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ABSTRACT 

Peatlands occupy a mere 3 % of the world's land mass, but store up to one third of 

terrestrial carbon stocks. Peatlands are widely regarded as carbon sinks owing to 

their ability to sequester more carbon than is released. Carbon cycling in peatlands 

is driven by environmental conditions e.g. water table levels, temperature and pH; 

substrate quality i.e. the ease with which microbes can synthesise the carbon; 

nutrient availability and the composition of the microbial community. 

Peatlands are valued not only for their ability to sequester carbon, but also for the 

range of ecosystem services which they provide including the provision of food, 

recreation and leisure, a source of income for rural communities, water supply and as 

habitats for a range of flora and fauna. As a result, management of peatlands is 

widespread, with the four most common methods of management of upland blanket 

bogs being afforestation, drainage, grazing and burning. To date, little work has 

been carried out on the effects of such management practices on carbon losses or 

drivers of the carbon cycle. The aim of this research was to identify how these 

management practices influenced losses of carbon from peatlands as well as the 

chemical and physical drivers of the peatland carbon cycle. A combination of field 

and laboratory work was carried out on managed peats with an unmanaged site at the 

Moor House National Nature Reserve in Cumbria. Field monitoring involved 

measurement of dissolved organic carbon (DOC) in the peat solution, water table 

levels and carbon dioxide gains and losses. Laboratory analysis was carried out on 

cores of peat to examine nutrient concentrations, the structure of the peat in terms of 

porosity and density; carbon stocks and the quality of the carbon. 

The results of this research demonstrated that all sites including the unmanaged site 

acted as carbon sources. Greatest losses occurred from the afforested site, where 

losses of DOC were significantly higher than all other sites and some of the highest 

losses of carbon dioxide were found. In contrast, the site that was burnt on a 10 year 

rotation was found to be a very slight carbon sink, held the most carbon within the 

peat and lost the least amount of DOC. 

Few significant differences in the chemical composition of the peat were observed 

between the sites, however, lignin, the most recalcitrant fraction was found to be 
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significantly lower in the burnt (every 10 years) site, which had the highest carbon 

content. Lignin was identified as the dominant constituent of the peat for all the 

sites, with highest concentrations present in the afforested site. The high lignin 

content of the peats from all the sites indicated that the peats are in the latter stages 

of decomposition, and are thus fairly recalcitrant. The higher lignin content in the 

afforested site, coupled with the highest losses of DOC, some of the highest CO2 

losses through ER (ecosystem respiration), however, suggest that the chemical 

composition of the peat is not a strong a driver of the peatland carbon cycle. 

Temperature was found to be the dominant driver of ER, accounting for between 54 

and 92 % of variation in the data. The afforested site was the only treatment where a 

significant relationship between temperature and ER was not identified. Rates of 

primary productivity were highest in the burnt and grazed sites indicating that 

regeneration of the vegetation through management is of key importance in terms of 

sequestering carbon. The lowest primary productivity was identified at the drained 

site, where concentrations of nitrogen were also lowest. In terms of the structure of 

the peat, the air filled porosity of the burnt and grazed (every 20 years) site was 

greatest, however no linkages were established between the structure of the peat and 

gaseous carbon losses. 

This thesis has provided a unique insight into the effects of land management on the 

drivers of the peatland carbon cycle, carbon dioxide gains and losses, and DOC 

production. Further work should focus on examining the effects of the intensity of 

land management practices on peatland carbon budget for example, comparing low 

and high temperature burns, or closely spaced drains with drains that are located far 

apart. 

The results of this thesis suggest that future management needs to focus on 

encouraging increased PP by managing water table levels and promoting growth of 

peat forming species of vegetation such as Sphagnum. Light burning was also found 

to increase water table levels and peat solution acidity, thus reducing losses of DOC 

into the peat solution. The results demonstrated that temperature is the most 

important control on ER, and under climate change losses are likely to increase, 

therefore, the need to conserve carbon through increased PP is unquestionable. DOC 
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was found to be strongly linked to water table levels, pH and the carbon quality, with 

higher concentrations ofholocellulose resulting in reduced losses of DOC. 
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Introduction 

1 INTRODUCTION 

1.1 Climate Change and Global Carbon Stocks 

Climate change is one of the most significant environmental problems facing the 

world today and moves are afoot to at least reduce, if not fully mitigate, its potential 

effects. Global concentrations of carbon dioxide in the atmosphere have risen from 

280 ppm in 1750 to 379 ppm in 2005, and have been linked to a rise in global 

temperatures of 0.6°C since the end of the 19th century (IPCC 2007). The onset of 

the industrial and agricultural revolutions has been cited as being responsible for this 

rise, alongside degradation of terrestrial carbon stocks, which has contributed to 

increased concentrations of atmospheric carbon dioxide (IPCC 2001). 

Efforts are being made to preserve existing carbon stocks that are not stored in the 

atmosphere, and to expand the potential for carbon sinks (carbon stores where 

accumulation of carbon exceeds losses) to amass more atmospheric carbon (Walker 

& King 2008). Predictions of future emissions are based on a number of 

assumptions including estimates of how much carbon is currently held in different 

stores and what the impact of climate change might be on these stores (Manning et 

a1. 2011). Global carbon stocks can be sub-divided into three components: 

terrestrial, atmospheric and oceanic, which in the absence of anthropogenic activity, 

approximately balance in terms of losses and gains across the carbon cycle (Lal 

2004). During the 1980s, anthropogenic activity such as fossil fuel burning, cement 

production and land use changes accounted for losses of terrestrial carbon into the 

atmosphere of approximately 7.1 Pg C yr-I, of which S.3 Pg C yr-I were due to 

annual emissions from fossil fuel burning (IPeC 2001). Based on data presented by 

Lal (2004) relating to carbon storage (Figure 1-1), annual losses of carbon due to 

fossil fuel burning accounted for 0.011 % of global carbon stocks (including 

terrestrial, oceanic and atmospheric stores). More recently, losses of carbon due to 

fossil fuel burning have risen, in 2009, 8.4 Pg C yr-I were lost, which represented a 

1.3 % decrease from 2008. The decline has been attributed to the downturn in the 

global economy and hence industrial outputs (Friedlingstein et al. 201 0). Despite 

this apparent fall in carbon losses, there have been significant rises in carbon 

emissions from developing economies in Asia such as China, where economic output 
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increased by 9.1 % in 2009 (Friedlingstein et al. 2010). The rise in fossil fuel 

burning since the 1980s has resulted in annual carbon emissions from fossil fuel 

burning, increasing by 58 %, with annual emissions now accounting for 0.018 % of 

global carbon stocks. 

• Oceanic carbon store (38,000 Pg) 

Geological carbon store (5,000 Pg) 

• Soil carbon store (2,500 Pg) 

Atmospheric carbon store (760 Pg) 

• Biotic carbon store (560 Pg) 

Figure J -J Schematic of the quantity of carbon held in each of the jive global carbon 

stores (after Lal, 2004) 

1.2 The Importance of Terrestrial Carbon Stocks 

Emissions of carbon need to be reduced by finding more sustainable methods of 

industrial production and energy sources. Fossil fuel burning alone, however, is not 

the only cause of increased carbon emissions to the atmosphere. During the 1980s 

land use change accounted for losses of 1.7 Pg C yr-' (IPCC 2001) from soils and the 

biosphere. Agriculture, tropical forest removal, ploughing soils, draining wetlands 

and burning biomass have all been cited as causes for increased losses of carbon 

from terrestrial stocks (Lal 2004). In each case, land management has caused 

reductions in terrestrial carbon stocks by reducing the capacity of soils to take up and 

retain carbon, and changes in vegetation species, have resulted in a decrease in the 

quantities of carbon sequestered (Lal 2004). 

Carbon is fixed from the atmosphere by plants during photosynthesis and fonus part 

of the soil organic matter once the plant has died and been decomposed (Wild 1993). 

The decomposition of plant material by microbes represents the main pathway 

through which carbon dioxide is returned to the atmosphere as a result of microbial 
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respiration. This release of carbon has been cited as one of the dominant fluxes in 

the carbon cycle (Schlesinger & Andrews 2000). The sensitivity of carbon stored in 

the organic matter of soils to increases in temperature has been the focus of much 

research into the effects of climate change on soils. Davidson and Janssens (2006) 

clearly illustrated the potential for positive and/or negative feedback cycles to occur 

within the soil carbon cycle. Summaries of these feedback loops are presented in 

Figure 1-2 and Figure 1-3. 

increase in size 
of microbial 
community 

t 
rate of oil 

organic matter 
decompo ition 

mcrea e 

more carbon is 
held in the 
atmo phere 

1 
temperature 

increa e due to 
radiative 
forcing 

Figure 1-2 Positive Feedback Loop in Response to Warming under Climate Change 
(after Davidson & Jan sens 2006) 

... primary productivity 
more carbon is stored mcrea.e ill respon e 
in oil organic matter to illcrea e m 
and i available for temperature and 

microbial great~r ~arbon 

decomposition concen~~~~nes in the 

more carbon i 
ad orbed due to 
greater rates of 

primary productivity 

atmo phere 

Figure /-3 Negative Feedback Loop in Re ponse to Increased Carbon Dioxide in the 

Atmo phere due to Climate Change (after Davidson & Jan en 2006) 
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Increased temperatures result in faster rates of microbial decomposition (Kirschbaum 

2006), with the most labile (easily degradable) substances being synthesised more 

rapidly than complex structures which have a higher activation energy (Davidson & 

Janssens 2006). The importance of substrate quality and the existence of three pools 

of carbon (fast, intermediate and very slowly degradable carbon) has been 

highlighted by many authors (e.g. Knorr et al. 2005, Powlson 2005, Fang et al. 

2005). Each has suggested that the more recalcitrant (i.e. slowly degradable pools) 

are more sensitive to temperature rises, and thus, increases in temperature under 

climate change could result in an increase in the synthesis of previously stable 

carbon stocks. 

1.3 The Vulnerability of Peatland Carbon Stocks to Climate Change and 

Land Management 

Concerns about the degradation of organic matter from soils and the response to 

climate change have been most acute in areas where peatlands are found. Peatlands 

cover a mere 3 % of the world's landmass but contain an estimated one third of 

terrestrial carbon stocks (Gorham 1991). Approximately 96.5 % of peatlands are 

located in northern Europe and North America (Taylor 1983). In the UK, 2.2 million 

hectares of blanket bog exist (Shepherd et al. 2010), comprising between 10 and 

15% of the world's blanket bogs (Tallis 1998). In total, it has been estimated that 

approximately 2,302 Mt of carbon are stored in UK peatlands (Billett et al. 2010). 

Peatlands store large quantities of carbon as peat is predominantly comprised of 

organic matter. Rates of organic matter decomposition are typically very low in 

northern peatlands (which have stored approximately 89 % of global peatland carbon 

since the last glacial maximum, (Yu et al. 2010)) owing to the saturated conditions 

and low temperatures in the areas in which they are located, resulting in rates of 

accumulation exceeding decomposition (Joosten & Clarke 2002). In a survey of 

carbon content in UK soils, Bellamy et al. (2005) suggested that decreases in 

peatland carbon concentrations occurred between 1978 and 2005; and were far 

greater than the quantity lost from any other soil types. As temperatures rise due to 

climate change, an increase in the rate of organic matter breakdown and 

consequently losses of carbon from peatlands areas is anticipated. 
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Bio-climatic envelope modelling is typically used to predict the effects of climate 

change on the spatial distribution of ecological species (Pearson & Dawson 2003). 

Recent work carried out by Gallego-Sala et a1. (2010) used bio-climatic envelope 

modelling to predict the impacts of climate change on the areal extent of peatlands in 

the UK under high and low emissions scenarios. Data taken from the UK Climate 

Impacts Programme 2002 projections for the UK were run with a bio-climatic 

envelope model. The results indicated that by 2080, there would be an 84 % 

reduction in areas suitable for peatland development under a high emission scenario 

(worst case) and a 53% reduction under a low emissions scenario (Gallego-Sala et a1. 

2010). Simulation modelling carried out by Ise et at (2008) looked at the effects of 

higher temperatures and lowered water table levels on carbon losses from northern 

hemisphere, ombrotrophic (predominantly rain-fed) peatlands. Under a 4°C 

warming scenario, 40 % losses of carbon were predicted from shallow peats, and 

80 % from deep peats. If such effects are realised, not only would valuable carbon 

stocks be degraded, but also climate change would be exacerbated as a result of the 

positive feedback loop as illustrated in Figure 1-2. 

Upland areas of the UK including peatlands have been influenced by humans since 

Palaeolithic times (Simmons 2003), as efforts have been made to forge a living from 

these areas (Maltby 2010). Today management of peatlands is extensive, with 

estimates of the total managed area exceeding 82 % of UK peatlands (Bragg & Tallis 

2001). Much concern exists over the current state of peatlands as a result of land 

management practices (Holden et a1. 2007b). Initiatives to increase and diversify 

agricultural production have resulted in damage to peatlands including erosion, 

changes in vegetation, and increased losses of carbon. Furthermore, over-grazing, 

drainage of peat, extraction of peat for horticultural purposes, recreational use, 

burning, and windfarm construction have all contributed to the deterioration of UK 

peatlands (Holden et a1. 2007b, Haigh 2003, House et al. 2010). 

Efforts to reverse the effects of peatland damage have caused conflicts between 

stakeholders with commercial interests and those with conservation interests (Maltby 

2010). Attempts have been made to reduce the effects of agriculture through 

environmental protection schemes aimed at reducing numbers of livestock, and this 

is set to continue as measures are taken to meet the requirements of the Water 
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Framework Directive (Reed et a1. 2009). In addition, protection schemes have been 

awarded to many UK peatlands such as National Parks, Areas of Outstanding 

Natural Beauty, National Nature Reserves, Ramsar Sites and Sites of Special 

Scientific Interest (Orr et a1. 2008). Ecosystem services approaches are at the 

forefront of recent efforts to manage peatlands (Ostle et a1. 2009). Such approaches 

aim to combine the interests of multiple stakeholders and acknowledge the 

competing demands placed on upland areas including provision of food, recreation 

and leisure, a source of income for rural communities, water supply and a sensitive 

habitat in need of environmental protection (Maltby 2010). 

Carbon budget calculations for blanket peatlands in the UK have primarily focussed 

on unmanaged (or relatively undisturbed) peatlands (e.g. Worrall et a1. 2009, 

Dinsmore et a1. 2010). Such calculations have indicated that blanket peatlands are 

net carbon sinks i.e. more carbon is captured than released; however, losses vary on 

a seasonal basis. Few calculations have been carried out on more intensively 

managed sites (e.g. Clay et a1. 201 Ob, Rowson et a1. 2010), and those that have, have 

not compared the four most common methods of blanket peatland management 

(burning, grazing, drainage and afforestation) within one study. Furthermore, the 

effects of management on the drivers of the carbon cycle have not been fully 

investigated on blanket peatlands. Through a better understanding of the causes for 

variations in carbon budgets due to land management, scientific knowledge can be 

used to inform and guide future conservation efforts, policy development and 

stakeholder dialogue and decision making. 

1.4 Aims and Objectives 

1.4.1 Aim 

The aim of this thesis is therefore to understand how the key drivers of the carbon 

cycle vary between differently managed peatlands. The work primarily focuses on 

the four main methods of management of blanket peatlands in the UK (grazing, 

burning, drainage and afforestation); but also considers burning frequency and 

combinations of burning and grazing. Differences in the chemical and physical 

properties of managed peatlands will be used to aid understanding of losses of 

carbon dioxide and dissolved organic carbon (DOC) from peatlands. 
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Land management practices are commonly described as being detrimental to 

peatlands, resulting in degradation such as erosion, discoloration of water, loss of 

habitat, and pollution (Haigh 2003, Holden et al. 2007b, House et al. 2010). As a 

consequence, much emphasis has been placed on peatland restoration. Much of the 

peatland restoration work carried out to date has aimed to protect peatlands from the 

effects of climate change and to restore peatlands from an environmental 

perspective. More recently, the focus has turned to identifying the value of peatlands 

from an ecosystem services perspective (Bonn et al. 2009). 

Carbon cycling in peatlands is driven by a combination of chemical, biological and 

physical processes. Carbon losses occur as a result of microbial synthesis of organic 

matter resulting in the release of carbon dioxide through respiration, and partially 

degraded organic compounds into the peat solution in the form of DOC. The 

biological component of the cycle is thereby represented by the composition of the 

microbial community (Laiho 2006). In order to ensure the microbial community is 

appropriate for organic matter decomposition, the correct physical and chemical 

conditions to support that community need to be present (Blodau 2002). 

The physical blanket peatland environment is primarily water-logged and cool, 

owing to the location of these peats in upland areas with low temperatures and heavy 

rainfall. The cool, saturated conditions limit rates of microbial activity (Blodau 

2002), while the saturated conditions can also impair the ability of gases to diffuse 

through peat profile due to low porosity (Iiyama & Hasegawa 2005) . 

The chemical composition of the peatland carbon cycle is represented by nutrient 

status and the composition of the peat substrate. Peatlands are renowned for being 

nutrient poor ecosystems upon which only selected plants can survive owing to the 

paucity of nutrients, and the cold, waterlogged and acidic environment (e.g. Gorham 

1991, Charman 2002). In order to synthesise the organic matter inputs into the peat 

from decaying plants, microbes rely on a supply of nutrients. The degree to which 

the organic matter can be synthesised depends on the composition of the substrate. 

Labile substrates are deemed to be of high quality and are easily synthesised (e.g. 

holocellulose); while recalcitrant substances (e.g. lignin) have larger and more 

complex chemical structures, and as such, are more difficult for microbes to degrade 
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(Berg 2000). Substrate quality is a direct function of the plant community growing 

on peatlands, which in turn is dependent on the availability of nutrients and to some 

extent the acidity of the local environment (Laiho 2006). 

Land management has unquestionably influenced the chemical, physical and 

biological characteristics of the peatland carbon cycle as well as losses of carbon. 

How losses of carbon compare between differently managed peats is poorly 

understood and little is known about how land management affects the chemical and 

physical drivers of the carbon cycle. By concentrating on the main carbon loss 

pathways, information can be attained which will enable future conservation efforts 

to identify which management practices are the most damaging from a carbon 

cycling perspective. Analysis of the physical and chemical drivers of the peat carbon 

cycle will enable an understanding of the dominant drivers of the carbon cycle in 

managed peatlands and to assist in identifying whether they are different from those 

in unmanaged peatlands. Furthermore, by understanding which properties are most 

affected by management, future restoration work can focus on addressing these 

parameters, and as such, seek to promote carbon storage in the future. 

The aim of this thesis is to be achieved through six objectives which are detailed 

below alongside a rationale for each. 

1.4.2 Objectives 

Objective 1. To establish how concentrations of nutrients required in the carbon 

cycle for synthesis of carbon stocks compare between differently managed peatlands 

within the upper 50 cm of the peat profile. 

The role of nutrients (both micro and macro nutrients) in peatland carbon cycling is 

twofold. Firstly, nutrients are essential to plant growth, and secondly they are 

required by microbes to synthesise organic matter (Blodau 2002). Examining the 

differences in nutrient concentrations between differently managed peats and a an 

unmanaged site will allow the effects of land management to be determined. By 

understanding how changes in land management affect nutrient concentrations, 

differences in carbon losses may be accounted for and the data provided will aid 

future conservation efforts. A comparison of surface concentrations with those at 
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depth (to the top of the permanently saturated zone) permits an assessment to be 

made as to whether land management has influenced the whole of the saturated zone 

or just the surface of peatlands. Such data could be useful in the future when 

identifying the extent of restorative works required to increase carbon sequestration 

and reduce carbon losses. 

Objective 2. To investigate what differences exist in the carbon stocks of 

differently managed peatlands and to identify how carbon quality varies as a result 

of peatland management, with a focus on establishing which peats are the most 

recalcitrant. 

While measurements of carbon losses have been made for some managed peats and 

comparisons made between one or two treatments (e.g. Ward et al. 2007, Clay et al. 

2010b, Rowson et al. 2010); few data exist on how the quantity of carbon stored in 

peats is influenced by management. Such data will allow updates to be made to 

estimates of carbon stocks within the UK for areas where data on management are 

available. In addition, efforts to restore peatlands can focus on those where carbon 

stocks are evidently depleted, and those where there is most carbon, can be 

conserved. While identification of the effect of land management on carbon stocks 

is important, understanding how the quality of carbon varies is vital. Less 

recalcitrant carbon species are likely to be rapidly depleted through microbial 

decomposition (Kirschbaum 1995), resulting in greater losses of carbon in both 

fluvial and gaseous forms. At present, data on substrate quality between differently 

managed peatlands have not been published. Studies to date have focussed on either 

the composition of the carbon stored in the vegetation or on the rate of degradation 

of substrate materials within different peatlands i.e. the response of substrate to 

environmental conditions has been analysed (Laiho 2006) but the composition of the 

actual peat itselfhas rarely been assessed. 

Objective 3. To identify the effect of land management on the physical drivers of 

the peatland carbon cycle. 

The physical structure of peat is partially responsible for regulating rates at which 

carbon is lost. The physical structure of peat in terms of bulk density and porosity is 

rarely considered, and as such, few data exist in published literature on the effects of 
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land management on the physical structure of peats. The structure of managed peats 

is anticipated to be affected by trampling and compaction caused by grazing sheep 

(Evans 2005), inputs of ash (Mallik & FitzPatrick 1996) and compression due to 

drains (in both drained and afforested sites) and the presence of trees (Minkkinen & 

Laine 1998). Changes in the structure are anticipated to affect the transport of 

fluvial and gaseous forms of carbon through the peat profile. By understanding the 

nature and extent of the changes to the physical environment, the causes for any 

differences in carbon loss rates between managed peats should be better understood. 

Objective 4. To establish how peatland management affects carbon dioxide losses 

and environmental controls on carbon dioxide losses. 

Carbon dioxide is one of the dominant forms of carbon lost from peatlands, and 

accounts for between 56 % (Worrall et al. 2003b) and 77 % (Dinsmore et al. 2010) 

of the carbon budget in UK blanket peatlands. To date, research in the field on 

losses of carbon dioxide from differently managed peats has been confined to 

comparisons of one or two treatments, sometimes with an unmanaged site. 

Comparisons between burnt and grazed sites have been contradictory, some studies 

have suggested that management reduced carbon dioxide losses compared to 

unmanaged sites (Ward et al. 2007) while others found that less carbon dioxide was 

lost from unmanaged sites (Clay et al. 2010b). Clarity needs to be sought through 

additional measurements of burnt and grazed sites, but also comparisons need to be 

made with drained and afforested sites to provide an overview of the impact of the 

four main methods of land management on peatland carbon dioxide losses. Whilst 

examining losses of carbon dioxide through respiration, gains should also be 

measured to identify whether sites that are losing the most carbon dioxide are 

adsorbing more or less, thus providing an insight into the carbon dioxide balance of 

managed peats. Thus objective four provides critical information on the impact of 

management on carbon gains and losses and consequently allows the impact of 

peatland management on climate change to be considered. 

Objective S. To determine how concentrations of DOC in peat solution varies with 

depth and between managed sites. 
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DOC is lost from peatlands by throughflow, overland flow and through soil pipes 

(Holden et a1. in review) before being released into streams and rivers. In recent 

decades, significant increases in DOC losses from peatlands have been recorded 

(Evans et a1. 2005). Management of peatlands has been cited as one possible cause 

for observed increases, yet comparisons between the peat solutions of differently 

managed sites have not been carried out for the four main methods of peatland 

management in the UK and compared to an unmanaged site. By examining 

differences between managed and unmanaged sites, a baseline can be established to 

identify how DOC concentrations are affected by land management. In addition, by 

analysing variation with depth, the influence of management on different parts of the 

peat profile can be identified. 

Objective 6. To examine changes in the water chemistry of managed peatlands, 

with a focus on the properties that are relevant to DOC loss. 

Of the many theories that have been proposed to explain increased levels of DOC in 

peatJand streams, alterations to the peat solution chemistry appear to be one of the 

most credible and favoured (Evans et a1. 2006a). Reductions in the water table have 

been observed to cause the onset of sulphur reduction to sulphate, and subsequently 

cause the pH of the peat solution to fall. Increasingly acidic conditions reduce rates 

of microbial activity and hence losses of carbon. Once water table levels recover, 

however, the pH and rates of microbial activity increase, and subsequent losses of 

DOC have been observed to exceed those recorded prior to the lowering of the water 

table (Clark et a1. 2006). Modifications to the peatland environment have been 

recorded as a result of land management, in particular, water table levels (Worrall et 

a1. 2007a, Holden et a1. 2011) which are likely to simulate drought conditions and/or 

cause changes to the chemistry of the peat solution. The effect of land management 

on peat solution chemistry, in particular sulphate and pH is relatively unknown, but 

could provide valuable knowledge to aid understanding of the causes for observed 

increases in DOC concentrations, and potentially identify where losses might be 

greatest in the future. 
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1.S Proposed Methodology to Address Aims and Objectives 

This thesis provides an assessment of carbon losses and drivers of the carbon cycle 

across four differently managed sites (burnt, grazed, drained and afforested) with a 

unmanaged site for comparative purposes. The selection of one field location where 

all four key management practices are employed provided a unique opportunity to 

make comparisons between treatments without confounding factors such as 

differences in climate and geology influencing the results. 

To fulfil the aims and objectives described in Section 1.4, a combination of field 

monitoring, peat core collection and laboratory analyses were carried out. The 

drivers of carbon cycling were studied through analyses of the chemical properties of 

the peat and peat solution (objectives 1 and 2) and the physical properties of the peat 

(objective 3). Data on environmental conditions in the field were collected through a 

combination of on-site monitoring and through the provision of data from the local 

weather station. Monitoring of gaseous carbon gains and loss (objective 4) and peat 

solution chemistry and aqueous carbon losses (objectives 5 and 6) was carried out in 

the field. 

1.6 Thesis Outline 

Chapter 2 provides a review of published literature on the formation and location of 

peats, the carbon cycle and its drivers, a comparison of peatland carbon budgets and 

details of peatland management in the UK. Chapter 3 introduces the chosen field 

site and provides a rationale for the selection of the site, and background information 

on the location, climate geology, soils and management practices of the site. Details 

of the fieldwork, sampling design and equipment that was installed to address 

objectives 1 to 6 are also provided. 

The results of analysis of nutrients and acidity in peat samples collected from 

differently managed peats to fulfil objective one are presented in Chapter 4. A 

discussion of differences in concentrations between and within each management 

practice is provided, and differences with depth are discussed. The effects of 

combining burning and grazing and altering the frequency with which peatlands are 

burnt are also examined. 
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Chapter 5 addresses objective two by providing an assessment of variations in 

carbon stocks between differently managed peatlands and with depth. The results 

from experiments to characterise the quality of the carbon in samples collected from 

the surface of the four main management practices and unmanaged site are presented 

and discussed to determine whether management affects the recalcitrance of carbon 

stocks in peats. 

Differences in losses and gains of carbon dioxide between differently managed sites 

are presented in Chapter 6 in order to address objective four. The results of analyses 

of the peatland environment in terms of temperature, water table and the density and 

porosity of the peat are presented and discussed to fulfil objectives three and four; 

and to provide some interpretation of the results of the measurement of carbon 

dioxide losses and gains. 

Data on DOC concentrations in the peat solution in managed peats are presented in 

Chapter 7, alongside results from analysis of water samples for pH and sulphate, and 

data on water table depth which are used to provide an explanation of differences in 

DOC concentrations in the peat solution. Differences in peat solution chemistry 

between differently managed sites are discussed and incorporate objectives five and 

SIX. 

Chapter 8 provides a summary of the key findings of each of the research chapter 

and discusses the implications for carbon budgets and drivers of the carbon cycle. 

The importance of seasonal fluctuations in carbon losses and the limitations of the 

generic diplotelmic peatland model are also discussed. 

Chapter 9 summarises the findings of the work presented in Chapters 4 to 7, and 

offers some final conclusions and recommendations for further work. 
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2 THE EFFECTS OF LAND MANAGEMENT ON THE DRIVERS OF 

CARBON CYCLING IN PEATLANDS 

2.1 Introduction 

This chapter provides a critical review of research on carbon cycling in peatlands 

with a focus on the drivers of the carbon cycle. The main pathways through which 

carbon can be lost are examined, and the factors which determine rates of loss 

considered. The most common methods of peatland management in upland Britain 

are introduced and attention is given to the research that has been carried out for 

each management practice. Finally, the impacts of each management method on the 

key drivers of the carbon cycle are noted. 

2.2 The Formation of Upland Peats 

Peats are highly organic, nutrient poor, acidic soils fonned from degraded plant 

materials under waterlogged conditions. Peat fonnation occurs by one of two 

methods: hydroseral succession (also known as terrestrialisation) or paludification 

(Charman 2002). Terrestrialisation occurs when surface water bodies infill with 

organic material and the ecosystem is transfonned from being an aquatic to a 

terrestrial peatland. Initially, mats of peat develop before the entire basin becomes 

infilled with organic matter. The final transition into a peatland depends on the 

water table remaining sufficiently high enough to allow organic matter to continue 

accumulating at a faster rate than it is decomposed (Rydin & Jeglum 2006). 

Paludification refers to the fonnation of peat over mineral strata without the presence 

of water-logged conditions prior to initiation. It is the most common method of 

peatland fonnation, and is often found in areas that have been previously afforested 

(Charm an 2002). There are four means by which paludification can occur: local 

climatic change, upslope paludification, the presence of iron pans, and anthropogenic 

activity. Changes in local climatic conditions which cause subsequent changes in 

local hydrological conditions are the most common causes for paludification. Such 

conditions allow the accumulation of organic matter and debris at a rate that exceeds 

decomposition (Charm an 2002). Upslope paludification is the process under which 

peatlands expand across mineral soils, and is enabled by rising water table levels at 

the same time as the peat rises. Under such conditions, adjacent mineral soils 
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become water-logged, thus creating suitable conditions for further peat growth. 

Paludification may also be instigated due to the formation of oxide pans within 

mineral soil profiles. Pans create an impermeable layer within the soil due to the 

binding of mineral soil particles with aluminium, iron or manganese oxides. The 

layer prevents infiltration of water, which in tum induces saturated conditions under 

which peats can form, provided there are sufficient inputs of vegetation. 

Anthropogenic activity may also cause paludification. Tree clearance in areas where 

rainfall rates are sufficient to increase the wetness of soils, can lead to succession 

with plant species that are commonly associated with peats. This method of 

paludification is thought to be responsible for the development of many of the UK's 

peatlands (Rydin & Jeglum 2006). 

Peatlands may be classified on the means through which they receive inputs of 

water: ombrotrophic and minerotrophic. Ombrotrophic peatlands rely almost 

entirely on precipitation for inputs of water, nutrients and minerals. Minerotrophic 

peatlands are not hydrologically isolated from the underlying strata and are 

hydrologically connected to other strata. Ombrotrophic peats have a high water 

content due to their location in areas with high rates of precipitation (Bragg & Tallis 

2001). Minerotrophic peats receive water not only from precipitation but also from 

telluric sources. The connection between minerotrophic peat and underlying strata 

results in peats with a greater nutrient content than ombrotrophic peats. 

Ombrotrophic peats are typically referred to as bogs, which are acidic (PH<4) and 

often dominated by Sphagnum mosses with a combination of sedges, herbs and 

woody plants. Minerotrophic peats are typically referred to as fens, with a pH 

ranging from 4.0 to 6.0 i.e. acidic to slightly acidic. Fens support a wider variety of 

plant species including grasses, sedges, herbs, mosses and woody species. The 

nutrient content of fens is often greater than bogs owing to inputs of nutrients within 

groundwater, in addition to the atmospheric inputs on which bogs rely on (Wheeler 

& Shaw 1995). 

Within the ombrotrophic bog category, there are two sub-categories: raised bogs and 

blanket bogs. Raised bogs have a distinctive convex profile that has a dome-like 

appearance. They can only develop in areas where precipitation exceeds rates of 
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evaporation and runoff. Blanket bogs cover the entire landscape of a particular area, 

from mounds and slopes to valley bottoms (Charm an 2002). 

Many peatlands feature distinctive microforms, resulting in what is termed as a 

patterned peatland. The three most common microforms are: hummock, lawn and 

hollow. Hummocks are dry mounds which feature a thick aerobic surface layer that 

is described as fairly decay resistant. Hollows are water filled depressions, and 

lawns occupy the area in between hummocks and hollows (Belyea & Clymo 2001). 

Hollows have sparse vegetation dominated by mosses while lawns often feature 

graminoids and hryophytes (Rydin & Jeglum 2006) . 

• , 

Figure 2-1 Location o/Blanket Bogs in Britain (Holden 2005b) 

Blanket peatlands occupy approximately 8 % of the UK landmass (Figure 2-1). 

Owing to the climatic conditions required for peatland formation, most UK peats are 
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confined to areas of the north and west, with 10.4 % of Scotland and 7.7 % of Wales 

covered by peatlands. These areas of the country are also suitable for peatland 

fonnation due to the presence of substantial areas of flat or slightly concave land 

situated at high altitude (Taylor 1983). In upland Britain, blanket peats tend to be 

located across plateaux or in gentle depressions, but rarely extend on to steep slopes 

(Moore 1975). Approximately 87 % of UK peatlands are blanket peats (Baird et al. 

2009). 

Peatlands are characterised by the presence of a thick layer of organic material that 

has accumulated over hundreds to thousands of years. The organic matter content of 

peats is often 50 to 60 %, in some cases more (Shepherd et al. 2010) resulting in 

soils with a high carbon content. Initially decay takes place under aerobic 

conditions, but as the structure of the plant material begins to collapse, the bulk 

density increases, and the partially decomposed matter is pushed beneath the water 

table (Clymo 1984). UK peatlands grow at an average rate of approximately 1 mm a 

year, depending on rates of decay (Charman 2002). Peat typically grows as the 

organic matter from decaying plants accumulates at faster rates than the plant 

materials are degraded due to the water-logged environment (Moore 2002) and to the 

inability of the microbial community to decompose peat at a rate that matches or 

exceeds primary production (Moore 1975). 

Peat profiles are often sub-divided into two sections, the upper layer is referred to as 

the acrotelm. The acrotelm is an aerobic layer where most plant degradation takes 

place. This layer has a fluctuating water table, high hydraulic conductivity, a 

plentiful supply of micro-organisms synthesising inputs of litter and has live plants 

growing on it (Ingram 1978). The catotelm is located beneath the acrotelm, and is 

permanently saturated, consequently, anaerobic conditions prevail. Rates of 

degradation in the catotelm are much slower than those found in the acrotelm. The 

boundary between the two layers rises as the peat accumulates (Clymo 1984). 

The division of peats into two distinctive layers (the acrotelm and ---<;atotelm) is 

described as a diplotelmic model, that has been widely accepted by peatland 

scientists since it was first proposed approximately 60 years ago (Morris et al. 2011). 

The model provides a useful basis on which to begin to explain concepts relating to 

peatland ecohydrology, and appears to be widely accepted amongst the peatland 
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researchers, however, suggestions have been made that the model is oversimplified 

(Holden & Burt 2003, Morris et al. 2011). The model suggests that a simple division 

exists between saturated and unsaturated zones, without considering the role of peat 

pipes providing linkages between the profile, or the role of preferential flow pathway 

in governing infiltration and runoff (Holden & Burt 2003). In addition, the 

diplotelmic model assumes that the boundary between the two zones is static, 

however much evidence exists to suggest that this is not the case, and the surface of 

the peatland fluctuates seasonally in response to changes in the volume of water 

stored in the peat. The presence of microforms across patterned peatland is ignored 

by the diplotelmic model yet they have a significant bearing on peatland hydrology 

and decomposition (Morris et al. 2011), thus caution needs to be taken when 

interpreting data using the traditional diplotelmic model. 

2.3 Carbon in Peatlands 

Owing to their high organic matter content, peatlands store vast quantities of carbon. 

Despite only occupying 3 % of the world's landmass, peats store one third of global 

terrestrial carbon stocks (Gorham 1991). Carbon is lost from peatlands in gaseous 

and aquatic forms. Where accumulation of carbon exceeds carbon losses, the 

peatland is referred to as a carbon sink, and where carbon losses exceed carbon 

gains, the peatland becomes known as a carbon source. 

Peatland carbon budgets provide an indication of whether a peat is a source or a sink 

of carbon. Calculations of carbon budgets vary greatly depending on the site, the 

components of the budget that are measured, the scale of the measurement and the 

methods of measurement used, resulting in some sites being considered as both sinks 

and sources between different assessments. A summary of the main components of 

peatland carbon budgets is presented below, to underpin a discussion of budget 

calculations that have been published to date. 

2.3.1 Main Components of the Peatland Carbon Budget 

Figure 2-2 highlights the main pathways through which carbon may be lost from 

upland peats. 
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Figure 2-2 Simplified Carbon- Loss Pathways from an Ombrofrophic Peat/and 

2.3.1.1 Carbon Dioxide 

Carbon dioxide is primarily lost from peats as a result of the decomposition of 

organic matter by micro-organisms and respiration from roots (Moore et a1. 1998). 

The rate of decomposition depends on a number of factors including substrate 

quality, aeration, peat chemistry, pore-water chemistry and the commuruty of 

microbes involved in the breakdown (Yavitt et a1. 2000). In addition environmental 

controls such as temperature and moisture content are also key driver of carbon 

cycling (Laiho 2006). Net Ecosystem Exchange (NEE) is the difference between the 

amount of carbon gained through primary production and that lost through 

ecosystem respiration. Further detajls of the drivers of carbon dioxide production in 

peats are presented in Section 2.4.1. 

2.3.1.2 Methane 

Methane is produced within the anaerobic zone of the peat and moves up through 

the profile and is released into the atmosphere through diffu ion ebullition or 

vascular plant roots. The rate of methane production is controlled by methanogen 

and methanotroph activity within the peat profile, as well as rates of methane 

transport (Moore et a1. 1998). Methane emissions are controlled by environmental 

conditions such as temperature and the level of the water table, and the composition 
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of the peat itself (Bellisario et al. 1999). Lower water table levels are commonly 

associated with decreases in methane emissions (Gorham 1991). Methane may be 

oxidised to carbon dioxide as it passes through the acrotelm. Despite comprising 

only a small part of the carbon budget (see section 2.3.2), methane has a much 

greater global warming potential (GWP) than carbon dioxide. Losses of methane 

have been calculated as having a 25 times greater GWP than carbon dioxide over a 

100 year timescale (Baird et al. 2009). Methane is however less persistent in the 

atmosphere than carbon dioxide (Walker & King 2008). 

2.3.1.3 Dissolved Organic Carbon (DOC) 

DOC may be described as a complex collection of organic carbon molecules 

produced as a result of plant decay (Moore et al. 1998). DOC is lost from the peat 

profile and into the peat solution as a result of microbial synthesis of carbon, root 

exudation, leaching during storm events and as a consequence of erosion of soil 

organic matter (Hope et al. 1994). The release of DOC from peatlands results in the 

waters of peatland catchments having a characteristic brown colour, which is 

sometimes used as a surrogate measure of DOC concentration (Wallage & Holden 

2010). Causes of DOC losses remain poorly understand and are the subject of much 

speculation (Blodau 2002). Further discussion of possible causes of DOC losses are 

provided in Section 2.4.2. 

2.3.1.4 Particulate Organic Carbon (POC) 

POC is lost from peatlands as a result of erosion. Carbon adheres to the eroding 

particles that are removed as overland flow. Numerous gaps exist in current 

understanding of poe transport from peatlands into watercourses, thus assessments 

of the contribution of poe to carbon budgets are often prone to errors (Evans & 

Warburton 2007). The release of carbon from land into riverine environments is 

thought to be dependent on the nature of the catchment, local climatic conditions, 

rates of discharge and the nature and presence of vegetation growing on the peat 

(Hope et al. 1997). Rates of runoff in response to rainfall events are also important 

(Worrall et al. 2007d). 

Soil pipes provide an additional pathway through which poe can be lost from 

peatlands. Up to 10 % of streamflow can pass through soil pipes before entering the 
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stream channel (Holden & Burt 2002), during which time, additional carbon in the 

fonn of pac may be lost as suspended sediment (Holden 2005a). In heavily eroded 

catchments, pac has been identified as one of the most significant loses of fluvial 

organic carbon, with losses exceeding DOC. Significant spatial variations in pac 

concentrations have been reported; therefore highly detailed sampling of eroded 

peatlands is required where carbon budgets are to be calculated accurately (Pawson 

et a1. 2008). The high degree of spatial variability will make general predictions for 

carbon loss in the future prone to error. pac is thought to be oxidised and 

transfonned into gaseous carbon, thus pac could provide a significant feedback to 

climate change (Pawson et a1. 2008, Evans et a1. 2006b). 

2.3.1.5 Dissolved Inorganic Carbon (DIC) 

DIC can be a product of weathering of the parent material (Worrall et a1. 2007c) or 

the product of rainfall inputs of carbon (Worrall et a1. 2005). In peatland stream 

environments DIC often takes the fonn of hydrogen carbonates, carbonate ions or 

dissolved free carbon dioxide (Dawson et a1. 2002). Causes of variations in DIC 

releases from peatlands have not been identified, but are likely to be linked to 

variations in carbon dioxide concentrations. As will be seen in section 2.3.2, DIC is 

only a minor component of the peatland carbon cycle, owing to the acidity of the 

peatland environment (Dawson et a1. 2002). 

2.3.2 Carbon Budget Calculations 

Much effort has been put into identifying how much carbon is being lost from peats, 

and most studies focus on one or more of the components of the carbon budget 

described above. A few studies have used a combination of in-situ monitoring and 

modelling techniques (based on published data, or values from which actual losses 

can be estimated) to calculate whole carbon budgets in an attempt to ascertain 

whether peats are sinks or sources of carbon. For ease of reference, whole carbon 

budgets are considered to be those where both gaseous and fluvial losses of carbon 

were included. A summary of published whole carbon budgets is presented in Table 

2.1, those selected for the table contain fluvial and gaseous losses of carbon, but did 

not necessarily measure all five components of the carbon budget detailed above. It 

is acknowledged that this is not a finite list of all carbon measurements carried out to 
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date, and that many studies exist that have measured just one of the carbon loss 

pathways. Studies where just one pathway was measured for a managed peatland are 

noted later in this section. 
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AlI units are expressed as g C m·l yr-'. Negative values = a sink, positive = a source. Values in italics are based on interpolation and/or values from published literature rather than direct measurement. Blank - no 
data • Measured total organic carbon, therefore includes POe as well as DOC. •• based on 6 years data. I. Range of values reflects the annual variations for the time period over which the budget was calculated. 
2. Values represent the mean for the time period over which the study was conducted 3. Catchment scale study 4. Plot scale study 5 - Seasonal variations identified 6. Seasonal variations not presented. 
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Early work carried out by Garnett et al. (2001) identified the Moor House National 

Nature Reserve (NNR) in the North Pennines to be a carbon sink based on 

measurements of peat depth. Garnett et al. (2001) however suggested that work on 

the UK carbon inventory using two dimensional models is insufficient, and that 

further work is required using data on variations in soil thicknesses. More recent 

work has focussed on measurement of actual fluxes either at plot or catchment scale. 

Carbon budget calculations made by Worrall et al. (2003b) for Moor House NNR (an 

intact peatland) were among the first to be carried out for a UK peatland. The 

measurements included fluvial carbon fluxes and used data from previous studies to 

calculate releases of carbon dioxide and methane. Loses of carbon through 

subsurface flow were not calculated. The results of the study showed the site to be a 

small carbon sink (Worrall et al. 2003b). The budget was updated using information 

on primary productivity and inputs from dry and wet deposition to provide a more 

realistic carbon budget. The results indicated that the catchment was considered to 

be a source of carbon and within the next 10 years (using current climate change 

estimates), that source could double in size (11.2 to 20.9 g C m-2 yr-l) (Worrall et al. 

2007c). Further updates to the budget included more measurements in the field, and 

concluded that the site was a sink; Net Ecosystem Exchange (NEE) comprised the 

largest part of the budget, followed by losses of DOC (Worrall et al. 2009). 

Elsewhere in the UK, studies have supported the findings of this most recent carbon 

budget for Moor House. At Auchenforth, Scotland, measurements of carbon losses 

from streams were incorporated into budget calculations and suggestions made that 

losses in streams could become greater than the amount of carbon absorbed from 

NEE (Billett et al. 2004). Further work at Auchenforth has included measurement of 

all major pathways, including in-stream losses of greenhouse gases. The findings 

demonstrated that downstream losses and losses in surface waters were an integral 

part of the carbon budget and should be incorporated in future calculations to 

provide a complete carbon budget. Excluding losses from surface waters would 

have resulted in the carbon sink appearing to be much greater than the one that was 

calculated (Dinsmore et al. 2010). 

Much of the work carried out in the UK has been irrespective of the micro

topography of the peat and yet the exact points at which gaseous fluxes were 
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occurring may impact on the budget values as there maybe hotspots of gaseous 

carbon loss (Morris et al. 2011) which result in the under or over-estimation of 

fluxes. Thus, detailed characterisation of gaseous losses from UK peatlands with a 

patterned micro-topography is needed. Studies carried out on Finnish boreal mires 

identified that hummocks were releasing the most carbon dioxide (206.4 g C m-2yr-l) 

compared to lawns (140.4 g C m-2 yr-I for Eriophorum species and 164.4 g C m-2yr-1 

for Carex species) and hollows (110.4 g C m-2 yr-I). Diurnal variations reflected 

changes in climatic conditions, and note was made that budgets can vary greatly 

from day to day (AIm et al. 1997). Further work carried out in Finland examined the 

effects of an exceptionally warm and dry summer on losses of carbon, and found the 

peat to be a source of carbon during warmer drier conditions. Greatest losses of 

carbon were from hummocks, and least from the hollows (AIm et al. 1999b). 

The importance of variation in local climate was also noted in calculating the carbon 

budgets of peatland streams in Scotland and Wales. DOC was the largest component 

of the budget, and losses were greatest during the summer and early autumn. Losses 

from the Scottish site (Brocky Bum) were greater than those at the Welsh site (Upper 

Hafren) due to the thicker accumulation of organic matter and lower annual 

precipitation (Dawson et al. 2002). Climatic variation controls seasonal variations in 

carbon losses, and typically the winter months are assumed to lose minimal amounts 

of carbon dioxide owing to reduced microbial activity caused by lower temperatures 

and a greater proportion of the peat being saturated. Work in Canada found carbon 

sequestration rates during the non-growing season to be smaller than the growing 

season, whilst carbon dioxide continued to be emitted, albeit at lower concentrations 

(Roehm & Roulet 2003). This study concluded that seasonal variations in carbon 

cycling need to be taken into account when determining carbon budgets. 

Turetsky et al. (2002) suggested that peatland disturbances have had major impacts 

on carbon stocks and are likely to tum peatlands into sources of carbon rather than 

sinks. In light of such suggestions some studies have endeavoured to calculate 

complete peatland carbon budgets for managed peats. 

As efforts are made to reduce the potential effects of climate change on uplands, 

more infonnation is needed to understand the influence of management techniques 

on carbon budgets from peatlands. Efforts can then be made to determine which 
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methods might enable carbon stocks to be preserved in the future. To date, work on 

carbon budgets carried out on managed peats has typically focussed on single 

management practices, and in some cases, reference has been made to an unmanaged 

site for comparative purposes. To date, only two attempts have been made to 

produce full peatland carbon budgets in the UK. Further details of management of 

peatlands are provided in Section 2.5. 

The significance of DOC and losses of carbon dioxide identified in studies of 

pristine peats (Moor House and Auchenforth) was mirrored during studies of two 

recently blocked, drained catchments in Hexhamshire, northern England. Both 

recently blocked, drained catchments were identified as sources (Rowson et al. 

2010). Carbon budget calculations for managed peatlands at Moor House in the 

North Pennines found grazed, burnt and unmanaged peats to be sources of carbon, 

with greatest losses coming from the unmanaged site (Clay et aI. 2010b) contrary to 

the findings of previous studies at Moor House, where unmanaged parts of the 

reserve have been identified as carbon sinks (Worrall et aI. 2009). In each case, 

management appears to be causing carbon sinks to become carbon sources. The 

effects of management are not irreversible however, as shown by Bortoluzzi et al.. 

(2006), who reported the findings of respiration monitoring carried out on a restored 

peatland in France. Restoration work had been ongoing for 20 years. Areas where 

Sphagnum had regenerated sequestered the most carbon (122 to 183 g C m-2a-\ 

compared to areas of bare peat were identified as sources of carbon (carbon 

exchange = 19 to 32 g C m-2a-I
). 

Although carbon budgets are inherently useful in understanding the extent to which 

carbon stocks are augmenting or diminishing, consideration needs to be given to the 

stage of vegetation growth that has been achieved. Clay et al (201 Ob) identified 

greater losses of carbon from unmanaged peats compared to burnt and grazed sites, 

where rates of primary productivity were higher, and thus rates of carbon 

sequestration were greater. Afforested peats are often described as carbon sinks, 

however, once the trees have reached maturity, their ability to sequester carbon 

reduces (Cannell et al. 1993). 
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2.4 Drivers of Carbon Cycling in Peatlands 

As detailed in the section above, carbon dioxide and DOC are the main pathways 

through which carbon is lost from managed peatlands, and therefore shall be the 

focus of the remainder of this review. A summary of the main drivers of carbon 

dioxide and DOC loss from peat is presented in the sections below. A summary of 

the linkages between the drivers of the carbon cycle and losses of carbon is presented 

in Figure 2-3. 
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Figure 2-3 Conceptual Model Illustrating the Principal Linkages between the Drivers of the Peatland Carbon Cycle 
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2.4.1 Controls on Carbon Dioxide Lossesfrom Peat 

Carbon dioxide is released from peatlands due to microbial respiration. The 

dominant controls on carbon dioxide losses from peatlands are environmental 

conditions, substrate quality, and nutrient status (Laiho 2006). Porewater chemistry, 

and the community of microbes involved in the breakdown of material are also 

relevant (Yavitt et al. 2000). Each driver is dependent on one or more of the other 

drivers. For example substrate quality and the plant community from which the 

substrate is derived, are governed by nutrient availability, water chemistry and water 

table (Glaser et al. 1990). Each of the three key drivers of carbon dioxide production 

and release are discussed in tum in the subsequent sections. 

2.4.1.1 Environmental Conditions 

Temperature, water table levels and acidity are the dominant factors that govern the 

environmental conditions within peatland ecosystems. Emissions of carbon dioxide 

vary on daily, seasonal and yearly timescales according to changes in these variables 

(Moore & Dalva 1993). Higher temperatures increase rates of microbial 

decomposition of organic matter in peats; therefore losses of carbon dioxide also 

increase with temperature. Very low rates of carbon dioxide are released at 

temperatures at or below O°C, whilst rates have been found to increase exponentially 

above O°C (Dioumaeva et al. 2003). Temperature is not, however, the only control 

on microbial activity within peatlands, therefore no single exponential relationship 

can be used to predict rates of carbon dioxide loss. Whilst temperature can regulate 

the rate of carbon decomposition, temperatures rarely control whether or not 

decomposition takes place, factors such as oxygen availability, moisture content, pH 

and nutrient status are also relevant (Williams & Crawford 1983). 

Water table drawdown results in an increase in the thickness of the aerobic layer, 

thus creating more favourable conditions for microbial decomposition. Rates of 

microbial decomposition are much faster in the acrotelm (Clymo et al. 1998) thus 

resulting in greater losses of carbon dioxide. The hydrological regime of a peatland 

is considered by some as the most important control on rates of carbon dioxide loss 

(Nilsson & Bohlin 1993). Scanlon and Moore (2000), however, suggested that a 
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combination of lower temperatures and increasingly anoxic conditions were required 

to reduce rates of substrate degradation. 

Studies of mesocosms on which water table levels and temperatures were varied 

found water table level to have little effect on carbon dioxide losses. Increases in 

temperatures accounted for 80 % (p<O.OOI)of the variation in carbon dioxide 

emissions (Updegraff et al. 2001). As the decomposition process advanced, 

temperature had less influence on the rate of degradation, and factors such as 

nitrogen content have a greater bearing (Berg & Meentemeyer 2002). Carbon 

dioxide losses from columns of peat studied in laboratory conditions showed little 

difference when a drop in water table of 10 em was instigated. Fluctuations in water 

table level, however, resulted in significant increases in carbon dioxide losses (Aerts 

& Ludwig 1997). Optimal conditions are thought to exist for carbon mineralisation 

in the zone within which the water table fluctuates, thus resulting in greater losses of 

carbon dioxide (Belyea 1996). 

Changes in water table levels were observed during a field experiment in Canada 

which compared artificially drained peats with undrained peats. Few differences in 

carbon dioxide losses were recorded between the sites, differences were attributed to 

the increased density of the peat and changes in vegetation community rather than 

water table levels (Strack & Waddington 2007). Five years of continuous 

measurements of ecosystem respiration in Canada on a large ombrotrophic bog 

identified temperature as a key driver of respiration (~=0.62), but reduced water 

levels during summer had no significant effect on ecosystem respiration (~=0.11) 

(p<0.05 in both cases) (Lafleur et aI. 2005). 

Acidity has been identified as exerting a strong influence on rates of organic matter 

decomposition in peat (Eskelinen et al. 2009). The pH determines the composition 

of microbial community which is able to establish itself in the peat (Bardgett 2005) 

and therefore determines the rate of organic matter degradation. Ombrotrophic bogs 

have a low pH owing to inputs of precipitation being their only supply of water, 

resulting in less favourable conditions for organic decomposition, and the possible 

presence of toxic soluble compounds (Aerts et aI. 1999). 
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2.4.1.2 Substrate Quality 

Substrate may be defined as the litter that has entered the peat profile and is 

undergoing decomposition. Substrate quality is a measure of the ease with which the 

material can be decomposed by microbes. Easily degraded compounds are 

considered to be of "high quality", whilst more recalcitrant materials are thought of 

as "low quality" (Berg 2000). Organic matter components such as "sugars, amino 

acids, starches, proteins and some hemicelluloses" are the most readily degraded 

compounds (Waksman & Stevens 1928 p 120). Celluloses, oils, some fats and other 

hemicelluloses are also easily degraded however the process takes longer than the 

aforementioned substrates. The most slowly degraded compounds include "lignins, 

waxes, cutins and some hemicelluloses" (Waksman & Stevens 1928 p 120). The 

quality of the substrate is directly linked to the plant from which it was derived, e.g. 

shrubs have been found to be recalcitrant owing to their high lignin content (Hobbie 

1996). In addition, carbon may be present in the peat in the form of black carbon, 

commonly referred to as char (Clay & Worrall 2011). Inputs of char occur on burnt 

peatlands and aer a result of vegetation being converted to pieces of black carbon 

which remains in the peat post-burning. This material is considered to make a 

positive contribution to the carbon stores in burnt peatlands (Clay & Worrall 2011) 

The carbon balance of peatlands is determined by the decomposability of the plant 

matter inputs to the peat (Limpens et al. 2008). Peats featuring easily degradable 

substrate are more likely to become carbon sources than sinks (Moore et al. 2007). 

However, where Sphagnum mosses comprise a significant proportion of the litter 

entering peat, the composition of the moss does not necessarily reflect the ease with 

which the substrate may be decomposed. Sphagnum is typically found in saturated 

and therefore anoxic areas of peatlands, demonstrating that whilst the plant material 

may be labile, if the environmental conditions within the bog do not favour 

decomposition, the material will not be degraded (Moore et al. 2007). 

Easily decomposable substrates tend to be found in the upper layers of the peat 

profile and are typically fully degraded before the organic matter moves down the 

profile/more peat accumulates. Organic matter becomes increasingly recalcitrant 

with depth owing to the increase in its age and therefore the length of time it has 

been subjected to microbial decomposition (Hilli et al. 2008). Studies of different 
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plant litters found that organic matter dominated by Sphagnum as opposed to sedges 

had a far greater carbon content (Updegraff et al. 1995). Other studies on Sphagnum 

have attributed low rates of decomposability to the poor nutrient content, acidity, and 

the very wet conditions that Sphagnum is commonly associated with (Heal and 

French, 1982). Studies of litter at Moor House, northern England found heather 

shoots and stems to be the most recalcitrant, whilst Rubus leaves were the most 

easily degraded (Latter et al. 1998). High concentrations of acid insoluble materials 

in litter are generally associated with low rates of carbon dioxide production (Shaver 

et al. 2006). Species with higher concentrations of water soluble carbon, e.g. needle 

litter tend to have higher rates of carbon dioxide loss (Domisch et al. 1998). 

Exponential models describing rates of litter decomposition often suggest that a 

point will be reached where the supply of litter approaches exhaustion. Rates of 

decay are expected to slow sufficiently with time, so that rates become negligible 

owing to both the recalcitrance of the organic matter and the absence of favourable 

conditions under which decomposition can take place (Latter et al. 1998). An 

adequate supply of utilisable substrate often limits microbial activity in peatlands as 

demonstrated by experiments in which additions of labile substrate (e.g. glucose) 

were made, generally resulted in increased carbon dioxide production (e.g. Dettling 

et al. 2006). Studies of microbial activity in peatlands in North America, however, 

failed to identify a significant increase in microbial activity following additions of 

substrate (Fisk et al. 2003). The lack of consensus can be attributed to the influence 

of environmental conditions within the peat being more favourable to decomposition 

in Dettling et al. (2006) compared to the study by Fisk et al. (2003) 

2.4.1.3 Nutrients 

Nutrients playa vital role in the peatland carbon cycle not only by supporting plant 

growth but also to enable microbes to synthesise organic material. Ombrotrophic 

bogs typically only receive inputs of nutrients from rainfall, nutrients released from 

root exudates and those held in the decomposing plants that form the peat. Nitrogen 

and phosphorus are typically in limited supply and therefore plant growth is inhibited 

in many peatlands (Charman 2002, Rydin & Jeglum 2006). Atmospheric inputs of 

nitrogen, however, reduce the effects of low nitrogen availability on net primary 

production (Blodau 2002). Studies in boreal peats have identified the binding of 

33 



Literature Review 

nitrogen to humus as a cause of nitrogen limitation which in tum reduces rates of 

decomposition (Prescott 2005). 

The presence and availability of nitrogen not only govern the plant species growing 

on a bog, but also determines the rate at which carbon is mineralised. Low 

concentrations of nitrogen contribute towards a high carbon to nitrogen (C:N) ratio 

which impedes rates of microbial activity and hence rates of carbon dioxide loss. 

Experiments involving fertilisation of peats found that additional nutrients had little 

effect on rates of respiration (Bubier et al. 2007), suggesting that nutrient availability 

is not the sole driver of carbon dioxide loss from peats. The addition of nitrogen to 

peats has been found to result in microbes converting the nitrogen into ammonia, 

consequently reducing the pH of the peat environment, and limiting carbon 

mineralisation further (Aerts & Toet 1997). Studies carried out over long periods of 

time have identified increased carbon dioxide losses from fertilised peats. At Mer 

Bleue, Canada, Basiliko et al. (2006) identified a decrease in losses in the first year, 

but as new plant materials entered the system in the second year, carbon dioxide 

losses increased. Peats with a high initial nitrogen content have been found to feature 

more recalcitrant material in the latter stages of decomposition, because high 

concentrations of nitrogen limit the formation of lignolytic enzymes, which are 

required to decompose the most recalcitrant compounds, which typically contain 

lignin (Berg & Meentemeyer 2002). The impact of nitrogen additions does, 

however, depend on the plant species concerned. Increased concentrations of 

nitrogen to bogs where Sphagnum mosses are present can result in not only reduced 

Sphagnum growth, but also increased decomposition and subsequently greater losses 

of carbon dioxide (Gerdol et at. 2007). 

Primary production in ombrotrophic bogs is thought by many to be controlled and 

limited by nutrient availability. Evidence exists, however, to suggest that rates of 

mineralisation of nitrogen and phosphorus are higher in bogs compared to fens 

(Verhoeven et at. 1990). This evidence does not concur with rates of carbon dioxide 

loss which are generally reported as being higher in fens than bogs owing to the 

more favourable conditions for decomposition. Limitations on primary productivity 

and therefore microbial degradation once the plant species have died must be 

attributable to factors other than nutrient supply. Suggestions have been made that 
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the presence of a lower pH or properties of water chemistry e.g. the presence of toxic 

compounds could be relevant (Aerts et al. 1999). 

Strong links have been identified between nutrient concentrations and methane 

production in peatlands (Nilsson & Bohlin 1993, Basiliko & Yavitt 2001). Such 

linkages could have an indirect impact on carbon dioxide production as methane is 

oxidised to carbon dioxide in the acrotelm. Much work on nutrients has assessed 

differences between different types of peatland e.g. ombrotrophic versus 

minerotrophic gradients have been examined between the different forms of peat. 

Keller et al. (2006) looked at the effects of nutrient additions on anaerobic 

respiration and methane production along an ombrotrophic - minerotrophic gradient 

in the USA. Changes in vegetation community and increased methane production 

were observed in response to additions of nitrogen and phosphorus in bog peats, 

however fen peats did not respond. The authors concluded that whilst nutrients exert 

controls over anaerobic carbon loss from peats, the effects were also dependent on 

the time-scale that was studied, and the type of peat examined. 

2.4.2 Controls on DOC in Peatlands 

DOC losses from peatlands are driven by a number of factors. Over the past four 

decades, DOC concentrations in rivers and lakes have increased rapidly (Worrall et 

al. 2004b). Much effort has been spent on identifying the underlying causes of these 

increases (Evans et al. 2006a). There is still much dispute as to the exact causes, but 

the main factors identified include environmental conditions (temperature changes, 

water table fluctuations), land management, the enzyme latch mechanism, reductions 

in sulphur deposition and subsequent reductions acidification and increases in 

riverine flow rates (Tranvik & Jansson 2002, Clark et al. 2005, Monteith et al. 2007, 

Freeman et al. 2001b, Freeman et al. 2001a, Holden et al. 2007b, Evans et al. 2006a). 

2.4.2.1 Environmental Conditions 

As with losses of carbon dioxide, increased temperatures provide micro-organisms 

with a more favourable environment in which to synthesise carbon, thus rates of 

activity increase with temperature (Fenner et at. 2007). On account of such rises in 

activity and subsequent DOC production, concentrations in peat solution vary 

seasonally, with highest concentrations during the summer months (Bonnett et at. 
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2006, Koehler et al. 2009). Temperature changes have also been noted as a key 

driver of DOC losses (Evans et al. 2005). 

Variations in water table levels have been associated with fluctuations in DOC 

concentrations in peats. Concentrations and rates of loss increase as the water table 

level falls owing to increased microbial synthesis of carbon stocks under aerated 

conditions (Freeman et al. 200Ia). Experimental work on peat columns identified a 

significant relationship between greater DOC concentrations and lower water table 

levels (Pastor et al. 2003). 

Debate exists as to the extent of linkages between DOC loss and water table levels. 

Laboratory simulations of reduced water levels (Blodau et al. 2004) and droUght 

conditions (Freeman et al. 2004a) failed to identify significant DOC losses over 

periods of 7 and 36 months respectively. Studies of long term DOC records by 

Worrall et al. (2003a) identified a time lag between lowered water tables caused by 

drought conditions and increased DOC losses. The time lag was attributed to the 

hydrophobic nature of peats; as time is required for peats to re-wet after drought 

periods before organic compounds can become dissolved into the soil solution and 

exported (Worrall et al. 2003a). 

Artificial drains have been found to cause even greater DOC concentrations, 

particularly in areas where drainage networks are dense (Mitchell & McDonald 

1995). Blocking drains in a bid to reduce DOC concentrations is becoming 

increasingly common, with the majority of studies suggesting that blocking results in 

reduced DOC concentrations. Detailed studies carried out by Wallage et al. (2006) 

identified lower concentrations of DOC in the peat solution adjacent to blocked 

drains compared to unblocked, and areas that had never previously been drained. 

Monitoring of a series of blocked and unblocked catchments over a period of two 

years in Allendale and Upper Teesdale, northern England also identified reduced 

DOC concentrations in blocked drains (Gibson et al. 2009). 

Drain blocking schemes have been found to successfully raise water table levels, 

although the extent of such rises varies between studies. Despite the rise in water 

table levels, not all studies have identified a corresponding decline in DOC 

concentrations. Work carried out in Canada has involved the re-introduction of moss 
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species in an attempt to facilitate re-wetting of the peat (Waddington et al. 2008). 

Blocking drains with heather bales has been found to lead to small increases in water 

table levels with an expectation that further recovery will occur with time (Wilson et 

al. 2010). Studies carried out in Wharfedale by Wallage et al. (2006) found 

indications that blocking of drains not only resulted in the raising of water table 

levels, but also reductions in DOC concentrations (of between 60 and 70 %) and the 

colour observed in water samples. Significantly higher water table levels were 

observed in an extensive study of numerous peatland sites across Scotland and 

northern England, and note was made that the method of drain blocking did not 

make a significant difference to DOC concentrations or the colour of the peat 

solution (Armstrong et al. 2010). Wilson et al. (2010) showed water table level 

recovery to be gradual and to vary between catchments. Their work indicated that 

post-drain blocking a decrease in DOC concentrations occurred, although the fluxes 

were dependent on rainfall. 

2.4.2.2 The Enzyme Latch Mechanism 

The release of additional DOC during periods of water level drawdown has been 

attributed to the increase in acrotelm thickness which provides microbes with aerobic 

conditions which favour organic matter degradation. The so-called "enzyme-latch 

mechanism" introduced by Freeman et al. (2001b) has also been cited as a cause for 

increased DOC losses during and after water level draw down. As the water table is 

lowered, the phenol oxidase enzyme is provided with a supply of oxygen which it 

uses to breakdown phenolic compounds. The phenolic compounds ordinarily 

provide a barrier to the decomposition of the most recalcitrant organic compounds. 

Once the phenolic compounds have been decomposed, hydrolase enzymes can then 

break down the more recalcitrant molecules, which even if only partly broken down, 

can be released as DOC. This process is assumed to continue after water table levels 

have risen again, provided sufficient phenolic compounds have been degraded. 

Without a lowering of the water table, the phenol oxidase enzyme cannot degrade 

phenolic compounds and thus acts as a "latch" that safeguards carbon stocks in 

peatlands from decomposition (Freeman et al. 2001b). 
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2.4.2.3 Sulphate Deposition and Acidification 

Since the early 1980s, deposition of sulphur from industrial sources has reduced in 

line with a fall in emissions of sulphur dioxide (Fowler et al. 2005) brought about by 

legislation and international pressure (Morecroft et al. 2009, Jenkins 1999). As a 

result, the fonnation of acid rain has declined and consequently deposits of sulphur 

and acid waters onto peatlands have decreased. Less acidic conditions within 

peatlands have enabled microbes to synthesis organic compounds more easily, thus 

resulting in an increase in DOC losses from peats (Evans et al. 2005). 

The onset of drought conditions (i.e. lower water tables) has been linked to the 

oxidation of sulphur stored in peats (Chapman et al. 2005). Lower water tables 

result in an increase in the thickness of the acrotelm, and thus provide suitable 

conditions under which sulphur can be oxidised to sulphate. The oxidation process 

results in losses of hydrogen ions into the peat solution, thus lowering the pH. 

Increased acidity limits microbial activity, and so less carbon is metabolised and 

DOC production decreases (Clark et al. 2005, Clark et al. 2006). Following the 

period of drought, water tables recover, the acidity of the peat solution decreases and 

DOC concentrations increase, in some cases to values higher than those observed 

prior to the drought (Clark et al. 2009). Recovery from acidification does not occur 

immediately. Long term monitoring of sites belonging to the UK Acid Waters 

Monitoring Network (A WMN) showed increases in DOC concentrations but no 

associated changes in pH or sulphate concentrations within the first 10 years of 

monitoring (Evans et al. 2005). Further monitoring over the next five years did find 

a link between increasing DOC production and lower sulphate concentrations and 

associated rises in pH values (Evans et al. 2005). Concentrations of organic acids 

such as DOC have been found to decrease in soil solution in the presence of strong 

acids such as sulphuric acid as the acidity results in a decrease in their solubility 

(Krug & Frink 1983) 

Rates of recovery from sulphur deposition have been found to vary depending on the 

location and management of the site in question. Studies of records of water quality 

across Scotland by Harriman et al. (2001) identified a reduction in sulphur 

deposition. The study found that in areas where unmanaged peatlands were present, 

the recovery was almost immediate. Rises in pH values were also seen at many of 
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the study sites; afforested sites were not, however, reported to be recovering as well 

in tenns of acidity (Harriman et at. 2001). Conversely studies of sulphur loss from 

peats in the southern Peak District found recovery rates from sulphur deposition to 

be poor. During storm events, losses of DOC were found to be low in catchments 

with many gullies, whilst losses were high in catchments with few gullies. The 

results have been attributed to concentrations of sulphate being greater in drained 

catchments and thus suppressing DOC production (Daniels et at. 2008). 

2.4.2.4 Flow Rates 

The hydraulic conductivity of both the water flowing through the peat, and flow rates 

in the streams and rivers into which runoff and throughflow discharge into, have a 

bearing on DOC concentrations and fluxes. During storm events, rates of DOC 

export rise rapidly but subside and even decrease to lower levels than those 

preceding the storm owing to exhaustion of DOC supplies (Worrall et at. 2002). 

Often DOC production coincides with recent climatic conditions. During dry 

periods concentrations in the peat solution may rise, whilst during wet periods, they 

may fall due to dilution with precipitation (Waddington & Roulet 1997). Increased 

fluxes of DOC in rivers and lakes in Sweden have been attributed to a combination 

of raised temperatures which increase DOC production coupled with greater 

precipitation and runoff rates which have resulted in a rise in the amount of carbon 

being exported from terrestrial carbon stores (Tranvik & Jansson 2002). 

2.S Management of Upland Peats 

While much effort has been focussed on calculating carbon budgets for 

unmanaged/pristine peatlands, as witnessed above, only limited research has been 

carried out on the carbon budgets of managed peatlands, and even less on the drivers 

of managed peatlands. Before considering how management might affect the 

peatland carbon cycle and its drivers, it is worth considering how peatlands in the 

UK are managed. 

Approximately 9,000 years before present (BP) the whole of the UK was covered 

with trees following the retreat of the ice sheets and the establishment of climax 

vegetation (Evans 2009). Pollen records have indicated that the onset of peat 

formation began between 9,000 and 5,000 years ago, during a period when the 
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climate became wetter (Tallis 1991). At the same time, Neolithic people began to 

clear small areas and commenced farming (Yallop et al. 2008) including upland 

areas (Simmons 2003). These landscapes have continued to be modified because of 

human induced activities, without which, it is believed that the heather would have 

disappeared and the trees returned (Dodgshon & Olsson 2006). The absence of trees 

however enabled greater quantities of precipitation to reach the soils, causing 

waterlogging, an increase in anoxic conditions and consequently a decline in 

microbial activity. Succession of species such as Sphagnum mosses would have 

resulted in increasingly acidic conditions, with higher rates of cation binding and 

therefore lower nitrification rates, causing reduced nutrient cycling and thereby 

further decreasing rates of microbial activity, and thus the formation of peats 

(Simmons 2003). 

Present day upland management is confined to rough grazing, afforestation, burning 

to create suitable habitats for grouse shooting and the provision of recreational areas 

for tourism (Dawson & Smart 2006). In recent years, there has been a decline in 

shepherding practices due to falls in the number employed on upland farms 

(Backshall et al. 2001). Changes in management are set to continue as efforts to 

restore damaged peat ecosystems take place, and alterations to current management 

practices occur (Holden et al. 2007b). 

A summary of the most common land management practices used on upland peats in 

the UK is provided below. A brief outline of the research carried out to date on peats 

managed by each method is also given. 

2.5.1 Peatland Burning 

Burning of peatlands in the UK began in earnest in the early 1800s when grouse 

shooting increased in frequency (Holden et al. 2007b). Records of burning in 

Scotland, however, date as far back as the 1400s when the first references to 

"muirburn" were made (Dodgshon & Olsson 2006). Burning controls heather in 

areas where grouse shooting and sheep rearing take place. Of the estimated 

6,780 km2 of managed peatlands in the England, Natural England (2010) suggest that 

30 % of blanket bogs in England have been subjected to deliberate burning. 
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Studies of aerial photographs for selected areas of the English uplands have 

suggested that burning has become more frequent and intense since the 1940s 

(Yallop et al. 2006). Work by Hester and Sydes (1992) also found evidence for such 

an increase through an examination of trends in burning on Scottish grouse estates 

between the 1940s and 1980s. Their work aimed to assess the hypothesis that 

burning was becoming less common, but they found no substantive evidence to 

support this hypothesis. 

Burning aims to encourage heather shrubs to regenerate, which prevents them from 

becoming too large and woody. Older shrubs tend to be unpalatable to sheep and are 

often difficult for livestock to access. Short, tender heather stems are an important 

food source for grouse chicks on shooting estates. Larger plants provide the grouse 

with areas to shelter and nest. Burning is typically carried out on strips and patches 

of heather, resulting in a range of heather stands of different height and age. Burning 

is carried out on a rotational basis across peatlands to provide a varied habitat; 

intervals between burning of between eight and 25 years are recommended (Tucker 

2003). The Heather and Grass Burning Code in England and Wales (DEFRA 2007) 

and the Muirburn Code in Scotland (Scottish Executive 2008) are used as a guide for 

regulation of burning practices. The codes determine the timing and conditions 

under which burning may be carried out. 

The impact of burning on peatlands depends on the vegetation type and cover, the 

intensity and frequency with which the burn is carried out, the time of year and 

recent climatic conditions. Spring and summer burns are more intensive than 

autumn and winter burns due to the lower moisture content of litter and vegetation 

(Shaw et al. 1996). Burning has reportedly caused a number of changes to peatlands, 

a summary of which is provided below. 

Early studies on the effects of peatland burning focussed on changes in vegetation 

type and re-growth. Vegetation surveys conducted by Hobbs (1984) and Rawes and 

Hobbs (1979) identified changes in vegetation as a result of burning peats. Hobbs 

(1984) found that the frequency of burning had an effect on the species present, 

frequent burning led to the dominance of Eriophorum vaginatum, which favours 

grazing sheep, whilst infrequent burning led to a dominance of Calluna vulgaris 

which favours grouse. 
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Davies et a1. (2010) investigated the effects of fire intensity on the regeneration of 

Calluna vulgaris on heathlands on the borders of the Cairngonns National Park. The 

authors concluded that burning of older plants is not recommended due to the fire 

hazards associated with burning very woody plants. Additionally, seedling survival 

and consequently establishment were found to be poor at sites where older heather 

plants were located. Legg and Davies (2009) noted that many burnt peatlands did 

not develop as Calluna dominated peat, instead species such Eriophorum and 

Sphagnum were prevalent. 

Nutrients have been found to volatilise during burning (Allen 1964, Forgeard & 

Frenot 1996). Dikici and Yilmaz (2006) compared two Turkish peatland sites which 

had been burnt 36 years apart. The results of the study identified higher 

concentrations of nutrients in the more recently burnt site; which the authors 

suggested demonstrated that sites do not recover from the effects of burning over 

short to medium timescales. Studies of montane forests have also identified 

significant losses of nutrients during fires, yet nutrient availability in the first year 

post burning was found to increase due to inputs from ash (DeBano 1990). 

To date, some studies of carbon stocks and losses from burnt peatlands have been 

carried out. Studies in Finland (Pitkanen et a1. 1999) and Canada (Kuhry 1994) 

identified reduced carbon stocks accumulating in peats that were burnt. As of yet, a 

complete carbon budget (measuring both fluvial and gaseous carbon losses at the 

catchment scale) for burnt peatlands has not been carried out. Meta-analysis carried 

out by Worrall et a1. (20IOa) assessed the probability of a reduction in burning 

resulting in an improvement in carbon budget terms i.e. a reduction in carbon losses. 

The results indicated that the cessation of burning would result in a 93 % 

improvement in the carbon budget, with a 60 % improvement in greenhouse gas 

emissions i.e. less carbon could be lost to the atmosphere and more would be 

sequestered. Farage et a1. (2009) carried out a study of burning in the Yorkshire 

Dales, in which they suggested many carbon inventories underestimate the carbon 

stored in uplands peats, given the quantity of carbon stored in the biomass. The 

study site was found to range from source of 34 g C m-2 
yr-l to a sink of 

146g C m-2 yr-l, the variations accounted for the range of estimates of fluvial fluxes 

(only respiration was measured, all other flux estimates were based on data from 
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other sites} and climatic fluctuations. The findings of this study however have been 

subject to criticism by Legg et al. (201O) who stated that estimates of biomass post

bum are grossly over-estimated and carbon losses underestimated compared to their 

own findings of work carried out on 26 burnt moorland sites (including peatlands 

and other sites with highly organic soils). Farage et al. (2009) noted that the work 

was preliminary, small-scale, that the impact of burning is heavily dependent on 

local climatic conditions at the time of the burn and that whilst using data from other 

sites was not ideal, the data did allow an initial estimate of the carbon budget to be 

made. 

As noted previously (in Section 2.3.2), only one study has attempted to calculate a 

carbon budget for a burnt peatland in the UK at a plot scale (as of yet, a catchment 

scale, whole carbon budget has not been published). The work was based on a 

combination of measurements taken in the field and predictions using existing data 

(Clay et al. 201Ob). The calculations imply that burnt peatlands are carbon sources; 

however, the unmanaged site was identified as an even greater carbon source 

contrary to previous carbon budget calculations for unmanaged sites. This result 

does not support the findings for Moor House of Ward et al. (2007), who found 

burning resulted in greater losses of carbon than unmanaged sites. Differences 

between the sites could be due to differences in the stage of the burn cycle during 

which field monitoring was carried out. Suggestions have been made that the 

presence of charred materials in the soils could impede rates of microbial activity 

(Haslam et al. 1998), which would result in lower rates of carbon dioxide loss. 

Consequently, recently burnt sites are likely to release carbon dioxide, but, the 

overall carbon balance would depend on rates of primary productivity and therefore 

inputs of carbon into the system. 

Holden et al. (2007b) noted that there is a lack of studies on the effects of burning on 

peatland hydrology, sediment release and water quality. Studies on the effect of 

burning on peat solution chemistry have failed to identify any significant differences 

in dissolved organic carbon (DOC) concentrations. Early work carried out by 

Worrall et al. (2007a) suggested that burning resulted in a decrease in DOC. 

Subsequent studies by Clay et al. (2009b) looked at a longer period of time and 

discovered that significant differences only occur immediately after the burn. Work 
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by Clutterbuck and Yallop (2010) and Yallop and Clutterbuck (2009) refutes these 

findings; their work examined catchments in the Yorkshire Dales and the south 

Pennines where increased concentrations of DOC in streams strongly correlated with 

burning of peatlands. The disagreement between the two sites could be attributable 

to the latter studying stream water concentrations and the former peat soil 

concentrations collected within a metre of the peat surface. In addition, the strong 

correlations identified by the latter were for peatlands burnt within two to three years 

of the study being carried out. Differences in vegetation composition between the 

sites might also be a significant factor, as suggestions have been made that 

vegetation is a key driver of DOC loss in burnt peats (Worrall et al. 201Ob). 

Changes to the physical properties of peats post-burning have been noted such as 

reduced rates of infiltration due to clogging of pores by ash particles (Mallik et al. 

1984b); cracking, desiccation and surface instability (Maltby et al. 1990). The 

formation of crusts on the surface has also been cited as a cause for reduced rates of 

infiltration (Tucker 2003). Holden (2005b) identified a link between the presence of 

heather and an increase in soil pipe frequency. Pipes are associated with changes in 

peatland hydrology and provide a conduit through which carbon can be lost. Given 

the link between heather and peat pipes it is feasible to suggest that the regeneration 

of heather through burning could increase the number of pipes present, thereby 

increasing the amount of carbon lost from peatlands that have been burnt. 

2.5.2 Grazing of Peatlands 

Grazing is one of the most common management approaches on peatlands, and 

ensures vegetation levels are kept in check whilst providing a source of income for 

rural communities. Grazing of uplands is believed to have commenced between 

4,000 and 5,000 years before present, following the clearance of woodlands for 

agricultural purposes (Backshall et al. 2001). Traditionally grazing was carried out 

at low intensities, and the consequences for upland soils and vegetation were limited. 

Increases in grazing intensity occurred as a consequence of the introduction of 

subsidies and support schemes for hill farms (Adamson & Gardner 2004). A post

war peak in grazing livestock in upland areas was witnessed during the 1980s when 

payments were received per head of livestock under the Common Agricultural 

Policy. The introduction of schemes which focus on environmental outcomes and 
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the area of land owned by fanners such as the English Environmental Stewardship 

and the Single Payment Scheme have resulted in reduced numbers of livestock and 

consequently a decline in over-grazing (Gardner et al. 2008). Decreases in the 

numbers of people employed in agriculture in upland communities has resulted in 

fewer shepherds controlling grazed areas, leading to overgrazing of some areas, 

damage to the peat and vegetation, and changes in vegetation composition (Holden 

et at. 2007b). 

Few studies have looked at the effects of grazing on peats. The key changes that 

have been reported are defoliation, trampling and changes in the nutrient status of the 

peats (Crofts & Jefferson 1994). Changes in plant species have been reported as a 

result of grazing, the changes observed varied depending on the stocking density of 

the sheep (Lance 1983, Pakeman et al. 2003, Hope et at. 1996). Evidence exists to 

suggest that grazing depletes phosphorus concentrations in heathland soils owing to 

the removal of vegetation by livestock, where much of the phosphorus is stored 

(Hardtle et al. 2009). Reductions in infiltration rates have been reported by Shaw et 

al. (1996) as a result of trampling and possibly stocking densities that are too high, 

which have also been cited as the cause of erosion of upland peat soils (Evans 2005). 

High stocking densities have also been cited as a cause of flooding, for example 

heavily grazed areas of Dartmoor were found to have a lower saturation threshold 

resulting in higher rates of runoff and the onset of flooding (Meyles et al. 2006). 

Whilst changes in the floral composition and physical properties of peat soils have 

been observed, very little work has related these to changes in carbon losses from 

peatlands. Shifts in the properties of the peat will however influence the 

hydrological regime and the quality of substrates entering the peat soils. These 

factors in turn are likely to cause further alterations to the peat i.e. to the availability 

of nutrients, and the ability of gases to move through the soil profile. A combination 

of some or all of these factors will influence carbon cycling in peat soils. 

Studies at Moor House carried out by Ward et al. (2007) identified slight increases in 

carbon dioxide losses from grazed peats, however, the grazed plots were found to act 

as carbon dioxide sinks based in the NEE data and sequestered more carbon dioxide 

than the unmanaged site. In contrast, Clay et al. (2010b) found all plots at Moor 

House to be sources of carbon. Their work considered all aspects of the peadand 

45 



Literature Review 

carbon budget, rather than just gaseous fluxes. They did not however, measure all 

elements of the carbon budget; instead, estimates for POC, methane and DIC were 

provided based on the work of others. In addition, an assumption was made that 

catchment losses of DOC would be the same as the concentrations found in the peat 

solution, despite the authors noting that in-stream processing and dilution are likely 

to reduce concentrations at the catchment outlet. 

2.5.3 Peat/and Drainage 

Extensive drainage of the UK uplands using open ditches took place in the 1960s and 

1 970s to facilitate enhanced agricultural productivity primarily for sheep and grouse 

(Adamson & Gardner 2004). In many cases the aims of drainage have not been 

achieved, grouse populations have not thrived, and peatlands have not been found to 

be able to support increased livestock populations (Holden et al. 2007b). More 

recently, attempts have been made to reverse the negative effects of drainage (e.g. 

erosion) by blocking drains. The success of such schemes depends on the extent of 

the degradation of the peat prior to inserting the drain (Holden et al. 2007b), and 

often, additional measures are required for example, the use of mulch and open pools 

to restore the moisture content of the peat (Price 1997). 

The thicker acrotelm in drained peatlands results in the prevalence of more aerobic 

conditions within the peat (Laiho 2006) and consequently greater losses of carbon 

dioxide and lower emissions of methane (Blodau et al. 2004, Blodau & Moore 2003) 

as the increased aeration of the peat results in faster microbial activity and therefore 

decomposition (Holden et al. 2004). Peats that have been oxidised for long periods 

of time, however, are unlikely to release significant quantities of carbon dioxide, as 

they will have become resistant to decomposition (Hogg 1993). Oxidation of peat 

soils has been identified as a cause for the "enzyme latch mechanism" (Freeman et 

al. 2001b) as described in Section 2.4.2.2, whereby an increase in the thickness of 

the acrotelm results in increased losses of DOC. 

Chapman et al. (2005) identified reduced concentrations of DOC from peatlands 

during periods when water tables were also observed to be low. Low pH values and 

higher concentrations of sulphate were found to coincide with such conditions and 

thus were proposed as being significant factors in explaining trends in DOC 
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concentrations. Laboratory simulations were carried out to identify the effects of 

lower water tables i.e. draining the peat on DOC and sulphate concentrations. The 

findings of the simulation supported their interpretation of the results observed in the 

field. 

Changes in the physical properties of peatland soils subjected to drainage have 

included increased bulk density (Rosenberry et al. 2006), a flashier hydrological 

regime and increases in rates of throughflow (Holden 2006, Holden et al. 2007 a, 

Holden et al. 2006). Intensively drained peatlands have been reported to cause rates 

of water movement through the peat to increase, which have been cited as a cause for 

increased colour intensity in peatland waters leaving the catchment (Mitchell & 

McDonald 1995). 

Rowson et al. (2010) provided the first complete carbon budget for a drained 

peatland in the UK. The study compared two catchments immediately after blocking 

(0.75 and 0.24 hectares) and found both to be sources of carbon, with losses of 

between 63.8 and 106.8 Mg C km -2 yr-I. The sites were found to be very small sinks 

in terms of carbon dioxide exchange, values were lower than those recorded by 

others for British peats (Cannell et al. 1993, Clymo 1995). DOC fluxes were found 

to vary widely between 29 and 85 Mg C km2 
yr-I. The study focussed on highly 

disturbed catchments but indicated that draining a peat under these conditions can 

result in a switch from a carbon sink to a source. Due to the nature of the 

experimental set-up, comparisons were not made with an undrained catchment. 

Increased rates of respiration have been recorded at sites where drainage has 

successfully resulted in lower water tables. A study of a homogenous fen in northern 

Finland by Jaatinen et al. (2008) focussed on an artificial drainage gradient that has 

been present since 1959. The driest areas of the site showed a three-fold increase in 

respiration, which was attributed to the presence of increased fungal and bacterial 

biomass in these areas. Carbon stocks were found to accumulate in drained, 

ombrotrophic Finnish peats, however, losses of carbon dioxide also increased owing 

to decreases in acidity and increases in microbial decomposition (Minkkinen et aI. 

1999). AIm et al (1999a) estimated carbon dioxide losses increased by 24% in 

drained peats compared to undrained, resulting in the drained sites representing a 

carbon source. These findings are also supported by a study of gullies in northern 
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England in which carbon dioxide emissions from gullies were found to account for 

21.6 % of the peatland carbon dioxide fluxes (McNamara et al. 2008). 

DOC concentrations are typically found to be higher in artificially drained 

catchments compared to those which are undrained. The effects of blocking drains 

on DOC concentrations has been widely studied and found to result in reduced DOC 

concentrations. Lower DOC concentrations were attributed to reductions in 

catchment flow rates in a study by Gibson et al. (2009) study. Fieldwork carried out 

by Worrall et al. (2007b) showed that no one method of drain blocking is preferable 

over another, all methods studied resulted in rising water tables in the drain. The 

colour and DOC concentrations, however, also increased within the individual 

drains, though no increases were detected at the catchment scale. 

Wallage et al. (2006) identified lower DOC concentrations in peat solution samples 

collected from blocked catchments compared to sites that had never been drained, 

and those that had been drained but were not blocked. Mixed findings were reported 

by the survey of Armstrong et al. (2010) which compared 32 drained and blocked 

catchments across northern England and Scotland. Significant differences in DOC 

were identified between blocked and unblocked sites in the majority of cases, 

however at an intensively monitored site no significant differences between DOC 

concentrations in drained and undrained sites were found, showing that site specific 

factors can mask broader, regional patterns. 

Changes in plant species have also been observed at drained peatlands typically 

downslope of the drain (Stewart & Lance 1991, Holden et al. 2007a) thereby 

influencing substrate quality. Work carried out by Updegraff et al. (2001) identified 

lower methane emissions as a result of drainage, owing to the thicker acrotelm, 

which not only resulted in less methane production but also methane was oxidised to 

carbon dioxide in the aerobic zone. The results of the study did not however identify 

a relationship between vegetation and carbon dioxide emissions. 

Drain spacing is a key factor in determining the impact of drainage in peatlands 

(David & Ledger 1988), in some cases a maximum drain spacing of 2 m is 

recommended to have any impact on water levels (Hudson & Roberts 1982). This 

view was supported by Stewart and Lance (1991) as a result ofa study of water table 
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fluctuations on a drained peatland. Monitoring wells located furthest from the drains 

were found to be most responsive to rainfall and had the highest water table levels. 

Increased drainage densities have been associated with greater discolouration of 

water within the catchment due to the more rapid release of water containing organic 

compounds (Mitchell & McDonald 1995). Coulson et al. (1990) found drains had 

little effect on water levels at sites with rainfall over 1,200 mm a-I and significant 

differences in peat moisture content were not identified. 

2.5.4 Afforestation of Peatlands 

Afforestation has been one of the main causes of peatland habitat loss in the UK over 

the past century. It is estimated that 315,000 hectares of shallow peat and 190,000 

hectares of deep peat have been afforested in Britain (Cannell et al. 1993). Losses of 

carbon from deep afforested peats are expected to be greater than the quantity of 

carbon sequestered by the trees in these areas (Cannell et al. 1999). Since the 1980s, 

planting in deep peats has declined in an attempt to conserve these wetland habitats 

(Hargreaves et al. 2003). 

Increases in the thickness of the acrotelm occur as a result of drainage prior to 

planting and the additional water requirements of tree species (Anderson et al. 2000). 

Shrinkage and desiccation have been reported due to drainage and uptake of water 

by tree roots (Pyatt 1993). As cracks form, a network of hydrological conduits can 

arise which can cause the water table to drop even further. Peak flows and rates of 

evaporation have also been noted to increase in afforested peats (Anderson et al. 

2000). 

Summer time soil temperatures tend to decrease in response to afforestation of 

peatlands due to shade, and could potentially create limiting conditions for soil 

microbes (Silvola et al. 1996, Trettin et al. 2006). Studies of streams in afforested 

catchments compared to moorland streams in the Yorkshire Dales identified lower 

temperatures in the afforested streams during summer months, but found little 

difference in temperatures during winter months (Brown et al. 2010). In terms of 

carbon cycling, lower temperatures within afforested catchments could result in 

lower emissions of carbon dioxide during the summer compared to unmanaged sites. 

Strong seasonal trends in the peatland carbon cycle were identified by Byrne and 
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Farrell (2005), the greatest losses of carbon dioxide occurred during the summer 

months. Losses from spruce plantations were greater than pine owing to greater root 

respiration from spruce sites, which was due to the increased fine root biomass 

present at the spruce sites, however, losses from afforested plots were not always 

found to be significantly different to undrained plots that had not been planted. 

To date, a complete carbon budget has not been published for afforested peatlands. 

Decomposition of carbon is expected to be greater in afforested peats due to the 

increased aerobic zone brought about by lowering the water table. Inputs of carbon 

into afforested peats are often considered greater than peatlands that have not been 

planted with trees, and this can compensate for increased carbon losses. The 

quantity of carbon sequestered however depends on the age of the tree stand, with 

trees in excess of 100 years sequestering very little carbon compared to peatlands 

which can accumulate carbon for thousands of years (Byrne et a1. 2004). 

The presence of drains in afforested peatlands is often cited as a cause for increased 

carbon losses. Studies of afforested peats in Finland have found that conditions 

mirror those found in hummocky peats. Increased acidity, decreased temperatures 

and litter quality created conditions that were not favourable for decomposition, thus 

carbon losses were not as great as expected (Laiho et a1. 2004b). Cannell et aI. 

(1993) suggested that the more oxic conditions present in drained and afforested 

peats could result in increased microbial activity and subsequently peatlands will 

ultimately (over a period of hundreds of years) comprise only the most recalcitrant 

organic matter fractions as sequestration rates slow with time and the ability of 

afforested peats to continue to act as sinks is brought into question. 

Increased DOC losses of between five and ten percent have been recorded in 

afforested catchments (Grieve 1994) and the composition of DOC has been found to 

be affected by afforestation, with increased quantities of non-humic substances 

recorded (Miller et aI. 1996). Even higher concentrations of DOC have been 

recorded for felled peatland sites along with slightly less acidic conditions (Cummins 

& Farrell 2002, Neal et al. 1998, Reynolds 2007). Felling results in higher water 

tables and increased peat temperatures due to increased insolation (Trettin et aI. 

2006) 
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Studies of peatlands planted with Scots pine found that the inputs of litter were more 

important in terms of carbon cycling than nutrient status and water table level 

(Domisch et al. 2000). Suggestions have been made that increased litter inputs in 

afforested peats compensates for increased rates of decomposition and subsequent 

carbon dioxide losses (Martikainen et al. 1995). 

Trettin et al. (2006) noted that there are many gaps in knowledge in relation to 

afforested peatland carbon cycling, in particular with reference to the biochemical 

controls on organic matter tum over, the relationship between the quality of organic 

matter, peatland hydrology, temperature and nutrient stores. A study of peatland 

afforestation in Finland by Laiho et al. (1999) identified increased concentrations of 

nitrogen and phosphorus over time as a result of drainage compared to undrained 

sites. Little effect was noted for potassium concentrations (Laiho et al. 1999). 

Studies of the effects of drainage on treed bogs in Finland, demonstrated that nutrient 

depletion did not occur owing to a rise in bulk density of the peat (Westman & Laiho 

2003). The use of fertilisers when establishing forests on peatlands has, however, 

been recorded as having caused significant increases in peatland nutrient cycling 

(Anderson 200 I). 

2.6 Linking Carbon Losses with Land Management Practices in Upland Peats 

To date, only one complete carbon budget where all carbon loss pathways were 

measured has been published for a drained peatland in the UK. Budgets for grazed 

and burnt sites have given indications of how land management affects the ability of 

a peatland to gain or lose carbon. As of yet, no complete carbon budgets based on 

either measurement or models have been developed for an afforested peat. 

Predictions of the effects of management using meta analysis and carbon modelling 

were presented by Worrall et at. (20tOa). Afforested and burnt sites were predicted 

to be sources of carbon whilst grazed and drained sites were expected to be carbon 

sinks. The predicted effects of management on the drivers of the carbon cycle are 

summarised in Figure 2-4. A summary of the predicted effects of management on 

carbon losses from peatlands based on evidence collected to date is presented in 

Table 2.2. 
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Table 2.2 Predicted Impacts of Land Management on Carbon Gains and Lossesfrom Peat based on evidence presented in Sections 2.4 and 2.5 

COz (emissions) COz (inputs) CH4 DOC poe 

Drainage Increase due to increase in Unknown Decrease due to increase in Increase owing to greater Increase 
acrotelm thickness resulting Values comparing drained acroteIm, where methane is microbial activity in thicker (theoretically, no evidence 
in greater aerobic activity and unmanaged sites for the likely to be oxidised to acrotelm. from actual measurement) 
and oxidation of methane to UK were not found, the carbon dioxide 
carbon dioxide impact is likely to depend 
(limited by lower moisture on the effects of drainage 
content). on the vegetation 

communitv 
Afforestation Increases and decreases - Increase and decrease - Unknown - possibly Seasonably variable, lower Unknown 

depending on time since conflicting evidence decreases owing to greater water tables could give rise 
drainage and planting, between studies thickness of acrotelm to increased losses, 
thickness ofthe acrotelm resulting in oxidation of however increase in acidity 
and the potential for methane to carbon dioxide. of peat waters could limit 
methane to be oxidised to microbial activity. 
carbon dioxide 

Burning Decreases and increases Decrease during the period Decrease No change Increase 
(dependent on local when vegetation is absent (Temperature and water (theoretically, based on 
conditions and bum from the site, Increase table level suggested to be evidence of increase 
severity). Published owing to regeneration of more influential). Evidence erosion, though no actual 
literature found both heather. to data suggests that POC measurements made) 
increases and decreases concentrations increases 
(Ward et al. 2007, Clay et immediately after burning. 
al. 20 lOb) 

Grazing Unknown. Conflicting Unknown. Conflicting Unknown. Conflicting Unknown. Little change Potential increase due to 
evidence between studies as evidence between studies, evidence between studies as observed in studies to date. erosion caused by trampling 
to whether increases or with some suggesting to whether increases or - no actual measurements 
decreases primary productivity decreases made 

increases due to heather 
regeneration (Clay et al. 
2010b) 
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Whilst calculating complete carbon budgets is important, and further work must be 

carried out in this area, little attention has been given to the drivers of the carbon 

cycle in managed peats. Changing environmental conditions seem to be the most 

commonly studied driver of carbon cycling. Most work however has focussed on 

pristine/unmanaged peats, despite the majority of British uplands being subject to 

management. 

Studies of substrate have tended to focus either on the composition of the peat litter 

or have assessed how different types of litter respond to environmental conditions. 

Hardly any studies have looked at the composition of the substrate itself, despite 

recognition that substrate is a key driver of carbon cycling. There is no evidence of 

work having been carried out to compare differences in substrate quality between 

managed peatlands. It seems apparent that all four key peatIand management 

practices (burning, grazing, drainage and afforestation) in the UK have a significant 

effect on vegetation community and consequently will affect substrate quality. 

Understanding the effect of land management on substrate quality will enable carbon 

budgets that consider future carbon losses to be modified to account for differences 

in rates of decomposition. 

Changes in the plant community will affect not only substrate quality but also 

nutrient supply and availability. Substrates of varying quality will release nutrients 

into the peat in differing concentrations. The nutrient demand of different plants 

growing on managed peats will also vary. The outcome of such differences IS 

expected to affect the carbon cycle by governing rates of decomposition. 

Changing environmental conditions are the most obvious impact of land 

management on peatlands. Lower water tables in drained and afforested peats have 

been found to augment losses of carbon dioxide and DOC. Whilst studies exist 

which have measured losses of DOC from peats managed in one or two ways, a 

cross comparison of the four key methods of peatIand management in the UK has yet 

to be carried out. Doing so would allow the benefits of one management method 

over another to be determined. 

Much debate exists over the drivers of DOC losses from peatlands. In particular, the 

increase in concentrations in freshwater streams, rivers and lakes has caused much 
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concern. How most commonly cited drivers of DOC loss are influenced by land 

management is yet unknown. 

It is feasible to suggest that the main drivers of carbon cycling will vary because of 

land management. It is also likely that the degree to which each driver varies will 

differ according to the management strategy employed. Such variations are 

anticipated to have a significant effect on peatland carbon losses. Future research 

needs to identify how each driver of the carbon cycle varies with land management 

as well as comparing differences in carbon losses between management methods. 

As noted in Chapter 1, the aim of this thesis is to investigate the fluxes of carbon 

dioxide and DOC production in managed peatland and to identify how land 

management influences the drivers of the peatJand carbon cycle. This work will seek 

to address some of the gaps in current knowledge that were identified in this chapter. 
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3 STUDY SITE SELECTION, SAMPLING AND FIELDWORK 

3.1 Introduction 

The aim of this chapter is to provide the framework to be used to investigate the 

overall aim of this thesis and the associated objectives set out in Chapter I; which 

were derived from identifying the gaps in research presented in Chapter 2. This 

chapter also outlines how a field site was selected, along with background 

information on the selected site and details of the fieldwork carried out. Details of 

the laboratory methods used are provided in each of the following chapters for which 

those methods are relevant. 

The overall methodology aimed to investigate the effect of land management on the 

drivers of the peatland carbon cycle and on key carbon losses from peatlands. Laiho 

(2006) suggested that carbon cycling in peats is governed by four drivers: substrate 

quality; nutrient availability; environmental conditions (e.g. water table, 

temperature); and microbial population. 

This study has been designed around the first three drivers as these will be directly 

affected by peatland management, whereas the composition of the microbial 

community will be determined by these three drivers. In addition to substrate 

quality, environmental conditions and nutrients, the physical properties of the peat 

were examined, as changes in the structure of the peat are considered to be of 

relevance to the transport of gaseous carbon through the peat profile into the 

atmosphere. The study focused on gaseous carbon dioxide fluxes and dissolved 

organic carbon production as these account for the greatest proportion of carbon 

losses from upland peats in the UK (Worrall et a1. 2007c). 

3.2 Site Selection 

The criteria for site selection included choosing an upland peatland that had areas 

which have been subjected to different land management practices. The site also had 

to have similar climatic, geological and topographical characteristics between each 

land management type. In addition, a site was required where permission to collect 

peat cores, install monitoring equipment and carry out monitoring would be granted. 
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The site had to be reasonably accessible from Leeds to allow frequent monitoring 

visits. 

A shortlist of the sites considered is presented in Table 3.1. The table demonstrates 

that Moor House-Upper Teesdale National Nature Reserve (NNR) in Cumbria was 

selected as the most suitable site because it is the only site which fulfilled all of the 

selection criteria. In addition to all four management practices of interest being 

present (burning, grazing, drainage and afforestation), sites where combinations of 

burning and grazing were found, as well as sites that are bumt on two different 

burning cycles (every 10 and every 20 years). Confounding factors such as climate, 

altitude and geology were minimised by selecting Moor House as the managed sites 

were within 3.5 km of one another. The site could be easily accessed from Leeds 

and permission was granted by Natural England for access to the site to carry out 

research. In addition, all the differently managed sampling locations at Moor House 

had the same aspect (east facing). The site had further benefits in that it had an 

automatic weather station which was regularly maintained by the Environmental 

Change Network (ECN), and the site had a long history of research into upland peat. 

Further details of the site are provided in Section 3.3. 

a e an anagemen 1: hi 31 L d M. I P I' rae lees a or - IS e I es t Sh t L' t d S'I 

Land Management Practice 
Accessible Access 

Location Unmanaged from Leeds Possible Burning Grazing Afforested Drained 
site 

MoorHouse .,f .,f .,f .,f .,f 
.,f .,f 

NNR 
Wharfedale - .,f .,f .,f .,f 

.,f .,f 

Oughtershaw 
Nidderdale • .,f .,f 

Scarhouse .,f .,f (from 
multiple 
parties) 

LakeVyrn~_ .,f .,f 

KieJder .,f .,f 

3.3 Site Description 

3.3.1 Location 

Moor House-Upper Teesdale NNR is located in Upper Teesdale, Cumbria (54°65'N 

2°45'W), as shown in Figure 3-1. The site is situated approximately 6 km south of 

the village of Garrigill. The site covers an area of approximately 7,500 ha, and 
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includes Great Dunn Fell, the highest point in the north Pennines (848 m AOD). The 

River Tees forms the northern boundary of the reserve. 

Moor House NNR was established as a nature reserve in 1952 and was subject to 

much research under the International Biological Programme. A field station was 

located in the former shooting lodge until 1999. The site was merged in 1999 with 

the Upper Teesdale NNR to form Moor House-Upper Teesdale NNR, The two sites 

are divided by Cow Green Reservoir which was constructed between 1967 and 1971 

(Adamson 2009). The site is one of the ECN's terrestrial and freshwater monitoring 

sites. The ECN's programme of work was established in 1992 and aimed to monitor 

environmental change over time, through measurements of air, water, ecological and 

soil quality (ECN 201Oa). Moor House is one of the largest areas of blanket bog in 

upland England and became a SSSI to allow studies of moorland ecology and change 

to be carried out (Heal & Smith 1978). The site is also a UNSECO Biosphere 

Reserve and a European Special Protection Area (ECN 2010b) due to the unique 

combination of vegetation (arctic, alpine and continental) present at the site. 

Within the boundaries of the nature reserve, there are areas which have been 

subjected to different management practices. A summary of these locations is 

provided below; the locations of the managed areas are shown on Figure 3-2. 

3.3.1.1 The Hard Hill Managed Plots -Burnt, Grazed and Unmanaged 

The Hard Hill Experiment Plots were set up in 1954 to establish the effects of 

burning and grazing on plant species. There are four experimental blocks, which are 

subdivided into six plots. The experimental plots are centred on 54°41'N 29<>g3'W, 

at approximately 678 m AOD. Each plot measures approximately 30 by 30 m. 

Three plots within each block are fenced to prevent access from grazing animals. 

Within the fenced area, one plot is burnt every 10 years, one every 20 years and one 

is not burnt at all. Outside of the fenced area, the same burning treatments are 

replicated. Grazing was mainly from sheep and is reported to be light (noted as 0.04 

sheep ha-1
) Ward et a!. (2007). The burnt (every 10 years) plot was last burnt in 

February 2007, the burnt (every 20 years) site was last burnt in 1995. The layout of 

the managed plots is shown on Figure 3-3. The site that has been burnt every 
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20 years in Block A at Hard Hill is depicted in Figure 3-4; the northern end of Block 

A is depicted in Figure 3-5. 

The majority of work on Hard Hill was carried out on Block A, however samples 

were also collected on the burnt (every 10 years) sites on Blocks B (BlOB) and C 

(B 1 OC) to identify the extent of variation between sites that have been subjected to 

the same treatment/land management practice. Due to limitations in terms of time 

and resources, Blocks B and C could not be used for all analyses. 

3.3.1.2 The Afforested Site 

The afforested plot is situated immediately north of Great Dodgen Pot Sike, and is 

centred on 54°41 'N 2°21 'W, 550 m ADD. The plot covers an area of60 m by 100 m 

and was planted in the 1950s. Prior to planting, a series of drains were installed to 

lower the water table, creating a series of ridges and furrows. Sitka spruce trees 

were planted on the ridges. Little management of the plot has taken place since 

planting and as a result the trees have not been "thinned", which would be nonnal 

practice on such a plantation. The afforested site is depicted in Figure 3-6. 

3.3.1.3 The Drained Site 

Burnt Hill is located at 54°41 'N 2~2'W and is situated at 570 m ADD. The site was 

drained in 1952; the drains were spaced at approximately 10 to 15 m intervals, were 

0.5 m deep and ran perpendicular to the slope of Burnt Hill. Two years prior to 

draining, a fire occurred at the site; however, the site has not been burnt since. 

(Stewart & Lance 1991). The drained site is depicted in Figure 3-7. 

Fieldwork was carried out at the three locations (Hard Hill, Burnt Hill and the 

afforested site) described above; aerial photographs of the selected sites are shown 

on Figure 3-8 to 3.10. 
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Figure 3-2 Location of Each Monitoring Site 
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Figure 3-3 Experimental Setup of Block A at Hard Hill 
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Figure 3-4 Southern End of the Enclo ed Plots in Block A af Hard Hill 

Figure 3-5 Northern End of Block A of the Plots Facing towards Blocks Band C 
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Figure 3-6 Affore ted Site Picturedji-om the East 
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Figure 3-8 Aerial Photograph of the Affore ted Site (Go ogle Earth, 2010). 
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MoorHouse 
(foID1er shooting 
lodge and research 
station 

Figure 3-9 Aerial Photograph of the Drained Site at Burnt Hill (Google Earth, 2010) 

Figure 3-10 Aerial Photograph of Hard Hill Experimental Plots (Go ogle Earth, 2010) 
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3.3.2 Climate 

The climate at Moor House is classed as sub-Arctic/oceanic (ECN 2010b). 

Instruments to record weather were first installed by Gordon Manley in 1932; and 

were used up until 1952. The Nature Conservancy Council recorded weather data 

adjacent to the shooting lodge between 1952 and 1980, whilst operating the 

meteorological station. In 1991 an Automatic Weather Station (AWS) was installed 

and is operated by the ECN. Records between 1980 and 1991 are not available, but 

work by Holden and Rose (2010) used data from the Widdy Bank weather station 

(6.6 km southwest of Moor House) to interpolate values for this period of time. 

Mean annual precipitation at Moor House is 2012 (±470) mm, with an average of 15 

days a year when snow is lying on the ground. Mean daily maximum temperatures 

are 8.78°C (±S.64 °C) with mean daily minima of 2.87 °C (±4.78 °C). The absolute 

maximum recorded temperature between 1931 and 2006 was 27.6°C; whilst the 

minimum recorded temperature was -18.SoC. On average, air frosts are present for 

99 days a year, with 52 days of fog. 

3.3.3 Geology and Soils 

The site is overlain by blanket peats, belonging to the Winter Hill Association. 

These soils are described by the Soil Survey of England and Wales (1980) as deep, 

acid peat soils that are frequently saturated. Blanket peats in the Pennines are 

believed to have begun forming between 7,SOO and S,OOO years ago at the time when 

human activities intensified (Charm an 2002) and trees were cleared to allow 

improved hunting of red deer - an important food source at the time. The removal of 

trees from the North Pennines has been associated with shallower water tables as 

interception reduced the amount of rainfall reaching the soil surface, whilst 

transpiration and uptake of water through tree roots reduced the level of the water 

table (Moore 1975). Following on from the removal of trees and an increase in the 

level of the water table, peats would have developed through the processes described 

in Chapter 2. 

The solid geology at Moor House comprises a series of limestones with occasional 

coal outcrops. Hard Hill is underlain by Four Fathom Limestones; Burnt Hill and 
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the afforested plot are underlain by Tyne Bottom Limestone (Johnson & Dunham 

1963). 

3.3.4 Vegetation 

The vegetation at Moor House is predominantly a combination of heather (Calluna 

vulgaris), sedges (e.g Eriophorum) and moss (e.g. Sphagnum) at all sites with the 

exception of the afforested site where Sitka spruce were planted on the ridges during 

the 1950s. 

3.4 Fieldwork 

3.4.1 Introduction 

The fieldwork carried out at Moor House comprised collection of peat cores and 

field monitoring. The peat cores were collected to provide samples down to a depth 

of 0.5 m on which laboratory experiments could be carried out to analyse the 

physical and chemical properties of the peat. A value of 0.5 m was selected because 

a) peat grows at a rate of 1 mm a year, therefore the effects of land management 

since the 1950s will be most evident in the upper layers of the peat; b) the acrotelm 

is typically regarded as the upper 0.3 m portion of the peat profile (Tallis 2001) and 

it is within this zone where changes are most likely to be seen due to the increased 

rates of biogeochemical cycling in the aerobic zone (Belyea 1996). By measuring 

the 0.2 m beneath the acrotelm, comparisons of the effects of management on the 

two zones could be assessed. 

The field monitoring was carried out to collect data on carbon losses and water table 

fluctuations during monitoring periods. Instrumentation was installed at each of the 

differently managed sites to allow field monitoring to be carried out to observe 

losses of carbon from peat in both gaseous and aqueous form, and to monitor 

groundwater levels. Figure 3-11 provides an overview of the methods used in the 

field and demonstrates how they link to the laboratory work. Details of the methods 

used in the laboratory are detailed in Chapters 4, 5, 6, and 7 where the results are 

presented and discussed. The initial phase of fieldwork comprised a pilot study 

aimed at testing the proposed methodology and devising a suitable peat sampling 

regime. Further details of the pilot study are provided below 
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3.4.2 Sample Design 

The sampling strategy was based on the results of a pilot study. The aim of the pilot 

study was to test the proposed methodology and to determine the number of samples 

to be collected at each location. The fieldwork for the pilot study was undertaken 

between 13th July and 4th August 2008. Two plots from Block A of the Hard Hill 

experimental plots at Moor House were studied - ungrazed and burnt every 10 years 

and the plot which is grazed and burnt every 20 years. Peat cores were collected 

using a Russian peat sampler. The cores were placed in plastic guttering, and 

wrapped with cling-film in order to secure them during transit back to the laboratory. 

Surface cores were collected using a plastic bulk density tube. Each surface core 

was wrapped in a plastic sampling bag. 

The sampling design on the burnt plot was based on guidance published by Sykes 

and Lane (1996) for the ECN's target sites recommends sampling every five metres 

on a regular grid. When plotted out, and excluding samples taken on the boundaries 

of the site, this gave a total of 25 samples to be collected. 

A random sampling design was chosen rather than a systematic grid to prevent bias, 

but was modified to ensure that representative coverage of the sites was achieved. 

The plots were sub-divided into four areas; six sampling locations were selected in 

each area using grid co-ordinates created using a random number generator. One 

additional sample was collected from a randomly selected location. Samples located 

in the centre of the site were re-Iocated to avoid sampling within a permanent 

quadrat set-up to record ecological change on the plots through time. 

A total of 10 samples were collected at the plot which is grazed and burnt (every 20 

years), five surface samples and five cores. Results from the laboratory work carried 

out on samples taken during the pilot study have been incorporated into Chapters 4, 

5 and 6. 

70 



Investigation of the Impact of 
land Management on Key 

C"r"'nn In~~ 

I 
I 

Carbon 
dioxide loss DOC loss 

CO2 field 
"- monitoring 

withEGM4 

Note: EGM4 is an infra-red 

gas analyser used to give 

instantaneous flux 

measurements in the field 

Peat solution 
collection 

Analysis for 
DOC 

Physical 
Properties 

Particle 
f-- Density of 

Peat 

'--
Bulk Density 

of Peat 

Investigation of the Impact of 
land Management on Key 
Drivers of the Carbon Cycle 

1 

Nutrients Substrate 
Quality 

Total Carbon 
N, P and K In ~ Content of - Peat P":lt 

Peat Organic 
Trace metals ~ matter - in Peat fr"rtinn,,!inn 

loss on 
L- Ignition for 

Ppat 

I I 
Drivers of the C cycle in Peat 

Field Monitoring 1 
Property Measured in laboratory on 
peat cores collected using a Russian 

Property measuredmlaboratory on 
samples of soil solution collected from 

I 
Environmental 

Conditions 

Peat 
I- MOisture 

Cnntpnt 

I- Peat pH 

Peat 

I I- Solution 

f-
Water- level 
monitoring 

"-
Peat solution 

collection 

Figure 3-11 Organogram Demonstrating Properties to be Analysed and Measurements to be Made to Achieve the Aims and Objectives of this Research 
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3.4.3 Calculation of Number of Samples 

Estimates of the number of samples to be used in the wider field study were 

calculated using data from the burnt plot, using the following equation: 

where n = number of samples; z = confidence level; u = standard deviation; and d = 
tolerance. 

Table 3.2 Results of Calculations Performed to Determine Number of Samples to be 
C II d D . Wid F: Id S d o ecte urmg I er Ie tu ry 

Moisture Content Bulk Density pH 

95% 99% 95% 99% 95% 99% 
Toleranc 

confidenc confidenc confidenc confidenc confidenc confidenc 
e Limit 

e limit e limit e limit e limit e limit e limit 

0.15 10 17 10 17 1 1 

0.10 22 39 22 37 1 1 

0.05 90 155 87 150 2 3 

The results of the analysis from the pilot study (presented in Table 3.2) suggest that 

moisture content and bulk density measurements give realistic estimates of the 

number of samples that should be taken in the wider study. These findings are based 

on a confidence limit of 95% and a tolerance limit of 15%, 10 samples per location 

should be sufficient to adequately characterise each plot. Calculation on pH data 

gave values of one would be inadequate to fully characterise each of the chosen sites 

and identify significant differences. 

3. 4. 4 Sample Collection for Wider Study (Post-Pilot Study) 

Samples were collected from ten managed sites at Moor House, on each site there 

were fifteen sampling locations. Samples were collected using a Russian peat corer. 
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Three cores were collected at each sampling location; two cores were divided into 

five sections measuring 10 cm in length to allow changes with depth to be analysed. 

These sub-samples were placed in labelled sampling bags in the field. The third core 

was placed onto corrugated plastic sheeting and wrapped in cling film and 

transported back to the laboratory as a whole core. 

The sampling locations on the Hard Hill experimental plot sites were determined by 

sub-dividing each plot into four sections, and selecting locations using a random 

number generator. Fifteen locations were sampled at each plot, except for those used 

in the pilot study where five cores had already been collected. Samples were 

collected from all six plots on Block A of the Hard Hill plots, and from the plots 

which are burnt every ten years but not grazed on Blocks B and C to assess variation 

between different plots subjected to the same treatment. 

Differences in burning frequency and the plot from which burnt samples were taken 

from are presented as follows: 

.:. Burnt (every 20 years) - taken from Block A ofthe Moor House experimental 

plots, these samples are burnt on a 20 year rotation; 

.:. Burnt (every 10 years) - taken from Block A of the Moor House experimental 

plots, these samples are burnt on a 10 year rotation; 

.:. Burnt and grazed (every 20 years) - taken from Block A of the Moor House 

experimental plots, these samples are grazed continuously and burnt on a 20 

year rotation; 

.:. Burnt and grazed (every 10 years) - taken from Block A of the Moor House 

experimental plots, these samples are grazed continuously burnt on a 10 year 

rotation; 

.:. Burnt (every 10 years, B) - taken from Block B of the Moor House 

experimental plots, these samples are burnt on a 10 year rotation; 

.:. Burnt (every 10 years, C) - taken from Block C of the Moor House 

experimental plots, these samples are burnt on a 10 year rotation. 

In addition, samples were collected from Burnt Hill (drained in 1952), fifteen cores 

were taken along three transects, spaced at five metre intervals either side of a drain 

close to the brow of the hill. More samples were collected in the afforested site as 
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sampling locations comprised a mixture of ridges and furrows. Samples were 

collected from a total of nineteen locations in the afforested site, along four transects 

from both ridges and furrows through the site. In order for the afforested site to be 

planted, drains were installed to reduce the water table and prevent the tree roots 

from rotting. The afforested site will only be referred to as being afforested for the 

remainder of the text. 

Note should be made that only the sites on Hard Hill that were not enclosed by 

fences were grazed, sheep at Moor House are excluded from both the drained and 

afforested sites. During sample collection note was taken of the class of vegetation 

present at each of the sampling locations. The locations at which cores were 

collected are presented on Figures 3.12 to 3.21. 
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Figure 3-12 Sampling and Monitoring Locations on 

the Grazed and Burnt (every 10 years) Plot (the 

spacing between each grid cell represents 1 m) 
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3.5 Field Monitoring Installations 

Peat solution wells were installed on each differently managed site to allow 

monitoring of water table levels and peat solution chemistry. Gas monitoring collars 

were installed to allow monitoring of carbon dioxide loss with an infra-red gas 

analyser (EGM4). Further details of the materials used are described below. Full 

details of the actual monitoring work carried out are provided in Chapters 6 and 7. 

3.5.1.1 Ga Monitoring Collars 

Three pIa tic rings were inserted into each site to form collars that could be used to 

insert the chamber of the gas monitoring equipment into during monitoring rounds. 

The rings were 15 em in diameter and 10 cm high, they were inserted to a depth of 

5 em (Figure 3-22). Further details of gas monitoring are provided in Chapter 6. 

Figure 3-22 Go Monitoring Collar in the Affore ted Site 

Three gas collars were in tal1ed on each ite to provide a triplicate record of gains 

and los e of carbon dioxide from peat. In addition having three collar on each ite 

provided a number of collar that could be monitored on a practical timescale with 

the re ource available. Analysis of monitoring data between collar presented in 
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chapter 6 suggested little variation was found between the collar within each 

treatment. 

3.5.1.2 Peat Solution Monitoring Wells 

Monitoring of water table levels was carried out in specially de igned well made 

from 2.5 cm diameter plastic pipe with holes drilled at 10, 20, 30 and 40 cm; a 

rubber stopper was placed in the end of each well to prevent the pipe filling with peat 

during insertion into the peat (Figure 3-23). Rubber bungs were placed in the top of 

each pipe to prevent rainwater entering the well. 

Additional wells were installed at the site to collect peat olution amples for 

chemical analysis at specific depths within the peat profile: 10 em, 20 em and 40 em 

below the surface of the peat. The wells were formed from 2.5 em diameter plastic 

pipe with holes drilled at the target depth, a rubber topper in the ba e of the well and 

a rubber bung in the top of the wel l. Peat solution monitoring well to monitor level 

and chemistry were installed at three locations on each site. 

Figure 3-23 Peat Solution Level Well 
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The overall design of the study aimed to reduce bias introduced through pseudo

replication by selecting a field site where variations in geology, soil, climate, aspect 

and altitude and vegetation were kept to a minimum. In addition, the order in which 

monitoring work was carried out was varied as well as the time of day during which 

measurements were taken in a bid to minimise bias. 

3.6 Summary 

The selection of Moor House NNR as a field site enabled samples of peat to be 

collected and analysed for the chemical and physical properties of peat that are 

relevant to the carbon cycle. Details of the laboratory methods used are presented in 

Chapters 4 to 6. In addition, measurements of carbon losses (both carbon dioxide 

and DOC) from managed peatlands were made using the field monitoring equipment 

described in section 3.5. The results of the on-site monitoring are presented in 

Chapters 6 and 7 
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4 THE EFFECTS OF LAND MANAGEMENT ON THE CHEMICAL 

PROPERTIES OF PEATS 

4.1 Introduction 

As discussed in section 2.4, carbon cycling in peat is dependent on four key factors: 

substrate quality; environmental conditions, the composition of the microbial 

community and the nutrient content of the peat (Laiho 2006). In upland areas ofthe 

U.K ombrotrophic bogs are the dominant type of peatland. These nutrient poor 

ecosystems rely on water and nutrient inputs from the atmosphere and releases from 

decaying plant materials. Nutrients are not only required for plant growth on 

peatlands (Rydin & Jeglum 2006) but are also required by microbes engaged in the 

mineralisation of organic carbon into carbon dioxide and methane (Keller et al. 

2006). In addition to nutrients, some metallic elements (primarily iron, nickel and 

cobalt) have been found to be of importance to microbes involved in the breakdown 

of substrate (Basiliko & Yavitt 200 I). Laiho (2006) notes that nutrient availability is 

determined by environmental conditions and substrate quality. 

The degree of saturation and temperature are the two main environmental conditions 

that are assessed when studying in-situ carbon dynamics in upland peatlands. 

Decreases in water levels and increases in temperatures have been associated with 

increased losses of carbon dioxide (Davidson & Janssens 2006). Additionally, other 

environmental factors such as pH are related to carbon dynamics. Bergman et al. 

(1999) identified low pH values as a cause for restricted carbon mineralisation rates, 

peats with pH values of 4.3 had much lower rates of C mineralisation compared to 

values of 6.8. Changes in pH and peat moisture content will regulate the 

environment in which microbes live, and in turn will alter the composition of the 

microbial community. 

Despite the significance of the various geochemical factors that drive the carbon 

cycle that are detailed above, little work has been carried out to determine how land 

management affects the chemical properties that drive carbon cycling in peat. 
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4.2 Aim and Objectives 

4.2.1 Aim 

This chapter aims to identify how land management affects the chemical properties 

of peats which are relevant to carbon cycling. The chapter provides data that allow a 

comparison to be made for the first time between different land management 

practices commonly utilised on UK peatlands; and can be linked to losses of carbon 

dioxide and dissolved organic carbon which are discussed in Chapters 6 and 7 of this 

thesis. The chapter examines how moisture content, pH nutrient and metal 

concentrations vary between for peatland management practices. The chapter will 

look at how nutrient concentrations vary with depth from the surface, examine any 

interaction effects with surface vegetation, identify if there is greater variation within 

one treatment than between treatments and investigate if the chemical properties 

vary spatial across each treatment. For example, the effect of burning frequency on 

the chemical properties of the peat will be investigated and the combined influence 

of burning and grazing will be compared to peatland sites that are only burnt of 

grazed since these two practices are often combined in upland areas. 

4.2.2 Hypotheses 

.:. Land management will impact on the chemical properties of differently 

manage peats in the following ways: 

4.2.2.1 Burning 

Burning is expected to result in an increase in nutrient concentrations in shallow 

peats as a result of inputs of ash (Allen 1964), however, as of yet, field studies on 

burnt peats have not been carried out, neither have comparisons been made to the 

impacts of other land management practices. Burning has been associated with 

changes in vegetation community (e.g. Rawes & Hobbs 1979, Hobbs 1984, Ward et 

al. 2007) which this is also likely to affect the available substrate for mineralisation 

and consequently the nutrients which are released into the peat as well as the nutrient 

demands of the vegetation. Moisture content changes are anticipated as the peat 

dries out due to burning and becomes hydrophobic (DeBano 2000), however, work 
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carried out by Mallick (1986) found the moisture content of the peat to increase after 

burning. Slight increases in pH values can be expected (Forgeard & Frenot 1996). 

4.2.2.2 Grazing 

There are two possible options in terms of the effect of grazing on peatland soils: 

i) concentrations could increase due to inputs of nutrients from sheep faeces; 

ii) despite the increased inputs of nutrients from faeces, the overall concentrations of 

nutrients in the peat could decline as an increase in nutrient demand by plants is 

placed on the peats. Changes in the plant community are likely to occur on grazed 

peatlands (Alonso et at. 2001), this could affect the substrate available for 

mineralisation and consequently the nutrients which are released into the peat as well 

as the nutrient demands of the vegetation. The extent of such effects are noted to 

depend on stocking density, however, Grant and Hunter (1968) noted that sheep 

management is much more important than the actually stocking rate, with regular 

and even grazing resulting in heather regeneration Moisture content could change as 

a consequence of changes in vegetation species e.g. to species with a greater or lesser 

water demand. The effects of grazing on pH are unknown. 

4.2.2.3 Drainage 

Heathwaite (1990) provided data on differences in nutrient contents between drained 

and undrained peats taken from a lowland site in south-west England. In general, the 

results suggested a decrease in nutrients concentrations in the drained site, although 

significance testing was not carried out by the author. This study is the only one 

found in the UK to provide data on nutrient concentrations in drained peats, no 

studies appear to exist for upland peatlands. Depleted concentrations of nutrients are 

expected at drained sites owing to a greater unsaturated zone in which mineralisation 

rates will be quicker than those found at undrained sites (Gorham 1991). In addition, 

there is greater potential for nutrients to be leached out into the drains, thus 

decreasing nutrient concentrations. Throughflow of rainwater is also likely to be 

quicker, resulting in a more flashy regime which would prevent nutrients from 

rainfall being adsorbed into the peat. Changes in plant community could also occur 

on drained peatlands (Coulson et at. 1990, Faubert 2004), which would affect the 

substrate available for mineralisation and consequently the nutrients which are 
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released into the peat, as well as the nutrient demands of the plants growing. 

Drained peatlands are expected to be drier, however the extent will depend on 

drainage spacing (Hudson & Roberts 1982). Drained peatlands are also expected to 

be more acidic (Laiho et al. 2004b), therefore resulting in decreased rates of 

substrate mineralisation and hence release of nutrients into the soil. 

4.2.2.4 Afforestation 

Afforestation is expected to result in a decrease in peat nutrient concentrations owing 

to the demands of the trees for nutrients as well as an expected decrease in soil pH 

(Byrne & Farrell 2005), which is also likely to cause in a decline in nutrients held by 

the peat. Furthermore, inputs of nutrients from rain are likely to be lower due to 

interception by the tree canopy; and those that do reach the peat, are less likely to be 

retained because through-flow rates are faster on drained (and hence afforested) 

sites. Rates of mineralisation might be reduced in afforested peatlands owing to the 

lower temperatures caused by shading (Silvola et al. 1996), which in turn might 

result in slower rates of nutrients release into the peat. Conversely, rates of 

microbial decomposition might be greater due to a thicker acrotelm leading to 

greater release of nutrients (Byrne & Farrell 2005). Pyatt (1993) suggested that 

afforestation of peat resulted in a reduced moisture content due to drainage and 

demand for water by trees; a view supported by Anderson et al. (2000) . 

• :. Land management will not influence peats at depth. 

Concentrations of nutrients and metals are expected to decrease with depth, and 

variation between treatments will reduce as the impacts of land management lessen, 

as peats that were formed prior to management practices are encountered. The effect 

of root depth may affect the concentrations of nutrients, thereby causing changes 

between treatments - based on an assumption that vegetation changes will occur 

between treatments (see below). 

pH is expected to change with depth, and could vary between treatments for the 

whole of the 0.5 m of the peat profile examined if the peat solution chemistry is 

affected by land management. The moisture content of the peats is expected to 

increase with depth and vary less between the sites with depth as increasingly 

saturated conditions are encountered. The afforested site is expected to be the driest. 
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.:. Land management will have an impact on the species of vegetation that grow 

on peats, and thus the nutrient content of the peats will vary depending on the 

species of vegetation growing on the peat. 

Changes in peat chemistry as a result of changes in vegetation have been 

documented by Alonso and Hartley (1998), Shaver (2006) and Cuttle (1983). 

Conflicting evidence exists as to whether the presence of mosses results in higher 

(Gorham et al. 1986) or lower concentrations (Cuttle 1983) of nutrients . 

• :. The frequency with which peats are burnt will impact on the chemical 

properties of the peat 

Differences in the frequency of burning are expected based on the results of work 

carried out in Turkey by Dikici and Yilmaz (2006). The greater recovery time 

between bums is expected to result in the burnt (every 20 years) site to having lower 

nutrient concentrations . 

• :. Combining burning and grazing will result in peats with chemical properties 

that differ from those that are subjected to just one treatment. 

Combinations of burning and grazing are expected to have impacts on the nutrient 

concentrations in peats as an increase in the number of sources of nutrient inputs will 

have occurred. Changes in moisture content and pH are less likely to be affected . 

• :. No differences are expected to exist between the three plots from blocks A to 

C that are subjected to the burning every 10 years. 

Samples collected from plots which are managed in the same way are expected to 

have very similar properties, significant differences are not expected to exist between 

plots managed in the same way. 

In addition, the potential existence of edge effects will be examined to determine 

identify whether the close proximity of the treatments to one another could result in 

one treatment impacting upon the another. Fences however exist between those 

plots that are grazed and not grazed. In addition, as the experimental plots are 

carefully managed, therefore differences should not exist within one treatment in 

terms of the nutrient concentrations in the peats. 
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Table 4.1 provides an overview of the chemical properties to be examined in this 

chapter along with a rationale for the choice of the different properties. 

Table 4.1 Chemical Parameters to be Analysed to Investigate the Effects of Land 
Management on the Moisture Content and the Chemical Properties of Peat. 

Property Rationale for Study 
Nitrogen Nitrogen is needed for plant growth, and will (in part) detennine 

which plants are able to grow at a site. 

Phosphorus Phosphorus is needed for plant growth, and will (in part) detennine 
which plants are able to grow at a site. 

Potassium Potassium is needed for plant growth, and will (in part) detennine 
which plants are able to grow at a site. 

Iron Iron has been linked with carbon dioxide production and is also 
required by methanogens. Methane can be oxidised to carbon 
dioxide and released into the atmosphere (Basiliko & Yavitt 2001). 

Selenium Selenium is toxic to methanogens and may ultimately result in 
decreased carbon dioxide loses from peat (depending on how much 
methane would be produced and oxidised to carbon dioxide.) 

Cobalt Cobalt has been linked with carbon dioxide production and is also 
required by methanogens for growth. Methane can be oxidised to 
carbon dioxide and released into the atmosphere (Basiliko & Yavitt 
2001) 

Molybdenum The presence of molybdenum can result in carbon dioxide being 
reduced to methane if the correct environmental conditions 
(anaerobic) are present. 

Nickel Nickel has been linked with carbon dioxide production and is also 
required by methanogens for growth. Methane can be oxidised to 
carbon dioxide and released into the atmosphere (Basiliko & Yavitt 
2001). 

Moisture The moisture content can control the nature and extent of microbial 
content decomposition and plant growth in a peatland. 

pH The pH not only affects microbial decomposition but also the 
composition of the vegetation growing on a bog. 
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4.3 Methodology 

4.3.1 Fieldwork 

Fieldwork was carried out at the Moor House National Nature Reserve (NNR) as 

detailed in Chapter 3. A total of 144 cores measuring 0.5 m in length were collected 

and divided into five 10 cm sections on site and stored in clean, sealed, labelled 

plastic bags. Samples were transported back to the laboratory and stored at 4°C as 

soon as possible. Samples remained in cold storage until required for analysis. The 

method of sample preparation used for each determinand is detailed below. The 

surface vegetation present at each core location was recorded. Details of which site 

each core was collected from is provided in 

Table 4.2 Treatments From Which Samples Were Collected 

Treatment Sam~le Numbers 
Burnt and Grazed (every 10 years) (BGlO) 1-15 
Unmanaged (U) 16-30 
Burnt (every 20 years) (B20) 31-45 
Burnt (every 10 years) (BlO) - Block A 45-55 (plus CI-CS from pilot 

study) 
Burnt and Grazed (every 20 years) (BG20) 56-65 
Grazed (G) 66-80 
Burnt (every 1 0 years, block B) (BlOB) 81-95 
Burnt (every 10 years, block C) (B 10C) 96-110 
Drained (D) 111-125 
Afforested (F) 126-144 

4.3.2 Laboratory Work 

4.3.2.1 Soil Moisture Content 

The moisture content of the samples was determined by weighing approximately 

10 g (±O.1g) of wet soil into a pre-weighed pre-labelled crucible which was placed in 

an oven at 105°C for 24 hours. After drying samples were placed in a desiccator to 

cool, and were then re-weighed. The gravimetric moisture content of the sample was 

calculated using the following equation: 

e = water lost (g) 
mass of oven dry soil (g) 
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(Rowell 1994) 

4.3.2.2 Total Nitrogen 

Total carbon and nitrogen analysis was carried out using a Eurovector EA3000 

Elemental Analyser. Tin cups measuring approximately 0.5 mm by 0.5 mm were 

taken, and 5 mg of oven dried soil was added with 1.5 mg of vanadium pentoxide. 

Vanadium pentoxide was added as a catalyst to ensure that complete combustion 

occurred once the samples were placed in the analyser). Energy Peat (Sphagnum) 

Reference Material NJV 942 was used as a standard reference material. Once 

prepared, the samples were analysed on the Elemental Analyser, which was 

calibrated using a range of sulphanilic acid standards. Results were expressed as a 

percentage of the weight of the sample. 

4.3.2.3 Soil pH 

pH was measured by placing 15 g of field moist peat in a plastic beaker to which 

30 ml of deionised water was added. Samples were stirred and left to stand to 

equilibrate with atmospheric carbon dioxide for 30 minutes before being analysed 

with a pH meter (Mettler-Toledo). 

4.3.2.4 Analysis o/Metals and Nutrients 

Sample Preparation Trial 

Traditionally, analysis of metals and nutrients in soils has been carried out on air 

dried soils as recommended by good practice guidance e.g. ISO 11464 (2006). Peat, 

however, has very different characteristics from other soil types. For example, air 

drying peats is not only time consuming (taking up to several weeks) but may also 

result in the chemical properties of the peats being altered. In addition, the 

hydrophobicity of peats can result in a material that is difficult to mix into an 

1 A trial carried out in July 2008 indicated that without a catalyst, incomplete combustion occurred on 
samples of peat. 

96 



The Effects of Land Management on the Chemical Properties of Peats 

extracting solution, thereby resulting in only partial extraction of the metal of 

interest. Conflicting evidence exists as to whether peats should be prepared 

differently from conventional soils or not. For example, Wieder et al. (1996) noted 

that previous works made use of wet peat samples to carry out biogeochemical 

analysis in order to prevent alteration to the chemical composition of the samples. 

They recommend that samples are freeze dried to prevent oxidation of the elements 

of interest, and state that analysis of wet soils is problematic in light of the likelihood 

of different samples having different moisture contents. This notion raises questions 

as to whether analysis of wet samples provides an accurate reflection of the 

elemental composition of the peat or the peat pore water solution. Alternatively, the 

presence of water in the sample could result in a dilution or even an increase in 

concentrations of elements present in the sample. Canfield et al. (1986) carried out a 

trial on estuarine peats and sediments and suggested that no differences exist 

between air-dried, freeze-dried and wet samples. In contrast, Amaral et al. (1989) 

found that elements were lost as a result of freeze-drying. As a lack of clarity exists 

as to which method of sample preparation is best for peats, a trial was conducted to 

identify which method resulted in the highest concentrations of elements. 

Samples of both peat and non-peat soils (clays and sands provided courtesy of Fugro 

Engineering Services) were analysed in the metals trial. Traditionally non-peat 

samples are air dried prior to extraction; and their inclusion in the trial aimed to 

identify whether significant differences occur between the four methods of soil 

preparation used in the trial. Samples of non-peat soils from natural strata were 

provided courtesy of Fugro Engineering Services Ltd from an undisclosed site in 

Hampshire. A total of five samples were analysed - two peat and three non-peat, 
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and five repetitions were carried out on each sample. Each sample was sUbjected to 

the following methods of preparation: 

• Air-drying 

• Freeze-drying 

• Oven-drying (70°C) 

• No preparation - wet soil/peat was used. 

Following drying, the samples (with the exception of the wet samples) were ground 

in a small mill and passed through a 2 mm sieve. Samples were analysed in 

triplicate. 

Samples were extracted with 5 ml of 2M nitric acid following the method detailed by 

Whitton et al. (1991). The acid and soil mixture was placed in a 15 ml PTFE tube in 

a water bath at 100°C for 45 minutes. Following extraction the samples were filtered 

through Waterman No. 44 filter papers into 25 ml volumetric flasks, and deionised 

water was used to ensure all extractant left the PTFE tube and was rinsed through 

into the volumetric flask. The solutions were made up to 25 ml with deionised 

water. Within each batch of samples, three blank samples were analysed to ensure 

that contamination of the samples had not occurred. The samples were analysed by 

an Inductively Coupled Plasma - Optical Emission Spectrophotometer (Perkin Elmer 

5300DV ICP-OES) for cobal,t iron, selenium and molybdenum as these are known 

to be important in terms of carbon cycling. In addition, lead, cadmium, copper, 

chromium and arsenic were included to provide a broad range of elements 

commonly found in abundance in UK soils, which would provide additional data on 

which a decision could be made. 

Concentrations of metals and nutrients were calculated as follows: 

( 
25 ) Sam Ie * . 

P concentratIon 

Whitton et al. (1991) 
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Minimum detection limit was determined by calculated as follows: 

(Standard Deviation of Blank Samples*3) + (Average of blank samples) 

Results of Sample Preparation Trial 

The results for each sample were used to determine which method of sample 

preparation achieved the greatest recovery for each element, defined as the highest 

concentration in the comparison of the sample preparation types. The results are 

presented in Table 4.3 
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Table 4.3 Mean Values (mgIKg) for Each Sample Preparation Method and Element Analysed in the trial 

S I I Method of Arsenic Cadmium Cobalt Chromium Copper Iron 
Molybdenu 

Nickel Lead am e . p PreparatIon m 
Detection Limit 0.008 0.001 0.001 0.001 0.007 0.117 0.002 0.001 0.004 
A Air dry 3.21 0.28 2.82 2.77 12.35 5554.71 0.04 10.27 507.87 
A Freeze dry 3.37 0.28 1.60 1.60 12.52 5806.18 0.03 7.69 180.61 
A Oven dry 16.34 1.14 4.08 7.11 12.37 18585.82 BD 14.69 714.34 
A wet 3.24 0.68 l.16 3.11 7.73 3139.32 0.55 2.82 175.97 
B Air dry 2.82 0.2 0.36 2.10 12.17 1328.77 0.69 3.85 146.00 
B Freeze dry 0.86 BD BD 0.90 8.62 414.4 0.17 2.11 23.66 
B Oven dry 2.35 BD BD 1.45 6.98 956.81 0.36 2.10 40.55 
B Wet 1.58 BD BO l.82 5.85 187.90 0.36 0.93 13.99 
C Air dry 5.55 BD 10.41 7.46 15.94 21233.89 BD 14.82 12.27 
C Freeze dry 6.91 1.39 11.07 6.10 13.82 22423.27 BD 15.10 13.76 
C Oven dry 5.61 BD 11.00 5.07 13.35 20911.17 BD 15.44 13.10 
C Wet 6.51 BO 9.71 4.66 10.68 18876.17 BD 12.09 11.25 
D Air dry 4.77 0.01 9.93 7.36 15.11 14585.13 BD 16.39 11.33 
D Freeze dry 5.56 0.29 11.58 7.15 14.98 18626.14 BD 15.73 14.14 
D Oven dry 4.35 0.78 10.82 7.57 13.18 16405.19 BO 14.19 13.58 
D Wet 5.47 BD 8.53 4.90 12.83 15023.23 BD 12.40 11 .06 
E Air dry 2.29 BO 2.39 2.69 10.25 5679.52 BD 3.54 3.52 
E Freeze dry 4.22 BO 4.57 3.40 7.99 10133.23 BD 6.36 5.87 
E Oven dry 3.94 BD 4.69 3.37 9.33 8687.77 BD 7.68 8.45 
E Wet 2.83 BD 2.30 1.78 4.94 7545.24 BD 3.16 4.05 
Cells shaded in grey highlight the highest value found for each sample for each clement analysed. A and B were peats. C-E were non-peat soils BD= below the detection limit. N=5. 
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The results demonstrated that some form of sample treatment prior to extraction of 

metals and nutrients with acid is preferable, as the lowest values tended to be found 

in samples where no preparation had taken place. The lowest concentrations 

recorded in the untreated soils could have been caused by one or more of the 

following factors: 

.:. Wet samples could not be sieved; which would firstly this would result in 

particles> 2 mm being included in the analysis. Soil particles of> 2 mm are 

considered to be chemically inert, thus reducing the concentrations of metals 

that would be recorded in each sample. Secondly, it is more difficult to 

ensure that samples are thoroughly mixed with the acid, making it less likely 

that all of the available nutrients will have been extracted; 

.:. The presence of water in the sample might have diluted the acid being used to 

extract the metals and nutrients resulting in less effective extraction; 

.:. The presence of water in the sample would have resulted in extraction of 

metals and nutrients from both the soil and water phase; 

.:. The weight of the water would have been included in the sample weight, but 

if there were no nutrients or metals in the water phase then the results would 

be lower than if the water had been removed prior to extraction. Given the 

low concentrations identified in the wet samples, it is unlikely that higher 

concentrations of nutrients and metals were present in the soil solution. 

The preparation of samples prior to extraction provided increased recovery of metals. 

In 15 cases, air drying samples resulted in the highest concentrations for a given 

element, whereas in 14 cases freeze drying resulted in the highest rates of metal 

recovery and in a further 14 cases oven drying resulted in the highest concentrations 

being recovered. Figure 4-1 illustrates concentrations of nickel in peat and non-peat 

soils. The result demonstrates that oven drying resulted in the highest concentrations 

of nickel being extracted. In all cases, the lowest concentrations were identified in 

the wet samples. 
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Peat B Non-peat C 

Sample 

Non-peat 0 Non-peat E 
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• Freeze dried 

• Oven dried 

Wet 

Figure 4-1 Concentrations of Nickel in Peat and Non-Peat Soil ubjected to Different 

Methods of Preparation Prior to Acid Extraction 

Two way ANOV A was carried out to identify whether difference existed between 

the preparation methods, and to ascertain whether soil type had a ignificant effect 

on the outcome of the analysis. The results demonstrated that there were not 

significant differences between the methods of preparation (p=0.456) and that 

interaction with soil type was not significant (p=0.690) 

In all instances, despite the lack of a significant difference between the methods of 

preparation, the wet samples had the lowest values. The re ult howed little 

difference between freeze-drying, air drying and oven drying of ample . Owing to 

the length of time required to air dry samples (in some cases up to several week ) 

and the costs involved in freeze-drying samples oven drying wa chosen a the 

preferred option for preparing samples of peat soils for analy i of nutrients and 

metals. Samples from all sites investigated at Moor Hou e were analysed for 

nutrients and metals using the procedure outlined above by Whitton et al. (1991) on 

oven-dried peats. Two blank samples and one certified reference ample was 

included in every batch of20 samples. 
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4.3.3 Statistical Analysis 

To detennine if the differences between the treatments were significant, data were 

analysed to detennine if a nonnal distribution were present to enable Analysis of 

Variance (AN OVA) to be carried out. A nonnal distribution was not found in the 

majority of data sets. The following methods of transfonning data were utilised in 

an attempt to nonnalise the data: logarithmic; square; square root; and reciprocal. 

The results of the Anderson-Darling nonnality test demonstrated that none of the 

transfonnations produced a nonnal distribution. The absence of a nonnal 

distribution suggest that either non-parametric tests should be utilised, or, ANOV A 

could be carried out, but caution must be exercised when interpreting the results, 

given the data do not confonn to the assumptions underlying ANOV A. 

The Kruskall-Wallis test requires data to fulfil the following requirements: to be 

selected at random; with independent populations, and populations with the same 

variance and distributions (Rumsey 2007). As the data do not meet the requirements 

of either test, ANOV A was perfonned as the test is more robust than non-parametric 

tests and is relatively insensitive to non-nonnal data. Tukey's post-hoc test was used 

to identify where significant differences (p<0.05) existed between treatments 

4.4 Results 

4.4.1 Spatial variation in the chemical properties o/peats within treatments 

The results of the analysis of peats for chemical elements, moisture content and pH 

were plotted spatially for each treatment to check for edge effects. Samples were 

also divided into edge and non-edge locations. Samples within 2 m of the plot 

boundary were considered to be edge locations and those further away from the 

boundary non-edge locations. No visual trends were identified at any of the sites 

within the surface peats, with the exception of moisture content in the afforested site 

which decreased with distance from the perimeter of the forest and was lower on 

ridged areas of the forest compared to furrowed areas. 

There were no statistically significant differences in the results for any of the 

parameters analysed along the edges of the plots compared to those further than 2 m 

from the edges (p>0.05). The results of this analysis suggest the experimental set-up 

103 



investigating the Effects of Land Managem ent on the Chemical Properties of Peat 

was unlikely to be influenced by edge effects, thereby reducing any bias caused by 

the proximity of the sites to one another. 

4.4.2 Moisture Content 

Differences in the moisture content of the peat samples analysed are presented on 

Figure 4-2. Maximum values tended to be found between 20 and 30 cm beneath the 

surface with the exception of the unmanaged site, the burnt (every 10 years) and the 

drained sites. The maximum values for these sites were found 30 to 40 cm beneath 

the surface. 

The afforested site was the driest, with values ranging between 360 % and 902 % 

moisture by dry mass. In the surface soils, the burnt (e ery 20 year) ite had the 

highest values (average 940 %), beneath the surface layer maximum values were 

identified in the drained site (average values ranged between 963 % and 1,092 %). 

Analysis of Variance (ANOVA) demonstrated significant differences between the 

moisture contents of the sites (p<0.0001, Table 4.4). The affore ted site was 

significantly drier than all other treatment, whilst the drained site wa significantly 

wetter than all treatments except the burnt and grazed (every 1 0 years) site and the 

burnt (every 10 years, C) site. 
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Figure 4-2 Change in Average Soil Moisture COli lent with Depth 
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Table 4.4 Significant Differences in the Moisture Content of Peats between Different 
M T. T: k ' P h 1', anagement reatments uszng u ey s ost- oc est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U 
B20 
BIO 
BG20 
G 
BlOB 
BlOC 
D ,/ ,/ ,/ ,/ ,/ 

F ,/ ,/ ,/ ,/ ,/ ,/ ,/ ,/ ,/ 

P<O.OOI ~ - Igmficant difference Blank - no significant difference. BIO - burnt every 10 years, b20 - burnt every 20 years, 
bg lO - bumt and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, f
afforested; B - block B; C - block C 

4.4.3 Acidity 

Figure 4-3 highlights the narrow range of pH values obtained for all sites with the 

exception of two outliers in the drained and afforested sites. All sites were found to 

have low pH values, becoming less acidic with depth, with the exception of the 

afforested site. The afforested site was the least acidic in the surface peats (3.6). 

The unmanaged site was the least acidic site between 10 and 50 cm beneath the 

surface (3 .8 to 4.4). ANOVA demonstrated significant differences between 

treatments, as illustrated in Table 4.5 . The drained, afforested and burnt sites on 

Blocks B and C were found to be significantly more acidic than all other treatments. 
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Figure 4-3 Box and Whisker Plot of pH Valuesfor the Surface Layer Peats 
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Table 4.5 Significant Differences in the pH Value of Peats between Different Management 
T, A d ' ~ k ' P h T. reatments ccor 111}! to u ev s ost- oc est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U 

B20 
BIO 

BG20 
G 

BlOB ,/ ,/ ,/ ,/ ,/ ,/ 

BlOC ,/ ,/ ,/ ,/ ,/ ,/ 

D ,/ ,/ ,/ ,/ ./ ,/ 

F ,/ ,/ ./ ./ ,/ 

P<O.OO I ./ - significant difference Blank - no slglllficant difference. B I 0 - burnt every 10 years, b20 - burnt every 20 years, 
bg 10 - burnt and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, w -
afforested; B - block B; C - block C 

4.4.4 Nitrogen 

No clear trends in the nitrogen values were identified with depth down the peat 

profile within each treatment (Figure 4-4). The greatest concentrations of nitrogen 

(average 2.69 %) were identified at the burnt (every 20 years) site whilst the lowest 

(average 1.26 %) were found in the afforested site in the surface layer. The burnt 

site (every 20 years) was found to have the highest concentrations of nitrogen 

between 0 and 40 cm below the surface of the peat. Between 40 and 50 cm beneath 

the surface the burnt (every 10 years, C) site was found to have the highest 

concentrations of nitrogen (2.19 %) whilst the lowest average concentration (1.22 %) 

was found at the burnt (every 10 years, B) site. 

Significant differences in the nitrogen content between treatments were identified 

(p<0.001) as illustrated in Figure 4-4. The burnt (every 20 years) site had a 

significantly higher nitrogen content than the grazed, the drained, the unmanaged, 

the afforested, the burnt (every 10 years) site and the sites where burning and grazing 

were combined. The unmanaged site bad a significantly lower nitrogen content than 

the burnt (every 20 years) site, the burnt site on block C and the burnt and grazed 

(every 20 years) sites. 
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Table 4.6 Significant Differences in the Nitrogen Content o/Peats between Different 
M, 11 A d ' J'; k ' P h 11 anagement reatments ccor mgto u ey s ost- oc est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U 
B20 ../ ../ 

BIO ../ 

BG20 ../ 

G ../ ../ 

BlOB ../ 

BlOC ../ ../ 

D ../ ../ 

F ../ ../ ../ 

P<O.OO I ./ - sIgnIficant dIfference Blank - no sIgnIficant dI fference. B I 0 - burnt every 10 years, b20 - burnt every 20 
years, bg lO - burnt and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d
dra ined, f - afforested; B - block B; C - block C 

Concentration (% N per mass dry weight) 
Or----------.----------~----------~----------._--------~ 
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Figure 4-4 Variations in Mean Nitrogen Concentrations with Depth 

BGI O n=73 U 0=75 B20 n=75 BIO n=72 BG20 n=74 G n=72 D n=73 F n=95 

4.4.5 Phosphorus 

Contrasts between surface values and the base of the peat profile are illustrated in 

Figure 4-5, demonstrating that higher concentrations were found in the surface peats 

(0-20 cm). In the top 30 em, the highest average concentration was found in the 

burnt (every 20 years) site whilst the lowest average concentrations were found in 

the afforested site. The burnt site (every 1 0 years) had the higbest concentrations 

between 30 and 50 cm beneath the surface (185 .5 - 166.5 mg kg-I). The lowest 

concentrations between tbese depths were found in the drained site (140.6 mg kg-I) 

and the unmanaged site (117.9 mg kg-I). No site was identified using ANOVA as 
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being significantly different to the unmanaged site. The burnt site (20 years) site 

peats had a significantly higher phosphorus content than the afforested site. 

Mean P Concentration (mg kg·I ) 

o 50 100 150 200 250 300 350 400 450 500 
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Figure 4-5 Phosphorus Concentrations with Depth 

BG I 0 n=75 U n=74 B20 n=74 B I 0 n=68 BG20 n=72 G n=7 1 D n=69 F n=94 
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....... Surn and Graze (20) 

Table 4.7 Significant D~fferences in the Phosphorus Content of Peats between Different 
M, T, tn tAd' T k ' P I r, anagement rea 1en s ccor 111~ to u ey s Ost-10C est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
V 
B20 
BIO 
BG20 
G 
BlOB 
BlOC 
D 
F ./ 

.. 
.,/ - Significant dlf'lercnce Blank - no Sign ificant difference. BIO - bUl11t every 10 years, b20 - bUl11t evcry 20 years, bglO 
burnt and grazed every 10 yea rs, bg20 - burnt and grazed every 20 years. g - grazed, U - unmanaged, d· drained, r - afforested; 
B - block B; C - block C 

4.4.6 Potassium 

Concentrations of potassium were at their highest in the surface layer (0-10 cm) with 

the highest values in the drained (274.3 mg kil) site and the lowest (86.7 mg kil) in 

the burnt (every 10 years, C) site. Large ranges were identified in this layer with the 

greatest (113.6 - 761.9 mg kg· l
) recorded for the afforested site. The values for 

potassium decreased in the layers below the 0-10 em zone, with the lowest values 
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recorded between 20 and 40 cm beneath the surface, before increasing in the 40-

50 crn layer of the profile, as shown in Figure 4-6. A verage concentrations of 

potassium greatly increased in the drained site between 20 and 30 cm beneath the 

surface (minimum value of 16.4 mg kg- I was recorded in the burnt ite - every 20 

years), possibly due to two outliers (407 mg kg-I and 829 mg kg-I). Statistical 

analysis using ANOV A did not identify any significant difference between the 

treatments as shown in Table 4.7; with the exception of the burnt (every 10 year) site 

on Blocks Band C having a significantly lower pota sium content than the drained 

and the afforested sites. 

Mean Potassium (me kg·1) 

o 50 100 150 200 250 300 350 
o+-------~------~------~------~------~------~------~ 

10 
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Burn (10) 

...... Graze 
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....... Drained 

~ ....... Afforested 
a. .. ....... Burn & Graze (10) 
0 

__ Burn (20) 

30 __ Burn & Graze (20) 

40 

50 

Figure 4-6 Pota illm Concentration with Depth 

BG I 0 n=75 U n=72 B20 n=74 B I 0 n=66 BGZO n=71 G n=67 0 n=68 F n=92 

Table 4.8 Significant Differences in the Potassium Content of Peat between Different 
M n A d' 1'; k 'P I To al1~ment reatments ccor 111~ 10 II ey s ost- IOC est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U 
B20 
BIO 
BG20 
G 
BlOB 
BlOC 
D v" v" 

F v" v" 

P=O.OO I ./ - significant difference Blank - no Significant difference. BIO - burnt every 10 years, b20 - burnt every 20 years, 
bglO - burnt and grazed every 10 years, bg20 - burnl and gnued every 20 years. g - grazed, u - unmanaged. d- drained, f
afforested; B - block B: C - block C 
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4.4. 7 Nickel 

Figure 4-7 demonstrates that concentrations of nickel were highest in the surface 

layer and decreased with depth. The highest average concentration was recorded in 

the afforested site (4.6 mg kg-I) and the lowest (1.6 mg kg-I) in the burnt (grazed, 

every 10 years). Concentrations of nickel declined in the layers beneath the surface, 

with the lowest values either in the 20-30 cm section or the 30-40 cm section; after 

which values rose again in the 40-50 cm zone. The range of mean values between 

10 and 50 em below the surface was very narrow. The highest concentrations of 

nickel were identified in the unmanaged site in the 10-20 em layer (2.5 mg kg-I), the 

20 - 30 em layer (2.5 mg kg-I) and the 40 - 50 em layer (3.2 mg kg-I). The lowest 

concentrations were identified in burnt sites, 1.1 mg kg-I in the 10-20 em layer, 

0.9 mg kg-I in the 20-30 em zone (burnt every 20 years both grazed and ungrazed); 

and in the 30-40 em section 0.9 mg kg-I in the site that was grazed and burnt every 

20 years site. 

Significant differences were identified using ANOVA (p<0.001) between nickel 

concentrations in the unmanaged site and all burnt treatments with the exception of 

the bumt and grazed (every 10 years) site. Significantly higher concentrations of 

nickel were identified in the drained and the afforested sites and sites bumt on a 20 

year rotation, and Blocks B and C. 
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Figure 4- 7 Change in Nickel Concentrations wilh Depth 
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Table 4.9 Significant Differences in the Nickel Contenl o/Peal between Different 
U Ti anaJ!ement realments Accordin~ 10 Tukev 's Post-hoc Test 

BG10 U B20 B10 BG20 G BlOB BlOC D 
U ,/ 

B20 ,/ 

BI0 
BG20 ,/ ,/ 

G ,/ ,/ 

BlOB ,/ ,/ ,/ 

BlOC ,/ 

D ,/ ./ ./ 

F ,/ ./ ./ ./ 

1><0.00 1 '" - Ignl ficant dIfference Blank - 00 Ignlficaol difference. BIO buml C\CI) 10 }ears. b20 - burnt Clery 20 years, 
bg I 0 - burnt and grazed every 10 years. bg20 - burnt and gr.ued every 20 years. g - grazed. u - unmanaged. d- drainC<L f 
afforested; B - block B; C - block C 

4.4.8 Cobalt 

Little variation was apparent in the concentration of cobalt for each ite or with 

depth. The range of values within each treatment for each depth wa very small. 

Maximum mean concentrations tended to be found in the unmanaged ite (0.71 mg 

kg-I at O-IOcm; 1.22 mg kg' l at 10-20 cm; 1.34 mg kg'l at 30-40 cm and 1.25 mg kg-I 

at 40-50 cm). The unmanaged site had the largest range of value det cted (0.37 -

2.42 mg kg'l in surface peats). No clear trend in value wa ob erved within the 

treatments over the different depths examined. Unlike other metal and nutrient, 

values did not decrease with depth, however maximum value were not detected in 
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the 40-50 cm zone. The unmanaged site was found to have significantly higher 

concentrations of cobalt than all sites other than the burnt (every 10 years) site. 

Table 4.10 illustrates the sites between which significant differences were identified. 

Where differences were significant, concentrations of cobalt were higher in the 

grazed and burnt (every 10 years) sites compared to the sites. 

Table 4.10 Significant Differences il1 the Cobalt Content of Peat between Different 
M 11 A d ' t 1'; k ' 1', anagement reatments ccor mg .o u ey s est 

BGIO U B20 B10 BG20 G BlOB BlOC D 
U ./ 

B20 ./ 

B10 ./ ./ 

BG20 ./ ./ 

G ./ ./ 

BlOB ./ ./ ./ 

BlOC ./ ./ ./ ./ 

D ./ ./ ./ 

F ./ ./ ./ ./ 

p<O.OO I ,/ - slgmficant dIfference Blank - no slgmficant dIfference. B I 0 - burnt every 10 years, b20 - burnt every 20 years, 
bg lO - burnt and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, f 
afforested; B - block B; C - block C 

4.4.9 Iron 

Concentrations of iron were highest in the surface layer and declined with depth until 

the 30-50 cm layer where values increased again, as illustrated in Figure 4-8. The 

maximum average concentration in the surface layer was 1,857 mg kg-l in the burnt 

(every 10 years) site. The lowest average concentration was 871 mg kg-l in the burnt 

(every 10 years C) site. The highest concentrations for each depth examined were 

found in the unmanaged site from 10-20 cm downwards to 50 cm. The greatest 

ranges of values were found in the unmanaged site s peat at these depths. Minimum 

values were consistently found in the burnt (every 10 years, C) site for depths 

between 20 and 50 cm (914, 1,080 and 1,205 mg kg-l respectively). Following the 

sharp drop in values for iron in the 10 to 20 cm layer, values steadily rose in all 

treatments and peaked in the 40 to 50 cm zone, with a maximum value of 6,303 mg 

kg-l recorded in the unmanaged site and a minimum value of 729 mg kg-l recorded 

in the afforested site. 

Significant differences m the iron content of the peat samples were identified 

between the different land management practices as illustrated in Table 4.11 . All 

treatments with the exception of the burnt (every 10 years) site and the grazed site 

had significantly lower iron concentrations than the unmanaged site. 
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Mean Iron concentration (mg kg_l) 
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Figure 4-8 Iron Concentration with Depth 
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Table 4. J J Significant Differences in the Iron Content of Peats between Different 
U t 1'; t tAd' T k ' P t J 1', an age men rea men s ccor m~ 10 u e y s os - IOC est 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U ./ 

B20 ./ ./ 

BIO ./ 

BG20 ./ 

G ./ ./ 

BlOB ./ ,; ,; ,; 

BlOC ./ ./ ./ ./ ./ 

D ./ ./ ./ ./ 

F ./ ./ ./ ./ ./ 

p<O.OOI ,/ - slgmficant dlfTerence Blank - no slgmficant dllTerence. BIO - burnt eyery 10 years, b20 - burnt every 20 years, 
bglO - burnt and gra7ed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed. u - unmanaged. d- drained, f 
afforested; B - block B; C - block C 

4.4.10 Molybdenum 

All values for molybdenum were low regardless of depth or treatm nt, with the 

majority of values below 2.0 mg kg-I. Maximum value tended to be found in the 

surface peats with the exception of the grazed and the drained ite where all amples 

had concentrations below the minimum detection limit. In general, concentrations 

decreased with depth to the 30 to 40 cm layer and rose slightly in the 40 to 50 em 

zone. Exceptions to this trend were identified in the burnt (ev ry 20 years and every 

10 years replicates B and C) sites. A peak value was identified in the drained ite 

between 20 and 30 cm of 58,047 mg kg-I, the value has been omitted from the data 
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set on the grounds that it is five orders of magnitude greater than all other values in 

the data set. Checks were carried out to determine if errors had occurred in blank 

and reference samples but none were identified, neither were errors found in 

calculating the value. The value was therefore considered to be an outlier. 

The highest average concentration of molybdenum was identified in the unmanaged 

site with a value (the only value in the data set for this depth) of 6.05 mg kg I, which 

appears to be an outlier based on the trends observed across the data set (see Figure 

4-9). The lowest mean concentration was 0.38 mg kg-I from the burnt (every 10 

years, C) site. At 40 to 50 cm below the surface, the average maximum 

concentration was identified in the drained site (2.58 mg kg-I) whilst the minimum 

(0.21 mg kg-I) was found in the burnt (every 10 years, C) site. 

Significant differences in molybdenum concentrations were identified between the 

treatments as shown in 

Table 4.12. Due to the low number of samples within each population, qualitative 

analysis of whether molybdenum concentrations tallied with vegetation type could 

not be performed. 
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Figure 4-9 Molybdenum Concentrations in Suiface Peal 

The extent of the box represented the fIrSt and third quartiles, with the median represented by the line in the centre of the box. 
The whiskers stretch to the upper and lower limits within the first and third quartiles, values outside of this range are 
represented with an *. 

Table 4.12 Significant Differences in the Molybdenum Content of Peats between Different 
M, 11 A d' 1'; k ' P h To ana <!ement reatments ceoI' m~to u ey s ost- oc est 

BGIO B20 BIO BG20 BlOB BlOC 
B20 
BIO 
BG20 
BlOB ./ ./ 

BlOC ./ ./ ./ 

F ./ 

P<O.OOI .; - Significant difference Blank - no slgOificant dlfTerence. BIO - burnt every 10 years, b20 - burnt every 20 years, 
bglO - burnt and grazed every 10 years, bg20 - bumt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, f
afforested; B - block B; C - block C 

4.4.11 Selenium 

As shown in Figure 4-10, concentrations of selenium were highest in surface peats. 

Concentrations of selenium were lower between 10 and 50 em, and in all but one 

case were less than 3 mg kg-I. The unmanaged site had the highest average 

concentration in this layer (6.64 mg kg-I) in the surface layer whilst the lowest value 

(2.71 mg kg-I) was identified in the burnt (every 10 years replicate C) site. 

The results of ANOV A analysis demonstrated that there were significantly higher 

concentrations of selenium in the unmanaged site compared to the burnt (every 20 

116 



investigating the Effects of Land Management on the Chemical Properties of Peat 

years) site, and the grazed and burnt (every 10 years B) site. Peats from the 

afforested site had significantly higher concentrations of selenium than the burnt 

(every 20 years) site, grazed and burnt (every 10 years B and C) sites. 
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Figure 4-10 Concentrations of Selenium at Selected Depths below the Peat Surface 

BO I 0 n=75 U n=7 1 B20 n=74 B I 0 n=66 B020 n=72 0 n=67 D n=69 F n=93 

Table 4.13 Significant Differences in the Selenium C011tent of Peats between Different 
At, T, t tAd' t T, k ' P t h T, t anagement rea men s ceor 111% 0 U ey s os - oe es 

BGIO U B20 BIO BG20 G BlOB BlOC D 
U 
820 ./ 

BIO ./ 

BG20 
G ./ ./ 

8108 ./ ./ 

BlOC 
D 
F ./ ./ ./ ./ 

<0.00 I ./ - significant dilTerence Blank - no significant dilTcrence. B 1 0 - burnt every 10 years, b20 - burnt every p W~ 
bg lO - burnt and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, f
alTorestcd, B - block B; C - block C 
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4.4.12 Variation in Key Chemical Properties with Depth 

ANOV A was used to identify if significant differences existed in the chemical 

properties of the managed peats with depth. A summary of the results is presented in 

Table 4.14. 

Table 4.14 Significance of Differences in the Chemical Properties between Different Depths 
within each Management Practice 

Unmanaged Grazed Burnt (every Drained Afforested 
10 years) 

Moisture p-0.451 p-0.016 p=0.101 p<O.OOI p=0.OO5 
content (0-10 v 20-40) (0-10 v 20-50) (0-10 v 10-40) 

pH p-0.005 p<O.OOI p<O.OOI p=0.046 p=0.041 

(0-10 v 40-50) (0-10 v 20-50) (0-10 v 40-50) (0-10 v 40-50) (10-20 v 40-50) 

(10-20 v 40-50) (10-20 v 30-50) (10-20 v 40-50) 

(20-30 v 40-50) (20-30 v 40-50) 

(30-40 v 40-50) 

Nitrogen p=0.805 p-O.OII p=0.774 p=0.388 p=0.196 

(10-20 v 20-30) 

(20-30 v 30-40) 

Phosphorus p<O.OOl p<O.OOI p<O.OOI p<O.OOI p<O.OOI 

(0-10 v 10-50) (0-10 v 20-50) (0-10 v 10-50) (0-10 v 10-50) (0-10 v 10-50) 

(10-20 v 40-50) (10-20 v 30-50) (10-20 v 40-50) (10-20 v 30-50) (10-20 v 40-50) 

Potassium p<O.OOI p<O.OOI p<O.OOI p<O.OOI p<O.OOI 

(0-10 v 10-50) (0-10 v 10-50) (0-10 v 10-50) (0-10 v 10-50) (0-10 v 10-50) 
, p p value from ANOV A analysIs, the depths between whIch differences were Identified based on the results of Tukey s Test 

are presented in brackets. <0.05 = significance value. 

4.4.13 Analysis of Variation in Nutrient and Metal Concentrations between Three 

Plots Subjected to the same Treatment 

The experimental set-up was designed to include a triplicate of one treatment -

burning every 10 years for Blocks A, B and C, to ascertain whether significant 

differences exist between plots that have been subjected to the same treatment. The 

plots at Moor House are divided into four blocks, with six plots within each block as 

described in Chapter 3. Values for each parameter were compared between the 

triplicate treatments using ANOV A. Differences were not expected to be found as 

all three plots have been managed in the same way since the early 1950s. 

For the surface soils (0 - 10 em beneath the peat surface) plots that are burnt every 

10 years from Blocks B and C at Moor House NNR were found to be significantly 
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different from Block A in terms of their iron (p<O.OOS), nickel (p<O.OOS), selenium 

(p<O.OOS) and potassium (p<O.OOS) concentrations. Notably, Block A burnt peats 

were not found to have significant differences from the unmanaged peats for any of 

the properties analysed. Peats in Block B had significantly different concentrations 

of nickel (p<O.OOS) and selenium (p<O.OOS) from the unmanaged site. Peats in 

Block C had significantly different concentrations of nickel (p<O.OOS), selenium 

(p<O.OOS) and iron (p<O.OOS) from the unmanaged site. These differences indicate 

that Blocks B and C are more similar to one another than Block A which is more 

similar to the unmanaged site. 

In the 10 to 20 cm layer, statistical analysis carried out using ANOV A identified 

significant differences between peats from Blocks A and B for pH (p<O.OOS). Block 

A was found to have significantly different concentrations of cobalt from Blocks B 

and C (p<0.005). In the 20 to 30 cm layer concentrations of cobalt were found to be 

significantly different between peats taken from Blocks A and B (p=0.001). 

In the 30 to 40 cm layer, significant differences were identified between Blocks A 

and B for pH as well as between Blocks A and C (p<0.005). Significantly 

differences were identified between Blocks A and C for cobalt (p<0.005) and iron 

(p<0.005). In the 40 to 50 cm layer, significant differences were found between 

Blocks A and B for pH (p<0.005) and selenium (p<0.002). Blocks A and Chad 

significantly different concentrations of iron (p<0.005). 

4.4.14 Vegetation Analysis 

This section aims to establish whether the vegetation growing at the location where a 

core was collected, affects the nutrient content, moisture content andlor pH of peats 

collected from the burnt, the grazed or the unmanaged plots. A qualitative analysis 

of the relationship between vegetation and concentrations of key elements was 

carried out; trace metals were not included in this analysis due to the low 

concentrations identified at each site. The results of the analysis are presented in 

Table 4.15 
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Table 4.15 Relationships between Mean Values for Chemical Properties which Drive the 
Carbon Cycle in Peats and Vegetation Type for each Mana ed Site 

Site 
Burnt and 

Unmanaged Burnt (20) Burnt (10) Burnt and 
Grazed (10) Grazed (20) Grazed 

Moisture (g H20 per g dry mass) 
Moss 8.95 (n- 6) 10.85 (n- 4) 9.24 (n- 7) 9.26 (n-6) nla nla I' 

Heather 7.30 (n- 1) 7.92 (n 5) 9.69 (n- 6) 7.77 (n-l) 8.06 (n- 7) 7.62 (n=4) 
Sedge 8.01 (n=4) 7.63 (n- 3) nla 8.94 (n-3) 7.64 (n-2) 8.55(n=3) • 

Heather 6.73 (n- l) 7.19 (n-2) 9.10 (n-2) nla 7.83 (n- 1) 8.60 (n=6) 
and Sedge 
Heather 7.51 (n- 1) 9.93 (n- I) nla nla nla 9.34 (n=2) 
and Moss 
Sedge and 7.83 (n-2) nla nla nla nla nla 
Moss 

pH 
Moss 3.70 (n- 6) 3.65 (n- 4) 3.67 (n- 7) 3.70 (n-6) nla nla 
Heather 3.75 (n- l) 3.62 (n- 5) 3.74 (n- 6) 3.48 (n=I) 3.65 (n- 7) 3.69 (n=4) 
Sedge 3.72 (n- 4) 3.70 (n- 3) nla 3.73 (n-3) 3.68 (n-2) 3.66 (n=3) 
Heather 3.67 (n- l) 3.54 (n-2) 3.63 (n-2) nla 3.65 (n- l) 3.71 (n=6) 
and Sedge 
Heather 3.60 (n- l) 3.64 (n- I) nla nla nla 3.72 (n=2) 
and Moss 
Sedge and 3.73 (n-2) nla nla nla nla nla 
Moss 

Nitrogen (% 
Moss 1.41 (n=6) 1.46 (n=4) 3.16 (n- 7) 1.61 (n-6) nla nla 

~ 

Heather 1.62(n- l) 1.55 (n- 5) 2.16 (n- 6) 1.66 (n- I) 2.44 (n- 7) 1.53 (n=4)-
Sedge 1.19 (n=4) 1.80 (n- 3) nla 2.78 (n-3) 1.49 (n-2) 1.37 (n=3) 
Heather 1.16 (n- l) 1.66 (n-2) 1.83 (n-2) nla 1.43 (n- I) 1.45 (n=6) 
and Sedge 
Heather 1.73 (n- 1) 2.02 (n-I) nJa nla nla 1.53 (n=2)~ 
and Moss 
Sedge and 1.67 (n- 2) nla nla nla nla nla 

~ 

Moss 
Potassium (mg k((-I) -

Moss 257.56 (n- 6) 211.55 (n- 4) 151.88 (n-7) 279.03 (0-6) nJa nla 
Heather 582.95 (n= l) 196.19 (n=5) 192.47 (0- 6) nla 209.17 (n=7) 213.76 (n=4) 
Sedge 153.41 (n=4) 186.01 (n-3) nla 367.73(n-3) 209. 17 (n-2) 213.76 (n- -3' 
Heather 286.66 (n- I) 144.96 (n- 2) 123.65 (n-2) nla 286.8 1 (n- I) 235.58 (n=6 
and Sedge 
Heather 219 .62 (n-1) 25 1.82 (n- I) nla nla nla 227.40 (n=2) 
and Moss 
Sedge and 199.76 (n- 2) nla nla nla nla nla 
Moss 

Phosphorus (mg kg-I) 
Moss 422 .63 (n- 6) 341.56 (n-4) 445.99 (n- 7) 444.53 (n-6) nla nla 

" 

Heather 745.6 (n= I) 361.97(n=5) 502.63 (n-6) nla 441.68 (n- 7) 369.76 (n-4) 
Sedge 363.93 (n- 4) 319.63(0-3) nla 527.28 (n- 1) 345.49 (n- 2) 292.37 (n=)) 
Heather 511.94 (n- l) 252.85(n-2) 378.86 (n-2) nla 389.89 (n- 1) 372.30 (n=6) 
and Sedge 
Heather 430.17 (n- l) 414.65(n- l) 
and Moss 

nla nla nla 425.30 (n=2) 

-" 
Sedge and 407.80(n-2) nla nla nla nla nla 
Mo_ss 

Wetter sites were associated with mosses as anticipated whilst grasse tended to be 

associated with drier sites. No clear trends were identified between pH values and 
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vegetation type, mosses were expected to dominant the most acidic sites. Trends 

may not be evident due the very narrow range of pH values identified at Moor 

House. 

The results indicate (with the exception of the burnt site - every 10 years) that where 

sedges were present, lower concentrations of elements were identified, and where 

heather or a combination of heather and moss are present, values are higher. At the 

burnt site (every 10 years) higher nutrient concentrations were identified at locations 

where sedges were recorded; the lowest concentrations were found where mosses 

and heathers were noted. These results contrast with the other sites considered and 

may reflect the recent bum at this site. Sedges are likely to recover most quickly and 

thus will be the first to breakdown and form new inputs of substrate into the peat. 

The results demonstrate the importance of vegetation type on upland peats, and 

indicate that vegetation represents an important input of nutrients and has a notable 

effect on moisture content but not pH. 

The results of the analysis show that vegetation composition is a potentially 

important control of nutrients and moisture content in upland peats, although not pH. 

Changes in vegetation on upland moorlands have been linked to land management 

(Chapman & Rose 1991). Future land management practices need to consider how 

management will influence the species of vegetation present and hence the chemical 

properties of the peat that drive the carbon cycle. Drier, more nutrient rich heather 

sites could result in an increase in carbon mineralisation and subsequently carbon 

loss. Further discussion of carbon losses from peat is presented in Chapter 6. 

4.5 Discussion 

4.5.i impact on Trace Metals 

Concentrations of trace metals (nickel, molybdenum. cobalt and selenium) were 

typically found to be low in all instances i.e. within an order of magnitude of the 

detection limit. These elements are generally required in the production of carbon 

dioxide and/or methane gases (Basiliko & Yavitt 2001). The concentrations 

identified are sufficiently low that the effects of land management are difficult to 

separate out from background concentrations i.e. concentrations typically found in 
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peats in the Moor House area. Published data on background concentrations of trace 

metals are not available for UK peatlands. Data presented in Table 4.16 show the 

differences between values for the unmanaged site at Moor House compared to the 

values attained for managed sites. 

Table 4.16 Comparison of Trace Element Concentrations between Managed and 
U dS' At, R nmanage ltes at oor ouse 

Element Average at Range of Average Range of Values 
Unmanaged Site Concentrations Attained for 

(mg/kg) for Managed Managed Sites 
Sites (mglkg) 

(mglkg) 
Molybdenum all below detection 0.38 -1.73** 0.05 - 2.45 ** 

limit (O.OI) 
Nickel 4.00 (n=15) 1.6 - 4.6 0.1 -7.1 
Selenium 6.64 (n=15) 2.71 - 5.90 0.13 - 9.26 
Cobalt 0.71 (n=15) 0.39 - 0.66 0.04 - 1.91 .. 
*only one value was Identified for the unmanaged sIte (all others were below the hmlt of detection). ** No values for dramed 
and grazed sites (all values were below the limit of detection). 

Whilst these trace elements are required for the production of greenhouse gases, the 

quantities that each micro-organism requires for survival are unknown. It is 

therefore not possible to conclude whether deficiencies might be occurring in the 

peats examined. No significant differences in the surface concentrations of cobalt or 

molybdenum were identified using ANOV A (p=O.036 and <0.005 respectively). 

The unmanaged site was found to have significantly different (p<O.005) 

concentrations of selenium to the burnt sites (every 10 years, both grazed and 

ungrazed) and the grazed site. Strong correlations between trace elements and gas 

production identified by Basiliko and Yavitt (2001), correlation data between 

gaseous carbon loss and nutrient and metal concentrations are present in chapter 8. 

4.5.2 The Effect of Land Management on the Chemical Properties of Peat 

4.5.2.1 Impact of Afforestation on Peat Chemistry 

As hypothesised, the afforested site was found to be significantly drier than all other 

treatments, perhaps owing to the greater water demand of the trees compared to 

heather, mosses, grasses and sedges. In addition the trees provided the peat with 

shelter from precipitation through interception. Thirdly, the site was drained prior to 

the planting of trees and cores taken from ridges were generally found to be drier 

than cores collected from furrows. 
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The pH of the afforested site was found to be significantly lower than the 

unmanaged, burnt and grazed sites as predicted. Byrne and Farrell (2005) identified 

lower pH values in afforested peats, and work carried out by Laiho et al. (2004b) 

found drained sites to have a lower pH (3.0-3.1) than those that are not drained (4.1). 

The presence of tree and drains appears to have contributed to the results observed at 

MoorHouse. 

The afforested site had some of the lowest concentrations of nitrogen at Moor House 

(1.26 %). The demand for nitrogen by trees is likely to be greater than the vegetation 

species found on all other sites. Concentrations of nitrogen were significantly lower 

than those found in the burnt (every 20 years) site. Concentrations of phosphorus 

were among the lowest concentrations identified at Moor House, although the 

differences were not significant (with the exception of the burnt (every 20 years) 

site) having a significantly higher phosphorus content). Afforested peats frequently 

have a more flashy hydrological regime owing to the presence of drains which allow 

rates of flow to be higher, and the movement of water out of the system to be quicker 

(Pyatt 1993). As a result of a flashier regime, nutrients could potentially either leach 

out faster or may not be retained at all. 

Concentrations of potassium were among the highest at the afforested site, potassium 

is considered to be a highly mobile nutrient (Westman & Laiho 2003), therefore, the 

high concentrations are surprising. Rydin and Jeglum (2006), however, noted that 

the highest concentrations of potassium tend to be found in treed mires, as under 

anoxic conditions potassium is regularly flushed and/or leached out. Under aerobic 

conditions however potassium may be strongly bound to rootlets and retained by 

micro-organisms, which could explain the trends observed at Moor House. This 

notion is supported by Bragazza et al. (2005) who found greater concentrations in 

hummocks on a Swedish mire than in hollows. 

Published data on iron could not be found for afforested peats, however, work 

carried out by Heathwaite (1990) indicated that peatland drains cause iron 

concentrations to lower. The afforested site was found to have significantly lower 

concentrations of iron than the unmanaged, burnt and grazed treatments, and it is 

possible that this is attributable to the presence of drains at the site. 
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Of the trace metals analysed, molybdenum and nickel concentrations at the 

afforested site were found to be among the highest observed across all treatments; 

while selenium and cobalt concentrations were among the lowest recorded at the site. 

Although significant differences were found to exist between the afforested site and 

the grazed, unmanaged and burnt sites, the differences are sufficiently small that it is 

difficult to determine whether the differences are great enough to influence gaseous 

losses of carbon from the sites. 

The results suggest that afforestation of peat results in drier more acidic peats, 

however, the effects on nutrient concentrations are less clear. No significant 

differences in nutrient concentrations were identified between the unmanaged and 

afforested sites; suggesting that the demands from trees combined with and water 

tables differences between the sites were not great enough to have a significant 

effect. On the whole, concentrations of nutrients at the afforested sites were found to 

be significantly different from those at the burnt sites, in the majority of cases (for 

five of the eight elements) the burnt (every 20 years) site had significantly higher 

concentrations of nutrients than the afforested site, although the burnt (every 10 

years) site was only significantly different to the afforested site for two of the eight 

elements analysed. The differences are likely to be caused by higher inputs of 

nutrients entering the burnt plots from ash deposits, and whilst the additional 

nutrients are utilised by young, rapidly growing plants on the burnt (every 10 years) 

site, the more mature vegetation of the burnt (every 20 years) site has a lower 

nutrient demand, and thus nutrients are stored in the peats. Additionally, it is 

Possible that the nutrients released during the most recent bum were leached from 

the burnt (every 10 years) site rather than adsorbed due to the presence of a crust on 

the surface of the plot which would have increased overland flow rates and reduced 

the potential for nutrients to infiltrate. 

4.5.2.2 The Impact of Drainage on Peat Chemistry 

The drained site was expected to have drier peats than all other sites except for the 

afforested site, yet the wettest peats were identified at all depths at the drained site. 

The moisture content of the peats on the drained site were found to be significantly 

higher than the unmanaged, grazed, afforested, burnt (every 10 years) and burnt and 

grazed (every 20 years) sites. The spacing of the drains could be one reason why the 
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moisture content of the drained site is higher than expected. Work carried out by 

Hudson and Roberts (1982) on tile drains in the Plynlimon catchment in mid-Wales 

found that for a significant reduction in the moisture content of peat to occur, drains 

should be spaced no more than two metres apart. The drains on Burnt Hill are 

narrow and spaced between 10 and 15 m apart, therefore may not be effective in 

lowering the moisture content of peats, although the findings of Hudson and Roberts 

(1982) might not apply outside of their study area. Data presented in Chapter 5 on 

total organic matter content (Figure 5-4) demonstrate that the drained site has a much 

higher total organic matter content which could account for the higher moisture 

content. 

The nitrogen content of the drained site was the second lowest of the treatments 

examined, although only the peats from the burnt (every 20 years) site had a 

significantly higher nitrogen content than the drained site. The differences could be 

attributable to leaching of nitrogen into the drains, vegetation on the drained site 

having a higher nitrogen demand than the burnt (every 20 years) site, or lower inputs 

of nitrogen into the drained site. Westman and Laiho (2003) found nitrogen 

concentrations fluctuated not only with time since drainage but also with vegetation 

type, with the greatest concentrations being associated with herb-rich vegetation and 

lowest concentrations found where dwarf shrubs are present. The absence of 

differences between the drained and unmanaged site at Moor House may be a result 

of the similarities in the vegetation between the two sites. Work carried out by Laiho 

et a1. (1999) identified significant differences in vegetation community between 

recently drained sites, and sites that had been drained between 41 and 56 years ago 

had twice as much nitrogen as undrained sites. 

Slightly higher phosphorus concentrations were identified at the drained site 

compared to the unmanaged site, contrary to the findings of Heathwaite (1990) who 

found nearly twice as much phosphorus in the drained site compared to undrained 

peats. The differences between this study at Heathwaite's could be attributed to the 

differences in the two sites. Heathwaite (1990) studied a lowland fen that supported 

grasses on neutral peats compared to the acidic blanket bog found at Moor House. 

The study, however, represents the only other comparison of the properties of a 

drained and an undrained peat in the UK. Laiho et aI. (1999) found smaIl increases 
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in phosphorus concentrations in drained sites compared to undrained site. The time 

since drainage was seen as a significant factor - the longer the time since drainage, 

the higher the concentrations of phosphorus. A cause for this observation is not 

presented, but it is possible that drainage coincided with changes in vegetation to 

species with a greater phosphorus demand which decreased over time. Differences 

in the development of vegetation at Moor House could be responsible for the 

contrast in the observations made. Further work by Laiho et al. (2004a) showed that 

the phosphorus concentrations in peatlands differ little from undrained peats except 

in the cases where peat has been drained for a long period of time, in this case, sites 

drained between 1961 and 2004 had almost identical phosphorus concentrations to 

the undrained site, the site drained in 1937 had 22 % more phosphorus than the 

undrained site. Such differences may be attributable to variations in the depth and 

spacing of drains between these studies and/or the demands of the vegetation at each 

site and/or differences in the environmental conditions that microbes are subjected 

to. The lack of a significant difference between the unmanaged and the drained sites 

at Moor House therefore may reflect the spacing of the drains and/or lack of 

difference in vegetation species or time since the drains were installed. 

The potassium concentrations in the drained site were the highest found at Moor 

House. The results may be a reflection of the oxic conditions present, as potassium 

is often flushed out under anoxic conditions. While this notion would be plausible 

on a site where the water table had been lowered and the thickness of the acrotelm 

increased, the peats on the drained site were among the wettest found at Moor 

House, indicating that conditions were far from oxic. The total organic matter 

content of the drained site was the highest of any of the treatments at Moor House 

(as illustrated in Chapter 5), and is possible that this provided cation exchange sites 

for potassium to be adsorbed to and retained within the peat. 

The drained site was identified as the most acidic of the sites examined, the pH 

results were found to be significantly lower than the unmanaged, burnt and grazed 

sites. Work carried out by Laiho et al. (2004b) also found drained sites to have a 

lower pH (3.0-3.1) than those that are not drained (4.1). Mean values obtained in 

this study were 0.6 pH units lower at the drained site compared to the unmanaged 

site. A casual mechanism for the reduced pH values of drained sites is not clear, 
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however, given the additional organic matter content of the drained peats, it is 

possible that cations have become adsorbed to the organic matter and displaced 

hydrogen ions in the process, thus decreasing the pH of the peat. 

Concentrations of iron were significantly lower than the burnt, grazed and 

unmanaged sites, a finding that is compatible with that of Heathwaite (1990). 

Although the reason for lower differences in values is not evident, the concentrations 

are sufficiently large that it is unlikely that the differences will have a significant 

effect on carbon cycling. 

Of the trace metals analysed, molybdenum and selenium concentrations were found 

to be among the lowest observed, whilst cobalt and nickel concentrations were 

among the highest recorded at the site. Although significant differences were found 

to exist between the drained site and the grazed (cobalt) burnt every 10 years (cobalt 

and molybdenum) burnt every 20 years (nickel, molybdenum), burnt and grazed 

every 20 years (nickel and molybdenum), burnt and grazed every 10 years 

(molybdenum), afforested (molybdenum) and unmanaged (cobalt) sites, the 

differences are sufficiently small that it is difficult to determine whether the 

differences are great enough to influence gaseous losses of carbon from the sites. 

4.5.2.3 Burning 

This section of the discussion relates to the burnt (every 10 years) site which as 

previously noted was burnt in 2007. A discussion of the effects of burning 

frequency is presented in section 4.5.7, whilst the impact of combining burning and 

grazing is presented in section 4.5.6. 

No significant differences in the moisture content of the burnt site were found 

compared to the unmanaged site. The drained site was the only site to have a 

significantly different (higher) moisture content from the burnt site. Burnt peats are 

often associated with the formation of a crust on the surface which reduces rates of 

infiltration and therefore potentially reduces the moisture content of the peat. 

Conflicting evidence exists however as to whether burning increases infiltration rates 

as proposed by Imeson (1971) who found increases in throughflow as a result. 

Conversely, Mallick et al. (1984a) found that rates of infiltration decreased due to 

pores becoming clogged with ash particles from the bum (the structure and porosity 
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of the peat is considered in Chapter 6). Debano (2000) notes that (wild) fires cause 

water-repellency due to the fonnation of a cru t on the post-fire soils. The size of 

the crust depends on the temperature of the fire, its extent, and the propertie of the 

soil. The absence of a significant difference in the moisture content of the burnt sites 

compared to the unmanaged site could signify that a crust did not form during or 

after the bum, and that infiltration rates were not affected. The results may also 

reflect the length of time between burning (February 2007) and the collection of the 

peat cores (September 2008). Whilst evidence of burning was noted in the field (dry 

peats, charred vegetation and reduced vegetation size compared to other sites as 

witnessed in Figure 4-11) recovery of the plot was under way, therefore, it is 

possible that water repellency had decreased and condition were returning to their 

pre-bum state. 

Figure 4-11 Heather Burnt in Spring 2007 - the heather has evidently been charred whit t 
sedges have recovered. 

The nitrogen, phosphorus and potassium contents of the peat amples collected from 

the burnt site were not significantly different from any other treatment. The burnt 

(every 10 years) site featured some of the highest phosphorus concentration , whilst 

the nitrogen and potassium concentrations were in the middle of the range of 

concentrations found in the samples collected across all treatment. The results 

suggest that increasing inputs of nutrients from ash during the burn did not make a 
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significant difference to nutrient concentrations, contrary to the hypotheses presented 

in section 4.2.2. 

Work carried out by Ward et al. (2007) on the managed plots at Moor House did not 

demonstrate a significant difference between the nitrogen content of peats collected 

from burnt and unburnt plots. The work carried out by Ward et al. (2007) was 

completed before the 2007 bum, and provides a benchmark with which to compare 

peats prior to burning and post-burning. Given the nature of the 2007 bum ("a cool, 

quick bum" (R.Rose; pers comm.)), it is possible, that damage to the vegetation was 

not extensive, and therefore, the demand for nitrogen by regenerating plants was not 

sufficient to make a difference to the nitrogen, phosphorus and potassium content of 

the peats. Work carried out by Forgeard and Frenot (1996) found that burning 

results in a small increase (as little as 0.1 %) in the amount of nitrogen found in 

heathland soils burnt at 150°C whilst a decrease of 0.05% was recorded in soils burnt 

at 300°C. Their result corresponds with that of Dikici and Yilmaz (2006) who 

identified higher concentrations of phosphorus and potassium in burnt peats than 

unburnt peats. The concentrations are much higher than those found at Moor House 

owing to the different nature of the peats which included use for agriculture (and 

hence were drained as well as burnt) and are located on the Gavur Lake Peatland, in 

Turkey. Despite the differences in location and prior management, the Turkish study 

focussed on comparing the effects of burning on peats, and concluded that peatlands 

do not recover from burning in the long term. 

Peats from the burnt site were found to be significantly more alkaline than the 

drained and afforested sites, but no differences were identified between the burnt and 

unmanaged sites. The lack of differences might be attributable to the temperature of 

the 2007 burn, which was suggested as being "cool" (R.Rose; pers comm.). 

Forgeard and Frenot (1996) found low temperature burns did not affect the pH value 

of heathland soils, but they identified a decrease of 0.2 pH unit was identified in the 

peat burnt at 300°C. Increases of 0.1 pH units were recorded in sites burnt every 10 

and 20 years at Moor House, however the differences were not significant. Dikici 

and Yilmaz (2006) also found burning resulted in an increase in pH values of peat, 

sites burnt most recently had higher values than those not burnt since 1965. 
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Iron concentrations at the burnt site were higher than all treatments except for the 

unmanaged site. Concentrations were significantly higher than the drained and 

afforested site, but not significantly different to any other treatment. Published data 

on the effects of burning on iron concentrations in peat could not be found. The 

higher pH of the burnt and unmanaged sites might have resulted in iron being 

retained in the peat matrix rather than being leached. Santelmann and Gorham 

(1988) state that Sphagnum mosses have a much greater capacity to retain iron than 

other vegetation species found on peatlands. Moss species were found to be more 

prevalent on the burnt sites than other treatments, which could in part, explain the 

increased iron concentrations found at the burnt site. 

Of the trace metals analysed, cobalt and selenium concentrations were found to be 

among the lowest observed, whilst molybdenum and nickel concentrations were in 

the middle of the range of values recorded at Moor House. While significant 

differences were found to exist between the burnt site and: the burnt and grazed 

(every 20 years) site (nickel and cobalt), the drained site (cobalt and molybdenum), 

the afforested site (cobalt), the burnt (every 20 years) site (cobalt and selenium), the 

burnt and grazed (every 10 years) site (cobalt), and the grazed sites (selenium). The 

differences are sufficiently small that it is difficult to determine whether the 

differences were great enough to influence gaseous losses of carbon from the sites. 

Linkages between gaseous losses of carbon and nutrient and metal concentrations are 

presented in chapter 8. 

4.5.2.4 Grazing 

The grazed site had one of the highest moisture contents of the treatments examined 

only the drained site was significantly wetter. The lack of difference in the moisture 

content of the grazed and unmanaged sites, could be attributable to the low grazing 

density at the site - noted as 0.04 sheep ha- I by Ward et al (2007), which would not 

only reduce the potential for vegetation change which was hypothesised as a reason 

for variation in moisture content, but also compaction due to trampling would be less 

likely to occur - which was proposed as a second mechanism through which 

moisture content changes might occur in grazed peats. 
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Contrary to expectations, the nitrogen content of the grazed site was the lowest ofthe 

treatments examined. The results could reflect a lack of inputs of nutrients from 

sheep urine and faeces due to the low stocking density, combined with an increased 

nitrogen demand of the plants growing on the grazed site. Only peats from the burnt 

(every 20 years) site had a significantly different nitrogen content from the 

unmanaged site. Marrs et al. (1989) also found concentrations of nitrogen to be 

lower in grazed plots (0.59 %) than in unmanaged plots (1.13 %); as did Ward et al. 

(2007) who found fractionally higher values for an unmanaged site (1.34 kg m -2) 

compared to grazed plots (1.32 kg m-2
). 

Work carried out by Alonso et al. (2001) also identified low stocking densities as a 

cause for low nitrogen concentrations. Alonso et al. (2001) found that areas of the 

Southern Cairngorms without fencing had higher concentrations of nitrogen in 

grazed than ungrazed sites, suggesting that higher concentrations ought to be present 

in grazed peats. The contrasting results between the present study and that of Alonso 

et al. (2001) might be as a result of the higher grazing intensity (3.6 sheep ha-1
) and 

the presence of deer at the Southern Cairngorms site. Grant and Hunter (1968) noted 

that the frequency with which sheep return to particular areas, and the way in which 

their movements are controlled are important factors in determining vegetation re

growth and state e.g. young shoots or woody stems. Carefully managed flocks would 

be kept away from recently grazed areas allowing plant time to re-generate, but 

would not be kept away sufficiently long enough for the heather to become woody 

and unpalatable. 

Heal and Smith (1978) found average concentrations of nitrogen to be 1.04 % in 

surface litter and 1.64 % in dark brown peats. These data are compatible with those 

of Allen (1964) who suggested typical concentrations of nitrogen in peats at Moor 

House were 1.1 %. These comparisons indicate that the results found in this study 

are within the typical range of values found at Moor House NNR and that little 

change in concentrations has occurred over time. Concentrations of potassium and 

phosphorus were also at the lower end of the range of results recorded for all sites, 

however, the differences were not found to be significant. The results indicate that 

the site either does not benefit from additional nutrients from sheep faeces, or, if 

additional nutrients are added, they are fully utilised, potentially due to the additional 
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nutrient demands by plants needing to continually re-generate themselves to recover 

from grazing. 

Lower concentrations of phosphorus in the peat were also identified in the grazed 

plots at Moor House by Marrs et al. (1989) than in the other experiment plots. The 

differences in mean phosphorus concentrations were much greater than those 

witnessed in the present study - a difference of 330 mg kg-I was found between 

enclosed and the grazed plots, with the unmanaged site having a mean value of 770 

mg kg-I. The considerable drop in values for the unmanaged site between the two 

studies is surprising but could possibly be account for by the fall in pH values 

between the study carried out by Marrs et al. (1989) of 4.3 and the value identified in 

this study of 3.6. The fall in pH could have resulted in phosphorus ions being 

replaced by hydrogen ions. Work carried out by Hardtle (2009) also found grazing 

to reduce phosphorus concentrations. 

In contrast, Marrs et al. (1989) found a difference in mean potassium concentrations 

from 370 mg kg-I in unmanaged sites to 210 mg kg -I in the grazed plot. Such a 

difference between the two data sets may be due to changes in vegetation 

composition and/or substrate resulting in either less nutrients being released from the 

organic matter, less capacity for the peat to retain the nutrients or greater demand for 

potassium by plant species. Marrs et al. (1989) suggest less litter accumulates at 

grazed than ungrazed sites and cited this mechanism as a cause for decreased 

concentrations of plant nutrients in peats. 

The pH of the grazed site was significantly higher than that of the drained and 

afforested sites, and although lower than the unmanaged site, the difference was not 

significant. The addition of faeces from sheep was expected to have lowered the pH 

of the grazed site, but the absence of a significant difference between the pH of the 

grazed and unmanaged sites, adds further support to the theory that additions are not 

significant, and therefore the nutrient content of the grazed site has not been 

significantly altered. 

Iron concentrations were found to be significantly higher at the grazed site compared 

to the drained, afforested, and the burnt and grazed (every 10 and 20 years) sites. 

Published data on the effects of grazing on iron concentrations could not be found. 
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Given the lack of apparent impact of additional nutrient inputs from sheep urine and 

faeces on other nutrients, the differences are unlikely to be attributable to the actual 

grazing process itself. 

Of the trace metals analysed, cobalt and molybdenum concentrations at the grazed 

site were found to be among the lowest observed, whilst selenium and nickel 

concentrations were in the middle of the range of values recorded at Moor House. 

Whilst significant differences were found to exist between the grazed site and: the 

burnt and grazed (every 20 years) site (nickel, molybdenum and cobalt), the drained 

site (cobalt), the afforested site (cobalt and molybdenum), the burnt (every 20 years) 

site (cobalt), the unmanaged site (nickel and selenium), the burnt (every 10 years) 

site (selenium), and the burnt and grazed (every 10 years) site (molybdenum). The 

differences are sufficiently small that it is difficult to determine whether the 

differences are great enough to influence gaseous losses of carbon from the sites. 

Linkages between gaseous losses of carbon and nutrient and metal concentrations are 

presented in chapter 8. 

4.5.3 Changes in the Chemical Properties with Depth for Differently Managed 

Peats 

The sites studied at Moor House have been managed in a similar way since the 

1950s. Peatlands are reported to grow at approximately 1 mm a-I (Charman 2002), 

and so, the impact of management on the peat therefore was expected to be most 

visible in the 0 to 10 cm layer studied, with fewer differences expected between the 

remaining layers examined. An examination of differences with depth in the 

concentrations of the main nutrients (nitrogen, phosphorus and potassium), pH and 

moisture contents of the differently managed peats is presented below. As noted 

previously, changes in these properties were expected with depth owing to the needs 

of the plants growing on the peat, changes in water table levels and due to the fact 

that most of the peat was formed during times when land management practices were 

not in place. 

pH values were expected to increase with depth as the amount of humified material 

tends to increase with depth in peats (Stewart & Wheatly 1990). In the case of pH 

values, all sites showed an increase in value with depth. For all sites, the increase in 
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alkalinity between the surface layer and deeper layers was found to be significant. In 

addition an increase in the range of pH values between sites occurred, indicating 

greater variation in pH with depth. Statistical analysis using ANOV A identified 

significant differences between the pH values for the unmanaged site and the drained 

site at all depths (p<0.005) and the afforested site between 30 and 50 cm below the 

surface (p<0.005). The results support data published by Updegraff et al. (1995) 

where a slight increase in pH values were identified with depth in a treed Sphagnum 

bog. 

Phosphorus concentrations decreased gradually with depth. The range of 

phosphorus values within each depth category also decreased between the 0 and 

10 cm layer and the layers below. The decrease in concentrations with depth 

between the surface layer and deeper layers was found to be significant for all sites. 

No significant differences were identified between treatments in any of the layers 

using ANOVA. This result is consistent with Cuttle (1983) who identified declines 

in phosphorus values with depth, with lowest values at sites where Sphagnum 

mosses were identified. The decrease in concentrations with depth can be attributed 

to inputs stemming from precipitation and degradation of plant matter in the surface 

layers, where the nutrients would either be taken up by plant roots or adsorbed onto 

the surfaces of the organic matter. 

Potassium concentrations decreased with depth until the 30-50 cm layers where 

increases in values were observed. The sharp decline in values with depth indicates 

that inputs are from the surface of the peat and are either utilised or leached with 

depth. Differences in the concentrations of potassium between the surface layers of 

the managed sites and the deeper layers were found to be significant. Laiho et al. 

(1999) demonstrated little variation in values with depth in Finnish mires for 

unmanaged sites, but identified decreases with depth in drained sites. Similarly 

Heathwaite (1990) found concentrations of potassium declined with depth, as did 

Basiliko et a1. (2006) at Mer Bleue in Canada. 

Nitrogen concentrations fluctuated greatly with depth as illustrated on Figure 4-4. 

Variation in the range of values decreased slightly with depth but not sufficiently to 

reduce the number of significant differences identified between the unmanaged site 

and the managed plots. Differences between the surface peat and deeper layers were 
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not significant within any of the treatments except for the grazed plot. The lack of 

trends with depth (i.e. the results increased and decreased within each treatment with 

depth) contrasts with work carried out by Laiho et al. (1999) where concentrations of 

nitrogen were found to decrease with depth. Variations in nitrogen content could 

reflect the varied vegetation identified in the Moor House peats, with roots of 

differing depths and hence different demands for nitrogen at different points within 

the profile. 

Moisture contents were found to increase with depth in all plots down to the 30 to 

40 cm layer, reflecting increases in the saturation of the peat. In all cases a small 

decrease in the moisture content of the peat was observed between 40 and 50 cm 

beneath the surface. Whilst unexpected (previously moisture contents were 

hypothesised to increase with depth), it is possible that this observation could be 

accounted for by water demand from the vegetation peaking at this depth. 

Significant differences in the moisture content of the surface peats and deeper layers 

were observed for the grazed, drained and afforested sites. In addition, the afforested 

site was found to be significantly drier than the unmanaged site between 20 and 

50cm. 

In general, as predicted, moisture content and concentrations of nutrients tended to 

decrease with depth (with the exception of nitrogen) and pH increased slightly. 

Overall the results suggest there is as much variation between treatments in the peats 

at depth as there is at the surface of the profile. Such variations may be attributable 

to the different methods of management used at the site, and could reflect one or 

more of the following: 

.:. The lowering of the water table on sites that have been drained could give 

rise to elements being leached out of the system; 

.:. The depth at which roots extend to could vary between sites (especially 

between the unmanaged site and the afforested site). Such variation could 

explain changes in nutrient demands at different depths; 

.:. Inputs of ash could leach through the profile at the burnt site, giving rise to 

variations in concentrations of nutrients throughout the profile; 
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.:. Plants recovering from either grazing or burning could draw up nutrients 

from different parts of the profile, resulting in differences when compared to 

other sites. 

4.5.4 The Influence of Vegetation Type on the Chemical Properties of Peats 

The vegetation present on peatlands dictates the substrate quality of the peat and 

influences chemical properties such as nutrients which are a key requisite for 

vegetation growth. Changes in land management have been associated with changes 

in the vegetation found growing on peats. Grazed sites studied near Braemar in the 

southern Cairngorms typically have more grasses and less heather than unmanaged 

sites (Alonso et al. 2001); while burnt sites have an array of vegetation types which 

change over time depending on when the most recent bum took place, and what 

vegetation was destroyed during the bum. 

Heather was expected to produce the highest concentrations of nutrients based on 

work carried out by Alonso and Hartley (1998) and Shaver et al. (2006). 

Conflicting evidence exists in the literature as to whether mosses have high 

concentrations of nutrients or not. Work carried out by Gorham et al (1986) noted 

that mosses have a higher capacity to adsorb elements than other species of 

vegetation on moorlands, yet Buttler et al. (1994) demonstrated that mosses have a 

lower nitrogen content compared to other vegetation species. The results presented 

in this study (Table 4.15) suggest that mosses have higher concentrations of nitrogen, 

whilst heather and grass combinations featured the lowest concentrations for 

nitrogen. 

Cuttle (1983) found Sphagnum mosses to have low concentrations of phosphorus 

whilst Calluna species had higher concentrations, and species of sedges and grasses 

(Eriophorum and Molinia varieties) had the greatest range of values. In this study at 

Moor House, concentrations of phosphorus and potassium were neither high nor low 

compared to other values in the data set. 

Mosses were expected to be present at the wettest sites, and the results demonstrate 

that this was the case. No clear trends were identified between pH values and 

vegetation type, despite mosses being expected to be at the most acidic sites. Trends 

136 



Investigating the Effects of Land Management on the Chemical Properties of Peat 

in the data may not be evident due the very narrow range of pH values identified at 

MoorHouse. 

The moisture content of the peat however is determined by micro-topography and 

inputs of rainfall, and therefore, is responsible for determining where mosses 

develop. Changes in vegetation on upland moorlands have been linked to land 

management (Chapman & Rose 1991). Future land management practices need to 

consider how management will influence the species of vegetation present and hence 

the chemical properties of the peat that drive the carbon cycle. Drier, more nutrient 

rich heather sites could result in an increase in carbon mineralisation and 

subsequently carbon loss. Further discussion of carbon losses from peat is presented 

in Chapter 6. 

4.5.5 Variation in Chemical Properties within One Treatment 

The results of the triplicate study suggest that there is variation within one method of 

management of upland peatlands. The differences might be attributable to 

differences in the burning intensity between the plots (data on the temperatures 

reached during the most recent burn are unavailable) or may reflect heterogeneity in 

the properties analysed. The ECN hold records made at the time of the bums suggest 

the burning on Block A was a light burn, and that much of the vegetation was still 

frozen before the burn. The burns in Blocks B and C were much faster, and this was 

attributed to the frost having melted by the time these burns commenced (R.Rose, 

pers. comm.). Research carried out by Forgeard and Frenot (1996) supports the 

notion that the temperature of the burn has an impact on the chemical properties of 

moorland soils. Work carried out under laboratory conditions found that hotter 

burns result in chemical properties that are less similar to unmanaged sites than 

cooler burns. The results indicate that significant variation exists within each 

treatment for cobalt, pH, nickel and iron and therefore variations between treatments 

cannot be attributed to land management alone. The results demonstrate that natural 

heterogeneity exists within peatland environments and indicate how difficult it is to 

replicate data. 
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4.5.6 The Effect of Combining Burning and Grazing on Peatland Chemical 

Properties 

The Hard Hill plots at Moor House NNR afforded the opportunity to study 

combinations of burning and grazing treatments on peat. Plots which were both 

burnt and grazed (on 10 and 20 year cycles) were studied to determine how their 

properties differed from plots that are solely burnt or grazed. Burnt and grazed plots 

were expected to have higher nutrient concentrations owing to inputs from two 

potential sources - sheep faeces/urine and ash after burning. 

The moisture content of the burnt and grazed (every 10 years) plot was found to be 

higher than the separately burnt and grazed plots alone at all depths considered, yet 

statistical analysis did not find these differences to be significant. Little change was 

noted in the pH values, and no significant differences were identified as a result of 

analysis using ANOV A. 

Concentrations of nitrogen were very similar to those found on the grazed site in the 

surface soils. The highest concentrations, however, were found in the burnt and 

grazed site in the 10 to 20 cm zone. No significant differences, however, were 

identified between the treatments. Phosphorus and potassium values were higher in 

the burnt and grazed plots in surface peats than burnt and grazed plots alone. 

Concentrations of trace elements (with the exception of nickel) were lowest in the 

burnt and grazed plots. Statistically significant differences (using ANOVA) were 

not identified between the treatments for phosphorus, potassium or trace metals at 

any of the depths considered. 

In general, burning and grazing at one location within the Moor House managed 

plots appeared to give rise to slightly higher concentrations of key nutrients in 

shallow peats, however, the differences were not significant. This pattern may be 

attributable to inputs of nutrients from three sources - rainfall, ash during burning 

and waste products from sheep. The grazed plot was found to have lower 

concentrations of nutrients than the unmanaged site, and this was attributed to the 

low density grazing that occurs at Moor House. While this maybe the case, it is 

probable that when sheep are in the vicinity of the Hard Hill plots, the bumt and 

grazed plot is given preference owing to the young, more tender plants that are 
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available for grazing as Shaw et al. (1996) noted that sheep tend to avoid woody, 

unpalatable species in favour of younger vegetation. 

4.5.7 The Influence oj Burning Frequency on the Chemical Properties oj Peat 

The Hard Hill plots afforded the opportunity to make comparisons between sites that 

were burnt every 10 years and those burnt every 20 years. Comparisons of data and 

indicated that in all cases the 20 year bum resulted in wetter conditions but there was 

no effect on pH values. Little change in pH values was detected between all 

treatments considered; therefore it is unsurprising that significant differences were 

not noted between the burning cycles. 

Data for all metals (iron, nickel, selenium and cobalt) at all depths showed greater 

concentrations to be present in the burnt (every 10 years) site. The results confirm 

the theory suggested earlier that burning results in greater inputs of elements into the 

peat. The 10 year site has not only been burnt more recently resulting in fresher 

inputs of metals from the ash into the site, but also is burnt more frequently, 

therefore, greater concentrations of elements might have entered these peats over 

time. 

In all cases, concentrations of nitrogen were much higher in the 20 year bum site 

than the 10 year bum site. Such trends are likely to be attributable to the higher 

nitrogen demand of new plants growing on the most recently burnt site. 

Concentrations of potassium were found to be higher on the 10 year bum site, but 

phosphorus levels were greater in the 20 year site in the top 20 em. The lower 

phosphorus levels in the burnt every 10 years site may reflect increased demand by 

new plants for this nutrients, especially as the lower concentrations were detected in 

the root zone. 

Dikici and Yilmaz (2006) also found significantly higher concentrations of 

potassium in a plot burnt in 2001 compared to the site burnt in 1965; although the 

concentrations were still much higher than those found in the unmanaged site, in 

contrast to the findings at Moor House. Allen (1964) also found higher 

concentrations of potassium in burnt peat (272 mg kg -1) than unburnt (141 mg kg -1) 

following a burning experiment carried out in the laboratory. 
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4.6 Conclusions 

4.6. J Summary of Findings 

The aim of this chapter was to identify the impact of land management on the 

chemical properties of peatland soils that are responsible for driving the carbon 

cycle. Six hypotheses were devised to investigate this aim, the hypotheses are re

stated below along with a summary of the findings. 

1. Land management will impact on the chemical properties of differently 

managed peats 

Burning was expected to result in higher concentrations of nutrients and this was 

supported by the results which provided evidence that burning at Moor House has 

resulted in peats with higher concentrations of nutrients, that are slightly drier and 

fractionally less acidic. Afforestation was expected to result in drier peats owing to 

the presence of drains, with a lower pH and reduced concentrations of nutrients due 

to greater nutrient demand of the trees compared to traditional blanket bog 

vegetation. The results confirmed the hypothesis as the afforested peats were found 

to be drier, more acidic peats with lower concentrations of nutrients. The grazed site 

was expected to either have a higher nutrient content owing to inputs of nutrients 

from sheep faeces and urine, or a lower nutrient input due to greater nutrient demand 

from plants recovering from grazing. The results suggested that few differences 

exist in the properties of the grazed site compared to the unmanaged site. The 

drained site was expected to be drier, more acidic with lower nutrient concentrations. 

The drained site however was found to be wetter, with slightly higher nutrient 

concentrations. The results were attributed to the wide spacing of the drains, and the 

higher organic matter content of the peats at the drained site. 

Concentrations of trace metals in very low. Whilst these metals might be of 

importance for the production of methane and/or oxidation of methane to carbon 

dioxide, the concentrations were so low, that land management is unlikely to have 

impacted upon them. 

2. Land management will not influence peats at depth 
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Concentrations of nutrients were not expected to vary beneath the surface, as the 

effects of land management were not thought to influence the chemical properties of 

the peat at depth. Differences in the chemical properties between management 

treatments however were found to continue with depth down the peat profile. The 

results indicate that land management not only affects the surface layers of the peat, 

but to a minimum depth of 0.5 m beneath the surface. 

3. Land management will have an impact on the species of vegetation that grow 

on peats, and thus the nutrient content of the peats will vary depending on the 

species of vegetation growing on the peat 

Previous work has indicated that a relationship exists between the nutritional content 

of vegetation and inputs of nutrients into peat; and that grazing alters the nutrient 

concentrations of both the peat and vegetation. Work on vegetation change on other 

types of managed sites had not been investigated. In this study, linkages were 

identified between vegetation type and concentrations of key properties in the 

surface peats for the unmanaged, burnt and grazed plots. These results suggest that 

careful management of vegetation is required if the uplands are to be managed in a 

way which ensures carbon losses are minimised in the future. Changes in vegetation 

are one of the key results of changes in land management practices, therefore 

vegetation management should be considered when selecting management practices 

to reduce carbon losses. Correlations between nutrient concentrations and carbon 

fluxes will be considered in Chapter 8. 

4. The frequency with which peats are burnt will impact on the chemical 

properties of the peat 

The frequency with which sites are burnt was predicted to impact on nutrient 

concentrations, with more frequently burnt sites having higher nutrient 

concentrations. The results of the investigation demonstrated less frequent burning 

produces wetter soils with higher concentrations of phosphorus and nitrogen but 

lower concentrations of potassium. 

5. Combining burning and grazing will result in peats with chemical that 

different from those that are subjected to just one treatment 
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Combinations of burning and grazing were found to have an effect on the chemical 

properties of the peat, with slightly higher concentrations of key elements. 

6. No differences are expected to exist between the three plots from Blocks A to 

C that are subjected to burning every 10 years 

Repeat measurements of properties such as nitrogen have been carried out on the 

Hard Hill plots in the past (e.g. Ward et al. 2007), however, here the results of a 

range of chemical properties have been combined to present a holistic view of 

differences between three sites that were subjected to burning on a 10 year cycle. By 

investigating differences between the plots, variations in peat chemistry were 

identified; which can be attributed to the intensity of the bums at these sites. 

4.6.2 Recommendations for Further Work 

The results demonstrate that differences exist in the chemical properties of 

differently managed peatlands. This work could be further by looking at differences 

in chemical properties between unmanaged peatlands and at greater depths to 

confirm whether the variations identified at depth are due to land management or a 

reflection of the heterogeneity of peats. Further work could also investigate other 

combinations of management for example burning and drainage. The intensity of 

management practices has arisen as an important consideration and further work 

should be carried out to identify at what temperatures burning impacts on the 

chemical properties of the peat. Additionally, trials could be performed to ascertain 

what grazing intensities make a difference to the properties of the peat. Further 

analysis should also be carried out to investigate the immediate impact of the bum 

and to determine the nature and extent of changes in the chemical properties of the 

peat in the ensuing months. This would enable an understanding to be gained of 

whether the effects of burning are immediate or if the changes take effect over time. 
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5 THE EFFECTS OF LAND MANAGEMENT ON CARBON STOCKS 

AND QUALITY IN PEATS 

5.1 Introduction 

Peatlands are renowned for their ability to sequester and store carbon (e.g. Gorham 

1991, Blodau 2002, Limpens et al. 2008). Estimates of carbon stocks in peatlands 

have been carried out in recent decades (e.g. Milne & Brown 1997, Billett et al. 

2010, Worrall et al. 2009), and efforts have been made to establish the influence of 

land management on these stocks (e.g. Armentano & Menges 1986, Worrall et al. 

2010a). Although estimating overall peat carbon stocks is important, understanding 

the composition of the carbon is of greater importance when assessing the impact of 

climate change on peatland carbon stocks. The ability of carbon stocks to withstand 

mineralisation is essential if judgements are to be made as to whether one method of 

managing peat is better from a carbon storage perspective than another. Evidence 

exists to suggest that more recalcitrant species of plant litter decompose more slowly 

and therefore less carbon lost through respiration (Yavitt et al. 2005). Peats formed 

from more recalcitrant species of vegetation are considered to be of lower quality 

than peats formed from labile plant species (Berg 2000). 

When conditions are favourable for microbial activity to take place, the more easily 

degradable substrates are decomposed by micro-organisms. Increased temperatures 

in laboratory simulations were found to cause higher rates of organic matter 

decomposition (Kirschbaum 2006). The breakdown of plant material results in the 

formation of new organic molecules of differing recalcitrance, compounds with 

complex structures tend to have low decomposition rates and require a high 

activation energy in order for decomposition to commence (Davidson & Janssens 

2006). Debate over whether different types of organic matter have differing 

temperature sensitivities to one another has existed for quite some time, with some 

authors proposing that organic matter is not temperature sensitive such as Giardina 

and Ryan (2000) whose paper has sparked much controversy. Subsequent work has 

proposed that more than one pool of carbon exists within soils, and that the single 

pool model used by Giardina and Ryan (2000) was insufficient to identify such 

differences. 
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The importance of substrate quality and the existence of three pools of carbon (fast, 

intermediate and very slowly degradable carbon) have been highlighted by many 

authors (e.g. Knorr et al. 2005, Powlson 2005, Fang et al. 2005). All have suggested 

that the more recalcitrant (i.e. slowly degradable) peats are more sensitive to 

temperature rises, and thus, increases in temperature under climate change could 

result in a rapid increase in the synthesis of previously stable carbon stocks. In 

addition to identifying that rapid synthesis of previously slowly degradable carbon 

stocks under climate change is likely, suggestions have been made that micro

organisms involved in organic matter decomposition will acclimatise to warmer 

temperatures, thus enabling decomposition to continue, and losses of carbon dioxide 

to the atmosphere to continue (Jarvis & Linder 2000). 

The aim of this chapter is to identify how land management influences carbon stocks 

and the carbon quality of peat. To achieve this aim, the following two hypotheses 

will be investigated: 

i) Land management has a significant effect on carbon stocks in peat. 

ii) Land management has a significant effect on carbon quality. 

Chapter 2 highlighted the paucity of published data available on the effects of 

peatland management on substrate quality. The chapter examines the four key 

methods of peatland management used in the UK - burning, grazing, afforestation 

and drainage with an unmanaged site acting as a control site. Land management 

influences the environmental conditions that prevail within a peatland, the species of 

vegetation and hence the inputs of litter into the peat and finally, the availability of 

nutrients (Laiho 2006). These three factors control rates of organic matter 

decomposition within peats, and therefore the amount of carbon and quality of 

carbon present. 

The quality of the carbon present within a peatland is governed by the chemical 

composition of the litter inputs and rates of decomposition. Land management 

affects the vegetation species growing on the peat, and hence litter quality. Species 

such as Sphagnum have been reported to decompose much more slowly than Carex 

species (Verhoeven & Toth 1995). To date, much consideration of carbon quality 

has focussed on the litter quality rather than the quality of the peat itself (Bragazza et 
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al. 2009). Investigating the peat itself is important because it is from there that 

carbon dioxide is lost into the atmosphere and it is this valuable carbon store that 

needs to be preserved. The rate of degradation of this carbon reserve will depend in 

part on the chemical composition of the peat. This chapter undertakes a novel 

method of examining the carbon stocks of managed peatlands, by conducting a 

modified carbon fractionation analysis, details of the modifications and rationale are 

provided in section 5.2.3 and analysis oftotal carbon stocks in managed peats. 

Compared to the unmanaged site, carbon stocks are anticipated to be lowest in the 

drained and afforested sites, where environmental conditions will favour more rapid 

rates of organic matter decomposition (Holden et al. 2007b). Work carried out at the 

drained sites at Moor House found drainage to have a limited effect on vegetation 

composition, (Coulson et al. 1990, Stewart & Lance 1991), whereas changes in the 

environmental conditions (i.e. more aerobic) on the drained site are likely to impact 

on rates of decomposition (Laiho 2006). Afforestation of peatlands results in 

different inputs of litter into the peat, with differing decomposition rates (Domisch et 

al. 2000). 

Rates of carbon accumulation within sites subjected to moorland burning might be 

higher owing to regular regeneration of plant species, or could be lower due to the 

absence of litter inputs into the peat post-burning. Little is known about the effects 

of managed bums on the carbon content of the peat beneath the vegetation and litter 

layers (Legg et al. 20 I 0), however, changes in vegetation composition have been 

identified (Hobbs & Gimingham 1984) and are likely to influence carbon stocks. 

Grazing has been noted to change vegetation composition and structure (Hope et al. 

1996). Observations made by Rawes and Welch (1969) at Moor House suggest that 

sheep are selective grazers, and this can cause changes in the species of vegetation 

present on grazed sites compared to ungrazed areas. Changes to carbon stocks are 

therefore likely on grazed sites. 

Changes to the structure of the vegetation community and to the prevailing 

environmental conditions in peatlands as result of management are therefore 

anticipated to impact on carbon stocks and carbon quality. To date, little data have 

been published on the whether the changes are significant, and thus the aim of this 
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chapter is to provide an initial baseline assessment of the effect of peatland 

management on peatland carbon stocks and quality. 

5.2 Methodology 

5.2.1 Total Organic Matter Content 

The total organic matter content of the samples was calculated using the loss on 

ignition method (Rowell, 1994). Oven dried samples were weighed and placed into 

pre-weighed crucibles which were placed in a furnace at 550°C for 24 hours. 

Samples were immediately placed in a desiccator after being removed from the 

furnace, placed in a desiccator and were weighed once cool. The organic matter 

content was calculated using the following equation: 

(mass of oven dry soil - mass of ignited soil 
Loss on Ignition = ------~---:---~~--

mass of oven dry soil 

(Rowell, 1994) 

5.2.2 Total Carbon and Nitrogen Content 

Total carbon and nitrogen analysis was carried out using a Eurovector EA3000 

Elemental Analyser. Tin cups measuring approximately 0.5 mm by 0.5 mm were 

used, and 5 mg of oven dried soil was added with 1.5 mg of vanadium pentoxide. 

Vanadium pentoxide was added as a catalyst to ensure that complete combustion 

occurred once the samples were placed in the analys~' Energy Peat (Sphagnum) 

Reference Material NJV 94-2 was used as a standard reference material. Once 

prepared, the samples were analysed on the Elemental Analyser, which was 

calibrated using a range of sulphanilic acid standards. Results were expressed as a 

percentage of the sample weight. The C:N ratio was calculated by dividing the 

carbon content by the nitrogen content. 

2 A trial carried out in July 2008 indicated that without a catalyst, incomplete combustion of samples 
of peat occurred. 
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5.2.3 Organic Matter Fractionation 

Following the method presented by Wieder and Starr (1998), analysis of the different 

organic fractions of the samples was carried out on selected freeze-dried samples. 

The method entails a five stage fractionation process which is summarised in Figure 

5-1. 

Stage 3: 

Peat sample is 
freeze dried and 

ground 

Stage 1: Soluble 
Fats, Oils and 

Waxes 

Stage 2: Total Hot 
Water Solubles r ---------.J 

Analysis of filtrate 

Total Soluble 
Carbohydrates 

Total Soluble 
Phenolics 

Hollocellulose 

Stage 4 
Cellulose 

Stage 5: Lignin 
t-A_n_aIY_SIS_Of_fil_tra_t.~ Total Acid Soluble 

Carbohydrates 

Figure 5-1 Schematic Representation a/the Sequential Extraction Procedure 
used to determine how management affects substrate quality in peatlands (after 

Wieder and Starr, 1998) 

Several trials were carried out on a bulk sample of peat collected from Moor House 

to test the method and optimise it. The trials found that the use of porous bottomed 

Gooch crucibles resulted in filtering took excessively long periods of time, therefore 

Gooch crucibles with perforated bases lined with glass wool were used as an 

alternative for stages two to five. Rubber cuffs were used to support the Gooch 

crucibles above the Erlenmeyer flasks (Figure 5.2a). Each filtration stage required 

the use of a pump to create suction, running the pump at the lowest speed possible 

was found to be preferable to prevent the crucible bases from becoming clogged with 

peat residue. Where a water bath and/or a sonicator were required, a lead weight 

was placed around the conical flask to prevent the contents from spilling 

(Figure 5.2b). The original method specifies leaving the samples in the oven 
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overnight after stage 2 (total solubles); however, this did not adequately dry the 

samples. Trials were done to determine whether 72 hours would be preferable, 

however no further water loss was identified between 48 and 72 hours. Stage 4b of 

the original method (detennination of hemicellulose) was omitted as samples took in 

excess of five days to filter. After each stage, a sub-sample of the peat was taken 

and analysed for total organic matter content following the method described in 

5.2.1. The results were used to correct the results for each stage for ash content. 

Figure 5-2 A) A Gooch Crucible Supported by a Rubber Cuff Above an Erlenmeyer 

Flask connected to the pump, the rubber tubing connected to the Erlenmeyerflask 

allows air to draw excess liquid through the Gooch crucible into the flask. This 

apparatus was used in each stage of the analysis, the filtrate was reserved in stages 2 

and 5 for further analysis. B) Peat samples in Conical Flasks Covered with Parafilm 

and Supported by Lead Ring Weights to prevent toppling. Thejlasks are placed in a 

water bath at 20°C for two hours as part of stage 4. 

Soluble fats, oils and waxes (SFOW) were measured by sonicating 2 g of peat in 

100 ml of dichloromethane for one hour. The solution was filtered through Gooch 

crucibles with coarse porous bases. Samples were placed in a vacuum oven at 60°C 

overnight, cooled in a desiccator and weighed. 

Hot water soluble substances were measured by placing the remaining peat into a 

conical flask with 50 m} of deionised water. Samples were left to boil gently for 3 

hours in a sand bath. The solution was filtered through a perforated Gooch crucible 

lined with glass wool. The filtrate was retained and analysed for soluble 

carbohydrates and phenolics (details provided below). The Gooch crucibles 
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containing the samples were placed in a vacuum oven at 60°C for 48 hours, cooled in 

a desiccator and weighed. 

Holocellulose was determined by placing three-quarters3 of the remaining sample 

into a conical flask and adding 30 ml of deionised water, 2 ml of acetic acid 

(lO%v/v), and 0.6 g of anhydrous sodium chlorite. The samples were placed in a 

water bath at 75°C and covered with a watch glass. Three further additions of 2 ml 

of acetic acid (10%v/v), and 0.6 g of anhydrous sodium chlorite were given at hourly 

intervals. After four hours the samples were placed in an ice bath to cool before 

being transferred to 50 ml centrifuge tubes. The samples were centrifuged at 

2,500 rpm for 5 minutes. The supernatant was filtered through a perforated Gooch 

crucible lined with glass wool set above an Erlenmeyer flask connected to a pump 

(Figure 5-3 shows the set-up of the flasks). The sample was re-suspended in 

deionised water, centrifuged for a further 5 minutes (2,500 rpm) and filtered through 

the Gooch crucible; this process was repeated a further nine times. After the 10th 

rinse, the sample was re-suspended in acetone, centrifuged for a further 5 minutes 

(2,500 rpm) and filtered through the Gooch crucible; this process was repeated twice. 

A further rinse with acetone was performed and the whole sample poured into the 

Gooch crucible. The samples were rinsed with petroleum ether before being placed 

in the vacuum oven for 30 minutes at 105°C. Samples were cooled in a desiccator 

and weighed. 

3 The method proposed by Wieder and Starr (1998) suggested that two-thirds of the sample is used for 
stages 3 and 4, however, this resulted in insufficient sample being available for stage 4. Using three
quarters of the sample resulted in sufficient sample being available for stages 3 to 5 inclusive. 
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Figure 5-3 Set-up of Erlenmeyer Flasks and Gooch Crucibles Used to Filter Samples at 
Each Stage of the Organic Fractionation Experiment 

The sample remaining after holocellulose had been detennined was used to measure 

cellulose. The sample was placed in a conical flask with 20 m1 of 4.3M potassium 

hydroxide and covered with Parafilm. The sample was left at room temperature for 

2 hours before being filtered through a perforated Gooch crucible lined with glass 

wool. The sample was rinsed with 5 ml of acetic acid (5% v/v) followed by acetone 

and then petroleum ether. Samples were placed in a vacuum oven at 60°C overnight, 

cooled in a desiccator and weighed. 

The remaining quarter of the sample set aside after the determination of total soluble 

carbon, was used to measure lignin. The samples were placed in test tubes and 4 ml 

of sulphuric acid (72%) were added. The test tubes were placed in a water bath at 

30°C for one hour. The samples were removed and 12 rnl of deionised water added. 

The solution was transferred to a conical flask with an additional 44 ml of deionised 

water. Samples were placed in an autoclave for one hour at 17 psi. The solution was 

filtered through a perforated Gooch crucible lined with glass wool. The filtrate wa 

retained and analysed for acid soluble carbohydrates (details provided below). The 

samples were placed in a vacuum oven at 60°C overnight, cooled in a desiccator and 

weighed. 

The filtrate retained from stage 2 was analysed for soluble carbohydrates soluble 

phenolics, whilst the filtrate retained from stage five was used to detennine acid 
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soluble carbohydrates. Analysis of soluble fractions was carried out 

colourimetrically. Soluble carbohydrate solutions were diluted to 1: 19 using 

deionised water, whilst acid soluble carbohydrates were diluted to 1 :49 with 

deionised water. In both cases,S ml of solution were taken and 75 J.11 of liquefied 

phenol and 5 ml of sulphuric acid were added. Samples were left for 20 minutes and 

absorbances were read on a spectrometer, with a wavelength set at 490 nm. Glucose 

standards were used to calibrate the results. Standard solutions were made by 

creating aiM solution of glucose, and devising standards that were within the range 

of absorbance values (1 to 20 mi L-1
) identified during pilot trials of the method. 

Where necessary, a ten fold dilution was carried out on samples exceeding the range 

of the standards. Liquid phenol and sulphuric were added to the standards in the 

same quantities added to the samples, and were left to stand for 20 minutes prior to 

analysis, to enable the colour change to stabilise. 

Soluble phenolics were determined by placing 5 ml of the filtrate in a 50 ml 

volumetric flask, adding distilled water followed by 2.5 J.11 of Folin-Denis reagent, 

and 10 ml of 1.6 M sodium carbonate. The solution was diluted to volume and left 

at room temperature for 20 minutes. Absorbances were read on a spectrometer, with 

the wavelength set at 760 nm. Tannic acid standards were used to calibrate the 

results, and were created from a 0.1 M solution of tannic acid. Standards were 

devised that were within the range of absorbance values (1 to 10 ml L-1
) identified 

during pilot trials of the method. Where necessary, a xl 0 dilution was carried out on 

samples exceeding the range of the standards. FoHn Dennis reagent and sodium 

carbonate were added to the standards in the same quantities added to the samples, 

and were left to stand for 20 minutes prior to analysis, to enable the colour to change 

to stabilise. 

The results of the organic fractionation analysis were calculated following the 

equations presented by Wieder and Starr (1998). 

5.2.3.1 Bulk Density 

Intact cores (total of 111) were collected from all 8 treatments as described in 

Chapter 3 and transported to the laboratory on corrugated, plastic sheeting. Bulk 

density was calculated by pushing a metal cylinder with a volume of 1 em3 into the 
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core. The samples were weighed, and placed in a pre-weighed crucible in an oven 

for 24 hours at 105°C. The samples were cooled in a desiccator, re-weighed and 

bulk density calculated by dividing the mass of oven dry soil by the volume of the 

cylinder. Three tests were performed on each 10 cm section of the cores, resulting in 

a total of 555 tests. 

5.2.4 Carbon Stock Calculation 

Carbon Stocks were calculated using the method presented by Guo and Gifford (Guo 

& Gifford 2002) as follows: 

where Ct = total carbon stock (t ha-1
), BD = bulk density Cc = carbon 

concentration (%) and D = depth (em). 

5.2.5 Statistical Analysis 

Data for loss on ignition, total carbon and C:N ratio followed a normal distribution 

based on the results of analysis carried out using the Anderson-Darling test to check 

for a normal distribution, and comparisons for significance were thus made between 

the five treatments of interest using analysis of variance (ANOV A). Data from the 

organic matter fractionation experiment did not have a normal distribution, and the 

data could not be transformed to create a normal distribution using the following 

methods: log, square, square root and reciprocal. The Kruskall-Wallis H test and 

Mann-Whitney U test were therefore used to analyse the organic matter fractionation 

data. 

Analysis of variance with co-variance was carried out to identify differences 

between the carbon stock content of each of the managed treatments and to 

determine if there was significant interaction between the drivers of carbon stocks. 
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5.3. J Loss on Ignition 
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Figure 5-4 Loss on Ignition Results for Samples Collected between 0 and 10 cm 

The extent of the box represented the first and third quartiles, with the median represented by the line in the centre of the box. 
The whjskers stretch to the upper and lower limits within the first and third quartiles, values outside of this range are 
represented with an *. blO - burnt every 10 years, b20 - burnt every 20 years, bglO - burnt and grazed every 10 years, bg20 -
burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, f - afforested. 

Loss on ignition values reflect the total organic matter content of the peats (Figure 

5-4). ANOV A identified significant differences between treatments (p=0_002). The 

afforested and drained sites were found to have significantly greater organic matter 

content than the unmanaged site in both the 0-10 em and 40-50 em layers (p<0.001). 

No significant differences were found between any other treatments. The drained 

site had the smallest range of values (96.5 - 99.2 %) and the unmanaged site had the 

greatest (86.7 - 97.7 %). 

Small increases in the total organic matter content of the peat occurred with depth, 

however these increases were not significant. A summary of the significance values 

is presented in Table 5.1. The drained site had a significantly (p=0.047) higher ash 

content in the 40-50 em layer than the 10-20 em layer. 
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Table 5.1 Significance values from ANOVA testing carried out to identify whether total 
orKanic matter content chanKed sif{n. ijicantly with depth 

Treatment p Value 
Burnt (10) 0.410 
Burnt (20) 0.l11 
Burnt and grazed (10) 0.517 
Burnt and grazed (20) 0.117 
Grazed 0.757 
Drained 0.047 
Afforested 0.245 

5.3. 2 Total Carbon Content 
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Figure 5-5 Total Carbon Content of Managed Peats between 0 and 10 cm 

b I 0 - burnt every I 0 years, b20 - burnt evelY 20 years, bg I 0 - burnt and grazed every 10 years, bg20 - burnt and grazed every 
20 years, g - grazed, u - unmanaged, d- drained, f - afforested. The exten t of the box represented the fi rst and third quartiles, 
with the median represented by the line in the centre of the box. The whiskers stretch to the upper and lower limits within the 
first and Ulird quartiles, values outside of this range are represented with an • . 

Significant differences in the carbon content of peats were found between treatments 

(p<0.001). The burnt sites were found to have a significantly greater carbon content 

than all other treatments examined in the 0-10 cm layer (p<0.001). The drained site 

had the lowest quantity of carbon (46.9 %) whilst the burnt site (every 20 years) had 

the greatest (54.3%) (Figure 5-5). There were no significant differences between 
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treatments at the base of the profile (p=0.123). In the 10-20 cm zone, the burnt sites 

(every 10 and 20 years) had significantly higher carbon stocks than the drained and 

afforested sites. The drained site had significantly less carbon than the unmanaged 

site (p<0.001). Significant increases in carbon content were identified with depth, 

with higher quantities of carbon stored in the 40-50 cm layer compared to the surface 

layer (p<0.001). 

5.3.3 C:N Ratio 
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Figure 5-6 The C:N Ratio of Differently Managed Peat 

*' 

u 

b 10 - burnt every 10 years, b20 - burnt every 20 years, bg lO - burnt and grazed every 10 years, bg20 - burnt and grazed every 
20 years, g - grazed, u - unmanaged, d- drained, r - afTorested. The extent or the box represented the first and third quartiles. 
with the median represented by the line in the centre orthe box. The whiskers stretch to the upper and lower limits within the 
fi rst and third quartiles, values outside or thi range are represented with an *. 

ANOV A testing identified significant differences in the C:N ratio of differently 

managed peats between 0 and 20 cm beneath the surface. In the 0-10 cm layer, the 

burnt site (every 20 years) was found to have a significantly lower :N ratio than the 

burnt and grazed (every 10 years) site and the afforested site (p=0.001) (Figure 5-6). 

Within the 10 to 20 cm layer, the burnt site (every 20 years) had a significantly lower 

C:N ratio than the afforested and unmanaged sites (p<O.OO 1). No other significant 

differences were identified between treatments. The afforested site had greatest 
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variation in values for the surface layer (28.2 - 35.9); the drained site had the 

smallest (29.3 - 37.7). 

The C:N ratio increased with depth at all sites except the burnt and grazed site (every 

10 years). The greatest increase was in the burnt site (every 20 years) (16.7), the 

smallest increase was in the afforested site (2.7). The drained, grazed, burnt (every 

10 and 20 years) sites had a significantly higher C:N ratio in the surface peats (0-

20 cm) than the base of the profile (40-50 cm). The unmanaged site had a 

significantly higher C:N ratio in the 0-10 cm than the base of the profile (40-50 cm). 

A summary of the AN OVA results is presented in Table 5.2. 

Table 5.2 Significance Values/rom ANOVA testing carried out to identify changes in total 
b . hd h car on content WIt ept 

Treatment p Value 
Burnt (10) 0.016 
Burnt (20) 0.003 
Burnt and grazed (10) 0.089 
Burnt and grazed (20) 0.772 
Grazed <0.001 
Drained <0.001 
Afforested 0.399 

5.3.4 Organic Matter Composition 

Lignin was the only fraction to be analysed where statistically significant differences 

in the results were identified (p=0.016). The results of the analysis showed that the 

burnt and afforested sites and drained and afforested sites were significantly different 

to one another in terms of lignin content. No other significant differences between 

treatments were identified, including comparisons with the unmanaged site. Lignin 

formed the greatest component of each sample analysed, as shown in Figure 5-7. 

Values for lignin were greatest in the afforested site (1,173.0 mg gol) and least in the 

burnt site (747.3 mg gol). 

The smallest of the four main fractions analysed were the soluble fats, oils and 

waxes (SFOW) and the total soluble fractions. Analysis using the Kruskall-Wallis H 

test showed that there were no significant differences between the treatments for 

these two fractions (p=0.825 and p=0.296 respectively). 
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Holocellulose values did not differ significantly between any of the treatments 

examined. Of the four main fractions, hollocellulose was the second most abundant. 

The greatest range of values was identified for the drained site (279.7 -

810.1 mg g-l). The smallest range of values was identified in the grazed site (322.1 -

609.9 mg g-l). 

For the water soluble carbohydrates (see Figure 5-8), the drained site had the highest 

concentrations (1.03 mg g-l). For the water soluble phenolics (see Figure 5-9), the 

highest concentrations were found in the unmanaged site (0.04 mg g-l). The highest 

concentrations of acid soluble carbohydrates (see Figure 5-10) were found in the 

burnt site (114.4 mg g-l). Of the three soluble fractions examined, acid soluble 

carbohydrates were present in far greater concentrations than the water soluble 

carbohydrates and water soluble phenolic compounds. No significant differences 

were found between the treatments for any of the three soluble fractions studied. 
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Figure 5-7 Proportion o/total organic matter which each/raction comprised 
(SFOW = Soluble Fats, Oils and Waxes; Tot Sol - Total Water Soluble Component; Holocell = Holocellulose) 
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Figure 5-8 Box Plot of Soluble Carbohydrate Data for Each Treatment 

b lO - burnt every 10 years (n=9), g - grazed (n= IO). u - unmanaged (n=9), d- drained (n= 14), f - afforested (n= II ). 11le extent 
of the box represented the first and third quarti les, with the median represented by the line in the centre of the box. The whiskers 
stretch to the upper and lower limits within the fi rst and third quartiles, values outside of this range are represented with an *. 
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Figure 5-9 Box Plot of Soluble Phenolic Datafor Each Treatment 

bl O - burn t every 10 years (n=9), g - grazed (n= IO). u - unmanaged (n=9), d- drained (n= 14), f - afforested (n= II ). 11le extent 
of the box represented the firs t and third quarti les, wi th the median represented by the line in the centre of the box. The whiskers 
stretch to the upper and lower limit with in the fi rst and th ird quartiles, values outside of this range are represented with an *. 
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Figure 5-10 Box Plot of Acid Soluble Carbohydrates Datafor Each Treatment 

blO - burnt every 10 years (n=9), g - grazed (n= IO), u - unmanaged (n=9), d- drained (n= 14), f - afforested (n= 1 J). The extent 
of the box represented the lirst and third quartiles, with the median represented by the line in the centre of the box. The whiskers 
stretch to the upper and lower limits within the first and third quartiles, values out ide ofthi range are represented with an ... 

A lignincellulose index (LeI) was calculated by dividing lignin values by lignin and 

cellulose values based on work by Melillo et al. (1989). A summary of the results is 

presented in Table 5.3. 

Table 5.3 Mean LCI Values/or Each Land Management Treatment 
Treatment Lignincellulose Index 

(LeI) 
Burned (every 1 o years ) 0.72 (n=9) 
Drained 0.67 (n=14) 
Afforested 0.77 (n= l I) 
Grazed 0.76 (n=10) 
Unmanaged 0.77 (n=9) 

5.3.5 Bulk Density 

Peats collected from the afforested and burnt and grazed (every 10 years) sites were 

found to be the densest (mean 0.10 g cm -\ whilst peats collected from the drained and 

burnt and grazed (every 20 years) sites were the least dense (mean 0.07 g cm-\ The 

maximum recorded value was 0.15 g cm-3, in the burnt site (every 10 years) and the 

minimum 0.02 g cm-3 collected from the burnt and grazed (every 20 years) site. 

Significant differences in the bulk densities of the managed peats were identified using 
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the Kruskall Wallis H test (p<0.00l). The Mann-Whitney U test was used to identify 

which sites were significantly different to one another. A summary of the findings 

including the significance values are presented in Table 5.4. 

Each of the five depths examined were found to have significantly different bulk 

densities (Table 5.5). A summary of significance values obtained from Kruskall

Wallis analysis for the physical properties examined between each treatment by depth 

examined is provided in Table 5.6. No clear trends in bulk density values were 

identified with depth within each treatment. The Mann-Whitney U test identified 

significant differences in the bulk density of the drained site with depth. Values 

decreased significantly (p=0.015) between the 10-20cm zone (0.08gcm-3
) and the 

40-50 crn layer (0.06 g cm-3). Significant differences between the surface and the base 

of the peat were not identified at any of the other sites (p>0.05). 

Table 5.4 Significance Values Indicating which Treatments had a Significantly Different Bulk 
DIe d I T. ensity W 1en ompare to at 1er reatments 

Unmanaged Burnt Burnt Burnt Drained Afforested 
(20) (10) and 

Grazed 
(10) 

Burnt and p<O.OOl p<O.OOl p<O.OOl p<O.OOl n/s p<O.OOl 
Grazed 
(20) 

Drained p<O.OOl p<O.OOl p<O.OOl p<O.OOl nJs 

Afforested p=0.02 P=O.02 nJs nls p<O.OOl 

Grazed n/s n/s p=0.03 P=0.04 p<O.OOl P=O.OOI 

nl - not slg11lficant. SIg11lficance level <0.05 
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------ --- ------- -------·0--- --------. ------- -- -------------.., - ------- -- ._---"'JJ------ --- •.. ------ .. ---.--. _ .. --- --
Depth Burnt and Unmanaged Burnt (every Burnt (everyl0 Burnt and Grazed Drained Afforested 

I grazed (every 20 years) years) grazed 
10 years) (every20 years) 

0.09 0.09 
0.06 

0.08 0.09 0-10 em 
(BG20 p=0.047) (BG20 p=0.04 7) 

0.08 0.08 (bgl0, U, G, F 
(BG20 p=0.047) 

0.08 
(BG20 p=0.047) 

p=0.047) 

0.10 0.10 0.07 0.08 
0.08 

0.10 
10-20 em (BG20. G and 0.09 BG20. Gand 0.09 (B20, BGlO, G, (B20BGI0, 

(B20 BGI0, 
(BG20, D, 

BG20, F 
D, p<O.OOI) D, p<O.OOI) F, U p<O.OOI; ) p<O.OOI) 

p<O.OOI) 
p<O.OOl) 

0.09 
0.07 

0.10 
20-30 em 0.10 0.08 0.09 0.10 

0.07 
(D,BG20, 

(B20, BGlO, 
(D, BG20, 

(G, F ,p<O.OOI) 
p<0.00l) 

BI0, G,F, 
p<O.OOI) 

p<O.OOI) 

0.10 0.10 0.09 0.10 
0.07 

0.09 
0.06 

0.10 
30-40 em (BG20,D (BG20,D (BG20, D (BG20, D 

(U, BlO, B20, 
(BG20, D 

(U, BI0, B20, 
(BG20,D 

BGlO,G,F BGlO,G,F 
p<O.OOI) p<O.OOI) p<O.OOI) p<O.OOI) 

p<O.OOI) 
p<O.OOl) 

p<O.OOI) 
p<O.OOI) 

0.10 0.10 0.07 0.10 
0.07 

40-50 em 
0.09 0.09 

(D, BG20 (D,BG20 (BI0, B20, G (D, BG20 
(BGlO, BlO, 0.11 

(D, p<O.OOl) (D, F p<O.OOI) B20, V,F,G, (D, U p<O.OOI) 
p<O.OOI) p<O.OOI) p<O.OOl) p<O.OOl) 

p<O.OOI) 
.. 

Values brackets indicate which treatments were significantly different with the significance value. BGIO- burnt and grazed (every 10 years), U - unmanaged, B20 - burnt (every 20 years), BJO- burnt (every JO years). 
G - grazed, D - drained, F - afforested. 
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Table 5.6 Significance values from Kruskall- Wallis Analy is Indicating Whether Significant 

Si gn 

Differences Existed between Treatments for Each of the Depths Considered. 

Bulk Density 

0-10 0.047 

10-20 <0.001 

20-30 <0.001 

30-40 <0.001 

40-50 <0.001 

ificance level - 0.05 nls - not significant 

0.16 

0.14 

0.12 

~ 
u 0.10 
01 -~ 0.08 
'" c 
8 
~ 

i 
0.06 

0.04 

0.02 

Particle 
Total Porosity 

Air-filled 
Density Porosity 

n/s 0.016 0.022 

n/s <0.001 <0.001 

n/s <0.001 0.023 

nls <0.001 0.002 

nJs <0.001 0.164 

0.00 l...--r----r-----,-----r-----r--~--__r--__,--' 
B10 B20 BG10 BG20 D F G u 

Treatment 

Figure 5-J J Bulk Density of Swface Peats (g cm '). 

blO - burnt every 10 years. b20 - bumt every 20 years, bg lO - burnt and grazed every 10 years, bg20 - burnt and grazed every 
20 years, g - grazed. u - unmanaged. d- drained, f - afforested. The extent of the box represented the first and third quaI1i1es. 
with the median represented by the line ill the eentre of the box. The whi kers tretch to the upper and lower limit within the 
first and third quartiles. 
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5.3.6 Carbon Stocks 
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Figure 5-12 Variations in Carbon Stocks between Different Land Management Practice 

b I 0 - burnt every 10 years, b20 - burnt every 20 years, bg I 0 - burnt and grazed every 10 years. bg20 - burnt and grazed every 
20 years, g - grazed, u - unmanaged. d- drained, f - afforested. TIle extent of the box represented the first and third quartiles, 
with the median represented by the line in the centre of the box. The whi kcrs stretch to the upper and lower limit within the 
first and third quartiles, values outside of this range are represented with an *. 

Highest carbon stocks were identified in the burnt and grazed (every 10 years) site 

(61.1 t C ha-I
) and the lowest was found in the drained site (38.8 t C ha- I

). One way 

ANOYA identified significant differences (p<0.001) between treatments when 

analysing carbon stocks for the upper 0.5 m of the peat profile (as illustrated in 

Figure 5-12). A summary of which treatments were significantly different to one 

another is presented in Table 5.7. 

Table 5.7 Summary of Which Treatments had Significantly Different C Stocks to one Another. 

BGIO U B20 B10 BG20 G D 
U 
B20 
B10 
BG20 ./ ./ ./ 

G ./ 

D ./ ,( ,( ./ ./ 

F ./ 

./ - slgmficant difference Blank - no Significant difference. BIO - burnt every 10 years, b20 - burnt every 20 years, bglO
bum! and grazed every 10 years, bg20 - burnt and grazed every 20 years, g - grazed, u - unmanaged, d- drained, r - afli rested; 
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Further analysis using one way ANOV A for just the surface samples (i.e. those most 

likely to have been affected by land management) did not identify any significant 

differences in the carbon stocks of the differently managed sites (p=0.218). 

Similarly, ANOV A with co-variance using treatment, the organic fractions and 

nitrogen as co-variables did not identify significant differences between the 

treatments, and the absence of significant differences indicated that the absence of 

differences could be due to confounding factors. A summary of the results is 

presented in Table 5.8. 

Table 5.8 Results of Multiple Way ANOVA with Co-variance to Determine the Effect of Land 
Management on Carbon Stocks and the Interdependence of Different Drivers on Carbon Stocks 

Factor P value 
Lignin:n 0.758 
SFOW 0.136 
Holocellulose 0.457 
Total soluble 0.236 
Moisture content (%) 0.269 
Loss on ignition (%) 0.876 
pH 0.501 
Treatment 0.581 

S.4 Discussion 

Studies comparing the quantity and quality of carbon in peats between afforested, 

drained, burnt and grazed sites do not appear to have been published to date. Studies 

on peatland carbon quality have focussed on litter decomposition using above

ground stocks, or rates of decomposition below ground using litter bags, thus 

identifying differences in decomposition due to varying environmental conditions 

(e.g. Laiho 2006, Domisch et a1. 2000, Yavitt et a1. 2005). Furthermore, such studies 

have not compared the differences in the four land management practices considered 

here. Differences wee expected to exist in soil carbon stocks and quality between 

management practices owing to changes in plant community, environmental 

conditions and nutrient supply which were expected to exist between treatments. 

These expectations are based on suggestions that peatland management affects 

nutrient status (e.g. Allen 1964), environmental conditions and substrate quality (e.g. 

Laiho 2006). 

The results presented above did not identify significant differences in the carbon 

stocks between the different treatments, neither were significant differences in 
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substrate quality found, with the exception of differences in the lignin content. The 

lack of significant differences in the carbon concentration and stocks and ash content 

at the base of the profile examined indicate that the peat at this depth has been 

untouched by land management. It is feasible therefore to suggest that the quality of 

the carbon at these depths is unlikely to vary between treatments. Peat in the UK 

uplands forms at an approximate rate of 1 mm a year (Charman 2002). Management 

practices at Moor House began in earnest during the 1950s, thus it is feasible to 

suggest that the top 50 to 60 mm represent peat accumulation since the initiation of 

such management practices. Higher concentrations of carbon were identified in all 

the burnt treatments within the top 10 cm, however, when the density of the peat was 

taken into consideration to calculate carbon stocks, the differences were not found to 

be significant. No significant differences in terms of carbon concentration or carbon 

stocks were identified between treatments between 10 and 50 cm beneath the 

surface, suggesting that land management has not had a significant effect on carbon 

stocks in the surface or at depth within the peat profile. 

Work carried out by Melillo et aI. (1989) identified two distinctive decomposition 

stages: the first a steady rate of loss of soluble carbohydrates e.g. celluloses; the 

second a period of very slow decomposition. Using the LCI, the final stages of 

decomposition commence when a value of 0.7 is reached. The notion that the 

samples from each site are recalcitrant is upheld by the results of LCI calculations. 

The early stages of litter decomposition have passed, which accounts for the small 

quantities of SFOW and water soluble fractions within each sample which are 

decomposed first (Berg 2000). The high volume of lignin (a minimum of 50 % of 

each sample) is also indicative that the peats are in the latter stages of 

decomposition. Significant differences in the LCI were identified between the 

drained site and the afforested, grazed and unmanaged sites (p=0.041) which all had 

higher lignin contents than the drained site. 

The findings demonstrate that much of the labile fractions have already been 

decomposed, and only small amounts of these fractions remain. During 

decomposition, the water soluble fractions are the most rapidly decomposed and 

quantities typically decrease in the first few months before stabilising to a fairly 

constant level (Berg 2000). Lignin comprised the highest proportion of the organic 
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matter in each sample, which implies that the carbon is recalcitrant (Reiche et a1. 

2010), and thus losses of carbon into either the atmosphere or through hydrological 

pathways are likely to be limited. Alternatively, it is possible that the rate of 

microbial degradation of labile compounds matched the rate at which these 

compounds entered the peat. 

Data on the composition of litter collected from Moor House published by Heal et a1. 

(1978) suggested that fresh litter has a different composition from that of the peat 

samples collected in this study. This supports the theory presented above using the 

LCI that the peat sampled is in the latter stages of decomposition. Heal et a1. (1978) 

found litter samples (Calluna vulgaris, Eriophorum sp. and Sphagnum sp.) to 

comprise between 34 %and 69 % of holocellulose, with a mean of 58 % compared a 

mean of29.6 % calculated for the peat samples in this study. Mean lignin values for 

the litter samples were 25.8 % compared to a mean of 57.4 % lignin for the peats in 

this study. The results give further support to the theory that most of the labile 

fractions of carbon in the peats have already been decomposed and the carbon is in 

the latter stages of decomposition. 

Work carried out by Gunnarsson et a1. (2008) cited high rates of nitrogen deposition 

as a cause for reduced carbon accumulation. In this study of Moor House, there 

were no significant differences in the nitrogen content of surface peats among the 

key sites (as noted in Chapter 4), and nitrogen was not found to be a significant 

covariatiant during ANOVA between the treatments. Furthermore, the highest 

carbon stocks were identified in the burnt (every 10 years) site which had the highest 

nitrogen content as did the unmanaged site, but the latter had lower carbon stocks. 

The lowest nitrogen stocks were identified in the afforested site which had one of the 

lowest percentage carbon contents of the five sites examined (47.8 %) in contrast to 

the work of Gunnarsson et a1. (2008). 

Previous studies of carbon quality (e.g. Moore et aI. 2007, Valentine et a1. 1994) 

have used the lignin:nitrogen ratio to identify labile and recalcitrant peats. Based on 

the data collected at Moor House, the most recalcitrant carbon was identified in the 

afforested site (lignin:N = 704.7) and the burnt (every 10 years) site had the least 

(lignin:N = 490.4), the drained site had the second most labile peats (lignin:N = 
552.7). The results imply that imply that while the afforested site contains less 
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carbon than treatments subjected to burning, examined, the carbon within afforested 

peats is less likely to undergo microbial decomposition, especially given the 

comparatively lower nitrogen content of the afforested peats. 

Work published by Armentano and Menges (1986) suggested that rates of carbon 

accumulation in peats are lower at more acidic sites, and Bergman et al. (1999) 

found that carbon synthesis rates are also lower in peats with lower pH values. No 

significant differences in the pH values of the peats were found between the 

treatments analysed either in the surface layers or at the base of the profile examined 

(as noted in Chapter 4), and pH was not found to be a significant covariant during 

ANOV A. Changes in the acidity of the peats therefore cannot explain differences in 

carbon stocks and the chemical composition of the peats in this instance. 

More rapid plant growth on the burnt sites may account for the greater carbon stocks, 

as greater inputs of plant material are likely. Higher carbon stocks are also 

consistent with the higher water table levels recorded at the burnt site. Shallower 

water tables create a thinner acrotelm and therefore more anaerobic conditions which 

limit the rate of carbon decomposition. In contrast to this study, Garnett et al. (2000) 

identified reductions in carbon stocks in burnt peats at Moor House using surrogate 

measures of carbon, two years after the 1995 burn. This finding is not, however, 

corroborated by that of Clay et al. (201 Ob) who identified higher rates of primary 

productivity on burnt sites, which would result in greater inputs of carbon into the 

peat4. Additionally, Ward et al. (2007) identified higher carbon stocks in burnt peats 

at Moor House compared to grazed and ungrazed sites. 

Dikici and Yilmaz (2006) studied burnt and unburnt peats in Turkey and found less 

carbon in burnt peats. They attributed the changes in carbon stocks to the time taken 

to recover from burning as well as volatilisation of carbon during the burning 

process. Variations in the temperature of the burns between this study and Moor 

House are likely to be the cause of differences in carbon stocks, as well as 

differences in the peat types and therefore vegetation between the two studies. Data 

on the temperature of the burns at Moor House in 2007 were not recorded, but 

4 Data on primary productivity are to be presented in Chapter 6, and demonstrate that higher rates of 
primary productivity were found at the burnt sites. 
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anecdotal evidence recorded by the site manager suggested that some of the 

vegetation was still frozen after the bum, indicating a cool bum 

(R.Rose, pers. comm.). The fires studied by Dikici and Yilmaz (2006) were 

described as catastrophic (1965 fire) and large scale (2001 fire) although temperature 

data were not presented. Between 75 and 100 % of the peat was burnt during the 

2001 fire, which the authors suggest must have been caused by temperatures 

approaching 490°C. Cooler fires have been shown to have less affect on carbon 

losses, Forgeard and Frenot (1996) found no significant difference in the carbon 

contents of soils burnt at 150°C and 300°C in a laboratory study. Whilst the 

maximum temperatures attained during a fire are undoubtedly important, fire 

intensity, however, depends not only on the temperature at the time of the bum but 

also on the moisture content of the peat and litter, and whether the fire is planned or 

accidental wildfire (Legg & Davies 2009). 

Farage et al. (2009) suggested the carbon content of bumt peats from Mossdale 

Moor, Upper Wensleydale is approximately 9.9 kg m-2
, which is approximately a 

fifth of the quantity found in this study and that of Ward et al. (2007) at Moor House. 

The disparity could indicate that significant differences in the carbon stocks of burnt 

peats exist between different locations. Further research is required to identify 

whether this is the case. Farage et al. (2009) did note that their site had been 

subjected to poor husbandry up until the late 1980s; which might have been a cause 

for reduced carbon stocks. 

Analysis of the effects of wildfires on peatlands carried out in the Peak District by 

Clay and Worrall (Clay & Worrall 2011) identified higher quantities of carbon in 

bumt areas compared to non-bumt areas. The findings were attributed to the 

existence of black carbon remaining in the peat after the fire, which was described as 

refractory. The absence of significant differences between the burnt and unbumt 

sites at Moor House could be attributable to the bum at Moor House being cooler 

than the wildfires studied in the Peak District. 

The carbon stocks, C:N ratio and total organic matter content of the grazed site were 

not significantly different to the unmanaged site. The chemical composition of peats 

collected from the grazed site was almost identical to those collected from the 

unmanaged site. These results are consistent with proposals made by Garnett et al. 
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(2000) that grazing has no effect on carbon stocks in peats. Studies of burning and 

grazing on peatlands carried out by Ward et al. (2007) did not identify any 

significant differences in carbon stocks at a depth of 1 m compared to the 

unmanaged site. A small increase in carbon was recorded in the grazed site 

compared to ungrazed, however the significance of this difference was not 

commented on by the authors. 

The drained site had the lowest carbon stocks and the lowest proportion of lignin 

(50 %), suggesting that drainage does not favour carbon preservation. Work carried 

out by others has suggested that the impacts of peatland drainage on carbon stocks 

are contradictory. Laiho (2006) reviewed numerous studies of peatland drainage and 

found evidence that drainage can increase carbon stocks at some sites, whilst 

decreases or no change were recorded at others (e.g. Laiho et al. 2004a, Minkkinen 

et al. 1999). The causes of variation were cited as differences in nutrient content, 

climate, type of bog, vegetation type and consequently substrate quality. Laiho 

(2006) suggested that oxygen availability, temperature and acidity were the most 

important controls on litter decomposition. Given the proximity of the Moor House 

sites to one another, significant differences in local air temperatures are unlikely, 

with the exception of the afforested site where soil temperatures may have been 

comparatively lower during summer months and higher during winter months due to 

the shelter provided by the tree canopy. No significant differences in peatland 

acidity were identified between the treatments, however, differences in water table 

levels (presented in Chapters 6 and 7) and therefore potentially oxygen availability 

were recorded. All the sites studied were ombrotrophic bogs, consequently the 

differences that have been attributed to bog type elsewhere, are not applicable in this 

case. 

The lower lignin content of the drained site could be attributed either to differences 

in litter inputs or environmental conditions. A low lignin content indicates higher 

rates of decomposition which could account for the low carbon content (Turetsky 

2004). The drained site had the highest quantities of soluble carbohydrates and acid 

soluble carbohydrates. Turetsky (2004) found soluble carbon fractions (e.g. soluble 

carbohydrates) to be have a strong, positive correlation with carbon dioxide losses, 

which were attributed to the more labile nature of soluble carbohydrates. 
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The lack of a significant difference in the carbon quantity or quality between the 

drained and unmanaged sites is consistent with the findings of vegetation surveys at 

Moor House. Coulson et al. (1990) found no evidence of changes in vegetation 

composition on drained sites at Moor House and concluded that drainage has little 

effect on the vegetation species or rates of decomposition at upland sites, where 

rainfall exceeds 1,200 mm per annum. Based on this evidence it is therefore unlikely 

that changes in the incoming litter composition on the drained site could account for 

differences in litter quality compared to the unmanaged site. 

Comparisons of different types of drained bog in Sweden carried out by Strakova et 

al. (2010), however, did reveal differences in litter decomposition (increases in 

herbaceous species) between the sites in contrast to this study. The differences could 

be attributed to the water table levels at Moor House differing from the unmanaged 

site by only 2 to 7 em, whereas at the Swedish site they were 10 to 15 em deeper. 

Strakova et al. (2010) concluded that the changes in above ground litter are highly 

likely to influence below-ground litter inputs. Given that previous studies have not 

identified a significant difference in vegetation composition on drained peats, and 

that the environmental conditions did not vary significantly from the unmanaged site, 

it is un surprising that significant differences in carbon stocks were not identified at 

MoorHouse. 

Differences in litter inputs between the drained and afforested sites could account for 

the increased lignin content in the afforested site owing to the woody nature of forest 

litter (Hobbie 1996). The shade offered by the canopy in the afforested site would 

have reduced the temperature of the peat and hence rates of microbial activity would 

have decreased (Silvola et al. 1996). The surface layer of the afforested site held the 

most lignin, which was significantly higher than the burnt and drained sites. The 

nitrogen content of the afforested site was significantly lower than all other 

treatments (as discussed in Chapter 4). Differences in the nitrogen content could 

explain the higher lignin content of the afforested site. The decreased nitrogen 

content could be attributable to (a) the greater nitrogen demand from the trees; (b) 

leaching into the ditches; (c) lower inputs of nitrogen from litter and/or (d) reduced 

inputs from atmospheric deposition due to tree interception. Lower concentrations 

of nitrogen observed could have limited lignin degradation the afforested site (Berg 
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2000). Nitrogen is needed by microbes to synthesise carbon, and a high C:N ratio is 

often associated with low rates of decomposition (Eskelinen et al. 2009). 

Of the five sites examined for carbon quality, the highest C:N ratio was identified in 

the afforested site where the highest lignin content was found. Low C:N ratios are 

associated with greater amounts of undegraded litter at the end of the decomposition 

process, which is consistent with the lower carbon stocks identified in the afforested 

site (Berg & Meentemeyer 2002). The high lignin content of the afforested peats 

however should serve to prevent further degradation of the peat in the future, whilst 

peats with more labile fractions will continue to decompose, such as those at the 

burnt site (Updegraff et al. 1995). Lignin has a more complex molecular structure 

than labile fractions, which requires a higher activation energy for the substrate to be 

broken down (Hartley & Ineson 2008). Studies on labile and recalcitrant soil 

fractions however failed to identify differences in rates of decomposition between 

the fractions in response to increases in temperature. Moreover, labile and 

recalcitrant fractions were both found to be sensitive to changes in temperature (Fang 

et al. 2005). 

Under current conditions the afforested peats are unlikely to decompose as rapidly as 

the other treatments owing to the greater carbon content of afforested peats and their 

increased recalcitrance. If temperatures rise sufficiently under climate change, 

however, the most recalcitrant fractions in the forest may begin to degrade 

(Kirschbaum 2006). Additionally, the afforested site had the lowest moisture 

content (mean 660 %), indicating that conditions were favourable for the 

decomposition of labile substances. Holocellulose is the most labile component of 

organic matter (Yavitt et al. 2005), and the lowest values of holocellulose were 

identified at the afforested site. 

Changes in bulk density due to land management were expected on the grazed, 

drained and afforested site. The grazed site was expected to have a higher bulk 

density due to trampling by sheep. No significant differences were identified in the 

bulk density, however, this could be due to the light grazing intensity at the managed 

plots. The drained and afforested sites, however, did have significantly different 

bulk densities compared to the unmanaged site. It was anticipated that the bulk 

density of both sites would increase owing to the presence of drains. This was found 
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to be the case in the afforested site, which had a significantly higher bulk density 

than the unmanaged site. This was not the case, however, at the drained site where 

the bulk density was significantly lower than the unmanaged site. It is possible that 

the added weight of the trees had caused an increase in the bulk density of the 

afforested site. There are no clear indications as to why the burnt and grazed (every 

20 years) site had a significantly lower bulk density compared to the other sites. The 

lower bulk density identified at the drained site is consistent with the expectations 

for dry peats which are reported to have a lower bulk density (Evans 2005) 

Significant changes in the bulk density of peats have previously been associated with 

peatland where Sphagnum species are dominant. Due to the fragile structure of the 

species, it's structure collapses as the water table rises (Clymo 1984). Much of the 

peat at Moor House is dominated by a combination of sedges, grass and heather 

which could account for the lack of significant changes in the bulk density within the 

top 50 cm of the profile. 

Significant differences in the physical properties of the peats were expected to be 

identified with depth, as the transition from the acrotelm to the catotelm is witnessed. 

The drained site was the only site, however, where a significant change in the bulk 

density was identified with depth. Mean bulk density values were fairly constant 

with depth in all other treatments. Only in the burnt (every 10 years), grazed and 

afforested sites were steady increases in the bulk density identified with depth. The 

results from the afforested site supported the findings of studies carried out in 

Finland where the increasing weight of trees resulted in increased compaction of the 

peat and a rise in bulk density (Minkkinen et aI. 1999). Studies carried out by the 

Forestry Commission in the UK between 1974 and 1981 however found little 

difference in bulk density with depth (Cannell et al. 1993). The results of bulk 

density analysis for all sites fell within the range expected for UK deep peatlands of 

between 0.07 and 0.l5 g cm3 (Cannell et aI. 1993). 
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5.5 Conclusions 

5.5.1 Summary o/Findings 

The aim of this chapter was to identify how land management influences carbon 

stocks and the carbon quality of peat. To achieve this aim, the following two 

hypotheses were investigated: 

i) Land management has a significant effect on carbon stocks in peat. 

ii) Land management has a significant effect on carbon quality. 

The results provided a unique assessment of the variations in carbon stocks and 

quality across differently managed peatland sites and suggested that different 

management practices applied to peats within one nature reserve have not affected 

carbon stocks but did influence carbon quality. Carbon stocks were observed to be 

greatest for the burnt treatments, however litter quality was poorer here than that 

found in other treatments (excluding the drained site). Carbon stocks were smallest 

in the drained site, which also had the lowest quantity of lignin and consequently 

poor litter quality. Afforestation resulted in the most recalcitrant organic matter, 

with a high C:N ratio, although carbon stocks were lower than those found at the 

burnt sites. The lignin content of the drained and burnt sites was found to be 

statistically significantly different to the afforested peats. No site was found to be 

significantly different from the unmanaged site in terms of carbon quality or carbon 

stocks. The lignincellulose index identified all peats sampled as being in the latter 

stages of decay, and therefore rates of decomposition are likely to be low. The labile 

fractions of the organic matter in each sample analysed are small and provide further 

evidence that the peat is highly decomposed. It is feasible to suggest however, that 

the rates at which the more labile materials decompose varied between treatments, 

according to nutrient supply and environmental conditions. 

5.5.2 Further Work 

Further examination of carbon quality might identify differences between the 

treatments, if more detailed analyses were carried out. The proximate analysis used 

in this study divides the organic matter up into large groups according to their 

decomposition potential, differences between each of the managed sites could occur 
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at a smaller scale than this. Analysis of samples using pyrolysis, chemolysis and/or 

nuclear magnetic resonance spectroscopy might be able to identify such differences, 

if they exist. Although the total carbon content of the peat was not found to vary 

with depth, Hogg (1993) identified deeper peats as being more recalcitrant, 

suggesting further examination of peats under different forms of management could 

provide valuable information on which predictions of the future of peatlands under 

climate change could be based. 

Changes in carbon stocks as a result of land management such as forestry and 

agriculture have been widely reported by others (e.g. Singh 2008). The intensity of 

the management practices at Moor House has not been recorded however, making 

comparisons between treatments problematic. For instance, records indicate that the 

burn in 2007 was light, but how this compares to burning on other sites is unknown. 

If we are to truly understand the impact of land management on carbon stocks and 

quality, studies need to be carried out to look at both ends of the scale in terms of 

intensity (e.g. comparing severe burns with light burns, heavily grazed sites with 

lightly grazed sites). In addition, the timescales over which sites have been managed 

needs to be taken into consideration and comparisons made. Some work on changes 

in vegetation and peat properties over time since drainage has been carried out in 

Finland (e.g. Minkkinen et al. 1999), but additional work is needed to examine the 

other land management practices of interest in the UK. 
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6 CARBON DIOXIDE GAINS AND LOSSES FROM MANAGED PEATS 

6.1 Introduction 

Carbon budget calculations for uplands peats in the UK suggest that carbon dioxide 

losses represent the main pathway through which carbon is lost from peat (e.g. 

Dinsmore et al. 2010, Worrall et al. 2009). Much effort has been focussed on 

measuring losses of carbon dioxide from peats that have not been intensively 

managed, some studies have compared different types of peat, for example, 

ombrotrophic compared to minerotrophic (e.g. Bubier et al. 1998) whereas others 

have looked at the effect of micro-topographic features such as hollows and 

hummocks (Bubier et al. 2003b). To date, limited work has been carried out on 

managed peats, and no study exists which compares field data for the four main 

methods of peatland management (burning, grazing, drainage and afforestation) in 

the UK with a unmanaged site. 

The principal aim of this chapter is to analyse the effects of land management on the 

carbon balance of managed peats focussing on carbon dioxide losses and gains. In 

addition, the effect of management on the physical properties of the peat that 

influence gaseous diffusion will be examined. The following hypotheses will be 

tested: 

i) Land management has a significant effect on losses of carbon dioxide from 

peat 

ii) Land management has a significant effect on net ecosystem exchange 

iii) Land management has a significant effect on the porosity ofthe peat, thereby 

altering the potential for carbon dioxide to diffuse through the peat 

The rationale for each hypothesis is presented in Table 6.1. As well as testing the 

effects of land management on carbon dioxide adsorption and loss from managed 

peatlands, environmental controls (water table levels and temperature) will also be 

considered. 

Carbon dioxide losses from peatlands occur as a result of microbial and root 

respiration. As described in Chapter 2, microbes synthesise the organic matter in the 
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peat and release carbon dioxide. Losses of carbon dioxide from both roots and 

microbial decomposition are collectively termed ecosystem respiration (ER). Rates 

of ER are controlled by the nature and quantity of substrate available, nutrient 

availability and environmental conditions. Water table levels, temperature and pH 

are the dominant environmental controls on ER. ER rates are typically lower than 

rates of carbon dioxide adsorption by plants, thus resulting in peatlands acting as 

carbon sinks. Net ecosystem exchange (NEE) represents the balance between carbon 

dioxide gains and losses within the ecosystem. 

NEE and ER are expected to be affected by land management owing to changes in 

nutrient concentrations in peats, altered environmental conditions and changes in 

substrate quality (Table 6.1). The porosity of the peat is also expected to be affected 

by management owing to changes in the bulk density of the peat. 
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-~ - - - -- - - ~~ - --------- - ----- -_. ---- - --- - -------- - - .--- ------ ------ ------ - -- ---- --- - - -- ._---
NEEandER Porosity 

The effect ofbuming on the porosity of the peat is unclear. Some 

Burnt 
Burnt peats have been found to become greater carbon sinks owing to increased suggest it decreases owing to inputs of ash following burning causing 
primary production following burning (Ward et aI. 2007), although in some instances, the pores of the peat to become clogged (Mallik et a1. 1984b) whilst 
burning has been found to result in a carbon source (Clay et a1. 20IOb). other have found the porosity of the peat to increase for up to three 

years post-burning (Mallik & FitzPatrick 1996). 

Grazed peats have been found to become greater carbon sinks owing to increased 

Grazed 
primary production due to continual removal of grasses by grazing sheep (Ward et a1. Increases in the bulk density of the peat in relation to sheep grazing 
2007), although in some instances, grazing has been found to result in a carbon have been identified in upland peats (Zhao 2008). The porosity of 
source (Clay et aI. 2010b). grazed peats is therefore expected to increase on grazed sites. 

, 

The increased thickness of the acrotelm is expected to result in greater microbial 
activity and hence grater losses of carbon dioxide. In addition, the phenol oxidase 

Drained enzyme is known to breakdown phenolic compounds following water table The insertion of drains into peats has been associated with a decrease 
drawdown, and consequently allows rates of litter decomposition to increase in bulk density owing to structural collapse in the peat (Minkkinen & 
(Freeman et aI. 2004b). Work on drained sites carried out immediately after blocking Laine 1998). 
by Rowson et a1. (2010) identified drained sites as carbon sinks. 

Lower water tables owing to drainage and increased water demand by trees are 
expected to result in greater losses of carbon dioxide compared to unmanaged The insertion of drains into peats has been associated with a decrease 

Afforested peatlands (Anderson et aI. 2000). The more recalcitrant nature of the substrate in bulk density owing to structural collapse in the peat. Furthennore 
(Hobbie 1996), decreased temperatures (Silvola et al. 1996) and lower pH values tree planting causes the bulk density to increase even more owing to 
(Minkkinen et at. 1999) however are expected to compensate for the effects of the the weight of the trees (Minkkinen & Laine 1998). 
lowered water table by reducing rates of microbial activity. 

------
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6.2 Methodology 

6.2.1 Laboratory Analysis 

6.2.1.1 Particle Density 

Particle density was measured on 555 air dried samples. Approximately 5 g of sample 

were taken and placed in a glass beaker with a known quantity of de-gassed, de

ionised water. The sample was stirred and placed on a hotplate for 10 minutes. The 

solution was cooled in a water bath and the contents transferred to a 100 ml volumetric 

flask of known weight, ensuring that every particle was transferred. The volume of 

the flask contents was made up to 100 ml using deionised water. The weight of the 

flask was recorded. The particle density was calculated using the following equation: 

mass of soil (g) 
Dp = 

Volume of soil minus air spaces (cm3 ) 

Where: 
Dp = particle density (g cm3

) 

Volume of soil = 100-volume of water (cm3
) 

Volume of water was calculated as follows: 
Volume of water = fmal flask weight - (soil + initial flask weight) 

6.2.1.2 Total Porosity and Air Filled Porosity 

Total porosity and air filled porosity were calculated based on the particle density and 

bulk density values for each sample. Total porosity was calculated using the 

following equation: 

Where: 

Db 
St= 1- -

Dp 

St = total porosity (em em-3
), and Db = bulk density (g cm-3

) 

(Carter & Gregorich 2007) 

Air filled porosity was calculated using the following equation: 
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where: Fa = air filled porosity (cm-3 cm-\ St = total porosity (cm-3 cm-\ 8w = 

gravimetric moisture content (g g-I), Db = bulk density (g cm-3
) and Dw = water 

density (Carter & Gregorich 2007) 

6.2.2 Field Monitoring 

6.2.2.1 Measurement o/Carbon Dioxide Loss and Net Ecosystem Exchange 

ER was monitored on 12 occasions and NEE on 19 occasions. Details of the dates 

during which each monitoring round was carried out are provided in Table 6.2. the 

dates chosen allowed a combination of both winter and summer monitoring to be 

carried out. More emphasis was placed on monitoring during a warmer period as 

microbial activity was expected to be greater during warmer periods, therefore, an 

intensive period of monitoring was carried out in August 2010. 
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Table 6.2 Dates and Climate Data for Each Monitoring Round 

Rainfall Maximum Average 

Monitoring during 
Temperature Temperature 

ER NEE 
Round 

Date Monitoring 
on on 

Measured Measured Monitoring Monitoring Day (mm) Day (0C) Day (DC) 

1 10103/09 4.0 4.6 2.7 ./ ./ 

2 10105/09 0.0 3.4 1.8 ./ 

3 19105/09 1.4 8.4 5.0 ./ 

4 02/06/09 0.0 4.7 1.9 ./ 

5 16/06/09 0.0 4.4 1.9 ./ 

6 02/07/09 2.0 6.7 3.5 ./ 

7 17/07/09 68.0 9.5 6.0 ./ 

8 29107/09 10.8 6.9 4.4 ./ 

9 07/10109 0.0 6.1 3.3 ./ ./ 

10 23110109 4.0 3.6 2.6 ./ ./ 

11 16111/09 26.2 9.1 6.0 ./ ./ 

12 07/12/09 32.6 8.7 6.2 ./ ./ 

13 12/08/10 4.0 14.6 10.5 ./ ./ 

14 13/08110 14.5 11.1 9.5 ./ ./ 

15 14/08/10 1.0 13.6 10.5 ./ ./ 

16 15108/10 0.0 20.2 13.4 ./ ./ 

17 16/08/10 0.5 17.2 12.1 ./ ./ 

18 17/08/10 3.5 15.4 11.6 ./ ./ 

19 18/08/10 2.0 12.7 9.8 ./ ./ 

ER and NEE fluxes were monitored using an Environmental Gas Monitor (EGM4 

from PP Systems, Hitchin, Hertfordshire, Figure 6-1). The soil respiration chamber 

of the EGM4 (PP Systems' CPY2 canopy assimilation chamber) was fitted into a 

plastic 15 em diameter collar (inserted to a depth of 5 em into the peat) and a latex 

band placed around the outside of the chamber and inside of the collar to ensure that a 

gas-tight seal was obtained. The chamber was fitted with a fan which allowed air to 

circulate within the chamber. Monitoring was carried out for 124 seconds, with gas 

measurements being recorded by the instrument's infra-red gas analyser (IRGA) every 
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4 seconds to allow a flux to be calculated. NEE was measured as the total of ER and 

primary productivity (PP). Following completion of each NEE measurement, ER was 

recorded by placing a dark cover over the CPY2 chamber and using the IRGA to 

record the flux again. Details of the collar locations are presented in Table 6.3. 

Figure 6-1 EGM4 Attached to the CPY2 Chamber Fitted with a Rubber Seal, Located 
Adjacent to a Monitoring Collot·. 

Table 6.3 Locations ofthe Gas Monitoring Collars 

CoUar Number Site 
1-3 Grazed and burnt (every 1 0 years) 
4-6 Grazed and bumt (every 20 years) 
7-9 Grazed 

10-12 Burnt (every 20 years) 
13-15 Burnt (every 10 years) 
16-18 Unmanaged 
19-21 Drained 
22-24 Afforested 
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6.2.2.2 Groundwater Levels 

Groundwater levels were measured in the field during the site visits listed in Table 6.2. 

Measurements were made by inserting a dip-meter into each groundwater monitoring 

well adjacent to the gas monitoring collar as detailed in Chapter 3. 

6.2.2.3 Weather Data 

Data collected from the Moor House Automatic Weather Station (AWS) were 

provided by the Environmental Change Network (ECN) for the time period over 

which monitoring work was carried out. The AWS is situated at 54.690° N, 2.375°W 

and is located 556m AOD. Data from the A WS are downloaded weekly by the ECN 

and subject to quality control checks prior to release. 

6.2.3 Statistical Analysis 

Data from environmental monitoring were compared using Analysis of Variance 

(ANOV A) and subsequently Tukey's test was performed to identify where differences 

occurred. Results from analysis of the physical properties of the peat were compared 

using the Kruskall-Wallis H test and Mann-Whitney U test as the data did not have a 

normal distribution. 

6.3 Results 

6.3.1 Ecosystem Respiration 

No significant differences in ER were found between the managed sites (p=0.359). 

Significant differences were, however, identified between collar 9 on the grazed site 

and collars: 2 (burnt and grazed every 10 years), 4 and 6 (burnt and grazed every 20 

years), 13 (burnt every 10 years) and 18 (unmanaged). The average values for all 

these locations (except collar 13) were found to be higher than the mean value for 

collar 9 (0.032 g C02 m-2 h- I
). As shown on Figure 6-2, no clear trends in data were 

evident to indicate which site lost the most carbon dioxide and which lost the least. 
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Figure 6-2 Mean Ecosystem Respiration/or the Managed and Unmanaged Sites 

BGIO - burnt (every 10 years) and grazed; BG20 - burnt (every 20 years) and grazed, B20 - burnt every 20 years. Each data point represents the mean 00 recorded values. 
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The maximum mean carbon dioxide loss was 0.58 g CO2 m-2 h-I from the grazed site 

on 15th August 2010. The lowest mean value was at the burnt site (every 20 years) of 

0.01 g CO2 m-2 h-I on 10th March 2009. A significant correlation was identified 

between carbon dioxide concentrations and air temperature at the time the 

measurement was taken, the only exception being the afforested site (Table 6.4). 

Significant correlations between the water table depth and carbon dioxide production 

were only found for following locations: collar 10 on the burnt (every 20 years) site 

(p=0.033 ~ = 0.64); collar 21 on the drained site (p=0.006, ~ = 0.829); and collar 23 

on the afforested site (p=0.032, ~ = 0.675). 

Table 6.4 Correlation between Temperature and Carbon Dioxide Loss (using data pooled 
from the 3 monitoring collars for each treatment) 

Site Correlation Coefficient p-Value 
Burnt and grazed (10) 0.74 p<O.OOI 
Unmanaged 0.54 p=O.OOI 
Burnt (20) 0.83 p<O.OOI 
Burnt (10) 0.62 ~<O.OOI 
Burnt and grazed (20) 0.59 ~<O.OOI 

Grazed 0.67 ~<O.OOI 

Drained 0.92 ~<O.OOI 

Afforested 0.17 p=O.411 

6.3.2 Net Ecosystem Exchange (NEE) 

Results from ANOY A identified significant differences in NEE between managed 

peats (p=0.023). Tukey's test confirmed that the afforested site and the burnt (every 

10 years) site were significantly different to one another, with significantly lower 

values produced at the burnt site. No other sites were found to have significantly 

different NEE from one another. 
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Figure 6-3 Mean NEE for the Managed and Unmanaged Sites (note measurementsfor the afforested site did not include the tree canopy) 

BGIO - burnt (every 10 years) and grazed; BG20 - burnt (every 20 years) and grazed, B20 - burnt every 20 years. Each data point represents the mean of3 recorded values. 
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In line with commonly used conventions for expressing gaseous carbon gain and 

losses, negative values ( 

Figure 6-3) indicate carbon adsorption and positive values signify carbon is being lost 

as respiration outstrips rates of carbon dioxide adsorption. Results from the afforested 

site should be interpreted with caution as only understorey vegetation could be 

monitored within the EGM4' s CPY2 chamber rather than the trees themselves. The 

results give an indication as to what is happening on the forest floor but do not give an 

accurate picture of whether the afforested site is acting as a sink or source of carbon. 

The maximum value for NEE was recorded at the unmanaged site (0.82 g CO2 m-2 hr

I) on 17th August 2010; the minimum value was recorded at the afforested site (_ 

1.01 g C02 m-2 hr- I
) on 14th August 2010. Only on sites where grazing occurred and 

at the drained site were there significant correlations identified between temperature 

and NEE (Table 6.5). 

a e orre atzan etween 1: bl 65 C I' b em perature an dNEE 

Site Correlation Coefficient p-Value 
Burnt and grazed (10) 0.457 p=O.OOI 
Unmanaged -0.021 p=0.886 
Burnt (20) 0.234 p=0.095 
Burnt (10) -0.138 p=O.328 
Burnt and grazed (20) 0.485 p<O.OOI 
Grazed 0.288 p=0.031 
Drained 0.427 p=0.004 
Afforested 0.160 p=0.284 

Analysis of differences in NEE between the months during which monitoring was 

carried out at Moor House identified significant differences (p<O.OO 1 ). NEE fluxes 

were higher in June than August and December fluxes, and fluxes in July were 

significantly higher than August fluxes. ER values were significantly higher in 

October than December (p<O.OOI). 

6.3.3 Primary Productivity 

Primary productivity (PP) was calculated as the difference between NEE and ER. 

Greatest productivity was identified in the burnt and grazed sites. No significant 
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difference in PP were identified between the different treatments (p=O.123). A 

summary of the results is presented in Figure 6-4. 
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Figure 6-4 Mean Primary Productivity for each of the Treatments Studied, - based on the 
mean of all monitoring trips where ecosystem respiration was measured. The values for the 

afforested site values /'epresentthe PP of under storey vegetation and do not include the trees. 
Values in brackets indicate the number of years between managed burns. Error bars indicate 

the standard deviation of measurements at each site. 

6.3.4 Groundwater Levels 

Groundwater levels are presented in Figure 6-5. On average the shallowest levels 

were found in the burnt (every 10 years) site and the deepest at the afforested site. 

Significant differences between treatments were analysed using ANOV A (p<O.OOl). 

The afforested site had significantly lower water levels than all other sites. The 

drained site had significantly lower water levels than all sites except for the afforested 

site which had significantly deeper water levels, and the unmanaged site which did not 

vary significantly to the drained site. The unmanaged site had significantly deeper 

water levels than all sites with the exception of the afforested site, where water levels 

were deeper, and the drained site, which was not significantly different. 

Comparisons of water table levels between each monitoring location identified 

locations 22 and 24 in the afforested site as having significantly deeper water tables 
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than all other locations with the exception of locations 16 and 17 on the unmanaged 

site which were only significantly different to location 24. Location 17 on the 

unmanaged site was found to have a significantly different water table depth to all 

locations on grazed and ungrazed sites subjected to burning every 20 years, locations 

13 and 14 on the burnt site (every 1 0 years), and locations 2 on the burnt and grazed 

(every 10 years) and 8 on the grazed site. 
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6.3.5 Particle Density 

Significant differences in the particle density of the peats from each treatment were 

identified (p=0.002). A summary of the differences identified are presented in Table 

6.6, Figure 6-6 illustrates the range of values for each treatment in the surface peats. 

The burnt site (every 10 years) had the highest mean particle density (1.34 g cm-3) and 

the unmanaged the lowest (1.23 g cm-3
). The minimum value was identified at the 

unmanaged site (0.85 g cm-3
) and the maximum (2.12 g cm-3

) at the burnt and grazed 

site (every 20 years). Significant differences between treatments within the depths 

analysed were not identified, with the exception of at the base of the profile 

investigated (p=0.014). The drained site was found to have a significantly higher 

particle density than the unmanaged, burnt and grazed (every 20 years) and afforested 

sites. Significant differences between the treatments were not identified within each 

layer, as illustrated in Table 6.7. 

No clear trends in particle density were identified with depth. A summary of 

significance-values obtained using the Kruskall-Wallis H test is presented in Table 

5.4. The Mann-Whitney U test identified significant differences in the particle density 

of the burnt and grazed (every 20 years) site with depth. Values decreased 

significantly (p=0.017) between the 0-10 cm zone (mean 1.41 g cm-3
) and the 40-

50 cm layer (mean 1.19 g cm-3
). Significant differences between the surface and the 

base of the peat were not identified at any of the other sites (p>0.05). 

Table 6.6 Significance Values/or Particle Density (all depths) 
Burnt Burnt Burnt Drained Grazed Afforested 
and (10) and 
grazed grazed 
(10) (20) 

Unmanaged P=O.OO2 P<O.OOI P=0.OO7 P=O.003 nls nls 

Burnt (10) nls nls nls nls P=O.021 P=O.028 

. . .. 
nls - not slglllficant <O.05=slglllficance level 
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Figure 6-6 Particle Density of Aerotelm (0-10 em) Peats (g em '). 

8 I 0 - burnt every 10 years, 820 - bumt every 20 years, 8G I 0 - burnt and grazed every 20 years, 8G20 burnt and grazed every 
20 years, 0 - drained, F - afforested, G - grllzed, U- unmanaged. The extent of til e box represent the first and third quartiles, 
with the median represented by the line in tile centre of the box . The whiskers stretch to the upper and lower limits within tile 
first and third quartiles, values outside of thi range are represented with an a teri k. 

Table 6.7 Mean Values for Particle Densily for the Different Treatments within Eaeh Layer 
Depth Burnt Unmanaged Burnt Burnt Burnt Grazed Drained Afforested 

and (every (everylO and 
grazed 20 years) grazed 
(every years) (every20 
10 years) 
years) 

0-10 em 
1.32 1.25 1.26 1.31 1.41 1.28 1.30 1.27 

10-20 em 
1.30 1.24 1.29 1.31 1.28 1.29 1.30 1.36 

20-30 em 
1.34 1.25 1.31 1.32 1.31 1.24 1.30 1.27 

30-40 em 
1.27 1.22 1.25 1.46 1.43 1.26 1.25 1.27 

40-50 em 
1.29 1.17 1.26 1.25 1.19 1.28 1.30 1.21 

Values brackets mdlcate which treatments were Igmficantly dlfTerent With the slgmficance value. 8G 10- burnt and grazed 
(every 10 years), U - unmanaged, 820 - burnl (every 20 yea ), 810- burnt (every 10 years), G - grazed, 0 - drained, F 
afTorested. 
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6.3.6 Porosity of Peat Soils 

The range of values for peat porosity for each treatment is presented in Figure 6-7. 

Significant differences in the total porosity of the peat were identified using the 

Kruskall-Wallis H test (p<0.001). A summary of the significance values obtained 

using the Mann-Whitney U test to identify which treatments were significantly 

different to one another is presented in Table 6.8. The affore ted site had the lowest 

porosity (91.97 %) whilst the drained site had the greatest (94.60 %). The minimum 

value was identified in the afforested site (86.65 %) and the maximum value in the 

burnt and grazed (every 20 years) site (98.52 %). 

Significant differences in the porosity of the treatment within each layer were 

identified; the results are presented in Table 6.9. No clear trends in porosity were 

identified with depth. The results of the Kruskall Wallis H te t indicated that 

significant differences in porosity exist with depth (p<0.025). Stati tical analysi 

using the Mann-Whitney U test identified the 10-20 cm layer a having a significantly 

lower porosity than the 20-30 em (p=0.031) , 30-40 em (p=0.003) and 40-50 cm 

(p=0.017) layers. 

T. bl 68 S Ii a e . 'igni cance a ues or ola V;/ fi T. IP OI'OSl ty 

Burnt 
and Burnt Burnt 

Grazed Afforested Unmanaged 
grazed (10) (20) 

(10) 

Burnt and 
grazed 0.001 0.001 0.001 0.001 0.001 0.001 
(20) 

Drained <0.001 <0.001 0.001 0.001 0.001 0.001 

Afforested 0.05 0.05 0.01 0.001 0.05 

. -n/s - not slgl1Jficant <O.05=SlgJlIl1CanCe level 
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Figure 6-7 Total Porosity of Surface Peats (em enl). 

BJ 0 - burnt every 10 years, B20 - burnt every 20 years, BO I 0 - bumt and grdzed every 20 years, B020 bumt and grazed every 
20 years, 0 - drained, F - afTorested, 0 - gmzed, U- unmanaged. The ex tent of the box represents the lirst and third quartiles, 
with the median represented by the line in the centre of the box. The whiskers tretch to the upper and lower limits within the 
lirst and third quartiles, values outside of this range are represented with an astelisk. 
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laDle O.Y Mean yawes ana .)l~ 'JUJlcant ulJJerences m roroslty YaluesJor me ulJJerent lreatments wlthm J<.,ach Layer 
Depth Burnt and Unmanaged Burnt (every Burnt (every Burnt and Grazed Drained Afforested 

grazed (every 20 years) 10 years) grazed (every 
10 years) 20 years) 

93.17 
92.86 93.64 95.42 93.69 92.47 

0-10 em 
(BG20, 

(BG20, (BG20, 93.73 U, B20, BG 10, (BG20, 94.19 (BG20, 
p=O.016) 

p=0.016) p=0.016) G, Fp=0.016 p=0.016) p=0.016) 

91.95 
92.37 92.59 94.46 93.63 93.82 92.39 

10-20 em 
(BG20,G,D; 

(BG20,D; (BG20,G,D; 93.10 (BGIO, U, B20 (BGlO,B20; (BGI0, B20, U; (BG20; 
p<O.OOI) 

P<O.OOI) p<O.OOl) p<O.OOI) p<O.OOI) p<O.OOI) p<O.OOI) 

94.87 
92.13 

92.83 93.24 92.49 94.43 
92.70 (BGlO, BIO, 

(BG20, D; 
20-30 em 

(D; p<O.OOl) 
93.48 (D; p<O.OOI) (D; p<O.OOI) (G, F; p<O.OOI) 

(BG20, D; B20, G,F; 
p<O.OOI) 

p<O.OOl) p<O.OOI) 

95.11 
95.12 

92.08 92.10 92.59 92.92 
(BGI0, U, BIO, 

93.14 (BGI0, U, BIO. 91.89 
30-40 em (BG20,D; (BG20,D; (BG20,D; (BG20, D; 

B20, G, F; 
(BG20, D; B20, G, F; (BG20, D; 

p<O.OOl) p<O.OOI) p<O.OOI) p<0.001) 
p<O.OOl) 

p<O.OOI) p<O.OOI) p<O.OOI) 

94.94 
92.94 92.68 

92.37 92.23 94.36 92.41 (BI0, B20, U, 91.01 
40-50 em (D, F; p<O.OOl) 

(F, D; p<O.OOl) 
(BG20, D; (BG20, D; (G, F, BIO, (BG20, F; BGIO; (BGIO, U, G; 
p<O.OOl) p<O.OOI) B20; p<O.OOI) p<O.OOI) p<O.OOI) p<O.OOI) 

Values in brackets indicate which treatments were significantly different with the significance value. BGIO- burnt and grazed (every 10 years). U - unmanaged. B20 - burnt (every 20 years). BIO- burnt (every 10 
years). G - grazed. D - drained, F - afforested. 
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6.3.7 Air Filled Porosity 

Significant differences in the air filled porosity of peats from differently managed sites 

were identified using the Kruskall-Wallis H test (p<O.OOI). A summary of the 

findings is presented in Table 6.10. Each site had a wide range of values as evidenced 

in Figure 6-8. The burnt and grazed (every 20 years) had the greatest mean (44.99 %) 

and the burnt (every 20 years) site had the lowest (25.68 %). The lowest value was 

0.47 % from the drained site, the highest value was 86.92 % for a sample from the 

burnt and grazed (every 20 years) site. 

Significant differences between sites were identified between 0 and 40 em beneath the 

surface of the peat. A summary of significance values obtained when using the 

Kruskall-Wallis H test to compare values between each treatment at each depth of the 

peat profile is presented in Table 6.11. A summary of the significant differences 

between treatments is presented in Table 6.10. 

The air filled porosity values for each treatment decreased with depth. Significant 

differences between the surface and base of the profiles examined were found for the 

burnt and grazed (every 10 years) site (p=O.OI8) and the grazed (p=0.013) site. 
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B10 B20 BG10 BG20 D F G u 
Treatment 

Figure 6-8 Air Filled Porosity o/Surface Peat (%). 

810 - burnt every 10 years, 8 20 - burnt every 20 years, 8G 10 - burnt and grazed every 20 years. 8G20 burnt and grazed every 
20 years, D - drained, F - afforested, G - grazed, U- unmanaged. The extent of the box represents the first and third quartiles. 
with the median represented by the line in the centre of the box. The whiskers stretch to the upper and lower limits within the 
first and third quartiles, va lues outside of this range are represented with an a teri k. 

Table 6.10 Si~nificance Valuesfor AirjWed Porosity 
Burnt Burnt Burnt Grazed Afforested Unmanaged 
and (10) (20) 
grazed 
(10) 

Burnt and p<O.OOI p<O.OOI p<O.OOI p<O.OOl p<O.OOl nls 
grazed 
(20) 

Drained p<O.OOl p<O.OO4 p<O.OOl p<O.OOl p<O.OOl p<O.OOl 

.. .. 
nls - not slgmficant <0.05=slgmlicance level 
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Depth Burnt and Unmanaged Burnt (every Burnt (everyl0 Burnt and Grazed Drained Afforested 
grazed (every 20 years) years) grazed 

10 years) (every20 years) 

40.67 32.48 33.38 35.68 59.30 

0-10 em (BG20; (BG20; (BG20; (BG20; 
(D, B 10, B20, 41.55 43.11 42.59 

p=0.022) p=0.022) p=0.022) p=0.022) 
BGI0; 

p=0.022) 

20.88 24.26 44.53 36.50 34.33 

10-20 em (BG20,G,D; 27.36 (BG20,G,D; 35.49 (BGI0; (BGI0; (BGIO; 33.52 

p<0.001) p<O.OOI) p<O.OOI) p<O.OOI) p<O.OOI) 

41.99 
24.06 27.34 23.83 24.11 

(BGIO, BIO, 
28.80 

20-30 em 33.25 37.07 
(D; p=0.023) (D; p=0.023) (D; p=0.023) (D; p=0.023) B20,G,F; (D; p=0.023) 

p<0.023) 

20.49 44.61 42.02 
19.16 20.93 26.08 26.53 I 

3040 em (D,BG20; 
(D,BG20; 

(D,BG20; (D, BG20; 
(BGIO, BIO, 29.57 (BGIO, BIO, 

(D, BG20; 
p=0.002) 

p=0.002) 
p=0.002) p=0.002) 

B20, U,F; B20, U,F; 
p=0.002) 

p=0.002) p=0.002) 

40-50 em 22.35 26.67 21.94 27.58 39.50 24.52 39.66 23.01 

Values in brackets indicate which treabneots were significantly different with the significance value. BGIO- burnt and grazed (every 10 years), U - unmanaged. B20 - burnt (every 20 years). BIO- burnt (every 10 
years). G - grazed, 0 - drained, F - afforested. 
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6.4 Discussion 

6.4.i introduction 

Comparisons of carbon dioxide gains and losses in the field between multiple peatland 

management practices have not been published to date. At best, two common methods 

of management have been compared with an unmanaged site (e.g. Ward et al. (2007), 

Clay et al (2010b». These studies provide a useful baseline on which further research 

can be developed, yet do not allow decisions to be made as to which of the four most 

common methods of land management is preferable from a carbon storage and release 

perspective. Differences were expected to exist in the losses and gains of carbon 

dioxide owing to the effect of land management on the key drivers of carbon cycling: 

environmental conditions, nutrients and substrate quality. In addition, changes were 

expected to occur to the physical properties of the peat as a result of land management, 

consequently affect the ability of gases to diffuse through the peat profile. 

6.4.2 Effect of Land Management on Carbon Dioxide Exchange in Peatlands 

In general, no clear trends existed in the data to identify which site lost or gained the 

most carbon dioxide during the course of monitoring. Significant differences in ER 

rates between managed peatland sites were not identified. Significant differences 

between individual monitoring locations were, however, found, demonstrating the 

heterogeneity of peatland ecosystems. The variation gives support to the notion of 

possible hotspots existing across sites put forward by McClain et al. (2003) as opposed 

to assuming homogeneity exists across each site as suggested by the classic yet 

simpler acrotelm-catotelm model (Morris et al. 2011). More detailed analysis of ER 

would be required to verify whether "hotspots" truly exist. 

In terms of ER, one of the grazed monitoring locations (collar 9) had significantly 

higher ER than collars location on the burnt and grazed (every 10 years) site (collar 2); 

the burnt and grazed (every 20 years) site (collars 4 and 6); the burnt (every 10 years) 

site (collar 13) and the unmanaged site (collar 18) (p=0.003). Although collar 9 did 

not have a significantly difference groundwater levels to these collars, it is worth 

noting the mean water table level at collar 9 was lower than those noted above. 

Despite no significant correlation being identified between water level and carbon 

dioxide at collar 9, it is plausible to suggest that the water level would have had some 
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influence on carbon dioxide losses. As noted in Chapter 2, debate exists in published 

literature as to the importance of the water table in controlling losses in carbon 

dioxide, with some authors (e.g. Nilsson & Bohlin 1993) suggesting deeper water 

table levels result in greater losses of carbon dioxide, and others finding no 

relationship between water table depth and carbon dioxide losses (e.g. Strack & 

Waddington 2007). 

NEE data showed that the majority of the sites were net carbon sources throughout the 

monitoring period, indicating that the sites were emitting more carbon than is being 

sequestered. Only the burnt and afforested sites were found to have significantly 

different NEE values, with the forest appearing to emit more carbon dioxide than the 

burnt (every 10 years) site. These results do not however include the tree stand which 

would be the main carbon sequestering plants in the forest. Measurement of the forest 

NEE would only be possible with an eddy-covariance flux tower. Data published by 

Measurements of ER using eddy covariance methods were carried out Fowler et al. 

(1995) in May and June 1994 in Caithness. The results suggested that whilst losses of 

carbon dioxide were lower from the afforested site during the day (-0.086 g C02 m-2h

I) compared to an unmanaged site (-0.0004 g C02m-2 h-I)" losses of carbon dioxide 

were greater from the afforested site at night time than the unmanaged site - 0.002 

g C02 m-2 h-I and 0.0003 g CO2 m-2 h-I respectively. 

Carbon sinks were identified at individual collar locations across the managed sites, as 

described below. A significantly lower value for NEE was identified for collar lOon 

the burnt (every 20 years) compared to collar 21 on the drained site (p<0.001). 

Average NEE values for collar 10 indicated that this area of the burnt (every 20 years) 

site is a carbon sink, whereas the peat at collar 21 was identified as a carbon source. 

On the burnt site (every 10 years), collar 15 was found to be a sink, with a 

significantly (p<0.001) lower NEE flux than collars 7 (grazed); 12 (burnt and grazed 

every 20 years); 14 (burnt every 10 years) 16 and 17 (unmanaged) 21 (drained) and 23 

and 24 (afforested) which were all found to be sources of carbon dioxide. Despite the 

absence of a significant correlation between NEE and water table level at collar 15, 

water levels at collar 15 were, however, frequently shallower than 10 em beneath the 

surface (12 out of 19 monitoring visits) and the peat around the collar was often 

observed to be saturated with evidence of ponding at the surface. These aspects may 
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have contributed to this location acting as a sink. Additionally the frequently saturated 

conditions would have prohibited sufficient variation in water table depth from being 

measured, and therefore a significant relationship between NEE and water table depth 

at this site could not be found using statistical analysis. The presence of saturated 

conditions and a high water table would have created anaerobic conditions, which 

could have resulted in reduced rates of microbial respiration, therefore creating a 

stronger carbon sink. 

The majority of monitoring collars were located in areas where a combination of 

mosses and grass/sedge species were present, with the exception of the afforested site 

where moss and pine needles were identified. The consistency in the type of 

vegetation between managed sites could account for the lack of significant differences 

in NEE and ER values. On patterned peatlands, the different microforms tend to be 

characterised by different vegetation species, which are adapted to the water table 

found in each microform. Sphagnum species are typically associated with hummocks 

and hollows, whilst shrubs dominate lawns (Laine et a1. 2007). Strong relationships 

have been identified between species and respiration and photosynthesis rates. Sites 

dominated by mosses are likely to continue to adsorb carbon during the winter months 

whilst shrubs lose their leaves and therefore, are unable to adsorb carbon but continue 

to lose carbon through ER (Laine et al. 2007). 

No overall correlation was found between temperature or water level and NEE. 

Moderately weak correlations were identified between temperature and NEE on the 

burnt (every 10 years) site (~= -0.36, p=0.020) and drained (~=0.45, p=0.016) sites, 

indicating that temperature has some influence on NEE. Much of the variation in 

values however remains unaccounted for. Seasonal variations in the data were 

evident, with higher rates of carbon sequestration during warmer months when plant 

growth and photosynthesis would be expected to be greater. The lack of correlation 

between water table and NEE (~= 0.16, p=O.OII)could be attributable to differences 

in plant species in the collars within each treatment because different plant species 

sequester carbon at different rates (Blodau 2002). Blodau (2002) also notes that 

nutrient availability affects rates of plant productivity, and thus rates of carbon 

sequestration. 
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No significant differences in pnmary productivity were identified between the 

managed sites using ANOV A (p=0.123). Primary production values for the afforested 

site represent the understorey vegetation only, and not the tree canopy. The drained 

site had the smallest mean primary productivity (-0.084 g CO2 m-2h- l
) whilst the burnt 

site (every 20 years) had the greatest (-0.21 g CO2 m-2 hr-I). The results of work 

carried out by Clay et al. (2010b) also found that the burnt (every 20 years) site had 

greatest primary productivity of the Hard Hill plots; and the unmanaged site the 

lowest. In the study at Moor House presented in this thesis, the burnt and grazed site 

(every 20 years) was found to have the lowest rates of primary productivity (-0.11 g 

C02 m-2 h-I) of the Hard Hill plots, closely followed by the unmanaged site 

(-0.12 g C02 m-2 h-I). Clayet al. (201Ob) did not comment on whether significant 

differences exist between management practices for either ER or NEE, instead 

consideration was given to the carbon budget as whole, the results of which indicated 

significant differences existed between treatments. Although it was not possible to 

gain access to Moor House in all seasons for practical reasons, the strong relationship 

between temperature and ER identified in this study suggest that seasonal variation 

does have a strong bearing on ER, and possibly more so than land management, owing 

to the absence of significant differences in ER between treatments. In all cases, the 

sites were found to be carbon sources, however, as shown in Figure 6-2, lower ER was 

identified in winter months. 

Ward et al. (2007) also concluded that seasonal variations were greater than variations 

in fluxes due to land management. A study carried out on a sub-Arctic fen has also 

highlighted the importance of temperature as a driver of respiration rates. The study 

looked at a particularly hot and dry summer identified lower rates of photosynthesis 

compared to a typical summer whilst respiration rates remained high. Conditions were 

not favourable for photosynthesis to match respiration during early summer when the 

site was a source; during mid summer the site was a sink then during late summer 

there was insufficient light for photosynthesis to match respiration (Schreader et aI. 

1998). 

Monitoring of peat cores has also identified reduced rates of respiration at sites where 

the moisture content of the surface has been lowered. Published results indicate that 

lowering of the water table does not automatically cause an increase in respiration 
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(Lafleur et al. 2005). The role of water table in governing respiration rates is further 

complicated by the presence of microforms. During dry summers hummocks have 

been found to be unresponsive to lower water table levels whilst rates of respiration 

from hollows have increased (Bubier et al. 2003a). 

The findings from the burnt and grazed sites are consistent with those of Clay et al. 

(201 Ob) who identified the burnt and grazed sites at Moor House as emitting 

significantly less carbon dioxide compared to the unmanaged site on Hard Hill. Such 

trends were attributed by Clay et al. (201 Ob) to the deeper water tables and lower rates 

of primary productivity in the unmanaged site. It was suggested that rates of new 

vegetation growth on the burnt and grazed sites are higher compared to the unmanaged 

site, hence carbon sequestration rates were greater. As a result of higher rates of 

primary productivity, it was suggested that rates of carbon accumulation would be 

greater in the burnt sites. Data presented above in this thesis also identified higher 

rates of primary productivity in the burnt (every 10 years) (-0.21 g CO2 m·2 h· l
) and 

grazed (-0.20 g C02 m-2h- l
) sites compared to the unmanaged site 

(-0.12 g CO2 m-2 h- I
). 

Evidence presented by Garnett et al. (2000) using radiocarbon methods to calculate the 

total carbon stores is not supported by the work of Clay et al. (201 Ob) which used 

measurements of primary productivity, and indicated that greater carbon was 

sequestered on the burnt site. The results of total carbon content analysis are 

presented in Chapter 5 and support the theory presented by Clay et al. (2010b) that 

burning increases peatland carbon stocks (although the differences in this study at 

Moor House were not found to be significant). Ward et al. (2007) also identified 

significantly higher carbon stocks in burnt peats. In addition, monitoring work 

showed significantly higher rates of respiration and photosynthesis in burnt and grazed 

treatments compared to unmanaged. The burnt and grazed sites were found to act as 

greater sinks than the unmanaged site. These findings are supported by Clay et al. 

(201Ob); when looking at primary productivity data, the unmanaged site is less of a 

sink than the burnt and grazed plots. When looking at NEE from Clay et al. (201 Ob) 

however, it becomes apparent that most of the managed plots at Moor House are 

sources, with only the grazed sites and burnt sites acting as very small sinks. 
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No other studies in the UK have looked at NEE for burnt and grazed sites. A study 

comparing carbon dioxide release from burnt and unburnt sites in Mossdale, North 

Yorkshire did not identify any significant differences between the sites. The study, 

however, only looked at rates of release during April 2004, and NEE was not 

calculated, therefore conclusions cannot be drawn as to whether the site was a source 

or sink (Farage et al. 2009). 

Studies on peatlands burnt by wildfires in Canada identified burnt sites as sources of 

carbon following burning, although the sites became sinks with time. In addition, 

seasonal differences were recorded, with sites acting as sources during winter and 

sinks during summer (Wieder et al. 2009). Although significant correlations were not 

identified between the sites for either NEE or PP, a visual analysis of NEE data 

indicates that the burnt site (every 10 years) did act as a sink during the majority of 

summer monitoring rounds and a source during winter monitoring. This result 

supports the findings of Roehm and Roulet (2003) who stressed that peats act as 

carbon sinks during the growing seasons and sources during the non-growing seasons, 

even during cold temperatures, when microbial activity is likely to become limited. 

Although this was the case at Moor House, the data collected were very low during the 

December 2009 monitoring trip when temperatures ranged between 3.8 °C and 5.3°C. 

A study of a recently restored (by ditch blocking) catchment in Hexhamshire, northern 

England carried out by Rowson et al (2010) identified the site as a gaseous carbon sink 

(-0.007 g C02 m-2 yr-I). The authors considered the sink to be smaller than expected, 

and attributed the difference to increased peat temperatures following water table 

drawdown. The effect of lower water table levels causing increased respiration was 

discounted based on the lack of a relationship being identified between water table 

levels and respiration by others (e.g. Lafleur et al. 2003). The study of the 

Hexhamshire drained catchment did not, however, include measurements of water 

table level to verify the absence of such a relationship. The low carbon exchange 

values for the site are also attributed to low rates of primary productivity. Low rates 

of productivity could have been symptomatic of the species growing on the site 

(potentially drainage resulted in less productive species growing), or the size of the 

chamber used to measure fluxes at the site (Rowson et al. 2010). Studies of the 

botanical composition of the drained site at Moor House were carried out in 1986 and 
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did not identify any significant differences between areas located close to the drains 

and those furthest from the drains (Coulson et al. 1990). 

The phenol oxidase enzyme is responsible for breaking down phenolic compounds, 

thereby making the substrate suitable for the hydrolase enzyme to synthesise, and so 

causing further decomposition in peats. The reduction of water table levels results in 

the creation of aerobic conditions and facilitates phenol oxidase activity (Freeman et 

al. 2004b). Aerobic conditions are not, however, the only requirement for the phenol 

oxidase enzyme. Low temperatures (Freeman et al. 2001 b) and acidic conditions 

(Williams et al. 2000) can suppress rates of activity. Furthermore, the botanical 

composition of the peat also affects phenol oxidase activity, resulting in differences in 

rates of activity between different peatlands (Laiho 2006). It is possible that at Moor 

House the initial lowering of the water table during the 1950s at the drained site 

resulted in a rise in rates of enzyme activity. It is likely, however, that the supply of 

phenolic compounds has been exhausted sufficiently so as to cause the available 

substrate to have been fully utilised. Furthermore, significant differences in water 

levels were not identified between the drained site and other treatments except for the 

afforested site. The absence of significant differences in water table levels suggests 

that additional decomposition due to an thicker acrotelm, and/or the release of the 

enzyme latch mechanism is unlikely to occur. The absence of a thicker acrotelm can 

in part explain the lack of a significant difference between the drained site and other 

treatments. 

Comparisons of Sitka spruce and lodgepole pine forests with felled sites on Irish peats 

found greater losses of carbon dioxide occurred from spruce sites than pine. The 

lower water table in the pine site did not result in greater losses of respiration owing to 

the decay resistant nature of the peat. In clearfelled areas, lower respiration rates were 

recorded than those found in the mature Sitka sites; the difference was attributed to the 

contribution of respiration from the roots of the Sitka spruces (Byrne & Farre112005). 

6.4.3 Environmental Controls 

6.4.3.1 Moisture 

Studies of moisture gradients across peatlands have identified lower rates of carbon 

dioxide adsorption at the driest end of the spectrum (Bubier et al. 2003a). Studies of 
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drought conditions in peatlands have identified the onset of drier conditions as causing 

peatlands to switch from sinks to sources of carbon owing to reduced rates of plant 

production (AIm et al. 1999a). Qualitative comparison of the data suggests that it is 

possible that increased losses of carbon dioxide through ER may be attributable to the 

higher moisture content found in the afforested site, however, further analysis would 

need to be carried out to verify this proposal. 

6.4.3.2 Telnperature 

Fluctuations in carbon dioxide emissions were clearly linked to air temperature, with 

lowest concentrations emitted during the coldest monitoring rounds (e.g. 7th December 

2009 round 12). The afforested site was the only site not to show a significant 

correlation with temperature, with a very weak correlation coefficient (r=0.17; 

p=0.411). The results may be due to temperatures in the forest being cooler during the 

summer months and warmer during the winter months relative to other treatments, 

owing to the shade and shelter provided by the canopy (Silvola et al. 1996). Whilst 

the afforested site was found to have significantly deeper groundwater levels 

(especially at monitoring locations 22 and 24 which were situated on ridges), no 

significant correlation was identified between water depth and ER from the afforested 

site. 

Suggestions have been made that the relationship between temperature and carbon 

dioxide release increases exponentially (Dioumaeva et at. 2003). Whilst rates of 

carbon dioxide production did increase with temperature, and rates of production were 

low during cold periods, the relationship was found to be linear rather than 

exponential. The differences in the findings between the studies may be attributable to 

differences in the types of peat - blanket bog at Moor House compared to boreal peat 

studies carried out under laboratory conditions. 

The findings for the environmental controls on carbon dioxide losses are also 

consistent with those of Updegraff et al. (2001) who identified temperature as a major 

control on carbon dioxide, accounting for up to 80 % of variation and Nieveen et al. 

(2005) who found temperature explained up to 93 % of variance. Results from the 

managed sites at Moor House indicated that temperature accounted for between 54 

and 91 % of variation (excluding the results from the afforested site; p=O.OOI). 
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6.4.3.3 Water table effects 

Overall, the depth to the water table level was not a significant control on ER. No 

significant relationship was found between ER and depth to water table for any site, 

thus contradicting suggestions made by Nilsson and Bohlin (1993) that water level is 

the most important control on carbon dioxide losses. Even when all the data for all 

sites were pooled together, a significant relationship was not identified (~= -0.031; 

p=0.627). 

During monitoring events in autumn 2009, shallower water table levels were recorded 

in October than those found during monitoring in November and December. Rates of 

carbon dioxide loss were, however, higher in October when temperatures were higher, 

compared to November and December when temperatures were lower as well as 

groundwater levels being deeper. 

The results of the dipwell monitoring indicated that the peats on managed sites at 

Moor House are rarely saturated. Mean groundwater levels in the afforested peat were 

always 15 cm or more beneath the surface of the peat, even after heavy rainfall had 

occurred prior to a monitoring round. Shallower water levels were found in sites 

subject to burning and grazing compared to the unmanaged site. Such elevated levels 

did not, however, result in lower ER or significant differences in the porosity of the 

peat. Clay et al. (2009a) also identified deeper water table levels in the unmanaged 

site compared to those subject to burning and/or grazing at Moor House. Comparisons 

with the drained and afforested sites were not made. 

Elsewhere, sites where drains have been installed were found to have higher losses of 

carbon dioxide than undrained sites owing to an increase in the unsaturated zone 

(Hogg et al. 1992). A review of drained sites carried out by Laiho (2006), however, 

suggests there is evidence for and against carbon stores being affected by changes in 

water table levels. Experimental work carried out on a Canadian sub-Arctic fen found 

rapid increases in carbon dioxide losses following lowering of the water table. 

Subsequent lowering of the water table did not result in any further losses of carbon 

dioxide. The presence of easily labile carbon in the newly aerated peat was attributed 

as the cause for the increase in the flux following drainage (Chimner & Cooper 2003). 

Peatlands that have been exposed to lower water table levels for longer periods of time 
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have been found to be highly resistant to decomposition (Bridgham & Richardson 

1992) thus resulting in no differences in carbon losses, as found in the results of this 

thesis. Nieveen et al. (2005) demonstrated that dry periods and/or grazing livestock 

can reduce losses of carbon dioxide from peatlands, following water table drawdown 

and afforestation. Scottish peatlands sites were identified as sources of carbon for two 

to four years post-drainage. Eight years after being drained, the sites returned to 

acting as carbon sinks (Hargreaves et al. 2003). 

Despite the establishment of relationships in some studies between water table and 

losses of carbon dioxide owing to more rapid mineralisation; evidence exists to 

suggest that peat becomes more decay resistant with depth (Hogg et al. 1992). 

Lowering of the water table will therefore expose peat which cannot easily be 

degraded, and thus will not contribute significantly to additional carbon dioxide losses. 

The results provide evidence that carbon mineralisation is controlled by more than just 

the water table level and thickness of the aerobic zone of the peat, hence the lack of a 

significant relationship between ER and water table level, as found by others e.g. 

Strack and Waddington (2007). 

6.4.3.4 pH 

The pH of peats often increases following water table drawdown owing to an increase 

in organic compounds being oxidised, and in afforested sites, due to an increase in 

base cation uptake by trees (Laiho 2006). Falling pH values due to afforestation are 

thought to counteract the effects of the increase in oxic conditions in the peats 

(Minkkinen et al. 1999) and thus reduce respiration rates. The afforested site at Moor 

House did have a significantly lower pH in both peats (as detailed in Chapter 4) and 

peat solution (as detailed in Chapter 7), which might explain the absence of significant 

differences in respiration rates between the afforested site and the other treatments 

considered. 

6.4.4 Physical Properties 

A discussion of the effects of land management on bulk density is presented in 

section 5.4. 
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Wide variation in the air-filled porosity of the peats within each treatment reflects 

variation in the bulk density and moisture content within each treatment. Whilst Moor 

House does not feature many hummocks and hollows as would be found on a 

patterned peatland, areas of the site were found to significantly wetter than others. 

These findings add to the notion presented earlier that hotspots might exist across 

peatlands reflecting the heterogeneity of the peat which is often over simplified 

through the acrotelm-catotelm model (Morris et al. 2011), further discussion of the 

application of the diplotelmic model is presented in Chapter 8. 

Burning was expected to result in a reduction in porosity owing to the clogging of air

filled pores with ash particles (Mallik et al. 1984b). Porosity and air-filled porosity 

values were not however significantly different from the unmanaged site. These 

findings might be due to insufficient quantities of ash being produced to cause 

blocking of pores or could be due to the ash being washed away due to runoff in the 

time period between burning (February 2007) and sample collection (September 

2008). 

Changes in soil porosity as a result of burning have been identified as a cause for 

increased soil moisture content on burnt sites due to improved moisture retention 

(Mallik et al. 1984b). No significant differences in moisture content were identified in 

this most recent study at Moor House (as noted in Chapter 4). Elsewhere, studies of 

burnt podzols in Scotland identified ash particles in the soil pores, resulting in reduced 

porosity and consequently reduced infiltration (Mallik et al. 1984b) and heating soils 

was found to result in increased in soil water repellancy and thus decrease infiltration 

rates (DeBano 1990). The contrast between these studies and those at Moor House 

might be a reflection of the cool bums which were carried out at the Moor House site 

in 2007. 

The lower bulk density and higher total porosity and air-filled porosity identified in 

the drained site demonstrated that drainage improves the structure of the pea~ 

resulting in a more porous, less saturated peat, however, ER from the drained site was 

not significantly different to any other treatment. Moisture content analysis (presented 

in Chapter 4), however, identified the moisture content of the drained site as being 

significantly higher than most other sites. The significantly higher loss on ignition 

value for the drained site compared to the unmanaged site (p=O.02) as presented in 
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Chapter 5, however, could have resulted in a better structure for the peats at the 

drained site resulting in higher porosity and lower bulk density values. 

6.4.5 Effect of Burning Frequency 

No significant differences were identified between the burnt (every 10 years) and 

burnt (every 20 years) sites. Differences in the rate of vegetation recovery might have 

resulted in differences in ER, however, this did not appear to be the case. Firstly, the 

bum carried out in February 2007 was reported to be light, and so the impact on 

vegetation was not severe. Secondly, the site had made a good recovery from any 

damaged caused to the vegetation. It is possible that differences would be evident 

immediately after a bum compared to both the unmanaged site and one that had been 

burnt 10 years ago. Work carried out by Clay et a1. (2010b) also found little 

difference in ER and PP values between the two sites. The impact of burning 

frequency is therefore difficult to discern, given the possible variations in bum 

severity between the 10 and 20 year bum cycles. Data on actual temperatures reached 

during burning were not recorded, but records kept by the site manager suggest the 

most recent bum was of a very cool nature. 

6.4.6 Effect of Combining Burning and Grazing 

Combining burning and grazing methods did not result in any significant differences 

to the observed sequestration or release of carbon dioxide. The physical properties of 

the burnt and grazed (every 20 years) site were, however, significantly different to 

most other treatments in terms of bulk density, total porosity and air-filled porosity. 

The bumt and grazed (every 20 years) site had a significantly lower bulk density than 

all other sites where burning took place and compared to the unmanaged site. 

Similarly total porosity and air filled porosity values at the burnt and grazed (every 20 

years) were significantly higher than those found on other plots on Hard Hill. 

Significant differences in the porosity of the peat were identified with the burnt and 

grazed (every 20 years) site and the drained site being more porous than most other 

treatments. The results however do not appear to have had an effect on diffusion of 

carbon dioxide through the peat profile. Similarly the air filled porosity values varied 

significantly between the drained and burnt and grazed (every 20 years) sites and most 
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other treatments but did not result in significant differences in the release of carbon 

dioxide. 

6.5 Conclusions 

6.5.1 Summary of Findings 

The principal aim of this chapter was to analyse the effects ofland management on the 

carbon balance of managed peats focussing on carbon dioxide losses and gains. In 

addition, the effect of management on the physical properties of the peat that influence 

gaseous diffusion was examined. The following hypotheses were tested: 

i) Land management has a significant effect on losses of carbon dioxide from 

peat 

ii) Land management has a significant effect on net ecosystem exchange 

iii) Land management has a significant effect on the porosity of the peat, thereby 

altering the potential for carbon dioxide to diffuse through the peat 

6.5.1.1 Effects of Land Management on ER and NEE 

Land management was not found to have a significant effect on NEE or ER contrary 

to the hypotheses proposed above. The frequency with which sites were burnt had no 

observed effect on carbon dioxide fluxes, neither did combining burning and grazing. 

The absence of significant differences in water table levels between the sites compared 

to the unmanaged site (with the exception of the afforested site), suggest that no 

difference exists in the thickness of the acrotelm of the managed sites, therefore, the 

potential for greater or lesser rates of microbial decomposition through aerobic activity 

within the treatments did not exist. Furthermore, rates of primary production between 

the sites were not significantly different, suggesting that in spite of the application of 

different management practices, the ability of the vegetation on the sites to sequester 

carbon was not significantly different. Further, more powerful analysis would be 

required to verify these suggestions. 

Water table levels were significantly lower in the afforested site compared to bum~ 

grazed, drained and unmanaged sites. No other significant differences in water levels 

were identified between treatments. Significant differences in the physical properties 
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of managed peatlands were found, however there was no indication that these 

differences affected transfusion of carbon dioxide through the peats. 

All sites were found to be sources of carbon dioxide, with greatest losses during the 

summer monitoring rounds. Temperature was found to be a much stronger driver of 

ER than land management, with moderate to strong relationships (r=0.54 - 0.92) 

identified between temperature and ER for all sites except the afforested site. These 

results suggest that the alterations peats undergo as a result of management 

intervention investigated are insufficient to cause significant changes to the drivers of 

the carbon cycle. Further consideration of the linkages between losses of carbon and 

drivers of the carbon cycle is given in Chapter 8. 

No significant relationships were identified between water table and NEE or ER. 

Whilst high water tables are very important for carbon accumulation, no evidence was 

found to suggest that water table drives carbon dioxide losses from managed peats. In 

the future (under climate change), lower water table levels might not give rise to 

increased respiration rates, however, they could limit carbon accumulation, thus 

depleting the quantity of carbon held within peatlands. 

6.5.1.2 Effects of Land Management on the Physical Properties of Managed Peats 

Significant differences in the physical structure of the peat were anticipated between 

different treatments owing to the effects of drains (in both afforested and drained 

peats), inputs of ash from the burnt sites and trampling on grazed sites. The results 

demonstrated that only the afforested and drained site had significantly different 

porosities; with the afforested becoming less porous owing to a higher bulk density, 

and the drained site becoming more porous. 

6.5.2 Recommendationsfor Further Work 

A full investigation of the carbon balance of the afforested site was not possible due to 

the limitations of the NEE measurements. To fully quantify the flux, an eddy

covariance flux tower would be needed, and to make comparisons with other sites, 

flux towers would need to be on each site. Accurate measurements at the Moor House 

plots might, however, be problematic owing to their small size. In addition, future 

work needs to focus on managed sites outside of the Moor House NNR, and variations 
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in management intensity should be examined such light bums compared to heavy 

bums, light grazing compared to heavy grazing, and different drain spacing. 
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7 THE EFFECTS OF LAND MANAGEMENT ON DOC PRODUCTION 

AND PEAT SOLUTION CHEMISTRY 

7.1 Introduction 

Dissolved Organic Carbon (DOC) comprises a complex mixture of humified plant 

materials that have been dissolved in water (Dillon & Molot 1997). Evans et a1. 

(2005, p55.) define DOC as "any organic compound that can pass through a 0.45 J.1m 

filter". Given the range of particle sizes containing organic matter, the definition is 

somewhat arbitrary. No specific chemical formula exists for DOC as the molecules 

present depend on the degree of organic matter degradation, and hence vary through 

time. In general terms DOC typically includes carbohydrates, amino acids and humic 

substances. Once produced within the pores of the peat, DOC is released from the 

peat solution during periods of rainfall and is transported into rivers and streams 

(Charm an 2002). 

DOC is the dominant form of aqueous carbon released from upland peats. The means 

through which DOC is formed and released are poorly understood (Holden 2005a). 

Work carried out by Hope et a1. (1997) identified strong links (.-2=0.83, p<0.001) 

between the amount of carbon stored in peats and concentrations of DOC leaving the 

peat. This relationship was confirmed by work carried out by Aitkenhead et al. (1999) . 

who also explored relationships between catchment size, peat cover and DOC output. 

They found small catchments (less than 5 km2
) exported the greatest fluxes of DOC. 

DOC gives rivers and streams in upland areas their characteristic brown coloured 

water (Urban et a1. 1989). DOC molecules can react with chlorine to form 

trimethohalogens which are known carcinogens (Pereira et a1. 1982). Water supply 

companies are obliged to ensure DOC is removed from water within the treatment 

works before being supplied to customers (Hsu et a1. 2001, Sharp et a1. 2006). Such 

treatment is costly, therefore water companies are keen to seek methods of reducing 

DOC concentrations within the catchment prior to entering the treatment works 

(Worrall et a1. 2003a). 

Studies of concentrations of DOC over the last 40 to 50 years have shown significant 

increases in concentrations of DOC leaving upland catchments across northern Europe 

(Evans et a1. 2005). Monteith et a1. (2001) examined data from the Acid Waters 
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Monitoring Network (A WMN) for 22 sites in the UK. The sites included 11 lakes and 

11 streams. The data showed that over a 10 year period, concentrations of DOC rose 

at all sites. Further work carried out by Freeman et al. (200Ia) identified a 65 % 

increase in DOC concentrations in watercourses that drained from peatland 

catchments in the UK over a period of 12 years. Evans et al. (2005) reviewed studies 

carried out across Europe and North America which showed increases in DOC 

concentrations of between 10 and 91 %. Much debate has taken place over the causes 

of the rises in DOC concentrations and subsequently fluxes. The key arguments were 

presented in Chapter 2, and are briefly summarised below. Note should be taken that 

some studies have focussed on concentrations within the peat solution, while others 

have focussed on fluxes in peatland catchments, thus making direct comparisons 

difficult. 

7.1.1 Drought and Water Levels 

Changes in water table levels have been linked with increased DOC concentrations in 

peat solution, however, debate exists however as to the extent of such linkages. A 

laboratory mesocosm study was carried out to test the effects of warming and changes 

in water table level on DOC, from which a strong link was established between 

increasing water table levels and decreasing DOC concentrations (p<O.OOI) (Pastor et 

al. 2003). Work by Blodau et al. (2004) found no significant changes in DOC losses 

from peatlands where water table levels were altered. Simulation of drought 

conditions by Freeman et al. (2004a) also failed to demonstrate a rise in DOC 

concentrations. Studies by Worrall et al.(2004a), however, demonstrated that where 

increased drought conditions and hence lower water table levels were recorded, DOC 

concentrations subsequently rose but were subject to a time lag which was attributed 

to the hydrophobic nature of peats. Whilst drawdown of water levels may impact on 

DOC concentrations in peat solution, the required level of drawdown to match the 

increases in DOC concentrations witnessed in recent decades, have not been recorded. 

Thus water table drawdown alone cannot explain the increased concentrations of DOC 

identified in catchments. 

216 



Effects of Land Management on DOC Production and Peat Solution Chemistry 

7.1.2 Enzyme Latch Mechanism 

Freeman et al. (2001 b) suggested that the presence of anaerobic conditions presented 

when water levels were high, has prevented the phenol oxidase enzyme from 

operating. The enzyme latch mechanism as described in Section 2.4.2.2 inhibits the 

degradation of complex carbon molecules under anaerobic conditions, but once water 

tables have been lowered, degradation of the most recalcitrant molecules can begin. 

7.1.3 Temperature 

Freeman et al. (2007) identified recent temperature rises as a cause for increased 

losses of DOC, due to enhanced rates of microbial activity (Freeman et al. 2001a) 

resulting in more rapid breakdown of organic matter and thus losses of carbon into the 

aqueous phase. 

The arguments posed above as possible causes for rises in DOC concentrations have 

been refuted by authors such as Evans et al. (2006a) who noted that the rises in 

temperatures have been insufficient to match the rise in DOC witnessed over the past 

50 years, and certainly not the rise (65 % increase) witnessed in the 12 year study 

carried out by Freeman et al. (2001 a). Whilst changes in temperatures and water 

levels can be linked to rates of DOC losses, they do not explain the whole story. 

7.1.4 Sulphates and Changes in Acidity 

Clark et al. (2005) proposed that droughts caused the onset of sulphur oxidation in 

peats. Aerobic conditions within the peat allow sulphur to be reduced to sulphate, thus 

releasing hydrogen ions into the peat solution. The release of hydrogen ions causes an 

increase in acidity thus inhibiting rates of microbial activity and carbon mineralisation. 

Rates of DOC loss are subsequently reduced. Once water levels recover and pH 

values increase, DOC production increases again, as the less acidic conditions favour 

microbial decomposition of carbon, and the absence of sulphates allows ole to be 

released. A significant correlation was identified between DOC and sulphate losses 

(p<O.OOI), with the mechanism described above accounting for a greater proportion of 

the variance in DOC losses (r2=O.81) than temperature alone could (r2=O.58). 
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7.1.5 Vegetation 

Limpens et a1. (2008) provided preliminary data that suggest that the species of 

vegetation present has an impact on DOC production, with greatest concentrations 

released from Calluna and least from Eriophorum. Changes in land management are 

often associated with changes in vegetation, as noted in Chapter 4. Work carried out 

on tundra and boreal peats identified greater losses of DOC from shrub vegetation 

compared to sedges (Neff & Hooper 2002). 

7.1.6 Land Management 

Whilst complex arguments exist for the increases in DOC losses from upland peats, it 

is clear that land management alone cannot have caused such changes - almost all 

upland areas affected have been subjected to different forms of land management. No 

one land management practice can therefore be held accountable for the rises and it 

would seem that the changes have occurred regardless of land management. The 

influence of land management on the drivers of DOC production and loss in peatland 

has not however been investigated, and doing so, would enable a better understanding 

of the role of land management in DOC production and loss. 

Work on highly organic soils (podzols) in Wales identified higher concentrations of 

DOC in the soil solution of afforested podzols compared to grazed (Hughes et al. 

1990). A comparison of runoff waters from felled and afforested sites across Wales 

found felled sites to have higher concentrations of DOC and to be less acidic than 

afforested sites (Neal et al. 1998). Conversely work by Evans et al. (2005) on causes 

for long term increases in DOC losses from sites belonging to the A WMN did not find 

any significant differences between afforested sites and nearby moorland sites. 

Holden et a1. (2007b) noted that to date there is little evidence to link the impacts of 

burning on water quality. More recent work carried out by Clay et al (2009b) and 

Ward et a1. (2007) has begun to provide some initial data to start to address this gap, 

with an emphasis on peat solution studies. Analysis of peat solution samples collected 

by Ward et a1. (2007) prior to the 2007 bum found burning did not impact upon DOC 

concentrations, however, small increases were noted in grazed sites. In contrast, work 

carried out by Clay et al (2009b) found grazing did not impact upon DOC 

concentrations in soil solution. The difference in these findings is surprising as both 
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studies used Moor House NNR Hard Hill plots as their study site. The study by 

Clay et a!. (2009b) study found no differences between burnt and unmanaged sites in 

the months preceding a bum or a few months post bum. The study did however find 

that DOC concentrations rose in the weeks immediately following the bum before 

falling to similar levels to those found in the unmanaged plots. Yallop and 

Clutterbuck (2009) also identified a much stronger correlation between recent bums 

and DOC concentrations (~=0.62 as opposed to .-2=0.37 for sites that have not newly 

burnt). 

Work carried out by Mitchell and McDonald (1995) identified that increased colour 

(and hence DOC) was associated with catchments featuring a higher drainage density. 

Wallage et a1. (2006) identified higher concentrations of DOC in the pore waters of 

peats in drained catchments compared to undrained catchments, and found that 

blocked catchments (previously drained) had even lower concentrations of DOC than 

undrained catchments. Blocking drains has been found to reduce rates of surface flow 

in catchments, thereby reducing the rate at which DOC is exported from peats into 

watercourses (Gibson et a1. 2009). Predictions for climate change in upland areas of 

the UK suggest that increased rainfall will occur, thus increasing rates of flow in 

streams and rivers. Such increases are predicted to reduce concentrations of DOC in 

watercourses as a result of dilution caused by higher rates of flow under climate 

change (Clark et a1. 2008). Holden et a1. (2007b) noted that catchment characteristics 

can result in decreased DOC concentrations compared to undrained nearby sites, as 

found in studies in Canada, USA and Scotland. 

7.2 Approach 

7.2.1 Aim 

The aim of this chapter is to determine how concentrations of DOC in peat solution 

vary with depth and between managed sites; and to examine changes in the water 

chemistry of managed peatlands, with a focus on the properties that are relevant to 

DOC loss. 
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7.2.2 Hypotheses 

1. Land management affects concentrations of DOC in the peat solution 

.:. As discussed in Section 7.1.6, land management has some effect on DOC 

concentrations at a local scale (Wall age et al. 2006, Ward et al. 2007, Clay et 

al. 20 lOa, Gibson et at. 2009), but comparisons have not yet been made 

between several different treatments and an unmanaged site. 

2. Land management affects concentrations of sulphate in peat solution 

.:. Changes in water table levels are expected to occur between differently 

managed sites (Worrall et al. 2007a, Holden et al. 2007b, Cannell et al. 1999). 

The potential for sulphur reduction to occur between treatments is expected to 

vary as a result, thus affecting sulphate production, which has been found by 

some to influence DOC concentrations. 

3. Land management affects the acidity of peat solution 

.:. Changes in acidity are expected between different land management practices 

owing to changes in water table levels thus creating differences in the 

thicknesses of the acrotelm and catotelm at each site. In addition, the planting 

of trees is known to reduce pH values (Miller et al. 1990), thus the afforested 

site is expected to be the most acidic. Significant effects are not expected at 

the burnt or grazed sites (Clay et al. 2009b). Changes in plant community due 

to management (Ward et al. 2007) however may cause changes to the substrate 

entering the peat, which once decomposed could release different forms of acid 

compounds, thus altering the pH of managed sites. 

4. Water chemistry changes with depth down the peat profile 

.:. Changes in the peat solution chemistry with depth are expected as 

environmental conditions change between the acrotelm and the catotelm 

(Clymo 1984). Concentrations of DOC in the managed sites are expected to 
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decrease with depth as the peat becomes more recalcitrant and rates of 

groundwater flow decrease (Hughes et a1. 1990, Ward et a1. 2007). 

5. Burning frequency effects peat solution chemistry . 

• :. Burning frequency is not expected to have a significant effect on DOC 

concentrations based on previous studies (Clay et a1. 2010b). Sulphate 

concentrations and acidity may be significantly different however owing to 

different substrate inputs and groundwater levels. 

6. Combinations of burning and grazing affect peat solution chemistry . 

• :. Limited changes are expected to occur between sites that are solely burnt, 

solely grazed and those where a combination of burning and grazing take place 

(Clayet a1. 2010b, Ward et a1. 2007). 

7. Land management impacts on the key drivers of DOC production in peats . 

• :. A number of drivers of DOC production in peats were discussed in Section 

7.1.6. Given that land management is expected to have an effect on some, if 

not all of these drivers, the strength of the relationships between DOC and 

these drivers might also change. 

7.3 Methodology 

7.3.1 Fieldwork 

Fieldwork was carried out at the monitoring sites detailed in Chapter 3. Three sets of 

wells were monitored on each of the Hard Hill plots, and at the drained and afforested 

sites. Each set of monitoring wells included a well to monitor groundwater levels, and 

wells to collect peat solution from the following target depths: 10 em, 20 em and 

40 cm. Between March and December 2009, 14 rounds of peat solution sampling 

were carried out on the following dates: 10/03/09; 07/04/09; 21104/09; 10/05/09; 

19/05/09; 02/06/09; 16/06/09; 02/07/09; 15/07/09; 29/07/09; 07/10/09; 23/10/09; 

16/11109 and 07112/09. Samples were collected using a clean 50 ml syringe with 
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Tygon tubing attached to the syringe. The Tygon tubing was lowered into the well 

and the sample collected in the syringe. The syringe was rinsed with deionised water 

between samples. The wells were emptied after each sample was collected. Samples 

were collected in clean, 50 ml polypropylene screw cap containers and labelled with a 

permanent marker pen. Samples were stored in the dark at 4°C until required for 

analysis. Samples were analysed for pH, DOC and sulphate using the methods 

detailed below. Water table levels were measured using a dipmeter as detailed in 

section 6.2.2.2. 

7.3.2 Acidity 

The pH value for each solution sample was measured using a pH probe (Mettler

Toledo). 

7.3.3 Dissolved Organic Carbon 

Samples were filtered into clean plastic vials usmg a 0.45 ~m PTFE filter and 

analysed for DOC by Thermal Oxidation (Thermalox). The analyser was calibrated 

using standards produced by diluting a solution of potassium hydrogen phthalate 

containing 1,000 ppm carbon with deionised water into an appropriate working range. 

A blank and a certified reference sample (VKI QC WW4a) were analysed every 15 

samples. The results were corrected for drift using the certified reference material 

results. 

7.3.4 Sulphate 

Samples were filtered using a 0.45 ~m PTFE filter and 2 ml of each sample was 

placed into clean screw cap vials with a perforated cap. Samples were analysed for 

sulphate concentrations by ion chromatography (lCS-3,000 High Performance Ion 

Chromatography System). Standards were made from a 1,000 ppm stock solution of 

sulphate diluted into an appropriate working range with deionised water. 

7.3.5 Statistical Analysis 

The data sets examined did not have a normal distribution. Attempts to normalise the 

data by log transformations failed to produce a normal distribution. As the 

requirements of the Kruskall-Wallis H test (a non-parametric test which does not 
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require a nonnal distribution) were not fulfilled either, ANOV A was selected to 

identify where significant differences between datasets occurred, as the method is 

considered to be more robust. The relationships between the key drivers of DOC 

cycling were examined using the Pearson Product Moment Test. Values for each site 

presented in the results section are taken from an average of each of the three duplicate 

wells located on the different sites studied. 

7.4 Results 

Where there are gaps in the data, either the monitoring well was empty at the time of 

sampling or access to the site could not be gained (e.g. due to thick snow). On some 

occasions, access across Moss Bum could not be achieved to reach the drained site 

due to the high discharge rates in the surrounding streams. 

7.4.1 Environmental Conditions 

The air temperatures recorded by the Automatic Weather Station (AWS) at Moor 

House at midday on each of the sampling days are presented in Figure 7-1. The 

highest temperatures were achieved in July 2009, whilst the lowest were in March, 

April and December. Groundwater levels for the main treatments are presented on 

Figure 7-2. On average the shallowest levels were found in the grazed site and the 

deepest at the afforested site. Significant differences were identified in the treatments' 

groundwater levels, as summarised in Table 7.1. 
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Table 7.1 Locations Where Significant Differences Were Identified between the Groundwater 
Levels between Treatments 

Forest Drained Unmanaged Grazed Burnt Burnt Burnt 
(every and and 
20 grazed grazed 
years) (every (every 

10 20 
years) years) 

Burnt 
(every 10 ../ ../ ../ ../ 

years) 
Burnt 
(every 20 ../ ../ ../ ../ 

years) 
Burnt and 
grazed ../ ../ ../ 
(every 20 
years) 
Burnt and 
grazed ../ 
(every 10 
years) 
Drained ../ 

Unmanaged ../ 

Grazed ../ ../ 

'" - Significant dlfTerenee between treatments 

7.4.2 Water chemistry results for all site 

Table 7.2 provide a summary of the water chemistry and levels measured at all sites, 

grouping all management practices together. The data were used to identify if 

correlations exist between the measured parameters when all land management 

practices were combined, the results are presented in Table 7.3. The result 

demonstrate that significant, positive relationships existed between pH and DOC, pH 

and ulphate, DOC and temperature, DOC and sulphate, sulphate and water table 

level , sulphate and temperature, and pH and water table levels. Significant, negative 

relationships were identified between water table and pH, sulphate and water table, 

and temperature and water table. 

The pH data were found to be more alkaline that expected for a blanket bog, however 

when compared with data collected by others for Moor House e.g. Worrall et 

al. (2007a) where pH data for the managed plots ranged between 4 and 7. 
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Table 7.2 Summary of Values for Each of the Parameters Measured in the Field when all 
Land Management Practices and Depthfrom which the Data were Collected were Grouped 

Together and for Each Treatment 
Parameter Mean Value Minimum Value Maximum Value 

DOC (mg L' ) 52.25 0.07 24l.85 
Sulphate (mg L- I

) 4.54 0.17 32.74 
pH 5.8 3.1 7.2 
Water table level (cm 

15.2 0.0 50.0 below peat surface) 
Burnt (every 10 years) (n=90) 

DOC(mg L- ') 42.84 9.80 14l.08 
Sulphate (mg L- I

) 4.03 0.26 22.89 
pH 5.59 4.19 6.52 
Water table level (cm 

-12.4 0.00 -50.00 below peat surface) 
Burnt (every 20 years) (n=65) 

DOC (mg L- I
) 44.21 16.71 85.40 

Sulphate (mg L- I
) 3.36 0.27 11.51 

pH 5.70 4.09 6.88 
Water table level (cm 

-8.14 0.00 -19.00 below peat surface) 
Grazed (n=4 5) 

DOC (mg L-) 50.67 15.38 112.97 
Sulphate (mg L- I

) 4.61 0.45 10.27 
pH 6.21 5.08 7.05 
Water table level (cm 

-10.53 -0.00 -32.00 below peat surface) 
Burnt and Grazed (every 10 years) (n-45) 

DOC (mg L- I
) 59.76 0.83 132.33 

Sulphate (mg L- I
) 4.83 0.83 11.12 

pH 6.28 5.50 7.20 
Water table level (cm 

-17.02 -0.00 -42.00 below peat surface) 
Burnt and Grazed (every 20 years) (n=54) 

DOC(mg L- I
) 57.54 22.48 138.74 

Sulphate (mg L- I
) 5.39 0.17 15.38 

pH 5.9 4.6 7.1 
Water table level (cm 

-8.02 0.00 -18.00 
below peat surface) 

Drained (n=70 
DOC (mg L- I

) 53.88 0.94 126.90 
Sulphate (mg L- I

) 4.77 0.35 32.74 
pH 5.92 3.90 7.12 
Water table level (cm 

-19.62 0.00 -33.00 
below peat surface) 

Afforested (n=61) 
DOC (mg L- I

) 72.23 22.67 24l.85 
Sulphate (mg L- I

) 5.97 0.23 24.76 
pH 5.06 3.08 6.66 
Water table level (cm 

-27.50 -5.00 -50.00 
below peat surface) 

Unmanaged (n-62) 
DOC (mgL· I

) 42.78 14.61 105.43 
Sulphate (mg L- I

) 3.9 0.28 14.43 

pH 5.9 4.7 7.0 

Water table level (em -18.68 -6.00 -36.00 
below peat surface) 
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Table 7.3 Correlation Coefficients with Significance Values for all Sites Regardless of 
T, D h reatment or ept 

pH DOC Sulphate 
0.187 

DOC p<O.OOI 

0.097 0.454 
Sulphate p=0.046 p<O.OOl 

0.168 
-0.084 -0.165 

Water table p<O.OOI p=0.065 p=O.OOl 

-0.05 
0.153 0.171 

Temperature 
p=0.26 

p=O.OOI p<O.OOI 

- ;y, 
P - sIgnificance of each cOlTelallon, value underneath the p va lue IS the correlatJon coefficIent (R ). 

7.4.3 Water Chemistry Variations at the Burnt (every 10 years) Site 

Concentrations of DOC (Figure 7-3) did not differ significantly (Table 7.4) between 

the acrotelm (0-10 cm) and catotelm (20-40 cm) (p=0.851) and were found to increase 

during periods when temperatures were higher, although a significant relationship 

between temperature and DOC was not identified. Positive relationships were 

identified between DOC and both sulphate and pH (Table 7.5) indicating less acidic 

conditions, with greater concentrations of sulphate promoted greater losses of DOC. 

No significant changes in sulphate concentrations were identified with depth, despite a 

reduction in mean concentrations (Figure 7 -4), however the peat solution was found to 

be significantly less acidic with depth (Figure 7-5). Although DOC concentrations 

were not significantly different to the unmanaged site, concentrations were 

significantly lower in samples collected from the burnt (every I 0 years) site compared 

to all other treatments. 
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Table 7.4 Significance Values Indicating where Significant Differences in Values Occur 
between Treatments and the Burnt (every 10 years) Site 

B20 G BGIO BG20 D F 
DOC all depths 0.039 0.013 <0.001 <0.00] <0.00] <0.001 
DOC (10 em) 0.049 0.024 <0.001 
DOC (20 em) 0.011 <0.001 <0.001 <0.001 <0.001 <0.001 
DOC (40 em) 0.018 0.001 <0.001 
S04 (all depths) 0.031 0.005 0.021 

S04 10 em 
S04 20 em 0.011 <0.001 

S0440 em 0.014 
pH (all depths) <0.001 <0.001 0.003 <0.001 <0.001 

pH 10 em 0.002 <0.001 0.004 <0.001 0.006 
pH 20 em <0.001 <0.001 <0.001 <0.001 

pH 40 em <0.001 <0.001 

Water table levels 0.0148 <0.001 <0.001 

U 

0.012 

<0.001 
0.002 

0.003 
<0.001 

Blank - no signi ficant di fference. b20 - burnt every 20 years, g - grazed, bg I 0 - bUl11t and grazed evClY 10 years, bg20 - bUl11t 
and grazed cVCJY 20 years, d- drained, f - afforested, U - unmanaged. 
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Table 7.5 Significant Correlations between the Different Drivers o/the Carbon Cycle/or the 
B (i 10 ) S' urnt every 'years lte 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 v 
(em) DOC S04 S04 Temp WT Temp WT 

10 
0.563 0.566 0.567 

p=0.002 p=0.006 p=0.007 
0.398 

0.621 
20 p=0.032 

p=0.003 

40 
0.515 0.77 0.453 0.397 

p=0.003 p<O.OOI p=0.008 p=0.025 

All 
0.411 0.65 0.268 

p<O.OOI p<O.OOI p=0.011 
P = slgmficance value, WT = water table. blank cell = no sIgnIficant correlatIOn 

7.4.4 Water Chemistry Variations at the Burnt (every 20 years) Site 

Concentrations of DOC were found to increase with depth through the peat profile 

(Figure 7-6), however significant differences in concentrations were only identified 

between 20 and 40 cm beneath the surface (p=0.002). No significant relationships 

between temperature, or water chemistry with DOC were identified, as illustrated in 

(Table 7.7). Similarly, concentrations of sulphate increased with depth (Figure 7-7), 

although the differences between each depth were not statistically significant. At 

20 cm beneath the surface of the peat, the peat solution was found to be more alkaline 

than at 10 em and 40 em (Figure 7-8). Mean DOC concentrations were found to be 

significantly lower than all other treatments with the exception of the grazed and 

unmanaged sites, where concentrations were not significantly different (Table 7.6). 

Mean sulphate concentrations were found to be significantly lower than the afforested 

and the burnt and grazed (every 20 years) sites. Mean peat solution was found to 

significantly less acidic than the afforested site (p<0.001) and more acidic than the 

grazed (p<O.OOl), burnt and grazed (every 10 years) (p<0.001) and drained (p=0.05) 

sites. Less acidic conditions were found to coincide with increased DOC and sulphate 

concentrations. 
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Figure 7-8 Variations in the pH o.fPeaf Solution Samples Collected from the Burnt (every 20 
years) Site/rom Three Depths 

Table 7. 6 Significance Values indicating Where Significant Difference in Values Occur 
b J'; t d J B {4 20 J S' etween reatmen s an tle urnt every years lIe 

BIO G BGIO BG20 D F U 
DOC all depths 0.039 <0.001 0.Q18 0.005 <0.001 
DOC (10 em) 0.007 <0.001 
DOC (20 em) 0.011 0.01 <0.006 <0.001 
DOC (40 em) 0.003 <0.001 0.006 
SO (all depths) 0.016 0.007 
S04 10 em 0.008 0.023 
S04 20 em 0.007 0.022 
S04 40 em 
pH (all depths) <0.001 <0.001 0.05 <0.001 
pH 10 em 0.011 <0.001 0.022 0.001 0.006 
pH 20 em 0.022 <0.001 0.050 
pH 40 em 0.011 0.014 0.008 
Water table Jevel <0.001 <0.001 <0.001 <0.00 1 
Blank - no SIgnIficant difference. blO - burnt every 10 years, g - grazed, bgJ 0 - burnt and grazed every 10 years, bg20 - burnt 
and grazed every 20 years, d- drained, f - afforested, u - unmanaged 
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Table 7.7 Significant Correlations between the Different Drivers of the Carbon Cycle for the 
Burnt (every 20 years Site 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 v 
(cml DOC S04 S04 Temp WT Temp WT 
10 0.571 

p=0.002 
20 0.465 0.624 

p=0.06 p=0.01 
40 0.639 0.555 

p=0.002 p=0.011 
All 0.429 0.343 0.528 -0.302 

p<O.OOl p=0.009 p<O.OOl p=0.015 
P = slgmficance value, WT - water table, blank cell = no slgmficant correlatIOn 

7.4.5 Water Chemistry Variations at the Grazed Site 

Concentrations of DOC (Figure 7-9) at the grazed site were found to be significantly 

higher in the 20 cm zone than the 10 and 40 cm zones as illustrated in Table 7.8. No 

significant differences in sulphate concentrations were identified with depth (Figure 

7-10), however the 20 cm zone was found to be significantly less acidic than other 

layers (Figure 7-11). Increased DOC concentrations were found to coincide with 

increased pH values, sulphate concentrations and air temperatures in the 10 em zone, 

however these relationships were not identified as being significant deeper in the 

profile (Table 7.9), with the exception of increased sulphate concentrations being 

identified within the 20 cm zone. 
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Figure 7-11 Variations in the pH a/Peat Solution Samples Collected/rom the Grazed Site 
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Table 7.8 Significance Values Indicating where Significant Differences in Values Occur 
between Treatments and the Grazed Site 

BIO B20 BGIO BG20 D F U 
DOC all depths 0.013 0.027 <0.001 
DOC (10 em) 0.015 0.001 
DOC (20 em) <0.001 0.01 
DOC (40 em) 0.048 0.015 <0.001 
S04 (all depths) 0.031 
S04 10 em 
S04 20 em 0.003 
S04 40 em 0.014 0.007 0.043 0.057 
pH (all deptlls) <0.001 <0.001 0.002 0.007 <0.001 0.05 
pH 10 em 0.002 0.011 0.007 <0.001 
pH 20 em <0.001 0.022 <0.001 <0.001 0.002 
pH 40 em <0.001 0.011 0.001 <0 .001 
Water table level 0.005 <0.001 <0.001 <0.001 
Blank - no slgmfiC3n! difference. blO - bum! every 10 years, b20 - bUill! every 20 years, bglO - bum! and grazed every 10 
years, bg20 - bum! and grazed every 20 years, d- drained, f - afforested, U - unmanaged . 
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Table 7.9 Significant Correlations between the Different Drivers of the Carbon 
Cycle for the Grazed Site 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 v 
(em) DOC S04 S04 Temp WT Temp WT 

0.493 0.692 0.493 
10 p=0.066 p=0.006 p=0.044 

0.889 
20 p=0.001 

0.573 
40 p=0.02 

0.417 0.445 0.350 -0.348 
All p=0.006 p=0.004 p=0.029 p=0.024 

P = slgmficance value, WT = water table, blank cell - no sIgnIficant correlatIon 

7.4.6 Water Chemistry Variations at the Burnt and Grazed (every 10 years) Site 

Significantly lower concentrations of DOC were identified in the 40 cm zone 

compared to the 10 cm and 20 cm zones (Figure 7-12). The highest concentrations of 

DOC were identified in the 20 cm zone (mean 77.43 mg L-l) where conditions were 

least acidic (mean 6.6). No significant relationship was identified between pH and 

DOC at this depth however (r2=0.-0.183, p=0.694). Concentrations of sulphate were 

also greatest in the 20 em zone (Figure 7-13), however no significant relationship was 

found to exist between sulphate and DOC (r2=0.200, p=0.606). A positive correlation 

was identified between DOC and sulphate, and pH and temperature in the 40 cm zone 

(Table 7.11). 

Concentrations of DOC were found to be significantly higher than the burnt (every 10 

and 20 years) sites, grazed, and unmanaged sites, but were significantly lower than 

those recorded for the afforested site (Table 7.11). Concentrations of sulphate were 

found to be lower than the burnt (every 10 years) site, otherwise no significant 

differences in concentrations were identified when compared to other treatments. The 

peat solution was found to be significantly less acidic than all other treatments except 

for the burnt and grazed (every 20 years) and grazed sites, which did not have 

significantly different pH values. 
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Figure 7-14 Variation in the pH of Peat Solution Samples Collectedfrom the Grazed and 
Burnt (every 10 years) Site from Three Depths 

Table 7.10 Significance Values Indicating where Significant Difference in Value Occur 
between Treatments and the Grazed and Burnt (every 10 years) Site 

BIO B20 G BG20 D F U 
DOC all depths <0.001 <0.001 0.027 0.033 <0.00 1 
DOC (10 ern) 0.049 0.007 0.0]5 0.031 0.01 I 
DOC (20 em) <0.001 0.006 0.052 0.004 
DOC (40 em) 0.Q]8 0.003 0.048 0.039 <0.001 0.007 
S04 (all depths) 0.005 
S04 10 em 0.008 0.023 
S04 20 em 0.011 0.003 0.001 <0.00 1 
S04 40 em 
pH (all depths) <0.00 1 <0.001 <0.001 <0.001 0.007 
pHlOem <0.00 1 <0.001 0.007 0.003 <0.001 
pH 20 em <0.001 0.003 <0.001 0.003 
pH 40 em <0.001 0.014 0.001 0.004 <0.001 
Water table level 0.014 <0.001 0.005 <0.001 0.014 <0.001 
Blank - no Ignlficant dlfTerence. b I 0 - burnt every 10 years, b20 - burnt every 20 years. g - grazed. bg20 - burnt and grazed 
every 20 years, d- drained. f - afforested. u - unmanaged 
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Table 7.11 Significant Correlations between the Different Drivers of the Carbon Cycle for the 
Burnt and Grazed (every 10 years) Site 

Depth pHv pHv DOC v DOC v DOC v S04 V S04 V 

(em) DOC S04 S04 Temp WT Temp WT 
10 
20 
40 0.349 0.445 0.483 0.386 

p=0.064 p=0.029 p=0.008 p=0.057 
All 0.418 0.322 0.364 

p=0.002 p=0.033 p=0.016 
P= slgmficance value, WT = water table, blank cell = no slgmficant correlatIOn 

7.4.7 Water Chemistry Variations at the Burnt and Grazed (every 20 years) Site 

Concentrations of DOC were significantly higher in the 20 cm zone than the 10 and 

40 cm zones, as illustrated in Table 7.12 and were significantly higher than 

concentrations for all other treatments with the exception of the grazed site. 

Concentrations of sulphate were also found to be significantly (p<0.00 1) higher in the 

20 cm zone (mean 11.09 mg L-1
) compared to the 10 and 40 cm zones (3.68 and 4.61 

mg L- I respectively). The peat solution in the 20 em zone was significantly more 

acidic than the 10 and 40 cm zones (p=0.01). A strong positive correlation was 

identified between DOC and pH, sulphate and temperature in the 20 cm zone. 

Sulphate and pH were also found to have a significant correlation with DOC in the 

10 cm zone, however such relationships were not found in the 40 em zone (Table 

7.13). Trends in DOC, sulphate and pH are presented on Figures 7.15 to 7.17. 
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Figure 7-17 Variation in the pH ofpeat solution samples collectedfrom the grazed and burnt 
(evelY 20 years) sitefrom three depth 

Table 7.12 Significance Value Indica ling where Significant Differences in Value Occur 
betlveen Treatments and the Grazed and Burnt (evelY 20 years) Site 

BIO B20 G BGIO D F U 
DOC all depths <0.001 0.0]8 <0.001 <0.001 
DOC (10 em) 0.024 0.013 
DOC (20 em) <0.001 <0.001 0.052 0.001 0.001 <0.001 
DOC (40 em) 0.039 0.008 <0.001 
S04 (all depths) 
S04 ]0 em 
S04 20 em 
S04 40 em 
pH (all depths) 0.003 0.002 <0.001 <0.001 
pH 10 em 0.004 0.022 0.003 <0.00] 
pH 20 em <0.00] 0.022 0.039 <0.001 0.035 
pH 40 em 0.001 0.001 0.013 0.05 
Water table level <0.001 <0.001 <0.001 <0.001 
Blank - no slglllficant dlfTerence. blO - burnt every 10 years, b20 - burnt every 20 years, g - grazed. bglO - burnt and grazed 
evclY 10 years, d- drained, f- afTorested. u - unmanaged. 
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Table 7.13 Significant Correlations between the Different Drivers of the Carbon Cycle for the 
B d G d (. 20 ) S' urnt an raze every years lfe 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 v 
(em) DOC S04 S04 Temp WT Temp WT 

0.425 0.836 
10 p=0.055 p<O.OOI 

0.758 0.75 0.756 0.789 
20 p=0.018 p=0.032 p=0.011 p=0.02 

0.473 0.536 0.478 
40 p=0.023 p=0.018 p=0.039 

0.582 0.527 0.771 -0.336 0.359 
All p<O.OOI p<O.OOI p<O.OOl p=O.013 p=0.016 

P = slgmficance value. WT = water table. blank cell - no sIgnIficant correlatIon 

7.4.8 Water Chemistry Variations at the Drained Site 

Concentrations of DOC (Figure 7-18) were significantly higher in the 20 cm zone than 

the 10 cm zone (p=0.04). The peat solution became increasingly acidic with depth, 

differences between the 10 and 40 cm zones and 20 and 40 cm zones were identified 

as significant (p=0.006 and p=0.012 respectively). Concentrations of sulphate (Figure 

7-19) were highest in the 20 cm zone (mean 4.93 mg L-l), however the differences 

were not significant (p=0.558). The 20 cm zone was also the least acidic (Figure 

7-20). Concentrations of DOC were significantly higher than the burnt (every 10 and 

20 years) and unmanaged sites, and significantly lower than the afforested site. 

Concentrations of sulphate were not significantly different to other treatments. The 

burnt sites (every 10 and 20 years) sites had a significantly more acidic peat solution 

than the drained site. The grazed, burnt and grazed (every 10 years) and afforested 

sites had a significantly less acidic peat solution than the drained site (Table 7.14). 

For all three depths examined, no relationship was identified between pH and DOC, 

however increased sulphate concentrations were associated with increased DOC 

concentrations, although the strength of the correlation decreased with depth as 

demonstrated in Table 7.15 
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Table 7.14 Significance Values Indicating where Significant Differences in Values Occur 
between Treatments and the Drained Site 

BIO B20 G BGIO BG20 F U 
DOC all depths <0.001 0.005 <0.001 <0.001 
DOC (10 em) 0.031 <0.001 
DOC (20 em) <0.001 0.001 0.018 
DOC (40 em) 0.004 <0.001 0.015 0.008 0.002 0.003 
S04 (all depths) 
S04 10 em 0.023 
S04 20 em 0.022 0.003 
S04 40 em 0.043 
pH (all depths) <0.001 0.05 0.007 <0.001 <0.001 
pH 10 em <0.001 0.001 <0.001 
pH 20 em <0.001 0.003 0.039 <0.001 
pH 40 em 0.001 0.004 0.004 
Water table level <0.001 <0.001 <0.001 0.014 <0.001 0.041 
Blank - no sIgnIficant dllTercncc. blO - burnt every 10 years, b20 - burnt every 20 years, g - grazed. bg lO - burnt and grazed 
every 10 years, bg20 - burnt and grazed every 20 years, d- drained, f - alTorcsted. u - unmanaged 
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Table 7.15 Significant Correlations between the Different Drivers of the 
Carbon Cycle for the Drained Site 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 v 
(cml DOC S04 S04 Temp WT Temp WT 

10 0.804 
p<O.OOI 

20 0.602 
p=0.008 

40 0.566 0.398 
p=0.004 p=0.033 

All 
0.524 

p<O.OOI 
P = slgmficance value, WT - water table, blank cell = no significant correlation 

7.4.9 Water Chemistry Variations at the Afforested Site 

Concentrations of DOC were significantly higher in the afforested site than any of the 

other treatments (p<0.001) when comparing the data set as a whole and in the 40 em 

zone (although differences were not identified in the 10 and 20 em zones) as shown in 

Table 7.16. Only the burnt and grazed site (every 10 years) site was not significantly 

different to the afforested site in the 10 em zone. Mean elevated values of DOC 

identified in spring 2009 were identified in the 40 em zone of monitoring location 22 

compatred to other locations within the afforested site. No clear cause for the values 

were found such as unusual values for water table depth, sulphate concentration, or pH 

were found based on comparisons with other data collected for the afforested site. The 

afforested site was the most acidic, and significant differences in acidity were 

identified between all treatments for all the layers examined with the exception of the 

burnt (every 10 years) site within the 40 em zone and the burnt (every 20 years) site in 

the 10 cm zone. Concentrations of sulphate increased with depth through the peat 

solution, but were not found to be significantly different to any other treatment with 

the exception of the burnt and grazed (every 20 years) site for the 20 em zone. 

Correlation data presented in Table 7.17 indicate that a negative correlation exists 

between DOC and sulphate within the 10 em zone, however, no other correlations 

were identified within this zone. Within the 20 em zone, a negative correlation was 

identified between pH and sulphate. A summary of trends in DOC, sulphate and pH 

data for all three depths is presented in Figure 7-21, Figure 7-22 and Figure 7-23 

respectively. 
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Table 7.16 Significance Values Indicating where Significant Differences in Values Occur 
between Treatments and the Afforested Site 

BIO B20 G BGIO BG20 D U 
DOC alJ depths <0.001 <0.001 <0.001 0.033 <0.001 <0.001 <0.001 
DOC (10 em) <0.001 <0.001 0.001 0.013 <0.001 <0.001 
DOC (20 em) <0.001 0.001 0.007 
DOC (40 em) <0.001 0.006 <0.001 <0.001 <0.001 0.002 <0.001 
S04 (all depths) 0.012 0.007 0.028 
S04 10 em 
S0420 em 0.001 
S04 40 em 
pH (all depths) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
pH 10 em 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 

pH 20 em <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

pH 40 em 0.008 <0.001 0.013 <0.001 <0.001 0.004 
Water table level <0.001 <0.001 <0.001 <0.001 <0.001 0.041 0.013 
Blank - no slg11lficanl difference. b 10 - burnt every 10 years. b20 - burnt every 20 years. g - grazed, bg I 0 - bumt and grazed 
every 10 years. bg20 - burnt and grazed every 20 years, d· drained, 1I - unmanaged 
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Table 7.17 Significant Correlations between the Different Drivers of the Carbon 
Cycle for the Afforested Site 

Depth pH v pH v DOC v DOC v DOC V S04 V S04 V 

DOC S04 S04 Temp WT Temp WT 

10 
-0.581 

p=0.047 

20 
-0.49 

p=0.018 

40 
0.547 

p=0.023 

All -0.410 
p=0.003 

P = slgmficance value, WT = water table, blank cell = no slgmficant correlatton 

7.4.10 Water Chemistry Variations at the Unmanaged Site 

No significant differences in pH, sulphate or DOC concentrations were identified with 

depth through the profile of the unmanaged site. DOC concentrations were 

significantly lower in the drained, afforested and both of the burnt and grazed sites 

(Table 7.18). Significant differences in sulphate concentrations were not identified 

between treatments for the separate layers with the exception of the burnt and grazed 

(every 10 years) which featured significantly higher concentrations of sulphate in the 

20 cm zone. Increased DOC concentrations were found to coincide with higher air 

temperatures and sulphate concentrations within the 10 cm zone. A positive 

correlation was found between increased DOC concentrations and sulphate and higher 

pH values (Table 7.19). A summary of trends in DOC, sulphate and pH data for all 

three depths is presented in Figure 7-24, Figure 7-25 and Figure 7-26 respectively. 
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Table 7.18 Significance Vallies Indicating where Significant Differences in Values Occur 
between Treatments and the Unmanaged Site 

BI0 B20 G BGI0 BG20 D F 
DOC all depths <0.001 <00.001 <0.001 <0.001 
DOC (10 em) 0.011 <0.001 
DOC (20 em) 0.003 0.004 <0.001 0.018 0.007 
DOC (40 em) 0.007 0.003 <0.001 
S04 (all depths) 0.041 0.028 
S04 10 em 
S04 20 em <0.001 
S04 40 em 
pH (all depths) <0.001 0.05 0.007 <0.001 
pH 10 em 0.002 0.006 <0.001 
pH 20 em 0.005 0.002 0.003 0.035 <0.001 
pH 40 em 0.003 0.05 <0.001 
Water table level <0.001 <0.001 <0.001 <0.001 0.013 
Blank - no sIgnIficant dIfference. blO - burnt every 10 years, b20 - burnt every 20 years, g - grazed, bglO - burnt and grazed 
every 10 years, bg20 - burnt and grazed every 20 years, d- drained, r -afTorested, u - unmanaged 
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Table 7.19 Significant Correlations between the Different Drivers of the Carbon 
Cycle for the Unmanaged Site 

Depth pH v pH v DOC v DOC v DOC V 804 V 804 v 
(em) DOC 804 804 Temp WT Temp WT 

0.659 0.596 0.738 
10 p=O.OO p=O.OO p<O.OO 

4 7 1 
0.483 0.777 0.547 -0.427 

20 p=0.02 p<O.OO p=O.OI p=0.07 
7 1 9 7 

0.545 
40 p=O.OI 

1 
0.447 0.502 

All p=O.OO p=O.OO 
3 1 

.. 
P= slgmficance value, WT = water table, blank cell = no slgmficant correlatIon 

7.4.11 Influence of Soil Solution Sampling Depth on Soil Solution Chemistry 

Soil solution samples were collected from depths of 10, 20 and 40 cm beneath the 

surface of the peat. No significant differences were identified between the different 

depths in the unmanaged site (p=0.690), the afforested site (p=0.213) and burnt (every 

10 years) (p=0.851) sites for DOC. Significant differences were not identified with 

depth for pH values in either the afforested site (p=0.255) or the unmanaged site 

(p=0.429) sites where some of the deepest water levels were found. Table 7.20 

summarises where significant differences were identified between depths sampled for 

each treatment. 

Analysis of water chemistry with depth for differently managed peats has not 

previously been carried out. The data allow an examination of trends within three 

depths within the peat - the acrotelm (10 em), the mixing zone between the acrotelm 

and the catotelm (20 em) and the catotelm (40 cm). Few differences were identified 

between 10 and 20 em or 10 and 40 em beneath the peat, but between 20 and 40 em 

significant decreases in pH values were identified for six of the eight treatments. In all 

cases, average pH values rose between 10 and 20 em beneath the surface, as did DOC 

concentrations. Concentrations of DOC and pH values then fell below those values 

found at 10 cm and those in the 40 em layer. Significant differences were not found in 

sulphate concentrations between the three depths examined (p=O.217). The results 

imply that rates of biogeochemical cycling are greatest in the 20 em zone, which is 
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area of the profile where fluctuations in the water table were also the greatest (Sundh 

et al. 1997). 

Table 7.20 Significance Valuesfor Changes in Water Chemistry between 
t e ept s nalvse h D h A I d 

Depths Element Burnt Grazed Burnt Drained Burnt Burnt 
Beneath and and (20) (10) 

Peat (em) Grazed Grazed 
(20) (10) 

DOC p<O.OOI p=0.005 N/S p=0.040 N/S N/S 

Sulphate N/S N/S N/S N/S N/S N/S 
10 and 20 

pH p=0.008 p<O.OOI N/S N/S p=<O.OOI p=0.003 

DOC N/S N/S p=0.036 N/S N/S N/S 

Sulphate N/S N/S N/S N/S N/S N/S 
10 and 40 

pH N/S N/S p=0.026 p=0.006 p=0.045 N/S 

DOC p<O.OOl p<O.OOl p=O.OOl N/S P=0.002 N/S 

20 and 40 Sulphate N/S N/S N/S N/S N/S N/S 

pH p<O.OOl p=0.004 p=0.003 p=0.012 p=0.023 p=0.023 

.. 
N/S - not statistIcally slgmficant 

7.5 Discussion 

7.5.1 The Effect of Land Management on DOC Production 

Peatland management was expected to have a significant effect on concentrations of 

DOC in peat solution owing to changes in pore water chemistry and the peatland 

environment brought about by land management. Significant differences in DOC 

concentrations in peatlands were found to occur due to land management. 

Concentrations were measured in the peat solution to ensure that factors such as 

dilution and residence time within the catchment did not affect comparisons between 

the different treatments. Few studies have considered the actual concentrations of 

DOC in the peat solution, (with the notable exceptions of Wall age et al (2006), 

Wall age and Holden (2010), Ward et aI. (2007), Worrall et aI. (2007a) and Clay et aI. 

(2010b»; most studies have looked at differences between concentrations in 
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catchment streams. For the purposes of comparing the findings of this study and 

others, both peat solution and catchment studies will be referred to. Note should be 

taken that differences observed in catchments where fluxes were measured are not 

directly comparable to peat solution studies, but provide some indication of the effects 

of management. A discussion of the influence of land management on DOC 

concentrations in peat will follow the effects of land management on the drivers of 

DOC concentrations in peats and causes for differences in concentrations between 

treatments, will be discussed in section 7.5.2. 

The results suggest that the peats at the drained and afforested sites had significant 

increases in DOC concentration compared to the unmanaged site. No significant 

differences in DOC concentration were found between the unmanaged site and the 

burnt site or the grazed site. Sites where combined burnt and grazed took place were 

found to be significantly different from the unmanaged site, and are discussed in 

section 7.5.5. 

The findings for the grazed site supported those of Worrall et a1. (2007a) who did not 

find any significant differences between grazed and ungrazed plots at Moor House 

during a study of monitoring wells placed at depths up to 90 cm beneath the peat. The 

grazed site was found to have significantly higher DOC concentrations than the burnt 

(every 10 years) site, in line with the findings of Clay et a1. (2010a). Published 

comparisons of DOC concentrations for blanket peat with treatments other than 

burning or no management were not available. 

Significant differences in pore water concentrations of DOC were not identified 

between the burnt and unmanaged site, in line with the findings of Ward et a1. (2007) 

who completed prior to the 2007 bum. Work carried out by Clay et a1. (2009b) 

demonstrated that burning only made a significant contribution to DOC concentrations 

in the period immediately following the bum, and that after one year, no significant 

differences can be found between burnt and unbumt sites. Yallop and Clutterbuck 

(2009) however, argued that burning was responsible for the increases in DOC 

concentrations observed in recent years in peatland catchments. Their study identified 

higher concentrations of DOC in streams where peats have been burnt recently. The 

authors argued that the removal of vegetation and drying of the peat results in greater 

microbial activity and hence increased DOC concentrations. Yallop and Clutterbuck 
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(2009) identified newly burnt peats as those having been burnt in the past four years. 

Whilst this has not been the case at Moor House as evidenced by this study and that of 

Ward et al (2007) and Clay et al. (2009b), little detailed data on burning has been 

published for other sites. This needs to be addressed in order to verify whether the 

findings for pore water samples at Moor House are a unique case. It is plausible that 

differences in the intensity of burning could be responsible for the disparity in the 

results. The catchments studied by Yallop et al. (2009) could have been burnt more 

intensively than the plots at Moor House which were only lightly burnt. This notion is 

supported by laboratory trials carried out by McDonald et al (1991) who identified 

higher concentrations of colour loss from peats that were burnt at higher temperatures. 

The results showed that significantly higher concentrations of DOC existed in the pore 

waters of afforested peats compared to all other treatments. Larger concentrations of 

DOC in afforested peat were also observed by Grieve (1994) with concentrations 

ranging between 9.2 and 10.8 mg L-1 in streams flowing through afforested 

catchments compared to the unmanaged sites where concentrations averaged 

7.6 mg L-1
• The concentrations are far lower than those measured at Moor House, but 

they were from stream waters rather than the peat pore solution. The results however 

support the notion that afforestation increases DOC concentrations in peat solution. 

The results of a study of Scottish lakes and streams by Harriman et al (2003) also 

identified higher concentrations of DOC in afforested sites than moorland sites, 

however the results were attributed to the moorlands being located at higher altitude 

with less peat than the afforested site. In a previous study (Harriman et al. 2001), 

afforested sites were found to have lower DOC concentrations than moorland sites. 

The present study at Moor House involved collection of samples from similar 

elevation and sites within 3.5 Ian of one another, thus minimising confounding factors 

such as differences in climate, geology and altitude, therefore providing a fair basis for 

comparison between sites 

The drained site was found to have significantly greater concentrations of DOC than 

the burnt and unmanaged sites, yet concentrations were significantly lower in the pore 

waters of the drained site compared to the afforested site. Wall age et aI. (2006) also 

identified higher concentrations of DOC in drained peat pore waters (median 

42.9 mg C L-1
) compared to intact peats (median 27.6 mg C L-1

). The differences 
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between the sites at Moor House were much smaller - with an average concentration 

of 44.01 mg L- I for the unmanaged site compared to 47.58 mg L- I at the drained site, 

for shallow samples. For samples collected at 40 cm, values were 39.71 mg L- I 

compared to 52.17 mg L- I for the drained site. Wall age et al. (2006) also found 

concentrations to increase with depth, however the range of values only increased 

slightly between drained and undrained sites whereas at Moor House the range of 

values decreased with depth. 

Gibson et al. (2009) also compared drained, blocked and pristine peats in northern 

England. The data were collected from streams by automatic samples, therefore 

would also have been diluted, thus giving a less clear picture of the actual effects of 

management on concentrations of DOC in the peat solution. High concentrations of 

DOC were identified in waters standing in the blocked drains, and a strong correlation 

was found between DOC concentration and both catchment size and discharge rates. 

The study concluded that drain blocking reduced rates of DOC release into catchments 

but has no influence on DOC production. Concentrations of DOC were compared 

between sites but comparisons of concentrations between drained and undrained peats 

were not possible as whole catchments were studied rather than pore water 

concentrations. 

A short-term study at Whitendale, Forest of Bowland by Worrall et al. (2007b) did not 

identify significant differences in the DOC concentrations between blocked and 

unblocked drain systems. Concentrations in the drain waters ranged between <10 to 

70 mg C L- I for the blocked site and <10 to 55 mg C L- I for the unblocked site. 

Rowson et al. (2010) studied the carbon budget for two recently dammed, drained 

catchments in Hexhamshire and reported average concentrations for DOC to be 

between 29.4 and 85.8 mg L- I in stream samples. The concentrations extend beyond 

the mean range identified at Moor House, despite the measurements being taken 

within the stream, and the drains being blocked immediately prior to the 

commencement of the sampling regime. 

7.5.2 Drivers of DOC in Peat Solution 

In order to understand the causes for significant differences to have occurred between 

the treatments, statistical analysis was carried out to examine the strength of the 
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relationships between the individual parameters studied, to detennine which properties 

had most influence on DOC concentrations. Concentrations of DOC were expected to 

rise with increased temperatures, decreased water table levels, increased pH values 

and decreased concentrations of sulphate, as outlined in Section 7.1. With the 

exception of temperature, these parameters were expected to vary with land 

management, as discussed in Chapter 2. 

7.5.2.1 Temperature 

Statistical analysis of all samples regardless of depth and land management practice 

identified a significant, positive relationship between DOC and temperature. This 

relationship indicates that as the temperature increases, microbial activity increases, 

however, it was not strong (~=0.153, p<O.OOI), indicating that other factors are likely 

to playa part in controlling DOC production. 

Ward et al (2007) found DOC concentrations to be significantly greater in the grazed 

plot compared to the unmanaged site. Significant correlations were identified by 

Ward et al (2007) between temperature, water level and DOC concentrations, and the 

authors noted that seasonal differences were evident. Seasonal trends were not 

identified during this study (p=0.188) at Moor House, despite average summer DOC 

concentrations for each treatment being higher than average winter values for all sites 

except the afforested site. The assessment of seasonal differences was based on seven 

monitoring rounds carried out during the winter months and seven during the summer 

months. More frequent monitoring might have identified a significant seasonal effect 

i.e. if the data set had included data during the months when access to the site was not 

possible (mid-December to late February). 

7.5.2.2 Water Table 

Previous research has shown that a positive relationship exists between water table 

and DOC (Wall age et a1. 2006), however, this was not found to be the case across the 

sites at Moor House. Previous work has tended to focus on drained sites, where the 

water table has been artificially lowered. The success of drainage schemes has been 

found to depend on the spacing of the drains, precipitation at the site (Stewart & Lance 

1991) and the orientation of the drain relative to the hillslope. The absence of a 

significant relationship between water table and DOC production indicates that it 
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might only be artificial lowering of the water table that increases DOC production. No 

correlation, however, was identified between water table depth and DOC in the 

drained or the afforested sites at Moor House. Work carried out by Clark et al. (2009), 

however, did find a significant relationship between water table level and DOC. Their 

experiment was carried out on mesocosms under controlled laboratory conditions. 

The results showed a highly significant correlation between DOC and water table 

drawdown (p<O.OO 1). The differences identified in the results could be attributable to 

a number of factors. Firstly, the mesocosm water tables might have been lowered 

further than on any previous occasion, resulting in an initial flush of DOC leaving the 

peat. Secondly, differences may have existed in the composition of the peat, with 

possibly more labile substances being present in the peats studied by Clark et al. 

(2009) than those examined in this study. Thirdly, it is possible, that the water table 

on the drained site was not lowered for long enough for increased DOC production to 

occur, thus resulting in no correlation being found between DOC concentration and 

water table levels at the drained site. Alternatively, the drained site might have been 

drained for so long (since 1955) that labile carbon would have been synthesised and 

flushed out of the system prior to the sampling over which this study took place. 

In the case of the drained site, whilst the water table was found to be significantly 

lower than some of the burnt and grazed sites, levels were not significantly lower than 

the unmanaged site, and as noted in Chapter 4, the drained site had a higher peat 

moisture content than any other site. The higher moisture content suggests that the 

drains are not only ineffective, but also that whilst the thickness of the acrotelm might 

be greater than sites that have been subjected to burning or grazing, conditions are not 

necessarily drier and therefore more favourable to microbial decomposition. The 

afforested site was found to be significantly drier than all sites, with significantly 

deeper water table levels. It is possible that the absence of a significant relationship 

between DOC and water table at the afforested site is a reflection of the water level 

monitoring wells at the afforested site being dry on several of the visits, thus, the full 

variation in water table levels for the afforested site could not be accounted for. 

Wallage et al. (2006) identified significant differences in water table levels between 

drained and undrained sites, and attributed these significant differences to increased 

DOC concentrations in the drained site compared to the undrained. In the case of 
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Moor House, the drains run perpendicular to the slope and are very narrow and heavily 

vegetated with shrubs such as Cal/una vulgaris. In the case of the Wharfedale site 

studied by Wall age et al. (2006), the drains are much wider than those at Moor House, 

the banks are vegetated with grasses and sedges, and the peat is shallower. The 

variations between the sites could have contributed to the differences in DOC 

concentrations and water table levels, as the composition of the peat would have 

differed, and thus the ease with which the carbon could be mineralised and DOC 

produced. These factors could explain the correlation between DOC production and 

water table levels at Wharfedale and the absence of a correlation at Moor House. 

Despite the absence of a relationship between water table levels and DOC 

concentrations, the burnt site had the significantly lower DOC concentrations than all 

other sites, and significantly higher water table levels than the unmanaged, the drained 

and the afforested sites. The absence of a statistically significant difference might be 

owing to the lack of data on water table variability data caused by the water table 

levels regularly being at the surface during monitoring (13 out of 42 measurements). 

The pattern in the data however could indicate that a relationship exists between the 

two variables. 

7.5.2.3 Acidity 

The burnt site was significantly more acidic than all other sites, except for the 

afforested site and had a significantly higher water table than all other treatments. The 

combination of highly acidic, anaerobic conditions is likely to have resulted in reduced 

microbial activity, and consequently lower DOC production. The pore waters at the 

grazed site had a significantly higher DOC content than the burnt site, as well as being 

significantly more alkaline, which indicates that the conditions were more favourable 

for microbial decomposition and could be responsible for the higher DOC 

concentrations. 

In contrast, the afforested site was found to have lower water table levels and even 

more acidic conditions than the burnt site, yet the highest concentrations of DOC were 

found in the pore waters of the afforested peat. The difference in results could 

indicate that aerobic conditions were a stronger driver of DOC production than acidity. 

Highly acidic conditions tend to be associated with afforested sites, as reported by 
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Miller et al. (1990). Comparisons of felled peats with unfelled found less acidic 

conditions in felled sites, supporting the notion that afforested sites are more acidic 

(Neal et al. 1998, Cummins & Farrell 2002). Hughes et al. (1990) compared 

afforested with grazed sites and identified slightly lower pH values and lower 

concentrations of DOC to be present in grazed sites compared to afforested site, as 

found at Moor House, where all other treatments were less acidic than the afforested 

site. Afforested sites tend to be more acidic due to the uptake of cations by trees, 

resulting in an increase in the concentrations of H+ ions remaining in the soil (Miller et 

a1. 1990). The afforested site at Moor House was found to be significantly more acidic 

than all other treatments for all depths except for the burnt site (every 20 years) in the 

10 cm zone, and the burnt site (every 10 years) in the 40 cm zone. 

Work by Evans et al. (2005) suggested that under such acidic conditions, DOC 

production should be low, as the acidic conditions will limit microbial activity, thus 

reducing the amount of DOC released into the peat solution. Adamson et al. (2001) 

noted that hydrogen ion concentrations at Moor House increased as a result of water 

table drawdown thus implying drainage causes pH to decrease. Most studies however 

have reported higher concentrations of DOC in afforested peat (e.g. Grieve 1994, 

Harriman et a1. 2003) and those that have measured the pH of afforested peat have 

identified conditions that are more acidic than unmanaged peats. The contradiction 

within the literature over the role of acidity in DOC production suggests that acidity is 

not the only factor controlling DOC production. Very weak: negative correlations 

between pH and DOC were identified for each of the three depths examined, and were 

not found to be significant; therefore reinforcing the notion that pH is not a dominant 

driver of DOC loss in managed peatlands. 

7.5.2.4 The Tree Stand 

The higher concentrations of DOC in the afforested site might in part be explained by 

the damage to the tree stand at Moor House, which has occurred owing to a lack of 

tree thinning at the afforested plot. The density of the trees has resulted in strong 

competition between trees for space to spread roots and to reach sunlight. 

Consequently many of the trees are leaning, and have fallen in high winds due 

inadequate root support, as illustrated in Figure 7-27. 
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Figure 7-27 The Afforested Site - Showing Lack o/thinning o/Trees 

Zech et a1. (1994) noted that afforested sites with damaged tree stands have increased 

concentrations of DOC being lost into local watercourses. The rationale for this is that 

increased radiation can penetrate through the canopy and ground temperatures 

increase, thus resulting in higher rates of microbial activity and hence production of 

DOC. Greater rates DOC production from felled catchments were found by Neal et 

a1.(1998) in afforested catchments across Wales, whereby higher concentrations of 

DOC were identified in catchments where tree felling had taken place, compared to 

unfelled catchments. Cummins and Farrell (2002) studied afforested peats in Ireland 

and also concluded that felling resulted in increased DOC losses, particularly during 

the summer months when losses peaked. The higher concentrations found in the 

felled sites still followed a strong seasonal cycle, but it was the top end oftbe cycle i.e. 

summer months, that was most pronounced, and was not mirrored in the falls in the 

cycle i.e. the winter months. 

7.5.2.5 Sulphate 

The relationship between sulphate and DOC concentrations was found to be one of the 

strongest, however, the results contradict those found in published literature on the 

effects of sulphate on DOC production. A positive correlation was identified between 

sulphate and DOC concentrations in many of the peat solution samples analy ed from 
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Moor House, suggesting that increased sulphate occurred when increased DOC 

concentrations are present. The afforested site was the only one to follow the trend 

presented in published literature i.e. decreased sulphate concentrations resulted in 

increased DOC concentrations in the pore waters within the 10 cm zone. This trend 

could be attributable to the deeper water levels at the afforested site, which also had 

significantly greater sulphate and DOC concentrations in the pore waters. Thus, it is 

possible that water levels within the other treatments were not deep enough to allow 

the commencement of sulphate oxidation and acidification to occur. Alternatively 

falls in the water table might not have been for a long enough period of time to allow 

the process to commence. The positive relationships identified between sulphate and 

DOC in all treatments could either occur due to another peatland biogeochemical 

cycle, or, could be a reflection of background fluctuations in the peat solution. 

Miller et al. (1996) reported that the introduction of trees to peats in Caithness resulted 

in slight increases in concentrations of sulphate being released into local catchments. 

Neal et al. (1998) however found average concentrations of sulphate to be fractionally 

higher in felled catchments than afforested sites during a survey of water quality in 

afforested catchments across Wales. These studies support the findings at Moor 

House that few differences occur in sulphate concentrations at afforested sites; the 

differences identified in this study were not significant. 

The underlying causes for the significantly greater concentrations of DOC in the 

drained site compared to the unmanaged site are unclear. The drained site did not 

have significantly deeper water levels than the unmanaged site, and a comparison of 

the data on Figure 7-2 demonstrates that the maximum and minimum values were 

similar for both sites albeit not always at the same time. It is therefore not possible to 

suggest that the water levels for the drained site might have reached deeper levels than 

those in the unmanaged site, therefore instigating the enzyme latch mechanism. 

Whilst less acidic than the unmanaged site, the drained site pore waters did not have 

significantly different pH values. A strong relationship was identified between 

sulphate concentrations and DOC values, however, sulphate concentrations were not 

significantly different to those found in the unmanaged site. Furthermore, the sulphate 

concentrations cannot be associated with drought conditions in line with the proposals 

of Clark et al. (2006), as the water table levels were not significantly different from the 
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unmanaged site. Daniels et al (2008) noted that drain density had a strong bearing on 

DOC and sulphate losses, with greater losses of sulphate from low density networks, 

where fluxes of DOC were found to be higher. It is therefore possible that the 

drainage network is not sufficiently dense to warrant a significant difference in DOC 

production at Moor House. Work carried out by Armstrong et al. (2010) found that 

whilst blocking caused water tables to rise, in some cases DOC concentrations did not 

fall, suggesting that higher water tables do not always result in a reduction in DOC 

losses, as evidenced in this study. It is plausible that the composition of the organic 

matter in peat at the drained site may have been responsible for the increased 

concentrations of DOC in the pore waters of the site. Further discussion of this 

possibility is provided in Chapter 8. 

7.5.3 Variations in Peat Solution Chemistry with Depth 

Concentrations of DOC and pH values were expected to decrease unifonnly with 

depth. The results of the analysis indicated that in many cases, mean values in the 20 

cm zone were greater than in the 10 and 40 cm zones. Significant differences in mean 

values were identified between the three zones examined for one of more of the 

properties analysed for each treatment with the exception of the afforested site. The 

results demonstrate the importance of sampling at specific depths rather than sampling 

a column of pore water that includes waters from several depths. Further work could 

be carried out to characterise the properties of pore waters from depths beneath 40 cm, 

especially in the case of the afforested site. 

The lack of significant differences with depth in the afforested site for all three 

parameters studied could be due to the maximum water table depths being below the 

maximum sampling depth, thus creating a uniform acrotelm which is thicker than the 

other managed peats. A study of afforested peat solution chemistry carried out in mid

Wales identified decreases in DOC concentrations with minor increases in pH with 

depth (Hughes et al. 1990). The lack of significant differences in concentrations of 

DOC and sulphate and pH values within the afforested site could be attributed to the 

low water table in this site, mean groundwater levels were 26.4 em but ranged 

between 5 and 50 cm beneath the surface. Further studies should look at different 

depths to compensate for this e.g. study 60 em, 80 em and 100 em beneath the surface 

in addition to the depths examined in this study. 
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7.5.4 The Effects of Frequency of Peatland Burning on Peat Solution Chemistry 

The frequency of burning was not expected to have a significant effect on water 

chemistry based on the findings of previous work carried out by Clay et al. (2009b). 

Yallop and Clutterbuck (2009), however, argued that differences can occur up to four 

years after burning. Sites burnt on a 10 year rotation at Moor House were last burnt in 

February 2007, and this study focussed on samples collected in 2009 i.e. two years 

after burning. Sites burnt on a 20 year rotation were last burnt in 1995. 

No significant differences were identified between the burnt (every 10 years) and 

burnt (every 20 years) treatments in terms of water chemistry, with the exception of 

DOC concentrations at 20 cm, where the burnt every 20 years concentrations were 

found to be significantly higher (p=0.01). Clayet al. (2009b) found that increases in 

DOC only occurred at the start of the burning cycle, therefore it is unsurprising that 

differences in DOC concentrations were not identified with burning frequency as 

sample collection began two years after the most recent burn. The results of 

Clay et al. (2009b) and the present study contrast with the findings of Yallop and 

Clutterbuck (2009) whose work suggested significantly higher concentrations of DOC 

are lost from sites that have been burnt within the last four years. 

7.5.5 The Effects of Combining Burning and Grazing on Peat Solution Chemistry 

DOC concentrations reported at all depths for the burnt and grazed sites (both every 

10 years and every 20 years) were found to be significantly greater than sites where 

either grazing or burning took place. In terms of pH values and sulphate 

concentrations, the values obtained were found to lie between those attained for sites 

that were solely grazed or solely burnt. 

Few data have been published on the effects of combining burning and grazing. 

Worrall and Adamson (2007) found that grazing had no effect on the chemical 

composition of soil water. Increased concentrations of elements associated with a 

lower pH value were found on burnt sites, peat water level depth was found to be 

shallower on burnt sites compared to unburnt sites. These results suggest that 

combinations of burning and grazing make a difference to DOC concentrations and 

pH values by creating less acidic, more aerobic conditions that promote the release of 

DOC into the peat solution. 
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7.6 Conclusions 

7.6.1 Summary of Findings 

The findings of this chapter have suggested that land management has a significant 

effect on peat solution chemistry and the drivers of DOC losses from peatlands. 

Previous studies have focussed on one or two methods of management, sometimes 

with an unmanaged site for comparative purposes. This chapter aimed to investigate 

how concentrations of DOC in peat solution vary with depth and between managed 

sites; and to examine changes in the water chemistry of managed peatlands, with a 

focus on the properties that are relevant to DOC loss. The investigation was carried 

out by testing a series of hypotheses which are presented below along with key 

findings. 

Hypotheses 

1. Land management affects concentrations of DOC in the peat solution 

A review of published literature demonstrated that land management typically causes 

variations in DOC concentrations compared to unmanaged sites. The results of this 

work demonstrated that significant differences exist in DOC concentrations between 

the four most commonly used management practices in the UK. Afforestation was 

found to result in increased losses of DOC which were far greater than those produced 

on burnt, grazed or drained sites. The lowest concentrations were identified in the 

burnt and unmanaged sites. Concentrations in the burnt (every 10 years) site were 

found to be significantly lower than other sites subjected to burning, and the drained 

and afforested sites. 

2. Land management affects concentrations of sulphate in peat solution 

Sulphate concentrations in the afforested site were found to be significantly higher 

than the unmanaged site. Significant differences in sulphate concentrations were 

identified between the burnt sites and all other treatments. The highest concentrations 

of sulphate were found in the afforested site and the lowest in the burnt (every 10 

years) and unmanaged sites. 
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3. Land management affects the acidity of peat solution 

Changes in acidity were expected between different land management practices owing 

to changes in water table levels thus creating differences in the thicknesses of the 

acrotelm and catotelm at each site. In addition, the planting of trees is known to 

reduce pH values (Miller et al. 1990), thus the afforested site is expected to be the 

most acidic. Significant effects are not expected at the burnt or grazed sites (Clay et 

al. 2009b). Investigation of this hypothesis found that land management makes a 

significant difference to the pH values of peatland pore waters. The burnt treatments, 

grazed and afforested sites were found to be have significantly different pH values 

from the unmanaged site. The afforested site was significantly more acidic than all 

other sites. The unmanaged site was more alkaline than all other treatments except for 

the grazed and burnt and grazed (every 10 years) sites. 

4. Water chemistry changes with depth down the peat profile 

Changes in the peat solution chemistry with depth were expected as environmental 

conditions change between the acrotelm and the catotelm (Clymo 1984). 

Concentrations of DOC in the managed sites were expected to decrease with depth as 

the peat becomes more recalcitrant and rates of groundwater flow decrease (Hughes et 

al. 1990, Ward et al. 2007). Evidence from this study demonstrated that the depth 

from which samples were collected made a significant difference to the results, 

indicating that water chemistry varies with depth. The two exceptions to this were the 

unmanaged and afforested sites. Highest concentrations of DOC were found in 

samples collected at 20 cm, where samples tended to be least acidic. It was in this part 

of the profile that samples were found to be significantly different to the unmanaged 

site, whereas fewer differences were noted between samples collected at 10 and 

40 em. Such differences possibly reflected greater groundwater movement at this 

depth within the peat profile, as groundwater levels tended to be below 10 em; hence 

all treatments had similar water chemistry at this depth. Most sites were saturated 

from 40 em and lower, hence fewer significant differences were identified at depth. 

5. Burning frequency effects peat solution chemistry. 

Burning frequency was not expected to have a significant effect on DOC 

concentrations based on previous studies (Clay et al. 201 Ob). The effect of burning 
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frequency on sulphate concentrations and acidity was unclear from published 

literature. The results of this investigation provided evidence that the frequency with 

which peats are burnt did not have a significant effect on water chemistry. 

6. Combinations of burning and grazing affect peat solution chemistry. 

Limited changes were expected to occur between sites that are solely burnt, solely 

grazed and those where a combination of burning and grazing take place (Clay et al. 

20 lOb, Ward et al. 2007). The data demonstrated that this was the case as 

combinations of burning and grazing resulted in greater concentrations of DOC and 

more alkaline solution chemistry compared to the unmanaged site or to sites that were 

only subjected to burning or to grazing. 

7. Land management impacts on the key drivers of DOC production in peats. 

The findings of this chapter have demonstrated that land management has a significant 

effect on peat solution chemistry and the drivers of DOC losses from peatlands. 

Previous studies have focussed on one or two methods of management, sometimes 

with an unmanaged site for comparative purposes. The results demonstrate that of the 

most commonly used management practices in the UK, afforestation resulted in 

increased losses of DOC which are far greater than those produced on burnt, grazed or 

drained sites. 

The mechanisms driving such losses at the afforested site match the findings of Clark 

et al. (2006) in that lower water table levels coincided with increased sulphate 

concentrations and thus reduced DOC concentrations prior to water table levels rising. 

This mechanism was not however found to be applicable at all sites, suggesting that 

management alters the dynamics of DOC production and loss from the peat solution. 

Acidity and water table levels were found to be the dominant drivers of DOC 

production, however, sulphate concentrations had little effect, and where significant 

correlations were identified between DOC and sulphate, the relationship tended to be 

positive. 

DOC production at the grazed site was not significantly different to those at the 

unmanaged site, and qualitative comparisons of the data for the two sites, found the 

results to be very similar. The burnt site was significantly more acidic than all other 
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treatments, with higher water table levels, this combination of conditions is likely to 

have suppressed rates of microbial activity, hence DOC production was significantly 

lower than other treatments. 

The drained site had significantly higher concentrations of DOC in the pore solution 

compared to the unmanaged site, however, factors such as acidity, sulphate 

concentrations and water table levels were not significantly different to the unmanaged 

site, thus, the trends remain unexplained. 

7.6.2 Further Work 

Further work on the dynamics of DOC production are clearly needed to fully 

understand recent increases in DOC concentrations in both managed and unmanaged 

peatlands. To investigate the linkages between falling water table levels and increased 

sulphate concentrations further, additional studies could focus on identifying whether 

the depth to which the water table is lowered has a significant effect, as well as the 

length of time for which the water table is lowered. 

The lack of significant differences in concentrations of DOC and sulphate and pH 

values within the afforested site could be attributed to the low water table in this site, 

mean groundwater levels were 26.4 cm but ranged between 5 and 50 cm beneath the 

surface. Further studies should look at different depths to compensate for the low 

water table levels e.g. study 60 em, 80 em and 100 em beneath the surface in addition 

to the depths examined in this study. The results might be able to identify a significant 

relationship between DOC and water table depth. 

Further work should be carried out to look at the effects of afforestation on peat 

solution chemistry at deeper depths than examined in the present study, as well as with 

different species of tree. A study by Miller et al. (1996) found that DOC 

concentrations varied depending on the species of tree planted. Lodgepole pines 

released greater concentrations of DOC released compared to Sitka spruce sites. 

The findings from the drained site found different trends to those published in studies 

such as Wall age et aI. (2006). The findings could be attributable to the differences in 

the physical characteristics of the two sites and further work should be carried to 

identify if the following have a significant effect on DOC concentrations: drain width 

267 



Effects of Land Management on DOC Production and Peat Solution Chemistry 

and depth, peat thickness, and vegetation type. In addition, further work must be 

carried out on burnt sites outside of Upper Teesdale to ensure that the trends identified 

i.e. that only the most recent of bums affects DOC concentrations are not specific to 

the one site that has been examined in detail. 
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8 SYNTHESIS 

8.1 Introduction 

This chapter aims to bring together the findings of the previous four chapters in order 

to discuss the results collectively. A brief summary of the key findings of each 

chapter is presented below, followed by a discussion of the implications of the 

findings for peatland carbon budgets, and drivers of the carbon cycle. The relevance 

of seasonal changes and the traditional diplotelmic model are also discussed. 

8.2 Summary of the key findings of each chapter 

8.2.1 Chapter 4 - the effects of land management on the chemical properties of 

peat 

Chapter 4 aimed to identify if land management had a significant effect on the 

chemical properties of peats that are responsible for carbon cycling. The results 

provided evidence that burning results in higher concentrations of nutrients with 

slightly drier, fractionally less acidic peats. Afforestation was found to result in 

drier, more acidic peats with lower concentrations of nutrients. Little difference was 

found in the properties of the grazed sites compared to the unmanaged site, whilst 

drainage resulted in wetter, more acidic peats with slightly higher concentrations of 

nutrients. Concentrations of trace metals were found in very small concentrations. 

Whilst these metals might be of importance for the production of methane and/or 

oxidation of methane to carbon dioxide (Basiliko & Yavitt 2001), the concentrations 

were so low, that land management is unlikely to have impacted upon them. 

8.2.2 Chapter 5 - impact of land management on peatland carbon stocks and 

quality 

The results suggested that different management practices applied to peats within 

one nature reserve have affected carbon quality but not carbon stocks. Carbon stocks 

were observed to be greatest for the bumt treatments (although not significantly 

different to other treatments), however litter quality was poorer here than that found 

in other treatments (excluding the drained site). Carbon stocks were smallest in the 

drained site, which also had the lowest quantity of lignin and consequently poor litter 
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quality. The afforested site exhibited the most recalcitrant organic matter, and a high 

C:N ratio, carbon stocks were lower than those found in sites subjected to burning 

but were higher than all other treatments. The lignin content of the drained and burnt 

sites was found to be significantly lower than the afforested peats. The 

lignincellulose index identified all peats sampled as being in the latter stages of 

decay, and therefore rates of decomposition are likely to be low. The labile fractions 

of the organic matter in each sample analysed were small and provided further 

evidence that the peat is highly decomposed. 

8.2.3 Chapter 6 - effects of land management on carbon dioxide gains and losses 

Land management was not found to have a significant effect on NEE or ER. The 

frequency with which sites were burnt had no observed effect on carbon dioxide 

fluxes; neither did combining burning and grazing. The absence of significant 

differences in water table levels between the sites compared to the unmanaged site 

(with the exception of the afforested site), suggest that no difference exist in the 

thickness of the acrotelm of the managed sites, therefore, the potential for greater or 

lesser rates of microbial decomposition within the treatments did not exist. 

Furthennore, rates of primary production between the sites were not significantly 

different; suggesting that in spite of the application of different management 

practices, the ability of the vegetation on the sites to sequester carbon was not 

significantly different. 

8.2.4 Chapter 7 - effects of land management on peat pore solution chemistry and 

DOC loss 

The results demonstrated that of the most commonly used management practices in 

the UK, afforestation resulted in increased DOC production which was far greater 

than those produced on burnt, grazed or drained sites. The mechanisms driving such 

losses at the afforested site matched the findings of Clark et al. (2006) in that lower 

water table levels coincided with increased sulphate concentrations and thus reduced 

DOC concentrations prior to water table levels rising. This mechanism was not 

however found to be applicable at all sites, suggesting that management alters the 

dynamics of DOC production and loss from the peat solution. pH and water table 

levels were found to be the dominant drivers of DOC production, however, sulphate 

270 



Synthesis 

concentrations had little effect, and where significant correlations were identified 

between DOC and sulphate, the relationship tended to be positive. 

8.3 Implications for Carbon Budgets 

Table 8.1 summarises the carbon gains and losses that were measured as part of this 

study. As discussed in Chapter 6, significant differences in ER were not identified 

between the individual treatments, however, significant differences were identified 

between one of the monitoring locations at the grazed site and selected collars on the 

Hard Hill plots from the burnt and grazed, burnt (every 10 years) and unmanaged 

plots. Significant differences in NEE were identified between the afforested site and 

the burnt (every 10 years) site, however, caution must be taken when interpreting 

this result, as the NEE measurements at the afforested site only included the 

understory vegetation and not the tree canopy. No significant differences in the PP 

of each treatment were identified; however, differences were identified between 

individual monitoring locations on the Hard Hill plots. Significant differences in the 

DOC content of the peat solution were identified across the treatments, with greatest 

concentrations being identified in the afforested site, and the lowest in the burnt 

(every 10 years) site. Predictions were of the impacts ofland management on carbon 

losses and gains from peats were presented in Table 2.2 based on a review of 

published literature. Based on the notion that unmanaged sites tend to act as carbon 

sinks, management was predicted to result in an increase in gaseous carbon losses 

from the afforested and drained sites owing to increasingly aerobic conditions, whilst 

the expected effects of management on burnt and grazed sites gaseous carbon losses 

were uncertain. Based on the data presented in Chapter 6, the only site to act as a 

carbon sink was the burnt (every 10 years) site. As illustrated in Table 8.1, greatest 

losses of carbon dioxide were reported from the afforested site, and least from the 

burnt (every 10 years) site. 
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Table 8.1 Mean Carbon Gains and Lossesfrom Each Treatment 
Treatment NEE ER pp DOC Carbon 

(g CO2 m·2hr· (g C02 m-2h (g CO2 m·2hr· (mgIL) stock 0-
I) r-l) I) 10cm 

it C ha·J) 

Bumt (Every 
-0.004 (49) 0.202 (35) -0.206 (35) 42.84 (90) 65.7 (10) 

10 years) 
Burnt (Every 

0.021 (50) 0.240 (32) -0.219 (32) 44.21 (64) 53.65 (14) 
20 years) 
Bumt and 
Grazed 

0.042 (47) 0.194 (30) -0.148 (30) 59.76 (51) 50.3 (14) 
(Every 10 
years) 
Burnt and 
Grazed 

0.042(51) 0.169 (33) -0.148 (33) 57.54 (54) 33.2 (10) 
(Every 20 
years) 
Grazed 0.095 (52) 0.212 (36) -0.124 (36) 50.67 (42) 37.9 (15) 
Drained 0.125 (40) 0.173 (24) -0.084 (23) 53.88 (70) 38.4 (12) 
Afforested 0.133 

0.210 (27) -0.096 (27) 72.23 (60) 49.0 (19) (47) 
Unmana~ed 0.095 (48) 0.212 (32) -0.124 (32) 44.01 (70) 47.1 (15) 

Note the measurements for the afforested sIte do not mclude the tree canopy. Numbers m brackets mdlcate number of samples 
used to calculate the mean value 

8.3.1 Afforested Carbon Budgets 

Work carried out on afforested peats in Scotland by Hargreaves et al. (2003) 

identified newly planted peats as sources of carbon, and plantations over 8 years old 

as sinks. Further measurements at Moor House using eddy-covariance 

measurements would provide a clearer indication of the carbon budget of the 

afforested site by providing data on carbon sequestration by both the trees and the 

understory vegetation. Regardless of the ability of the afforested site to sequester 

carbon, significantly higher concentrations of DOC were recorded from the site in 

response to the reduced pH, increased sulphate concentrations and lower water 

tables. The lower water tables caused the afforested site to have a significantly 

lower moisture content than all other sites, thus indicating that rates of microbial 

activity are likely to be higher at the afforested site, and hence the site had greater 

concentrations of DOC. 

ER rates at the afforested site were not the highest recorded during this study, which 

could possibly be linked to the cooler temperatures within the afforested site, or be 

due to differences in the chemical composition of the afforested peats, which had the 

highest lignin content. Lignin was the most recalcitrant fraction analysed on the 
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peats, and was highest in the afforested site, whereas holocellulose, the most labile 

fraction analysed, was lowest in the afforested peats, although the differences 

between the afforested and other treatments were not significant. Linkages have 

been found between ER in afforested sites and high quantities of water soluble 

carbohydrates (Domisch et al. 1998). No significant difference was identified in the 

quantities of water soluble carbohydrates or ER between the differently managed 

sites. The afforested site lost the most carbon in through ER and had the highest 

concentrations of DOC in the peat solution. The carbons stocks of the afforested site 

were not significantly different to any of the other treatments, suggesting that the 

afforested site is losing carbon the most rapidly. 

8.3.2 Drained Carbon Budgets 

The drained site had the second lowest rate of NEE owing to having the lowest 

primary productivity of the sites studied, despite having some of the lowest rates of 

ER. Losses of DOC were in the middle of the range of values obtained for all sites, 

with losses being significantly higher than the unmanaged site but lower than the 

afforested site. The drained site had the highest moisture content, despite having 

significantly deeper water table levels than most of the Hard Hill plots except the 

burnt and grazed (every 10 years) and unmanaged sites. The high moisture content 

and low pH of the peats could account for the reduced rates ofER, because microbial 

activity would be impeded by these conditions. 

The drained site had the lowest carbon stocks, with a lower lignin content than most 

treatments except the burnt (every 10 years) site. The drained site had the highest 

holocellulose content of all the sites examined. Concentrations of soluble 

carbohydrates were highest at the drained site and concentrations of soluble 

phenolics the lowest, the latter could suggest that the enzyme latch mechanism 

(detailed in Chapter 2) had degraded phenolic compounds when the level of the 

water table was lowered. Significant differences in the chemical composition of the 

drained sites and other sites were not found. The low primary productivity rates at 

the drained site might be a reflection on the site having the lowest nitrogen content 

of all the sites studied, possibly causing limitations to plant growth. 
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Work carried out on peat monoliths under laboratory conditions by Freeman et al. 

(1993) identified higher rates of ER upon lowering the water table, which decreased 

once the water table levels were raised. The results indicated the lowering of the 

water table resulted in increasingly aerobic conditions which allowed ER to increase. 

In this study of Moor House, ER at the drained site was lower than most other 

treatments, yet overall NEE was higher (a carbon source) owing to low rates of PP. 

Lower rates of PP might be due to the lower nitrogen content of the peat, which was 

also found to be one of the most acidic of the sites studied, thus restricting plant 

growth. Only the burnt (every 20 years) site had a significantly higher nitrogen 

content, however, PP results were also highest at the burnt (every 20 years) site. The 

drained site had the third lowest C:N content suggesting that the carbon at the 

drained site could be synthesised more easily than other sites, but the differences 

compared to other sites were not significant. In addition, the lowering of the water 

table might have caused a rapid flush of carbon being lost as a result of the water 

table never having been so low before, thus causing mineralisation of labile 

compounds (Freeman et al. 1993). Furthermore, it has been suggested that carbon 

losses increase when peatland ecosystems are disturbed (Laiho 2006). Given the 

time since drainage however, it is likely that the peatland ecosystem equilibrium has 

been restored. 
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Figure 8-1 Compari 011 of Net Ecosystem Exchange Values for the Unmanaged and Drained 
Si Ie over Time 

Overall the drained site was found to be a carbon source (Figure 8-1), in line with the 

findings of Row on et al. (2010) who analysed a drained catchment that had been 

very recently blocked. Comparisons with an unmanaged site were not made by 

Rowson et al. (2010); therefore, the impact of drainage on the peatland carbon cycle 

for their study site could not be determined. Results from this study indicated that 

losses of carbon dioxide from the drained site were less than those from the 

unmanaged site; however, les carbon was stored at this site, suggesting less carbon 

was available to be mineralised, although losses of DOC were greater. 

8.3.3 Grazed Carbon Budgets 

Losse of carbon at the grazed site were typically very similar to the unmanaged site 

(as illu trated in Figure 8-2), and significant differences were not identified between 

the grazed and unmanaged site. Similarly, no differences existed in the carbon 

content or compo ition of the carbon in the peats between the two sites. With the 

exception of two trace elements (nickel and selenium), no significant difference in 

the nutrient content of the two sites were found either. The water table levels were 

found to be significantly higher at the grazed site than the unmanaged site. Field 

notes taken during monitoring suggested that the coverage of heather was greater on 

the unmanaged ite, with larger bushes compared to the grazed site, which are likely 
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to have a greater water demand, hence the water table levels were lower and the peat 

moisture content reduced. Overall, grazing did not appear to affect either losses of 

carbon or drivers of the peatland carbon cycle. To date, the author has found no 

evidence of published carbon budgets for grazed sites outside of the Moor House 

NNR with which to make comparisons with. Grazing at Moor House is light, with 

the sheep being removed during the winter months, and a stocking density of 0.04 

sheep ha-1 (Ward et al. 2007). Evans (2005) reported extensive damage to peatlands 

in the South Pennines owing to intensive sheep grazing, and it is likely that the 

carbon budget there would be remarkably different from those that have been carried 

out at Moor House by others. 

Ward et al (2007) found grazing led to a significant increase in respiration and 

photosynthesis, although seasonality accounted for more variation in respiration than 

landuse across all the sites studied, which were found to be a sink for carbon dioxide 

during the summer when primary production peaked. Overall, the grazed site was 

found to sequester more carbon dioxide than was lost (Ward et al. 2007), which was 

not the case in this study, or that of Clay et al (2010b). Clay et al (201Ob) found 

NEE to fluctuated annually, with the grazed site acting as a source, as well as the 

unmanaged site (Figure 8-2). The discrepancies between the studies could be down 

to the methodology, Ward et al (2007) used a static chamber and took gas samples 

with a syringe, which were then analysed by gas chromatography. In this study, and 

that of Clay et al (201 Ob), measurements were taken using an EGM4, which takes 

measurements every four seconds over a period of 120 seconds. The former method 

has been noted to be more vulnerable to errors, (Norman et al. 1997) whereas the 

latter is considered to underestimate fluxes compared to those measured by steady 

state flow through chambers (Pumpanen et al. 2004). Comparisons of eddy

covariance techniques and a closed dynamic system (e.g. EGM4), have however 

been found to be in close agreement (Norman et al. 1997), thus suggesting that the 

EGM4 provides a reasonably accurate estimate of carbon dioxide fluxes. The 

method used by Ward et al (2007) involved flushing the syringes three times before 

collecting a sample, which could have reduced the concentrations of carbon dioxide 

near the surface (Norman et al. 1997), thus underestimating losses of carbon dioxide 

from the site. 
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Figure 8-2 Comparison a/Net Ecosystem Exchange Values/or the Unmanaged and Grazed 
Plots over Time 

In shallow peat, Ward et al (2007) found grazed peats to have significantly more 

DOC at 10 cm than the ungrazed peat solution but notes the effect was not large or 

consistent over time. In this study, significant differences were not found in the 

10 crn or 40 cm zones, but they were at 20 cm. Differences in the carbon losses 

calculated by Ward et al (2007) and this study could be attributable to sea onal 

differences; as noted by Roulet et al (2007), carbon budgets can fluctuate 

significantly between different years. Work carried out by Clay et al. (201 Ob) 

identified little difference in DOC concentrations between the grazed and 

unmanaged sites. 

8.3.4 Burnt Carbon Budget 

The burnt site was the only site for which a mean carbon sink was recorded (Figure 

8-3), as well as having the lowest DOC concentrations and the second highest rate of 

primary producti ity. Concentrations of nutrients were in the middle of the range of 

value recorded for the site. Carbon stocks were highest in burnt peats however the 

differences were not found to be significant. 
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The burnt site had the lowest lignin content, although only the afforested ite had a 

significantly higher lignin content. The holocellulose content of the burnt ite was 

the second highest of the sites studied, reflecting the labile nature of the peat 

collected from the burnt site. The results suggested that the ite feature more rapid 

plant growth fol1owing the bum, however, the plant material that form the peat is 

more labile than other sites, and hence, the quanlity of carbon stored in the site is 

lower, and is easily synthesised by microbes . 
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Figure 8-3 Comparison of Net Ecosystem Exchange Vallie 'for the Unmanaged alld Burnt 
Plots over Time 

Burning was also found to result in an increase in the carbon sink capacity of the 

managed plots by both Ward et al. (2007) and Clay et al. (2010b). In both ca , the 

authors attribute the differences in NEE to increa ed primary productivity at the 

burnt site. In addition, Clay et al. (2010b) suggested the lowered water tables were 

responsible for additional ER from the unmanaged site, however, a tated in 

Chapter 6, no correlation was found between water table depth and ER, po ibly 

reflecting the number of occasion during which the water table was at the urface 

during monitoring on the burnt site. No ignificant diffi r nce was found in DOC 

concentrations by Ward et a1. (2007), however, an increa e wa recorded by Clay et 

al. (201 Ob) during 2007 when burning took place. Overall, the light bum at Moor 
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Hous appear to have had a po itive impact on the peatland carbon balance. The 

effi ct of more inten e burning on UK peatlands are unknown however, and warrant 

further inve tigation. Severe burning on Turkish peats was found to have a 

detrimental effect on nutrient concentration and the ability of the peat to recover 

from burning, which re ulted in a ignificant decrease in the organic carbon of the 

peat (Dikici & Yilmaz 2006). Laboratory tudies on burning Cambisols identified 

ignificant 10 e of carbon at higher temperatures (Fernandez et a1. 1997). 

8.4 Linking Driver with Carbon Losses 

Correlation analysi was performed on the different parameters measured to identify 

whether ignificant relation hip existed between the variables studied. Table 8.2 

summarie the re ult where ignificant differences were identified. 

Table .2 Significant orl'elation beflveen Mean Values for Carbon Losse and Carbon 
D· rivers 

Lignin Ilolocellulo e Total Cellulose Temperature DOC 
soluble 
fraction 

DO 
0.679 -0.522 p=0.046 

p~0.005 
n n ns 

CO2 n n n n 0.303 p<O.OOl -0.458 
p=0.024 

pp ns ns ns ns -0.204 p=O.OOI ns 
Total 0.566 
C p 0.028 

n n n n os 

C 0.43 
stock P=0.036 
pH ns ns 0.57 p=0.027 ns ns ns 

p 0.543 
n ' n n 

p=0.03 
n n 

.. 
ns no slgnlhcant con·elatlon 

DO ha been defined a a complex mixture of humified plant materials that are 

d ri cd from plant and animal , and have been dis olved in water (Dillon & Molot 

1997). The re ult of the correlation analysis detailed in Table 8.2 demonstrate that 

wher higher conc ntration of lignin are found, greater losses of DOC occur. Thi 

notion i upported by the finding at the affore ted site which had both the highe t 

lignin content and highe t DO oncentrations, whilst the burnt (every 10 year) site 

had the lowe t lignin content and lowe t DOC concentrations. Lignin is the most 

re al itrant of the fraction analy ed for, and i therefore typically the most difficult 

for mi r -organi m to degrade. The pre ence of higher lignin concentrations 

a ociated with higher 10 e of DOC, ugge t that the enzyme latch mechani m 
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described by Freeman et al (2001 b) may be responsible for the observed results. The 

enzyme latch mechanism enables phenolic compounds to be degraded, thus allowing 

hydrolase enzymes to mineralise more recalcitrant organic compounds which can 

then be released into the peat solution as DOC. Concentrations of soluble phenolics 

were very low in all of the samples analysed (0.02 - 0.04 mg g-I) suggesting that 

phenolic compounds had possibly been degraded. No significant correlation was 

identified between soluble phenolic concentrations and DOC. 

To support this argument further, low pH values have been found by Pind et al. 

(1994) to inhibit the activity of the phenol oxidase enzyme. Data collected during 

this study demonstrated that a positive correlation existed between pH and total 

soluble organic compounds from the peat. This result indicates that less acidic 

conditions resulted in greater concentrations of soluble compounds in the peat 

substrate, which in turn, could contribute to greater losses of DOC. 

Additionally, a negative correlation was identified between holocellulose and DOC, 

indicating that the presence of less recalcitrant compounds reduces the concentration 

of DOC in the peat solution. It is possible, that the more labile compounds are 

completely degraded, and the bi-products are lost as gaseous carbon i.e. carbon 

dioxide or methane. Notably, increased concentrations of DOC tended to coincide 

with lower concentrations of carbon dioxide losses, suggesting that different 

fractions of the peat substrate might be responsible for losses of carbon through 

different phases. The results suggested that whilst sites that had a higher lignin 

content also had higher carbon concentrations, this carbon was also more likely to be 

lost in the form of DOC, as a significant correlation was identified between carbon 

stocks and DOC. 

As noted in Chapter 6, temperature was found to be the dominant driver of carbon 

dioxide losses. No significant correlations were identified between carbon dioxide 

and the other drivers of the carbon cycle analysed. 

8.4.1 Seasonality 

Previous research has suggested that seasonal differences must be considered when 

examining fluctuations in the peatland carbon cycle (Roehm & Roulet 2003). 

Previously, only limited work has looked at the importance of seasonal effects on 
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carbon losses from managed peatlands. Both Ward et al. (2007) and Bonnett et al. 

(2006) identified seasonal fluctuations in DOC concentrations, whilst seasonal 

variations in gaseous carbon losses were identified by others e.g. AIm et al. (1999b). 

In order to assess whether seasonal differences existed in the data collected at Moor 

House, the data were split into two seasons, a summer season spanning from May to 

September inclusively, and a winter season spanning from October to April 

inclusively. The division into these seasons allowed the number of monitoring trips 

to be split evenly between the two seasons, as well as capturing differences in the 

temperatures (Figure 7-1). ANOV A was carried out on the data sets to identify if 

significant differences existed in the data between the two seasons. A summary of 

the results is presented in Table 8.3. 

Table 8.3 Significant Differences in Seasonal Carbon Gains and Losses within each 
treatment based on ANOVA 

Treatment ER NEE pp 
Significant seasonal Significant seasonal Significant seasonal 

difference? difference? difference? 
(p value where (p value where (p value where 

significant) significant) significant) 

Burnt and grazed Y Y Y 
(every 10 years) (p=0.017) (p=O.021l ~<0.001) 

Burnt and grazed Y 
N N 

(every 20 years) (p=0.015) 

Grazed 
y 

N 
Y 

(p=O.OI) jJcO.OO!l 

Burnt (every 20 years) 
y 

N 
Y 

(p<O.OOI) (}c0.OO2) 

Burnt (every 10 years) 
y y y 

(p=0.OO8) (p=O.OO4) k<O.OOI) 

Unmanaged 
y 

N 
Y 

(p=0.029) JlcO.OI6) 

Drained 
y 

N 
Y 

(p<O.OOI) {Jc0.0!l 

Afforested N N 
Y 

(JcO.038) 
N-noY-yes 

Significantly higher rates of ER were recorded for all sites in the summer compared 

to the winter with the exception of the afforested site. For NEE, significant 

differences between summer and winter were only found for the burnt and grazed 

(every 10 years) site and the burnt (every 10 years) site. In the case of the burnt and 

grazed (every 10 years) site, the site was a source of carbon dioxide during both 

seasons. In the case of the burnt (every 10 years) site, during winter the site acted as 
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a source of carbon dioxide, but was a sink during the summer. Despite significant 

differences existing between winter and summer values for carbon loss and storage, 

significant differences did not exist within the treatments for summer or winter rates 

of ER. In summer, significant differences existed in NEE for the burnt (every 10 

years) site and the drained and afforested sites. During winter, the afforested site 

was found to be significantly different to the burnt and grazed (every 10 and 20 

years) sites, the grazed site and the burnt (every 20 years) site (p=0.003). During 

summer, the PP of the burnt (every 20 years) site was found to be significantly 

higher than the drained site (p=O.OOS), whilst during winter, the grazed site had 

significantly higher PP than the understory of the afforested site (p=O.OIS). The 

results reinforce the notion that temperature is one of the key drivers of gaseous 

carbon dioxide losses and gains from managed peats, and that few significant 

differences existed between the sites as a result of management. 

Table 8.4 Mean Summer and Winter Carbon Gains and Losses from Each Treatment 
Treatment ER ER NEE NEE pp pp 

Summer Winter Summer Winter Summer Winter 
Burnt (every 10 0.258 0.117 -0.067 0.083 -0.325 -0.340 
years) 
Burnt (every 20 0.039 0.075 0.006 0.047 -0.328 -0.028 years) 
Burnt and grazed 0.230 0.110 0.025 0.073 -0.205 -0.016 
(every 10 years) 
Burnt and grazed 

0.223 0.074 0.072 0.033 -0.151 -0.042 (every 20 years) 
Grazed 0.336 0.123 0.036 0.054 -0.300 -0.069 
Drained 0.242 0.008 0.147 0.003 -0.096 -0.005 
Afforested 0.245 0.091 0.124 0.154 -0.1215* 0.028 
Unmanaged 0.265 0.112 0.070 0.117 -0.195 0.002 

* note that the PP and NEE measurements for the afforested site are based on measurements of the understory vegetation and 
did not include the trees. All units are expressed in g CO2 m·2 hr-' 

The results presented in Table 8.4 provide mean values for gaseous carbon gains and 

losses across the managed sites investigated. The results demonstrated that during 

both the summer and winter months, most of the sites were carbon sources as 

opposed to carbon sinks. Previous studies of unmanaged peatlands have shown such 

sites to be carbon sinks based on gaseous carbon emissions alone (e.g. Dinsmore et 

al. 2010). Previous estimates of the carbon budget at Moor House have found the 

site to act as a carbon sink (Worrall et al. 2003b, Worrall et al. 2009), however plot 

scale work carried out by Clay et aI. (201 Ob) identified the unmanaged plot as a 

greater carbon source than the grazed and burnt treatments. In the case of the 
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drained site, the source appears to be due to low rates of PP compared to the other 

sites. During the summer months, little variation existed in the ER of the different 

treatments, especially the Hard Hill plots; however, variations did exist in NEE 

owing to differences in PP, with lower rates of PP at the unmanaged site compared 

to the other treatments. The results demonstrate that management results in the 

vegetation being regenerated, thus increasing the amount of carbon stored in the 

vegetation and subsequently the peat, and therefore, reducing the overall carbon 

source. Note should also be taken that the sites with the highest PP, also had the 

highest concentrations of phosphorus, and higher concentrations of nitrogen than 

most other sites, which possibly supplemented plant growth and thus PP. 

Furthermore, the burnt sites were found to have significantly higher carbon contents 

than the unmanaged site, suggesting that the higher PP had a positive effect on 

carbon stocks. Overall, despite the existence of seasonal differences within 

treatments, all sites were sources in both summer and winter months, although the 

sources tended to be greater in the winter months. Significant differences within 

treatments according to season were not identified, however, in both summer and 

winter the afforested site was found to be more acidic and to lose more DOC than all 

other treatments. 

8.4.2 Evaluation of the Diplotelmic Model 

The vast majority of peatland studies have used the diplotelmic model to describe 

peatland processes, particularly those concerning carbon cycling. The model is 

commonly accepted by peatland scientists as a foundation on which complex 

processes can be explained. Recent publications (e.g. Morris et al. 2011), however, 

have added to the criticisms of the model made by Holden and Burt (2003). In this 

section, alternatives to the diplotelmic model are presented, before the model's 

relevance of the model to the findings of this study of managed peatlands at Moor 

House is considered. 

The presence of a single boundary between the aerobic and anaerobic zone was 

defined by Ingram (1978) as the boundary between the acrotelm and catotelm, and 

occurs at the depth the water table reaches during drought years. Morris et at. 

(2011), however, noted that no definition of drought is provided, nor is consideration 

given to the time over which the drought should be defined. Furthermore, the 
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definition of what constitutes a drought varies between different disciplines (Smith 

2011). On this basis, the application of the diplotelmic model has been inconsistent. 

The application of terms such as oxic/anoxic as suggested by Ise et a1. (2008) 

provides greater clarity when explaining peatland ecohydrological processes, and 

allows fluctuations in the system to be accounted for. Furthermore, such terms allow 

a gradient to be considered between the saturated and unsaturated layers, rather than 

insisting on the presence of an abrupt change in conditions which is rarely witnessed 

in the field. Furthermore, beneath the water table, conditions may not be wholly 

saturated, as the presence of bubbles of gas (in particular methane) may be present 

(Rosenberry et a1. 2006). 

One advance on the diplotelmic model would be to use a polytelmic model involving 

many layers including a mesotelm layer between the acrotelm and catotelm as 

suggested by Clymo and Bryant (2008) and possible additional layers e.g. reflecting 

a low permeability close to the surface, and layers representing different stages of 

peat decomposition. Such a model has been criticised by authors such as Morris et 

at (2011) for failing to provide sufficient flexibility. Whilst the model provides a 

more accurate reflection of a peatland, and is simple to use and understand, it still 

involves the use of rigid horizontal boundaries that cannot reflect spatial variation 

and areas of a peatland where disturbances have occurred e.g. erosion due to 

anthropogenic activities. 

Morris et al. (2011) proposed a "hot and cold spot" model as an alternative to the 

diplotelmic model. This model would encompass the variability of peatlands whilst 

still being applicable to multiple sites. Terms such as acrotelm and catotelm would 

be replaced with oxic and anoxic, high and low decay zones which would provide 

gradients rather than fixed boundaries. The model would encompass the differences 

that exist in boundaries between the layers depending on the property being 

examined i.e. it would allow for the saturated and unsaturated zones being located at 

different levels within the vertical profile compared to the oxic and anoxic zones. 

Areas where high rates of activity and/or cycling would be highlighted as hot spots, a 

term regularly used by geochemists in other fields e.g. brownfield regeneration. 

Areas with particularly low rates of activity and/or cycling would be termed cold 

spots. McClain et a1. (2003) used the terminology to identify zones where many 
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processes converge and create high rates of activity, when such events occur over a 

limited period these are referred to as hot moments. The resultant model would 

demonstrate vertical and horizontal variation in ecohydrological and geochemical 

processes and cycling in peatlands. 

The results from this study indicate that the ever popular diplotelmic model is over

simplified, and does not provide sufficient detail to encompass the variations found 

in the properties of the peats between the different sites. The polytelmic model 

would also not be applicable, as such a model would merely add layers of 

complexity to account for variations in the vertical profile, but would still be broadly 

split into aerobic and anaerobic zones. 

The afforested site at Moor House was found to have a higher soil moisture content 

at the edges than in the centre of the site, thus demonstrating that horizontal variation 

exists as well as vertical variation. In addition, ridges within the forest were found to 

be drier than furrows, thus adding additional complexity to the trends observed at the 

site, and any models that might subsequently made for the site. 

Elsewhere, significant differences between water table levels and carbon losses 

within individual sites were found. For example, on the burnt (every 10 years) site, 

collar 13 was found to have significantly higher water table levels than other 

locations at Hard Hill plots, however, collars 14 and 15 on the same site did not. 

The variation in water table levels demonstrates that dividing the site into two zones 

(aerobic and anaerobic) does not reflect the conditions at the site, and thus cannot be 

used to explain the results found. Furthermore, whilst the drained site had 

significantly deeper water table levels than the grazed site and some of the burnt 

plots, the drained site had the highest peat moisture content of all the sites. These 

findings indicate that despite lower water table levels, the area above the water table 

might not be as aerobic as one would expect, and consequently the diplotelmic 

model could not be used to explain trends in the data, as evidenced in Chapter 7. 

The results in this thesis showed significant differences in soil nutrient and carbon 

concentrations (Chapters 4 and 5) and DOC concentrations (Chapter 7) with depth. 

The pH was found to decrease with depth, however nutrient concentrations tended to 

fluctuate with values decreasing from the surface peats downwards before rising 
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again in the 40 to 50 cm zones. In the case of DOC concentrations, values tended to 

be significantly higher in the 20 cm zone than the 10 and 40 cm zones. Research by 

Sundh et al. (1997) suggested that the boundary between aerobic and anaerobic peats 

tends to be an optimum zone for microbial activity. The presence of such a zone 

favours the polytelmic model; however the fluctuations in nutrient concentrations 

would be better represented by a hotspot model. 

Literature published on alternative models since the commencement of this study 

(e.g. Morris et al. 2011) does suggest that future research should be designed with 

alternative and more complex models in mind than the diplotelmic model. Whilst 

the diplotelmic can be useful in explaining initial findings, the heterogeneity that 

exists within the peatland environment is sufficient that a more detailed model is 

required. The variations and trends observed at Moor House warrant the use of a 

more complex model such as the hotspot model proposed by Morris et al. (201l) to 

describe and explain the results found, however, it is plausible to suggest that such a 

model might not be applicable to sites elsewhere, thus resulting in a site specific 

model only. 

8.5 Conclusions 

All sites were found to lose more carbon dioxide than was gained, burning had most 

beneficial impact on the carbon balance, while afforestation was the most 

detrimental to the carbon balance. The results indicate that nutrient status is not an 

important driver of carbon losses from managed peats (based on a lack of a 

significant correlation between nutrient concentrations and carbon losses), however, 

sites with low primary productivity tended to have low nitrogen concentrations, 

whilst higher primary productivity was observed at sites with greater concentrations 

of nitrogen. Substrate quality did not vary significantly between the sites studied, 

with the exception of lignin which was significantly higher in the afforested site 

compared to the burnt site. A strong correlation was identified between DOC 

concentrations and substrate quality. Sites which had higher concentrations of DOC 

tended to have a higher lignin content e.g. the afforested site, whereas sites with high 

quantities of more labile carbon tended to have lower concentrations of DOC in the 

peat solution. 
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Seasonal differences were found to exist in gains and losses of carbon within each 

treatment, with higher rates of ER in the winter months and lower NEE in the 

summer months owing to higher PP. Temperature was found to be the key driver of 

ER, with no significant correlations existing between ER and the other parameters 

measured. Differences noted in the properties of the peats responsible for carbon 

cycling were observed with depth and across selected sites, demonstrating that the 

traditional diplotelmic model is over-simplified. The hotspot model proposed by 

Morris et al (2011) clearly has advantages, however, there is a risk of the model 

becoming overly complex, and potentially too site specific in order for models to be 

derived that can be applied to multiple peatland sites. Further investigation using a 

field experiment designed to test the practicality of the model would be useful. 
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9 CONCLUSIONS 

9.1 Overview 

Peatlands occupy a mere 3 % of the world's land mass but store up to one-third of 

terrestrial carbon stocks (Gorham 1991). Formed in cold, upland areas with high 

rates of precipitation, they act as carbon sinks, storing more carbon than is released 

through microbial synthesis of the organic matter inputs that form the peat. As 

climate change scenarios develop, the future of peatlands looks uncertain, and with 

this in mind, efforts are being made to identify the extent of the carbon sink or 

source in peatlands, and to better understand peatland carbon cycling. At present, 

little is known about how management affects carbon stocks, and whether one 

strategy might be favoured over another in the future, from a carbon stock 

preservation perspective. As the need to safeguard carbon stocks rises up the 

political agenda, questions are being asked about how peatlands should be managed 

to limit carbon losses (UK National Ecosystem Assessment 2011). 

British peatlands have historically been managed in many different ways to provide 

an income for rural communities. Such practices involve heather burning on grouse 

shooting estates, sheep grazing, drainage to increase the area of land available for 

agriculture and afforestation. Carbon budget calculations for unmanaged peatlands 

have demonstrated that peatlands are carbon sinks (e.g. Worrall et a1. 2009). 

Carbon budget calculations carried out by Worrall et al' (2003 and 2009) indicated 

that carbon dioxide and dissolved organic carbon (DOC) account for the greatest 

losses of carbon from peatland systems. If climate change predictions (increases in 

temperatures and declines in rainfall) are realised, peatlands are expected to become 

sources of carbon as rising temperatures and falling water tables will result in 

increased rates of carbon mineralisation and subsequent losses of carbon. By 

investigating the influence of land management on these key carbon loss pathways, 

more accurate predictions of the effects of climate change on UK peatlands can be 

made. 

Carbon cycling in peat is governed by four drivers (Laiho 2006): environmental 

conditions (e.g. temperature, water table level), substrate quality (e.g. how 
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recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesise the carbon 

stocks) and microbial community (e.g. whether the microbes present are able to 

utilise the available substrate). Changes in one or more of these drivers will 

influence the carbon budget of a peatland. How land management influences these 

drivers has previously been unclear. 

The research presented in this thesis aimed to examine the effects of land 

management on the environmental conditions, nutrient status and substrate quality of 

managed peatlands. The work involved studying small managed plots at the Moor 

House NNR in Cumbria, where all four of the main methods of peatland 

management in the UK were present - burning, grazing, drainage and afforestation. 

The investigation comprised a combination of fieldwork and laboratory work, and 

the detailed results were presented in Chapters 4 to 7, with a discussion of the 

implications of the findings presented in Chapter 8. This final chapter aims to 

summarise the key findings of the research with respect to the aims and objective set 

out in Chapter 1, and to identify limitations in the data and to provide suggestions of 

the directions in which future research could go. 

9.2 Findings in Relation to Aims 

Aim: - to understand how the key drivers of the carbon cycle vary between differently 

managed peatlands, focussing primarily on the four main methods of management of 

blanket peatlands in the UK; but also considering burning frequency and 

combinations of burning and grazing. Differences in the chemical and physical 

properties of managed peatlands will be used to aid understanding of losses of 

carbon dioxide and dissolved organic carbon (DOC) from peatlands. 

Overall, the results of this research have indicated that environmental factors have 

the strongest bearing on carbon losses from peatlands, although substrate quality is 

not irrelevant. The nutrient concentrations present in peatlands do not appear to be 

significant, although evidence of potential linkages between PP and nitrogen were 

identified. In terms of carbon losses from managed peatlands, this research has 

indicated that the only one of the main four treatments studied was a carbon sink -

the burnt (every 10 years) site. Interestingly, the site that was burnt on a 20 year 

rotation was not found to be a carbon sink, despite having slightly higher rates of PP. 
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Overall, the differences in carbon losses between the burnt sites were minimal, and 

few significant differences were identified between the treatments. In contrast, 

losses of carbon were much greater in the drained and afforested site, with greatest 

losses of both carbon dioxide and DOC being identified in the afforested site. 

Caution should be urged when examining the data from the afforested site however, 

as NEE measurements could not take into account the tree canopy, and thus reflect 

the understorey vegetation only. 

Few significant differences in the chemical composition of the peat were observed 

between the sites in Chapter 5. Lignin was identified as the dominant constituent of 

the peat for all the sites, with highest concentrations present in the afforested site, 

and least in the burnt (every 10 years) site. The high lignin content of the peats from 

all the sites indicated that the peats are in the latter stages of decomposition, and are 

thus fairly recalcitrant. The higher lignin content in the afforested site, coupled with 

the highest losses of DOC, some of the highest C02 losses through ER, however, 

suggest that the chemical composition of the peat is not as strong a driver as 

originally thought. Carbon stocks were lowest in the drained site and highest in the 

burnt sites. 

The assessment of NEE in Chapter 6 indicated that all the sites acted as carbon 

sources, with the exception of the burnt (every 10 years) site which was a very small 

carbon sink. Temperature was found to be the dominant driver ofER, accounting for 

between 54 and 92 % of variation in the data (p=0.001). The afforested site was the 

only treatment where a significant relationship between temperature and ER was not 

identified. Average PP were highest in the burnt and grazed sites indicating that 

regeneration of the vegetation through management is of key importance in terms of 

sequestering carbon. The lowest averagePP was identified at the drained site, where 

concentrations of nitrogen were also lowest. In terms of the structure of the peat, the 

air filled porosity of the burnt and grazed (every 20 years) site was greatest, however 

no linkages were established between the structure of the peat and gaseous carbon 

losses. 

Losses of DOC were greatest from the afforested site, and it was at this site that the 

findings of Clark et al. (2006) were supported, in that lower water table levels were 

found to coincide with higher concentrations of sulphate and more acidic conditions, 
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causing a reduction in DOC losses, which increased once the water table rose. On 

other sites, this relationship was not identified, and other drivers were found to 

control losses of DOC e.g. pH and water table levels. 

9.3 Findings in Relation to Objectives 

Objective 1. To establish how concentrations of nutrients required in the carbon 

cycle for synthesis of carbon stocks compare between differently managed peatlands 

within the upper 50 cm of the peat profile. 

The results of the investigative work into the influence of land management on 

peatland nutrient concentrations demonstrated that land management does not cause 

significant differences in nutrient concentrations compared to unmanaged sites. The 

moisture content of afforested peats increased compared to the unmanaged site, yet 

unexpectedly, the moisture content of the drained site was significantly higher than 

the unmanaged site, suggesting that the drains were ineffective. These results imply 

that the tree demand for water is more important than the depth of the drains in terms 

of moisture content. The drains at Moor House are spaced between 10 and 15 m 

apart, and previous work e.g. Hudson and Roberts (1982) has suggested that a 

maximum spacing of 2 m is required to have a significant effect on peat moisture 

content. The drained and afforested sites were found to have significantly more 

acidic conditions than the unmanaged site. 

Previous work by Allen (1964) suggested that burning causes nutrient concentrations 

in peat to increase due to inputs of ash. These findings were supported by work 

carried out on heathland soils by Forgeard and Frenot (1996), however, in both cases 

the results were based on laboratory studies not field studies. The only field study to 

published to date on the effects of burning on peatIand nutrient concentrations was 

that of Dikici and Yilmaz (2006) who looked at severe bums on a Turkish peatIand 

that had also been drained. Their results indicated that nutrient concentrations 

increased significantly compared to unburnt areas of the same peatland. The 

research carried out at Moor House did not identify significant increases in nutrient 

concentrations due to burning. It is plausible to suggest that nutrient concentrations 

may have increased immediately after the bum, but when the peat cores were 
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collected two years post-burn, no significant differences were identified, and 

consequently the implications for the carbon cycle are not significant. 

Previous research on the effects of grazing on peats has suggested that the effects of 

nutrient concentrations in peats are unclear. This most recent research has indicated 

that for the lightly grazed peat at Moor House, no significant differences in nutrient 

concentrations, moisture content or pH were evident. The findings demonstrate that 

under light grazing, inputs of nutrients from sheep urine and faeces are not sufficient 

to make a significant difference to the nutrient content of the peat, or possibly were 

leached out of the peat. 

Studies of the nutrient concentrations in drained upland peats have not previously 

been studied, although the results of a study at a lowland site in Somerset suggested 

that draining peats results in a decrease in nutrients (Heathwaite 1990). In the case 

of this study, the drained site was found to be the most acidic of all the treatments 

considered, and was significantly more acidic than the unmanaged site. The drained 

site also had a significantly higher moisture content than the unmanaged site. The 

nitrogen content of the drained site was the lowest of all the sites, although 

concentrations were not significantly lower than the unmanaged. Furthermore, the 

potassium content of the drained site was higher than at all the other sites, but was 

not significantly different from the unmanaged site. The lack of significant 

differences could be attributable to the drain spacing. 

The impacts of afforestation on peatland nutrient concentrations have not been 

previously published, although suggestions as to the potential impacts have been 

made e.g. Jandl et al. (2007). Given the additional demand for nutrients by trees, 

concentrations of nutrients were expected to be lower, the pH reduced (Miller et aI. 

1996) and moisture content reduced (Pyatt 1993). The results of this research 

confirmed the hypothesis in that reduced moisture content and pH were observed but 

there were no significant differences in the nutrient content of the peats were 

observed. 

The effects of management on the nutrient status alone are not thought to be 

significant enough to impact on the carbon cycle, suggesting that future efforts to 

preserve peatland carbon stocks do not need to focus on manipulating the nutrient 
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balance in order to encourage carbon sequestration. Although no statistically 

significant correlations were identified, the nitrogen content of the site burnt on a 20 

year rotation was found to be higher than any other site, and this site also had highest 

rates ofPP, suggesting that nitrogen concentrations could be limited, and thus from a 

carbon storage perspective, additions of nitrogen would be beneficial in order to 

promote carbon sequestration. 

The implications for higher PP are not as straightforward as might first appear. The 

burnt (every 20 years) site had the lowest C:N ratio, suggesting that carbon was more 

rapidly broken down than at other sites, although the C:N ratio was only 

significantly different to the burnt and grazed (every 10 years) and afforested sites. 

PP was not significantly different from other sites. The carbon content however, was 

the highest of all sites, and significantly more than the drained, afforested, grazed 

and unmanaged sites, suggesting that the higher nitrogen content was valuable in 

terms of capturing additional carbon by promoting rates of PP. 

The burnt (every 20 years) site was found to be a slight carbon source based NEE 

data alone with some of the lowest concentrations of DOC loss. The high C:N ratio 

however means it is possible the site would become a bigger source, particularly 

during periods when temperatures are high, given the correlation between 

temperature and ER. 

Objective 2. To investigate what differences exist in the carbon stocks of 

differently managed peatlands and to identify how carbon quality varies as a result 

of peatland management, with a focus on establishing which peats are the most 

recalcitrant. 

Analysis of carbon stocks in managed peats at Moor House identified the burnt and 

grazed (every 10 years) site as having the most carbon and the drained site 

containing the least. Statistical analysis revealed no significant differences in the 

carbon stocks of the managed peats within the upper 10 em of the profile. In terms 

of carbon quality, lignin formed the dominant fraction, within which statistically 

significant differences were identified. Lignin concentrations were highest in the 

afforested site, implying that afforested peats were the most recalcitrant. Lignin 

294 



Conclusions 

concentrations in the drained and burnt (every 10 years) sites were found to be 

significantly lower than the afforested site. 

Despite having the most recalcitrant carbon, the afforested site also had the lower 

carbon stocks than bumt sites, potentially due to low rates ofPP. Measurements of 

PP in the afforested site were limited as only the understorey could be measured as 

opposed to the tree canopy and understory vegetation. Measurements based on 

understorey vegetation suggested no significant differences existed compared to the 

unmanaged site, neither did the carbon stock or lignin content. Despite the high 

lignin content and recalcitrant nature of the afforested peats, losses of both carbon 

dioxide and DOC were greatest from the afforested site. Only losses of DOC were 

significantly greater than other sites. The opposite trend was identified in the burnt 

(every 10 years) site, where lignin concentrations were lowest but carbon stocks 

were among the highest and losses of DOC the lowest. Rates of ER were not 

significantly different to other sites. NEE for the burnt (every 10 years) site was 

negative, indicating that the site is a sink - the only one of the sites examined, owing 

to the high rates of PP at the site. The results indicate that rather than highly 

recalcitrant carbon composition favouring carbon stores and reducing losses, 

substrates with greater concentrations of more labile compounds e.g. holocellulose 

and SFOW promote carbon storage, possibly because the microbes have begun to 

synthesise these compounds and before they have become bound into the organic 

matter. 

Overall the results demonstrated that management has a significant effect on carbon 

quality and the C:N ratio but not on carbon stocks. Although significant differences 

in the chemical composition were only found for the lignin content between 

treatments, linkages were however identified between the chemical composition and 

DOC production, demonstrating that substrate plays an important role in peatland 

carbon cycling. 

Objective 3. To identify the effect of land management on the physical drivers of 

the peatland carbon cycle. 

The impact of land management on the physical structure of peatlands has not been 

previously investigated. The results of this study have demonstrated that 
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management has a significant effect on the density and porosity of peats. The 

afforested site was found to have significantly denser peats whilst the drained site 

had the least dense peats. In terms of the carbon cycle, no significant linkages were 

identified between the physical structure of the peat and either DOC or NEE losses 

of carbon. 

Objective 4. To establish how peatland management affects carbon dioxide losses 

and environmental controls on carbon dioxide losses. 

Previously, measurements of ER on managed peats have been published for one or 

two types of land management within one study, but a comparison of multiple 

management practices with an unmanaged site has not been published at a single 

site. The results demonstrated that significant differences in ER and PP do not exist 

between differently managed sites or in relation to the unmanaged site. Much debate 

exists in published literature as to the causes for fluctuations in ER, with some 

authors suggesting that water table levels are of key importance e.g. Nilsson and 

Bohln (1993), and others finding no relationship between water table and ER (e.g. 

Updegraff et al. 2001). Temperature was clearly the dominant driver of ER, 

accounting for between 54 and 92 % of variation (p=O.OOI), with the exception of 

the afforested site. 

All sites were found to be carbon sources with the exception of the burnt (every 10 

years) site which acted as a very slight carbon sink. Seasonal differences were 

identified in all the sites, with greater ER rates in the summer than winter, supporting 

the notion that temperature is the dominant control on ER. Sites that were burnt on a 

10 year rotation were found to have significantly greater NEE values in winter than 

summer. 

Previous studies of ER from managed sites have found grazed and burnt sites to act 

as both sinks (Ward et al. 2007) and sources (Clayet al. 201Ob). Additional inputs 

of nutrients were expected to increase rates of PP and thus alter the carbon balance 

from these sites. Given the absence of significant differences in terms of nutrient 

content and substrate quality between the grazed and burnt sites with the unmanaged 

site, it is unsurprising that no significant differences were identified in terms of ER. 

Furthermore, whilst significant differences were not identified in water table levels 
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between the sites, water table levels were not identified as a significant driver of the 

ER. 

The afforested and drained sites were expected to have greater losses of ER owing to 

the presence of reduced water table levels, however, as water table levels were not 

identified as a significant driver of the ER, significantly higher ER rates were not 

observed in these sites compared to the unmanaged site. 

Objective 5. To determine how concentrations of DOC in peat solution varies with 

depth and between managed sites. 

Previously the effects of land management on DOC concentrations have focussed on 

one or two management practices, and as yet, comparisons between a range of 

treatments have not been carried out. This study provided data on concentrations of 

DOC in peat solution wells from four differently managed sites and comparisons 

were made to an unmanaged site. The data collected enabled a comparison to be 

made of the effects of land management without confounding factors such as dilution 

and collection of data from different catchments. 

The drained and afforested treatments were expected to lose the most DOC owing to 

the reduced water table levels, the actions of the phenol oxidase enzyme and/or 

sulphur oxidation to sulphate, which has been reported as a cause for increased DOC 

losses (Clark et a1. 2006). The afforested site was found to lose significantly more 

DOC than all other treatments. The results were attributed to the deeper water table 

levels and as a consequence, oxidation of sulphates, as described under the findings 

for objective 6. The drained site also had significantly higher losses of DOC 

compared to the unmanaged site; however water table levels and acidity were not 

significantly different to those at the unmanaged site. The burnt (every 10 years) site 

lost the least DOC, which was attributed to the more acidic conditions compared to 

all other sites, and significantly higher water table levels resulting in anaerobic 

conditions. The results from the grazed site indicated that no significant difference 

existed in DOC concentrations between the grazed and unmanaged site, in line with 

the findings of Clay et al. (201Ob). 

In terms of the peatland carbon budget, light burning, light grazing and no 

management at all appeared to be the most beneficial in terms of reducing the 
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amount of carbon lost. The burnt (every 10 years) site was significantly more acidic 

than most other treatments and had higher water table levels than other treatments, 

indicating that it represents the best option for reducing microbial synthesis of 

organic carbon. 

Objective 6. To examine changes in the water chemistry of managed peatlands, 

with a focus on the properties that are relevant to DOC loss. 

Significant increase in DOC concentrations have been observed from peatland 

catchments over the last 40 to 50 years across northern Europe (Evans et a1. 2005). 

The causes for such increases has been the subject of much debate, with increases in 

temperature (Fenner et a1. 2007), changes in water table levels (Pastor et a1. 2003), 

the enzyme latch mechanism (Freeman et a1. 200Ib), oxidation of sulphur to sulphate 

and subsequent acidification (Clark et a1. 2006) all discussed by peatland scientists. 

This study provided a unique opportunity to assess the potential impacts of land 

management on DOC losses from peats, and to determine what might be the 

underlying causes for such variations. 

The mechanisms driving DOC losses at the afforested site match the findings of 

Clark et a1. (2006) in that lower water table levels coincided with increased sulphate 

concentrations and thus reduced DOC concentrations prior to water table levels 

rising. This mechanism was not however found to be applicable at all sites, 

suggesting that management alters the dynamics of DOC production and loss from 

the peat solution. pH and water table levels were found to be the dominant drivers of 

DOC production, however, sulphate concentrations had little effect, and where 

significant correlations were identified between DOC and sulphate, the relationship 

tended to be positive. Significant differences in the pH of the peat solution were 

identified in most sites (except the burnt and grazed (every 20 years) and drained 

treatments}. Significant differences in sulphate concentrations were not identified 

however. 

9.4 Data Limitations and Future Research Recommendations 

This research has provided an insight into the effects of land management on the 

carbon cycle. The results have provided a unique comparison of the four most 
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common peatland management practices in the UK with an unmanaged site. The 

data are not without limitations however, and a summary of these is provided below. 

The main limitation in the data was the measurement of NEE in the afforested site, 

where only understorey vegetation could be measured, and thus the measurements 

are not representative of afforestation as a whole, and do not allow judgements to be 

made about the overall carbon balance of afforested peats. 

The management practices at Moor House are fairly light, the burn was not intense 

(records suggest that the hummocks were still frozen post-burning), grazing is at 

0.04 sheep ha-) (Ward et a1. 2007) and the drains are spaced at 10 to 15 metres apart. 

The installation of monitoring wells to 0.5 m beneath the surface of the peat was not 

sufficient for samples to be recovered during every monitoring visit. Deeper wells 

would allow better monitoring of peat solution chemistry and water table levels, 

particularly in the afforested site. 

The potential options for future research are numerous, although budgetary and time 

constraints are more than likely to limit the extent to which further work could be 

achieved. The following options would provide additional infonnation that would 

build on the foundation of knowledge that has been achieved during this study: 

.:. Investigate carbon budgets using eddy-covariance techniques for each treatment, 

which could provide year round, continuous data that could be supplemented 

with peat solution sampling 

.:. Study managed sites outside of the Moor House NNR to identify whether the 

data are replicable or whether Moor House is a unique case 

.:. Study differences in management intensities to determine the effects on both 

carbon losses and drivers of the carbon cycle. For example, to compare closely 

spaced drains to widely spaced drains, light burning compared to heavy burning, 

light grazing compared to heavy grazing, and to compare the effects of different 

species of trees. The results of such work could be compared to the results of 

this study which has examined sites that have been subjected to light 

management practices . 

• :. Carry out further research into the chemical composition of peats using analysis 

such as pyrolysis to look at the macro-molecular structure of the peat to identify 
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if differences occur in the chemical composition of the managed peats at a finer 

scale. This could enable a better understanding of why some managed peats lost 

or stored more carbon than others . 

• :. Examine the effects of time since management practices were implemented e.g. 

time since burning, using a carefully managed set of sites that allow differences 

between sites that have been burnt for several years compared to sites that have 

been recently burnt. The work carried out in this study has provided a insight 

into the effects of land management on carbon losses and drivers of the carbon 

cycle over a short period of time, rather than looking at transitional changes, 

which could provide valuable information on whether management over time 

causes fewer or greater differences between sites . 

• :. Further research could also aim to measure all components of the peatland 

carbon budget, and where possible, to measure fluvial fluxes, although doing so 

would require measurements at sites where the whole catchment is subjected to 

one method of management, and in doing so, would make comparisons to an 

unmanaged site difficult. Furthermore, issues of scaling up the results are likely 

to arise, unless a very intensive monitoring regime is executed, which typically 

is not feasible. 

9.5 Concluding Remarks 

The results presented in this thesis demonstrate that land management affects both 

the drivers of the peatland carbon cycle and carbon gains and losses. Both managed 

and unmanaged sites were found to be sources of carbon, with afforestation resulting 

in greatest losses of carbon both within the peat, through ER and DOC losses. 

Future management needs to focus on encouraging increased PP in particular by 

increasing water table levels to encourage Sphagnum growth and thereby peat bog 

growth. Light burning was also found to increase water table levels and peat 

solution acidity, thus reducing DOC concentrations into the peat solution. The 

results demonstrated that temperature is the most important control on ER, and under 

climate change losses are likely to increase, therefore, the need to conserve carbon 

through increased PP is unquestionable. DOC was found to be strongly linked to 

water table levels, pH and the carbon quality, with higher concentrations of 

holocellulose resulting in reduced DOC concentrations. 
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