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At nonzero temperature, thermal fluctuations play a role in the behaviour of any

physical, chemical, or biological system. The use of stochastic processes to model

such systems dates back over 100 years, to the work of Einstein, Langevin, and

Smoluchowski. Modern computer simulation techniques, in particular kinetic Monte

Carlo, are built on these foundations, and a whole field of mathematical research

has grown from these seeds.

Conventionally, two approaches are used in their study: 1) stochastic differential

equations, where a random component is explicitly included in the forces acting

on the system, and 2) deterministic partial differential equations for the system’s

probability density function. In this work, we will investigate a third, less widely

known, approach: path or functional integrals [1] [2]. This technique expresses

the probability density as a sum over system trajectories, with a statistical weight

attached to each one.

Inspired by semiclassical quantum-mechanical path integrals, which allows certain

quantities to be expressed in closed form as ℏ → 0, we develop a weak noise approx-

imate theory for classical stochastic processes. This reveals a remarkable correspon-

dence between the most probable stochastic paths and Hamiltonian mechanics in

an effective potential. We investigate several previously overlooked subtleties, such

as the role played by the functional Jacobian, and the necessity of turning paths, to

correctly treat the long-time limit.

Armed with these tools, we derive, for the first time, closed-form expressions for the

first passage density in a one-dimensional stochastic system subject to a general,

nontrivial potential, and investigate simple potentials in detail. We revisit the ubiq-

uitous problem of fluctuation-driven escape over an energy barrier, and derive the

full first passage density, where only the mean was previously available. The exten-

sion to higher dimensions is then briefly explored, with the simplest free diffusion

results returned to demonstrate the technique’s validity beyond one dimension.
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Chapter 1

Introduction

In this chapter, we will begin the journey of finding a semi-closed form solution

for a stochastic process using path integrals. To begin with, we will explore

what a stochastic process is and how it relates to the specific equation we will

be solving throughout this work, the Smoluchowski equation. This will entail

deriving the Smoluchowski equation from the stochastic differential equation

and then discussing some possible applications of the first passage time density

and mean first passage time, deriving the known equations for both of these

quantities. Within this, we will explore some of the current techniques and

discuss some of the limitations that occur and the possibility of the path

integral in tackling these issues.
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CHAPTER 1. INTRODUCTION

The use of stochastic processes is integral to research in many areas of science be-

cause of the range of systems they can model. Due to the random variable elements

of stochastic processes, they can model almost any natural phenomenon with a ran-

dom nature in its evolution [3][4]. This can range from bacterial growth [5] to particle

movement through materials [6], from financial systems [7][8] to population dynam-

ics [9], even including telecommunications [10]. The range of applications means

that this area of mathematics has been widely researched, and several techniques

have been formulated to tackle these problems over the years. These techniques

can be used for a variety of systems, for example, the Bernoulli process [11], used

for binary systems, such as the flipping of a coin; Brownian motion [12], used for

particles in a medium; or a Poisson process [13], used for random events modelled

in time. This type of mathematics has rapidly come to the forefront in recent years

due to the increase in demand for knowing how these processes act over time and

the range of possible systems to which this technique can be applied.

A second method, classical mechanics, is still used in many areas of science and

engineering, for example, using Newton’s equations of motion to determine the evo-

lution of a system, such as the movement of celestial models, which also exposes

more applied and sophisticated mathematics theories, Hamiltonian systems [14],

Lagrangians [15], and Hamilton-Jacobi equations [16], all of which govern the move-

ment of physical systems due to their equations of motion.

The third major dynamical system paradigm is Quantum dynamics, which describes

systems that play by an entirely different set of rules in quantum mechanics but have

a basis in classical mechanics, for example, Feynman’s path integral formulation

which uses classical actions and Lagrangian mechanics [17][18].

An excellent quote from Ge and Qian’s paper “Analytical mechanics in Stochastic

dynamics” [19] ties all three together:
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1.1. WHAT IS A STOCHASTIC PROCESS?

“Classical dynamics has trajectories but only singular distributions; quantum dy-

namics has distributions but no trajectories due to Heisenberg’s uncertainty princi-

ple; stochastic requires both perspectives.”

In this work, we will combine elements from all three areas of dynamics in an at-

tempt to solve the overarching problem of formulating a semi-analytical probability

density function (PDF) for a stochastic process. First, we explore some existing

mathematical techniques used to solve a particular type of stochastic process which

is applicable to particles diffusing under the influence of a given potential and explain

some of the limitations that occur due to computational constraints. We will also

briefly describe techniques that are used to work around this limitation, for exam-

ple, forward flux sampling [20] [21]. We will then introduce the use of path integral

techniques from quantum mechanics [22] and find a remarkable correspondence be-

tween stochastic dynamics in a potential to a classical Hamiltonian system with an

effective potential to find a semi-analytical solution which may be able to provide

more complete understanding for both probability and first passage time densities

of the system. We will find these densities both numerically and analytically and

discuss how this path integral technique could solve some of the current problems

of computational techniques arising from computational limits in both power and

time [23] [24].

1.1 What is a stochastic process?

First, we must define a stochastic process and the mathematics governing its prop-

erties and uses. There are many different ways to model a stochastic process, and

in this section, we will concentrate on two standard methods. The first is a stochas-

tic differential equation (SDE) called the Langevin equation [25]. The second is a

partial differential equation (PDE) called the Fokker-Planck equation [26].

3



CHAPTER 1. INTRODUCTION

A SDE is a differential equation with a stochastic force, a term with a random ele-

ment, allowing the SDE to model random phenomena. Typically for the Langevin

equation, this random element is a Gaussian white noise variable, z, which is de-

scribed by a probability density function,

P (z) =
1

σ
√

2π
exp

(
−(z − µ)2

2σ2

)
,

E[z] = µ,

SD[z] = σ,

where E[z] is the mean and SD[z] is the standard deviation. One of the famous

realisations of the Langevin equation is the use for Brownian motion, the random

motion of particles in a fluid due to collisions with the fluids particles [1]. To

derive the Langevin equation, the first step is to appeal to known classical dynamics

representations, i.e. Newton’s Law, and then introduce a random element to the

system to move the derivation into stochastic dynamics. This is an example of the

crossover between classical and stochastic dynamics and how easily they can be used

to describe similar systems. To find the governing Langevin equation, we begin by

writing the classical mechanics Newton’s equation, F = ma, as a sum of forces,

mv̇ = F (t) + f(t), (1.1)

where F (t) represents the forces due to some external field, for example, a potential

gradient, and f(t) is the force produced by collisions of fluid particles against the

particle of interest. What was seen experimentally in the system is that there

are rapid fluctuations in the particle’s velocity v, which comes from the random

contribution of the impacts of the fluid particle occurring when the mass of the

particle of interest is much larger than the fluid particles. These random fluctuations

that are experimentally observed mean that the dynamical system can be described

using a stochastic equation by writing the collision force f(t) as proportional to the

velocity and including a random element to account for the fluctuations through a

4



1.1. WHAT IS A STOCHASTIC PROCESS?

fluid. This means that we can write,

1

m
f(t) = −γv + ξ(t), (1.2)

where γ is the friction coefficient of the fluid which opposes the particle’s motion,

hence the minus sign. ξ(t) is the white noise term that governs the random con-

tributions of the force, which averages to zero, E[ξ(t)] = 0, and is required to be

independent of previous time values, with the correlation function

⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′).

⟨. . .⟩ is defined as the average over the fluctuations of the noise. The use of the

Dirac delta function means that there is no correlation between timesteps and this is

called uncorrelated noise, meaning the function has no memory of previous timesteps

normally applied to Markov processes [27]. Some systems have correlated noise,

meaning the variance of the noise function has some memory of previous timesteps

with work having been done with correlated noise for calculating escape rates in the

weak-noise limit [28][29]. In this work, we will stick with uncorrelated noise keeping

the timestep independent. Combining (1.1) and (1.2) without an external force,

F (t) = 0, gives

v̇ = −γv + ξ(t),

the simplest stochastic differential equation. We can go one step more complicated

by reintroducing the external field and remembering that the velocity is the deriva-

tive of position; we have a pair of equations

ẋ = v, (1.3)

v̇ =
1

m
F (x) − γv + ξ(t). (1.4)

5



CHAPTER 1. INTRODUCTION

Differentiating (1.3) and substituting into (1.4) we arrive at a second order differ-

ential equation,

ẍ =
1

m
F (x) − γẋ+ ξ(t). (1.5)

Restricting the system to high friction, γ large, which means particles are instantly

at terminal velocity, ẍ ≈ 0, as the friction in the system dominates |γẋ| >> |ẍ|. This

is an observed phenomenon and an assumption of a Markovian process, because in

a highly viscous fluid inertia will be lost instantaneously, an approximation that we

can make on the timescales that we are interested in, and that means there is no

acceleration on the particle [19]. We can rewrite equation (1.5) as

ẋ = − d

dx
V (x) + ξ(t), (1.6)

where d
dx
V (x) = −F (x), and m and γ are constants that can be set equal to 1

without loss of generality. This final equation (1.6) is the Langevin equation corre-

sponding to the problem of diffusion in a potential field V (x), the specific system

that we will be tackling throughout this work.

The actual specific problem we will investigate begins with a Fokker-Planck (F-P)

equation which requires derivation from the Langevin equation (1.6) that we have

just found. A Fokker-Planck equation is a deterministic partial differential equation

as opposed to a stochastic differential equation, that will also describe the evolution

of a particle in a given potential but explicitly describes the time evolution of the

probability of position of the particle under the influence of a given potential and

diffusion value and removes the dependency of the random element ξ(t). To find

this F-P equation, we begin with a general version of the Langevin equation (1.6),

using ẋ = dx
dt

we can rearrange to,

dx = µ(x)dt+ σ(x)dW (t), (1.7)

where dW = ξ(t)dt is a Wiener process, a tool used in stochastic calculus to relate

6



1.1. WHAT IS A STOCHASTIC PROCESS?

the given noise term to a differential, and dW is the increment of a Wiener process.

It is a process that holds the random nature of the stochastic process and is famously

used for Brownian motion, with its independent increments detailing the random

nature of movement very well. µ(x) in (1.7) is defined as the drift velocity, here it

is related to the gradient of the potential, and σ(x) is the diffusivity term.

Several useful properties are used in Brownian motion, but here we will use it for the

fact that in one dimension it follows a normal distribution with mean E[W (t)] = 0

and variance Var(W (t)) = t [30]. In order to find the Fokker-Planck equation we can

define a general form for a function by using stochastic calculus rules, Ito’s Lemma

[31]. We begin with the understanding that we are describing a system that obeys

the Langevin equation (1.7). If we have a generic function, f(x, t), that is twice

differentiable it will have the following Taylor expansion,

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 + O(t2) + O(x3)

We do not need any higher-order terms as they become zero when we will take a

limit in the next steps. Substituting in the Langevin equation for dx (1.7) we find,

df =
∂f

∂t
dt+

∂f

∂x
(µdt+ σdW ) +

1

2

∂2f

∂x2
(
µ2dt2 + 2µσdtdW + σ2dW 2

)
.

We wish to have the most continuous system possible in time, meaning we find the

limit dt → 0 and only concentrate on the most dominant terms, the ones propor-

tional to dt. One of the characteristics of the Wiener process we can use is that dW 2

is proportional to dt. Collecting like terms, and replacing dW 2 for dt we obtain Ito’s

Lemma [31],

df =

(
∂f

∂t
+ µ

∂f

∂x
+
σ2

2

∂2f

∂x2

)
dt+ σ

∂f

∂x
dW. (1.8)

This is an example of the extra mathematics that arises from using stochastic dy-

namics, as we gain an additional term from dW 2 than we would in normal calculus

because of the choice of using the Ito prescription in this derivation. There is also the

7



CHAPTER 1. INTRODUCTION

Stratonovich prescription which does not have the additional term and preserves the

normal calculus chain rule but has differing properties elsewhere. For the majority

of this work, we will be consistent and work with the Ito prescription of stochastic

integrals. We can use this Lemma and other properties of the Wiener process W

to find the F-P equation. First of all, as f is an arbitrary function, we can choose

to drop the time dependence of the function, f(x, t) = f(x), meaning that ∂f
∂t

= 0.

Next, we will take the average value of both sides of the equation. This step is

taken to introduce a probability density function (PDF) into the representation by

introducing the average value of a density [32] defined as;

⟨G(x)⟩ =

∫ ∞

−∞
G(x)P (x, t)dx.

Taking these steps with (1.8) we end up with the equation, remembering dW = ξdt,

〈
df

dt

〉
=

〈[
µ
∂f

∂x
+
σ2

2

∂2f

∂x2

]〉
+

〈
σ
∂f

∂x
ξ

〉
Using the fact that, ⟨ξ⟩ = 0

d

dt

∫ ∞

−∞
f(x)P (x, t)dx =

∫ ∞

−∞

[
µ(x)

∂f

∂x
+
σ2

2

∂2f

∂x2

]
P (x, t)dx.

We can calculate a couple of lines of integration by parts to find a usable form, using

the fact that there are boundary conditions for the probability density function.

The conditions are that at ±∞ the probability equals zero, P (x → ±∞, t) = 0.

This condition will be relaxed in later chapters when we begin to introduce hard

boundaries to confine the potential when looking at particular systems. The infinite

boundary conditions mean that only the integral terms are left during integration

by parts as all the evaluations that occur at the boundaries equal zero. This leaves,

∫ ∞

−∞
f(x)

dP (x, t)

dt
dx =

∫ ∞

−∞
f(x)

∂

∂x

[
−µ(x)P (x, t) +

∂

∂x

(
σ(x)2

2
P (x, t)

)]
dx.

As f(x) is an arbitrary function this equation holds for all f(x), meaning we can

8



1.1. WHAT IS A STOCHASTIC PROCESS?

extract the general form for the Fokker-Planck equation,

∂P

∂t
=

∂

∂x

[
−µ(x)P (x, t) +

∂

∂x

(
σ(x)2

2
P (x, t)

)]
. (1.9)

So, we have found the general over-damped Fokker-Planck equation, but to relate

it to our particular area of interest, we do one more transformation to the Smolu-

chowski equation [33] by relating µ and σ to a potential and diffusivity function,

µ(x) =
∂D(x)

∂x
− dV

dx
,

σ(x) =
√

2D(x),

⇒ ∂P

∂t
=

∂

∂x

[
dV

dx
P +D(x)

∂P

∂x

]
.

The diffusivity D(x) is the function that governs the diffusion effect of the particle

through the potential V (x). The diffusion value is a measure of the noise for a given

system, and in this work, it is non-specific to a particular system as we apply the

techniques to generic potentials. For physical systems, it may be that D is related

to the temperature in a thermal system through fluctuation-dissipation theory [34]

[35] D = µkBT , or it may be related to the volatility of stocks in a financial system.

For the duration of this work, we will be dealing with a constant diffusion value so

we have the form of the Smoluchowski equation,

∂P (x, t)

∂t
=

∂

∂x

[
dV (x)

dx
P (x, t) +D

∂P (x, t)

∂x

]
. (1.10)

In 3-D
∂P (x, t)

∂t
= ∇ · [∇V (x)P (x, t) +D∇P (x, t)] (1.11)

This is the specific partial differential equation that we will explore throughout this

work and investigate the possibility of using path integral techniques to solve for

the probability density function in a given potential V (x) with diffusion value D.

There is a need in many areas of science to investigate the time evolution of the

9



CHAPTER 1. INTRODUCTION

probability of the position of a given particle of interest. Under certain conditions,

the Smoluchowski equation will return simpler equations that are used in specific

areas.

In the case that the potential does not change, V (x) = 0 ⇒ dV (x)
dx

= 0, we return

the diffusion equation,

∂P

∂t
= D

∂2P

∂x2
.

This famous equation is used in various areas, specifically in physics, where it relates

to the random movements of particles under Brownian motion with no external force.

It also is closely related to the heat equation [36], a PDE in which instead of D for

diffusion, we have a constant proportional to the thermal diffusivity of a material, κ.

The heat equation then describes the transference of heat over time in a material.

We can show how this diffusion equation can come from first principle arguments

instead of using the Smoluchowski equation to highlight the dynamics of what is

happening in a flat potential system [37]. If we consider a region of space containing

particles at some concentration c(x, t) where c(x, t) is the number of particles per

unit length, we can discretise the space into boxes of width ∆x, the number of

particles in each box is c(x, t)∆x, figure (1.1).

Figure 1.1: A 1-D model of diffusion from random motion [37]

10



1.1. WHAT IS A STOCHASTIC PROCESS?

Defining the rule of motion for each particle, we also discretise time into steps ∆t. At

each time step, we suppose that a fraction of the particles ϵ hop into a neighbouring

box ( ϵ
2

jump left, ϵ
2

jump right). We now obtain the diffusive particle current jD(x, t),

defined as the net number of particles crossing a boundary at position x per unit of

time. Finding this current is done by summing the number of particles jumping left

to right minus the number of particles jumping right to the left,

jD(x, t)∆t =

[
c

(
x− ∆x

2
, t

)
− c

(
x+

∆x

2
, t

)]
∆x

ϵ

2
,

which in the limit of small ∆x becomes,

jD(x, t) = −D∂c

∂x
, (1.12)

which is Fick’s law of diffusion, with D = ϵ∆x2

2∆t
[38]. Next, we want to find an

expression for how the concentration changes over time, which is the sum of the

concentration in the prior timestep, plus the net number flowing in from the left,

minus the net number flowing in from the right;

c(x, t+ ∆t)∆x = c(x, t)∆x+ jD

(
x− ∆x

2
, t

)
∆t− jD

(
x+

∆x

2
, t

)
∆t

⇒ c(x, t+ ∆t) − c(x, t)

∆t
= −

jD
(
x+ ∆x

2
, t
)
− jD

(
x− ∆x

2
, t
)

∆x
.

In the small ∆x and ∆t limit this becomes the continuity equation, and when

combined with (1.12) becomes,

∂c

∂t
= −∂jD

∂x
,

(1.12) ⇒ ∂c

∂t
= D

∂2c

∂x2

11



CHAPTER 1. INTRODUCTION

1.2 First Passage Times

Alongside the probability density function, another primarily used quantity in the

scientific investigation of stochastic systems and the other major investigation of

this work is the first passage time density (FPT). The FPT density is a probability

density function describing the probability for the interested “particle” of the system

to interact with a boundary for the first time at time t [39]. For example, as shown

in figure 1.2, the FPT density f(t) will be the probability density function in time

t of when a diffusing particle will diffuse through region B and touch the boundary

∂B for the first time.

Figure 1.2: A diffusing particle in a given region B with boundary ∂B

To find the FPT density, we begin with a generic system that has a probability

density function that will solve the multidimensional Smoluchowski equation with

the given boundary condition,

Ṗ = ∇ · [∇V (x)P +D∇P ] ; P (x ∈ ∂B) = 0.

The boundary condition at ∂B exists as particles are removed from the system as

soon as they interact with the boundary. To calculate the first passage time density,

12



1.2. FIRST PASSAGE TIMES

we measure the total flux out of the region B over the barrier ∂B, i.e. how much

has escaped out of the system at a given time,

f(t|x, 0) = −D
∫
∂B

∇P · n̂dS. (1.13)

In a one-dimensional case with a system of two absorbing boundaries, like the one

shown in figure 1.3, with relevant boundary conditions, P (x = a) = 0 = P (x = b)

we can derive the first passage time density from the survival probability of the

system.

Figure 1.3: FPT example system with two boundaries at the edge of the system for
a generic potential V (x)

The survival probability (SP) is the probability that the particle has remained within

the boundaries and is given by,

SP (t) =

∫ b

a

P (x, t)dx.

It is related to the FPT density by the fact that the FPT density describes the

probability that the particle has reached the absorption point between time t and

t+ dt, so f(t)dt = SP (t) − SP (t+ dt). Giving the relationship,

f(t) = −∂SP (t)

∂t
,
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CHAPTER 1. INTRODUCTION

which by using the Smoluchowski equation, we can find the explicit FPT density.

f(t) = −
∫ b

a

∂P (x, t)

∂t
dx

= −
∫ b

a

∂

∂x

[
V ′(x)P (x, t) +D

∂P (x, t)

∂x

]

= −
[
V ′(x)P (x, t) +D

∂P (x, t)

∂x

] ∣∣∣∣b
a

Then using the boundary conditions that the probability vanishes on the boundary

means the first term in the bracket is 0, leaving us with the FPT density,

f(t) = −DP ′(x, t)

∣∣∣∣b
a

,

f(t) = −D [P ′(x = b) − P ′(x = a)] . (1.14)

Equation (1.13) is the most common form of the FPT density and will be the

representation that we will continue to use in this work as it has the most versatility

for various systems, and will return (1.14) in one dimension. The majority of systems

have some form of barrier that is being investigated, so a formalism dependent on

the barriers is the most useful for our purposes.

We can also find a second representation for the probability that the system first

reaches x at time t, given that it started at 0 at time 0. There are no restrictions

on the path the system may take, other than it may not visit x before t. The FPT

density must satisfy,

P (x, t|0, 0) =

∫ t

0

f(x, t|0, τ)P (0, τ |0, 0)dτ, (1.15)

where the transition probability satisfies the Smoluchowski equation

∂P

∂t
= ∇ · (P ∇V +D∇P ) ; P (x, 0) = δ(x− x0); P (x, t) → 0 as |x| → ∞.

14
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What this representation means is that the probability of starting from position

0 at time 0 and arriving at x in time t, P (x, t|0, 0), is the integral over all time

of the probability of not moving for a time τ , P (0, τ |0, 0), then reaching the final

position x for the first time in the remaining time t − τ , remembering that f(t) is

itself a PDF density. This can also be written more concisely by assuming that the

stochastic process is stationary [40], meaning that for an unconditional probability,

it is unaffected by a shift in time, so equation (1.15) becomes

P (x, t) =

∫ t

0

f(x, t− τ)P (0, τ)dτ. (1.16)

However, we are after a representation of the FPT density, so we wish to remove the

integral and rearrange it to find f(x, t). To do this, we use Laplace transforms to

find the representation for the FPT density by using the convolution identity [41],

leading to a Laplace domain form for the FPT density

P (x; s) = f(x; s)P (0; s)

f(x; s) =
P (x; s)

P (0; s)
. (1.17)

Where P is the Laplace transformed P with Laplace parameter s. For a single exit

point x in one dimension, the two definitions (1.13) and (1.16) are equivalent as the

system cannot “go around” the final position x, but in all other cases, they differ.

The two definitions have different applications, with (1.16) applying to situations

concerning the time taken for a system to find a certain point and (1.13) in situations

concerning escape from a specific region. For both, we require a solution to the

Smoluchowski equation, which we will find the approximation in the weak-noise

limit in this work. Primarily we are interested in a system in which escape from a

region is the interesting dynamics, meaning that we concentrate on (1.13) for the

duration of this work.
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The first representation, equations (1.13) and (1.14), is what is widely used in various

fields of science to find when a system triggers an important event for the first

time and provides essential information about that system. These systems and the

knowledge of the FPT density are in all areas and for a variety of reasons, for

example:

• In finance, you may want to know when a stock price might reach a certain

price for the first time to know when best to exercise an option to sell or buy

[42][43]

• In chemical dynamics, the knowledge of knowing when reactants may reach

a certain energy which activates a reaction can be useful when setting up

experiments to capture the resultant products [44]

• In material science, the movement of defects through a solid-state material

and when they may interact with each other for the first time, possibly gaining

knowledge in how long materials may last for under certain strains [45]

• In neuroscience, with integrate-and-fire models for neurons and when they may

fire for the first time after a certain voltage is reached, meaning the time when

an event occurs in the body can be approximated [46]

• Or reaction-diffusion systems where particles diffuse independently through a

zero potential and interact with each other when they make contact, whether

coalescing or annihilating [47] [48]

We can explore a couple of the more common techniques commonly used to calculate

an FPT density and also look at why there are issues with these techniques in certain

situations and then discuss how the path integral approach may be able to provide

some missing information or help speed up numerical simulations.
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First is the standard idealised model for many systems, diffusion over a potential

barrier, figure 1.4 [49] [50]. In this system, we have a group of particles that begin

in a potential well and are near equilibrium. The particles then make independent

attempts to cross over the barrier into the other potential well. Independent because

the assumption made is that the system does not remember previous tries, so the

probability density can become unconditional on previous attempts as the process

is Markovian in nature.

Figure 1.4: Idealised model of diffusion over a barrier

What is calculated is the rate of the system, Γ, which comes from the attempt

frequency A of the attempts made by the particles to cross the barrier and the

escape probability exponential, called an Arrhenius equation, [51]

Γ = A exp

(
−∆V

kT

)
,

where k is the Boltzmann constant and T is the temperature for the system. This

result is based on the Poisson process, with wait times exponentially distributed and

describes the fraction of particles that make it over the barrier with each attempt.

This rate value can then be used in Monte Carlo (MC) methods to simulate par-

ticles moving over potential barriers, with the likelihood of an attempt succeeding

depending on the rate. This exponential approximation means that only the mean

or long-time limit of the FPT density is used to calculate the rate of the system,

leading to much information about what happens at short time being discarded by

the FPT density curve, along with not being able to model non-equilibrated sys-
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tems correctly. See later in section 8.4 for a fuller comparison between Kramer’s

rate approximation and a full FPT density from path integrals.

Further, the assumptions made may only hold for some systems, and if, for example,

the system has multiple potential barriers the calculations may work for one of

the barriers and not the others. This is called the “small-barrier” problem, where

due to the MC algorithm being iterated with respect to rates, the barriers with

the higher rates will always be preferential. These higher rates will be where the

potential difference between the bottom and the top of the barrier is the smallest

because of the exponential relationship. This can result in larger barriers being

missed, and in a particular system, the largest barrier is the most interesting one.

In this work, we will hopefully show that this is a potential advantage of the path

integral technique that will be introduced. In a system with multiple peaks and

troughs in the potential, for example, a crystal structure, there would have to be

multiple Monte Carlo simulations for each potential barrier, with each simulation

having further assumptions and issues with the event occurring in a computationally

allowed timeframe and with the “small-barrier” issue. The path integral technique,

however, could be quicker as we will see that it will be possible to incorporate all

the energy wells into a single potential and allow the larger barriers to be taken into

account as if in the timeframe, the largest barrier is the most likely the path integral

should pick this up [52].

Another issue can occur alongside the “small-barrier” issue when there are multiple

particles in a potential with multiple wells. For this system, what is being looked for

is when two particles come close enough together to interact with each other to have

an interesting reaction. The issue lies in systems where the density of particles is so

low that the particles take too many hops over a number of potential barriers to find

each other, and much of the computational work is wasted with particles exploring

blank space, and the interesting reactions occur very infrequently. One advancement

to help combat this issue is given in a paper by Oppelstrup and colleagues [48].
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This technique uses the whole first passage time density instead of just the mean

first passage time or rate to evolve a system of multiple particles through time,

with all the movements assumed to occur at equilibrium. It is typically applied to

systems that evolve through collisions among random walkers or “reaction-diffusion”

systems, and at present, is only valid for a zero potential. The system is set up with

each particle having a “protective shell”, as shown in figure 1.5. The arrival time

Figure 1.5: An example of the “shells” drawn around the particles, with which the
FPT density is calculated to, with only particle 7 moving at the current timestep
[48]

at the protective shell for all particles is then calculated based on a first passage

time density function for free diffusion which is calculable for a system with no

potential. The particle with the shortest time, in this case particle 7, is then the

only one that is moved and the system evolves and the shells are redrawn around

particle 7. This negates the need to move all the particles for each timestep and

reduces the computational requirement, increasing the applications of the technique.

However, as with diffusion over the barrier, some assumptions may only hold for

some situations. In this kinetic Monte Carlo (kMC) technique, the FPT is assumed

to follow an exponential distribution, where τ is the mean FPT value, the inverse

of the rate,

f(t) = Γe−Γt; Γ =
1

τ
.

This FPT density approximation does agree with the known shape of a density

curve in the long time limit, T → ∞, as both will tend to 0 but does not agree at
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short times, as shown in figure (1.6). The short-time disagreement comes from the

fact that the mode of the exponential distribution is zero, whereas the short-time

limit of an FPT density is itself zero. This is because, at short times, you would

expect particles to have no time to travel to the boundary, meaning limt→0 f(t) = 0.

Typically the exponential distribution is a good approximation and can be used

in a wide variety of FPT applications as equilibrium is an assumption made it is

therefore valid in the long-time limit when T → ∞; it is just the short-time limit

which disagrees with the known shape of an FPT density curve. This disagreement

may be negligible for specific systems or never come into question as the reactions

all happen on a long enough time limit that it does not produce a large enough error

to be significant. For the purpose of figure (1.6), it was manufactured to show a

considerable divergence at a short time to highlight the possibility of disagreement.

Figure 1.6: Comparison of a general FPT density and the exponential distribution
with the same mean value

This is a possible advantage of the path integral technique to find a fuller description

of the FPT density negating the need for an approximation at all, or only the need

for a weak-noise approximation, along with the ability to allow the calculation of

non-equilibrated systems. The possibility of being able to calculate the full FPT

density for a non-zero potential is another path integral improvement.
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These are a couple of the significant limitations of using current FPT density tech-

niques, namely computational limits of running the simulation long enough for some-

thing to happen or that assumptions for one system may not hold for all. The hope

for the path integral that we will explore throughout this work is that there will

be the introduction of the full FPT density, see chapter 8, which will provide more

information for all times and also allow a generalisation to non-zero potentials in

multiple dimensions. We will also find a closed-form solution in a semi-analytical

approximation for more complete information about the given system.

1.2.1 Mean First Passage Time

The mean first passage time is a useful result from the FPT density that provides

important information about a system. This gives the mean time that an event will

occur and can be derived from either the first passage time or first principles. This

value is used in the kMC simulations, τ , as the inverse of the transition rate, Γ.

Here we will derive the value from first principles following lecture notes from an

Advanced Entropy course [37] by solving the Smoluchowski equation directly, but

with an extra element to incorporate the effect of injecting particles at the position

x = x0 at a rate r, this injection will add an additional term to the Smoluchowski

equation, rδ(x − x0). We impose a boundary condition at x = b as an absorbing

barrier P (x = b) = 0, where particles are removed from the system, and then allow

the system to reach a steady state and calculate the number of particles in the

system n allowing the calculation of the mean FPT, τ = n
r
. We begin with the

Smoluchowski equation with the relevant initial and boundary condition,

∂P

∂t
=

∂

∂x
[V ′(x)P +DP ′(x)] + rδ(x− x0), P (x = b) = 0.

If we allow the system to reach a steady state, equilibrium ∂P
∂t

= 0, then we can find

the number of particles within the system

n =

∫ b

a

P (x)dx, (1.18)
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where a is a reflecting barrier, a < x0 < b.

To find P (x) we need another value called the flux of the system, dj
dx

= −∂P
∂t

. Flux is

a measure of what travels through a particular point or barrier. In this system, we

only have an absorbing barrier to the right of the initial position, meaning all the

particles will escape the system to the right. This means that nothing will escape

to the left, meaning no flux over x = a. As j(x) = −V ′(x)P −DP ′ the flux of the

system has the value

j(x) =r x > x0

0 x < x0,

where r is the magnitude of the flux over the barrier at x = b and is the injection

rate of the particles into the system, meaning what goes in must come out. Due

to everything escaping from the system to the right, we can define it as a constant

value because it has no dependence on position. So we have a differential equation

for P and there are two different flux equations that we can solve for P on either

side of the initial position due to the different barriers,

For x < x0 V ′(x)P +DP ′ = 0,

P (x < x0) = A exp

(
−V (x)

D

)
, (1.19)

and for x > x0 V ′(x)P +DP ′ = −r,
d

dx

[
P exp

(
V (x)

D

)]
= − r

D
exp

(
V (x)

D

)
,

∫ b

x

d

dx′

[
P exp

(
V (x′)

D

)]
dx′ = − r

D

∫ b

x

exp

(
V (y)

D

)
dy,

P (b) exp

(
V (b)

D

)
− P (x) exp

(
V (x)

D

)
= − r

D

∫ b

x

exp

(
V (y)

D

)
dy,
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P (b) = 0; P (x > x0) =
r

D
exp

(
−V (x)

D

)∫ b

x

exp

(
V (y)

D

)
dy.

(1.20)

We can find the constant A in (1.19) by using the fact that the probability is

continuous across the entire system meaning that the probabilities on either side

of x0 must equal each other at x0,

P (x < x0;x0) = P (x > x0;x0)

A exp

(
−V (x0)

D

)
=

r

D
exp

(
−V (x0)

D

)∫ b

x0

exp

(
V (y)

D

)
dy

A =
r

D

∫ b

x0

exp

(
V (y)

D

)
.

We can now calculate the mean first passage time τ , using the fact that the mean

first passage time is defined as τ = n
r
, where we have n from equation (1.18) which

we split due to two PDF expressions,

n =

∫ x0

a

P (x < x0)dx+

∫ b

x0

P (x > x0)dx,

τ =
1

D

∫ x0

a

exp

(
−V (x)

D

)∫ b

x0

exp

(
V (y)

D

)
dydx (1.21)

+
1

D

∫ b

x0

exp

(
−V (x)

D

)∫ b

x

exp

(
V (y)

D

)
dydx. (1.22)

This integral can be rewritten by combining the integral domains into one integral,

τ =
1

D

∫ b

x0

exp

(
V (y)

D

)∫ y

a

exp

(
−V (x)

D

)
dxdy (1.23)

This combination can be shown using a domain graph 1.7. The first integral in

(1.21) is highlighted in green, while the second is in red. The change into one
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integral changes the integral limits meaning the whole domain is brought under one

integral. We have derived an integral form of the mean first passage time for a

Figure 1.7: Domain graph for the integrals

general V (x), which we will utilise later to confirm our results when we use the path

integral technique on simple potentials.

In this introductory chapter, we have looked at the basic principles of stochastic

dynamics and how the fundamental equations that will be investigated throughout

this work are found. We have briefly looked at some of the current techniques

that are being used to describe dynamical systems and have explored some of the

limitations of these techniques due to computational requirements. Throughout the

rest of this work, we will further explore a specific technique in solving for the key

information of a system, namely by using the path integral formulation to find the

probability density function, first passage time density, and mean first passage time.

The use of path integrals to the extent in this work has yet to be fully understood

concisely in a single result, and we will be exploring how different elements of the

path integral form provides differing information to the classically known solutions.
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1.2. FIRST PASSAGE TIMES

Work has been done using path integrals for the calculation of the mean first passage

time as that is the important element in Monte Carlo methods.

Path integrals are the “third way” to look at solving the Smoluchowski equation and

what we will explore in the rest of this work. It is still an approximate solution, only

exact for quadratic potentials and simpler, much like solutions to the Schrödinger

equation in quantum mechanics [53]. However, we will see that it can begin to

provide some of the currently discarded information and provide possibly useful

insights into the interesting dynamics of a system.

We will explore how these path integrals are defined in chapter 2, then look at how

they can be implemented numerically to provide fast solutions to complex systems

in chapter 3. We will then explore the key ingredients to provide the full picture of

the system in chapters 4 and 5 before applying the knowledge to one of the more

well-known systems, the Harmonic oscillator chapter 6. Finally, we will explore how

the first passage time densities and mean first passage times can be calculated using

techniques of the Laplace domain, chapters 7 and 8 before finishing off with a brief

look as to how the path integral might work in higher dimensions 9.
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Chapter 2

Introduction to Path Integrals

In this chapter, we will begin to explore the use of the path integral formula-

tion in solving the Smoluchowski equation, beginning by deriving the general

form of a stochastic dynamic path in the potential V (x). We look at build-

ing a probability density function form for the most dominant paths in the

system, working in the weak noise limit. Then, making a handy comparison

to the dynamics of a classical path in a fictitious potential allows the use of

Hamiltonian mechanics and Euler-Lagrange equations to help provide a full

insight into the dynamics of the paths. We will then form a full probability

density function for the classical path and show that it solves the simplest of

problems, the flat and sloped potential. Finally, we will end by looking at

a long time-limit exploration and wondering whether the solution will return

the correct equilibrated solution or whether more pieces are needed to provide

the complete information about the system at all times.
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The first step of introducing the concept of the path integral, and how it can be used

to solve the Smoluchowski equation (1.10) for a given potential, is to use techniques

previously used to find an integral representation of the path’s specific weight by

using more characteristics of Wiener processes. We will then specifically look at

the most dominant paths using Hamiltonian mechanics, revealing a relationship

between stochastic most probable paths in the potential V (x) and Hamiltonian

trajectories in a virtual potential V(x), allowing more information about the paths

to be determined.

To begin finding the path integral representation, we will follow a derivation of the

general path integral for a Markov Stochastic process from Horatio Wio’s book “Path

Integrals for Stochastic Processes” [1] in one dimension. Initially, we are finding a

probability density function in the time domain using known techniques, which we

will apply specifically to the systems we wish to investigate. To begin trying to find

this probability density function, we start by looking at the probability that at a

given time t, the process takes a value between a and b having been at q0 at time t0,

P (a < x < b, t|q0, t0) =

∫ b

a

dqP (q, t|q0, t0).

The integrand is the probability density value for a path that began at (q0, t0) and

finished at (q, t). What this expression achieves is to “sum” over all possible final

positions between a and b with each probability P (q, t|q0, t0). We can take this a

step further, and to represent a path that travels from (q0, t0) to (qN , tN), we splice

the journey up and end up with an expression that utilises short-time propagators

P (qi+1, ti+1|qi, ti). This means that we can build a probability that the process,

starting at (q0, t0), has a value between a1 and b1 at t1, a value between a2 and b2 at

time t2, ..., a value between aN−1 and bN−1 at tN−1, and reaching qN at tN , is given

by:
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CHAPTER 2. INTRODUCTION TO PATH INTEGRALS

P (qN , tN |q0, t0) ≈

∫ b1

a1

∫ b2

a2

. . .

∫ bN−1

aN−1

dq1dq2 . . . dqN−1P (qN , tN |qN−1, tN−1) . . . P (q2, t2|q1, t1)P (q1, t1|q0, t0).

(2.1)

Figure 2.1: A “practical” example of multiple gates path [1]

Subsequently, suppose we increase the number of time segmentations we use and

narrow the spatial windows around the path. In that case, we can increase the

accuracy of the final probability value by increasing the number of propagators

representing how we can partition up a single path trajectory into multiple smaller

segments. We can then appeal to known solutions to find an expression for these

short-time propagators, thus finding an expression for the full probability density

function. To find an integral form for the probability density function that will be

calculable, we need to know how the whole integral will form when we use known

results, namely, the Wiener process [54]. Appealing to this known solution for a

small t propagator means that we can find a full probability integral form which

allows a comparison to the Langevin equation resulting in a more usable form for

the stochastic probability density function.
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The Wiener process has a probability density function for travelling from W1 to W2

in time (t2 − t1):

P (W2, t2|W1, t1) =
1√

2πD(t2 − t1)
exp

[
− 1

2D(t2 − t1)
(W2 −W1)

2

]
. (2.2)

If then we split the path into infinitely many segments (2.1), N → ∞, we can define

a Wiener measure [2] by substituting the short-time propagator (2.2) into the full

probability form (2.1). This substitution, along with the discretisation allows a

transformation of the integral form to a product of the Wiener processes. The

Wiener measure is then defined as;

P (W,T |W0, t0) =
N∏
j=1

(
dWj√
4πϵD

)
exp

[
− 1

4Dϵ

∑
j

(Wj −Wj−1)
2

]
,

where ϵ is our time gap which becomes uniform as N → ∞ after the time discreti-

sation. As N → ∞ and ϵ → 0, we can transform the exponent from a sum to an

integral and write the probability as

P (W,T |W0, t0) ∝ exp

[
− 1

4D

∫ T

t0

dτ

(
dW

dτ

)2
]
. (2.3)

So we now have a probability form, minus some normalisation, for a single path

between two points (W0, t0) and (W,T ). To then recover a full probability density

function, we extended to a full probability by integrating this value over all possible

paths between (W0, t0) and (W,T ) to get a Wiener integral [55]

P (W,T |W0, t0) =

∫
D [W (τ)] exp

[
− 1

4D

∫ T

t0

dτ

(
dW

dτ

)2
]
, (2.4)

where D[W (τ)] represents the integral over all the paths and is a concise version of

dW0dW1dW2 . . . dW , condensing the multiple integral representation into an integral

over all possible paths taken by the Wiener process. It also holds the normalisation

constant, which can be found using standard techniques, ensuring that the proba-
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CHAPTER 2. INTRODUCTION TO PATH INTEGRALS

bility density function satisfies the correct initial and final value limits for the given

system.

So this represents a Wiener process probability using known short-time propagator

results, which is valid for Brownian motion. However, can we use other known

results from Stochastic processes to find a more usable and calculable form for

general systems and potentials?

2.1 An analytical path integral solution

We have from Wio [1] a form for the probability as the integral over all possible

paths (2.4), and in this section, we will begin to piece together a more calculable

and closed-form representation for the probability density function of a system,

not just a Wiener process. We can begin with a noise probability functional for a

single path, which arises from the relationship between white noise and the Wiener

process, dW (t) ≈ ξ(t)dt. The single path expression we found earlier (2.3) can be

transformed by this relationship to find a form for the probability density function

that relates to the white noise functional instead,

P [ξ] ∝ exp

[
− 1

4D

∫
|ξ(t)|2dt

]
(2.5)

This is a probability density functional for the Gaussian white noise term, which is

the same found in the general Langevin equation, which we can use to find a more

usable form of the PDF for the general system that we are investigating in this work.

Using the Langevin equation (1.6) to substitute in for the noise term,[25]

mẍ+ Γẋ = −∇V (x) + ξ(t), (2.6)

where m is the mass of the particle and Γ is the friction coefficient. Substituting

(2.6) into (2.5) and subsequently into the (2.4) form we can write down the transition
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

probability for all paths from (xi, 0) to (xf , T ),

P (xf , T |xi, 0) =

∫
Dx J [x] exp

[
− 1

4D

∫ T

0

|mẍ+ Γẋ+ ∇V (x)|2dt
]
.

What this integral represents is the sum of the probability of each individual path

from the initial position xi to the final position xf in time T . The J [x] term is

the Jacobian that arises from the change in variables ξ → x. It is defined in the

infinite-dimensional limit as the Jacobian functional J = |Dξ/Dx|, and in the case

of the path integral, its value is dependent on when the noise term in the system is

applied. For now, this value for a single path propagator can be taken to be unit,

J = 1, which arises from what is called the Ito prescription when the noise is added

before the particle moves in Langevin simulations. It transpires, as we will see in

chapter 4, that the Jacobian term does not become relevant until the potential is of

quadratic order or higher. Still, we will explore it thoroughly in chapter 4.

The time integral in the exponential can be interpreted as the stochastic action S[x],

with corresponding Lagrangian L = |mẍ+ Γẋ+ ∇V (x)|2, much like the work done

by Onsager and Machlup [56], however, in this case, it was restricted to a linear

Gaussian process. This can be expanded to give a more useful form,

L = 2Γẋ (mẍ+ ∇V ) + Γ2ẋ2 + (mẍ+ ∇V )2 ,

= 2Γ
d

dt

(
1

2
mẋ2 + V

)
+ Γ2ẋ2 + (mẍ+ ∇V )2 ,

so P can now be written as

P (xf , T |xi, 0) =

∫
Dx J [x] exp

[
− 1

4D

∫ T

0

2Γ
d

dt

(
1

2
mẋ2 + V

)
+ Γ2ẋ2 + (mẍ+ ∇V )2 dt

]
=

(
exp

[
−Γ∆E

2D

])∫
Dx exp

[
− 1

4D

∫ T

0

(
Γ2ẋ2 + (mẍ+ ∇V )2

)
dt

]

where ∆E =
[
1
2
mẋ+ V

]final
initial

. As this is the non-overdamped system, this is for the

full Fokker-Planck non-Markovian solution due to the inclusion of the ẍ term. An
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CHAPTER 2. INTRODUCTION TO PATH INTEGRALS

interesting thing to note is because the terms in the time integral are symmetric

under time reversal, an immediate result is Crook’s fluctuation theorem [57],

P (xf , T |xi, 0)

P (xi, T |xf , 0)
= exp

[
−∆E

kBT

]
= exp

[
−
[
−1

2
mẋ+ V

]xf

xi

kT

]
,

meaning the trajectory from xi to xf in time T with negative ∆E is exponentially

more likely than its reverse, xf to xi in time T , where we have used the Einstein

relation to relate temperature with the diffusion value, D = ΓkBT [34], an example

of how the generic noise term D can be related to a specific system. This has com-

parisons with the Metropolis Monte Carlo algorithm [58] whose derivation begins

with the principle of detailed balance [59], where the ratio between two probabilities

which are time reversals of each other is a ratio of the relevant stationary distribu-

tions π,

P (xf |xi)
P (xi|xf )

=
π(xf )

π(xi)
.

Where the stationary distribution is recovered from the Boltzmann distribution

[60], the long-time solution to the Smoluchowski equation, exp
(
− ∆V

kBT

)
. This can

be seen as similar to our ∆E, by the fact that at equilibrium the energy will reduce

to ∆E = ∆V |finalinitial as the particle has zero velocity, ẋ = 0, and the full probability

density function that we have is for the Fokker-Planck equation which keeps the

kinetic terms. This also shows a time invariance of our probability density function,

meaning the probability of travelling in one direction is proportional to the proba-

bility of travelling in the opposite direction, with the proportionality factor being

the Boltzmann distribution.

We can then restrict this problem to the overdamped limit, where the inertia term,

ẍ, in (2.6) equals zero as we assume the particles have reached terminal velocity

immediately. We can then find a path integral expression (with Γ = 1 without loss

of generality) that reads:
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

P (xf , T |xi, 0) =

∫
DxJ [x]exp

[
− 1

4D
S[x]

]
, S[x] = 2∆V +

∫ T

0

(
ẋ2 + V ′2) dt,

(2.7)

where the ∆V = V (xf ) − V (xi) term comes from integrating the time derivative

term in the Lagrangian and, due to being only dependent on the endpoints, can

be removed from the path integral. S[x] can be called a stochastic action term,

similar to what appears in Lagrangian dynamics. So starting from a stochastic

differential equation, we have arrived at a form for the probability density function

that has a form similar to that of classical mechanics actions, more specifically those

of Hamiltonian mechanics which we may be able to use to understand the dynamics

of the original stochastic system fully. This representation is an integral over all

possible paths between the initial and final positions in time T .

What the action S[x] quantifies is how many fluctuations are needed to make the

path occur as if no fluctuations occur we will have S = 0 which results in sliding

downhill under friction. Some of these fluctuations deviate so far from the classical

path that the action is large, meaning the probability is extremely small, so they will

not have a relevant contribution to the final solution. What this describes is the path

of least resistance which is preferable and when doing stochastic simulations of a

system, will be the most likely. For example, if we think about escape over a barrier,

this event in itself is a rare event in which nothing happens at all as the particle

wobbles at the bottom of the well. When the time is right all the fluctuations

add up in the correct direction to allow the particle to jump over the barrier, a

probabilistically unlikely event with a large action. Another way to think in terms

of path integrals is in a similar situation with a potential barrier to overcome, if

a particle travels halfway up the barrier and stays there for a period of time, it

will take many fluctuations being in balance to keep the particle there, and then

subsequently over the barrier, meaning this is probabilistically unlikely. What is

more likely is that the fluctuations move the particle back to the bottom of the well,
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CHAPTER 2. INTRODUCTION TO PATH INTEGRALS

and the probabilistically more likely event is for the particle to make it over the

barrier all in one go, which also makes more physical sense. Considering this, we

can concentrate on these paths that dominate the probability and provide the most

dominant contributions to the solution [61] by having the smallest fluctuations from

the classical path.

To do this, we can look at the paths that minimise the action term, subsequently

maximising the probability which we can do by appealing to Euler-Lagrange equa-

tions and Hamiltonian dynamics [62]. This means that the comparison we are

drawing is that stochastic dynamics in the potential V (x) corresponds to classical

conservative trajectories in a “virtual” effective potential, V(x), which we will find

by using Euler-Lagrange equations [63]. As we are looking for the minimums of the

stochastic action S, we are after the stationary points of the integrand, which we

can relate to the Lagrangian and use a combination of Euler-Lagrange equations

and Hamiltonian mechanics. Using the Euler-Lagrange equations, we can find the

equations of motion that the classical trajectories satisfy in the “virtual” potential.

The Euler-Lagrange equation in one dimension is defined as,

S(x) =

∫ T

0

L[ẋ, x, t]dt =

∫ T

0

(ẋ+ V ′(x))
2

dt,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0.

Solving this equation, we can find the equation of motion,

L = ẋ2 + 2ẋV ′(x) + V ′(x)2,

∂L

∂x
= 2ẋV ′′(x) + 2V ′(x)V ′′(x),

d

dt

∂L

∂ẋ
=

d

dt
[2ẋ+ 2V ′(x)] = 2ẍ+ 2V ′′(x)ẋ,

∂L

∂x
− d

dt

∂L

∂ẋ
= 2V ′(x)V ′′(x) − 2ẍ = 0,

ẍ = V ′(x)V ′′(x).
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

Note that in mechanics we can always add a total time derivative to the Lagrangian

without changing the Euler-Lagrange equations. This is what the middle term in

the L expansion is; without it, the equations of motion will be the same. So, the

Euler-Lagrange equation returns an equation of motion for the trajectories in the

“virtual” effective potential. Relating this to Newton’s second law of motion for a

particle in a potential, F = ma = −∇V(x) we find that the potential is,

ma = 2ẍ = 2V ′(x)V ′′(x),

2V ′(x)V ′′(x) = − d

dx
(−V ′(x)2) = − d

dx
(V(x)),

V(x) = −V ′(x)2.

This means that by minimising the stochastic action in our representation of the

path integral probability, we can relate the most probable, dominant stochastic paths

that occur in the potential V (x) to classical paths that obey Hamiltonian mechanics

in the effective potential V(x) = −V ′(x)2. An example of these two potentials is

shown in figure 2.2 for an asymmetric double well potential. The knowledge of this

comparison will be apparent throughout this work as we use the effective potential

to show a complete picture of what happens to these paths as they travel through

the potential V (x).

As we are appealing to Hamiltonian mechanics for the trajectories in the effective

potential, we can use other definitions to provide a useful piece of the puzzle. The

other expression we can find using Hamiltonian mechanics is an “energy” value using

the energy function,

H =
∂L

∂ẋ
ẋ− L,

= (2ẋ+ 2V ′(x)) ẋ− L,

H = ẋ2 − V ′(x)2. (2.8)
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Figure 2.2: An example of the Potential V (x) for a tilted double well vs the corre-
sponding Ito prescription effective potential V(x) = −V (x)2

This quantity describes the energy that a particle possesses along a path in the

effective potential and is analogous to the addition of kinetic and potential energy

for the given system. For a small H value, the paths will spend most of their time

near the peaks of the effective potential when V ′(x) = 0, just like the weak-noise

stochastic paths do in the real potential when they spend a lot of their time at the

bottom of the wells or the top of the peak. Substituting this energy equation into

our expression for S[x] (2.7) we return Hamilton’s principal function [64], the action

of the path evaluated down the extremal,

S(x) = 2(V (xf ) − V (xi)) +

∫ T

0

(2ẋ2 −H)dt,

= 2(V (xf ) − V (xi)) −HT + 2

∫ T

0

ẋ
dx

dt
dt,

= 2(V (xf ) − V (xi)) −HT + 2

∫ xf

xi

√
H + V ′(y)2dy, (2.9)

where we chose the + square root from the ẋ = ±
√
H + V ′2 as the velocity is positive
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

when arriving at the given endpoint from the same direction as the initial position.

In this system, we have the fact that xf > xi so the particle will be travelling from

left to right in the potential, and as the velocity ẋ has a direction it is positive as

we take naturally that left to right is positive. Later we will consider paths that will

arrive at xf from the other side, opposite to xi, which results in a turning path.

We can solve the equation of motion for the Hamiltonian system in order to find a

relationship between time and “energy”. We have from Hamiltonian mechanics the

“energy” equation which we can rearrange to find the velocity of the classical path

particle,

H = ẋ2 − V ′(x)2,

ẋ =
√
H + V ′(x)2.

Note that if we still had the friction coefficient and had not set it equal to 1, this

“energy” term would actually have dimensions of power instead. Integrating this

equation on both sides between the beginning and end point yields the relationship

we are after,

dx

dt
=
√
H + V ′(x)2,∫ T

0

dt =

∫ xf

xi

dx√
H + V ′2

,

T =

∫ xf

xi

dx√
H + V ′2

. (2.10)

This representation derived from Hamiltonian mechanics methods describes the time

taken for a path to travel from the initial position to the final position in the real

potential, undergoing stochastic diffusion. This equation can also be found by the

stationary action principle to return equations of motion and calculating the partial

derivative ∂S
∂H

and setting it equal to 0, ∂S
∂H

= 0 [65]. To find this action and

time, we have used the Euler-Lagrange equation to find the classical path, the most

37



CHAPTER 2. INTRODUCTION TO PATH INTEGRALS

probable path. However, there may be more paths that are highly probable and will

contribute to the full probability density function. These paths fluctuate around the

most probable path, meaning what we want to calculate is the probability that a

path is in a “tube” around the most probable path, but how do we take these into

account? [66][2] To find this factor, we can look at the next term, the quadratic, in

the expansion of the action around the classical path trajectory, S∗,

S[x] = S∗ +
δS
δx

∣∣∣∣
x∗

+
1

2
y(t)

δ2S
δx2

∣∣∣∣
x∗

y(t) + ...,

where x(t) = x∗(T ) + y(t), with y(t) being the fluctuations. The second term in

the expansion is what we have already used in order to find the classical path and

what returns the Euler-Lagrange equations, so δS
δx

∣∣∣
x∗

= 0. The next term is from

the Taylor expansion of L to the second order and is defined as,

δ2S =

∫ T

0

(
∂2L

∂ẋ2

∣∣∣∣
x∗

ẏ2 + 2
∂2L

∂x∂ẋ

∣∣∣∣
x∗

yẏ +
∂2L

∂x2

∣∣∣∣
x∗

y2
)

dt,

Using the Lagrangian L = (ẋ+ V ′(x))
2
,

1

2
y(t)

δ2S
δx2

∣∣∣∣
x∗

y(t) =

∫ T

0

(
ẏ2 + (V ′(x)V ′′(x))

′
∣∣∣∣
x∗

y2
)

dt,

⇒ S[x] = S∗ +

∫ T

0

(
−yÿ + (V ′V ′′)

′
∣∣∣∣
x∗

y2
)

dt,

where we have used the fact that during integration by parts, the fluctuation function

y(t) does not deviate at the beginning or the end of the path, y(0) = y(T ) = 0.

This final expression can be written more concisely by using an operator M̂

S[x] = S∗ +

∫ T

0

y
(
M̂y
)

dt,

= S∗ +
〈
y|M̂y

〉
;

M̂ = − d2

dt2
+ (V ′V ′′)

′
∣∣∣∣
x∗

.
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

We wish to integrate over “all” y(t) to calculate the quadratic fluctuations around

the classical path x∗(t) in order to take these paths into account. To do this, we use

the fact that the matrix M̂ is positive and self-adjoint, meaning its eigenfunctions

form a complete set and are defined as M̂yn = λnyn. This means that “any” y(t)

can be expanded as y =
∑

n anyn. So, our operator equation becomes,

〈
y|M̂y

〉
=
∑
n

∑
m

〈
anyn|M̂amym

〉
,

=
∑
n

∑
m

anam ⟨yn|λmym⟩ ,

=
∑
n

a2nλn,

where we have chosen the eigenfunctions to be orthonormal, ⟨yn|ym⟩ = δnm, as we

are integrating over all the values of an this is equivalent to integration over all

functions y(t). So we now have a second-order expansion of the action around the

classical path, but how does this act when inputted into our general form for the

probability density function? By now, we have a general form for the PDF to be,

P = N
∫

DxJ [x] exp

(
− S

4D

)
,

and we can now use our expansion to reduce this to a multiple of the classical path,

noting that N is the normalisation constant and is non-dependent on x.

P = N
∫

(Dx∗ + Dy)J [x∗ + y] exp

(
−S∗ +

∑
n a

2
nλn

4D

)
,

= NJ [x∗] exp

(
− S∗

4D

)∫
Dan exp

(
−
∑

n a
2
nλn

4D

)
,

= NJ [x∗] exp

(
− S∗

4D

)∏
n

√
4πD

λn
,

= NJ [x∗] exp

(
− S∗

4D

)
(4πD)

N
2

√
detM

, (2.11)

Furthermore, it is the term detM that we wish to find to include these quadratic

fluctuations around the classical path. There is the possibility that there occurs
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a zero mode in this representation when there is a zero eigenvalue, which would

cause a divergent portion of the probability. This problem is something that occurs

in quantum mechanics when solving the time-independent Schrödinger equation,

corresponding to the zero mode solution that arises when looking at using path

integrals in quantum mechanics [2]. We will investigate this divergence thoroughly

when we have another piece of the puzzle in the Jacobian term in chapter 4.

The normalisation constant N can be found using a comparison to the Ornstein-

Uhlenbeck solution, the probability density function for the quadratic potential sys-

tem [67], and returns N = (4πD)−
N+1

2 . To do this, we solve the simplest case, when

xf = xi, to find detM and then compare to known solutions to find N . For the

probability of the particle staying still, Pi(T ) = P (xi, T |xi, 0), the action S∗ = 0,

and J∗ = exp
(

1
2

∫ T

0
V ′′(xi)dt

)
= exp

(
1
2
V ′′
i T
)
, see chapter 4 to see where this comes

from explicitly. Finding detMi for this system is done by solving the initial value

problem,

Mψ(t) = 0; ψ(0) = 0; ψ̇(0) = 1;→ detM = ψ(T ). (2.12)

This amazing result is a trick from Gelfand and Yaglom [68]. For further derivation

and explanation see the paper from Gelfand and Yaglom, or Schulman’s path integral

book [2].

In this specific system,

Mi = − d2

dt2
+ (V ′V ′′)

′
∣∣∣∣
xi

= − d2

dt2
+ ω2; as V ′′2

i + V ′
i V

′′
i is constant

MiΨ = −Ψ′′ + ω2Ψ = 0

⇒ Ψ = A sinh(ωt) +B cosh(ωt)
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

Using the initial conditions yields the solution,

Ψ =
1

ω
sinh(ωt)

⇒ detMi =
sinh(ωT )

ω

Pi(T ) =
N (4πD)

N
2 exp

(
V ′′
i T

2

)
√

sinh(ωT )
ω

Now we say that this has to be equal to the Ornstein-Uhlenbeck solution for the

harmonic approximation for the potential well that xi is in, as we are after the

probability of staying in the same place we only care about the potential around the

initial position and can approximate it to be harmonic, as demonstrated in figure

2.3. If we say that xi is near the minimum at x = xm then if z = x − xm, the

potential is U = 1
2
V ′′
mz

2, and

PO−U =

√
V ′′
m

2πD (1 − exp (−2V ′′
mT ))

exp

(
−V

′′
m (z − zi exp (−V ′′

mT ))2

1 − exp (−2V ′′
mT )

)
.

This approximation allows us to equate between the Ornstein-Uhlenbeck solution

and the representation that we have gained for full probability density function,

in order to find constants. This equation to a specific representation is similar in

methodology as when we find normalisation constants by integrating probability

density functions overall space and equating to 1.

To find N we equate this to Pi(T ) and evaluate it at z = zi = xi−xm. If we simplify

this and evaluate this at the bottom of the potential well, i.e. xi = xm, then V ′
i = 0,

meaning that ω = V ′′
i and then we can simplify even further.

PO−U(xi = xm) = Pi(T )√
ω

2πD (1 − exp (−2ωT ))
=

N (4πD))
N
2 exp

(
ωT
2

)√
sinh(ωT )

ω
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⇒

Figure 2.3: Showing an approximation of the complex potential on the left to the
Harmonic potential on the right for xi positions near the minimum at xm

√
ω

4πD exp (−ωT ) sinhωT
=

N (4πD))
N
2 exp

(
ωT
2

)√
sinh(ωT )

ω

exp
(
ωT
2

)
√

4πD
= N (4πD))

N
2 exp

(
ωT

2

)
⇒ N = (4πD)−

N+1
2

This means that the (4πD)
N
2 will cancel in the general solution (2.11) leaving a

1√
4πD

, which feels right as in most general solutions there is a term of this form to

satisfy the normalisation as terms arise from Gaussian integrals.

Back to the general solution for detM (2.12), we actually already know one solution

to the operator equation by the fact that from the Hamiltonian mechanics ẍ = V ′V ′′,

which means that one of the solutions is ψ = ẋ∗, shown below,

Mψ = Mẋ∗,

= − ...
x ∗ + (V ′V ′′)

′
ẋ∗,

= − (V ′V ′′)
′
ẋ∗ + (V ′V ′′)

′
ẋ∗ = 0.

Finding the first solution is useful as with second-order ODEs we can find the second
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

solution from the first by using the Wronskian, W.

This is defined as,

W = ẏ2y1 − y2ẏ1,

and we can show that this is a constant by the fact that dW
dt

= 0,

dW

dt
= ÿ2y1 + ẏ2ẏ1 − ẏ2ẏ1 − y2ÿ1

Myi = 0 ⇒ = (V ′V ′′)
′
y2y1 − y2 (V ′V ′′)

′
y1

= 0.

This means that we can write the solution to ψ(t) as a linear sum of the two solutions,

and use the W equation to find the y2 relationship;

ψ(t) = Ay1 +By2,

y1 = ẋ∗,

y2 = y1(t)

∫ t

0

W

y21
dt.

So, we have our ψ(t) solution in terms of some functions and constants, but to

find these constants, we remember that we have initial values for ψ(t) (2.12). As

ψ(0) = 0 we can see that y2(0) = 0 as the integral = 0 meaning that we require

A = 0 as y1(0) ̸= 0. For the second constant, we have,

ψ̇(t) = Bẏ2(t)

= BW

(
ẏ1

∫ t

0

1

y21
dt+

1

y1(t)

)
ψ̇(0) = 1 = BW

1

y1(0)

⇒ BW = ẋ∗(0).
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Giving a full solution for ψ(t) and resultant form for our determinant,

detM = ψ(T ) = ẋ∗(0)ẋ∗(T )

∫ T

0

dt

ẋ∗(t)
.

Remember H = ẋ2∗ − V ′(x∗)
2; =

√
H + V ′(xi)2

√
H + V ′(xf )2

∫
1

ẋ2∗

dt

dx∗
dx∗,

=
√
H + V ′(xi)2

√
H + V ′(xf )2

∫ xf

xi

dx∗
ẋ2∗

,

=
√
H + V ′(xi)2

√
H + V ′(xf )2

∫ xf

xi

dx∗

(H + V ′(x∗)2)
3
2

.

This detM term can be combined with the N term to form the prefactor term that

encodes the classical path’s quadratic fluctuations,

A =

(
4πD

∣∣∣∣∣√H + V ′(xi)2
√
H + V ′(xf )2

∫ xf

xi

dx

(H + V ′(x)2)
3
2

∣∣∣∣∣
)− 1

2

.

We now have included the second-order fluctuations in our solution, meaning that

our probability density function expression will be more accurate and return a fuller

solution for a given system. There is a second technique to find this prefactor term

by appealing to a quantum mechanical analogy, and also arrives from integrating

over the quadratic fluctuations about the most probable path. What we wish to

find is a measure of how much two nearby extrema paths deviate from each other,

and this can be expressed in terms of the derivative of the classical path’s endpoints

[1][16]. It arises as a term called a Van-Vleck determinant which originally occurs as

a prefactor in the WKB approximation to the quantum time evolution operator as

a solution to the Schrödinger equation. In our classical picture, it is the derivative

of the final endpoint with respect to the momentum at the beginning, a measure of

how much the end point shifts if the momentum at the beginning changes, combin-

ing the possible fluctuations. This is the appearance of the semi-classical nature of

the path integral technique, where one portion of the system is described quantum

mechanically, these quadratic fluctuations, whilst the other portion of the system is
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2.1. AN ANALYTICAL PATH INTEGRAL SOLUTION

described classically, the classical path that these fluctuations exist around. For a

fuller description, see books such as Schulman [2] and Goldstein [16], but here we

will show that this technique returns the same solution by looking at the classical

expansion of the action to the second term. This is to show that a quantum me-

chanical equivalence can be made between the quantum mechanical path integral

technique and the classical version that this work investigates. This prefactor term

has the form;

P (xf , T |xi, 0) = Aexp [−S(xf , xi, T )/4D] ; A =

(
4πD

∣∣∣∣∂xf∂ẋi

∣∣∣∣)− 1
2

.

To find the prefactor A, we can use the chain rule to split the partial derivative into

ones that we know or can find from equations already found. Beginning with,

∂

∂ẋi
=
∂H

∂ẋi

∂

∂H
= 2ẋi

∂

∂H
= 2
√
H + V ′(xi)2

∂

∂H
.

To find the partial derivative with respect to H we can vary H in the T relationship

and hold t constant (δt = 0):

t+ δt =

∫ xf+δxf

xi

dx√
H + δH + V ′2

=

∫ xf+δxf

xi

dx√
H + V ′2

(
1 − 1

2

δH

H + V ′2 ...

)
expanding the square root

≈ t+ δxf
1√

H + V ′(xf )2
− δH

2

∫ xf

xi

dx

(H + V ′2)3/2
,

so to keep t constant, we require

δH

2

∫ xf

xi

dx

(H + V ′2)3/2
≈ δxf

1√
H + V ′(xf )2

δxf
δH

=
√
H + V ′(xf )2 · 1

2

∫ xf

xi

dx

(H + V ′2)3/2
.
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Combining this into the prefactor term returns,

∂xf
∂ẋi

= 2
√
H + V ′(xi)2

∂xf
∂H

=
√
H + V ′(xi)2

√
H + V ′(xf )2

∫ xf

xi

dx

(H + V ′2)3/2

Since this returns the same solution we found starting with the next term in the

classical action expansion, we are on the right lines. Some may notice that in the

limit H → 0 if the path travels across a turning point meaning that V ′ = 0 this

integral will diverge. This relates to the zero mode energy from the eigenfunction,

and we will solve this divergence issue in a later chapter when we introduce the

Jacobian term in chapter 4.

In conclusion, we have the following analytical equations for the probability density

function using the dominant path integral formulation with the extremal action with

a unit Jacobian term,

T =

∫ xf

xi

dy√
H + V ′2(y)

S(xf , xi, T ) = 2(V (xf ) − V (xi)) −HT + 2

∫ xf

xi

√
H + V ′2(y)dy

A =

(
4πD

∣∣∣∣√(H + V ′(xi)2)(H + V ′(xf )2)

∫ xf

xi

dy

(H + V ′(y)2)3/2

∣∣∣∣)− 1
2

P (xf , T |xi, 0) = Aexp

[
−S(xf , xi, T )

4D

]
(2.13)

These analytical solutions give the probability density function exactly for potentials

up to the level of quadratic; however, for higher degree potentials the integrals are

unsolvable analytically and must be numerically calculated or done approximately.

To show how this representation returns the known results for simple potentials, we

can solve the two simplest potentials, V (x) = 0, V (x) = bx.
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2.1.1 Flat potential: V (x) = 0

The simplest system that exists is a flat potential meaning that V ′(x) = 0. First,

we can find the time taken in relation to the initial and final positions along with

the energy,

T =

∫ xf

xi

dx√
H

=
(xf − xi)√

H
.

This can then be rearranged for the energy H,

H =
(xf − xi)

2

T 2
.

This can be seen to be analogous to the energy due to kinetic energy, E = 1
2
mv2, as

there is no potential energy with the flat potential and v = ∆x
∆t

. Now looking at the

expression for the action S,

S = −HT + 2

∫ xf

xi

√
H dx,

= −(xf − xi)
2

T
+ 2

√
H(xf − xi),

=
(xf − xi)

2

T
.

Then calculating the prefactor term

A =

(
4πD

√
H
√
H

∫ xf

xi

dy

H
3
2

)− 1
2

=

(
4πD(xf − xi)√

H

)− 1
2

=
1√

4πDT
,

which, when combined gives the probability density function as

P (xf , T |xi, 0) =

√
1

4πDT
exp

[
−(xf − xi)

2

4DT

]
.

In this system, the Jacobian term that arises from the change in variables in the

original derivation is still 1, so it does not affect the solution, but it will be needed

when we step up the complexity of the potential. This is the standard Gaussian
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result [69], and is the Green’s function for the heat equation, ∂P
∂t

= D ∂2P
∂x2 . We

can solve this heat equation using standard methods to show that the path integral

technique returns the correct result. Using the Fourier transform,

∂P

∂t
= D

∂2P

∂x2
,

Fourier transform Ṗ = −Dk2P ,

P = A exp
(
−Dk2t

)
.

We can calculate A by using the initial condition of the probability, P (x, t = 0) =

δ(x− xi), which in Fourier becomes,

P (t = 0) =
1√
2π

∫ ∞

−∞
δ(x− xi) exp (ikx) dx

⇒ A =
1√
2π

exp (ikxi)

P =
1√
2π

exp
(
−Dtk2 + ikxi)

)
Doing the inverse transform can calculate the probability density function, using

standard Gaussian integral identities along with completing the square,

P =
1√
2π

∫ ∞

−∞
P exp (−ikx) dk

=
1√
2π

∫ ∞

−∞

1√
2π

exp
(
−Dtk2 − ik(x− x0)

)
dk,

=
1

2π

√
π

Dt
exp

(
(−i(x− x0))

2

4Dt

)
,

P (xf , T |xi, 0) =

√
1

4πDT
exp

[
−(xf − x0)

2

4DT

]
.

This shows that the path integral technique agrees with the standard methods.
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2.1.2 Linear Potential: V (x) = bx

The next complication level is adding some potential to the system; in this case, it

will have a non-zero gradient, V ′(x) = b. Again beginning with the time integral to

find the relationship between energy and time,

T =

∫ xf

xi

dx√
H + b2

=
(xf − xi)√
H + b2

.

Rearranging for H,

H =
(xf − xi)

2

T 2
− b2.

Substituting into the action equation S and calculating the integral

S = 2b(xf − xi) −
(xf − xi)

2

T
+ b2T + 2

∫ xf

xi

√
H + b2 dx,

= 2b(xf − xi) −
(xf − xi)

2

T
+ b2T + 2(xf − xi)

√
H + b2,

= 2b(xf − xi) +
(xf − xi)

2

T
+ b2T.

Last but not least, the prefactor calculation,

A =

(
4πD

√
(H + b2)(H + b2)

∫ xf

xi

dy

(H + b2)3/2

)− 1
2

,

=
1√

4πD
(xi−xf )√
H+b2

=
1√

4πDT
,

which, when all substituted into the probability density function equation gives,

P (xf , T |xi, 0) =

√
1

4πDT
exp

[
−(xf − xi)

2 + 2b(xf − xi)T + b2T 2

4DT

]
,

=

√
1

4πDT
exp

[
−((xf − xi) + bT )2

4DT

]
.
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This is the drifting Gaussian and the solution for a linear potential from solving the

Smoluchowski equation directly [33]. This shows that the path integral formalism

does solve the simplest of potentials; anything more complicated we will need another

piece of the puzzle, the Jacobian term, which we will investigate in chapter 4.

2.1.3 The long time limit

So we have shown that our analytical form of the probability returns the correct

result for both the flat and linear potentials. Does this form also return the correct

long-time limit? This is because many systems are interested in the dynamics of

the equilibrated state. The expected behaviour of the system would be that at

equilibrium the probability density function will be proportional to the Boltzmann

distribution exp
(
−V (xf )

D

)
[60], so, does our probability density function also return

the correct proportionality?

The long time limit, T → ∞, corresponds to our energy value tending towards zero,

H → 0. This is due to the integral relationship that we have found previously

between time T and the energy H, (2.10), and for a particle to take an infinite

amount of time to travel a distance it must have infinitesimally small amounts of

energy in the effective potential. To show that this is true, we can look at (2.10)

and see what happens when H → 0, where γ is the path taken;

T =

∫
γ

dy√
H + V ′(y)2

⇒H→0

∫
γ

dy

|V ′(y)|

and T → ∞ for all paths that cross a maximum or minimum of the potential, which

will happen for equilibrated systems as the particles will “settle” at the base of a

potential well at a long time, “H → 0 ⇒ T → ∞”.

What figure 2.4 shows is for H → 0 (T → ∞), the particle will spend infinite time

in the real potential diffusing in the wells or peaks of the potential which maps to

the particle spending infinite time at the peaks of the effective potential. In terms
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of Hamiltonian mechanics, this means that the path will only have enough energy

to travel over the peaks accumulating infinite time at the peaks shown.

Figure 2.4: A path in the effective potential for a cubic potential, spending infinite
time at the peaks of the effective potential, H → 0

To see whether a given path returns the proportional long-time limit exponential

relationship, we only need to look at the action as that is the exponential form and

the prefactor A will not affect the exponent proportionality. First, we need to know

what happens to the HT term in the action, as in the H → 0 limit, it will become

0 · ∞ and we need to discern what the limit will be. Looking at HT ,

HT =

∫
γ

Hdy√
H + V ′(y)2

,

=
√
H

∫
γ

dy√
1 + V ′(y)2

H

,

lim
H→0

V ′(y)2

H
= ∞

⇒ lim
H→0

HT = 0.

In the case that V ′(y)2 = 0 meaning limH→0
V ′(y)2

H
= 0 HT still tends to 0 due to
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the factor of
√
H out front of the expression. The long time limit for the action is,

SH→0 = 2V (xf ) − 2V (xi) + 2

∫ xf

xi

|V ′(y)| dy.

Therefore, the long time limit depends on the potential gradient at the beginning

and end points. If we have a system that starts and ends on an uphill portion of a

potential, then |V ′(y)| = V ′(y) for the entire integral, e.g. figure (2.5).

Figure 2.5: Path example on only the positive portion of the potential

Calculating the action for this system,

SH→0 = 2V (xf ) − 2V (xi) + 2

∫ xf

xi

V ′(y)dy

= 2V (xf ) − 2V (xi) + 2V (xf ) − 2V (xi)

= 4V (xf ) − 4V (xi).

This means that the probability will have a long time limit

PH→0 ∝ exp

(
−V (xf ) − V (xi)

D

)
.
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This situation recovers the correct long-time limit, which is proportional to Boltz-

mann distribution, but what happens if we begin and end on the downhill portion

of the potential? Figure (2.6) shows in this situation |V ′(y)| = −V ′(y).

Figure 2.6: Path example on only the negative portion of the potential

Calculating the action for this system,

SH→0 = 2V (xf ) − 2V (xi) − 2

∫ xf

xi

V ′(y)dy

= 2V (xf ) − 2V (xi) − 2V (xf ) + 2V (xi)

= 0.

This means that the long time limit does not return the correct equilibrium dis-

tribution. This makes physical sense, as for the longest finite time solution, the

particle descends the potential under the influence of V (x) meaning no fluctuations.

However, in terms of the infinite-time solution, this does not make physical sense.

How can a particle “hover” near the final position when what the potential wants

to do is “pull” the particle to the bottom of the hill? So there must be something
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else going on to give an infinite-time solution! This mystery is shown further in

the effective potential plots of the above systems. Figures 2.7a and 2.7b show the

corresponding paths in the effective potential. These graphs show that for particles

in the effective potential, which obey Hamiltonian mechanics, there will not be an

energy value that will allow the particle to reach an infinite time limit, as there will

be a maximum energy for this path when the particle comes to rest at the final

position, Hmax = −V ′(xf )2. For the uphill path, to return the maximum time, the

particle is released at rest from the initial position, whereas for the downhill path,

the particle is released with enough energy to reach the final position at rest. This

allows the longest time to be reached, but what if we want a time longer than this?

(a) Uphill path in V (x) (b) Downhill path in V (x)

Figure 2.7: Paths in the effective potential, V(x), for the harmonic potential, graph-
ically illustrating the issues that the paths have in reaching infinite time.

Whereas if we compare this system to the quadratic potential, there is an infinite

time solution for the harmonic potential, the Ornstein-Uhlenbeck solution, which

is valid for all times and initial and final positions. Does this mean that there

is information about how the system works that is being missed in the standard

Ornstein-Uhlenbeck solution that the path integral formulation may be able to pro-

vide? Will the path integral provide the solution to how initial and final positions we

have just explored can survive in the long time limit and make intuitive sense? This
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is a question that we will ponder for now and revisit in chapter 5 when we resolve

this flaw in the representation after concentrating on another major element of the

puzzle, the Jacobian in chapter 4, which will also be affected by the introduction of

the turning path.

We have seen the introduction of the path integral and the first few pieces needed to

understand the dynamics of a given system fully. We have used an effective potential

to find information about the dominant paths in the transition and their correspond-

ing energies for a given time to traverse the path and used the equivalent solution

to solve the flat and sloped potential systems. These derivations return the known

solutions for these systems. This interpretation has been investigated previously in

works such as “Path integrals and non-Markov processes” by Luckock and McKane

[70], or in “Path integrals for stochastic processes” by Wio [1]. However, they stop

short of a full interpretation of a given system and focus on calculating rates for

systems to be subsequently used in simulations. What this work has begun to show

and will continue to is the use of this interpretation to provide a more physical sense

of how paths interact in a given system, and the following chapters show how each

element is used to calculate complete expressions for general potentials. At the end

of this chapter, we discovered that our formulation only sometimes produces the full

solution in certain situations, namely the long time limit. This inconsistency and

the mystery of the Jacobian term, which we have not investigated fully, will be ex-

plored in chapter 4 and chapter 5 with a more in-depth discussion and exploration.

But first, we will look at how the path integral can provide a numerical solution

for the probability density function. This useful tool will be used in later chapters

to compare results with visual representations of worded arguments, showing the

versatility of the path integral technique.
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Chapter 3

Numerical Solution using Path

Integrals

As stated in chapter 2, there are exact solutions to the Smoluchowski equa-

tion up to quadratic potential. The difficulty comes in increasing this to

cubic potentials or more complicated potentials as there are no exact solu-

tions. Whilst we will endeavour to find a full general potential solution for

the PDF, we can also use numerical techniques to use the path integral to ex-

plore these more complicated potentials. There are already a few techniques

to do this, but what follows is the introduction of another technique, first de-

veloped in Baibuz’s et al. paper “Diffusion in a potential field: Path-Integral

approach”[71] in 1980, which uses the concept of paths to construct a matrix

equation that can be iterated for a given time frame to solve for a PDF. In

this chapter, we will follow this derivation and recreate the results from the

original paper, then we extend it to more complicated potentials and look at

methods to speed up the technique and other interesting applications of the

technique. We then briefly explore whether this technique can be extended to

two dimensions and provide preliminary proof of concept results.
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3.1 The method

The method outlined in [71] finds a numerical path integral representation for the

probability density function, which solves the Smoluchowski equation,

∂P (x, t|xi, 0)

∂t
=

∂

∂x

[
dV (x)

dx
P (x, t|xi, 0) +D(x)

∂P (x, t|xi, 0)

∂x

]
, (3.1)

P (x, 0|xi, 0) = δ(x− xi),

where P (x, T |xi, 0) is the probability that a particle travels from position xi to

position x in time T , V (x) is the one-dimensional potential that the particle is

travelling in and D(x) is the diffusion coefficient, which for simplicity is a constant

is our systems D(x) = D, with the initial condition being a delta function at xi.

In order to solve higher-order systems, above the quadratic, the Smoluchowski equa-

tion can be solved using matrices, which involves discretising both the spatial co-

ordinates and the time steps. Slicing up the journey in this way, into smaller and

smaller jumps, means that we can treat each jump as a journey in a linear system,

V (xi + ϵ) ≈ V (xi) + ϵV ′(xi), for which an analytical solution can be found 3.1.

Figure 3.1: The linear approximation discretisation
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The technique begins with a transformation of the Smoluchowski equation,

P (x, t|xi, 0) = exp

[
−V (x) − V (xi)

2D

]
Q(x, t|xi, 0), (3.2)

when substituted into (3.1), this gives

− ∂Q

∂t
=

[
−D ∂2

∂x2
+
VBaibeff(x)

2D

]
Q, (3.3)

where VBaibeff is the effective potential from [71] defined as,

VBaibeff(x) =
[V ′(x)]2

2
−DV ′′(x). (3.4)

This “effective” potential is different to the one we have defined previously in the

analytical path integral solution. However, it is only different by a factor of 2 along

with the additional term from the second derivative of the potential. (3.3) is a partial

differential equation, similar in form to a Schrödinger equation again showing the

semi-classical nature of path integrals in which there are comparisons that can be

made between quantum mechanic techniques and stochastic processes. It is easier

to solve than the full Smoluchowski equation and has a solution which satisfies (3.3)

in the small time limit, t→ 0,

Q(x, t|xi) =
1√

4πDt
exp

[
−(x− xi)

2

4Dt
− t(VBaibeff(x) + VBaibeff(xi))

4D

]
. (3.5)

Note that this quantity is time reversible, meaning that we can switch the initial and

final position and return the same value of Q. This useful property will prove helpful

and be used later in this chapter. We only require the above equation to satisfy the

transformed Smoluchowski equation (3.3) in the small time limit, because when we

discretise both time and space, we are treating each jump over a small distance

and a small time. This jump can be thought of as being approximated by a linear

potential in which this representation of the probability returns the correct form,

the Gaussian drift solution [72].
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We can do a check to see whether this form does return the correct solution if the

potential itself was linear, V (x) = αx, meaning that VBaibeff = α2

2
giving,

Q(x, t|xi) =
1√

4πDt
exp

[
−(x− xi)

2

4Dt
− tα2

4D

]
,

P (x, t|xi) = exp

[
−α(x− xi)

2D

]
Q(x, t|xi),

P (x, t|xi) =
1√

4πDt
exp

[
−(x− xi + αt)2

4Dt

]
.

Returning to how it will act with a general potential, we need to spatially discretise,

and we can use a probability identity,

P (x, 2t|xi) =

∫ ∞

−∞
P (x, t|y)P (y, t|xi)dy,

which describes the fact that we can split up a path into all possible paths between

two points by integrating over all intermediate points to find a full probability.

Figure 3.2: Showing a few of the possibilities of paths between the initial and final
position for two timesteps

This identity makes sense as it integrates over all possible positions that a path

goes through at the midpoint in terms of time. We can then substitute in our

transformation (3.2) to see if the identity holds for Q,
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exp

(
V (xi) − V (x)

2D

)
Q(x, 2t|xi) =

∫ ∞

−∞
exp

(
V (y) − V (x)

2D

)
Q(x, t|y) exp

(
V (xi) − V (y)

2D

)
Q(y, t|xi)dy,

The cancellation of V (y) in the exponential is apparent as is the ∆V = V (x)−V (xi),

leading to the identity

Q(x, 2t|xi) =

∫ ∞

−∞
Q(x, t|y)Q(y, t|xi)dy. (3.6)

This identity can then be extended to n time steps and integrated over all possible

positions for every timestep, T = t ∗ n 3.3,

Q(x, T |xi) =

∫
· · ·
∫
Q(x, t|xn−1)Q(xn−1, t|xn−2) . . . Q(x1, t|xi)dx1 . . . dxn−2dxn−1.

(3.7)

Figure 3.3: n possible time segmentations with possible paths

To evaluate this integral numerically within a reasonable computational time, we

need to truncate the x values that the integrals, are bounded by as infinite limits

would lead to infinite computation time. For example, we only have to evaluate
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between x = ±3 if the potential wells of the potential are at x = ±1 as the density

Q(x, t|xi) becomes negligible far away from the potential wells. This is because

far away from the bottom of the wells the potential gradient becomes steeper and

steeper, so it becomes unlikely that particles will diffuse up the potential that far.

As we can set limits to the variable x, we can make it discrete by segmenting it

into M equal steps of width ∆, within the range x ∈ (−M∆
2
, M∆

2
). The effect of

making x discrete means that the continuous function Q(x, t|x0) becomes a discrete

matrix Q(xj, t|xk). We can then rewrite the integrals using the Riemann sum[73],

for example equation (3.6) becomes

Q(x, 2t|x0) =

M
2∑

j=−M
2

Q(x, t|j∆)Q(j∆, t|x0)∆.

This sum is just the integrand evaluated at a discrete set of points with even spacing,

∆, cut off at ±M∆
2

where Q(xj, t|xk) = Qjk is small enough to be neglected. This

sum can also be thought of as a product of two vectors, a · b =
∑

j ajbj, [74] with

Q(x, 2t|x0) = a · b∆ (3.8)

a =



Q
(
x, t|M∆

2

)
Q
(
x, t|

(
M
2
− 1
)

∆
)

...

Q
(
x, t| − M∆

2

)


b =



Q
(
M∆
2
, t|x0

)
Q
((

M
2
− 1
)

∆, t|x0
)

...

Q
(
−M∆

2
, t|x0

)


.

This can be extended, and the time segmentation split into three parts in order to

see how the matrix structure starts to unfold:

Q(x, 3t|xi) =

∫ ∫
Q(x, t|y2)Q(y2, t|y1)Q(y1, t|x0)dy1dy2

=

M
2∑

k=−M
2

Q(x, t|k∆)

 M
2∑

j=−M
2

Q(k∆, t|j∆)Q(j∆, t|xi)

 · ∆2
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=



Q
(
x, t|M∆

2

)
Q
(
x, t|

(
M
2
− 1
)

∆
)

...

Q
(
x, t| − M∆

2

)



T 
∑M

2

i=−M
2

Q
(
M∆
2
, t|i∆

)
Q (i∆, t|xi)

...∑M
2

i=−M∆
2

Q
(
−M

2
, t|i∆

)
Q (i∆, t|xi)

 · ∆2.

=



Q
(
x, t|M∆

2

)
Q
(
x, t|

(
M
2
− 1
)

∆
)

...

Q
(
x, t| − M∆

2

)



T 
Q
(
M∆
2
, t|M∆

2

)
. . . Q

(
M∆
2
, t| − M∆

2

)
...

...
...

Q
(
−M∆

2
, t|M∆

2

)
. . . Q

(
−M∆

2
, t| − M∆

2

)


·



Q
(
M∆
2
, t|xi

)
Q
((

M
2
− 1
)

∆, t|xi
)

...

Q
(
−M∆

2
, t|xi

)


· ∆2.

This shows that segmenting the time into three steps results in the multiplication

of two vectors and a matrix. The matrix is not dependent on the initial and final

positions, meaning it only needs to be calculated once, helping reduce computation

time. Extending this further to the full n segments in time results in the final

representation being defined as

Q(xf , T |xi, 0) =

(
0 ... 1 ... 0

)
Q
(
M∆
2
, t|M∆

2

)
. . . Q

(
M∆
2
, t| − M∆

2

)
...

...
...

Q
(
−M∆

2
, t|M∆

2

)
. . . Q

(
−M∆

2
, t| − M∆

2

)


n



0

...

1

...

0


· ∆n−1
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3.2. REDUCING THE COMPUTATION TIME

where



0

...

1

...

0


and

(
0 . . . 1 ... 0

)
are projections onto the initial and final states.

We can write this more consicely as Q(xf , T |xi, 0) = 1
∆
xfR

nxi, where R is equal to

the central matrix multiplied by ∆.

3.2 Reducing the computation time

One of our reasons for wanting to use path integrals to solve the Smoluchowski equa-

tion numerically is speed. Other approaches to studying stochastic processes, e.g.

Monte Carlo methods, have issues with getting the simulation to run long enough

for the rare interesting events to occur. This issue has meant that methods have

been formulated to allow a rare event to be calculated within a realistic compu-

tational timeframe. For example, a technique called forward flux sampling can be

used to artificially insert intermediate states and allow incremental progress towards

the rare event, in which the relevant properties of the system can be found [20][21].

Other techniques may artificially enhance different aspects of the system, making

the rare events more likely to occur in the given time frame and computational

limitations then relevant properties are found using these enhanced systems, for ex-

ample temperature-accelerated dynamics [75] or artificially modifying the potential

[76]. The speed issue will become apparent for the numerical path integral technique

as the number of dimensions increases.

For every increase in dimension, the matrix calculations become larger and larger,

as the matrix size is taken to the dimensional power. Also, the off-diagonal elements

become more numerous due to the increase of possible jumps in a single timestep.
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Reducing the computation cost now when it is not too great will mean the benefits

are magnified in higher dimensions. We will now look at a couple of techniques that

can decrease the computation time for the calculations.

3.2.1 Diagonalising the matrix

The first technique is that of diagonalisation. As the equation to findQ(xf , T |x0, 0) =

1
∆
xfR

nxi is taking a fixed matrix to the power of n the technique of diagonalising the

matrix will allow the computing language to reduce its computation capacity needed

to calculate such a large matrix multiplication [77]. The ability to use the languages

built in eigenvalue finder means that we can utilise the fact that the matrix R is

diagonalisable as it is symmetric, meaning we can use the fact that

R = PDP−1

Rn = PDnP−1

where D is the matrix of eigenvalues on the diagonal and P is a matrix of the

corresponding eigenvectors. Using this technique means there is no need to compute

a large matrix multiplication instead, take the eigenvalues to the power n and then

a simpler matrix multiplication. This is because of the properties of a diagonal

matrix,

D =



a 0 0 . . .

0 b 0 . . .

0 0 c . . .

...
...

...
...


, ⇒ Dn =



an 0 0 . . .

0 bn 0 . . .

0 0 cn . . .

...
...

...
...


.

To compare how this diagonalisation technique reduces the computational time, we

run the calculations twice, once taking the matrix to the power n and the other

with the diagonalisation technique. Doing this for a probability density function
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3.2. REDUCING THE COMPUTATION TIME

for a tilted double-well potential, returning five different timesteps to see how the

PDF evolves over time, gives 3.9s for the brute force method compared to 2.4s

for the diagonalisation technique. This shows that this technique does reduce the

computational time by a significant amount for this specific system in one dimension,

however, it should be a valid technique for all systems due to the underlying structure

of the matrix which is always symmetric no matter the potential or the parameters.

3.2.2 Only calculating nearest neighbours

A second technique to reduce computation time is using only the most relevant

nearest neighbours. As the timesteps used tend to be very small, the probability

for the particle to travel more than a relatively small number of positions in either

direction tends towards zero quickly as we get further away from the relevant initial

position. Secondly, some of the pairings of initial and final positions in the jumps

do not always make physical sense. For example, if they are on separate sides of

an energy barrier, the Q(xf , t|xi) calculation will not consider the presence of the

barrier, leading to errors in the probability value, figure (3.4).

Figure 3.4: A straight line approximation showing it can miss the potential barrier,
not taking into account the crucial element of the system.

This means that we may not need to calculate the transition probability between

every pair of points, thus reducing the number of calculations required to build
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the R matrix, and subsequently the diagonalisation method. To find the critical

value of nearest neighbours, we keep reducing the number of entries calculated in

the matrix, which represents the possible jumps in a one-time step that the particle

could take. Initially, this was done for a single time and single initial position and

compared each number of nearest neighbours with the density calculated with the

full matrix. Through these calculations, the minimum number of nearest neighbours

needed to conserve both the shape and the area under the curve for the probability

in a double well potential is 8. The solution found using eight nearest neighbours was

checked against the full solution, and table (3.1) shows the comparison between the

number of nearest neighbours less than eight and the area underneath the probability

curve at the same time. This indicates that it takes the known eight neighbours to

conserve the normalisation of the probability density function up to four decimal

places. We can also visually compare the probability density functions at different

timesteps for the full matrix vs the reduced matrix which only calculated the eight

nearest neighbours. This is shown in figure 3.5, and it shows that there is no visible

difference for this system at these timesteps between the full probability and the use

of just the 8 nearest neighbours. The choice of parameters and discretization was

so that the probability density function was normalised and the simulation ran in

a reasonable time. If D was smaller then more timesteps would be needed to reach

equilibrium, whilst a larger D would lead to some transient states being missed as

the probability evolves too quickly.

Number of nearest neighbours Area under the graph
1 2.6202x10−142

2 1.2814x10−32

3 9.9420x10−6

4 0.3149
5 0.9307
6 0.9973
7 0.9999
8 1.0000

Table 3.1: Table showing the effect of reducing nearest neighbours on the normali-
sation of the probability curve - dt = 0.0005, dx = 0.01, D = 0.1
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3.2. REDUCING THE COMPUTATION TIME

(a) T = 5

(b) T = 25

(c) T = 50

Figure 3.5: Comparison between the full probability density function, in blue −,
overlain with the nearest neighbour probability, in black ·, showing no difference
between the two results. dt = 0.0005, dx = 0.01, D = 0.1

Both of these results show that for the tilted double well potential, V (x) = x4

8
−

x3

6
− x2

2
+ 4

3
, it is possible to reduce the number of necessary calculations and include

only 17 non-zero entries per row in the matrix instead of M . The reduction in

the number of nearest neighbours will, in turn, make diagonalisation quicker and
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more straightforward, as the number of calculations needed to find eigenvalues and

eigenvectors is reduced in Matlab’s algorithms. This number of nearest neighbours

is only valid for the titled double well potential. Other potentials may need more

or less to retain the necessary accuracy needed for an accurate representation of the

probability density function.

Both of these techniques, diagonalisation and nearest neighbours, make a reasonable

reduction of computation time for this specific set of parameters and potential which

is only slightly noticeable in one dimension, but the mechanisms should work for

general parameters and potentials. This is because the diagonalisation technique is

always valid due to the structure of the matrix, whilst the nearest neighbour tech-

nique would need to be investigated for each specific system, and the corresponding

number found. For a single time step, there was a reduction in running time from

2.3s down to 0.95s, which is a good improvement but the effect should be amplified

in higher dimensions. This is because an increase of dimension will increase the

power of the matrix size, M ×M in one dimension to M2 ×M2 in two dimensions,

where M is the number of spatial discretisations calculated, a line in one dimension

and a square in two. We will discuss these possibilities of computational reduction

in section 3.5 where we consider the two-dimensional case.

3.3 Initial results

Using the equation for the probability density function, and a quicker algorithm, a

Matlab code was written to handle the matrix calculations and subsequent plotting

of the results. The potentials and analytical solutions we will compare against are

the same used in the original Baibuz paper [71], to get a direct comparison. First

of all, is the comparison to a symmetric double well potential, figure (3.6) with

analytical solutions derived for initial and final probability density functions. The

system has potential

V (x) =
x4

4
− x2

2
+

1

4
, (3.9)
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with a diffusion value of D = 1 and an initial position x0 = −1.

Figure 3.6: Symmetric double well potential

The two-time points we can find an analytical solution, to compare the numerical

results with are the small time and long time limits. The small time approximation

is achieved by approximating the potential to a quadratic potential expanded around

the initial position, as very little density will have crossed the barrier, so we can act

as if the second well does not exist.

We use the known Ornstein-Uhlenbeck solution [67] to find the probability,

V (x) ≈ (x+ 1)2

PT small(X,T |x0) ≈
(

1

πD(1 − e−4T )

) 1
2

exp

[
− (x+ 1)2

D(1 − e−4T )

]
. (3.10)

The long-time stationary solution is obtained by setting the left-hand side of the

Smoluchowski equation (3.1) to zero, i.e. ∂
∂t
Peq = 0, which satisfies the equation,

0 =
d

dx

[
V ′(x)Peq(x) +DP ′

eq(x)
]
,

A = V ′(x)Peq(x) +DP ′
eq(x),
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A

D
= P ′

eq(x) +
V ′(x)

D
Peq(x),

leading to the equilibrium probability density function,

Peq(x) = Cexp

[
−2V (x)

D

]
, C−1 =

∫ ∞

−∞
exp

[
−2V (x)

D

]
dx, (3.11)

where the constant C comes from the normalisation of the probability density func-

tion at the long time limit,
∫
Peqdx = 1.

Figure (3.7) shows the comparison between the numerical path integral solution

against both the small time approximation (A) (3.10) and the stationary solution

(C) (3.11). What curve (B) shows is an intermediate time showing how the probabil-

ity will spread in the initial potential well before starting to spill over the potential

barrier into the secondary potential well. This is an advantage of the path integral

technique, the ability to calculate transient states.

Figure 3.7: The probability density function P (X,T |x0) as a function of position.
Snapshots taken at different times, (A) T=0.08, (B) T=0.86, (C) T = 10.24.
dt = 0.001, dx = 0.01, xi = −1, D = 1

This shows that the numerical path integral solution is accurate for both short and

long time analytical solutions. What about more complicated potentials? The next
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example is a non-symmetric double well potential.

V (x) =
x4

8
− x3

6
− x2

2
+

4

3
. (3.12)

Figure 3.8: Tilted double well potential

The starting potential well is shallower than the second well, meaning intuitively the

probability should spill over the potential barrier earlier but take longer to reach

equilibrium and be more likely to end up in the deeper well at long-time. The

analytical solutions are calculated the same way as for the symmetric double well,

(3.10),(3.11). The results in figure (3.9) show again that the numerical solution

matches up with analytical solutions at both small and large times. For the small

time case, there is a slight difference between the analytical solution and the matrix

representation, which is because the peak of the potential barrier is located at x = 0,

meaning that the approximation that the potential is harmonic starts to break

down for x close to 0. The intermediate time (B) shows the correct behaviour,

in spreading out and starting to spill over into the second deeper potential well.

The only difference in input parameters when compared to the symmetric potential

was a minor alteration in the time discretisation, as there was the need for a finer
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∆t in order to get a better comparison and to get to the stationary solution, the

numerical path integral solution T was set at a larger value, as it took longer for

particles to get over the peak and more ended in the right hand well.

Figure 3.9: The probability density function P (X,T |x0) as a function of position.
Snapshots taken at different times, (A) T=0.08, (B) T=0.86, (C) T = 14.80.
dt = 0.001, dx = 0.05, xi = −1, D = 1

A major advantage of using path integrals to get a numerical solution is that the

transient states are possible to show. However, how do we know these transient

states behave as expected? One way is to see if intuitively, the behaviour of the

probability density function acts as we would expect. The probability begins as a

delta function at the initial position and spreads out in the initial potential well.

Then it begins to slowly spill over the potential barrier into the other potential well

before settling into the relevant stationary distribution, for which we have a definite

solution. This is how we expect the probability density function to act over time,

so the solution gained from the numerical iteration lines up with intuition. In order

to check if the behaviour is logical we can use the numerical path integral solution

for different values of n to find the probability density function over time. This is
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what figures 3.10a and 3.10b show, the behaviour we expect.

(a) Symmetric potential, V (x) = x4

4 − x2

2 + 1
4 .

(b) Tilted potential, V (x) = x4

8 − x3

6 − x2

2 + 4
3 .

Figure 3.10: The probability density function as it evolves over time until equilib-
rium. With initial position xi = −2 and a diffusion value, dt = 0.001, dx = 0.05,
D = 1.

Another way we can check the transient state solutions is to use Matlab’s built-

in partial differential equation solver. This will solve the Smoluchowski equation

approximately and give a solution for a specific time. Matching these times with

the relevant times in the numerical path integral solution gives figures (3.11a) and
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(3.11b). These figures show the accuracy of the path integral technique, including

the transient state solutions. Other numerical techniques are available to solve time-

dependent solutions, for example, finite-difference time-domain or spectral methods,

that can be used to solve specific differential equation systems [78] [79]. However,

Matlab’s PDE solver provides excellent agreement with the path integral technique

that it is sufficient to compare with this one technique.

(a) Symmetric potential

(b) Tilted potential

Figure 3.11: PDF comparison to the Matlab PDE solver for small T , an intermediate
T , and large T for the symmetric double well potential and the tilted double well
potential
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The advantages of the path integral technique, however, is one of speed and adapt-

ability. The PDE solver takes more time to run for a specific timestep, meaning

that if we wish to find solutions over time, it will take much longer to run and

is more awkward to construct the code. For example, to find the titled potential

plot it took 4.5s to solve for the three timesteps only, whereas to solve using the

matrix representation, it takes 1.5s to calculate and plot the three timesteps. This

is a significant improvement, and the versatility of the matrix representation makes

it quicker and easier to build a complete solution, switch initial positions, or even

construct visualisations.

The fact that we have a matrix propagator R which is non-dependent on the initial

or final positions means that we can solve for all initial conditions simultaneously;

another important attribute of the numerical path integral technique being able to

change conditions very quickly and return quick results for the relevant system.

3.4 Further one-dimensional investigations

3.4.1 Finding a PDF for the initial position

An interesting investigation to look at is to look at finding the probability density

function in reverse. If we know the final position of the particle, can we find out

where it started for a given time T? Using the numerical path integral solution,

this is an easy change; instead of extracting the relevant column from the final

probability matrix for a given initial position, we extract the relevant row for the

given final position. What figures (3.12a) through (3.12d) show is the progression of

the probability density function as the simulation is run for a longer time. It begins

as expected as a tall peak at the final position xf = 2 as there has not been long

enough for the particles to get from very far to finish in a short t. As time progresses,

the probability spreads out, and after a long enough time period, the probability

density function becomes flat, meaning that we cannot gain any information about

where the particle has started from.
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(a) T = 0.01 (b) T = 0.1

(c) T = 1 (d) T = 10

Figure 3.12: Probability density function of initial positions, in blue, over time, for
a final position of xf = 2. dt = 0.001, dx = 0.01 and D = 1.

This shows the possible initial positions for the most likely final position at the

bottom of the deeper well, but what happens if we want to investigate when the

probability ends at an unlikely final position? This is what figures (3.13a) through

(3.13d) show, when the final position in question is on the side of the larger potential

well, xf = 0.75. At short times it follows similar behaviour to the most likely

position, figure (3.12a), but as we look further back from the final position, the

initial position is skewed by an earlier possibility of starting in the left-hand well.

Shown in the fact that at T = 0.5, figure (3.13c), the particle already has the

possibility of starting in the left-hand well, whilst for the most likely position, this

possibility was minimal at T = 1, figure (3.12c). This is because travelling over the

potential peak takes time, but once a particle is over, it will reach the side of the

well before it reaches the bottom, which means that this does make physical sense

as well.
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(a) T = 0.01 (b) T = 0.1

(c) T = 0.5 (d) T = 10

Figure 3.13: Probability density function of initial positions, in blue, over time, for
a final position of xf = 0.75. dt = 0.001, dx = 0.01 and D = 1.

3.4.2 Diffusion Constant

Another valuable and interesting investigation is to find the most likely diffusion

constant for a given initial, final position and time. If we know both endpoints and

the given time, then we might want to know the diffusion value of the system D.

Fixing the initial position to xi = −2 for a tilted double well potential (3.12), and

the final position to xf = 2, we can calculate the probability of travelling from the

initial to the final position in T = 8 for a range of diffusion constants.

Figure 3.14 shows how the probability changes as the diffusion value increases. It

has some interesting properties that do line up with intuition. The initial portion

is a low probability value, as the diffusion value is not high enough to climb over

the potential barrier between the initial and final position, so traversing this in

the given timeframe is probabilistically unlikely. This will then peak just after a

diffusion value similar to the height of the potential barrier. It then plateaus for

higher diffusion values as the diffusion value becomes too overpowered, meaning
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Figure 3.14: How the probability of moving from xi = −2 to xf = 2 changes as the
diffusion increases for a tilted potential.

the probability of the path essentially takes no notice of the potential barrier, and

the probability density function becomes constant for the higher diffusion range.

Something to take into consideration is that the higher value of diffusion also means

that there will be more possible neighbours for the particle to travel to in a single

timestep requiring a finer grid of discretisation of both time and space, meaning that

a separate set of initial discretisations is required to return this result. A reminder

here that the diffusion value in this work is not explicitly related to a characteristic,

like temperature, of a specific system; it is just a measure of the noise strength of

the system, which we relate solely to the height of the barrier in a given potential

as the major contributor of how a system acts over time.
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3.5 Two-dimensional numerical solution

After complicated potentials in one dimension, the next logical step is to see how the

numerical path integral solution handles being used in two dimensions. This solves

a very similar problem just now the multidimensional version of the Smoluchowski

equation;

∂P (x, t)

∂t
= ∇ · [∇V (x)P (x, t) +D∇P (x, t)] , (3.13)

P (x, 0|xi) = δ(x− xi).

Doing a similar transformation as in the one-dimensional case, we also have a similar

function that, in the small time limit, solves the two-dimensional Smoluchowski

equation. x = (x, y).

P (x, t|xi) = exp

[
−V (x) − V (xi)

2D

]
Q(x, t|xi),

Q(x, t|xi) =
1√

4πDt2
exp

[
−(x− xi)

2 + t2 (VBaibeff(x) + VBaibeff(xi))

4Dt

]
, (3.14)

VBaibeff =
1

2
(∇V ) · (∇V ) −D∇ · (∇V ) .

This representation of the probability density function solves, in the small time limit

t→ 0, the two-dimensional Smoluchowski equation with a similar derivation to the

one-dimensional version (3.5).

Now that we have a two-dimensional version of the jump probability, we need to

form the matrices. In the one-dimensional version, the central matrix has a change

in the initial position along the rows and the change in the final position along the

columns. So, how does this change when we have two coordinate systems?
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We can follow a similar technique as in the one-dimensional case. For two time

steps, we discretise twice as there are two coordinates, in this case for y1 and y2,

and we have a double integral,

Q(x, 2t|xi) =

∫ ∫
Q(x, 2t|(y1, y2), t)Q((y1, y2), t|xi, 0)dy1dy2,

discretising; = δy1δy2
∑
j

∑
k

Q(x, 2t|yjk, t)Q(yjk, t|xi, 0).

This gives a similar representation as in one dimension (3.8), with two vectors

Q(x, 2t|xi) = δy1δy2 xy · yxi,

xy =



Q (x, t|y11)

Q (x, t|y21)
...

Q
(
x, t|y(M+1)(M+1)

)


; yxi =



Q
(
y11, t|xi

)
Q
(
y21, t|xi

)
...

Q
(
y(M+1)(M+1), t|xi

)


,

yjk =

((
M − 2(j − 1)

2

)
∆,

(
M − 2(k − 1)

2

)
∆

)
.

The main difference with the one-dimensional case is the size of the vectors. In the

1-D case, we had vectors with M + 1 entries; in the 2-D case, we have (M + 1)2

entries. This increase in the size of the vectors, and as we will see the size of the

matrices, leads to a significant increase in computational time. The representation

can, in a similar way to the one-dimensional case, be extended through to n time

steps, giving a final numerical path integral solution where we define the matrix

elements as;

xyjk = Q(x, t|yjk) yjkzjk = Q(yjk, t|zjk) zjkxi = Q(zjk, t|xi)
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Q(X,T |xi) =

(
xy11 xy12 ... xyNM

)


y11z11 y11z12 . . . y11zNM

y12z11 y12z12 . . . y12zNM

...
...

. . .
...

yNMz11 yNMz12 . . . yNMzNM



n

z11xi

z12xi
...

zNMxi


· ∆2(n−1)

Here the matrix is again constant as it was in the one-dimensional case, but it is

now size (M + 1)(N + 1) where M and N are the number of spatial discretisations

of the x and y axis respectively. This dramatically increases the computational time

required for one timestep calculation. In one dimension it took a couple of seconds,

and with the diagonalisation and nearest neighbours techniques was reduced to

a single second. However, in two dimensions for the flat potential, we will now

look at a single calculation that took 274 seconds to calculate the full probability

for dx = dy = 0.1, dt = 0.0607 and n = 7. This is a considerable increase in

computational time, with 20% of that time being taken up with taking the matrix

to the power of n and the other major calculation being calculating each element

of the matrix, which for a grid being for −3 < x < 3, −3 < y < 3, there are 3600

elements.

The process of diagonalisation of the matrix should still be possible in two dimen-

sions, since the matrix itself is symmetric, meaning that it equals its own transpose.

This is possible because the probability density function for the linear approxima-

tion Q is spatially invariant, meaning Q(y, t|z) = Q(z, t|y). This means there is the

possibility of using the diagonalisation technique to speed up the numerical calcu-

lations. For the process of using the nearest neighbours, this is trickier to see if it

would be possible. In one dimension we had a band diagonal matrix. In contrast,

in two dimensions some elements may not be negligible due to the positioning of

peaks and troughs of the potential, and it may not be possible to constrict the band

in the diagonal as in one dimension. This property makes it more challenging to see

whether the use of the nearest neighbours is possible. Still, it may be possible to
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exclude the negligible probabilities and only take forward the matrix calculation of

the more dominant probabilities, which is, in essence, what the nearest neighbour

technique in one dimension was doing. This problem has yet to be thoroughly in-

vestigated here. This area could be investigated further to reduce computation time

in two dimensions, and then make the three-dimension jump easier.

Now that we have a representation for the probability, does it give correct results

for a two-dimensional potential? The computational limitations of the increase in

dimension mean that, for now, we will only be able to investigate the behaviour of

the solution. The most straightforward potential to look at is the flat potential.

(a) T=0.005 (b) T=5

(c) T=10 (d) T=50

Figure 3.15: Probability density function over time for a flat potential, dx = 0.1,
dy = 0.1, dt = 0.0001, D = 0.01
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In this situation, the expected behaviour is that the probability will expand out

from the initial position and spread out to a symmetric probability density function

peak. This is what figure (3.15) shows. The PDF begins as a spike at the initial

position and slowly flattens over time. For reference, these plots are not normalised

due to computational limits, so this is to give an idea about the correct behaviour of

the technique. What about something a bit more complicated? The linear potential

is the obvious next step; intuitively, the probability density function would again

start as a peak but as it expands over time it would also “slide down” the potential.

This is what figure 3.16 shows.

(a) The sloped potential

(b) T=0.28

(c) T=0.4249 (d) T=1.9968

Figure 3.16: Probability density function over time for a sloped potential, dx = 0.1,
dy = 0.1, dt = 0.0607 D = 0.01

We can see that the representation derived mechanically behaves correctly using

these two simple cases. The primary issue that the jump to two dimensions gives is
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the increased computational power needed. This has so far limited the investigation

into two dimensions to just these two most straightforward cases because for these

systems there is a reduction in the number of terms as they are either 0 or constant;

they were the easiest to code and simulate a reasonable time frame compared to

one dimension and the easiest to know the intuitive behaviour. The possibility of

diagonalisation and nearest neighbours as time reduction methods does look possible

as the central matrix is symmetric, but this work concentrates on one dimension, so

we will leave the two-dimensional argument for now.

In this chapter, we have explored the use of a path integral formalism in solving the

Smoluchowski equation numerically. We have recreated results from Baibuz’s paper

[71] with the initial results but have taken it further by comparing more results to

Matlab’s own PDE solver. Then we have been able to reduce the computation time

of the technique by using properties of matrices and which paths make physical

sense in the system with diagonalisation and nearest neighbours. Further, we have

looked at more potential uses of the one-dimensional numerical solution for reverse

engineering the initial position and calculating the most probable diffusion value for a

given system. Finally, we looked at how the numerical technique could be translated

into two dimensions, showing results for the simplest of systems to prove proof of

concept and that the solution makes physical sense. The computational complexity

goes up very fast as the dimensions increase, so whilst it is very efficient in one

dimension, something else will be needed for higher dimensional investigations. The

technique will become infeasible for very high-dimensional systems, for example,

3× 103 dimensions for a million atom system. However, as we will see later there is

the hope that the analytical approach will allow progress in using the path integral

in higher dimensions. So, although only an incremental advancement of the original

Baibuz method, it extends the possibility of path integral formalisms being used in

numerical calculations, and the comparisons to Matlab PDE solvers, the engineering

of the initial position and diffusion constant are all new elements to this technique.
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Chapter 4

The introduction of the Jacobian

In this chapter, we will introduce the Jacobian term. This is another key piece

of information that arises from the change of variables in the original path

integral derivation (2.7). We have not needed it up to now as it only becomes

non-unit when the system has a potential of quadratic order or higher. This

additional term will provide more information on how the path integral acts

over time and will potentially solve some of the issues at long time limits that

we have been having, along with intuitive errors when it comes to how a path

should act. We will derive a usable form for the Jacobian, represented using

time and space, and look at how it solves some of the long-time issues.
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In chapter 2, we mentioned the introduction of the Jacobian term, which arises from

the change in variables from dξ to dx (2.7). The Jacobian term [80] is given by,

J = det

(
dξi
dxj

)
,

with the subscripts indicating that the derivative is a matrix, and subsequently,

we will need to calculate a determinant. In the limit of N → ∞ of the variable

discretisation, it will become a functional Jacobian,
∣∣ ∂ξ
∂x

∣∣. The method to calculate

the determinant is to first of all return to the general Langevin equation (1.6) and

discretise the equation by multiplying each side by dt,

dxi = − (λV ′(xi) + (1 − λ)V ′(xi−1)) dt+ dξi.

The difference here is the introduction of the value λ, which governs the choice of

different techniques and when to calculate the gradient of the potential. λ = 0 [81]

relates to the Ito prescription of the Langevin equation, which is the one that we use

in chapter 2 in the substitution into the ξ integral (2.5). λ = 1
2

[82] relates to the

Stratonovich prescription, where for time evolution, the average is taken between the

beginning and end points. The λ = 0 value is typically used in mathematics, whilst

the λ = 1
2

is typically used in physics. This choice of λ governs when the random

element is added when the system is simulated like the Langevin equation. In the Ito

prescription, the noise term is added at the beginning of the timestep and then the

effect from the forces is taken into account. Whilst in the Stratonovich prescription,

we move the particle under the forces for half the timestep, then calculate the noise

term before finishing the timestep with the remaining elements of the force term.

Typically this choice between prescriptions is only when the system has white noise,

as it can make elements of the mathematics easier depending on which prescription

is used. In the case of correlated noise, the choice is always Stratonovich due to

the nature of the mathematics encountered when the noise function is not a delta

function as it is for uncorrelated (white) noise.
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Calculating the derivative of ξi leads to,

dξi = dxi + (λV ′(xi) + (1 − λ)V ′(xi−1)) dt,

dξi
dxj

= 1 · δij + (λV ′′(xi)δij + (1 − λ)V ′′(xi−1)δi−1,j) dt.

This then forms an upper triangular matrix in which the only non-zero elements are

the leading diagonal and the first off-diagonal from the δij terms,



(1 + λV ′′
i ) dt (1 − λ)V ′′

i−1dt 0 0 . . .

0 (1 + λV ′′
i ) dt (1 − λ)V ′′

i−1dt 0 . . .

0 0 (1 + λV ′′
i ) dt (1 − λ)V ′′

i−1dt . . .

...
...

... . . .


Finally, we then need to calculate the determinant of this matrix, and a bonus

of a triangular matrix is that the determinant is just the product of the diagonal

elements, as most of the entries are zero.

det

(
dξi
dxj

)
= Πi (1 + λV ′′(xi)δt)

Using the Taylor expansion, δt small,

= Πi exp (λV ′′(xi)δt)

= exp

(
λδt
∑
i

V ′′(xi)

)

→ exp

(
λ

∫ T

0

V ′′(x(t))dt

)
.

This means that for the Ito prescription, λ = 0, the Jacobian will be a unit transfor-

mation, while the Stratonovich prescription will have a factor exp
(

1
2

∫ T

0
V ′′(x(t))dt

)
.

The Ito prescription does return the same factor as Stratonovich; however, it is found

from the cross-term total derivative in the action derivation (2.7) in chapter 2 when

we expand the Lagrangian (ẋ+ V ′(x))2.
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The total derivative in action integral in (2.7) becomes an Ito integral [83],

2

∫ T

0

V ′ẋdt→ 2

∫ T

0

V ′dXt,

= 2

∫ T

0

dV (Xt) − 2D

∫ T

0

V ′′(Xt)dt,

= 2∆V (x) − 2D

∫ T

0

V ′′(x(t))dt,

where we have also used Ito’s lemma [31], df(Xt) = f ′(Xt)dXt + 1
2
σ2(t)f ′′(Xt)dt

and remembering that 1
2
σ2(t) = D from our derivation of the Smoluchowski equation

(1.10). The extra integral can be extracted from the action definition as an extra

term to what we currently have in S, and when divided by − 1
4D

, returns the same

expression as the Stratonovich prescription.

Both prescriptions return the same factor, and from now on the term “Jacobian”

will refer to the integral form in the exponent that arises from both prescriptions,

albeit from different routes. This form is only in one-dimension as that is what we

will be concentrating on for now, but we will look at the three-dimensional case in

chapter 9 and how it is constructed for free diffusion and harmonic potential cases.

We have a time-dependent representation of the Jacobian, but we can recover a

spatial-dependent form via a transformation. To do this we transform via y = x(t),

J = exp

(
1

2

∫ T

0

V ′′(x(t))dt

)
,

dy

dt
= ẋ(t); = exp

(
1

2

∫
γ

V ′′(y)
dy

|ẋ|

)
,

Using (2.8) = exp

(
1

2

∫
γ

V ′′(y)√
H + V ′(y)2

dy

)
.
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Now that we have found the Jacobian term in full, we can write down a full proba-

bility density function weight in one dimension for a path γ, from (xi, 0) to (xf , T );

P [xf , T |xi, 0] = A[x]J [x] exp

(
−S[x]

4D

)
S = 2∆V −HT + 2

∫
γ

√
H + V ′2(x) |dx|

A =

(
4πD

√
H + V ′(x0)2

√
H + V ′(x1)2

∫
γ

|dx|
(H + V ′2)3/2

)−1/2

J = exp

(
1

2

∫
γ

V ′′(x) |dx|√
H + V ′(x)2

)

T =

∫
γ

|dx|√
H + V ′(x)2

To build the full probability density function, we have to calculate the integral over

all possible path weights, P (xf , T |xi, 0) =
∫
DxP [xf , T |xi, 0]. The Jacobian term is

not relevant for the simplest of integrals that we have already looked at, as V ′′(x) = 0

for both the flat and sloped potential, meaning J = 1, but does this Jacobian term

provide more information to the system, and fix some of the issues that we have been

having at long times? We can investigate our Jacobian term further by evaluating

the integral immediately. By noting that V ′′(x)dx = d (V ′(x)) we can transform our

integral ∫
γ

V ′′(x)√
H + V ′(x)2

dx =

∫
γ

1√
H + V ′(x)2

d (V ′(x)) .

This integral can be done by using trigonometric substitutions, and it results in a

logarithmic solution

∫
γ

1√
H + V ′(x)2

d (V ′(x)) =
1

2
log

[√
H + V ′(x)2 + V ′(x)√
H + V ′(x)2 − V ′(x)

] ∣∣∣∣∣
γ

Inserting this into the Jacobian and evaluating this for a path for which xi < xf ,

J [x] = exp

(
1

4
log

[√
H + V ′(xf )2 + V ′(xf )√
H + V ′(xf )2 − V ′(xf )

√
H + V ′(xi)2 − V ′(xi)√
H + V ′(xi)2 + V ′(xi)

])
,
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=

[√
H + V ′(xf )2 + V ′(xf )√
H + V ′(xf )2 − V ′(xf )

√
H + V ′(xi)2 − V ′(xi)√
H + V ′(xi)2 + V ′(xi)

] 1
4

,

=


(√

H + V ′(xf )2 + V ′(xf )
)(√

H + V ′(xi)2 − V ′(xi)
)

H


1
2

.

We now have the Jacobian term in full for a default direct right-moving path. Right-

moving due to the choice in the sign of the ẋ term in the derivation as we take the

right-moving direction to have positive velocity. We can now show that this form will

solve one of the divergent issues that the path integral representation has previously

had. The form of the Jacobian we have will fix the divergent portion of the prefactor

integral, which we can see by extracting the divergence. For a path between xi and

xf that travels through a turning point at x = α, V ′(α) = 0, we can split the

prefactor integral into constituents parts,

∫ xf

xi

(
H + V ′(y)2

)− 3
2 dy =

∫ α−ϵ

xi

(
H + V ′(y)2

)− 3
2 dy

+

∫ α+ϵ

α−ϵ

(
H + V ′(y)2

)− 3
2 dy +

∫ xf

α+ϵ

(
H + V ′(y)2

)− 3
2 dy.

We can then expand the middle integral around α by substituting in y = z + α,

V ′(z + α)2 =
[
V ′(α) + zV ′′(α) + O(z2)

]
= z2V ′′(α)2 + O(z3),∫ α+ϵ

α−ϵ

(
H + V ′(y)2

)− 3
2 dy =

∫ ϵ

−ϵ

(
H + z2V ′′(α)

)− 3
2 dz,

=

[
z

H
√
H + z2V ′′(α)2

] ∣∣∣∣∣
ϵ

−ϵ

,

=
2ϵ

H
√
H + ϵ2V ′′(α)2

.

We have a form now for the divergent portion of the integral, which in the limit

H → 0 means that the prefactor becomes,

lim
H→0

A =

[
|V ′(xf )||V ′(xi)|

[∫ α−ϵ

xi

(
H + V ′(y)2

)− 3
2 dy
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+

∫ xf

α+ϵ

(
H + V ′(y)2

)− 3
2 dy +

2

H|V ′′(α)|

]]− 1
2

.

Then looking at the Jacobian term, in the same limit, it returns the form,

lim
H→0

=

[
4|V ′(xf )||V ′(xi)|

H

] 1
2

.

Combining these two limits we see the cancellation of the |V ′(xf )||V ′(xi)| term and

H term from the divergent integral returning,

lim
H→0

AJ = lim
H→0

√
4|V ′′(α)|

[[
H

∫ α−ϵ

xi

(
H + V ′(y)2

)− 3
2 dy

+H

∫ xf

α+ϵ

(
H + V ′(y)2

)− 3
2 dy + 2

]]− 1
2

,

=
√

2|V ′′(α)|.

This combination of the prefactor and Jacobian cancel out the divergent portion of

the integral from both terms. This is a beneficial fact of the Jacobian and shows

that the Jacobian and prefactor act together to return a non-infinite probability

density function which means that the long-time limit Boltzmann proportionality

survives as the action goes like ∆V .

However, an issue still occurs in certain long time situations. If we have a system

where the initial position is on an uphill portion of the potential and the final

position is on a downhill, we run into a different problem in the long time limit. For

example, figure 4.1 shows an example path in which the path will have to linger on

the downhill portion of the effective potential to get to infinite time, when it makes

more sense that it will travel through the final position and turn around, hovering

for a long time near the top of the effective potential.
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Figure 4.1: Example path that portrays the unintuitive path of ending on a downhill
slope for infinite time in both the potential, top in red, and effective potential,
bottom in blue.

For T → ∞ we can equate it to H → 0, so what happens in the system described

for H → 0, noting that |V ′(xi)| = V ′(xi), |V ′(xf )| = −V ′(xf ), is that,

J [x] =

[√
H + V ′(xf )2 + V ′(xf )√
H + V ′(xf )2 − V ′(xf )

√
H + V ′(xi)2 − V ′(xi)√
H + V ′(xi)2 + V ′(xi)

] 1
4

JH→0 =

[
|V ′(xf )| + V ′(xf )

|V ′(xf )| − V ′(xf )

|V ′(xi)| − V ′(xi)

|V ′(xi)| + V ′(xi)

] 1
4

JH→0 =

[
−V ′(xf ) + V ′(xf )

−V ′(xf ) − V ′(xf )

V ′(xi) − V ′(xi)

V ′(xi) + V ′(xi)

] 1
4

JH→0 =

[
0

−2V ′(xf )

0

2V ′(xi)

]
JH→0 = 0.

This means that for this particular system and initial and final positions, the Jaco-

bian tends to 0 in the long time limit meaning that the probability density function
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will tend to 0; so what is going on here? Intuitively a path cannot end on a downhill

and still survive to the long time limit as this makes no physical sense. This issue

with the Jacobian is also similar to that of the action term. This is a significant clue

that there may be something else going on, and there may be a need for a “turning

path”; a path that has to travel past the final position, turn around at a maximum

of the effective potential and come back to satisfy the relevant long time constraints.

This concept also makes more physical sense, as we are investigating paths in the

effective potential. We will thoroughly investigate this in chapter 5.

In this chapter, we have seen the introduction of the Jacobian term that arises from

the change in variables from the noise function to spatial coordinates. Deriving the

full term, describing the differences in interpretations, Ito vs Stratonovich, and how

both techniques, Mathematics vs Physics, return the same expression from different

scenarios. This has added an extra element to the path integral technique, and its

interpretations at long time limits begin to shine a light on the necessity of a turning

path which is what the next chapter is all about.
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Chapter 5

The concept of the turning path

As mentioned in chapters 2 and 4, the notion of the turning path is needed in

order to get the complete picture of a given system. Further, it is necessary to

fix the divergent portions of the probability, or the fact that the probability

will tend to zero at long time limits incorrectly from our analytical solution.

In this chapter, we will explore the necessity for the turning path by looking

at the fact that a direct path will have a maximum time it can take before

becoming unphysical, and how the turning path can be interpreted as the

appearance of a second peak for a double well potential. Finally, we will look

at how this further term will allow the correct long time limit to be found, an

issue that we have been coming across in the previous chapters.
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5.1. USING TIME TO INTRODUCE THE TURN

5.1 Using time to introduce the turn

The best way to show how there is a need for a turning path is to look at the time

definition that we have. From the analytical solution in chapter 2 (2.13) we have

the definition

T =

∫ xf

xi

dy√
H + V ′(y)2

.

First, we look at the representation that we have for the energy, H = ẋ2 − V ′(x)2,

as we can find the minimum amount of energy that a path can have. If we have,

for example, a quadratic-shaped potential with xi < xf < 0, to get the particle up

the hill in the effective potential, the minimum energy that the particle can have is

when it arrives at xf with zero velocity. For example, fig 5.1 shows a direct path for

the single-well potential, which has come to rest at the final position, so if H is any

larger it must travel past the final position and turn around.

Figure 5.1: An example of the maximum direct path, if H is greater than this critical
value, a turning path must exist

We have a critical energy value for this direct path of Hc = −V ′(xf )2 with ẋf = 0,

leading to a critical time of

Tc =

∫ xf

xi

dy√
−V ′(xf )2 + V ′(y)2

.
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

This means there is a maximum time for a direct path, and if H > Hc, the path

must travel past the final position and turn around at a point xf < z. This is the

turning path!

So, how does this turning path form change the analytical solution previously found?

First, we look at the action. If we have a path xi → z → xf , we can split this into

three constituent direct parts. The three paths are xi → xf , xf → z and z → xf ,

and we can sum the three actions to return the full action. The portion of (2.9) that

we will split up is the time integral into each path’s time, 0 → τ1, τ1 → τ2, τ2 → T

where T = τ1 + (τ2 − τ1) + (T − τ2). As we are splitting up a path, the path has the

same energy across all paths based on the absolute final position.

S[x] = S1[x] + S2[x] + S3[x]

= 2(V (xf ) − V (xi)) + 2

∫ τ1

0

(2ẋ2 −H)dt

+ 2(V (z) − V (xf )) + 2

∫ τ2

τ1

(2ẋ2 −H)dt

+ 2(V (xf ) − V (z)) + 2

∫ T

τ2

(2ẋ2 −H)dt

= 2V (xf ) − 2V (xi) −Hτ1 + 2

∫ xf

xi

ẋ dx

+ 2V (z) − 2V (xf ) −H(τ2 − τ1) + 2

∫ z

xf

ẋ dx

+ 2V (xf ) − 2V (z) −H(T − τ2) + 2

∫ xf

z

ẋ dx

In the final line, we have to use the negative square root that comes from the energy

definition, ẋ = ±
√
H + V ′2, as described earlier, because we arrive at the final

position from the other direction, meaning our velocity is negative.

96



5.1. USING TIME TO INTRODUCE THE TURN

This means we have,

S[x] = 2V (xf ) − 2V (xi) −HT + 2

∫ xf

xi

√
H + V ′(y)2dy

+ 2

∫ z

xf

√
H + V ′(y)2dy − 2

∫ xf

z

√
H + V ′(y)2dy

= 2V (xf ) − 2V (xi) −HT + 2

∫ xf

xi

√
H + V ′(y)2dy + 4

∫ z

xf

√
H + V ′(y)2dy.

This extra integral accounts for the extra paths to the turning point and back. This

extra integral also change the other elements of the full probability in the T domain.

To find the time, we minimise the action with respect to H as we did in chapter 2,

(2.10), giving a T for the turning path, energy value of HT ,

T =

∫ xf

xi

1√
HT + V ′(y)2

dy + 2

∫ z

xf

1√
HT + V ′(y)2

dy.

This follows through for both the prefactor A[x] and the Jacobian J [x] as well, giving

a full solution for the turning path probability of

ST [xf , xi, T ] = 2V (xf ) − 2V (xi) −HT T

+ 2

∫ xf

xi

√
HT + V ′(y)2dy + 4

∫ z

xf

√
HT + V ′(y)2dy,

T =

∫ xf

xi

1√
HT + V ′(y)2

dy + 2

∫ z

xf

1√
HT + V ′(y)2

dy,

AT [x] =

(
4πD

√
(HT + V ′(xi)2)(HT + V ′(xf )2)

[∫ xf

xi

dy

(HT + V ′(y)2)3/2
+ 2

∫ z

xf

dy

(HT + V ′(y)2)3/2

])− 1
2

,

ln [JT (x)] =
1

2

∫ xf

xi

V ′′(y)√
HT + V ′(y)2

dy +

∫ z

xf

V ′′(y)√
HT + V ′(y)2

dy,

PT (xf , T |xi, 0) = AT [x]JT (x)exp

[
−ST (xf , xi, T )

4D

]
.
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

5.2 The appearance of a second peak

We can also look further into the critical time when there is a change from the direct

to the turning path. Specifically, we can consider the appearance of a second peak in

the probability density function for a double well potential. The appearance of this

second peak corresponds to the appearance of the turning path because, at times

after the direct path critical time, the particle will have enough “energy” to travel

over the peak of the potential and make it to the bottom of the other well.

In a tilted double well potential, we can find the critical time for the probability to

start settling in the right-hand well if it has begun in the left-hand well. If we select

the final position to be the bottom of the right-hand well we can find the relevant

energy needed, and as previously, this is the energy required for the longest possible

direct path. The emergence of the turning path also relates to the emergence of the

rise of the second peak. In order to visualise this, we can use the numerical technique

that we have in chapter 3. To do this, we use an extended version of the effective

potential, which has the extra V ′′(x) term from the Stratonovich prescription. This

additional term removes the possibility of a divergent portion of the integral when

it is numerically integrated. The divergent portion still exists in the numerical

path integral solution as there is no Jacobian term to counter it, as shown in the

analytical solution in chapter 4. The only effect this has is a manipulation of the

effective potential making the peaks that relate to minimums in the real potential

taller, and the peaks that relate to the real potential maximums lower, but the

turning path argument still holds. The argument makes “physical” sense in this

case as the particle can have enough energy to make it over one peak of the effective

potential, but then is unable to climb to the peak of the maximum of the effective

potential, at xC . This is what is shown in figure 5.2, and what can be seen in the

blue curve is that the effective potential is highest at the right-hand minimum of the

real potential at the bottom of the deeper well, where particles would turn around

allowing the appearance of the second peak.
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5.2. THE APPEARANCE OF A SECOND PEAK

Figure 5.2: The Ito effective potential V = −V ′(x)2, in green —, vs the Stratonovich
effective potential V = −V ′(x)2+2DV ′′(x), in blue —, with the corresponding titled
double well potential, in red —.

The critical energy is defined as;

HC = ẋ(xC)2 − V ′(xC)2 + 2DV ′′(xC),

= 2DV ′′(xC) as the velocity is 0, as is the gradient of the potential at C.

Inputting this into the time definition for the direct path,

TC =

∫ xf

xi

dx√
HC + V ′(x)2 − 2DV ′′(x)

,

=

∫ xf

xi

dx√
V ′(x)2 + 2D(V ′′(xC) − V ′′(x))

.

We can evaluate this numerically and produce a critical time in which the second

peak appears. The titled double well potential is the same as in chapter 3, and is
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

defined as,

V (x) =
1

8
x4 − 1

6
x3 − 1

2
x2 +

4

3
.

This numerical integration returns a numerical value for the critical time, so we can

use this value to define the time we look at when using the numerical path integral

solution. Inputting this critical time as the length of time we run the numerical path

integral representation for, and we can look at a few different values of diffusion to

see if it returns the expected result for varying D. The results include the results

of the numerical path integral representation for 500 time steps before and after to

give a comparison to see if the critical time is indeed close to the minimum time

required for a second peak to appear.

(a) 500-time steps on either side of TC , xi = −1, D = 0.25

(b) 500-time steps on either side of TC , xi = −1, D = 0.5

Figure 5.3: Probability density function at timesteps either side of the critical time,
showing the beginning of the appearance of the second peak, only once the critical
time has passed.
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5.2. THE APPEARANCE OF A SECOND PEAK

(a) 500-time steps on either side of TC , xi = −1, D = 1

(b) 100-time steps on either side of TC , xi = −1, D = 1

Figure 5.4: Probability density function at timesteps either side of the critical time,
showing the beginning of the appearance of the second peak, only once the critical
time has passed.

These figures show that the critical time is in the correct region and order of time

to be the minimum time for a second peak to start appearing in the second well.

They also show that the critical time for the appearance of the second peak, and the

longest possible direct path, decreases as we increase the diffusion value, agreeing

with intuition as a larger diffusion value means a quicker trip over the barrier.

They show that the second peaks will start to appear only after the critical time is

calculated and not before. This shows graphically that the critical time does indeed

relate to a change in the behaviour of the system, namely the introduction of the

turning path.
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

5.3 Looking at the long time limit

So, we have found the turning path solution by showing that there must be a turning

path past a critical time. However, we can also show that there must be a turning

path to return the correct equilibrium probability density function and hopefully

solve the issues that occur for both the stochastic action and the jacobian terms

in the long time limit. We will now look at how the turning path affects S(x) and

J (x) at long times.

The Harmonic Potential

First, we look at the simplest potential with an interesting solution, where J ̸= 1;

the Harmonic potential. For this system, we know the equilibrium distribution from

the Ornstein-Uhlenbeck solution with T → ∞ [67],

Peq(xf , T |xi)T → ∞ =
1√

2πD
exp

[
−
x2f
2D

]
. (5.1)

So, do we return the same solution from the path integral representation? For the

quadratic potential with xi < 0, there are three different systems depending on the

final position as this would change the integral limits.

First, we look at xf > 0 in which there is always only a direct path as in the long

time limit in the effective potential the particle can spend infinite time at the peak

of the effective potential before travelling past to the final position.

The full probability density function for this is

P (xf > 0 > xi|T ) =

exp

[
1
2

∫ xf

xi

V ′′(y)√
H+V ′(y)2

dy

]
√

4πD
√
H + V ′(xi)2

√
H + V ′(xf )2

∣∣∣∫ xf

xi
(H + V ′(y)2)−

3
2 dy
∣∣∣

× exp

[
− 1

4D

(
2V (xf ) − 2V (xi) −HT + 2

∫ xf

xi

√
H + V ′(y)2dy

)]
.
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5.3. LOOKING AT THE LONG TIME LIMIT

Figure 5.5: A direct path example for xi < 0 < xf in the harmonic potential

We can calculate the Jacobian and integral in the prefactor A =
∣∣∣∫ xf

xi
(H + V ′(y)2)−

3
2 dy
∣∣∣

integrals fully before we take the long time limit, H → 0. First of all, we calculate

the Jacobian integral with V (x) = 1
2
x2;

∫ xf

xi

1√
H + y2

dy =
1

2
log


√
H + x2f + xf√
H + x2f − xf

− 1

2
log

[√
H + x2i + xi√
H + x2i − xi

]

=
1

2
log


(√

H + x2f + xf

)(√
H + x2i − xi

)
(√

H + x2f − xf

)(√
H + x2i + xi

)


=
1

2
log


(√

H + x2f + xf

)2 (√
H + x2i − xi

)2
H2



= log


(√

H + x2f + xf

)(√
H + x2i − xi

)
H

 .
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

We can also calculate A, which is simpler:

A =

∫ xf

xi

1

(H + y2)
3
2

dy =
xf

H
√
H + x2f

− xi

H
√
H + x2i

.

Substituting the two integrals into the full form of the probability density function

that we have we have a representation,

P (xf > 0 > xi|T ) =
1√

4πD
√
H + x2i

√
H + x2f

×

√√√√√

(√

H + x2f + xf

)(√
H + x2i − xi

)
H

 1√
xf

H
√

H+x2
f

− xi

H
√

H+x2
i

× exp

[
− 1

4D

(
x2f − x2i −HT + 2

∫ xf

xi

√
H + y2dy

)]
. (5.2)

There are some cancellations for H, which means that when we take the long time

limit, H → 0, we do not have an infinite limit. Taking this limit, and remembering

that for square roots, we end up with absolute values; xi < 0 < xf → xi = −|xi|

and |xf | = xf . In the long time limit,

P (xf > 0 > xi|T → ∞) =
1√

4πD|xi||xf |

√
(2|xf |) (2|xi|)

xf

|xf |
− xi

|xi|

× exp

[
− 1

4D

(
x2f − x2i + 2

∫ xf

xi

|y|dy
)]

,

=
1√

2πD
exp

[
− 1

4D

(
x2f − x2i − 2

∫ 0

xi

y dy + 2

∫ xf

0

y dy

)]
,
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5.3. LOOKING AT THE LONG TIME LIMIT

=
1√

2πD
exp

[
−
x2f
2D

]
,

thus returning the correct long-time limit for the harmonic oscillator. The more

interesting situation is when the final position is on the same side of the potential

as the initial position. This will give the situation in which a turning path is needed

after the critical time is reached. For this long time limit investigation we have

xi < xf < 0. Figure 5.6 shows the two paths, direct in black and the extra turning

path segments in purple that are needed to travel to H → 0 corresponding to

T → ∞. The turning path can reach the limit of T → ∞ by spending infinite time

on the top of the effective potential before turning around and travelling back down

to the final position.

Figure 5.6: The direct path (black) and turning path extra segments (purple), for
xi < xf < 0 in the harmonic potential

First, consider the direct path in a similar set-up to the previous example. The issue

that arises here in the long time limit is that the Jacobian and A integrals dominate

the probability and send it to 0.

J [x] =

√√√√√

(√

H + x2f + xf

)(√
H + x2i − xi

)
H

 1√
xf

H
√

H+x2
f

− xi

H
√

H+x2
i
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CHAPTER 5. THE CONCEPT OF THE TURNING PATH

JH→0 =

√
(|xf | + xf ) (|xi| − xi)

xf

|xf |
− xi

|xi|

= 0.

This is what we expect, however; the direct path can only exist within the short

time limit, and the turning path is needed! So, the probability consequently goes to

zero in the numerator. This means that the extra integrals that the turning path

has must fix this issue and return the equilibrium probability (5.1). The equilibrium

probability for the turning path must come from a path that turns at the peak of

the effective potential, in order to accumulate infinite time, so the integrals all have

xT = 0. The full turning path probability for this situation is,

PT (xi < xf < 0|T )

=

exp

[
1
2

∫ xf

xi

V ′′(y)√
HT +V ′(y)2

dy +
∫ 0

xf

V ′′(y)√
HT +V ′(y)2

dy

]
√

4πD
√
HT + V ′(xi)2

√
HT + V ′(xf )2

∣∣∣∫ xf

xi
(HT + V ′(y)2)−

3
2 dy + 2

∫ 0

xf
(HT + V ′(y)2)−

3
2 dy
∣∣∣

× exp

[
− 1

4D

(
2V (xf ) − 2V (xi) −HT T + 2

∫ xf

xi

√
HT + V ′(y)2dy + 4

∫ 0

xf

√
HT + V ′(y)2dy

)]
.

The integrals for the Jacobian and A integrals are the same as before, but due to

the extra integral, some of the ± signs change.

1

2

∫ xf

xi

1√
HT + y2

dy +

∫ 0

xf

1√
HT + y2

dy

=
1

2
log


(√

HT + x2f + xf

)(√
HT + x2i − xi

)
HT


+ log

√HT

(√
HT + x2f − xf

)
HT

 ,
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=
1

2
log


(√

HT + x2f + xf

)(√
HT + x2i − xi

)(√
HT + x2f − xf

)2
H2

T

 ,

=
1

2
log


(√

HT + x2f − xf

)(√
HT + x2i − xi

)
HT

 .

∫ xf

xi

(HT + V ′(y)2)−
3
2 dy + 2

∫ 0

xf

(HT + V ′(y)2)−
3
2 dy,

=
xf

HT

√
H + x2f

− xi

HT
√
H + x2i

− 2
xf

HT

√
H + x2f

,

= − xf

HT

√
H + x2f

− xi

HT
√
HT + x2i

.

Inputting this all into our probability density function representation

PT (xi < xf < 0|T ) =
1√

4πD
√
HT + x2i

√
HT + x2f

×

√√√√√

(√

HT + x2f − xf

)(√
HT + x2i − xi

)
HT

 1√
xf

HT
√

HT +x2
f

+ xi

HT
√

HT +x2
i

× exp

[
− 1

4D

(
x2f − x2i −HT T + 2

∫ xf

xi

√
HT + y2dy

)]
.

For the A integral, there is a magnitude sign around the integral, so it becomes

positive on both terms. Now, taking the long time limit, HT → 0,

PT (xi < xf < 0|T → ∞) =
1√

4πD|xi||xf |

√√√√(2|xf |) (2|xi|)∣∣∣ xf

|xf |
+ xi

|xi|

∣∣∣
× exp

[
− 1

4D

(
x2f − x2i + 2

∫ xf

xi

|y|dy + 4

∫ 0

xf

|y|dy

)]
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=
1√

2πD
exp

[
− 1

4D

(
x2f − x2i − 2

∫ xf

xi

ydy − 4

∫ 0

xf

ydy

)]

=
1√

2πD
exp

[
− 1

4D

(
x2f − x2i − x2f + x2i + 2x2f

)]

=
1√

2πD
exp

[
−
x2f
2D

]
.

This shows that the turning path representation returns the correct normalised

long-time limit, meaning that the turning path provides information that the direct

path cannot. This investigation provides insight into the understanding of the path

integral and how we need to construct the probability density function for a given

system.

In this chapter, we have shown that the turning path is needed to satisfy long-time

limits, and this results from the fact that there is a maximum time for a direct path to

make physical sense. Then we looked at how the turning path changes the analytical

form we have already found, introducing extra segments of paths and, consequently,

extra integrals in each term of the path integral formulation. We then investigated

how the turning path relates to the appearance of the second peak in a tilted double-

well potential after the maximum direct path time, proving it graphically using the

numerical implementation. Finally, we looked at how the turning path returns the

correct long-time limit specifically for the Harmonic potential, fixing one of the

significant issues that has cropped up in previous chapters.
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Chapter 6

The Harmonic Oscillator

In this chapter, we will be looking at the Harmonic Oscillator in detail, and

some of the existing methods used to solve for the probability density function.

We will then introduce the now full path integral technique solution and show

that it will return the same solution. Finally, we will explore the need for

turning paths in the given system, and show that there is a necessity for the

turning path to return a full physical solution, to find the complete solution

for the path integral technique.
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CHAPTER 6. THE HARMONIC OSCILLATOR

We will look at three standard methods that can be used to find the probability

density function for the harmonic oscillator, before showing that the path integral

returns the same result. We include the following three techniques for solving the

harmonic oscillator for a level of completeness in this work, and to be able to compare

the path integral directly with existing methods.

6.1 The Eigenfunction expansion

First, we look at the technique described in chapter 5 of Risken’s book “The Fokker-

Planck Equation” [84], which uses an eigenfunction expansion to solve for P (x, t).

It uses the properties and identities of operators to find the eigenfunctions for the

Fokker-Planck operator, which can then be related to the ODE solved by the Hermite

polynomials [85], and the final probability density function is then calculated by

substitution. Starting by looking at the theory for solving the general Fokker-Planck

equation, we will then apply the method to the specific problem we are interested

in: solving the equation for a quadratic potential.

We are looking for a non-stationary solution to the general Fokker-Planck equation,

∂W

∂t
= LFPW (x, t), (6.1)

where LFP is the general differential operator,

LFP = − ∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x). (6.2)

We begin by using an ansatz to solve this equation, W (x, t) = φ(x)e−λt, where φ is

an eigenfunction with corresponding eigenvalue λ. This means we are now solving

the eigenfunction equation after substituting W (x, t) into (6.1),

LFPφ(x) = −λφ(x).
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In order to solve this equation, it will be useful to provide an alternative form for

the operator LFP in terms of solutions that we know. To do this, we now solve for

the stationary solution, ∂W
∂t

= 0, of the original Fokker-Planck equation (6.1) to find

the relationship between D(1) and D(2) in LFP . The stationary solution needs to

solve

D(1)Wst(x, t) =
∂

∂x
D(2)Wst(x, t).

This is solved with an integrating factor, yielding the solution

Wst =
A

D(2)
exp

[∫ x D(1)

D(2)

]
.

We define a function Φ(x) as the stationary solution, Wst = Ae−Φ(x), where A is a

constant, which can be written in a compact form,

Φ(x) = ln
(
D(2)

)
−
∫ x D(1)(y)

D(2)(y)
dy. (6.3)

This function will be used to make the mathematics tidier. Using this representation

to modify the operator into a more compact form,

LFP =
∂2

∂x2
D(2) − ∂

∂x
D(1)

=
∂

∂x

[
D′(2) −D(1)

]
=

∂

∂x
D(2)

[
D′(2)

D(2)
− D(1)

D(2)

]
=

∂

∂x
D(2)Φ′

=
∂

∂x
D(2)e−ΦΦ′eΦ

LFP =
∂

∂x
D(2)e−Φ ∂

∂x
eΦ. (6.4)

We now have a more useful form of the differential operator for the Fokker-Planck

equation. However, it would be more beneficial if it had the useful property of

being a Hermitian operator [86]. This would mean that the operator’s eigenvalues

are real, and the corresponding eigenfunctions are orthogonal. The property of the
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orthogonal eigenfunctions will allow the delta function to be defined in relation to

the eigenfunctions, and consequently, the probability density function can then be

written as a sum of the eigenfunctions.

First of all, we need to check whether the operator LFP we have just defined is

Hermitian [86]. This is done by looking at the inner product, and in order to be

Hermitian, it needs to satisfy ⟨W1, LFPW2⟩ = ⟨LFPW1,W2⟩.

⟨W1, LFPW2⟩ =

∫ xmax

xmin

W1LFPW2dx,

=

∫ xmax

xmin

W1
∂

∂x

[
D(2)e−Φ ∂

∂x

(
eΦW2

)]
dx,

= −
∫ xmax

xmin

[
∂

∂x
W1

]
D(2)e−Φ ∂

∂x

[
eΦW2

]
dx+

[
W1D

(2)e−Φ ∂

∂x

(
eΦW2

)]xmax

xmin

.

At the maximum and minimum, eΦWxmin
= 0 = eΦWxmax , as the probability either

decays to 0 if there are infinite boundaries or if there are set boundary conditions

the probability is 0 for an absorbing boundary. Meaning that the second term on

the right-hand side disappears due to boundary conditions. Consequently,

⟨W1, LFPW2⟩ = −
∫ xmax

xmin

[
∂

∂x
W1

]
D(2)e−Φ ∂

∂x

[
eΦW2

]
dx,

=

∫ xmax

xmin

eΦW2
∂

∂x

[(
∂

∂x
W1

)
D(2)e−Φ

]
dx,

̸=
∫ xmax

xmin

W2
∂

∂x

[(
∂

∂x
eΦW1

)
D(2)e−Φ

]
dx = ⟨LFPW1,W2⟩.

This shows that, unfortunately, it is not Hermitian, but we can use a related operator

which may be Hermitian, L = e
Φ
2 LFP e

−Φ
2 , as shown below, again using the boundary

conditions to simplify.
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⟨W1, LW2⟩ =

∫ xmax

xmin

W1LW2dx

=

∫ xmax

xmin

W1e
Φ
2
∂

∂x

[
D(2)e−Φ ∂

∂x

(
eΦe−

Φ
2W2

)]
dx

=

∫ xmax

xmin

W1e
Φ
2
∂

∂x

[
D(2)e−Φ ∂

∂x

(
e

Φ
2W2

)]
dx

Integration by parts = −
∫ xmax

xmin

∂

∂x

[
W1e

Φ
2

]
D(2)e−Φ ∂

∂x

[
e

Φ
2W2

]
dx

Integration by parts =

∫ xmax

xmin

∂

∂x

[
D(2)e−Φ ∂

∂x

(
eΦW1e

−Φ
2

)]
e

Φ
2W2dx

=

∫ xmax

xmin

e
Φ
2
∂

∂x

[
D(2)e−Φ ∂

∂x

(
eΦW1e

−Φ
2

)]
W2dx

= ⟨LW1,W2⟩.

Therefore L is Hermitian. The corresponding eigenfunctions of L are related to

the eigenfunctions of LFP via a similar transformation, ψn = e
Φ
2 φn with the same

corresponding eigenvalues, λn. We can now use the eigenfunctions of L to define a

completeness relationship for the delta function, which is the initial condition of the

system,

δ(x− x0) =
∑
n

ψn(x)ψn(x0),

= e
Φ(x)
2

+
Φ(x0)

2

∑
n

φn(x)φn(x0),

= eΦ(x0)
∑
n

φn(x)φn(x0) = P (x, t = 0|x0).

Subsequently, we can now define the transition probability in terms of the eigen-

functions for an initial condition,

∂

∂t
P (x, t|x0) = LFPP

→ P (x, t|x0) = eLFP tδ(x− x0).
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The solution can then be expressed in terms of the eigenfunctions,

P (x, t|x0) = eLFP tδ(x− x0),

= eΦ(x0)
∑
n

φn(x)φn(x0)e
LFP t,

= eΦ(x0)
∑
n

φn(x)φn(x0)e
−λnt,

= e
Φ(x0)

2
−Φ(x)

2

∑
n

ψn(x)ψn(x0)e
−λnt. (6.5)

Now that we have a relationship between the transition probability and the eigen-

functions, we need to find what the eigenfunctions are. First of all, we now need the

operator L in terms of both D(1) and D(2). We can write L in terms of two further

operators,

L = e
Φ
2 LFP e

−Φ
2 ,

Using (6.4) = e
Φ
2
∂

∂x
D(2)e−Φ ∂

∂x
e

Φ
2 ,

= −âa,

where a =
√
D(2)e−

Φ
2
∂

∂x
e

Φ
2 , (6.6)

â = −e
Φ
2
∂

∂x

√
D(2)e−

Φ
2 . (6.7)

Using the solution (6.3), we can relate the operators, a and â, to the functions D(1)

and D(2).

a =
√
D(2)e−

Φ
2

[
e

Φ
2
∂

∂x
+

1

2
Φ′e

Φ
2

]
=

√
D(2)

∂

∂x
+

1

2

√
D(2)Φ′

=
√
D(2)

∂

∂x
+

1

2
√
D(2)

[
dD(2)

dx
−D(1)

]
â = −e

Φ
2
∂

∂x

[√
D(2)e−

Φ
2

]
= − ∂

∂x

√
D(2) +

1

2
√
D(2)

[
dD(2)

dx
−D(1)

]
.
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Specific example: Harmonic Oscillator

We can now apply the techniques described above to a specific example: the har-

monic oscillator. This has to satisfy the following Smoluchowski equation,

∂P

∂t
=

∂

∂x
[bxP ] +D

∂2

∂x2
P, P (x, t = 0|x0) = δ(x− x0),

which when compared to the general operator for the Fokker-Planck equation (6.1)

gives, D(1) = −bx,D(2) = D . This gives our operators (6.6)(6.7) as,

a =
√
D
∂

∂x
+

b

2
√
D
x,

â = −
√
D
∂

∂x
+

b

2
√
D
x.

To make the notation more compact, we can introduce a couple of substitutions,

ξ =
√

b
2D
x and a =

√
bα, â =

√
bα†, meaning we have now,

α =
1√
2

(
∂

∂ξ
+ ξ

)
, (6.8)

α† =
1√
2

(
− ∂

∂ξ
+ ξ

)
, (6.9)

αα† − α†α = 1, (6.10)

L = −bα†α. (6.11)

The next step is to work out the eigenvalues of this operator in order to be able to

calculate the eigenfunctions. Following the examples and expressions given in [87],

we now introduce the operator defined by N = α†α. This operator has the same

eigenvalues as L as it is a multiple of L = −bN . We can prove it is Hermitian,

N † =
(
α†α

)†
,

= α† (α†)† ,
= α†α,

= N.
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We can also calculate the commutators with α and α†,

[N,α] = [α†α, α] = α†[α, α] + [α†, α]α = −α,

[N,α†] = [α†α, α†] = α†[α, α†] + [α†, α†]α = α†.

These operators are similar in construction to the Ladder operator method used in

quantum mechanics, again showing the similarity in techniques between quantum

mechanics, classical mechanics and stochastic physics. [88] As defined in [87] an

operator with these properties have the corresponding eigenvalues of n, meaning,

Nψn = nψn,

Lψn = −bNψn = −bnψn = −λnψn,

λn = bn.

We have worked out the eigenvalues, and we can calculate the ground state eigen-

function corresponding to n = 0, meaning we solve Lψ0 = 0. Applying the operators,

α†(6.9) and α(6.8) yields,

Lψ0 = −bα†αψ0

= − b
2

(
− ∂

∂ξ
+ ξ

)(
∂

∂ξ
+ ξ

)
ψ0

= − b
2

(
− ∂

∂ξ
+ ξ

)(
∂ψ0

∂ξ
+ ξψ0

)
= − b

2

[
−∂

2ψ0

∂ξ2
− ψ0 − ξ

∂ψ0

∂ξ
+ ξ

∂ψ0

∂ξ
+ ξ2ψ0

]
=
b

2

[
∂2ψ0

∂ξ2
−
(
ξ2 − 1

)
ψ0

]
ψ′′
0 − (ξ2 − 1)ψ0 = 0

Solving this differential equation is done using an ansatz, ψ0 = Nce
−kξ2 , where Nc

is the normalisation constant.

ψ′
0 = −2Nckξe

−kξ2
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ψ′′
0 = −2Ncke

−kξ2 + 4Nck
2ξ2e−kξ2

ψ′′
0 − (ξ2 − 1)ψ0 = −2Ncke

−kξ2 + 4Nck
2ξ2e−kξ2 −Ncξ

2e−kξ2 +Nce
−kξ2 = 0

→ k =
1

2

Now have an ansatz with a normalisation constant that needs calculating. To solve

for Nc, we make use of the normalisation of eigenfunctions which means,

∫ ∞

−∞
ψ0(x)ψ0(x)dx = 1

=

∫ ∞

−∞
ψ0(ξ)ψ0(ξ)dξ

√
2D

b

= N2
c

√
2D

b

∫ ∞

−∞
e−ξ2dξ

= N2
c

√
2D

b

√
π = 1

→ Nc =
4

√
b

2πD

→ ψ0 =
4

√
b

2πD
e−

ξ2

2 (6.12)

We need to work out now a relationship to calculate the other eigenfunctions, using

an expression from [87],

ψn(x) =

(
α†)n
√
n!

ψ0(x) =
4

√
b

2πD

1√
2nn!

Hn(ξ)e−
ξ2

2 , (6.13)

where Hn(ξ) are the Hermite polynomials. We can now start to calculate the

probability density function (6.5) using our definitions for the eigenfunctions and

Φ(x) = V (x)
D

= bx2

2D
.

P (x, t|x0) = e
Φ(x0)

2
−Φ(x)

2

∑
n

ψn(x)ψn(x0)e
−λnt,

= e
b

4D
(x2

0−x2)

√
b

2πD
e−

1
2
(ξ20+ξ2)

∑
n

e−bnt

2nn!
Hn(ξ)Hn(ξ0),

Note: ξ =

√
b

2D
x
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P (x, t|x0) =

√
b

2πD
e

b
4D

(x2
0−x2)e−

b
4D

(x2
0+x2)

∑
n

1

n!

(
e−bt

2

)n

Hn

(√
b

2D
x

)
Hn

(√
b

2D
x0

)
,

=

√
b

2πD
e−

b
2D

x2
∑
n

1

n!

(
e−bt

2

)n

Hn

(√
b

2D
x

)
Hn

(√
b

2D
x0

)
.

Using Mehler’s expansion [89], we can calculate the sum,

∑
n

1

n!

(
e−bt

2

)n

Hn

(√
b

2D
x

)
Hn

(√
b

2D
x0

)

=
1√

1 − e−2bt
exp

[
2e−bt

1 − e−2bt

(
bxx0
2D

− e−btbx2

4D
− e−btbx20

4D

)]

=
1√

1 − e−2bt
exp

[
− b

2D(1 − e−2bt)

(
−2xx0e

−bt + x2e−2bt + x20e
−2bt
)]
.

Replacing this in the probability density function yields,

P (x, t|x0) =

√
b

2πD(1 − e−2bt)
exp

[
−bx

2

2D

]

× exp

[
− b

2D(1 − e−2bt)

(
−2xx0e

−bt + x2e−2bt + x20e
−2bt
)]

=

√
b

2πD(1 − e−2bt)
exp

[
− b

2D(1 − e−2bt)

(
x2 − 2xx0e

−bt + x2e−2bt
)]

=

√
b

2πD(1 − e−2bt)
exp

[
− b

2D(1 − e−2bt)

(
x− x0e

−bt
)2]

This is the known PDF for the quadratic potential [90], a long and tricky method to

keep up with all of the transformations; hopefully, another technique will be simpler!
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6.2 Transformation and separation of variables

The second technique is to use a substitution for the Smoluchowski equation to di-

rectly compare with an ordinary differential equation with known solutions, Hermite

polynomials [91]. So looking at the Smoluchowski equation,

∂P

∂t
=

∂

∂x

[
dV

dx
P +D

∂P

∂x

]
,

= b
∂

∂x
[xP ] +D

∂2P

∂x2
,

= bP + bx
∂P

∂x
+D

∂2P

∂x2
,

we want to use substitutions to transform this into the form of the Hermite Equation

ODE [85],

u′′ − 2xu′ + 2nu = 0, (6.14)

as this would allow us to use known results to find a solution. The first transfor-

mation is to transform the Smoluchowski equation to a form of the Schrödinger

equation. So, we transform the equation to eliminate the first-order derivative in

space, P (x, t) = F (x)G(x, t). The derivatives are,

∂P

∂t
= F

∂G

∂t

∂P

∂x
=

dF

dx
G+ F

∂G

∂x

∂2P

∂x2
=

d2F

dx2
G+ 2

dF

dx

∂G

∂x
+ F

∂2G

∂x2

Inserting this into the Smoluchowski equation,

F
∂G

∂t
= bFG+ bx

dF

dx
G+ bxF

∂G

∂x
+D

d2F

dx2
G+ 2D

dF

dx

∂G

∂x
+DF

∂2G

∂x2
.

So in order to eliminate the first-order derivative in G we require,

bxF + 2D
dF

dx
= 0,
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dF

dx
= − bx

2D
F,

F = A exp

[
−bx

2

4D

]
.

Substituting this into the equation we find,

∂G

∂t
=

1

2
bG− b2x2

4D
G+D

∂2G

∂x2
.

This is now in the form of a Schrödinger equation. In order to get to the Hermite

equation (6.14), we need to separate the spatial and time derivatives (separation of

variables) G(x, t) = X(x)T (t). Substituting this in,

X(x)Ṫ (t) = DX ′′(x)T (t) +
1

2
b

(
1 − bx2

2D

)
X(x)T (x)

Ṫ

T
= D

X ′′

X
+

1

2
b

(
1 − bx2

2D

)
.

As the left-hand side is only time-dependent, and the right-hand side is only space

dependent, both sides must equal a constant, λ. The time equation is simple to

solve,

Ṫ = −λT

T = exp (−λt) ,

whilst also having a spatial equation,

DX ′′ +
1

2
b

(
1 − bx2

2D

)
X + λX = 0

We use one more transformation to change this spatial equation into the form of the

Hermite equation, (6.14). Using the transformation, y =
√

b
2D
x, X(x) = U(y)e−

y2

2 .

Calculating the derivatives,

X = Ue−
y2

2
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X ′ = −yUe−
y2

2 + U ′e−
y2

2

X ′′ = −Ue−
y2

2 − 2yU ′e−
y2

2 + y2Ue−
y2

2 + U ′′e−
y2

2 .

Substituting this into the spatial equation that we have gives

DX ′′ +
1

2
b

(
1 − bx2

2D

)
X + λX = 0

b

2
X ′′(y) +

1

2
b(1 − y2)X(y) + λX(y) = 0

− b
2
Ue−

y2

2 − byU ′e−
y2

2 +
b

2
y2Ue−

y2

2 +
b

2
U ′′e−

y2

2 +
1

2
b(1 − y2)e−

y2

2 U + λe−
y2

2 U = 0

U ′′ − 2yU ′ +
2λ

b
U = 0.

So we now have the Hermite equation with eigenvalue λ = bn, which are real for

n = 0, 1, 2, ... and the solutions Un(y) are the Hermite polynomials Hn(y). Going all

the way back, we have the form of the solution for the probability density function

with all the substitutions,

P (x, t) = AF (x)G(x, t),

= AF (x)T (t)X(x),

= Ae−
bx2

4D e−λtU(y)e−
y2

2 ,

=
∑
n

cne
− y2

2 e−bntHn(y)e−
y2

2 ; y =

√
b

2D
x

= e−y2
∑
n

cnHn(y)e−bnt.

In order to calculate the coefficients cn we need to use the orthogonality of the

Hermite polynomials [91] and the initial condition, P (x, t = 0) = δ(x−x0), meaning

that,

δ(y − y0) =
∑
n

e−y2cnHn(y).

121



CHAPTER 6. THE HARMONIC OSCILLATOR

Then using the generalised Fourier series method [92] for calculating the coefficients

of a series, with a weight function of the Hermite polynomials of ey
2
,

cn =

∫∞
−∞ dy e−y2Hn(y)δ(y − y0)e

y2∫∞
−∞ dy e−y2Hn(y)e−y2Hn(y)ey2

,

=

∫∞
−∞ dy Hn(y)δ(y − y0)∫∞
−∞ dy e−y2Hn(y)Hn(y)

.

Using the properties of the delta function, and the orthogonality of the Hermite

polynomials, ∫ ∞

−∞
dye−y2Hn(y)Hm(y) = δnm2mm!

√
π,

we get the coefficients being,

cn =
Hn(y0)

2nn!
√
π
.

This means that

P (y, t) = Ne−y2
∑
n

Hn(y)Hn(y0)

n!

(
e−bt

2

)n

,

where N is a normalisation constant to be worked out at the end. We can then use

Mehler’s expansion [89],

∑
n

Hn(y)Hn(y0)
zn

n!
=

1√
1 − 4z2

exp

[
4z

1 − 4z2
(y0y − zy2 − zy20)

]
.

Substituting in y =
√

b
2D
x,

P (x, t|x0) = Ne−
bx2

2D
1√

1 − e−2bt
exp

[
2e−bt

1 − e−2bt

(
b

2D
xx0 −

e−bt

2

b

2D
x2 − e−bt

2

b

2D
x20

)]
,

=
N√

1 − e−2bt
exp

[
b

2D(1 − e−2bt)

(
−x2(1 − e−2bt) + 2e−btxx0 − e−2btx2 − e−2btx20

)]
,

=
N√

1 − e−2bt
exp

[
− b

2D(1 − e−2bt)

(
x2 − 2e−btxx0 + e−2btx20

)]
,

=
N√

1 − e−2bt
exp

[
− b

2D(1 − e−2bt)

(
x− e−btx0

)2]
.
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Then normalising,
∫∞
−∞ P (x, t)dx = 1, using Gaussian identities,

∫ ∞

−∞
P (x, t)dx =

N√
1 − e−2bt

∫ ∞

∞
exp

[
− b

2D(1 − e−2bt)

(
x− e−btx0

)2]
dx

=
N√

1 − e−2bt

√
π2D(1 − e−2bt)

b

= 1

N =

√
b

2πD
.

Resulting in the result for the probability density function for a quadratic potential,

P (x, t|x0) =

√
b

2πD(1 − e−2bT )
exp

[
− b

2D(1 − e−2bT )

[
x− x0e

−bT
]2]

6.3 The WKB approximation

One of the more famous methods to solve certain kinds of differential equation is the

WKB approximation [93]. This technique uses a series expansion in D and matching

each order. The solution is found by solving the Laplace-transformed Smoluchowski

equation for the Harmonic Oscillator,

sP − δ(x− x0) = P + xP
′
+DP

′′
.

Where P (x, s) = L{P}(s) =
∫∞
0
P (x, t)e−stdt is the Laplace transform of the proba-

bility density function. Only looking at x ̸= x0, we can try a familiar looking Ansatz

P = A[x] exp
(
−S[x]

4D
+ J [x]

)
where we have a prefactor term and the first two terms

in a D expansion. They are functionals, hence the square brackets, to be determined

by expansion and equating coefficients to different orders. We need to find the first

and second derivatives for our Ansatz to substitute into the Laplace-transformed

Smoluchowski equation.

P = A[x] exp

(
−S[x]

4D
+ J [x]

)
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P
′
= A′ exp

(
− S

4D
+ J

)
+ AJ ′ exp

(
− S

4D
+ J

)
− 1

4D
AS ′ exp

(
− S

4D
+ J

)

P
′′

= A′′ exp

(
− S

4D
+ J

)
+ A′J ′ exp

(
− S

4D
+ J

)
− 1

4D
A′S ′ exp

(
− S

4D
+ J

)
+ A′J ′ exp

(
− S

4D
+ J

)
+ AJ ′′ exp

(
− S

4D
+ J

)
− 1

4D
AJ ′S ′ exp

(
− S

4D
+ J

)
+ AJ ′2 exp

(
− S

4D
+ J

)
− 1

4D
A′S ′ exp

(
− S

4D
+ J

)
− 1

4D
AS ′′ exp

(
− S

4D
+ J

)
− 1

4D
AJ ′S ′ exp

(
− S

4D
+ J

)
+

1

16D2
AS ′2 exp

(
− S

4D
+ J

)
= exp

(
− S

4D
+ J

)[
A′′ + 2A′J ′ + AJ ′′ + AJ ′2

− 1

4D
[2A′S ′ + 2AJ ′S ′ + AS ′′] +

1

16D2
AS ′2

]

Substituting all these terms into the Smoluchowski equation, we can cancel the

exponential terms as they are common throughout. Collecting like terms gives,

sA = A+ x (A′ + AJ ′) − 1

4
(2A′S ′ + 2AJ ′S ′ + AS ′′) +

1

D

[
−x

4
AS ′ +

1

16
AS ′2

]
+D

[
A′′ + 2A′J ′ + AJ ′′ + AJ ′2] .

Next, we use dominant balance and equate each order of D as they have to be the

same to be correct at each order. Now, with the use of hindsight, if we redefine

the Laplace parameter as s = H
4D

, then when we look at the dominant balance we

return a familiar solution. This relationship is needed as s has order of 1
D

and will

become very useful when we make further use of the Laplace-transform in chapter 7.

Starting at O( 1
D

),

H

4
A = −x

4
AS ′ +

1

16
AS ′2

S ′2 − 4xS ′ − 4H = 0

S ′ =
4x±

√
16x2 + 16H

2
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= 2x± 2
√
H + x2

S[x] = x2 ± 2

∫ √
H + y2dy

Now, this looks very similar to the action terms we have previously found using path

integrals! Looking at the next order which is the constant terms O(1),

0 = A+ xA′ + xAJ ′ − 1

4
[2A′S ′ + 2AJ ′S ′ + AS ′′]

0 = A+ xA′ + xAJ ′ − 1

4

[
4A′x± 4A′

√
H + x2 + 4AJ ′x± 4AJ ′

√
H + x2 + 2A± 2Ax√

H + x2

]
0 =

1

2
A

[
1 ∓ x√

H + x2

]
∓

√
H + x2 [A′ + AJ ′]

We have an equation with two terms that we do not know, but given that the S

term returned the action that we have previously found for the Laplace transformed

solution, what if we tried a proportional A term that we know? A = (H + x2)−
1
4 ;

0 =
1

2
(H + x2)−

1
4

[
1 ∓ x(H + x2)−

1
2

]
∓ (H + x2)

1
2

[
−x

2
(H + x2)−

5
4 + (H + x2)−

1
4J ′
]
,

0 =
1

2
(H + x2)−

1
4 ∓ (H + x2)

1
4J ′,

J ′ = ±1

2
(H + x2)−

1
2 ,

J [x] = ±
∫

dy√
H + y2

.

So, using the prefactor term that we already have, we returned the Jacobian term!

This full probability solves the quadratic form of the Smoluchowski in Laplace space

and returns a similar form to path integral formalism that we have found already

and will now show that it solves the quadratic potential.

P =
1

(H + x2)
1
4

exp

[
±1

2

∫
dy√
H + y2

− 1

4D

(
x2 ± 2

∫ √
H + y2dy

)]

This returns a Laplace domain solution, which in chapter 7 we will find a similar

looking solution that can be shown to solve the Laplace transformed Smoluchowski

equation and can be inverted back to the time domain solution. For now, we will
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stop here and pick up later when looking at the path integral in the Laplace domain.

6.4 Using Path Integrals

We have seen a few different techniques in solving for the Harmonic Oscillator, but

what about using path integrals now that we know more about the Jacobian term,

which is non-unit for the quadratic, and the concept of turning paths?

The Harmonic Oscillator is a good candidate to see how the path integrals shed new

light onto the dynamics of a system because it is the most complex potential that

we can solve the integrals for, and we know the analytical solution so we can check

that the form is correct. To begin with, we can see if using the basic direct path

formalism will return the known Ornstein-Uhlenbeck solution. First, setting up the

problem we have,

V (x) =
x2

2
, (6.15)

xi <xf < 0. (6.16)

We can also do the calculations for the other regions that xf can occupy, which

would be a reordering of the integral limits. For xf < xi < 0, it would mean a

swapping of xf and xi in all the calculations. In this system, for xi < 0 < xf , there

is only a direct path so the calculations do not change from the method we are first

looking at.

As we have found the probability form for a direct path (2.13), now including the

Jacobian term;

PD(xf , T |xi, 0) = AD[x, t]JD[x, t] exp

(
−SD(xf , xi, T )

4D

)
JD[x, t] = exp

(
1

2

∫ T

0

V ′′(x(τ))dτ

)
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T =

∫ xf

xi

dx√
HD + V ′2

SD[xf , xi, T ] = 2(V (xf ) − V (xi)) −HDT + 2

∫ xf

xi

√
HD + V ′2dx

A−2
D = 4πD

√
(HD + V ′(xi)2)(HD + V ′(xf )2)

∣∣∣∣∫ xf

xi

dy

(HD + V ′(y)2)3/2

∣∣∣∣ .
Now, as V ′′(x) = 1, the Jacobian integral is a constant and only depends on time

only,

JD[x, t] = exp

(
T

2

)
. (6.17)

To begin finding P , we first calculate the time integral,

T =

∫ xf

xi

1√
HD + x2

dx

=
1

2
ln

[
x+

√
HD + x2√

HD + x2 − x

] ∣∣∣∣xf

xi

=
1

2
ln

xf +
√
HD + x2f√

HD + x2f − xf

− 1

2
ln

[
xi +

√
HD + x2i√

HD + x2i − xi

]

Rationalising the denominator =
1

2
ln

 [xf +
√
HD + x2f ]2

HD

− 1

2
ln

[
[xi +

√
HD + x2i ]

2

HD

]

T = ln


√
HD + x2f + xf√
HD + x2i + xi


= arcsinh

xf√
HD

− arcsinh
xi√
HD

.

In order to find the other quantities we need for the probability density function, we

need to rearrange this to find HD. This can be done by using double-angle formulae

for the inverse hyperbolic functions and expanding the square roots resulting in a

quartic function in HD. The solutions to this quartic are

HD =
x2f + x2i ± 2xfxi cosh(T )

sinh(T )2
and HD = 0. (6.18)

The question now is, which solution do we use going forward? With the benefit of

hindsight, the correct solution is to use the − value from the HD solution. Both the
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+ and 0 solutions do not satisfy the normalisation condition for the probability, but

we will see that later. We can then calculate the action integrals

SD = 2V (xf ) − 2V (xi) −HDT + 2

∫ xf

xi

√
HD + x2dx

= (x2f − x2i ) −HDT + xf

√
HD + x2f − xi

√
HD + x2i +HD ln


√
HD + x2f + xf√
HD + x2i + xi


SD = (x2f − x2i ) + xf

√
HD + x2f − xi

√
HD + x2i , (6.19)

where we used the logarithmic relationship between T and HD to cancel two terms.

The substitution for our HD can then be done and the action simplifies down to

SD = xf

(
xf +

√
(xf coth(T ) − xi cosech(T ))2

)
−xi

(
xi +

√
(xi coth(T ) − xf cosech(T ))2

)
.

(6.20)

The next step is to calculate the prefactor AD for the system, and again, using the

relationship for HD, we arrive at the form

A−2
D = 4πD

√
HD + x2f

√
HD + x2i

∣∣∣∣∫ xf

xi

(HD + x2)−
3
2 dx

∣∣∣∣
=

∣∣∣∣4πDHD

[
xf

√
HD + x2i − xi

√
HD + x2f

]∣∣∣∣ (6.21)

=

∣∣∣∣∣∣
4πD sinh(T )2

[
−xi

√
(xf coth(T ) − xi cosech(T ))2 + xf

√
(xi coth(T ) − xf cosech(T ))2

]
x2i + x2f − 2xixf cosh(T )

∣∣∣∣∣∣
As this is the Harmonic Oscillator, we know the solution we are after and can see how

the path integral approach returns the correct result. Starting with the Ornstein-

Uhlenbeck process [67], we can separate out the factors that we have calculated

PO-U(xf , T |xi, 0) =

√
1

2πD(1 − e−2T )
exp

(
− 1

2D(1 − e−2T )

(
xf − xie

−T
)2)

,

=

√
eT

2πD(eT − e−T )
exp

(
− 1

2D(1 − e−2T )

(
xf − xie

−T
)2)

,
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=

√
1

4πD sinh(T )
exp

(
T

2

)
exp

(
− 1

2D(1 − e−2T )

(
xf − xie

−T
)2)

,

= A[x, t]J [x, t] exp

(
−S(xf , xi, T )

4D

)
.

Comparing the path integral elements with the final line above means that we can

identify the elements that we have,

AD[x, t]−2 = 4πD sinh(T ),

JD[x, t] = exp

(
T

2

)
,

SD[xf , xi, T ] =
2
(
xf − xie

−T
)2

D(1 − e−2T )
,

= (xi − eTxf )2(coth(T ) − 1).

We know what we are after, so does our path integral representation return the same

results? The Jacobian is already sorted for this system (6.17), so how can we find

the relevant prefactor and action terms? For both the prefactor (6.21) and action

(6.20), we have brackets that are squared and then square rooted, meaning there

are magnitude signs for both that we must deal with. Are these factors positive or

negative? We can simplify this by using the assumptions that we gave as we set up

the system (6.15), xi < xf < 0, and the fact that T > 0 as it is the representation

for time. Using these inequalities, we can simplify the prefactor to find the form

that we desire, but with a time constraint

AD[x, t]−2 = 4πD sinh(T ) for xi < xf cosh(T ).

Using this third constraint along with the two initial assumptions for the action

again returns the known Ornstein-Uhlnebeck solution

SD = (xi − eTxf )2(coth(T ) − 1) for xi < xf cosh(T ).
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So the path integral approach returns the known Ornstein-Uhlenbeck solution but

for a constraint on the time! This constraint illustrates that for a path there is a

time limit for it to be a direct path, and beyond this time constraint we need to

introduce a turning path as there is a maximum energy value H. We have seen in

chapter 5 the turning path introduction means an extra integral that covers the path

travelling to the turning point and back, in this case at V ′(x) = 0 meaning x = 0.

Calculating the turning path action and prefactor is very similar to the direct path,

as the integrals are all the same, just an additional cancellation. Starting with the

time integral calculation

T =

∫ xf

xi

1√
HT + x2

dx+ 2

∫ 0

xf

1√
HT + x2

dx

= ln


√
HT + x2f + xf√
HT + x2i + xi

+ 2 ln

 √
HT√

HT + x2f + xf


= ln

 HT[√
HT + x2f + xf

] [√
HT + x2i + xi

]


= − arcsin
xf√
HT

− arcsin
xi√
HT

(6.22)

Solving for the resultant quartic in HT ;

HT =
x2f + x2i ± 2xfxi cosh(T )

sinh(T )2
and HT = 0

It returns the same form of the energy, and again we chose the − solution for the

energy. This does mean that the energy form is the same for the direct and turning

path, but there is a point at critical T where we change from one to the other in

A and S to keep the final probability solution consistent. Calculating the turning

path action

ST = 2V (xf ) − 2V (xi) −HT T + 2

∫ xf

xi

√
HT + x2dx+ 4

∫ 0

xf

√
HT + x2dx

= (x2f − x2i ) −HT T − xf

√
HT + x2f − xi

√
HT + x2i
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+HT ln


√
HT + x2f + xf√
HT + x2i + xi

+ 2HT ln

 √
HT√

HT + x2f + xf


= (x2f − x2i ) − xf

√
HT + x2f − xi

√
HT + x2i (6.23)

ST = xf

(
xf −

√
(xf coth(T ) + xi cosech(T ))2

)
− xi

(
xi +

√
(xi coth(T ) + xf cosech(T ))2

)
.

Then calculating the turning path prefactor again using the HT solution

∣∣A−2
T
∣∣ = 4πD

√
HT + x2f

√
HT + x2i

∣∣∣∣∣
∫ xf

xi

(HT + x2)−
3
2 dx+ 2

∫ 0

xf

(HT + x2)−
3
2 dx

∣∣∣∣∣
=

4πD

HT

∣∣∣∣−xf√HT + x2i − xi

√
HT + x2f

∣∣∣∣ (6.24)

∣∣A−2
T
∣∣ =

∣∣∣∣∣∣−
sinh(T )2

[
xi
√

(xf coth(T ) + xi cosech(T ))2 + xf
√

(xi coth(T ) + xf cosech(T ))2
]

x2i + x2f + 2xixf cosh(T )

∣∣∣∣∣∣
Again, using the initial conditions that we have, xi < xf < 0 and T > 0, we can

simplify these action and prefactor terms to the Ornstein-Uhlenbeck solution only

for xi ≥ xf cosh(T ). Meaning that at this condition, the dominant path transitions

from the direct to the turning path,

∣∣AT [x, t]−2
∣∣ = 4πD sinh(T ) for xi ≥ xf cosh(T ).

Using this third constraint along with the two assumptions from the beginning for

the action again returns the known Ornstein-Uhlnebeck solution,

ST = (xi − eTxf )2(coth(T ) − 1) for xi ≥ xf cosh(T ).

So, we have a solution for the Harmonic Oscillator using path integrals for which

we have to switch from a direct to a turning path at a given time, a phenomenon of

the system that is not found if we use the other methods described. This provides

an insight into the system’s dynamics that are not previously seen. We can see this
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change from direct to turning path by graphing the prefactor and action terms over

time.

(a) Energy over time (b) Action over time

(c) Prefactor over time

Figure 6.1: Graphs showing the elements for the path integral formalism over time
with the time constraint imposed, detailing the change between the direct path and
the turning path at the critical time.

What figure (6.1a) shows are the forms for both the direct and turning path energies,

which are the same (6.18), (6.22) over time. The interesting factor is that the energy

becomes minimum at the point when it will change from the direct to the turning

path. This is because the longest direct path time is when the “particle” stops at
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the final position resulting in a minimum H for the direct path; any H > HC results

in a direct path reaching xf with ẋ > 0. Figure (6.1b) shows the action over time for

the direct and turning path action (6.19) and (6.23) respectively. We use the forms

of the actions that include the energy terms mainly because it is fewer terms in the

code, but it returns the same solution as using the full final form before we included

the assumptions. This fact means that the actions actually automatically have the

assumptions built in before we simplify the equations. Both figure (6.1b) and figure

(6.1c) also have the relevant Ornstein-Uhlenbeck solutions for comparison, and they

line up perfectly on either side of the time condition as they should. The path

integral only matches the known solution when the time constraint is valid, which

shows that the solution is correct.

Aside: The other energy values

Now, when we calculated the energy for the direct path (6.18), we chose the −

from the ± choice with hindsight. In this aside, we will explore what happens if we

choose the other energy values. First, if we had chosen HD = 0, we would do all the

integrals again but substitute in our HD value at the beginning. Starting with the

T integral,

T =

∫ xf

xi

dx√
HD + x2

,

=

∫ xf

xi

dx

x
,

= ln
xf
xi
,

xf = xie
T .

To calculate the action integral, we have to consider the square root of a squared x.

In this case, the integral takes place entirely in the negative x domain, so we pick

up an extra minus sign

SD = x2f − x2i −HDT + 2

∫ xf

xi

dx
√
HD + x2,
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= x2f − x2i + 2

∫ xf

xi

|x| dx,

= (x2f − x2i ) − (x2f − x2i ),

SD = 0.

And finally the prefactor,

A
− 1

2
D = 4πD

√
HD + x2f

√
HD + x2i

∣∣∣∣∫ xf

xi

(HD + x2)−
3
2 dx

∣∣∣∣ ,
= 4πD |xi| |xf |

∣∣∣∣∫ xf

xi

dx
1

x3

∣∣∣∣ ,
= −4πD |xi| |xf |

1

2

(
1

x2f
− 1

x2i

)
,

= 4πD |xi| |xf |

(
1

x2i
− 1

x2f

)
,

= 2πD

(
xf
xi

− xi
xf

)
,

Using the T definition AD =

√
1

2πD(eT − e−T )
.

We can now input this into the definition of the probability to get what it is for

HD = 0,

P (xf , T |xi, 0;HD = 0) =

√
1

2πD(eT − e−T )
exp

(
T

2

)
exp

(
−

(x2f − x2i )

2D

)
,

=

√
1

2πD(1 − e−2T )
exp

(
−

(x2f − x2i )

2D

)
.

The issue with this selection of energy value is only apparent when we have to check

the normalisation condition of this probability form.

Previously with the − choice, it is already normalised for all values of T , but here
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it is not as shown below;

∫ ∞

−∞
P (x, T |xi, 0;HD = 0)dx =

∫ ∞

−∞
dx

√
1

2πD(1 − e−21T )
exp

(
−(x2 − x2i )

2D

)
,

=

√
1

2πD(1 − e−21T )
exp

(
x2i
2D

)∫ ∞

−∞
dx exp

(
− x2

2D

)
.

Using Gaussian Integral identities [94];

=

√
1

2πD(1 − e−2T )
exp

(
x2i
2D

)√
2πD,

=

√
1

1 − e−2T
exp

(
x2i
2D

)
.

The only way this equals 1 and is normalised is if it is in the long time limit, T → ∞

and the initial position is at xi = 0, so this is only valid for specific conditions. This

does make sense for this particular system as if we think about the effective potential

for the harmonic oscillator, H = 0 corresponds to the path having to start at the

top of the effective potential and stay there for an infinite time as the particle has

no energy to move.

Now looking at the + sign of the HD quadratic, we can check the normalisation to

see if it is valid. The difference is only in the action calculation, as the T and AD

calculations have no dependence on which HD value we take. The AD form uses an

identity from the T calculation before we form the quartic that gives the relevant

HD equations. Meaning that it will always give us the correct sinh(T ) solution that

we need. Starting at the point in the previous derivation (6.20) when we took the

negative value only affects the action derivation, which simplifies down to,

SD =
2

eT − e−T

[
x2fe

T + xfxie
−2T − x2i e

−T
]
.

135



CHAPTER 6. THE HARMONIC OSCILLATOR

When we input into the function for P ,

P (xf , T |xi, 0) =

√
e−T

2πD(1 − e−2T )

× exp

[
− 1

2D(eT − e−T )

[
x2fe

T + xfxie
−2T − x2i e

−T
]
− 2DT

]
,

=

√
1

2πD(1 − e−2T )
exp

[
− 1

2D(1 − e−2T )

[
x2f + xfxie

−3T − x2i e
−2T
]]
.

Normalising this shows the issue with this representation at short times,

∫ ∞

−∞
P (xf , T |xi, 0)dx =

√
1

2πD(1 − e−2T )

×
∫ ∞

−∞
exp

[
− 1

2D(1 − e−2T )

[
x2 + xxie

−3T − x2i e
−2T
]]

dx,

=

√
1

2πD(1 − e−2T )
exp

[
x2i e

−2T

2D(1 − e−2T )

]
×
∫ ∞

−∞
exp

[
− 1

2D(1 − e−2T )

[
x2 + xxie

−3T
]]

dx.

Using Gaussian Integral identities [94];

=

√
1

2πD(1 − e−2T )
exp

[
x2i e

−2T

2D(1 − e−2T )

]

×
√

2πD(1 − e−2T ) exp

[
x2i e

−6T

8D(1 − e−2T )

]
,

= exp

[
x2i

8D(1 − e−2T )

[
e−6T + 4e−2T

]]
.

This shows that the probability density function for taking the + value of the G

quadratic is only normalised when T → ∞, and not at small time scales like the −

choice.

We have now looked at various techniques to solve the Harmonic oscillator, all re-

turning the same solution in many different ways. The path integral technique allows
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a new interpretation of the stochastic evolution in terms of an effective Hamiltonian

system however and the necessary introduction of the turning path to return the

correct long-time limit.
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Chapter 7

The use of the Laplace Transform

In this chapter, we will transform to the Laplace domain as a method to

provide other useful insights into the use of path integrals in solving for certain

systems. This transformation removes the time dependence of the solution

and allows the explicit summation of the paths, allowing an easier route to

the full solution. The use of Laplace also allows the introduction of boundary

conditions to make the probability density function into a more usable state, as

many systems are more interested in first passage times, in which boundaries

are needed, as explored in chapter 1. This transformation will allow further

interpretation in terms of the energy of the effective Hamiltonian system, from

the relationship between the Laplace parameter and the energy, s = H
4D .
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So far, we have seen the use of path integrals in solving only the simplest potentials.

The most complex potential that it is possible to have an analytical solution for

is the quadratic potential; with anything more complicated the integrals become

unsolvable analytically, mainly the action integral. One of the significant issues

with working in the time domain is the fact that each path will have a different

energy at a fixed time T , and there is difficulty in combining contributions from the

most dominant paths, as there is not necessarily one single dominant path.

One technique to remove some of the issues is to use the Laplace transform method

[95], which removes the time dependence of the Smoluchowski equation, subse-

quently removing the time dependence in the approximate probability density func-

tion that we have found. The transference will also allow explicit summation of the

dominant path weights that appear in a given system, something that we will see

later in this chapter allows the return of correct results when dealing with systems

with boundaries and the subsequent calculation of first passage time densities and

moments of the FPT.

The standard Laplace transform [95] is as follows

L[f(t)](s) = f(s) =

∫ ∞

0

e−stf(t)dt.

However, what is the f(s) function in our path integral formalism? The way to find

this is to do a similar derivation that we did for the WKB approximation for the

Harmonic Oscillator. Suppose we assume that the Laplace-transformed probability

density function has the same form as the time domain probability. In that case, we

can try to solve the Laplace-transformed Smoluchowski equation to varying orders

in D. We still are solving a differential equation, but it has changed from a partial

differential equation to an ordinary differential equation in the Laplace domain.

The other thing that we can interpret is that there are e±st terms in the Laplace

transform equations, and there is a e
HT
4D term in our T domain action, so we can
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CHAPTER 7. THE USE OF THE LAPLACE TRANSFORM

interpret our energy value also as our Laplace transform parameter, s = H
4D

. This

interpretation can be justified by looking at the WKB approximation and can be

seen as the appearance of conjugate variables, which arises in classical physics where

time and “energy” is related. A further mathematical technique that we can use to

see how the Laplace parameter is defined in this way is Legendre transforms [96]. If

we define W to be

W = HT + S,

this is a Legendre transform, taking us from time t to energy H. W is Hamil-

ton’s characteristic function, and S is Hamilton’s principal function, action func-

tional evaluated along the extremal path. If we write the exponential in P as

exp(Ht/4D) exp(−W/4D) and identify the Laplace parameter s = H/4D, we can

see the integrand of an inverse Laplace transform. The inverse Laplace transform

will be an integral over the path energies, H, and would be dominated by the values

of H where ∂(HT−W)
∂H

= 0, which returns the dominant paths, ∂S
∂H

= 0. Starting with

the Laplace-transformed Smoluchowski equation,

H

4D
P − δ(x− x0) = V ′′(x)P + V ′(x)P

′
+DP

′′
, (7.1)

if we assume a form of P = A[x]J [x]e−
S[x]
4D we can solve it order-by-order in D.

Calculating the derivatives first of all gives,

P = A[x]J [x]e−
S[x]
4D ,

P
′
= e−

S[x]
4D

[
A′J + AJ ′ − 1

4D
AJ S ′

]
,

P
′′

= e−
S[x]
4D

[
A′′J + 2A′J ′ + AJ ′′ − 1

4D
(2A′J S ′ + 2AJ ′S ′ + AJ S ′′) +

1

16D2
AJ S ′2

]
.

Substituting all this into (7.1) and beginning with O(D−1),

H

4
AJ = −1

4
V ′AJ S ′ +

1

16
AJ S ′2,

0 = S ′2 − 4V ′S ′ − 4H,
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S ′ = 2V ′ ± 2
√
H + V ′2,

S[x] = 2V (xi) − 2V (xf ) ±
∫ xf

xi

√
H + V ′(y)2dy.

This is very similar to our time domain action, minus the time dependence, as

is expected in the Laplace domain as the time dependence was removed when we

transformed. Next we can look at O(D0),

0 =
1

2
V ′′AJ + V ′A′J + V ′AJ ′ − 1

2
A′J S ′ − 1

2
AJ ′S ′ − 1

4
AJ S ′′,

0 =
1

2
V ′′AJ ∓ V ′V ′′

2
√
H + V ′2

AJ ∓
√
H + V ′2 (A′J + AJ ′) .

Now, if we managed to return the action-like term, what if the J term is similar to

the time domain Jacobian? Using the x-dependent version of the Jacobian:

J = exp

(
±1

2

∫
V ′′

√
H + V ′2

dy

)
J ′ = ±1

2

V ′′
√
H + V ′2

J .

Substituting this into our O(D0) equation,

0 =
1

2
V ′′AJ ∓ V ′V ′′

2
√
H + V ′2

AJ ∓
√
H + V ′2A′J − 1

2
V ′′AJ ,

0 = ∓ V ′V ′′

2
√
H + V ′2

A∓
√
H + V ′2A′,

±A
′

A
= ∓ V ′V ′′

2
√
H + V ′2

,

± ln(A) = ∓1

4
ln(H + V ′2),

A = (H + V ′2)−
1
4 .

This returns the time-independent portion of the prefactor calculation. The major

non-T dependent difference between the time domain and the Laplace domain is the

absence of the 3
2

integral in the prefactor.

141



CHAPTER 7. THE USE OF THE LAPLACE TRANSFORM

A spooky aside

The 3
2

integral actually can come about from the inverse Laplace transform, instead

of the technique with the quantum fluctuations or next order S expansion that we

have already looked at in chapter 2. When calculating the inverse Laplace transform,

it will have the form,

P (x, t) =
1

2πi
lim
γ→∞

∫ iγ

−iγ

exp (+st)Pds

=
1

2πi
lim
γ→∞

∫ iγ

−iγ

exp (+st)A[x]J [x] exp

(
−S[x, s]

4D

)
ds,

where the integration is done along the vertical line at Re(s) = 0 in the complex

plane, such that all the real parts of all the singularities of P are to the right of 0.

This is then a contour integral, using the Bromwich integral, figure (7.1).

Figure 7.1: Bromwich Contour to calculate the inverse Laplace transform [97], de-
formed around the poles on the real axis.

For evaluating integrals of the form of the inverse Laplace transform we can draw

connections to Laplace’s method [93],

∫ b

a

exp (Mf(x)) dx =

√
2π

Mf ′′(x0)
exp (Mf(x0)) , M large. (7.2)
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This technique is closely related to both Stationary phase and the Method of steepest

descent, but as there is no imaginary portion of the integrand, we can deform the

complex contour to be able to use Laplace’s method to evaluate the inverse Laplace

transform integral. Relating the function f(x) in Laplace’s method to S[x, s]− st in

the exponential with 1
D

large. This means that the f ′′(x0) term in the denominator

of equation, (7.2) will become

f ′′(x0) =
1

4D

∂2S

∂s2
,

= 4D
∂2S

∂H2
,

= 4D

∫ xf

xi

1

(H + V ′(y))
3
2

dx.

This returns the 3
2

integral, the same as the stochastic fluctuations, from the anal-

ogy with quantum mechanical quadratic fluctuations. This in itself is a spooky

phenomenon as it is saying that the combination of an approximation solution in

the Laplace domain followed by an approximate inversion using Laplace’s method

returns the full exact analytical solution in the T-domain that we did not need to

approximate for! This is just weird that somehow the two errors cancel out.

Returning to the Laplace domain, we have the full single path, γ, probability of;

P (H) =
exp

[
1
2

∫
γ

V ′′
√
H+V ′2 dy

]
(H + V ′(xf )2)

1
4 (H + V ′(xi)2)

1
4

exp

[
− 1

4D

(
2V (xf ) − 2V (xi) + 2

∫
γ

√
H + V ′2dy

)]
.

(7.3)

The main advantage of using the Laplace transform technique, other than removing

the time dependence, is that when we have multiple paths we can sum them to get

the full probability because they all have the same H. But what multiple paths

can there be in a system? We have the direct path or the turning path, which can

reverse at the turning points of V (x), but what about further paths? This is where

the introduction of boundaries comes in and allows the summation of all paths.
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7.1 Introduction of Boundary Conditions

If there is only one boundary, there will only be two possible paths, the direct

path and the turning path that goes to the boundary and returns. If there are two

boundaries, then there are actually infinitely many paths. The four base paths are

the direct path, the bounce of one boundary, one bounce off the other boundary

and the path that bounces off both boundaries. Each of these paths has increasing

energy values in the T domain, and a path with an energy larger than the double

boundary path will complete a full cycle path before completing one of the four

base paths. In the Laplace domain, we can sum these paths and it starts looking

something like,

P (H) = PDirect + PTurn at a + PTurn at b + PTwo turns

+ PFull cycle ∗
[
PDirect + PTurn at a + PTurn at b + PTwo turns

]
+ PFull cycle ∗ PFull cycle ∗

[
PDirect + PTurn at a + PTurn at b + PTwo turns

]
+ . . . .

The full cycle paths, including the relevant base path multiply, as they are integrals

in the exponent, and add on extra integrals in a similar way to the turning path.

This means we can write this as a summation:

P (H) =
∞∑
n=0

(
PFull cycle

)n ∗ [PDirect + PTurn at a + PTurn at b + PTwo turns

]
.

The summation only works for a constant H across all paths. This is just a geometric

series [98],
∑∞

k=0 ar
k = a

1−r
, so we can write a form for the full probability of a two

boundary system,

P (H) =
PDirect + PTurn at a + PTurn at b + PTwo turns

1 − PFull cycle

. (7.4)

Each path has its own action and subsequent Jacobians, which are just sums of

integrals of each section of the path. The other element that we need for a general

system is how the probability will interact with a boundary and if any specific
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7.1. INTRODUCTION OF BOUNDARY CONDITIONS

additional terms are needed to satisfy the relevant boundary conditions.

There are two different boundaries that the system can have. One is the absorbing

boundary, and the other is the reflecting boundary. The absorbing boundary is

one where the “particle” will be removed from the system when it interacts with

it; the reflecting boundary stops the “particle” from escaping the system. In order

to solve for the possible constants that are needed we can set up a dummy system

with a general potential V (x) and an absorbing boundary at x = a and a reflecting

boundary at x = b which have conditions,

P (H;x = a) = 0,

V ′(b)P (H;x = b) +DP
′
(H;x = b) = 0.

The absorbing boundary condition comes from the fact that “particles” are removed

at the boundary meaning the probability is zero. The reflecting boundary condition

comes from zero flux over the boundary. Flux j[x] is related to probability by,

dj

dx
=
∂P

∂t

Using Smoluchowski =
∂

∂x

[
V ′(x)P +D

∂P

∂x

]
j[x] = V ′(x)P +D

∂P

∂x

Taking Laplace transform j[x] = V ′(x)P +DP
′
.

Then at the reflecting boundary, j[x = b] = 0 gives the correct boundary condi-

tion. The full probability for this dummy system with the two constants, A for the

boundary condition at x = a, and B for the boundary condition for x = b is

P (H) =
PDirect + APTurn at a +BPTurn at b + ABPTwo turns

1 − ABPFull cycle

.

The absorbing boundary constant is the easier of the two to solve for. When the

final position is at the boundary x = a, it means that the base paths come in two
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pairs as PDirect = PTurn at a and PTurn at b = PTwo turns. We need them to cancel in

pairs, which can be achieved by simply setting A = −1, regardless of what B will

equal.

Now, to solve for the reflecting boundary constant. In this case, we will need the

derivative of the probability with respect to the final position, and then take that to

the boundary. The full cycle path is not x dependent, so we only have to take the

derivative of the four possible base paths. Starting with the possible direct path for

a < xi < xf < b, we can write the derivative in terms of the full probability as two

of the terms are exponential terms

PDirect(H) =
exp

[
1
2

∫ xf

xi

V ′′
√
H+V ′2 dy

]
(H + V ′(xf )2)

1
4 (H + V ′(xi)2)

1
4

× exp

[
− 1

4D

(
2V (xf ) − 2V (xi) + 2

∫ xf

xi

√
H + V ′2dy

)]
,

P
′
Direct(H) = − V ′′(xf )V ′(xf )

2(H + V ′(xf )2)
PDirect(H)

+

[
V ′′(xf )

2
√
H + V ′(xf )2

−
V ′(xf ) +

√
H + V ′(xf )2

2D

]
PDirect(H).

The derivatives of the paths that have a turning portion are the same, just with an

extra couple of terms from the extra integrals that appear from the extra pieces of

the path. For example, the turn at boundary x = b

PTurn at b =
exp

[
1
2

∫ xf

xi

V ′′
√
H+V ′2 dy +

∫ b

xf

V ′′
√
H+V ′2 dy

]
(H + V ′(xf ))

1
4 (H + V ′(xi))

1
4

× exp

[
− 1

4D

(
2V (xf ) − 2V (xi) + 2

∫ xf

xi

√
H + V ′2dy + 4

∫ b

xf

√
H + V ′2dy

)]

P
′
Turn at b(H) = − V ′′(xf )V ′(xf )

2(H + V ′(xf )2)
PTurn at b
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+

[
V ′′(xf )

2
√
H + V ′(xf )2

− V ′′(xf )√
H + V ′(xf )2

−
V ′(xf ) +

√
H + V ′(xf )2 − 2

√
H + V ′(xf )2

2D

]
PTurn at b

P
′
Turn at b(H) = − V ′′(xf )V ′(xf )

2(H + V ′(xf )2)
PTurn at b

+

[
− V ′′(xf )

2
√
H + V ′(xf )2

−
V ′(xf ) −

√
H + V ′(xf )2

2D

]
PTurn at b.

As the extra factors for the turn at x = a are not dependent on the final position,

the terms are similar between the direct and the turn at x = a, and the turn at

x = b and turn at both. Subsequently, we have a full set of derivatives, also setting

G(xf ) =
√
H + V ′(xf )2;

P
′
Direct(H) =

[
−V

′(xf )V ′′(xf )

2G(xf )2
+
V ′′(xf )

2G(xf )
− V ′(xf ) +G(xf )

2D

]
PDirect(H)

P
′
Turn at a(H) =

[
−V

′(xf )V ′′(xf )

2G(xf )2
+
V ′′(xf )

2G(xf )
− V ′(xf ) +G(xf )

2D

]
PTurn at a(H)

P
′
Turn at b(H) =

[
−V

′(xf )V ′′(xf )

2G(xf )2
− V ′′(xf )

2G(xf )
− V ′(xf ) −G(xf )

2D

]
PTurn at b(H)

P
′
Two turns(H) =

[
−V

′(xf )V ′′(xf )

2G(xf )2
− V ′′(xf )

2G(xf )
− V ′(xf ) −G(xf )

2D

]
PTwo turns(H)

Substituting this into the boundary condition for the reflecting boundary and evalu-

ating at the boundary we can collect like terms together as PD(x = b) = P Tb(x = b)

and P Ta(x = b) = P )TB(x = b);

0 = V ′(b)P (H; b) +DP
′
(H; b)

0 = V ′(b)PDirect(H; b) [1 +B] + V ′(b)PTurn at a(H; b) [A+ AB]

+DPDirect(H; b)

[
V ′(b)V ′′(b)

2G(b)2
(1 +B) +

V ′′(b)

2G(b)
(1 −B) − V ′(b)

2D
(1 +B) − G(b)

2D
(1 −B)

]
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+DAPTurn at a(H; b)

[
V ′(b)V ′′(b)

2G(b)2
(1 +B) +

V ′′(b)

2G(b)
(1 −B) − V ′(b)

2D
(1 +B) − G(b)

2D
(1 −B)

]
.

The best way to try and solve for B is to look at all the constants multiplying

the probabilities individually, and see if the large bracket equals zero. Looking at

everything that multiplies PD,

V ′(b)

2
(1 +B) − G(b)

2
(1 −B) +D

[
−V

′(b)V ′′(b)

2G(b)2
(1 +B) +

V ′′(b)

2G(b)
(1 −B)

]
= 0.

If we look at the orders of D we can see if it returns the same value of B;

O(D0) V ′(b) + V ′(b)B −G(b) +G(b)B = 0,

B =
G(b) − V ′(b)

G(b) + V ′(b)
,

O(D) − V ′(b)V ′′(b)

2G(b)2
(1 +B) +

V ′′(b)

2G(b)
(1 −B) = 0,

−V ′(b) − V ′(b)B +G(b) −G(b)B = 0,

B =
G(b) − V ′(b)

G(b) + V ′(b)
.

Both of these orders of D return the same answer for the reflecting boundary con-

stant. This means we have found the reflecting boundary’s constant to satisfy the

boundary condition. So we now have a full solution for a probability density function

for a system with two boundaries at x = a and x = b, b > a;

P (H) =
PDirect + APTurn at a +BPTurn at b + ABPTwo turns

1 − ABPFull cycle

(7.5)

P γ(H) =
exp

[
1
2

∫
γ

V ′′
√
H+V ′2dy

]
(H + V ′(xf )2)

1
4 (H + V ′(xi)2)

1
4

exp

[
− 1

4D

(
2V (xf ) − 2V (xi) + 2

∫
γ

√
H + V ′2dy

)]
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PFull cycle = exp

[
− 1

D

∫ b

a

√
H + V ′2dy

]

Absorbing boundary A = −1; Reflecting boundary B =
G(b) − V ′(b)

G(b) + V ′(b)

Note: if the reflecting boundary is to the left of the absorbing boundary, b < a, then

the only difference is that the boundary condition is inverted. This can be found by

following a similar derivation as above, the major difference being the order of the

integral limits. Meaning that for b < a,

B =
G(b) + V ′(b)

G(b) − V ′(b)
.

In this chapter, we have investigated the use of the Laplace domain in advancing

the path integral formulation to provide a fuller solution for a given system. We

constructed P by solving the transformed Smoluchowski equation and introducing

the concept of absorbing and reflecting boundaries, as we need multiple turning

paths to calculate the correct long-time limit. These tools will allow the exploration

of the first passage time density and further moments of a given system in chapter 8,

a key area of interest in many areas of science.
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Chapter 8

First Passage Times

In section 1.2, the importance of first passage times is described within all

areas of science. In this chapter, we will explore the use of path integrals in

solving for the FPT densities in the Laplace domain. Deriving how the density

is formed for the simplest of systems, the flat and linear potentials, each with

a mixture of boundaries and then give a general form for the FPT density for

a general potential V (x). We will also calculate the relevant value of the mean

FPT for the flat and linear potentials and show that this quantity agrees with

the value found using definitions described in section 1.2.1. Then looking at

the numerical solution from chapter 3, and its use in calculating the FPT of a

system. Finally, we will look at the further moments of the first passage time

density, and compare the solutions we find to the widely used exponential

distribution and how the path integral can provide a more complete solution.

What is new in this chapter is the fact that the path integral can provide a

full solution for FPT density curves, allowing a more accurate calculation of

further moments for the given system, which can then be used in numerical

simulations like kMC and FPTkMC [48]. As far as we are aware, analytical

expressions for non-zero potentials have not been obtained before.
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8.1. THE FLAT POTENTIAL

8.1 The flat potential

From first principles

First, we can solve the flat potential from first principles using standard techniques,

solving the Smoluchowski equation directly and then showing that the path integral

approach agrees. The simplest of systems we can explore is the flat potential where

V (x) = 0. In this system, the Smoluchowski equation is defined as the heat equation,

[36]

∂P

∂t
= D

∂2P

∂x2
. (8.1)

The first system that we will look at is when there are two absorbing boundaries

which have the boundary conditions for an interval (a, b), where a < xi < b, and the

initial condition,

P (a, t) = P (b, t) = 0, P (x, 0) = δ(x− xi).

Taking the Laplace transform in t, the Smoluchowski equation becomes the differ-

ential equation

sP − δ(x− xi) = D
∂2P

∂x2
.

This ordinary differential equation has two solutions, one increasing and one decreas-

ing, on either side of the initial position xi. The general solution with translations

to satisfy the boundary conditions are,

PL(x < xi) = AL sinh

[√
s

D
(x− a)

]
,

PR(x > xi) = AR sinh

[√
s

D
(b− x)

]
.

To find the constants, we can make use of the fact that the probability density

function is continuous everywhere, meaning it must be continuous over the initial
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position,

PL(x = xi) = PR(x = xi).

There is also a jump in the derivative across the initial position, which arises from

integrating the Laplace-transformed Smoluchowski equation across the initial posi-

tion,

∫ xi+ϵ

xi−ϵ

sPdx−
∫ xi+ϵ

xi−ϵ

δ(x− xi)dx =

∫ xi+ϵ

xi−ϵ

∂2P

∂x2
dx,

as ϵ→ 0 − 1 = D

[
∂P

∂x

]x+
i

x−
i

.

The first integral equals zero as the continuity of the probability density function

means that limϵ→0 P (xi + ϵ) = limϵ→0 P (xi− ϵ). Using these two conditions gives us

two simultaneous equations for AL and AR;

PL(x < xi;xi) = PR(x > xi;xi),

AL sinh

[√
s

D
(xi − a)

]
= AR sinh

[√
s

D
(b− xi)

]
,

P
′
R(x > xi;xi) − P

′
L(x < xi;xi) = − 1

D
,

−AR

√
s

D
cosh

[√
s

D
(b− xi)

]
− AL

√
s

D
cosh

[√
s

D
(xi − a)

]
= − 1

D
.

These can easily be solved and return the probability density function for either side

of the initial position,

PL =
1√
Ds

sinh
[
s
D

(b− xi)
]

sinh
[
s
D

(x− a)
]

sinh
[
s
D

(b− a)
] a < x < xi,

PR =
1√
Ds

sinh
[
s
D

(xi − a)
]

sinh
[
s
D

(b− x)
]

sinh
[
s
D

(b− a)
] xi < x < b.
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Now we can find the first passage time density in the Laplace domain using equation

(1.14), calculated easily with hyperbolic derivatives,

f(s) = DP
′
L(a) −DP

′
R(b),

=
sinh

[√
s
D

(b− xi)
]

+ sinh
[√

s
D

(xi − a)
]

sinh
[√

s
D

(b− a)
] . (8.2)

The other useful quantity found using this solution to the Laplace transformed

Smoluchowski equation is the mean first passage time. This value is the expected

time for the event to occur, the particle crossing one of the boundaries. This value

can be found using integration (1.23) [37], but certain Laplace properties can be

used to find the mean FPT without needing to integrate;

τ = lim
t→∞

∫ t

0

τf(τ)dτ,

Using final value theorem = lim
s→0

sL
[∫ t

0

τf(τ)dτ

]
,

Using Laplace transform identities = lim
s→0

s

[
−1

s

df(s)

ds

]
,

τ = − lim
s→0

df(s)

ds
.

To find the mean first passage time, all we need to find is the derivative of the first

passage time density. This derivative is a simple calculation and simplified to,

df

ds
=

cosech
[√

s
D

(b− a)
]

2
√
Ds

[
(b− xi) cosh

[√
s

D
(b− xi)

]
+ (xi − a) cosh

[√
s

D
(xi − a)

]

− (b− a) coth

[√
s

D
(b− a)

] [
sinh

[√
s

D
(b− xi)

]
+ sinh

[√
s

D
(xi − a)

]]]
.

To find the limit, we expand each hyperbolic function around s small and only

use the first two terms in each Taylor series expansion as when the limit is taken

anything higher is zero,

sinh[x] ≈ x+
x

3!
, cosh[x] ≈ 1 +

x2

2!
, coth[x] ≈ 1

x
− x

3
, cosech[x] ≈ 1

x
− x

6
.
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We must take at least two terms in each expansion to find every term that will have

a constant value once the brackets have been expanded. Using these hyperbolic

expansions, we can find the mean first passage time density to be,

τ =
1

2D

[
xi(b+ a) − ab− x2i

]
. (8.3)

So we can find the probability density function, first passage time density, and the

mean first passage time by solving the Laplace transformed Smoluchowski equation

directly. This technique is a significant amount of algebra, so path integrals may be

more accessible.

Using Path Integrals

In this system, we have four possible “base” paths that a particle can take from the

initial position to the final position, the direct path, in orange —, the turning path

at x = b, in red —, the turning path at x = a, in green — and the turning path at

both x = b and x = a, in blue —.

Figure 8.1: The four “base” paths for this flat potential system.

We can use the general form for the path integral (7.5) for each path with V ′(x) = 0

meaning the full probability has the form,

P (H) =
1√

H
[
1 − exp

(
− S0

4D

)] [e−SD
4D − e−

STa
4D − e−

STb
4D + e−

STB
4D

]
,
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where the ± signs are there to satisfy the relevant boundary conditions, similar to

the “method of images” technique used in other areas of science like electrostatics

[99]. There are strictly two probability density functions on either side of the initial

position xi that have different actions for each path due to the integral limits in the

action being dependent on whether the final position is greater than or less than the

initial position.

We can also use these representations of probability in Laplace space to find the

probability density function in the time domain by numerically inverting the proba-

bility. We can do this by using Matlab Laplace inversion techniques, specifically, the

Talbot inversion [100], and we can build up a picture of how the probability density

function acts in this system over time. This is what figure 8.2 shows, a delta function

style peak at the initial position, xi = 0.5, then over time the probability spreads

out and disappears over the boundaries at ±1, as expected. The probability density

is not normalised in this case as the probability is “leaking” out of the system due

to the absorbing boundaries.

Figure 8.2: PDF at different time steps for the flat potential with double absorbing
boundaries, xi = 0.5, D = 0.25
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We can then use (1.14) to calculate the first passage time density. To find the FPT

density, we need the derivatives of the probability, specifically the derivatives of the

actions on either side of the initial position, calculated as;

xf > xi

SD = 2V (xf ) − 2V (xi) + 2

∫ x

xi

√
Hdy

= 2
√
H(xf − xi)

S ′
D = 2

√
H

STa = SD + 4

∫ xi

a

√
Hdy

S ′
Ta = 2

√
H

STb = SD + 4

∫ b

xf

√
Hdy

S ′
Tb = −2

√
H

STB = SD + 4

∫ xi

a

√
Hdy + 4

∫ b

xf

√
Hdy

S ′
TB = −2

√
H

xf < xi

SD = 2V (xf ) − 2V (xi) + 2

∫ xi

xf

√
Hdy

= −2
√
H(xf − xi)

S ′
D = −2

√
H

STa = SD + 4

∫ xf

a

√
Hdy

S ′
Ta = 2

√
H

STb = SD + 4

∫ b

xi

√
Hdy

S ′
Tb = −2

√
H

STB = SD + 4

∫ xf

a

√
Hdy + 4

∫ b

xi

√
Hdy

S ′
TB = 2

√
H

Now that we have the action derivatives calculated, and all the relevant actions

calculated, we can look at the derivative of the probability density function:

P
′
(H) =

1

4D
√
H
[
1 − exp

(
− S0

4D

)] [−S ′
De

−SD
4D + S ′

Tae
−STa

4D + S ′
Tbe

−STb
4D − S ′

TBe
−STB

4D

]
.

This needs to be evaluated at each boundary to calculate the FPT density, and

using the definitions above for the actions and their derivatives we have,

DP
′
(H;x = a) =

1[
1 − exp

(
− S0

4D

)] [e−SD(a)

4D − e−
STb(a)

4D

]
,

DP
′
(H;x = b) =

1[
1 − exp

(
− S0

4D

)] [−e−SD(b)

4D + e−
STa(b)

4D

]
,
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resulting in an FPT density for the flat potential with two absorbing boundaries of,

f(H) =
1[

1 − exp
(
−

√
H(b−a)
D

)][e−√
H(xi−a)

2D − e−
√
H(2b−xi−a)

2D (8.4)

+ e−
√
H(b−xi)

2D − e−
√
H(b−xi−2a)

2D

]
.

Using the hyperbolic double angle formulae 1−e−2a = 2e−a sinh (a), we can rearrange

this form to show that it agrees with the form found by solving the Smoluchowski

equation directly (8.2), remembering s = H
4D

,

f(H) =
sinh

[√
H

2D
(b− xi)

]
+ sinh

[√
H

2D
(xi − a)

]
sinh

[√
H

2D
(b− a)

] .

That also means that the same derivation can be followed in finding the mean FPT.

So, we have shown that for the simplest of systems with two absorbing boundaries,

the path integral approach returns the same results for the FPT density and the

mean FPT value. As with the probability density function, we can numerically

invert this form for the Laplace FPT into the time domain. Figure 8.3 shows the

FPT density, the flux over each boundary and the cumulative FPT density. What

occurs is that the FPT density spikes for a short time for the boundary closest to

the initial position as the particles have not had time to reach the other boundary.

At a long time, as the probability density function spreads out the flux over each

boundary becomes equal as the particle has an equal probability of going over each

boundary. The areas under the curve also highlight some of the dynamics of the

system, with the area under the full FPT curve, in yellow, being normalised when

T is large enough, whilst the area under the red curve is larger than the blue curve

as the flux over the closer boundary at x = b is much larger than the flux over the

boundary at x = a.
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Figure 8.3: FPT density for the double absorbing boundary in the flat potential, for
D = 0.25.

There is one other check for the first passage time densities that we can calculate

to make sure that our representation is correct, and that is to use the initial and

final value theorems [101]. These are the limits to both 0 and ∞, H → 0/∞, in

the Laplace domain correspond with the limit to ∞ and 0, T → ∞/0, in the time

domain respectively.

Generally, they are defined as, where F (s) = L[f(t)],

lim
H→0

sF (s) = lim
T→∞

f(t),

lim
H→∞

sF (s) = lim
T→0

f(t).

To relate this to the FPT density representation that we have calculated, we use

the cumulative density function definition in the time domain, which is defined as,

CDF =

∫ ∞

0

f(t)dt,

lim
T→∞

CDF = 1,
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lim
T→0

CDF = 0,

where f(t) is the FPT density in the time domain. Taking the Laplace transform

of the CDF integral returns a relationship with f(s),

L[CDF] = L
[∫ ∞

0

f(t)dt

]
,

=
1

s
L[f(t)],

=
1

s
f(s).

Inputting this into the initial and final value theorems returns the limits that we

will need our representation to satisfy,

lim
T→∞

CDF = lim
T→∞

L[CDF] = lim
s→0

s
1

s
f(H) = lim

H→0
f(H) = 1,

lim
T→0

CDF = lim
T→0

L[CDF] = lim
s→∞

s
1

s
f(H) = lim

H→∞
f(H) = 0.

So, we have two limits that the FPT density must satisfy to be able to be related to

the time domain FPT density. We can use (8.4) to investigate the limits as it makes

the limits themselves easier to deal with exponentials instead of hyperbolics. First

we look at H → ∞ in which all the exponential terms → 0 as limx→∞ e−ax = 0, so

the numerator is 0 and the denominator is 1, so f(H) → 0. The trickier one is the

H → 0 limit, as the numerator and denominator tend to 0 with all the exponential

terms becoming 1. In order to calculate the limit we will need to use L’Hopital’s

rule, taking the derivative of the numerator and denominator,

lim
H→0

f(H) = lim
H→0

X(H)

Y (H)
= lim

H→0

X ′(H)

Y ′(H)
.

Taking these derivatives with respect to H, we have

X(H) = e−
√
H(xi−a)

2D − e−
√
H(2b−xi−a)

2D + e−
√
H(b−xi)

2D − e−
√
H(b−xi−2a)

2D ,
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X ′(H) = − xi − a

4D
√
H
e−

√
H(xi−a)

2D +
2b− xi − a

4D
√
H

e−
√
H(2b−xi−a)

2D

− b− xi

4D
√
H
e−

√
H(b−xi)

2D +
b− xi − 2a

4D
√
H

e−
√

H(b−xi−2a)

2D ,

Y (H) = 1 − exp

(
−
√
H(b− a)

D

)
,

Y ′(H) =
b− a

2D
√
H
e−

√
H(b−a)

D .

Now we can take the limit of the numerator and denominator derivatives. Doing

this gives the final value theorem,

lim
H→0

X ′(H) =
1

4D
√
H

(−xi + a+ 2b− xi − a− b+ xi + b− xi − 2a) ,

=
1

4D
√
H

(2(b− a)) ,

lim
H→0

Y ′(H) =
1

2D
√
H

(b− a),

lim
H→0

f(H) =

1
4D

√
H

(2(b− a))
1

2D
√
H

(b− a)
,

= 1 = lim
T→∞

f(t).

This shows that our representation for the first passage time density agrees with the

initial and final value theorems, further evidence that our representation is correct.

An addition that occurs from the path integral approach is the ability to explicitly

see how the paths construct the dynamics of the system, possibly allowing a fuller

explanation and understanding of how a specific system evolves over time.
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8.2 Linear potential

8.2.1 Two absorbing boundaries

Using path integrals

We can extend this solution to a linear potential with two absorbing boundaries.

This is an easy change as for a potential V (x) = αx the gradient is just V ′(x) = α

instead of V ′(x) = 0 for the flat potential. The system is defined as,

V (x) = αx; P (x = a) = 0 = P (x = b)

This means that all that is needed is the substitution
√
H →

√
H + α2 and the

addition to the action of the 2V (x) − 2V (xi) term,

P (H) =
1√

H + α2
[
1 − exp

(
− S0

4D

)] [e−SD
4D − e−

STa
4D − e−

STb
4D + e−

STB
4D

]

xf > xi

SD = 2V (xf ) − 2V (xi) + 2

∫ x

xi

√
Hdy

= 2α(xf − xi) + 2
√
H + α2(xf − xi)

STa = SD + 4
√
H + α2(xi − a)

STb = SD + 4
√
H + α2(b− xf )

STB = SD + 4
√
H + α2(xi − a) + 4

√
H + α2(b− xf )

xf < xi

SD = 2V (xf ) − 2V (xi) + 2

∫ xf

xi

√
Hdy

= 2α(xf − xi) + 2
√
H + α2(xf − xi)

STa = SD + 4
√
H + α2(xf − a)

STb = SD + 4
√
H + α2(b− xi)

STB = SD + 4
√
H + α2(xf − a) + 4

√
H + α2(b− xi)

As with the flat potential, we can numerically invert the Laplace-transformed prob-

ability density functions to see how they behave over time, figure (8.4). It follows a
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similar behaviour to the flat potential, with a slight shift to the left as the potential

affects the spread of the probability.

Figure 8.4: PDF at different timesteps for a sloped potential, V (x) = x
10

with two
absorbing boundaries

This substitution and addition of the ∆V (x) term follows through the calculations

of the first passage time density as well, which gives the solution noting that G =
√
H + α2,

f(H) =
1[

1 − exp
(
−G(b−a)

D

)][ exp

(
(G− α)(a− xi)

2D

)[
1 − exp

(
−G(b− xi)

D

)]

+ exp

(
−(G+ α)(b− xi)

2D

)[
1 − exp

(
G(a− xi)

D

)]]

Similarly, we can also check the initial and final value theorems to see if it satisfies

the short and long-time limits of the FPT density,

lim
H→0

f(H) = lim
t→∞

CDF(t) = 1,

lim
H→∞

f(H) = lim
t→0

CDF(t) = 0.

The H → ∞ limit corresponds to G→ ∞ and is satisfied at the exponential terms

dominate sending limH→∞ f(H) = 0. For the H → 0 limit we can use the fact that
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G→ α as α > 0,

f(H → 0) =
1

N

[
exp

(
−α(a− xi)

2D
− α(xi − a)

2D

)[
1 − exp

(
−α(b− xi)

D

)]
,

+ exp

(
−α(b− xi)

2D
− α(b− xi)

2D

)[
1 − exp

(
−α(xi − a)

D

)]]
,

=
1

N

[
1 − exp

(
−α(b− a)

D

)]
,

= 1.

So, the FPT density satisfies the initial and final value theorems. Subsequently,

we can numerically invert the Laplace FPT density to see its behaviour. Figure

8.5 shows the FPT density from both boundaries and the full density. It shows

that the flux over the boundary closest to the initial position peaks early, as the

diffusion is strong enough to get particles over that boundary, but as time goes on

the lower boundary takes over as dominant as the linear potential organically leads

the particles to escape over the left-hand boundary peaking at a slightly longer time

than for the upper boundary. This is also reflected in the distribution of area, with

the red curve. x = b, having more at small times whilst at longer times there is more

area under the blue curve, x = a per unit time as more of the probability escapes

over that barrier.

Figure 8.5: FPT density for the sloped potential, V (x) = x
10

, with two absorbing
boundaries, D = 0.25
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Calculating the mean FPT is a simple task of calculating the derivative of the FPT

density and taking the limit H → 0. We can use a more compact form of the mean

FPT expression,

τ = − lim
s→0

df

ds
= −2D

α
lim
G→α

df

dG
.

First of all, calculating the derivative,

lim
G→α

∂f

∂G

[
1 − exp

(
−α(b− a)

D

)]
= − b− a

D
e−

α(b−a)
D − xi − a

2D
+
xi − a

2D
e−

α(b−xi)

D

+
b− xi
D

e−
α(b−xi)

D − b− xi
2D

e−
α(b−xi)

D +
b− xi

2D
e−

α(b−xi)

D
−α(xi−a)

D

+
xi − a

D
e−

α(b−xi)

D
−α(xi−a)

D ,

= −xi − a

2D
− 1

2D
e−

α(b−a)
D (b− xi) −

1

2D
e−

α(b−xi)

D (a− b) .

We then substitute this into the mean FPT expression that we have given the final

solution

τ =

[
xi − a+ e−

α(b−a)
D (b− xi) − e−

α(b−xi)

D (b− a)
]

α
[
1 − exp

(
−α(b−a)

D

)]

8.2.2 A mixture of boundaries

From first principles

Now to make it more complex. The logical next step is to introduce a non-zero

potential with a combination of different boundaries, so we will now look at a linear

potential with one absorbing boundary and one reflecting boundary. The difference

in the boundary condition is that for the reflecting boundary, we have the flux

equal to zero for the reflecting boundary instead of the probability being zero. The

potential is V (x) = αx, and we have the Smoluchowski equation

∂P

∂t
= α

∂P

∂x
+D

∂2P

∂x2
. (8.5)
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This has the boundary conditions and initial condition for the interval (a, b) where

a < xi < b,

P (b, t) = 0, αP (a, t) +DP ′(a, t) = 0, P (x, 0) = δ(x− xi).

We follow a similar method in the flat potential to find the probability density

function by solving the Laplace-transformed Smoluchowski equation directly using

standard techniques. The Laplace transformed equation is,

sP − δ(x− xi) = αP
′
+DP

′′
.

The easiest method to solve this differential equation is to use an ansatz of the form

P = Aeγx which results in a characteristic equation with solutions for γ,

γ2 +
α

D
γ − s

D
= 0

γ = − α

2D
±

√
α2 + 4Ds

2D
.

Note: to make later calculations neater we define G =
√
α2 + 4Ds. The solution to

the characteristic equation gives the probability density function solution of

P (s) = e−
αx
2D

[
A cosh

(
Gx

2D

)
+B sinh

(
Gx

2D

)]
.

As with previous probabilities, this has separate solutions on either side of the

initial position, and we can use the boundary conditions along with the continuity

and discontinuity conditions to find the constants. For x > xi,

P (x > xi) = e−
αx
2D

[
AR cosh

(
G(b− x)

2D

)
+BR sinh

(
G(b− x)

2D

)]
,

using the boundary condition P (b) = 0 → AR = 0,

P (x > xi) = e−
αx
2DBR sinh

(
G(b− x)

2D

)
.
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For x < xi,

P (x < xi) = e−
αx
2D

[
AL cosh

(
G(x− a)

2D

)
+BL sinh

(
G(x− a)

2D

)]
,

using the boundary condition αP (a) +DP
′
= 0 → BL = −α

G
AL,

P (x < xi) = ALe
− αx

2D

[
cosh

(
G(x− a)

2D

)
− α

G
sinh

(
G(x− a)

2D

)]
.

Going through the same continuity and discontinuity equations as in the flat poten-

tial we can find the simultaneous equations to solve for the constants.

P (x < xi;xi) = P (x > xi;xi)

AL

[
cosh

(
G(xi − a)

2D

)
− α

G
sinh

(
G(xi − a)

2D

)]
= BR sinh

(
G(b− xi)

2D

)

P
′
(x > xi;xi) − P

′
(x < xi;xi) = − 1

D

−BR

[
α sinh

(
G(b− xi)

2D

)
−G cosh

(
G(b− xi)

2D

)]
+

AL

[
α

[
cosh

(
G(xi − a)

2D

)
− α

G
sinh

(
G(xi − a)

2D

)]]
+

AL

[
G

[
sinh

(
G(xi − a)

2D

)
− α

G
cosh

(
G(xi − a)

2D

)]]
= −2e

αxi
2D

These continuity conditions return the equations,

AL

[
cosh

(
G(xi − a)

2D

)
− α

G
sinh

(
G(xi − a)

2D

)]
= BR sinh

(
G(b− xi)

2D

)
,

BRe
−αxi

2D cosh

(
G(b− xi)

2D

)
+ ALe

−αxi
2D

[
sinh

(
G(xi − a)

2D

)
− α

G
cosh

(
G(xi − a)

2D

)]
=

2

G
.
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Using these simultaneous equations to solve for the two constants we find the full

probability density function is,

P (x > xi) =
2

G
e−

α(x−xi)

2D sinh

(
G(b− x)

2D

)G cosh
(

G(xi−a)
2D

)
− α sinh

(
G(xi−a)

2D

)
G cosh

(
G(b−a)

2D

)
− α sinh

(
G(b−a)

2D

)
 ,

P (x < xi) =
2

G
e−

α(x−xi)

2D sinh

(
G(b− xi)

2D

)G cosh
(

G(x−a)
2D

)
− α sinh

(
G(x−a)

2D

)
G cosh

(
G(b−a)

2D

)
− α sinh

(
G(b−a)

2D

)
 .

Now that we have found the linear potential PDF, the next step is to calculate the

first passage time density. In this system, we only have one absorbing boundary,

meaning there is only one term in the FPT definition as there is no flux over the

boundary at x = a,

f(H) = −DP ′
(x > xi;x = b),

= e−
α(b−xi)

2D

G cosh
(

G(xi−a)
2D

)
− α sinh

(
G(xi−a)

2D

)
G cosh

(
G(b−a)

2D

)
− α sinh

(
G(b−a)

2D

)
 . (8.6)

This then leads to the calculation of the mean first passage time, and we can use

the same equation as in the flat potential (8.3). After some algebra and using

Mathematica’s help with the limit expansion gives a mean FPT,

τ =
D

α2

[
e

α(b−a)
D − e

α(xi−a)

D

]
− b− xi

α
.

The other standard technique in finding the mean first passage time when we have

one absorbing boundary is to use the derivation shown in 1.2.1. Using equation

(1.23),

τ =
1

D

∫ b

xi

e
V (y)
D

∫ y

a

e−
V (x)
D dx dy,

=
1

D

∫ b

xi

e
αy
D

∫ y

a

e−
αx
D dx dy,
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= − 1

α

∫ b

xi

e
αy
D

[
e−

αy
D − e−

αa
D

]
dy,

= − 1

α

∫ b

xi

[
1 − e

αy
D e−

αa
D

]
dy,

=
D

α2

[
e

α(b−a)
D − e

α(xi−a)

D

]
− b− xi

α
.

We have an agreement between the two standard techniques for calculating the mean

first passage time.

Using Path Integrals

We then can look at the path integral derivation to see if it returns the same solution

for the FPT density and mean FPT. For this system, we have a similar setup as

we did for the flat potential. There are the four “base” paths and a normalisation

constant which absorbs all the full cycle paths from the geometric series as shown

in chapter 7. The “base” paths, the direct path, in orange —, the turning path at

x = b, in red —, the turning path at x = a, in — and the turning path at both

x = b and x = a, in blue —, (7.4).

Figure 8.6: The “base” paths for the linear potential

The major difference is the constant required to satisfy the boundary condition

at the reflecting boundary. For a reflecting boundary, there is zero flux over the
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boundary, so the constant required for the boundary condition at x = a is G(a)+V ′(a)
G(a)−V ′(a)

(7.5). This gives a full probability density function solution of,

P (H) =
1

NG

[
exp

[
−SD

4D

]
+
G+ α

G− α
exp

[
−STa

4D

]
− exp

[
−STb

4D

]
− G+ α

G− α
exp

[
−STB

4D

]]
,

N = 1 +
G+ α

G− α
exp

[
−G(b− a)

D

]
,

G =
√
H + α2.

We can use this form for the probability to form the probability density function

over time. Using a Matlab function [100] to calculate the Laplace inversion at

different time steps, we can check that the PDF acts like we think it should. It

begins as a delta function style peak at xi = 0 and starts to slide down the potential

hill collecting at the left-hand boundary as it cannot escape to the left due to the

reflecting boundary. The PDF acts like it should, which is helpful to check.

Figure 8.7: PDF over time for the sloped potential V = 0.1x with diffusion D = 0.1
and mixed boundaries, reflecting on the left, absorbing on the right

As in the other examples, to find the first passage time density, we need to find the

derivatives of the actions of each base path. In this system, we only need to find
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the derivatives for when xf is near the absorbing boundary, meaning we only need

to find the action derivatives for when xf > xi,

SD = 2V (xf ) − 2V (xi) + 2

∫ xf

xi

Gdy

= 2α(xf − xi) + 2G(xf − xi)

S ′
D = 2(α +G)

STa = SD + 4

∫ xi

a

Gdy

S ′
Ta = 2(α +G)

STb = SD + 4

∫ b

xf

Gdy

S ′
Tb = 2(α−G)

STB = SD + 4

∫ xi

a

Gdy + 4

∫ b

xf

Gdy

S ′
TB = 2(α−G).

The first passage time density is defined for one absorbing boundary as the flux over

that boundary, with the fact that the boundary is at the upper limit,

f(H) = −DP ′
(H, xf = b).

Differentiating the probability density function,

P
′
(H;xf > xi) = − 1

4DNG

[
S ′
D exp

[
−SD

4D

]
+
G+ α

G− α
S ′
Ta exp

[
−STa

4D

]

− S ′
Tb exp

[
−STb

4D

]
− G+ α

G− α
S ′
TB exp

[
−STB

4D

]]
,

= − 1

2DNG

[
(G+ α) exp

[
−SD

4D

]
+

(G+ α)2

G− α
exp

[
−STa

4D

]

+ (G− α) exp

[
−STb

4D

]
+ (G+ α) exp

[
−STB

4D

]]
.

At the boundary, xf = b, we can evaluate the actions which have equality relation-

ships SD(b) = STb(b) and STa(b) = STB(b).

P
′
(H;x > xi;x = b) = − 1

2DNG

[
exp

[
−SD(b)

4D

]
(2G) + exp

[
−STa(b)

4D

] [
(G+ α2)2

G− α
+G+ α

]]
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= − 1

ND

[
exp

[
−SD(b)

4D

]
+
G+ α

G− α
exp

[
−STa(b)

4D

]]

N = 1 +
G+ α

G− α
exp

[
−G(b− a)

D

]
=

1

G− α

[
G− α + (G+ α) exp

[
−G(b− a)

D

]]

This gives a first passage time density,

f(H) =
1

G− α + (G+ α) exp
[
−G(b−a)

D

] [(G− α) exp

[
−SD(b)

4D

]
+ (G+ α) exp

[
−STa(b)

4D

]]
(8.7)

SD(b) = 2(G+ α)(b− xi)

STa(b) = 2α(b− xi) + 2G(b+ xi − 2a)

As with the other examples, we can numerically invert this form to see if it behaves

as we think it should, as shown in figure 8.8. The FPT density spikes early as some

of the probability is able to diffuse up the potential and escape over the absorbing

boundary, flattening quickly as all the probability settles down near the reflecting

boundary as expected, not being able to travel up the potential to the other bound-

ary. This is also reflected in the area under the curve, which is not equal to 1 as

some of the probability has not escaped the system.

In a similar method to the flat potential, this form can be transformed to be the same

as equation (8.6). This is done by using the double-angle formulae for hyperbolic

functions. Again we can also check whether our representation satisfies the initial

and final value theorems. The initial value theorem is satisfied as all the exponential

terms tend to 0, and by the same reasoning as for the flat potential, the numerator

tends to 0 while the denominator tends to 1.
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Figure 8.8: FPT density for the sloped potential y = x with mixed boundaries,
meaning only one curve with the one absorbing barrier, D = 0.1.

The final value theorem is the more interesting one, and we can substitute in G =
√
H + α2 to make the mathematics simpler, so,

lim
H→0

f(H) = lim
G→α

f(H),

=
2α exp

[
−STa(b;G=α)

4D

]
2α exp

[
−α(b−a)

D

] ,

STa(b;G = α) = 2α(b− xi) + 2α(b+ xi − 2a),

= α(b− a),

lim
H→0

f(H) =
2α exp

[
−α(b−a)

D

]
2α exp

[
−α(b−a)

D

] = 1.

So, the path integral representation for the sloped potential also satisfies the initial

and final value theorems.

In order to find the mean first passage time, the derivative is needed as is the s→ 0
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limit. The equation for the mean FPT can be changed by changing the derivative

using the chain rule to be with respect to G as G =
√

4Ds+ α2. τ transforms as

previously,

τ = − lim
s→0

df

ds
,

= −2D

α
lim
G→α

df

dG
.

In the calculation using the path integral form for the first passage time, there is no

need to expand terms to a certain order in s or H and after some algebra using,

lim
G→α

SD(b) = 4α(b− xi); lim
G→α

STa(b) = 4α(b− a),

we arrive at the same definition of the mean first passage time for a linear potential

τ =
D

α2

[
e

α(b−a)
D − e

α(xi−a)

D

]
− b− xi

α
. (8.8)

So we have again shown that the path integral technique returns the same expres-

sion for both first passage time densities and the resultant mean first passage time

densities.

8.3 General potential

We have seen that the path integral approach returns the correct result for the

simplest of potentials, so we now extend this to a general potential form (7.5). A

general potential form cannot be found using standard techniques, which is the

extension possibility for the path integral technique. For a system which again has

a mixture of boundaries similar to the linear potential,

P (H;xf = b) = 0,

V ′(a)P (H;xf = a) +DP
′
(H;xf = a) = 0.

173



CHAPTER 8. FIRST PASSAGE TIMES

This has a full probability density function, where the reflecting boundary prefactor

is evaluated on the boundary. Note that this is an approximation as it is in the weak

noise limit, meaning the diffusion value is small compared to the boundary height,

which we need to use the technique of minimising the action. The full PDF is,

P (H) =
1

N
√
G(xf )G(xi)

[
JD exp

[
−SD

4D

]
+ AJTa exp

[
−STa

4D

]

− JTb exp

[
−STb

4D

]
− AJTB exp

[
−STB

4D

]]

N = 1 + AJ0 exp

[
−S0

D

]
G =

√
H + V ′(x)2

A =
G(a) + V ′(a)

G(a) − V ′(a)
.

The actions S and Jacobians J are defined as:

x > xi

SD = 2V (xf ) − 2V (xi) + 2

∫ xf

xi

G(y)dy

STa = SD + 4

∫ xi

a

G(y)dy

STb = SD + 4

∫ b

xf

G(y)dy

STB = SD + 4

∫ xi

a

G(y)dy + 4

∫ b

xf

G(y)dy

JD = exp

[
1

2

∫ x

xi

V ′′(y)

G(y)
dy

]
JTa = JD exp

[∫ xi

a

V ′′(y)

G(y)
dy

]
JTb = JD exp

[∫ b

xf

V ′′(y)

G(y)
dy

]

JTB = JD exp

[∫ xi

a

V ′′(y)

G(y)
dy +

∫ b

xf

V ′′(y)

G(y)

]

xf < xi

SD = 2V (x) − 2V (xi) + 2

∫ xi

xf

G(y)dy

STa = SD + 4

∫ xf

a

G(y)dy

STb = SD + 4

∫ b

xi

G(y)dy

STB = SD + 4

∫ xf

a

G(y)dy + 4

∫ b

xi

G(y)dy

JD = exp

[
1

2

∫ xi

xf

V ′′(y)

G(y)
dy

]

JTa = JD exp

[∫ xf

a

V ′′(y)

G(y)
dy

]
JTb = JD exp

[∫ b

xi

V ′′(y)

G(y)
dy

]
JTB = JD exp

[∫ xf

a

V ′′(y)

G(y)
dy +

∫ b

xi

V ′′(y)

G(y)

]
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Meaning that we can construct a full probability density function for a general

potential using a method of images style construction. The usual applications of

the method of images are in fields such as electrostatics or two-dimensional fluids,

where the function in question, f , is harmonic, meaning it solves Laplace’s equation

∇2f = 0 [102]. Whereas what we have here is the use of the method of images in

the construction of a PDF for a general equation, and can approximately solve the

Smoluchowski equation. To calculate the FPT density, we need to find the derivative

of the general P (H) and then evaluate it at the absorbing boundary, xf = b. In its

general form,

P
′
(H) = −G

′(xf )

2G
P (H)

+
1√

G(xf )G(xi)
[
1 − J0e

S0
4D

][e−SD
4D (J ′

D − 1

4D
JDS

′
D) + Ae−

STa
4D (J ′

Ta −
1

4D
JTaS

′
Ta)

− e−
STb
4D (J ′

Tb −
1

4D
JTbS

′
Tb) − Ae−

STB
4D (J ′

TB − 1

4D
JTBS

′
TB)
]
.

The derivatives of the actions and Jacobians are then needed, and using the defini-

tions above for x > xi, as we only need the upper boundary,

S ′
D = 2(V ′ +G)

S ′
Ta = 2(V ′ +G)

S ′
Tb = 2(V ′ −G)

S ′
TB = 2(V ′ −G)

J ′
D =

V ′′

2G
JD

J ′
Ta =

V ′′

2G
JTa

J ′
Tb = −V

′′

2G
JTb

J ′
TB = −V

′′

2G
JTB

Using these derivatives, along with the fact that at the boundary SD(b) = STb(b),

JD(b) = JTb(b) along with similar for the action and Jacobian with turns at a we

can write,

P
′
(H;x = b) =

1√
G(b)G(xi)N

[
JD(b) exp

[
−SD(b)

4D

] [
V ′′(b)

G(b)
− G(b)

D

]

+ AJTa(b) exp

[
−STa(b)

4D

] [
V ′′(b)

G(b)
− G(b)

D

] ]
.
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Subsequently, we can find the first passage time density for the general potential,

using the fact that both the action and Jacobian for the turn at a, a direct path can

be factored out

f(H) = −
JD(b) exp

[
−SD(b)

4D

]
√
G(b)G(xi)N

[
DV ′′(b)

G(b)
−G(b)

] [
1 + A exp

[∫ xi

a

(
V ′′(y)

G(y)
− G(y)

D

)
dy

]]
,

N = 1 + AJ0 exp

[
−S0

D

]
, G =

√
H + V ′(x)2, A =

G(a) + V ′(a)

G(a) − V ′(a)
.

8.4 A Barrier Escape problem

We have seen how the path integral formalism can provide the first passage time

density for a general potential. Still, we can look at how it compares to some known

approximations, specifically the Kramers rate in the generic barrier escape problem

[49]. This method describes a particle that is caught in a potential hole and, through

Brownian motion, can escape over a potential barrier, which is a suitable model for

calculating transitions of the rate of chemical reactions.

Figure 8.9: A generic barrier escape potential

176



8.4. A BARRIER ESCAPE PROBLEM

In this system, we calculate the first passage time density for a particle to escape

from near the bottom of the well at x = A = 0 over the barrier at x = B. This is

approximated using the Kramers rate as the rate of the system in the exponential

distribution used to model the FPT density at equilibrium, i.e. the long time limit,

ΓKramers ∝ |V ′′
B | exp (−VB/D)

f(t) → Γ exp (−Γt) as t→ ∞.

It is assumed that the system follows exponentially distributed wait times, similar to

a Poisson process representation. The rate Γ is the inverse of the mean first passage

time value, Γ = 1
τ
, and this is similar in form to the Arrhenius equation [51] which

relates the rate of the system to the activation energy, in Kramers is the height of the

potential barrier. So, how does this relate to the path integral representation? Well,

suppose we can show that in the long time limit, the path integral returns a result

proportional to the Kramers rate solution. In that case, we can say that our result

has the same behaviour as the current numerical methods, with the prefactor of the

Kramers’ rate arising from the normalisation of the probability density function. The

only difference is that the path integral result also holds the information for short

time, non-equilibrated, crossing of the potential barrier, a possible improvement

on using the Kramers rate as an approximation. We have previously discussed this

potential benefit in section 1.2, where we looked at short-time discrepancies between

a full FPT density and the exponential distribution approximation.

In the Laplace domain, we wish to look at paths that travel from an initial position

at x = A and to a point x near the peak of the barrier at B; then, we will calculate

the relevant first passage time density at the point x = B. We can construct the

probability density function in the same way that we have done previously by having

two possible paths, the direct path and the path that turns at x = B. We have to

remember all the terms, including the Jacobian term and also that the construction

includes the boundary condition that at the peak of the barrier there is an absorbing
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barrier at x = B, i.e. P (x = B) = 0. This means we have the Laplace-transformed

probability density,

P (x;H) = λ

[
NJD exp

(
−SD

4D

)
−NJT exp

(
− ST

4D

)]
,

where there is a factor of λ which is a function of H that we can use to fix any

normalisation that might be required. This is because we are comparing this proba-

bility density function and subsequent first passage time density to the exponential

approximation with the Kramer’s rate, which itself is an approximation. This means

that to equate to the approximation, an extra factor may be needed to equate the

two.

The actions and Jacobians that we have are written in their full form, with V (A) = 0,

N =
((
H + V ′(A)2

) (
H + V ′(x)2

))− 1
4

SD = 2V (x) + 2

∫ x

A

√
H + V ′2 dy

ST = 2V (x) + 2

∫ x

A

√
H + V ′2 dy + 4

∫ B

x

√
H + V ′2 dy

JD = exp

(
1

2

∫ x

A

V ′′(y)

G(y)
dy

)

JT = exp

(
1

2

∫ x

A

V ′′(y)

G(y)
dy +

∫ B

x

V ′′(y)

G(y)
dy

)
.

To then calculate the first passage time, we do what we have done a few times

already, calculate the derivative of the probability density and then evaluate it at

the boundary. This is the same method as what we have just done in the general

potential solution, instead, we do not have a second boundary. This results in the

PDF derivative:

P
′
(H;x = B) = λ

1√
H
JD exp

(
−SD

4D

)[
V ′′(x)

G
− G

D

] ∣∣∣∣∣
B
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So, for the Laplace-transformed first-passage time density we have:

f(H) = −DP (H;x = B)

= λ
1√
H

[
D|V ′′(B)|√

H
+
√
H

]
exp

(
1

2

∫ B

A

V ′′(y)

G(y)
dy −

2V (B) + 2
∫ B

A

√
H + V ′2 dy

4D

)
.

The Jacobian term can be calculated directly, as we have a non-integral form for it

already. The non-integral form will make the expression simpler, because it depends

on the gradient of the potential at the endpoints of the integrand, and in this system,

this is 0. This means that,

JD|B = exp

(
1

2

∫ B

A

V ′′(y)

G(y)
dy

)

=

√√√√[√H + V ′(x)2 + V ′(x)√
H + V ′(x)2 − V ′(x)

] ∣∣∣∣∣
B

A

= 1

This results in the form of the first passage time density of,

f(H) =
λ

H
[D|V ′′(B)| +H] exp

(
−

2V (B) + 2
∫ B

A

√
H + V ′2 dy

4D

)

So, we have a first passage time density for the standard barrier problem, but how

does it relate to Kramer’s rate? First, we need to transform the exponential dis-

tribution used in the time domain as the approximation for this particular system

into the Laplace domain to see what we are trying to find. Note that as this is the

exponential approximation, this is only valid in the long time limit, or the small H

limit. Transforming the exponential approximation, fk(t), with rate Γ,

fk(t) → Γ exp (−Γt) as t→ ∞

fk =
Γ

Γ + s
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s =
H

4D
; =

4DΓ
H

1 + 4DΓ
H

=
4D|V ′′

B | exp (−VB/D)

H + 4D|V ′′
B | exp (−VB/D)

.

This means that we now have a small H solution that we can match our FPT repre-

sentation to, as we know that in the long time limit, the exponential approximation

is a good representation of the first passage time density. This is also how we will

find our λ constant, as we can equate the H → 0 limit of the FPT expression to the

Kramers rate solution. Remembering that limH→0 SD = 4VB,

lim
H→0

f(H) = fk,

λDV ′′
B

H
exp

(
−VB
D

)
=

4D|V ′′
B | exp (−VB/D)

H + 4D|V ′′
B | exp (−VB/D)

,

λ =
4H

H + 4DV ′′
B exp

(
−VB

D

) ,
=

4

1 +
4DV ′′

B

H
exp

(
−VB

D

) .
This value of λ has a relationship with our notion of the full cycle paths, that we

used when we constructed the flat and linear FPT densities with two boundaries

from the geometric series. This λ expression corresponds to the sum over the paths

that travel up and down the potential hill, before reaching the peak properly for

the first time, figure (8.10). It is related to the alternating geometric series because

there is a −1 from the hard bounce off the absorbing barrier, with a +1 from a soft

bounce off the origin.

Returning a full FPT density expression for the barrier crossing,

f(H) =
[4DV ′′

B + 4H] exp
(
−2V (B)+2

∫B
A

√
H+V ′2 dy

4D

)
H + 4DV ′′

B exp
(
−VB

D

) .
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Figure 8.10: An example path, that travels to the peak multiple times before crossing

This expression does satisfy the initial and final value theorems as expected as the

exponential dominates for the H → ∞ limit, limH→∞ f(H) = 0, whilst the H → 0

limit is obvious, limH→0 f(H) = 1.

To get a good idea of the added bonus of the path integral representation over

the exponential approximation, we will need to see the solution in the time domain.

This can be achieved by using a numerical inversion algorithm in Matlab’s functions,

called the Talbot inversion [103] [100]. Figure 8.11 shows the comparison between

the two techniques over a given time frame, with the two values being equal at

T → ∞ as that is how it has been constructed.

Whilst the two methods will agree at long time, T → ∞, we can see that at short

time the exponential approximation breaks down and will not return the correct

form, typically when the system is non-equilibrated. This can also be seen if we

look at the log graph for the two representations, showing the growing difference

between the two techniques, shown in figure (8.12).
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This is where the path integral representation becomes more powerful, filling in the

missing information and allowing the system to be in a non-equilibrated state, re-

moving an assumption currently made in the vast majority of computer simulations.

Figure 8.11: Kramers Exponential Distribution, in blue, vs the path integral FPT
density, in red, with D = 1 and V (x) = −x3

3
+ x2.

Figure 8.12: Comparison between the natural logarithm of the FPT density and the
Kramers exponential approximation, with D = 1.
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8.5 Numerical solution

As seen in chapter 3, we can also use a numerical path integral representation to

find the probability density function for a particle in a given potential. So can this

numerical solution be used to find the first passage time for a given system?

8.5.1 Boundary conditions

For all the findings in chapter 3 we used “soft” boundaries where we stopped cal-

culating when the probability became insignificant, P (±∞) = 0, ∂P
∂x

∣∣∣∣
±∞

≈ 0. The

more useful case for first passage times would be if the method derived in chap-

ter 3 was able to still give a good approximation to the solution but with “hard”

boundaries,P = 0, ∂P
∂x

̸= 0. This means that we force the problem to truncate at

a given point, not when the probability is sufficiently small, enabling the numerical

path integral formulation of the probability density function to be used in systems

with absorbing boundaries. The absorbing boundary is the same as the other sys-

tems in this chapter, where P (x, t) = 0 when x is at the boundary. Due to the

versatility of the numerical path integral representation of the probability density

function, this was achieved by simply applying hard boundaries to the area in which

the probability was calculated by setting P = 0 for any final positions outside the

desired range.

The problem we are dealing with is fundamentally different from the one stated in

(3.1). It is solving the Smoluchowski equation but with different boundary condi-

tions,

∂P (x, t)

∂t
=
∂

∂x

[
dV (x)

dx
P (x, t) +D

∂P (x, t)

∂x

]
,

with initial condition P (x, 0|xi) = δ(x− xi),

and boundary conditions P (a, t) = 0 = P (b, t).

Figures 8.13a, 8.14b, 8.14a and 8.14b show the difference between the two systems,
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one without hard boundaries, one with. Figures 8.13a and 8.14a show the nor-

mal probability density function, calculated until the probability is small enough to

ignore, whilst figures 8.13b and 8.14b shows the probability density function calcu-

lated with hard boundaries. At the boundaries, the probability tends to a zero with

a non-zero slope, as expected. The nature of the boundaries forces the probability

to be 0 outside the limits, which is what we are after as we need P ′ ̸= 0 at the

boundaries to have a non-zero first passage time density. Note that the scales of the

PDF are drastically different. This is because the introduction of hard boundaries

means that some of the probability is “leaking” out of the system at the absorbing

boundaries.

(a) With no hard boundary conditions, only
when the probability is negligible

(b) With hard boundary conditions at x =
−2 and x = 3.

Figure 8.13: The probability density function for a tilted potential for T = 2.5,
showing the probability being 0 outside the boundaries.

(a) With no hard boundary conditions, only
when the probability is negligible

(b) With hard boundary conditions at x =
−2 and x = 3.

Figure 8.14: The probability density function for a tilted potential for T = 10,
showing the probability being 0 outside the boundaries.
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The visual difference can also be seen by graphing the stationary fij propagator

matrix, which contains all of the system’s evolution, for the tilted potential as a

surface plot, shown in figures 8.15a and 8.15b. The surface plot in figure 8.15a shows

the general f matrix with no boundary conditions. It shows how the matrix used in

calculating the probability density function decays towards zero as the probability of

staying up on the slopes, and not falling into one of the two potential wells becomes

increasingly small the further away from the bottom of the wells. Figure 8.15b shows

that when hard boundaries are introduced, the probability of travelling outside the

defined region is instantly zero, as the matrix is not defined outside the boundaries.

This means that, as shown in figure 8.14b, the probability is zero, and there is a

sharp drop-off from just inside the boundaries to just outside them.

(a) With no hard boundary conditions, only
when the probability is negligible.

(b) With hard boundary conditions at i =
41, i = 141, j = 41 and j = 141.

Figure 8.15: A surface plot of the fij matrix for a tilted potential for T = 6, showing
the hard boundaries imposed cuts forces 0 outside the boundaries.

These visual representations show that the density matrix and probability density

function are acting as expected, but we can also use the Matlab partial differential

equation solver with narrower boundaries to check that the results are comparable.

This is much like we did to check the initial results in chapter 3. Figure 8.16

shows the probability density function at three different times against the partial

differential equation solver at the same time intervals, showing good agreement

between the two representations.
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Figure 8.16: Matlab partial differential equation solver vs the numerical path integral
with hard boundary conditions, showing the comparable nature of the numerical
path integral technique.

Now that we know that our representation of the probability is accurate with hard

boundary conditions, we can use it to calculate the first passage time for a particle

in a system between two absorbing boundaries.

8.5.2 Calculation of the flux at the boundaries

The calculation of the first passage time comes from calculating the flux at the

boundaries. The flux j(x) over a boundary is defined with the relationship to the

probability as [104]

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0. (8.9)

(8.9) is also used in quantum mechanics, as a conservation equation, and can be

used for the definition of the conservation of energy, among other things. In our

case, it will be able to give the distribution of the probability flux over time, and

we will be able to extract the mean first passage time. We can rearrange equation
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(8.9) to give an integral form for the flux,

j(x, t) = −
∫ b

a

∂P (x, t)

∂t
dx,

where we can use the Smoluchowski equation to substitute in for ∂P
∂t

(3.1) and

identify a and b as our two boundaries we have confined the particle to. So the flux

becomes

j(x, t) = −
∫ b

a

∂

∂x

[
V ′(x)P (x, t) +D

∂P (x, t)

∂x

]
dx

j(x, t) = −
[
V ′(x)P (x, t) +D

∂P (x, t)

∂x

]b
a

j(x, t) = −V ′(b)P (b, t) −D
∂P (b, t)

∂x
+ V ′(a)P (a, t) +D

∂P (a, t)

∂x
.

Due to the definition of the boundary conditions, the probability at a and b is zero

leaving us with the calculation of the flux,

j(x, t) = −D
[
∂P (x, t)

∂x

∣∣∣∣
x=b

− ∂P (x, t)

∂x

∣∣∣∣
x=a

]
. (8.10)

Note: j(x, t) = f(t) the inverse Laplace transformed f(H).

(8.10) shows that the flux can be calculated from the gradient of the probability

density function at the boundaries. As it is a measure of how much probability is

escaping from the area in question it has to be a positive value, as nothing is being

put into the system. Looking at figure 8.14b, the gradient at the upper boundary,

b, is clearly negative, while at the lower boundary, a, it is positive, meaning from

(8.10) the value of j(x, t) will always be positive, which is what is required for this

relationship to be true.

There is a second way to calculate the flux at the boundaries without using the

gradient at the boundaries. That is to use the cumulative density function, CDF

[105], a measure of how much probability is left in the region, and see how that
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changes over time, also known as the survival probability, i.e. the probability that

a particle survives to a certain time t in the bounded region. The CDF is defined

as one minus the area under the probability density function and can be shown to

give the same result as the gradient of the probability at the boundaries.

CDF(t) = 1 − Area = 1 −
∫ b

a

P (x, t)dx

Note that
∫ b

a
P (x, t)dx ̸= 1, as the “particles” are being removed from the system

at the boundaries.

Taking the derivative of the CDF with respect to time will give a measure of how it

changes as the system evolves, and reveals the link to the flux and the first passage

time density:

∂CDF(t)

∂t
= −

∫ b

a

∂P (x, t)

∂t
dx

Using (8.9)
∂CDF

∂t
= −

∫ b

a

[
−∂j(x, t)

∂x

]
dx

∂CDF

∂t
= j(x, t) = f(t).

This derivation shows that we have two ways of calculating the first passage time

of a particle in the system by two completely separate techniques. The results from

these two representations are shown in 8.17, and show the similarity between the

two methods. Both methods peak at the same time value, meaning they will have

the same mean first passage time; the only discrepancy is in the height, which is

negligible. It shows how the numerical path integral technique can calculate the full

FPT density.
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Figure 8.17: The flux over time, calculated using the gradient of the probabilities
and the change in the cumulative density function over time.

8.6 Moments of the FPT density

We have looked at the first passage time density and the first moment, the mean

first passage time, but we can go further to find higher moments. The first moment

is the mean or expected value; the second is the variance, a measure of the spread

of the probability density function; and the third is the skewness, a measure of the

asymmetry of the function. There are higher moments, but these three are the most

commonly used, and the ones that we will look at.

The comparison we will be looking at is between the path integral technique and the

exponential distribution, which we looked at briefly back in chapter 1 and section 8.4.

We mentioned that the exponential and FPT density will disagree under certain

circumstances, and we can see here that they disagree further when looking at

the higher moments, and not just the full FPT density. To begin, we define the

exponential distribution,

f(t) = λe−λt,
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where λ is the rate parameter and is defined as E[t] = τ = 1
λ
, so it is one over

the mean value of the probability density function. Typically, the mean FPT value

of a system is known, e.g. Kramers’ rate, and used to construct an exponential

distribution approximation for the full FPT density, for an equilibrated system.

We show that, although this approximation can be valid for long times, an issue

occurs at short times. Suppose we calculate an FPT density for a linear potential

with a mixture of boundary conditions. In that case, we can use the path integral

technique to find both the full FPT density (8.7) and the subsequent mean FPT

value (8.8). Using this known mean FPT value, we can construct the exponential

distribution. Figure 8.18 shows the comparison between the two. As can be seen, the

long time limits of the functions are converging on the same value of 0, meaning the

exponential distribution is a good approximation to the full FPT density; however,

the small time values diverge dramatically, and a lot of information is subsequently

lost by using the exponential distribution.

Figure 8.18: FPT density comparison between the exponential distribution and the
full FPT solution for a sloped potential with a mixture of boundaries. Showing
the discrepancy at short time, with the path integral technique providing a fuller
solution.
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We can look at this comparison further by looking at the higher moments of the

system. To do this, we first look at how the moments are constructed for the

exponential distribution, which is known as, for n ∈ N,

E[tn] =
n!

λn
= τnn!.

We can also calculate the further moments using the path integral technique by

again appealing to Laplace inversion facts as we did for the mean FPT earlier. The

moments are defined using an integral form,

E[tn] = lim
t→∞

∫ t

0

τnf(τ)dτ.

Using a similar technique to find the mean FPT value, we can Laplace transform

this to find the related expression in the Laplace domain,

E[tn] = lim
t→∞

∫ t

0

τnf(τ)dτ,

Using final value theorem = lim
s→0

sL
[∫ t

0

τnf(τ)dτ

]
,

Using Laplace transform identities = lim
s→0

s

[
(−1)n

1

s

dnf(s)

dsn

]
,

τ = (−1)n lim
s→0

dnf(s)

dsn
.

This means that we have expressions for all the moments of the first passage time

density,

E[t2] = Var(t) = lim
s→0

d2f

ds2
; E[t3] = − lim

s→0

d3f

ds3
.

We can compare these values with the exponential distribution by calculating the

mean FPT using the known solution, and using that value for the exponential dis-

tribution. This means that the mean FPT will be the same, but how do the second

and third moments compare? The derivatives for the full FPT solution can be cal-
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culated, and to compare fully we can calculate the second and third moments for

a range of diffusion values. This enables a good comparison between the two tech-

niques for different values of D. Figure 8.19 this comparison, and we see that, as the

diffusion value becomes smaller and smaller, the divergence between the two tech-

niques becomes larger. This is because as D gets smaller the FPT density becomes

a better representation than the exponential distribution.

Figure 8.19: Comparison between second and third moments for the exponential
distribution (∗) and the full FPT solution (−)

As previously, the exponential distribution is an excellent comparison to the full

FPT density in many situations, but not with all, and the accuracy can begin to

break down for short times and small diffusion values. This is an advantage of

the path integral representation, as it provides the full expression meaning the full

expression for the moments of the first passage time density.

In this chapter, we have seen the calculation of both FPT densities and mean FPT

values for the flat and linear potential with a variety of boundaries, showing that they

agree with known solutions that are analytically calculable. What the path integral

technique allows is the next step, calculating a full FPT density in the Laplace

domain for a general potential V (x), allowing just a simple numerical inversion to
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find the full density in the T -domain. This allows more information about a given

system to be kept and is more accurate than the exponential approximation currently

used. The use of the path integral formalism also allows a greater understanding of

the dynamics of the system and the dominant paths that the particles may take. We

then investigated this comparison between the full FPT density and the exponential

approximation through further moments and found that they agree at long times

when a system may be at equilibrium, but disagree at short times. This is the

main advantage of the path integral technique: providing accurate short-time, non-

equilibrated solutions.
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Chapter 9

Multi Dimensional Path Integrals

We have found the probability density function and first passage time densities

in one dimension, but how will this translate to higher dimensions? This

chapter will examine how all the functions translate into a general-dimension

form, specifically the Jacobian and prefactor terms. We will finally look at the

formation of the full probability density function and the first passage time

density for the free diffusion case, and the probability density function for the

symmetric harmonic oscillator. This is a far more complicated problem than

what has been seen in the rest of this work, and here we sketch out a possible

route for the beginning of further studies.
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In order to find the multi-dimensional form of the probability density function, we

need to investigate each element of the formulation: the action, the Jacobian and

the prefactor, and how they change when more dimensions are introduced. The

system that we are now solving has the Langevin equation,

dxi = −∇Vi(x)dt+ dξi, (9.1)

The action term is the easiest of the three to change to the multi-dimensional case,

as it is just a change from a one-dimensional gradient to the general version,

S[x] = 2V (x) − 2V (x0) − 2HT + 2

∫
γ

√
H + V ′(y)2dy,

⇒ S[x] = 2V (x) − 2V (x0) − 2HT + 2

∫
γ

√
H +

(
∇|V (y)|

)2
dy.

This is because the potential gradient when squared, becomes the dot product of

two unit vectors, with the scalar factor being the derivative vector of each element

of the potential. The interesting thing is that the integral in the action is still a

one-dimensional integral along the length of the path that the particle takes through

a multi-dimensional space.

The Jacobian term can be calculated in the same way as we did in chapter 4,

by discretising the Langevin equation and finding the determinant of the relevant

matrix. Discretising (9.1) over N time steps of length ∆t, and note that,

J =

∣∣∣∣ δξδx
∣∣∣∣ = lim

N→∞
det

dξi
dxj

.

Equation (9.1) becomes (adding spatial indices α and time step indices i),

xαi − xαi−1 = − (λ∂αV (xi) + (1 − λ)∂αV (xi−1)) ∆t+ ξαi − ξαi−1.

The parameter λ again controls the discretisation protocol like in one dimension;

λ = 0 corresponds to Ito calculus, and λ = 1/2 Stratonovich. Let’s take λ = 0. It is
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clear that dξi/dxj = δij and J = 1, but the time integrals in the action would need

to be interpreted in the Ito sense, gaining the extra factor using the Ito integral,

again like in the one-dimensional case gaining the same term as below from the

Stratonovich prescription. Setting λ = 1/2, we can use the Stratonovich calculus

with the usual interpretation of the integrals at the cost of introducing a non-unit

Jacobian:

dξi
dxj

= 1 · δαβij +
(
λ∂α∂βV (xi) + (1 − λ)∂α∂βV (xi−1)

)
∆t

dξi
dxj

=


δαβ + ∆t

2
∂α∂βV (xi), j = i

−δαβ + ∆t
2
∂α∂βV (xi−1), j = i− 1

0 otherwise.

This is an upper-triangular block matrix and has the following form similar to the

one-dimensional case,

dξi
dxj

=



δαβ + ∆t
2
∂α∂βV (xi) −δαβ + ∆t

2
∂α∂βV (xi−1) 0 . . .

0 δαβ + ∆t
2
∂α∂βV (xi) −δαβ + ∆t

2
∂α∂βV (xi−1) . . .

0 0 δαβ + ∆t
2
∂α∂βV (xi) . . .

...
...

... . . .


.

To calculate this determinant, we use the fact that for a triangular matrix, the

determinant is just the product of the determinants of the diagonal entries,

∣∣∣∣ δξδx
∣∣∣∣ =

∏
n

det

(
δαβ +

∆t

2
∂α∂βV (xi)

)
.

To find the determinants, we can use the fact that,

det(I + ϵM) = 1 + ϵ trM + O(ϵ2),

to expand the brackets and use the fact that for second derivatives, the trace of the
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resultant matrix of second derivatives is just the Laplace operator. This results in

the product:

∣∣∣∣ dξi
dxj

∣∣∣∣ =

(
1 +

∆t

2
∇2V (x0)

)(
1 +

∆t

2
∇2V (x1)

)
. . .

(
1 +

∆t

2
∇2V (xN )

)
+ O(∆t2)

→ exp
∑
i

∆t

2
∇2V (xi) as ∆t→ 0,

and J = exp

(
1

2

∫ T

0

∇2V (x(t)) dt

)
.

So, we have found the Jacobian for general dimensions; now, the final piece of the

puzzle is to find out how the prefactor behaves in higher dimensions. To achieve

this, we will use the van Vleck determinant form of the prefactor from the quantum

mechanics’ analogy, which will have a multi-dimensional form [2],

A = [4πD]−
n
2

[∣∣∣∣∣∂xif∂ẋj0

∣∣∣∣∣
]− 1

2

,

where the only difference is the addition of indices to the derivative. See chapter 2

for a fuller discussion of this expression. This will need to be calculated for the

specific system, but the technique will remain the same, so we can first see how

it works for the simplest of systems, the free diffusion case, specifically in three

dimensions.

9.1 Three-dimensional free diffusion

We begin by calculating the probability density function before calculating the first

passage time density for the system. We have a free diffusion system, in a region B,

which has a barrier at R that the particle travels to in time T . We begin by looking

at the equation of motion for this system, which as V = 0, is r̈ = 0. To solve this,

we need to know some of the conditions the system must satisfy to find r(t). For a
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free diffusion system where there is a barrier at r = R and begins at r = 0, we have,

r(0) = 0; r(T ) = R,

r̈ = 0 ⇒ r(t) =
Rt

T
.

We can relate this to the initial position and velocity vectors of the system with a

unit directional vector;

xi(t) = r(t)n̂i =
Rt

T
n̂i,

v0j (t) = ṙ(t)n̂j =
R

T
n̂j,

→ xi(t) = v0i t,

where v0i is the initial velocity in the n̂i direction. The expression for the position

is equivalent to speed = distance
time

. Now, to find the prefactor we can replace the

numerator with the expression for the position vector,

∂xi

∂ẋj0
= t

∂vi0
∂vj0

= tδij,

∣∣∣∣∣∂xif∂ẋj0

∣∣∣∣∣ = T 3,

A = (4πDT )−
3
2 .

We now have the prefactor for the flat diffusion case in three dimensions, so let us

see if the full probability returns the correct solution. In full, we have,

S = −HT + 2

∫ xf

xi

√
Hdy,

J = 1,

A = (4πDT )−
3
2 ,

P = AJ exp

(
− S

4D

)
.
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We can see that this is the correct form by the fact that it solves the three-

dimensional free diffusion Smoluchowski equation,

∂P

∂t
= D∇2P.

To find the full probability form, we first need to calculate the relationship between

time and “energy” by using the relationship that we have in the free diffusion case,

V (r) = 0,

T =

∫ r

0

dR√
H
,

=
r√
H
,

inserting this into the action equation,

S = −HT + 2
√
H

∫ r

0

dR,

= −HT + 2
√
Hr,

=
r2

T
,

=
x2 + y2 + z2

T
.

This gives a full probability density function for the free diffusion,

P (x, y, z, T ) =
1

(4πDT )
3
2

exp

(
−x

2 + y2 + z2

4DT

)
.

So, does this solve the Smoluchowski equation? For the free diffusion case, this is

the three-dimensional heat equation;

∂P

∂t
= ∇2P (x, y, z, t)
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To find this, we need the time derivative and the second derivative with respect to

the spatial coordinates.

∂P

∂T
= D

(
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2

)
,

∂P

∂T
= − 3

2T
P +

x2 + y2 + z2

4DT 2
P,

∂P

∂x
= − x

2DT
P,

∂2P

∂x2
=

(
x2

4D2T 2
− 1

2DT

)
P.

Inputting this all into the Smoluchowski equation, the spatial derivatives are the

same with interchanges of x, y and z. This gives,

− 3

2T
P +

x2 + y2 + z2

4DT 2
P = D

(
x2

4D2T 2
− 1

2DT

)
P +D

(
y2

4D2T 2
− 1

2DT

)
P

+D

(
z2

4D2T 2
− 1

2DT

)
P

− 3

2T
P +

x2 + y2 + z2

4DT 2
P = − 3

2T
P +

x2 + y2 + z2

4DT 2
P.

This shows that it solves the Smoluchowski equation, meaning that our representa-

tion for the free diffusion case is correct. Next, we can use our definition of the first

passage time density to calculate the value for the three-dimensional free diffusion

case. First, we construct the probability density function which includes the terms

required to satisfy the boundary condition at r = R, P (R) = 0, by appealing to the

method of images techniques,

P (r;T ) =
1

(4πDT )
3
2

exp

(
− r2

4DT

)
− 1

(4πDT )
3
2

exp

(
−(r − 2R)2

4DT

)
.
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This construction is similar in technique to the adding of paths that we constructed

for the one-dimensional case, with a turning path that turns around at the barrier.

In the method of images terminology, this is like having an imaginary path that

arrives from the other side of the barrier. Figure 9.1 shows the two paths we have

used to construct, with the imaginary path coming from a region R′, which translates

to the path that bounces off of the barrier.

Figure 9.1: Two paths from 0 to r ∈ B: one direct and the other bouncing off R at
r′, with a mirror direct path from B′.

Calculating the first passage time density is similar to the one-dimensional, one-

boundary case where we evaluate the derivative of the probability on the boundary;

f(T ) = −D∂P
∂r

∣∣∣∣∣
R

,

= − D

(4πDT )
3
2

[
− 2r

4DT
exp

(
− r2

4DT

)
+

2(r − 2R)

4DT
exp

(
−(r − 2R)2

4DT

)] ∣∣∣∣∣
R

,

=
R exp

(
− R2

4DT

)
(4πD)

3
2 T

5
2

.
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This is very similar to the one-dimensional Brownian motion FPT density [106], just

with an extra factor of 1
T

, which is apparent as there is the same extra factor in the

representation of P . We can also show that this free diffusion FPT density satisfies

the correct short and long-time limits, as the FPT density curve should tend to 0

for both T → 0 and T → ∞. For the T → 0 limit, the exponential tends to 0, as

does the denominator, but by using L’Hopital’s rule multiple times, the T on the

denominator is differentiated enough times to move to the numerator, and the limit

is satisfied. The T → ∞ limit is easier as the exponential tends to 1 because the

exponent tends to 0, meaning the denominator dominates, sending the function to

0.

9.2 Three-dimensional Harmonic oscillator

We have seen that the path integral formulation works for the free diffusion case in

three dimensions, but does it work for the harmonic oscillator case? For this system,

we have a similar set-up, with an initial position at the origin with an absolute

boundary at r = R, and the particle reaches the boundary at time T , r(0) = 0,

r(T ) = R. For this system, we deal with a symmetric potential, V (r) = 1
2
αr2, in

spherical coordinates. First, we can calculate the Jacobian term,

J = exp

(
1

2

∫ T

0

∇2V (x(t))dt

)

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)

=
2

r

∂V

∂r
+
∂2V

∂r2

= 3α

J = exp

(
3

2
αT

)
.
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9.2. THREE-DIMENSIONAL HARMONIC OSCILLATOR

This is actually just the one-dimensional Harmonic oscillator Jacobian term cubed,

which makes sense for a jump from 1-D to 3-D. Now to calculate the prefactor, using

the same method as the free diffusion case, beginning at the equation of motion.

r̈ = ∇
(
|∇V |2

)
= ∇

(
α2r2

)
= 2α2rr̂

r̈ = 2α2r

Solving this with the initial conditions, r(0) = 0 and r(T ) = R,

r(t) = A cosh
√

2αt+B sinh
√

2αt

=
R sinh

√
2αt

sinh
√

2αT

As in the free diffusion case, we now want to find the initial velocity, to be able to

calculate the van Vleck determinant,

ṙ(t) =

√
2αR cosh

√
2αt

sinh
√

2αT

v0 =

√
2αR

sinh
√

2αT

r(t) =
v0 sinh

√
2αt√

2α
.

Inserting this into the van Vleck determinant,

xi(t) =
v0i sinh

√
2αt√

2α

∂xi

∂ẋj0
=
δij sinh

√
2αt√

2α∣∣∣∣∣∂xif∂ẋj0

∣∣∣∣∣ =

(
sinh

√
2αt√

2α

)3

.
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CHAPTER 9. MULTI DIMENSIONAL PATH INTEGRALS

This gives a full probability for the 3-D harmonic oscillator with |∇V |2 = ∇V ·∇V =

α2r2,

S = αr2 −HT + 2

∫ r

0

√
H + α2y2dy

P =

[ √
2αeαT

4πD sinh
√

2αT

]
exp

(
−
αr2 −HT + 2

∫ r

0

√
H + α2y2dy

4D

)

This shows a use of the path integral formalism in solving for probability density

functions and first passage time densities in three dimensions, and begins the steps

towards using the path integral in solving for higher dimensional systems. The

ability to solve for the PDF and FPT density in these higher dimensions might

allow the possibility of the advancement of techniques such as FPT kinetic Monte

Carlo that we have discussed previously, which is only valid for free diffusion cases

because a full FPT density curve is not available for more than a zero-potential.

This is where this technique shown through this work could become applicable.
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Conclusion

Stochastic processes appear throughout science, and the importance of both fun-

damental understanding, and practical numerical implementations, can hardly be

overstated. We hope the path integral techniques studied in this work contribute

to both. While current techniques focus on long-time average approximations for

barrier-crossing rates [50], and first passage time densities at near-equilibrium, we

have attempted to build a semi-closed form for all timeframes and general poten-

tials in one dimension. The long-time, near-equilibrium assumption discards some

potentially crucial information which our approach retains.

Previous investigations using stochastic path integrals [28] [29] were also confined

to the investigation of mean rates (albeit with more complicated, correlated noise).

This work has gone beyond that previous work by demonstrating the ability of the

path integral formalism to construct a full probability density function, subsequent

first passage time densities, and mean first passage times for a general potential in

one dimension with only a weak noise assumption.

The remarkable correspondence between the most probable stochastic trajectories

through a potential V , and the conservative, Hamiltonian dynamics in an effective

potential −|∇V |2 has shed more light on overdamped stochastic processes in general.

First noticed in [19], our work significantly extends those observations. In particular,

the necessity of turning paths to recover the correct long-time limit, even in the
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simplest case of the harmonic oscillator, exposes the limitations of previous work,

and reveals how to generalize to more complicated systems.

This work reviews how the path integral can be built from standard stochastic

differential equations, culminating in an expression that solves the Smoluchowski

equation for particles diffusing in a potential. Whilst formally correct, the integral

cannot be exactly evaluated for all but the simplest potentials (up to quadratic).

This is consistent with the fact that no analytical solution for the Smoluchowski

equation exists for potentials other than these.

In the weak noise limit, however, analytic progress can be made by concentrating on

the paths that dominate the integral. The actions of these extremal paths, together

with small fluctuations around them, and the functional Jacobian arising from the

change of variables from noise to coordinate, were used to construct an approximate

solution. We also compared our solution with a formal WKB expansion, and iden-

tified the action and pre-exponential factor emerging order-by-order. This solution

was shown to be exact for the explicitly-soluble case of the harmonic oscillator, but

only when the subtleties of the turning path were included. Previous work [1] did not

consider these, and arrived at the correct Ornstein-Uhlenbeck form by a fortunate

cancellation.

The move to the Laplace domain then allowed the construction of the first passage

time density, and its moments, by introducing absorbing and reflecting boundaries.

These boundary conditions increase the scope of potential applications, since many

physical, chemical, and biological systems can be modelled by a first passage pro-

cess. The boundary conditions were enforced by considering another form of turning

path, one with a “hard bounce” off the absorbing boundary. Multiple paths can be

easily summed over in the Laplace domain, allowing the correct long-time limit to be

recovered with short- and intermediate-time densities being recoverable by a simple

(one-dimensional) numerical inversion of the transform. A truncated WKB expan-
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sion does not achieve the correct long-time limit. The fact that infinite sums over

turning paths are required reflects the tension between the weak noise and long-

time limits. These do not commute, as was noticed in [107], and the path integral

approach provides the insight needed to deal with this.

The FPT and mean FPT solutions gained from path integrals agree with first prin-

ciples derivations for the simplest systems, which can also be solved by elementary

means. As far as we are aware, none of these solutions appear in the literature.

Indeed, the first passage literature, e.g. [39], focuses on free diffusion in a variety of

complicated domains. Very little work previously existed on first passage densities

in nonzero potentials.

We have also revisited the ubiquitous Kramers problem of particle escape over a

potential barrier, recovering the standard rate. Moreover, our approach delivered

the full first passage density, rather than simply the mean, which was all that was

available previously. The exponential escape time distribution, used by assumption

in kinetic Monte Carlo simulations, was recovered at long times. Whilst an accurate

representation of the tail of the density, the exponential distribution cannot be

correct at short times, as it has mode zero. Our results are valid at all times.

Throughout this work, we also saw the ability of the path integral to be used nu-

merically as well as analytically. We followed the methods of [71] and coded a

Smoluchowski solver that outperformed the commercial implementation available in

MATLAB. We also extended the methodology to determine first passage densities

numerically. Whilst highly efficient in one dimension, the approach (like other nu-

merical solutions of parabolic PDEs) quickly becomes computationally intractable

in higher dimensions. The action integral for the dominant path, however, is always

one-dimensional.
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Finally, we began the exploration of applying the path integral to higher-dimensional

systems. The correct results for the simplest systems were recovered, which suggests

that this is a promising avenue for future research.

All this shows that the path integral formulation can offer valuable insights not

available from standard techniques, which could potentially contribute to larger-scale

stochastic simulation methods. There is also the capability for the path integral to

be used for general non-equilibrated systems in more than one dimension, extending

the possible insights available. The work should continue towards this goal by

looking at higher-order WKB expansion terms to find terms such as Γ from chapter 8

“organically”, with the ultimate aim of constructing solutions in multiple dimensions

for use in real-world modelling applications.

These real-world applications are a possible next step for this research into areas

of science that we have discussed throughout this work. The logical next steps for

this work would be to look at the extension of first passage kinetic Monte Carlo

techniques, described by Oppelstrup et. al. [48]. The path integral formulation

derived in this work could allow this method to be extended to nontrivial potentials.

This would represent a major generalisation of the technique, and greatly enhance

its range of applicability.

There are many areas of science that could benefit from practical applications of this

work. Examples include the diffusion of impurities through a crystal and analytical

results for first passage problems for polymer chains. Concerning impurity diffusion,

the path integral technique could allow a reduction in the computational power

requirements required to fully understand the dynamics of how an impurity travels

throughout the structure. Path integrals would allow the ability to encompass the

entire potential landscape in the crystal, including other microstructures in the

crystal, e.g. dislocations.
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For polymer chains, the application of the first passage time density results in this

work, namely in higher dimensions, could provide fuller solutions to densities than

previously found [108] along with the possible application to accelerating Brownian

dynamics simulations [109].

All these possible applications show the many directions this work could continue

to pursue and the range of insights that the path integral technique could provide

for those who wish to continue with this work.
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