
Preserving and Synchronising Hand-Written Text
in Model-to-Text Transformation

Sultan Owaytiq Almutairi

Doctor of Philosophy

University of York
Computer Science

December 2022

Abstract

Model-Driven Engineering (MDE) is an approach to software development
that has been suggested as a possible alternative to more traditional pro-
gramming based approaches to the problem of developing software that can
effectively cope with the complexity of modern systems. MDE encourages
the use of modeling languages as a means of providing an abstract descrip-
tion of systems and offers methods for automatically generating a variety
of development artifacts, such as documentation and code, from the source
models. In the process of developing a complex system, several stakeholders
are often involved. These stakeholders make use of a variety of tools in order
to alter the development artifacts, source models and generated code. Model-
to-Text transformations (M2T) are used for the generation from models of
any kind of textual artefact, such as documentation, source code, require-
ments specifications, and manuals. The focus of this thesis is on combining
text generated with such M2T transformations and hand-written text. In
particular, the thesis makes two contributions: (1) an approach for adding
hand-written lines of code anywhere in generated files, and for preserving
them upon re-generation and (2) an approach for automatically synchron-
ising changes made to embedded code fragments at the generated code level,
with the models from which these fragments originate. The two proposed ap-
proaches have been implemented on top of an existing model-to-text trans-
formation language (the Epsilon Generation Languages) to evaluate their
completeness, applicability, and performance.

1

Contents

Abstract 1

Contents 2

List of Contents 4

List of Tables 5

List of Figures 6

Listings 8

List of Algorithms 11

Acknowledgements 12

Declaration 13

1 Introduction 14
1.1 Context . 14
1.2 Research Challenges . 17
1.3 Thesis Contributions . 18
1.4 Thesis Structure . 18

2 Literature Review 20
2.1 Model-Driven Engineering . 20

2.1.1 MDE Principles . 21
2.1.2 Meta-models and Models 22
2.1.3 Modelling Languages 23

2

2.1.4 Meta-Object Facility (MOF) 27
2.1.5 Model Management Tasks 28

2.2 Model Transformations . 29
2.2.1 Model-to-Text Transformations (M2T) 31
2.2.2 Text-to-Model transformation (T2M) 36
2.2.3 Key Technologies of MDE 36

2.3 Integrating Hand-written Text in M2T Transformations . . . 40
2.3.1 Introduction . 40
2.3.2 Existing Mechanisms for Integrating Hand-written Text 41
2.3.3 Two-Way Merging VS Three-Way Merging 48
2.3.4 Discussion . 49

2.4 Round-Trip Engineering (RTE) 50
2.4.1 Round-Trip Engineering 50
2.4.2 Classification of Round-Trip Engineering 53

2.4.2.1 Partial Round-Trip Engineering 53
2.4.2.2 Full Round-Trip Engineering 53

2.4.3 Discussion . 56
2.5 Summary . 57

3 Analysis and Hypothesis 58
3.1 Analysis . 58
3.2 Motivating Example . 59

3.2.1 Problems . 64
3.3 Limitations of Integrating Techniques in M2T Transformations 65

3.3.1 An example of Using Protected Regions in EGL Lan-
guage . 65

3.3.2 Issues of Using Protected Regions 65
3.3.3 Limitations of Consistency between Source Models and

Their Generated Files 67
3.4 Research Hypothesis and Objectives 68

3.4.1 Research Hypothesis 68
3.4.2 Research Objectives 69
3.4.3 Scope . 69

4 Automated Line Based Merging 70
4.1 Introduction . 70
4.2 Extending EGL with Merging Approach 71

4.2.1 Assumptions . 71

3

4.2.2 Extending EGL with Merging Approach 73
4.2.3 Algorithms . 81

4.3 Evaluation . 88
4.3.1 Correctness . 88
4.3.2 Performance . 95
4.3.3 Threats to Validity . 98

4.4 Discussion . 100
4.4.1 Limitations . 101
4.4.2 Probability of Hash Collisions 101

4.5 Alternatives . 102
4.6 Summary . 106

5 Synchronised Regions 107
5.1 Introduction . 108
5.2 Extending EGL with Sync Regions 108

5.2.1 Assumptions . 108
5.2.2 Extending EGL with Sync Regions 111
5.2.3 Synchronising Sync Regions with Model Elements . . . 113

5.3 Evaluation . 116
5.3.1 Correctness . 117
5.3.2 Performance and Scalability 122
5.3.3 Generalisability . 126
5.3.4 Threats to Validity . 132

5.4 Discussion . 134
5.4.1 Applicability and Limitations 134

5.5 Summary . 136

6 Conclusion 137
6.1 Summary . 138
6.2 Thesis Contributions . 138
6.3 Future Work . 139

Bibliography 143

4

List of Tables

4.1 Inputs and expected outputs of adding a new line to the ori-
ginal lines. 90

4.2 Inputs and expected outputs of adding new lines to the original
lines. 91

4.3 Inputs and expected outputs of adding new lines inside pro-
tected regions. 92

4.4 Inputs and expected outputs of modifying original lines. . . . 92
4.5 Inputs and expected outputs of deleting original lines. 93
4.6 Inputs and expected outputs of modifying hash line. 93
4.7 Inputs and expected outputs of adding new similar lines in the

same position of the template and its generated file. 94
4.8 Inputs and expected outputs of adding new different lines in

the same position of the template and its generated file. 95
4.9 Result of the comparison. 97
4.10 Probability of hash collisions. 103

5.1 A result of testing the possible cases for using sync regions. . . 119
5.2 Average execution time and memory consumption form the

different number of files and sync regions 123
5.3 Generalisability experiment results 127

5

List of Figures

2.1 The relationship among the various MD* acronyms [21]. . . . 21
2.2 Meta-model of the Component-Connector DSL. 24
2.3 BoilerController model that conforms to the meta-model in

Figure 2.2. 24
2.4 The four layers of meta-modelling infrastructures [160]. 28
2.5 An example of M2T transformation using EGL language. . . . 32
2.6 Simplified Ecore’s components diagram [140]. 37
2.7 The environment of the Epsilon suite [85]. 40
2.8 Generation gap pattern for the "Library" example. 42
2.9 An example of extended generation gap pattern. 43
2.10 An example of delegation pattern. 44
2.11 An example of how include mechanism works. 44
2.12 An example of how partial classes mechanism merges the hand-

written and generated code to one single artifact. 45
2.13 Overview of an aspect-oriented integration mechanism for a

part of a generated software system. 46
2.14 An example of how PartMerger mechanism merges source code

artifacts such as Java code to one artifact. 46
2.15 An example of protected regions mechanism in generated file. 47
2.16 An example of a three-way merging. 49

3.1 Meta-model of the Component-Connector DSL. 60
3.2 BoilerController model that conforms to the meta-model in

Figure 3.1. 61

4.1 An overview of the proposed approach for merging hand-written
text into generated files using EGL. 73

4.2 An example of hashes for each generated line in an original file. 75

6

4.3 An example of the algorithm checking all hashes are present
when one line has been added. 75

4.4 An example of a corrupt file and how the algorithm determines
there are missing lines. 76

4.5 An example of a corrupt file and how the algorithm determines
there are modifying lines. 76

4.6 Result of measuring the average time when M2T transforma-
tion run 100 times. 97

4.7 An example of preserving the copy of the generated files in a
"master" directory. 104

4.8 An example of preserving the hashes of the generated files in
a "hashes" directory. 105

4.9 An example of preserving all the hashes in a separate file. . . . 105

5.1 An overview of the proposed approach for synchronizing source
model with target generated files using EGL. 110

5.2 Results of measuring the average time for different size of mod-
els and number of sync regions as the number of sync regions
increases. 124

5.3 Results of measuring the average memory usage for different
size of models and number of sync regions as the number of
sync regions increases. 125

5.4 Results of measuring the average time for different size of mod-
els and number of sync regions as the number of files increases. 125

5.5 Results of measuring the average memory usage for different
size of models and number of sync regions as the number of
files increases. 125

5.6 Result of updating the BoilerActuator component in the model
with behaviour written in Java. 127

5.7 Result of updating the BoilerActuator component in the model
with hand-written HTML markup. 129

5.8 Result of updating the BoilerActuator component with new
behaviour in python model. 130

5.9 Result of updating the BoilerActuator component with new
behaviour in ruby model. 131

6.1 An example of a sync engine. 141

7

Listings

2.1 Emfatic code for defining the meta-model presented in Fig-
ure 2.2. The ref keyword is used to represent a standard ref-
erence, whereas the var keyword is used to represent a com-
position reference. 39

3.1 EGL rules for generating Java code from component-connector
models . 61

3.2 EGL template that generates a Java class realising the com-
munication between components of the system 62

3.3 EGL template for generating Java class for each individual
component . 63

3.4 Generated class for BoilerController component 63
3.5 Generated class for BoilerActuator component 64
3.6 Generated class for TemperatureController component 64
3.7 Declaring protected regions using EGL language 65
3.8 The result of executing the template of Listing 3.7 against the

BoilerActuator component . 66
3.9 The result of executing the template of Listing 3.7 against the

BoilerActuator component . 66
3.10 Extended BoilerActuator class with behaviour 66
3.11 Extended TemperatureController class with behaviour 67
4.1 An example of corrupted protected region. 72
4.2 The result of generating TemperatureController class from the

template 4.3 . 74
4.3 An example of EGL template for generating TemperatureCon-

troller class . 78
4.4 The result of generating TemperatureController class from the

template 4.3 . 78

8

4.5 An example of adding a new line into the template 4.3 for Tem-
peratureController class . 79

4.6 The result of adding and merging one line into the Temperat-
ureController class . 79

4.7 An example of adding a new line into the generated file 4.4 for
TemperatureController class 80

4.8 The result of adding a new line into TemperatureController class 80
4.9 An example of adding a new line into the template 4.3 for Tem-

peratureController class . 81
4.10 An example of adding a new line into the generated file 4.4 for

TemperatureController class, but in different place from the
one that added to the template 81

4.11 The result of merging both lines in TemperatureController
class after the transformation rerun 82

4.12 An example of adding a new line into the template 4.3 for Tem-
peratureController class . 82

4.13 An example of adding a new line into the generated file 4.4
for TemperatureController class, but with different value from
the one that added to the corresponding line in the template. . 83

4.14 The result of detecting conflicts between the template 4.12 and
the generated file 4.13 . 83

4.15 An example of calculating the time taking 96
4.16 An example of corrupted protected region 99
4.17 An example of generating hashes at the end of every generated

line. 103
4.18 An example of generating hashes at the begining of generated

file. 104
4.19 An example of generating hashes at the begining of every gen-

erated line. 104
5.1 Extended version of the template of Listing 3.3 with a sync

region . 112
5.2 The result of executing the template of Listing 5.1 against the

TemperatureController component 112
5.3 Extended TemperatureController class with hand-written be-

haviour . 113
5.4 Sync regions checking examples. 116
5.5 An example of sync region without ID Element. 120
5.6 An example of sync region without attribute. 120

9

5.7 An example of sync region without startSync Token 121
5.8 An example of sync region without endSync Token. 121
5.9 An example of sync region without respective element in source

model. 121
5.10 An example of sync region without attribute name in source

model. 122
5.11 An example of sync region with incompatible content. 122
5.12 An example of EGL template to generate Java code with a

sync region . 127
5.13 An example of EGL template to generate an HTML page with

a sync region . 127
5.14 An example of EGL template to generate Python code with a

sync region . 128
5.15 An example of EGL template to generate Ruby code with a

sync region . 128
5.16 An example of generating Java code for the BoilerActuator

component with one sync region 128
5.17 An example of generating an HTML page for the BoilerActu-

ator component with one sync region 129
5.18 An example of generating Python code for the BoilerActuator

component with one sync region 129
5.19 An example of generating Ruby code for the BoilerActuator

component with one sync region 129
5.20 An example of adding hand-written Java code for the Boiler-

Actuator component inside a sync region. 130
5.21 An example of adding hand-written text in HTML code for

the BoilerActuator component inside a sync region. 130
5.22 An example of adding hand-written Python code for the Boil-

erActuator component inside a sync region. 131
5.23 An example of adding hand-written Ruby code for the Boil-

erActuator component inside a sync region. 131
5.24 An examples of corrupted sync regions for TemperatureCon-

troller class . 133

10

List of Algorithms

1 How merging engine works . 85
2 How EGL generates hashes . 86
3 How merging algorithm detects comment style for generated

files . 87
4 How merging algorithm checks all original lines are present . . 88
5 How merging algorithm extra original lines 89
6 How synchronise algorithm identifies sync regions 114
7 How the synchronisation algorithm checks for and responds to

value consistencies . 117

11

Acknowledgements

In the first place, I would like to express my endless gratitude to my super-
visors Prof. Dimitris Kolovos and Dr. Thanos Zolotas for their incredible
and continuous support and valuable guidance throughout the five years for
this project. This thesis could not have been realised without their support.
I will be forever indebted to them for everything they have given me.

I would also like to thank my assessor Prof. Ibrahim Habli and external
examiner Prof. Artur Boronat, for providing me with feedback and advice.

My heartfelt gratitude and appreciation go to my beloved mother, sisters,
and brothers for their unending love and support on a daily basis. They are
constantly present to solve any problems that happen during my life.

A big thanks goes to my wife, for fruitful discussions and advice on my
work but also for her patience and continuous support during this period.
Thanks to you, our daughter, and our son, for understanding my absences
and shortcomings throughout this period.

I would like to thank my colleagues in the Automated Software Engin-
eering group, Dr. Horacio Hoyos, Dr. Beatriz Sanchez, Dr. Konstantinos
Barmpis, Dr. Alfa Yohannis, Dr. Faisal Alhwikem, Dr. Simos Gerasimou,
Dr. Sina Madani, Sorour Jahanbin and Qurat ul ain Ali, for their daily sup-
port. Thanks to my colleagues and friends in the department Dr. Sultan
Alahmari, Dr. Saud Yonbawi, Dr. Naif Alasmari, Dr. Abdullah Albalawi,
for the interesting discussions that we have shared. I would also like to thank
Dr. Ibrahim Alotaibi, Mr. Mohamad Alassaf and Mr. Abdullah Alotaibi for
making me feel settled and happy in the UK, and for consistently offering
good advice.

Finally, thanks to Shaqra University, which granted me this scholarship
and supported me throughout this period.

Declaration

I declare that all the work of this thesis is the result of my own research which
I carried out between February 2018 and December 2022. This work has not
previously been presented for an award at this, or any other, University. All
sources are acknowledged as References. The following publication has been
written by the PhD candidate.

S.Almutairi, A. Zolotas, D. Kolovos “Towards Round-Trip Engineering of
Code Fragments Embedded in Models”, in Proceedings of the 16th Workshop
on Models and Evolution (ME) 2022 - MODELS ’22

13

Chapter 1

Introduction

This chapter discusses the significance and scientific challenges of the integ-
ration of integration of hand-written and generated text and the synchron-
isation process between source models and their target-generated artefacts
in Model-To-Text Transformations (M2T), in the context of Model-Driven
Engineering (MDE). While the integration of hand-written text and the syn-
chronisation process are essential and have been the subject of several re-
search contributions, there are still many challenges that can be improved.
These challenges are described in more detail in the following section.

Chapter Structure. Section 1.1 provides a brief description of the
research area of this thesis. Section 1.2 presents the research challenges.
Section 1.3 provides a brief description of the contributions of this thesis.
Lastly, the structure of this thesis is presented in Section 1.4.

1.1 Context
Model-Driven Engineering (MDE), which advocates for automation and provides
developers with the ability to work with artefacts that are near to their area
of expertise [126]. The core concept underlying MDE is to employ mod-
els that capture the underlying system complexity in a specific context to
simplify its understanding and manipulation. Models were traditionally rep-
resented as drawings of systems views, and their purpose was to direct the
process of development.

Nevertheless in MDE processes, models are alive entities that are at the
centre of the development process [126]. They are responsible for capturing

14

information in an organised manner so that it can be processed automatically.
Models are capable of being compared, queried, validated, and transformed
into other models or different artefacts (e.g., documents, configuration arte-
facts and code). All of these automated tasks save time that would have been
spent on manual and often error-prone tasks. For instance, code generation
can decrease the time it takes to write code, the errors of programming, and
code reviews.

Model-to-Text (M2T) transformations are used for the generation of any
kind of textual artefact from models, such as documentation, source code, re-
quirements specifications, and manuals [123, 108]. In the automated software
development field, code generation is of paramount importance, and is a core
concept in MDE [157, 62]. Software quality and programmers’ productivity
can improve significantly through correct code and proper comments. Auto-
matic code generation can alleviate problems, which are typically costly,
error-prone, and time-consuming [157]. According to Balzer et.al. [13] there
are many advantages of code generation. It aims to mitigate the need for
tedious work, and to minimise maintenance costs by raising the quality of
code and helping limit programming errors [25]. Developers can save time
as they need to write fewer lines of code. However, as models should be at a
high level of abstraction, they cannot capture all the system information [53].
Thus, developers require to integrate the missing information into generated
artefacts.

Round-trip engineering (RTE) is the ability to automatically preserve the
consistency of various changing software artefacts in software development
environments/tools [63]. RTE is one aspect of MDE, because the target gen-
erated code and the source model are interrelated; altering the generated
code will affect the source model and vice versa. RTE consists of forward
and reverse engineering. Forward engineering is the process of converting
conceptual models into source code, whilst reverse engineering is the process
of converting source code into conceptual models [104]. In software develop-
ment, generating code from source models and then performing round-trip
engineering are critical processes. Throughout the development process, it
is vital that software-related artifacts such as models and their source code
remain in sync [104].

Dealing with integrating hand-written text is one of the main challenges
in M2T transformations. Greifenberg et al. [53] discussed eight mechanisms
to integrate generated and hand-written text for OOP languages such as gen-
eration gap and delegation mechanisms. Some of these mechanisms require

15

a clear separation between hand-written text and auto-generated text. Some
benefits arise in separating hand-written text and auto-generated text, such
as mitigation of generated code becoming polluted, and enabling the edit-
ing of just a separate file for hand-written changes. However, a drawback is
system information being spread between two or more places, and possible
developer confusion from the extra files. Other mechanism proposals involve
merging hand-written text merged into generated code using constructs such
as protected regions. For example, the protected regions mechanism works
by inserting hand-written text inside tagged blocks within generated files,
eliminating the need for additional files. However, using such a mechanism
the generated code will be polluted with hand-written text and the com-
ment/tags for protected regions, as each protected region will have two extra
lines: the beginning and the end comments of the regions. Another major
limitation of using a protected region mechanism is that if the developer
wishes to change any part of the class, such as adding a new variable or a
new field, they may be unable unless an appropriately positioned protected
region is present. Although, using these existing mechanisms does provide
benefits to developers they still have some restrictions. A mechanism that
solves these limitations of existing mechanisms and gives developers the free-
dom to include their hand-written text anywhere in the generated artefacts,
would be valuable.

The second challenge is that Round-Trip Engineering (RTE) process is
not supported in M2T transformations. Demeyer et al. [37] describe RTE
as the integration of design diagrams and source code, as well as modelling
and implementation. The purpose of RTE is thus to ensure seamless interac-
tion between the design and execution stages. Because the target-generated
artefacts and the source model are interrelated, altering the target-generated
artefacts will affect the source model and vice versa. Typically, when gener-
ated artefacts, that were originally generated from source models, are mod-
ified by developers, consistency between these models and their generated
artefacts is lost. Supporting the process of maintaining consistency between
two different representations is a complex task. Therefore, the majority of
developed tools provide relatively limited support.

This thesis proposes two novel approaches: the first is to facilitate the
process of integrating hand-written and generated text and the second is
to support the synchronization process in M2T transformations. The first
challenge is that although there are some mechanisms that support the in-
tegration of hand-written text, some require a clear separation between the

16

generated and hand-written text, or integrate them within the generating
code but using specific tags each time to prevent them of being overwrite
during the regeneration. To meet the first challenge, an approach has been
proposed to facilitate the process of integrating hand-written text in the
generated artefacts directly. This approach is based on giving developers
the freedom to integrate hand-written lines anywhere in the generated code
and preserving these lines upon regeneration without the need for protected
regions. The second challenge is that while there is a substantial abstraction
gap between models and their generated artefacts: Models are at higher level
of abstraction than the generated artefacts [63]. Since of the gap, it is difficult
to apply the currently available synchronization mechanisms because there is
no straightforward mechanism to reflect changes made in generated artefacts
back to the source model. Both proposed approaches have been evaluated
and the results show that the process of integrating hand-written text into
M2T transformations can be facilitated as well as maintaining synchroniz-
ation between the source models and the generated artefacts. In addition,
the proposed approaches have been implemented on top of an existing M2T
language called Epsilon Generation Language (EGL) [124].

1.2 Research Challenges
While models are the centre artefact for designing systems in MDE, they
cannot capture the whole system alone due to the high level of abstraction [22,
64, 53]. Thus, developers are required to complete the missing information
at the code level (generated artefacts). The problems are stated as follows:

When integrating hand-written text is required, it is not ideal
to use common existing approaches as some require a clear
separation between the generated and hand-written text, or in-
tegrate them within the generating code but using specific tags
each time to prevent them of being overwrite during the re-
generation. It is also difficult to synchronize the source model
with such integration at the code level due to the abstraction
gap between source model elements, and the target generated
artefacts.

• Research Challenge 1 (RC-1): Integrating hand-written text
approach. Existing approaches for integrating hand-written and gen-

17

erated text in M2T transformations require deciding in advance where
hand-written text can be contributed.

• Research Challenge 2 (RC-2) : Code-synchronize approach.
To achieve full code generation, models often need to embed code frag-
ments. Editing such fragments at the model level poses usability chal-
lenges (e.g. lack of code assistance, syntax highlighting, error detection)
while editing them at the level of the generated code requires manual
synchronisation (i.e. copying and pasting modified fragments back to
the model), which is labour-intensive and error-prone.

1.3 Thesis Contributions
In this thesis two novel contributions for addressing the problems of extend-
ibility and synchronisation in M2T transformations are proposed:

• First contribution. A technique for adding hand-written lines of
code anywhere in generated files, and for preserving them upon re-
generation.

• Second contribution. A technique for automatically synchronising
changes made to embedded code fragments at the generated code level,
with the models from which these fragments originate.

1.4 Thesis Structure
The remainder of this thesis is organized as follows:

Chapter 2 reviews literature that relates to the concepts behind this re-
search project. More specifically, Section 2.1 presents the key components of
MDE such as meta-model, models, modelling languages, and model manage-
ment activities. Section 2.2 presents an overview of model transformations
with more focus on model-to-text transformations (M2T). Existing mechan-
isms for integrating hand-written text and highlighting their advantages and
disadvantages are presented in Section 2.3. Section 2.4 presents an overview
of round-trip engineering (RTE) in MDE and also highlights the existing
synchronisation mechanisms. Finally, Section 2.5 summarises this chapter.

Chapter 3 presents an overview of the main research problems. More
specifically, Section 3.1 highlights the limitations of using existing integration

18

approaches. Section 3.2 presents an example of these limitations. Section 3.3
contends that there are drawbacks and limitations in using the existing in-
tegrated approaches. Lastly, the hypothesis and objectives of this research
are presented in Section 3.4.

Chapter 4 presents the first contribution of this work, a technique for
embedding hand-written text into the generated files in M2T transforma-
tions. This approach includes solutions for integrating hand-written text
within generated artefacts in Model-to-Text Transformation. More specific-
ally, an overview of the proposed approach is given in Section 4.1. The im-
plementation of the proposed merging approach is presented in Section 4.2.
Section 4.3 presents an evaluation of the proposed approach, mainly its cor-
rectness and performance. The results of the evaluation are also presented.
Section 4.4 presents the limitations of the proposed approach are discussed.
The alternative solutions for the proposed approach are discussed in Sec-
tion 4.5. Finally, Section 4.6 summarises this chapter.

Chapter 5 presents the second contribution of this work, a technique
for supporting round-trip engineering to facilitate the automated synchron-
isation between models, and the textual artefacts generated from them, via
template-based M2T transformation. More specifically, an overview of the
proposed approach is given in Section 5.1. The implementation of the syn-
chronisation approach is presented in Section 5.2. Section 5.3 presents an
evaluation of the proposed approach, mainly its correctness and perform-
ance. The results of the evaluation are also presented. Section 5.4 discuses
the limitations of the proposed synchronisation approach. Finally, Section 5.5
summarises this chapter.

Chapter 6 provides a summary of the contributions proposed by the
thesis to fill the identified gap. It also provides directions for future research
in this work.

19

Chapter 2

Literature Review

This chapter presents an overview of MDE; the key principles, practices,
and the tools that are necessary to understand this thesis. It also presents
a critical review of existing research in the area of model transformations -
more specifically in Model-to-Text Transformations (M2T).

Chapter Structure. Section 2.1 presents background on MDE and its
key technologies. Section 2.2 presents background on model transformations
focusing on M2T transformations. Section 2.3 presents integrating hand-
written text in M2T transformations. It also highlights and compares the
existing approaches. Section 2.4 presents background on Round-Trip Engin-
eering (RTE). It also presents the existing approaches that support RTE in
MDE. Section 2.5 summarises the chapter.

2.1 Model-Driven Engineering
This section presents an overview of Model-Driven Engineering (MDE); the
key principles, practices, and the tools that are necessary to understand this
thesis.

MDE terminology can be quite conflated among the various, unfortunate
synonyms used. To mitigate this confusion, Brambilla [21] presents the dif-
ferent acronyms used in the field. These acronyms within MDE pertain to
different levels of broad to narrow meanings for the application of the par-
ticular approach. Figure 2.1 depicts the relationships between the acronyms
used to describe the modelling approaches.

20

Figure 2.1: The relationship among the various MD* acronyms [21].

The development paradigm, which typically makes models its primary
development process artifact is called Model-Driven Development (MDD).
In this paradigm, the implementation is often generated (semi)automatically
from the source models.

The Object Management Group (OMG) has proposed a Model-Driven
Architecture (MDA), which is considered a particular version of MDD and
includes the use of OMG standards. As a result, MDA can be considered
as a subset of MDD, where OMG has standardised the languages used for
transformation and modelling.

However, MDE can also be considered as a superset of MDD, as it extends
beyond activities solely based in development. This reaches into other tasks
using models in comprehensive software engineering, such as the system un-
dergoing model-based evolution, or a legacy system being reverse engineered
through model-driven activities. The term Model-Based Engineering (MBE)
is a less strict form of Model-Driven Engineering, because that MBE process
involves important roles undertaken by software models, though the devel-
opment is not strictly centred around (or driven by) models as key artifacts.

2.1.1 MDE Principles

Model-Driven Engineering (MDE) is a specific software engineering strategy,
which encompasses the use of models as the principal artefacts in the course

21

of the process [16]. Typical software engineering practises approach problem
solving primarily through a focus on the implementation details and the ar-
chitecture between areas of behaviour. MDE focuses on the use of models as
the primary method of problem solving, unlike typical engineering practises,
which use models more for communication between architects, developers
and stakeholders [84]. This characterisation of the difference between soft-
ware engineering disciplines is in line with Men’s [102] definition of MDE,
describing its reliance on models as first-class entities which accommodate
software maintenance and evolution through model transformations.

The appeal of MDE is founded on a recognised and successful software
engineering principle of using higher levels of design specification abstrac-
tion [131, 103, 11]. This separates system specification from the implement-
ation details and brings benefits such as improved software quality, and re-
duced development time due to the increased automation of repetitive activ-
ities such as code generation and system verification [132, 8]. To understand
these benefits, it is necessary to examine the underlying terminologies and
principles of MDE, which consists of core concepts like models, meta-models,
and surrounding concepts like exchange formats, modelling languages and
modelling platforms.

2.1.2 Meta-models and Models

This section presents the core principles behind MDE, including system,
model, meta-model, and their relationships.

Meta-models and models are elementary units of MDE. The models provide
problem simplification and system abstraction, and the meta-models provide
modelling notation through abstract syntax [21]. The domain concepts can
be captured based on elements within a meta-model, with models used to
express systems in these specific domains [107].

In MDE, "A model is a simplification of a system built with an intended
goal in mind" [17]. Models are used as an abstraction of the actual envir-
onment being developed for, including reality itself, or the rest of a system
being engineered, or both. Typically, a model is comprised of three aspects:
concepts, relationships, and structure [27]. Concepts describe the domain
characteristics being modelled. Relationships describe how concepts are re-
lated to one another. Additional characteristics that limit how the concepts
of domain can be combined to create a valid model are referred to as struc-
ture [27].

22

Another description of a model is that it abstracts the real system in
such a way that it can be studied and queried to answer productive design
questions [18]. Consequently, a model’s utility will be characterised by the
reliability that the stakeholders feel the model provides in answering such
questions, in reaching and maintaining the goals of a system [102]. With this
definition, it follows that the primary purpose of a model is to help reduce the
complexity of a concrete system through abstraction. It is important that
the implementation details of a system are out-of-mind during high-level
design, which MDE helps during the design process through representing
complex problems in simpler, but still practical terms. A primary advantage
in modelling is the ease brought to the understanding of a problem domain,
between both non-technical and technical stakeholders [34]. Scientific fields
will often use models and modelling to their advantage as a concept, such as
in economics, physics, and other mathematical disciplines.

According to Bezivin et. al. "A meta-model is the explicit specification
of an abstraction (a simplification)" [17]. Meta-models are used to repres-
ent the models as concrete implementations of other, more abstract models.
The semantics and constraints detailed in meta-models are associated with
concepts within the domain [130]. A meta-model will ensure that models
conform to a common set of elements, akin to a contract of capabilities,
which allows models to be treated with their specific implementation details
hidden. Figure 2.3 illustrates a model M, that conforms to the meta-model
in Figure 2.2. In this example, all elements of M initially depend on being
defined in MM. A model can implement elements from multiple meta-models
at once, with each meta-model defining just part of a contract as a way to
use and manipulate the model in different situations [107].

2.1.3 Modelling Languages

The previous section explored model and meta-model concepts; this section
focuses on the definition of modelling language characteristics such as meta-
models.

Brambilla has defined a modelling language as "a tool that lets designers
specify the models for their systems" [21]. The definition of a modelling
language also includes its concrete syntax, not just its abstract syntax, with
both contributing their semantics to the definition [79]. Typically, modelling
languages include the three following aspects:

23

Figure 2.2: Meta-model of the Component-Connector DSL.

temperature

temperature temperatureDifference

targetTemperature

TemperatureController

targetTemperature

boilerStatus

temperatureDifference action

boilerStatus

BoilerActuator

action

Figure 2.3: BoilerController model that conforms to the meta-model in Fig-
ure 2.2.

24

The Semantics. These identify the domain, the meaning of modelling
concepts, and their combinations [21]. Consider an example of a typical
modelling construct: the tree. Between languages, the semantics of a tree will
likely differ. These modelling language semantics might be precisely specified
with a formal reference semantics language such as Z [137], or alternatively
employ a natural language to achieve the same in a semi-formal manner [143].

The Abstract Syntax. A language has its described concepts defined
by abstract syntax. For example the concepts of datatypes, packages, and
classes. There is an independence between the concrete syntax and the way
concepts are represented [143]. The implementation of software, such as a
compiler, typically makes use of Abstract Syntax Trees (ASTs) to encode
and represent the program’s abstract syntax, even if the same language has
concrete syntax that is purely graphical or textual. Abstract syntax also
describes the grammatical rules and structure of the language, this being the
permitted connections and constructs between them [21]. A meta-model is
generally used to specify abstract syntax in modelling languages [79].

The Concrete Syntax. Model construction that has conformity with the
language has its notation provided by concrete syntax [143]. As an example,
a simple group of line-connected boxes may be the concrete representation of
a model; or by using particularly organised tables, forms, and matrices [79].
Communication is enabled through concrete syntax standardisation. Dif-
ferent forms of concrete syntax can be used to aid better consumption and
analysis. This includes XML Metadata Interchange (XMI), for machine read-
ability and model distribution, or the Unified Modelling Language (UML),
which has a concrete syntax better suited for human readability.

Classification of Modeling Languages

The separation of modelling languages has no conclusive rule, although there
are some proposed classifications [160]. A particular classification has lan-
guages separated into the categories of domain-specific and general-purpose.

Domain-Specific Languages (DSLs). Requirements for particular com-
panies, contexts, or domains can be catered for in these languages [21]. They

25

are typically found to be easier to use and be more productive than lan-
guages for general purpose applications [79]. This is because concepts are
used from the actual problem domain and as a result the level of abstrac-
tion is raised. As they are built for use in specific domains, they are not
as portable as general-purpose languages but instead assist productivity in
that domain [79]. They also help the comprehension of written code par-
ticularly by domain experts, and therefore in the communication of those
problems [47].

Structured Query Language (SQL) is a prominent example of a DSL cre-
ated specifically for database manipulation [36]. Goal Structured Notation
(GSN) [138] is another example of a DSL used for argument structuring and
in representing relationships between the evidence of assurance cases and the
arguments that help support the case. Business Process Model and Nota-
tion (BPMN) is a graphical DSL for business process representation [109].
VHSIC Hardware Description Language (VHDL) operates in the domain of
electronic systems, and so is intended to model those systems [70]. And the
Web Modelling Language (WebML) is intended for use in the specification
of navigation features, composition, and content, as a graphical DSL [28].

General-Purpose Languages (GPLs): For modelling purposes, and to
be applicable to any domain, GPLs are used as agnostic notations and con-
structs are provided, which are meant to be universal. UML [111], SSADM
[10], SysML [110], IDEF [71], and MERISE [12] are examples of GPLs. The
application domain of the Unified Modelling Language (UML) [111] is so
broad, even though its intent is object-oriented software-based systems im-
plementation, design, and analysis, that it could be viewed as a general-
purpose language on its own [21]. Other GPLs could also be classified in this
way, for example MERISE, which is focussed on information systems.

Languages can also be classified into graphical/visual, textual, or a hy-
brid of both, and are commonly used as another type of language classifica-
tion [128].

Textual. As is expected by its name, textual languages are composed of
plain text, encoded as written words, punctuation, and indentation. Popular
examples of textual languages are Java [47] and HTML [14]. Textual lan-
guages make up the majority of the prominent programming languages. Ed-

26

itors for textual languages can be generated with tools such as EMFText [61]
and Xtext [40] to have basis in the principles of MDE.

Graphical/Visual. As opposed to textual languages, graphical languages,
express themselves with icons, shapes, and possible connections between
them. A distinctive example of a graphical language is UML [6]. Akin
to textual languages, there are tools available to generate graphical model
editors, such as Eugenia [90], AToM3 [94], Graphiti, and the Sirius [148]
framework which extends the GMF.

Hybrid. A combination of graphical and textual syntax languages is known
as a hybrid language. The system in development can be described in differ-
ent aspects using the notations available [115].

2.1.4 Meta-Object Facility (MOF)

The Meta Object Facility (MOF) is an architecture specified by the Object
Management Group (OMG) for modelling language construction [56]. Fig-
ure 2.4 illustrates the architecture. M3 is the highest level, and it comprises
of meta-modelling languages, or languages that may be used to construct
meta-models similar to those found in the M2 level. For example, the UML
Meta-model [58] is an OMG proposed meta-model, used to define models
that appear on the M1 level, such as Activity or Class diagrams. The M0
level, which is the lowest level, is composed of a set of elements which reflect
real world domain entities that should be modelled. Some examples of these
elements include video player and reservation system.

The layered design of MOF is analogous to how computer programming
languages are defined, in layers: a language used for language definition, such
as EBNF [50]; a programming language, such as Java [112]; code written in
said language, Book.java for example, and real-world objects as the lowest
layer [21]. Models in MOF are saved using the XML Metadata Interchange
(XMI) format [55], which is an OMG standard that permits compatibility
amongst modelling suites that are MOF-based. Aside from the structural
constraints enforced by meta-models, the MOF standard does not allow for
the introduction (making up meta-model semantics) of constraints. To ex-
press more complicated constraints in MOF, the Object Constraint Language
(OCL) [57] is employed [107].

27

Figure 2.4: The four layers of meta-modelling infrastructures [160].

2.1.5 Model Management Tasks

The previous sections explored the basic concepts of models and modelling
languages; now the focus is placed on how these models can be used mean-
ingfully in the process of development. Activities that process, analyse, or
evolve programmatically, or make use of models in any way, shall be referred
to as model management tasks.

Model validation. Certain external constraints must often be satisfied
within a model. Inconsistent or incomplete models (where information is
missing) can give rise to problems [86, 93]. These inconsistencies can arise
due to syntax, where they are not in conformance with their meta-model,
or due to semantics, such as where semantic constraints are unsatisfied [41].
Intra-model consistency relates to semantic and syntactic consistencies, such
that they constitute a single model’s properties [41]. Inter-model consistency
relates to the same information being captured in conflicting ways between
different models, in some cases between views of one system [41]. Incon-
sistency must be discovered and subsequently addressed, due to the crucial
nature of models within MDE, in order to avoid an inconsistency finding
its way into deployed systems, having proliferated through transformation

28

chains. Model constraints can be expressed in languages such as the Object
Constraint Language (OCL) [57], Epsilon Validation Language (EVL) [89],
and ATL [75] (as seen in [74]).

Model comparison. The comparison of models covers a variety of tasks
related to models and is a vital activity [158]. Calculating model differ-
ences and verifying that the outcome of model transformation is as intended
are just a few examples. Due to their structure, comparing models is diffi-
cult [158]; models cannot be compared solely on internal XMI representation,
since two representations of one model might have several discrepancies, for
example different element orderings or IDs [144]. Some methods of compar-
ison are as follows: strategies which are signature based (such as in [42])), in
which the identities of elements are generated at the moment of comparison;
approaches which are graph-based (such as [144]), in which models are con-
sidered as graphs with typed attributes; or the use of language specifically
for such a task, defining the exact rules for matching between elements (such
as in [159]).

Model Querying. Models tend to store practical and useful information.
As a result, being able to query models to obtain data stored in them is
desirable. It proves valuable, as it provides easier detection of model flaws
through information filtering and aggregation, making it a centre component
of every model management task [29]. Model querying can be carried out
using languages such as OCL [57], Epsilon Object Language (EOL) [88],
and ATL [74]. OCL is in the functional paradigm, devoid of side-effects
and imperative characteristics, and is most popular for model querying and
validation [99].

Other. Model management tasks include model transformations, where
models can transform to other models or text (discussed in more detail in
next Section 2.2) and model merging, which is referred to the process of
integrating two or more models into one.

2.2 Model Transformations
Model transformations are programs that transform models into other rep-
resentations (e.g., documentation, other models and source code) [26]. They

29

are considered the cornerstone of MDE, as they offer the essential mechan-
isms to manipulate and transform models [145]. Transformation theory and
tools are essential for model operations such as merging, refactoring, code
generation, weaving, etc [133]. Various purposes are served by the applica-
tion of model transformations in MDE, such as model quality enhancement,
automating software evolution, platform-independent models (expressed as
platform-specific models), reverse engineering models, and identifying soft-
ware patterns, etc [83]. Another example is the generation of models on differ-
ent levels of abstraction and the automation of model development tasks [32].

Specifications for model transformations are typically defined by a set of
transformation rules. Source meta-model types are declaratively specified
through these rules, correspondingly mapped to target meta-model types.
OCL (Object Constraint Language) can make transformation languages more
expressive, enabling model properties to be formally specified in expressive
formats [119]. OCL-like expressions can help to define mappings between
target and source model elements. Multiple rule definitions can be contained
within a transformation specification. The order of execution of rules can
be controlled through mechanisms in many transformation languages. This
is called rule scheduling. This can be implicit or explicit [92]. Implicit rule
scheduling enables the automatic realisation of the relationship between dif-
ferent rules, whereas explicit scheduling enables rule execution orders to be
manually specified.

There are three different types of model transformations, categorised by
the types of target the transformation produces: Model-to-Model transform-
ation refers to the transformation from one or more source models to one or
more target models. In M2M transformations, the process of transformation
is determined by a set of transformation rules. Each rule focuses on the
way in which a set of elements in the source models can be transformed into
a set of elements in the target models. Model-to-Text (M2T) transforma-
tions are used for the generation of models of any kind of textual artefacts,
such as documentation, source code, requirements specifications, and manu-
als [123, 108]. Text-to-model (T2M) transformations are able to take given
texts and extract models from them. Typically, in order to construct models
appropriately, T2M transformations require sophisticated reverse-engineering
technologies [21].

Since this research focuses on the development of merging and consistency
processes in model-to-text transformations, in the following sections, this
type of transformation is presented in more detail.

30

2.2.1 Model-to-Text Transformations (M2T)

Model-to-Text (M2T) transformations are used for the generation of models
of any kind of textual artefact, such as documentation, source code, require-
ments specifications, and manuals [123, 108]. Figure 2.5 shows an example
of M2T transformation. M2T transformations are used to generate text as
opposed to structured models, with the generated text being independent of
the target language; most often it no longer conforms to any meta-model. As
M2T transformations are used for unstructured data, the requirements are
completely different from the requirements for M2M transformations.

Some source code generators produce code for target programming lan-
guages by using a model API in existing general-purpose languages. These
can be characterised by some examples such as Simulink Coder, which pro-
duces C code, and the Ecore-to-Java transformation provided by EMF [126].
However, these general-purpose approaches, which are alternatives to M2T
transformations, suffer problems in that dynamic and static code is obfus-
cated and difficult to read, or make sense of the structure of the final out-
put [21]. M2T mitigates these problems by lending itself toward configur-
ation through a template-based approach. In this approach, the structure
of the output, where dynamically generated parts should go, are explicitly
represented and clearly indicated in the templates.

Examples of some M2T transformation language offerings are Acceleo [44],
Epsilon Generation Language (EGL) [123], and Xpand [45]. M2T languages
including MOFScript, JET [30] and Xpand [142], are described in more detail
in Section 2.2.1.

Code Generation

In the automated software development field, code generation is paramount,
and is a core concept in MDE [157]. Software quality and programmers’
productivity can improve significantly through correct code and proper com-
ments. Automatic code generation can alleviate problems, which are typic-
ally costly, error-prone, and time-consuming [157].

Herrington et. al. said that "Code generation is about writing programs
that write programs." [62]. In software engineering projects, code generation
is a valuable tool because of its impact on productivity and quality. Code
generators can be passive or active [62]. The passive generation allows users
to modify the code as required. "Wizards" are an example of a passive

31

Figure 2.5: An example of M2T transformation using EGL language.

generator. On the contrary, an active generator is responsible for the code
whether on the short or long term, through the ability of the generator to
run the code many times on the same code output. When the code requires
changes, users are able to do this and then run the code again.

According to Balzer et. al. [13] there are many advantages of code gen-
eration. It aims to mitigate the need for tedious work, and to minimise
maintenance costs by raising the quality of code and helping limit program-
ming errors [25]. Users can save time as they need to write fewer lines of
code. Specifications are short compared to the program that is implement-
ing them. Also, because specifications are generated the probability of errors
is lower than when directly writing the code. However, aside from the ad-
vantages, code generation does still have some limitations [32]. For instance,
there are many problems when adding hand-written text to the generated
file, which requires high specifications when regenerating. One approach to
code generation specification is through template languages [154].

M2T Transformation Categories

M2T transformations are divided into three categories: visitor-based, template-
based, and hybrid approaches [33].

Visitor-based. This method involves providing a mechanism that enables
visitors to navigate a model’s internal representation and write text to a

32

stream [72]. Jamda [33] is an example of a visitor-based programming lan-
guage that expresses UML models with a collection of object classes. It
can access and change models using specific APIs such as the Java meta-
data interface [117], and it generates text using a visitor mechanism. Other
examples of tools using a visitor-based approach are Melange, Kermeta2,
ATOMPM, and ATOM3 [76]. Jamda does not support the MOF standard
for defining new meta-models; however, additional model element types may
be added by subclassing the established Java classes.

Template-based. Templates are text files containing placeholders that re-
semble the final result of an M2T transformation [107]. The placeholders are
variables that will be populated with data from the source model. Static
sections have verbatim text written as a transformation result, but dynamic
sections comprise sections with place holders. Special command tags (e.g.
[% %], <% %>) are also used to surround dynamic sections. Unlike the
visitor-based method, the template-based structure closely resembles the tar-
get language’s syntax.

Typically, MDA tools that are currently available enable the genera-
tion of template-based model-to-code, for example FUUT-je, b+m Gener-
ator Framework, Codagen Architect, JET, AndroMDA, OptimalJ; and XDE
and ArcStyler, which also provide M2M transformations [33]. AndroMDA
is built upon existing opensource technology for template-based generation:
Velocity [1] and XDoclet [2].

Hybrid. A visitor-based approach will be simpler than a template-based
approach in some cases. However it is ineffective when the majority of gen-
erated code is static text [76]. As a result, M2T tools may be designed
and implemented using template-based languages, which also employ the
visitor pattern. Hybrid based applications include Actifsource1, Modelio2,
MetaEdit+3, Xtend4, and GrGen.NET5.

1https://www.actifsource.com/
2https://www.modelio.org/
3https://www.metacase.com/
4https://www.eclipse.org/xtend/
5http://www.info.uni-karlsruhe.de/software/grgen/

33

https://www.actifsource.com/
https://www.modelio.org/
https://www.metacase.com/
https://www.eclipse.org/xtend/
http://www.info.uni-karlsruhe.de/software/grgen/

M2T Transformation Languages

Many M2T transformation languages have been proposed over the last few
years. This section presents the most important M2M transformation lan-
guages.

Epsilon Generation Language (EGL). Epsilon’s M2T transformation
language is the Epsilon Generation Language (EGL) [123]. It is, in principle,
similar to server-side scripting languages like PHP languages - in fact, EGL
can be used for this same purpose, as illustrated in [3]. However, it inherits
some of its logic and concepts from EOL [88].

A parser is at its heart, generating an abstract syntax tree (AST) for a
given template that includes both static and dynamic output nodes [123].
The EGL transformation engine, unlike Acceleo, has its own specialised ex-
ecution coordination mechanism (EGX) for transformation rules. EGX may
generate numerous files from a single template and coordinate rule execution.
It borrows EOL’s imperative features, offers data types that are comparable
to Java’s, and allows for meta-model types to have user-defined methods.

As EGL uses templates, like other M2T transformation languages, it
makes use of both dynamic and static regions [113]. These regions have
different purposes, with static regions used for including verbatim text in
the output; and dynamic regions used for generating the text proactively,
during transformation, perhaps including data only available at this time.
EOL is used to express the behaviour of dynamic regions. An EGL template
can be seen either as a regular plain-text file, which includes embedded EOL
code, or inversely as an EOL program that includes a capability to generate
verbatim text. Its various features can be used or substituted as needed,
for example with some programs using only dynamic regions, writing output
text by using the output buffer variable [98]. The output variable available
in EGL is named "out", and dynamic regions are marked by the use of "[%"
and "%]" surrounding them. Other markers are provided for convenience,
such as the starting marker "[%=" which takes an expression and outputs
its text representation.

EGL itself has numerous advanced offerings and features, including:

• postprocess formatting (to enable the final output to have consistent
styling)

• recording traceability information

34

• the ability to mark regions of the text as preserved from being over-
written by template invocations, such as for changes, termed protected
regions

• the ability to use any output stream to write its text

• support for merging multiple texts together.

Acceleo. Acceleo is an M2T transformation tool used to create code gen-
erators [39], and comprises three parts: a compiler, a generation engine, and
some tools. It aims to provide a pragmatic approach to OMG’s M2T trans-
formation standard for models based on EMF [100]. The language is able
to query models with complete OCL support as well as robust tool support,
demonstrated to be valuable in industry [20].

Acceleo generates structured files from EMF models. Modules, target
files, and source model(s) all make up an Acceleo transformation. The output
of transformations is text in various programming languages or any other
textual formalism [4]. A module can comprise numerous templates that
describe the parameters required to create text from models. The existence
of an @main annotation at the beginning of the template’s body indicates
that it is the main template, which acts as the transformation execution entry
point [107].

MOFScript. MOFScript was created by Sintef and backed by the EU
Modelware project as an initial proposal to the model-to-text RFP of OMG
[107]. MOFScript was created in response to the requirement of standard-
isation for M2T transformation languages. It is highly influenced by QVT
and works with any MOF-based model, such as BPMN, WSDL, UML, and
others. Transformations in MOFScript consist of groups of transformation
rules organised into one or more modules. QVT-Merge operation mappings
have a specialised analogue in MOFScript rules, whereas specialisations of
QVT-Merge operational constructions are provided through MOFScript con-
structions. Transformations are able to reuse and import other transforma-
tions [122].

XPand. XPand is a template-based M2T language that is part of the
open-ArchitectureWare (oAW) platform [59]. It has a small vocabulary [81],
which puts limitations on the operation types it can perform. In addition

35

to its own capabilities, it is able to access the functions that are implemen-
ted in the Xtend programming language, which is also part of the open-
ArchitectureWare (oAW) framework. Xpand provides many features such as
polymorphic dispatch, aspect-oriented programming, and static type safety.
It can also, between code generations, log link information between target
and source elements. In M2T transformations, Xpand is able to achieve some
important requirements such as supporting active code generation through
the PROTECTED constructs and the provision of beautifiers to improve the
readability whether for generated code or templates. Xpend is supported by
an Eclipse-based editor that provides error highlighting, syntax colouring,
refactoring and code completion [106].

2.2.2 Text-to-Model transformation (T2M)

Text-to-model (T2M) transformations are able to take given texts and re-
construct models from them. Typically, in order to construct models ap-
propriately, T2M transformations require sophisticated reverse-engineering
technologies [21]. However, little attention toward these technologies has
been paid by the research community until now [24]. Text-to-model tools
require a parser, a grammar engine, and a target meta-model. EMFtext [61],
and Xtext [46], are examples of T2M tools.

2.2.3 Key Technologies of MDE

This section discusses the modelling tools identified in this thesis, includ-
ing EMF6, which implements the MOF architecture, and the Epsilon suite7,
which in turn is used for model management.

EMF - Eclipse Modelling Framework. The most popular meta model-
ling architecture is almost certainly the Eclipse Modelling Framework (EMF)
[140], implemented by the Eclipse Foundation, which exploits facilities avail-
able in Eclipse. EMF conforms to the four-layer MOF architecture with
modellers provided with Ecore, a meta-modelling language that has well-
maintained and stable tool support. This includes a graphical editor, which

6http://www.eclipse.org/modeling/emf/
7http://www.eclipse.org/epsilon/

36

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epsilon/

Figure 2.6: Simplified Ecore’s components diagram [140].

enables meta-models definition, and tools for automatic meta-model to model
editor generation.

Currently, EMF is understood to be the de-facto modelling framework,
with a strongly active development community that extends the core frame-
work, providing interoperable tools as a suite to help in model develop-
ment [158]. To provide some examples, both Graphiti8 and the Graphical
Modelling Framework (GMF)9 provide support through tooling for graphical
editor customisation and generation for models; EMFText and Xtext provide
users with the ability for textual modelling language definition; and Emfatic
(created using Xtext) provides a textual language helping Ecore meta-model.
Listing 2.1, is an example of the use of the Emfatic language to create the
Ecore meta-model, depicted in Figure 2.2.

Ecore is the primary component of EMF, a meta-modelling language in
the object-oriented paradigm. Definitions are found within itself, which has

8http://www.eclipse.org/graphiti/
9http://www.eclipse.org/modeling/emft/emfatic/

37

http://www.eclipse.org/graphiti/
http://www.eclipse.org/modeling/emft/emfatic/

it described as a meta-meta-model, providing a layer of abstraction mapping
to structures internal to Ecore, representing models as their equivalents in
Java [161]. A diagram of Ecore high-level hierarchy—its concepts in the
main level—is provided in Figure 2.6. The concepts and type system are
heavily inspired by Java, even in third-party implementations such as for
.NET [66], as the official implementation is in Java. The root element can be
seen, EObject, with numerous type definitions available under EClassifiers,
for example EEnum and EClass. EInt, EString, etc, constitute built-in types
mapped verbatim to data types in Java. Similar to classes in Java, operations
can be found on types along with attributes. Because of this approach,
EMF is easy to understand and easily accessible to users with experience in
object-oriented design [98]. However, the abstraction level is raised, which
enables domain modelling to be the core focus rather than the details of
implementation.

Epsilon - Extensible Platform of Integrated Languages for Model
Management. Epsilon is an open-source, mature framework that includes
a family of inter-operable languages used to manage diverse models based
upon different meta-models and technologies [91]. The EOL [88] is a Epsi-
lon’s core imperative OCL-based expression language that supports model
modification, flow control (branches, loops etc.), multiple model access, pro-
filing, transactions, and user interaction. Although EOL is capable of general-
purpose model management, its primary aim is being embedded in hybrid
task-specific languages as an expression language [91]. Figure 2.7 shows the
Epsilon’s architecture and, an overview of the suite’s available languages.

Moreover, Epsilon provides benefit in that it is a technology-agnostic
suite for model management [160]. Any format can be used to express and
manipulate meta-models and models by virtue of the EMC intermediate layer
as shown in Figure 2.7). A novel file type or structure can be utilised as input
through the implementation of a parser (called a "driver") which translates
these for use by the EMC façade.

XMI - XML Metadata Interchange. There are numerous potential
technology spaces, such as MDE, which uses MOF for its meta-meta-model;
and XML, which uses XML Schema for its meta-metamodel [107]. It is there-
fore critical that a standardised method for modelling tools and frameworks
exists to bridge technologies in data exchange, and to provide interopera-

38

1 @namespace(uri="compsMMExample", prefix="compsMMExample")
2 package comps;
3

4 class Model extends Component {
5 val Component[∗] components;
6 val Connector[∗] connectors;
7 }
8

9 class Component {
10 attr String name;
11 val Port[∗] inPorts;
12 val Port outPort;
13 }
14

15 class Port {
16 attr String name;
17 attr String type;
18 ref Connector[1]#source outgoing;
19 ref Connector[1]#target incoming;
20 }
21

22 class Connector {
23 ref Port[1]#outgoing source;
24 ref Port[1]#incoming target;
25 }

Listing 2.1: Emfatic code for defining the meta-model presented in Figure 2.2.
The ref keyword is used to represent a standard reference, whereas the var
keyword is used to represent a composition reference.

tion [35]. An XML format model developed using a modelling tool for UML,
for example, can be imported into another modelling tool by first being con-
verted to an XMI document.

39

Figure 2.7: The environment of the Epsilon suite [85].

2.3 Integrating Hand-written Text in M2T Trans-
formations

This section presents an overview of the importance of integrating hand-
written text in M2T transformations. It also presents the existing mechan-
isms that are used to integrate hand-written text and discusses their advant-
ages and disadvantages.

2.3.1 Introduction

As discussed in Section 2.2.1, M2T transformation is routinely used in model-
based software engineering processes to generate implementation-level arte-
facts such as executable code, documentation and configuration scripts from
abstract (typically domain-specific) models in an automated and repeatable
manner.

A common way to implement M2T transformations is by using dedicated
template-based languages such as Acceleo [44], Java Emitter Templates [43],
Xpand [81], Velocity [52] and StringTemplate [114]. Similar to server-side
scripting languages, such as PHP and ASP.NET, M2T languages provide
first-class support for combining static content with text computed from the

40

elements of one or more input models and can offer improved readability
compared to imperative M2T transformation programs implemented using
string concatenation [122].

Often, modelling languages do not provide sufficient expressive power
to capture all the information required to achieve full code generation [22,
64, 53, 54]. In such cases, developers are called upon to complement the
generated code with code that adds the missing information. There are
different mechanisms to be used to integrate hand-written text as follows:

2.3.2 Existing Mechanisms for Integrating Hand-written
Text

Greifenberg et al. [53] discussed eight mechanisms to integrate generated and
hand-written text for OOP languages: generation gap, extended generation
gap, delegation, include mechanisms, partial classes, AOP, PartMerger and
protected regions. In the following, each mechanism is described in more
detail.

In order to describe each mechanism, the following scenario is assumed:
There is a small M2T transformation, where the input model is a UML class
diagram (CD) that contains a Library class. Given that the CDs cannot
specify the class behaviour, Library methods cannot be implemented at the
model level. Thus, if the method for book method in Library class is to be
implemented, it will need to be implemented manually using Java code at
the code level. This is an example of the need to extend the generated text
with hand-written text.

Generation gap is a pattern that keeps the hand-written and generated
code separate by putting them in different classes linked by inheritance [48,
105]. It assumes that a default implementation and an interface are generated
for each class in the source model. In this mechanism, the hand-written text
is defined in a separate class (see Figure 2.8). Note, that here and in the
following mechanism, (M) refers to the source model, (gc) refers to generated
code and (hc) refers to hand-written text. The lack of ability to extend the
generated interface, in addition to the necessity to create an implementation
class, is considered the main disadvantage of this mechanism.

Alexandrescu [149] presented a technique called Generic Pattern Imple-
mentation (GPI), based on C++ templates and inheritance. This mechanism

41

Figure 2.8: Generation gap pattern for the "Library" example.

enables a developer to tag a location in the code where a particular pattern
is to be used. Then the code that is used to configure the concrete instance
of that pattern can be generated automatically. This approach can help a
developer use and recognise patterns, but it cannot be used if the language
does not support the concept of inheritance (e.g., C, FORTRAN).

Karol et al. [38] proposed an approach for code reuse in an M2T trans-
formation. Also, they demonstrated some advantages and also disadvant-
ages of using the generation gap mechanism. For example, in their suggested
mechanism, the automatically generated code is explicitly separated besides
the ease of reusing the manually executed code fragments. However, the
number of classes is high, and the generated code is also less understand-
able. In [67], the authors presented Prototizer, which is a tool that enables
a boosted agile software development approach. During their experiments,
they used the generation gap mechanism for integrating hand-written text
into the generated code.

The main advantage of Prototizer is that it realises the MDE object-
ive of centralising models, generating source code instantly, and improving
prototyping abilities. This saves time and lets developers focus on core prob-
lems. The disadvantage of Prototizer is that any code generating technique
typically introduces extra constraints for developers. For example, Protec-
ted regions, where developers are used to integrating hand-written text, can
cause some issues [67]. Such integration be difficult to fit in them. Developers
should duplicate code to accomplish the desired results.

Extended Generation Gap Pattern (EGP) is the mechanism that ad-
dresses the two defects of the basic generation gap mechanism [54]. As the
generated interface "Library" extends the hand-written interface "Library-
Base", all methods that are added to "LibraryBase" are also available when
accessing Library. Nevertheless, developers shouldn’t have to add this hand-

42

Figure 2.9: An example of extended generation gap pattern.

written interface. The reason for this is that the generator will check, at
generation-time, if it exists or not. In the case that it does exist, the gener-
ated interface will extend the hand-written interface (see Figure 2.9). Thus,
the generator needs to execute again after the hand-written interface is added
to reflect this change in the generated code.

Delegation is an object composition pattern in object-oriented program-
ming (OOP). It consists of two objects: the delegator and the delegate [49,
139]. Essentially, the "delegator" works by delegating parts of its function-
ality to the "delegate", by invoking the delegate’s methods. To achieve this,
the "delegate" provides an interface that declares the method signatures that
can be invoked. "Library" is the "delegator" and "LibraryDelegateImpl" is
the delegate implementing the methods that are defined in the "Library-
Delegate" interface (see Figure 2.10).

Thomas et al. [153] described how different design patterns (e.g., delega-
tion) can be adapted to integrate hand-written and generated code. They also
stressed that the generated code should not be modified. Similarly, Bettin et
al. [150] recommended avoiding integrating hand-written text to generated
files, because consistency problems can occur (e.g., when the source model is
changed in ways that make the hand-written text incompatible).

Include mechanisms rely on dedicated language constructs that allow
specifying a certain file that should be included in another file at a specified
point [65]. This mechanism can be used to easily merge the generated files
with hand-written files, by including hand-written files in generated files at
a specific place or vice versa (see Figure 2.11). Völter et al. [151] describe
how an include mechanism can be used in C/C ++ to integrate hand-written
text into generated code, along with an example.

43

Figure 2.10: An example of delegation pattern.

Figure 2.11: An example of how include mechanism works.

Partial class is a mechanism that aims to separate class implementations
into multiple source code files. Then, all of these files are merged into a single
class file during the compilation process. The result contains a grouping of all
fields, methods, and supertypes of all its partial definitions [15]. Figure 2.12
illustrates the partial class mechanism.

Warmer et al. [155] developed a new application called SMART-Microsoft
Software Factory. This is a complete model-driven factory that makes extens-
ive use of the Microsoft DSL Tools. In their work they assumed that part of
the system will be manually written in the code. Thus, they made extensive
use of C# partial classes, to enable the developer to add hand-written text
in separate files. The approach presented in [127] aimed to make the control
flow in an explicit application in UML 2 activity diagrams able to preserve
the possibilities of regular hand-written text implementing activity actions.
Also, in the presented M2T transformation, they used partial classes to add
the hand-written text into separate files.

44

Figure 2.12: An example of how partial classes mechanism merges the hand-
written and generated code to one single artifact.

Aspect-Oriented Programming (AOP) is a paradigm of programming
that tries to improve modularity by the separation of cross-cutting con-
cerns [80, 6]. AOP can be used to integrate hand-written and generated code,
despite the fact that cross-cutting issues are not necessarily involved [129].
In this context, one advantage is that the generated code does not need
to provide a specific architecture in order to be expanded by hand-written
text [53]. The hand-written text is added through so called aspects (as shown
in Figure 2.13) [53]. In addition to the added burden of integrating aspects
into the source code, a key disadvantage of AOP is that it is difficult to
comprehend the program flow when it is affected by aspects. In addition,
refactoring in the source code may result in incorrect aspects, a phenomenon
known as the fragile point-cut issue [77].

A PartMerger is a component that can combine many files of the same
format, such as Java files, into a single file [53]. This idea is well suited for
merging hand-written and generated parts, as these two parts can be in dis-
tinct files and PartMerger merges them into one file (see Figure 2.14). Part-
Merger mechanism is flexible, as it does not impose any restrictions on how
to combine files. During the process of merging generated and hand-written
text, PartMerger can give hand-written extensions more priority when two
files are merged. In addition, different strategies can be used to invoke Part-
Merger and to define the files to be combined.

45

Figure 2.13: Overview of an aspect-oriented integration mechanism for a part
of a generated software system.

Figure 2.14: An example of how PartMerger mechanism merges source code
artifacts such as Java code to one artifact.

One straightforward strategy is to automatically invoking the PartMerger
for files that adhere to a certain naming convention at the artifact level,
such as files with identical file names in specified folders. Another strategy
is allowing developers to configure which files should be merged [53]. A
disadvantage of this mechanism is the lack of tool support when editing
hand-written text. Due to the strong separation between the generated and
hand-written text files, typical capabilities such as code completion cannot
be used to directly access portions of the generated code. Thus, if developers
wish to take advantage of such tools, they should independently implement
them.

Protected regions are regions that are declared in the M2T transforma-
tion templates by the developers for the purpose of adding hand-written text

46

Figure 2.15: An example of protected regions mechanism in generated file.

within generated files (see Figure 2.15) [125]. Each protected region has its
own comments that surround it, which contain a unique identification string
to distinguish between different protected regions. Each generated file can
contain one or more protected regions as necessary [51]. The contents of
protected regions are preserved by the generator upon regeneration [23, 87].
However, if hand-written text is added outside the protected regions it will
be lost during regeneration [95], which is one of the disadvantages of this ap-
proach. Many M2T transformation languages support the declaration of pro-
tected regions such as Epsilon Generation Language (EGL) [85], XPand [142]
and Acceleo [44].

Stefan et al. [156] proposed a visual development environment for Jade –
a popular framework for implementing a multiagent system (MAS) in Java.
It focuses on how models and code can be synchronised. Their approach
is based on adding protected regions into the source code where the user
can insert the hand-written text. Thus, the user can modify the generated
code without worrying about code regeneration. In contrast, in [152], the
authors criticise the idea of using protected regions, as the user may lose
the hand-written text upon regeneration. They suggested an alternative to
it, which is separating hand-written text from the generated code using the
composition features provided by the target language. However, there are
many transformation languages that ensure that protected regions do not
lose their content during regeneration (e.g., EGL and Acceleo).

JMerge is an open-source EMF utility [73] that enables code generators
to integrate generated code with user-modified code, using XML-described
rules. Java components decorated with the @generated Javadoc tag are sub-
ject to these rules. User alterations will be overwritten if they are made

47

within code decorated by the @generated tag upon regeneration. However,
user alterations will not be overwritten if the @generated tag is removed.

In the above, all the existing mechanisms for integrating hand-written
text in M2T transformations and their limitations were discussed. However,
using these mechanisms is not desirable because they require deciding in
advance where hand-written text can be contributed (as demonstrated in the
RC-1). A mechanism that overcomes the limitations of existing mechanisms,
enabling developers the important freedom to include their hand-written text
anywhere in the same file and without any protected regions (which must be
declared in advance), would be valuable.

2.3.3 Two-Way Merging VS Three-Way Merging

Since this research focuses on the process of integrating handwritten text and
generated text, this section investigates the areas of two-way merging and
three-way merging.

Two-way merging is based on combining two versions of a software arte-
fact without using the version that both versions came from. In contrast,
in three-way merging, the original information that both versions came from
is also used [97]. This makes three-way merging better than its two-way
counterpart because it can find more conflicts. Because of this, most of the
merge tools that are currently available are using three-way merging [101].
To illustrate the distinction between both two-way and three-way merging,
consider the example of Figure 2.16, which depicts version 1 of Java class
and two of its evolving variants (1a and 1b). The modifications that led to
the evolution of each of these variants are given in underlined italics.

In two-way merging, just the differences between variants 1a and 2b are
compared. For instance, line 3 in version 1b contains public int execute(int
temperature, int targetTemperature) {, but line 3 in 1a contains Private
int execute(int temperature, int targetTemperature) {. Likewise, version 1b
contains /*** body of method ***/ (line 6), that version 1a does not contain.
This information is inadequate to determine whether the discrepancies are
the result of a line deletion, addition, or modification in just one of the
evolved versions, or a simultaneous modification in both versions.

This shortcoming is not present in three-way merging [101]. For instance,
the line public int execute(int temperature, int targetTemperature) { of
version 1b is also present in original version (version 1), indicating that only
version 1a modified this line. Likewise, since the line /*** body of method

48

Figure 2.16: An example of a three-way merging.

***/, of version 1b; did not exist in original version (version 1), it must have
been established in version 1a. The merge algorithm uses this additional
information to determine which lines from versions (1a and 1b) should be
included in the final merged version. On the below of Figure 2.16 is a possible
result of the three-way merging. The merge integrates all modifications,
additions, and deletions from both. versions (1a and 1b), and when a merge
conflict occurs, the changes of version 1a take priority.

2.3.4 Discussion

In Section 2.3.2, an overview of the existing mechanisms for integrating hand-
written text in M2T transformations was presented. Some of these mechan-
isms require a clear separation between hand-written and generated code:
generation gap, extended generation gap, delegation, include mechanisms,
partial classes, AOP, and PartMerger mechanisms. For example, the genera-
tion gap mechanism prescribes that a default implementation and an interface

49

are generated for each class in the source model. Thus, the hand-written text
is defined in a separate class (see Figure 2.8). Some benefits arise in separ-
ating hand-written and generated code, such as the mitigation of generated
code becoming polluted, and enabling the editing of just a separate file for
hand-written changes. However, a drawback is that system information may
be spread between two or more places, leading to developer confusion from
the extra files.

Other mechanism proposals involve merging hand-written text merged
into generated code, such as using JMerge and/or protected regions. For
example, the protected regions mechanism works by inserting hand-written
text inside tagged blocks within generated files, eliminating the need for
additional files. However, using such a mechanism, the generated code will be
polluted with hand-written text and the comment/tags for protected regions,
as each protected region will have two extra lines: the beginning and the end
comments of the regions. Another major limitation of using a protected
region mechanism is that if the developer wishes to change any part of the
class, such as adding a new variable or a new field, they may be unable unless
an appropriately positioned protected region is present.

To summarise, using these existing mechanisms does provide benefit to
developers who separate hand-written text from generated code, and JMerge
and protected region mechanisms provide benefit to developers who wish to
merge the hand-written text within generated code, albeit with some restric-
tions. A mechanism that overcomes the limitations of existing mechanisms,
enabling developers the important freedom to include their hand-written text
anywhere in the same file and without any protected regions (which must be
declared in advance), would be valuable.

2.4 Round-Trip Engineering (RTE)
This section presents an overview of round-trip engineering (RTE) in the
context of MDE. It also presents existing mechanisms for supporting RTE
and examines their limitations.

2.4.1 Round-Trip Engineering

Round-trip engineering (RTE) is the ability to automatically preserve the
consistency of various changing software artifacts in software development

50

environments/tools [63]. RTE is one aspect of MDE, because the target
generated code and the source model are interrelated; altering the generated
code will affect the source model and vice versa. It consists mostly of forward
and reverse engineering.

Forward engineering is the process of converting conceptual models into
source code, whilst reverse engineering is the process of converting source
code into conceptual models [104]. Forward and reverse engineering optim-
isation results in gradual transformation. Not all artifacts are converted, but
just the altered modules. The combination of the two approaches results
in round-trip engineering (RTE), which keeps the two perspectives consist-
ent [19]. In software development, generating code from source models and
then executing round trip engineering are critical processes. Throughout the
development process, it is vital that software-related artifacts such as models
and their source code remain in sync [104].

Ducasse et al. [37] describe RTE as the integration of design diagrams
and source code, as well as modelling and implementation. The purpose of
RTE is therefore to ensure a seamless interaction between the design and
execution stages. Similarly, Lenk et al. [96] agree that RTE is a software
development method that includes automated forward (model-to-code) and
reverse (code-to-model) transformations. Model round-trip engineering in-
volves synchronising models and their generated artefacts by maintaining
consistency, allowing the software developer the flexibility to switch between
these different representations [134].

Benefits of Round-Trip Engineering

The primary benefit of RTE is that both design and implementation artefacts
are constantly and automatically synchronized [78]. RTE encourages design
driven development and enhances design traceability by enabling both the
automated generation of source code from conceptual models and the auto-
matic generation of conceptual models from source code. RTE enhances both
the software development process and its automation. RTE techniques pos-
sess certain properties, including the capacity to handle trace information
and to assist in the discovery of conflicts among RTE tasks.

According to Akoka et. al. [5], RTE can be viewed as a process that
enables improved software engineering processes. The ability to have both
forward and reverse engineering transforms in the software design process
enables benefits such as transforming the source code into its conceptual

51

models. In [5], the authors presented an approach that supports RTE in
M2T, where better traceability of code being changed in software arises as one
of the benefits of RTE in software engineering. A programmer can perform
changes to the code in the software, and quickly trace the code changes
that other developers may apply with the use of RTE. Reverse engineering
also allows for easier removal of code that may contain errors. However,
the application of RTE in the software development process still leaves the
software engineer with considerable work to do, for example, keeping track
of the changes being made to the generated artefacts.

The application of RTE in software engineering also reduces complexity.
In a study by Ciccozzi et al. [31], RTE can be applied to reduce the complex-
ities usually found in embedded system design and development, which also
supports the ability to employ RTE in M2T. Larger software development
organisations typically have shorter development cycles and higher expecta-
tions. As a result, they are constantly searching for methods to reduce the
complexity of software development [60]. The application of model-driven
round-trip engineering will help software engineers with the deployment of
component-based systems in the telecommunication sector [31]. The ability
to reduce the complexity of a system also reduces the time taken by software
engineers to develop embedded systems in the industry.

The effort of keeping different artifacts consistent in the design and de-
velopment of code is a time-consuming activity that is even longer when
undertaken manually [135]. Rocha et al. [121] agree that evaluating and en-
suring consistency in modelling artifacts is a time-consuming issue in software
design. The probability of software developers making errors is also higher,
and it takes a longer time to complete a software system under development.
In [134], the authors identify that RTE in M2T is an essential mechanism
that ensures consistency and synchronisation in different M2T transforma-
tions. RTE can be used to automate the process of ensuring consistency in the
multiple models and artifacts being employed in software. Changes created
in one model can also be propagated and reflected in another model quickly
and efficiently [134]. RTE’s structured approach to automation ensures that
there is less effort spent in monitoring and maintaining consistency between
artifacts. Ciccozzi et al. [31] agree that RTE results in reduced functions,
which in turn lead to lower costs and more efficiency in software development.

52

2.4.2 Classification of Round-Trip Engineering

Round-trip engineering can be divided into partial and full round-trip engin-
eering [116] as described below:

2.4.2.1 Partial Round-Trip Engineering

In order to prevent code generators from overwriting hand-written text, par-
tial round-trip engineering is used. Various partial round-trip engineering ap-
proaches have been suggested to segregate the code generated by the model
from the hand-written text, which may be manually updated. The following
describes some of existing solutions proposed for partial round-trip engineer-
ing.

Protected Regions. Protected regions are an alterable portion of the gen-
erated code. This solution was described in detail along with examples in
previous section 2.3.2.

Embedded Snippets Code Directly within Model. Many UML tools,
for example Enterprise Architect [136], IBM Rhapsody [69], Papyrus-RT [118],
enable fine-grained code for behaviour to be embedded into the model. This
code contains all the necessary information within a single source file, which
overcomes the hindrance of protected regions. This technique is consistent
with certain approaches of information confinement. However, modifications
to the fine-grained code are made at model level. Thus, during code change
it prevents programmers from using their preferred programming editors and
IDEs (and the benefits the latter comes with, like code completion, syntax
highlighting, etc.), which may lead to their efficiency and productivity suf-
fering.

2.4.2.2 Full Round-Trip Engineering

This section refers to methods that allow for modifications in both the code
and the model. Typically, this form of round-trip engineering requires the
use of a mechanism of synchronisation that can handle both model to code
and code to model change propagation. In reality, this synchronisation is
difficult to achieve since it requires at the very least bidirectional model-to-
code mapping.

53

Fujaba. Fujaba [82] supports story-diagrams, a high-level visual program-
ming language that combines both collaboration and activity diagrams. The
specifications and control structures of complicated objects that are applic-
ation specific are expressed using story-diagrams. Story-diagrams are used
to visualise a system’s dynamic characteristics, such as a control flow, or to
adapt UML classes, collaboration diagrams, and activity, and by raising the
degree of abstraction be translated into executable Java code. Furthermore,
as a round-trip engineering environment, Fujaba extracts abstract syntax
graphs of source code in Java to generate story- and class-diagrams. Editing
the resulting code is permitted, enabling round-trip engineering providing
the developers adhere to Fujaba’s naming standards and implementation ap-
proaches.

Annotations are inserted step by step in the back end to recreate Fujaba
story-diagrams. Multiple annotation engines look for patterns expressed in
the syntax tree (such as the names of certain methods) and, as a result,
add annotation elements into the tree. Following this, Fujaba attempts to
ascertain graph rewriting rules that are similar to the annotations observed.
The result of this re-engineering process is new graph rewriting rules, which
correlate to the story-diagrams.

However, Fujaba has a number of limitations. Firstly, the back end of
the parser must be hand-written. As a result of this, the process of design
recognition (such as the story-diagrams) is prone to errors, so there is no
assurance that the same code will result from re-engineering a diagram when
it is created again. Secondly, the method relies heavily on the Fujaba code
generation algorithms, and principally of Java itself. The back end of the
parser requires a thorough understanding of how the code was created in
the first instance. Because the back end of the parser, and the parser itself,
are Java-specific, they cannot be used with any alternative programming
language, with the support for RTE being hard-coded. Finally, the RTE ap-
proach is unable to handle code sections not depicted in diagrams. By using
its story-diagrams to store method bodies, Fujaba attempts to circumvent
this difficulty. However, after regenerating the code, fragments that cannot
be recognised by the reverse engineering process are absent.

SelfSync. In [147], the authors suggest SelfSync as a round-trip engineer-
ing environment. Its goal is to synchronise data modelling perspectives with
its corresponding Self object-oriented language implementation objects [146].

54

It is presumed that the information in the implementation and data mod-
elling perspective is the same. There are potentially four possibilities for
round-trip engineering. The first is where view entities are changed, as is the
corresponding implementation; second is when view entities’ relationships are
changed, as is the implementation; the third possibility is when implement-
ation objects are changed, as is the data modelling view; and lastly when
implementation object relationships are changed, as is the data modelling
view. Furthermore, updating is a real-time process to the implementation
from the modelling view, meaning that changes in the modelling view are
immediately reflected in the implementation.

Framework-Specific Modeling Language (FSML). The synchronisa-
tion of Eclipse plug-in source code, and domain-specific models, was studied
by Antkiewicz and Czarnecki [9]. These models conform to an FSML that
enables the interaction between Eclipse workbench components to be de-
scribed. Framework extensions are properly completed by the framework
due to restrictions on the FSML models. Agile RTE, the method described
in [9], combines partial (human) reverse engineering and forward engineer-
ing, which is automatic. In the former, from the code, the recently extracted
model is compared to the most recent model used in the process of forward
engineering. Consistent modifications are disseminated, to the FSML model
or code, as a result of the comparison. Conflicts are indicated by inconsistent
modifications, for example through developer modification of the model and
source code, which consequently require manual correction.

From the source code, FSML models are derived through reverse engin-
eering in an approach described in [9], converting a scenario of heterogeneous
synchronisation to be homogeneous instead. The actual synchronisation is
then carried out via a three-way merging of the asserted, the freshly extrac-
ted, and the prior FSML model. The difference between consistent and in-
consistent modifications is established by examining the code modifications,
and those modifications that affected the asserted model. While the latter
requires human intervention to return to a consistent condition, the former
can be done automatically.

Model-and-Code Consistency Checking (MCCC). During the devel-
opment and co-evolution of the source code and the design model, model-
code consistency checking can assist in uncovering discrepancies. The au-

55

thors in [120], suggest that in MBSE, model and code are updated often
and simultaneously. As a result, it is important to check the consistency
between the maturing artefacts. They present a technique of consistency
checking that is incremental and discovers model and code conflicts in real-
time. Their technology combines Java code with UML models into a single
in-memory representation. This is deployed by consistency testing, based on
rules supplied in constraint languages by developers, for example in the ob-
ject constraint language (OCL). During development, testing identifies and
reports the state of project consistency to the developers. If discrepancies
are found, they are not resolved using a synchronisation method.

Syntactic Model-Code Round-Trip Engineering. Angyal et. al., in [7],
suggest an RTE technique for synchronising source models and generated
code. The purpose is to synchronise a DSML-compliant model with code to
allow for iterative development. The models and code can be changed at the
same time in the latter, and the suggested RTE synchronises the changes
throughout development. They suggest employing a three-way strategy for
platform-specific model and code synchronisation that is extremely close to
the code’s Abstract Syntax Tree (AST). After that, the platform-specific
model is kept in synchronisation with the DSML-compliant model.

2.4.3 Discussion

In the above section, an overview of existing mechanisms for supporting
synchronisation/RTE in M2T transformations has been presented. All of
the mechanisms reviewed for supporting RTE have some limitations. For
example, Fujaba can be used when the source model is captured in UML.
However, the RTE process cannot be automated as the parser back-end needs
to be written manually. it is also very dependent on its own code generation
methods and on Java, and it is unable to deal with features in code which
are not reflected in diagrams.

In SelfSync, a source model and its associated implementation object are
identical. Both have the same structure and behaviour, specifically the pro-
totype’s structure and characteristics. Although the synchronisation process
in SelfSync can be undertaken automatically, SelfSync can only be used with
an Extended Entity-Relationship diagram. FSMLs will typically reflect the
concerns of a small area of the framework, with multiples being used within a
single framework. However, one limitation of this method is that the source

56

model must be generated from the source code each time, mitigated only by
objectionable use of code annotations and similar techniques.

The MCCC framework, although it can robustly detect inconsistencies
between the design model and source code, it requires human intervention
to write complex consistency rules such as in OCL. The syntactic model-
code RTE method enables both hand-written code and generated code parts
within the generated artifacts, rather than them being separate. However,
it is an expensive method, using a three-way merging strategy that is more
complex than simple template-based approaches. It also only works with
specific types of models. And finally, it is complicated to use, as AST and
DSML models involved have a large abstraction gap.

To summarise, using these existing mechanisms does give developers the
benefit of providing support in the RTE process, but some of them are very
complex and others can only be used in specific cases.

2.5 Summary
The first part of this chapter presented fundamental Model-Driven Engin-
eering (MDE) concepts including the definitions of meta-models, models,
modelling languages and their essential components such as abstract syntax,
concrete syntax, and semantics. Several model management activities, in-
cluding model querying, model comparisons, model validations, and model
transformations (such as model-to-model, model-to-text, and text-to-model)
were also discussed. along with a summary of contemporary MDE challenges,
including merging and synchronisation.

The second part of this chapter presented an overview of integrating hand-
written text in M2T transformations. It also summarised existing approaches
that are used to integrating hand-written text in M2T transformations. This
part concluded with a discussion on the limitations of these existing ap-
proaches. Finally, this chapter presented an overview of round-trip engin-
eering (RTE); more specifically, RTE in M2T transformations. A summary
of the existing methods that are used to support round-trip engineering in
M2T transformations was given along with a discussion on the limitations of
these existing methods.

In the next chapter, we will analyse the research problems identified in
integrating hand-written text in M2T transformation and illustrate those
through an example M2T transformation.

57

Chapter 3

Analysis and Hypothesis

In Chapter 2 methods for integration of hand-written text in M2T trans-
formations were reviewed. Different techniques were discussed, and further
research opportunities were described. There are evident research challenges
relating to the existing mechanisms for integrating hand-written text in M2T
transformations. However there are also additional challenges in the inabil-
ity of M2T languages to support round-trip synchronized engineering. This
chapter addresses both issues together with the hypothesis and anticipated
outcomes of the thesis.

Chapter Structure: An overview of the target research area is discussed
in Section 3.1. Section 3.2 offers an example to demonstrate the challenges
targeted by the research. Section 3.3 contends that there are drawbacks and
limitations in using existing integration approaches. And finally, Section 3.4
contains the hypothesis and objectives of this research.

3.1 Analysis
Model-based software engineering processes habitually use model-to-text (M2T)
transformation to create implementation-level artefacts such as executable
code, documentation and configuration scripts from abstract, typically domain-
specific, models. This is done in an automated and repeatable manner. M2T
transformations may be routinely implemented using dedicated template-
based languages such as EGL [124], Acceleo [44], Java Emitter Templates [43],
Xpand [81], Velocity [52] and StringTemplate [114].

58

They combine the static content with text computed content from the
elements of one or more input models and can offer improved readability
compared to imperative M2T transformation programs implemented using
string concatenation [122]. It is often the case that modelling languages
cannot provide sufficient expressive power to capture all the information re-
quired to achieve full code generation. In cases such as this, one or more of
the following options may be chosen by developers:

• To augment the generated code with code that is to add the missing
information, using protected regions or inheritance/delegation;

• Extend the abstract and concrete syntax of the modelling language
with concepts required to capture the missing information within the
model, ideally at an implementation-agnostic level of abstraction;

• Minimally extend the modelling language to allow modellers to embed
code fragments written in the target implementation language within
their models (e.g. embed Java code within UML models).

Existing integration mechanisms were discussed in Chapter 2. These
mechanisms can depend on separating the hand-written text from the gen-
erated code, while in protected regions and JMerge, the generated code is
combined with the hand-written text in the same file. However, it is often
the case that additional issues are created when generated and hand-written
text are combined together. The next section highlights these issues and
offers possible solutions.

3.2 Motivating Example
In order to clearly demonstrate the problems that are being targeted in this
research and to illustrate the proposed approach, an example was developed
using a minimal model-to-text transformation. This example was chosen
because it involves integrating handwritten and generated text. At the same
time round-trip synchronisation between the source model and the generated
source code was a hoped-for outcome.

For this example, we use a minimal component-connector domain-specific
language (DSL), the abstract syntax of which is illustrated in Figure 3.1. In
the DSL a system consisted of components and connectors. Each component

59

has many input ports (inPorts) and one output port (outPort). Each port
has a name and a type, and ports can communicate through connectors.
Each connector has exactly one source port and one target port.

Figure 3.1: Meta-model of the Component-Connector DSL.

Figure 3.2 shows a model that conforms to the DSL and which captures
a small part of the operation of a water heating boiler. The system (model)
has two components: TemperatureController and BoilerActuator. It also has
three input ports (namely, temperature, targetTemperature, and boilerStatus).
The TemperatureController component receives input from two ports (tem-
perature and targetTemperature). It computes the difference between the
two and the result is propagated to the BoilerActuator component along
with the then current status of the boiler. The BoilerActuator component
decides whether to turn the boiler on or off.

From models like the one shown in Figure 3.2, we wish to generate execut-
able Java code. This is achieved through a template-based M2T transform-

60

1 rule Model2Class
2 transform m : Model {
3 template : "../common/model2class.egl"
4 target : "src−gen−sync−regions/syncregions/" + m.name + ".java"
5 }
6

7 rule Component2Class
8 transform c : Component {
9 template : "sync−regions−component2class.egl"

10 target : "src−gen−sync−regions/syncregions/" + c.name + ".java"
11 }

Listing 3.1: EGL rules for generating Java code from component-connector
models

ation, implemented using Epsilon Generation Language (EGL) 1, as shown
in Listings 3.1-3.3.

temperature

temperature temperatureDifference

targetTemperature

TemperatureController

targetTemperature

boilerStatus

temperatureDifference action

boilerStatus

BoilerActuator

action

Figure 3.2: BoilerController model that conforms to the meta-model in Fig-
ure 3.1.

The program in Listing 3.1 consists of two rules. The first, in lines 1-5 is
used to generate a Java class for every model element of type System. Line 1
gives the rule a name; line 2 contains the name of the type, instances of
which the rule should transform. Line 3 declares the template that will be
used for the transformation, and line 4 specifies where the generated file will
be stored. The second, in lines 7-11 is used to generate one Java class for
each component in the system.

The template invoked by the System2Class rule is shown in Listing 3.2.
Line 1 prints the class name. Lines 2-8 generate an execute() method that
has one parameter for each input port of the system and returns a value, the

1Although we use EGL in this example, the transformation could be implemented using
any other template-based M2T language

61

1 public class [%=m.name%] {
2 public [%=m.outPort.type%] execute([%=m.inPorts.collect(p|p.type +

" " + p.name).concat(", ")%]) {
3 [%for (child in m.components){%]
4 [%=child.name%] [%=child.name.ftlc()%] = new [%=child.name%]();
5 [%=child.outPort.type%] [%=child.name.ftlc()%]Result = [%=child.

name.ftlc()%].execute([%=child.getInputParameters().concat(", ")
%]);

6 [%}%]
7

8 return [%=m.outPort.incoming.source.eContainer().name.ftlc() + "
Result"%];

9 }
10 }
11 [%
12 operation Component getInputParameters(){ {
13 var parameters : Sequence;
14 for (p in self . inPorts) {
15 if (p.incoming.source.eContainer().isTypeOf(Model)) {
16 parameters.add(p.incoming.source.name);
17 }
18 else {
19 parameters.add(p.incoming.source.eContainer().name.ftlc() + "

Result");
20 }
21 }
22 return parameters;
23 }
24 %]

Listing 3.2: EGL template that generates a Java class realising the
communication between components of the system

type of which is the same as the type of the output port of the system. The
list of the input parameters for each component is calculated using a utility
operation getInputParameters() defined in lines 12-24.

The second template is for the Component2Class rule and is shown in
Listing 3.3. Line 1 prints the class name and lines 2-4 generate an execute()
method for the component with appropriate input parameters and return
type, and an empty body. When the transformation on the model of Fig-

62

1 public class [%=c.name%] {
2 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "

" + p.name).concat(", ")%]) {
3

4 }
5 }

Listing 3.3: EGL template for generating Java class for each individual
component

1 public class BoilerController {
2 public int execute(int temperature, int targetTemperature, boolean

boilerStatus) {
3 TemperatureController temperatureController = new

TemperatureController();
4 int temperatureControllerResult = temperatureController.execute(

temperature, targetTemperature);
5 BoilerActuator boilerActuator = new BoilerActuator();
6 int boilerActuatorResult = boilerActuator.execute(

temperatureControllerResult, boilerStatus);
7

8 return boilerActuatorResult;
9 }

10 }

Listing 3.4: Generated class for BoilerController component

ure 3.2 is executed, it produces the files shown in Listing 3.4 and 3.5 for the
system, and the BoilerActuator component, respectively2.

While the model contains sufficient information3 to generate the content
of the execute() method of the BoilerController as per Listing 3.4, it has no
means of expressing the behaviour of each individual component. Hence, the
generated execute() methods of the BoilerActuator and TemperatureControl-
ler classes in Listings 3.5-3.6 respectively is empty.

2A very similar class is generated for the TemperatureController component, which we
omit to reduce unnecessary repetition.

3With many assumptions e.g. regarding ordering and freedom from cycles which are
necessary to keep this example minimal.

63

1 public class BoilerActuator {
2 public int execute(int temperatureDifference, boolean boilerStatus) {
3

4 }
5 }

Listing 3.5: Generated class for BoilerActuator component

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3

4 }
5 }

Listing 3.6: Generated class for TemperatureController component

3.2.1 Problems

To add the missing behaviour for execute() methods in Listings 3.5 3.6, one
could extend the generated code with hand-written text using inheritance or
delegation techniques, if the developer prefers adding them in separate file.
They can even be directly added within the generated files using protected
regions and JMerge techniques, if the developer prefers adding them in the
same file. There are two limitations that apply to this example as described
below:

• One limitation is that, when a developer integrates hand-written text
within auto-generated text using existing approaches (e.g. protected
regions), this can lead to some issues. In section 3.3, an example is
shown of how protected regions can be used to integrate hand-written
text using EGL language to demonstrate these issues.

• Another limitation is that when a developer integrates hand-written
text into target generated artefacts, whether by separating them into
different files (using a technique such as inheritance) or merging them
within auto-generated files (using a different technique such as protec-
ted regions), the integration can lead to a lack of consistency between
the source models and their generated artefacts in M2T transforma-
tions. This limitation is discussed in more detail in Section 3.3.3.

64

1 public class [%=c.name%] {
2 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "

" + p.name).concat(", ")%]) {
3 [%=out.startPreserve("//", "", "execute", true)%]
4

5 [%=out.stopPreserve()%]
6 }
7 }

Listing 3.7: Declaring protected regions using EGL language

3.3 Limitations of Integrating Techniques in M2T
Transformations

Although there are different techniques that can be used to integrate hand-
written text, the focus of this research is solely on the techniques that allow
the developer to integrate hand-written text within auto-generated artefacts
(e.g. protected regions). Thus, this section describes how the developer can
integrate hand-written text using protected regions technique accompanied
by an example. Also, it discusses the issues of using protected regions.

3.3.1 An example of Using Protected Regions in EGL
Language

In Listing 3.5, if developers want to add the body of theexecute() method and
preserve it during the re-generation then using a protected region is a viable
option. Protected regions can be declared using EGL as shown in Listing 3.7
and the output of executing it against the BoilerActuator and Temperature-
Controller components are shown in Listings 3.8 3.9 respectively.

Then, the developer can specify the behaviour of the BoilerActuator and
TemperatureController components within the produced protected region for
the generated BoilerActuator Java class, as shown in lines 4-9 of Listing 3.10
and the generated TemperatureController Java class, as shown in line 4 of
Listing 3.11 respectively.

3.3.2 Issues of Using Protected Regions

Using the protected regions technique can lead to the following issues:

65

1 public class BoilerActuator {
2 public int execute(int temperatureDifference, boolean boilerStatus) {
3 // protected region execute on begin
4

5 // protected region execute end
6 }
7 }

Listing 3.8: The result of executing the template of Listing 3.7 against the
BoilerActuator component

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 // protected region execute on begin
4

5 // protected region execute end
6 }
7 }

Listing 3.9: The result of executing the template of Listing 3.7 against the
BoilerActuator component

1 public class BoilerActuator {
2 public int execute(int temperatureDifference, boolean boilerStatus) {
3 // protected region execute on begin
4 if (temperatureDifference > 0 && boilerStatus == true) {
5 return 1;
6 } else if (temperatureDifference < 0 && boilerStatus == false) {
7 return 2;
8 } else
9 return 0;

10 // protected region execute end
11 }
12 }

Listing 3.10: Extended BoilerActuator class with behaviour

66

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 // protected region execute on begin
4 return temperature − targetTemperature;
5 // protected region execute end
6 }
7 }

Listing 3.11: Extended TemperatureController class with behaviour

Anticipate Location in Advance. Developers have to anticipate in ad-
vance which part of the code they want to extend. For example, in List-
ings 3.8 3.9, there are protected regions inside the body of the methods; any
changes that the developers want to make can only be undertaken inside the
method body. However, since there is only one protected region, they are
unable to change any part of the class, including adding a new field.

Code Pollution. The code will be polluted with protected region com-
ments as shown in Listing 3.10 (lines 3 and 10) and Listing 3.11 (lines 3 and
5), especially when a large number of such regions are added. In addition, if
the developers mistakenly add the code outside the protected region’s tags,
important system information will be lost during re-generation.

3.3.3 Limitations of Consistency between Source Mod-
els and Their Generated Files

While integrating hand-written text is a common task in M2T transforma-
tions, it can lead to inconsistency between the source models and generated
artefacts. Also, there is no single source of truth, since the system informa-
tion is spread in two or more places.

No Single Source of Truth. Protected regions are detrimental in terms
of model analysability and portability. However they remain a very popular
approach among practitioners because the implementation cost is low, the
target implementation language is familiar, and there is usually an aversion
to complicating the syntax of the modelling language.

Despite this popularity, there are those who wish to use the target lan-
guage as the single source of truth for their development. Writing the code

67

within the modelling environment deprives them of essential features such as
code completion and error reporting. Alternatively, writing the code within
an IDE incurs the additional overhead of having to copy and paste it back
to the modelling tool, and also includes a risk that this step is missed and
that consequently code fragments are accidentally overwritten next time the
M2T transformation is executed.

3.4 Research Hypothesis and Objectives
This section presents the research hypothesis in Section 3.4.1 and the object-
ives of the research in Section 3.4.2. Section 3.4.3 clarifies the scope of the
research.

3.4.1 Research Hypothesis

There are two different research hypotheses of this thesis as follows:

The first hypothesis of this thesis is that it is possible to in-
tegrate and preserve hand-written text in generated files
without needing to use protected regions or similar con-
structs in Model-to-text transformations (M2Ts). The second
hypothesis is that where embedding code fragments in models is
necessary to achieve full code generation, the content of these
fragments can be automatically synchronised between the
model and the generated code in Model-to-text transformations
(M2Ts).

The highlighted terms are the characteristics that were derived from the
research hypothesis and used in the construction of the context for this re-
search project. They are defined as follows:

1. Hand-written text: The process of modifying generated artefacts
manually by users.

2. Protected regions: Protected regions are regions that are declared in
the M2T transformation templates by the developers for the purpose
of adding hand-written text within generated files.

68

3. Automatically synchronised: Any modification that occurs in gen-
erated target artefacts is reflected back to the source models. Thus,
ensuring both the source models and the generated target artefact are
consistent.

3.4.2 Research Objectives

The research objectives of this thesis can be summarised as follows:

1. First Research Objective (RO-1): Enable language-agnostic pre-
servation of text in arbitrary locations of generated files without the
need for protected regions.

2. Second Research Objective (RO-2): Enable automated round-trip
synchronisation of code fragments embedded in generated files with the
source models of the transformation.

3. Third Research Objective (RO-3): Assess the performance of the
proposed mechanisms.

3.4.3 Scope

The scope of this research is limited to deterministic template-based model-
to-text transformations that consume a single input model.

Given the importance of integrating hand-written text in M2T transform-
ations, many mechanisms have been developed to facilitate the integrating
process in M2T transformations. The shortcomings of these mechanisms are
discussed in Section 2.3.

Also, despite the potential benefits of processes maintaining consistency
in M2T transformations (for example, keeping source models and generated
files synchronized), most M2T transformation languages still do not support
automated consistency management as discussed in Section 2.4.

In light of the above, this research is limited to providing techniques to
facilitate the process of merging and maintaining synchronization that can
be applied to M2T languages and does not consider a general solution that
can be applied to all M2T languages.

69

Chapter 4

Automated Line Based Merging

4.1 Introduction
This chapter describes the first contribution of this thesis, an approach for
adding hand-written lines of code anywhere in generated files, and for pre-
serving them upon re-generation. In the previous chapter, some of the prob-
lems related to the use of the protected regions technique to integrating hand-
written text were described. One of these problems was that developers have
to anticipate in advance which part of each generated file will be extended
with hand-written text. For example, in Listing 3.8, there is a protected re-
gion inside the body of the method; if the developers want to make changes,
they can only do so inside the method body. However, they will not be able
to change other parts of the class, such as adding a new field, because there
is only one region; they need to add additional regions each time they want
to integrate hand-written text elsewhere.

This chapter presents a technique developed in the context of this pro-
ject that enables developers to integrate hand-written text directly within
the generated code without having to use predefined protected regions. The
proposed approach is agnostic to both the modelling language and the tar-
get implementation language, and a proof-of-concept prototype has been
developed on top of an existing template-based M2T language (the Epsilon
Generation Language [124])1. EGL has been selected because it is a powerful
and mature model-to-text transformation language.

1All source code for merging approach are available at https://github.com/soha500/
MergingApproach

70

https://github.com/soha500/MergingApproach
https://github.com/soha500/MergingApproach

Chapter Structure: This chapter is organised as follows. Section 4.2
describes how M2T transformation languages can be extended with a merging
approach. It also describes in detail how EGL language can be extended to
support the merging approach. Section 4.3 outlines the evaluation process
and results. Section 4.4 discusses the practicality and limitations of the
proposed approach. Section 4.5 discusses alternative possible solutions and
Section 4.6 concludes by summarizing this chapter.

4.2 Extending EGL with Merging Approach
To avoid the problems of using the protected regions’ mechanism, the EGL
language has been extended with additional features. These features aim to
achieve the following:

• Enabling developers to add lines of hand-written text/code without the
need to declare protected regions or separate them into other files.

• Detect conflicts between generated files, templates, and models.

• Warn the developers if they have modified or deleted any line that has
been auto-generated.

The following section describes how the algorithm works.

4.2.1 Assumptions

This section provides a list of assumptions for using the Automated Line
Based Merging Technique. Thus the user of this technique or other research-
ers looking to expand this work may benefit from having these clear assump-
tions.

Target Language Support Comment. One assumption, in order for
this approach to be applicable, is that the target language needs to support
character comments. For example, if the M2T is generating a JSON file, this
approach would not be applicable because JSON does not support comments.
Presently, Java-style comments (and any other language that uses a similar
comment structure to Java, like HTML, Python, Ruby, etc.) are supported.

71

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 protected region execute on begin
4

5 // protected region execute end
6 }
7 }
8 /*
9 XbK6q3PAD1YNASA=ZXyhAZQ=fQ==

10 */

Listing 4.1: An example of corrupted protected region.

Source Model Modification. Another assumption in using this approach
is that after the first generation, the source model is not edited in any way.
More details on this are provided in the limitations section (Section 4.4.1) of
this Chapter.

Corrupted Protected Regions. Another important assumption is that
the start or end line of the protected regions should not change as shown in
Listing 4.1. The reason for this is that the proposed algorithm is based on
counting the start line of protected regions to prevent the content of regions
from being hashed (e.g. hold the content until all lines are hashed then return
them back). Thus, if the start line has been changed the region content will
be hashed and the algorithm will not work as expected.

Hash-Line Corruption. The hash line at the bottom of the generated
files should not be changed or deleted at any time. This is also true in
the case when the structure of preserving or generating the hashes in the
algorithm is changed, for example from using four characters per line to five.
This will make the previous hashes invalid.

Implementation of Merging Approach
An overview of the approach is given in Figure 4.1. Firstly, it is expected
that developers create models (step 1) and templates (step 2) and then
subsequently run the EGL transformation (step 3). This transformation
will produce a set of files in the target language. A problem arises when there

72

Figure 4.1: An overview of the proposed approach for merging hand-written
text into generated files using EGL.

are existing generated files that the user may have made modifications to
(step 4). In its normal operation mode EGL will overwrite these potential
modifications. The implementation of a merging approach enables EGL to
detect these previously generated files (present on disk), and to use line-based
merging tools to preserve any non-destructive changes. In these cases, the
merging engine is invoked (step 5) with both the user-modified file and the
newly generated model file. This process preserves hand-written text (step
6) as the final output of the transformation process.

4.2.2 Extending EGL with Merging Approach

The merging algorithm, which consists of 4 steps, is described below:

73

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5

6 }
7 }
8 /*
9 XbK6AA==q3PACQ==ASA=AZQ=fQ==

10 */

Listing 4.2: The result of generating TemperatureController class from the
template 4.3

Step A: Generate the new content of the target file using standard
EGL, and generate the hash code

The standard EGL transformation produces components as files in the root
directory. Just before a generated file is written, an extension developed
in this project intercepts it and appends a comment at the end of the file,
containing all the hashes of each line of the file. There are four-character base-
64 hash codes of each line, concatenated, as shown on line 9 of Listing 4.2.
Before being hashed protected regions must be entirely extracted so they
are not hashed, then inserted back into the file after hashing (which will
be the same lines as when removed). This is because protected regions are
not produced by model transformation and can only contain hand-written
text. Each generated line, including white space, is hashed and each hash
is truncated into four characters. The user is cautioned against editing the
hash line at the bottom of the file to preserve the algorithm functionality.
It is possible to change the length of the recorded hash; for example instead
of four it could be eight or sixteen characters. However, the probability of
clashing (i.e. a line changing while its hash remains the same) with four
characters is acceptably low (as described in Section 4.4.2).

Step B: Detecting Changes to Original Content and Extracting the
Original Lines

If the developers change or delete any line that is auto-generated, then the
merging algorithm will stop and produce an exception. When the original

74

document was created, the hash code was appended to the end of the file.
When a new transformation is performed each existing file, which the user
may have modified, is checked for integrity. The file would be considered
corrupt if the user has deleted or modified any of the original auto-generated
lines. To detect this each line is hashed again and checked against the hash
recorded at the bottom of the existing file. Each line hash must be present
and in the same order.

Figure 4.2 illustrates the hashes of each line of an auto-generated file.
The hashes would be appended to the bottom of the file normally as shown
in Listing 4.2, but here they are shown on the right-hand margin.

1 public class TemperatureController { XbK6
2 AA==
3 public int execute(int temperature, int targetTemperature) { q3PA
4 CQ==
5 ASA=
6 } AZQ=
7 } fQ==

Figure 4.2: An example of hashes for each generated line in an original file.

Figure 4.3 illustrates a user-modified file after an integrity check, where
each line is re-hashed and compared in-turn to the next expected hash. In
this case, line 5 is a new line so it doesn’t match hash "ASA=", but the next
line does. By the end of the process all hashes are accounted for, and it is
assured that all the original lines are still present (in the same order).

1 public class TemperatureController { XbK6
2 AA==
3 public int execute(int temperature, int targetTemperature) { q3PA
4 CQ==
5 return temperature - targetTemperature; Q/oD
6 ASA=
7 } AZQ=
8 } fQ==

Figure 4.3: An example of the algorithm checking all hashes are present when
one line has been added.

Figure 4.4 illustrates a file where one of the original lines (line 5 in Fig-
ure 4.2) with hash "ASA=" has been deleted. The next hash it is trying to find
beyond that line is "ASA=", which is not present anywhere in the document.
The algorithm does not find all the hashes, and therefore reports a corrupt

75

document. In a well-formed document, each line that can be matched with a
hash (original lines) is concatenated together to reproduce the original auto
generated file.

1 public class TemperatureController { XbK6
2 AA==
3 public int execute(int temperature, int targetTemperature) { q3PA
4 CQ==
5 } AZQ=
6 } fQ==

Figure 4.4: An example of a corrupt file and how the algorithm determines
there are missing lines.

Figure 4.5 illustrates a file where one of the original lines (line 3 in Fig-
ure 4.2) with hash "q3PA" has been modified (e.g., the modifier for execute()
changed from public to private). The next hash it is trying to find beyond
that line is "q3PA", which is not present anywhere in the document. The
algorithm does not find all the hashes, and therefore reports a corrupt doc-
ument.

1 public class TemperatureController { XbK6
2 AA==
3 private int execute(int temperature, int targetTemperature) {BekZ
4 CQ==
5 ASA=
6 } AZQ=
7 } fQ==

Figure 4.5: An example of a corrupt file and how the algorithm determines
there are modifying lines.

Step C: Merging the New Auto-generated Lines and the User
Modifications

At this stage of the algorithm, it is assured that the original lines are all
present. This can then be used as the history of the document to resolve
conflicts. The merging strategy used is a three-way merge, similar to the
Source Control Management Software Git. Three-way merging was found
to be more suitable than just a two-way merge of the new auto-generated
file and the user modifications. Git requires a three-way merge strategy to
resolve conflicts, as when tasked with merging changes between two branches

76

it needs to account for the file’s history. The reason it is more suitable is that
comparing two files is not enough to detect the changes that were made on
different branches. For example, let’s assume that two people made changes
to the same file; one added a new line at the beginning of the file and the other
one removed the last line of the file. Then both committed their changes to
be merged. If they were doing a two-way merge (e.g. diff), the tool could
compare the two files, and see that the first and last lines of the file are
different. However, it is not possible to know how to resolve the differences,
i.e. whether the merged version includes the first line and whether it includes
the last line.

Alternatively, with a three-way merge, two files are compared, but against
the original copy, before either of them were changed. So it is evident that
first line was added, and last line was removed. Therefore, the information
can be used to produce a correct and fully merged version that respects
the two different changes that were made by the different developers. The
differences between two-way and three-way were discussed previously in Sec-
tion 2.3.3 along with an example. The algorithm that was implemented used
a component of an existing library to accomplish this three-way merging,
called JGit. It is invoked with the new auto-generated file, the existing file
with user modifications, and the original file as extracted from the existing
file.

Step D: Resolving Conflicts

When a generated file is modified, the user is permitted to create new lines
of code, but is forbidden from modifying or deleting any original lines. How-
ever, it cannot entirely be avoided that the model is updated and the EGL
process produces a file that causes conflicts with user-modified code. Three-
way merging can avoid this problem in the case of a modified template file,
where its original transformation lines can be safely identified and replaced.
However, if the auto-generated lines come into conflict with user-modified
code then the process must communicate to the user that these conflicts
must be resolved before the process is resumed. This implementation works
by creating a sibling file with a .conflict extension containing the conflicts,
and printing a warning to the user if any of these files have been generated.
Since the automated process could not resolve the conflicts, the user is then
expected to evaluate them and resolve them by hand.

77

1 public class [%=c.name%] {
2

3 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "
" + p.name).concat(", ")%]) {

4

5 }
6 }

Listing 4.3: An example of EGL template for generating
TemperatureController class

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 }
6 }
7 /*
8 XbK6AA==q3PACQ==AZQ=fQ==
9 */

Listing 4.4: The result of generating TemperatureController class from the
template 4.3

To illustrate this step, all possible scenarios for adding one or more new
lines to the template, the generated files, or to both, are presented. Three of
these scenarios demonstrate automatic resolution, with one requiring manual
resolution. An example of an original template is presented in Listing 4.3
and the result of executing the transformation is shown in Listing 4.4. These
are the first versions of the files before the modifications in later listings.

Scenario 1: Adding a new line to the template. An example of the
original template is presented in Listing 4.3 and the result of running the
transformation is shown in Listing 4.4. Now, if user adds a new line to the
original template (as shown in Listing 4.5 (line 5)) and reruns the transform-
ation, the addition can be merged normally as an automatic resolution, as
shown in Listing 4.6 (line 5).

78

1 public class [%=c.name%] {
2

3 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "
" + p.name).concat(", ")%]) {

4

5 System.out.println("Running [%=c.name%].execute()");
6 }
7 }

Listing 4.5: An example of adding a new line into the template 4.3
for TemperatureController class

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 System.out.println("Running TemperatureController.execute()");
6 }
7 }
8 /*
9 XbK6AA==q3PACQ==/AP7AZQ=fQ==

10 */

Listing 4.6: The result of adding and merging one line into the
TemperatureController class

Scenario 2: adding a new line to the generated file. An example of
the original template is presented in Listing 4.3 and the result of running the
transformation is shown in Listing 4.4. Now, if user adds a new line to the
generated file (as shown in Listing 4.7 (line 5)) and reruns the transformation,
the addition can be merged normally as an automatic resolution, as shown
in Listing 4.8 (line 5).

Scenario 3: adding a new line to both template/model and the
generated file but in clearly distinctive places. An example of the
original template is presented in Listing 4.3 and the result of running the
transformation is shown in Listing 4.4. Now, if the user adds a new line to
the template (as shown in Listing 4.9 (line 5)) and also adds a new line to
generated file (as shown in Listing 4.10 (line 4)) and then reruns the trans-

79

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 return temperature − targetTemperature;
6 }
7 }
8 /*
9 XbK6CQ==q3PAAA==MPU=fQ==

10 */

Listing 4.7: An example of adding a new line into the generated file 4.4 for
TemperatureController class

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 return temperature − targetTemperature;
6 }
7 }
8 /*
9 XbK6CQ==q3PAAA==MPU=fQ==

10 */

Listing 4.8: The result of adding a new line into TemperatureController class

formation, the addition can be merged normally as an automatic resolution,
as shown in Listing 4.11 (lines 4 and 6).

Scenario 4: adding a new line to both template/model and the
generated file in the same place. An example of the original template
is presented in Listing 4.3 and the result of running the transformation is
shown in Listing 4.4. Listing 4.12 gives an example of a new line being
added to a template file (line 5), which is auto-generated. Listing 4.13, as
part of the same example, shows a new line that has been added by the user,
problematically in the exact same place (line 5). In this case the algorithm
is unable to automatically resolve these files and generates a conflict file as
shown in Listing 4.14. The next time the algorithm is executed it detects

80

1 public class [%=c.name%] {
2

3 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "
" + p.name).concat(", ")%]) {

4

5 System.out.println("Running [%=c.name%].execute()");
6 }
7 }

Listing 4.9: An example of adding a new line into the template 4.3
for TemperatureController class

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4 return temperature − targetTemperature;
5

6 }
7 }
8 /*
9 XbK6AA==q3PACQ==AA==AZQ=fQ==

10 */

Listing 4.10: An example of adding a new line into the generated file 4.4 for
TemperatureController class, but in different place from the one that added
to the template

these .conflict files and expects that the user has made the changes they
intended to make. It replaces the hashes at the bottom of the file with the
newly merged line hashes so that the next time the algorithm is executed it
accepts the previous changes.

4.2.3 Algorithms

This section presents how the proposed approach works, how hashes are
generated in the EGL, how original lines are extracted from new lines, and
how addition lines can be merged.

81

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4 return temperature − targetTemperature;
5

6 System.out.println("Running TemperatureController.execute()");
7 }
8 }
9 /*

10 XbK6AA==q3PACQ==AA==AZQ=fQ==
11 */

Listing 4.11: The result of merging both lines in TemperatureController class
after the transformation rerun

1 public class [%=c.name%] {
2

3 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "
" + p.name).concat(", ")%]) {

4

5 System.out.println("Running TemperatureController.execute()");
6 }
7 }

Listing 4.12: An example of adding a new line into the template 4.3
for TemperatureController class

Algorithm for All Merging Steps

Algorithm 1 describes how the proposed merging approach works. The al-
gorithm iterates through all the generated files in the transformation’s output
root folder (lines 3-28). Line 1 creates a list of all the files in the working
directory and line 2 creates an empty list for messages. For each file, the
algorithm first checks for any deletions or modifications of the original lines
of code (lines 4-7) and if any original lines are missing it records an error and
skips the file. If all the original lines are present, it proceeds to extract pro-
tected regions from the file content, leaving only the region start, which can
be later merged without conflicts, collecting the region bodies into a queue
(lines 8-14). After extraction of the regions, a copy of the file’s original lines
is created, where this and the new content produced from the transformation

82

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 return temperature − targetTemperature;
6

7 }
8 }
9 /*

10 XbK6AA==q3PACQ==CQ==AZQ=fQ==
11 */
12 conflicted

Listing 4.13: An example of adding a new line into the generated file 4.4
for TemperatureController class, but with different value from the one that
added to the corresponding line in the template.

1 public class TemperatureController {
2

3 public int execute(int temperature, int targetTemperature) {
4

5 <<<<<<< O
6 System.out.println("Running TemperatureController.execute()");
7 =======
8 return temperature − targetTemperature;
9

10 >>>>>>> T
11 }
12 }

Listing 4.14: The result of detecting conflicts between the template 4.12 and
the generated file 4.13

83

and the file as a whole, are merged together by a three-way merge algorithm
(lines 15-17).

Then the algorithm checks for any conflicts between these three bodies
of text (lines 18-21). This is done by checking if any lines contain textual
artefacts inserted by the merging algorithm to signify to developers, IDEs,
and VCSs, that there are conflicts that require manual intervention to resolve.
It creates a message with the name of the file that contains the conflicts, and
adds a conflicted message at the end of the filename prompting the developer
to fix all conflicts in order to continue. The algorithm then iterates through
the resulting merged lines, and at each instance of a region start it reinserts
the region bodies directly underneath from the ListOfAllRegions queue, on
a first-in-first-out basis (lines 22-26). At the end of processing each file, the
merged lines are joined into the document and written to disk, replacing
the potentially user-modified file (line 27). Finally, the algorithm prints any
messages it accumulated for all files to the console (lines 29-31).

Algorithm for Generating Hashes.

Algorithm 2 is used to generate hashes for the content of each line, invoked
for each file in the working directory. It iterates through all lines in the file
and hashes them using Java’s native object hashes, encoded as base-64 (lines
4-7). Then it concatenates all the hashes together (line 8). This forms a
line of hashes that contain comments using a detected comment style (lines
9-10), detected with Algorithm 3. Finally it appends this comment at the
end of the file, with a buffer of two new lines between it and the file content
(line 11-12).

Algorithm for Detecting Comment Style

Algorithm 3 illustrates how the merging algorithm detects the comment style
for target languages. This function first splits the file by newlines (line 2),
then extracts the first line (line 3). This first line is compared (lines 6,
10, 14, 18) to several potential language tags, which are used to simply
inform the merging algorithm which language is in use. If no match is found
then default C-style (also used in Java) comments are used (lines 4-5). This
function itself does not exist in the implementation of the merging algorithm
but does illustrate the logic around matching language tags. This function,

84

Algorithm 1 How merging engine works
1: ListOfFiles← all the files in the folder
2: ListOfMessages← Ø
3: for all f ∈ ListOfFiles do

Step 1: Check if original lines were deleted/modified
4: if not AllOriginalLinesPresent(f) then
5: Append to ListOfMessages "at least one of original lines was

deleted or modified in f"
6: continue
7: end if

Step 2: Extract any protected regions, leaving a one-line
region start in their places

8: ListOfAllRegions← Ø
9: for all line ∈ f do

10: if IsRegionStart(line) then
11: Add region starting on line to ListOfAllRegions
12: Remove these lines from f , with just line in its place
13: end if
14: end for

Step 3: Merge original lines with developer modifications
and new transformation

15: OriginalLines← ExtractOriginalLines(f)
16: NewLines← GetNewModelTransformation(f)
17: MergedLines← ThreeWayMerge(OrginalLines, NewLines, f)

Step 4: Check if there were any conflicts
18: if f contains conflict tag then
19: Append to ListOfMessages "There were conflicts in merging the

contents for f"
20: Append to f "conflicted"
21: end if

Step 5: Return any protected regions back into their places
22: for all line ∈MergedLines do
23: if IsRegionStart(line) then
24: Return the next region from ListOfAllRegions in place of

line
25: end if
26: end for

Step 6: Write the new document as the result of the trans-
formation and merge back to the file

27: write f JoinByLines(MergedLines)
28: end for

Step 7: print any messages to the console
29: for all message ∈ ListOfMessages do
30: print(message)
31: end for

85

Algorithm 2 How EGL generates hashes
1: function HashFile(f)
2: ListOfLines← SplitByLines(f)
3: ListOfHashes← Ø
4: for all line ∈ ListOfLines do
5: HashedLine← Base64Hash(line)
6: Append to ListOfHashes Truncate(HashedLine, 4 charac-

ters)
7: end for
8: HashLine← JoinByLines(ListOfHashes)
9: CommentStyle← DetectCommentStyle(f)

10: CommentedHashLine← Decorate(HashLine, CommentStyle)
11: Append two newlines to f
12: Append CommentedHashLine to f
13: end function

for illustrative purposes, returns a tuple of the comment start and end (line
22), which are local variables in the implementation.

Algorithm for Checking All Original Lines are Present

Algorithm 4 illustrates how the merging algorithm checks that all original
lines from a previous transformation are still present in a potentially user-
modified file. It checks whether all the hashes for the original lines exist
sequentially. Regions being included in the input file would not necessarily
be a problem for this function, but to avoid potential problems in the context
of merging they are removed for the purpose of this check (line 2). To parse
the file for its original hashes it is split by newlines (line 3); the last four
lines are removed (line 4); and the 3rd of these lines, the line with the hashes
concatenated together, is extracted (line 5) and subsequently split by groups
of four characters (line 6). It iterates through all lines in the files, checking
that each hash is present one after the other (Lines 8-17). It does this by
hashing each line of the file and comparing it to the next expected hash in
the sequence (lines 9-11). It can determine if any original lines are missing
by looking at the difference between the number of hashes found and the
number of original hashes (line 18). If all the hashes have been found early
in the iteration of all lines it stops the iteration early (line 14). For example,

86

Algorithm 3 How merging algorithm detects comment style for generated
files
1: function DetectCommentStyle(f)
2: ListOfLines← SplitByLines(f)
3: FirstLine← First(ListOfLines)
4: CommentStart← "/*"
5: CommentEnd← "*/"
6: if FirstLine equals "<!–HTML–>" then
7: CommentStart← "<!–"
8: CommentEnd← "–>"
9: end if

10: if FirstLine equals "#Python" then
11: CommentStart← "” ’"
12: CommentEnd← "” ’"
13: end if
14: if FirstLine equals "#Ruby" then
15: CommentStart← "=begin"
16: CommentEnd← "=end"
17: end if
18: if FirstLine equals "–Haskell" then
19: CommentStart← "{-"
20: CommentEnd← "-}"
21: end if
22: return (CommentStart, CommentEnd)
23: end function

if the file is 100 lines long, and it finds the first ten hashes in the first twenty
lines, then it stops looking after twenty lines.

Algorithm for extracting original lines

Algorithm 5 illustrates how the merging algorithm extracts the original lines
(the ones that were hashed after a previous transformation) from a file. Sim-
ilar to Algorithm 4, this function iterates through all lines (without regions)
in the file, although it also collects original lines found (line 13). If there are
too few original lines present, though in the case of the merging algorithm,
this is never the case as a corrupt document would terminate the algorithm

87

Algorithm 4 How merging algorithm checks all original lines are present
1: function AllOriginalLinesPresent(f)
2: WithoutRegions← RemoveRegions(f)
3: ListOfLines← SplitByLines(WithoutRegions)
4: EndOfFileLines← RemoveLast(ListOfLines, 4)
5: HashLine← Nth(EndOfFileLines, 3)
6: ListOfHashes← Split(HashLine, 4 characters)
7: h← 1
8: for all line ∈ ListOfLines do
9: HashedLine← HashLine(line)

10: OriginalHash← Nth(ListOfHashes, h)
11: if HashedLine equals OriginalHash then
12: h← h + 1
13: if h > Length(ListOfHashes) then
14: break
15: end if
16: end if
17: end for
18: return h equals Length(ListOfHashes)
19: end function

before merging, it would return as many original lines as it could sequentially
find. In the end, it returns the list of original lines it extracted (line 20).

4.3 Evaluation
This section outlines the results of the evaluation of the correctness and
scalability of the proposed approach2. It also discusses threats to the validity
of the results and the algorithm itself.

4.3.1 Correctness

Several unit tests have been developed to build confidence on the correctness
of the prototype implementation of the approach. This has been done using

2All unit tests, input models, generated files, raw and analysed results for all the
experiments presented in this section are available at https://github.com/soha500/
MergingApproach

88

https://github.com/soha500/MergingApproach
https://github.com/soha500/MergingApproach

Algorithm 5 How merging algorithm extra original lines
1: function ExtractOriginalLines(f)
2: WithoutRegions← RemoveRegions(f)
3: ListOfLines← SplitByLines(WithoutRegions)
4: EndOfFileLines← RemoveLast(ListOfLines, 4)
5: HashLine← Nth(EndOfFileLines, 3)
6: ListOfHashes← Split(HashLine, 4 characters)
7: ListOfOriginalLines← Ø
8: h← 1
9: for all line ∈ ListOfLines do

10: HashedLine← HashLine(line)
11: OriginalHash← Nth(ListOfHashes, h)
12: if HashedLine equals OriginalHash then
13: Append Line to ListOfOriginalLines
14: h← h + 1
15: if h > Length(ListOfHashes) then
16: break
17: end if
18: end if
19: end for
20: return ListOfOriginalLines
21: end function

the JUnit library to ensure that the presented algorithm behaves as expected
in the following scenarios:

Scenario 1: Preserve Integrated Handwritten Text. In this scenario,
several tests were performed to check whether the proposed technique is
able to preserve integrated handwritten text within the auto-generated text.
These tests were as described in the following:

• Test 1: Additional Line. When one line has been added into
the auto-generated lines and preserved without using protected region
markers as shown in Table 4.1. This test would fail if the algorithm
found that the original had been modified, that there was a conflict, or
it did not manage to preserve the additional line. The expected out-
puts are status codes from the algorithm that must be given in these
scenarios.

89

Test I: Adding New Lines to Original Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Adding New Lines
to Generated Lines

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

return temperature - targetTemperature;
}

}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Expected Output MergedSuccessfully
Result of The Test Pass

Table 4.1: Inputs and expected outputs of adding a new line to the original
lines.

• Test 2: Additional Lines. When multiple lines have been added into
the auto-generated lines and preserved without using protected region
markers as shown in Table 4.2. This test would fail if the algorithm
found that the original had been modified, that there was a conflict,
or it did not manage to preserve the additional line. The expected
outputs are status codes from the algorithm that must be given in
these scenarios.

• Test 3: Additional Protected Region Lines. When the size of the
protected regions can be extended without error as shown in Table 4.3.
The algorithm should not perform any merging or report any errors.
The file should remain exactly the same outside of the protected/sync
regions.

Scenario 2: Detect any Modification or Deletion to Auto-generated
Text. In this scenario, several tests were performed to check whether the
proposed technique is able to detect if any of the auto-generated text has
been modified or deleted. Possible corner cases in this scenario were covered
as described in the following:

90

Test I: Adding New Lines to Original Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Adding New Lines
to Generated Lines

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

//Add body of the method here
return temperature - targetTemperature;

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Expected Output MergedSuccessfully
Result of The Test Pass

Table 4.2: Inputs and expected outputs of adding new lines to the original
lines.

• Test 1: Modification Lines. One test where the algorithm de-
tects that original lines have been lost, when at least one of the auto-
generated lines has been modified as shown in Table 4.4. The algorithm
should not attempt to do any merging nor report any conflicts.

• Test 2: Deletion Lines. One test where the algorithm detects that
original lines have been lost, when at least one of the auto-generated
lines has been deleted as shown in Table 4.5. The algorithm should not
attempt to do any merging nor report any conflicts.

• Test 3: Hash Line Modified. When the hash line was modified
as shown in Table 4.6, the original file is reported as corrupt. This is
because the algorithm will be expecting hashes from the hash line that
do not exist in the file. The algorithm should not attempt any merging,
nor report any conflicts.

Scenario 3: Detect Conflicts between Auto-generated and Hand-
written Text. In this scenario, several tests were performed to check
whether the proposed technique is able to detect any conflicts between the

91

Test IV: Adding New Lines Inside Protected Regions

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

// protected region execute on begin

// protected region execute end
}

}
/*
XbK6q3PAD1YNASA=ZXyhAZQ=fQ==
*/

Adding New Lines
Inside Protected

Regions

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

// protected region execute on begin
return temperature - targetTemperature;

// protected region execute end
}

}
/*
XbK6q3PAD1YNASA=ZXyhAZQ=fQ==
*/

Expected Output MergedSuccessfully
Result of The Test Pass

Table 4.3: Inputs and expected outputs of adding new lines inside protected
regions.

Test II: Modifying Original Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Modifying Generated
Lines

public class Boiler {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Expected Output OriginalWasModified
Result of The Test Pass

Table 4.4: Inputs and expected outputs of modifying original lines.

92

Test III: Deleting Original Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Deleting Generated
Lines

public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Expected Output OriginalWasModified
Result of The Test Pass

Table 4.5: Inputs and expected outputs of deleting original lines.

Test VII: Modifying Hash Line

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Modifying Hash Line

public int execute(int temperature, int targetTemperature) {

}
}
/*
NK==XbK6q3PACQ==AZQ=fQ==
*/

Expected Output OriginalWasModified
Result of The Test Pass

Table 4.6: Inputs and expected outputs of modifying hash line.

93

Test V: Adding Corresponding Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Adding New Line to
Generated Lines

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

return temperature - targetTemperature;
}

}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Adding New Line to
EGL Template

public class [%=c.name%] {
public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + " " +

p.name).concat(", ")%]) {
return temperature - targetTemperature;

}
}

Expected Output MergedSuccessfully
Result of The Test Pass

Table 4.7: Inputs and expected outputs of adding new similar lines in the
same position of the template and its generated file.

files on disk and the files that are about to be generated. These tests were
as described in the following:

• Test 1: Corresponding Lines. When in the same position of the
template and its generated file two exactly equal values have been added
after the first transformation and there are no conflicts in this case as
shown in Table 4.7. The algorithm should not report conflicts, nor lose
the added line, and keep only one copy of the line.

• Test 2: Conflicting Lines. When in the same position of the tem-
plate and its generated file two different values have been added manu-
ally after the first transformation and there is a conflict as shown in
Table 4.8. The algorithm should not keep both lines and should not
report a conflict. The algorithm should be able to provide a merged
text with conflicts labelled for a potential user to correct.

The algorithm can act with all the above scenarios and continues if only
new lines are added. However, with all other scenarios the developer must

94

Test VI: Adding Conflicting Lines

Original Content of
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

}
}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Adding New Line to
Generated File

public class TemperatureController {
public int execute(int temperature, int targetTemperature) {

return temperature - targetTemperature;
}

}
/*
XbK6q3PACQ==AZQ=fQ==
*/

Original Content of
EGL Template

public class [%=c.name%] {
public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + " " +

p.name).concat(", ")%]) {
return temperature + targetTemperature;

}
}

Expected Output ConflictsFound
Result of The Test Pass

Table 4.8: Inputs and expected outputs of adding new different lines in the
same position of the template and its generated file.

be involved to fix the issue. None of the tests are for anything outside of the
algorithm, such as reading and writing files or appending hash lines.

4.3.2 Performance

This algorithm is meant to be applied to potentially hundreds of files, each
with potentially hundreds of lines of code, which means that performance of
the algorithm is an important factor. To measure its performance tests have
been conducted which stress different features:

Additional Lines Test. Adding a number of random strings in random
lines in the generated file. This will stress that part of the algorithm that does
merging, but should not cause any merging conflicts nor line modifications.

Cloned Lines Test. Copying multiple existing lines of the generated file
and duplicating them onto random lines. This will stress that part of the
algorithm that is able to distinguish between the generated and manually
added lines, even if they are of the same value.

95

1 long start = System.currentTimeMillis();
2

3 MergingAndConflicts results = MergingAndConflicts.DoMergingAndConflicts
(modifiedContents, transformationContents);

4 writeResultsToCsvFile(System.currentTimeMillis() − start, ...) ;

Listing 4.15: An example of calculating the time taking

Deletion Line Test. Deleting one line in the file and detecting this as part
of the integrity check.

Conflicting Line Test. Adding one random string to a random position
in the generated file, while at the same time adding a random string in the
template in the same position, but with a different value. This will stress
that part of the algorithm that attempts, but fails to, resolve conflicts.

Conflicting Lines Test. Adding two random strings to two random po-
sitions in the generated file, as well as adding two random strings in the
template in the same places but with different values. This will further
stress the same part of the algorithm as the test above.

Each test is executed 100 times in order to allow the Java Virtual Machine
(JVM) that the software runs on to "warm up", and to ensure a stable average
between tests. The JVM may perform operations periodically, which impedes
the performance of the tests, such as Garbage Collection (GC), so this is
important.

The EGL generation, and file reading and writing, are not considered
in the performance tests; the tests are focused entirely on the merging and
conflicts algorithm. This includes the file integrity check, extracting original
lines for three-way merging, the merging itself, reporting any unresolved con-
flicts, and any automatic conflict resolution. See Listing 4.15 as an example
of only the algorithm being tested.

To assess the performance of the proposed algorithm (based on the size
of the model), the M2T transformation was executed (as discussed in Sec-
tion 4.2) on files of various sizes: containing 500 lines, then incrementing by
500 lines to 10,000 lines. To measure performance, the algorithm was timed
in completing its task, repeated one hundred times for each increment of the
number of lines in a file.

96

Figure 4.6: Result of measuring the average time when M2T transformation
run 100 times.

MS at 10K Lines Comparison
MultipleConflict 176.19 3.7
MultipleLinesAdded 172.03 3.7
OneConflict 168.99 3.6
OneLineAdded 166.7 3.5
OneLineDeleted 46.58 1.0
OneLineModified 46.46 1.0

Table 4.9: Result of the comparison.

Figure 4.6 illustrates various performance tests of the algorithm. Each
data-point is an average to the nearest 500 lines for comparison (as the
tests generate a variable number of lines each time), and plotted against
one another. Each test strategy used the same source text but modified it in
different ways. The algorithm took a similar time when one line was deleted
or modified. However, in case of any additions or conflicts the time increased
350% to 370% compared to other tests.

The results of performance testing are encouraging, as the execution time
of the proposed algorithm increases linearly as the size of the generated files
(lines) increases, as shown in Figure 4.6.

When multiple lines were added, or were in conflict, the algorithm took
almost quadruple the time compared to when one line was added or modified.
The test used a maximum of ten thousand lines in order to demonstrate wide
correlations between stresses on the algorithm. In reality actual projects
would have far fewer lines per file than this. Therefore, for actual projects,

97

the algorithm would perform sufficiently well enough to run over hundreds
of lines within a few seconds, not considering file read/write time.

The actual tests performed embody the different ways to stress the al-
gorithm which were described earlier:

• OneLineAdded. When one string is added in random line in the gener-
ated file.

• MultipleLinesAdded. When 100 random strings are added to random
positions in the generated lines.

• OneLineDeleted. When one auto-generated lines is deleted in the gen-
erated files.

• OneLineModified. When one auto-generated lines is modified in the
generated files.

• OneConflict. When one random string is added to a random position
in the generated lines, while at the same time adding a random string
in the template in the same position but with a different value.

• MultipleConflict. When 100 random strings are added to random pos-
itions in the generated lines, as well as adding some random strings in
the template in the same places but with a different value.

4.3.3 Threats to Validity

The correctness and performance tests used in the evaluation may be defi-
cient in some ways to real-world uses of the proposed solution. The arbitrary
decisions on the content, structure, and alterations in the templates and gen-
erated files may not accurately replicate organic circumstances the algorithm
may be used in. The templates and model used could rather be of real-world
projects, instead of an almost entirely minimal viable template and model.
The number of files, and number of lines per file, and number and shape
of alterations to each file, might not be representative of real-world projects
either, both in excess and insufficiency. The simulated edits to the templates
and generated files may not be representative of the edits typically made
by developers, such as being too randomised compared to operationally use-
ful modifications. The complexity of the model would quite possibly always
fall short of real-world models, as the components and connections between
components were the principal variable.

98

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 protected region execute on begin
4

5 // protected region execute end
6 }
7 }
8 /*
9 XbK6q3PAD1YNASA=ZXyhAZQ=fQ==

10 */

Listing 4.16: An example of corrupted protected region

Threats to Operation and Suitability

In this section, various threats to the operation of the algorithm by developers
are described, together with their impression of the suitability of algorithm
for their workflow.

Operation: Supported Comment Formats. The proposed approach
is not applicable if the target language does not support comments (e.g.
JSON).

Operation: Corrupted Protected Regions. Another threat is when
the developer manually, and mistakenly, changes the start or end line of the
protected regions as shown in Listing 4.16. The reason for this is that the
proposed algorithm is based on counting the start line of protected regions
to prevent the content of regions from being hashed (e.g. hold the content
until all lines are hashed then return them back). Thus, if the start line has
been changed the region content will be hashed and the algorithm will not
work as expected.

Operation: Hash-Line Corruption. Any modification to the hash line
at the bottom of the generated files raises an exception in the algorithm.
This is also true in the case when the structure of preserving or generating
the hashes in the algorithm is changed, for example from using four charac-
ters per line to five. This will make the previous hashes invalid. Another
uncontrollable issue is any unforeseen errors or undefined behaviour within

99

EGL, which the algorithm has not been designed to handle, requiring the
developers of EGL to fix or define the new behaviour.

The next two threats refer to the implementation rather than to the
results.

Suitability: EGL Lock-in. The way the algorithm is implemented is dir-
ectly within EGL’s source code, rather than a separate component. This was
done to give intimate access to the behaviour and features of EGL trans-
formations e.g. intercepting the file-writing mechanism to add a hash-line.
However, this means that any updates that the EGL authors publish would
be very time-consuming, and the work of re-integrating the algorithm would
be prone to error. For example, whole files such as OutputBuffer.java.java
could be completely rewritten (refactored) or deleted, which is where very
important code for the algorithm resides. A similar problem is that the al-
gorithm can only be used for EGL transformation within Eclipse, and is un-
able to support any other Integrated Development Environment (IDE) such
as Visual Studio, model transformation software, nor any other workflow.

Suitability: Algorithm Distribution. As mentioned above, the algorithm
is integrated directly into the source code of Epsilon. This means in order
to redistribute the software, a user would need to install this particular,
"patched", version of Epsilon. This would require some effort for anyone
wishing to use the algorithm: to create an installer that can make the neces-
sary changes to a standard Epsilon installation (of the correct version); or
the user to make changes manually to Epsilon’s source code.

4.4 Discussion
In the previous sections, it was explained how M2T languages can be exten-
ded with the merge technique (Automated Line Based Merging) to simplify
the process of integrating hand-written text within generated artefacts. This
section elaborates on the differences between the automated line-based mer-
ging technique and the existing merging approaches of Protected regions and
JMerge. Integrating hand-written text using Protected regions and JMerge
require the developers to anticipate in advance which part of the code they
want to extend.

100

Whereas, using an automated line-based merging technique does not re-
quire that procedure and the developers have the freedom to integrate their
hand-written text in any part of the generated artefacts. Furthermore, in
the automated line-based merging technique, conflicts between source models
and the generated artefacts are detected by the M2T transformation engine,
while in the protected regions approach, changes are only preserved so they
are not overwritten during the re-run transformations.

4.4.1 Limitations

This section presents the limitations of the proposed approach.

Change Permanence. The proposed approach does not provide any tools
or options to undo any operations it performs. Unlike Git, which provides a
history, a user can navigate to find the past code they want, this algorithm
makes changes directly to the files and deletes older versions. The reason
for this is that the hashes are changeable each time the transformation is
run; the original hashes are not preserved. A solution to this would be to
keep copies or differentials of every version the algorithm has generated and
somehow allow the user to navigate this.

Original Line Preservation. Another limitation is that the proposed ap-
proach does not allow the user/developer to change or delete generated lines.
This is problematic as it becomes impossible to replace or override existing
code, only to add new methods and fields, or new lines within the existing
code base.

Inability to detect where lines were deleted or modified. In the case
where the developer has removed or modified original lines, the algorithm is
unable to determine which lines underwent these changes, since the user is
also able to add new lines. This is because the algorithm is not intelligent
enough to search forward through the hashes to check whether there are later
matches. A more sophisticated version of the algorithm is left as future work.

4.4.2 Probability of Hash Collisions

An overview of the probabilities of hash collisions is described in detail in
Table 4.10. With four characters of base-64 hash there are 644 unique hashes,

101

which is a 1 in 16 777 216 probability of error; eight characters would be 648

which is 2.814e+14 unique hashes, which is excessive. The impact of the
probability of error is reduced further by line hash collisions only occurring
between sections of hand-written text and their next original line - any two
dissimilar (therefore problematic) hand-written or original lines in a file could
have the same hashes, but they would need to be uninterrupted by other ori-
ginal lines to cause the proposed solution problems. That is, only contiguous
sections of hand-written text pose a threat, rather than the entire file. Any
two dissimilar lines in the file causing hash collisions is at a probability of c
for N number of lines, for H possible hashes. P is a function to calculate
non-repeating permutations for r digits of base x [68].

P (x, r) =
x!

(x− r)!

c = 1− P (H,N)

HN

The proposed solution has a lower probability of collision than might be
the case for entire files, because c would typically be lower for n number
of lines in a section as N ≥ n. A table of the results of this equation
can be seen in 4.10. In summary, having two-character hashes can lead
to collisions (≈1% probability) even when the number of generated lines is
small (ten lines), whereas with five-character hashes the collision possibility
is negligible (one million times smaller chance for ten lines). Four-character
hashes become unsuitable for uninterrupted regions of one thousand lines
(≈3%), but five-character hashes are still quite feasible in this case (≈0.05%
probability).

4.5 Alternatives
There are other alternative ways to record hashes as described below:

Hash Every Line. The hash could be preserved at the end of every gen-
erated line as shown in Listing 4.17. However, if this approach is used, the
generated files will be excessively polluted. Also, it would be easy for a user
to accidentally corrupt the hashes at the end of each line while editing.

102

Number of lines Hash length Chance
10
10
10
10
100
100
100
100
1000
1000
1000
1000
1000
1000

2 characters
3 characters
4 characters
5 characters
2 characters
3 characters
4 characters
5 characters
2 characters
3 characters
4 character
5 characters
6 characters
7 characters

1.0935%
0.0172%
0.000268%
0.00000419%
70.430%
1.871%
0.0295%
0.000461%
100%
85.160%
2.93%
0.0465%
0.000727%
0.000011%

Table 4.10: Probability of hash collisions.

1 public class BoilerActuator { /*rxeb*/
2 public execute(int temperatureDifference, boolean boilerStatus) {/*

WcQc*/
3 /*Ghes*/
4 } /*AHed*/
5 } /*Jwre*/

Listing 4.17: An example of generating hashes at the end of every generated
line.

Hash at Beginning of File or Lines. Another alternative is to put the
hashes at the beginning of the file as shown in Listing 4.18. However, this
would get in the way of the user and increase the likelihood of corruption.
Another option is putting each line’s hash at the beginning of the line in
a comment as shown in Listing 4.19, but this causes a similar pollution as
mentioned previously.

Master Copies Directory. Another alternative is to maintain a master
copy of all the generated files, such as in a sub-directory of the working
directory. This is the approach that Git has with its .git sub-directory as
shown in Figure 4.7. This would avoid potential corruption to any hashes
placed directly in the files, as it would be completely separate from the source

103

1 /*rxebWcQcAHedJwre*/
2 public class BoilerActuator {
3 public execute(int temperatureDifference, boolean boilerStatus) {
4

5 }
6 }

Listing 4.18: An example of generating hashes at the begining of generated
file.

1 /*rxeb*/ public class BoilerActuator {
2 /*WcQc*/ public execute(int temperatureDifference, boolean boilerStatus

) {
3 /*Ghes*/
4 /*AHed*/ }
5 /*Jwre*/ }

Listing 4.19: An example of generating hashes at the begining of every
generated line.

code. An added benefit of this approach is that it’s the only one that enables
intelligent identification of modifications and deletions to the original lines
of code; thereby informing the user on how to correct these corruptions.
However, saving a master copy of every file would double the size of each
project. Also these folders would need to be kept in sync when files are
renamed, deleted etc.

\generated-files
\file1.java
\file2.java
\file3.java

\master
\file1.java
\file2.java
\file3.java

Figure 4.7: An example of preserving the copy of the generated files in a
"master" directory.

104

Separate hash files. Incorporating a separate hash into different files
could be another solution, as shown in Figure 4.8. However, this may cause
confusion as in the case when a source file is deleted and the hash file re-
mains, or the hash files are accidentally deleted aside from the source code.
Also, this approach has an higher memory consumption than other methods,
as typically small files (which these would be) are saved as larger files than
necessary on the disk, and this creates an inefficiency for the engine to read
/ write hashes into many other files.

\generated-files
\file1.java
\file2.java
\file3.java

\hashes
\file1.java.hashes
\file2.java.hashes
\file3.java.hashes

Figure 4.8: An example of preserving the hashes of the generated files in a
"hashes" directory.

Separate hashes file. If all the hashes are preserved into one separate file,
this may be considered another alternative approach, shown in Figure 4.9.
However, the shortcomings of this approach are an increased time for the
engine to read / write hashes into another file, and the increased memory
usage of the algorithm to keep all the hashes in memory for all files at once,
or to read the file multiple times over.

\generated-files
\file1.java
\file2.java
\file3.java

\hashes.txt

Figure 4.9: An example of preserving all the hashes in a separate file.

105

4.6 Summary
This chapter presents an approach that facilitates the process of embedding
and preserving hand-written text into the generated files of M2T transform-
ations. This approach has been implemented on top of the existing M2T lan-
guage Epsilon Model Generation Language (EGL). Moreover, this approach
has been evaluated for its correctness and performance.

106

Chapter 5

Synchronised Regions

Chapter 2 presented a detailed review of round-trip engineering in model-to-
text transformations (M2T). The review showed that most of the previous
research focused on supporting round-trip engineering in M2M rather than
round-trip engineering in M2T transformations.

Chapter 3 motivates the need of integrating hand-written text in M2T
transformations to achieve full code generation. However, it was also emphas-
ised that using existing approaches, such as protected regions, can lead to
complex problems (as described in Section 3.3.2). Chapter 4 presents a novel
approach (Automated Line Based Merging) for integrating hand-written text
in M2T languages. However, an example also highlighted the shortcomings
of Automated Line Based Merging Approach, in which hand-written text is
integrated into generated artefacts without propagating changes back to the
source model. This results, in case like the one in the example, in the viola-
tion of the sing source of truth principle, as the information of the system is
in two or more different places.

This chapter presents another novel approach, that of sync regions, that
solve this shortcoming. Sync regions are declared in templates and are in-
tended to enable developers to add hand-written text within them. More
importantly, sync regions propagate this addition back to the source model
to maintain consistency between the models and their generated files. The
exact scope of this approach is discussed in Section 5.4.

Chapter Structure: Section 5.1 introduces the reader to the concept of
sync regions. Section 5.2 describes how M2T transformation languages can
be extended with sync regions. It also presents the implementation of the
sync regions technique in an existing M2T language (EGL). Section 5.3 out-

107

lines the results of the evaluation that was undertaken. Section 5.4 discusses
the practicability and the limitations of the sync regions technique. Lastly,
Section 5.5 concludes by summarizing the contents of this chapter.

5.1 Introduction
A sync region is a region in a generated file that is appropriately ring-fenced
using identifiable start/end comments. It encloses content that needs to be
kept in sync with a specific slot (pair of model elements and attributes)
in the model. The synchronised regions technique consists of two steps to
support synchronization in M2T transformations. Declaring sync regions in
the template allows developers to integrate the hand-written text as a first
step. As a second step, developers re-run the transformation to propagate any
changes that occurred inside these regions back into the models. Propagating
changes back to the source models depends on the name of the attribute and
the model element, information which is included in the start comment of
every sync region. In the next section, sync regions and the aforementioned
steps are explained in detail.

5.2 Extending EGL with Sync Regions
This section discusses how EGL can be extended with support for sync re-
gions; noting, however, that the same principles can be used to extend any
other template-based M2T language in a similar manner. The reason for
choosing EGL was that in addition to the local expertise, it is a powerful
and mature model-to-text transformation language.

5.2.1 Assumptions

This section provides a list of assumptions for using the Sync Regions Tech-
nique. Thus the user of this technique or other researchers looking to expand
this work may benefit from having these clear assumptions.

The prototypical extension works with EMF-based models [141] persisted
in the XMI format, where each element has a unique persistent ID, and is
limited to M2T transformations that consume a single model as an input.

108

Target Language Support Comment. One assumption, in order for
this approach to be applicable, is that the target language needs to have
some character comments. For example, if the M2T is generating a JSON
file, this approach would not be applicable because JSON does not support
comments. Presently, Java-style comments (and any other language that
uses a similar comment structure to Java, like HTML, Python, Ruby, etc.)
are supported.

Source Model Modification. Another assumption in using this approach
is that between generation and synchronisation, the source model is not ed-
ited in any way. More details on this are provided in the limitations section
(Section 5.4) of this Chapter.

Single Input Model. Currently, the proposed approach expects two in-
puts: one model and one folder, which contains all the generated artefacts.
This assumption is discussed in detail in (Section 5.4) of this Chapter.

Embedded Code Fragments using Sync Regions. The proposed ap-
proach expects the handwritten text to be integrated inside the body of sync
regions. If the handwritten text was integrated outside the body of sync re-
gions, then this additional text will not be preserved during the regeneration.

Direct Changes to the Embedded Code Fragments. It is important
to highlight that in the proposed approach it was assumed that the code
fragments should not be modified within the modelling framework. Changes
are expected to be made only within the IDE (i.e. the generated files). This
assumption is discussed in detail in the Limitations section (Section 5.4) of
the Chapter.

Deleted Sync Regions. While the synchronisation algorithm can cope
with inconsistently updated and malformed sync region markers, it cannot
cope with sync regions being deleted altogether from generated files. Ideally,
such missing sync regions should be reported to the user, but this cannot
be achieved without keeping additional metadata outside the generated files,
which is undesirable.

109

Figure 5.1: An overview of the proposed approach for synchronizing source
model with target generated files using EGL.

Implementation of Sync Regions in EGL
This section presents the steps for developing the synchronisation technique
in detail. An overview of the approach is given in Figure 5.1. Firstly, it
is expected that developers/users have created model (step 1) and text
generation templates they would like to run against this model (step 2).
The M2T transformation is then executed (step 3). This transformation
will result in files in the target languages that have been specified by the
developer. A potential problem arises when there are existing generated
files that the developers may have made modifications to (step 4), as the
M2T will overwrite these modifications. Another problem is that EGL offers
no consistency in adding such modifications to the generated files without
updating the source model, which can be provided by the following step.

The implementation of a sync regions approach enables users to integrate
the hand-written text inside sync regions (which EGL will detect), and to

110

instruct the sync engine tools to preserve them. In these cases, the sync
engine is invoked (step 5) considering both the potentially user-modified
(hand-written text) files and the newly generated model files. This process
preserves hand-written text and updates the source model (step 6) as the
final output of the transformation process, which provides a more convenient
developer workflow. All the steps of the proposed approach are explained in
more detail in the following sections.

5.2.2 Extending EGL with Sync Regions

EGL has been extended with two additional methods to specify sync regions1:

• startSync(String startComment, String id, String attribute): This emits
a single line comment in the target file, starting with the startComment
character sequence (e.g. // for Java), which denotes the start of a sync
region, and contains the id of the model element and the name of its
attribute that the content of the sync region needs to be kept in sync
with. A variant of the method with an extra endComment parameter
is also available to accommodate languages that require both a prefix
and a suffix for their comments (e.g., HTML).

• endSync(): Emits a single-line comment that marks the end of the
active sync region.

The use of the methods above is demonstrated in Listing 5.1, which is
an extended version of the original Listing 3.3 template that generates Java
classes from individual components. In the extended version of the template,
three new lines have been added (lines 3-5) and the output of executing it
against the TemperatureController component is shown in Listing 5.2. Line
3 of the template, produces the comment in line 3 of the generated file, which
denotes the start of a sync region. The generated comment starts with the
// character sequence as instructed by the first argument of the startSync
method. It continues with the sync token that allows the synchronisation
engine described later on to distinguish sync region comments from general

1All source code for sync regions approach are available at https://github.com/
soha500/EglSyncNew/

111

https://github.com/soha500/EglSyncNew/
https://github.com/soha500/EglSyncNew/

1 public class [%=c.name%] {
2 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "

" + p.name).concat(", ")%]) {
3 [%=out.startSync("//", c.id, "behaviour")%]
4

5 [%=out.endSync()%]
6 }
7 }

Listing 5.1: Extended version of the template of Listing 3.3 with a sync
region

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4

5 //endSync
6 }
7 }

Listing 5.2: The result of executing the template of Listing 5.1 against the
TemperatureController component

comments in the generated file, and then it contains the ID of the compon-
ent (_bfpnFUbFEeqXnfGWlV2_8A2) and the name of the attribute against
which the content of the sync region should be synchronised (e.g., behaviour).
Line 4 prints the content of the behaviour attribute of the component (empty
in the initial version of the model), and Line 5 produces the //endSync com-
ment in the generated file, that denotes the end of the sync region.

The algorithm identifies the correct attribute to store the hand-written
text by concatenating the model element’s ID and the attribute name. Thus,
as each model element has a unique id, it is acceptable to repeat the same
attribute name for different model elements in more than one region. How-
ever, repeating the same attribute name for the same model element leads
to inconsistencies that need to be solved - an approach for dealing with such
inconsistencies is described in Section 5.2.3.

2This is an auto-generated XMI ID produced by the Eclipse Modelling Framework, that
was used to implement the component-connector DSL and the sample instance model.

112

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.3: Extended TemperatureController class with hand-written
behaviour

5.2.3 Synchronising Sync Regions with Model Elements

A developer can now specify the behaviour of the TemperatureControl-
ler component within the produced sync region of the generated Temperat-
ureController Java class, as shown in line 4 of Listing 5.3, benefiting from
modern IDE features such as code completion and syntax highlighting. Once
they have made the desirable changes to the behaviour of generated com-
ponents, the next step is to trigger a synchronisation mechanism (the second
part of the proposed approach), which identifies and copies the hand-written
behaviour into the behaviour attributes of the respective components in the
source model.

A requirement of the proposed approach is that, between generation and
synchronisation, only insertions of new code is permitted, with original source
lines not edited in any way. This limitation is explained in detail in Sec-
tion 5.4 of this Chapter.

The synchronisation algorithm, which consists of 3 steps, is described
below:

Step A: Sync Region Identification

The synchronisation algorithm receives two inputs: the root directory, under
which files, already generated by the M2T exist, and the EMF model to
be synchronised. The algorithm recursively scans all files under the root
directory and identifies sync regions that start and end with appropriate
comments (Algorithm 6, line 2). For each sync region, the algorithm checks
(see Algorithm 6, lines 4-12) how well formed it is. This means that the
element ID and attribute of the region are correctly specified, that they

113

correspond to valid elements and attributes in the model, and that the text
within the sync region can be converted to a value compatible with the type of
the respective attribute. A complete list of errors is provided in Section 5.3.1
where correctness is evaluated. This check is employed on line 5. If any of the
regions are found to be malformed, the algorithm exits with an appropriate
error message (lines 7-8).

For well-formed regions of the file (line 10), the algorithm iterates over
each region’s ID, attribute, and value (line 11). The ID and attribute are
concatenated with a period in between (line 12) to form a key, and this
key along with the region value is inserted into a dictionary of region keys
to values (line 13). Once all files in the folder have been processed, the
dictionary is returned (line 16).

Algorithm 6 How synchronise algorithm identifies sync regions
1: function SyncRegionsOfFolder(path)
2: ListOfFiles← all files recursively found in path
3: RegionKeysToV alues← Ø
4: for all f ∈ ListOfFiles do
5: BadRegions← all badly-formed or incomplete sync regions in f
6: if any BadRegions then
7: print "Badly-formed or incomplete sync region in " f
8: return null
9: end if

10: Regions← all well-formed sync regions in f
11: for all (ID,Attribute, V alue) ∈ Regions do
12: Key ← concatenate(ID, ".", attribute)
13: insert (Key, V alue) into RegionKeysToV alues
14: end for
15: end for
16: return RegionKeysToV alues
17: end function

Step B: Sync Region Consistency Checking

Since, in principle, the same attribute of the same model element can appear
in multiple sync regions across the generated code-base, before the model is

114

updated, it needs to ensure the consistency of sync regions that refer to the
same element and attribute.

Lines 2-3 of Algorithm 7 prepares a dictionary of region keys to values,
and a dictionary of model attributes to values. For all model attributes and
their values (line 4) the values for the region key are extracted from the keys
to values dictionary (line 5). Lines 6-9 exit the algorithm with an error if no
values were found for this key. Line 10 prepares a set of unique region values
(which are strings) for the following cases:

• If the regions have the same value, they are marked as consistent: Lines
1-6 of Listing 5.4 show that for the same model element and the same
attribute, the values are the same and in this case different from the
value stored in the model. The model is updated with the new, con-
sistent value. This is illustrated in Algorithm 7 lines 11-16.

• If the regions have two unique values and one of them is the same as the
value of the attribute in the source model, then the other (different)
value is marked as the “new” value for the attribute: Lines 8-13 of
Listing 5.4 show that for the same attribute values only one of them
is different from the value stored in the model. The model is then
updated with the “new” value. This is illustrated in Algorithm 7 lines
17-20.

• If the regions have two or more unique values, none of which corres-
pond to the value of the attribute in the model, they are marked as
inconsistent; Lines 15-20 of Listing 5.4 show that for the same model
element the values differ and are both different from the value stored
in the model. Consequently, the model is not updated and the incon-
sistency is reported to the user. This is illustrated by Algorithm 7 line
21, which is reached when the previous two cases did not apply. It is
expected that the user will remedy these inconsistencies manually for
the synchronisation algorithm to run to completion again.

Step C: Model Updating

At this point, sync regions have been verified to be well-formed (step A) and
free of conflicts (step B). As such, the algorithm can proceed with updating
the attributes of the model elements to which sync regions refer. For each

115

1 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
2 return temperature − targetTemperature;
3 //endSync
4 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
5 return temperature − targetTemperature;
6 //endSync
7

8 //sync _bfpnFUbFEeqXnfGWlV2_8B, behaviour
9 return temperature − targetTemperature;

10 //endSync
11 //sync _bfpnFUbFEeqXnfGWlV2_8B, behaviour
12 return temperature + targetTemperature;
13 //endSync
14

15 //sync _bfpnFUbFEeqXnfGWlV2_8B, behaviour
16 return temperature > targetTemperature;
17 //endSync
18 //sync _bfpnFUbFEeqXnfGWlV2_8B, behaviour
19 return temperature < targetTemperature;
20 //endSync

Listing 5.4: Sync regions checking examples.

element/attribute involved, the content of the respective sync region is parsed
to the type of the attribute and the parsed value is assigned to the attribute.
Once all elements/attributes have been updated, the model is saved to disk.

5.3 Evaluation
This section outlines the results of the evaluation of the correctness, scalab-
ility, and generalisability of the sync region implementation approach and
reflects on its applicability and known limitations3.

3All unit tests, input models, generated files, raw and analysed results for all the
experiments presented in this section are available at https://github.com/soha500/
EglSyncNew/

116

https://github.com/soha500/EglSyncNew/
https://github.com/soha500/EglSyncNew/

Algorithm 7 How the synchronisation algorithm checks for and responds
to value consistencies
1: function SynchroniseFolder(path, model)
2: RegionKeysToV alues← SyncRegionsOfFolder(path)
3: AttributesToV alues← element attribute values of model
4: for all (Key,ModelV alue) ∈ AttributesToV alues do
5: V alues← values of Key in RegionKeysToV alues
6: if V alues is empty then
7: print "Key not found in model"
8: return
9: end if

10: UniqueV alues← unique values of V alues
11: if count of UniqueV alues = 1 then
12: if ModelV alue differs from 1st of UniqueV alues then
13: update model attribute Key with 1st of UniqueV alues
14: end if
15: continue
16: end if
17: if count of UniqueV alues = 2 and UniqueV alues contains

ModelV alue then
18: update model attribute Key with value of UniqueV alues dif-

fering from ModelV alue
19: continue
20: end if
21: print "There are two or more different values from the one in the

model"
22: end for
23: end function

5.3.1 Correctness

To build confidence on the correctness of the developed approach, several
unit tests have been developed using the JUnit library to ensure that the
synchronisation algorithm behaves as expected under normal circumstances
(well-formed and conflict-free sync regions) and gracefully fails when models
or generated files are modified manually in inconsistent ways.

117

Sync Regions Content. The first part of the correctness tests was to
focus on the content of the sync regions in the generated files when compared
to the respective one in the model. A summary of the possible cases that may
happen when developers are using sync regions’ approaches can be listed as
follows:

(i) There is one sync region that contains the same value in the model.

(ii) There is one sync region with a different value from the one in the
model.

(iii) There are two sync regions with the same value as the one in the model.

(iv) There are two sync regions with one different value to the value in the
model.

(v) There are two sync regions but one has a different value to the one in
the model.

(vi) There are two sync regions and they have two different to from the
value in the model.

(vii) There are three sync regions, which contain the same value as in the
model.

(viii) There are three sync regions but with one with a different value to the
one in the model.

(ix) There are three sync regions but with two different values, but one of
them having same value as in the model.

(x) There are three or more sync regions but with two or more different
values to the value in the model.

Table 5.1 demonstrates the results of the tests that were undertaken. The
results show that the proposed approach is working as expected when any of
the possible cases occurred, and by warning the developers where the error is
by displaying a clear message to the console. To avoid duplication only the
result of one test for one type (String) is shown. However, tests were written
for all the types (e.g. int, double, float, and boolean) and the results were
similar to the "String" type.

118

Test
Number of Sync

Regions in Generated
Files

Input (Content of each Sync Region) Respective Value in
The Model Expected Output Result of

The Test

i One sync region
//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

name="BoilerActuator" name="BoilerActuator" Pass

ii One sync region
//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" name="BoilerController" Pass

iii Two sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

name="BoilerActuator" name="BoilerActuator" Pass

iv Two sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" name="BoilerController" Pass

v Two sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" name="BoilerController" Pass

vi Two sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
Controller
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" an inconsistency error Pass

vii Three sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

name="BoilerActuator" name="BoilerActuator" Pass

viii Three sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" name="BoilerController" Pass

ix Three sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

name="BoilerActuator" name="BoilerController" Pass

x Three sync regions

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerActuator
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
BoilerController
//endSync

//sync _bfpnGUbFEeqXnfGWlV28A, name
Controller
//endSync

name="BoilerActuator" an inconsistency error Pass

Table 5.1: A result of testing the possible cases for using sync regions.

119

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync , behaviour
4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.5: An example of sync region without ID Element.

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A,
4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.6: An example of sync region without attribute.

Sync Regions Syntax. The second part of the correctness test focused
on the syntax of the sync regions. The possible cases that could occur in this
aspect could be listed as follows:

Test 1: Sync Region without ID Element. If at least one of the sync
regions does not contain the ID element as shown in Listing 5.5.

Test 2: Sync Region without Attribute Name. If at least of one of
the sync regions does not contain the attribute name as shown in Listing 5.6.

Test 3: Sync Region without startSync Token. If at least one of the
sync regions does not contain the startSync token as shown in Listing 5.7.

Test 4: Sync Region without endSync Token. If at least one of the
sync regions does not contain the end endSync token as shown in Listing 5.8.

Test 5: Respective Element does not Exist in Source Model. If
at least one of the sync regions contains an element that no longer exists

120

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3

4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.7: An example of sync region without startSync Token

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4 return temperature − targetTemperature;
5 }
6 }

Listing 5.8: An example of sync region without endSync Token.

in the source model. For example, if the ID element (_bfpnFUbFEeqXnfG-
WlV2_8A) for the sync region in Listing 5.9 was modified or removed from
the source model.

Test 6: Attribute Name does not Exist in Source Model. If at least
one of the sync regions contains an attribute name that no longer exists in
the source model. For example, if the attribute name (behaviour) for the
sync region in Listing 5.10 was modified or removed from the source model.

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.9: An example of sync region without respective element in source
model.

121

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4 return temperature − targetTemperature;
5 //endSync
6 }
7 }

Listing 5.10: An example of sync region without attribute name in source
model.

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
4 123
5 //endSync
6 }
7 }

Listing 5.11: An example of sync region with incompatible content.

Test 7: Incompatible Content. If the type of the content in the sync
region is not compatible with the type in the respective element in the source
model. For example, if the user adds integer content for the sync region in
Listing 5.11, but the attribute behaviour was defined as a string in the source
model.

5.3.2 Performance and Scalability

To assess the performance and scalability of the implementation, and to
ensure that it was free from unnecessary bottlenecks, the M2T transformation
discussed in Section 5.2 was executed on models of various sizes, producing 5
sets of files ranging from 2,000 to 10,000 files (with a step of 2,000 files). Each
experiment was repeated 3 times, collecting the average time and memory
usage, for each of the following scenarios 4:

• Each generated file had one sync region.
4The experiments were executed on a laptop computer with the following specifications:

MacOS Mojave 106.14., Intel Core i7, 2-cores @ 3.5Ghz, 1x16 GB 2133MHz LPDDR3
RAM

122

Files # Sync Regions Average (Total) Time (in s) Average Memory Used (in MB)
2000 1 40.83 316.77
2000 2 88.61 58.97
2000 3 124.60 48.43
2000 4 168.39 283.53
2000 5 212.60 276.61
4000 1 167.89 97.24
4000 2 345.54 75.94
4000 3 545.45 94.69
4000 4 740.26 852.79
4000 5 950.55 546.58
6000 1 384.27 1131.14
6000 2 754.12 968.73
6000 3 1192.69 599.44
6000 4 1736.60 1030.33
6000 5 2224.22 955.47
8000 1 724.76 968.26
8000 2 1510.34 827.48
8000 3 2341.29 842.78
8000 4 3188.45 777.47
8000 5 4221.06 680.05
10000 1 1198.81 244.07
10000 2 2368.72 596.18
10000 3 3678.04 624.46
10000 4 5000.96 507.28
10000 5 6366.22 231.46

Table 5.2: Average execution time and memory consumption form the dif-
ferent number of files and sync regions

• Each generated file had two sync regions.

• Each generated file had three sync regions.

• Each generated file had four sync regions.

• Each generated file had five sync regions.

In this experiment, the values included in the generated files were always
different from those stored in models, thus the values in every element in the
source model had to be updated. The solution was evaluated with up to
10,000 files, a number that significantly exceeds the number of files produced
by typical M2T transformations. The results are summarised in Table 5.2
and in Figures 5.2-5.5.

Figure 5.2 presents the results of the average total time required for the
execution of the synchronisation for the 5 different sizes of generated file
sets and the 5 scenarios with the different number of sync regions. Each
line represents one file set, while the horizontal axis is the number of sync

123

region(s) for each file in the set. As can be seen, the execution time increases
linearly as the number of sync regions increases for all the different sets of
files. However, it is not clear if the execution time increases linearly or has
a exponential trend when the number of files increases, while keeping the
number of sync regions the same (see Figure 5.4).

In terms of absolute values, in the scenario of having 2,000 files with
1 sync region in each, the proposed approach required approximately 40
seconds to complete the synchronisation (see Table 5.2 - top highlighted
value). For the biggest experiment (i.e. having 10,000 files each of which had
5 sync regions) the average time taken for the 3 runs was approximately 1
hour and 45 minutes (6,366.22 seconds). Even in this extreme scenario the
synchronisation completed successfully.

Figure 5.4 presents the same data but this time as the number of gener-
ated files is increasing for each of the scenarios for the same number of sync
regions. Each line in Figure 5.4 represents a scenario with a fixed number of
sync regions and the 5 data points on the line represent the 5 different sizes
of file sets.

Finally, in Figures 5.3 and 5.5 the average memory consumption is shown
as the number of sync regions increases (keeping the number of files fixed)
and as the number of files increases (keeping the number of sync regions
fixed), respectively. There is no clear correlation, which is explained by the
fact that Java garbage collection is clearing up memory when needed. What
is of importance is that in the worst case the prototype solution consumed
about 1GB of memory (1131.14MB - see highlighted value in the memory
consumption column of Table 5.2).

0

1000

2000

3000

4000

5000

6000

7000

1 Sync Region 2 Sync Regions 3 Sync Regions 4 Sync Regions 5 Sync Regions

Av
er

ag
e

To
ta

l T
im

e
in

 S
ec

on
ds

Number of Sync Regions Per File

Performance / Scalability Experiment (Time as Sync Regions Increase)

2000 Files

4000 Files

6000 Files

8000 Files

10000 Files

Figure 5.2: Results of measuring the average time for different size of models
and number of sync regions as the number of sync regions increases.

124

0

200

400

600

800

1000

1200

1 Sync Region 2 Sync Regions 3 Sync Regions 4 Sync Regions 5 Sync Regions

Av
er

ag
e

M
em

or
y

U
sa

ge
 in

 M
B

Number of Sync Regions Per File

Performance / Scalability Experiment (Memory Usage as Sync Regions Increase)

2000 Files

4000 Files

6000 Files

8000 Files

10000 Files

Figure 5.3: Results of measuring the average memory usage for different
size of models and number of sync regions as the number of sync regions
increases.

0

1000

2000

3000

4000

5000

6000

7000

2000 Files 4000 Files 6000 Files 8000 Files 10000 Files

Av
er

ag
e

To
ta

l T
im

e
in

 S
ec

on
ds

Number of Generated Files / Components in the model

Performance / Scalability Experiment (Time as Generated Files Increase)

1 Sync Region

2 Sync Regions

3 Sync Regions

4 Sync Regions

5 Sync Regions

Figure 5.4: Results of measuring the average time for different size of models
and number of sync regions as the number of files increases.

0

200

400

600

800

1000

1200

2000 Files 4000 Files 6000 Files 8000 Files 10000 Files

Av
er

ag
e

M
em

or
y

U
sa

ge
 in

 M
B

Number of Generated Files / Components in the model

Performance / Scalability Experiment (Memory Usage as Generated Files Increase)

1 Sync Region

2 Sync Regions

3 Sync Regions

4 Sync Regions

5 Sync Regions

Figure 5.5: Results of measuring the average memory usage for different size
of models and number of sync regions as the number of files increases.

125

5.3.3 Generalisability

Distinguish Between Different Comments. To make the EGL engine
distinguish between different comments for each language, the user is required
to declare at the first line of the EGL template the target programming
language of the files that they wish to generate. This way the sync regions
engine will look for the appropriate comments according to the flag at the
fist line. As the default behaviour of the sync regions engine is to locate
Java-like comments, the users do not have to declare this for Java (and any
other language in which comments are identical to Java’s).

To assess the generalisability of the synchronisation algorithm, the M2T
transformation was adapted to generate files for different languages, such
as Java, Python, HTML, and Ruby. The proposed approach was tested
by repeating the synchronisation (in the form of JUnit tests) 100 times for
each of the aforementioned programming languages. In this experiment, the
content of all regions in the generated files was different to the corresponding
values in the source model. The following section describes the test in more
detail, together with examples:

Template for Different Programming Languages. (Step 1) Declar-
ing a sync region in different programming languages as shown in List-
ings (5.12 5.13 5.14 and 5.15) respectively.

Generated Files for Different Programming Languages. (Step 2)
The results of running the above templates are shown in Listings (5.16 5.17 5.18
and 5.19) respectively.

Adding Hand-written Code within Sync Regions. (Step 3) New be-
haviours were added for each language as shown in Listings (5.20 5.21 5.22
and 5.23) respectively.

Propagate Changes Back to The Models. (Step 4) Finally, all the
models (i.e., the respective attributes) are updated with new behaviours for
each language as shown in Listings (5.6 5.7 5.8 and 5.9). The synchronisation
algorithm passed all the tests and updated the models as expected. Table 5.3
presents the open/close comment format used for each of the target program-
ming languages and the results, i.e. the synchronisation algorithm passed all
the tests and updated the models as expected.

126

Target language Opening Comment Format Closing Comment Format Test Result
Java // or /* */ Pass

HTML <!— —> Pass
Python # N/A Pass
Ruby # or =begin =end Pass

Table 5.3: Generalisability experiment results

1 package syncregions;
2

3 public class [%=c.name%] {
4 public [%=c.outPort.type%] execute([%=c.inPorts.collect(p|p.type + "

" + p.name).concat(", ")%]) {
5 [%=out.startSync("//", c.id, "behaviour")%]
6

7 [%=out.endSync()%]
8 }
9 }

Listing 5.12: An example of EGL template to generate Java code with a sync
region

1 <!−−HTML−−>
2 <td> [%=c.name%]
3 [%=out.startSync("<!−−", "−−>", c.id, "htmlBehaviour")%]
4

5 [%=out.endSync()%]
6 </td>

Listing 5.13: An example of EGL template to generate an HTML page with
a sync region

Figure 5.6: Result of updating the BoilerActuator component in the model
with behaviour written in Java.

127

1 #Python
2 def execute(self, [%=c.inPorts.collect(p|p.type + " " + p.name).concat

(", ")%]):
3 [%=out.startSync("#" , c.id, "pythonBehaviour")%]
4

5 [%=out.endSync()%]

Listing 5.14: An example of EGL template to generate Python code with a
sync region

1 #Ruby
2 def execute([%=c.inPorts.collect(p|p.type + " " + p.name).concat(", ")

%])
3 [%=out.startSync("#", c.id, "rubyBehaviour")%]
4

5 [%=out.endSync()%]
6 end

Listing 5.15: An example of EGL template to generate Ruby code with a
sync region

1 package syncregions;
2

3 public class BoilerActuator {
4 public int execute(int temperatureDifference, boolean boilerStatus) {
5 //sync _bfpnGUbFEeqXnfGWlV2_8A, behaviour
6

7 //endSync
8 }
9 }

Listing 5.16: An example of generating Java code for the BoilerActuator
component with one sync region

128

1 <!−−HTML−−>
2 <td> BoilerActuator
3 <!−−sync _bfpnGUbFEeqXnfGWlV2_8A, htmlBehaviour −−>
4

5 <!−−endSync −−>
6 </td>

Listing 5.17: An example of generating an HTML page for the BoilerActuator
component with one sync region

1 #Python
2 def execute(self , int temperatureDifference, boolean boilerStatus) :
3 #sync _bfpnGUbFEeqXnfGWlV2_8A, pythonBehaviour
4

5 #endSync

Listing 5.18: An example of generating Python code for the BoilerActuator
component with one sync region

1 #Ruby
2 def execute(int temperatureDifference, boolean boilerStatus)
3 #sync _bfpnGUbFEeqXnfGWlV2_8A, rubyBehaviour
4

5 #endSync
6 end

Listing 5.19: An example of generating Ruby code for the BoilerActuator
component with one sync region

Figure 5.7: Result of updating the BoilerActuator component in the model
with hand-written HTML markup.

129

1 package syncregions;
2

3 public class BoilerActuator {
4 public int execute(int temperatureDifference, boolean boilerStatus) {
5 //sync _bfpnGUbFEeqXnfGWlV2_8A, behaviour
6 if (temperatureDifference > 0 && boilerStatus == true) {
7 return 1;
8 } else if (temperatureDifference < 0 && boilerStatus == false) {
9 return 2;

10 } else
11 return 0;
12 //endSync
13 }
14 }

Listing 5.20: An example of adding hand-written Java code for the
BoilerActuator component inside a sync region.

1 <!−−HTML−−>
2 <td> BoilerActuator
3 <!−−sync _bfpnGUbFEeqXnfGWlV2_8A, htmlBehaviour −−>
4 This is the documentation for BoilerActuator component of the system
5 <!−−endSync −−>
6 </td>

Listing 5.21: An example of adding hand-written text in HTML code for the
BoilerActuator component inside a sync region.

Figure 5.8: Result of updating the BoilerActuator component with new be-
haviour in python model.

130

1 #Python
2 def execute(self , int temperatureDifference, boolean boilerStatus) :
3 #sync _bfpnGUbFEeqXnfGWlV2_8A, pythonBehaviour
4 if (temperatureDifference > 0 && boilerStatus == true) {
5 return 1;
6 } else if (temperatureDifference < 0 && boilerStatus == false) {
7 return 2;
8 } else
9 return 0;

10 #endSync

Listing 5.22: An example of adding hand-written Python code for the
BoilerActuator component inside a sync region.

1 #Ruby
2 def execute(int temperatureDifference, boolean boilerStatus)
3 #sync _bfpnGUbFEeqXnfGWlV2_8A, rubyBehaviour
4 if (temperatureDifference > 0 && boilerStatus == true) {
5 return 1;
6 } else if (temperatureDifference < 0 && boilerStatus == false) {
7 return 2;
8 } else
9 return 0;

10 #endSync
11 end

Listing 5.23: An example of adding hand-written Ruby code for the
BoilerActuator component inside a sync region.

Figure 5.9: Result of updating the BoilerActuator component with new be-
haviour in ruby model.

131

5.3.4 Threats to Validity

In this section all the threats that could make using the proposed approach
invalid are discussed:

Supported Comment Formats. In order to use sync regions that are
situated in the code, it must be possible to use comments. The comments
used in the presented implementation are for marking the start and end of the
regions. Not all programming languages have the same style of comments, so
a sync-region solution would have to offer support for each desired language.

Corrupted Sync Regions. As the sync regions are situated directly in
the code, the users are frequently editing around them and have nothing
to prevent them from accidentally or wilfully modifying the regions; even
potentially corrupting them. Examples of these possible modifications are as
follows:

• Delete/modify by mistake the whole start line of the sync regions, as
shown in the first sync region in Listing 5.24 (lines 4-6).

• Delete/modify the ID of the sync regions, as shown in the second sync
region (Listing 5.24 - lines 8-10).

• Delete/modify the attribute name of the sync regions, as shown in the
third sync region (Listing 5.24 - lines 12-14).

• Delete/modify the whole end line of sync regions as shown in the last
sync region (Listing 5.24 - lines 16-18).

Changing Model Properties. If the model is changed in such a way
that IDs or attribute names change, while already transformed files with
that respective information exist, those regions will become invalid. This
would be an inconvenience to the user.

Situational Differences Between how Code Works in Duplicated
Sync regions. If the same region (and therefore the same code) is used
in multiple positions within a component, the user may accidentally write
code that is not correct in all places simultaneously. For example, different

132

1 public class TemperatureController {
2 public int execute(int temperature, int targetTemperature) {
3

4

5 return temperature − targetTemperature;
6 //endSync
7

8 //sync , behaviour
9 return temperature − targetTemperature;

10 //endSync
11

12 //sync _bfpnFUbFEeqXnfGWlV2_8A,
13 return temperature − targetTemperature;
14 //endSync
15

16 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour
17 return temperature − targetTemperature;
18

19 }
20 }

Listing 5.24: An examples of corrupted sync regions for
TemperatureController class

situations may have different lexical scopes (i.e. symbols, variables, class
names, etc.) meaning code within a region might work in one position but
not in another.

Machine-readable Attribute Names. A user must rely on EGL to provide
the ID to each component’s attribute. This means that it must be within
the EGL template first, even if it is then copied many times. A user with
knowledge of the component would be unable to simply write the compon-
ent name and any other human-readable information (e.g. a readable ID) to
identify the attribute. It may be possible that instead of the unique ID of an
attribute, names separated by dots are used. For example, the "BoilerActu-
ator.execute.behaviour". This would also allow use of sync regions without
first declaring them in the EGL template.

133

5.4 Discussion
The previous sections have described how M2T languages can be extended
with sync regions to achieve consistency between source models and gen-
erated artefacts. This section discusses the limitations of the proposed ap-
proach.

5.4.1 Applicability and Limitations

The applicability of the proposed approach and its main limitations are now
discussed.

Single Input Model. As discussed in Section 5.2, the proposed approach
expects two inputs: One model and one folder, which contains all the gen-
erated artefacts. To support additional input models, the format of sync
regions needs to be extended to also record (an identifier of) the model from
which the respective element originates.

Target Language Support Comment. In order for this approach to be
applicable, the target language needs to support comments. For example, if
the M2T is generating a JSON file, this approach would not be applicable
because JSON does not support comments. Presently, Java-style comments
(and any other language that uses a similar comment structure to Java, like
HTML, Python, Ruby, etc.) are supported.

Anticipate Location in Advance. Using the sync regions technique re-
quires developers to anticipate in advance which part of the code they want
to extend. For example, in Listing 5.2, there is a sync region inside the body
of the method. If the developers want to make changes, they only can do it
inside the method body.

Model Element Identities. As discussed in Section 5.2, sync regions
approach requires model elements to have unique, persistent, and immutable
identities, as these are used to trace sync regions back to the model elements
of interest. The majority of modelling tools support such identities (e.g.
XMI-IDs in EMF, GUIDs in PTC Integrity Modeller); however, there are
also tools, such as Matlab Simulink, where exposed model element IDs are

134

path-based and can change when elements are moved/renamed in a model,
and where, as a consequence, the proposed technique is not applicable.

Meta-model and Model Pollution. Each sync region requires a respect-
ive attribute in the metamodel. As such, the more sync regions that are
introduced, the bigger the metamodel; the models that conform to it will be
polluted with implementation-level information. With reference to the run-
ning example, as long as the behaviour of a component fits within the body
of the execute() method, then extending the metamodel with a behaviour at-
tribute is a reasonable compromise. However, if changes need to be made to
other parts of the component class as well (e.g. new import statements, fields,
utility methods), then the metamodel and the M2T transformation need to
be extended with respective attributes and sync regions for each such part,
which can feel increasingly uncomfortable. This is an inherent issue of using
this approach (i.e. not limited to this particular example) and needs to be
taken into consideration before its adoption. For M2T transformations that
require the generated code to be augmented in several places, other integra-
tion techniques such as inheritance/delegation may be more appropriate.

Meta-model Evolution. The generated markers for sync regions use the
name of the attribute with which the content in the region must be synced
before re-generation. If the metamodel evolves and the attribute is renamed,
retyped in a breaking way (e.g. from String to Integer), or disappears alto-
gether, the reference implementation will report an error and it will be up
to the developer of the M2T transformation to rectify any inconsistent sync
regions in previously generated files.

Embedded Code Consistency. Since code fragments embedded in sync
regions are copied verbatim between sync regions and the model, changes
made to the model can invalidate the embedded code fragments, making
them uncompilable, or worse, inadvertently changing their semantics. For
example, if the temperatureDifference port of the BoilerActuator component
of Figure 3.2 is renamed to e.g. tempDiff in the model, then when the code is
re-generated, the body of the execute method will produce compilation errors,
as it will still refer to the temperature difference variable by its former name.

135

Direct Changes to the Embedded Code Fragments. It is important
to highlight that in the proposed approach it was assumed that the code
fragments should not be modified within the modelling framework. Changes
are expected to be undertaken only within the IDE (i.e. the generated files).
These changes are picked up by the proposed approach and propagated to
the model. If changes are made within the modelling tool (i.e. directly
to the model), then the changed value in the model will be treated as the
“current" value and the same checks as those described in Section 5.2.3 will
be performed to update or flag the region as inconsistent. If the value stored
in the model is different from the one included in the generated files, then it
will be updated, which might be an undesirable result.

Deleted Sync Regions. While the synchronisation algorithm can cope
with inconsistently updated and malformed sync region markers, it cannot
cope with sync regions being deleted altogether from generated files. Ideally,
such missing sync regions should be reported to the user, but this cannot
be achieved without keeping additional metadata outside the generated files,
which is undesirable.

5.5 Summary
This chapter presented a novel approach that facilitates the automated syn-
chronisation between models and textual artefacts generated from them via
template-based M2T transformations. This approach includes solutions to
round-trip synchronisation challenges in M2T transformations. The ap-
proach is implemented on top of an existing M2T language Epsilon Model
Generation Language (EGL). Finally, an evaluation of its correctness, gen-
eralisability, and scalability has been conducted.

136

Chapter 6

Conclusion

This thesis investigated consistency management in model-driven engineering
(MDE) in the context of model-to-text transformations (M2T). Using exist-
ing M2T transformation techniques for integrating hand-written text within
auto-generated artefacts is still not desirable (as described in Section 2.3).
Also, the inability for maintaining consistency when auto-generated artefacts
have been changed manually. This thesis has also contributed to the research
hypotheses stated in Section 3.4.1.

There are two different research hypotheses of this thesis as follows:

The first hypothesis of this thesis is that it is possible to in-
tegrate and preserve hand-written text in generated files
without needing to use protected regions or similar con-
structs in Model-to-text transformations (M2Ts). The second
hypothesis is that where embedding code fragments in models is
necessary to achieve full code generation, the content of these
fragments can be automatically synchronised between the
model and the generated code in Model-to-text transformations
(M2Ts).

The research objectives of this thesis, as stated in Section 3.4.2 are as
follows:

• Enable language-agnostic preservation of text in arbitrary locations of
generated files without the need for protected regions.

• Enable automated round-trip synchronisation of code fragments em-
bedded in generated files with the source models of the transformation.

137

• Assess the performance of the proposed mechanisms.

The remainder of this chapter is organised as follows. Section 6.1 presents
an overview of the primary discussions in the thesis. Section 6.2 presents the
main contributions to the field. Section 6.3 presents suggestions for future
work.

6.1 Summary
This thesis presented two novel solutions according to the research objectives
described in Section 3.4.2. Chapter 2 provided the literature that relates to
the concepts behind this research project such as Model-Driven Engineering,
integrating hand-written text and round-trip engineering in model-to-text
transformations. It also investigated the capabilities of many state-of-the-
art mechanisms that are used in all these domains. Chapter 3 provided the
findings of the literature review and outlined the study framework, includ-
ing the research problems, hypothesis, objectives, and scope. Chapter 4
presented the design and implementation of the first proposed approach "-
that of automated line based merging -" that facilitates the process of integ-
rating hand-written text into the generated files in M2T transformations. It
also presented the evaluation of the proposed approach, its limitations, and
the alternative solutions. Chapter 5 presented the design and implementa-
tion of the second proposed approach "- that of synchronised regions -" that
supports round-trip engineering to facilitate the automated synchronisation
between models and the textual artefacts generated from them, via template
based M2T transformations. It also presented the evaluation of the proposed
approach and its limitations.

6.2 Thesis Contributions
This section presents the contributions of this research project.

Automated Line Based Merging

In Chapter 4, an automated line-based merging technique was proposed. It
facilitates the process of embedding hand-written text into the generated

138

files of M2T transformations. The approach includes solutions for integrat-
ing hand-written text within generated artefacts in model-to-text transform-
ations (M2T).

Moreover, this approach had been implemented on top of the existing
M2T language Epsilon Generation language (EGL). The proposed approach
was evaluated for its correctness and performance.

Synchronised Regions

In Chapter 5, synchronised regions technique was proposed. This tech-
nique facilitates the automated synchronisation between models and textual
artefacts generated from them, via template-based M2T transformations.
This approach includes solutions to round-trip synchronisation challenges in
Model-to-Text Transformations.

The approach has been implemented on top of an existing M2T language
Epsilon Model Generation Language (EGL). Also, the evaluation of its cor-
rectness, generalisability, and scalability has been conducted.

6.3 Future Work
In this section, suggestions for future work on the proposed approaches are
presented. There are items for future work both related to practical imple-
mentation and conceptual improvement. We use (PI) for Practical Imple-
mentation and (CI) for conceptual improvement in the discussion below.

Automated Line Based Merging Approach

More intelligent conflict resolution (CI). Currently, the automated
line-based merging approach is unable to determine which lines underwent
changes, since the user is also able to add new lines. This limitation leaves
the user without any support; mitigated only by any backup copies they may
have taken themselves prior to making their code modifications. Original
lines that have been offset by deletions appear to the algorithm as new lines.
This is because the algorithm is not intelligent enough to search forward
through the hashes to check whether there are later matches. Searching
forward through hashes is a non-trivial approach for which there are existing
intelligent algorithms better suited to the task. The process would be just

139

as complex as automated merging and conflict resolution, and would require
a complete copy of the original file, not just the hashes. One approach is to
try every combination of deletion and addition with respect to the expected
hashes, but from a computational perspective this is expensive, even for
relatively small files.

Clean the Implementation of the Merging Approach (PI). As de-
scribed in Section 4.2, the merging approach has been implemented directly
by modifying the EGL source code. It could instead be in its own software
package which could be installed alongside existing plugins of Epsilon.

Length of Hashes (CI). As discussed in Section 4.2, the merging ap-
proach has been implemented using a hash length of four characters. Four-
character hashes become unsuitable for uninterrupted regions of one thou-
sand lines (≈3% collision probability), but five-character hashes are still quite
acceptable in this case (≈0.05%). Future work could involve changing the
length of hashes from four characters to five or more characters.

Intelligent history (CI). As seen in Section 4.4, the proposed approach
does not have the capability to provide a history of code changes. This
is not a primary concern of the proposed solution, which does not keep a
full copy of previous (original) changes to start with. As future work, it
would be interesting to extend traceability in EGL to record the history of
transformations and allow users to have the ability to find, compare, and
restore previous changes.

Synchronised Regions Approach

Evaluation against other developed prototypes (PI). The synchron-
ised regions approach was evaluated using a minimal component-connector
domain-specific language (DSL), with different aspects such as correctness,
generalisability, and performance. It would be interesting to assess the ap-
plicability of the proposed approach with larger and more complex evalu-
ation. This could use a developed prototype to re-implement existing M2T
transformations that produce code that needs to be manually extended (e.g.
EMF’s built-in code generator that produces Java code from Ecore meta-
models.

140

Figure 6.1: An example of a sync engine.

Extend Other M2T Transformation Languages (PI). As seen in Sec-
tion 2.2.1, there are multiple M2T transformation languages (e.g., Acceleo,
MOFScript, XPand). It might be valuable to also extend these languages
with sync regions.

Organizing/Simplicity of Sync Engine (PI). As described in Sec-
tion 5.2, some parts of the implementation of the Sync engine have been
embedded within the source code of EGL. As future work, it might be inter-
esting for these parts to be separated in their own packages. Furthermore, the
ability for the users to engage or disengage the Sync engine whenever they see
fit, as an optional feature of transformation, would be desirable. This could
be achieved by adding a new option to the EGL run configuration interface
(see Figure 6.1).

141

Multiple Models (CI). As discussed in Section 5.4, to support additional
input models, the format of sync regions needs to be extended to also record
(an identifier of) the model from which the respective element originates. The
user should be able to simply specify multiple models as they are currently
able in EGL to do. It would be good if Sync engine able to support multiple
models and this has been left as future work.

Model Element Identities (CI). The proposed approach requires model
elements to have unique, persistent, and immutable identities, as these are
used to trace sync regions back to the model elements of interest. There
are tools, such as Matlab Simulink, where exposed model element IDs are
path-based and can change when elements are moved/renamed in a model.
Investigation into how to incorporate this style of identity into the proposed
approach could be undertaken.

Meta-model Evolution (CI). As discussed in Section 5.2, the generated
markers for sync regions use attribute names. The evolution of a metamodel
can change the name and type of an attribute, which would prevent the
proposed approach from functioning. As future work, it might be possible to
detect and report such issues.

Direct Changes to the Embedded Code Fragments (CI). As dis-
cussed in Section 5.2, the proposed approach warns the user that they should
not modify code fragments within the modelling framework, as it will cause
inconsistencies in transformation. Future work could be undertaken to act-
ively prevent or control these changes, such as retaining copies of models to
compare changes upon transformation.

Deleted Sync Regions (PI). As discussed in Section 5.2, the proposed
approach cannot handle regions that have been deleted from generated files.
Future work could leverage access to the original templates to compare sync
regions markers in the templates to sync region markers in the generated
files.

142

Bibliography

[1] Velocity, the apache jakarta project, the apache software foundation.
available : https://velocity.apache.org/engine/1.7/. [accessed
20 dec 2022].

[2] Xdoclet—attribute oriented programming. available : http://
xdoclet.sourceforge.net/xdoclet/index.html. [accessed 20 dec
2022].

[3] “using egl as a server-side scripting language in tomcat,” [online].
available : https://www.eclipse.org/epsilon/doc/articles/
egl-server-side/. [accessed 20 dec 2022].

[4] Abbas Abdulhameed, Ahmed Hammad, Hassan Mountassir, and Bruno
Tatibouet. An approach combining simulation and verification for
sysml using systemc and uppaal. In CAL 2014, 8ème conférence fran-
cophone sur les architectures logicielles, pages 9–pages, 2014.

[5] Jacky Akoka and Isabelle Comyn-Wattiau. Roundtrip engineering of
nosql databases. Enterprise Modelling and Information Systems Ar-
chitectures, 13:281–292, 2018.

[6] Vander Alves, Pedro Matos, Leonardo Cole, Alexandre Vasconcelos,
Paulo Borba, and Geber Ramalho. Extracting and evolving code
in product lines with aspect-oriented programming. In Transactions
on aspect-oriented software development IV, pages 117–142. Springer,
2007.

[7] László Angyal, László Lengyel, and Hassan Charaf. A synchronizing
technique for syntactic model-code round-trip engineering. In 15th An-
nual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems (ecbs 2008), pages 463–472. IEEE, 2008.

143

https://velocity.apache.org/engine/1.7/.
http://xdoclet.sourceforge.net/xdoclet/index.html.
http://xdoclet.sourceforge.net/xdoclet/index.html.
https://www.eclipse.org/epsilon/doc/articles/egl-server-side/.
https://www.eclipse.org/epsilon/doc/articles/egl-server-side/.

[8] Anthony Anjorin, Marius Paul Lauder, Michael Schlereth, and Andy
Schürr. Support for bidirectional model-to-text transformations. Elec-
tronic Communications of the EASST, 36, 2011.

[9] Michał Antkiewicz and Krzysztof Czarnecki. Framework-specific mod-
eling languages with round-trip engineering. In International Con-
ference on Model Driven Engineering Languages and Systems, pages
692–706. Springer, 2006.

[10] Caroline M Ashworth. Structured systems analysis and design method
(ssadm). Information and Software Technology, 30(3):153–163, 1988.

[11] Colin Atkinson and Thomas Kuhne. Model-driven development: a
metamodeling foundation. IEEE software, 20(5):36–41, 2003.

[12] D. E. Avison. Merise: A european methodology for developing informa-
tion systems. European Journal of Information Systems, 1(3):183–191,
1991.

[13] Robert Balzer. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering, (11):1257–1268, 1985.

[14] Tim Berners-Lee and Daniel Connolly. Hypertext markup language:
A representation of textual information and metainformation for re-
trieval and interchange. URL: http://info. cern. ch/hypertext/WWW/-
MarkUp/HTML. html, 1993.

[15] Lorenzo Bettini, Viviana Bono, and Erica Turin. I-java: an extension of
java with incomplete objects and object composition. In International
Conference on Software Composition, pages 27–44. Springer, 2009.

[16] Jean Bézivin. Model driven engineering: An emerging technical space.
In International Summer School on Generative and Transformational
Techniques in Software Engineering, pages 36–64. Springer, 2005.

[17] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the
omg/mda framework. In Automated Software Engineering, 2001.(ASE
2001). Proceedings. 16th Annual International Conference on, pages
273–280. IEEE, 2001.

144

[18] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.
Modeling in the large and modeling in the small. In Model Driven
Architecture, pages 33–46. Springer, 2004.

[19] Grady Booch. The unified modeling language user guide. Pearson
Education India, 2005.

[20] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis Lectures on Software En-
gineering, 1(1):1–182, 2012.

[21] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis lectures on software engin-
eering, 3(1):1–207, 2017.

[22] Thomas Buchmann and Bernhard Westfechtel. Towards incremental
round-trip engineering using model transformations. In 2013 39th Eur-
omicro Conference on Software Engineering and Advanced Applica-
tions, pages 130–133. IEEE, 2013.

[23] Nicolás Buezas, Esther Guerra, Juan de Lara, Javier Martín, Miguel
Monforte, Fiorella Mori, Eva Ogallar, Oscar Pérez, and Jesús Sánchez
Cuadrado. Umbra designer: Graphical modelling for telephony ser-
vices. In European Conference on Modelling Foundations and Applic-
ations, pages 179–191. Springer, 2013.

[24] Loli Burgueno. Testing m2m/m2t/t2m transformations. In SRC@
MoDELS, pages 7–12, 2015.

[25] Loli Burgueño, Jordi Cabot, Shuai Li, and Sébastien Gérard. A generic
lstm neural network architecture to infer heterogeneous model trans-
formations. Software and Systems Modeling, 21(1):139–156, 2022.

[26] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo.
Static fault localization in model transformations. IEEE Transactions
on Software Engineering, 41(5):490–506, 2015.

[27] Juan Cadavid, Benoît Combemale, and Benoit Baudry. Ten years
of Meta-Object Facility: an analysis of metamodeling practices. PhD
thesis, INRIA, 2012.

145

[28] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling lan-
guage (webml): a modeling language for designing web sites. Computer
Networks, 33(1-6):137–157, 2000.

[29] Joanna Chimiak_Opoka, Michael Felderer, Chris Lenz, and Christian
Lange. Querying uml models using ocl and prolog: A performance
study. In 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pages 81–88. IEEE, 2008.

[30] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pier-
antonio. Jtl: a bidirectional and change propagating transformation
language. In International Conference on Software Language Engin-
eering, pages 183–202. Springer, 2010.

[31] Federico Ciccozzi, Antonio Cicchetti, and Mikael Sjödin. Round-trip
support for extra-functional property management in model-driven en-
gineering of embedded systems. Information and Software Technology,
55(6):1085–1100, 2013.

[32] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645,
2006.

[33] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645,
2006.

[34] Alberto Rodrigues Da Silva. Model-driven engineering: A survey sup-
ported by the unified conceptual model. Computer Languages, Systems
& Structures, 43:139–155, 2015.

[35] Christian Heide Damm, Klaus Marius Hansen, Michael Thomsen, and
Michael Tyrsted. Tool integration: experiences and issues in using xmi
and component technology. In Proceedings 33rd International Confer-
ence on Technology of Object-Oriented Languages and Systems TOOLS
33, pages 94–107. IEEE, 2000.

[36] Christopher John Date. A Guide to the SQL Standard. Addison-Wesley
Longman Publishing Co., Inc., 1989.

146

[37] Serge Demeyer, Stéphane Ducasse, and Er Tichelaar. Why famix and
not uml? uml shortcomings for coping with round-trip engineering. In
In Proceedings of« UML’99», Fort Collins. Citeseer, 1999.

[38] Anna DEREZIŃSKA and Karol REDOSZ. Reuse of project code in
model to code transformation. Information Systems Architecture and
Technology, page 79.

[39] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pier-
antonio. Dealing with the coupled evolution of metamodels and model-
to-text transformations. In Me@ models, pages 22–31, 2014.

[40] Sven Efftinge and Markus Völter. oaw xtext: A framework for tex-
tual dsls. In Workshop on Modeling Symposium at Eclipse Summit,
volume 32, 2006.

[41] Maged Elaasar and Lionel Briand. An overview of uml consistency
management. Carleton University, Canada, Technical Report SCE-04-
18, 2004.

[42] Franck Fleurey, Benoit Baudry, Robert France, and Sudipto Ghosh.
A generic approach for automatic model composition. In Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems, pages 7–15. Springer, 2007.

[43] Eclipse Foundation. Java emitter templates (jet2), Oct 2019.

[44] The Eclipse Foundation. Acceleo. [online], november 2019. available :
https://www.eclipse.org/acceleo/. [accessed 20 dec 2022].

[45] The Eclipse Foundation. Xpand. [online], may 2016. available
: https://www.eclipse.org/modeling/m2t/?project=xpand. [ac-
cessed 20 dec 2022].

[46] The Eclipse Foundation. Xtext. [online], march 2021. available :
https://www.eclipse.org/Xtext/. [accessed 20 dec 2022].

[47] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[48] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

147

https://www.eclipse.org/acceleo/.
https://www.eclipse.org/modeling/m2t/?project=xpand.
https: //www.eclipse.org/Xtext/.

[49] Erich Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[50] Lars Marius Garshol. Bnf and ebnf: What are they and how do they
work. acedida pela última vez em, 16, 2003.

[51] Jose M Gascuena, Elena Navarro, Patricia Fernández-Sotos, Antonio
Fernández-Caballero, and Juan Pavón. Idk and icaro to develop multi-
agent systems in support of ambient intelligence. Journal of Intelligent
& Fuzzy Systems, 28(1):3–15, 2015.

[52] Joseph D Gradecki and Jim Cole. Mastering Apache Velocity. John
Wiley & Sons, 2003.

[53] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Di-
mitri Plotnikov, Dirk Reiss, Alexander Roth, et al. A comparison of
mechanisms for integrating handwritten and generated code for object-
oriented programming languages. In 2015 3rd International Confer-
ence on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pages 74–85. IEEE, 2015.

[54] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Di-
mitri Plotnikov, Dirk Reiß, Alexander Roth, et al. Integration of hand-
written and generated object-oriented code. In International Confer-
ence on Model-Driven Engineering and Software Development, pages
112–132. Springer, 2015.

[55] Timothy J Grose, Gary C Doney, and Stephen A Brodsky. Mastering
Xmi: Java Programming with Xmi, XML and UML, volume 21. John
Wiley & Sons, 2002.

[56] Object Management Group. “meta object facility (mof) core specific-
ation,” online, 2014, available : http://www.omg.org/mof/. [accessed
20 dec 2022].

[57] Object Management Group. “object constraint language,”.

[58] Object Management Group. “unified modeling language,”. available :
http://www.omg.org/spec/UML/. [accessed 20 dec 2022].

148

http://www.omg.org/mof/.
http://www.omg.org/spec/UML/.

[59] Arno Haase, Markus Völter, Sven Efftinge, and Bernd Kolb. Intro-
duction to openarchitectureware 4.1. 2. In MDD Tool Implementers
Forum, 2007.

[60] Brent Hailpern and Peri Tarr. Model-driven development: The good,
the bad, and the ugly. IBM systems journal, 45(3):451–461, 2006.

[61] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Derivation and refinement of textual syntax for mod-
els. In European Conference on Model Driven Architecture-Foundations
and Applications, pages 114–129. Springer, 2009.

[62] Jack Herrington. Code generation in action. Manning Publications
Co., 2003.

[63] Thomas Hettel, Michael Lawley, and Kerry Raymond. Model syn-
chronisation: Definitions for round-trip engineering. In International
Conference on Theory and Practice of Model Transformations, pages
31–45. Springer, 2008.

[64] Thomas Hettel, Michael Lawley, and Kerry Raymond. Model syn-
chronisation: Definitions for round-trip engineering. In International
Conference on Theory and Practice of Model Transformations, pages
31–45. Springer, 2008.

[65] Mark Hills, Paul Klint, and Jurgen J Vinju. Static, lightweight includes
resolution for php. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pages 503–514, 2014.

[66] G. Hinkel. “.net modelling framework (nmf) repository,” [online]. avail-
able : https://github.com/NMFCode/NMF. [accessed 20 dec 2022].

[67] Aram Hovsepyan and Dimitri Van Landuyt. Prototizer: Agile on ster-
oids. In FlexMDE@ MoDELS, pages 51–60, 2015.

[68] IBM. Gigacalculator, 2022. [online]. available : https://www.
gigacalculator.com/calculators/permutation-calculator.php#
howtocalculate. [accessed 10 nov 2022].

[69] IBM. Ibmrhapsody, 2016. [online]. available : http://www-03.ibm.
com/software/products/en/ratidoor. [accessed 20 dec 2022].

149

https://github.com/NMFCode/NMF.
https://www.gigacalculator.com/calculators/permutation-calculator.php#howtocalculate.
https://www.gigacalculator.com/calculators/permutation-calculator.php#howtocalculate.
https://www.gigacalculator.com/calculators/permutation-calculator.php#howtocalculate.
http://www-03.ibm.com/software/products/en/ratidoor.
http://www-03.ibm.com/software/products/en/ratidoor.

[70] IEEE. Ieee 1076-2008: Vhdl language reference manual. standard, in-
stitute of electrical and electronics engineers, 2008.

[71] Knowledge Based Systems Inc. Idef: Integrated definition
methods. [online], 1980. available : https://www.idef.com.
[Accessed23July2021].

[72] Sebastien Jeanmart, Yann-Gael Gueheneuc, Houari Sahraoui, and Naji
Habra. Impact of the visitor pattern on program comprehension and
maintenance. In 2009 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, pages 69–78. IEEE, 2009.

[73] JMerge. Jmerge. [online]. available : http://wiki.eclipse.org/JET_
FAQ_What_is_JMerge%3F. [accessed 28 june 2022].

[74] Frédéric Jouault and Jean Bezıvin. Using atl for checking models.
In Proc. International Workshop on Graph and Model Transformation
(GraMoT), Tallinn, Estonia (September 2005). Citeseer, 2005.

[75] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. in
satellite events at the models 2005 conference. Springer, 43:45, 2006.

[76] Nafiseh Kahani and James R Cordy. Comparison and evaluation of
model transformation tools. Queen’s University, Kingston, Tech. Rep.,
2015.

[77] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing
the evolution of aspect-oriented software with model-based pointcuts.
In European Conference on Object-oriented Programming, pages 501–
525. Springer, 2006.

[78] Pasi Kellokoski. Round-trip engineering. Master’s thesis, 2000.

[79] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: en-
abling full code generation. John Wiley & Sons, 2008.

[80] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European conference on object-oriented programming,
pages 220–242. Springer, 1997.

150

https://www.idef.com. [Accessed 23 July 2021].
https://www.idef.com. [Accessed 23 July 2021].
http://wiki.eclipse.org/JET_FAQ_What_is_JMerge%3F.
http://wiki.eclipse.org/JET_FAQ_What_is_JMerge%3F.

[81] Benjamin Klatt. Xpand: A closer look at the model2text transforma-
tion language. Language, 10(16):2008, 2007.

[82] Thomas Klein. From UML to Java and back again. Univ.-GH-
Paderborn, Fachbereich Mathematik/Informatik, 2000.

[83] Shekoufeh Kolahdouz-Rahimi, Kevin Lano, Suresh Pillay, Javier Troya,
and Pieter Van Gorp. Evaluation of model transformation approaches
for model refactoring. Science of Computer Programming, 85:5–40,
2014.

[84] Dimitrios Kolovos. An extensible platform for specification of integrated
languages for model management. PhD thesis, University of York, 2008.

[85] Dimitrios Kolovos, Louis Rose, Richard Paige, and A Garcıa-
Domınguez. The epsilon book. 178:1–10, 2010.

[86] Dimitrios S Kolovos. Establishing correspondences between models
with the epsilon comparison language. In European conference on
model driven architecture-foundations and applications, pages 146–157.
Springer, 2009.

[87] Dimitrios S Kolovos, Jordi Cabot, F Bordeleau, J Bruel, and J Dingel.
Towards a corpus of use-cases for model-driven engineering courses. In
EduSymp/OSS4MDE@ MoDELS, pages 14–18, 2016.

[88] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The
epsilon object language (eol). In European Conference on Model Driven
Architecture-Foundations and Applications, pages 128–142. Springer,
2006.

[89] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. On the
evolution of ocl for capturing structural constraints in modelling lan-
guages. In Rigorous Methods for Software Construction and Analysis,
pages 204–218. Springer, 2009.

[90] Dimitrios S Kolovos, Louis M Rose, Saad Bin Abid, Richard F Paige,
Fiona AC Polack, and Goetz Botterweck. Taming emf and gmf using
model transformation. In International Conference on Model Driven
Engineering Languages and Systems, pages 211–225. Springer, 2010.

151

[91] Dimitris S Kolovos and Richard F Paige. The epsilon pattern lan-
guage. In 2017 IEEE/ACM 9th International Workshop on Modelling
in Software Engineering (MiSE), pages 54–60. IEEE, 2017.

[92] Ivan Kurtev, Klaas Van Den Berg, and Frédéric Jouault. Evaluation
of rule-based modularization in model transformation languages illus-
trated with atl. In Proceedings of the 2006 ACM symposium on Applied
computing, pages 1202–1209, 2006.

[93] Christian Lange, MRV Chaudron, Johan Muskens, LJ Somers, and
HM Dortmans. An empirical investigation in quantifying inconsistency
and incompleteness of uml designs. In Workshop consistency problems
in uml-based software development II, pages 26–34, 2003.

[94] Juan de Lara and Hans Vangheluwe. Atom 3: A tool for multi-
formalism and meta-modelling. In International Conference on Funda-
mental Approaches to Software Engineering, pages 174–188. Springer,
2002.

[95] Rafael Andrés Leaño Gutiérrez et al. Using change intentions to guide
evolution and versioning in model driven software product lines. Mas-
ter’s thesis, Bogotá-Uniandes, 2009.

[96] Matthias Lenk, Arnd Vitzthum, and Bernhard Jung. Non-simultaneous
round-trip engineering for 3d applications. In Proceedings of the Inter-
national Conference on Software Engineering Research and Practice
(SERP), page 1. The Steering Committee of The World Congress in
Computer Science, Computer . . . , 2012.

[97] Olaf Leßenich and Christian Lengauer. Adjustable Syntactic Merge of
Java Programs. PhD thesis, MA thesis. Department of Informatics and
Mathematics, University of Passau . . . , 2012.

[98] Sina Madani. Parallel and Distributed Execution of Model Management
Programs. PhD thesis, University of York, 2020.

[99] Sina Madani, Dimitrios S Kolovos, and Richard F Paige. Parallel model
validation with epsilon. In European Conference on Modelling Found-
ations and Applications, pages 115–131. Springer, 2018.

152

[100] Hussein M Marah, Raheleh Eslampanah, and Moharram Challenger.
Dsml4tinyos: Code generation for wireless devices. In MODELS Work-
shops, pages 509–514, 2018.

[101] Tom Mens. A state-of-the-art survey on software merging. IEEE trans-
actions on software engineering, 28(5):449–462, 2002.

[102] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic notes in theoretical computer science, 152:125–142, 2006.

[103] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A
Fernandez. An empirical study of the state of the practice and accept-
ance of model-driven engineering in four industrial cases. Empirical
software engineering, 18(1):89–116, 2013.

[104] Leckraj Nagowah, Zarah Goolfee, and Chris Bergue. Rtet-a round trip
engineering tool. In 2013 International Conference of Information and
Communication Technology (ICoICT), pages 381–387. IEEE, 2013.

[105] Stefan Naujokat. Heavy meta: model-driven domain-specific generation
of generative domain-specific modeling tools. PhD thesis, 2017.

[106] Babajide Ogunyomi, Louis M Rose, and Dimitrios S Kolovos. Incre-
mental execution of model-to-text transformations using property ac-
cess traces. Software & Systems Modeling, pages 1–17, 2018.

[107] Babajide J Ogunyomi. Incremental Model-to-Text Transformation.
PhD thesis, University of York, 2016.

[108] Jon Oldevik, Tor Neple, and Jan Øyvind Aagedal. Model abstraction
versus model to text transformation. Computer Science at Kent, page
188, 2004.

[109] OMG. Business process model and notation (bpmn) version 2.0. spe-
cification, object management group, year = 2012. available : https:
//www.omg.org/spec/BPMN/2.0/.

[110] OMG. Systems modeling language (sysml) v.1.6. specification, object
management group, 2019. available : https://www.omg.org/spec/
SysML.

153

https://www.omg.org/spec/BPMN/2.0/.
https://www.omg.org/spec/BPMN/2.0/.
https://www.omg.org/spec/SysML.
https://www.omg.org/spec/SysML.

[111] OMG. Unified modeling language (uml). specification, object man-
agement group, 2017. available : https://www.omg.org/spec/UML.

[112] Oracle. Java oracle. online., 2016.

[113] Richard F Paige, Dimitrios S Kolovos, Louis M Rose, Nicholas Drivalos,
and Fiona AC Polack. The design of a conceptual framework and tech-
nical infrastructure for model management language engineering. In
2009 14th IEEE International Conference on Engineering of Complex
Computer Systems, pages 162–171. IEEE, 2009.

[114] Terence Parr. StringTemplate, 2013.

[115] Francisco Pérez Andrés, Juan de Lara, and Esther Guerra. Domain
specific languages with graphical and textual views. In International
Symposium on Applications of Graph Transformations with Industrial
Relevance, pages 82–97. Springer, 2007.

[116] Van Cam Pham. Model-Based Software Engineering: Methodologies
for Model-Code Synchronization in Reactive System Development. PhD
thesis, Université Paris-Saclay (ComUE), 2018.

[117] John D Poole. Model-driven architecture: Vision, standards and emer-
ging technologies. In Workshop on Metamodeling and Adaptive Object
Models, ECOOP, volume 50, 2001.

[118] Ernesto Posse. Papyrusrt: modelling and code generation. In Workshop
on Open Source for Model Driven Engineering (OSS4MDE’15), 2015.

[119] Mark Richters and Martin Gogolla. On formalizing the uml object con-
straint language ocl. In International conference on conceptual model-
ing, pages 449–464. Springer, 1998.

[120] Markus Riedl-Ehrenleitner, Andreas Demuth, and Alexander Egyed.
Towards model-and-code consistency checking. In 2014 IEEE 38th
Annual Computer Software and Applications Conference, pages 85–90.
IEEE, 2014.

[121] Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. En-
suring the consistency between user requirements and task models:
A behavior-based automated approach. Proceedings of the ACM on
Human-Computer Interaction, 4(EICS):1–32, 2020.

154

https://www.omg.org/spec/UML.

[122] Louis M Rose, Nicholas Matragkas, Dimitrios S Kolovos, and Richard F
Paige. A feature model for model-to-text transformation languages. In
Proceedings of the 4th International Workshop on Modeling in Software
Engineering, pages 57–63. IEEE Press, 2012.

[123] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC
Polack. The epsilon generation language. In European Conference on
Model Driven Architecture-Foundations and Applications, pages 1–16.
Springer, 2008.

[124] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC
Polack. The epsilon generation language. In European Conference on
Model Driven Architecture-Foundations and Applications, pages 1–16.
Springer, 2008.

[125] N Rouquette, Tracy Neilson, and George Chen. The 13th technology
of deep space one. 1999.

[126] Beatriz Angelica Sanchez Pina. Conservative and traceable executions
of heterogeneous model management workflows. PhD thesis, University
of York, 2021.

[127] Stefan Sarstedt. Model-driven development with activecharts-tutorial.
2006.

[128] Guido Scherp. A framework for model-driven scientific workflow en-
gineering. BoD–Books on Demand, 2013.

[129] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P. PhD thesis, Dissertation, Techn. Hochsch., 2011,
2012.

[130] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, 39(2):25, 2006.

[131] Bran Selic. The pragmatics of model-driven development. IEEE soft-
ware, 20(5):19–25, 2003.

[132] Bran Selic. What will it take? a view on adoption of model-based
methods in practice. Software & Systems Modeling, 11(4):513–526,
2012.

155

[133] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE software,
20(5):42–45, 2003.

[134] Shane Sendall and Jochen Küster. Taming model round-trip engineer-
ing. In Proceedings of Workshop on Best Practices for Model-Driven
Software Development, volume 1. Citeseer, 2004.

[135] Thiago Rocha Silva and Marco Winckler. A scenario-based approach
for checking consistency in user interface design artifacts. In proceed-
ings of the XVI Brazilian symposium on human factors in computing
systems, pages 1–10, 2017.

[136] SparxSystems. Enterprise architect. [online]. available : http://www.
sparxsystems.eu/start/home/. [accessed 20 dec 2022].

[137] J Michael Spivey. An introduction to z and formal specifications. Soft-
ware Engineering Journal, 4(1):40–50, 1989.

[138] John Spriggs. GSN-the goal structuring notation: A structured ap-
proach to presenting arguments. Springer Science & Business Media,
2012.

[139] Lynn Andrea Stein. Delegation is inheritance. ACM SIGPLAN Notices,
22(12):138–146, 1987.

[140] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[141] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
2nd edition, 2009.

[142] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Systematic
mapping study of template-based code generation. Computer Lan-
guages, Systems & Structures, 52:43–62, 2018.

[143] Masoumeh Taromirad. A Modelling Approach to Multi-Domain Trace-
ability. PhD thesis, Enterprise Systems Research Group, Department
of Computer Science . . . , 2014.

156

http://www.sparxsystems.eu/start/home/.
http://www.sparxsystems.eu/start/home/.

[144] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Dif-
ference computation of large models. In Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineer-
ing, pages 295–304, 2007.

[145] Javier Troya, Sergio Segura, and Antonio Ruiz-Cortés. Automated
inference of likely metamorphic relations for model transformations.
Journal of Systems and Software, 136:188–208, 2018.

[146] D Ungar and RB Smith. Self: The power of simplicity. inobject-oriented
programming systems, languages, and applications, 1987.

[147] Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt. Self-
sync: a dynamic round-trip engineering environment. In Companion
to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 190–191, 2005.

[148] Vladimir Viyović, Mirjam Maksimović, and Branko Perisić. Sirius: A
rapid development of dsm graphical editor. In IEEE 18th International
Conference on Intelligent Engineering Systems INES 2014, pages 233–
238. IEEE, 2014.

[149] John Vlissides and Andrei Alexandrescu. To code or not to code, part
i. C++ Report, 2000.

[150] M Völter and J Bettin. Patterns for model-driven software-
development, version 1.4, may 2004, 2015.

[151] Markus Völter. A catalog of patterns for program generation. In
EuroPLoP, pages 285–320, 2003.

[152] Markus Völter. Best practices for dsls and model-driven development.
Journal of Object Technology, 8(6):79–102, 2009.

[153] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-driven software development: technology, engineering,
management. John Wiley & Sons, 2013.

[154] Guido Wachsmuth. A formal way from text to code templates. In
International Conference on Fundamental Approaches to Software En-
gineering, pages 109–123. Springer, 2009.

157

[155] Jos Warmer. A model driven software factory using domain specific
languages. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 194–203. Springer, 2007.

[156] Stefan Warwas, Christian Hahn, and Klaus Fischer. A visual devel-
opment environment for jade. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pages 1349–1350. Citeseer, 2009.

[157] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation
as a dual task of code summarization. Advances in neural information
processing systems, 32, 2019.

[158] James R Williams. A novel representation for search-based model-
driven engineering. PhD thesis, University of York, 2013.

[159] James R Williams, Dimitrios S Kolovos, Fiona AC Polack, and
Richard F Paige. Requirements for a model comparison language. In
Proceedings of the 2nd International Workshop on Model Comparison
in Practice, pages 26–29, 2011.

[160] Athanasios Zolotas. Type inference in flexible model-driven engineering.
PhD thesis, University of York, 2016.

[161] ” “EMF Ecore Javadoc. Eclipse software foundation, [online]. available
: https://download.eclipse.org/modeling/emf/emf/javadoc/2.
9.0/org/eclipse/emf/ecore/package-summary.html. [accessed 20
dec 2022].

158

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html.
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html.

	Abstract
	Contents
	List of Contents
	List of Tables
	List of Figures
	Listings
	List of Algorithms
	Acknowledgements
	Declaration
	Introduction
	Context
	Research Challenges
	Thesis Contributions
	Thesis Structure

	Literature Review
	Model-Driven Engineering
	MDE Principles
	Meta-models and Models
	Modelling Languages
	Meta-Object Facility (MOF)
	Model Management Tasks

	Model Transformations
	Model-to-Text Transformations (M2T)
	Text-to-Model transformation (T2M)
	Key Technologies of MDE

	Integrating Hand-written Text in M2T Transformations
	Introduction
	Existing Mechanisms for Integrating Hand-written Text
	Two-Way Merging VS Three-Way Merging
	Discussion

	Round-Trip Engineering (RTE)
	Round-Trip Engineering
	Classification of Round-Trip Engineering
	Partial Round-Trip Engineering
	Full Round-Trip Engineering

	Discussion

	Summary

	Analysis and Hypothesis
	Analysis
	Motivating Example
	Problems

	Limitations of Integrating Techniques in M2T Transformations
	An example of Using Protected Regions in EGL Language
	Issues of Using Protected Regions
	Limitations of Consistency between Source Models and Their Generated Files

	Research Hypothesis and Objectives
	Research Hypothesis
	Research Objectives
	Scope

	Automated Line Based Merging
	Introduction
	Extending EGL with Merging Approach
	Assumptions
	Extending EGL with Merging Approach
	Algorithms

	Evaluation
	Correctness
	Performance
	Threats to Validity

	Discussion
	Limitations
	Probability of Hash Collisions

	Alternatives
	Summary

	Synchronised Regions
	Introduction
	Extending EGL with Sync Regions
	Assumptions
	Extending EGL with Sync Regions
	Synchronising Sync Regions with Model Elements

	Evaluation
	Correctness
	Performance and Scalability
	Generalisability
	Threats to Validity

	Discussion
	Applicability and Limitations

	Summary

	Conclusion
	Summary
	Thesis Contributions
	Future Work

	Bibliography

