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Abstract 

This research aimed to investigate how the way drivers allocate their visual 

attention across their environment affects their process of decision-making 

about a resumption of control from vehicle automation. It also aimed to 

investigate how different factors such as the involvement of the driver with 

the decision-action loop; situation kinematics and presence of supportive 

information affect this relationship between gaze and decision. This 

research’s motivation came from an inherent issue on the topic of the 

transition of control: The high amount of spread visual information required 

from the driver to perform a manual intervention safely. This issue forces the 

driver to prioritise certain information over others, which may lead to different 

outcomes for their take-over reaction. There is a lack of empirical evidence 

showing the link between the way drivers sample information and their 

abilities to perform an appropriate transition of control. By understanding 

how drivers should look to enhance their decision-making process, it may be 

possible to develop guidelines and recommendations for designing suitable 

HMI, and strengthen driver performance during a take-over from automation. 



- viii - 

Table of Contents 

Intellectual Property and Publications ..................................................... iii 

Acknowledgements .................................................................................... vi 

Abstract ...................................................................................................... vii 

Table of Contents ..................................................................................... viii 

List of Tables ............................................................................................ xiii 

List of Figures........................................................................................... xiv 

List of Abbreviations ............................................................................... xvii 

1. Introduction ......................................................................................... 1 

1.1  General Introduction ....................................................................... 1 

1.2  The role of visual information in the driving task ............................ 3 

1.2.1  General concept of attention as stimulus selection and 

information processing .......................................................... 4 

1.2.2 Structures of attention selection ........................................... 7 

1.2.3  Information processing models for driving ............................ 8 

1.2.4 Visuo-motor coordination ................................................... 12 

1.2.5  Hazard Perception .............................................................. 13 

1.3 Vehicle automation and driver behaviour .................................... 14 

1.3.1 Levels of automation and driver roles................................. 14 

1.3.2  Supervisory control paradigm and the driving 

environment ........................................................................ 16 

1.3.3  Human factors Issues with automated vehicles .................. 19 

1.3.4  Drivers’ gaze during automated drive ................................. 21 

1.4 Human factors of the transitions of control .................................. 22 

1.4.1  Transition of control definition ............................................. 23 

1.4.2 Transition of control requirements ...................................... 25 

1.4.3  Challenges for a good transition of control ......................... 27 

1.4.4  Factors influencing driver behaviour during transitions 

of control ............................................................................. 28 

1.4.5  Gaze and decision during transitions of control .................. 30 

1.5 Summary and key research gaps ................................................ 31 

1.6 Research question and objectives .............................................. 33 

1.6.1  Research goal .................................................................... 33 

1.6.2  Research questions ............................................................ 33 

1.6.3  Thesis overview .................................................................. 34 

References .......................................................................................... 35 



- ix - 

2. The Effect of Motor Control Requirements on Drivers' Eye-

Gaze Pattern During Automated Driving ......................................... 47 

1.1 Introduction ................................................................................. 47 

1.2 Current study ............................................................................... 51 

1.3 Method ........................................................................................ 52 

1.3.1 Participants ........................................................................ 52 

1.3.2  Materials ............................................................................. 52 

1.3.3  Design and Procedure ........................................................ 53 

1.3.4  Statistical analysis .............................................................. 56 

1.3.5  Research Variables ............................................................ 56 

1.4 Results and discussion................................................................ 59 

1.4.1 Percentage road centre ...................................................... 59 

1.4.2  Horizontal and vertical gaze dispersion .............................. 62 

1.5 Conclusion .................................................................................. 65 

References .......................................................................................... 66 

3. Using Markov Chains to Understand Drivers’ Gaze 
Transitions During Lane-Changes in Manual Vs. Automated 

Driving ................................................................................................ 71 

3.1 Introduction ................................................................................. 71 

3.2 Methods ...................................................................................... 73 

3.3 Results and discussion................................................................ 76 

3.4 Conclusion .................................................................................. 78 

References .......................................................................................... 79 

4. The Effect of Driver Engagement and Presence of Obstacles 
on Drivers' Gaze Behaviour Patterns During Non-Critical 

Transitions of Control From Vehicle Automation........................... 83 

4.1 Introduction ................................................................................. 83 

4.2 Material and methods .................................................................. 85 

4.2.1  Participants......................................................................... 85 

4.2.2  Materials ............................................................................. 86 

4.2.3  Driving scenario .................................................................. 86 

4.2.4  Experimental design ........................................................... 87 

4.2.5  Data analysis process ........................................................ 88 

Eye-tracking treatment ........................................................ 88 

Research variables ............................................................. 89 

4.3 Results ........................................................................................ 90 

4.3.1  Raw gaze distribution ......................................................... 90 



- x - 

4.3.2  Gaze fixation analysis ........................................................ 93 

4.4 Discussion and conclusion .......................................................... 94 

References .......................................................................................... 96 

5. The effect of information from dash-based human-machine 
interfaces on drivers' gaze patterns and lane-change 

manoeuvres after conditionally automated driving ....................... 99 

5.1 Introduction ................................................................................. 99 

5.1.1 Current study .................................................................... 103 

5.2 Method ...................................................................................... 104 

5.2.1 Participants ...................................................................... 104 

5.2.2 Materials ........................................................................... 104 

5.2.3  Experimental design ......................................................... 105 

5.2.4  Automated driving system ................................................ 106 

5.2.5  The distance of vehicles in the offside lane ...................... 106 

5.2.6  HMI configurations ........................................................... 107 

5.2.7  Non-driving related task (NDRT) ...................................... 109 

5.2.8  Procedure ......................................................................... 110 

5.2.9  Research variables ........................................................... 111 

5.2.10 Statistical analysis .......................................................... 114 

5.3 Results ...................................................................................... 115 

5.3.1  Participants’ decision-making time ................................... 115 

5.3.2  Participants’ gaze distribution ........................................... 116 

5.3.3  Gaze behaviour and DMT correlation ............................... 119 

5.4 Discussion ................................................................................. 122 

5.4.1  The effect of dash-based information on drivers’ gaze 

behaviour .......................................................................... 122 

5.4.2  The effect of dash-based information on drivers’ DMT ..... 124 

5.5 Conclusion ................................................................................ 125 

5.6 Acknowledgements ................................................................... 126 

References ........................................................................................ 126 

6. Applicability of risky decision-making theory to understand 
drivers' behaviour during transitions of control in vehicle 

automation ....................................................................................... 133 

6.1 Introduction ............................................................................... 133 

6.2 Transitions of control from vehicle automation .......................... 135 

6.2.1  The decision-action loop................................................... 136 

6.2.2  Situation awareness recovery .......................................... 137 



- xi - 

6.3 Decision-making theory principles and models ......................... 139 

6.3.1  Rational decision-making models ..................................... 140 

6.3.2  Risky decision-making models ......................................... 141 

6.4 Relationship between human factors challenges and risky 

decision-making ........................................................................ 143 

6.5 Using decision-making models to orient drivers’ decision-

making....................................................................................... 145 

6.6 Formulation of a take-over model .............................................. 146 

6.7 Conclusion ................................................................................ 150 

References ........................................................................................ 151 

7. Evidence-accumulation model to predict forward collision 
reactions in a conditionally automated vehicle using drivers' 

gaze .................................................................................................. 157 

7.1 Introduction ............................................................................... 157 

7.2 Background ............................................................................... 157 

7.2.1  Transitions of control and situation awareness recovery .. 157 

7.2.2  Risky decision-making and selective information bias ...... 158 

7.2.3  Current Study ................................................................... 160 

7.3 Method ...................................................................................... 161 

7.3.1  Model description ............................................................. 161 

7.3.2  Experimental dataset ........................................................ 163 

7.3.3  Experimental design and scenario ................................... 163 

7.3.4  Research variables ........................................................... 165 

7.3.5  Fitting and simulations ...................................................... 167 

7.3.6  Monte Carlo simulations of eye-tracking data................... 168 

7.3.7  Random search and parameter selection process ........... 168 

7.4 Results ...................................................................................... 169 

7.4.1  Trials with observed response near model distribution 

mode ................................................................................. 173 

7.4.2  Trials with observed response in model distribution tails .. 174 

7.4.3  DMT simulations for the crash trials ................................. 176 

7.5 Discussion and conclusion ........................................................ 177 

References ........................................................................................ 180 

8. Discussion and conclusions .......................................................... 185 

8.1  Research Outlook....................................................................... 185 

8.2  Overview of the Research Questions ......................................... 187 



- xii - 

8.2.1  How are the competing demands of visual information 
prioritised during drivers’ transition of control from 

vehicle automation? .......................................................... 187 

1. What is the effect of drivers’ engagement in the 
motor control and cognitive loops of the driving 

task, on their visual attention allocation patterns 
during transitions of control from vehicle 

automation? .............................................................. 187 

2. How does the type of information presented on the 
HMI of an automated system affect drivers’ gaze 
behaviour during transitions of control from vehicle 

automation? .............................................................. 190 

3. How does the scenario kinematics affect drivers’ 
gaze behaviour during transitions of control from 

vehicle automation? .................................................. 192 

4. Final thoughts on the first  main research question ... 193 

8.2.2  How can the pattern of drivers’ visual attention 
allocation be correlated with their decision to transition 

control from vehicle automation? ...................................... 194 

1. What is a safe gaze behaviour pattern for 

successful transitions of control? .............................. 194 

2. Final thoughts on the second main research 

question .................................................................... 195 

8.3  Methodological Considerations and Research Limitations ......... 195 

8.3.1  Considerations about the effects of long-term 
experience with vehicle automation on drivers’ 

behaviour .......................................................................... 195 

8.3.2  Considerations about scenario design and attentional 

saliences ........................................................................... 196 

8.3.3  Considerations about driving simulator experiments ....... 197 

8.4  Contributions to the Field ........................................................... 199 

8.4.1  Contributions to the experimental research field on 

visual attention during vehicle automation ........................ 199 

8.4.2  Contributions for the theoretical field of decision-

making .............................................................................. 199 

8.4.3  Contributions for the methodological research on 

visual attention .................................................................. 200 

8.5  Final Conclusion ......................................................................... 200 

References ........................................................................................ 200 

 



- xiii - 

List of Tables 

Table 3-1 Results of the Wilcoxon’s tests on the frequency of gaze 

transitions between Areas of Interest ............................................. 77 

Table 4-1 Report of the significant differences in the Markov chain 
structure for the probability of fixation transitions between 

AoIs during the transition of control process ................................ 94 

Table 5-1 Model performance output and weight values for 

regression for each HMI condition ................................................ 121 

Table 7-1 AICc values for comparison between models ...................... 171 

 



- xiv - 

List of Figures 

Figure 1.1 Schematic representation of the selective process of 

attention (Makowsky, 2018) ................................................................ 5 

Figure 1.2 Representation of Posner’s (1980) cueing experiment .......... 6 

Figure 1.3 Michon’s (1985) levels of information processing for 

the driving task .................................................................................... 9 

Figure 1.4 Merat et al.’s (2019) diagram of the information 

processing loop of a driving task .................................................... 10 

Figure 1.5 Trick & Enns’ (2009) diagram of attention selection 

modes of the driving task ................................................................. 10 

Figure 1.6 Wilkie & Wann’s (2010), representation of optic flow........... 12 

Figure 1.7 Parasuraman et al.’s (2000) levels of automation ................. 15 

Figure 1.8 SAE’s (2021) structure for levels of automation ................... 15 

Figure 1.9 Schematic representation of the supervisory control 

paradigm (Parasuraman & Sheridan, 2005) .................................... 18 

Figure 1.10 ISO/TR 21959-1:2000’s representation of driver/system 
initiated transition from automated to manual driving (ISO/TR 

21959-1:2000)..................................................................................... 24 

Figure 1.11 Thesis chapter structure ....................................................... 35 

Figure 2.1 University of Leeds Driving Simulator................................... 52 

Figure 2.2 Representation of the various phases of the traffic 
scenario during the Lane Change experiment (Avg. 34.22 

seconds duration) ............................................................................. 53 

Figure 2.3 HMI for Fully Manual Drive (no automation available). 

Designed by: CRF (Centro Ricerche Fiat) ....................................... 54 

Figure 2.4 HMI for Manual Intervention Required condition. 
Designed by CRF. Left: automation available, Middle: 

automation on, Right: driver back in manual control .................... 55 

Figure 2.5 HMI (Human-Machine Interface) for Fully Automated 
Driving condition. Designed by CRF. Left: Automation on, 

Middle & Right: vehicle changing lane automatically .................... 56 

Figure 2.6 Average Percentage Road Centre scores over time 

during the three drives ..................................................................... 60 

Figure 2.7 Average standard deviation of gaze Yaw over time, 

during the different automation conditions .................................... 63 

Figure 2.8 Average standard deviation of gaze pitch over time, 

during the different automation conditions .................................... 64 

Figure 3.1 Representation of the scenario, showing the over-

taking maneuver (TW= Time Window) ............................................. 74 



- xv - 

Figure 3.2 Representation of the differences in gaze transition 
frequency between AoIs for PAD and CAD compared to MAN 

(dotted= sig. lower than MAN; solid= sig. higher than MAN) ........ 77 

Figure 4.1 Example of the experimental scenario and instrument 
cluster with the automation status symbol (Left: automation 

not engaged, Right: automation engaged) and the vehicle 

speed (mph) ....................................................................................... 87 

Figure 4.2 Graphical representation of the drivers' distribution 
between the AoIs in the 10 s before, and 10 s after the 

transition of control .......................................................................... 91 

Figure 4.3 Graphical representation of drivers' gaze concentration 

to the road centre throughout the transition of control ................. 92 

Figure 5.1 Representation of the experimental set-up in the 

University of Leeds Driving Simulator .......................................... 105 

Figure 5.2 Representation of the experimental scenario ..................... 106 

Figure 5.3 - Representation of the System HMI Condition 

(Designed in collaboration with CRF) ........................................... 108 

Figure 5.4 Representation of the Full HMI Condition (Designed by: 

CRF) ................................................................................................. 109 

Figure 5.5 Representation of the Arrows task, as it was displayed 

on the touchscreen near the gear stick ........................................ 110 

Figure 5.6 Example of how Decision-Making Time (DMT) was 

calculated for a single participant ................................................. 112 

Figure 5.7 Schematic representation of the division of AoIs used 

in the analysis of drivers’ eye movements ................................... 114 

Figure 5.8 Results of Friedman’s test on drivers' Decision-Making 

Time in different test conditions .................................................... 116 

Figure 5.9 Drivers' gaze distribution across the five AoIs. The X-

axis represents the 3s before and 5s after 𝒕𝒂𝒄𝒕𝒊𝒐𝒏 ...................... 118 

Figure 5.10 Results for the 3 ANOVA tests performed on drivers' 

gaze on each AoI during the 3s that preceded  𝒕𝒂𝒄𝒕𝒊𝒐𝒏 .............. 119 

Figure 6.1 Representation of the decision-action loop and drivers’ 
monitoring role in manual control of the driving task (Merat 

et al., 2019; based on Michon’s model, 1985; Copyright © 
2019 Springer. Reprinted with Permission of Springer 

Publications).................................................................................... 137 

Figure 6.2 Endsley's model of SA. This is a synthesis of versions 
she has given in several sources, notably Endsley (1995) and 

Endsley et al. (2000), in Wickens (2008) ........................................ 138 

Figure 6.3 Representation of the relationship between SA and 

decision-making theory .................................................................. 143 

Figure 6.4 Graphical representation of an evidence accumulation 

model. Source: Ratcliff et al. (2004) ............................................... 147 



- xvi - 

Figure 6.5 Theoretical representation of the proposed model ............ 149 

Figure 6.6 Graphical representation of the output from the 

proposed model .............................................................................. 149 

Figure 7.1 Schematic representation of the developed EAM .............. 162 

Figure 7.2 Schematic representation of each discrete event in the 
experimental drive. A–D represent various phases of the 

drive (Source: Louw et al., 2016) ................................................... 165 

Figure 7.3 Schematic representation of the areas of interest. 

Based on Carsten et al. (2012) ....................................................... 166 

Figure 7.4 Parameter values for each AoI ............................................. 170 

Figure 7.5 Scatter plot of parameter sets for model fitting .................. 170 

Figure 7.6 Graphical representation of both model's simulation 

output per experimental trial, sorted by observed DMT .............. 172 

Figure 7.7 Graphical representation of the model output .................... 173 

Figure 7.8 Graphical representation of the model output .................... 175 

Figure 7.9 Linear regression between trial's DMT and the model's 

absolute predicted error ................................................................. 176 

Figure 7.10 Histogram with the distribution of RTs for the crash 

scenarios ......................................................................................... 177 

 



- xvii - 

List of Abbreviations 

Several abbreviations and acronyms are used throughout the this thesis. 
Although these are explained alongside their first instance in the text, they 
are listed here for ease of reference: 
 
ACC Adaptive Cruise Control. 

ADAS Advanced Driver Assistance Systems. 

ANOVA ANalysis Of VAriance. 

AOI Areas of Interest. 

DMT Decision-making time 

DDM Drift-diffusion Model 

EAM Evidence Accumulation Model 

HMI Human Machine Interface. 

LBA Linear Ballistic Accumulator Model 

ML Machine Learning 

NHTSA National Highway Traffic Safety Administration. 

OoTL Out of the loop. 

PRC Percent Road Centre. 

SA Situation Awareness. 

SAR Situation Awareness Recovery. 

SAE Society of Automotive Engineers. 

SD Standard Deviation. 

TOR Take-Over Request. 

TB Time Budget. 

TTC Time To Collision. 

TW Time Window 

  



- xviii - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There is a belief among many automation engineers that 

one can eliminate human error by eliminating the human 

operator. To the extent a system is made less vulnerable to 

operator error, it is made more vulnerable to designer error 

(Parasuraman & Riley, 1997). And given that the designer is 

also human, this simply displaces the locus of human error. 

In the end, automation is really human after all.” 

Parasuraman & Sheridan (2005)
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1.  

Introduction 

1.1  General Introduction 

In recent years, we have been witnessing a constant growth in the 

development of vehicle automation technologies, with predictions for it to 

represent a good portion of the automotive market in the near future. Global 

market predictions (Precedence Research, 2022) estimated that the 

autonomous vehicle market value was around USD 94.43 billion in 2021 and 

is projected to grow up to USD 1808.44 billion by the year 2030. This 

corresponds to an estimated 38.8% compound annual growth rate, which is 

remarkably higher than many of the most prominent markets, like the mobile 

app industry (13.4%, Grandviewer Research, 2022a), and streaming 

services (21.3%, Grandviewer Research, 2022.b). This rapid growth is 

attributed to government support from many nations of the world, advances 

in legal and regulatory frameworks for its implementation, and the promise to 

revolutionise the roadway transportation structure (Precedence Research, 

2022). The presence of vehicles already capable of assuming both lateral 

and longitudinal control of the driving task (e.g. Tesla Model S; Tesla, 2022) 

in the open market is a good indication that such technology is here to stay. 

Amongst the promised benefits attributed to vehicle automation is the 

improvement in Traffic flow, costs and fuel consumption (Fagnant & 

Kockelman, 2015), an extension of driving mobility for impaired or older 

drivers (Young & Bunce, 2011), and, most notably, the reduction of human 

error as a cause of accidents, which is a significant issue in road safety 

(Horberry et al., 2006). On the other hand, despite all the expected benefits 

of vehicle automation, technology only explores a finite set of pre-defined 

scenarios, where the automation can operate with maximum reliability 

(limited operational design domain, SAE, 2021) and might require the human 

driver to resume control of the driving task, whenever a system limitation is 

reached (NHTSA, 2016). This issue highlights a conceptual controversy 

inherent to the human interaction with automation (Parasuraman & 

Sheridan, 2005); that humans have their cognitive resources deviated from 

the task, yet, they are still required to intervene, whenever solicited, or 

whenever the automation faces a system limitation of malfunction. This 

reminds us of a profound irony: the more reliable (yet not perfect) the 
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automation, the less prepared the human being is to respond when they are 

most needed (Bainbridge, 1983). 

According to Merat et al. (2019), the removal of drivers from the physical and 

cognitive (specifically for L3 automation) control loops of the driving task in 

an automated environment significantly jeopardizes their levels of situation 

awareness (Endsley, 1995) and visuo-motor coordination (Wilkie & Wann., 

2010), which are both paramount for the human’s ability to drive safely. 

Therefore, to safely respond to a system limitation and successfully recover 

control of a vehicle, drivers need to engage in a recovery process and re-

acquire sufficient levels of both resources (situation awareness and visuo-

motor coordination) in a timely manner, given the situation at hand (Mole et 

al., 2019; Damböck et al., 2013). Unfortunately, the re-insertion of the driver 

in the loop has proven to be a challenging task (Endsley & Kiris, 1995) due 

to the high amount of information that needs to be sampled in a limited time 

span, which may end up overloading drivers’ information process resources 

(for more details about this process, see Goodrich & Boer, 2003).  

Therefore, it is the duty of the Human Factors community studying vehicle 

automation to understand how drivers allocate their limited attentional 

resources to resume control of the driving task. By understanding the 

cognitive processes underlying a transition of control, it may be possible to 

provide tools to support human drivers in such tasks and thereby improve 

vehicle safety. 

Driving simulator studies in this context (Louw et al., 2016; Louw et al., 2018; 

Zeeb et al., 2015), as well as studies related to forward collision avoidance 

(Xue et al., 2018; Svaard et al., 2020; Markkula et al., 2016) have suggested 

that the drivers’ reaction time to critical situations and the safety outcome of 

their reactions can be causally-correlated with certain gaze patterns. 

Furthermore, drivers’ takeover performance is also linked to attention 

directed to certain aspects of the road environment, such as an early 

attention to the hazard in front, in case of a rear-end collision. This 

assumption is supported by experimental and conceptual research on 

theories of risky decision-making (Edwards, 1954; Orquin & Loose, 2013), 

and bounded rationality (Boer, 1999; Simon, 1972; Goodrich & Boer, 2003), 

which suggest that decisions (in the case of this work, the reaction to a 

takeover request) are constantly biased by the information gathered by the 

decision-maker (which is primarily via visual sampling). Therefore, if the 

decision-maker (driver) is under time pressure and is not able to process all 

the information at their disposal (as suggested by Goodrich & Boer, 2003 
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and Gold et al., 2013), one can assume that their reaction outcome will be 

influenced by the way they visually sampled the environment. 

The studies mentioned above suggested that there is a correlation between 

the way drivers sample their environment during a transition of control and 

the probability of a safety outcome of the situation. With that in mind, one 

can assume that we can use drivers’ gaze to understand what can be 

considered a safe resumption of control. However, it is well agreed that gaze 

scanning patterns are sensitive to environmental manipulations (Carrasco, 

2011; Borji & Itti, 2013). For instance, the presence of vehicles in the 

surrounding environment, or on-screen driver assistance-based information 

is known to affect the way drivers scan their environment (see Ali et al., 

2021). To better understand how drivers allocate their visual attention to 

resume control from an automated vehicle, it is necessary to systematically 

manipulate the attentional saliences of the scenario, and understand how 

each aspect related to the transition process affects drivers’ gaze patterns, 

and then, observe the correlation between drivers’ gaze and a safe 

resumption of control. 

This research uses, as its main theoretical background, the concepts of 

situation awareness (Endsley, 1995) and situation awareness recovery 

(Gartenberg, 2014), together with principles of risky decision making theory 

(Edwards, 1954) and bounded rationality (Simon 1972) to understand how 

drivers allocate their visual attention across the environment to recover 

control from vehicle automation. The following sections of this chapter will 

provide a critical literature review of the main topics related to this research, 

leading to a summary of the main research gaps, followed by the objectives 

of this research programme and the research questions that were used to 

address these gaps. 

1.2  The role of visual information in the driving task 

Since the early human factors research on driving behaviour, it is well-

accepted that the majority of the safety-related information associated with 

the driving task relies on the visual modality (Sivak, 1996; Cloe, 1972; 

Sanders et al., 1967). Visual information processing is regularly associated 

with some of the core activities of driving, such as the visuomotor 

coordination of locomotor control (Wilkie et al., 2008), hazard perception 

(Horswill & McKenna, 2004; Crundall et al., 1999), and interaction with non-

driving-related activities or secondary systems (Metz & Schoemig, 2011).  

However, according to Trick & Enns (2009), each of these activities make 
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use of different elements of the visual attention selection structure in the 

human brain. To better understand the relationship between visual attention 

and driving, this section will present the core principles in the visual attention 

literature, and later describe how each of those principles are used in the 

most common activities that constitute the driving task. 

 

1.2.1 General concept of attention as stimulus selection and 

information processing 

The concept of attention (whether visual or not) can be defined as the 

operant process of segregation and identification of a given discriminated 

stimulus in an environment containing other non-discriminated stimuli 

(Skinner, 1953). In other words, attention is inherently a selective process, 

caused by the limited capacity of the brain to simultaneously process all the 

information available at our disposal (Carrasco, 2011). In this process, 

individuals differentiate relevant (signal) and irrelevant (noise) elements, 

based on semantic associations of the targeted stimulus’ discriminative 

features (see Figure 1.1 for a schematic representation of the process). As 

an example, in early signal detection studies, Skinner (1953) was able to 

train pigeons to recognise and respond to a flashing red light in an 

apparatus, suggesting that their trained response was a discriminative 

response to a given phenomenon (light on/off). 
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Figure 1.1 Schematic representation of the selective process of 

attention (Makowsky, 2018). Panel A represents the four possible 
outcomes of a signal detection task. Panels B-E show a graphical 
representation of the outcomes mentioned in A (Hit, False Alarm, 
Miss and Correct Rejection, respectively). 

In his emblematic cueing experiment (Figure 1.2) Posner (1980) was able to 

show that, when it comes the stimulus, the brain mechanisms responsible 

for the segregation and selection of stimuli (attention) is causality-correlated 

with the spatial position of the individual’s gaze focus. In other words, 

Posner’s work (1980) showed that individuals tend to fixate their eyes 

towards and on the elements in the environment they are attending to. 

Based on these findings, research in modern applied psychology relies on 

the location of gaze as a proxy for the location of attention and information 

processing, to understand the structure and process of attention selection.  
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Figure 1.2 Representation of Posner’s (1980) cueing experiment 

On the other hand, this proxy assumption should be used with care. 

Posner’s (1980) research has also shown that visual attention can be drawn 

from the periphery of an individual’s field of view. In this sense, it is safe to 

assume that mechanisms for information source and signal discrimination 

are present even when the individual is not actively fixating to an object. 

Other thing that should be considered is that prolonged gaze towards one 

fixed area is also one indication of mind wandering, or confusion (see 

Walker & Trick, 2018). Walker & Trick (2018) have shown in driving 

simulator studies that drivers fixating staticly on the road ahead were not 

necessarily paying attention to the road, but rather had no particular focus 

on any driving-related or visual information-related activity. In that sense, 

one should be mindful that not all information to be processed by the human 

brain is necessarily visual, and therefore using gaze as a proxy of 

information processing may lead to misinterpretation of the human 

behaviour. Despite this fact, given the nature of the driving task (Sivak, 

1996), and how resource demanding it may be, this may be one a reliable 

way to assess drivers’ behaviour, since it is unlikely for a driver to be 
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executing an active manoeuvre in a vehicle, without processing information 

about it. 

 

1.2.2 Structures of attention selection 

According to Carrasco (2011), there are two main sets of structures that 

orient the process of attention selection: 2) feature-based (bottom-up/top-

down) and 2) spatial (covert/overt attention), which will be discussed further 

in this subsection: 

Nakayama & Martini (2011), and Carrasco (2011) have shown that visual 

information acquisition is a serial (sequenced) selective process, due to the 

brain’s inability to process large amounts of information at once (Lennie, 

2003). That said, feature-based structures of attention are cognitive 

mechanisms that modulate the priority given by an individual’s attention to 

certain information sources, dictating the order in which they will be visually 

sampled. The first structure of sequential selection is the top-down 

structure, which guides the sequence of eye movements, based on the 

individual's expectancy to find a given set of information at a certain location. 

This structure makes use of resources such as long/short-term memory and 

experience of the individual, and their mental model of the task in hand, to 

semantically discriminate the signals in the environment, and guide the eye 

movements in a planned, goal-directed, approach (Borji & Itti, 2013). The 

opposing, but sometimes complementary, bottom up structure, relies on 

the saliency of signals (also relevant to the context, when compared to the 

other elements in the field) attracting the individual’s gaze, without a 

predefined pattern (Borji & Itti, 2013). It must be noted that these structures 

are not mutually exclusive, and they can coexist in a visual search task, 

where individuals generally follow a given top-down path, which may be 

regularly disrupted by bottom-up saliences in the environment. 

As previously mentioned, visual attention allocation is generally associated 

with the movement of the eyes towards the stimulus that is being identified 

and discriminated in the environment (Posner, 1980). Here, spatial attention 

selection structures are the ones that control the movement of the eyes, and 

allocate the attention resources towards a signal (Carrasco, 2011). Overt 

attention is the cognitive mechanism that modulates the actual focus of the 

individual’s attention towards the location their eyes are fixating (Carrasco, 

2011). On the other hand, covert attention is the cognitive mechanism that 

modulates the minor degrees of attention given to the periphery of the 
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individual’s field of view. According to Carrasco (2011), signals can be 

discriminated in a general area, by the covert attention structure, which 

consequently guides the eyes towards the spatial location of the signal, and 

therefore starts to be mediated by the overt attention structure.  

By closely observing both sets of attention structures, one can assume that 

they  are deeply entwined, in a way that covert structures may lead to 

bottom-up manipulations of attention, in the same way that a top-down 

structure might guide one’s overt attention to specific elements which were 

not necessarily captured by the covert attention beforehand. In fact, many 

studies (Hayhoe & Ballard, 2009; Borji & Itti 2013) have concluded that eye 

movements and attention allocation patterns are heavily dictated by the 

scenario in hand. One example for that assumption is the fact that we expect 

drivers to look towards their side mirrors, as they are about to change lanes. 

The interactions between attention selection structures may change, given 

the situation the individuals are facing. Also, even different individuals might 

be affected differently by the same aspects of the environment, performing 

similar (but not identical) eye movement patterns, due to contextual 

manipulations. With that in mind, it is necessary to understand which 

contextual elements of the driving task (both manual and automated) dictate 

the way drivers move their eyes, in order to control their vehicles. 

 

1.2.3 Information processing models for driving 

In the early 1980s, Rasmussen (1983, 1986) developed a conceptual model 

of human information processing during the interaction with complex 

systems. Later in the decade, Michon (1985) revisited Rasmussen’s model, 

adapting it for the specificities of the driving task, and the information 

processed for each of the minor activities therein. Both Rasmussen’s (1983, 

1986) and Michon’s (1985) models divide the information processing 

routines of human behaviour into 3 levels: 1) skill-based, 2) rule-based, and 

3) knowledge-based (see details inFigure 1.3). 

In the context of driving, the skill-based (control) level is composed of micro 

and constant activities (taking a matter of milliseconds), where drivers 

process sensorimotor information from the environment to adjust the 

vehicle’s heading and/or speed, to match with their higher-level strategic 

goals. The rule-based (manoeuvring level) is composed of conscient, 

strategic decisions, made over the course of seconds, based on well-learnt 

procedures, such as changing lanes, and negotiating a curve. The 
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knowledge-based (strategic) level is composed of higher-level decision-

making procedures, which are generally planned beforehand, such as route 

selection to get to a place, generally using drivers’ previous knowledge of 

the situation, such as the distance to the destination, traffic jam locations, 

and use of alternative routes. 

 

Figure 1.3 Michon’s (1985) levels of information processing for the 
driving task 

 

Based on this model, many authors (e.g. Hollangel & Woods, 2006; Behere 

& Torngren, 2015; SAE, 2016) describe the driving task as a constant 

“observation-orientation-decision-action” (OODA) loop (see Boyd, 1976), 

where information from the three hierarchical levels is constantly processed, 

in an iterative cycle, yielding moment-to-moment decisions that feed 

information for the next repetition of the loop. As described by the Society of 

Automotive Engineers (SAE, 2016) and Merat et al. (2019), the control loop 

of the driving task can be divided into minor closed-end loops (see Figure 

1.4), where information from a higher hierarchy is processed first, providing 

input for lower hierarchies until a high-level goal is translated into a 

sequence of motoric inputs for the vehicle’s control. In other words, major 

goals,  such as arriving on time to a given location (strategic level of 

information) will lead drivers to conduct overtaking manoeuvres 

(manoeuvring level), which can be translated into the manual force applied 

to the steering wheel and pedals (control level), to move the vehicle towards 

its intended path and reach the final, desired, destination. 
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Figure 1.4 Merat et al.’s (2019) diagram of the information processing 

loop of a driving task 

 

When it comes to how information is visually acquired for processing in a 

driving task, Tick & Enns (2009) defines a two-dimensional framework, 

where all scanning routines, commonly associated with the driving task, can 

be divided into four modes of attention selection (see Figure 1.5):  1) reflex, 

2) habit, 3) exploration, and 4) deliberation. The two dimensions of the 

framework are similar to Carrasco’s division between covert/overt attention 

selection structures and top-down/bottom-up structures, however with 

different terminology (endogenous/exogenous, automatic/controlled). 

 

Figure 1.5 Trick & Enns’ (2009) diagram of attention selection modes of 
the driving task 
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Reflexive (automatic-exogenous) selection of attention is an unconscious, 

obligatory response to a salient stimulus or event. Generally, this process 

occurs when a given stimulus is so evident in the drivers’ field of view that it 

naturally attracts their overt attention (bottom-up manipulation of attention). 

Examples include drivers’ direction of attention during a near-crash event, 

where the looming (optical expansion of the size of an object through 

motion) of an approaching obstacle attracts the driver’s attention. Habitual 

(automatic-endogenous) selection of attention is an unconscious visual scan 

routine, done by habit, as part of a conditioned behaviour (top-down 

structure). According to Trick & Enns (2009), this constitutes the majority of 

our gaze behaviour while driving, as it mediates the most common strategies 

used to perform tactical decisions in a driving task (e.g. looking to the side 

mirrors before changing lanes). It must be noted that all routines in this 

mode of attention selection are learned, as the driver gets used to habitual 

situations, and knows by experience where to find the most relevant 

information source, at any given time, as an automatized behaviour 

(Engström, 2011).  

The Exploratory (controlled-exogenous) selection mode of attention 

governs where the driver focuses their attention whenever there is no 

specific goal for the task (hence, no discriminative features of a stimulus). 

This mode is mainly mediated by a bottom-up structure, where the drivers’ 

covert attention is sensitive to many potential attentional saliencies that are 

distinguished from the habitual road scenario (e.g. aeroplanes in the sky, 

speeding vehicles in the surroundings, and advertising boards, etc...). It 

must be noted that such exploratory gaze can lead to driver distraction, 

since the ocular perception channel is not able to focus on multiple locations 

at once, and drivers exploring the environment are more likely to focus their 

attention on non-driving related stimuli, which increases their distraction from 

the main driving task. At last, Deliberate (controlled-endogenous), attention 

selection mode is defined as driver visual scanning behaviour in non-routine 

situations (e.g. taking over control of vehicle automation, negotiating an 

overtaking manoeuvre, responding to a critical near-crash scenario, etc...). 

This mode of attention can be part of a top-down structure of attention, 

where drivers consciously look for specific information during a specific 

situation, while reacting to specific contextual elements of the scenario. Such 

Deliberate gaze patterns are generally associated with individual differences 

in crash risk (Trick & Enns, 2009), with experimental studies showing that 

drivers who were able to avoid a crash, presented a significantly different 
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gaze patterns, when compared with those who crashed (see Crundall et al., 

1999; Engström, 2011 ; Louw et al., 2016).  

Based on these links between gaze patterns and crash propensity, it can be 

argued that drivers’ gaze behaviour before and during a transition of control 

and can be modelled to predict their ultimate safety, upon resuming control 

from automation. As gaze behaviour is generally correlated with probability 

of crash outcomes in a driving scenario (Engström, 2011), it is possible to 

identify a “safe gaze pattern” (as suggested by Horswill & Mckenna, 2004). 

In light of this theory, it is important to understand what kind of visual 

information should be  acquired, and when, to safely control the driving task. 

 

1.2.4 Visuo-motor coordination 

Research shows that visual information plays an essential role in human 

locomotion, as it provides us with the perception of movement needed to 

orient our trajectory and move in space (Wilkie & Wan, 2010). This 

perception of motion is provided by the “optic flow” (see Gibson, 1958) of 

moving elements, in a fixed plane of reference, projected onto our retina, 

which gives the brain the impression that the scenario is moving (or rather, 

the viewer is moving, therefore, changing the relative position of the 

elements in sight), as can be seen in Figure 1.6. 

 

Figure 1.6 Wilkie & Wann’s (2010), representation of optic flow 

 

By using this perception of motion, drivers are capable of assimilating the 

steering wheel and pedal inputs with their consequential impact on the 
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vehicle’s motion (Land & Lee, 1994), such that steering movements and eye 

gaze are tightly correlated (a phenomenon called visuomotor coordination). 

Visuomotor coordination is not only related to optic flow, but also help us 

acquire the anticipatory information required for our next manoeuvre. Land 

(1998) proposed a two-point framework of gaze that can be divided into two 

main categories of gaze: guiding, and look-ahead, fixations. Guiding 

fixations are responsible for the moment-to-moment adjustments of the 

vehicle’s heading and are  generally focused in the close field of view, where 

drivers can notice small changes in the optic flow of the movement. On the 

other hand, look-ahead fixations are focused on the far field of view, 

aiming to collect pre-emptive information, to aid the driver with decisions on 

a tactical level of control. 

 

1.2.5 Hazard Perception 

In addition to visuo-motor coordination, which modulates the information 

processing for operational control of the vehicle’s locomotion and direction, 

hazard perception is used to support drivers’ tactical and strategic safety-

related behaviour, involving a scanning of the environment,  in order to avoid 

potential risks in the near future. According to Horswill & McKenna (2004, 

p2), “Hazard perception has been described as the ability of drivers to 

anticipate potentially dangerous road situations. It has been recognized as 

being an aspect of driver skill that has critical implications for road safety and 

accident involvement”. Therefore, when linked to Trick & Enns’ (2009) 

taxonomy of attention selection modes, hazard perception routines are 

composed of habitual and deliberated gaze patterns, which involving 

seeking for discriminated stimuli that are known to cause potential crash 

scenarios.  

These deliberate or habitual behaviours are known to be influenced by 

driving experience, and styles, influencing drivers’ ability to detect threats, in 

simulated scenarios (Crundall & Underwood, 1998; Underwood et al., 2014). 

Indeed, these studies showed that some vehicle crashes were directly 

related to poor scanning patterns, and poor hazard perception skills (see 

Chovan, 1994). This provides further evidence that certain scanning gaze 

routines (such as mirror checks during lane changes, or wide saccadic eye 

movements to the sides of the road during free drive) can be associated with 

a safer driving style. 
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1.3 Vehicle automation and driver behaviour 

Studies in the previous subchapter illustrated that drivers’ gaze is an 

important part of understanding how the vehicle is controlled during manual 

driving. However, according to Parasuraman et al. (2000), the introduction of 

automation in a task completely alters its nature, in a way that it cannot be 

faced under the same perspective. This subchapter introduces the basic 

concept of human-automation interaction (HAI), and how control in an 

automated driving task differs from a manual driving task, and the 

relationship between this control and drivers’ visual attention, and how that 

affects their safe control of the vehicle. 

 

1.3.1 Levels of automation and driver roles 

According to the National Highway Traffic Safety Administration (NHTSA, 

2016), automated vehicles can be defined as motor vehicles capable of 

partially, or totally, controlling the lateral and longitudinal control of the 

driving task, without the active need for human interaction - within a 

particular operational design domain (ODD). In such circumstances, humans 

slowly lose their role as the active controller of the driving task, and in certain 

cases, such as SAE (2021) level 2 automation, assume a supervisory role 

(as defined by Dekker, 2005 and Parasuraman & Sheridan, 2005). There 

have been various attempts to create a taxonomy of these levels of 

automation. For instance, Parasuraman et al. (2000) proposed a ten-level 

scale for automated systems, that describes the degree of intervention in the 

human’s task, and how much interaction is needed from the human for the 

goal to be achieved (see Figure 1.7). 
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Figure 1.7 Parasuraman et al.’s (2000) levels of automation 

Based on this structure, SAE (2021), developed their own levels of 

automation, tailored specifically for the context of vehicle automation, taking 

into account factors such as the role of the driver (longitudinal and lateral 

control, vigilance, etc...), and the operational design domain of the vehicle 

(see Figure 1.8). 

 

Figure 1.8 SAE’s (2021) structure for levels of automation 

 

The first evident difference between SAE’s (2021) taxonomy and 

Parasuraman et al.’s (2000) is that the SAE levels are divided into two 
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groups: driver support features (levels 0-2) and automated driving features 

(levels 3-5), as the latter fundamentally change drivers’ interaction with the 

driving task. For driver support features, the driver may be relieved from the 

physical control of many aspects of the driving task (depending of the level 

of the automation), but they are still responsible for the supervisory control of 

the driving task, and for a potential intervention in the automation’s 

operation, e.g. in case a system limitation is reached. In that sense, drivers 

are still required to monitor the vehicle and driving environment, and allocate 

visual attention to relevant sources of information, for both tactical and 

strategic management of the driving task (being “on the loop”, as described 

by Merat et al., 2019), as they are only relieved of the primarily operational 

functions of the driving control loop. 

As for the automated driving features, as long as the vehicle stays inside its 

ODD, there is no need for the driver to monitor the environment, when it 

comes to the tactical-level information, only being responsible for the 

strategic control of the task (knowing where to go, and how to get there), 

acting like just another passenger, on the drivers’ seat. However, lower 

levels of vehicle automation (2, 3, 4) can only operate in a discrete set of 

scenarios, and therefore, the driver is expected to assume control of the 

vehicle in certain circumstances (NHTSA, 2016). The limitations in 

automated driving capabilities are particularly problematic for SAE levels 2 

and 3 of automation features, as drivers are partially, or totally, removed 

from the control loop of the driving task, yet they are required to resume full 

manual control in a short period of time, sometimes with little, or no, notice 

(see ISO/TR 21959-1:2020), depending on the level of the vehicle 

automation. Even though level 2 cannot be considered “automated driving”, 

both levels 2 and 3 are transitional states, where the driver is expected to be 

ready to react to a system limitation, yet may lack the right cognitive 

resources to do so in a timely manner (ISO/TR 21959-1:2020). It is, then, 

necessary to understand the human factors issues related to these sorts of 

interactions between the human supervisor and the driving task. 

 

1.3.2 Supervisory control paradigm and the driving 

environment 

Parasuraman & Sheridan (2005), and Dekker (2005), define the interaction 

structure between humans and automation as a supervisory control 

paradigm, which strictly represents the roles of each individual – human and 

automation – inside the task, based on their capabilities and limitations. 
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From the perspective of the human operator, which lacks operational 

precision, but excels in semantically assessing the situation and controlling 

the goals of the task, the supervisory control can be divided into five steps 

(see Figure 1.9): 1) offline task planning; 2) programming and system 

orientation; 3) monitoring of automated system during task execution; 4) 

interference of the system workflow (in case of a malfunction or limitation); 5) 

learn with the experience. From the perspective of the automated system, 

which is capable of fast and accurate task execution, but lacking in strategic 

planning capabilities, researchers have outlined similar steps for its 

operational workflow: 1) observation of the environment through sensors; 2) 

orientation of the scenario according to the relevant thresholds; 3) decision 

of the optimal action according to the given scenario; 4) execution of the 

chosen activity (Young, 2012; Degani, 2004; HSE, 2003; Parasuraman & 

Sheridan, 2005). 
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Figure 1.9 Schematic representation of the supervisory control 
paradigm (Parasuraman & Sheridan, 2005) 

 

Since the human is not actively controlling the driving task, some aspects of 

driving, such as manually maintaining lane stability lose importance over 

others, such as having an accurate mental model of the system capability 

and workflow. Parasuraman et al. (2008) suggests a conceptual framework 

which assumes that the human interaction with automated systems is 

primarily mediated by three main constructs: 1) situation awareness, 2) 

workload, and 3) trust. 

Situation awareness (SA) was first defined by Endsley (1998) as: “the 

perception of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status 

in the near future.” In other words, SA is the capability to observe the 

environment, and recognize the relevant features to assess the situation, 

and predict the outcome of the operator/driver’s possible actions. Endsley 

(1995) divided this construct into three levels (perception, comprehension, 

and prediction). Empirical, driving simulator, studies have shown a strong 

link between drivers’ involvement in the control loop of an automated 

vehicle, their situation awareness, and the safety outcomes of potential 

takeover scenarios (see Louw et al., 2017). 

Trust is a construct related to humans' acceptance of the different range of 

activities performed by the system. According to Lee and See (2004), trust 

guides reliance of the operator in automation, whenever they do not have 

the knowledge or certainty of the future outcomes of the system. When it 

comes to supervision, and transitions of control in automation, Chancey et 

al. (2015) define trust in automated systems as a mediating factor between 

fallibility of a given system and the non-interference of its operator. In other 

words, trust in automation defines how willing we are to put ourselves in a 

vulnerable position, in the hands of an agent (automation), the behaviour of 

which we are not certain about. Young (2012) suggests that this element of 

automation is deeply related to the degree of human vigilance over the task, 

once it affects how much someone is willing to expose themselves to a 

possible risk scenario. An excess of trust can lead to complacency in an 

otherwise vigilant driver (or indeed driver distraction), and under-trust can 

lead to a stress of drivers’ mental workload (Parasuraman et al., 2008). 

Workload can be defined as the disposal of human cognitive and physical 

effort necessary to achieve the task’s goals. One factor that is particularly 
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unique for the human interaction with automated driving is that drivers must 

be vigilant (at least in level 2) for both the system workflow and the road 

environment. As presented above, even though there is no physical 

interaction with the driving task, the visual search activities related to tactical 

information/actions (as defined in Merat et al., 2019) is still necessary. 

Research suggests that this overload of information processing may be 

detrimental for the human’s capabilities to take over (Young, 2012). On the 

other hand, the lack of physical interaction with the driving task can also lead 

to an underload of driver’s resources, which may lead to boredom, fatigue, 

and distraction, which are also detrimental for the monitoring task and can 

increase human error either leading up to, or after a takeover (Parasuraman 

& Manzey, 2010). 

 

1.3.3 Human factors Issues with automated vehicles 

Parasuraman et al. (2008) suggests that inappropriate levels of Situation 

Awareness, trust, or workload can lead to issues in the interaction with 

automation. Furthermore, Young (2012) proposed a list of the most common 

issues that drivers’ may face, when interacting with vehicle automation. 

Parasuraman & Manzey (2010) suggest that operators of an automated 

system (driver) regularly allocate cognitive resources away from their 

monitoring role, under the assumption that the system is reliable and does 

not fail. This “complacency” by the operator (Parasuraman & Manzey, 2010), 

is generally linked to well-performing systems, which creates and excessive 

trust, and is also induced by a lack of workload due to the absence of 

physical engagement, as for instance, what we can see with the driving task. 

According to Carsten et al. (2012), in order to relieve boredom, drivers are 

likely to engage in non-driving related activities (NDRAs) or secondary tasks, 

when using higher levels of vehicle automation (SAE level 2, or above). This 

likely interaction with secondary tasks takes drivers’ eyes off the road, and 

can reduce their situation awareness, increasing their crash probability, if a 

transition of control is required due to system limitations or failures (Zeeb et 

al., 2015; Louw & Merat, 2017; Damböck et al., 2013). 

Parasuraman & Manzey (2010) have also identified “misuses of 

automation”,which, is defined as interaction of an automated system outside 

its scope of desired use. For instance, due to a lack of trust and knowledge 

about the system, an operator (driver) may over-commit on their vigilance 

task. Consequentially, this operator may end up overloading their cognitive 



- 20 - 

resources, leading to an impairment on their performance, in a transition of 

control. Whenever trust in automation is not an issue, but rather a good 

understanding of the system, Victor et al. (2018) observed in their 

experiments that some drivers correctly observed the potential threat, and 

despite reporting adequate levels of trust in the system, decided (wrongly) 

not to react to a critical situation. According to the authors, it was caused by 

an expectation mismatch, as drivers did not have the appropriate mental 

model of the system behaviour, and therefore made the wrong decision 

about whether or not to intervene, despite having enough resources to do 

so. 

Another very common problem related to the interaction of drivers with 

vehicle automation is skill degradation (Young, 2012) where due to the lack 

of interaction with the driving task, some drivers might have their driver-

related skills degraded with prolonged usage of automation. Prolonged 

usage of vehicle automation, and continuous misuses of safety features may 

also lead to undesired behavioural adaptations (Rudin-Brown & Jamson, 

2013). In that sense, as the drivers gain experience with the limitations of an 

automated vehicle, they are likely to adapt their behaviour (in a complacent 

manner, Parasuraman & Manzey, 2010), to overcome potential 

inconveniences on the interaction, such as expected false alarms of the 

system. This may end up exposing drivers to unforeseen risks, as they push 

the boundaries of the safety limitations of the automated vehicle. 

At last, one of the most discussed issues related to the interaction between 

drivers and vehicle automation is the removal of the driver from the decision-

action loop of the driving task (Merat et al., 2019). As said before, drivers 

require a series of information that are being constantly processed to 

perform the driving task, however, as observed by Louw & Merat (2017), the 

removal of the driver from the control loop alters the way they process 

information, and therefore, compromises their situation awareness (out of 

the loop syndrome, or OotL, Merat et al., 2019). Not only this, but the 

removal of the driver from the motor control of  the vehicle, interrupts their 

visuomotor coordination (Mole et al., 2019), which may lead to a delay in the 

stabilization of the vehicle control, after a transition (for examples, see 

Blommer et al., 2017; Merat et al., 2014). 
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1.3.4 Drivers’ gaze during automated drive 

In the previous section of this chapter, it was raised the argument that visual 

attention patterns are highly dependent of the task in hand (Borji & Itti, 

2013). Also,  the evidence provided on previous sections suggested that the 

inclusion of automation in the driving task completely alters its nature (SAE, 

2021). With those arguments in mind,  when it comes to gaze patterns in a 

vehicle automation environment, it is necessary to consider the main 

differences of a manual driving task and automation supervision task, and 

understand how each of those differences may lead to distinct gaze 

behaviour patterns. 

The first difference to be noted, is that drivers are more likely to engage in 

non-driving-related secondary tasks, when supervising an automated driving 

task (as reported by Carsten et al., 2012). Therefore, even for Level 2 

system, the proportion of deliberate off road glances (as defined by Trick & 

Enns, 2009), is likely to increase when automation is engaged, due to 

drivers’ interaction with peripheral devices, such as smartphones, radio, or 

in-vehicle infotainment systems. Morando et al. (2020, 2021) provide 

empirical evidence for this assumption, using results from a naturalistic study 

with Tesla drivers, and show increased visual inattention (longer and more 

frequent off-road glances) during the automated mode, when compared to 

manual driving. These authors also report that drivers tend to start deviating 

their glances away from the road, as soon as they disengage manual control 

of the driving task. 

Another relevant factor that should be considered to this discussion is that 

drivers should maintain attention to multiple sources of information at once. 

As reported by Endsley (2006), operators of an automated system (drivers) 

should be aware not only about the status of the system, but also about the 

situation of the task that is being performed by the automation (in the context 

addressed by this research, drive). Considering the fact that most of the 

system related information is provided by the system’s user interface 

(Goncalves et al., 2017), and the information about the driving task is 

generally obtained by looking towards the road environment (Horswill & 

McKenna, 2004), it is to be expected that drivers of an automated system 

would need to disperse their gaze between the two locations, and constantly 

shift their attention to maintain situation awareness. 

When it comes to gaze dispersion, it is a well-known that drivers tend to look 

towards where they steer (Land & Lee, 1994). However, simulator studies 

(Mars & Navarro, 2012; Mackenzie & Harris, 2015) have found that the lack 
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of need for the driver to physically control the driving task increased their 

average gaze dispersion during curve negotiations. Their findings suggest 

that without appropriate visuo-motor calibration, drivers tend to reduce the 

frequency of their guiding fixations (as defined by Lappi & Mole, 2018), and 

perform more deliberated or exploratory gaze routines of the road 

environment (either to gather tactical information about their surroundings, or 

due to driver distraction/boredom). As a complementary finding, Louw & 

Merat (2017) found that whenever removed from the loop of the driving task, 

drivers have an overall increase in their gaze dispersion around the vehicle, 

in an erratic pattern. The authors associated this phenomenon with lower 

levels of situation awareness, caused by a lack of demand for 

interaction/vigilance of the driving task. That said, we can consider that a 

lesser involvement (both physically or tactically) with the driving tasks makes 

drivers prone to bottom-up saliences of attention, since there is no real 

demand for a structured deliberated gaze scanning routine. 

 

1.4 Human factors of the transitions of control 

As highlighted in the previous subchapter, for some levels of vehicle 

automation (especially Levels 2 and 3), the automated system is not able to 

operate in all driving and road environments, or may fail unexpectedly, 

therefore requiring the human to resume control of the driving task, in a 

timely, and safe, manner (NHTSA, 2016). However, as stated by Merat et al. 

(2019), and Mole et al. (2019), the removal of the driver from the active role 

of driving makes it difficult for them to quickly, and efficiently, re-insert 

themselves back into the decision-making and control loops, (ISO/TR 

21959-1:2020). According to Seppelt & Victor (2018), achieving a safe 

transition of control in a timely manner, is one of the most prominent human 

factors challenges for current systems, which has captured the attention of 

many researchers over the past 10 or so years. This challenge is associated 

with a mismatch between the amount of information necessary required by 

the driver for a safe transition of control, and their information processing 

capabilities (as reported by Goodrich & Boer, 2003). This subchapter will 

discuss the nature of the process of transition of control from driving 

automation; its challenges; influencing factors; and how gaze behaviour and 

visual attention is related to this process. 
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1.4.1 Transition of control definition 

The process of partially/totally relinquishing or assuming control of an 

automated vehicle is commonly referred to as a “transition of control”. In his 

work, Louw (2017) defined a transition of control as “(...) the process and 

period of transferring responsibility of, and control over, some or all aspects 

of a driving task, between a human driver and an automated driving system.” 

(Louw, 2017, p.12). Of course, a transition is not always extreme or critical 

(i.e. from no motor/supervisory control to full control), nor is it unilateral. 

Flemisch et al. (2008), and Martens et al. (2007) developed taxonomies for 

the process of transition of control, which were further structured in the ISO 

regulation TR 21959-1:2020 (see ISO/TR 21959-1:2020). The taxonomy 

proposed by ISO considers three main factors that define three elements of 

a transition:1) the initiator of the transition process, 2) the direction of the 

transition, and 3) whether or not it was a deliberate, or forced action. 

When it comes to the initiator of the transition, the event can be either 

system initiated, or driver initiated. The direction can be up/higher or 

down/lower, between full manual control (Level 0) and Levels 1, 2, or 3 (and 

any in between). The third aspect, relates to urgency, which, as the name 

suggests, defines whether this is a forced transition (where the driver/system 

does not have the option to ignore the request without a major safety 

implication), or optional, where the absence of action will not disturb the 

current state of the driving task, but the drivers wishes to resume control, for 

other reasons. 

The research developed in this document, focuses on system-initiated 

transitions between SAE Level 2 and 3 to Level 0. These are 

deliberate/forced transitions of control to both critical and non-critical, 

following a request to intervene (as can be seen in Figure 1.10). 
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Figure 1.10 ISO/TR 21959-1:2000’s representation of system initiated 

transition from automated to manual driving (ISO/TR 21959-
1:2000) 

 

As shown in Figure 1.10, the transition of control is a process with many 

steps. The process starts with a supposedly unready driver, who receives a 

takeover request, in the case of an L3 system, or perceives the need to 

takeover, in the case of an L2 system. Once the need is understood, the 

driver passes through a transition state, where they will gather information 

about the system and road environment, until they deactivate automation 

and recover manual control of the vehicle. Once in manual control of the 

vehicle, the driver will still need to stabilise the control, as they recover 

their visuomotor coordination, and scan the situation, to assure the transition 

was successful. 

Takeover Requests (applicable specifically for L3 systems)  or TOR, can be 

defined as a system-initiated alarm to invite the driver of an 

autonomous/automated vehicle to resume one or both lateral or longitudinal 

control of the driving task (Melcher et al., 2015).  

The transition state, as defined by ISO, is the moment where drivers 

engage in visual scan activities, to recover both situation awareness (as 

described by Gartenberg, 2014) and visuomotor coordination (as described 

in Mole et al., 2019), until they are sufficiently re-inserted in the control loop, 

and able to manually assume control of the situation (Merat et al., 2019). 

The stabilization period is caused by any potential inadequacies in their re-

insertion in the control loop of the task (as reported by Merat et al., 2014; 
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Louw et al., 2018; and Blommer et al., 2017), which is generally 

characterized by minor motor control adjustments, to regulate steering and 

speeding calibration, as well as quick glances towards the vehicle’s cluster 

and surroundings (as observed by Tivesten et al., 2015). 

 

1.4.2 Transition of control requirements 

The arguments presented above suggest that, during the state transition 

phase, drivers need to gather the right (and right amount of), information to 

be re-inserted in the decision-making and control loops necessary to safely 

drive a vehicle (ISO/TR 21959-1:2000). It is now necessary to discuss which 

kind of resources are needed to recover control of a vehicle, based on 

Michon’s (1985) model, considering the driving task as a constant loop of 

information processing (Hollangel & Woods, 1995). 

When defining the concept of Out of the Loop, caused by the continuous 

exposure of the driver to vehicular automation, Merat et al. (2019) stated that 

the “loop” could be divided into two: “(…) we suggest that “being in the loop” 

can be understood in terms of (1) the driver’s physical control of the vehicle, 

and (2) monitoring the current driving situation (…)” (Merat et al., 2019). In 

short, Merat et al. (2019) proposed that the “loop” of driving a vehicle is 

divided in two distinct subroutines: 1) a motor control loop physical 

interaction with the vehicle’s movement control and 2) a decision-making 

loop, related to strategic and tactical information processing (as defined by 

Michon, 1985). 

Given the structure of transitions of control described above, it is to be 

expected that a forced transition to manual (from L2/3 to 0) is needed due to 

a system limitation, or critical event, that requires precise and timely human 

intervention, since the automated system is unable to handle the situation 

accordingly. With that, driers will need to have adequate levels of 

involvement in both decision-making and motor control loops, to safely 

respond to the demands of the task.  

Considering the definition above, one can assume that a transition of control 

can be interpreted as a decision-making problem. In this perspective, a 

situation is presented to the decision-maker (driver), which will need to look 

for information and ponder, from a myriad of possible options, what is the 

adequate solution. Authors such as Merat et al. (2019) have suggested that 

this decision process is tightly related to the process of situation awareness 

recovery, and to the three levels of situation awareness: 
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• Level 1 – Perception: Drivers should be able to notice the need for 

an intervention, by either receiving a TOR (in case of L3 systems) or 

noticing cases of system limitations (in case of L2 systems). 

• Level 2 – Comprehension: once perceived the need to takeover, 

driers should look for strategic-level (as defined by Michon, 1985) 

information on both the system and environment, to understand the 

current state of the environment and why an intervention is needed. 

• Level 3 – Projection: After understanding the situation, a myriad of 

possible solutions will be pondered, and manoeuvring-level 

information (Michon, 1985) will be processed, to define what is the 

most adequate solution to the problem in hand. 

After the decision process is made, drivers are ready to assume the motor 

control of the vehicle. However, they still need process control level 

information, to resume a stable control of the driving task. 

When it comes to the decision-making loop, many authors in the field of 

human factors in vehicle automation (Louw & Merat, 2017; Zeeb et al., 2015; 

Eriksson & Stanton, 2017), and on basic human-automation interaction 

(Endsley, 2006/1995; Parasuraman et al., 2000; Sheridan & Parasuraman, 

2005) have demonstrated that prolonged interaction with automation may 

lead to a loss of situation awareness (as defined by Endsley, 1995). Endsley 

(1995) described the third level of situation awareness as the ability of an 

individual to make sense of the information in hand, to project future 

scenarios. With that in mind, one can assume that situation awareness is a 

core element of the decision-making loop (Merat et al., 2019), because, in 

order for drivers to manage a situation upon receiving a TOR, they need be 

able to avoid potential hazards, and handle any unexpected outcomes of 

their actions. 

When it comes to re-acquiring situation awareness, drivers follow a visual 

scanning procedure, called "situation awareness recovery", or SAR 

(Gartenberg, 2014). This process is composed of quick and dispersed 

samples towards both the road environment and vehicle’s automated 

systems (via a range of Human Machine Interfaces). Gartenberg (2014) also 

reported that this process has a high ratio of attention refocused in different 

sources of information, due to the eccentricity of the visual scanning process 

(Gartenberg, 2014). The SAR theory is based on the Memory for Goals 

model (Altmann & Trafton, 2002), which assumes that the focus of the 

attention required to recover situation awareness is based on drivers’ current 

stored information in their short-term memory, regarding the situation in 



- 27 - 

hand. According to Endsley (2006), the operators (drivers) of an automated 

system follow a goal-directed, top-down, structure, when recovering situation 

awareness, shifting their attention to places they believe (based on their 

experience) are likely to provide the information needed to complete their 

mental model of the situation, and achieve their goals. 

The motor control loop is tightly related to visuo-motor coordination (Wilkie 

& Wann, 2010). In an extensive literature review, Mole et al. (2019) suggest 

that the interruption of the physical control of the driving task compromises 

the calibration between drivers’ motor control inputs and their visual 

perception of locomotion, jeopardising their ability to perform a stable driving 

task, after resuming control of the vehicle (as seen in Merat et al., 2014; 

Blommer et al., 2017). According to Mole et al. (2019), to recover such 

calibration, drivers rely on the optic flow of the scenery in their field of view, 

giving them the notion of movement and control of speed (see Okafuji et al., 

2015), as well as guiding fixations, either to the centre of the road, or 

towards where the driver wishes to steer (see Wilkie & Wann, 2010). 

 

1.4.3 Challenges for a good transition of control 

As outlined above, the process of transitioning control from vehicle 

automation can be challenging, with a large volume of information to be 

processed by drivers, sometimes in a limited amount of time. According to 

Eriksson & Stanton (2017), depending on the situation, drivers may take 

between 5 and 30 seconds to recover sufficient resources to resume control 

of automation. Complementary research from Merat et al. (2014) shows that, 

even after resuming manual control of the task, the driver may take up to 40 

seconds to stabilise the vehicle’s position in the road, to match the control 

seen in manual driving before automation was engaged. Endsley & Kiris 

(1995) list a series of inherent challenges to the process of recovering 

control of an automated task, associated with human limitations, in terms of 

information processing, and attention switches. It is now important to 

consider the constraints inherent to the transition of control from vehicle 

automation that might cause delays in drivers’ response, and therefore, 

reduce safety. 

In his studies, Wickens (2008) concluded that humans are not especially 

good at attending to multiple workload demands at the same time, due to 

limitations on their working memory and processing capabilities, since each 

information needs to be processed procedurally. This issue is evident in the 
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field of automation (Parasuraman  & Rilley, 1998) and especially in the field 

of transitions of control in vehicle automation, where it was been shown that 

time pressure or information overload might affect the quality of drivers’ 

decision-making (Gold et al., 2013). The field of decision-making theory 

address a similar problem with the concept called bounded rationality (see 

Simon, 1972 for a more detailed definition), which describes the lack of 

capabilities for an individual to process all the information they have in hand, 

making them unable to achieve an entirely rational decision, the more 

pressure/demand is imposed before the decision-making.  

The arguments above show that bounded rationality constantly constraints 

drivers during a transition of control. For this reason, drivers will need to deal 

with uncertainty, assuming that it is likely that they won’t have time to sample 

all the information they would ideally need to make a fully-rational (see 

Edwards, 1954 for a review of the term) decision and reaction. In those 

cases, drivers might have to prioritise certain visual information over others 

to perform a transition of control (for more details about this process, see 

Goodrich & Boer, 2003). 

 

1.4.4 Factors influencing driver behaviour during transitions 

of control 

If it is assumed that the transition of control from automation is akin to a risky 

decision-making process, it is feasible to presume that several factors can 

affect the difficulty of this decision, and therefore influence drivers’ takeover 

time and the quality of a transition. This section presents evidence from the 

literature about the most relevant factors influencing human performance in 

transitions of control in vehicle automation. 

For critical transitions of control, a time budget is provided between the time 

a takeover request (TOR) is issued by the system (or in case of a driver 

initiated takeover, from the perception of the potential issue), until the 

moment when a crash is unavoidable. The time budget has a direct 

influence on drivers’ takeover performance, since it dictates how much 

information they can process, before executing a takeover manoeuvre.  

Reports from Gold et al. (2013) and Damböck et al. (2013) suggest that 

shorter time budgets directly influenced drivers’ capabilities to avoid a crash 

in a takeover scenario, as well as how they distributed their gaze across the 

environment.  
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For example, Gold et al. (2013) showed that as the time budget decreased 

(7s to 5s), drivers had a lower probability to sample the road environment, 

such as reduced use of the side mirrors, which also affected their 

subsequent reaction (where brakes were more frequent, when trying to 

avoid a hazard, compared to braking and steering). Xu et al. (2022) also 

demonstrate that drivers with a lower time budget to takeover had a lower 

number of look- ahead fixations across the environment, and focused more 

on the road centre, suggesting the drivers with limited resources opted to 

focus on the manoeuvre to be performed, instead of looking to obtain 

additional situation awareness. However, When it comes to longer time 

budgets, it is possible that a flooring effect can be perceived on drivers’ 

performance. Louw et al. (2018) demonstrated with a multilinear regression 

analysis that drivers' response time was not predicted by the time budget of 

the event they drove, but rather by the kinematics of the scenario. The 

overall takeaway for the researchers is that if you give more time for drivers 

to react, they are more likely to use it, and only actually respond when the 

situation approaches alarming levels of criticality. 

Another factor that mediates performance and reaction time during 

transitions of control is drivers’ levels of situation awareness/ 

involvement with the loop prior the takeover request. The same way time 

budget constrains drivers’ capabilities to process all the necessary 

information to perform a rational decision to takeover, the amount of 

cognitive resources (in this case, situation awareness) needed to be 

gathered for such rational decision is also a constraint for drivers’ takeover 

capabilities. Zeeb et al. (2015/2016) have demonstrated that drivers who 

spent time looking away from the road centre in vehicle automation (likely 

performing secondary tasks) presented longer takeover times and higher 

crash probabilities in driving simulator experiments. The explanation behind 

such results is the assumption that, once the drivers were less aware about 

their surroundings, they needed more time to gather all the information they 

needed. 

When it comes to eye movements and the involvement of the driver with the 

loop, Louw & Merat (2017) showed that despite the fact that the more drivers 

are removed from the loop, the more likely they are to crash in a critical 

takeover, individual differences on their eye movements after the TOR 

quickly disappear in the first few seconds of the transition process. The 

rationale behind this observed behaviour is the fact that their attention is 

immediately attracted to the threat ahead, as they make sense of the 
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surrounding environment. It is still important to consider that drivers with 

lower levels of situation awareness are still required to sample for more 

information on the environment, to achieve similar performance results, 

when compared to drivers who were attentive to the environment, while the 

automation was on. 

Another factor that may affect the outcomes of the transition process is how 

well/quickly the driver can gather the information at their disposal. Therefore, 

one can assume that the usage of advanced human machine interface 

(HMI) solutions may help the drivers’ with pre-processed information to 

support their decision about when and how to resume control. When it 

comes to the understanding of the status of the automated system, Banks & 

Stanton, (2016) Saffarian et al., (2012), and Stockert et al. (2015) showed 

that the HMI of the vehicle increased drivers’ perceived levels of trust, and 

comprehension of the system behaviour. On the other hand, automated 

vehicles that presented supportive information regarding the road 

environment (see Richardson et al., 2018; Naujoks., 2017) presented 

reduced response times in transition of control scenarios. This finding leads 

to the assumption that the information about the surrounding environment 

can more efficiently interpreted by the driver, when pre-processed by the 

sensors of the vehicle during a transition of control. 

At last, again considering the transition of control process as a risky 

decision-making, we can assume that the more complex the surrounding 

environment, the more uncertainty (see Shaw, 1982 for the definition of the 

term) would be associated with the decision process, and therefore, 

compromise drivers’ performance. As presented above, Louw et al.’s (2018) 

study showed that drivers do not tend to react to time budgets (the more 

time you give, the longer the drivers will get to respond), but rather to the 

evolving criticality of the situation, as they are approaching the collision to 

the lead. In the same perspective, Xue et al. (2019) developed a drift 

diffusion model to predict drivers’ brake response to a forward collision 

warning, concluding that their response is generally based on the looming 

obstacle ahead. 

 

1.4.5 Gaze and decision during transitions of control 

The sections above presented the idea that the process of re-insertion of the 

driver into the decision-making and control loops can be challenging, due to 

constraints on humans’ limitations in information processing capabilities 
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(Endsley & Kiris, 1995). Therefore, drivers generally do not have time to 

recover the ideal amounts of situation awareness and visuomotor 

coordination whenever a transition of control is requested. According to 

Edwards (1954), when a decision-maker (driver) is forced to decide without 

the whole notion of the parameters that affect the outcomes of their choice, 

this decision is not entirely rational and is made based on risk models, where 

the outcome of their actions cannot be predicted, but instead estimated. 

Examples of such decision-making structures can be seen in Boer & 

Goodrich (2003). They state that drivers generally apply a satisficing 

decision-making approach rather than what they would judge to be ideal. 

The most relevant characteristic of risky decision-making is that they are 

consistently biased by several factors, such as the arbitrary, selective 

attendance of the decision-maker to a particular set of information, over 

others. 

According to Orquin & Loose (2013), visual attention and decision-making 

are tightly coupled in a way that risky decision-making is continuously biased 

by the attendance/non-attendance to relevant visual information available to 

the decision-maker. In their literature review, the authors were able to find a 

co-causal relationship between visual attendance to information and the 

occurrence of specific decision choices, in a discrete decision-making 

scenario. The authors analysed several publications on the field of decision-

making theory that used eye-tracking data as a dependent variable and 

concluded through a meta-analytical approach that the fixation of the 

individual’s gaze on certain key information can be a predictor of their 

upcoming choice in a discrete scenario, as a co-causal factor. Based on this 

study, it is possible to argue that the selective attention of drivers may bias 

their decision-making. Such approach may also be applied to analyse 

drivers’ response capabilities in a take-over scenario, once a take-over 

reaction is nothing more than a selective response to a certain 

environmental condition, where drivers need to acquire multiple information 

in order to respond accordingly and in a timely manner. 

 

1.5 Summary and key research gaps 

The literature review presented in the previous sections demonstrates that 

drivers’ visual attention selection patterns are dependent on a series of 

contextual factors, such as the involvement of the driver in the loop (e.g. 

Louw et al., 2016; Zeeb et al., 2016), and scenario kinematics (e.g. Gold et 
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al., 2013). On the other hand, It was observed that some aspects of gaze 

could be correlated with the safety outcome of a transition of control (see 

Louw et al., 2016; Svaard et al., 2022).  

If the process of transition of control is biased by selective attention 

allocation and task conditions bias visual attention allocation, it is reasonable 

to assume that different take-over scenarios and visual attention allocation 

patterns will yield different take-over responses. On the other hand, It is not 

yet clear how information available to the driver in a vehicle automation 

scenario, once sampled, may affect the drivers’ takeover process, nor how 

the impact of the situation in which the transition of control was issued 

affects drivers’ visual attention allocation. Based on the arguments above, 

two main research gaps can be outlined about how drivers acquire and use 

visual information on their surroundings to perform a transition of control in 

vehicle automation: 

● The lack of dedicated studies in the literature that systematically 

manipulate attentional demands, focused on understanding how they affect 

the structure (top-down and bottom-up) of drivers’ gaze patterns. Examples 

of such demands are:  drivers' involvement with the decision-making and 

control loops of the driving task, and the presence of HMI information to 

support the transition process. While studies such as Gold et al. (2013),  

Richardson et al. (2018), and Zeeb et al. (2016) did manipulate the situation 

kinematics, the presence of supportive HMI and the involvement of the driver 

in the loop, respectively, their studies were not focussed on how those 

manipulations affected drivers gaze during the transition process. 

● There is a lack of a mechanistic explanation about how drivers use 

visual information to perform a transition of control. Even though Louw et al. 

(2016) had shown a probabilistic correlation between drivers' performance 

during a transition of control and the pattern of drivers’ visual attention 

allocation, it does not provide us with any insights on how this information 

was used to perform the action, nor explains internal variability across the 

different trials in their experiments. On the other hand, gaze-based decision-

making models (e.g. Krajbich et al., 2012) were able to explain the value of 

distinct information sources on the individuals' decision process, but they 

were not tailored considering the specificities of the process of transition of 

control (such as the process of situation awareness recovery, and 

visuomotor coordination). 
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1.6 Research question and objectives 

1.6.1 Research goal 

Based on the research gaps presented above, this research assessed 

drivers’ decision-making responses to transitions of control from vehicle 

automation, based on the way they sample visual information available in 

their field of view. This research also investigated how the involvement of the 

driver on the decision-making and control loops; characteristics of the 

surrounding environment and the presence of system-provided information 

affect the way drivers allocate their gaze to decide how to transition control 

from automation. 

 

1.6.2 Research questions 

● How competing demands of visual information are prioritized during 

drivers’ transition of control from vehicle automation? 

○ What is the effect of drivers’ engagement in the motor control 

and cognitive loops of the driving task on their visual attention 

allocation patterns during transitions of control from vehicle 

automation? 

○ How does the type of information presented on the HMI of an 

automated system affect drivers’ gaze behaviour during transitions of 

control from vehicle automation? 

○ How the scenario kinematics affect drivers’ gaze behaviour 

during transitions of control from vehicle automation? 

●  How drivers’ visual attention allocation patterns can be correlated 

with drivers’ decision to transition control from vehicle automation? 

○ What can be considered a safe gaze behaviour pattern for 

transitions of control? 

To answer the purposed research questions, this research will use data 

previously collected from driving simulator experiments conducted on the 

University of Leeds Driving Simulator (UoLDS). All the data was processed 

post-hoc, and the research questions described in this document were not 

considered during the initial planning of the original studies. This approach is 

a cost-efficient way to tackle the research problem, as it provides a large 

variety of scenarios to be observed, without restricting the research to a 

particular situation.  
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Over the course of the research project, the experiments analysed varied in 

terms of eye-tracking technology used for data collection. With that in mind, 

one should note that the metrics may not be consistent across the chapters 

of this thesis. Also, as the research progressed, new techniques and 

analysis methods were learned, and applied in different chapters of the 

thesis. The reader should take into account that, due to the reasons 

mentioned above, the data and methods presented in different chapters are 

not fully comparable. On the other hand, the findings and implications of the 

research methods may complement each other. A consideration about how 

all the techniques applied across chapters answer the research questions 

will be present in the conclusion chapter of the thesis. 

 

1.6.3 Thesis overview 

As outlined in Figure 1.11, the overall structure of the study takes the form of 

eight chapters. 
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Figure 1.11 Thesis chapter structure 
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2.  

The Effect of Motor Control Requirements on Drivers' 

Eye-Gaze Pattern During Automated Driving 

 

Abstract 

This driving simulator study compared drivers’ eye movements during a series 

of lane-changes, which required different levels of motor control for their 

execution. Participants completed 12 lane-changing manoeuvres in three 

drives, categorised by degree of manual engagement with the driving task: 

Fully Manual Drive, Manual Intervention Required, Fully Automated Drive 

(Manual drive, Partial automation, Full automation). For Partial automation, 

drivers resumed control from the automated system and changed lane 

manually. For Full automation, the automated system managed the lane 

change, but participants initiated the manoeuvre by pulling the indicator lever. 

Results were compared to the Manual drive condition, where drivers 

controlled the vehicle at all times. For each driving condition, lane changing 

was initiated by drivers, at their discretion, in response to a slow-moving lead 

vehicle, which entered their lane. Failure to change lane did not result in a 

collision. To understand how different motor control requirements affected 

driver visual attention, eye movements to the road centre, and drivers’ vertical 

and horizontal gaze dispersion were compared during different stages of the 

lane change manoeuvre, for the three drives. Results showed that drivers’ 

attention to the road centre was generally lower for drives with less motor 

control requirements, especially when they were not engaged in the lane 

change process. However, as drivers moved closer to the lead vehicle, and 

prepared to change lane, the pattern of eye movements to the road centre 

converged, regardless of whether drivers were responsible for the manual 

control of the lane change. While there were no significant differences in 

horizontal gaze dispersion between the three drives, vertical dispersion for the 

two levels of automation was quite different, with higher dispersion during 

Partial automation, which was due to a higher reliance on the HMI placed in 

the centre console. 

2.1 Introduction 

The motivation for this study comes from a well-known challenge in the field 

of Human Factors in Transportation, which is that the introduction of vehicle 

automation to the driving task can remove drivers’ involvement in the 
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decision-making and control loops (Louw and Merat, 2017), and this removal 

may ultimately compromise drivers’ capabilities to make decisions, and act 

appropriately, whenever their intervention for system control is required 

(Young, 2012). Due to their limited Operational Design Domain (ODD), some 

vehicles are unable to perform certain complex manoeuvres, which involve 

decision-making elements, such as changing lane on a busy motorway. 

Therefore, some authors have argued that, in these situations, drivers might 

need to re-acquire sufficient situation awareness (Endsley, 1995) in order to 

safely and accurately resume control from the system, and accomplish the 

desired task or manoeuvre (see e.g. Louw and Merat, 2017; Zeeb et al., 

2015; Dambock et al., 2013).  

According to Gartenberg et al. (2014), the process of situation awareness 

recovery relies heavily on visual search, where the automation’s operator (a 

driver in the context of this research) distributes their visual attention 

between relevant sources of information, to create the right mental model, in 

a goal-directed approach, for the correct execution of a given task. In the 

context of the information processing required for driving a vehicle, Sivak 

(1996) has also stated that this is mainly a visual task, that is achieved via 

tight coordination with the drivers’ motor control systems, allowing them to 

guide the vehicle in the right direction, at the desired speed. The links 

between gaze-based measures, attention to, and successful completion of, 

tasks have been established for some time in studies on human behaviour. 

For example, Carrasco (2011) and Posner (1980) demonstrated that longer 

fixation durations towards one specific point of interest are a good indicator 

of where drivers are placing their attention. However, drivers’ visual attention 

is also known to vary depending on the scenario in hand (Borji & Itti, 2013), 

and can also change based on the different demands imposed by the driving 

environment (Crundall et al., 2003). In a similar line of thought, Sullivan et al. 

(2012) demonstrated through a simulated driving task that drivers had 

increased gaze time and frequency towards a particular information source  

while under conditions of higher levels of uncertainty. In that sense, it is to 

be expected that drivers, whenever recovering control of the vehicle 

(assuming low levels of situation awareness), are more likely to gaze longer 

and more frequently towards the areas which they expect to find the most 

relevant information. For example, Salvucci, Liu & Boer (2001) have 

demonstrated that drivers' gaze during a lane change task is generally 

characterised by an increased number of fixations towards the side mirrors, 

followed by a concentration of gaze towards the vehicle's heading - the 

destination lane. 
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In terms of lane-changing behaviour, Tijerina et al. (2005) report on two 

distinct phases of eye-tracking patterns. Defining a lane change as "(…) a 

deliberate and substantial shift in the lateral position of a vehicle with the 

intent to cross a lane boundary to enter an adjacent lane (…)", these authors 

link eye movement patterns to two main phases of the lane changing 

manoeuvre. The first phase, which occurs prior to the manoeuvre itself, is 

characterised by the acquisition of safety-related information, allowing the 

driver to decide if it is safe to overtake. Examples of such safety-related 

information include gap acceptance, the relative speed of their vehicle, 

distance to the vehicle ahead, and distance to the designated location in the 

adjacent lane (Gipps, 1986; Zheng, 2014). In terms of eye movements, 

Tirjerina et al. (2005), and Doshi & Trivedi (2009) report that this phase is 

generally characterised by a high frequency of glances to the mirrors, as well 

as over the shoulder checks. The second phase, on the other hand, termed 

the execution phase, is extremely demanding in terms of vehicle control and 

requires drivers to be aware of their vehicles' acceleration, steering control, 

and relative position on the road (Chovan, 1994). When it comes to eye 

movements, using results from a naturalistic driving study, Salvucci & Liu 

(2002) showed that drivers generally shift their primary visual focus from 

their own lane to the destination lane, immediately after the onset of the lane 

change. This study also showed a reduction in drivers' attention to the 

mirrors and road ahead at this stage of the manoeuvre. 

On the topic of situation awareness acquisition, Louw et al. (2015) suggest 

that automated driving reduces situation awareness by taking drivers "out of 

the loop", with two different loops involved: "(…) we suggest that "being in 

the loop" can be understood in terms of (1) the driver's physical control of the 

vehicle, and (2) monitoring the current driving situation (…)" (Merat et al., 

2019, p 6.). In this broad view of the problem, drivers are not only required to 

look towards the road to acquire the right information for appropriate 

situation awareness, but also need to apply the correct visuomotor control 

coordination (see Wilkie & Wann, 2010; Mole et al., 2019a), and consider 

the correct strategic planning of their future actions (Land et al., 2006). 

Endsley (2006) suggests this as a critical challenge of situation awareness 

acquisition in automation, where high levels of, spatially dispersed, 

information might exceed the operators' (drivers') capabilities, limiting their 

ability to attend to all relevant information, enforcing the prioritisation of 

certain information, above others. 
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Following the issues described above, it is of interest for the current state of 

the art on Human Factors in Automation research to understand if, and how, 

drivers' gaze behaviour is affected when they relinquish control from the 

vehicle (which is thought to fundamentally change the context of the task, 

see Parasuraman et al., 2000). It is also important to establish whether 

different levels of motor control, as determined by the level of automation, 

have different effects on this gaze behaviour, and, therefore, drivers' 

strategies for gaining situation-awareness, and ultimately, safe resumption of 

vehicle control. In this paper, motor control requirements is defined as the 

need for drivers' to actively monitor and guide the lateral and longitudinal 

movement of the vehicle, by interacting with the vehicle controls (cf. Merat et 

al. 2019). In this sense, it is expected that tasks with higher motor control 

requirements would demand the driver to coordinate their steering wheel 

and pedal movements to match their desired goal, based on the visual 

information acquired from the vehicle's movement (visual-motor 

coordination, Wilkie & Wann, 2010). 

Previous simulator studies, investigating the lack of physical control during 

the driving task (generally caused by engaging automation) have reported 

an increased gaze dispersion away from the centre of the road, whenever 

drivers were not in control of the vehicle (Mars & Navarro, 2012; Mackenzie 

& Harris, 2015; Louw & Merat, 2017). Such patterns are even seen to be 

true for highly demanding phases of the driving task, such as curve 

negotiation. Mole et al. (2019a) suggest this change in gaze behaviour can 

be problematic since the interruption of the perceptual-motor coordination 

used in tasks such as driving can reduce the association between drivers' 

eye fixations and the vehicle's heading, which can reduce safety if 

automation fails (see also Mole et al. 2019b). 

However, according to Mars and Navarro (2012), drivers' gaze behaviour 

pattern during curve negotiations in automation does not change 

significantly, compared to that seen during manual control, with drivers 

diverting a similar proportion of gaze to the same locations in given periods 

of time. The authors suggest that the eyes seem to follow the movement of 

the vehicle's heading, even when drivers are not in manual control, arguing 

that the placement of drivers' vision is not just affected by the bidirectional 

coordination between the eye and arm-motor systems, but also by kinematic 

cues caused by the visual perception of motion. However, an increased 

dispersion in drivers' gaze was also observed in this study, which, as 

suggested by Mole et al. (2019a), might affect drivers' ability to resume 
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motor control, whenever required, especially after long periods of automated 

driving. 

For less demanding driving situations, Mackenzie & Harris (2015) observed 

that drivers not in manual control of the driving task tend to prioritise 

scanning activities (e.g. looking for hazards in the periphery) over control-

related gaze monitoring, such as looking towards vehicle heading. According 

to these authors, the importance of some information falls in favour of 

others, when we are not actively in control of the task, since, we as drivers 

tend to gaze towards what it is important to us.  

However, it is important to note that the above studies were conducted in 

quite simple driving environments, in order to focus specifically on the effect 

of motor control of the vehicle as a dependent variable. The limitation of 

such an approach is that it lacks applicability for more complex scenarios, 

such as automated lane change manoeuvres, which might impose new 

demands on the driver, leading to a change in gaze behaviour patterns, as 

suggested by previous literature (see Crundall et al., 2003; Borji & Itti, 2013). 

Therefore, to understand how different levels of engagement with the control 

loop affect the way drivers disperse their gaze to acquire situation 

awareness for a response to a given task, it is necessary to isolate the need 

for motor control as a dependent variable, but in more complex scenarios, 

which require higher levels of decision-making that may influence gaze 

scanning behaviour. 

 

2.2 Current study 

This study forms part of a larger research programme related to the EU-

funded AdaptIVe project (Grant Agreement No. 610428), the aim of which 

was to provide a deeper understanding of drivers' behaviour during 

transitions of control from automation to manual driving. The goal of the 

current study was to investigate drivers' visual scan patterns during a 

number of lane changing tasks, which, based on the level of automation 

engaged, differed in terms of the level of motor control, and decision-making 

required. It was hypothesised that drivers with different motor control 

demands would give priority to different kinds of information, such that 

drivers in active control of the vehicle would focus more on the vehicle's 

heading. In contrast, drivers without motor control of the task would focus on 
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hazard perception routines, characterised by a higher lateral gaze dispersion 

during task execution. 

2.3 Method 

1.3.1 Participants 

A total of 30 fully-licenced UK drivers were recruited for this study, using the 

University of Leeds Driving Simulator (UoLDS) participant database. One 

person withdrew from the study, and results are, therefore, based on the 

remaining 29 participants (15 male and 14 female). All participants had at 

least 2 years’ driving experience (M = 13.62, SD = 9.62) and varied in age 

between 21 and 60 years (M = 34.21, SD = 8.94). Participants received a full 

set of instructions for the study and were compensated £20 for taking part. 

The study received approval from the University of Leeds Ethics committee 

(Reference Number LTTRAN-054) and took just under two hours to 

complete. 

1.3.2 Materials 

The experiment was conducted using the University of Leeds Driving 

Simulator, which consists of a Jaguar S-Type cabin, with fully operational 

controls, located inside a 4m spherical projection dome, with 300° projection 

angle and equipped with an 8 degrees of freedom motion system (see 

Figure 2.1). A Seeing Machines FaceLab eye tracking device (v4.5) was 

used to record participants' eye movements at 60Hz. 

 

Figure 2.1 University of Leeds Driving Simulator 
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1.3.3 Design and Procedure 

The experiment followed a 3 (automation level) x 12 (lane changing 

manoeuvre) repeated-measures, within-subjects, design, where all 

participants had to perform the same task under three different levels of 

automation condition: Manual drive, Partial automation, and Fully Automated 

Drive (Full automation). These were presented in a fully counterbalanced 

order.  

The experimental scenario involved travelling on a three-lane motorway, with 

a speed limit of 70 mph, where automation (if present), was available in the 

middle lane. There was a regular flow of traffic (70 mph) in lane one of the 

motorway (to the left of the ego vehicle), and no vehicles in lanes 2 or 3 (see 

Figure 2.2). For automation to be activated, participants were required to 

enter the middle lane (lane 2) and maintain the speed limit, while also driving 

in the centre of the lane. The 80.64 km long road depicted a typical UK 

motorway, and consisted of straight sections of road, with a few gentle 

curves (252 m with a 1km radius). 

 

Figure 2.2 Representation of the various phases of the traffic scenario 

during the Lane Change experiment (Avg. 34.22 seconds duration) 

 

During each of the three drives, 12 events were choreographed, where a 

vehicle from the left lane (lane 1) entered the middle lane (lane 2) and gently 

reduced its speed (to around 50 mph), slowing the ego vehicle down and 

prompting the need for a lane-changing manoeuvre by participants. Here, 

participants were asked to change lane, if they so wished, and if they did not 

overtake the lead vehicle, no critical event ensued, and drivers were simply 

caught behind this slow-moving vehicle. After overtaking the lead vehicle, 

participants were required to move back into the middle lane, as soon as it 

was safe to do so and return their speed to 70 mph, in order to reengage the 

automated system (for the two automated drives). 
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For the two automated drives, participants were told that they were not 

required to monitor the environment. They were instructed to only interact 

with the steering wheel during the manual sections of the drives, or during 

the take-over situations (whenever required). The Human-Machine Interface 

(HMI), located in the centre cluster, presented different information related to 

the behaviour of the system. The HMI was developed in conjunction with 

CRF (Fiat) as part of the AdaptIVE project (see also Madigan et al., 2018 for 

further details). Details of the HMI for each driving condition are outlined 

below: 

Manual drive: The driver was entirely in control of the vehicle's lateral and 

longitudinal position (SAE level 0; SAE, 2018). All the overtaking 

manoeuvres and vehicle control were performed manually by the 

participants. In terms of HMI, as automation was not available throughout 

the manual condition, no automation-related information was displayed (see 

Figure 2.3). 

 

Figure 2.3 HMI for Fully Manual Drive (no automation available). 

Designed by: CRF (Centro Ricerche Fiat) 

 

Partial automation1: Here, both lateral and longitudinal control of the 

vehicle in the centre lane were managed by the system, with a combination 

of an Adaptive Cruise Control (ACC) and a Lane-Keeping System (SAE level 

2). The system maintained the vehicle position in the centre of the middle 

lane at 70 mph unless there was a lead vehicle, in which case it would slow 

down, maintaining a 2 seconds headway. In this condition, the system was 

 

1 By the time the data for this paper was collected (2017), the definition of 

SAE level 2 automation was different than what we have today (SAE, 
2021). During the writing process, we opted to maintain consistent 
nomenclature to the one used in the experiment, to match with other 
publications using the same data (see Madigan et al., 2018). 



- 55 - 

not able to perform an overtaking manoeuvre. Therefore, drivers were 

expected to regain control of the vehicle and change lane when they wished 

to overtake the lead vehicle. In this condition, the system could be 

disengaged using three different methods: 1) by pulling the right indicator 

stalk (as with engaging the system); 2) by pressing the accelerator pedal; 3) 

bymoving the steering wheel more than 2 degrees. In terms of HMI, the 

system started with the same information as in manual driving and informed 

drivers when the automation was available, by means of a flashing blue 

steering wheel icon (see Figure 2.4). Once the automation was engaged by 

the driver, the colour of the steering wheel icon changed to green. When the 

automation was disengaged by the driver, the HMI would present a written 

message stating, "You are back in Manual Mode". The system in this 

condition also provided a "beep" sound whenever the automation was 

engaged or disengaged. 

   

Figure 2.4 HMI for Manual Intervention Required condition. Designed 

by CRF. Left: automation available, Middle: automation on, Right: 
driver back in manual control 

 

Full automation: Similar to the previous condition, this system also 

assumed lateral and longitudinal control of the vehicle. The main difference 

between this system and Partial automation was that, here, the system could 

perform the overtaking manoeuvre. The only intervention required from the 

driver was to move the indicator lever in the direction they wanted the lane 

change to occur, and the system would then perform the manoeuvre. 

Regarding the HMI, when the automation was on, a green car icon appeared 

on the screen (instead of the steering wheel from the Partial automation 

condition), and the background also turned to green, distinguishing itself 

from the Partial automation condition. When participants moved the indicator 

stick, an arrow icon appeared on the screen, pointing to the direction of the 

manoeuvre. 
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Figure 2.5 HMI (Human-Machine Interface) for Fully Automated Driving 

condition. Designed by CRF. Left: Automation on, Middle & Right: 
vehicle changing lane automatically 

 

1.3.4 Statistical analysis 

The data was compiled and treated using MatlabR2016a and analysed using 

IBM SPSS v21. Kolmogorov-Smirnov tests (Conover, 1999) were used to 

check for normality and showed that part of the data was not normally 

distributed and presented a slight positive skew. In order to apply parametric 

statistical tests, logarithmic transformations were made in cases where it 

was applicable. All the plots presented below are based on the 

untransformed data, but the ANOVA test results are based on the 

corrected/transformed samples. An α-value of 0.05 was used as the criterion 

for statistical significance, and partial eta-squared was computed as an 

effect size statistic. Where Mauchly's test indicated a violation of sphericity, 

degrees of freedom were Greenhouse-Geiser corrected. 

1.3.5 Research Variables 

Eye-tracking measures can be noisy and prone to loss of quality. Therefore, 

data filtering and selection were applied, using Facelab's algorithms, to avoid 

biasing the results with low-quality data. The first criterion was gaze quality, 

which excluded from the dataset all cases with less than 75% good gaze 

tracking, according to Facelab's algorithm (quality levels < 1). Also, due to 

some possible detection failures (e.g. when drivers' head was down), some 

of the data points suggested that drivers looked outside the simulator's 

projection field. A filtering algorithm was, therefore, applied, excluding all 

data points that were consistently far away from the interior of the vehicle, or 

the projection scene inside the simulator dome.  

In this study, two main eye-tracking measures were used to assess drivers' 

visual attention to the road, and vehicle controls, during the 12 lane-change 

manoeuvres. The first measure involved calculating the percentage of 

drivers' eye fixations to five main areas, including the road centre (PRC – 

Percentage Road Centre; Victor, 2005; Carsten et al., 2012; and Louw et al., 

2017). As in all previous studies conducted in our laboratory, the reference 



- 57 - 

point for this metric was defined for each participant as the mode of their 

gaze fixations within a 6° circular limit (Carsten et al., 2012; Louw et al., 

2017; Merat et al., 2014; Louw et al., 2017). The other four areas of interest 

(AoIs) were defined as diagonal sections equally divided from the road 

centre. The top AoI includes both the far road ahead and the rearview mirror; 

the left and right AoIs include the view of the side lanes, as well as the wing 

mirrors and the shoulder checks; and the bottom AoI constitutes both drivers 

close view of the road ahead and their view of the instrument cluster (where 

the system's HMI is located). Any variations in this measure over time, and 

across the three different drives were explored. Fixations were calculated 

based on a 200 ms threshold. 

Drivers' fixations to the AoIs were analysed for each overtaking event, and 

divided into 17 intervals of 2 s, using the time for exiting the middle lane as a 

reference starting point. The remaining time windows were decided based 

on the mean duration of each step of the lane changing manoeuvre 

performed by the drivers (as can be seen in Figure 2.22). This resulted in 10 

intervals before and 7 after the lane change. It must be noted that several 

different time intervals were tested here (between 1s and 5s), but smaller 

chunks of time led to fixation percentages of 100% or 0% - suggesting that 

one second was too short for drivers to deviate their eyes. Larger intervals of 

3 or 5 s did not reveal the subtle changes in drivers' gaze behaviour (e.g. 

from the planning to the execution phase of the manoeuvre, when drivers 

changed their strategy in a very short period). Therefore, observing changes 

in 2-second intervals, which started 10 seconds before the mean point at 

which the lead vehicle began its manoeuvre to the middle lane (flagged by 

the simulator software) until 10 seconds after the mean point at which the 

ego vehicle re-entered lane 2 after the overtaking manoeuvre (mean 

duration of 34.22 seconds) was chosen to assess fixation patterns in this 

study.  

The second metric used was an investigation of drivers' vertical and 

horizontal gaze dispersion. This was calculated using the mean of the 

standard deviation of raw gaze yaw and pitch values. A similar approach 

was used by (Chapman & Underwood, 1998), as an indicator of drivers' 

scanning behaviour for strategic-based information, due to increasing 

demands imposed by the driving environment. An increase in dispersion was 

expected during the planning and execution of the lane-changing manoeuvre 

in this study, to denote drivers' scanning behaviour during decision-making. 

We were particularly interested in establishing if this pattern was different 
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across the three drives. It was hypothesised that, at least in manual driving, 

increasing demands of the drive, such as those required during lane 

changing, would increase the dispersion of fixations, as drivers moved their 

visual attention between the lead vehicle, the adjacent lane, the destination 

lane, and the vehicle HMI, to gather information about their eminent 

manoeuvre. Understanding whether the same pattern was present for the 

two levels of automation and similar to that seen in manual driving, was 

relevant here. Therefore, it was important to establish whether the timing 

and type of dispersion varied between the three drives, as drivers' 

responsibility, decision-making, and levels of motor control, changed across 

the three different drives. However, using overall gaze dispersion based on 

short time intervals (as the two seconds used in the previously mentioned 

analysis) could lead to potential data quality issues and, therefore, limitations 

when interpreting our results. The reason is that gaze dispersion is sensitive 

to the overall number of observations in the dataset, as it is recalculated at 

every time interval, ignoring the deviation which happened in the previous 

iterations. To address this issue, average levels of vertical and horizontal 

dispersion were plotted for the three drives, based on four main time 

windows (the size of these time windows was different for each driver, as it 

was based on the time they spent in each step of the manoeuvres). The four 

Time Windows were identified as follows: 1) 10 seconds before the lead 

vehicle entered the middle lane; 2) from the lead vehicle's arrival in the 

middle lane, until the time when participants started the lane change (M = 

9.65 s, SD = 2.91 s); 3) from the point participants exited the middle lane, 

until they returned to it, thereby completing one lane change manoeuvre (M 

= 4.57 s, SD = 3.88 s); and 4), 10 seconds after return to lane 2 (see Figure 

2.2).  The division of those four time windows (TW) is based on Tijerina et 

al.’s (2005) definition of a lane change task , as the visual attention demands 

for the task may vary in the different stages of a lane change. TW1 was used 

to understand how drivers disperse their visual attention during a free drive 

with no vehicle in front; TW2 is the representation of the decision-making 

phase of the lane-changing task; TW3 represented the execution phase, and 

the TW 4 is the point where drivers confirm the appropriate execution of the 

manoeuvre and return to free driving. 
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2.4 Results and discussion 

1.4.1 Percentage road centre 

First, assess whether there were any learning effects in the data sample, a 

Two-way repeated-measures ANOVA was conducted on the percentage of 

fixations to the road centre to measure the effect of the order of the 

overtaking events (13) and DRIVE (Manual drive, Partial automation, Full 

automation). There was no significant effect of the order of the events 

[F(4.566,123.281)=0.965, p=.48,  𝜂2=.034], or interaction effects 

[F(6.273,150.548)=1.526, p=.122, 𝜂2 =.06]. This result suggests that there 

was no significant learning effect during the whole experiment, indicating 

that drivers behaved similarly during the whole experiment. 

A two-way repeated-measures ANOVA was conducted on the percentage of 

fixations to the road centre, to measure the effect of Drive (Manual drive, 

Partial automation, Full automation) and Time Interval (17 intervals of two-

second length) (see Figure 6). There was a significant effect of Drive on 

PRC [F(1.408,33.796)=5.46, p<.05, 𝜂2 =.180], where Bonferroni post hoc 

tests (Tabachnick & Findell, 2001) revealed an overall higher percentage of 

fixations to the road centre during Manual drive (~60%), compared to Full 

automation (~53%). However, there was no difference between Full 

automation and Partial automation, or between Partial automation and 

Manual drive, for this measure.  

There was also a main effect of time interval (TI) on PRC scores 

[F(5.162,161.846)=8.898, p<.001, 𝜂2=.270]. As can be seen in Figure 2.6, 

post hoc tests identified that PRC in the 9th TI was significantly lower than 

TIs 1-8 and TIs 10-13. This shows how, for all three automation conditions, 

drivers' visual attention moved away from the road centre immediately (2 

seconds) before exiting the middle lane, presumably in preparation for the 

overtaking manoeuvre. A sharp rise in PRC is then seen during the lane exit 

phase (TI 11), which was significantly higher than TIs 7-10, 15 and 16. This 

rise in PRC just before returning the vehicle to the middle lane is expected, 

showing drivers' attention to the road centre, and particularly the road area 

relevant for correct repositioning of the vehicle (Tijerina et al., 2005), before 

automation could be reengaged.  

A significant interaction between TI and Drive was also seen [F(10.859, 

260.624)=2.929, p <.001, 𝜂2=.109], where PRC values for the two 

automation conditions, Full automation and Partial automation, were 

generally more aligned, and lower, before the lead vehicle entered the 
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middle lane, i.e. when there was no major interaction required from the 

driver regarding the lane changing manoeuvre, and the automation was 

engaged (TIs 1-4). Eye movement patterns then converged for the three 

driving conditions, when the lead vehicle was in the middle lane, ahead of 

the ego vehicle, and remained similar until 2 seconds after lane exit (TIs 11-

17), where drivers' attention to the road centre then dropped in Full 

automation, immediately after the manoeuvre execution, since less physical 

engagement with the vehicle was required. 

 

Figure 2.6 Average Percentage Road Centre scores over time during 
the three drives 

The vertical lines represent the starting points for the different phases 
of the overtaking manoeuvre, which are based on the average duration 
of each phase for all drivers. The error bars represent the standard 
error within each distribution. 

Taken together, these results suggest some general patterns regarding 

drivers' information acquisition for these three types of lane-changing task, 

as governed by the level of automation. For the two automation drives, after 

attending to the requirement to intervene, drivers exhibit a sudden drop of 

visual attention towards the road centre, which is similar to that of the 

manual drive, presumably because they continue to sample information from 

the road environment, for example looking towards the side mirror and 

destination lane, to decide whether it is safe to overtake. Further analyses 
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performed indicated that most of the drivers fixated to the right AoI  (where 

the wing mirror is located) before the initiation of the manoeuvre, during TIs 

8, 9 and 10, where the drop of PRC was registered. However, this was much 

higher for the manual drive (Percentage of drivers looking at the right AoI 

during these time periods pattern: Manual drive  = 100%, Partial automation 

= 89.96%, Full automation = 86.17%). Once they acquired the relevant 

information, there was a sharp increase in the amount of attention towards 

the central AoI, for all three drives. An increase in fixations to the road centre 

is seen for all drives, after lane exit, which shows that, regardless of 

automation level, all drivers were looking to the destination lane, which they 

are merging into. This is presumably in order to ensure the path ahead in 

their destination lane is free, or to coordinate their visual-motor control of the 

task. Similar results have been reported for lane changing in manual driving 

by Salvucci & Liu (2002), Salvucci Liu & Boer (2001) and by Tijerina et al. 

(2005), who showed a reduction in drivers' attention to the side (mirrors and 

shoulder check) and a focus on the target lane, located in the centre of their 

field of view. Figure 2.6 also shows that from 2 seconds after they returned 

to the middle lane, there is a steady reduction in drivers' PRC values, 

especially for the Full automation condition, with this reduced PRC 

remaining lower for this drive for 5-8 seconds after lane re-entry (TI 13-17).  

Overall, these results illustrate that, even when drivers were not engaged in 

the physical act of changing lane, their visual attention to the road ahead, 

and the adjacent lane, was quite similar. These findings are similar to those 

reported by Mars and Navarro (2012) and suggest that drivers maintain the 

same level of attention to the driving environment, even when the 

perceptual-motor connection with the vehicle is broken. Considering that 

drivers are more likely to gaze towards the most informative information for 

the given task (Spargue & Ballard, 2004; Sullivan et al., 2012), it seems that 

the need for decision-making oriented information (such as the ones found in 

the speedometer and right-side mirrors) overcome the effects of the lack of 

motor control in lane change tasks. However, it is worth noting that 

similarities in gaze patterns were only observed during the moments of high 

decision-making demand, as the drivers' PRC values seem to diverge 

between the groups the further time away from the actual lane-change task. 

An analysis of PRC data over the 12 lane-changing manoeuvres showed no 

significant differences in this pattern over time during TIs 8-10 (which, 

according to Tijerina et al. (2005) are considered to be the moments of the 

preparation for a  lane-change, [F(11,44)=.667, p > .05, 𝜂2 = .014], nor in 

drivers’ fixation percentage to the right AoI [F(1.690,7.823)=1.665, p >.05, 𝜂2 
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= .029]. It remains to be seen if longer-term experience with the system 

affects this pattern. 

 

1.4.2 Horizontal and vertical gaze dispersion 

To understand which other areas of the road drivers attend to during lane 

changes and whether this is different for manual versus automated driving, 

we analysed the standard deviation of gaze yaw and pitch, plotting the 

dispersion of gaze for each phase of the lane change manoeuvre. Two 

repeated-measures, two-way ANOVAs (one for pitch and the other for yaw 

gaze dispersion) were conducted, to assess the effect of Drive (Manual 

drive, Partial automation, Full automation) in one of four Time Windows: 1) 

before the lead vehicle entered the middle lane; 2) time spent behind the 

lead vehicle; 3) time in offside lane, and 4) time after the overtake 

manoeuvre was complete (ego-vehicle returns to the middle lane, see Figure 

2.2). Regarding horizontal gaze dispersion, the data for drivers' standard 

deviation of yaw was not normally distributed, showing a slight positive 

skew, which was corrected through logarithmic transformation. 

Analyses of results showed that there was no main effect of Drive [F (2,32) 

=.845, p >.05, 𝜂2 =.050] on yaw gaze patterns. However, there was a 

significant main effect of Time Window [F(3,48)=21.803, p <.001, 𝜂2=.577], 

where horizontal gaze dispersion was significantly higher for TWs 2 and 4 

(M = 7.690; 8.348, before and after the manoeuvre, respectively). Based on 

the results from the previous section (Percentage Road Centre), there was 

an increased amount of fixations to the side AoIs (left and right, where the 

wing mirrors are located) during the period of time equivalent to  TW 2 (see 

TIs 8-10, in Figure 2.6). This increased lateral dispersion can be explained 

by the fact that drivers were inspecting the side lanes in order to decide how 

to act. These results reaffirm what was found for the PRC analyses, where 

drivers' visual attention to the road centre varied across time in the same 

way for the three Drives. These findings reinforce the idea that the nature of 

the task – in this case, overtaking a lead vehicle – has a strong influence on 

drivers' horizontal gaze patterns, regardless of the automation condition. 

There was also a significant interaction between Time Window and Drive 

[F(6,96)=2.235, p < .05, 𝜂2=.123], with posthoc Bonferroni tests showing the 

highest dispersion in yaw gaze for Full automation, during TW 3, i.e. when 

the vehicle was in the offside lane. As stated above, even if the overall 

pattern of dispersion was similar since this stage of the lane change was 
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managed by the automated system in Full automation, drivers have no real 

reason to pay attention to the vehicle's heading, showing more gaze 

dispersion and less attention to the road centre. 

 

Figure 2.7 Average standard deviation of gaze Yaw over time, during 
the different automation conditions 

TW 1 represents the time 10 seconds before the entrance of the lead 
vehicle on the middle lane, TW 2 is the time that the ego vehicle spent 
behind the lead. The error bars represent the standard error within 
each distribution. 

An analysis of drivers' vertical gaze dispersion showed a significant main 

effect of Drive [F(2,34)=6.361, p<.001, 𝜂2=.272], where SD of Pitch was 

higher overall in Partial automation, compared to Full automation. Results 

also showed the least degree of variability in gaze pitch for both Full 

automation and Manual drive. There was a significant effect of Time Window 

[F(3,51)=7.606, p<.001, 𝜂2=.309] on SD of Pitch, which was higher in TWs 2 

and 4 (before and after the manoeuvre) than in TW 1 (before lead vehicle 

entering the middle lane). Finally, there was a significant interaction between 

Drive and Time Window [F(3.180, 54.151)=9.973, p<.001, 𝜂2=.370], where 

SD of Pitch in Manual drive was higher than Partial automation and Full 

automation in TW 1, the period before the merging of the lead vehicle into 

the middle lane. 
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Figure 2.8 Average standard deviation of gaze pitch over time, during 
the different automation conditions 

TW 1 represents the time 10 seconds before the entrance of the lead 
vehicle on the middle lane, TW 2 is the time that the ego vehicle spent 
behind the lead. The error bars represent the standard error within 
each distribution. 

A higher SD of Pitch was also observed for Partial automation in TWs 2-4. 

Further analyses showed that during this time, the place most fixated (after 

the road centre, which was always the most fixated area) by the drivers in 

Partial automation condition was the bottom (11% in TW2 and 15.45% in 

TW4). These results suggest that drivers' need to acquire additional 

information was highest during the Partial automation condition when their 

attention to the actions of the lead vehicle and information provided by the 

HMI (located in the bottom AoI) was highest. As this was the only condition 

where a transition of control to manual was required, the significant increase 

of drivers' gaze dispersion towards the bottom AoI during TW1 and TW4 

suggests that drivers used the vehicle HMI mostly during Partial automation, 

to assist with information about the disengagement/re-engagement of the 

system. On the other hand, the low levels of Pitch SD in Full automation 

suggest a lesser urgency for drivers to access the information presented in 

the instrument cluster (both the automation HMI and speedometer), also 

suggesting that drivers trusted the automated system, perhaps even 

pressing the 'lane changing button' on the steering wheel, without looking 

down at the HMI. Following the same logic used in Sullivan et al. 's (2012) 

study, assuming high uncertainty of specific information (due to the induced 
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OOTL state), drivers seemed only to see value in the HMI information during 

moments of transitions of control. 

Figure 2.8 shows how drivers' pitch gaze dispersion is affected by the 

different demands imposed by the driver-vehicle-environment (Crundall et 

al., 2003), and that this is not the same for the three different drives. In TW1, 

where there was no vehicle in the middle lane, the only condition which 

required attention to heading and speed control was Manual drive, which 

shows the highest vertical gaze dispersion. As outlined above, for TW 2 and 

4, drivers in Partial automation had one extra task, when compared to the 

two other conditions: transition of control from automation to manual mode, 

and vice versa, which accounts for the higher SD of gaze in this condition, 

and highlights the need for reliable and timely information for drivers for such 

transitions of control. 

2.5 Conclusion 

The goal of this paper was to evaluate the impact of different levels of motor 

control requirements for task execution on drivers' gaze behaviour during 

lane changing manoeuvres assisted by vehicle automation. To do so, 

drivers' percentage of eye fixations to the road centre, as well as gaze 

dispersion metrics were compared between different test conditions in a lane 

change task. For each condition, drivers were required to intervene manually 

with different intensities (control the whole task, transition control to 

overtake, push the indicator lever to allow automated lane change) in order 

to complete the manoeuvre. 

Percentage road centre (PRC) analyses showed that, during moments of 

low task demand, drivers' attention to the road centre was lower whenever 

they were not in active control of the driving task. On the other hand, the 

differences in their gaze behaviour were quickly resumed (as also reported 

by Louw et al., 2017) whenever drivers moved closer to the lane change 

event. Regardless of the level of vehicle automation, drivers' visual attention 

was directed away from the centre of the road at the same time, immediately 

before the initiation of an overtaking manoeuvre, which was then refocused 

towards the road centre during its execution. The observed pattern is similar 

to that reported in previous literature on manual lane change (Gipps, 1986; 

Salvucci & Liu, Boer 2001). This result leads us to the assumption that, 

regardless of drivers' manual engagement with vehicle control, the demands 

imposed by the task in hand seem to directly affect the way they sample 
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their surroundings for information (Spargue & Ballard, 2004), even if they do 

not have to actively interact with such information.  

In general, drivers' horizontal gaze dispersion was not significantly affected 

by the different levels of motor control requirements. On the other hand, 

drivers' vertical gaze dispersion was higher during times when a transition of 

control was required, with further analysis confirming that this dispersion was 

generally targeted to the bottom AoI, where the system interface was 

located. This result suggests that HMI information is especially useful during 

moments of transitions of control, probably to confirm whether the transition 

was successful or not, as the interface was the only information source 

about the system status. Therefore, system designers should consider 

prioritising a clear identification of system status on vehicle HMI since our 

results suggest such information encourages drivers to move their eyes 

towards that area. 

This study supports Mackenzie & Harris' (2015) assumption that drivers not 

in physical control of the driving task change the focus of their visual 

attention, based on new monitoring priorities. The results observed also 

suggest that system-based information on an interface is generally not a 

priority for drivers in automation, outside moments where a transition of 

control is required, with drivers preferring to direct their attention towards the 

outside road environment. The implications of these findings are an 

important consideration for road safety, if drivers become complacent and 

over trust system information (Miyajima et al., 2015), especially during silent 

automation failures, where a Take-over-Request by the automation is absent 

(Louw et al., 2019). 
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3.  

Using Markov Chains to Understand Drivers’ Gaze 

Transitions During Lane-Changes in Manual Vs. 

Automated Driving 

 

Abstract 

This paper reports the results of a driving simulator study, which analyzed 

differences in drivers’ raw gaze transition patterns during different stages of 

a lane-change maneuver, conducted during manual, partially and 

conditionally automated driving. To understand whether the different levels 

of driving affected behaviour, and particularly how visual attention was 

distributed during a lane-change maneuver, a Markovian chains approach 

was used to compare gaze transitions between the different information 

sources available in the surrounding road and cockpit environment, for each 

of the three drives. The results indicate that during partial automation drivers 

initiated fewer safety-related inspections – such as to the wing mirrors - 

throughout the whole maneuver, possibly because they were focusing on 

managing the transition of control from automation, in order to change lane. 

Drivers in this condition also had a higher probability of checking the 

system’s HMI, to verify the automation’s status. In contrast, during 

conditional automation, the lack of a need for vehicle control by the driver 

resulted in more gaze transitions between information sources, and in a 

much more dispersed pattern, with less focus towards the road center. 

Finally, drivers generally only deviated their gaze towards information related 

to aspects of vehicle control they were responsible for, which we conclude 

could make them susceptible to missing hazards during both routine and 

safety-critical take-overs. 

 

3.1 Introduction 

It is generally agreed that the lack of a need for manual control of the 

vehicle, as imposed for instance by highly automated vehicles (AVs), 

removes the driver from the decision-making and control loops (Louw & 

Merat, 2017), requiring them to scan the environment and acquire 
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appropriate situation awareness (Endsley, 1995) when they are required to 

reengage with the driving task (Merat, et al., 2018). In complex 

environments, and when drivers are not continually monitoring the road, but 

are required to resume manual control, this rebuilding of situation awareness 

is normally required within a short time window (Louw & Merat, 2017). In 

addition, acquiring the right information at the right time requires driver 

attention to various parts of the road environment, and the Human Machine 

Interface (HMI), which should be providing drivers with the correct 

information, regarding automation status and, possibly, likely actions from 

the vehicle. In most circumstances, this information is provided to drivers at 

the same time, but it is not clear how drivers divide their attention between 

each of these sources, and how this is affected by the level of automation, or 

type of maneuver required. 

When considering a lane-change maneuver, for example, to overtake a lead 

vehicle, drivers are required to acquire a large volume of specific 

information, before deciding how to act (Gipps, 1986). According to Chovan 

(1994), most of the accidents related to lane-changing scenarios could be 

avoided if drivers had performed the correct safety inspection procedures. 

Fitch et al., (2009) complement that argument, when they identified that 

drivers who do not inspect the rear-view mirrors, and have long glances 

away from the road center have a higher probability of being involved in a 

crash during lane-changing tasks. Previous work on manual lane-changing 

behaviour has outlined the most common visual safety inspection patterns 

during the different stages that lead to a lane-change maneuver (Tijerina, 

Garrott, Stoltzfus & Parmer, 2005; Fitch et al., 2009; Salvucci, Liu & Boer, 

2001). For example, Tijerina et al. (2005), have shown that prior to the 

execution of the maneuver, drivers generally shift their eyesight to the wing 

mirrors, but always shift visual attention back to the center of the road, 

immediately after this. When the driver initiates the maneuver, Salvucci, Liu 

& Boer (2001) have shown that drivers’ gaze transitions generally shift 

between the obstacle to be overtaken, and the destination lane. However, 

currently, there is a limited understanding of the drivers’ distribution of eye 

movements during lane-changes for different levels of automated driving. 

This paper provides further analysis of data from a previous study which 

considered drivers' gaze behaviour during automated lane-change 

maneuvers (Gonçalves, Louw, Madigan, Quaresma & Merat, 2020), 

conducted as part of the EU-funded AdaptIVe project. Here, we found that 

the drivers engaged with different levels of vehicle automation deviate their 
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eyesight away from the road center at similar times, as measured by Percent 

Road Center (PRC, see Victor et al., 2005). However, the location of drivers’ 

visual attention was found to vary, based on the level of automation. Gaze 

was more spread vertically for situations where a transition of control was 

required (during partial automation), showing that drivers looked to the HMI 

placed on the dashboard. However, gaze patterns were more horizontally 

spread when there was no need for resumption of manual control, during 

conditional automation, where drivers seemed to check the maneuver 

execution managed by the automated lane-change. To our knowledge, this, 

and other research in the lane-change context (e.g. Miyajima at al., 2015), 

have only analyzed mean gaze fixations to different areas of interest, and 

drivers’ average horizontal and vertical gaze dispersion. However, we argue 

that there is value in understanding how, and when, drivers shift their 

attention across the different information sources, to understand what 

information is used during the decision-making process required for a lane-

change maneuver (Mourant & Rockwell, 1971; Underwood, Chapman, 

Brockelhurst, Underwood & Crundall 2003). 

Therefore, utilizing a Markovian chains approach (Mukherjea, 1983) this 

study investigated how drivers distribute their attention across different parts 

of the road environment and vehicle, during a lane-change maneuver, and 

whether this behavior is different for partial, versus conditional, automation. 

This technique has been used in the past to study drivers' gaze behaviour in 

different situations, to understand drivers’ intentions during a lane-change, 

and model their scanning strategies (Underwood et al., 2003; Salvucci, 

Mandalia, Kuge & Yamamura, 2007). It can be argued that, as vehicles 

become more automated, this knowledge will help design more informative 

in-vehicle interfaces. Based on the objectives purposed above, the following 

research question was addressed: what are the differences in drivers' visual 

scanning strategies during the stages that constitute a lane change 

maneuver during different levels of vehicle automation, and how is this 

different to when in manual control? 

3.2 Methods 

Twenty-nine fully-licensed UK drivers (15 male) participated in this study. All 

participants had at least two years' driving experience (M = 13.62, SD = 

9.62) and were aged between 21 and 60 years (M = 34.21, SD = 8.94). All 

participants were recruited through the UoLDS participant database, and 

received £20 for partaking. The experiment was conducted in the University 
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of Leeds Driving Simulator (UoLDS), which is a high-fidelity, motion-based 

driving simulator, with a 300o projection dome, containing a fully equipped 

Jaguar S-Type cabin is installed, with fully operational controls. Participants’ 

eye movements were recorded using a v4.5 Seeing Machines FaceLab eye-

tracker, recording at 60Hz. 

A within-participant, 3 (Drive: manual, partial automation2, conditional 

automation) x12 (lane-change maneuver number) repeated-measures 

design was used, with all participants completing the three drives (presented 

in a counter-balanced order). Following a short practice drive, participants 

completed three experimental drives. For the two automation drives, 

participants were instructed to maintain a speed of 70 mph (national speed 

limit) and to stay in the center of the middle lane, whenever possible. In each 

of the three drives, participants experienced a total of 12 overtaking events 

(Figure 3.1). The overtaking events were initiated by a slower vehicle (50 

mph) entering the middle lane from the left lane (grey vehicle inFigure 3.1 ), 

blocking the path of the ego-vehicle. Participants were instructed to overtake 

these vehicles and to return to the middle lane once they had passed this 

vehicle. This scenario was previously used in other studies from the same 

research group (Madigan et al., 2018, Goncalves et al., 2020). The 

overtaking task was chosen for assessing drivers’ lane-change behavior, to 

be consistent with previous studies on the same topic (Tijerina et al., 2005). 

 

Figure 3.1 Representation of the scenario, showing the over-taking 

maneuver (TW= Time Window) 

 

 

2  By the time the data for this paper was collected (2017), the definition of 

SAE level 2 automation was different than what we have today (SAE, 
2021). During the writing process, we opted to maintain consistent 
nomenclature to the one used in the experiment, to match with other 
publications using the same data (see Madigan et al., 2018). 
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In the manual drive condition (MAN), drivers were in full control of the 

vehicle at all times. In the Partially Automated Drive (PAD), when engaged, 

the automated driving system maintained lateral and longitudinal vehicle 

control. However, to perform the lane-change maneuver, drivers were 

required to disengage the automation and perform the lane-change, by 

pressing a disengagement button or moving the steering wheel. They were 

then required to return to the middle lane and re-engage the automation as 

soon as it was available. The HMI displayed the system's status and was 

placed on the dashboard. In the Conditionally Automated Drive (CAD), the 

automation was capable of both lateral and longitudinal control of the 

vehicle, and performed the lane-change maneuvers, with no need for the 

driver to resume manual control. However, to initiate the lane-change 

maneuver, drivers had to move the indicator lever. The HMI showed the 

system status, and an indication that a lane-change was being performed by 

the system. The definitions of the levels of automation used here are the 

same to the ones adopted in our previous studies (Madigan et al., 2018; 

Gonçalves et al., 2021). 

For the analysis, the overtaking maneuver was split into three time windows 

(TW; see Figure 3.1), guided by the work conducted by Tijerina et al. (2015) 

and Gipps (1986). TW1 began from when the lead vehicle entered the 

middle lane, until the ego-vehicle exited the middle lane. In this study, we 

define that a vehicle enters a lane when both of its front wheels cross the 

division between lanes. TW2 began when the ego-vehicle exited the middle 

lane, until the point it returned to the middle lane. TW3 began when the ego 

vehicle returned to the middle lane until 10 s after this maneuver. The 

dependent variable used for the analysis of this study was the transitions of 

drivers' gaze points across five AoIs (Areas of Interest). The AoIs used here 

were based on Carsten et al. (2012, see Figure 3.2), which were anchored 

around the center of the road (6 degree circular area centered around the 

mode of gaze fixations during manual driving). The other four AoIs were 

equally divided horizontally and vertically. These comprised of the right (the 

right wing-mirror); top (or rear-view mirror); left (shoulder check or left-wing 

mirror), and bottom (instrument cluster and system's HMI). A gaze transition 

was defined as the movement of drivers’ eye gaze (X, Y position) from one 

AoI to another. Gaze-based transitions were used instead of fixation-based 

transitions, because short glances to the mirrors, for example, are often not 

detected by fixations. For the data analysis, this study opted to follow a 

similar approach to Underwood et al. (2003), as it allowed a direct 

comparison between test conditions. In this case, we used the data from the 
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baseline (MAN) drive as the ground truth, and investigated how gaze 

transitions for the other two conditions (PAD & CAD) differed from it. 

The Markovian chains method (Mukherjea, 1983) treats data from the gaze 

transitions in each driving condition, and TW, using a binomial model, in a 

way that every gaze transition from A to B had one chance N to happen, and 

estimated based on the observed sample. N was calculated by the division 

of the number of gaze transitions from A to B, by the total number of 

transitions that started in A. The N values were used as a parameter for 

statistical tests to identify where/ if specific gaze transition (A, B) could be 

considered more or less probable to happen in each automation condition 

and TW, when compared to the manual drive. As the data was not normally 

distributed, Wilcoxon’s tests were applied to measure the differences in the 

paired-samples of possible transitions. This paper will only report the ones 

with significant differences. 

3.3 Results and discussion 

Figure 3.2 and Table 3-1 show the results of the Wilcoxon tests, which are 

divided by levels of automation and TWs. Black arrows indicate that there 

were significantly more transitions from one AoI to another, compared to 

what was observed during MAN, while gray dashed arrows indicate that, in 

both PAD or CAD, there were significantly fewer transitions compared to 

MAN. 

Figure 3.2 shows that PAD had a significantly higher gaze transition activity 

from bottom to left, and from left to bottom during TW1. A higher frequency 

of drivers' glances towards the bottom was also observed from the center 

and from the left during TW3. This pattern is in line with the change in 

drivers’ role during the transition of control from automation to manual (TW1) 

and vice versa (TW3). For example, this higher frequency of gaze towards 

the bottom can be explained by drivers’ need to look at the HMI, in order to 

check the system status information (as suggested by Louw et al., 2017a, b). 

These results, therefore, support the hypothesis presented in Gonçalves et 

al. (2020), which advocates in favor of the importance of system status 

information on the HMI during transitions of control. 
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Figure 3.2 Representation of the differences in gaze transition 
frequency between AoIs for PAD and CAD compared to MAN 
(dotted= sig. lower than MAN; solid= sig. higher than MAN) 

Table 3-1 Results of the Wilcoxon’s tests on the frequency of gaze 

transitions between Areas of Interest 

 

During TW1, drivers in PAD had a significantly lower frequency of moving 

their eyes towards the road center (from the bottom and left) when 

compared to the manual drive. A lower frequency of gaze transitions towards 

the right from the center and left were also observed here, which suggests 

that drivers performed fewer glances to the mirrors to see the vehicle on the 

offside lane (left) and to the road center, to check the distance from the 

leading obstacle. During TW 2, there was a lower frequency of gaze 

transitions from the center to the left and from the right to the bottom. 

Overall, in this time window, drivers’ visual attention was less dispersed than 

during the manual drive, probably because they were checking their 

speedometer (bottom) and the lead vehicle (left) less often. Finally, in TW 3, 

drivers in the PAD condition performed fewer mirror/shoulder checks coming 

from the center and bottom than the ones in MAN. According to the 

literature, (Tijerina et al., 2005; Salvucci, Liu & Boer, 2001; Fitch et al., 

2009), these are common safety-related glance checks during the lane-



- 78 - 

change maneuver. This drop in such glances may be because of the 

increased workload of the driver, imposed by the transition of control, which 

is in line with studies reported by Crundall & Underwood (1998) and Louw et 

al. (2020), who suggest that drivers have reduced scanning capabilities 

under high workload conditions. 

It is evident that drivers presented a more scattered distribution of gaze 

transitions during CAD compared to MAN. During TW1, a lower frequency of 

gaze transitions towards the center were observed, when compared to the 

manual drive. The same reduction of gaze towards the center was identified 

in TW2 (from left and bottom) and TW3 (from left, bottom and right). Analysis 

of this conditions also showed a higher frequency of gaze transitions not 

passing through the road center during TW2 (from top to left, and from left to 

right) and TW3 (from top to left, from left to top, from right to left, from right to 

bottom). It appears that the lack of a need for vehicle control during the task 

reduces the probability for drivers to gaze back to the road center, after 

attending to other AoIs. These results are in line with others who have 

shown that during automation drivers have a more dispersed gaze, as the 

manual control of the vehicle is not required (Miyajima et al., 2015; Louw & 

Merat, 2017). 

Since drivers in CAD were not required to monitor the vehicle’s speed, the 

gap for a lanechange, system status, or the vehicle’s position during TW1, a 

lower frequency of gaze transitions towards the right from the center and 

towards the bottom (from the center and from the right) were observed. 

Since drivers still didn’t need to monitor their speed in TW2, results showed 

a lower frequency of gaze to the speedometer (bottom) from the center, and 

from the right in this TW. Fewer glances towards the destination lane from 

the center were also observed here. As the drivers were not responsible for 

controlling most of the activities related to the task, it is believed that they 

had no real motivation to look for information as much as they would in a 

manual drive. The results above support our previous assumption that 

drivers tend not to monitor what they are not directly in control of (Gonçalves 

et al., 2020; Louw & Merat, 2017). 

3.4 Conclusion 

The aim of this study was to understand how drivers disperse their visual 

attention, during manual and automated overtaking events by using a 

Markovian Chains approach. Our results indicate that during partial 
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automation, whenever a transition of control was required, drivers had a 

lower probability of performing safety-related glances, such as shifting their 

gaze between the side mirrors and the road center, possibly because they 

needed to verify the status of the system on the HMI. It has been argued that 

the reduction of such safety-related glances may reduce hazard detection 

ability (Fitch et al., 2009; Chovan, 1994), therefore increasing the likelihood 

of crashes. 

The results of this study also support our previous findings (Gonçalves et al., 

2020), that by removing physical control and decision-making responsibility 

from drivers, automation reduces their propensity to scan the environment 

and look for information that might be relevant for task execution. Therefore, 

removal of manual vehicle control may cause drivers to be more reliant on 

good system performance and suitable HMI, which, if absent, makes them 

less capable to respond to automation failures (Prasuraman & Riley, 1997; 

Miyajima et al., 2015). This induced reliance on timely and suitable 

information ultimately reinforces the fact that badly designed automated 

systems and related interfaces may bring with them additional and 

unforeseen risks to the road environment, reinforcing the ironies of 

automation (Bainbridge, 1981). As automation reduces drivers’ motivation to 

scan the road and vehicle environment, this study highlights the need for 

future studies which identify how drivers’ attention can be guided to the 

correct location and information, at different stages of the transition process. 
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4.  

The Effect of Driver Engagement and Presence of 

Obstacles on Drivers' Gaze Behaviour Patterns During 

Non-Critical Transitions of Control From Vehicle 

Automation 

Abstract 

This driving simulator study aimed to evaluate the effect of drivers' level of 

engagement with the driving task and the presence of a lead vehicle on their 

gaze behaviour during non-critical transitions of control from automation. 

Drivers' attention during Level 3 automation was controlled via engagement in 

a visual-manual non-driving related task (NDRT). Results showed a significant 

impact on drivers' visual attention, with those engaged in the NDRT having a 

more dispersed gaze pattern. Overall, the presence of a lead vehicle did not 

influence drivers' gaze behaviour during the transition. However, drivers 

engaged in the NDRT were more sensitive to the presence of the lead vehicle 

as they resumed control, using the information on the instrument cluster to 

establish their speed and headway. This study shows the implications of 

engagement in NDRTs and highlights the importance of providing the correct 

automation-based information to drivers, as they resume control from 

automation. 

4.1 Introduction 

In the field of Human Factors for autonomous vehicles, a large body of 

literature states that vehicle automation interrupts drivers' visuomotor 

coordination with the driving task (Mole et al., 2019) and removes them from 

both the decision-making and control loops (Merat et al., 2019). Empirical 

studies suggest that this has a detrimental impact on drivers' abilities to 

safely resume control of the driving task (e.g. Louw & Merat, 2017; Dambock 

et al., 2013; Blommer et al., 2017), for conditional automation (Level 3, SAE, 

2018), where the driver is allowed to have their visual attention entirely away 

from the driving task (engaging in non-driving related tasks – NDRTs) but is 

still required to be ready to resume control, whenever a system limitation is 

reached. 

In order to safely resume control from vehicle automation, drivers first need 

to acquire sufficient levels of situation awareness (see Endsley, 1995 for a 

complete definition of the term), which has been presumably lost, as they 

relinquished control from the driving task. To achieve this goal, the drivers 
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must follow a visual scanning procedure, and quickly sample information 

from both the road environment and automation in a process called 

described as "situation awareness recovery" (SAR, Gartenberg, 2014). This 

process is based on the Memory for Goals model (Altman & Trafton, 2002), 

which correlates situation awareness with the drivers' current stored 

information in their short-term memory, regarding the situation in hand. In 

this model, the pattern and allocation of drivers' visual attention (in terms of 

eye movements) follows a goal-based, top-down structure (see Carrasco, 

2011 for a detailed definition of the term). In other words, after identifying the 

goals for the task in hand, drivers will shift their gaze towards the location 

where they believe they will find the information they are missing in their 

internal representation of the situation. This direction of gaze is determined 

by the driver's personal experience, and their remaining stored memory 

about the event, which includes their moment-to-moment control of the 

driving task, before the activation of automation. 

Even though SAR is considered to follow a top-down structure, a systematic 

literature review by Borji & Itti (2013) suggests that any gaze behaviour 

model is also prone to noise from a bottom-up structure (attention saliency). 

In the context of a transition of control from vehicle automation, this can 

include any potential environmental, or vehicle-based, element that is 

contextually relevant (e.g., an approaching lead vehicle, imposing a potential 

collision, or an auditory/visual collision warning). Many studies have reported 

that drivers' gaze behaviour during transitions of control is linked to the level 

of automation (Carsten et al., 2012), which can have safety-critical 

implications. For example, Zeeb et al. (2015)  reported that drivers who 

made longer glances away from the road centre on approach to a safety-

critical transition, had longer takeover times, resulting in increased crash 

propensity. Similarly, Louw & Merat (2017), Louw et al. (2016) and Louw et 

al. (2018) found that the more drivers were taken "out of the loop", by 

reducing the amount of visual information available to them in a simulated 

driving scene, the more dispersed their eye gaze during automation and the 

transition of control process. However, these differences in gaze behaviour 

were found to be quickly resolved within two seconds of a takeover request, 

with most drivers focusing on the road ahead, when the visual scene re-

appeared. Here, the visual looming cue of an expanding lead vehicle was 

found to be a good predictor of drivers' takeover time. These results suggest, 

therefore, that, eye gaze is a useful measure for understanding how bottom-

up stimuli can influence top-down processing during for safety-critical 

transitions of control in automation. 
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However, to date, few studies have considered how gaze is dispersed in 

more non-critical takeover scenarios, for example, in the absence of a lead 

vehicle, and what information from the environment and vehicle are used by 

drivers in these conditions. Using Percent Road Centre (Victor, 2005) as a 

metric for gaze dispersion/concentration results from manual driving suggest 

that drivers predominately look at the road centre area, when not engaged in 

visual NDRTs with gaze also interspersing between a lead vehicle and the 

road ahead, during car-following tasks (Kountouriotis & Merat, 2016). 

Studies also suggest "look ahead fixations" in driving guide our locomotion in 

the environment during manual control. However, as the link between 

vehicle steering control and eye gaze is broken by automation (Mole et al., 

2019), it is important to understand where drivers look before resuming 

control of the vehicle, and how this is influenced by top-down versus bottom-

up information processing, including how drivers' attention is divided 

between salient stimuli, such as lead vehicles and in-vehicle HMI. Based on 

the arguments presented above, we defined the following research 

questions: 

1. How does the transfer of control from Level 2 and L3 automation 

affect drivers' visual attention before a non-safety-critical event? 

2. Do drivers' gaze patterns change, based on the presence of a lead 

vehicle during the transition of control? 

To answer those research questions, we conducted a car-following study as 

part of the L3Pilot consortium, in partnership with Toyota Motors Europe. In 

this experiment, drivers were assigned to one of two groups: Level 2 and 

Level 3 and performed several transitions of control. In line with the SAE 

guidelines (SAE, 2018), drivers in Level 2 were asked to monitor the road at 

all times (hands off wheel), whereas those in Level 3 were asked to engage 

in a secondary non-driving related task (NDRT) while the automation was 

on. Half of the transitions were performed with a lead vehicle, while the other 

half were performed on a free lane. 

4.2 Material and methods 

4.2.1 Participants 

Thirty-two participants were recruited via our driving simulator database. The 

recruitment process followed approval from the University of Leeds 

Research Ethics Committee (Reference Number: LTTRAN - 054). Due to 

poor gaze capture, data from four participants had to be removed from the 
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analysis, resulting in a total sample size of 28 participants (9 female, 19 

male). All participants were UK licensed drivers with normal or corrected-to-

normal vision. Their average age was 38 (SD = 14.34), while their average 

annual mileage was 10,209 KM (SD = 7,775), and no previous experience 

with the driving simulator or any kind of L2/3 automation. The experiment 

lasted about 2 hours, and participants received £25 for taking part in the 

study. 

 

4.2.2 Materials 

The experiment was conducted in the University of Leeds Driving Simulator 

(UoLDS): a 6-degrees of freedom, high fidelity driving simulator. The 

simulator includes a 4m-projection dome with a 300° projection angle. Inside 

the dome, a fully functional Jaguar S-Type vehicle cabin, with original 

controls, is installed. Drivers' gaze was captured by a Seeing Machines Face 

Lab model eye tracking device, capturing data at 60 Hz. A 400X600px VGA 

touchscreen Lilliput display was installed near the gear shift, for displaying 

the NDRT. 

 

4.2.3 Driving scenario 

The experiment scenario was composed of an urban car-following task, 

where drivers needed to drive at around 40 mph, along a 2-way urban road, 

and follow a lead vehicle (driving at a constant speed of 38mph). When the 

lead vehicle was presented, automated car-following was achieved at two 

different time headways (0.5 or 1.5s). Participants used a dash-based HMI 

to know when automation was available. Figure 4.1 shows the 

representation of the urban environment used in the experiment scenario, as 

well as the information present on the vehicle's instrument cluster. 
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Figure 4.1 Example of the experimental scenario and instrument 
cluster with the automation status symbol (Left: automation not 
engaged, Right: automation engaged) and the vehicle speed (mph) 

 

During automated car-following, there were four events when the automated 

system reached the end of its operational design domain, due to missing 

lane markings,  making the system unbale to keep the vehicle’s lateral 

control, triggering an auditory takeover request (TOR). The takeover request 

was composed by an auditory warning, requesting the drivers to takeover, 

followed by a series of continuous “beeps”, every second until the 

automation was disengaged. Here, drivers had 10 s to resume control of the 

driving task, and continue a manual car-following task, until the automated 

system was available. A failure to take over control of the vehicle did not 

result in a crash. In case the drivers were unable to disengage the 

automation within the given time budget, the system would perform a 

minimum risk manoeuvre, decelerating the vehicle and disengaging the 

automation. 

4.2.4 Experimental design 

The experiment followed a 2x2x2 mixed design, with the level of automation 

(L2, L3) and time headway (05, 1.5s) as a between-participant factor, and 

takeover type (with lead, without lead) as a within-participant factor. All 

factors were presented in a fully counterbalanced order. Since level 3 

automation (SAE, 2018) allows the driver to divert their attention away from 

the driving task and not monitor the system behaviour, participants in Level 3 

automation were asked to engage in the Arrows task (Jamson & Merat, 

2005; Louw et al., 2020) during the automated drives, simulating potential 

distractions with NDRTs. On the other hand, drivers in L2 were instructed to 

monitor the road whenever the automation was engaged. The arrows task is 

a visual search task where drivers needed to continuously locate and click in 

one arrow pointing upwards, among a set of arrows pointing to different 

directions. The task was displayed in a LED touchscreen display, located 

near the gear shifter (impeding the drivers to sample information from the 

outside environment), and drivers were instructed to play it whenever the 

automation as engaged.  

For the time headway conditions, half of the experimental runs were done 

with the vehicle automation following the vehicle in a distance of 0.5s time 

headway (THW), and the other half with 1.5s THW. For the purposes of this 

paper, the data for both time headway conditions were amalgamated, since 
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it did have any significant effect on drivers' gaze behaviour. The takeover 

type varied, based on the presence of a lead vehicle during the takeover 

events. Here, for two of the four takeovers, the lead vehicle entered a side 

road, at an intersection, moments before the TOR was issued. The other half 

of the takeover events did not include a lead vehicle. For those cases, right 

after the transition, another lead vehicle joined the lane from another 

intersection 20 m away from the fading lane markings. 

4.2.5 Data analysis process 

Eye-tracking treatment 

As eye-tracking data can be noisy and prone to errors, due to bad quality 

gaze capture, a series of filter and treatment procedures were performed 

before the data analysis. First, we defined a minimum gaze capture quality 

standard for our sample, based on the gaze confidence metric on the eye-

tracking software algorithm. All samples selected for this study had to have 

at least 75% of their overall data points (at a frequency of 60hz), scoring a 

confidence of 0.8 or higher. For the L3 samples, as their gaze was not 

trackable while the drivers were engaging with the NDRT, head position 

metrics were used to estimate gaze location whnever the participants’ eyes 

were not visible for the eye-tracking device. Fixations were defined as 

drivers' gaze remaining within a 1° circular area for at least 150 ms. These 

threshold parameters are consistent with previous literature on algorithms for 

dispersion-based fixation detection (see Salvucci & Goldberg, 2000; 

Nyström & Holmqvist, 2010). 

The distribution of drivers' visual attention was assessed by calculating the 

intersection of gaze coordinates with five different areas of interest (AoIs) 

within the vehicle cab, and driving environment, and two non-AoI categories. 

These included, 1) Road centre, defined as a rectangular area, covering 

both lane markings and the location of any lead vehicle during car-following; 

2) On road, defined as the windshield area not including the road centre AoI; 

3) Instrument cluster, defined as the area containing both the cluster of 

information on the vehicle's centre stack (HMI) and the top half of the 

vehicle's steering wheel; 4) Rear and side mirrors, the combination of areas 

for both side mirrors, and the rear-view mirror; 5) Vehicle cabin, defined as 

the area containing all gaze inside the vehicle's cabin, not covered by the 

instrument cluster or rear/side mirrors; 6) Eyes closed; and 7) Other/Eyes 

not tracked, used whenever the eye-tracking system lost drivers' gaze 

tracking, and used head estimation to define the gaze location - in the L3 

condition, we took this area to include the Arrows task).  
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The data was processed in MATLAB (version R2016a (Mathworks, 2017)) 

and analysed using SPSS v21 (IBM Corp., 2012)). A Kolmogorov-Smirnov 

test was used to check for normality.  Where required, positive-skewed data 

was transformed using logarithmic transformations. Otherwise, non-

parametric tests were applied. All figures were generated with the original 

untransformed data, and the statistics were based on transformed data (if 

applicable). An α-value of 0.05 was used as the criterion for statistical 

significance, and partial eta-squared was computed as an effect size 

statistic.  Bonferroni α corrections were applied for the p values in the time 

time series analysis, to mitigate potential type 1 errors caused by multiple 

comparisons within the data. 

Research variables 

We divided the analysis of drivers' gaze for this study into two stages: 1) a  

time series analysis on drivers' raw gaze distribution across AoIs, and 2) a 

condensed time window analysis, on drivers' gaze fixation data, through the 

whole duration of the transition of control process. 

For the time series analysis, as takeover times varied across drivers and 

events, using relative values for the gaze behaviour during the transition of 

control process would over/underestimate its values, because the transition 

process varied across participants. To account for this issue, we focused the 

analysis on a fixed range of time, using the moment of the transition as the 

reference time point across all drivers. The range selected was 10 seconds 

before, and 10 s after the transition itself, as the maximum takeover time 

was 10s. For exploration purposes, the first metric observed was the frame-

by-frame distribution of drivers' gaze location to the different AoIs, over time, 

expressed as a percentage. To understand how drivers dispersed their 

attention away from the road centre during the time course of the transition, 

this 20 s time window was divided into 60 intervals of 0.33 s (20 frames). 

Afterwards, the differences in the proportion of drivers' raw gaze falling on 

the road centre AoI during each minor interval was calculated using 

individually paired t-tests. Considering the size of the intervals used for the 

time series analysis, different time window sizes were tested and the 0.33s 

was selected since it yielded the most reliable results. The choice for such 

short intervals was made to align with the research objectives, since longer 

intervals would not be able to pick up sudden changes on drivers’ attention, 

and shorter intervals would potentially rise the type 1 error rate, due to the 

number of repetitive statistical tests performed. 
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For the condensed time window analysis, all the metrics used were 

calculated based on the beginning of the TOR (when the auditory message 

was presented) until the drivers disengaged automation and resumed 

manual control of the vehicle. The primary metrics used for this data analysis 

were drivers' average time taken to make a first fixation on the road centre 

area, and the instrument cluster (in seconds), respectively, and the 

proportion/probability of drivers' fixation transitions between the defined 

AoIs. These variables were selected to show potential differences in drivers' 

initial attentional focus during the transition process, and how this focus is 

distributed to acquire additional information from the different sources. 

The fixation transition probability analysis was conducted using a Markov 

chain structure [24], which treated the probability for each gaze transition 

between two AoIs (a,b) to happen as a multi-dependent binomial distribution. 

In this structure, the only predictor for a given transition towards the location 

b to happen is the origin of the gaze transition (a). This process generated a 

table with different values of p (a|b) for each participant, and the effects of 

the experimental conditions on those probabilities were compared using 

Kruskal-Wallis tests. 

4.3 Results 

4.3.1 Raw gaze distribution 

Figure 4.2 shows the allocation of drivers' eye gaze to the different AoIs, 

during the transition of control. Results show a clear difference between the 

two groups, with drivers in the L3 group focusing on the Arrows task, which 

explains the large degree of "eyes not tracked" in the Figure, but also 

illustrates how visual attention shifts slowly to the road centre and centre 

console as a TOR request is provided. For the L2 group, in the moments 

before the transition of control, drivers' gaze was primarily concentrated 

around the road centre area (dark blue), with a secondary focus on the 

instrument cluster area (orange). This Figure illustrates the areas containing 

the most valuable information for drivers during a transition of control, as 

they include the road environment, the vehicle's speed, and the automation 

system's status. Morando et al. (2020) also observed a similar pattern in an 

on-road study of drivers using L2 (SAE, 2018) Tesla vehicles. 
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Figure 4.2 Graphical representation of the drivers' distribution between 
the AoIs in the 10 s before, and 10 s after the transition of control 

The black line in the centre represents the takeover time (ToT), which 
was the anchor point for the data selection. 

To explore potential differences in how drivers attend to the potential 

hazards on the road, and the other information present on the environment, 

several t-tests were performed, to investigate the effects of the experimental 

conditions on drivers' concentration of gaze to the road centre, over time. As 

mentioned in the methodology section, the p values for the t-tests were 

Bonferroni corrected, to account for the multiple comparison error 

propagation. 
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Figure 4.3 Graphical representation of drivers' gaze concentration to 
the road centre throughout the transition of control 

The black line in the middle of the X-axis represents the time of the 
vehicle automation's disengagement. The shaded areas in the 
background of the plot represent which sections of the time course of 
the transition presented statistical differences between the groups. The 
boxes in red were used to highlight the significant interactions observed 
in the data that will be further discussed on the paper. 

As can be seen in Figure 4.3, during the majority of the time course of the 

transition process, participants' attention to the road centre seemed to be 

higher when resuming control without a lead vehicle in L2 (e.g., from -5 to -

3.66 s, and from -3.33 to -2s). The pattern is reversed in the last second 

before the transition of control, where participants in the lead vehicle 

condition tended to have significantly higher attention to the road centre 

(M=74.17%, SD=6.83%), when compared with the ones without lead (M= 

58.28%, SD=3.83%) [T(19)=7.87, p<0.01]. On the other hand, for the L3 

condition, when participants resumed control with a lead vehicle, they 

tended to have a higher percentage of gaze concentration to the centre of 

the road. What was unexpected, however, was that the proportion difference 

is also inverted for this level of automation, as the drivers get closer to the 

transition of control. For the last 0.66s of the transition of control process, the 

mean percentage of gazes to the road centre in the with-lead condition 

(M=62.83%, SD=3.59%) was significantly lower when compared to the 

without lead condition (M=71%, SD=6.85%) [T(19)=-6.67, p<0.01]. In 

addition, for the first second after the transition, the without-lead condition 

had significantly higher attendance to the road centre when compared with 
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the with-lead condition in both L2 [T(19)=-27.68, p<0.01] and L3 [T(19)=-

25.73, p<.01]. 

4.3.2 Gaze fixation analysis 

Figure 4.2 showed that drivers on L3 spent the initial stages of the transition 

process looking away from the road (potentially to the arrows task). To 

further explore the observed pattern and how drivers concentrate their gaze 

during the initial stages of the transition, two sets of Kruskal Wallis test were 

performed, measuring the effect of level of automation and takeover type on 

the time it took for drivers to make their first fixation on both the road centre 

and instrument cluster. The results for the time for the first fixation to road 

centre showed there was an effect of level of automation [H(1)=32.25, 

p<0.01], where participants in L3 showed a substantial delay on their first 

fixation to the road centre (M=2.19s, SD=0.97s) when compared to L2 (M = 

0.46s, SD=0.92s). There was no effect of takeover type [H(1)=0.1, p=0.75]. 

As for the instrument cluster, there was no effect of takeover type 

[H(1)=2.15, p=0.14], and a significant effect of level of automation 

[H(1)=11.34, p=0.01]. For this AoI (instrument cluster), the effect of the 

automation, however, is inverted, as participants in L3 were much quicker to 

make their first fixation to the cluster (M=1.96s, SD=1.13s) when compared 

to drivers in L2 (M=2.08s, SD=1.59s). 

Differences in drivers' shifts of attention were observed based on the 

conditional probability for a gaze transition between AoIs to happen, using a 

Markov Chain structure. shows the significant results for the Kruskal Wallis 

test, measuring the effect of the independent variables (level of automation 

and takeover type) on each of the possible transitions. The non-significant 

results are not reported, to improve the readability. 

The results reported below (Table 4-1) show that, drivers in L3 were more 

likely to make erratic transitions to AoIs without returning their gaze to the 

road centre (e.g., from the vehicle cabin to the instrument cluster). On the 

other hand, the effect of takeover type, reducing the probability for drivers to 

shift their gaze from the road centre to the vehicle cabin, suggests that the 

presence of a lead vehicle does retain drivers' attention to a potential threat, 

even in higher levels of automation, where the gaze is proven to be more 

disperse. 
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Table 4-1 Report of the significant differences in the Markov chain 
structure for the probability of fixation transitions between AoIs 
during the transition of control process 

Each line corresponds to a possible transition between two AoIs, where 
origin AoI represents the initial place the driver was looking, and 
destination AoI represents the location where they shifted their gaze to. 

 

4.4 Discussion and conclusion 

The goal of this study was to evaluate the effect of the degree of 

engagement with the driving task, and the presence of a lead vehicle, on eye 

gaze patterns, during a non-safety-critical transition of control from 

automation. A driving simulator experiment was conducted with two groups 

of drivers, engaged in Level 2 or Level 3 automation, and eye movement 

data were used to see how visual attention is distributed between the vehicle 

and the road environment during different stages of the transition of control. 

Drivers in Level 2 were required to monitor the road ahead at all times, 

whereas those in Level 3 were asked to engage in an NDRT.  

Results showed that drivers who were less engaged with the driving task (L3 

automation) presented a more scattered gaze pattern, with delayed 

attendance to the road centre, in line with previous literature in the field 

(Zeeb et al., 2015/2016]), which reported that drivers tend to take time to 

shift their attention from a NDRT back to the road environment, significantly 

affecting their information acquisition pattern, as they have a lower time 

budget to react to the scenario.  The more scattered gaze pattern is in line 

with findings reported by Gartenberg (2014) which suggests that drivers with 

less situation awareness (L3) are prone to quicker fixations to several 

information sources, with a high probability of re-fixation, which explains the 

observed results on the Markov Chain analysis. On the other hand, the 

presence of the lead vehicle for the transitions of control for the L3 drivers 

reduced their probability of gaze shifts to the vehicle’s cabin, suggesting 

that,  even for a condition with supposedly more erratic gaze pattern, the 
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presence of a vehicle as a potential hazard still raises their concern and 

attention to relevant information for the takeover process. 

 A time-series analysis of drivers' visual allocation showed that, in the 

presence of the lead vehicle, drivers in the L3 condition increased their 

visual attendance to the instrument cluster, sacrificing glances to the road 

centre, immediately before the transition of control. This finding is in contrast 

to the behaviour of drivers in the L2 group, and results from manual driving 

studies [17], both of which show that drivers focus on the road centre area 

and lead vehicle during car-following scenarios. Our results suggest that the 

lack of situation awareness caused by an NDRT in L3 driving may impair 

drivers' ability to quickly detect and respond to potential hazards after a 

transition of control, prompting them to seek information from the vehicle 

HMI for further assistance and Situation Awareness Recovery. Another 

possible explanation, especially for the L3 scenario, is that drivers may have 

quickly realised that the vehicle in front was not an imminent threat, as their 

vehicle was not accelerating towards the obstacle but rather keeping a 

constant headway. This possible explanation is in line with previous findings 

from Louw et al. (2018), which highlights the effect of visual  looming of the 

scenario as an important salience cue to draw drivers’ attention and trigger 

their takeover response. 

These findings highlight the relevance of both top-down and bottom-up 

processing during transition from Level 3 automation and stress the 

importance of providing the correct information on such HMI, at the right 

time. Future research should consider a better understanding of how the 

placement of such features in automated vehicles will assist drivers when 

they are required to resume control and respond to potential hazards. One 

possible methodological limitation that may have influenced these results is 

that it was a driving simulator experiment that diminishes drivers' sense of 

danger in risky situations and has limited motion cues for the vehicle's speed 

compared to a real-world scenario. Also, the presence of a NDRT as a proxy 

for L3 driving automation condition may increase drivers’ mental workload, 

and potentially bias the results regarding their gaze behaviour patterns. To 

account for both limitations, more studies are necessary, considering test 

track or real-world studies on the way drivers divide their attention, whenever 

requested to takeover control. 
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5.  

The effect of information from dash-based human-

machine interfaces on drivers' gaze patterns and lane-

change manoeuvres after conditionally automated 

driving 

Abstract 

The goal of this paper was to measure the effect of Human-Machine Interface 

(HMI) information and guidance on drivers' gaze and takeover behaviour 

during transitions of control from automation. The motivation for this study 

came from a gap in the literature, where previous research reports improved 

performance of drivers’ takeover based on HMI information, without 

considering its effect on drivers’ visual attention distribution, and how drivers 

also use the information available in the environment to guide their response. 

This driving simulator study investigated drivers’ lane-changing behaviour 

after resumption of control from automation. Different levels of information 

were provided on a dash-based HMI, prior to each lane change, to investigate 

how drivers distribute their attention between the surrounding environment 

and the HMI. The difficulty of the lane change was also manipulated by 

controlling the position of approaching vehicles in drivers’ offside lane. Results 

indicated that drivers' decision-making time was sensitive to the presence of 

nearby vehicles in the offside lane, but not directly influenced by the 

information on the HMI. In terms of gaze behaviour, the closer the position of  

vehicles in the offside lane, the longer drivers looked in that direction. Drivers 

looked more at the HMI, and less towards the road centre, when the HMI 

presented information about automation status, and included an advisory 

message indicating it was safe to change lane. Machine learning techniques 

showed a strong relationship between drivers' gaze to the information 

presented on the HMI, and decision-making time (DMT). These results 

contribute to our understanding of HMI design for automated vehicles, by 

demonstrating the attentional costs of an overly-informative HMI, and  that 

drivers still rely on environmental information to perform a lane-change, even 

when the same information can be acquired by the HMI of the vehicle. 

5.1 Introduction 

Vehicle automation, which partially supplants the moment to moment 

physical control and monitoring of the driving task by humans, is an 

increasing feature in new vehicles. The implementation of such systems 
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could bring several benefits (Fagnant & Kockelman, 2015), including the 

extension of driving and personal mobility to impaired or older drivers 

(Young & Bunce, 2011), or reducing driver-workload, for example, by taking 

control of monotonous driving tasks (e.g. engaging adaptive cruise control 

systems in traffic jam and car-following scenarios, see Stanton & Young, 

1998).  

Despite its promised capabilities, current vehicle automation technology still 

has a limited Operational Design Domain (ODD), which, when exceeded, 

requires the human to take over control (NHTSA, 2016). However, there is 

growing evidence that removing drivers from the decision-making and 

physical control loops (Louw, Kountouriotis, Carsten, & Merat, 2015; Merat 

et al., 2019) may lead to a loss of situation awareness (see Endsley, 1995), 

and impaired perceptual-motor coordination (Wilkie & Wann, 2010), which 

are both required to safely resume control of the driving task after 

automation (Damböck et al., 2013; Mole et al., 2019).  

One example of a manoeuvre that could be coupled with a transition of 

control to manual driving is a lane change manoeuvre, which can be 

challenging, even during manual driving, due to the complexities associated 

with determining the correct time to change lane, especially in heavy traffic 

(Gipps, 1986). Previous literature presents an extensive list of theoretical 

and mechanistic models that consider a wide range of factors that influence 

a lane-change decision, and its subsequent outcomes (for more details, see 

a systematic literature review on this topic by Zheng, 2014; and the 

integrated Lane-Change decision modelling framework, developed by Ali et 

al., 2021). For instance, Arbis & Dixit (2019) developed a game-theoretical 

utility model for lane changes, and concluded that the probability of decision 

conflicts (i.e. increased decision uncertainty, as defined by Shaw, 1979) is 

directly affected by the characteristics of the traffic environment, such as the 

proximity of the upcoming vehicles in the adjacent lane. This argument 

suggests that the challenges imposed by the nature of a lane-change task 

may already stress drivers’ cognitive resources, and this process can be 

aggravated by automation, if combined with a transition of control.  

Results from previous empirical studies in automation support the idea that 

the introduction of a transition of control during a lane-change scenario can 

compromise drivers' ability to change lanes safely, and effectively. For 

example, Madigan et al. (2018) reported that, compared to manual driving, 

drivers in partial automation took longer to overtake a lead vehicle, 

whenever a transition of control was required, resulting in shorter minimum 
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headway distances to the lead vehicle. This delayed response was 

considered to be due to the need for drivers to understand both system 

behaviour and road conditions, after a transition of control, before overtaking 

the lead vehicle.  

A large body of literature has investigated how supportive information 

provided by a Human-Machine Interface (HMI) can support drivers during a 

lane-changing task. In the context of vehicle automation, a number of 

studies have shown that providing drivers with system-related information 

via the HMI can support their understanding of the system’s behaviour, 

promoting safer transitions of control (Saffarian et al., 2012; Gonçalves et 

al., 2017, Stockert et al., 2015; Banks & Stanton, 2016). In-vehicle HMI can 

be used to provide automation-related messages, as well as information 

about the road environment, minimising a driver’s need to scan their 

surroundings, to aid with situation awareness recovery, after a transition of 

control. Several studies (Richardson et al., 2018; Seeliger et al., 2014; 

Naujoks et al., 2017; Naujoks et al., 2014) have reported that drivers react 

faster, and more accurately, to takeover requests from automation, when 

they receive guidance from the vehicle HMI about the surrounding traffic 

conditions, prior to a takeover.  

When it comes to manual lane-change scenarios, Hofmann et al. (2010) 

report that providing drivers with information about the direction of travel, 

and the number of lanes to be crossed, in advance of a lane-changing 

manoeuvre, reduced reaction time to the lane change, accompanied by 

lower lateral accelerations. Using a linear mixed model on driving simulator 

data, Ali et al. (2020) demonstrated that supportive information from 

connected vehicles in the surrounding environment led to safer transitions, 

with higher time-to-collision and a smoother acceleration profile, compared 

to the non-assisted lane-change manoeuvres. These studies provide strong 

evidence that supportive information from HMI may significantly improve 

lane-change safety in manual driving. However, less is known about how 

additional information assists lane changes that are required after takeover 

from automation.  

The majority of the studies reported above base their conclusions either on 

analyses of drivers' subjective responses, in terms of acceptance/perceived 

usability of the system (Richardson et al., 2018; Körber, Prasch & Bengler, 

2018; Beller, Heesen & Vollrath, 2013), or vehicle-based metrics, such as 

reaction time, and time to collision (Seeliger et al., 2014; Naujoks et al., 

2017; Naujoks et al., 2014; Ali et al., 2021; Ali et al., 2020; Arbis & Dixit, 
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2019).  Regardless of the undeniable contribution of these studies, their 

approach fails to address how decision-making by drivers, in terms of the 

processing and acquisition of visual information, is affected by the 

introduction of additional guidance from an HMI, either with respect to 

automation status, or in terms of the behaviour of surrounding traffic. Ali et 

al. (2020) found that the use of information about the surrounding 

environment in the vehicle’s HMI significantly changes the way drivers deal 

with a lane-change task. Additionally, using a drift-diffusion model, 

Forstmann & Ratcliff (2016) demonstrated that the sequence in which 

humans sample visual information significantly affects the way they make  a 

decision, in terms of decision time, choice selection, and ratio of correct 

responses. However, it is still unclear how additional visual information from 

an HMI affects drivers’ information processing during a lane change 

manoeuvre which follows a transition of control from automation. 

Research shows a good correlation between the duration of eye gaze to a 

particular task, and the level of dedicated visual attention (Carrasco et al., 

2011; Posner, 1980). Studies have found that both covert attention and gaze 

are sensitive to context-specific stimuli, meaning that eye movements are 

generally drawn towards the visual elements of any stimulus demanding 

one’s attention, at a given moment (Borji & Itti, 2013). Longer gaze times 

towards a given element are, therefore, generally used as a proxy for human 

information processing. 

Using a simulated car-following study, Sullivan et al. (2012) demonstrated 

that, during moments of high uncertainty, drivers looked more frequently 

towards locations with valuable information about the task in hand, such as 

the speedometer. A meta-analytical literature review by Orquin & Loose 

(2013), demonstrated that eye movements have a co-causal relation with 

human decision-making, with humans fixating more on the information that 

supports the decision they are about to make. This assumption was further 

supported by the models reported in Krajbich et al. (2013), which were able 

to predict the decision-maker’s choice, and response time, based on the way 

they distributed their gaze between the different sources of visual 

information. Therefore, one can argue that, in order to understand how 

drivers process information when conducting a demanding task immediately 

after resuming control from automation (such as a lane change), it is 

important to understand where they direct their gaze at each stage of this 

process. 
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In a previous study (Gonçalves et al., 2020), we observed that, during an 

automated lane change, drivers presented the same general pattern of eye 

movements as those reported in studies involving a manual lane change 

(Tijerina et al., 2005; Salvucci, Liu & Boer, 2001). However, our results also 

showed a significant increase in drivers' vertical gaze dispersion during 

automated lane changing, with more glances towards the vehicle's HMI, 

which was placed in the dashboard area, and displayed the automation 

status (on/off). Our results also indicated that when the same information 

could be obtained by looking at the road, as compared to looking at the HMI 

, drivers tended to look more at the road environment, relying less on the 

HMI. As our previous studies did not systematically control the information 

given to drivers during the transition of control, it is not currently clear how 

drivers’ gaze is influenced by the information provided by the system’s HMI, 

in such lane-changing tasks. 

 

5.1.1 Current study 

The study reported in this paper was funded by the European project 

AdaptIVe (Grant Agreement No. 610428). Its main objective was to evaluate 

the impact of different types of information, provided by an automated 

vehicle’s HMI, on drivers' gaze behaviour, and their resumption of control in 

preparation for a lane-change manoeuvre, immediately after L3 automation 

(SAE, 2018). In particular, we investigated how HMI messages about system 

status, presence of traffic in the adjacent lane, and the presence of a guiding 

arrow advising drivers about whether it was safe to change lane, affected 

drivers' gaze behaviour and decision-making time during a lane change. The 

following research questions were investigated: 

1. How does the type of information presented on the HMI of an 

automated system affect drivers’ gaze behaviour before changing lane, 

following a request to take over from vehicle automation? 

2. How does the information provided on an HMI affect when drivers 

begin to change lane? 

3. Does the density of the surrounding traffic (e.g. presence of traffic in 

the adjacent lane) affect drivers’ reliance on the system HMI?  

Based on previous literature (Seeliger et al., 2014; Naujoks et al., 2017; 

Naujoks et al., 2014, Stockert et al., 2015), it was hypothesised that drivers 

would react faster in a given scenario, if information about the system status 

and surrounding traffic were available via the HMI during the transition. This 
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help from the HMI was expected to be more evident for more challenging 

decision-making scenarios (higher traffic density), since it was hypothesised 

that giving drivers more guidance would reduce their uncertainty and 

decision-making time (Ali et al., 2020). Based on our previous study 

(Gonçalves et al., 2020), we expected that drivers would have increased 

gaze towards the information on the HMI, to check the system status 

immediately after the transition of control (whenever present), but not 

necessarily rely as much on the information about the road environment (a 

guiding green arrow). The presence of vehicles in the adjacent lane was 

hypothesized to increase the frequency of drivers’ gaze to the side mirrors, 

and to the HMI, whenever information about the surrounding traffic was 

displayed by the system (Tijerina et al., 2005). 

5.2 Method 

5.2.1 Participants 

Thirty drivers (17 male, 13 female), aged between 21 and 60 years 

(M=35.53, SD = 11.51) were recruited via the participant database of the 

University of Leeds Driving Simulator (UoLDS), and an invitation shared 

using social media. Participants had normal, or corrected-to-normal, vision, 

and held a U.K. driving licence for at least two years (M=13.51, SD=11.17). 

Ethical approval was provided by the University of Leeds Ethics committee 

(Ethics no. LTTRAN-054), and participants received £25 for taking part in the 

study, which took around 2.5 hours to complete. 

 

5.2.2 Materials 

The experiment was conducted at the University of Leeds Driving Simulator 

(UoLDS). The simulator consists of a 4m projection dome with 300° 

projection angle and an 8 degree of freedom motion system. Inside the 

dome, a Jaguar S-Type cabin with fully operational controls is installed. The 

Seeing Machines FaceLab v4.5 eye-tracking device was used to record the 

participants' eye movements, with an update rate of 60Hz. Inside the 

simulator's vehicle cabin, a Liliput 7" VGA touchscreen with 800X480 

resolution, was installed near the gear shift, and used for a non-driving 

related, secondary task, described below. See Figure 1 for a representation 

of the experimental set-up. 



- 105 - 

 

Figure 5.1 Representation of the experimental set-up in the University 
of Leeds Driving Simulator 

In this picture, an anonymous experiment participant is driving in 
automation mode while interacting with the secondary task, presented 
on the VGA touchscreen. The cameras near the windshield are part of 
the eye-tracking system. 

 

5.2.3 Experimental design 

Each experimental drive contained six separate scenarios in a continuous 

drive. Each scenario consisted of an automated car-following task, where 

drivers needed to disengage the automation to perform a discretionary lane 

change (as defined by Ali et al., 2020), to overtake any slower lead vehicles. 

A 3X3 repeated measures design was used, with HMI design (No HMI, 

System HMI, Full HMI), and distance of vehicles on the offside lane during 

the lane-change manoeuvre (100m, 25m, 15m), as within-participant factors. 

Each participant completed three drives (one for each type of HMI), 

presented in a counterbalanced order. 
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Figure 5.2 Representation of the experimental scenario 

The schematic depicts one of the six overtaking events that occurred 
per run. Letters A-D represent the stages of the ego vehicle position 
and automation state. (A) automated system detects the lead vehicle, 
(B) automated system starts reducing its speed, to match with the lead 
vehicle, (C) drivers disengage the automation to perform a manual lane 
change (variable), and (D) drivers’ front tyres crossed the lane 
markings. 

 

5.2.4 Automated driving system 

The participant's vehicle was equipped with an automated driving system 

(SAE level 3; SAE, 2018), which kept the vehicle in the middle of the centre 

lane, and at a minimum headway of 2s from the lead vehicle. To activate 

automation, drivers pulled the right-hand stalk when the vehicle reached 70 

mph (speed limit) and was positioned in the centre of the middle lane. The 

automation could be deactivated by either braking/accelerating, turning the 

steering wheel more than 2° in either direction, or pulling the same stalk 

used to turn it on. The system was not able to change lanes by itself. 

Therefore, participants needed to disengage the automation, perform the 

manoeuvre manually, and then reengage the system. 

 

5.2.5 The distance of vehicles in the offside lane 

Each lane change was accompanied by a vehicle in the offside lane, which 

was driving in the same direction as the ego-vehicle (downstream direction), 

positioned at three different distances: 100m, 25m, and 15m away from the 

ego vehicle. Each drive contained two repetitions of these distances, 

presented in a randomised order (see Figure 5.2). Different combinations of 
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offside distance were tested in pilot studies, and the most suitable set of 

variables was selected, to suit the needs of this study. Varying the vehicle's 

distance in the offside lane was used to simulate higher traffic density, and 

manipulate the challenges associated with changing lanes. Previous studies 

have shown that a reduced gap between the ego vehicle and the vehicle in 

the offside lane increases the uncertainty associated with the lane-change 

task (as defined by Shaw, 1979), and increases task complexity, thus 

affecting decision-making time (Gipps, 1986; Ahmed et al., 1996; Arbis & 

Dixit, 2019). This set-up also allowed us to establish if the provision of 

guidance information by an HMI (that it was safe to change lane) affected 

drivers’ decisions, and whether this was the same for the three vehicle 

distances (as observed in Ali et al., 2020). 

 

5.2.6 HMI configurations 

To understand how drivers’ decision-making processes, and gaze 

behaviours, are affected by information about automation status, and the 

surrounding environment provided by the automation’s HMI, three 

configurations of HMI design were developed. The visual elements of the 

HMIs were designed by a project partner, CRF (Centro Ricerche Fiat, 

FIAT,2021). The No HMI Condition contained a blank central cluster, with 

no information on the system's HMI. There was just a short auditory "beep" 

which informed drivers when the system was turned on/off. A verbal 

message, played through the car's speakers, informed the driver when the 

automation was available. The System HMI Condition, outlined in Figure 

5.3, included four screens, which informed the driver that the system was on, 

off, ready and disengaged. 
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Figure 5.3 - Representation of the System HMI Condition (Designed in 
collaboration with CRF) 

(A) representation of the system in manual mode, with automation 
unavailable (grey steering wheel); (B) system in manual mode, with the 
automation available (blue steering wheel); (C) system in automation 
mode (green steering wheel), (D) message displayed after the driver 
resumes manual control. 

Finally, the Full HMI Condition contained the same information presented in 

Figure 5.3. However, when automation was engaged, additional information 

was presented to drivers about the surrounding traffic, including the lead 

vehicle's presence and the approaching vehicle in the adjacent lane (Figure 

5.4). Here, once the system perceived a vehicle ahead (6 s headway), a car 

symbol appeared on the HMI. When the ego vehicle started to brake to 

match the speed of the lead vehicle (at 2.8 s headway), a lane-change 

suggestion was triggered by displaying a green arrow, which was used to 

inform participants that it was safe to change lane, because the offside 

vehicle was not close enough to trigger a collision, if drivers wished to 

change lanes. The figure also shows a situation where there was a vehicle 

close by in the offside lane; however, this never happened during the 

experimental drives. We introduced this scenario as an illustration during the 

briefing session and encouraged drivers to judge for themselves whether it 

was safe to overtake the lead vehicle. 

A    Automation unavailable B    Automation available 

  

C   Automation engaged D   Driver back in control 

  

 1 
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Figure 5.4 Representation of the Full HMI Condition (Designed by: CRF) 

(A) represents the automation engaged, with a vehicle detected ahead; 
(B) represents the lane-change suggestion, whenever the system 
reached the designated distance to the vehicle in front; (C) represents 
the fake condition of the unsafe lane change, which was never present 
on the actual HMI (just on the briefing session) and (D) is the message 
confirming a successful transition of control. 

 

5.2.7 Non-driving related task (NDRT) 

Currently, L3 vehicle automation, as described by SAE (SAE, 2018), permits 

drivers to engage in other, non-driving related activities, but requires them to 

be ready to take control, when requested. Therefore, to understand how this 

ability to engage in other tasks during L3 automation affected lane-changing 

behaviour during a transition of control, drivers were asked to perform a non-

driving related task (NDRT) as soon as the automated driving system was 

turned on. This visual secondary task, the Arrows task (adapted from 

Jamson & Merat, 2005), was displayed on a touchscreen monitor, placed 

near the gear selector, and involved presenting a series of arrows displayed 

on a 4x4 grid, as shown in Figure 5.5Error! Reference source not found.. 

Drivers had to locate the one upward-facing arrow for each display and 

touch it as fast as they could. As soon as the up arrow was pressed, the next 

display appeared. If participants did not find an arrow within 5 s, a new 4x4 

grid was displayed. To avoid interference with the HMI information, this 

version of the task was not accompanied by any auditory signals. To 

A   Lead vehicle detected B   Lane change suggestion 

  

C   Offside obstacle warning D   Driver back in control 

  

 1 
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encourage driver engagement with the task, a "score to beat" was displayed 

on the screen, as shown in Figure 5.5. 

 

Figure 5.5 Representation of the Arrows task, as it was displayed on 
the touchscreen near the gear stick 

5.2.8 Procedure 

Upon arrival, participants were asked to read a description of the experiment 

and sign a consent form. They were then taken to the simulator dome and 

familiarised with the vehicle and its controls, including the HMI, and how to 

operate the automated system. During this briefing session, participants 

were given the opportunity to practice the Arrows task, both independently 

and during the automated drive. They were also informed that there was no 

takeover request, and that the ego vehicle would only brake/decelerate in 

the presence of a slower lead vehicle. Participants were instructed that, as 

soon as they felt the vehicle's deceleration, and when they felt it was safe to 

do so, they should resume manual control of the vehicle, and try to perform 

a manual lane change to the offside (right) lane. As these were non-critical 

scenarios, there would be no collision if drivers did not resume manual 

control, and the vehicle maintained a maximum headway of 2 s, for as long 

as the automation was engaged. They were also instructed to reengage the 

automation and resume the Arrows task as soon as they had returned to the 

middle lane, after overtaking the lead vehicle.  

After the briefing session, participants completed a 15-minute familiarisation 

drive, supervised by the experimenter. The familiarisation drive consisted of 

a short version of the experimental drives, with one lane-change scenario for 

each HMI. Once familiarised with the task and environment, the 

experimenter left the dome. The participants drove the three experimental 
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drives, presented in a counterbalanced order, with five-minute breaks 

between each drive, during which participants left the simulator dome to 

reduce any fatigue effects. 

 

5.2.9 Research variables 

As described above, the independent variables were the three HMI 

conditions, and the distance of the vehicles in the offside lane during the 

lane-change scenarios (offside distance).  

To measure how quickly drivers initiated a lane-change manoeuvre following 

a resumption of control, their Decision-Making Time (DMT) was calculated. 

This metric has been used in previous eye-tracking studies, to model human 

decision-making and performance (see examples in Ratcliff et al., 2016; 

Shaw, 1979; Krajbich et al., 2012, Forstmann & Ratcliff, 2016). For this 

study, DMT was defined as the time between the beginning of drivers' 

disengagement from the NDRT to engage in the takeover process (𝑡𝑒𝑛𝑔𝑎𝑔𝑒) 

until the point they initiated the lane-change manoeuvre (𝑡𝑎𝑐𝑡𝑖𝑜𝑛). 𝑡𝑎𝑐𝑡𝑖𝑜𝑛  was 

also used during gaze behaviour analysis as an anchor point to define the 

time frame in which the eye movements were extracted from the raw 

experimental data. 

 During the data analysis process, we identified that, as it was a non-safety-

critical scenario, there was a delay between the automated system's brake 

(signalising the presence of a lead vehicle to be overtaken) and drivers’ 

interruption of the NDRT, since there was no time pressure for them to 

respond. It was also noted that not all drivers disengaged the automation in 

the same way (75% used the steering wheel, while 25% used the stalk). We 

also observed that some drivers disengaged the automation but continued 

looking at the road environment before manually performing the lane-change 

manoeuvre. For this reason, there was no specific point in the experimental 

condition which could be used to measure 𝑡𝑎𝑐𝑡𝑖𝑜𝑛  across all trials. Given the 

reasons presented above, a MATLAB (version R2016a, MathWorks, 2017) 

algorithm was developed to calculate drivers’ DMT, based on a set of 

detection criteria, as follows: 

• 𝑡𝑒𝑛𝑔𝑎𝑔𝑒 was calculated based on the moment drivers moved their 

head up from the arrows task display, immediately after the lead 

vehicle was detected by the automated controller  ("A" in Figure 5.2). 

The assumption for this detection criterion was that drivers stopped 

interacting with the NDRT after moving their head away from the 
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display and started acquiring visual information to decide when to 

overtake the lead vehicle.  Detection of drivers' head position 

(whether looking towards the NDRT or the road/HMI) was based on 

the eye-tracking system's gaze detection quality, since drivers' eyes 

were not trackable by the system while they performed the Arrows 

task.  

• As the average steering wheel angle input during the manual sections 

of the experimental drives (outside the lane-change scenarios) was 

lower than 1° (M = .64, SD=.14), we assumed that any extreme value 

of steering wheel angle input after 𝑡𝑒𝑛𝑔𝑎𝑔𝑒 would signify the physical 

engagement with the lane-change manoeuvre. Further analysis found 

no cases in which drivers moved their steering wheel over 2° without 

fully committing to the lane-change manoeuvre. Based on this 

observation, 𝑡𝑎𝑐𝑡𝑖𝑜𝑛  was calculated as the time as when drivers made 

the first steering wheel input over 2°, whether the automation was 

already disengaged, or not. Figure 5.6 shows an example, for one 

participant, of how the DMT was calculated.  

• The timings for DMT calculation were based on the simulator data 

output for all participants and trials, regardless of the method used to 

disengage automation or the experimental conditions. The sampling 

rate was 60 Hz. 

 

Figure 5.6 Example of how Decision-Making Time (DMT) was calculated 
for a single participant 
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The green line (Gaze detection status) represented the detection of 
drivers' face in the eye-tracking system. We assumed that drivers were 
not looking to the road whenever the value in this variable was 0 
(meaning drivers' head could not be detected). 𝑡𝑒𝑛𝑔𝑎𝑔𝑒 was detected 

whenever their gaze detection status was >=2 (meaning that the eye 
tracker could detect the participant's head, as they were looking 
upwards). The yellow line (steering wheel angle) was used to detect 
t_action, as it indicated when drivers were physically engaged with the 
driving task. The shaded grey area, between the defined points for 
t_engage and t_action is the total amount of the participant’s DMT. 

The metric used to analyse drivers' gaze behaviour in the different test 

conditions (3xHMI and 3x offside distances) was the percentage of drivers' 

gazes towards five Areas of Interest (AoIs), during the 3 s that preceded 

𝑡𝑎𝑐𝑡𝑖𝑜𝑛 . This time window of 3 s was selected since not all drivers had the 

same DMT. Using a relative value for different time windows, would 

over/underestimate each individuals' gaze percentages, depending on the 

length of their DMT. A time window of 3s was selected as it included a 

complete DMT for 87% of participants, while minimising noise caused by 

non-trackable eye-tracking data (due to the NDRT). Decision-making 

models, such as those developed by Ali et al. (2019) also support our view 

that a 3 s time window is suitable to capture the decision-making process in 

a lane-change scenario. 

Based on previous studies (Carsten et al., 2012, Louw et al., 2016; Louw et 

al., 2017; Louw & Merat, 2017; Louw et al., 2018), five separate regions 

were defined by the AoIs within the drivers' field of view (Figure 5.7). The 

centre region was defined as a 6° circular area, centred on the mode of 

drivers' fixations (see Victor, 2005), defined during the first minute of their 

experimental drives, which was in manual mode. The other four regions 

were equally split between lateral and vertical sections of the screen (see 

Figure 5.7 for a schematic representation of the AoI layout). The top and 

bottom of the centre region covered the road area beyond the lead vehicle, 

and the steering wheel/HMI area, respectively, and the two lateral regions 

covered the wing mirrors and adjacent lanes to the left and right of the 

central area.  

A fixation was calculated as the persistence of drivers' gaze position in a 1° 

radial area, for at least 150 ms, consistent with the boundaries reported in 

the literature for dispersion-based fixation identification algorithms (see 

Salvucci & Goldberg, 2000; Nyström & Golmqvist, 2010). The analysis 

reported in this paper focused on three specific AoIs, as they were 

considered to be the most relevant for a lane-change manoeuvre, according 
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to studies of eye-movements during lane changes (Tijerina et al., 2005; 

Doshi & Trivedi, 2009; Salvucci, Liu & Boer, 2001; Fitch et al., 2012; 

Chovan, 1994).  These were the centre, bottom and right AoIs. 

 

Figure 5.7 Schematic representation of the division of AoIs used in the 

analysis of drivers’ eye movements 

The red markings represent the AoIs mentioned above. The black/white 
drawings represent the visual elements present in the area covered by 
each of the AoIs. Note that this is just a schematic representation and 
is not a precise depiction of the elements in the real simulator dome. 

 

5.2.10 Statistical analysis 

The data was compiled and pre-processed using MatlabR2016a 

(MathWorks, 2017) and analysed using IBM SPSS v21 (IBM Corp., 2012). 

Further analyses were performed using the SKlearn tool in a Python 

environment (Python Software Foundation, 2020). A Kolmogorov-Smirnov 

test (Conover, 1999) was used to check for normality and showed that parts 

of the data had a slight positive skew. Whenever the data was found not to 

be normal, a logarithmic transformation was applied to rely on parametric 

tests for the statistical treatment. In cases where parametric tests were not 

possible, Friedman's test was used as a substitute for a two-way ANOVA. All 

figures presented are based on the untransformed data, with results based 

on tests performed on the transformed data.   

To filter out the noise inherent in eye-tracking data, all gaze samples 

containing less than 75% of data points with "good gaze tracking quality", as 

specified by the eye-tracking software (no gaze estimation based on head 

position or missing data) were discarded. Two participants did not follow the 
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instruction to perform the Arrows task, and spent the experimental drives 

looking towards the forward scene. Therefore, their data was not included in 

the analysis. To exclude other participants who did not adhere to the 

scenario instructions (e.g. did not perform the overtaking manoeuvre during 

the experimental drives), outliers were removed from the sample using a 

criterion of 3x interquartile range (IQR3). An α-value of .05 was used as the 

criterion for statistical significance, and partial eta-squared was computed as 

an effect size statistic. Where Mauchly's test indicated a violation of 

sphericity, degrees of freedom were Greenhouse-Geiser corrected. 

5.3 Results 

5.3.1 Participants’ decision-making time 

To test whether the different information from the HMI, and the distance of 

the vehicles in the offside lane, affected participants' decision-making 

performance, a Friedman's test was conducted using drivers' Decision-

Making Time (DMT), in seconds, as the dependent variable, while HMI 

condition (No HMI, System HMI, Full HMI) and Offside distance (100m, 25m, 

15m) were the independent variables. 

Friedman's test results found significant differences between drivers' DMT, 

based on the HMI condition, and offside distance, during the moment of the 

takeover [χ2(8) = 15.025, p = 0.05].  Individual Kruskal-Wallis post-hoc tests 

showed a significant effect of offside distance [χ2(2) =0.953, p = 0.0387], 

with higher mean DMT values associated with shorter offside distances 

(15m = 3.09s, 25m = 2.49s, 100m = 1.83s). However, the three HMI 

conditions were not found to affect this value [χ2(2) = 2.65, p = 0.261]. As 

shown in Figure 5.8, drivers’ DMT was longer when the vehicle in the offside 

lane was closer, with a similar pattern observed regardless of the level of 

information from the HMI. 
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Figure 5.8 Results of Friedman’s test on drivers' Decision-Making Time 
in different test conditions 

 

5.3.2 Participants’ gaze distribution 

Figure 5.9 shows the proportion of drivers’ raw gaze to the different AoIs 

(see Figure 5.7), for the 3 s before and 5 s after 𝑡𝑎𝑐𝑡𝑖𝑜𝑛 . This visualisation 

shows a similar gaze pattern for the three HMI conditions, after the 

resumption of control. However, many more glances are seen to the HMI 

(bottom AoI) when the automation was engaged in the Full HMI condition.  

As can be seen in Figure 5.9, for all three HMI conditions, there is a sharp 

decrease in “Gaze not Tracked" data points during the 3s before 𝑡𝑎𝑐𝑡𝑖𝑜𝑛 . As 

drivers’ exact gaze was not trackable during the execution of the NDRT, it is 

assumed that this large grey area represents the percentage of drivers 

looking downwards to the Arrows task display.  

In terms of percentage of gaze distribution, the pattern roughly follows that 

observed for manual lane changes (Salvucci, Lyu & Boer, 2001; Tijerina et 

al., 2005). During the time before 𝑡𝑎𝑐𝑡𝑖𝑜𝑛 , which can be associated with what 

Tijerina et al. (2005) describe as the “decision-making phase”, drivers 

distributed their gaze mainly between the centre (orange) and right (light 

blue) AoIs, suggesting they were mostly paying attention to the offside lane, 

and the vehicle ahead, probably to judge whether or not it was safe to 

engage in the lane-change manoeuvre.  After 𝑡𝑎𝑐𝑡𝑖𝑜𝑛  (“action phase”, Tijerina 

et al., 2005) a gradual reduction in the percentage of gazes to the right AoI, 

and an increase in the percentage of gazes to the centre is seen for all HMI 
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conditions, suggesting that drivers were focusing on the vehicle’s heading, to 

manually execute the desired manoeuvre, and change lanes. 

A 

 
B 
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C 

 

 

Figure 5.9 Drivers' gaze distribution across the five AoIs. The X-axis 

represents the 3s before and 5s after 𝒕𝒂𝒄𝒕𝒊𝒐𝒏 

The Y-axis shows the percentage of drivers gazing towards each AoI, 
in a given point in time. The data was captured at a sampling rate of 
60Hz. As participants’ eyes were not trackable during the Arrows task, 
all the data points collected during this time on the task were captured 
as “Gaze not Tracked”. 

To measure the effect of the HMI information, and traffic densities, on 

drivers’ gaze behaviour, three 3X3 ANOVAs were conducted, one for each of 

the main AoIs of interest: centre, right and bottom. Each ANOVA had HMI 

condition (no HMI, system HMI, full HMI) and Offside distance (100m, 25m, 

15m) as independent variables, and the percentage of drivers' gaze to the 

respective AoI, during the 3s which preceded 𝑡𝑎𝑐𝑡𝑖𝑜𝑛  as the dependent 

variable (Figure 5.10). 

There was a main effect of HMI condition on the percentage of gaze to the 

centre AoI [F(2, 258)=6.886, p=.001, η𝑝
2=.051], where post-hoc Bonferroni 

tests showed this value to be significantly lower during the full HMI condition, 

compared to the other two conditions. There was also a main effect of 

offside distance [F(2, 258) =3.458, p=.033, η𝑝
2 =.026], where drivers’ gaze 

to the centre AoI was higher during the shorter gap condition (15m). No 

significant interactions were found F(2, 258) =.810, p=.520, η𝑝
2 =.012]. 
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The ANOVA results for the percentage of gaze to the right AoI showed a 

main effect of offside distance [F(2, 258)=4.825, p=.009, η𝑝
2=.036], with a 

higher proportion of gaze towards the right during the shorter gap conditions 

(mean = 17.4%, 16.5% and 10.8%, respectively, for the 15m, 25m  and 

100m, conditions). However, there was no significant effect of HMI condition 

on gaze to the right, [F(2,258)=.038, p=.195, η𝑝
2=013], and no significant 

interaction between HMI condition and offside distance [F(4, 258)=.023, 

p=.681, η𝑝
2= .010].  

Finally, there was a significant effect of HMI condition on gaze towards the 

bottom AoI [F(2, 258)=18.852, p<.001, η𝑝
2=.126], with a significantly higher 

proportion of gaze towards the bottom as the amount of information from the 

HMI increased (Full HMI>System HMI>No HMI). There was no significant 

main effect of offside distance [F(2, 258)=.586, p=.588, η𝑝
2=.005], and no 

interaction effects [F(4, 258) = 1.587, p=.119, η𝑝
2=.028]. 

 

Figure 5.10 Results for the 3 ANOVA tests performed on drivers' gaze 

on each AoI during the 3s that preceded  𝒕𝒂𝒄𝒕𝒊𝒐𝒏 

 

5.3.3 Gaze behaviour and DMT correlation 

As previous literature shows a link between gaze behaviour and the 

decision-making process (Orquin & Loose, 2013), we investigated how 

individual differences in gaze concentration to different AoIs affected 

participants’ lane changing DMT, by using a regression model to correlate 

drivers' DMT with 20 different measures of drivers' gaze behaviour, extracted 
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from the same period of time for which the DMT was calculated (from 𝑡𝑒𝑛𝑔𝑎𝑔𝑒 

to 𝑡𝑎𝑐𝑡𝑖𝑜𝑛). These included, the percentage of raw gaze; fixation count; 

average fixation duration; and time of first fixation, for each AoI. The model 

also considered the lane-change order (1 to 6) as an independent variable, 

to account for learning effects. 

As the regression contained many predictor variables, and the type of 

correlation between the model's elements was unknown, we used a random 

forest (see Segal, 2004; James et al., 2000) machine-learning algorithm for 

the data fitting. To identify which measures from drivers’ gaze behaviour 

were correlated with their DMT, separate models were created for each of 

the HMI conditions, and the predictor weight values of each variable 

(measures) were used as a proxy for the importance of the information 

located in the AoI for drivers' decision-making process. The data was split in 

a 75:25 ratio between training and validation of the models, and the input 

parameters were tested repeatedly, aiming to reach a better model 

accuracy. Variables with less than 1% (.01) predictor weight were discarded. 

To optimize the model output, the hyperparameters (number of variables 

sampled on each branch of the tree, and number of trees to grow) of the 

random forest algorithm, were tested using a grid search, and only the 

combinations of hyperparameters that yielded the best accuracy are 

reported in this paper. 

Results showed that the only statistically significant variable as predictor of 

DMT (i.e. above .01 predictor weight value) was the percentage of raw gaze 

towards the five different AoIs. As the order in which the events were 

presented to the driver (1-6) had no importance as a predictor, we assumed 

no learning effects in the decision-making process. Table 5-1 contains the 

three regression model outputs that yielded the best results, in terms of 

fitting, for their respective experimental conditions. All the regression models 

had relatively high accuracy (approx. 70%) given the dataset's size, and an 

average error (ranging from 0.27s to 0.31s, in a task with an average 

duration of 2.47s), within the boundaries of expected inherent variance in 

lane-change behaviour data (see Arbis & Dixit, 2019), suggesting that the 

model is capable of predicting drivers’ DMT reliably, based on their gaze. 
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Table 5-1 Model performance output and weight values for regression 
for each HMI condition 

The first five lines represent the weight values for the predictor 
variables (all weights were positive values, and their sum should 
always total 1). The model accuracy is based on the training dataset, 
and the values of the average prediction errors are based on the 
validation dataset. T underlined number in the Full HMI column is 
highlighted to emphasize the significant difference in this model’s 
output when compared to the other two. 

Model variables No HMI System HMI Full HMI 

Gaze percentage 

on AoI during 
DMT 

 Right 0.5 0.5 0.55 

Centre 0.38 0.38 0.13 

Left ~0.09 ~0.09 0.05 

Bottom ~0.02 ~0.02 0.27 

Top ~0.01 ~0.01 ~0.0 

Model accuracy 59.15 % 72.69 % 75.29 % 

Avg. prediction error 0.27s 0.3s 0.31s 

 

For the No HMI, and System HMI conditions, as expected, the most 

important variables extracted from drivers’ gaze behaviour for predicting 

their DMT in lane-change scenarios were the percentage of gaze to the 

mirrors and offside lanes (right AoI) and the road centre (centre AoI). Our 

data suggests that drivers who focussed on those two main points of the 

road environment were more likely to make significantly quicker decisions 

and responses, than those who deviated their gaze to less important areas, 

such as the top and bottom AoIs. 

On the other hand, the observed changes in the predictor weight values for 

the Full HMI condition suggest that the addition of the advisory green 

arrows, indicating it was safe to change lanes, affected how drivers divided 

their attention between the different regions, when more advice was 

available from the HMI. In this condition, the percentage of gaze towards the 

bottom AoI gains importance (weight value = .27, compared to ~.02 for the 

other two conditions), over the percentage of gaze to the centre AoI (weight 

value = .13, compared to .38 for the other two conditions), becoming the 

second most important predictor. 
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5.4 Discussion 

The objective of this study was to measure the effect of different types of 

HMI information, and guidance, on drivers' gaze behaviour and decision-

making time, during transitions of control from automation, which occurred 

prior to a lane-change manoeuvre. The level of traffic density in the offside 

lane was also manipulated to understand how drivers used different sources 

of information from an HMI and the road environment, to help with more 

challenging lane-changing decisions, when traffic behaviour was more 

ambiguous. A series of regression models were also generated to correlate 

drivers' gaze behaviour to the decision-making time. 

 

5.4.1 The effect of dash-based information on drivers’ gaze 

behaviour 

Results from drivers’ gaze concentration to the different AoIs illustrated a 

higher percentage of gaze towards the bottom AoI, corresponding directly to 

the amount of information presented on the HMI, at the expense of reduced 

gaze to the road centre (centre AoI). In the Full HMI condition, gaze towards 

the bottom AoI (HMI) increased just before drivers’ first steering wheel input 

(t_action), which was immediately before drivers started to change lanes, 

suggesting that drivers used information from the HMI to help them decide 

how to act (at least for the Full HMI condition), at the expense of glances to 

the centre AoI (road centre). This finding is supported by core gaze and 

decision-making theory (Carrasco, 2011; Orquim & Loose, 2013; Sullivan et 

al., 2012), which states that humans tend to fixate longer on the information 

that they are processing. This finding highlights one potential issue with the 

implementation of overly-informative and complex HMIs, as drivers attend to 

information presented on an HMI, as a trade-off to glances to the road 

centre. This issue must be taken into account when designing future vehicle 

HMIs, because reduced glance time to the road is generally associated with 

higher crash probabilities (see Harbluk et al. 2007). Of course, these results 

may also be affected by the novelty of the messages used in this study, and 

it is important to understand how such gaze patterns might change with 

longer term use of such in-vehicle systems and interfaces.  

Drivers’ gaze pattern towards the HMI was not found to be affected by the 

position of vehicles in the offside lane. This result was not expected, and 

goes against our initial hypothesis that drivers would rely more on the HMI 

information, when the scenario was associated with more difficult decisions, 
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e.g. when the vehicle in the offside lane was closer. A look at drivers’ 

attendance to the side mirrors explains this further, showing a significant 

increase in the percentage of drivers’ gaze towards the right AoI, for shorter 

offside distances. This finding suggests that, for safety critical situations, 

drivers relied also on their own judgement, on top of  the HMI advice. The 

increased proportion of gaze towards the mirrors for more difficult decisions  

was expected, and is in line with previous studies (Orquim & Loose, 2013; 

Sullivan et al., 2012), suggesting that real-time information from the 

surrounding road environment is more valuable to drivers in more safety 

critical situations. Since we did not find any difference in the pattern of 

drivers’ gaze to the right AoI (right mirror), across the three HMI conditions, 

our results suggest that drivers did not use the HMI information as a 

substitute for the mirror checks, which is typical for a manual lane-change 

(Tijerina et al., 2005), but rather a complement to it, since both glances to 

the right and to the HMI were constantly present for the events in the Full 

HMI and System HMI conditions.  

In terms of our regression model, “glances to the right AoI” was found to be 

the only predictor variable in the Full HMI condition, showing stronger 

correlation with drivers’ DMT than the “glances to the HMI” variable. The 

suggestion that glances to the side mirrors is the most important predictor of 

drivers’ decision for a lane-change prediction model is consistent with 

studies on lane changes in manual driving (Doshi & Trivedi, 2009; Salvucci, 

Liu & Boer, 2001), and highlights the relevance of mirror checks for the 

decision-making process, even in automated driving scenarios. This 

similarity in gaze behaviour between automated and manual lane changing 

was also observed in another lane-changing study conducted in our lab, 

which did not include different types of information on the HMI (Gonçalves et 

al., 2020), and supports the argument that drivers tend to rely on information 

from the road environment, for their decision-making. 

Of course, it can also be argued that this mirror-checking pattern illustrates a 

potential lack of trust in the automated driving system, and our HMI 

information (Lee & See, 2004), or is due to an automatised, well-learnt, 

behaviour. It is reasonable to assume that such patterns of behaviour may 

change after prolonged exposure to a reliable automated system and HMI 

(i.e. a conditioned learned behaviour, Charlton & Starkey, 2011). Further 

work is, therefore, needed to observe how prolonged and sustained 

interaction with such in-vehicle HMIs changes the long-term behaviour of 
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drivers, and their gaze patterns, and how different levels of system reliability 

and traffic scenarios affect this behaviour. 

 

5.4.2 The effect of dash-based information on drivers’ DMT 

Drivers’ DMT was found to increase in line with the position of the vehicle in 

the offside lane, with higher DMTs for closer vehicles. This result was 

expected, and is supports the large body of literature on decision-making 

theory (Shaw, 1979; Ratcliff et al., 2016), and lane-change manoeuvres 

(Gipps, 1986, Arbis & Dixit, 2019). Here, the uncertainty associated with a 

lane-change ahead of a nearby vehicle in the adjacent lane caused drivers 

to spend longer making a lane-change decision, likely associated with the 

need to look around more at their surrounding environment. However, the 

lack of an effect of HMI condition on drivers' DMT goes against results from 

other experiments in the field of vehicle automation (Richardson et al., 2018; 

Seeliger et al., 2014;  Naujoks et al., 2014; Naujoks et al., 2017; Stockert et 

al., 2015), which suggest a significant improvement in drivers' performance, 

with the help of information from the HMI. 

This observed lack of a difference for the DMT values for different HMI 

conditions in this study may be due to our HMI design, which was perhaps 

not as informative for participants as we had envisaged. On the other hand, 

the output of our regression models showed that, in the Full HMI condition, 

there was a strong correlation between “glances to the HMI” and drivers’ 

DMT. This was not the case for the other two HMI conditions, suggesting 

that the presence of supportive information (i.e. the green arrow signalling a 

safe lane change) is indeed beneficial for the decision process (supporting 

the findings from Richardson et al., 2018; Seeliger et al., 2014;  Naujoks et 

al., 2014; Naujoks et al., 2017, Stockert et al., 2015). However, the observed 

correlation was not strong enough to generate perceivable changes to the 

mean DMT, based on the experimental conditions alone, as individual 

differences in drivers’ gaze behaviour might have affected the way drivers 

interacted with the visual information, and therefore, masking the potential 

effects on their DMT.  

The arguments in favour of a more informative/supportive HMI is that a 

clearer and more direct orientation to the situation, as provided by the HMI, 

helps the driver to recover situation awareness, and avoid potential 

accidents caused by delayed or inappropriate responses. However, drivers 

in the current study were not under pressure to perform a lane-change as 
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quickly as they could (i.e. they were asked to complete a discretionary lane-

change). Results from Ali et al. (2020) demonstrated that drivers tend to 

spend more time, and are more careful in their lane-changes, when there is 

more information from a vehicle HMI. According to these authors, drivers 

changed the way they accessed the information, not only checking the mirror 

and the road centre, but scanning all the information at their disposal. 

Regarding the current study, this suggests that our drivers may have 

checked the HMI as a routine, as they expected the information to be there, 

but also checked the side mirrors, as they are habitually used to, before a 

lane-change. Therefore, the contributions from the HMI information to 

drivers’ DMT were likely countered by the fact that drivers spent more time 

to check and process the additional information on the HMI, on top of their 

standard gaze check routine, which ultimately increased their DMT. 

5.5 Conclusion 

The data presented here offers new insights for the design of new in-vehicle 

HMI relevant to automation. Although additional information from such HMI 

should provide potential supporting benefits, results from this study suggest 

that excessive HMI information comes at a cost, by attracting drivers’ gaze, 

at the expense of glances to the road environment. Results suggest that 

although drivers looked at the HMI on the run up to a lane change, they 

ultimately opted to also “believe their own eyes” and use information from 

the driving environment to decide when to change lane, looking consistently 

more at the side mirrors, just before the changing lane, regardless of the 

HMI condition. Therefore, system designers must be aware that not all 

information presented on an HMI is a good substitute for that provided by the 

surrounding environment. Further research is needed to understand what 

type of information from an HMI is useful (e.g. indicating system status) 

versus those that are considered superfluous. The value of using other 

modalities for presentation of relevant information in such scenarios should 

also be explored. This includes the use of heads-up displays, or spatially 

congruent haptic messages (Ho et al., 2006), which would allow the system 

to provide supportive information, without compromising drivers’ visual 

attendance to the road environment. 

Regarding limitations of this work, and considerations for future studies, the 

accuracy of the regression models' output (59.15 % - 75.29%) is clearly 

limited by the overall sample size of the data, which might compromise the 

takeaway implications of such analysis. This work has also not considered 
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the importance of other factors known to affect the overall takeover process 

and decision to change lanes, such as driver experience, trust in vehicle 

automation technology, and fatigue, as examples. Finally, the lack of 

agreement between the results from this study, and those of others in this 

context (e.g. Naujoks et al., 2017), may be due to a lack of time pressure for 

drivers in the current study, or the use of rather simple messages from our 

HMI. Further work should, therefore, consider the use of a more informative 

interface, or a more challenging decision task, to assess the value of such 

information to drivers. 
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6.  

Applicability of risky decision-making theory to 

understand drivers' behaviour during transitions of 

control in vehicle automation 

 

Abstract 

This work presents a consideration of the applicability of risky decision-making 

theory models as a tool to understand drivers’ take-over behaviour from 

vehicle automation, while also incorporating the “Out of the Loop” concept and 

the process of Situation Awareness Recovery. A methodological discussion is 

provided, and implications for the processes involved in system design 

developments are presented. Finally, the paper concludes that the process of 

evidence accumulation in risky decision-making theory models has strong 

parallels with the process of Situation Awareness recovery. We argue that 

evidence accumulation models can be used as a tool to understand what 

information is used by drivers for achieving safe transitions of control from 

automation so that this knowledge can be used for a better, and more human-

centred design of future in-vehicle interfaces. 

 

6.1 Introduction 

Among the human factors-related challenges of implementing vehicle 

automation, is ensuring safe responses from users during transitions of 

control. Recent research into this issue forms part of a larger body of 

research regarding the better design of human-machine interfaces, spanning 

multiple domains and decades. These challenges highlight an old irony of 

automation, where the more reliable the automation, the less prepared the 

human is to react in a time of need (Bainbridge, 1985). This is especially true 

for higher levels of vehicle automation, which do not require continuous 

monitoring of the driving task, but still rely on users to resume control, for 

example, when a system limitation is reached (Level 3. See SAE, 2018 for a 

complete description of the levels of vehicular automation). 

Many recent driving simulator studies, for example, those described by Louw 

& Merat (2017), have identified that drivers in higher levels of vehicle 

automation (SAE L2+) are removed from the decision-making and control 

loops of the driving task, placing them “out of the loop” (see Merat et al. 
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(2018) for a recent description of the term). This disengagement from the 

loops is thought to reduce drivers’ capacity to react in dangerous situations, 

increasing the likelihood of collisions.  

Many researchers have tried to understand what constitutes a safe transition 

of control from automation, investigating what factors influence the success 

of a transition. For example, Gold et al. (2013) demonstrated that drivers’ 

response to an impending collision, following a request for a transition of 

control, is dependent on the amount of time given to drivers for this 

response. These authors report that when drivers were given less time to 

react, they reacted faster, but more erratically, as shown by the vehicle’s 

lateral and longitudinal accelerations. In contrast, when given more time to 

respond to an impending collision, drivers reacted more slowly but had a 

more stable response profile.  

Zeeb at al. (2015, 2016) have shown that drivers’ take-over time and the 

quality of this take over (measured as vehicle lateral deviation), is linked to 

their attention to the road environment during automated driving, with higher 

levels of distraction to other, non-driving-related tasks, leading to a 

deterioration of take-over quality. However, Louw et al. (2018) suggest that 

take-over time and vehicle controllability alone are not good predictors of a 

safe transition of control, but rather the early mitigation of a threat, with 

earlier transitions of control leading to fewer collisions. 

A common limitation of studies attempting to correlate drivers’ visual 

attention with their performance on non-driving-related tasks during 

automation, is that most investigate the location of drivers’ gaze, rather than 

attempting to understand how visual information, acquired from different 

sources during automation engagement, affects drivers’ resumption of 

control. While there have been efforts to model the factors that influence 

drivers’ capabilities to takeover control, and how they use the physical and 

mental resources they need to perform such an action, most have not 

managed to generate a predictive model, based on gaze patterns during 

take-overs (Happee et al., 2018). For example, Victor et al. (2018) have  

reported that some drivers, even though looking to the road centre, still failed 

to avoid crashes during a transition of control (similar to results also reported 

by Louw et al., 2017).  

Studies in other domains have considered how visual information sampling 

affects decision making in humans (see Orquin & Loose, 2013 for a 

complete literature review of these studies). For instance, Fiedler & Glöckner 

(2012), identified that gamblers shift their gaze towards the gamble they are 
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willing to make, before their decision, and used this information as a 

predictor of their choice selection.  

This paper proposes that the application of decision making theories, and 

related models, can be used to address some of the gaps in research on 

user resumption of control from vehicle automation, by providing a 

quantifiable method of linking the acquisition of specific information from the 

environment to the probability of a particular response (Orquin & Loose, 

2013). Currently, there are only a few studies that highlight the possibility of 

such a link (c.f. Markkula et al., 2018). In this work, we consider how 

theoretical models for risky decision-making can be used to study drivers’ 

transition of control in automation by observing their visual sampling 

behaviour during different stages of the take over process.  

We begin with outlining the two theoretical bases of this work: decision-

making theory, and the human factors of transitions of control. Thereafter, 

the two theories will be compared, especially regarding their analogous 

processes of Situation Awareness acquisition and evidence accumulation. 

Finally, this paper considers how such an approach can generate outputs 

that may be applied by presenting a conceptual mathematical model that 

can be used to fit experimental data regarding transitions of control to 

understand human behaviour. 

6.2 Transitions of control from vehicle automation 

This section of the paper aims to define key concepts in the field of human 

factors of transitions of control, such as the decision-action loop, Situation 

Awareness, and the issues that are related to this process. With a clear 

definition of this concept in hand, it will be possible to compare them to the 

concepts related to the decision-making theory, understanding how they 

might interact and complement each other. 

The term transition of control was described by Louw (2017) as: “the process 

and period of transferring responsibility of, and control over, some or all 

aspects of a driving task, between a human driver and an automated driving 

system.” SAE (2018) complement this definition with a taxonomy, by 

outlining how a driver’s responsibility varies across the different levels of 

automation, and a distinction if they were system- or driver-initiated 

transitions. The need for such transitions of control is partly based on current 

system limitations, in terms of the technology’s operational design domain 

(see NHTSA, 2016, for a more descriptive definition of the problem), where 
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vehicles cannot operate in all scenarios, and the human drivers are 

expected to supervise the automation and resume control, whenever a 

system limitation is reached. However, the inherent problem with such 

supervisory roles is diminished driving capabilities associated with the 

relinquishing of control, which his associated with several challenges when 

drivers are requested to resume control, especially in time-critical scenarios 

(Louw, 2017). Some of these issues are discussed below. 

 

6.2.1 The decision-action loop 

According to many authors (e.g. Young, 2012), manual driving is a task 

which requires the driver to always be in the information processing “loop”, 

with regards to their interactions with the surrounding road environment, as 

well as their ability to control and coordinate vehicle manoeuvres, involving 

steering, acceleration and braking. Thomas (2001) states that the operation 

of a vehicle is closely associated with constant feedback and feed-forward 

cycle of human interaction with the task. Here, humans’ decisions and 

actions affect the situation, and this change is perceived once more by the 

individuals, who orient and adjust their behaviour accordingly. Merat et al. 

(2018) further complement this logic for the context of vehicle automation 

(based on the model purposed by Michon, 1985), by stating that there are 

two distinct loops in manual driving, which can be affected by ceding control 

to automation: one for motor-control coordination, and another for the 

several decision-making processes that need to be performed while driving. 

They suggest “(…) that “being in the loop” can be understood in terms of (1) 

the driver’s physical control of the vehicle, and (2) monitoring the current 

driving situation (…)” (Merat et al., 2018). It must be noted that both loops 

continually interact with each other, and drivers must be aware of both their 

visual-motor coordination (see Wilkie et al., 2008 for a more descriptive 

definition of the term) and the surrounding environment, to safely maintain 

control of the task. 
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Figure 6.1 Representation of the decision-action loop and drivers’ 
monitoring role in manual control of the driving task (Merat et al., 
2019; based on Michon’s model, 1985; Copyright © 2019 Springer. 
Reprinted with Permission of Springer Publications) 

 

6.2.2 Situation awareness recovery 

Using driving simulator experiments, Louw et al. (2016), supplemented by 

previous evidence from Damböck et al. (2013), argue that by removing 

drivers from the decision-making and control loops, vehicle automation 

reduces drivers’ Situation Awareness (SA; Endsley, 1995), which needs to 

be re-acquired in order to safely resume control and avoid potentially 

dangerous situations on the road (Damböck et al., 2013). The definition of 

Situation Awareness used in this research, and defined initially by Endsley 

(1988), is: “the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the 

projection of their status in the near future.” In short, SA can be divided into 

three levels (perception; comprehension and prediction), which allow 

humans to orient their decisions in a particular context and volume of time 

(Figure 6.2). 
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Figure 6.2 Endsley's model of SA. This is a synthesis of versions she 
has given in several sources, notably Endsley (1995) and Endsley 
et al. (2000), in Wickens (2008)  

 

The loss of Situation Awareness and its relation to being “out of the loop” 

have been declared by a number of studies on vehicle automation (Carsten 

et al., 2012; Ohn-Bar & Trivedi, 2016; Morando et al., 2019), some of which 

have considered how these concepts are affected by drivers’ engagement in 

non-driving-related tasks. It is argued that upon a request to resume control 

from automation, drivers have to move their visual attention from the NDRT, 

to focus on other sources of information, related to the driving task, to 

acquire enough SA to take back control of the vehicle. Gartenberg (2014) 

refer to this process (which is not only relevant to vehicle automation) as 

Situation Awareness Recovery or SAR. This is described as a visual 

scanning process with a considerable number of short fixations in different 

areas, with a significant lag of resumption in tasks, and a high probability of 

re-fixation to the same information source, more than once. Examples of 

such a process was observed in Louw et al. (2019), who reported in their 

driving simulator experiments that drivers who were engaged in a visual non-

driving-related task during automation (assumed to induce an OotL state) 

had a more scattered gaze pattern after resumption of control from a silent 

automation failure, compared to those who were required to monitor the road 

environment during automation. 

One of the challenges for the human factors community in addressing this 

problem is that the process of SAR is accompanied by several barriers, 
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called SA challenges (Endsley, 2006). Endsley & Kriss (1995) named 

several challenges for the Situation Awareness acquisition, such as attention 

tunnelling, change blindness, stress on operators’ (drivers’) working 

memory, as well as the division of the information required from multiple 

sources, making it difficult for operators to gather all the information they 

might need in a reasonable amount of time (e.g. see Parasuraman & Riley, 

1998). For driving automation, it has been demonstrated that time pressure, 

or information overload, might affect the quality of drivers’ performance. This 

is thought to be because drivers’ attentional resources are continuously 

stretched by the high demands of the driving task itself, which is aggravated 

by automation (Goodrich & Boer, 2003), since the driver is out of the loop. 

The dispersion of drivers’ gaze also competes between focused attention to 

the vehicle’s heading (due to a visual-motor coordination, Wilkie et al., 2008) 

and hazard perception routines, which are generally characterised by an 

increased lateral gaze dispersion (Crundall et al., 1999). Therefore, drivers 

not only have to acquire information about the situation in the environment, 

and the current status of the system (an issue also reported by Endsley, 

2006), but also have to recover their visual-motor coordination, which is 

degraded once you relinquish control from the vehicle (Mole et al., 2019).  

Many empirical studies show that this need to disperse visual attention to 

different sources affects drivers’ performance, increasing risk of crashes 

(see Russel et al., 2016; Zeeb et al., 2015; Blommer et al., 2016; Louw et 

al., 2017; Merat et al., 2014; Gold et al., 2013; Damböck et al., 2013). 

6.3 Decision-making theory principles and models 

The definition of decision-making adopted in this work was proposed by 

Edwards (1954), and is defined as follows: “(…)given two states, A and B, 

into either one of which an individual may put himself, the individual chooses 

A in preference to B (or vice versa)”.  This definition was further developed 

by Simon (1959), who added organised this process into four main stages: 

1) definition of the problem, 2) identification of possible solutions, 3) 

objective assessment of the value of each solution for the problem, 4) choice 

of the best solution. As human beings, we are continuously making 

decisions, based on our internal representation of what we should do in 

every situation, given certain parameters (stage 3). In a driving task, many 

actions involve a decision-making process. Some examples include 

deciding: a comfortable car-following distance (Boer, 1999), what gaps we 

will accept when changing lanes (Gipps, 1986), how we respond to a 



- 140 - 

potential forward collision (Blommer et al., 2017), and whether to disengage 

from automation (see Markkula et al., 2018, for more examples). 

In the context of this paper, decision-making can be defined as the drivers’ 

choice to take-over control of the vehicle or not, and their take-over modality 

(how do they take-over). When constructing a model for such decision-

making, to account for a good or bad decision, in terms of safety, we have 

as observable output variables the decision-making time (how long drivers 

took to decide to take-over), decision choice (how they reacted to the given 

scenario) and outcome (based on the objectives established for the given 

situation, were they able to achieve this goal?). Yet, there are several kinds 

of decision-making theory models, which may account for different aspects 

of human behaviour, and might be useful for certain situations and not 

others. Edwards (1954) also divided the decision-making theory models into 

two main spectrums, which their most recent and developed definitions shall 

be further explained in the later sections of this paper: the rational and risky 

decision-making models. 

6.3.1 Rational decision-making models 

The concept of rational decision-making (see Simon (1979) and March 

(1978) for a more descriptive definition of the term) is based on a 

metaphorical “thinking man”, as a decision-maker. According to Simon 

(1979) and March (1978), a thinking man can be characterized as an 

individual by two main conditions: 1) as being capable of acquiring and 

distinguishing all possible relevant information for the decision in hand; and 

2) the thinking man is capable of assigning the correct value of a specific 

choice, based on their established goal in each decision-making scenario. 

Based on these assumptions, two individuals would always arrive at the 

same conclusion, when making a rational decision about the same problem. 

The only difference between their choices would be personal bias, or what 

outcome they want from the decision. 

Good examples of rational decision-making models can be seen in game 

theory (Nash, 1950), which posits that all choices made by an individual 

have a counterpart by a “hostile” opponent (like a chess game). The 

opponent will focus their actions on maximising their chances of achieving 

their goal, which is the opposite of the individual’s goal. Another example of 

a rational decision can be seen in the utilitarianism theory, created by 

Jeremy Bentham and John Stuart Mill in the early 19th century. This theory 

holds that there are “greater goods” in life, and every moral action can be 

quantified in terms the outcome of “happiness”, and that it is always right to 
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maximise happiness in our choices in life for a “greater good” (for a more 

complete description of the term, see Mill, 1868). Indeed, rational decision-

making processes are utopic in most cases, and their scope for applicability 

is limited, as everything needs to be quantifiable, such as in mathematical 

logic problem solutions (for examples, see Bell et al., 1988). 

 

6.3.2 Risky decision-making models 

According to decision-making theory, whenever the decision-maker is forced 

to make a decision without a clear notion of the possible outcomes of their 

choice, this process is considered to be a risky decision (Edwards, 1954). 

Models in the risky decision-making theory are based on the assumptions: 1) 

that not all variables can be accurately, or even wholly, quantified, 2) that 

humans are not certain about how their actions will affect the environment of 

the task in hand, and, 3) humans are not aware of are all the variables that 

they should consider to make their decision. Humans in that situation can 

estimate, based on their mental models (see Nielsen, 2010 for a description 

of the term), the probable outcomes for a given task for each possible action 

that they can perform, and use that information to guide their decision-

making. In situations where the outcome of an individual’s decision is not 

predictable, they need to account for a level of uncertainty as part of their 

decision-making process. Uncertainty is defined by Shaw (1983) as the 

inability of the decision-making to assign the correct value of an option, nor 

predict the outcomes of their decision to the given environment. This 

uncertainty concept is a key assumption underlying risky decision-making 

models and is discussed later in this paper. As humans’ mental processing 

is not directly observable, risky decision-making models can be used to 

explain human behaviour based on certain assumptions. The most relevant 

ones are described below: 

Evidence accumulation models assume that every decision-maker a priori 

does not have sufficient information about the situation to make a decision 

and will seek evidence that will influence their decision towards one of the 

outcomes known to them. Furthermore, every individual has a personal 

threshold of accumulated evidence that once reached, causes them to opt 

for one possible choice, over another (Ratcliff & Smith, 2004). This threshold 

varied based on a number of factors, including experience, gender, personal 

attitudes and many others. It must be noted that the rate of evidence, or 

“drift”, is accumulated differently for every person, which is also influenced 

by a number of factors. In the field of vehicle automation, Markkula et al. 
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(2018) have demonstrated how to apply decision-making models based on 

evidence-accumulation to explain, for example, what information drivers use 

to decide how to resume control from vehicle automation to avoid an 

incoming forward collision. 

Bounded rationality models, first defined by Simon (1972), which holds 

that humans can make decisions based on the information available to them. 

These have similar assumptions to rational decision-making models but 

differ in that they assume that humans are not capable of considering all the 

relevant information to make a decision. This can be caused by a lack of 

cognitive resources, time pressure, or simple lack of knowledge about the 

presence of a particular source of information. Considering this paradigm, 

bounded rationality models assume that the decision-maker prioritises 

certain information over others (randomly or selectively). This prioritised 

information will most likely bias the decision towards a particular choice, 

depending on the information sampled, and not only on individual 

preferences. This kind of model is especially relevant for the transition of 

control in vehicle automation, as it is assumed that drivers in such situations 

can be overloaded with large volumes of spatially dispersed visual 

information, and may not be able to process all the information they would 

need Examples for such overload can be found in Gold et al. (2013) and 

Blommer et al. (2017), who show that drivers change their decisions about 

when to resume control from automation, based on the amount of time they 

have to react before the automated system reaches its limit. Although, it is 

worth considering that those authors have only considered visual 

information, so other factors might also have affected the observed results. 

Satisficing decision-making models assume that the decision-maker will 

not seek the most optimal solution for his/her problem, but instead will make 

the first decision where the outcome satisfies their needs or goals in the 

given situation (Wierzbicki, 1982; Parke et al., 2007). This approach was 

used in studies by Boer (1999), Boer & Hoedemaeker (1998), and Goodrich 

& Boer (2003), in different scenarios. For example, Boer (1999) 

demonstrated that drivers tend to have not one specific “ideal car-following 

distance”, but rather have a satisficing margin, that floats closer or further to 

the lead vehicle, where the drivers assume to be safe and close enough to 

be satisfied and refocus in other demands from the car-following task (such 

as lateral control of the vehicle), instead of actively re-adjust their following 

distance to a point they would consider to be ideal.  
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 Most concepts in these models are somewhat interchangeable and can be 

combined in a descriptive or mechanistic analysis. Their relationship with the 

field of automation will be discussed in the subsequent sections of this work. 

6.4 Relationship between human factors challenges and 

risky decision-making 

Based on the two types of decision-making theory models described above, 

it is evident that the process of Situation Awareness recovery during the 

transition control from vehicle automation presents several similarities to the 

risky decision-making theory, which is discussed in the following sections. 

Merat et al. (2018) stated that drivers re-enter the cognitive loop of the 

driving task by acquiring sufficient levels of Situation Awareness. In the 

same way, Ratcliff & Smith (2004) claim that whenever an individual is 

presented with an opportunity to make a decision, they will need to 

accumulate evidence that will support the choice they eventually make. This 

direct comparison shows similarities in the applicability of both the concept 

of evidence accumulation and SA for those theories with the same purpose, 

which is to understand how humans use the information to react to a given 

environmental condition and achieve their desired goal.  Figure 6.3 presents 

a schematic representation of the proposed relationship between the two 

theories. 

 

Figure 6.3 Representation of the relationship between SA and decision-

making theory 

 

As mentioned above, decision-making theory holds that the decision- 

making process is composed by four steps: 1) define the problem, and 
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understand its characteristics; 2) formulate/generate possible solutions for 

the given problem; 3) estimation of the value of possible outcomes; 4) 

selection of the outcome with the highest value for the given problem (see 

Simon, 1959 for a better description). Endsley (1995) divided the SA into 

levels, in a way that the individual needs to 1) identify the elements in the 

environment, 2) comprehend their meaning, and how it shapes the situation 

in hand, and 3) orient how those elements can be interacted with, in a way 

that is possible to predict what can be the outcomes of their potential 

actions. According to Simon (1957) and Edwards (1954), a decision can only 

be made if there is a clear notion/definition of the value of each solution to 

the upcoming problem, and that to achieve this, the decision-maker 

accumulates evidence that assigns the correct value to a particular option, 

reducing the decision-maker’s level of uncertainty (Shaw, 1982). Observing 

the same phenomenon through the lenses of the SA theory, we can 

understand that the comprehension of the problem (in the case of this work, 

a request to transition control) and their possible solutions as level two SA. 

The process of assigning value, or expected outcome of possible action in 

order to make the appropriate decision can be directly linked to the level 

three situation awareness, or projection of future states. In this framework, it 

can be assumed that the process of moving from level two to level three SA 

can be directly compared to the process of accumulation of evidence, which 

is simply the reduction of uncertainty about the outcomes of a possible 

action to a given scenario. 

The arguments presented in the previous section showed that barriers, 

called SA challenges (Endsley, 2006), impede an individual’s ability to 

acquire all the sufficient levels of SA they need to make an optimal 

resumption of control from automation (see Parasuraman & Riley (1997) for 

an example of such phenomenon). Analysing the challenges imposed to an 

individual to resume control from automation through the lens of decision-

making theory, a similar problem is reported by Edwards (1954) and Simon 

(1957) who say that an entirely rational decision is utopic. The authors 

believe that barriers imposed by the scenario, such as time pressure and 

bounded rationality, forces the human decision-maker to deal with 

uncertainty, by making assumptions about certain conditions about the 

environment, based on their expectations, and, thus, adopting a risky 

decision. As examples relating to resumption of control from vehicle 

automation, Blommer et al. (2017) and Gold et al. (2013) showed that 

drivers have an increased probability to “just brake”, instead of both braking 

and steering, whenever they had limited time to respond to the scenario. The 
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authors noted that the scenario exceeded drivers’ abilities to cope with the 

situation and to perform the ideal action. These two examples can be 

translated in the risky decision-making theory as satisficing decision-making 

actions, where even if it was not perfect, it was the best they could do with 

the information they had, opting to make a simple reaction to the scenario. 

Based on the arguments presented above, we believe that risky decision-

making theory is a suitable candidate to model the process of the take-over 

of control from vehicle automation. The application of decision-making 

theory can complement the existing studies on the transition, as it can be 

used to understand the relationship between the information sampled by 

drivers and their subsequent behaviour. Practically speaking, this approach 

complements the current studies in the field by providing robust 

mathematical models that assign causality between evidence accumulation 

and decision (see Orquin & Loose, 2013), which are not commonly linked to 

the situation awareness theory. It is now essential to evaluate how this 

theory can be applied and implemented to better describe driver behaviour 

during transitions of control. 

6.5 Using decision-making models to orient drivers’ 

decision-making 

Sivak (1996) stated that vision is the most important of the five human 

senses for driving, but yet, it is not suited to dealing with multiple demands at 

the same time. For this reason, drivers need to prioritise certain visual 

information over others to perform a transition of control (for more details 

about this process, see Goodrich & Boer, 2003).   

According to Orquin & Loose (2013), visual attention and decision-making 

are tightly coupled, since a driver’s risky decision-making is continuously 

biased by whether or not they attended to relevant visual information 

available to them. In their literature review, the authors found a co-causal 

relationship between visual attendance to information and the occurrence of 

specific choices, in a discrete decision-making scenario. As part of a meta-

analysis, the authors analysed several decision-making tasks that used eye-

tracking data as a dependent variable. They concluded that an individual’s 

gaze fixation on certain essential information could predict their upcoming 

choice in a discrete scenario, suggesting that the selective attention of 

drivers may bias their decision-making. Such an approach may also be 

applied to analyse drivers’ response capabilities in a take-over scenario, 
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once a take-over reaction is nothing more than a selective response to a 

particular scenario condition.  

The arguments above support the possibility of modelling the relationship 

between different gaze allocation strategies and the probability of yielding 

specific responses to the take-over control scenario (based on the studies 

reported by Orquin & Loose, 2013). This approach would inform system 

designers about which information should be scanned with higher priority, to 

yield a higher probability of safe and timely responses to different take-over 

scenarios. This information could be used to create HMIs that guide drivers 

towards making decisions that result in safe outcomes. For example, 

indicating where drivers should focus their attention on a successful 

transition of control could help avoid an impending collision, as suggested by 

Louw et al. (2017). 

6.6 Formulation of a take-over model 

In previous sections, it was discussed theoretically how evidence 

accumulation models can be applied to understand and predict drivers’ take-

over behaviour. Evidence from previous literature suggests that inputs from 

eye movements to the models can create a robust way to understand drivers 

decision-making process. This section of the paper describes the process of 

formulation of a mathematical model that can be applied for data fitting 

suited for the process of transition of control in vehicle automation, based in 

the elements discussed above. 

According to Wagenmakers et al. (2008), evidence accumulation models 

use real data from experiments to estimate how the process of information 

acquisition for every individual participant leads to their decision. It receives 

as the input variable response times (t) and choice selection (p) of every 

individual, and based on the individual differences across data samples, they 

can draw assumptions based on probability distributions of how humans 

make decisions. According to the authors, and many others in the field (see 

Ratcliff et al., 2004 for a more descriptive explanation about evidence 

accumulation models), the main estimated parameters in this kind of model 

are:  

• Mean drift rate (v), or how quickly evidence is accumulated towards 

the decision. 

• Boundary limit for the decision (a), or how much evidence needs to be 

accumulated for a decision to be made. 
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• Previous knowledge or information that may speed up the decision 

process (z), also known as bias. 

• Inter-participant variability (s), which assumes that different people 

have faster/slower processes of evidence accumulation. 

Figure 6.4 shows how all those variables are fit together in a graphical 

representation of the model and how the parameters are estimated. It is now 

necessary to understand how the context of the transition of control and 

situation awareness acquisition can be translated in this kind of model, and 

also how data related to visual attention allocation can be used to generate 

more accurate descriptions of drivers’ decision-making behaviour. 

 

Figure 6.4 Graphical representation of an evidence accumulation 
model. Source: Ratcliff et al. (2004) 

 

As already said before, the process of situation awareness acquisition can 

be directly translated as the process of evidence accumulation, in a way that 

drivers have as their primary goal to safely recover manual control of a 

vehicle, and will sample information about the multiple options they have to 

do so, until they reach a point that they are confident enough about one 

specific option and engage in the task execution. As the situation awareness 

acquisition process is mainly defined as a visual task (Gartenberg, 2014), 

and the process of transition of control is mainly constrained by bounded 

rationality (for examples, see Endsley, 2006), it is possible to assume that 
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different sample patterns would inherently bias the accumulation process, 

leading to both different response times, and probability of certain response 

to happen. With this argument in mind, it is then necessary to insert in the 

model a variable related to gaze allocation over time, which controls how 

much evidence can be accumulated over time, based in where the drivers 

are looking (drift rate). 

Since this paper describes only a proof of concept for the theory presented 

above, we opted to develop an adapted version of a linear ballistic 

accumulator model (LBA; Brown & Heathcote, 2008). This technique was 

chosen due to its simplified math (easy to explain) and low computational 

power requirements for its implementation. Future studies might want to 

consider more robust models, which includes more explanatory variables 

(eg. drift-diffusion models). The LBA model is an evidence-based decision-

making model, which assumes that the process of evidence accumulation 

related to one possible choice is independent of the other, in a way that 

sampling information that leads towards one decision would not affect the 

probability of other option to be chosen. The second assumption of the 

model is that there is no internal variability or noise in the process of 

evidence accumulation. For every sample, it generates a linear function 

between evidence and time.  The differences in the response profiles can be 

only observed by across-participants differences (Dokin et al., 2009). 

The flowchart below (Figure 6.5) is the conceptual representation of the 

proposed model, where drivers after receive a take-over request would 

sample for visual information, in a goal-directed top-down approach, to 

accumulate evidence about a possible solution to the task. This evidence 

would be combined with their previous information about the situation 

(current SA levels) and their personal bias and would accumulate until it 

reaches a threshold of satisficing levels, triggering the execution of an 

action. In this scenario, different sources of visual information would lead to 

a different drift rate, causing variability in drivers’ take-over time. In this 

process, every possible decision is calculated and modelled separately. 
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Figure 6.5 Theoretical representation of the proposed model 

 

In terms of calculation, the purposed formula assumes that take-over time 

(tot) is the sum of the total time drivers spent gazing towards the 𝑛 different 

sources (𝑖) of information. Also, the process of accumulation of evidence is 

defined as the sum of the time drivers spent looking at each information 

source (𝑡𝑖), times a constant, which indicates the drift rate, related to each 

specific information source (𝑣𝑖). See below the two equations that define the 

base formula of the model. 

Equation 6-1 Formulation for the take-over decision-making model 

𝑇𝑜𝑇 is the take-over time; 𝑡 is the time drivers spent gazing towards 

each information source 𝑖; 𝑧 is drivers’ previous knowledge about the 
situation and personal bias; 𝑣 is the drift rate for every information 

source; 𝑎 is the estimated threshold for the decision-making, and 𝑠 is 
the ratio for individual differences. 

1) 𝑇𝑜𝑇 =  ∑ 𝑡𝑖
𝑛
𝑖=1  

 
2) 𝑎 = 𝑧 + (∑ 𝑡𝑖

𝑛
𝑖=1 ∗ 𝑣𝑖) ∗ 𝑠 

 
 

 

Figure 6.6 Graphical representation of the output from the proposed 
model 
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With this approach, it is possible to estimate how valuable certain 

information source i is for the decision-making process, assuming that it 

would affect drivers’ decisions in the same way. As for the assumptions of 

the model, 1) it assumes that the process of information acquisition is 

constant and linear, and does not account for information saturation of one 

source, nor to noise on the process of information acquisition; 2) it assumes 

that every option is computed individually, and not in a conflicting way, as a 

drift-diffusion model would (Ratcliff et al., 2004); 3) it assumes that drivers 

are in time pressure, in a way that they would perform the decided action as 

soon as they decided what to do, as mind-wandering and non-decision-

making related data would add noise to the model. 

6.7 Conclusion 

The primary aim of this paper was to assess the feasibility of applying risky 

decision-making theory models to understand drivers’ take-over behaviour 

during transitions of control from vehicle automation. A secondary aim was 

to explain how decision-making models could be implemented by system 

designers as a tool to understand human behaviour and create products that 

better suit driver needs. 

The initial sections point out similarities between the theories on SA and 

risky decision-making, which makes them comparable and applicable for 

similar purposes. The main points of proximity between the two theories 

include the concepts of evidence accumulation and level three situation 

awareness, respectively, to account for how humans make a decision in a 

given scenario. We also proposed that models that correlate vision and 

decision-making modality as a causal factor could be used to identify which 

information, once sampled, can increase the probability for drivers to 

perform a supposed “optimal response”. In conclusion, we propose that 

decision-making models, based on evidence accumulation, can be used in 

HMI design, to enhance drivers’ acquisition of certain essential information 

and, thereby, optimise their take-over performance. For example, if we know 

how drivers sample visual information before an optimal response, and we 

use this knowledge to design HMIs to reproduce this behaviour in other 

drivers in similar situations, then we may increase the probability that they 

respond similarly. 

As for limitations and future directions, this work is chiefly a theoretical 

consideration and lacks sufficient evidence to defend the real value of the 

application of decision-making models in the design process for human-
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centric vehicle automation systems. Empirical studies are required to 

evaluate how well decision-making models can predict drivers’ take-over 

modality, and whether, if certain information is highlighted in the system 

design, drivers’ performance in take-over scenarios can be enhanced. 
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7.  

Evidence-accumulation model to predict forward 

collision reactions in a conditionally automated vehicle 

using drivers' gaze 

 

Abstract 

This paper reports the development and testing and validation of a single-

alternative evidence-accumulation model to predict drivers’ reactions to a 

forward collision events in a conditionally automated vehicle. The main source 

of human input for the model is the drivers’ gaze, which is believed to affect 

drivers’ decision and safety outcomes of their reactions. The model also 

describes the parametrization of the model, and methods to simulate drivers’ 

gaze on Monte Carlo simulations, used for the model fitting. In the end, a 

discussion is raised about the importance of different information sources for 

a safe transition of control in a safety-critical forward collision scenario. 

 

7.1 Introduction 

This paper describes the development of a single-alternative evidence-

accumulation model tailored to predict drivers decision-making time during 

safety-critical transitions of control from conditional automation (SAE, 2021). 

The model developed in this study used drivers' gaze data as an input value 

to control the evidence accumulation process that led to the drivers' 

decision. The model's concept and parameter estimation methods are 

presented and its results and theoretical implications to the field will be 

discussed. The following section of the paper will present the theoretical 

background that leads to the research gap addressed by the study. 

7.2 Background 

7.2.1 Transitions of control and situation awareness recovery 

Automated vehicle (AV) technology, capable of removing partially or totally 

the human from the driving task, has been rapidly evolving over the last ten 

years. Previous research made several predictions regarding the 

advantages provided by AVs, such as removing human error as the cause of 

crashes and reducing fuel consumption and traffic jams (see Fagnant & 

kockelman, 2015). However, as the state of the art on commercial AV 
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technology is still unable to fully address all the challenges imposed by the 

driving task, humans are still required to take over control whenever a 

system limitation is reached. This issue is especially critical in what is 

defined as conditional automation level (SAE level 3; SAE, 2021), which is a 

transitory step towards the full automation (SAE level 5) that allows the 

driver to remove their attention from the driving task, but still requires them 

to take-over control whenever a take-over request (TOR) is issued.  

Merat et al. (2019) describe in their theoretical paper that as the drivers 

relinquish control from the automation, they remove themselves from a 

constant decision-action loop needed to conduct a safe driving task. The 

removal of the driver from the loop is related to their loss of situation 

awareness (S.A., as defined by Endsley, 1995) due to a lack of active 

engagement with the driving task. Merat et al. (2019) also affirmed that 

drivers need at least sufficient levels of S.A. about both the system and 

environment to manually control the vehicle after a transition. To achieve 

these sufficient levels, Gartenberg et al. (2014) describe the process of S.A. 

recovery as a mainly visual task, where the drivers generally focus their 

attention to specific sources of information to fill the gaps in their current 

mental model, in a goal-oriented approach.  

The problem inherent to the S.A. recovery process is that the driving task is 

very challenging, requiring the driver to acquire information from different 

sources in a short amount of time. Endsley & Kiris (1995) pointed out several 

challenges for an automation operator (driver) to recover situation 

awareness after relinquishing control to an automated system. Some of the 

most prominent issues related to S.A. recovery are attention tunnelling, 

change blindness, and limitations on humans' working memory capacity. The 

barriers imposed by the transition of control might exceed drivers' 

capabilities to acquire the ideal amount of information to perform an optimal 

response to the given scenario (Goodrich & Boer, 2003). Gold et al. (2013) 

provided evidence of the barriers imposed by the transitions of control, when 

reported higher crash probabilities and higher lateral acceleration on 

transition scenarios with shorter times for drivers to respond to the risky 

transition of control. 

 

7.2.2 Risky decision-making and selective information bias 

Due to the barriers for situation awareness recovery described above, 

drivers might have to prioritise certain visual information over others to 
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perform a transition of control (Goodrich & Boer, 2003). This arbitrary 

information selection may increase variance in drivers' response to 

transitions of control and ultimately compromise drivers' safety. Louw et al. 

(2016) present empirical evidence to support such an idea by showing in a 

driving simulator experiment that drivers presented different outcomes to a 

safety-critical transition of control based on how early and continuously they 

gaze towards the road centre. According to the authors, the drivers who 

avoided a forward collision had an early and constant stream of fixations to 

the road centre. On the other hand, the drivers who crashed in the same 

scenario had a lower average fixation percentage to the road centre during 

the early stages of the transition process, with a sharp increase in the 

attendance to that area after ≈3 seconds. Their result suggests that drivers 

who could spot the hazard early had time to look for potential solutions for 

the situation at hand, indicating a higher probability of avoiding the 

accidents. However, their study focused the analysis on a statistical 

comparison between the groups of gaze behaviour based on the take-over 

outcome. Their results provide no further explanation about how this 

information was used in the take-over process or if other elements of drivers' 

gaze behaviour are also responsible for a safer transition of control. It is not 

clear if their pattern of visual information acquisition affected how quickly 

drivers react to a take-over, nor how valuable specific information sources 

are for the process of critical take-over. 

As pointed out in our previous study (Gonçalves et al., 2019.a), evidence 

accumulation models (EAMs) may be a possible way to address the gaps in 

the literature presented above. EAMs are decision-making models capable 

of quantifying psychometrical variables responsible for the decision process. 

EAMs work under the assumption that evidence that supports an individual 

decision is accumulated over time until it reaches a threshold that triggers 

the human response (Ratcliff et al., 2016). This approach is not only capable 

of representing and quantifying elements that may interfere in the decision-

making process but also integrate gaze pattern data from experimental 

datasets to evaluate how the visual attendance to some aspects of the 

environment may affect the action time and choice selection of an individual 

in a risky decision-making process.  Gold & Shadlen (2002) suggested that 

more valuable information sources, once sampled, would lead to a faster 

accumulation of evidence leading to quicker reaction times. Empirical 

evidence can be found in the literature to support such assumptions, as in 

Usher & McClelland (2001), who developed a leaky accumulator model 

capable of accounting for the value of each information provided to the 
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decision-maker to control their rate of evidence accumuation. Smith (1995) 

have demonstrated that different visual information presented to the 

decision-maker (varying noise and information coherence) affected their 

reaction time in simple decisions. Similarly, Krajbich et al. (2011, 2012) 

successfully used gaze fixation data in evidence accumulation models to 

estimate shop buyers' decision-making time and biases towards the 

purchase of certain supermarket products in a multiple-choice selection 

process. 

Despite the EAMs' evident capability of depicting the decision-making 

process, when using gaze as a variable to control the drift rate, the models 

presented previously were not designed to the context of a transition of 

control. Most of the models cited above (Gold & Shadlen, 2002; Usher & 

McClelland, 2001; Ratcliff et al., 2016) were built based on abstract 

laboratory tasks, with no direct correlation to a real-world human task. This 

issue may compromise the direct application of such models on an applied 

scenario, such as modelling human responses to safety-critical transitions of 

control. A wrong application of models could lead to biases in the 

interpretation and unreliable results (Dullith et al., 2019). It is not clear from 

the state of the art of the literature on this field whether and how gaze data 

can be used to explain drivers' decision time and response to a collision-

avoidance scenario, following a transition of control from level 3 automation. 

 

7.2.3 Current Study 

To address the literature gap presented in the previous section, the study 

reported in this document developed one EAM tailored to the specific 

scenario of safety-critical transitions of control from conditional automation, 

in order to understand how different information sources and gaze behaviour 

strategies could be linked with faster transitions of control and crash 

avoidance in such scenarios. The model developed was used to fit data from 

the EU-funded AdaptiVe project (Grant Agreement No. 610428) as a post-

hoc analysis of an experimental dataset. The research questions proposed 

for this study were: 

1. Can an EAM of which the evidence accumulation rate is determined 

by visual attention explain takeover response times in the decision-making 

process of a safety-critical transition of control? 
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2. Are there any differences between different information sources in 

how much they contribute to the evidence accumulation ratio in a decision-

making process of a safety-critical transition of control? 

3. If so, how much each visual information source contributes to the 

evidence accumulation process once sampled? 

It was hypothesised that drivers' gaze could be used to determine drivers' 

response times during safety-critical transitions of control. The initial 

assumption was that early attendance to the road centre would be the best 

predictor of a fast decision-making process, leading to higher probabilities of 

crash avoidance (as suggested by the findings from Louw et al., 2016). 

7.3 Method 

7.3.1 Model description 

Due to the nature of safety-critical transitions of control, the model described 

in this paper was based on the conceptual approach reported in Gonçalves 

et al. (2019.a), adapting the model developed by Krajbich et al. (2011, 2012 

) for the specific scenario of this study. We opted to adopt a single-

alternative choice model, where every possible collision-avoidance 

manoeuvre (e.g. brake, brake, and steer, steer only) of the driver is 

considered to be the same "reaction" choice selection, and the crash 

outcome is considered to be a no choice selection. As in Krajbich et al. 

(2011, 2012 ), the slope of the evidence accumulation process is dependent 

on the location of drivers' gaze at the moment in time the evidence is 

accumulated, corresponding to our assumption that different information 

sources (or Areas of Interest, AoI) may be more informative towards the 

decision than others. The evidence value starts at 0 for each trial, then 

increases over time in a Markov Gaussian field process until it reaches a 

value of 1 (threshold, 𝑎) when the choice is made. The speed of each trial's 

decision-making time (DMT) is then dependent on drivers' gaze pattern plus 

a white noise inherent to the evidence accumulation process. 

The main difference between the model proposed here and the one 

developed by Krajbich et al. (2011, 2012 ) is that their model describes a 

multiple-choice scenario, where there is competing information, and the 

evidence accumulation fluctuates between 1 (choice a) and -1 (choice b). In 

our model, all the information sources collaborate in different magnitudes for 

the decision to takeover control, in a consistently positive accumulation 
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process (as suggested in Gonçalves et al., 2019.a), as in the formula (see 

Figure 7.1 for a graphical representation): 

1. 𝐸𝑡 =  𝐸𝑡−1 + 𝑑 ⋅ 𝑣𝑎𝑜𝑖𝑡
+ 𝜀𝑡 

2. 𝐸𝑑𝑚𝑡 = 𝑎 = 1  

Where 𝐸𝑡 is the amount of evidence accumulated in a given time (𝑡). 𝑣 is a 

set of parameters ranging from 0 to 1 representing the value of the 

information source (AoI) that speeds or slows down the evidence 

accumulation process. 𝑑 is a parameter scaling the 𝑣 values to an evidence 

rate in the accumulator's units of evidence. 𝑎 is the threshold for the decision 

(fixed as 1, following previous literature recommendations, Krajbich et al. 

2011, 2012). 𝜀𝑡 is the white noise for the accumulation process, generated 

from a gaussian distribution with mean 0 and standard deviation 𝑑 ⋅ 𝜇. 

 

Figure 7.1 Schematic representation of the developed EAM 

The black line represents the drift rate, controlled by 𝑣𝑎𝑜𝑖𝑡
, while the 

grey line represents the real accumulation process, which is affected by 
noise, coming from the gaussian distribution  ε. 

The iteration of the model described in this paper follows the assumptions 

and abstractions described below: 1) It is assumed that the evidence 

accumulation rate stays the same for each AoI throughout the trial. 2) As the 

model calculates DMT based on the time collected from the gaze data, this 

approach assumes that evidence is being accumulated constantly 

throughout the decision process, and Ignores that saccadic movement or 

non-fixation gaze could not represent the actual acquisition of information 

(as suggested by Posner, 1980). 3) For simplicity, this model assumes that 
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there are no additional response delays beyond the evidence accumulation 

time, i.e., the “non-decision time” in the model is zero.” 

 

7.3.2 Experimental dataset 

The dataset used for the model fitting was part of the AdaptiVe Project, 

collected by the University of Leeds. The dataset was initially designed to 

another study already published  (see Louw et al., 2016, 2017, 2018) which 

aimed to understand  how drivers acquire visual information to transition 

control from vehicle automation, varying the level of drivers’ engagement 

with the driving loop (as defined by Merat et al., 2019) and the criticality of 

the scenario. The similarity between the original study’s goal and the 

research questions proposed in this paper  allowed us to use the same 

experiment design for a post-hoc analysis, complementing the original 

studies' findings to which the experiment was designed. 

75 Participants (45.3% female) were aged between 21-69 years were 

recruited to participate in the study in the University of Leeds Driving 

Simulator. All participants were usual drivers (driving at least twice per 

week), with a mean annual mileage of 8290, and at least three years of 

driving license. All participants had normal or corrected to normal vision. 

 

7.3.3 Experimental design and scenario 

The experiment was composed of six automated car-following events, in a 

highway scenario, where drivers needed to take over control from the 

automation due to a system limitation. A 5x2 repeated measures design was 

used. As a between-subject factor, the experiment design manipulated 

drivers’ engagement with the loop (called OOTL manipulations; Louw et al., 

2016), by using a fog, occluding totally or partially their field of view, and the 

presence of a secondary task, in these combinations: 1) no fog; 2) light fog; 

3) heavy fog; 4) heavy fog + quiz; 5) no fog + n-back. As a within-participant 

factor, the criticality of the scenario was controlled by the presence of a 

decelerating lead vehicle in two of the events (events 2 and 6), and a 

failure/delayed transition of control in such cases would lead to a crash 

accident. 

Since the model proposed by the current study was designed only to 

analyse driver's decision-making process during a safety-critical transition of 

control from a conditionally-automated vehicles, part of the data from the 
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original dataset was removed. According to SAE’s definition (SAE, 2021) 

conditional automation allows drivers to deviate their attention (visual and 

cognitive) away from the driving task, until a transition of control is 

requested. For this reason, only trials that belonged to the heavy fog and 

heavy fog + quiz conditions were selected from this dataset (30 participants), 

as they were the only two conditions which impeded the driver to sample 

information about the road environment, simulating a L3 automation 

distracted driver. Also, only the safety-critical events (trials) were used for 

this the model fitting (2 trials per participant). One participant had to be 

removed due to a technical failure on the steering wheel, and three others 

due to poor eye tracking gaze quality. Since our model only aimed to 

account for action time, we removed all trials that resulted in a crash 

(suggesting that no action was taken), resulting in a final sample size of 31 

trials. To account for the crash trials, a separated logistic regression analysis 

was performed, aiming to identify which factors of the drivers’ gaze could be 

related to their lack of reaction. 

For both conditions used in this specific analysis (heavy fog and heavy fog + 

quiz), a heavy fog occluding participants' field of view appeared as soon as 

they turned on the automation, making it impossible for them to sample 

information on the road environment. For the heavy fog + quiz condition, 

participants also had to play a quiz game for as long as the automation was 

engaged. The critical scenarios were characterised by a sudden brake of a 

lead vehicle, which decelerated at a rate of 5 m/s ², with a 3s time-to-

collision (TTC). At the moment the lead vehicle starts braking, the heavy fog 

quickly disappears, allowing the driver to see the brake lights and the hazard 

in front. Also, an uncertainty alert is triggered on the human-machine 

interface of the automated system (HMI), located in the instrument cluster of 

the vehicle, at the same time the fog was resumed, alerting the participants 

to the potential danger (as described in Figure 7.2). There were no other 

vehicles or obstacles in the side lanes during the safety-critical events. For a 

more detailed description of the experimental design, see Louw et al. (2016). 
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Figure 7.2 Schematic representation of each discrete event in the 

experimental drive. A–D represent various phases of the drive 
(Source: Louw et al., 2016) 

 

7.3.4 Research variables 

The main variables used from the experimental dataset for the fitting and 

validation of the model were drivers' decision-making time (DMT) and their 

total gaze distribution among different areas of interest (AoIs). For this 

analysis, DMT was calculated as the time between the end of the OOTL 

manipulations (heavy fog) until the time drivers engaged with the take-over 

process. Drivers' engagement with the takeover process was defined as the 

first non-negligible evasive action performed by the driver in the scenario. In 

the experimental scenario's context, the non-neglibible evasive actions 

available to the driver were either braking, steering, or a combination of both. 

The values for the trials’ DMT were extracted from the study reported in 

Louw et al. (2018), which observed each trial individually, and the point of 

drivers engagement with the takeover process (DMT) was manually 

annotated according to the criterion described above. The extracted DMT 

acted as the ground truth to check the model's goodness of fit through Monte 

Carlo simulations using different model parameters. The DMT was 

calculated in frames at a ratio of 60Hz, to match the values from the eye-

tracking data. 

Drivers' eye gaze distribution among different AoIs was extracted from the 

V.4.5 Seeing Machines faceLAB eye tracker system installed in the 

experimental setup, recording drivers' gaze coordinates at a rate of 60Hz. 

The drivers' field of view was divided into five main AoIs, in a way that for 

every time-step of the eye tracker's gaze capturing, it was recorded which 
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information source drivers were looking at. The division of AoIs followed the 

process reported by Carsten et al. (2012; see Figure 7.3 for a graphical 

representation of the AoI division). 

 

Figure 7.3 Schematic representation of the areas of interest. Based on 

Carsten et al. (2012) 

Each cross-section of the figure separated by the red lines represent 
one of the AoIs used in this study. The centre is represented by the 
circular area where the picture of a lead vehicle is located. The left and 
right AoIs are represented by the area where the wing miirors are 
located. The top AoI is represented by the area where the rear mirror is 
located. The bottom AoI is represented by the area where the HMI and 
the vehicle’s cockpit are located. 

The first AoI defined in this process was the central region (called "Centre" 

throughout this document), which contained drivers' view of the road ahead 

and the lead vehicle. The centre region was calculated as a 6° circular area 

located in the mode of each participant's gaze fixations (see Victor, 2005) 

during the initial manual section of each drive (before the fog covered their 

field of view). Fixations were calculated as the participant's gaze's 

permanence in a 1° radial area for at least 150 ms, consistent with 

publications on time-based fixation detection algorithms (Salvucci & 

Goldberg, 2000). The other four areas were defined as equally distributed 

diagonal sections of the drivers' field of view, using the road centre as a 

reference. The top AoI (Top) contained all the information about the far road 

and drivers' rear-view mirror. Both the right-side (Right) and left-side (Left) 

AoIs contained visual information about their respective side-lanes, wing-

mirrors as well as drivers' possible shoulder checks. The bottom AoI 

(Bottom) contained the visual information from the close elements in the 

road ahead and the information on the vehicle's instrument cluster, such as 
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the speedometer and the automated system's HMI. As eye-tracking data is 

prone to noise and capture errors, all the missing data gaps smaller than 

0.5s were interpolated with the expected gaze location based on the 

adjacent data stream. 

 

7.3.5 Fitting and simulations 

As presented in the Model description section, the models' equation was 

composed of 7 estimated and one fixed parameter. The decision threshold 

parameter 𝑎 was fixed at 1, and estimated model parameters and their given 

range were d (0.0001 – 0.1), 𝑣𝑎𝑜𝐼 (0 – 1) for the 5 AoIs, and µ (0-1). The 

parameters' values were estimated through a random search algorithm, 

which tested the goodness of fit for different combinations of parameter 

values using Monte Carlo simulations.  

To account for the differences in each trial's gaze behaviour pattern, and 

also to account for the high dimensional search space of the parameters, we 

made the simplified assumption that all trials could be described 

probabilistically by the same model parameterisation. Based on that 

assumption, the fitting of each combination of model parameter was 

calculated separately  for each trial (as in Svärd et al., 2020), using the 

experiment participant’s gaze data to define the AoI location during the 

simulation for each point in time. In this process, each time step (𝑡) of any 

given simulation (measured in frames on a 60 Hz rate), the real trial's gaze 

location at the time 𝑡 was used as a reference point for the AoI location 

during the simulation (replicating exactly the real experimental trial's gaze 

behaviour). This AoI location reference then fed the accumulator model, 

using the equation 𝐸𝑡 =  𝐸𝑡−1 + 𝑑 ⋅ 𝑣𝑎𝑜𝑖𝑡
+ 𝜀𝑡, until the evidence value 𝐸 

reached 1, ending the simulation, returning the DMT = 𝑡𝐸=1. Since this 

evidence accumulation is a probabilistic process, even a perfect model 

would return responses both faster and slower than the observed ones. In 

the latter case, the model needs AoI input to drive it also after the observed 

DMT. One approach could have been to continue using the actual observed 

AoIs from the experiment, but since the AoIs after the observed DMT related 

to the driver’s performance of an avoidance response, we instead opted for 

creating artificial gaze data, closely replicating the statistical properties of the 

observed gaze data during the pre-DMT time; see the next section for full 

details. The model was coded in the Python 3.9 environment, using the 

StatsPy, and SciPy tools (Python Software Foundation, 2021). 
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7.3.6 Monte Carlo simulations of eye-tracking data 

In an extensive literature review on the topic of gaze behaviour and visual 

attention distribution modelling, Borji & Itti (2013) reported several successful 

attempts and strategies utilised to depict and replicate the overall pattern of 

human eye movements, based on the observation of real human behaviour 

to a same given scenario. Boccignone & Ferraro (2004/2011) demonstrated 

that random visual information sampling behaves in a Levy Flight pattern 

(Checkin et al., 2004), where the duration of gaze on each clustered location 

follows an exponential distribution. The transition to the next cluster follows a 

gaussian Markov field (see Liu & Salvucci, 2001 and Gonçalves et al., 

2019.b for successful applications of Markov chains to describe gaze 

transitions). Krajbich et al. (2011, 2012 ) also used a similar process to 

generate the simulations for their drift-diffusion models. 

Based on the concepts presented above, we developed one algorithm that 

extracted parameters from the eye-tracking dataset and simulated a stream 

of data points of any given length with similar gaze distribution density 

among AoIs as in the real gaze data. The simulation started with the virtual 

participant looking to a given AoI a (from the 5 AoIs previously defined). 

Every time a simulated participant gazed one AoI a, the duration of the 

simulated gaze in a was randomly assigned following an exponential 

distribution with a given ʎ𝑎. Once the simulated driver reached the 

randomised limit of gaze duration, their gaze location moved to another AoI 

b, where the probability of the transition a→b followed a binomial distribution 

defined p(b|a).  Considering this process, a total of 5 ʎ𝑎 (one for each AoI) 

and 20 p(b|a) (one for every combination of a and b) were estimated for the 

Monte Carlo simulations, based on the maximum likelihood estimators 

(MLE) extracted from the experimental. 

The Markov Chain gaze transition probabilities 𝑝 (𝑏|𝑎) were based on the 

sample mean probability of every possible transition a → b across AoIs. It is 

assumed that every transition a→b followed a multi-dependent binomial 

distribution, where: ∑ 𝑝(𝑏|𝑎) = 1𝑏≠𝑎
𝑏=1 . The ʎ𝑎 values for the exponential 

distributions which generated the time permanence of the gaze in a given 

AoI were calculated as 1/sample mean gaze duration for each AoI. 

 

7.3.7 Random search and parameter selection process 

A random search is an algorithm that receives as entry values the range in 

which the parameters to be estimated can vary and iteratively tests different 
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combinations of parameter values within the given range and checks how 

well each combination can generate simulation outputs that fit the real data 

(Bergstra & Bengio, 2012). This process is repeated a given number of 

times, and the combination of parameter values that returns simulations with 

the best goodness of fit is selected. 

The algorithm developed for this study tested 100,000 possible combinations 

of parameter values for the evidence accumulation model, drawn at random 

from uniform distributions over the parameter ranges. The metric used to 

evaluate the goodness of fit was the log-likelihood values of the model 

output. The log-likelihood was calculated using the following process: 

1. For each experimental trial (𝑖) and set of randomised parameters (ℙ), 
a total of 10,000 Monte Carlo simulations were generated, and the 

resulting numerical distribution of DMT for the trial (denoted as 

𝐷𝑀𝑇𝑠𝑖𝑚) was stored. 

2. A histogram of the simulated 𝐷𝑀𝑇𝑠𝑖𝑚|ℙ, 𝑖 was made, and the model-

predicted probability of a random datapoint to fall in each bin was 

calculated (𝑝(𝐷𝑀𝑇𝑠𝑖𝑚  ∈  𝑏𝑖𝑛 |ℙ, 𝑖)). The width of the bins for the 

histogram was set to 0.2s to be consistent with previous similar 

literature (Krajbich et al., 2011, 2012) and account for the precision 

needed on a collision-avoidance scenario. 

3. The log-likelihood of the model for a given trial (𝑖)  and parameter set 

(ℙ) was calculated as logℓℙ,𝑖 = log(𝑝(𝐷𝑀𝑇𝑠𝑖𝑚  ∈  𝑏𝑖𝑛 ∋

 𝐷𝑀𝑇𝑟𝑒𝑎𝑙|ℙ, 𝑖)), where 𝐷𝑀𝑇𝑟𝑒𝑎𝑙 is the value of the real DMT observed 

on the referent experimental trial (𝑖).  

4. The final model's log-likelihood value for a given parameter set (ℙ) 

was calculated as the sum of the log-likelihood of the fitted models for 

every trial (𝑖),  as in the formula   logℒℙ =  ∑ logℓℙ,𝑖
𝑁
𝑖=1 . 

7.4 Results 

The final output of the 100,000 iterations of the search process yielded a set 

of parameter values that generated a log-likelihood of -78.854. The constant 

parameter values that were used to generate the simulation output 

described above were d = 0.014 and µ = 0.536. The dynamic values for 𝑣𝐴𝑜𝐼  

can be seen in Figure 7.4, while Figure 7.5 shows a scatterplot of the 

combination of different parameter values, and their respective fitting values. 
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Figure 7.4 Parameter values for each AoI 

 

 

Figure 7.5 Scatter plot of parameter sets for model fitting 

Each axis represents the values for each of the model parameters, 
while the colours (ranging from red to blue) represent goodness of fit of 
the parameter set, where blue dots represents better model fits. 

To test whether or not the addition of gaze behaviour data can be used to 

better explain drivers' DMT on transitions of control from conditional 

automation, followed by a forward-collision avoidance scenario, the 

performance of the model presented above (referred to in this paper as 

"gaze-based DDM") was compared to a standard single-alternative drift-
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diffusion model (Ratcliff et al., 2016), which assumes that evidence 

accumulation rate is independent of visual attention. According to 

Vandekerckhove & Tuerlinckx (2007), this type of drift diffusion model can be 

built based on 3 main parameters: 1) µ accounting for the mean of the gaussian 

function that defines the evidence accumulation process,2) 𝑠 accounting for 

the standard deviation of the same gaussian function and 3)  ξ as the mean 

for another gaussian distribution with fixed standard deviation of 0.1, which 

served as a factor to accounting for the across trial variability, altering the 

values µ for each simulated individual. The parameter selection and 

goodness of fit calculation conducted for this second model (nominated in 

this paper as "standard DDM") followed the same procedures used for our 

gaze-based DDM (described in sections 7.3.1 and 7.3.5). The performances 

of the models were compared using the Akaike Information Criterion, 

corrected for a small sample size of 31 trials (AICc), which evaluated the 

balance of their goodness of fit, in relation to their model complexity, in terms 

of the number of fitted parameters (Hurvich and Tsai, 1989; Sugiura, 1978). 

The AICc relative likelihood was used as the statistical criterion for model 

evaluation (Burnham & Anderson, 2004), under the null hypothesis that both 

models have equal probabilities of minimising information loss. Table 7-1 

presents the results of the AICc tests and Figure 7.6 shows a visual 

representation of the comparison between the simulation outputs for both 

models and the real observed DMTs for each trial of the dataset. 

Table 7-1 AICc values for comparison between models 

Model N K AICc 𝒍𝒐𝒈𝓛 ΔAICc Avg. 

Error 

Relative 𝓛  

Gaze-based 

DDM 

31 7 164.482 -78.854 0 0.497s 

3.024e-05 
Standard 

DDM 

31 3 185.295  -91.519 20.813 0.914s 
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Figure 7.6 Graphical representation of both model's simulation output 
per experimental trial, sorted by observed DMT 

The violin plots represent the distribution of simulated DMTs for each 
trial. The green line represents the real DMT for the experimental trial. 
As the Standard DDM does not account for any variation across trials, 
only one violin was plotted as the reference for the whole dataset. 

The results of the relative likelihood test, presented above, showed that 

significant differences exist between both models. Further comparisons 

between the respective models’ fittings suggest that the inclusion of gaze 

data as a parameter in a drift-diffusion model increases its performance, as 

the gaze-based DDM had significantly lower AICc values. The most 

noticeable advantage of the gaze-based DDM is the reduction on the 

output's average prediction error (0.417s more accurate than the standard 

DDM). One possible explanation for this reduced prediction error, as can be 

seen in Figure 7.6, is that the way for the standard DDM to account to the 

across trial variability was to increase the noise in the accumulation process, 

resulting in a broader distribution for the simulation values, that can cover for 

the whole range of real DMT values of each trial. On the other hand, the 

gaze-based DDM was able to adapt the probability distribution of the 

simulated DMTs for each trial, suggesting that it was able to explain specific 

nuances of what constitutes drivers' decision-making process and reduced 

potential outliers, generated from the gaussian noise function. 
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7.4.1 Trials with observed response near model distribution 

mode 

69% (21 trials) of all model responses had an individual log-likelihood fitting 

greater than -2.5, which could be considered an accurate prediction of the 

scenario (the prediction error for over 50% of the Monte Carlo simulations 

were within ± 0.4s of the real response in the experimental trial). Figure 7.7 

shows the model response plots for two of these trials (illustrating a fast (a) 

and a slow (b) trial case), demonstrating the evidence accumulation process 

and the simulated DMT distribution. 

a 

 
b 

 

Figure 7.7 Graphical representation of the model output 
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Figure a shows an example of a fast reaction and b a slower case 
among the experimental trial. For each figure, the first subplot shows a 
histogram of DMT distribution for 10,000 simulations; the second 
subplot shows the graphical representation of the evidence 
accumulation process for the respective simulations, and the third 
subplot shows the trials' gaze behaviour, used as a parameter for the 
evidence accumulation. The vertical black line in the subplots 
represents the DMT of the real experimental trial. 

By comparing Figures 7.7.a and 7.7.b, a reduction can be seen in the drift 

rate of the evidence accumulation process for the simulations in 7.7.b. By 

looking at the trial's gaze distribution, it is noticeable that this reduction 

occurred during the times when the gaze location was falling on AoIs with 

low importance values in the model parameters (e.g. left and top, between 

2.5-3.5 s), explaining the higher average DMT, when compared to the 

simulations in 7.7.a. 

 

7.4.2 Trials with observed response in model distribution tails 

Across the 31 trials, there were a total of 10 (31%) cases that where the real 

trial’s DMT was located near the model distribution tail (log-likelihood below -

3, indicating that the predicted DMT values for more than 50% of the 

simulations for the trial is higher than ± 0.4s). The distribution between 

positive and negative average prediction errors across the 10 cases was 

consistent (4 negative, 6 positive). Figure 7.8 shows the model response 

plots for two trials, which were included in this group (illustrating a positive 

(a) and a negative (b) average prediction error for the trial case). 

a 
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b 

 

Figure 7.8 Graphical representation of the model output 

For each figure, the first subplot shows a histogram of DMT distribution 
for 10,000 simulations; the second subplot shows the graphical 
representation of the evidence accumulation process for the respective 
simulations, and the third subplot shows the trials' gaze behaviour, 
used as a parameter for the evidence accumulation. The vertical black 
line in the subplots represents the DMT of the real experimental trial. 

To look for potential bias and consistent errors caused by how long it took 

for the trials to takeover, linear regressions between the trials' DMT and the 

model's absolute prediction error were made (Figure 7.9). Results showed 

no significant correlation between those two variables [F(1, 31) = 1.364, 

p=.253, 𝑟2=.046], suggesting that the model's prediction error distribution 

was consistent across each trial's DMT. 
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Figure 7.9 Linear regression between trial's DMT and the model's 
absolute predicted error 

 

7.4.3 DMT simulations for the crash trials 

To account for the trials that resulted into a crash, excluded from the 

parametrisation and fitting of the Gaze-based DDM, a series of 10,000 

simulations were ran for each of the crash cases in the dataset, using the 

parameters selected above. Since the crash cases have no RT values, we 

could not directly to measure the accuracy of the model, and its capabilities 

to predict crash outcomes. To compensate for that issue, we used the 

distribution the simulated response times for the 31 non-crash scenarios and 

compared with the simulated response times from the dataset of the crash 

scenarios. Figure 7.10 shows a histogram with the distribution of the 

response times for the simulated response times, using the gaze data from 

the crash scenarios. 
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Figure 7.10 Histogram with the distribution of RTs for the crash 

scenarios 

 

By observing the histogram above, we saw that the mean DMT for the 

simulation of the crash scenarios is 6.49 (SD = 1.59s), which is significantly 

higher than the experiment’s scenario time-to-collision (5s), and is higher 

than the mean DMTs for the simulations based on drivers who avoided the 

crashes, in the experiment (M=4.97, SD = 1.15s). This result suggests that 

the model is able to spot slower reactions on driver’s outcomes (that would 

arguably lead to a crash), using drivers’ gaze behaviour patterns. 

7.5 Discussion and conclusion 

The model's output generated reasonably good fits to the real data, being 

able to predict drivers' DMT with an error margin below 0.5s for most cases. 

The AICc scores indicate that the drift-diffusion model, including drivers' 

gaze behaviour, does outperform a well-accepted model in decision-making 

literature (Ratcliff et al., 2016), which assumes that all AoIs provide equal 

amounts of information supporting the takeover decision . Another aspect 

that should be noted is that this model has not considered specific drivers' 

characteristics such as experience, age, gender, or aggressiveness profile to 

predict their DMT. This result suggests that drivers' decision-making to 

takeover control in a critical scenario may be explained with relative 

accuracy based on their visual information acquisition process (in 

consonance with the results reported by Svärd et al., 2020). This assumption 

is in line with studies on situation awareness recovery (Gartenberg et al., 
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2014), which suggests that the process of S.A. acquisition is composed 

mainly of a visual search task. The results are also aligned with previous 

studies on the field of collision avoidance and hazard perception (Crundall et 

al., 2003; Pradhan et al., 2009), which suggested that safe drivers are not 

the ones capable of quick reactions and reasonable steering wheel control, 

but rather the ones capable of efficiently scanning the environment to 

acquire the information they need to avoid potential threats. 

By observing the parameter values for 𝑣𝑎𝑜𝑖 in the 5 AoIs (Figure 7.4) it can 

be noted that two of them (centre and right) are notably higher than the 

others, suggesting that they are more informative, hence, providing faster 

evidence accumulation and thus faster reactions to the scenario. The lower 

value of the information on the bottom AoI (where the system HMI was 

located), in comparison to the centre (where the potential crash hazard was 

located), and the right (where the side mirror and potential collision-

avoidance route was located) reinforces the idea that deviating drivers' 

vision away from the hazard to look to the inside of the vehicle (probably to 

check the system information or the uncertainty alert on the HMI) might be of 

little relevance for the take-over process, potentially even increasing risk in 

critical scenarios as noted in section 7.4.3. It must be noted that system 

information as well as a clear representation of the current status of the 

automation, and their respective alerts are undoubtedly crucial for the 

drivers' understanding of the system behaviour and their perceived usability 

of the product (see Beller, Heesen & Vollrath, 2013; Naujoks et al., 2018). 

However, this information may not be relevant for a critical transition of 

control, in which drivers must be focused on the hazard ahead and gain 

awareness of the environment.  

The high value for 𝑣𝑐𝑒𝑛𝑡𝑟𝑒  was expected, given the results  reported by Louw 

et al. (2016), where drivers who were able to avoid a crash outcome had an 

earlier and constant attendance to the road centre. It is evident that a good 

notion about an approaching obstacle ahead and its consequent looming 

effect might be relevant for their response to the scenario (Xue et al., 2018; 

Louw et al., 2018). However, the model output suggests that the right AoI is 

equally or more important for a quick DMT.  Considering the experiment 

scenario, where there were no potential other obstacles on the side lanes, 

we can assume that drivers who observed the lateral lanes could quickly 

figure out how to perform a collision-avoidance manoeuvre, which is in line 

with the behaviour observed in the experimental data, since all drivers who 

could avoid the crash used a combination of brake and steer to the side 
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lane. This interpretation suggests that it is not only important for the driver to 

detect early on the presence of the hazard ahead (as suggested by Louw et 

al., 2016), and its approaching speed to define their decision time budget (as 

suggested by Xue et al., 2018), but also to efficiently scan the conditions of 

the environment, in order to acquire relevant information about how this 

threat can be avoided. 

Considering the trials which the real DMT was located near the tail of the 

simulation distribution, as could be seen in Figure 7.8.a, regardless of the 

low values associated to 𝑣left and 𝑣bottom, some drivers were capable of 

quickly reacting to the scenario by mainly focusing on those two areas. One 

possible explanation for these results is that there is not one only solution to 

a collision-avoidance situation. As the scenario provided a very diverse 

solution space, it is possible that some drivers adopted different strategies, 

reaching a reasonable solution, relying on different information. This 

assumption also explains the wide spread of possible good fit parameters 

found on Figure 7.5. As the model presented in this paper generalises 

overall weight values for the importance of the information in each AoI, 

considering the overall distribution of DMTs across all trials, it is not sensitive 

enough to capture potential differences in drivers' collision avoidance 

strategies, a limitation to be addressed in future research. Another possible 

explanation for the observed result can be associated by the simple fact that 

DMTs are probabilistic by nature. As every predictor model is a simplification 

of a complex phenomenon, it is expected that some cases will present a 

poorer fitting due to its inherent randomness. The output of the model 

reported in this paper is also limited by the scenario condition used for the 

parameter estimation process, as gaze behaviour/information value is 

entirely scenario-dependent (Borji & Itti, 2013). The value of information 

sources may change in different critical situations. New studies are 

necessary to confirm the results presented above, applying similar methods 

on different scenario conditions and with different information presented to 

the driver. 

The contributions to this work for the state of the art of the field comes from 

a modelling perspective. The model can explain in a mechanistic way how 

visual information is used on the decision-making process of a transition of 

control. By assigning value for the different information sources on the 

process of evidence accumulation on a critical take-over, one can now 

understand how useful certain information is as a tool to prevent a critical 

situation. This can end up providing tools for future system designers, to 
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highlight certain information on their systems, and designing the vehicles 

accordingly. 
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8.  

Discussion and conclusions 

8.1  Research Outlook 

The main objective of the research described in this thesis was to investigate 

how the degree of drivers’ involvement in the decision-making and control 

loops of the driving task (as described by Merat et al., 2019), the kinematics 

of the scenario, and the information available in the road environment and 

the vehicle’s Human Machine Interface (HMI) affect the way drivers 

distribute their visual attention during the take-over process from different 

levels of vehicle automation. The end goal of this investigation was to 

understand whether or not driver takeover performance could be predicted 

using gaze patterns, establishing if certain gaze behaviour patterns are more 

likely to yield safer transitions of control from automation. 

The motivation for this research is based on the challenges related to 

drivers’ situation awareness recovery (Gartenberg, 2014), and their visuo-

motor coordination activities (Mole et al., 2019) during the take-over process, 

which sometimes exceeds users’ information processing capacity (Endsley 

& Kiris, 1995, Goodrich & Boer, 2003), especially in time-critical situations. 

This research assumes that by understanding drivers’ visual scanning 

patterns (Borji & Itti, 2013) during the transition process, it is possible to 

tailor the location and level of useful information from HMIs, to assist them 

with a safe and timely resumption of control. 

This research had, as its theoretical basis, the concepts of situation 

awareness (Endsley, 1995), and situation awareness recovery (Gartenberg, 

2014), aligned with the theories of risky decision-making (Edwards, 1954) 

and bounded rationality (Simon, 1972). The rationale behind this approach 

was to consider the process of transition of control from an automated 

vehicle as a risky decision-making process, where the decision-maker 

(driver) is under time pressure to respond to a take over request (TOR), and 

is, therefore, unlikely to be able to process all the information needed to 

make a fully rational decision. With that in mind, it can be assumed that 

drivers’ decision process is inherently biased by the information they were 

able to acquire before a transition (Orquin & Loose, 2013), therefore, 

yielding different safety outcomes, based on the driving scenario and 

circumstances. 
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This research performed post-hoc analyses of drivers’ gaze behaviour from 

the eye tracking data collected for four driving simulator experiments 

involving take-overs, which controlled:  

1) drivers’ involvement with the physical control loop of the task (Goncalves 

et al., 2020, Goncalves et al., 2019);  

2) drivers’ involvement with the decision-making cognitive loop of the driving 

task, as well as changes in the situation kinematics during the takeover 

process (Goncalves et al., 2022);   

3) presence of supportive information on the vehicles’ HMI (Goncalves et al., 

2022) 

4) a critical driving simulator scenario with drivers completely removed from 

the loop of the driving task, until the takeover request was triggered 

(Goncalves et al., under review).  

In terms of the methodological approach, descriptive data from drivers’ gaze 

behaviour was analysed as a time series, depicting gaze concentration in 

different areas of interest, while their attention shifts were characterised 

using Markov Chains (see Goncalves et al., 2019), estimating the probability 

for shifts of attention. To understand how drivers’ visual information 

acquisition was used in their decision-making process, this research made 

use of machine learning regression methods (see Goncalves et al., 2022), 

as well as drift diffusion evidence accumulation models (see Gonçalves et 

al., 2019; Goncalves et al., under review), that considered the real-time gaze 

location of each individual trial as a mediator of their evidence accumulation 

rate, assuming that certain visual information would be more relevant for the 

decision-process than others. 

The results provided knowledge about the impact of different takeover 

scenario specificities on the way drivers allocate their visual attention across 

the environment, during the transition of control from automation. The results 

also allowed the develop models to predict, with relative accuracy, drivers’ 

safety outcome of a critical takeover, based on their gaze patterns. , 

suggesting that certain aspects of the drivers’ gaze behaviour can be 

associated with a safer transition process. The next section outlines the the 

research questions posed in this research programme, and summarises the 

main results of this PhD, closing some of the gaps found in the literature. 
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8.2  Overview of the Research Questions 

This PhD addressed the 2 following research questions, and its 

subquestions: 

• How are the competing demands of visual information prioritised 

during drivers’ transition of control from vehicle automation? 

o What is the effect of drivers’ engagement in the motor control 

and cognitive loops of the driving task, on their visual attention 

allocation patterns during transitions of control from vehicle 

automation? 

o How does the type of information presented on the HMI of an 

automated system affect drivers’ gaze behaviour during 

transitions of control from vehicle automation? 

o How does the scenario kinematics affect drivers’ gaze 

behaviour during transitions of control from vehicle 

automation? 

• How can the pattern of drivers’ visual attention allocation be 

correlated with their decision to transition control from vehicle 

automation? 

o What is a safe gaze behaviour pattern for successful 

transitions of control? 

 

8.2.1  How are the competing demands of visual information 

prioritised during drivers’ transition of control from vehicle 

automation? 

1. What is the effect of drivers’ engagement in the motor control and 

cognitive loops of the driving task, on their visual attention 

allocation patterns during transitions of control from vehicle 

automation? 

When it comes to drivers’ engagement in the motor control loop, the study 

described in Chapter 2 provides evidence that drivers in an automated 

driving scenario, who are therefore, not involved in the motor control loop, 

have, a higher average gaze dispersion across the environment, when 

compared to a manual drive. These results were expected and are in line 

with those of Mars & Navarro (2012), Mackenzie & Harris (2015), and Louw 

& Merat (2017) 

The study reported in Chapter 2 also found that any differences in gaze 

behaviour during automation, quickly converged as drivers’ role changed 
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from that of a passive observer to more of a controller, which in this case 

involved the potential need to intervene and perform an overtaking 

manoeuvre. Indeed, this study found that drivers’ glance patterns were 

similar to those found in manual lane changing tasks (Tijerina et al., 2005).  

This result supports the idea that top-down demands on strategic and 

tactical levels of driving (as defined by Michon, 1985) generally get priority 

for drivers’ visual attention resources, therefore diminishing any potential 

effects caused by the lack of need for physically interacting with the driving 

task. This finding is in line with previous literature in this field (see Louw, 

2017; Tivesten et al., 2015), which reports that differences in drivers’ gaze 

patterns quickly disappear after automation is disengaged, as drivers 

engage in a visual search task of their surrounding environment, to recover 

situation awareness for safe resumption of vehicle control. Results also 

suggest that, even when in automation (at least in such driving simulator 

studies), drivers are well aware of what information to look for, triggering a 

discretionary gaze behaviour (Trick & Enns, 2009) towards specific 

(informative) locations, based on their previous experience, as a top-down 

modulation of attention (in line with the models described by Borji & Itti, 

2013). 

As a counterpoint to the evidence provided by Chapter 2, the study 

described in Chapter 3 showed that despite the gaze concentration pattern 

for drivers in different levels of engagement with the motor control loop being 

similar, the sequence of attention shifts across the different information 

sources were significantly different. The results presented in Chapter 3 

showed that drivers who experienced an overtaking manoeuvre without 

physically interacting with the motor control aspect of the task (moving the 

steering wheel) presented a very erratic attention shift pattern, with a much 

higher frequency of saccadic movements across the different information 

sources (HMI, side mirrors, road ahead etc.), when compared to the 

condition where drivers needed to resume manual control of the driving task 

to change lane. This study also showed that those shifts of attention (as 

evidenced by gaze pattern), were not only erratic, but that drivers rapidly 

shifted their attention between two information sources, without fixating on 

the road centre. Considering our current understanding of visuomotor 

coordination (Land 1998, Wilkie & Wann, 2010), which defines guiding 

fixations as a fixation on the near field of view of the road centre, one can 

assume that drivers who were not engaged with the physical control of the 

driving task, were less likely to perform motor control-related gazes (i.e. 
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guiding fixations), even though they had a similar gaze concentration to the 

road centre as the drivers in the manual control condition . This assumption 

is in line with previous literature (Mckenzie & Harris, 2015; Mars & Navarro, 

2012), which suggests that gaze concentration towards the road centre is 

not necessarily related to the locomotion of the vehicle, but rather for 

monitoring the headway of a lead vehicle, in order to initiate an overtaking 

manoeuvre. As a conclusion, one can assume that lower levels of drivers’ 

engagement with the motor control loop of the driving task does not 

necessarily lead to an erratic gaze dispersion, but rather gives room for 

drivers to prioritise their attention towards strategic discretionary gaze 

patterns, using a top-down control of attention. 

When it comes to drivers’ engagement in the cognitive loop of the driving 

task, the study described in Chapter 4 (where part of the drivers needed to 

transition control from vehicle automation in SAE levels 2 and 3) showed 

that drivers who performed the experiment in SAE Level 3 automation (SAE, 

2021), showed a higher dispersion in gaze pitch, when compared to drivers 

in Level 2 automation. The believed explanation for such a result was that, 

given that drivers in level 2 automation were required to monitor the 

environment during the automated drive, they started the takeover process 

with a better awareness about the road environment, therefore, requiring 

less effort during the process of situation awareness recovery. In other 

words, as drivers were looking towards the road scene, they were aware of 

the relative position of the surrounding vehicles, as well their relative speed, 

in relation to the potential hazards. Since those information are essential for 

their decision-making process when taking over control of the vehicle, it is 

fair to assume that drivers’ needed to sample less additional information 

from the environment, as they received the takeover request. On top of that, 

the Markov chain analysis presented in Chapter 4 showed that drivers in 

level 3 automation had a much higher frequency of attention shifts across 

multiple sources of information (such as the instrument cluster, mirrors, road 

centre and the sides of the road). These erratic patterns of attention shifts 

and higher gaze dispersion are in line with the standard situation awareness 

recovery process, described by Gartenberg (2014). This relationship with the 

literature suggests that drivers with lower levels of situation awareness, 

despite presenting an overall similar gaze distribution over time, when 

compared with drivers more engaged in the cognitive loop of the driving task 

(acknowledging the findings from Louw, 2017), are required to acquire a 

larger volume of visual information. It is argued here that larger demands for 

visual attention may stress drivers’ short-term memory (as suggested by 
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Endsley & Kiris, 1995), requiring them to refocus their attention on different 

sources of information, leading to potential risks to the transition process. 

2. How does the type of information presented on the HMI of an 

automated system affect drivers’ gaze behaviour during 

transitions of control from vehicle automation? 

The study presented in Chapter 5 provided evidence that the more 

information provided on the HMI of an autonomous vehicle, the longer 

drivers spend looking at it, in the moments preceding a transition of control 

from vehicle automation (e.g. after receiving a takeover request). Based on 

literature on situation awareness, and situation awareness recovery 

(Endsley & Kiris, 1995; Gartenberg, 2014), one possible explanation for 

these data is based on attentional tunnelling (i.e. over focusing on a certain 

visual element/information due to limited information processing 

capabilities), due to the amount of extra visual information to be processed. 

Given the fact that drivers presented increased visual attention to the HMI of 

the vehicle whenever extra information was presented, and also its 

correlation with the decision-making time on the Chapter’s regression 

analysis, one can suggest that drivers tend to rely on visual information 

provided by the system, actively assessing it, whenever available. On the 

other hand, the study in Chapter 5 also showed that the manipulations of 

visual information on the vehicle’s HMI had no statistical effect on drivers’ 

decision-making time, to resume control of the vehicle and perform a lane-

change. At first glance, this result would go against studies by Naujoks et al. 

(2017), and Richardson et al. (2016), who suggest that active support from 

the vehicle’s HMI may improve drivers’ response times, as they are 

providing targeted, relevant information. In this study, results from the 

random forest regression model showed a good correlation between drivers’ 

decision-making time, and the proportion of their glances towards the vehicle 

HMI, if this information was actively supporting the driver in their decision 

(e.g., presenting a green arrow on the HMI, suggesting it was safe to 

perform a lane change). This result supports the idea that HMI information 

was relevant to drivers’ decision-making process, whenever sampled. It is 

then believed that the cause for the lack of improvement in drivers’ decision-

making time could have been caused by a secondary side effect of the 

experimental manipulation, not envisioned on the initial hypothesis. As 

pointed out by Ali et al. (2021), the presentation of additional information on 

the HMI of a vehicle does not mean that drivers will sample the new 

information instead of the road environment, but rather will add this as one 
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extra element on their information scanning routine. Therefore, even if the 

information on the HMI was beneficial to the driver, the lack of effect on 

drivers’ DMT may have been caused by the increase in visual information to 

be sampled. On the other hand, it is possible that additional HMI information 

may also present other benefits to the takeover process, not directly related 

to takeover time, such as reduction of stress, and increased trust. New 

studies are required to assess the subjective benefits of HMI manipulations 

to support the takeover process. 

By observing differences in drivers' gaze concentration across the different 

information sources in the experimental design reported on Chapter 5, it was 

noted that drivers’ proportion of visual attendance dedicated to the side 

mirrors was not affected by the information presented on the HMI of the 

vehicle. In other words, even when the system provided the same 

information as the road environment, drivers still looked at the mirrors, 

before performing a lane change, as they would in a fully manual drive 

(Salvucci, Liu & Boer, 2003). In fact, the only observed trade-off caused by 

the increased gaze concentration towards the HMI was a reduction of gazes 

to the road centre, which was already expected, since the drivers were not in 

active control of the vehicle (see Louw & Merat, 2017). A possible 

interpretation to a similar observed phenomenon was proposed by Ali et al. 

(2021), when affirmed that the presence of supportive information provided 

by connected vehicles may bring improvements on discretionary lane-

change manoeuvres (in terms of perceived safety, and vehicle 

controllability), however not necessarily to the speed of the decision process. 

The authors’ explanation was that drivers have not changed their visual 

scanning patterns to assess the vehicle’s HMI, but rather added this element 

on their visual scanning routine for lane change, on top of the usual 

information previously assessed. Based on the findings above, it is believed 

that the results on Chapter 5 suggest that the supportive information on the 

HMI of an automated vehicle indeed supported the driver on their decision, 

however, it does not get priority in drivers’ gaze behaviour patterns over the 

information provided by the road environment. Therefore, it is suggested that 

automated vehicle’s HMI should be designed taking into account potential 

side effects caused by visual distraction (i.e., deviation of visual attention 

resources to less relevant information sources), and on the fact that it will not 

be the main source of information for drivers’ decision, which will likely 

always be the road environment. 
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3. How does the scenario kinematics affect drivers’ gaze behaviour 

during transitions of control from vehicle automation? 

The initial hypothesis for the study described in Chapter 4 was that drivers 

with lower levels of situation awareness (brought about by an non-driving-

related task) would be more sensitive to bottom-up manipulations of visual 

attention, because they would not necessarily know where to focus their 

visual attention, after  a takeover request, and fixating on any potential 

hazard ahead (a phenomenon called weapon focus in Chapman & 

Underwood, 1998). Evidence for weapon focus on safety-critical transitions 

of control could be found in Louw et al. (2016). The authors reported that 

drivers who have a delayed attendance to the road centre during a transition 

of control with a potential obstacle ahead (like the delay observed on drivers’ 

in L3 automation on the study in Chapter 4) presented a steady focus on the 

vehicle in front, as they were about to crash. 

However, results from the study reported in Chapter 4 showed that drivers 

with low levels of situation awareness, whenever facing a potential hazard, 

presented a scattered gaze pattern, with a high index of gaze transitions 

between different information sources, such as the instruments’ cluster and 

the road centre. On the other hand, drivers with lower level of situation 

awareness that transitioned control without the presence of a potential 

hazard in front presented a steady index of fixations towards the road centre 

during the whole transition period. This result was the opposite of what was 

expected from the experimental data, as it is believed that the lack of 

bottom-up saliences of attention would lead to a higher gaze dispersion, 

triggered by an exploratory gaze routine (Trick & Enns, 2009). On the other 

hand, this finding is in line with the theories of Gartenberg (2014) and 

Endsley (2005), that suggests that the process of situation awareness 

recovery follows a memory for goals model (see Altmann & Trafton, 2002). 

In this line of thought, it is believed that the presence of potential hazards in 

drivers’ field of view, instead of attracting their gaze, as a bottom-up 

saliency, acted as a stimulus, triggering a more urgent, yet erratic 

discretionary scanning behaviour, so that drivers could accumulate as much 

information as possible, before transitioning control from vehicle automation. 

Regarding the cases with no potential hazard, since there was no threat 

during the transition process, drivers had no motivation to look for additional 

information, and continued looking to the road ahead, since they were about 

to resume control. 
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Complementing the findings above, the study described in Chapter 5 

showed that higher traffic density, in cases of higher uncertainty, like a lane 

change scenario, may indeed attract drivers’ gaze. The experiment results 

showed that during transitions of control followed by a lane change task, the 

closer the vehicles on the offside lane, the longer drivers tended to look at 

them. This result is in line with theories of Shaw (1986), suggesting that 

humans (in this case, drivers), tend to spend more time looking towards 

elements that may reduce the uncertainty on their decision-making. Since 

the task in hand on this experiment was a lane change, it is expected that 

drivers would spend longer times looking to the side mirrors, since it is the 

most relevant information source for a lane change task (Tijerina et al., 

2005). This result is in line with the findings above, suggesting that the 

kinematics of the situation may not only act as a bottom-up saliency of 

attention, but also trigger discretionary gaze behaviour to relevant 

information sources, based on drivers’ experience (as also suggested by 

Sullivan et al., 2012). 

4. Final thoughts on the first  main research question 

Considering the arguments presented for the three previous minor research 

questions, it can be concluded that the main factor affecting drivers’ gaze, in 

terms of a top-down structure of attention, is the task they are about to 

perform. The sections above showed that despite the other scenario 

conditions, drivers presented a similar gaze behaviour pattern for both 

transitions involving a lane change or forward-collision avoidance as the 

gaze patterns reported in the literature on similar scenarios (e.g. Tijerina et 

al., 2005). This conclusion advocates in favour of the fact that drivers will 

always act based on their previous experience with similar situations, 

triggering discretionary scanning routines, rather than changing their 

behaviour because they were not in active control of the driving task. 

On the other hand, the studies in this thesis were able to confirm that the 

lack of drivers’ engagement with the decision-making and control loops of 

the driving task may increase drivers’ demands for information, and 

therefore disperse their gaze across the environment. The last thing to be 

observed is that, despite the undeniable value of HMI information, drivers 

will always rely on the road environment as their primary information source, 

whenever they need to prioritise their resources to access information. 
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8.2.2  How can the pattern of drivers’ visual attention allocation 

be correlated with their decision to transition control from 

vehicle automation? 

1. What is a safe gaze behaviour pattern for successful transitions of 

control? 

Regarding whether certain gaze patterns can predict a safe transition of 

control from vehicle automation than others, the model described in Chapter 

7 was able to explain with relative accuracy (under .5 s average error 

margin) the individual differences in decision-making time for a safety-critical 

transition of control, based on the way drivers distributed their gaze across 

the environment. This finding suggests that some gaze patterns observed 

during and before transition of automation are safer than others, which is in 

line with past literature in the hazard perception domain, for manual driving 

studies (Horswill & McKenna, 2002; Crundall & Underwood, 2010).  

The best parametrisation of the model described above suggested that 

drivers were able to accumulate a significantly greater amount of evidence, 

when sampling information from the right side mirror, which therefore led to 

faster decision-making times. On the other hand, drivers who spent time 

looking towards the instrument cluster of the vehicle (either to the 

speedometer or the system’s HMI) or to the left/rear-facing mirror presented 

a lower evidence accumulation rate. It is believed that drivers who quickly 

assessed the information about the environment, and the possible collision-

avoidance manoeuvring options (such as checking if the offside lane was 

free, so they could steer out of the way and avoid the impend obstacle) were 

able to make a quick decision, yielding a higher probability of avoiding a 

crash. This result complements the findings from Louw et al.’s (2016) work, 

which suggested that drivers with an earlier visual attendance to the hazard 

in the forward view/road centre area, had a higher probability of performing a 

successful avoidance manoeuvre. The argument provided here is that it is 

not only important to quickly recognise the situation at hand, but also to 

manage a quick and targeted scan of the various solutions in the 

environment. In this scenario, that would be the possibility of entering the 

side lane, in order to avoid an impending collision with a lead vehicle.  

There are many cases in the literature which suggest that increased 

dispersion of gaze away from the road centre during the transition process 

may be detrimental for the takeover process (e.g. Zeeb et al., 2016). 

However, the arguments provided in Chapter 7 go against this idea, and 

suggest that if well-directed (and top down), gaze dispersion may be one 
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good indicator of effective situation awareness recovery, as well as 

signifying an efficient hazard perception strategy. 

2. Final thoughts on the second main research question 

The model described in Chapter 7 provided evidence to support the idea that 

drivers’ gaze patterns can be used to better understand and predict their 

decision-making process during transitions of control from automation, when 

compared to generalist models, that generate their sample of response 

times from Monte Carlo simulations drawn from a Gaussian distribution 

(Ratcliff et al., 2016). The output of the model also provided support for the 

theoretical consideration presented in Chapter 6, suggesting that there is a 

strong relationship between the process of situation awareness recovery 

(Gartenberg, 2014) and the process of evidence accumulation, which are 

necessary for a decision (Ratcliff et al., 2016). This result complements the 

applicability of the theories suggested by Krajbich et al. (2012), and Orquim 

& Loose (2013), that gaze behaviour can be considered as a factor that 

biases a risky decision-making process, under the assumption that certain 

information, once sampled, provides a higher rate of evidence accumulation 

towards a particular decision. The contribution for the work present in 

Chapters 6 and 7 also provide further contribution to decision-making theory 

computational models, as they provide evidence that gaze-based evidence 

accumulation models can be directly applied on the context of transitions of 

control in vehicle automation, due to is above-mentioned relationship with 

the process of situation awareness recovery. 

8.3  Methodological Considerations and Research 

Limitations 

8.3.1  Considerations about the effects of long-term experience 

with vehicle automation on drivers’ behaviour 

A consistent result found across the studies was that drivers’ gaze behaviour 

during transitions of control were generally similar to those seen for manual 

driving. This may be because vehicle automation is still a novelty for the 

majority of the population, and drivers’ behaviour has not yet adapted to the 

changes likely imposed by this technology. In addition, most of the 

participants had limited or no previous experience with this kind of vehicle. 

Therefore, the results reported might have been influenced by drivers’ lack 

of experience with automated vehicles. Previous research suggests that, in 

manual driving, automatised behaviour, based on habits, develops over the 
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course of years (see Charlton & Starkey, 2011), that might change as they 

gain more experience with automated driving. Also, it is possible that issues 

related to trust (Lee & See, 2004) might also have affected drivers’ 

interaction with system-related information, such that as drivers become 

more familiar with the behaviour of an automated vehicle, they change the 

way they access information during a transition process. In line with the 

arguments presented above, this research recommends studying how long-

term interaction with automated driving affects drivers’ gaze patterns. 

8.3.2  Considerations about scenario design and attentional 

saliences 

In Chapters 2-5, this thesis has discussed the effects of certain scenario 

manipulations on the way drivers distributed their visual attention across the 

environment. It is acknowledged that drivers’ visual attention is based 

inherently on the information available to them in the driving environment 

(Hayhoe & Ballard, 2009; Borji & Itti, 2013). Therefore, it is likely that, 

arbitrary choices -  such as the chosen HMI design of the vehicle’s 

dashboards - might have affected how much drivers relied on certain 

information sources to recover situation awareness. Therefore, future 

studies should explore how different types visual of information from an HMI 

(e.g. heads up displays, or different HMI designs) affect drivers’ gaze 

patterns during transitions of control. On the other hand, it is argued here 

that the bottom-up and top-down saliencies of attention were systematically 

manipulated to understand the overall impact of different situations on 

drivers’ behaviour. Therefore, even though the output of this research is not 

able to define a general structure for drivers’ attention selection during 

takeover, it is believed that the findings are transferable to the most 

situations where a transition of control is required. 

Another consideration that must be noted is that for chapters 4 and 5 the 

manipulation of “level of automation” directly manipulated their visual 

attention selection strategies. In the experiments described on both 

chapters, L3 automation was emulated by the usage of an NDRT (arrows 

task), that prevented driers from sampling visual information on the road 

environment. Considering this case, it is possible that certain results may be 

biased, in terms of raw observation of attention selection and gaze 

distribution for drivers in L3 vehicles, as a manipulation of attention selection 

was forced into them. Therefore, the results should not be interpreted as a 

real representation of a driver in an L3 vehicle, but rather of how a 

completely unaware driver would react to a takeover situation. As a 
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counterpoint, the evidence showed in these experiments depict an extreme 

case of an inattentive driver of an automated vehicle, which is likely to 

happen in higher levels of vehicle automation (see Carsten et al., 2012). 

Regarding Chapters 6-7, the model described in this thesis showed that 

glances towards the side mirrors generated a significantly faster evidence 

accumulation process for drivers’ decision-making than other information 

sources. This research acknowledges the fact that the value for certain 

information sources in a decision-making scenario is inherently dependent 

on the situation at hand. It is possible that if the side lanes were always 

occupied by other vehicles during the lane change, the value of information 

provided by the side mirrors might have been lower than that observed in the 

current study (described in Chapter 7). It is argued here that the fitting of the 

model was not intended to generalise the overall importance of all sources of 

information during a safety-critical transition of control, as it is a stochastic 

scenario by nature. Instead, the model fitting was developed as a proof of 

concept, to raise highlight the role and importance of different visual 

attention selection strategies, in drivers’ decision-making process. The 

output of this research does to directly influence the design of safer 

products, but provides knowledge and tools that may be used, in a case-by-

case approach, to understand how to design automated systems that are 

better suited for the human driver. 

8.3.3  Considerations about driving simulator experiments 

Due to the need on this research project to systematic manipulate factors 

that might affect drivers’ gaze behaviour during a transition of control, this 

research opted to use a 6-degree-of-freedom driving simulator as the source 

of experimental data. The control of the driving simulator environment 

allowed the experiments to specifically measure the effects of the studied 

variables with precision, without endangering the human driver. Also, when 

compared to real-world data, the output of an advanced driving simulator 

has higher resolution, and less noise in the data collection, which directly 

influences the output of the models described in this thesis. 

It is acknowledged that drivers’ behaviour in a driving simulator environment 

is not always directly equivalent to their actual behaviour on the real road (as 

suggested by Morando, 2018), especially in terms of risk taking behaviour. 

On the other hand, the University of Leeds Driving Simulator provides high 

levels of fidelity in terms of perceptual, and physical representation of a real 

world scenario. In addition, recent real world studies in this context have 
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found very similar visual scanning patterns to those observed in previous 

driving simulator studies. 

8.3.4  Considerations about post-hoc analysis of previously 

collected datasets 

As already stated previously, all the analysis reported in this thesis was 

made post-hoc, on previously collected data from past studies. Although 

similar, the research goals for those studies were not perfectly aligned with 

the ones proposed in this document. The choice for this approach was made 

due the fact that this research explored the effect of different systematic 

manipulations of takeover conditions on drivers’ structures of attention, 

during a takeover scenario. That said, it would not be feasible (or monetarily 

efficient) to perform many individual experiments over the course of a single 

PhD research. The Institute for Transport Studies (ITS) of the University of 

Leeds has at its disposal a vast array of past studies, which collected eye 

tracking data of drivers in transition of control scenarios, without necessarily 

using it. Therefore, it is believed that it was an efficient and novel way to 

answer the research questions and overcome the barriers imposed by the 

project’s scope. 

As a counterpoint, the approach presented several disadvantages, that 

should be discussed here: Since the experimental datasets used were not 

consistent amongst themselves, many research methods and metrics 

needed to be adapted from one experiment to the other, as the eye-tracking 

technology used for both experiments were different. This issue ultimately 

ended up limiting the interpretation of the outcomes of the data together, 

since the results were not directly comparable. Another issue that limited the 

comparison of the data is the fact that the researcher had no control on the 

experimental design choices for the datasets. With that, several statistical 

considerations had to be made to account for unintended experimental 

manipulations.  

To compensate for the consequences, this experience taught the researcher 

a valuable lesson about interpretation of findings: since the data was not 

exactly perfect for every single scenario, it was necessary to learn how far 

your results can go. For example, the limitations and assumptions 

highlighted by the model, presented in section 7.5, or the considerations 

about the first research question, in section 8.2.1. Those considerations 

were made, taking into account the limitations on the different study designs 

for the data collected, forcing the author to think about the work, and not to 

rely only on statistical comparisons to draw conclusions for the thesis. On In 
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the end, valuable theoretical considerations are drawn from this research, 

which relied on the abstraction power of the researcher to link distinct 

experiments, based on their own research questions. 

8.4  Contributions to the Field 

Human factors research on transitions of control from vehicle automation is 

constantly growing but is still a relatively new research area. Therefore, it is 

not yet clear how theories such as those related to situation awareness, and 

visuomotor coordination, interact with other work used in this context, such 

as decision-making theory, and models of visual attention selection. 

Nonetheless, the main contribution of the research reported in this thesis 

was to provide a broader understanding of how drivers use visual 

information to make a decision to take over from automation. With this 

knowledge in hand, it is believed that system designers may have better 

resources to develop human-centred products, taking into account the 

effects of their choices on drivers’ gaze behaviour. The following sections 

will discuss in detail how this research can contribute to each individual field 

of knowledge. 

8.4.1  Contributions to the experimental research field on visual 

attention during vehicle automation 

The output of Chapter 2-5 of this thesis provided in-depth considerations 

about how drivers’ visual attention selection is affected by the most 

prominent factors in the literature that may be related to the process of 

transition of control in vehicle automation (such as involvement with the 

decision-making and control loops, and the presence of information on the 

vehicle’s HMI).  The findings of this part of the research may contribute to 

future human factors studies in the field, by providing evidence of how 

attention structures may present themselves during the context of transitions 

of control. In other words, by understanding how different aspects of the 

transition process affects drivers’ gaze behaviour, new studies can be 

developed, targeting  the observed effects with supportive tools (e.g., 

interface design). 

8.4.2  Contributions for the theoretical field of decision-making 

Most of the work related to gaze and decision-making have been developed 

in market research studies (Krajbich et al., 2012), military sciences (Gold & 

Shalden, 2002), or applied research on gambling (Orquim & Loose, 2013). 

This research makes a contribution to the field bridging the gap between the 
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concept of evidence accumulation (Ratcliff et al., 2016) and situation 

awareness (Endsley, 1995), as well as showing how decision-making 

models are applicable to research in vehicle automation. 

8.4.3  Contributions for the methodological research on visual 

attention 

The paper described in Chapter 3 of this research revisited the approach 

used by Chapman & Underwood (1998), and provided a new tool to observe 

drivers’ attention selection patterns, that may be used in future research in 

the field. The technique was used in Chapter 7 for the development of a new 

model structure, to generate Monte Carlo simulations of drivers’ gaze 

behaviour. It is believed that this technique may also be used in future 

research, to understand structures of attention in a driving environment, 

based on simulations created from empirical data. 

8.5  Final Conclusion 

This programme of research studied how visual attention during a transition 

of control is affected by different aspects of the driving environment, and 

how gaze can be correlated with the decision-making process to resume 

control from an automated vehicle in different driving scenarios. The 

research concluded that, in general, the structure of drivers’ gaze is mainly 

influenced by the demands of the task, which is dependent on their 

choice/course of action during the transition process. In that sense, this 

research was also able to demonstrate that individual differences, in terms of 

gaze behaviour, can significantly affect drivers’ performance in a takeover. 
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