b) Set w1 = R−T
1 q.

(c) Partition EQ as

EQ =

[

E1 E2

]

,

where

E1 ∈ R
(2m+2n+3)×(m+n+1), E2 ∈ R

(2m+2n+3)×(m+n+2).

(d) Compute

z1 = E†
2(h− E1w1),

where h is defined in (10.26).

(e) Compute the solution

y = Q






w1

z1




 .
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(f) Set z := z + δz, p̈ := p̈+ δp̈ and d := d+ δd.

(g) Update B and Y , and therefore C from z, p̈ and d. Compute the residual

r(z, p̈, d) = (c̈+ d) − D̄−1(T̄ +B)Q̄p̈,

and thus update q = r(z, p̈, d). Update h from z, p̈ and d.

until ||r(z,p̈,d)||
||c̈+d||

≤ 10−12

End

Algorithm 10.1 terminates when the residual ||r(z,p̈,d)||
||c̈+d||

is sufficiently small and it

yields z∗, p∗ and d∗. The vector z∗

z∗ =

[

z∗0 z∗1 · · · z∗m

]T

∈ R
m+1,

is the perturbation vector for the coefficients of the polynomial f̈(x), and the vector

d∗

d∗ =

[

d∗0 d∗1 · · · d∗m+n

]T

∈ R
m+n+1,

is the perturbation vector for the coefficients of the polynomial ḧ(x), such that the

perturbed form of f̈(x) is an exact divisor of the perturbed form of ḧ(x). The corrected

forms of f̈(x) and ḧ(x) are therefore given by

f ∗(x) =

m∑

i=0

a∗i

(
m

i

)

(1 − x)m−ixi

=
m∑

i=0

(äi + z∗i )

(
m

i

)

(1 − x)m−ixi,
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and

h∗(x) =

m+n∑

i=0

c∗i

(
m+ n

i

)

(1 − x)m+n−ixi

=

m+n∑

i=0

(c̈i + d∗i )

(
m+ n

i

)

(1 − x)m+n−ixi,

respectively. The quotient polynomial g∗(x) is obtained from the vector p∗,

p∗ =

[

b∗0 b∗1 · · · b∗n

]T

∈ R
n+1,

that is

g∗(x) =

n∑

i=0

b∗i

(
n

i

)

(1 − x)n−ixi.

10.4 Examples

This section shows the results obtained from the method of SNTLN implemented

on (10.10), which are compared with the results obtained using the method of least

squares. The method of least squares is now described.

Consider the inexact Bernstein polynomials f(x) and h(x), which are defined in (10.8)

and (10.9) respectively. They are preprocessed using the operation described in Sec-

tion 10.2 to yield f̈(x) and ḧ(x), which are defined in (10.4) and (10.5) respectively.

The inexact nature of f̈(x) and ḧ(x) implies that f̈(x) is not an exact divisor of ḧ(x),

and thus the approximation (10.10) is established. The approximate solution p̈ is

then computed using the method of least squares, that is

p̈ ≈
(

D̄−1T̄ (f̈)Q̄
)†

c̈, (10.27)

and the coefficients of the quotient polynomial g̈(x) are obtained from p̈.

The criteria are required to be established in order to compare the method of SNTLN

and the method of least squares. The following criteria are developed for the method
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of SNTLN, but they are also applied to the method of least squares.

The method of SNTLN yields the corrected forms f ∗(x), g∗(x) and h∗(x). If f ∗(x) is

an exact divisor of h∗(x) and g∗(x) is the quotient polynomial, then

f ∗(x)g∗(x) = h∗(x),

should be satisfied, which is easily checked by computing

‖f ∗g∗ − h∗‖
‖h∗‖ .

Furthermore, the coefficients of the quotient polynomial g∗(x) are compared with

the coefficients of the exact quotient polynomial ĝ(x), which can be achieved by

computing the error between the normalized coefficients of g∗(x) and the normalized

coefficients of ĝ(x), that is

‖g∗ − ĝ‖,

where ‖g∗‖ = ‖ĝ‖ = 1 and ‖ · ‖ denotes the 2-norm. These criteria are also applied

when the method of least squares is used to solve the deconvolution problem.

Example 10.2. Consider the exact Bernstein polynomials f̂(x) and ĥ(x), whose

roots and multiplicities are specified in Table 10.1.

Root of f̂(x) Multiplicity
0.4327e+000 5
0.5479e+000 6
1.0000e+003 5
-1.2147e+000 2
7.3125e+000 8

Root of ĥ(x) Multiplicity
0.4327e+000 6
0.5479e+000 7
1.0000e+003 8

-1.2147e+000 3
1.2793e-004 5

7.3125e+000 9

Table 10.1: The roots and multiplicities of f̂(x) and ĥ(x) for Example 10.2.

It is shown in Table 10.1 that f̂(x) is an exact divisor of ĥ(x), and thus the exact
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quotient polynomial ĝ(x) is easily computed.

Noise with componentwise signal-to-noise ratio 104 is added to the coefficients of f̂(x)

and ĥ(x) to obtain their inexact forms f(x) and h(x).

In the method of least squares, the approximation (10.10) is established, and it follows

from (10.27) that the approximate solution p̈ of (10.10) is computed. The coefficients

of the quotient polynomial g̈(x) are obtained from p̈. The error measure ‖g̈ − ĝ‖ is

equal to 1.0089e− 004 and ‖f̈ g̈−ḧ‖

‖ḧ‖
is equal to 5.1646e− 008.

In the method of SNTLN, the method of SNTLN performed on (10.10) yields the

vectors z∗, p∗ and d∗. The perturbation vectors z∗ and d∗ allow the corrected forms

of f̈(x) and ḧ(x), f ∗(x) and h∗(x), to be obtained. The coefficients of the quotient

polynomial g∗(x) are obtained from the vector p∗. The error measure ‖f∗g∗−h∗‖
‖h∗‖

is

equal to 2.8713e − 017 and ‖g∗ − ĝ‖ is equal to 7.8794e − 005. Compared with the

results obtained from the method of least squares, the relatively small error between

f ∗(x)g∗(x) and h∗(x) indicates that f ∗(x)g∗(x) = h∗(x) is more exactly satisfied. �

Example 10.3. Consider the exact Bernstein polynomials f̂(x) and ĥ(x), whose

roots and multiplicities are specified in Table 10.2.

Root of f̂(x) Multiplicity
0.3178e+000 6
0.4431e+000 4
0.5979e+000 4
0.6129e+000 5
0.7189e+000 4

Root of ĥ(x) Multiplicity
0.3178e+000 8
0.4431e+000 6
0.5979e+000 6
0.6129e+000 6
0.7189e+000 6
0.8251e+000 3
0.9134e+000 4
0.9998e+000 4

Table 10.2: The roots and multiplicities of f̂(x) and ĥ(x) for Example 10.3.
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It follows from Table 10.2 that f̂(x) is an exact divisor of ĥ(x), and thus the exact

quotient polynomial ĝ(x) is easily computed.

The addition of noise with componentwise signal-to-noise ratio 104 to the coefficients

of f̂(x) and ĥ(x) yields their inexact forms f(x) and h(x).

In the method of least squares, the coefficients of the quotient polynomial g̈(x) are

obtained from the approximate solution p̈ of the approximation (10.10), which is

computed using (10.27). The error measure ‖g̈ − ĝ‖ is equal to 0.1105 and ‖f̈ g̈−ḧ‖

‖ḧ‖
is

equal to 2.4953e− 005.

In the method of SNTLN, the method of SNTLN implemented on (10.10) yields the

vectors z∗, p∗ and d∗. The corrected forms f ∗(x), g∗(x) and h∗(x) are then obtained.

The error measure ‖f∗g∗−h∗‖
‖h∗‖

is equal to 2.6666e−013 and ‖g∗− ĝ‖ is equal to 0.1096.

Compared with the results obtained from the method of least squares, the significantly

smaller error between f ∗(x)g∗(x) and h∗(x) means that f ∗(x)g∗(x) = h∗(x) is more

precisely satisfied. �

10.5 Summary

This chapter considered the use of the method of SNTLN to solve the approximate

deconvolution of two inexact Bernstein polynomials f(x) and h(x). It has been shown

that the method is effective in computing the perturbations applied to the coefficients

of f(x) and h(x), such that the perturbed form of f(x) is an exact divisor of the

perturbed form of h(x). The typical examples shown in Section 10.4 demonstrate

that the method of SNTLN yields significantly better results than the method of least

squares. Furthermore, experiments also show that the method of SNTLN converges

to the solution only after 4 or 5 iterations.



Chapter 11

Conclusion and future work

This thesis considered the application of structure preserving matrix methods for

some ill-posed operations on Bernstein polynomials. In particular, the operations of

greatest common divisor computations and polynomial division were considered.

Three algorithms to compute the GCD of Bernstein polynomials, Euclid’s algorithm,

and operations on the Bézout and Sylvester resultant matrices were introduced. It was

shown in Chapter 3 that when exact polynomials are specified, these three algorithms

provide an unambiguous and correct result in a symbolic computing environment.

However, when the GCD computation is performed in a floating point environment

and the polynomials are inexact because of added noise, these algorithms fail to cal-

culate the GCD of polynomials because noise makes the inexact forms of polynomials

coprime, and therefore the computation of the GCD becomes an ill-posed problem.

Thus, an AGCD of inexact polynomials must be considered. Different definitions of

an AGCD may be specified for different problems. In this thesis, the degree of an

AGCD of two inexact polynomials is defined to be correct when it is equal to the

degree of the GCD of their exact forms because this reproduces in the given noisy
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polynomials a property of their theoretically exact forms.

The computation of an AGCD of inexact polynomials requires the degree of an

AGCD to be determined initially. This can be achieved by calculating the normal-

ized singular values of the Bézout and Sylvester resultant matrices when the prepro-

cessing operations are implemented on them. In particular, since the Sylvester matrix

has a partitioned structure, three preprocessing operations are implemented on the

Sylvester matrix, which are the normalization of the polynomials, the introduction

of a parameter α, and a transformation of the independent variable x to a new inde-

pendent variable w. However, due to the bilinear nature of the Bézout matrix, only

the third preprocessing operation, a transformation of the independent variable x to

a new independent variable w, is required to be implemented for the Bézout matrix.

Experiments show that these preprocessing operations allow the improved and correct

determination of the degree of an AGCD to be obtained. In addition, it is noted that

compared with the conventional form of Sylvester matrix, its modified form obtained

by post-multiplying its conventional form with a diagonal matrix yields significantly

better results. The importance of the inclusion of this diagonal matrix is discussed

in Chapter 6.

Furthermore, the degree of an AGCD can also be determined using the first principal

angle and the residual of an approximate linear algebraic equation, and these methods

involve Sylvester subresultant matrices. In particular, for each subresultant matrix,

the three preprocessing operations mentioned above are required to be implemented,

its optimal column is then selected using the criteria based on the first principal an-

gle and the residual. For each subresultant matrix, the first principal angle and the

residual between its optimal column and its remaining matrix after the removal of
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optimal column are recorded. The degree of an AGCD is determined by observing

the maximum change of the first principal angle or the residual.

After the degree of an AGCD is determined, the perturbations of minimum magni-

tude applied to the coefficients of the inexact polynomials are calculated using the

method of SNTLN, such that the perturbed forms of the inexact polynomials have

a non-constant common divisor of the determined degree. Experiments demonstrate

that few iterations are required for the method of SNTLN to converge to a solution,

and similarly, the subresultant matrices with the inclusion of diagonal matrices re-

cover a much better approximation to the coefficients of the GCD. In addition, it

has also been shown in this thesis that the method of SNTLN can be used to solve

the deconvolution problem of inexact polynomials.

This thesis has shown that structured matrix methods allow excellent computational

results to be obtained to ill-posed problems in which the coefficients of Bernstein

polynomials are corrupted by noise. It is therefore appropriate to apply them to

some practical problems.

The method introduced in this thesis has shown that reliable results can be obtained

from ill-posed operations on univariate Bernstein polynomials. It is therefore desirable

to consider applying this method to bivariate and trivariate Bernstein polynomials.

Since the size of resultant matrices of bivariate and trivariate Bernstein polynomials

is much larger, it is necessary to consider computationally efficient algorithms. This

includes the calculation of the displacement rank of resultant matrices. In addition,

there exists an important difference between univariate polynomials, and bivariate

and trivariate polynomials. In particular, a univariate polynomial of degree d has

exactly d linear factors, but a bivariate polynomial and a trivariate polynomial of
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degree d > 1 may not have d factors. For example, x2 + y + 1 = 0 does not have any

linear factors. Furthermore, it should be noted that the Sylvester matrix of multi-

variate polynomials is rectangular, not square. These issues have not been addressed

and will be considered in the future work.

This method can also be used to solve some practical problems in CAGD. For ex-

ample, the intersection points of Bézier curves are frequently considered in CAGD.

Since the Bézier curve is represented by Bernstein polynomials, the computation of

the intersection points of Bézier curves is reduced to calculating the common roots of

Bernstein polynomials. The operations considered in this thesis are required for the

robust solution of these intersection problems.

Finally, it is shown in [65] that a polynomial root solver that is explicitly designed for

the computation of multiple roots of a polynomial requires the computation of the

GCD of a polynomial and its derivative. This thesis has presented a reliable method

to compute the GCD of Bernstein polynomials, and thus the computation of multiple

roots of Bernstein polynomial using the algorithm in [65] is practical. In addition,

the algorithm in [65] also involves the division of Bernstein polynomials, which has

been addressed in this work.
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