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Summary 
  
One in four people in the UK currently have one or more musculoskeletal disorder, 

impacting both work and social lives of individuals with them and incurring a burden 

on the national health service. Musculoskeletal disorders can affect one or both of the 

skeletal or the muscular system and where there is a substantial understanding of the 

mechanisms underpinning skeletal disorders, far less is currently understood 

regarding disorders affecting the muscular system. The challenge hindering our 

understanding of the mechanisms underpinning muscle disorders lies in the difficulty 

in measuring the physiological status of muscle tissue. 

 

Muscle disorders vary widely in many ways, such as the causes, muscles affected, rate 

of progression, and even the treatment strategies for these disorders. Not only do 

muscle disorders differ in these areas when comparing each one to the others, but 

also, people with specific muscle disorders respond to them in different ways. For 

these reasons, subject-specific, quantitative characterisation of the muscles within 

subject measured in vivo could enhance the current diagnosis and treatment 

strategies for muscle disorders. Moreover, quantitative tools to measure the response 

of the muscle tissue to new treatments for muscle disorders within clinical trials would 

grant a more informed analysis of the efficacy of treatments. Quantitative analysis of 

muscle tissue has not yet been adopted into clinical practice but could impact both 

our understanding and ability to treat people with muscle disorders. 

 

The aim of this thesis was to build, test, and analyse methods to automatically 

characterise the muscles from medical imaging data. Four methods have been detailed 

and explored to address the limitations associated with the current gold standard 

approach used to characterise the muscles from medical images. The outcome of the 

thesis is a general and complete overview of existing and novel methods to 

characterise muscles from medical images. 

 

Future work should analyse the methods presented in this thesis and adopt that which 

is best suited to their study. The motivation and ambition behind the thesis are that 

the studies presented facilitate future research seeking to understand muscle 

disorders in a quantitative manner. In the long-term, the work presented in this thesis 

could promote clinical adoption of computational tools for characterising muscle 

disorders, leading to enhanced diagnosis and monitoring of such disorders.  
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Chapter 1: 
 

General introduction and thesis overview 

 

 

1.1. Introduction 
 
Musculoskeletal disorders are becoming ever more numerous in modern society, due 

to a larger population reaching greater ages [1]. Estimates suggest that one in five 

people of working age in the United Kingdom (UK), have been diagnosed with one or 

more musculoskeletal disorders [2]. Such disorders are the current leading cause of 

disability in the UK, with chronic symptoms like joint pain [3] and muscle weakening 

[4], as well as increased risk of fall [5], and early mortality [4]. Medical imaging is capable 

of enhancing diagnostic regimes, qualitative and quantitative monitoring of disease 

progression, and the measurement of intervention strategies for musculoskeletal 

disorders [6-8]. Advancements in innovative imaging techniques and the availability of 

advanced imaging analysis tools has improved our understanding of musculoskeletal 

disorders and influenced the medical response to them [8, 9].  

 

Medical image segmentation provides quantitative, spatially structured details of the 

inner anatomy of individuals, allowing specific biomarkers to be isolated and 

characterised [10, 11]. Many scientific breakthroughs within the clinical research 

domain have been presented using medical image segmentation [12-14]. For example, 

in 2020, Hollon et al. [15] presented a method to segment brain tumours 

intraoperatively, allowing near real time visualisation of brain tumour tissue. A second 

example lies in the characterisation of osteoarthritis, particularly osteoarthritis within 

the knee joint [16]. Medical image segmentation has been used to measure the volume 

of the cartilage (behaves as lubricant between two moving bones), and further, the 

change in volume over time within the knee joints of subjects [17]. Through studies such 

as these, quantitative investigations into the change in cartilage volume in response to 

different treatments is currently under investigation [18]. Thirdly, medical image 

analysis is heavily involved throughout the process of joint replacement, both in the 

planning of the surgery and its long-term assessment, which maximises the chance of 

success and longevity of the implant [19].  
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The musculoskeletal system is a multi-faceted system consisting of two major parts: 

the skeleton, where rigid components (bones) are connected by pivoting joints, and 

the muscles, which supply forces to the bones in order to produce movement. This 

system is responsible for allowing movement of the human body, and its performance 

therefore directly affects mobility and locomotion [4, 13], including a person’s ability to 

work and carry out daily activities [2]. Through advancements in medical imaging 

analysis, our understanding of bone diseases such as osteoarthritis [20] and 

osteoporosis [21] have been greatly enriched. However, this cannot be said for 

disorders that affect the muscles [22], for example sarcopenia, the age-related 

degradation of skeletal muscle tissue [23-25]. Estimates by the European Working 

Group on Sarcopenia in Older Individuals (EWGSOP19) suggested that between 10% 

and 40% of individuals aged over 60 have either sarcopenia, or probable sarcopenia 

[26, 27]. This disease affects people who suffer from it, as they are more at risk of fall 

and therefore major bone fractures [23], with poor gait characteristics which can 

further impact normal function of the skeletal system [23, 27]. Sarcopenia also limits 

people’s mobility compounding the issues listed and encouraging the advancement of 

those aforementioned disorders [26, 27]. The reason for the lack of clinical 

understanding of this disease and others alike can be attributed to the difficulty in 

characterising the muscles within the human body [27]. As suggested previously, 

medical image analysis has advanced significantly in recent years, bridging the gap 

between reality and computer visualisation for the inner anatomy, but our 

understanding of muscle disorders at the current time, have not advanced in line with 

other tissue groups [28]. 

 

Skeletal muscles enable all voluntary movements of the human body, and their 

structural health is essential for everyday life. Muscle characteristics such as volume, 

geometry and length, or the level of fat infiltration have been established to affect the 

functional capacity of individual muscles [29-31], and it is these characteristics that are 

altered as a symptomatic response to muscle disorders [31, 32]. However, isolating 

muscle properties from medical images is still a challenge [28]. Though, quantifying the 

characteristics of individual muscles in a subject specific manner through 

segmentation could provide insight into the areas of the muscular system that limit a 

person’s capacity to perform movement tasks [28]. Further, muscle segmentation 

could have the capacity to enhance diagnosis, monitoring, or identify individuals at risk 

of certain muscle disorders through quantification of individual muscle 

characteristics.  
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Driven by the motivations outlined, the overarching aims of this thesis was to develop 

and test automatic approaches to segment muscles from MR images. Fulfilling this aim 

should guide future research to adopt new methods to capture muscle 

characteristics, with the ambition of catalysing future research into the effects and 

treatments of muscle disorders. 

1.2. Thesis overview 
 

The thesis consists of 7 chapters, as shown in Figure 1.1. Chapter 1 presents an overview 

of the topic, the motivation of the thesis, and introduces the general content of the 

thesis. Chapter 2 provides the technical background knowledge required to 

contextualise the later content of the thesis, such as, an explicit explanation of the 

lower limb anatomy, details of muscle function, introducing muscle disorders and how 

they affect muscle function, and detailing the process of collecting medical images. 

Chapter 3 first presents the uses and limitations of the gold standard approach used 

to segment the muscles. Thereafter, a summary of the current literature surrounding 

automatic muscle segmentation is presented, highlighting the gaps that should be 

addressed.  

 

Chapters 4, 5, and 6 contain the methods, results and critical appraisal of tools 

developed here to automatically segment muscles from medical imaging data. Chapter 

4 focuses on the development and initial testing of an automatic segmentation tool 

based on deformable image registration, first by segmenting one limb using the 

contralateral limb as the reference, and thereafter, segmenting one subject whilst 

using a different subject as the reference. Chapter 5 builds on this method, making use 

of morphological image processing techniques to boost the accuracy of this technique. 

Chapter 5 also uses a more advanced segmentation method named “multi-atlas” 

segmentation, to further enhance the segmentation pipeline. Finally in this chapter, 

deformable image registration method was used to generate unique 

“new/augmented” images in order to boost the number of datasets at our disposal. 

Chapter 6 explored deep learning-based methods, both traditional and novel, for 

individual muscle segmentation. Chapter 6 built on the knowledge and results 

(specifically the augmented image database), from Chapter 5. The final chapter, 

Chapter 7, summarises the findings, contributions, and limitations of the thesis, 

presenting an overall conclusion and recommendations for future work. 

 

  



   

 

Figure 1.1: Schematic representation of thesis structure highlighting the main contents of each chapters and their inter-connections. 
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Chapter 2: 
 

Background 

 

 

2.1. The lower-limb musculoskeletal system  
 
The musculoskeletal system is the combination of the human skeletal and muscular 

systems. The skeletal system is comprised of rigid components connected by pivoting 

joints, and the muscular system supplies force to the bones through contraction to 

produce movement. Through this mechanism, these subsystems operate in tandem to 

enable movement of the human body. 

 

Three sections of the human body will be focussed on in this work: the hip, thigh, and 

shank. The main bones contained within these sections are the pelvis, femur, patella, 

tibia, and fibula. The femoral head sits within the pelvis in a ball-and-socket joint, 

allowing motion of the hip, explicitly: flexion/extension, abduction/adduction, and 

internal/external rotation. The femur is connected to the tibia by a hinge joint, allowing 

the extension and flexion of the knee. The knee joint also allows for a small amount of 

abduction/adduction, internal/external rotation, and translation in the three spatial 

directions to add stability and dampen large forces acting through the knee [33]. The 

bones that lie within the region explored within this thesis are presented in Figure 2.1 

below, wherein the bones and joints are labelled. The 37 muscles that lie within the 

legs, encircling these bones and allowing the motions outlined previously are also 

presented in Figure 2.1, showing the relative size and anatomical location of these 

muscles, within the human body. There are some stabilising muscles within the feet, 

but these are not considered in the thesis. Additionally, the muscles that are explored 

in this thesis are summarised in Table 2.1, where the bones that they are attached to 

and motion(s) that they allow are explicitly noted.  
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Figure 2.1: The lower limb bones (A) and muscles (B, C). 

Vastus medialis

Vastus lateralis
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Table 2.1: 37 major lower limb muscles partitioned into the three sections of the body under 

investigation in this thesis. The origin, insertion and function of each muscle is stated explicitly. 
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2.1.1. Muscle tissue and function 

There are three types of muscle tissue within the human body: smooth, cardiac and 

skeletal muscle tissue. Smooth muscle tissue exists within the walls of hollow organs, 

such as within the stomach, bladder, and intestines. Additionally, this muscle tissue is 

found within blood vessels, urinary tract, and respiratory system [34]. Smooth muscle 

is involuntary, non-striated, and is therefore not capable of producing significant force 

through contraction, but enables and assists normal bodily functions, such as the 

constriction and dilation of the blood vessels [34]. Cardiac muscle tissue, on the other 

hand, is striated and exists only within the heart. Cardiac muscle tissue is designed for 

rhythmic contraction, requires no voluntary control, and does not experience fatigue 

[35]. Skeletal muscle, distinct from both smooth and cardiac muscle tissue, is the most 

abundant type of muscle tissue within the human body, comprising approximately 50% 

of body weight. Skeletal muscle tissue is innervated, striated, voluntary, and 

experiences fatigue with high energy requirements. 

2.1.1.1. Skeletal muscle 

The body of skeletal muscle itself can be assessed at increasing levels of magnification, 

from the whole muscle down to a subcellular level. Each sub-component of muscle 

tissue at increasing magnification are grouped into fractal-style bundles wherein each 

child structure appears like a replica of the parent structure but at smaller scale 

(Figure 2.2). This repeating, fractal like structure is similar to steel wire rope, an 

engineered product designed to withstand exceptional tensile and bending stresses. 

Skeletal muscle tissue is highly organised in this repeating fashion to exhibit similar 

desirable material properties. Skeletal muscle is required by the body to generate 

tensile force and does so using contractile mechanisms on a subcellular scale. 

 

These repeating structures are important for muscle force generation but require 

sophisticated and targeted imaging methods to be visualised. The macro-structure of 

the muscle: volume, length, geometry, and fat infiltration, are important factors for 

muscle force generation [28, 30, 31]. Changes in these characteristics are often 

responses to changes in the micro-structure of the muscles [36, 37].  
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Figure 2.2: The transition from macro (left) to subcellular-structure (right) of the muscle tissue [38]. 

2.1.1.2. Force-length relationship 

There are three types of contraction that muscle tissue is capable of: isometric, 

concentric, and eccentric. Isometric contractions stabilise joints, maintaining one 

position in response to joint loading, such as when holding a weight at constant 

position. Concentric contractions occur upon shortening of the muscle, such as the 

motion involved in a bicep curl. Finally, Eccentric contractions involve lengthening of a 

contracted muscle and are used to decelerate or control load. The muscle force 

generating capacity of these three different types of contraction in order, from highest 

to lowest, are: eccentric, isometric, then concentric. Figure 2.3 further describes this 

relationship. Initially, the sarcomere length has an increasing relationship with the 

tensile force achievable, reaching a maximum at the optimal point where the thick 

filaments are all able to attach to the thin filaments. Thereafter, the tensile force 

decreases as the sarcomere length increases, due to a reduced number of attachment 

locations or cross bridges, until the amount of overlap reduces to zero. This 

relationship has been proven experimentally within vertebrates [39, 40] and it is 

accepted that skeletal muscle acts in the same manner across all vertebrates [41]. 
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Figure 2.3: The force-length relationship of sarcomere elements within muscle tissue found 

experimentally within vertebrates by Gordon, Huxley and Julian 1966 [40]. 

2.1.1.3. Force-velocity and power-velocity relationship 

The speed at which a muscle changes length impacts the force and power output of 

the contraction (Figure 2.4). The tensile force generated by a contraction depends on 

the number of cross bridges formed between thin and thick filaments within 

sarcomeres [40]. Though, the formation of cross bridges does not occur immediately 

upon contraction, meaning that if filaments slide over one another at a faster rate, the 

creation of cross bridges is reduced. Therefore, with faster contraction, the tensile 

force output of a muscle is reduced. At maximum velocity, no cross-bridges can form, 

meaning zero force is generated and no power is produced. Opposingly, when the 

muscle is contracted at minimal velocities, maximum force is generated but with such 

low speed, no power is produced. Maximum power is produced at approximately one 

third of maximum contractile velocity. These relationships were established through 

in vivo experiments by Edman et al. on a variety of vertebrates [39]. 
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Figure 2.4: Force-velocity and velocity-power relationship of muscle contractions, showing the force at 

maximum power and velocity at maximum power. 

2.1.1.4. Neurological control 

Skeletal muscles contract when given a nerve impulse originating from motor neurons 

within either the brain, brain stem (upper motor neurons), or the spinal cord (lower 

motor neurons). As Figure 2.5 shows, motor neurons send information directly to 

muscle fibres through axons, which carry signals to designated areas within muscles. 

Muscle fibres contract when a nerve impulse is transmitted to them at a highly 

specialised contact points within the fibre, named neuromuscular junctions. The 

neuromuscular junction connects the terminal end of a motor neuron to many muscle 

fibres through unmyelinated terminal branches (unmyelinated meaning lacking a 

myelin sheath, a nerve coating allowing fast and efficient transmission of electrical 

impulses), as shown in Figure 2.5. Within voluntary muscle, the nerve impulse 

originates either in the brain or in the brain stem, enabling neural control. At the 

neuromuscular junctions, nerve action potential (like electrical potential) triggers the 

release of chemical transmitters that cause specialised proteins surrounding the 

muscle fibre to initiate contraction of the muscle fibres. The neuromuscular junction 

is a part of the nervous system that is prone to disease. Deficiencies within the 

neuromuscular junction are the result of many NMSK disorders, which are described 

in further detail in Section 2.2. 
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Figure 2.5: Schematic of the neurological connection between the central nervous system and muscle 

tissue. The dendrite which lies within the central nervous system transmits nerve impulses to the 

muscle fibres through axons which branch off and connect to many muscle fibres through the 

neuromuscular junction. 

2.1.1.5. Force application to the skeleton 

The body of skeletal muscles is typically connected to one or more bones (depending 

on the function of the muscle) by tendons, a dense connective tissue made mostly of 

collagen. Tendons are mechanically tough, with relatively high-tensile-strength and 

viscoelastic; hence they are well designed to repetitively transfer large amounts of 

force between connected components, i.e., from muscle to bone. The interfaces 

between tendons and muscles are called myotendinous junctions, while the interfaces 

between tendons and bones are called entheses, highlighted as TBI in Figure 2.6. The 

soft tissue of the muscle gradually forms into the stiff tissue of tendon via the 

myotendinous junction, extending the length of the transition between the two tissues 

and increasing the strength of the bond between the two tissues.  The entheses, like 

the myotendinous junctions, are areas of transition between the collagen rich tendons 

and calcium rich bones wherein the tendinous tissue gradually becomes calcified. 
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Figure 2.6: The transition from muscle tissue, to tendon and bone. The muscle tissue transitions to 

tendinous tissue at the myotendinous junction (MTJ). The tendon then transitions to bone through 

gradual calcification at the tendon-to-bone interface (TBI). Image acquired from Bianchi et al [42]. 

 
The architecture of muscles is dictated by the direction of contraction of muscle fibres 

relative to the axis of force-generation, which determines the characteristics of force 

transmission from the contractile muscle tissue to the bones. There are two main 

types of muscle architecture: parallel, and pennate. Parallel muscle architectures are 

those that the muscle fibres are organised parallel to the force generating axis. This 

architecture of muscle is well suited to fast contractions, or those that are required to 

act over a large range of motion, such as the sartorius, the longest muscle in the human 

body. Additionally, parallel muscles can appear in three sub-categories: strap 

(sartorius), fusiform (biceps femoris caput breve and longum), or fan-shaped (gluteus 

maximus). Pennate muscles, on the other hand, are those where the fibres are 

organised at an angle to the force generating axis. These muscles can generate more 

force than parallel muscles, as the muscles contain a greater number of fibres. Pennate 

muscles like parallel muscles, can be divided into sub-categories: unipennate 

(extensor digitorum longus), bipennate (rectus femoris), and multipennate (deltoids). 

Though there are no multipennate muscles within the lower limbs, it has been noted 

for completion. Interpretations of all noted muscle architectures are presented in 

Figure 2.7 below.  
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Figure 2.7: The six skeletal muscle architectures present within the lower limb muscles assessed in 

this thesis. The top and bottom row represent the 3 sub-structures of parallel muscles, and the 3 sub-

structures of pennate muscles, respectively. 

 
The collaborative function of the muscular, skeletal, and nervous systems creates 

movement of the human body [43]. Through neural control, either conscious or sub- 

conscious, muscles contract, generating tension which is enacted upon the skeleton. 

As forces are applied to the skeleton, the rigid components (bones) of the skeleton 

are rotated about one another at articulated joints. With simple movement such as 

standing or walking, many joints pivot simultaneously, requiring the fine neural control 

of many muscles concurrently [44]. 
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2.1.1.6. Hypertrophy, atrophy, and fatigue 

Muscles are adaptive, living tissue that react to stimulation, or lack thereof. Stimulation 

of the muscles can occur in response to two different types of exercise: aerobic, or 

anaerobic.  Muscles require a constant flow of oxygenated blood to fuel movement and 

to remove lactic acid and other waste products that are produced upon activation of 

the muscle. Where the flow of blood is sufficient to supply the required amount of 

oxygen, and remove waste material, the stimulus of the muscle results in aerobic 

exercise (examples are walking, cycling, or jogging). Conversely, in cases wherein the 

flow of blood is not sufficient, the result is anaerobic exercise (examples are 

weightlifting or sprinting). Strength training, typically involving anaerobic exercise, 

triggers an adaptive response in the muscles where the muscle fibres increase in 

volume. The exact mechanisms that underpin this adaptation in muscle tissue, though 

they are known to be both neurological and muscular, are not currently well 

understood. However, it is widely known that through progressively overloading the 

muscles, one’s physical strength can be greatly increased. This response of the muscle 

tissue is called hypertrophy. Note that aerobic exercises are not linked with muscle 

hypertrophy and do not result in the increase in muscle volume, but rather strengthen 

neural links with muscles and improve the supply of oxygenated blood, enhancing the 

removal of waste products from the muscle. Muscle atrophy is the opposite adaptive 

response of muscle and describes the loss of skeletal muscle volume. Atrophy is 

caused mainly by long periods of immobility but can be attributed to other factors, 

such as MSK disorders. Many musculoskeletal and neuromusculoskeletal disorders 

result in muscle atrophy, acting under a wide variety of physiological mechanisms, but 

the result is consistent: muscle weakness and a reduced physical capacity. Some of 

these mechanisms will be explored in the following sections. 

 

Muscle fatigue is another response that muscle tissue has upon specific types of 

activation. Anaerobic exercise results in the build-up of lactic acid, causing a feeling of 

pain within the muscle. Where it was once believed that the build-up of lactic acid was 

the cause of muscle fatigue, this assumption is now under question within the 

biochemical research community [45]. The reduction in performance could be 

attributed to neural fatigue, where the nerve signals weaken when the muscle is 

required to perform powerful contractions near the limit of the muscle’s ability to 

generate force. Secondly, muscle fatigue can be attributed to the shortage of 

substrates, or fuel, to the activated muscle fibres, or the accumulation of metabolites, 

which hinder the activation of individual sarcomeres [46]. 
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2.2. Musculoskeletal and neuromusculoskeletal disorders 

Musculoskeletal and neuromusculoskeletal disorders are injuries or disorders 

affecting the muscles, nerves, tendons, joints, and other areas such as cartilage (the 

lubricant present between connected bones), or spinal disks. Many (if not all) MSK 

and NMSK disorders affect one or more of these areas, as they are all intrinsically 

linked to one another. The list of known MSK and NMSK disorders is exceptionally long, 

and so in this section the focus will remain on the most common muscle disorders that 

affect the lower limb musculoskeletal system. 

2.2.1. Muscle disorders 

Muscle disorders cause muscle weakness as a direct result of dysfunctional muscle 

fibres. Muscle disorders can arise from inherited genetic mutations from one or both 

parents, known as muscular dystrophies (MDs), or they can be acquired within life, 

characterised as muscle atrophy. They differ in the muscles affected, disease 

mechanism, cause, rate of progression, and physiology, such as age and sex. The details 

of each of the 9 types of muscular dystrophy are elaborated on in Table 2.2, with a 

visual aid of the areas of the body typically affected in Figure 2.8. The most well-known 

MD within this group is Duchenne muscular dystrophy affecting (typically) males in the 

developmental stage. The prevalence of this disease in the UK has been reported 

between 2-11 per 100,000 people [47]. Duchenne MD is a genetic disorder. It is 

characterised by progressive degeneration and atrophy within the upper body muscle 

groups and the muscles within the thigh in response to a genetic mutation of a 

particular gene within the X chromosome, hence the significantly higher prevalence 

within males [47]. As a compensatory mechanism, children with Duchenne muscular 

dystrophy are visualised to have hypertrophy within the calves, to maintain normal 

healthy movement as much as possible. Children and people with Duchenne muscular 

dystrophy, up until very recently, did not typically survive beyond their teen years due 

to the degradation of the cardiac and respiratory systems. Fortunately, with advances 

in the capacity for care in these areas, life expectancy can now be extended into the 

20s and 30s. There is no known treatment or cure for this form of MD though many 

clinical trials are being explored at present. One other, significantly less severe genetic 

muscle disorder noted in Table 2.2 is myotonic dystrophy, affecting 11 per 100,000 

people (in Northern England) [48]. Myotonic dystrophy can affect almost any muscle 

group in the body, based on the genetic mutation that causes the disorder [48]. 

Myotonic dystrophy prevents the relaxation of muscle after contraction, causing 

damage to the muscle fibres. Given that in most cases, MDs are genetic disorders, they 
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currently have no cure, but management strategies reduce the life-threatening aspect 

of these disorders, as they begin to affect the respiratory and cardiac systems [48, 49]. 

 

Acquired muscle disorders, on the other hand, are those that arise not due to genetics, 

but are developed due to other factors. The common physiological symptom of 

acquired muscle disorders is muscle atrophy, a loss of skeletal muscle mass [50]. 

Skeletal muscle acts as a storage unit for amino acids (a group of proteins) used in 

energy production in the case that demand is high or when supply is low. Muscle 

atrophy occurs when demand for these amino acids stored within the muscles 

outweighs the ability to synthesise these proteins, the functional muscle mass is lost 

[50, 51]. The mechanism for this muscle loss depends directly on the cause of the 

imbalance between synthesis and demand of these amino acids. Explicitly, there are 

two scenarios that result in imbalance: the demand for amino acids exceeding the rate 

of synthesis, or secondly, the rate of synthesis being reduced [50].  

 

There are a great number of acquired muscle disorders that occur for a multitude of 

reasons. To highlight one that is likely to affect the cohort focussed on throughout this 

thesis: sarcopenia is the age-related degradation of skeletal muscle [27, 52, 53]. The 

prevalence of sarcopenia is reported by the European Working Group on Sarcopenia 

in Older People (EWGSOP) as 22.6% and 26.8% in women and men respectively [27], 

considering individuals above the age of 60. Where the prevalence is significantly 

increased to 31.0% and 52.9% (in men and women respectively) when considering 

individuals above the age of 80 [27]. Sarcopenia is characterised by degenerative loss 

of muscle mass, muscle quality, and functional strength, particularly within the lower 

limb muscle groups. The outcomes, therefore, of this disease are related to an 

increased risk of fall incurring greater risk of fracture, and a decline in functional 

capacity [27]. Sarcopenia is currently recommended to be diagnosed through 

(amongst other methods) measurement of grip strength by the EWGSOP2 (the 

second iteration of the EWGSOP) [27]. Though, the physiological symptoms, reported 

by EWGSOP2, of this disease are muscle atrophy and a decrease in muscle quality [25, 

53]. The muscle quality referred to is the replacement of functional muscle fibres with 

fat deposits, causing fatty infiltration of the muscle (myosteatosis) [31]. In turn, the 

desaturation of functional muscle tissue reduces the functional capacity of the 

muscles and therefore limits mobility of individuals with sarcopenia. Furthermore, this 

is a degenerative disease, and so with time, the severity of muscle atrophy and 

myosteatosis worsens. Management strategies for sarcopenia centre around targeted 

exercise of the muscles affected and an increase in dietary protein included in the diet, 
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to stimulate hypertrophy and protein synthesis, combatting atrophy and myosteatosis 

[54]. 

 

 
Table 2.2: Summary of the 9 main muscular dystrophies, with their expected onset, symptoms, and 

outcomes summarised. Table adapted from John Hopkins medicine library [55]. 
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Figure 2.8: Visual representation of the areas of the body affected by each of the nine muscular 

dystrophies expanded upon in Table 2.2. Red areas represent unaffected areas, grey areas represent 

areas of weakening or wasting due to each type of dystrophy. 

2.2.2. Neuromuscular disorders 

The lines blur between strictly muscular disorders and neuromuscular disorders as 

the central nervous system and the muscular system are closely tied. Many muscle 

disorders like those mentioned in the previous section incur damage to the nervous 

system through disuse, as neural links to the muscles become weaker [56]. Many 

disorders, however, affect the nervous system before presenting symptoms within the 

muscles. Neuromusculoskeletal disorders, such as Motor Neuron Disease (MND), 

neuropathy, and Multiple Sclerosis (MS) are all diseases of great severity, initially 

causing pain, discomfort, and muscle twitching, and leading to immobility, respiratory 

problems, and a reduced life expectancy [57]. These disorders all affect, for widely 

varying reasons that will not be explored in this thesis, the nervous system which 

supplies the nerve impulse causing muscles fibres to contract [56]. Over time, when 

muscle fibres are not supplied with nerve impulses, they begin to die leaving no known 

route to recovery. As portrayed in Section 2.1.1.4, neuromuscular junctions attach 

individual nerves to many muscle fibres. Damage to one nerve can therefore affect 

many muscle fibres. Compounding the effect of these neuromuscular disorders, 

muscle fibres themselves are relatively large, multinucleated cells, with many active 

sarcomeres within each fibre. Logically, these neuromuscular disorders can act rapidly 

depending on disease and the site that they affect (whether it is the nerves or the 

neuromuscular junction itself). For many neuromuscular disorders, there are no 

known cures, but treatments such as physiotherapy attempt to maintain the 

neurological connection between the nervous system and the muscles [58, 59]. Though 

difficult to treat, neuromuscular disorders are typically well diagnosed with symptoms 

often visualised through medical imaging techniques for both the brain and the muscle 
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tissue that could be affected [60]. Though beyond the scope of this thesis, the tools 

built and explored could benefit the understanding of such disorders, as the 

distribution of muscle tissue, or change in its volume in certain areas is used as an 

indicator for diagnosis with many neuromuscular disorders [61]. 

2.3. Techniques for measuring the lower limb anatomy 

2.3.1. Anatomical planes of the body 

There are 3 universally accepted planes and axes of the body. Firstly, to define the 

three spatial axes, known as the: frontal, sagittal, and longitudinal axes. The frontal axis 

can be thought of as the x-axis in a cartesian coordinate system and is parallel to a line 

passing from one shoulder to the other. The sagittal axis, the y-axis, can be thought of 

as parallel with a line passing from the back to the chest and is orthogonal to the frontal 

axis. Lastly, the longitudinal axis, the z-axis, is orthogonal to both the sagittal and frontal 

axes and is parallel to a line passing from head to feet. The three planes of the body: 

the frontal, sagittal, and transverse planes, are built across these axes. The frontal 

plane contains the frontal and longitudinal axes, the sagittal plane contains the sagittal 

and longitudinal axes, and the transverse plane contains the frontal and sagittal axes, 

as shown in Figure 2.9. Most visualisations of medical images of the body within this 

thesis are shown in the transverse plane. Lastly, one noteworthy feature of the medical 

images used in this thesis (to observe the inner anatomy), is that the anatomical left 

and right are visualised on the right and left of the images, respectively. 

 

 

Figure 2.9: Anatomical planes and axes of the body. 
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2.3.2. Introduction to measurement techniques 

Many techniques have been explored to investigate the musculoskeletal system within 

humans. These techniques range in sophistication from dissection of ex vivo subjects 

or palpating the features of interest, to more advanced options such as medical 

imaging. The limitations of dissection or manual palpation are obvious and so typically 

medical imaging is the preferred method used to visualise the lower limb 

musculoskeletal system, along with many other areas of interest within the body. 

There are several medical imaging techniques that have both benefits and limitations, 

but all offer computerised visualisation of the internal anatomy of humans. 

2.3.3. Computer tomography 

Computer Tomography (CT) is an imaging technique capable of capturing high-

resolution three-dimensional (3D) images of the internal anatomy [7]. An example 

image acquired from the middle of the thigh is presented in Figure 2.10. CT scanners 

operate through rotating an X-ray source and detector about the subject, measuring 

the attenuation of the X-rays as they pass through the body. The attenuation measured 

can be attributed to either absorption or scattering of the X-rays by the tissues within 

the body, which is correlated to the density and size of the body. The rotation of the 

source and detector about the body allows the 3D tissue structures within the body to 

be captured (for 2D example see Figure 2.10). The internal anatomy is captured at 

regular intervals or slices, which are concatenated to form a 3D representation of the 

subject. CT, therefore, exposes subjects to a large amount of X-ray radiation, which is 

known to be harmful if the exposure is excessive [62]. In particular, the imaging of the 

region of interest in this work (the lower limbs) through CT would require many slices 

to be captured, incurring large amounts of X-ray exposure. On the other hand, CT is 

well suited for smaller capture volumes that focus on hard tissue, such as a 2D dental 

scan or visualisation of a bone fracture. Hard tissues attenuate the X-rays radiation to 

a higher degree than soft tissues, granting higher contrast across these tissues [63]. 

The focus on small capture volumes aims to limit the exposure of a subject to this 

potentially harmful ionizing radiation. Additionally, CT is used in those cases where 

other imaging modalities cannot be used, such as using Magnetic Resonance (MR) 

imaging for subjects with metal implants.  
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Figure 2.10: Example CT image acquired from the middle thigh. The most prominent tissue boundaries 

are the cortical-trabecular bone interface, and the muscle-bone interface. 

2.3.4. Medical ultrasound imaging 

Ultrasound (US) imaging uses high frequency sound waves often far outside the 

audible human hearing range (>20000 Hz) to visualise the internal body [64]. An 

example US image acquired in the middle of the thigh is shown below, in Figure 2.11. 

These high frequency sound waves are sent into the body in pulses via a probe 

connected to a display showcasing the images in real time. The sound waves pulsed 

into the body are reflected to the probe upon interaction with tissue, wherein the 

properties of the reflected sound wave are interpreted. The properties of the 

reflected sound wave are dictated by the material properties of the tissue that they 

are reflected by, allowing the display to present the different tissues. There are no 

known dangers of using US imaging to visualise the internal anatomy, and so it is widely 

used during pregnancy to visualise the development and physical state of the foetus. 

US as an imaging modality is extremely cost effective and easy to use and so is 

preferred in many applications to other medical imaging techniques. However, there 

are two main limitations of this imaging modality. Firstly, the resolution and clarity of 

US images is not as high as the other medical imaging techniques and the acquisition 

can be heavily dependent on the skill of the operator. Furthermore, the boundaries 

between tissues are typically very clear within images captured with US, but the 

boundaries within tissues, such as the boundaries between muscles, are not presented 

as clearly. Secondly, the images are traditionally visualised in real time to allow 

clinicians to seek out and isolate the region or tissue of interest. Therefore, 3D images 

are not typically reconstructed as a frame of reference is not defined, and this would 

be required for the images to be combined. For these two reasons, this imaging 

modality might not be well suited for capturing the lower limb anatomy. 
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Figure 2.11: An example slice of transverse medical ultrasound image acquired from the mid-thigh. SC - 

subcutaneous tissue, VL - vastus lateralis, VI – Vastus intermedius. Image acquired from Albayda et al 

2020 [65]. 

2.3.5. Magnetic resonance imaging 

2.3.5.1. Basic concepts 

Magnetic Resonance (MR) imaging uses strong magnetic fields and radio frequency 

(RF) pulses to scan the human body and capture images of the internal anatomy. An 

over-simplified view of MR imaging is the measurement of the density of hydrogen 

atoms within the different tissues inside the human body. This form of imaging is 

typically used in hospitals or research centres to form clinical diagnoses, categorise 

the stages of disease, and measure the effectiveness of disease intervention. MR 

imaging is better suited for soft-tissue (muscle, brain tissue, abdominal organs) than 

CT or US, as the contrast presented is much greater. There is very little risk associated 

with MR imaging as no ionising radiation is used to generate the images. Subjects are 

always thoroughly checked for metal implants (knee replacements, dental fillings, 

earrings) before proceeding to the scan as MR scanners use strong magnetic fields to 

acquire the imaging data. The scanning times can be long depending on the capture 

volume and the subject must remain stationary throughout the scan. Therefore, 

children, people with specific musculoskeletal disorders (for example, cerebral palsy) 

and elderly individuals may experience some discomfort while being scanned. 

Nonetheless, MR imaging was selected as the imaging modality to explore within this 

thesis given its advantages in visualising different muscles. In addition, retrospective 

data of full lower limb MR images was available from a previous study [66]. 

Transverse plane
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2.3.5.2. The physics of magnetic resonance imaging 

MR imaging relies on the principles of nuclear magnetic resonance discovered by 

Purcell and Bloch (1946) [67, 68]. All atomic nucleons (protons and neutrons) have the 

quantum property of spin, which can be seen as analogous to angular momentum, and 

MR imaging measures the effect of changing the spin of atomic nuclei within the human 

body. Atomic nuclei with an even number of nucleons, such as helium or oxygen, have 

a total spin of 0 as the spin of each nucleon is balanced by the others. Alternatively, 

atomic nuclei with an odd number of nucleons have a non-zero total spin. One such 

atomic nuclei is the hydrogen nucleus, which contains only one proton (positively 

charged nucleon). Given the positive electric charge and angular momentum (spin) of 

the nucleus within the hydrogen atom, a local magnetic field is induced around the 

atomic nucleus. Typically, in the absence of a magnetic field surrounding the hydrogen 

atom, the direction of the local magnetic field is random as the direction of spin of the 

hydrogen atom is also random. Within a large living body such as that of a human, 

where hydrogen atoms are abundant within water molecules, the net magnetisation is 

zero. MR imaging takes advantage of the large number of hydrogen atoms (and in some 

cases other abundant electrically charged atomic nuclei such as those in carbon 

atoms) by aligning the local magnetic fields and thereby aligning the spin of the atomic 

nuclei through application of a strong, uniform external magnetic field (B0). The spin 

of the hydrogen nuclei can have two orientations upon application of the magnetic 

field, B0: along the magnetic field (low energy state) or against it (high energy state). 

The sum of energy within a particular volume gives the net magnetization. 

 

The signals that are interpreted to generate MR images are created through excitation 

of the atomic nuclei within the body whilst under the magnetic field B0. The excitation 

of the atomic nuclei (which can be thought of as lifting the energy state from low to 

high), occurs as an oscillating RF pulse (amplitude B1, pulse duration tp) is applied to 

the body perpendicular to the magnetic field, B0. RF pulses are selected as electro-

magnetic (EM) radiation of this frequency can be readily absorbed by hydrogen nuclei. 

Upon application of the RF pulse, some of the hydrogen nuclei that are spinning, those 

with their local magnetic field aligned along B0 (i.e. the low energy state), are excited 

through absorption of the energy supplied by the RF pulses. The local magnetic field 

induced by the nuclei aligns against the magnetic field, as the direction of spin has 

changed in response to the change in energy state. The oscillation frequency of the RF 

pulse is dictated by the strength of the magnetic field B0 (the images used in this thesis 

are all gathered using a 1.5T MR scanner, requiring an oscillation frequency of 64 MHz). 

The process affects a large proportion of the nuclei present within a capture volume 

and therefore affects the net magnetisation which is aligned with the main magnetic 
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field B0 before the RF pulses are supplied. In this way, the net direction of the net 

magnetism changes in response the RF pulses. The supply of this EM radiation is 

maintained until the direction vector of the net magnetism reaches a user inputted 

value named the ‘flip angle’. The flip angle used for all images investigated in this study 

is 10 degrees. The rate at which the excited nuclei return to the low energy state when 

the net magnetism reaches the flip angle and the differences in this rate between the 

tissues provide the contrast within the resulting images. There are two mechanisms 

under which the nuclei that attain the higher energy state lose energy and return to 

the lower energy state: firstly, through heat loss to the surrounding tissue, and 

secondly to surrounding nuclei as kinetic energy. 

2.3.5.3. T1 and T2-weighted magnetic resonance imaging 

The first type of energy loss is referred to as T1-relaxation (or spin-lattice relaxation) 

and depends on material properties such as the heat flux. For example, trabecular 

bone is far less dense than cortical bone and facilitates T1-relaxation much more 

readily. The T1-relaxation time is measured within the field of view and these times 

correspond to the colouration visible within MR images. Trabecular bone has a short 

T1-relaxation time due to its material and structural properties and so appears light 

grey colouration within T1-weighted MR images. Conversely, cortical bone has a long 

T1-relaxation time, incurring a dark black colouration. An example T1-weighted MR 

image is visualised in Figure 2.12, below. This weighting of MR images is preferred for 

identifying fatty tissue and obtaining morphological information of the anatomy, as the 

tissues within the human body have widely varying T1-relaxation times. 

 

The second type of energy loss is referred to as T2-relaxation (or spin-spin relaxation), 

wherein the kinetic energy of the spinning nuclei is lost to adjacent spinning nuclei. T2-

weighted images therefore measure the loss of coherence of the net magnetic 

direction as the nuclei that lie at the high energy state decay to the low energy state. 

Regions of high water content decay at a faster rate, due to the greater number of 

collisions of the particles in these areas, facilitating the exchange of spin between 

adjacent nuclei. The rate at which the net magnetic direction changes is represented 

within T2-weighted images as the greyscale value, where a fast T2-relaxation is shown 

as bright white and slow T2-relaxation is shown as dark black within the resulting 

images. An example T2-weighted MR image is shown in Figure 2.12, below. For this 

reason, T2-weighted MR images are used for identifying white matter lesions (such as 

tumours) or regions of inflammation as these areas have a higher water content and 

appear bright white in T2-weighted MR images. 
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In the assessment of muscle tissue, T1-weighted is the optimal weighting to be used as 

the contrast between muscle tissue and muscle boundaries is greater than in other 

weightings of MR images.  
 

 

Figure 2.12: Comparison between T1 and T2-weighted MR imaging acquisition settings from images 

taken from within the thigh. The boundaries between and within muscle tissues are far clearer within 

the T1-weighted images as opposed to the T2-weighted images. 

 
Assessing the relaxation of nucleons within the subject tissue alone does not generate 

an interpretable image. MR scanners extract the T1- or T2-weighted images at two 

dimensional (2D) intervals (referred to as slices) along the field of view of the scan, 

through a receiving coil. The receiving coil measures vector of current induction and 

therefore interprets the rate of change in the net magnetisation. The net 

magnetisation is measured at intervals within slices along the capture volume by 

encoding the volume using a frequency gradient across the two orthogonal axes of the 

slice. The area is thereby separated into cubes, which are represented as the voxels 

(3D pixels) within the resulting image. The response of the tissue within each encoded 

square is decoded, allowing the responses of the excited tissue to be measured with 

real-world spatial structure. The size of the squares (pixels) that the field of view is 

separated into is dictated by the frequency of the RF waves, typically between 0.5-

2mm2 for lower limbs. 

2.3.5.4. Definition of magnetic resonance imaging parameters 

There are many imaging parameters that can vastly alter the resolution of the 

outputted MR images. The following list describes each of the parameters that require 

setting. 

 

1) Repetition time – The time between subsequent RF pulses applied to each 

capture area (slice). This value determines the amount of local magnetisation 
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that can recover between pulses, controlling the level of T1-relaxation. A shorter 

repetition time hinders T1-relaxation and therefore produces more contrast 

between tissues within T1-weighted images. 

 

2) Echo time – The time between measurements of the electrical induction 

(caused by nuclei spinning in high energy state) by the receiving coil. The level 

of T2-relaxation is determined by the echo time. A longer echo time results in 

an enhanced response in white (tumour, inflammation) and grey matter 

(muscle, brain) tissues, as the amount of T2-relaxation between the different 

tissues is accentuated. 

 

3) Flip angle – The amount of rotation of the net magnetisation during a single RF 

pulse. The flip angle selected determines how long the RF pulses are applied for. 

 

4) Pixel size – The physical size of the elements that each slice is sectioned into. 

The pixel size allows conversion of the image pixels to represent real world 

spatial size. 

 

5) Slice spacing – The spacing between subsequent slices captured by the MR 

scanner. The slice spacing has no influence on the resolution of each 2D image 

captured by the scanner but changes the resolution of a reconstructed 3D 

image if one is created. 

2.4. Medical image segmentation 

Medical image segmentation is a generic process in which structural anatomical 

information is isolated from medical images. Segmentation entails partition of 

homogenous materials within medical images that represent the tissues. This process 

has numerous applications within many medical sub-domains and has been used to 

isolate structural characteristics for: the muscular, skeletal, central nervous system, 

cardiac, and respiratory systems, as well as the organs within the abdomen, and 

tumours [18, 20, 69, 70]. This technique has led to many medical discoveries within all 

noted areas, facilitating an understanding of disease mechanisms within these areas 

[15, 18].  
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2.4.1. Muscle segmentation 

Muscle segmentation is an application of medical image segmentation, where 

structural anatomical characteristics of the muscles are gathered in vivo. Muscle 

characteristics such as muscle volume, geometry, level of fatty infiltration, and 

attachment or insertion locations are all available through muscle segmentation. 

Through tracking these characteristics, muscle segmentation has facilitated the 

monitoring of the progression of musculoskeletal and neuromusculoskeletal diseases 

[71, 72]. Furthermore, this technique can be and has been shown to allow surveillance 

of the effectiveness of treatments [61, 73] and has been used for diagnostic purposes 

of musculoskeletal [74] and neuromusculoskeletal diseases [75]. Additionally, muscle 

segmentation of individual muscles has been used to inform pre-surgical planning and 

measure the effectiveness of a surgical intervention of specific musculoskeletal 

disorders [76]. Performing muscle segmentation requires labelling the contours of 

individual muscles from medical images, an example is shown in Figure 2.12 below. 

Labelling multiple images provides a three-dimensional representation of the muscles, 

allowing structural characteristics to be isolated. Currently, there are some limitations 

associated with the gold standard techniques used to isolate muscle characteristics 

from medical images, such as its associated repeatability issues, and lengthy time 

requirements. The aim of this thesis is to address these limitations through exploration 

of novel methods.  

 

 
Figure 2.12: An example of a segmented 2D MR imaging slice from within the thigh. A full 3D 

representation of muscle segmentation is visualised in Figure 2.1. 
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Chapter 3: 
 

Motivational studies and Literature review  

 

 

3.1. Introduction 

Chapter 3 of this thesis is split into three main sections. Section 1 discusses the current 

gold standard approach to perform muscle segmentation. Initially, the advantages and 

limitations of the gold standard approach are discussed. One of the main limitations of 

the gold standard approach centres around a repeatability issue of the outputs, which 

has been characterised for the cohort used throughout the thesis and summarised 

thereafter.  

 

Section 2 outlines an application of muscle segmentation investigated by the author 

within a preliminary study. The objective of the preliminary study in the context of this 

thesis, is twofold: 1) to present an example of the scientific investigations that are 

available with manual muscle segmentation, and 2) to highlight the limitations of the 

gold standard approach, motivating the requirement of innovative segmentation 

methods to overcome them. 

 

Section 3 of this chapter is a review of the literature surrounding automatic muscle 

segmentation, summarising the current state of the research knowledge. There are a 

multitude of approaches that have been investigated, and these are discussed. The 

conclusive remarks of the chapter motivate the further study of the two areas mainly 

explored within the thesis: deformable image registration, and deep learning, 

addressing the limitations of methods to perform automatic muscle segmentation. 

  



   32 

3.2. The gold standard approach 

Individual muscle segmentation is a process used to characterise the muscles of 

subjects to study the capacity, capability, and identify problematic areas of the 

muscular system in its ability to generate force and allow mobility [77-79]. Muscle 

segmentation results in the isolation of the three-dimensional (3D) geometry of the 

muscles directly from medical imaging data, whether it be Ultrasound (US), 

Computerised Tomography (CT), or Magnetic Resonance (MR) imaging.  

 

3.2.1. Manual segmentation 

Manual segmentation is the current gold standard method used to extract structural 

muscle characteristics from medical images, gathered from CT, US, or MRI [28]. 

Manual segmentation requires a trained operator to manually label the tissues of 

interest from 2D images. After labelling the tissue within subsequent 2D cross sections 

of a 3D image volume, a 3D surface can be constructed, retaining relevant spatial 

information and structural detail of the segmented tissue. From these 3D geometries, 

global characteristics of muscle such as the volume and shape, as well as more internal 

properties like the level of fat infiltration can be isolated [80]. These characteristics 

are indicative of muscle force generation, and more generally, muscle function [77-79]. 

 

The 37 muscles within the lower limbs (for details, see Table 2.1) span the longest 

feature of the human body. The relatively large number and size of muscles in this area 

cause muscle segmentation to be one of the applications of medical image 

segmentation that incurs the greatest time expense and operator variability [28, 66]. 

Explicitly, the process of manually segmenting all muscles within the lower limbs of one 

subject has been quoted to require upward of 24 hours [80]. With recent advances in 

both software (such as linear interpolation between manually segmented image slices) 

and hardware (such as trackpads), the time to perform manual segmentation has been 

reduced to approximately 10 hours per subject [66]. The second problem associated 

with manual segmentation is that the process remains heavily operator dependent, 

and this is extensively documented within the literature surrounding the process [28, 

66, 81]. 

3.2.2. Operator dependency quoted within the literature 

The operator dependency issues surrounding muscle segmentation arise due to the 

difficulty in visually isolating the muscles from medical images [28, 82]. Individual 
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muscles are tightly packed together and the boundaries between them present small 

discontinuities in texture within medical images [83] that are very similar in 

appearance to intra-muscular fat infiltration [80] Furthermore, the high degree of 

variability of muscle shape and volume, between muscles in different subjects causes 

difficulty in segmenting the muscles [66]. Repeatability studies found throughout the 

literature highlight this, with muscle volumes and calculated from repeated 

segmentations consistently being over or underestimated by around 5% and up to 

50%, depending on the muscles segmented and the cohort investigated [28]. The 

impact of this effect is wide reaching, with the potential to drastically alter the 

interpretation of muscle shape, volume, and length, hindering the conclusions that can 

be drawn from such characteristics. Repeatability issues associated with muscle 

segmentation are present in both inter-operator (segmentations performed by 

different operators) and intra-operator (repeated segmentation by one operator) 

analyses. In a systematic review of publications with an operator dependency study 

into manual muscle segmentation from MR imaging data, Pons et al. [28] found that, 

intra-operator reliability was good (< 5% over or underestimation of muscle volume 

between repeated segmentations) within 4 out of 11 included studies. Though, the 

inter-operator reliability was worse, being characterised as good (defined previously) 

to moderate (5-10% over or underestimation between repeated segmentations) 

within 8 of the studies. The difference between the inter and intra-operator analyses 

showed an accentuated operator dependency problem when comparing repeated 

segmentations from two different operators, rather than one operator repeating the 

segmentations [84, 85]. Given that there will always be a need for multiple operators 

to perform muscle segmentation, if using the gold standard approach, and that there 

are repeatability problems when comparing results found from different operators, 

there is a clear and significant problem with the current gold standard approach. 

  

Moreover, there were studies that compared the repeatability issues between healthy 

and non-healthy cohorts [28]. One of two studies that highlight this, was that of 

Skorupska et al. [84], where the pelvic muscles (see Table 2.1) were segmented within 

a healthy cohort and a cohort with low back and leg pain. In this analysis, Skorupska et 

al. [84] found that the inter-operator repeatability was good for the healthy cohort, and 

moderate for the low back and leg pain cohort. Moreover, Springer et al. performed 

an intra-operator analysis for the pelvic muscles from both limbs of subjects with one 

hip replacement. In this study, Springer et al. [85] characterised the intra-operator 

repeatability and concluded that a higher variability incurred when segmenting the 

limb with the hip replacement (average of 1.4% more variability of the muscle volume 

found between repeated segmentations). Both studies highlighted that the 
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repeatability of the manual segmentation process was lower in non-healthy cohorts. 

This is a significant shortcoming, as the people for whom muscle segmentation would 

be most impactful: people with muscle pathologies, the segmentation results were 

more susceptible to operator variability issues [28, 84, 85]. This is a logical conclusion, 

as the structure of pathological muscle bodies are far more complex in their 

appearance, with more visible damage within the muscles further blurring the lines 

between muscle boundaries, as can be seen in Figure 3.1. 

 

 

Figure 3.1: MR imaging within the thigh, showing healthy (A), selective muscle damage (B), and severe 

muscle damage (C). Image taken from Lareau-Trudel et al. [86], study cohort was healthy young 

individuals, and patients with facioscapulohumeral muscular dystrophy. 

 

The inter-operator and intra-operator variability of manual muscle segmentation 

within the two cohorts used in this thesis have been characterised. Firstly, the 

MultiSim database, with the variability characterised in a study by Montefiori et al. [66]. 

Secondly, a database collected in a project titled STH21022, wherein MR images were 

collected from the lower limbs of 27 older women. The imaging data collected through 

the MultiSim project was used throughout the thesis, whereas the subjects within the 

STH21022 project were used only in a preliminary study and as such, further details 

for the STH21022 cohort are available in Section 3.3. 
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3.2.3. Preliminary study - Operator variability of muscle segmentation 
within the MultiSim cohort 

The inter-operator and intra-operator variability of the Multisim cohort (used in most 

of this thesis) was characterised in a study by Montefiori et al., with input from the 

author of the thesis [66]. In this study, trained operators segmented the muscles from 

both lower limbs from T1-weighted MR images. The muscle segmentations gathered 

enabled quantification of the dissimilarity of the muscle volume and length between 

the dominant and non-dominant limbs of the subjects. The author of the thesis 

contributed to the quantification of operator variability and presented a novel 

automatic algorithm to quantify muscle length. The automatic algorithm for 

quantifying the muscle length is not used within the thesis but is explained in Appendix 

1. 

3.2.3.1. Participants and data acquisition for MultiSim cohort 

Lower limb T1-weighted MR images from 11 post-menopausal women (mean (standard 

deviation)): 69 (7) years old, 66.9 (7.7) kg, 159 (3) cm) were used for this study. Images 

were collected using a Magnetom Avanto 1.5T scanner (Siemens, Erlangen Germany), 

with an echo time of 2.59 ms, repetition time of 7.64 ms, flip angle of 10 degrees. To 

reduce scanning time while still providing detailed geometries of the joints for use 

within the original study, the joints were acquired with a higher resolution (pixel size 

1.05 mm2, slice spacing 3.00 mm) than the long bone sections (pixel size 1.15 mm2, slice 

spacing 5.00 mm). The study was approved by the East of England – Cambridgeshire 

and Hertfordshire Research Ethics Committee and the Health Research Authority 

(16/EE/0049). 

3.2.3.2. Muscle segmentation protocol 

Twenty-five out of the 37 muscles outlined in Chapter 2 Section 2.1 were segmented 

from the MR images. The 12 muscles that were not segmented either lay outside the 

field of view of the images or were deemed not visible within the MR images due to the 

relatively low resolution of the images. The images were segmented using a semi-

automatic approach (Mimics research 20.0, Materialise, Belgium). The pipeline for the 

semi-automatic approach began by combining the MR imaging sequences of the hips, 

thighs, knees, and shank. To complete this, a module within Mimics allows the user to 

manually locate multiple points within each of the sequences and automatically aligns 

them. With the aligned sequences, the user segmented the entire muscle body from 

the other tissues visible within the images. Thereafter, an automated, atlas-based 

prediction is generated, roughly locating the muscles. To finalise the segmentations, 
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manual processing is needed. The manual processing required 10 hours on average for 

all muscles to be segmented per subject. 

 

To analyse the inter-operator dependency, the Coefficient of Variation (CoV) was 

calculated for the muscle volumes acquired from the repeated segmentation of three 

subjects by three different operators. The muscles for which the CoV was less than 

10% were considered acceptable [28, 66], but to be more conservative, those muscles 

for which the CoV in the inter-operator analysis were greater than 5% were tested for 

intra-operator dependency issues. The intra-operator CoV was subsequently 

calculated from the muscle volumes resulting from repeated segmentation of one 

subject three times by a single operator. All muscles with inter-operator and intra-

operator repeatability greater than 10% were removed from further study, as the 

manual segmentations were considered not repeatable. For future analyses, these 

manual segmentations are the references to be compared against results obtained 

from automatic segmentations. Given that the muscle segmentations for some 

muscles are not repeatable when applying the gold standard approach, retaining these 

muscles would introduce bias in future results. 

3.2.3.3. Inter and intra-operator repeatability results 

The results for the inter and intra-operator analyses are presented in Table 3.1. The 

CoV resulting from the inter-operator analysis was substantially greater than the CoV 

found within the intra-operator analysis, for all muscles tested. The largest muscles: 

gluteus maximus, rectus femoris, adductor magnus, vastii, gastrocnemii, and soleus, 

presented the lowest CoV across both analyses, and were easily identifiable from 

within the images. Of the 25 muscles segmented, eleven had inter-operator CoV 

greater than 10% and failed to meet the outlined threshold. On the other hand, only 

one of the muscles tested in the intra-operator analysis presented a CoV greater than 

the threshold: the gluteus minimus. Additionally, the number of muscles that resulted 

in a good CoV (< 5%) within the intra-operator analysis (11) was considerably higher 

than those in the inter-operator analysis (3). 

 

The overarching results in the context of this thesis from this investigation are that the 

repeatability issues associated with an inter-operator analysis are greater than those 

associated with an intra-operator analysis. This finding is in line with those results 

found in the literature, particularly with the systematic review presented by Pons et al. 

[28]. As a result of these analyses, the muscle segmentations considered within 

subsequent chapters are those gathered by one operator, ensuring consistency, and 

removing any inter-operator effect. Additionally, due to the results of this initial study, 
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the gluteus minimus was removed from the analyses within the proceeding chapters, 

as the repeated segmentations of this muscle were found to fail the inclusion criterion 

(CoV < 10% within either the inter- or the intra-operator analysis). Finally, the gluteus 

medius was found to exceed beyond the field of view of the MR imaging sequences 

within several subjects and was also excluded. Therefore, the segmentations of 23 

muscles were used in the analyses performed within proceeding chapters. 

 

 
Table 3.1: Inter and intra-operator repeatability of the manual segmentation procedure for the 

MultiSim cohort of post-menopausal women [66]. 

3.2.4. Applications of manual muscle segmentation 

There are numerous applications of muscle segmentation and currently, they rely on 

the gold standard approach to manually segment muscles. As mentioned previously, 

there are three main outputs of muscle segmentation: muscle shape, volume, and to 

measure the level of fat infiltration. A change in the shape or volume of muscle can be 

normal, resulting from hypertrophy or atrophy, but could be a physiological response 

to a Musculoskeletal (MSK) or Neuromusculoskeletal (NMSK) disorder, or even injury 
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[61, 75, 87]. For these reasons, muscle segmentation is a tool that is very useful in areas 

such as sports science and clinical research. The segmentation results can either be 

used directly or indirectly through building subject specific dynamic MSK models [88]. 

 

Quantitative assessment of muscle shape and volume is critical for research in MSK 

and NMSK disorders in order to investigate how the pathology affects the muscular 

system [59, 60]. Muscle volume and the level of fat infiltration are effective indicators 

of muscle functional capacity or strength [89, 90]. Muscle atrophy and fat infiltration 

are physiological consequences of (N)MSK disorders, and quantification of these 

effects could lead to a better understanding of the mechanisms under which the 

disorders act. For these reasons, quantification of muscle shape and volume in cohorts 

with certain (N)MSK disorders has allowed a more effective understanding of the early 

stages of diseases and has enhanced diagnosis strategies [91, 92]. Moreover, the effects 

of treatments, both pharmaceutical and physiotherapeutic, could also be quantified 

through muscle segmentation in longitudinal studies [93, 94]. Therefore, clinical 

strategies to slow or reverse progression of MSK disorders could be better informed 

using muscle morphology and structural characteristics derived through muscle 

segmentation. 

 

Many disorders that affect the muscles manifest through progressive penetration of 

fat into the muscle tissue, wherein contractile muscle tissue is replaced with non-

contractile adipose tissue [29, 90]. Therefore, quantification of muscle fat infiltration 

is an important application of muscle segmentation, which would allow detailed 

characterisation of muscle disorders. One example is the study presented by Lareau-

Trudel et al., where the level of fat infiltration was assessed through muscle 

segmentation in subjects with Facioscapulohumeral dystrophy (for details see 

Chapter 2, Section 2.1) compared with a group of healthy controls [86]. In this study, 

the level of intra-muscular fat was found to be much higher in the disease group (21.9 

± 20.4%) than in the healthy control group (3.6 ± 2.8%). Upon further analysis, given 

the high standard deviation of intra-muscular fat content in the disease group, the 

authors clustered 3 different imaging patterns within the disease cohort, which could 

represent different stages of this disease. Similarly, Wokke et al. [95] investigated the 

intra-muscular fat penetration in healthy subjects and subjects with Duchenne 

muscular dystrophy. In this study, the level of fat infiltration was measured for the 

individual muscles, finding a strong correlation (spearman r = 0.89, P < 0.0001) 

between two different approaches to determine the level of fat infiltration. The study 

was able to accurately measure the level of fat infiltration of many muscles within 

numerous subjects. A clear difference was found in the level of fat infiltration between 
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the healthy controls and Duchenne muscular dystrophy cohort, 5.3 ± 0.98% and 29.7% 

± 13.2%, respectively. These studies demonstrated that fat infiltration is a key identifier 

of muscle disorders. Following a muscle-specific approach could lead to a better 

quantitative understanding of which muscles are affected most by various disorder. 

 

As stated previously, one more common but less severe muscle disorder is sarcopenia. 

Sarcopenia is the age-related degradation of muscle tissue in older individuals, which 

limits their physical capacity [27]. Like the other disorders described above, sarcopenia 

is characterised by fat infiltration of the muscle tissue [53]. There have been many 

studies surrounding sarcopenia since the revised clinical definition and diagnosis 

algorithm [27]. One such study presented by Lees et al. [96], who compared the total 

lean tissue mass, muscle strength, and muscle quality characterised using Computer 

Tomography (CT) imaging within 50 young healthy volunteers and 50 older volunteers. 

In this study, the authors suggested that only 2-4% of the older participants could be 

diagnosed with sarcopenia, but as many as 50% had low lower-body muscle quality, 

i.e., high levels of fat infiltration. The vast disparity between these two figures suggests 

that there are shortcomings in the current assessment of sarcopenia [96]. 

 

Large databases of a variety of disease cohorts would be required in order to 

rigorously derive a better understanding of the mechanisms underpinning muscle 

disorders. This quantitative understanding would be required to enhance therapeutic 

measures and grant earlier detection of such disorders. The following section outlines 

a preliminary example of one such study completed, showcasing the types of 

investigations into muscle disorders that could be enabled through muscle 

segmentation. 
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3.3. Fat infiltration in healthy, obese and dynapenic abdominal 
obese adults 

 
 
The author of the thesis and Dr. Lisa Dowling contributed equally to the work 

presented in Section 3.3. Data acquisition was conducted by Dr. Lisa Dowling. Data pre-

processing was completed by the author. The manual segmentation procedure was 

completed in a combined effort by the author and Dr. Lisa Dowling. Data post-

processing was completed by the author, and the methods and computational tools 

used to process the data were built by the author. Statistical analysis was performed 

by the author of the thesis. 

3.3.1. Study motivation 

A preliminary study using manual muscle segmentation was undertaken to add to the 

current knowledge surrounding the effects on muscle quality of sarcopenia in older 

individuals. The study sought to highlight the difference in muscle quality and compare 

the physical capacity of the lower limb muscles between older people within three 

different cohorts: Normal Weight (NW), Obese (OB) and Dynapenic Abdominal Obese 

(DAO). Medical images were captured from the lower limbs of 26 individuals, and the 

maximum isometric force of knee extension and flexion were measured. 

3.3.2. Methods 

3.3.2.1. Subjects & imaging acquisition 

Lower limb T1-weighted and Dixon method [97] MR images were acquired from 26 

female subjects (Age range: 60-79; mean age: 66.6). Ethical approval was granted by 

the Leeds West Research Ethics Committee (REC Reference 20/YH/0274). Images 

were collected using a Magnetom Avanto 1.5T scanner (Siemens, Erlangen Germany), 

with an echo time of 2.59 ms, repetition time of 7.64 ms, flip angle of 10 degrees. The 

MR images were acquired in four sequences, capturing the hip, thigh, knee, and shank. 

To reduce scanning time, the joints were acquired with a higher resolution (pixel size 

1.05 mm2, slice spacing 3.00 mm) than the long bone sections (pixel size 1.15 mm2, slice 

spacing 5.00 mm). As such, the imaging acquisition method followed that of standard 

clinical practise, and were not specifically selected for the purposes of this research. 

 

The sequences were stacked in MATLAB forming one continuous 3D image containing 

the entire lower limb (specific details outlined in chapter 4). The subjects were split 

into three sub-cohorts: Normal Weight (NW, n = 10), Obese (OB, n = 9), and Dynapenic 
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Abdominal Obese (DAO, n = 7). The NW sub-cohort were those with Body Mass Index 

(BMI, kg/m2) in the range of (18.5, 25), OB with BMI in the range of (30, 40), with both 

sub-cohorts performing five sit-to-stand exercises in less than 15 seconds. Those 

assigned to the DAO cohort had BMI in the range of (30, 40) and completed fewer than 

five sit-to-stand exercises in 15 seconds, following the clinical classification of DAO [27]. 

3.3.2.2. Muscle segmentation 

To reduce segmentation time given the large study cohort and isolate the muscles of 

interest, two muscle groups in the dominant limb were segmented from the MR 

images of each subject: the knee flexors and extensors. Both groups consisted of 4 

muscles that contribute most to the joint motion they permit [98]. The group of flexors 

consisted of the rectus femoris, vastus medialis, lateralis, and intermedius (for details 

see Table 2.1). The group of extensors consisted of the semimembranosus, 

semitendinosus, biceps femoris caput brevis, and longum. These two muscle groups 

were segmented from the pre-processed MR imaging sequences manually using 

3DSlicer, an open-source manual segmentation software [99]. The volumes of the 

muscle groups were calculated from the segmentations. 

 

The muscle groups were segmented from the MR images of the 26 subjects by two 

expert operators. As previously stated, there are noted repeatability issues when 

performing muscle segmentation [28], resulting particularly from inter-operator 

dependency [66]. Therefore, both the inter-operator and intra-operator repeatability 

were calculated for this segmentation task, through calculation of the CoV of the 

muscle volume of repeated segmentations. Firstly, the intra-operator repeatability of 

the segmentation procedure was assessed through one operator segmenting both the 

flexors and extensors from one subject 3 times. The inter-operator repeatability was 

assessed by both operators segmenting the flexors and extensors from 3 subjects. A 

CoV of less than 5% was deemed to be of a good level of repeatability [28, 66].  

 

The muscle segmentations were performed in tandem with the Dixon method MR 

images to calculate the level of fat infiltration, as shown in Figure 3.2. The frequency-

intensity histograms were plotted for the voxels containing the flexors and extensors, 

individually. The intensity threshold at which the muscle peak (found as the peak of 

greatest intensity in the frequency-intensity plots) was labelled as the point at which 

the gradient of the frequency intensity plot exceeded a value of 1, at the first point 

before the beginning of the peak, ensuring unbiased labelling (see red circle in Figure 

3.2). The lean muscle volume was found through masking the muscle segmentations in 

response to this threshold (red circle in Figure 3.2), removing all tissue with greyscale 
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value less than the outlined threshold. The fat infiltration (%) was defined as 100% 

minus the percentage of lean muscle volume over total muscle volume. 

 

 

Figure 3.2: From left to right: Raw MR images from the thigh (A), the segmentation results (B) for the 

extensors (grey) and flexors (white), the Dixon method MR images (C), and the segmentations with 

the intra-muscular fat removed (D) from the single level threshold (marked by a red circle) identified 

by the frequency plots (E). 

3.3.2.3. Maximum force output 

The maximum isometric torque ("!"#) output of the flexors and extensors of the 26 

subjects was measured using a BIODEX [100]. The knee joint was locked at a right angle 

by a strap placed at the ankle. The subject was then asked to flex and extend the knee 

with maximum effort for five times. The maximum torque measured by the BIODEX 

was the maximum of the 5 repeated measurements. To calculate the maximum muscle 

force (#!"#) generated by the flexors and extensors, the distance ($) between the 

pivot and lever arm (the calf length) was measured. The calf length was calculated 

from the MR imaging sequences, measuring the distance from the knee to the ankle. 

The maximum force was calculated for both the flexors and extensors using the 

mechanical force-torque relationship, #!"# = "!"#/$. Using the maximum force and 

the segmented muscle volumes, the ratio between force and volume was calculated 

(force/volume, N/cm3) for both the flexors and extensors of each subject, considering 

both total and lean muscle volumes. This metric was designed to allow direct 

comparison between the force output of the three different sub-cohorts normalized 

against the volume of the muscle groups. 

3.3.2.4. Statistical analysis 

A statistical analysis of the results was conducted to assess the differences in 

measured and calculated characteristics between the 3 different sub-cohorts. A one-

sample Kolmogorov-Smirnov test was first used to test the total and lean muscle 

volumes, and the force/volume metrics for normality. The Kolmogorov-Smirnov test 
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was used for each sub-cohort and muscle group independently. The nonparametric 

Wilcoxon rank sum test was then used to test the measured and calculated values for 

statistically significant differences between the 3 sub-cohorts. This test was selected 

as all measured and calculated values were found not to be normally distributed 

through the Kolmogorov-Smirnov test. 

3.3.3. Results 

3.3.3.1. Operator variability 

Both flexors and extensor muscle groups achieved intra- and inter-operator CoV of 

less than 5%. Flexors intra- and inter-operator CoV were 4.8% and 1.2%, respectively. 

Extensors intra- and inter-operator CoV were 4.8% and 3.4%, respectively. Following 

the traditional characterisations of these values within the literature [66], the 

repeatability of the segmentation procedure was good in both analyses. The CoV found 

in this study are much lower than those found in the previously presented MultiSim 

cohort, likely due to the grouping of muscles as opposed to segmenting individual 

muscles. 

3.3.3.2. Extensor and flexor volumes and level of intra-muscular fat 

The total and lean muscle volume (cm3), and fat content (%) calculated for both 

muscle groups within the three cohorts are presented in Figure 3.3.  

 

Total volume: The total extensor volume of the three sub-cohorts were comparable, 

with mean ± standard deviation of 1194 ± 255 cm3 (NW), 1109 ± 207 cm3 (OB), and 

1090 ± 181 cm3 (DAO). Moreover, the total muscle volume of the flexor muscle groups 

was typically around half that of the extensors and was also comparable between the 

sub-cohorts, with mean ± standard deviation of 489 ± 87 cm3 (NW), 463 ± 102 cm3 

(OB), and 456 ± 74 cm3 (DAO).  

 

Lean volume: No statistically significant difference was found between the lean 

extensor volumes of the three sub-cohorts, but the NW subjects on average had the 

largest lean extensor volume (1090 ± 247 cm3), the OB subjects had the second largest 

(990 ± 184cm3), and the DAO subjects had the least (952 ± 190 cm3). Though a similar 

result was found for the lean flexor volume, with the NW (441 ± 86 cm3) and DAO (362 

± 61 cm3) sub-cohorts having the greatest and smallest average lean muscle volume, 

there was a significant difference found when testing the distribution of NW and DAO 

lean flexor volumes (p=0.025).  
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Fat infiltration: The fat infiltration (%) found between the three groups within the 

extensors mirrored the above results, with the NW sub-cohort with the lowest average 

level of fat infiltration (8.8 ± 3.6%), the OB sub-cohort with the second lowest (10.5 ± 

5.0%), and the DAO sub-cohort with the most (12.9 ± 6.2%). Though, statistical tests 

showed that there was no evidence of differences between the three subjects. Within 

the flexor muscle group, the rankings were the same, with the NW subjects found to 

have the lowest level fat infiltration (9.9 ± 4.4%), the OB subjects with the second 

lowest (14.2 ± 5.7%), and the DAO subjects with the highest level of fat infiltration (17.7 

± 6.2%). Statistical tests showed that there was a significant difference between the 

fat infiltration of the flexors within the NW and the DAO subjects (p=0.0097). 
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Figure 3.3: The total muscle volume (top row, cm3), lean muscle volume (second row, cm3), and level 

of fat infiltration (%), for the extensor muscle group (left) and flexor muscle group (right), across the 

three groups: Normal Weight (NW), Obese (OB), and Dynapenic Abdominal Obese (DAO). Lines 

connecting bar charts highlight statistically significant differences between the 2 connected groups, 

with * corresponding to p<0.05, ** to p<0.01, and *** to p<0.001. 
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3.3.3.3. Maximum isometric force per unit volume 

The maximum isometric forces generated by the flexor and extensor muscle groups 

(measured independently using a BioDex) were normalised against both the total and 

lean muscle volumes of the muscle groups independently. The maximum force per unit 

volume generated by both muscle groups is shown in figure 3.4 for all subjects. 

Considering the extension and flexion forces normalised against the total extensor and 

flexor muscle volumes (respectively), the OB sub-cohort was able to generate the 

greatest force per unit volume (N/cm3), with both the extensor muscles (0.353 ± 

0.040 N/cm3, mean ± standard deviation) and flexor muscles (0.403 ± 0.075 N/cm3). 

Significant differences were measured between extensor force per unit volume of the 

OB and NW (0.280 ± 0.050 N/cm3), and OB and DAO sub-cohort (0.272 ± 0.070 

N/cm3), with p = 0.0055 and 0.0229, respectively. Considering the total flexor volume, 

the DAO sub-cohort produced the lowest force per unit volume (0.313 ± 0.075 N/cm3), 

significantly lower than the OB subjects (p = 0.0418). No statistical difference was 

found between the NW (0.381 ± 0.073 N/cm3) and OB cohort considering the 

maximum flexion force normalised against the total muscle volume.  

 

The extension and flexion forces normalised against the lean muscle volumes 

presented similar results, with the OB subjects able to generate the greatest force per 

unit of lean volume with both the extensor (0.395 ± 0.041 N/cm3) and flexor (0.463 ± 

0.090 N/cm3) muscle groups. The force per unit of lean volume of the extensor muscle 

group was comparable between the NW (0.308  ±  0.052 N/cm3) and DAO (0.316 ± 

0.103 N/cm3) subjects, but the NW subjects generated significantly less force per unit 

of lean volume than the OB subjects (p = 0.00097), where no statistical difference was 

found between the DAO and OB subjects. On the other hand, the force per unit of lean 

volume of the flexor group was similar within the three sub-cohorts (NW: 0.429 ± 

0.082 N/cm3, DAO: 0.401 ± 0.130 N/cm3), with no significant differences. 
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Figure 3.4: The maximum isomorphic flexion and extension force measured, normalised against the 

total and lean muscle group volumes. The extensor force per unit volumes are presented on the left 

hand side, and the flexor force per unit volumes are presented on the right hand side. Three boxplots 

are plotted, representing each of the three study sub-cohorts: Normal Weight (NW), Obese (OB), and 

Dynapenic Abdominal Obese (DAO). 

3.3.4. Discussion & conclusion 

In this Preliminary study, the knee flexor and extensors were segmented from MR 

images. An investigation into the relationship of the muscle volumes found through 

segmentation and the maximal isometric force was conducted and the level of fat 

infiltration within the three sub-cohorts was compared, examining the two muscle 

groups independently in both analyses. 
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The study found that the flexor muscle group had a higher level of fat infiltration 

(13.5%) than the extensor group (10.5%), particularly within the OB and DAO cohort 

(as shown in figure 3.3). This suggests that there is a connection between obesity and 

fat infiltration of muscle, but this appears to be a particular problem within DAO 

subjects, that have a higher level of fat infiltration into the knee extensors and flexors 

than the other groups. The OB subjects were able to produce a greater amount of 

force per unit lean volume considering both the extensors (OB: 0.395 N/cm3, DAO: 

0.316 N/cm3, NW: 0.308 N/cm3) and flexors (OB: 0.463 N/cm3 NW: 0.421  N/cm3, DAO: 

0.401 N/cm3). Note that the lean muscle volumes were comparable between the three 

sub-cohorts. The disparity between the three sub-cohorts could arise from such 

factors as neurological connections to the muscles that cannot be analysed with 

available MR images, or differences in the muscle fibre structure [36]. As the OB cohort 

had the greatest force per unit volume of muscle but had comparable muscle volumes 

(for both muscle groups), one alternate reason for this higher level of force production 

could be that the OB cohort undergoes daily strength training through carrying a 

greater weight, enabling the higher level of force than the normal weight cohort. 

Further analyses are required to make statistically significant conclusions from the 

results of this preliminary study. A larger cohort and a more sophisticated 

segmentation procedure would allow a more detailed investigation, but processing 

time and operator repeatability issues (particularly within a non-healthy cohort) 

would limit these investigations, particularly if individual muscles were to be 

considered.  
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3.4. Literature review 

Manual muscle segmentation, as the results above highlighted, is a powerful tool for 

scientific discovery, but is limited. The drive for automating the process and alleviating 

these shortcomings is therefore growing in the research community. The benefits to 

automating the process are highlighted within the previous sections. Processing more 

data, more quickly, without operator variability, and segmenting individual muscles 

rather than muscle groups would enable more disease or disorder specific 

mechanisms to be understood [59, 60, 96]. Furthermore, a method to quantitatively 

measure muscles and their structural health and functional capacity, would be 

beneficial for a more targeted and subject specific intervention strategy [101]. 

Moreover, this quantitative tool could enhance investigations in the effects of 

therapeutic interventions for muscle disorders [61, 71, 74]. 

3.4.1. Existing automatic segmentation pipelines  

Many different approaches have been explored to automatically segment muscles 

from different imaging modalities. These can be split into two overarching categories, 

1) traditional, purely mathematical approaches based on image processing, and 2) 

probabilistic learning-based approaches. These two approaches have some significant 

benefits and limitations, and there are merits to further exploring both methods’ 

application and addressing their current limitations. Notable studies are highlighted 

for both approaches in the following sections.  

3.4.2. Traditional approaches 

There are different traditional image processing techniques used to segment medical 

images that use mathematical manipulation of the images. The most basic example of 

this is thresholding: deciding upon a greylevel value, with all pixels within an image 

being accepted if they fall above or below that threshold. While this approach has been 

shown to be successful in some medical image segmentation applications, it is unable 

to perform individual muscle segmentation [102]. The muscle boundaries are not so 

clear within any type of medical image, and there are a variety of different tissue-tissue 

boundaries with different characteristics that must be isolated, meaning more 

sophisticated approaches are required. The two most successful traditional methods 

used within the literature to automate muscle segmentation are statistical shape 

modelling, and image registration.  
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Statistical shape modelling (SSM) entails the generation of an average atlas geometry, 

which can be scaled or deformed to fit individuals. It has been used to achieve a good 

agreement of automatically and manually generated segmentations of single muscles 

from MR images, such as the quadratus lumborum within the lower back by Engstrom 

et al. [103] where the Dice Similarity Coefficient (DSC), a volumetric and geometrical 

measure of agreement, achieved was 0.86 ± 0.08 (mean ± standard deviation). The 

quadratus lumborum is a muscle with a non-complex, truncated cone-like shape that 

is consistent between individuals and is therefore well suited to automatic 

segmentation using this technique. However, the large variability of muscle volume and 

geometry within the lower limb skeletal muscles, even between subjects with similar 

anthropometric characteristics, limits the application of SSM to segment other 

muscles. This is highlighted in a study by Andrews and Hamarneh [104], where SSM was 

used to segment partial sections of 11 muscles in the thigh. Using a similar SSM based 

method, the achieved DSC was 0.81 ± 0.07 on average, which was significantly lower 

than that found in the study by Engstrom et al. [103]. One of the reasons for the 

disparity in the accuracy of results, was that this method was less well suited to the 

segmentation of many individual muscles with wide variations in structures and 

shapes.  

 

Image registration is the process of aligning two images. In any registration algorithm 

there are two inputs: a fixed image (often referred to as the target image), and a 

moving image (often referred to as the reference image). With image registration, the 

moving image is deformed, either linearly or non-linearly, to match the fixed image 

[105]. Image registration has been explored within the literature to perform muscle 

segmentation. The idea behind this process is that when registering images, features 

within images are aligned. If the features are known within the moving image, then they 

can be found through registration, in the fixed image. A simple example of the process 

of image registration is shown in Figure 3.5, below.  
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Figure 3.5: Example of registration of two example images, both with two features (circle within a 

circle). The moving image (shown in green) is deformed into the red image (shown in red) through 

registration. Through the two-step registration shown, the green image is first scaled and translated, 

followed by a squeeze in the horizontal direction. The yellow colouration in the resulting image (right 

hand side) showcases an accurate registration, as the green and red images are perfectly aligned. 

 

All image registration algorithms require a measure of similarity between the fixed and 

moving images [105]. Maps that displace pixels in the moving image are then tested to 

maximize (or in some cases, minimize) the similarity measure of the two images. 

Displacement maps (i.e. for each voxel in the image) are tested iteratively, until the 

deformed moving image is satisfactorily similar to the fixed image. 

 

Two-dimensional (2D) deformable image registration has been used to generate 3D 

muscle segmentations. In a study by Ogier et al. [83] 2D image registration was used to 

propagate segmentations of individual slices into partial sections of 3D muscle 

geometry using only a few manually segmented slices. The algorithm was used to 

individually segment the four knee extensor muscles (the three vastii and rectus 

femoris) quoting an average DSC of 0.91 across the four muscles. This method 

required the manual segmentation of a small number of MR imaging slices and 

propagated them to neighbouring images through non-linear registration. Though this 

method greatly reduces the number of images required to be manually segmented, 

the accuracy of results would be limited given an area of the body where the shape of 

the muscles change drastically between sequential 2D images. The authors did not 

account for these areas as they appear to have segmented only partial sections of the 

thigh muscles, not the entire muscle structure. Additionally, any inaccuracies in the 

manual segmentations, due to unavoidable operator variability issues, would be 

propagated through the 3D reconstructions, which could be a significant source of 

error.  

Input Stage 1 Stage 2
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3D image registration has also been used within longitudinal studies to populate MR 

images with partial segmentations of a small number of muscles to good effect, such 

as within the studies presented by Le Troter et al. [94] and Fontana et al. [93]. Both 

studies used segmented imaging data at an initial observation as a reference to 

segment the muscles from imaging data acquired at a secondary timepoint. Le Troter 

et al. achieved a high DSC (~0.90) in the segmentation of the knee extensor muscle 

group, whereas Fontana et al. achieved a similarly high DSC (~0.87), in the 

segmentation of the gluteus maximus, gracilis, tensor fascia latae, and sartorius. 

Though these longitudinal approaches provided insight into the change in muscle 

characteristics over time, multiple MR image sequences are required from individual 

subjects at two different timepoints and one dataset must be manually segmented. 

These limitations prevent large scale automatic segmentation of new subjects. In the 

literature, inter-subject registration aiming to segment the muscles of a new subject, 

referencing a previously segmented subject has not yet been fully explored to the best 

of the author’s knowledge.  

 

Image registration has also been used widely with multi-atlas approaches [81, 106-108], 

which combine the results of multiple different segmentations generated through 

independent registrations. The locations in the image where the segmentations agree, 

are collated forming one multi-atlas segmentation [106]. The technique seeks to gather 

the best aspects from different segmentation results and reduce inaccuracies [106]. 

Figure 3.6 below shows a mathematical representation of how multi-atlas approaches 

operate. 

 

 

Figure 3.6: Multi-atlas approach for 3 given predictions or segmentations. The overlapping area is 

labelled as the multi-atlas prediction. 
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The most prevalent examples of multi-atlas segmentation methods are in the 

segmentation of brain tissues, such as the Simultaneous Truth and Performance Level 

Estimation (STAPLE) [106]. This method fuses labels of various areas of the brain by 

forming a probability map for each pixel, which defines the probability of each pixel 

belonging to a certain tissue. If the probability of a given pixel belonging to a certain 

label exceeds a user-stated threshold, the pixel is given that label. Herein lies the 

benefit of multi-atlas methods: the outlier pixels resulting from each registration are 

revoked, and the agreeing pixels are retained. This is clear particularly within the brain 

tissue segmentation methods noted, as the multi-atlas approaches outperform single-

atlas registration approaches [109, 110]. However, there are limitations to multi-atlas 

methods. If the number of atlases combined within the multi-atlas approach increases, 

the number of disputed pixels (those for which the probability maps fall below the 

threshold) will also increase. Therefore, the number of atlases must be carefully 

selected with reference to the user-inputted threshold. Additionally, if the variability 

within the segmentations resulting from single-atlas registration is high, the multi-atlas 

results can be overly penalised and not represent the intended segmentation [106]. 

 

To the best of the author’s knowledge, only two studies reported the use of multi-atlas 

approaches for muscle segmentation [108, 111], with only one focussing on individual 

muscles. In that study, Yokata et al. [108] segmented hip and thigh muscles (some 

grouped) from CT images and achieved an average DSC of 0.83. The study presented 

a method that automatically segmented the hip and thigh muscles with high accuracy 

but neglected the muscles within the calf. The study also used CT images, which 

expose subjects to unnecessary radiation.  

3.4.3. Deep learning 

Machine learning has been an area of great interest in recent years. In the context of 

images analysis, Convolutional Neural Networks (CNNs) are used to perform 

segmentation tasks [112, 113]. Convolutions are simple matrix-oriented operations that 

alter images in some way. A kernel (a matrix of numbers) is passed over an image, 

altering the pixel values within an image. Within CNNs, many convolutions are applied 

sequentially, and weights are assigned to each convolution, with high weights assigned 

to the convolutions that highlight key features [114]. In the context of medical image 

segmentation, CNNs are trained by inputting images in batches into the network, and 

a segmentation is predicted and compared to a ground truth segmentation label. Initial 

predictions are always poor, but in a process named back-propagation, the weights of 

each of the tested convolutions is altered. After training an algorithm of a suitable 
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architecture, a new, unlabelled image can be segmented. This ‘learning’ process, by 

changing the weights of the convolutions is the reason for these algorithms to be 

named neural networks, as the system learns in a similar way to the human neural 

system, connecting combinations of convolutions that can highlight the relevant 

anatomical features. Deep learning is a more recent adaptation of CNNs, wherein the 

structure of the networks has many connected layers, which operate in tandem. In 

addition to the training aspect of CNNs, there are hyperparameters, such as the 

learning rate, kernel size, and patch size, which must be tuned [115]. To optimize these 

parameters, a validation dataset is separated from the training data. The validation 

data is tested regularly within the training process allowing the user to alter the 

hyperparameters used to train the network. A traditional split is 80-20% training to 

validation and this is seen throughout the CNN research community. 

 

There are a multitude of studies available that have applied deep learning in the 

context of tissue segmentation. Three areas that have an extensive number of studies 

aiming to perform segmentation using deep learning are brain (450+), organ (500+) 

and bone segmentation (150+) [116]. Though, there are significantly fewer studies 

aiming to segment the lower limb muscles (50+) and even fewer where the input 

images are MR images [28]. While exploring this literature, it became clear that few 

studies aimed to segment all muscles individually. Mostly, studies segmented the 

entire muscle body, which is useful if overall muscle health and volume were to be 

assessed in longitudinal studies but gives limited insight on individual muscle function. 

There are, however, peer-reviewed studies that segmented individual muscles from 

3D MR imaging data. Three examples of deep learning models used to segment 

muscles from MR images will be analysed in this section. 

 

In 2017, a study published by Ghosh et al. [117] aimed to segment five individual muscles 

from a full lower limb MR imaging sequence. In the study, fat-suppressed imaging data 

was taken from an unspecified number of healthy athletes, resulting in a total of 700 

MR images for each muscle. Ghosh et al. made use of AlexNet, one of the first deep 

CNNs available in the literature [118].The study involved the segmentation of 5 muscles 

(adductor longus, gracilis, sartorius, rectus femoris and vastus medialis) from 17 sets 

of MR imaging data, acquired from young healthy athletes. Although it is unclear the 

number of subjects that were tested, the authors quoted an 80-20% split in training 

and validation. The authors reported an average segmentation accuracy of 0.87 DSC; 

some results are visualised in Figure 3.7. 
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Figure 3.7: Visual results in the study by Ghosh et al., six two-dimensional image slices along the thigh, 

showcasing the vastus medialis (a, b), gracilis (c, e) and adductor longus (d, f). The ground truth 

segmentation approach is shown in red, and the predicted segmentation is shown in green. Image 

acquired from Ghosh et al. [117]. 
 
To conclude, this study demonstrated the application of deep learning within the 

problem of muscle segmentation with a moderate to high increase in accuracy. The 

dataset used was well suited to this task, given the high number of fat-suppressed, 

high-resolution images of healthy athletes. Though to note the limitations of the study, 

only five muscles were segmented from these images, and the CNN architecture has 

since become out of date, with more recent architectures enabling results of even 

higher accuracy within other studies. 

  
One such study, was that published by Ding et al. [80] used the UNet structure, a more 

modern deep learning model [114]. The UNet is a convolutional neural network model 

designed specifically for problems concerning medical imaging data. It has been used 

for a multitude of other medical imaging segmentation tasks and has been shown to 

be very powerful in this application [119]. The model was built around the theory that 

the first half of the ‘U shape’, where the input images are down sampled and reduced 

in size, allows the neural network to recognise the larger, more global features within 

the images, for a given segmentation task. The latter half of the U shape, up sampling, 

allows training of the neural network to recognise locally important features, such as 

feint intermuscular boundaries. In the study by Ding et al., two pre-processed MR 

images with different acquisition methods are inputted into the UNet CNN as one, 

double channel image (see Figure 3.8). The two image acquisition methods used in this 

a 

b 

c 

d 

e 

f 
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study were water-suppressed and fat-suppressed. Having both MR imaging acquisition 

methods allowed additional anatomical features (fat and bone) to be easily removed 

from the images, in a pre-processing step. Additionally, the use of two acquisition 

modalities allowed the neural network to learn the features within the image with two 

references to draw from, increasing the likelihood of the required features being 

meaningfully learned [120]. 

 

 

Figure 3.8: Schematic of the study by Ding et al. [80], showing the double channel MR image, with its 

attributed manual segmentation (left). These inputs are inputted into the U-Net structure, allowing 

the feature extraction to be learned. 

 
The authors used the UNet model to segment four regions of interest: the knee 

extensors (the three vastii and rectus femoris), sartorius, gracilis and hamstrings (a 

grouped term for the semitendinosus, semimembranosus, and biceps femoris). The 

reason for why these muscles were selected specifically was not clear, although this 

group of functional muscles play major roles in the gait cycle [121]. Therefore, 

understanding fat infiltration for these muscles was important, but including a higher 

number of muscles would increase the impact of the study. The network was trained 

to find each of the included regions of interest within the images using a multi-

coloured mask, with the 4 regions of interest each encoded in a separate channel (see 

Figure 3.8). This is known as multi-class segmentation, distinct from the work of Ghosh 

et al. [117], who trained individual networks for each muscle. The cohort of the study 

was derived from two different databases, with different inclusion criteria. The first 

dataset was an open-source public reference dataset named MyoSegmenTUM [122], 

consisting of 15 healthy volunteers (21.1 ± 7.7 years old) and 4 subjects with 

neuromuscular conditions (52.8 ± 8.9 years old). The second dataset was gathered 
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from local clinical data, consisting of 21 subjects (56.4 ± 14.5 years old), with all but 

seven of these subjects being diagnosed with a muscle disorder. The inclusion of two 

distinct groups introduced a more challenging problem for the CNN as there is a 

greater number of patterns to learn, resulting in a more versatile tool. The network 

was trained using 23 fully segmented datasets and used to predict the segmentations 

of 7 individuals. The accuracy of the segmentation was stated as >0.85 in terms of DSC. 

Although the segmentation accuracy was high, the segmentation of 2 individual 

muscles was a limited result and further investigation of this method would be 

required to perform automatic muscle segmentation.  
 
Ni et al. in 2019 [82] used a deep learning CNN model to individually segment all 

individual muscles from fat-suppressed MR images acquired from a cohort of 64 

athletes (51 and 13 selected for training and testing, respectively). The authors used a 

similar neural network structure as the previous study. The UNet model used had 

some major alterations in order to accept 3D images [123] and target all major lower 

limb muscles. Each individual muscle was automatically segmented, as opposed to the 

all-at-once approach offered by Ding et al. [80], using a two-stage CNN (summarized 

in Figure 3.9). The first network was used to crop the raw 3D input images, producing 

a smaller image containing only the muscle to be segmented. This resulted in 35 

datasets, each consisted of 64 3D images, one for each subject in the cohort. The 

second network performed the individual segmentation. CNNs were trained for each 

muscle, each geared toward learning the key features of individual muscles.  

 

Figure 3.9: A schematic of the method used in the paper by Ni et al. The top left image shows a 2D slice 

of the raw input data for a given subject (the adductor magnus is highlighted), which is inputted into a 

cropping CNN trained for each muscle (example shown is the adductor magnus). The cropped images 

are inputted into the segmentation CNN, the result of which (after training) is a segmentation map, 

shown as the output. Image adapted from [82]. 
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Subjectively, the results of the paper were highly impressive as shown in Figure 3.10 

below. The DSC for the predictions of each of the 35 muscles included in the study 

were all around 0.9, which was comparable to the DSC found between segmentations 

performed by multiple operators (also included in the study) [80].  

 

The muscles of the athletes were known to be ‘well-developed’ and ‘more compact’ 

than the general population [124]. Using a fat-suppressed MR imaging acquisition 

method on athletes such as these highlighted muscle boundaries. Given that the 

muscle body was so compact, the boundaries generally appeared homogenous in the 

raw images (see Figure 3.10).  The authors’ choice of cohort, number of subjects, 

imaging modality, and segmentation method all worked together to enable the high 

level of segmentation accuracy. An average DSC of around 0.9 was achieved across the 

35 muscles segmented. Although the scope was limited, this study proved the concept 

that deep learning (in particular the UNet model) can be used to perform automatic 

muscle segmentation. The requirement of large amounts of labelled data limited the 

application of this approach. In addition, the impact of a mixed database, such as one 

containing subjects with muscle disorders, was not clear from these results. Moreover, 

the decision to train an individual network for each muscle within the lower limb was 

not well-justified. This choice incurred extra computational expense, which limited 

future applications using the same method. Nevertheless, the results of this study 

were compelling and warrant further investigation in its application to other subject 

groups. 

 
Figure 3.10: Overlapping raw MR images with segmentation results from the proposed method in the 

thigh (a) and calf (b). Image acquired from Ding et al. [80]. 
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3.4.4. Summary and gap in the literature  

Overall, while there have been considerable advancements in the search for a tool to 

automatically segment muscles, there is yet to be one solution fit for widescale use. 

Table 3.2 summarises the studies reviewed in this chapter, highlighting the muscles 

segmented and the overall accuracy reported. 

 

Traditional approaches are yet to be fully explored. Image registration has not yet been 

tested for the segmentation of all individual muscles within the lower limbs. Simplistic 

applications may benefit greatly from the use of image registration, such as the 

segmentation of one limb using the contralateral limb as a reference. This application 

alone could halve the time taken to perform muscle segmentation (if the accuracy of 

the approach is similar to that of the gold standard process) and should therefore be 

tested. Furthermore, using image registration to segment all lower limb muscles using 

other, previously segmented subjects is yet to be explored. Though, noting the 

variability in muscle structure within subjects even from the same cohort, image 

registration may be limited in this respect, but this cannot be confirmed without 

testing. 

 

On the other hand, deep learning-based methods are the focus of the field in its recent 

years and can give accurate segmentations in many medical image analysis 

applications.  These methods, however, are not applicable for smaller cohorts, due to 

the requirement of large amounts of training data [125]. There are methods to 

overcome the requirement of large training databases, such as data augmentation, but 

this is yet to be fully explored within the context of muscle segmentation. Additionally, 

the CNN architectures currently used, particularly in the study by Ni et al. [82], 

incurred vast computational expense. The traditional UNet architecture has been 

shown effective in the segmentation of muscles from MR images but reducing the 

computational expense with more succinct network structures could widen the reach 

of these methods. A novel network architecture that is more targeted to the problem 

of muscle segmentation could reduce computational expense, and data augmentation 

could reduce requirements large manually segmented databases for training. 

 

Explicitly, within the clinical domain, tissue segmentations must be as accurate as 

possible, if indeed the results were to be used to inform clinical decisions. Therefore, 

the aim in this context would be to achieve accuracy measures equal to the operator 

variability. For more challenging cohorts, such as those with muscle disorders or older 

individuals [28], an automatic segmentation tool should be capable of capturing the 

muscle volume with < 10% error, DSC > 0.85, and HD < 10mm, for each muscle, as would 
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be satisfactory in an inter-operator repeatability analysis [28]. For less challenging 

cohorts, such as young healthy athletes, or children, an automatic segmentation tool 

should be capable of capturing the muscle volume with < 5% error, DSC > 0.9, and HD 

< 5mm, for each muscle, as would be expected in an inter-operator analysis. 

 

 
 

Table 3.2: Comparison between the studies highlighted within the literature review. Showcasing the 

authors, muscles, images, accuracy and methods used. 

 

Study Muscles Images Accuracy Method

Engstrom et al. Quadratus 
lumborum

T1-weighted MR DSC 0.86 ± 0.08 SSM

Andrews & 
Hamarneh

All thigh muscles 
(n=11)

T1-weighted MR DSC 0.81 ± 0.07 SSM

Ogier et al. Knee extensors T1-weighted MR DSC 0.91
2D image 

registration

Le trotier et al. Knee extensors T1-weighted MR DSC: 0.9
longitudinal image 

registration

Fontana et al.
gluteus maximus, 

gracilis, tensor 
fascia latae, and 

sartorius

T1-weighted MR DSC: 0.87 longitudinal image 
registration

Ghosh et al. 
Adductor longus, 
gracilis, sartorius, 

rectus femoris and 
vastus medialis

Fat suppressed MR DSC: 0.87 AlexNet

Ding et al.
Knee extensors, 

knee flexors, 
gracillis, sartorius

Fat & water 
suppressed MR

DSC: 0.85 2D Unet

Ni et al. All lower limb 
(n=35)

Fat suppressed MR DSC: 0.9 3D UNet

:

DSC: 0.81 ± 0.07

DSC: 0.91
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3.5. Aims & objectives of the thesis 

Motivated by the preliminary study, problems associated with the gold standard 

approach, and the gaps identified within the literature surrounding muscle 

segmentation, the following experimental chapters of this thesis aim to test the 

accuracy of two algorithms, one based on image registration and the other using deep 

learning, to automatically segment individual muscles of the lower limb. To this aim, 

the following objectives were defined: 

 

1) Build an automatic segmentation pipeline using image registration. Optimize 

the registration parameters to the task of segmenting muscles from MR 

images by registering images of the left limb of each subject to the right limb.  

 

2) Apply the automatic segmentation pipeline using image registration to 

segment all lower limb muscles from subjects using other subjects as 

references.  

 

3) Build deep convolutional neural networks, following state of the art 

architectures to perform muscle segmentation. Incorporate novel strategies 

to enhance the networks, addressing the need for extensive labelled 

databases & high computational power. 

 

4) Compare each of the segmentation methods to inform future studies as to 

which method should be used for future studies. 
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Chapter 4: 
 

Optimizing a muscle segmentation 

pipeline using deformable image 

registration 

 

 

This chapter is partially based on a paper published in PLoS One (2023): ‘Deformable 

image registration based on single or multi-atlas methods for automatic segmentation 

and the generation of augmented imaging datasets’ by W. H. Henson, C. Mazzà, E. 

Dall’Ara. Doi: https://doi.org/10.1371/journal.pone.0273446  

4.1. Introduction 

Deformable image registration has proven useful in the application of muscle 

segmentation and has been shown to be capable of segmenting muscles in cases 

where the variability between inputs is not high, such as within longitudinal studies [93, 

94]. However, image registration has not yet been used to segment all lower limb 

muscles from Magnetic Resonance (MR) images of new subjects, using previously 

segmented subjects as references. This would be of great aid for studies requiring 

muscle characteristics, as new subjects could be segmented automatically, with little 

to no operator input.  

 

Registering the images of an atlas subject with those of a new subject (inter-subject 

registration) is likely to be far more difficult than it is when used in longitudinal studies. 

The reason for this is that the variability in the distribution of anatomical features and 

anthropometric characteristics between different subjects is far greater than that of 

one subject at two different time points [66, 93]. Even subjects within the same age 

range and Body Mass Index (BMI) categories have widely varying muscle volumes, 

shapes and structures [126] meaning that the use of image registration if used in this 
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application would be required to overcome great differences even within the simplest 

of cases. If image registration was to be shown capable of overcoming this variability 

and capturing the muscle geometry, then new subjects could be segmented without 

any input from operators. Nevertheless, the application of image registration to 

propagate segmentations to new subjects should be explored. 

 

Another potential application of image registration to perform muscle segmentation is 

to segment one limb using the opposing limb as the reference. The variability in muscle 

structure between left and right limbs has been shown to be significant, but far less 

than between different subjects [66]. Additionally, the distribution of tissues visible 

within medical images (e.g. muscle, fat, intramuscular fat, skin) is comparable between 

the left and right limbs of subjects, where this is known to be much more different 

between subjects [127]. Moreover, the difference in anthropometric characteristics 

between subjects can be great even considering subjects within the same cohort, but 

this would not cause issues with registration of contralateral limbs. The automatic 

segmentation of one of the lower limbs requiring only a segmentation of the opposing 

limb would half the processing time of manually segmenting the muscles from a full 

lower limb dataset, given that the segmentation is accurate.  

 

There are requirements of image registration algorithms that must be met prior to 

use. Firstly, the muscles under investigation (all lower limb muscles) must be visible 

within the medical image. The images used throughout this thesis were captured in 

multiple sections, and these must first be stitched together, ensuring all muscles are 

visible in the images. The aim of the thesis is to produce an automatic tool for muscle 

segmentation, and therefore, this must be operator independent. Secondly, the user 

selected parameters used for the registration must be optimised, to maximise 

segmentation accuracy. These two requirements must be satisfied before testing the 

automatic segmentation tool. 

 

Therefore, this chapter seeks to answer two research questions. 1) Can deformable 

image registration be used to segment individual muscles of the lower limb starting 

from the segmentations of the opposing limb of the same subject? 2) Can deformable 

image registration be used to segment the muscles in one subject using the 

segmentation maps from another subject?   
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4.1.1. Aims and objectives 

In order to answer the research questions of this study, the study aims at developing 

an automatic pipeline to segment individual muscles by using deformable image 

registration. The specific objectives of this chapter are: 

1) Pre-process raw MR image sequences automatically. 

 

2) Develop an automatic muscle segmentation pipeline using deformable image 

registration. 

 

3) Optimise the registration parameters using the intra-subject (left to right) 

muscle segmentation. 

 

4) Test the accuracy of intra-subject segmentation method.  

 

5) Test the accuracy of inter-subject registration method. 

 

4.2. Methods 

4.2.1. Objective 1: Automatic pre-processing of images 

4.2.1.1. Subjects and image acquisition 

Lower limb T1-weighted MR images were acquired in a previous study [66] from 11 

post-menopausal women (mean (standard deviation): 69 (7) years old, 66.9 (7.7) kg, 

159 (3) cm) using a Magnetom Avanto 1.5T scanner (Siemens, Erlangen Germany), with 

an echo time of 2.59 ms, repetition time of 7.64 ms, flip angle of 10 degrees. The study 

was approved by the East of England – Cambridgeshire and Hertfordshire Research 

Ethics Committee and the Health Research Authority (16/EE/0049) and conducted in 

accordance with the Declaration of Helsinki (October 2000), after gaining written 

informed consent. The MR images were acquired in four sequences, capturing the 

hips, thigh, knee, and calf. To reduce scanning time while still providing detailed 

geometries of the joints for use within other studies, the joints were acquired with a 

higher resolution (pixel size 1.05 ''$, slice spacing 3.00 '') than the long bone 

sections (pixel size 1.15 ''$, slice spacing 5.00 ''). A sub-cohort of 5 of the 11 

subjects were selected for automatic segmentation. The five subjects were chosen 

with the aim of creating a sub-cohort with a wide anatomical diversity, including the 

tallest and shortest individuals (154.0 cm, 164.2 cm), subjects with the lowest and 
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highest BMI (21.2, 32.1), and the youngest and oldest participants (59, 83 years). The 

oldest participant was also the shortest participant within the cohort. Each subject 

was used as both a target and a reference for the image registration algorithm, 

creating 20 subject pairings for the inter-subject analyses. 

4.2.1.2. Pre-processing of images 

Firstly, each image within the sections of MR imaging data was linearly interpolated 

such that the resultant pixel size was 1.00	 × 1.00	''$, for all images in each of the 

sections, allowing concatenation of the images. The quality of the images was not 

altered, as the resolution for the long bones and joints were 1.15	 × 1.15	''$ and 

1.05 × 1.05	''$ respectively, resulting in small changes to the resolution of the 

images. Secondly, the voxel sizes were made isotropic. The image sequences capturing 

the long bones and joints had different slice thickness, 5.00	'' for the long bones and 

3.00	'' for the joints. To create an isotropic representation, copies of each image 

were made to reduce the slice thickness to 1.00	''. Through these processes, the 

voxel size within the different imaging sequences were homogenised to be 

1.00	 × 1.00	 × 1.00	''%. Each image within a long bone section was therefore copied 

four times and within a joint section was copied twice as shown in Figure 4.1. The fields 

of view of each MR imaging sequence were homogenised, retaining the spatial location 

of the image contained in the metadata. Each image was wrapped in artificial blank 

data (grey level value of 0, equal to that of air) to match the sequence with the widest 

field of view, which was typically the hips. 

 

In the areas of the body where the field of view in the longitudinal direction of the 

image sequences from two sections overlapped, half of the overlapping area was used 

from the two overlapping sections (Figure 4.2). The removal of half of the overlapping 

area reduced the effect of MR imaging bias [128], which can be seen in the highest and 

lowest images of the T1-weighted scans (Figure 4.3). Before concatenating the two 

sequences, the last and first images of two adjacent sequences were registered in 

order to enforce a simple and linear translation, using the “imregister” function in 

MATLAB (Image processing toolbox, version 2019b and above). The translation was 

then applied to each image within the lower imaging sequence to align the subject 

anatomical data. This simple linear registration was required to align the different 

image sequences, as initial attempts to combine them resulted in a linear jump at the 

junction of the two sequences, likely due to slight movement of the subject within the 

MR scanner. After application of the linear translation, all image sequences were 

concatenated, forming a continuous, isotropic 3D image of the lower limb.  
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All processes used in this section were designed to be generic (as opposed to subject 

specific), which allows this pre-processing method to be used for any multi-sequence 

MR imaging acquisition of the lower limbs.  

 

 
 

Figure 4.1: The process of creating isotropic data by generating copies of each image. In this case, the 

initial spacing between the slices was 3mm, resulting in two additional copies of each image. 

 

 

Figure 4.2: Aligning MR imaging sections. (a): Schematic to highlight the problem that all sequences 

(hips, thigh, knee, and calf) overlap and have different fields of view (a, left) and target solution after 

the pre-processing operation outlined in section 2.2 (a, right). (b): output of the operation with real 

MR dataset. 
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Figure 4.3: Observation of the biased field within the extrema of the thigh section of a random subject. 

At slice number (N) 950, the tissues appear with skewed greyscale values, where in the lower slice 

number (N=850), near the centre of the thigh section (along the longitudinal axis) the differences in 

the greyscale values between the tissues are far clearer. 

4.2.1.3. Reference muscle segmentations 

The 25 lower limb muscles that were visible within the pre-processed image 

sequences were semi-automatically segmented, using Materialise Mimics [129]. The 

semi-automatic tool operated by estimating approximate areas of the images that 

could belong to each of the muscles. The estimations were then manually altered to 

reflect the muscles. This operation often required significant manual input, incurring 

around 10 hours of operator interaction time per subject [66]. Ten of the 35 lower limb 

muscles were removed as they were deemed not visible within the scans, either 

because they lay outside the field of view, or were too small to be segmented. The 

repeatability of the manual segmentation process was characterised in Section 3.2.2.3 

(see Table 3.1), in a study by Montefiori et al. [66]. As the manual segmentations were 

used in the automatic segmentation pipeline, those muscles could not be manually 

segmented with an acceptable level of repeatability were removed. The muscles for 

which both the inter and intra-operator Coefficient of Variation (CoV) across three 

repeated segmentations was above 10%, were removed from further study. For 

example, the gluteus minimus was excluded from further study. Additionally, the 

gluteus medius was included in the study by Montefiori et al. [66], but it was found to 

partially extend beyond the field of view of the images of some subjects and so was 

also removed from further study.  

4.2.2. Objective 2: Registration and segmentation pipeline 

An overview of the segmentation pipeline is presented below in Figure 4.4. There are 

two inputs in all registration algorithms, the target and reference images [105]. Within 

the registration algorithm, the reference image is deformed into the target image, via 
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the calculation of displacement vectors at points within the reference image that are 

matched with similar points within the target image. These displacement vectors are 

usually calculated at nodes within a nodal grid defined at points within the images to 

limit computational expense for extremely large images. The displacement vectors at 

each node are isolated and applied to the muscle contours within the reference 

subject, wherein these contours are morphed to provide a predicted segmentation of 

the muscles within the target subject. The details of the registration and map 

application algorithms are expanded upon in the section following. 

 

 

Figure 4.4: Schematic of the segmentation pipeline. After the combination operation, the target and 

reference imaging data were inputted into the Sheffield Image Registration Toolkit (ShIRT) and 

registered. The displacement vector field found through registration is applied to the muscle contours 

of the manually segmented reference subject, resulting in an automatic segmentation of the target 

subject. 

4.2.2.1. Deformable image registration algorithm 

Following pre-processing, subject imaging data was registered using the Sheffield 

Image Registration Toolkit (ShIRT) [130]. In this process a reference three-dimensional 

image (also referred to as the moving image) was registered to a target image (also 

referred to the fixed image), aligning the two images. ShIRT was used as previously 

developed and in the following section, a brief description of the main principles of the 

registration are described.  

 
ShIRT solves the registration equations at nodes of a grid overlapped to the fixed and 

moved images, with distance between the nodes called the ‘nodal spacing’ (NS).  If the 

grey-level intensities are given within the fixed image (f ) and moving image (m) as 

/(1, 3, 4)	and 6(1, 3, 4) respectively, the displacement between the two intensities is: 
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Where the first three terms on the right-hand side describe the spatial map from the 

fixed to the moving image, with respect to the three spatial directions. The partial 

differential terms represent the grey-level intensity gradients in the respective spatial 

directions. The functions 8,	>, and ? describe the displacement field and are linearly 

interpolated between the nodes of the grid calculated at regular intervals that map the 

moving image to the fixed image. The last term (@) within Equation 4.1 represents any 

residual differences in intensity, which accounts for potential changes in grey-levels 

between the two registered images. Each of the unknown quantities: 8, >, ? and @ are 

found at each node, A. 
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Equation 4.2 

 

Where E is the number of nodes within the cubic grid of user defined nodal spacing 

(EF). The functions C& , represent the mapping functions to be found for each node	A 

and in each of the three spatial dimensions. Equation 4.1 can then be rewritten in 

matrix form, as: 
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ShIRT was used to optimise a solution for the set of displacement vectors, C, shown in 

vector form in Equation 4.4. The optimisation process within ShIRT is conducted using 

an iterative process to reduce a sum-of-squared-differences cost function, N, defined 

in Equation. 4.5. A smoothing coefficient (O) for the displacement function was 

introduced into the cost function to adjust the map, where the non-linearity of the 

displacement field is altered in response to the smoothing coefficient. The initial 

optimal value of the smoothing coefficient is automatically calculated within ShIRT as 

the value of O that minimizes G+G + OP+P, where P is the Laplacian operator, and Q 

refers to the matrix transpose. The optimal value of the smoothing coefficient was 

verified in a sensitivity analysis. The cost function is defined as follows: 

 

N = B R/ −6*(H)S
$
+ OH+P+PH

	

",,	-.#/,0
 

 Equation 4.5 

 

Where N is the cost function to be optimised, / as above, represents the fixed image, 

6*(H)	represents the moving image with the mapping, H, found through registration 

applied, and P is the Laplacian operator. The term (/ −6*(H))$ quantifies the squared 

difference in intensity between the fixed image and the moving image after the 

mapping was applied. The aim of the iterative process was to reduce the cost function, 

N, such that for an estimate of the map H1, the subsequent solution of the iterative 

process was defined 

 

 H123 = H1 + ∆H, 
Equation 4.6 

 
With the two conditions: 

 

/ −6*(H123) ≤ / −6*(H1), 
Equation 4.7 

 

OH123
+ P+PH123 ≤ OH1+ P+PH1 

Equation 4.8 

 

Therefore, at each stage of the iterative process, there was a reduction in the cost 

function: 

 
N"!"# ≤ N"!  

Equation 4.9 
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meaning a greater similarity between the fixed image, J, and the moving image with 

the map applied, '*(C). The iterations halt when either one of two conditions are met: 

1) the number of iterations reaches a certain, user-imposed value (e.g. n=100), or 2) 

that the change in the average value of the displacement vector (∆C) fell below 0.1 

voxels (0.1mm). The second halted the iterations in all cases, meaning that all 

registrations had converged. 

4.2.2.2. Application of ShIRT to segment individual muscles 

The 5 subjects included in the study were automatically segmented, using each of the 

4 other subjects as references. To perform this operation, the displacement vector 

field obtained through deformable registration was applied to each of the 23 individual 

manually segmented muscles within the moving subject, deforming them to represent 

the muscles in the target subject. The manual segmentations are represented as points 

connected by vertices that mark the boundary of each muscle within the reference 

imaging data. After the reference images were registered to the target images, the 

point cloud representing each muscle within the reference image was then displaced 

in response to the registration map found through registration. Mathematically, this 

process is expressed as follows. Given a set of points representing an arbitrary muscle 

within the reference subject, V, each point V& = (1& , 3& , 4&), gives the coordinates of a 

point in the space (index A identifies individual points in the set). Each element of V, is 

then displaced through application of the displacement vector field (or map) C, found 

through registration. For this, the nodes, E4 and paired vectors, C4 (where W ∈ 

(1,2, … ,8)), surrounding each point within each muscle were found and the 

displacement vector,	[& , of each point within the muscle boundary, V& , was found 

through linear interpolation (same assumption in the ShIRT algorithm), following 

Equation 4.10. Upon addition of the resulting displacement associated with each point 

[& , with the original coordinates of V& the result is a transformed muscle boundary (\&) 

representing the same muscle within the target image. 

 

\& = V& + [& , 
Equation 4.10 

where, 
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Through the process outlined in Equation 4.11 and 4.10, displacement vectors ([&) were 

found for each point (A) in the point cloud (V), and applied to define a new, deformed 

point cloud (\&) representing the automatically generated muscle segmentation. 

These displacement vectors ([&) were calculated by summing the contributions to 

each displacement vector from each of the 8 surrounding nodes (those that form a 

cube around each point), scaled linearly by the distance between each node and the 

point being deformed. The map application process outlined was performed for 23 out 

of the 35 visible muscles within the lower limb [66]. 

4.2.2.3. Error metrics 

Three complementary quantitative metrics were used to test the accuracy of the 

automatic segmentation protocol. The relative volume error (Vbc4,;) was calculated 

following Equation 4.11 for each muscle (W) in each subject (d).  

 

Vbc4,; = 100 ×
b<$,& − b=$,&

b=$,&
 

Equation 4.11 

 

Where b<$,&  and b=$,&  are the volumes of the automatic (\) muscle segmentation and 

ground truth segmentations (e), respectively. The subscripted terms identify the 

muscle (W), and subject (d) for which the Vbc was calculated. 

 

The Dice similarity coefficient (DSC) [131] was used to assess the accuracy of 

segmentation considering both volume and geometry, through comparison with the 

ground truth segmentation. The DSC varies between 0 and 1, with a value of 1 signifying 

that the proposed automatic segmentation and ground truth are identical. The DSC 

was calculated (Equation 4.12) for each muscle (W) in each subject (d), where \4,; and 

e4,; represent the automatic and ground truth segmentations, respectively. 

 

fFg4,; =
2R\4,; ∩ e4,;S

`\4,;` + `e4,;`
 

Equation 4.12 

 

Three examples are presented in Figure 4.5, where the automatic (\) and ground truth 

(e) segmentations are modelled as two 2D circles of equal radius and the distance 

between the centres of the circles is defined as 1. As the centres of the circles are 

shifted further apart the DSC is reduced, highlighting that the measure is able to 
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account for spatial misplacement of the automatic segmentations in reference to the 

ground truth segmentations.  
 

 
Figure 4.5: Visual representations of the Dice similarity coefficient. Two circles of radius equal to 1 are 

shown, representing the automatic (!) and ground truth (") segmentations, with centres #' and #( , 

respectively. The centres are shown at three different distances apart, affecting the intersection of the 

circles. The DSCs are shown for the three cases.  

 

Finally, the Hausdorff distance (if) [132] between the proposed and ground truth 

muscle segmentations was calculated for each muscle in each subject, following 

Equation 4.13, where j4,; 	is a point within the muscle boundary \4,; , k4,; is a point within 

the muscle boundary of e4,; and l is the magnitude of the greatest distance between 

any point j4,; or	k4,; and its nearest neighbouring point in e4,; or \4,; , respectively. For 

each subject the HD was calculated as the maximum among the minimum distances 

between the automatic and reference segmentations in each point.  

 

ifR\4,; , e4,;S = 'C1 mnlRj4,; , e4,;So	 , nlRk4,; , \4,;So	p		 

 Equation 4.13  
 

A Hausdorff distance of zero suggests that two objects are geometrically identical, and 

conversely, a large Hausdorff distance implies geometrical disparity, at least in a 

portion of the object. The Hausdorff distance is a purely geometric measure of 

segmentation accuracy, considering both the shape of the two objects compared, and 

the difference in spatial location of the two objects. Figure 4.6 presents the HD for two 

arbitrary 2D surfaces modelling a proposed automatic segmentation (\) and ground 

truth segmentation (e). 
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Figure 4.6: Visual representations of the Hausdorff distance. The Hausdorff distance is found for two 

arbitrary surfaces,	! and ", as the greatest distance that can be found between a point in ! and a 

point in ". 

4.2.3. Segmentation tasks 

Three segmentation tasks were outlined in this section as described in Objectives 3-5 

(see Section 1.1), respectively. 

4.2.3.1. Objective 3: Optimisation of registration parameters 

The first task was to optimise the user inputted parameters of the registration for the 

segmentation of muscles from MR images through a sensitivity analysis. Two 

parameters were analysed, the NS and the smoothing coefficient. To perform this 

sensitivity analysis, imaging sequences containing the right limb were registered with 

sequences of the mirrored left limb (mirroring with respect to the sagittal axis was 

applied), for one subject chosen at random. A visual representation of this process is 

presented in Figure 4.7. The muscles within the right limb were automatically 

segmented and compared to the ground truth segmentations.  
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Figure 4.7: A: Separation of the anatomical right (R) and left (L) limb followed by a reflection of the left 

limb in the sagittal axis (Lr), shown for one example 2D slice of image. B: Registration of MR imaging 

data. The reflected left image (Lr) is inputted into ShIRT as the moving image (shown in green) and 

registered to the right image (R), inputted as the fixed image (shown in red). The registered image 

(right most image) shows these images after registration. 

 
The minimum and maximum NS tested were 5mm and 40mm, with intervals of 5mm. 

If a NS of less than 5mm was used, the time to perform the registration would be in 

excess of 1.5 hours, as the computation time increases exponentially with a decrease 

in NS. The maximum NS tested (40mm) was selected as this was less than 33% of the 

diameter of the thigh within the subject considered. If a value larger than 40mm was 

used for the NS, the number of nodes within the body would be too few (i.e. two nodes 

with thigh diameter of less than 120mm) to allow the internal anatomy to be captured 

through registration (few degrees of freedom in the transformation).  

 

The second user inputted registration parameter, the smoothing coefficient (O), is 

optimised automatically within ShIRT [130]. This optimized value could be 

miscomputed and so a further sensitivity analysis was required to verify the optimal 

value. The automatically found smoothing coefficient (135) was computed through an 

initial registration of (mirrored) left and right limb of the subject. As the smoothing 

coefficient is not related to any physical parameter, the minimum and maximum values 
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used within the sensitivity analysis were two orders of magnitude greater and smaller 

than that found automatically within ShIRT, with intervals of one order of magnitude: 

O = [1.35, 13.5, 135, 1350, 13500]. 

 

The accuracy of each set of segmentations gathered by changing both registration 

parameters was analysed using the error metrics outlined in the previous section. This 

analysis was performed independently for both registration parameters, to find the 

value of each that provided the greatest overall segmentation accuracy. The three sets 

of errors found across the tested values of the NS and smoothing coefficient were 

independently statistically analysed. Firstly, a Kolmogorov-Smirnov test was used to 

test each set of segmentation errors for normality. Each set was found not to be 

normally distributed. Thereafter, the non-parametric Kruskal-Wallis one-way analysis 

of variance (ANOVA) was used to assess whether the independent variables (NS and 

smoothing coefficient) affected the segmentation accuracy across the three error 

metrics. Where there was a significant difference (p-value < 0.05) between the means 

of the error metrics across the tested values, a post hoc Tukey-Kramer multiple 

comparison test was conducted. These analyses were used to identify the optimal 

values for both the NS and smoothing coefficient. Those registration parameters that 

provided the greatest overall segmentation accuracy were used in the subsequent 

segmentation tasks. 

4.2.3.2. Objective 4: Intra-subject registration 

Registering between images of the mirrored left and right lower limb (presented in 

Figure 4.7) of an individual subject limits the complexity of the registration process, as 

there is some degree of anatomical variability between each side, but this is typically 

far less than the variability between subjects [66]. Therefore, the second task consisted 

of an intra-subject registration using the optimised registration parameters, wherein 

the contralateral limb of five subjects were segmented. The accuracy of each set of 

segmentations was analysed using the error metrics outlined in the previous section, 

comparing the automatically generated segmentations with their respective ground 

truth, manual segmentations. Kolmogorov-Smirnov test was used to assess the sets of 

error metrics for normality, for each of the five sets of segmentations. All sets of error 

metrics were deemed to be not normally distributed, meaning that a non-parametric 

test was required. A Kruskal-Wallis ANOVA test was used to analyse the effect of the 

independent variable: the subject that was segmented.  
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4.2.3.3. Objective 5: Inter-subject registration 

The third task was to register images containing the right limb of one subject to the 

right limb of another one (inter-subject registration). This process simulates the 

automatic segmentation of the individual muscles for a new subject, using previously 

segmented subjects as a reference. Each subject was used as both the target and the 

reference within the registration algorithm, generating four segmentations for each 

subject. The accuracy of each set of segmentations was analysed using the error 

metrics outlined in the following section. The results of the inter-subject registration 

task were compared to that of the intra-subject registration task to assess the merits 

and limitations of both approaches. 

 

To evaluate whether there was a significant difference between the results of the intra-

subject and inter-subject analyses, statistical tests were conducted. The sets of 

segmentations generated for each target subject with the inter-subject method was 

treated independently and individually compared with the corresponding 

segmentations generated with the intra-subject analysis. To do so, first a Kolmogorov-

Smirnov test was used to check the distributions of the three error metrics for the 

inter-subject analyses for normality. Thereafter, a Wilcoxon signed rank test was used 

between the errors found for each subject in the intra-subject analysis and each of the 

corresponding 4 sets of errors found in the inter-subject analysis. 
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4.3. Results 

4.3.1. Objective 1: Automatic pre-processing of images 

The eleven subjects for whom the imaging data was collected as part of a prior study 

[66] were pre-processed using the method prescribed to fulfil Objective 1. The image 

sequences of the hips, thigh, knees, and calf were combined, forming one continuous 

image containing the entire lower limb. Figure 4.8 below shows the pre-processed 

images of the five subjects that were selected for the registration and segmentation 

pipeline. The pre-processing required 109 ± 11.2 seconds (mean ± standard deviation) 

of computation time (Intel® Core™ i7-7700 CPU @ 3.60 GHz), depending on the size 

of the images being concatenated.   

 

This method has since been used to pre-process imaging data collected for 4 different 

studies (MultiSim [66] (n=11), MRI-US (n=11), Obesity study (n=26) (Section 3.3), 

PORTRAIT (n=7)), with complete success. 

 

Figure 4.8: Pre-processed imaging data for the five subjects selected for segmentation using the 

registration and segmentation pipeline. 
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4.3.2. Objective 2: Registration and segmentation pipeline 

All three of the outlined segmentation tasks (Objectives 3-5) were completed using 

the registration and segmentation pipeline. Here the computational time is reported.  

In the first segmentation task, 8 values of NSs were tested, NS = (5, 10, 15, …, 40). The 

time requirement for the registration and segmentation pipeline to be completed for 

each of the eight tested values of NS are presented in Table 4.1, with the time required 

decreasing as the NS was increased. The smoothing coefficient had no effect on the 

time required to perform the registration and segmentation pipeline. 

 

Nodal spacing (mm) 5 10 15 20 25 30 35 40 

Time (min) 72 46 35 28 26 23 22 20 

 

Table 4.1: Time requirements the registration and segmentation pipeline for each of the tested values 

of NS. 

 

In the other two segmentation tasks, the registration and segmentation pipeline 

required between 72 and 96 minutes, to register the smallest and largest images 

respectively. These analyses were performed on an Intel® Core™ i7-7700 CPU @ 3.60 

GHz. 

4.3.3. Objective 3: Optimisation of registration parameters 

4.3.3.1. Nodal spacing 

The optimal values for the user inputted registration parameters were found through 

a sensitivity analysis. Eight values were tested for the NS (5, 10, …, 40) within the 

registration algorithm and the segmentation accuracy resulting from each registration 

were found using three error metrics: RVE, DSC and HD. The impact of the NS on the 

nodal grid is illustrated in Figure 4.9. The density of the nodes reduces drastically as 

the NS was increased. The registered images from the lower NSs were more accurate 

(yellow represents overlap between the fixed and moved images reported in red and 

green, respectively) (Figure 4.9).  

 

The results for the different metrics are reported in Figure 4.10. The mean RVE across 

all NSs were close to 0%, but NSs of 5mm and 20mm were associated with the lowest 

mean errors (-0.7% and 0.5%, respectively). The distributions of RVEs were 

statistically tested, comparing the lowest mean (NS = 20mm) against all others. No 

statistically significant differences were found between the means of the RVE across 

the 8 tested values for NS within the Kruskal-Wallis ANOVA test (p = 0.982), therefore 
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no post hoc analysis was performed. The interquartile range and full range were the 

lowest with a NS of 5mm, which was considered the optimal value for RVE.  

 

Similarly, the DSC computed for the segmentation across all NSs considered, also 

suggested that a NS of 5mm was optimal. The mean DSC was the greatest when using 

a NS of 5mm and steadily decreased as the NS increased. The mean DSCs across the 

8 tested values of NS were found to be significantly different through the Kruskal-

Wallis ANOVA test (p = 9.91× 10>3$). The post hoc Tukey-Kramer multiple comparisons 

test highlighted that the mean DSC found with a NS = 5mm was significantly greater 

than all others values, with the exception of NS = 10mm. Additionally, the post hoc test 

showed that the DSC found with NS = 10mm was significantly greater than those found 

with NS ≥ 25mm. All mean DSCs found from the other values of NS were not 

significantly different. The three muscles segmented with the lowest accuracy using 

NS > 10mm were the biceps femoris caput breve, semitendinosus, and tensor fascia 

latae. However, these three muscles did not have the lowest DSC for NS ≤ 10 mm.  

 

The HD found in all segmented muscles was relatively consistent across all NSs, with 

little to no difference between the segmentation results. This was confirmed by the 

Kruskal-Wallis ANOVA test, which found that the mean values of HD across the 8 tested 

NS values were not significantly different from one another (p=0.999). The outlier 

visible across all 8 NS values was the same muscle: the vastus medialis. Nevertheless, 

the upper quartile for NS equal to 5 mm was lower than for the other NSs. 

 

Considering the three error metrics, it was concluded that the NS of 5mm was the 

optimal value of NS (within acceptable computational time) to be used in future 

registration tasks.  
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Figure 4.9: Qualitative comparison of the registration produced using the eight different values (voxels, 

with voxel size of 1mm) of NS chosen in the sensitivity analysis (5, 10, 15, …, 40). The first and third 

rows of images show the registered nodal grid overlayed with the registered image and the second 

and fourth rows show the registered (green) and target (red) overlayed. Areas of yellow showcase a 

well registered section of the image. Conversely, areas of intense red or green showcase a poor-

quality registration. 
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Figure 4.10: Boxplots present the RVE, DSC, and HD found for the proposed segmentations of the 23 

muscles across each of the 8 values of NS analysed. A Kruskal-Wallis ANOVA test was used for each 

error metric (RVE: p = 0.982, DSC: p = 9.91× 10)*+, and HD: p = 0.999). The Tukey-Kramer multiple 

comparison test was used as a post hoc analysis for the DSC. Connections between bar charts 

(starting at extended line) shows statistically significant differences between the means of each group 

(* means p < 0.05, ** means p < 0.01, *** means p < 0.001). 

4.3.3.2. Smoothing coefficient  

A sensitivity analysis of the smoothing coefficient was also performed. The results are 

shown in Figure 4.11, with a visual interpretation of the effect of the smoothing 

coefficient shown in Figure 4.12. The optimal smoothing coefficient calculated within 

ShIRT for this registration task was 135. The mean RVE for smoothing coefficient equal 

to 135 was lower than the other tested values (>0.14% lower; p = 0.116). Similarly, the 

mean DSC was the greatest for smoothing coefficient equal to 135 (>0.26 higher; p = 

4.79× 10>3$). The mean DSC found for smoothing coefficient was significantly greater 

than those found using other values of smoothing coefficient (p < 0.001). Finally, the 

mean HD found with smoothing coefficient equal to 135 was lower than the others 

(4.9mm lower, p = 0.0485). The mean HD was significantly lower with smoothing 

coefficient equal to 135 than smoothing coefficient equal to 13500 (p = 0.032). All tested 

values of the smoothing coefficient had one consistent outlier within the HD 
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distributions, the vastus medialis muscle. As the optimal smoothing coefficient 

performed the segmentation with the highest overall accuracy, the optimal smoothing 

coefficient calculated within ShIRT was chosen for further analyses. Though, it must 

be noted that the optimal value for the smoothing coefficient depends on the images 

being registered and does fluctuate between different registrations. 

 

From a qualitative standpoint, Figure 4.12 shows that the smoothing coefficient 

significantly alters the linearity of the deformed nodal grid, with the lowest smoothing 

coefficient leading to a severely non-linearly deformed nodal grid, and the greatest 

being smooth, with an apparent overall rotation. The optimal smoothing coefficient 

presented a balanced mixture of the two extreme values with a deformed grid that 

was mostly smooth but non-linear in specific locations owe to abrupt changes in 

anatomical features, such as the upper left portion within the anatomical aspect of the 

images.  

 

Figure 4.11: Boxplots present the RVE, DSC, and HD found for the proposed segmentations of the 23 

muscles across each of the 5 values of the smoothing coefficient analysed. A Kruskal-Wallis ANOVA 

test was used for each error metric (RVE: p = 0.116, DSC: p = 4.79× 10)*+, and HD: p = 0.0485). The 

Tukey-Kramer multiple comparison test was used as a post hoc analysis for the DSC and HD. 

Connections between bar charts (starting at extended line) shows statistically significant differences 

between the means of each group (* means p < 0.05, ** means p < 0.01, *** means p < 0.001). 



   85 

Figure 4.12: Effect of changing the smoothing coefficient on the nodal grid and resulting registration 

outputs. The calculated optimal smoothing coefficient (λ) in this case was 135. Areas are marked 

within the map found with the optimal value of λ: light green highlights an area of non-linearity, and 

orange highlights an area of moderate linearity. The top row of images show the registered nodal grid 

overlayed with the registered image and bottom row show the registered (green) and target (red) 

overlayed. 

4.3.4. Objective 4: Intra-subject registration results 

Using the optimised registration parameters (NS=5 voxels, optimal lambda), the 23 

muscles considered within the right limbs of the five subjects included in the study 

were segmented using the left limb as the reference.  

 

The RVE calculated across the 23 muscles within the five subjects are plotted in Figure 

4.13. The mean RVE was less than ±2% across all subjects and the upper and lower 

quartiles were less than ±13%. The extreme values of RVE were larger, with some 

muscle volume being overestimated by 50%, suggesting a poor segmentation of the 

muscle volume in some cases. The Kruskal-Wallis ANOVA test was used on the results 

of the RVE and found that there was no evidence to suggest that the independent 

variable, the subject, influenced the RVE of the segmentations (p = 0.998).  

 

The DSC were generally high, with the mean DSC being between 0.75 and 0.85, 

showing a good level of agreement between automatic and ground truth 

segmentations. The interquartile ranges for Subjects 1, 3 and 5 were less than 0.07, 

showing a consistently high DSC across the 23 muscles considered within these 

subjects. More than 60% of the muscle geometry was captured well within all muscles 
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and all subjects considered (DSC > 0.6). Through a second Kruskal-Wallis ANOVA test, 

like the RVE, there was no evidence to suggest that changing the subject influenced the 

DSC of the segmentations (p = 0.528).  

 

The HD was consistent across all muscles within each subject, with the mean HD being 

below 20 mm for each subject. On average, each muscle was segmented with a 

maximum distance between the surface of the automatic and ground truth 

segmentations at lower than 2 cm. However, the maximum HD within all subjects was 

approximately 40 mm, for muscles of greatest length, such as the sartorius. As with 

the RVE and DSC, the Kruskal-Wallis ANOVA test suggested that there was no evidence 

that the mean HDs was different amongst the five subjects (p = 0.154). 

 

Figure 4.13 also shows an example of the ground truth and automatic segmentations 

for Subject 1, both in 3D and 2D image slices. Overall, the 3D representations are 

visually similar, with all muscles being located correctly and with each muscle being of 

comparable size. The results were also in line in the 2D cross sections, wherein the 

ground truth and automatic muscle contours had a high level of agreement.  
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Figure 4.13: Intra-subject registration results. The left-hand side shows the RVE, DSC, and HD 

calculated across the 23 muscles considered within each of the 5 subjects. The right-hand side shows 

a visual illustration of the ground truth and automatic segmentation in both 2D and 3D for one subject. 

Black arrow points to the medial head of the gastrocnemius, referred to in Section 4.4. 
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4.3.5. Objective 5: Inter-subject registration results 

Finally, the segmentation pipeline was used to segment the 23 muscles within the lower 

limbs of each of the five subjects, using each of the other subjects as references (20 

comparisons). The resulting muscle segmentations from all pairs of inputs were 

compared to the associated ground truth segmentations using the three outlined 

error metrics to measure the accuracy of the segmentation. The resulting RVE, DSC 

and HD are presented in Figure 4.14, where the five groups of boxplots within each 

graph represent the four segmentations of each subject produced using the other 4 

subjects as the references. Additionally, the results found using the contralateral limb 

for each subject are also reported, allowing comparison between intra-subject and 

inter-subject registrations.  

 

The RVEs for the inter-subject analysis are typically much higher than the intra-subject 

approach, for all target subjects. The mean RVE for the inter-subject approach were 

found to be in the range of ±3-75%. In the worst performing cases (Subject 1), the 

volume of the muscles was captured on average with an accuracy around 50%.  

 

Overall, the DSC shows that across all combinations of subjects, the inter-subject 

approach was not able to capture the geometry of the muscles with a good level of 

accuracy. Across all combinations of subjects inputted into the segmentation pipeline, 

the DSC was quite low, with mean between 0.3 and 0.7, and with large interquartile 

range. In some combinations of subjects (e.g. Subject 5 as the target and Subject 3 or 

Subject 4 as the references), the DSC for some muscles was even close to 0, meaning 

that there was no overlapping area between the reference and automatic 

segmentations.  

 

The intra-subject approach far outperformed all inter-subject approaches, 

considering all three error metrics. The Wilcoxon signed rank test found that 14/20 of 

the mean RVE within the inter-subject analysis were significantly (p < 0.05, greatest = 

0.88, least = 2.7× 10>?) larger when compared with their respective intra-subject 

analyses (exceptional cases were target Subject 2 with reference Subjects 1, 4, and 5, 

target Subject 4 with reference Subject 1, and target Subject 5 with reference Subjects 

2, and 4). The DSC found in the intra-subject analyses were significantly greater (p < 

0.05, greatest = 5.1× 10>%, least = 2.1× 10>?) than their corresponding inter-subject 

analyses. Finally, 19/20 of the HD distributions found in the inter-subject analysis were 

significantly greater (p < 0.05, greatest = 0.068, least = 4.0 × 10>?) than their 

corresponding intra-subject analyses (exception was target Subject 1 with Subject 2 

as the reference). 
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Figure 4.14: Intra (left to right, green background) and inter-subject (blue background) registration 

results, in terms of RVE, DSC, and HD. Each boxplot shows the error found across the 23 muscles 

considered. The numbers above each plot indicates the reference subject used to generate the 

proposed segmentations. The black dashed lines (±10%) within the RVE plot shows the acceptable 

level of operator dependency for that error metric. A Wilcoxon signed rank test was used between the 

intra-subject results for subject i and the associated 4 inter-subject results for target subject i. * 

above the inter-subject result shows that there was a statistically significant (p < 0.05) difference 

between the mean of the bar chart underneath, and the intra-subject result. 
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A visual illustration of the registration and associated segmentation results are 

presented in Figure 4.15, which reports the images inputted into ShIRT, the registered 

images, the ground truth segmentation, the automatic segmentations for the intra-

subject registration (Subject 1), and the inter-subject combinations resulting in the 

lowest, median, and greatest average DSCs. The segmentations from the combination 

of subjects resulting in the worst average DSC have little to no similarity to the ground 

truth segmentations. This was expected as the registered images do not appear well 

aligned, particularly within the muscle anatomy, where there are large dissimilarities 

between the registered and the fixed image. The combination of subjects resulting in 

the median and greatest average DSC generally have a good level of agreement 

between the automatic and ground truth segmentations, with some muscles being 

captured well and others being misplaced. Again, these results are reflected within the 

registered images, particularly in the best performing combination of subjects, as the 

vastus lateralis (shown in peach, arrow in Figure 4.15) is not well registered within the 

registered images and is therefore not well segmented. 
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Figure 4.15: Visualisation of the registration inputs (top row), outputs (2nd row), ground truth 

segmentations (3rd row) and resultant segmentations (4th row), shown for the intra-subject 

registration (left most column), worst performing combination of subjects (target: subject 1, 

reference: subject 2, 2nd column), median performing combination (target: subject 3, reference: 

subject 5, 3rd column), and best performing combination (target: subject 5, reference: subject 1, 4th 

column). The black arrow highlights the vastus lateralis, mentioned in Section 4.3.5. 
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4.4. Discussion 

The chapter aimed at building and testing an automatic muscle segmentation pipeline, 

using deformable image registration. Complete 3D geometries of 23 muscles were 

segmented from within the lower limbs of 5 subjects, firstly in an intra-subject analysis, 

followed by an inter-subject analysis with varying success. 

4.4.1. Objective 1: Automatic pre-processing of images 

The MR images were acquired in five sections: the hips, thighs, knees, calves, and feet. 

The images from each of these sections were first combined, forming one continuous 

3D image containing the complete lower limb. This operation was performed well for 

the original eleven subject in the MultiSim database [66] and has since been applied to 

others, such as the MRI-US, PORTRAIT and STH21022 databases. Overall, the 

combination method works as intended and enables full 3D anatomical data to be 

combined. This is particularly important when examining the muscles, as artefacts 

often spread across multiple acquisition sections [60].  

 

This operation was previously performed in a semi-automatic fashion, with the user 

being required to highlight common points within two sections, allowing the frames of 

reference between them to be aligned. That approach requires user input and is 

subject to error if the same anatomical landmark is not clearly visible within the two 

scans. Additionally, this semi-automatic method takes some time as there are four or 

five sections to be aligned, depending on if the user includes the imaging sequence 

containing the feet. The proposed method removed the need for the manual operation 

and retains the spatial location of the anatomy in a mathematically rigorous manner. 

Additionally, the manual process required around 10-20 minutes to perform. Using the 

pre-processing script reduced the processing time to between 1 and 2 minutes, and 

therefore, led to a significant time reduction depending on image size.  

4.4.2. Objective 2: Registration and segmentation pipeline 

The registration and segmentation pipeline was built and used to complete the three 

segmentation tasks: optimisation of registration parameters (Objective 3), intra-

subject segmentation (Objective 4), and inter-subject segmentation (Objective 5). The 

time required to perform the registration was dependent on the NS used within the 

registration. Using the optimal NS of 5mm, the time required to perform the 

registration was between 65 and 90 minutes across the intra-subject and inter-subject 

registration tasks. The segmentation aspect of the pipeline required between 5 and 8 
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minutes, in order to apply the displacement vector fields due to the large number of 

points that made up each segmentation (in the order of 100000s of points). 

Nevertheless, this was a vast improvement compared to the time required using a 

manual process, which was estimated at around 10 hours [66, 87]. Therefore, the 

automatic segmentation method fulfilled the aim of reducing the vast time required to 

perform manual muscle segmentation and removing the operator dependency issues 

[28]. 

4.4.3. Objective 3: Optimisation of registration parameters 

A sensitivity analysis was performed on the two registration parameters: the NS and 

the smoothing coefficient. The optimal value of both parameters was extracted from 

the analysis. The optimal NS selected was 5mm. This value resulted in segmentation 

with the greatest accuracy in terms of DSC, and comparable to others in terms of RVE 

and HD. An optimal value of the smoothing coefficient was automatically calculated 

within ShIRT, and this value was confirmed to be the optimal value, producing 

significantly greater segmentation accuracy in terms of both DSC and HD. There is a 

potential that the optimal values found within the segmentation tasks were optimal in 

some areas of the body, but not in others. Calculating an optimal value for each body 

segment could have merit but the outputted map would be far more difficult to 

interpret in this segmentation pipeline and was therefore not explored. 

4.4.4. Objective 4: Intra-subject registration results 

The intra-subject analysis sought to segment one limb of 5 subjects using deformable 

image registration, using the contralateral limb as the reference. The volume of the 

muscles was captured well through registration, with the average RVE reported as less 

than ±2%. However, the absolute values of the upper and lower quartiles of the RVE 

were consistently below 18%, which exceeded the ±10% that would satisfy the inclusion 

criteria for repeatable manual segmentation [66]. Therefore, considering this metric, 

some but not all muscles could be captured with an acceptable level of volume error. 

 

The average DSC across the 5 subjects was 0.81, which is comparable to the 

longitudinal studies presented by Le Troter et al. (2016) [94] and Fontana et al. (2020) 

[93] (summarised in Section 3.4.4), who achieved DSCs of 0.9 and 0.85 respectively in 

the segmentation of muscle from MR images using deformable image registration in 

longitudinal studies. These two studies segmented 4 muscles from young healthy 

individuals (Le Troter et al., two cohorts: A. n = 25, age = 22 ± 1 years, B. n = 7, age = 32 

± 7, and Fontana et al.: n = 7, age = 15 ± 1 years). As outlined in Section 3.4.4, the results 
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found using the left to right segmentation approach are close to segmenting the 

muscles on average with an acceptable level of accuracy, but the spread of the errors 

would need to be reduced significantly 

 

There are several reasons that could explain this difference. Firstly, in this study 

presented in this chapter, 23 muscles were segmented, which is much larger than the 

4 muscles segmented in both previous studies. Secondly, in my study the images were 

not captured with the optimal resolutions for muscle segmentation. The long bones 

were captured with lower resolution (pixel size of 1.1mm2) than the joints. The 

motivation for this was that images were not captured for the purposes of muscle 

segmentation, but for accurate capture of the joint geometry [88, 133]. The long 

portions of the muscle geometries (those within the thigh and calf) were therefore 

not captured as accurately as they could have been, likely due to the lack of contrast 

at the boundaries between the muscles. Comparing this with the study by Le Troter et 

al. (2016) [94], the images were acquired at higher resolution (pixel size of 0.5mm2, 

compared with >1mm2 used in this study), which could be the reason that the muscles 

were clearer within the scans, and therefore segmented with higher accuracy using 

image registration. Thirdly, the variability in muscle geometry and volume is significant 

between left and right limbs [66], where this same variability would be less apparent 

between the same limb if observed at two different time points, such as the 

approaches used in these longitudinal studies [93, 94]. Lastly, the muscle architecture 

visualised within MR images is more homogenous and better defined in younger 

individuals than in older individuals, causing fewer inconsistent features within the 

images [96], which would aid the registration and segmentation accuracy. 

 

To contextualise the deformable registration for the intra-subject muscle 

segmentation, we can consider two applications: 1) assessment of structural muscle 

characteristics; 2) for use within musculoskeletal computational modelling (i.e. multi-

body dynamics models).  

 

Considering the first application, the automatic segmentations would grant a good 

approximation in the assessment of structural muscle characteristics, such as the 

muscle volume and length (see Appendix 1). The intra-subject registration would be 

moderately capable of capturing the muscle length, which is also used for dynamic 

musculoskeletal modelling [13, 126, 134]. The average HD for this analysis across the 5 

subjects was 15 mm. The HD found in this aspect of the study suggested that the muscle 

length would be captured with an average error of <30 mm as the attachment points 

at the upper or lower boundary of the muscle would each be associated with a 
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maximum error of 15 mm. However, for further investigation of muscle characteristics 

such as assessing the level of fat infiltration of individual muscles, one would require 

the automatic and reference segmentations to be in better agreement, with a higher 

DSC. The reason for this is that any attempt to automatically isolate the intra-muscular 

fat (as presented in Section 3.3.3) from a segmentation that includes some fat tissue 

surrounding the muscle (as can be seen in Figure 4.15), would be skewed by the outer-

muscular fat. For example, in case of the medial head of the gastrocnemius (Figure 

4.13, highlighted muscle), where a portion of the fat surrounding the muscle was 

included in the segmentation.  

 

For the second application, the segmentations presented in this study could be useful 

to reduce the time needed to acquire personalised muscle information for 

musculoskeletal modelling [88, 134]. Dynamic musculoskeletal models are robust to 

perturbations in the ranges established in this work for calculating the volume and the 

attachment points locations for intra-subject applications [126, 135]. In fact, this tool 

could be used to half the time required to perform muscle segmentation in this 

context, as only one limb would be required to be fully segmented to attain a 

segmentation of both limbs. 

 

The limitations in the accuracy of the algorithm for intra-subject muscle segmentation 

could be due to different reasons. Firstly, the operator variability attributed to the 

ground truth, manual segmentations could have been exacerbated within the 

registration. The registration maps each pixel within the reference image to a pixel 

within the fixed image, independently of the segmentations aimed to be extracted. If 

the reference manual segmentations used to generate the automatic segmentations 

were incorrect (due to operator repeatability issues), the area that a segmentation 

surface would be mapped to would be misplaced. Therefore, the registration could be 

perfect, but when applied to a surface that is misplaced, the automatic segmentation 

would also be misplaced. Errors incurred due to misplaced reference segmentations 

would have a vastly reduced effect as the only muscles included in the segmentation 

study were those that were segmented with an acceptable level of operator 

repeatability. A second source of error could be due to the low contrast between 

muscles. The images used in this work were not optimised to enhance the contrast of 

the muscle-muscle boundaries, and so this could also limit the registration and 

resulting segmentation accuracy. 

 

 



   96 

4.4.5. Objective 5: Inter-subject analysis 

The RVE found within the inter-subject registration were large, with many average 

values being much greater than the ±10% that would be an acceptable level from two 

repeated manual segmentations [28]. There was a large variability in results depending 

on the combination of reference and target subjects. Also of note, the results were 

very different when comparing the inverse pairing of the target and reference subject 

(target Subject A using reference Subject W versus target Subject W using reference 

Subject A). Assuming a perfect registration, the displacements of the nodal mapping 

found within these two registrations, would be equal and opposite in direction. As the 

results are not equal, this is evidence that the registrations did not map the moving 

image to the fixed image perfectly.  

 

The optimal combination of subjects inputted into the algorithm was Subject 5 and 2 

as the target and reference respectively. This combination of subjects resulted in an 

average RVE of 1.6% and presented a small inter-quartile range of 9.7% (Figure 4.14). 

The two subjects were the most anthropometrically similar, with heights of 154 cm and 

160 cm, BMI of 27.5 ;@!, and 30.5 ;@!,, respectively, which is likely to be the reason for 

these subjects presenting the greatest accuracy considering this metric. 

Contrastingly, the worst performing subject combination (Subjects 1 and 2 as target 

and reference, respectively) varied slightly in height (Subject 1: height 164 cm, Subject 

2: height 160 cm) and greatly in BMI (Subject 1: 22.8 ;@!,, Subject 2: 30.5 ;@!,).  

 

The DSCs found within the inter-subject analysis were poor overall, with mean DSC of 

0.35 ± 0.16. Visually from the registered images (Figure 4.15) and particularly with the 

worst performing case, the registration was skewed by other anatomical artefacts, 

such as the fat surrounding the muscle. The low DSCs found across the cohort 

suggested that the muscle tissue was not being located or labelled well. This 

conclusion was compounded with the results found with the HD as the error metric, 

as the average HD was consistently greater than 20 mm, often with large inter-quartile 

range (Figure 4.14).  

 

The contrast of the muscle-muscle boundaries was low within the images, when 

compared with the high contrast between the tissue boundaries (such as the air-fat 

boundary, and fat-muscle boundary). The presence of these strong boundaries biased 

the registration, as the greater greylevel gradient shift reduces the cost function that 

drives the registration. The cross-sectional area, fat depth and muscle volume varied 

widely between the subjects and consequently the registration map required to align 
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the tissue boundaries was highly nonlinear. The high contrast between the external 

boundaries, coupled with the high non-linearity of the registration, have probably led 

to an inaccurate muscle segmentation.  

 

Inter-subject segmentation performed far worse than the intra-subject segmentation. 

This was expected as the registration was required to overcome a higher degree of 

variation of the anatomical differences between subjects than between opposing limbs 

of the same subject [66]. There could be two potential reasons for this. Firstly, the 

registration was not capable of capturing individual muscle geometry. Secondly, the 

dissimilarity of the 5 subjects’ anthropometric characteristics and distribution of 

tissues was too great for the registration to overcome. The first reason is unlikely as 

the segmentations resulting from the intra-subject registration were very similar to 

the manual segmentations, suggesting that the algorithm is capable of capturing 3D 

muscle structure. Therefore, we address the second hypothesis in the following 

chapter, exploring an enhanced pre-processing methodology to homogenise the 

images of different subjects, before registration. 

4.5. Conclusion 

Deformable image registration can result in good segmentation accuracy of the lower 

limb muscles, when using the contralateral limb as a reference. This can half the 

required time to segment a new subject. As with the manual segmentation of one limb, 

accurate segmentations of the contralateral limb can be generated. On the other hand, 

the accuracy of inter-subject deformable image registration is not accurate enough 

and needs improvements for assessing the muscle properties automatically.  
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Chapter 5: 
 

Enhanced inter-subject registration, 

multi-atlas segmentation and the 

generation of an augmented imaging 

database 

 

 

This chapter is partially based on a paper published in PLoS One (2023): ‘Deformable 

image registration based on single or multi-atlas methods for automatic segmentation 

and the generation of augmented imaging datasets’ by W. H. Henson, C. Mazzà, E. 

Dall’Ara. Doi: https://doi.org/10.1371/journal.pone.0273446 

5.1. Introduction 

Deformable image registration can isolate the lower limb muscles when used between 

the contralateral limbs of one subject, as shown with the relatively high segmentation 

accuracy within the intra-subject segmentation task in Chapter 4. Similarly, image 

registration has been used multiple times in longitudinal studies, automatically 

segmenting the muscles within a subject at a second timepoint, using segmented 

imaging data of that subject at an initial timepoint as the reference [93, 94]. However, 

the method used in Chapter 4 is not accurate enough to generate accurate 

segmentations of the muscles within new subjects when using other subjects as 

references. In fact, the anatomical variability (fat content, muscle volumes and lengths, 

etc.) between subjects is far larger than that within contralateral limbs. The approach 

however still has potential, as deformable image registration has previously been used 

to segment features from different subjects with great success, such as the study by 

Karlsson et al. (2015), where muscle groups (lower leg, posterior thigh, anterior thigh, 

abdomen, arm) were segmented from full body MR images, with accuracy greater than 

0.9 DSC within all muscle groups other than the abdomen [111]. With adaptations to the 
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method presented in Chapter 4, inter-subject deformable image registration could 

provide a route for the automatic segmentation of muscles. 

 

The first aim of Chapter 5, therefore, is to update the deformable image registration 

algorithm proposed in Chapter 4 to increase the inter-subject segmentation accuracy 

for individual muscles of the lower limbs. This aim was achieved by combining a novel 

pre-processing algorithm and multi-atlas segmentation. The novel pre-processing 

algorithm was designed to shift the focus of the registration towards the muscle tissue 

by homogenizing the layer of fat surrounding the muscle tissue. The multi-atlas 

approach was used to remove inaccuracies by fusing multiple labels, in a similar way 

that it has been used for other types of tissue segmentation [109, 110, 136]. 

 

The second aim of this chapter was to explore the possibility of using the developed 

deformable image registration pipeline to generate fully segmented, augmented 

imaging datasets. Such datasets could be used for future biomechanical model 

applications [137, 138] or to calibrate probabilistic deep learning methods in order to 

automatically segment 3D geometry of individual muscles from MR images taken from 

several different cohorts. Studies using deep learning methods present high 

segmentation accuracy of muscles, but these methods are not widely accessible due 

to the main limitation of current approach: the requirement of large training databases 

(minimum ~20 segmented 3D images, the greater this number the more robust the 

method) [138]. Unfortunately, generating these segmented imaging datasets might not 

be well suited to MR imaging, given the associated high costs and manual processing 

time [28, 66]. On the other hand, data augmentation is a technique widely used in 

association with CNNs for the purpose of supplying greater amounts of training data 

and helping to generalise their application to image classification and segmentation 

tasks [137, 138]. Within this context, image registration has previously been used to 

generate augmented images to facilitate the analysis of brain tumours [137]and skeletal 

deformities [139]. This suggests that, while not attempted before, similar approaches 

might be adopted for muscle segmentation. 
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5.2. Methods 

5.2.1. Subjects 

All 11 subjects from the MultiSim study were used in this chapter (for details see 

Section 4.2.1). The 5 subjects selected for segmentation were the same as those 

outlined in Section 4.2.1. The other 6 subjects were used in this chapter for the 

generation of augmented images (Section 5.2.5). 

5.2.2. Homogenizing fat tissue 

Initial registration experiments of imaging sequences from two different subjects 

showed that the difference in the thickness of the fat surrounding the muscle tissue 

skewed the registration and resulted in a poor registration quality (Chapter 4). In 

order to homogenise this feature, the MR images of each subject were pre-processed 

to homogenise the distribution of fat tissue within the scans, focussing the registration 

on the muscle tissue. For each 2D slice in the MR dataset (example in Figure 5.1.A) 

within each subject, the air-skin boundary was located using a Canny edge detector 

[140]. The area within the skin boundary was filtered (Figure 5.1.C), in response to a 

threshold established from the greyscale frequency intensity plots of the images, 

creating a mask that contained only the muscle tissue (Figure 5.1.D). A layer of fat was 

wrapped around the muscle tissue (Figure 5.1.E and 5.1.F) to emphasise the outer 

boundary of the muscle tissue. The depth of this layer of fat was made equal to the 

optimal nodal spacing (NS, set to 5 mm, details in Section 4.2.4) [130].  

 

There were two possible scenarios for the fat wrapping process: 1) the layer of fat 

within the image was greater than 5 mm, and 2) the layer of fat was less than 5 mm. In 

the first scenario, the subject’s fat tissue was wrapped around the muscle tissue at a 

depth of 5 mm. In the second scenario, artificial fat was wrapped around the body 

which was built in response to the greyscale frequency intensity peak that represents 

the fat. The pixels within 5 mm of the muscle tissue that lay outside the body were 

randomly assigned values according to a uniform distribution with minimum and 

maximum equal to the mean ± standard deviation of the frequency intensity peak 

representing the fat. Through this operation, the muscle tissue remained unchanged, 

but the fat tissue surrounding the muscle was homogenised, meaning that all muscle 

characteristics (volume, shape, and fat infiltration) are all conserved. Figure 5.2 

presents the original and pre-processed imaging data in the coronal plane for each of 

the 5 subjects, showcasing that the fat was successfully homogenised in this process. 
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Figure 5.1: Homogenisation of the fat tissue surrounding the muscles. The process of masking the fat 

tissue (A, B, C, D) surrounding the muscles from the raw MR images (left) and wrapping in a 

homogenous layer of fat (E, F) for two images taken from different subjects (right). Two example 

images are presented in G and H, where the images on the left were not pre-processed and the 

images on the right were. The subject in example G had a fat tissue thickness less than 5 mm thick and 

was wrapped with artificial fat, where the subject along the bottom row had a fat tissue thickness that 

was sufficient. 

 

Figure 5.2: The original (left) and pre-processed (right) imaging data of the 5 subjects, shown with 2D 

images in the coronal plane. 

5.2.3. Registration and single-atlas registration 

Following pre-processing, subject imaging datasets were concatenated following the 

algorithm outlined in Chapter 4 Section 2.2 and were registered using the in-house 

deformable image registration algorithm (Sheffield Image Registration Toolkit, ShIRT) 

[130]. The images were registered using the optimal nodal spacing (mm) and 

smoothing coefficient for images such as those used, found in Chapter 4 Section 3.1. 

The 3D displacement vector field mapping the moving (reference) image to the fixed 
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(target) image was computed by ShIRT and applied to the manually gathered 

reference segmentations, as outlined in Section 4.2.5. The registration and 

segmentation pipeline are summarised within the blue coloured portion of Figure 5.3. 

 

The registration and segmentation pipeline was used to segment each of the 5 

considered subjects. For each fixed subject, the other 4 subjects were used as the 

moving subject. Therefore, each subject was segmented 4 times using the pre-

processed images. The accuracy of each set automatically generated muscle 

segmentation was tested independently (hence single-atlas segmentation) using the 

same methods presented in Section 4.2.7, i.e., the Relative Volume Error (RVE), Dice 

Similarity Coefficient (DSC), and Hausdorff Distance (HD) were computed for each 

automatically generated muscle segmentation. An additional metric called the total 

volume error (TVE) was also used, in order to assess how well the total muscle volume 

was preserved. The TVE was calculated following Equation 5.1 below, where the 

difference between the automatic (bA-) and reference (bB-) muscle volumes (for each 

muscle A = 1, 2, …, 23) were summed and divided by the total of the reference volumes. 

 

sbc = 100 ×
∑ `bA- − bB-`
)
&93
∑ bB-
)
&93

 

 Equation 5.1 

 

The segmentation accuracy found in terms of the three error metrics were compared 

to the intra-subject results presented in the previous chapter. First, a Kolmogorov-

Smirnov test was performed to test the distributions of the three error metrics found 

for the 20 sets of segmentations (4 sets of segmentations for each of the 5 subjects) 

for normality. The results indicated that the distributions of the error metrics were 

not normally distributed. Therefore, the non-parametric Wilcoxon signed rank test 

was used to compare the means of the intra-subject segmentation to that of the newly 

proposed inter-subject segmentation with the additional pre-processing step 

included. Thereafter, a second Wilcoxon signed rank test was conducted, comparing 

the means of the newly proposed inter-subject segmentation pipeline to those found 

in the previous chapter, without the additional pre-processing stage.  

 

An additional analysis was performed, assessing the correlation between the 

segmentation accuracy and the volume of each automatically segmented muscle. To 

conduct this analysis, the Pearson’s correlation coefficients between the RVE, DSC, 

and HD of the optimal single atlas segmentations (those with greatest mean DSC) and 

the volumes of the ground truth segmentations were computed. 



   

 

 
Figure 5.3: Registration, multi-atlas, and image augmentation pipelines. The image registration process, shown for one 2D slice of imaging data (location within 

imaging sequences highlighted with a black line). The segmentation pipeline shows the image pre-processing, registration, and map application stages. The 

data augmentation pipeline shows the registration of the raw images, with application of the map found through registration to the moving subject (shown in 

green) and its corresponding segmentations. The multi-atlas pipeline used is also shown on the right-hand side, where the four segmentations found in the 

single atlas approach are combined.  

10
3 



   104 

5.2.4. Multi-atlas segmentation 

Multi-atlas registration methods are typically used to isolate the features of different 

registrations that agree, with the motivation of removing inaccuracies and increasing 

the reliability of the areas of agreement. These methods are in essence a final post-

processing step wherein the agreeing features of multiple registrations are found and 

retained, and the areas that do not agree are removed. 

 

Following the registration between the images of the five subjects, the resulting 

segmentations and registered images were used to define a multi-atlas segmentation 

for each muscle within each subject, in a process outlined in Figure 5.3. A probability 

map was defined for each voxel in each of the target images, representing the 

probability that a given voxel belongs to a certain muscle [106]. Considering each 

muscle individually within each target subject, the four automatically generated 

segmentations available through the single atlas approach were converted to binary 

images, where the voxels within the segmentation were set equal to 1 and all others to 

0. The four binary images were summed, generating a probability map with each pixel 

taking an integer value from 0 to 4. All pixel values were then rescaled within the range 

(0,1), with the voxel values representing the probability that a given voxel belongs to a 

certain muscle. The voxels with value equal to 1 were included in the multi-atlas 

segmentation, and those with value equal to 0 were removed. The disputed voxels 

(those with probability not equal to 0 or 1), for any given muscle were assigned to a 

given muscle, based on which registered image best matched the target image in a 

certain area surrounding the disputed voxel [106]. The localised mutual information 

was used to find which registered image was the best match and was calculated voxel-

wise as the sum of squared differences (the similarity measure used within the 

registration algorithm) between the registered and target images in a 253 voxel volume 

surrounding each voxel [106]. The registered image that presented the maximal 

agreement with the target image (that with the lowest sum of squared differences) at 

each of the disputed voxels was found, and the segmentation of that voxel from that 

registration was selected. All above processes were performed in MATLAB using 

matrix manipulation. 

 

The error metrics found for the multi-atlas segmentations for each subject were 

compared to both the intra-subject segmentation results, and the best performing 

inter-subject segmentation results (selected as that with the greatest mean DSC). A 

Kolmogorov-Smirnov test for normality was performed to determine whether the 

error metrics were normally distributed. After failing this test, the Wilcoxon signed 
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rank test was used between each of the newly proposed single atlas inter-subject 

registration results and the associated intra-subject segmentation results. The single 

atlas inter-subject segmentation with the lowest mean was then compared with the 

multi-atlas segmentation result, considering the three error metrics independently, 

using the Wilcoxon signed rank test. 

5.2.5. Generation of augmented data 

The deformable image registration algorithm was used to generate segmented 

augmented MR imaging data, summarised in green in Figure 5.3. The stacked MR 

imaging data from the right limb of the eleven participants were registered to each of 

the other subjects in the cohort, giving 110 combinations. To ensure that the registered 

image was distinct from both the reference and the target images, the registration was 

required to be imperfect. Therefore, no morphological pre-processing was applied.  

The displacement vector field outputted from ShIRT (Figure 5.3) was used to deform 

both the MR imaging sequence and the manual muscle segmentations of the reference 

subject, using linear interpolation to mimic the interpolation method used within 

ShIRT. The output of each of these processes was a fully segmented 3D image that was 

dissimilar to both the reference subject and the target subject (Figure 5.3).  

 

A four-point criterion was used for checking both the images and the segmentations 

to ensure anatomical credibility of the augmented dataset: a) the boundaries of the 

long bones and the skin must be reasonably smooth and continuous; b) the positioning 

and orientation of the joints must be anatomically viable, with the bones fitting 

together realistically; c) the muscle segmentations should reflect the muscle 

structure; and d) the location of each of the muscles relative to one another must be 

realistic (e.g. the vastus lateralis must be lateral with respect to the vastus medialis). If 

any one of these criteria were not met, the augmented dataset was discarded. Out of 

the retained datasets, 15 chosen at random were retested by a different operator to 

confirm the specificity of the inclusion criteria.  

 

Finally, the available muscle volumes were compared from within the augmented and 

original databases to measure the variability of muscle volumes between the two 

databases. The mean volume within each database was computed for each of the 23 

muscles considered. The difference between the volume of each muscle within the 

database and the average was then calculated, and this value was normalised against 

the mean volume. The resulting values were percentages representing the distribution 
of available muscle volumes within each database (with and without augmentations) 

which after normalisation, could be compared. 



   106 

5.3. Results 

5.3.1. Single and multi-atlas segmentation results 

A visualisation of an example registration and of the results of one segmentation are 

highlighted in Figure 5.4 for images taken from the hip, thigh, and shank, respectively.  

While the deformable image registration has accurately identified the muscle tissue in 

the target subject in most cases (yellow), some regions were not correctly registered 

(red or green). The segmentation results reflect this, where the registration appears 

successful overall, and the automatic segmentations are geometrically very similar to 

the ground truth segmentations. There are areas within the automatic segmentations 

that do not reflect the reference segmentations, such as the gluteus maximus in the 

hip section, and the tibialis muscles within the shank section. The automatic 

segmentations within the thigh section mostly agree with the reference 

segmentations. The pre-processing required 144 ± 15 seconds across the 5 subjects 

and the registration required between 70 and 94 minutes, slightly less than before the 

pre-processing. This reduction in time to perform the registration was caused by the 

smaller size of the images that were registered. All processes were performed using 

an Intel® Core™ i7-7700 CPU @ 3.60 GHz. 

 

 

Figure 5.4: Qualitative interpretation of segmentation results. Registration and segmentation results 

from the combination of subjects resulting in the median average DSC (subject 4 and 2 as the target 

and reference, respectively). The registration inputs (top row) and outputs (bottom row) for these 

combinations of subjects are shown in the group of images on the left. The segmentation results on 

the right are shown in three image groups, where the ground truth and automatic segmentations for 

the target subject are shown in the top and bottom row respectively. The muscles that are not 

highlighted within the images, were found not to be segmented with an appropriate level of 

repeatability. 
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5.3.1.1. Volume error 

The TVE for the entire muscle body was 8.2 ± 5.1 % (mean ± standard deviation) across 

all subject combinations. The mean RVE for the individual muscles was found to be 

below 12.8% for all combinations and all upper quartiles were below 40% error (Figure 

5.5). The best performing combination in terms of RVE was subject 5 with 1 as the 

target and reference respectively, which had the smallest mean (-2.2%) and with the 

lowest quartiles (lower and upper quartiles of -10.5% and 6.4%, respectively). The RVE 

was consistent across all muscles, with no correlation found between muscle volume 

and RVE (p = 0.159); the muscles with the highest variability within this cohort (tensor 

fascia latae, rectus femoris, and peroneus longus) were the outliers within the 

distributions of RVE, probably as the registration algorithm was unable to overcome 

the large differences in volume. In 7/20 cases, the mean RVE was significantly lower in 

the left to right analysis than the inter-subject results (minimum difference between 

means = 2.85%, maximum p-value = 0.83). The multi-atlas analysis provided a lower 

inter-quartile range in terms of RVE and resulted in the mean RVE across the five 

subjects falling within the acceptable range of error of ±10% error [28, 66], with 

minimum and maximum of means = (-2.4%, 9.0%). This cannot be said for the single 

atlas registration results with minimum and maximum of means = (-17.8%, 14.2%). No 

significant differences were found between the mean RVEs found within the left to 

right analysis and the multi-atlas analysis (maximum difference between means = 8.6%, 

p-value = 0.20, target Subject 4). Furthermore, no significant differences were found 

between the mean RVEs found for the optimal single atlas segmentation results, 

selected as those with largest mean DSC (maximum difference between means 10.4%, 

p-value = 0.39, target Subject 3 using reference Subject 4 in single atlas segmentation). 
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Figure 5.5: Numerical results for the intra-subject, multi-atlas, and single atlas analyses. Relative 

volume error (RVE, in %, top), Dice similarity coefficient (DSC, non-dimensional, centre), and 

Hausdorff distances (HD, in mm, bottom) found for each muscle in each subject, for the left to 

right/intra-subject analysis (green), multi-atlas (orange), and single atlas inter-subject approaches 

(blue). In both the left to right and multi-atlas analysis, the numbers above the boxplots denote the 

subject segmented. The numbers above each of the boxplots in the inter-subject approaches denote 

the reference subject used within the registration. The dashed line in RVE plot shows the acceptable 

level of RVE resulting from inter-operator dependence, prescribed by Montefiori et al. 2019 [66]. The 

grey dashed lines in the DSC and HD plots represent the mean values from the intra-subject analysis 

for comparison. The * above each of the plots highlights a statistically significant difference (p < 0.05) 

between the mean of the boxplot beneath, and the intra-subject (left to right) segmentation. The best 

performing single atlas segmentation (highest mean DSC) was compared to the multi-atlas 

segmentation. A † above the best performing single atlas results shows a statistically significant 

difference (p < 0.05) between the mean error of the optimal single- and multi-atlas segmentations. 
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5.3.1.2. Dice similarity  

When looking at the segmentations of the five subjects obtained using the other four 

as reference subjects, very variable results were observed. The greatest average DSCs 

were those resulting from the segmentation of Subjects 1,2, and 4, using Subjects 2, 1 

and 1 as the reference, respectively. The mean DSCs found for these combinations of 

subjects were greater than 0.70, lower quartiles greater than 0.67, and with a wide 

spread of results (0.35 < "#$ < 0.88). Subjects 3 and 5 were segmented with a 

consistently lower mean DSC, with the average DSC considering all reference subjects 

found to be 0.61 and 0.60 respectively (0.69, 0.69 and 0.67 for Subject 1, 2, and 4, 

respectively). Comparing the single atlas segmentation results to the left to right 

analysis, the mean DSC was significantly lower in the single atlas results across all 20 

combinations of subjects (minimum difference between means = 0.06, maximum p-

value = 2.9× 10!"). Similarly, all 5 of the mean DSCs found using the multi-atlas 

segmentation method were significantly lower than the left to right analyses (minimum 

difference between means = 0.08, p-value = 5× 10!#). No significant differences were 

found between the optimal single atlas results and the multi-atlas results (minimum p-

value = 0.078, target Subject 2 using reference Subject 1 in single atlas segmentation). 

There was a weak correlation found between muscle volume and the DSC of the 

automatic segmentations (R2=0.332, p-value=0.003), suggesting that the larger 

muscles were slightly better segmented in terms of DSC (see later section and Figure 

5.7).  

5.3.1.3. Hausdorff distance 

Overall, the mean HD was typically between 15 mm and 30 mm, with the upper quartile 

being below 40 mm, other than the segmentations of subjects 3 and 5 using subjects 2 

and 3 as references, respectively (Figure 5.5). The spread of results was large, with 

Interquartile ranges (IQR) being between 7 mm and 21 mm. The average HD found 

within the intra-subject analysis was 17.7 mm, much lower than in the other analyses. 

The HD distances in the multi-atlas analysis were comparable to the best cases within 

the single atlas results, with 4/5 means being comparable (p > 0.05). The exceptional 

case was the mean HD within the optimal single atlas segmentation for Subject 3 (using 

subject 2 as the reference) was significantly lower than the mean HD found using the 

multi-atlas approach (difference in mean HD = 9.8mm, p-value = 3.2× 10!"). The mean 

HDs across all 20 single atlas segmentation results was significantly greater than the 

associated left to right results (minimum difference in mean = 5.9mm, maximum p-

value = 6.8× 10!"). Similarly, the mean HDs across the multi-atlas segmentation results 

were all significantly higher than the left to right analyses (minimum difference in mean 

= 6.7mm, maximum p-value = 6.8× 10!"). There was no correlation found between the 
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HD and the size of the muscle (single atlas method) for which the HD was calculated 

(p-value=0.089), indicating that the error was consistent across muscles of all sizes. 

5.3.2. Segmentation of original and morphologically altered images 

Comparing the DSC found when registering the original and morphologically altered 

images, there was a significant (p < 0.05) increase in segmentation accuracy in 12/20 

of the combinations of subjects, as shown in Table 5.1. Three combinations were 

chosen at random with the registration inputs and outputs (with and without the 

additional pre-processing stage) showcased in Figure 5.6. The segmentation accuracy 

(in terms of DSC) of the first and third combinations selected were significantly 

improved (p < 0.05), and this is visible with the increased registration quality of the 

registered images in these cases in Figure 5.6. On the other hand, the combination of 

subjects that did not improve were registered with very similar registration quality in 

the original and morphologically altered images, suggesting that there was no 

reduction in registration quality. Additionally, in all cases, the mean DSC resulted from 

registration of the morphologically altered images was greater than or equal to that of 

the original images, suggesting that there was no reduction in segmentation accuracy. 

 

 

Table 5.1: Statistical analysis of the effect of homogenising the fat surrounding the muscle tissue on the 

Dice Similarity Coefficient (DSC) of the segmentation, resulting from registration. Green squares 

represent a statistically significant (p < 0.05) increase in the segmentation accuracy (in terms of the 

DSC) through the pre-processing step of each combination of fixed and moving subject. The 

numbered squares highlight the fixed and moving subject combinations used in the registration and 

segmentation pipeline in Figure 5.3. Where the fixed and moving subject are identical in the table, the 

squares are filled in black. 
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Figure 5.6: Registration inputs (left column of images in each block) and outputs (right column of 

images in each block), both with (bottom row of images in each block) and without (top row of images 

in each block) the pre-processing step. The subject combinations are numbered and highlighted in 

Table 5.1. 

5.3.3. Comparison of results with literature 

The RVE, DSC, and HD of the optimal single atlas segmentations (in terms of DSC) for 

each muscle of the 5 subjects are plotted against the volume of the automatically 

segmented muscle (mm3) in Figure 5.7. Also plotted in Figure 5.7 are areas of the 

graphs that contain the errors found in three previous studies that segmented 

individual muscles. The data cloud of  this study falls in the area of at least one previous 

study, particularly in the RVE and DSC plots. The HDs found in this study across all 

muscle volumes are greater than those found in Fontana et al. [93].  
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Figure 5.7: Comparison of muscle volume vs the three error metrics (A: RVE, B: DSC, C: HD) across all 

muscles for five subjects. Coloured areas of the graph highlight areas of muscle volume vs the three 

error metrics that can be found in three previous studies that automatically segmented individual 

muscles. The studies referred to are Belzunce et al. [141], Fontana et al. [93], and Zhu et al. [87]. 
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5.3.4. Augmented data 

After initial checking by the author, 69 of the 110 generated augmented datasets passed 

the inclusion criteria. 15 out of the 69 datasets were rechecked by an expert in muscle 

segmentation and all 15 passed, giving 100% specificity. Figure 5.8 shows some 

examples of the augmented images generated. Visually, the augmented images are well 

segmented, and are dissimilar to the reference subjects, particularly in the second row 

of images, where the relative fat depth of the moving subject (green) is retained, but 

the cross-sectional area of the thigh is equal to the fixed subject (red). The 

misalignment of the muscle tissue within the registered images, visible as 

concentrations of either red or green colours, helps to establish the difference in 

muscle geometry between the registered and original data. The augmented subjects 

generated for 1 target subject (Subject 1) are presented in Appendix 2, for more 

detailed visual comparison. 

 

The anatomical variability of the muscles within the augmented database is compared 

to the original 11 subject database (Figure 5.9). The volumes of each of the muscles in 

the original and augmented databases were normalised against the corresponding 

average muscle volume for each muscle in the respective databases. The percentage 

difference with respect to the average value was then calculated for each muscle 

(Figure 5.9). The muscle volumes available within the augmented database were found 

to have a greater range of volumes, often 1.5 to 2 times greater than in the original 

database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 

Figure 5.8: Exemplar augmented images. Inputs, outputs and resulting augmented subjects. Each row of images presents results within the hip (left), thigh 

(centre), and shank (right) for 3 subject combinations chosen at random (target x reference: 4 x 5 (top), 1 x 3 (middle), 7 x 9 (bottom)). Within each box, 

there are the inputted images into the registration (left), registered images with corresponding target image (centre) and resulting segmented, augmented 

images (right). The muscle labels are visible within the augmented images as the blue areas. Each muscle is assigned a distinct greyscale value and the labels 

are assigned alphabetically. 

11
4 
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Figure 5.9: Enhancement of muscle volume variability through image augmentation. The anatomical 
variability of muscle volumes for each muscle, ordered from smallest to largest within the original and 

augmented databases shown in red and blue, respectively. The height of the distributions was not 
normalised, and the violin plot contains 95% of the data, with 2.5% of data cut off from each side, 

removing outliers. 
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5.4. Discussion 

This chapter aimed at proposing a fully automatic tool to segment 23 major lower limb 

muscles simultaneously from MR imaging data from different subjects using 

morphological image processing, deformable image registration and a multi-atlas 

approach. Furthermore, the registration tool was used to generate a unique dataset 

including 69 fully segmented, augmented 3D images. To the best of the authors’ 

knowledge, this study represents the first attempt to segment complete 3D muscle 

geometry of many individual muscles simultaneously using deformable image 

registration while using different subjects as a reference. Moreover, a multi-atlas 

approach was used for the segmentation of many individual muscles simultaneously, 

which is yet to be investigated in this way.  

 

All 23 muscles were segmented from five subjects with moderate success. The 

registration quality was high considering the combination of subjects that resulted in 

the median average DSC (Figure 5.4) which suggests that in most cases, the 

registration performed as intended. This was confirmed by the TVE, lower than 10% 

on average. However, all metrics reflected a lower accuracy for the segmentation of 

individual muscles. Within both the inter-subject and multi-atlas analyses, the 

individual muscle RVE was typically larger than that of an acceptable level of inter-

operator dependence (±10%) [66], with one or both of the lower and upper quartiles 

often exceeding ±10% in most subject combinations. The mean absolute RVE within 

the optimal subject combinations was 12.7%, meaning that on average, there was an 

over or underestimation of the muscle volume greater than that incurred by the 

effects of operator variability. This indicates that the method would be best suited 

when only interested in the volume of the overall muscle body. Capturing the total 

muscle volume has proven useful in studies such as Handsfield et al. [142], where 

regression equations were used to estimate individual muscle volume from total 

muscle volume and other anthropometric data such as height and BMI. The DSC 

results, on the other end, indicate that if the purpose of the segmentation was that of 

extracting internal muscle characteristics, such as the level of fat infiltration [60], then 

alternative approaches should be pursued regardless of the inclusion of a multi-atlas 

postprocessing step. Possible improvements of the method could come from a more 

targeted selection of the reference subject, which as shown by the reported results 

(Figure 5.5) can increase the accuracy of the approach both in terms of individual 

muscle volume and DSC. Though, it is extremely likely that a better reference than a 

subject’s contralateral limb would be seldom found as an input of the registration 

algorithm. Therefore, the use of deformable image registration of images acquired 
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with these acquisition parameters for the purpose of individual muscle segmentation 

could be segmented at best with an accuracy comparable to that of the left to right 

analysis (~0.8 DSC). 

 

The geometry of each of the 23 muscles was captured moderately well for the optimal 

combination of subjects in the inter-subject analyses (those with greatest lower 

quartile), with mean DSC of 0.74 and IQR range of 0.71 < DSC < 0.77, and the multi-atlas 

approach presented very similar results. However, these quantitative measures of 

accuracy are significantly lower than the inter-operator dependence of the manual 

process, which, within the literature [13, 66, 83, 133] is consistently found to be DSCs 

of around 0.90 for the muscles considered in this study. While the pair of subjects led 

to the best results in terms of DSC were the most similar in terms of height and BMI, 

these anthropometric characteristics were very different in the pair having the 

second-best DSC (mean = 0.74, IQR of 0.69 < DSC < 0.79). This suggests that the newly 

proposed masking process achieved the goal of homogenising the subject imaging data 

and could be adapted for the removal of unwanted artefacts from within medical or 

indeed any other images. The worst performing combination of subjects (those with 

the lowest upper quartile), with mean 0.45 DSC across the 23 muscle segmentations, 

were those with the greatest difference in age (16 years) but similar height, weight, 

and BMI. One could suggest that the difference in muscle quality (and therefore 

difference in appearance in the images) between these two subjects could be large, in 

response to age-related degradation of the muscle tissue [23]. The muscle quality 

greatly affects the appearance of muscles within medical images and would certainly 

affect the quality of the registration [23]. 

 

Particularly successful approaches in the literature that used 3D deformable image 

registration to perform muscle segmentation were those based on longitudinal data, 

such as Le Troter et al. [94] and Fontana et al. [93], who attained average DSCs of 0.90 

and 0.85, respectively. Similar to the latter were the DSC values here found when 

registering the left to right limb in the same subject, which could be used to propagate 

segmentations of one limb to the contralateral limb, halving the time to segment the 

lower limbs. Notably, the approaches found in the literature still require the manual 

segmentation of each subject as the baseline. Moreover, these studies segmented only 

a subgroup of the muscles segmented in this study. Last but not least, the images 

collected in this study were not optimised for muscle segmentation, as they were the 

widely used T1-weighted MR images with lower resolution along the long bone sections 

(see Section 4.2.1.1). These characteristics of the images used may limit the 
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registration, as the muscle tissue was not as clear as it would be with better acquisition 

parameters. 

 

Overall, the main limitation of the proposed method is the non-satisfactory capture of 

individual muscle volume. There are several potential reasons for this finding. Firstly, 

this could have been caused by the propagation of inaccuracies associated with the 

manual segmentations of the reference images through the registration. However, this 

aspect is likely to have had a negligible effect since the muscles with high inter-

operator variability [66] were discarded at source. More likely, the issue lied in the fact 

that the muscle-muscle boundaries present a weak grey-level gradient, in contrast to 

the muscle-fat boundaries, which are shown to have a strong grey-level gradient within 

the MR images (figure 5.1). Since ShIRT registers grey-level gradients within the 

inputted images [130], the muscle-fat and muscle-bone boundaries were registered to 

a higher degree of accuracy than the muscle-muscle boundaries. The use of other MR 

imaging acquisition settings, such as the Dixon method for fat suppression, could 

further enhance muscle-muscle boundaries, however, these images were not 

collected at the time of data acquisition. The imbalance in the accuracy of the 

registration of the different tissues is highlighted by the greater RVE of the individual 

muscles, when compared to the total volume error. Moreover, ShIRT was the only 

registration algorithm tested. Other available registration algorithms [93, 94] could 

improve the accuracy of the segmentation but will have to be tested on the same 

dataset. For this reason, the datasets including the input MR images, the manual 

segmentations and the ShIRT inputs have been shared here 

(https://doi.org/10.15131/shef.data.21739733) for future comparison with other 

registration tools.  

 

Another source of error could lie within the optimisation process of the registration 

parameters (NS and smoothing coefficient) [143]. While in this study these parameters 

were optimised for the highest overall performance in segmentation accuracy across 

all considered lower limb muscles, the values could be further optimised for different 

areas of the limb. This was not implemented in this study as a rewriting of the 

registration toolkit would be required. The multi-atlas approach was employed to 

overcome the potential limitations of the registration procedure, incorporating a 

probabilistic evaluation of which regions of the images belong to each muscle. This 

method has been used in the assessment of other tissues in the body, such as brain 

tissue or the prostate, with good results [70, 106, 136]. The method did not have the 

same impact in this case, most likely due to the sheer number of different muscles 

assessed, which resulted in a great number of disputed voxels within each target 



   119 

image; a problem which would not be associated with medical image segmentation 

problems with fewer classes required to be segmented. It has been noted within the 

literature that this voting system is best suited for a thin layer of disputed voxels 

surrounding the tissue of interest [106], which was not the case in the automatic 

segmentations outputted from the inter-subject analyses. 

 

Despite the above limitations, the image registration protocol proposed here was 

clearly proved useful when adopted to generate an augmented image database of 69 

subjects having a much broader range of muscle volumes and geometries than the 

original 11 subject database. This result came after removing 41 anatomically unrealistic 

datasets, which required some manual checking on the augmented datasets, 

suggesting that similar care should be taken if this method is replicated. These 

datasets made publicly available (augmented images: 

https://doi.org/10.15131/shef.data.20440164, augmented images segmentations: 

https://doi.org/10.15131/shef.data.20440203), can be used to train deep learning 

methods [137, 144]. Machine learning and deep learning methods are now dominant 

tools used in the field of medical image segmentation [13, 82, 83]. Considering the 23 

muscles in the present study, the average DSC were found to be around 0.75, including 

only the optimal reference subject for each target subject. In comparison, deep 

learning methods have been used to segment the lower limb muscles with average 

DSC between 0.85 [82] and 0.90 [80]. These tools are typically only suitable for studies 

with extremely large cohorts, but this problem has been alleviated within some 

medical image analysis fields, such as brain tumour assessment [137] and bone 

segmentation [145], through data augmentation. However, this technique is yet to have 

been explored for muscle segmentation and the database presented here will foster 

efforts in this direction. To the best of the author’s knowledge, in fact, this is the first 

study to provide a large, multi-operator assessed set of fully segmented, labelled, 

augmented MR imaging sequences of the lower limb. In future work, these augmented 

datasets will be used to calibrate CNN models, with the potential to increase 

segmentation accuracy and lead to a solution for more accurate automatic 

segmentation and characterisation of muscles in vivo. 

5.5. Conclusion 

This chapter presented a novel, fully automatic muscle segmentation method using 

image registration, aimed at segmenting all lower limb muscles simultaneously. The 3D 

deformable image registration algorithm used in this work is limited in its capacity to 

perform individual automatic muscle segmentation with a high accuracy. Nevertheless, 
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this approach can be useful to provide total muscle volume and can be used as a tool 

to increase the number of reference datasets, enabling other methodologies (e.g., 

machine learning-based methods) to be explored and properly trained. Explicitly, the 

publicly available augmented database built in this work would enhance any future 

study that would aim to use deep learning approaches for the segmentation of muscles 

from T1-weighted MR images.  
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Chapter 6: 
 

Traditional and novel deep learning-based 

segmentation approaches 

 

 

6.1. Introduction 

Deep learning is the branch of Artificial Intelligence (AI) that is used in state-of-the-art 

image analysis applications, so named due to the large number of connected layers 

used to isolate key features from within images [114, 118]. These computational 

architectures have been proven powerful in the segmentation of several tissues from 

medical images with a level of accuracy comparable to manual segmentation by human 

experts [80, 82, 87]. Since 2015, upon publication of the paper that first introduced 

UNet [114], there has been an explosion in the number of research articles using UNet 

or variants of it to segment medical imaging data. The current consensus in the 

literature is that this base network architecture is still (7 years later) the state of the 

art, with its contracting pathway focussed on ‘what’ is in the image, and the expanding 

pathway focussed on ‘where’ the key information is in an image. To demonstrate this, 

the Medical Segmentation Decathlon [146] is currently the best example. The challenge 

was set by a consortium of medical imaging groups to align the segmentation 

approaches used within the community and submit one generalized solution to the 

problem of medical image segmentation. The challenge was set to competitors to 

segment ten tissues/organs (brain tissue, prostate, lung, abdominal organs, heart 

tissues, lesions, cell nuclei, and others) within the human body, captured with different 

imaging modalities (CT, MR imaging, electron microscopy, or fluorescence 

microscopy). The best model submitted, “not new UNet” (nnUNet), was able to 

segment all of the 54 imaging databases included in the challenge, achieving the 

greatest accuracy compared to the other models submitted (DSC in the range (0.5, 

0.97)) in 39 of the categories [147]. The nnUNet was named as such as it maintains the 

original UNet architecture, but with an additional optimization of the hyperparameters 

used to train the network. For this reason, logic dictates that the UNet network 
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architecture is still the best that the research community has to offer to solve the 

problem of medical image segmentation. 

 

Muscle segmentation was not among the challenges submitted in the Medical Image 

Segmentation Decathlon. Possible reasons for this could be that there are few openly 

available datasets that would be large enough to facilitate learning-based methods, or 

that the datasets that are currently available are inhomogeneous in their acquisition 

parameters [116]. Studies using deep learning techniques to perform muscle 

segmentation are uncommon, with very few (but a growing number of) studies 

available within the literature. Three noteworthy studies conducted by Ding et al. [80], 

Zhu et al. [87], and Ni et al. [82], reflected the current state of the art research in the 

application of these deep learning-based tools to perform muscle segmentation.  

 

Ding et al. segmented seven (testing) MR imaging datasets using a standard UNet 

architecture trained on 23 (3:1 split in training to validation) imaging datasets [80]. The 

network was trained and used to segment four regions of interest from multi-

acquisition (water and fat suppression) imaging datasets, two of which were individual 

muscles and two were muscle groups (knee extensors and flexors). The muscle groups 

were segmented with a mean DSC (calculated through comparison with a manual 

segmentation) upward of 0.9, across the seven datasets segmented. On the other 

hand, the individual muscles were segmented with a reduced accuracy, with DSC of 

0.86 on average across the seven datasets, suggesting that the segmentation of 

individual muscles is more challenging than muscle groups. 

 

Zhu et al. built on this work and investigated whether adjustments to the network 

architecture would yield individual muscle segmentations of improved accuracy [87]. 

In that study, Zhu et al. segmented 13 muscles from T1-weighted images acquired from 

the shank, with four test children, using the images from 16 children for training and 

validation (age range: 5.4 to 14.8 years old, 6 female, 14 male, 15:1 training to validation 

split), both with and without cerebral palsy. Six network architectures were tested in 

this study, including 2D, 3D, and hybrid models. The original UNet and the hybrid 

models presented similar accuracy (0.87 and 0.89 in DSC respectively). Neither study 

sought to segment all individual muscles from lower limb MR images.  

 

Ni et al. used UNet to segment all lower limb muscles of a testing dataset of 13 young 

healthy adults, using 51 subjects for training the network (training and validation split 

not stated) [82]. In this study, an individual network was trained for each of 35 muscles, 

each consisting of two neural networks trained in series: the first to crop the lower 



   124 

limb 3D MR image in order to isolate only the muscle being segmented, and the second 

to segment the muscle from the cropped image. The accuracy of the segmentations 

was comparable to that achieved in an inter-rater analysis for 14 of the muscles, and 

slightly worse in the other 21, averaging 0.9 in DSC across the 35 muscles segmented 

[82].  

 

While these studies showed encouraging results for automatic muscle segmentation, 

there are limitations that should be addressed. Segmenting all individual muscles from 

the entire lower limb is of great interest, as it would allow in depth analysis of the 

structural and functional health of each muscle individually, and future studies should 

aim to fulfil this objective [28]. Also, the requirement of costly computing equipment 

and the high computational cost incurred to train these algorithms reduce the 

availability of deep learning-based approaches [125]. Future algorithms should aim to 

make simplistic new architectures, which do not require such excessive training, and 

use multi-classification networks, as opposed to training an individual network for 

each muscle [87]. Lastly, the need for large training databases deters research groups 

from using these tools. Traditional image augmentation strategies, such as scaling, 

rotation, reflection, and non-linear deformation, have been tested for this image 

segmentation problem, and are not appropriate for this form of segmentation as all 

images are acquired in identical frames of reference. Therefore, all images in the 

database appear without rotation, reflection or scaling, and future image will be 

collected with similar or identical methods. Moreover, maximising the available data 

that can be used to train the network should also be pursued, such as medical imaging 

meta-data, which might be used to influence the learning process of neural networks. 

Therefore, innovative methods to overcome these limitations should be investigated. 

6.1.1. Aims and objectives 

The Overarching aim of this chapter was to address the limitations currently 

highlighted within the literature, by testing state of the art and novel deep learning-

based approaches. With this aim in mind, the following objectives were defined: 

 

1) To build and test the two main state of the art deep learning models, which have 

been used within the literature to segment other tissues from biomedical 

images: the UNet [114], and the Attention UNet [148].  

 

2) Create and test a novel network architecture (‘Spatial channel UNet’) to make 

use of the known spatial location of each image.  
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3) Evaluate the effect of incorporating the augmented imaging database generated 

using deformable image registration (Chapter 5) in the calibration of the tested 

networks.  

 
4) Retrain the best performing network for different testing subjects and compare 

the segmentation accuracy with that obtained with deformable image 

segmentation. 

 

6.2. Methods 

6.2.1. Data acquisition 

6.2.1.1. Participants and image acquisition 

In this study, as with the previous image registration study, the MultiSim cohort was 

used. Briefly, retrospective T1-weighted MR images of the lower limb from 11 post-

menopausal women (mean (standard deviation): 69 (7) years old, 66.9 (7.7) kg, 159 (3) 

cm) were used for this study [15]. Images were collected using a Magnetom Avanto 1.5T 

scanner (Siemens, Erlangen Germany), with an echo time of 2.59 ms, repetition time 

of 7.64 ms, flip angle of 10 degrees. The study was approved by the East of England – 

Cambridgeshire and Hertfordshire Research Ethics Committee and the Health 

Research Authority (16/EE/0049). The MR images were acquired in four sequences, 

capturing the hip, thigh, knee, and shank. To reduce scanning time while still providing 

detailed geometries of the joints for use within the original study, the joints were 

acquired with a higher resolution (pixel size 1.05 mm2, slice spacing 3.00 mm) than the 

long bone sections (pixel size 1.15 mm2, slice spacing 5.00 mm). 

6.2.1.2. Manual segmentation and label generation 

The manual segmentations used to generate segmentation labels were the same as 

those used in the previous chapters. The T1-weighted image sequences were stacked 

in MATLAB forming one continuous 3D image from hip to ankle, firstly by homogenising 

the resolution of each of the imaging sequences taken from the different sections to 

be 1.00x1.00x1.00 mm3 through tri-linear interpolation (interp3, MATLAB 2006a) as 

described in Chapter 4 Section 2.2.2. The fields of view of the images across the four 

sequences were equated by wrapping the images in blank data (greyscale value of 0), 

referencing the spatial metadata of the images to retain the relative subject position 

across the imaging sequences for each subject. Once stacked, the muscles visualised 
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within the lower limb T1-weighted scans were semi-automatically segmented using 

Materialise Mimics [129]. 

 

To train the CNNs used, a segmentation label image must be created. The output of 

the manual segmentation process for each muscle was a stereolithography (STL) file, 

and each was required to be transformed into volumetric images (a two-dimensional 

example is shown below in Figure 6.1). This process was completed muscle-by-muscle, 

beginning with the STLs aligned with the respective locations in the label image, 

referencing the origin of the image segmented in the semi-automatic process. All pixels 

within the label image that intersect a triangular element of a muscle STL element 

were highlighted, and the area was then filled. For visualising the different muscles in 

the same image, the outputted binary image for each muscle was then assigned a 

greyscale colour (1-37), ordered alphabetically with respect to the name of the muscle. 

For example, the biceps femoris muscles are located in the lateral section of Figure 

6.1(C) and have very low greyscale value (4 and 5, respectively), while the three vastii, 

located in the anterior section of Figure 6.1(C), have high greyscale value (35 – 37). The 

CNNs were trained with all 37 muscles, ensuring that predicted muscle tissue is more 

realistically distributed. 

 

In addition to the segmented subject imaging data, manually checked augmented 

images produced from deformable image registration (Chapter 5) were also used to 

train the CNNs. As the number of subjects enrolled in the study (n=11) was significantly 

lower than those in other studies (range 21-64) [80, 87], the augmented images 

reduced the impact that this limitation would have on the accuracy of the 

segmentation. 

 

Figure 6.1: The process of generating the inputs for the neural network. The image inputted into the 

neural network (A), was manually segmented (B) and the segmentations were transformed into a label 

image (C). The greyscale colours of each muscle were ordered from 1-37 as they appear 

alphabetically. 
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6.2.2. Convolutional neural networks 

Three Convolutional Neural Networks (CNNs) were used: the UNet [114], the “Attention 

UNet” [148], and an in-house model, named “Spatial channel UNet”. The first two 

network architectures are well-known, state of the art architectures that have been 

extensively used throughout the field of medical image analysis. Attention UNet has not 

yet been tested in the context of muscle segmentation, hence its inclusion in this study. 

In the following sections, the structure and details of these network architectures are 

explained.  

6.2.2.1. UNet 

The UNet architecture presented in Figure 6.2 is a 2D multi-layered deep CNN with 

encoding and decoding pathways. Within the UNet architecture, sequential 

convolution operations are applied firstly to the input image and thereafter to feature 

maps: the matrices that enable feature extraction [114].  

 

 
Figure 6.2: The UNet architecture [114]. Horizontal stages of the flowchart denote application of a 3x3 

convolution and Rectified Linear Unit (ReLU(x < 0) = 	0, ReLU(x ≥ 0) = x) to a feature map. 

Downward and upward stages represent down-sampling and up-sampling respectively, adjusting the 

size of the feature maps. The copy and crop stages combine past and present feature maps to 

highlight previous information. The final convolution adjusts the final feature map to have the required 

number of output channels, in this case n=37. 
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The contractile, encoding path has four stages, each including two sequential 

convolution layers, with convolution kernels not user imposed, followed by a pooling 

layer, which reduces the dimensionality of the feature map by a factor of two. The 

number of convolution operations, and therefore, the number of features channels 

extracted in each convolution layer followed those imposed by the original UNet 

architecture [114], being: 64, 128, 256, 512, and 1024 at each respective stage of the 

encoding path. Max pooling (with a 2x2 kernel) was used in this study, as it has been 

proven to be an efficient and effective method of pooling in medical image 

segmentation problems, such as cell segmentation [114], or brain tissue segmentation 

[113]. Max pooling of a feature map passes the maximum element in each (2x2) block 

of the feature map to a downsampled feature map. The 2x2 kernel used in this study 

is applied with stride 2, reducing the size of the downsampled feature map to be half 

the size of the inputted feature map. The contractile, encoder path focuses on what is 

in the images, assessing them in a global fashion. This process is applied 4 times in 

series meaning many millions of combinations of convolutions are used to form 

millions of downsampled feature maps. For this reason, batch normalisation was used 

between each convolution block, normalising the weights assigned to each feature 

map across each mini-batch passing through each stage of the network. The inclusion 

of batch normalization increases the time taken to complete each epoch of training 

but overall reduces the number of epochs required to train a functional model. 

 

The expanding, decoding path was built in the same manner as the encoder path, with 

the max pooling operations exchanged to an ‘up-convolution’ block. The up-

convolutions halve the number of feature channels and double the size of the feature 

map through up-sampling, padding each element with zeros. Similar to the contracting 

path, each of the four stages of the expanding path consist of one up-sampling block, 

followed by two convolution blocks. Additionally, feature maps from the contractile 

path with the same size are copied and concatenated (in a layer named skip-

connections) after the up-convolution is applied, coupling the features found within 

the contractile path with the expanding path. The design of the expanding path is 

focused on discovering where in the image the relevant features are. When coupled 

with the contracting path, the UNet is capable of learning what and where it is looking 

in the images, whether it is during the training process, or indeed in the testing phase. 

 

The final stage of the UNet architecture occurs once the feature map is up-sampled 

back to the size of the inputted image, after four down-sampling and four up-sampling 

stages. The final stage is a convolution layer where the number of feature channels was 

equal to the number of classes required to be segmented, in this case equal to 37. The 
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output was a probability map defined for each pixel in the input image, which was used 

to create a segmentation prediction, finding pixel-wise the class of greatest probability. 

The details for the training, validation, and testing protocol are outlined after each 

model structure is defined. 

6.2.2.2. Attention UNet 

The second model employed an attention module, which was built directly into the 

traditional UNet architecture, following the theory proposed by Ronneberger et al. 

[114]. The attention encoder allows the spatial location of the region of interest to be 

retained. The attention module adds together the feature maps from the down-

sampling and up-sampling stages, through multiplication of the two and normalization. 

In this process, the important feature channels (those features with the greatest 

weights) from both the down-sampled and up-sampled are accentuated, and 

conversely those feature channels that are not important are de-emphasized. The 

attention gates shown in Figure 6.3, consist of: 1) a simple matrix addition, 2) a rectified 

linear unit, forcing feature channels of negative weights to be equal to 0, 3) a sigmoid 

function, to squeeze the weights to be in the range [0,1], and finally 4) a resampling 

stage, to retain the correct feature map and feature channel sizes.  

 

 

Figure 6.3: The attention UNet [148]. The signals cast between the encoding and decoding sides of the 

UNet are cast together in an attention gate, altering the concatenation stage of the up-sampling. 
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6.2.2.3. Spatial channel UNet 

The third and final model assessed in this study was the in-house Spatial channel UNet. 

The model followed the CNN operations of the traditional UNet, with an additional 

Spatial channel running in parallel, designed to enrich the network’s knowledge of 

where the imaging slice was acquired from within the body. This method builds an 

understanding into the network of what muscles could and should be assessed within 

each image. For example, thigh muscles, such as the vastii, cannot be visualised within 

an imaging slice taken from the calf, and the addition of the Spatial channel is designed 

to enhance this.  

 

The architecture of the Spatial channel UNet, seen in Figure 6.4, maintained the 

original UNet, with a fully connected linear layer running in parallel [148]. The model 

required a measure of the position along the lower limb each image was acquired 

from. The percentage along the lower limb (!) that each image was acquired was used 

to provide this information, referencing the image number and the total number of 

images within each sequence. This spatial reference was tied to each image and both 

were inputted into the network model. The images ran through the UNet portion of 

the model and the spatial reference ran through the fully connected linear layer. The 

fully connected layer had 100 input neurons representing each percentage along the 

lower limb, and 37 output neurons representing the number of classes (muscles) 

being segmented from the images, with all input and output neurons being connected. 

The percentage along the lower limb (!) was converted into a 100x1 binary matrix, with 

the !th element set equal to 1 and all other elements equal to 0. The network was 

trained to strengthen connections between a given position along the lower limb and 

the muscles that could be contained in images acquired from those positions, and 

conversely, weaken the connections for those muscles that could not. The output of 

the Spatial channel was a probability matrix, each muscle being within a certain image, 

which was then multiplied with the result of the final convolutional layer in the UNet 

structure, influencing the segmentation prediction. 
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Figure 6.4: The Spatial channel UNet. The spatial location of the input image is calculated. Spatial 

information and the image are input into the network simultaneously, where they are split instantly. 

The image data goes through the standard UNet architecture (see Figure 6.2), while the spatial 

channel takes an integer, p ∈ [0,100], and activates the pth node of the input to the fully connected 

linear layer. Each input node is connected to each output node, of which there are 37 (equal to the 

number of muscles), allowing the locations of the muscles to be learned along the longitudinal axis. 

6.2.3. Training method 

All three models were trained using identical methods, on a NVIDIA® GeForce RTX™ 

3060 Ti Graphics Processing Unit (GPU) with 8GB of memory. A stochastic gradient 

descent method was used, separating the training database into batches (of size 8 due 

to memory card size), employing the Adam optimizing algorithm to iteratively update 

network weights during back-propagation. The learning rate was set at 0.001 and 

decreased by a factor of 0.5 after 30 epochs of training. In total, networks were trained 

for 90 epochs. All models were trained with the multi-class cross entropy loss function 

[149]. Other hyper-parameters were tuned empirically for the optimal network 

performance, whilst ensuring the GPU memory and capacity were not exceeded.  
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Throughout all network training an 80:20 split between training and validation data 

was used. The training data was used to fit the models to the lower limb MR images, 

and the validation data to verify that the algorithm was learning as intended in 

response to the training method selected. Due to the small number of subjects in the 

study cohort, a ‘leave one out’ testing system was used.  

6.2.4. Experiments 

Three experimental procedures were followed. The first found which of the three 

networks was able to automatically segment the muscles with the highest accuracy. 

The second assessed the effect of including the augmented images generated through 

deformable image registration [81]. The third and final experiment used the optimal 

network architecture and training database found through the first two experiments, 

and retrained that network five times independently, leaving each of the five subjects 

segmented in the previous work out as the testing dataset. The third experiment was 

used to enable a direct comparison between automatic segmentation methods.  

6.2.4.1. Comparisons among models 

The three outlined models were all trained following a ‘leave one out’ approach, testing 

one subject that was chosen at random. The labelled imaging data of ten subjects were 

used to train (eight subjects used for training, two for validation) each of the networks. 

The trained network was then used to segment the testing subject, allowing the 

segmentation accuracy to be assessed. The same three error metrics used in the 

previous chapters were used to measure the performance of each model (see Section 

4.2.2.3). Though 37 classes, or muscles were segmented by each network, only the 

results for the 23 muscles identified in Section 3.2.3.3. were analysed, removing 

unreliable training data from the interpretation of the results.  

6.2.4.2. Incorporation of augmented data 

All three models were retrained, after including the augmented images generated 

through image registration into the training database. Fifty-two labelled datasets were 

used in the training database, and 16 were used in the validation database. Those 

augmented images created from the registration of images involving the one testing 

subject, whether it be as the fixed or target subject within the registration (see Section 

5.2.5 & 5.3.4), were removed from the training database. 
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6.2.4.3. Varying testing dataset 

The third and final experiment used only the best performing model, which was 

retrained for five further subjects, being those five subjects segmented in the previous 

studies (Chapters 4 and 5). The training database was adapted before the training 

phase for each of the tests, such that the augmented images related to the testing 

dataset were removed. The distribution of datasets within the training and validation 

data for each of the experiments is presented in Table 6.1. This experiment was 

performed for two reasons: 1) to ensure that the choice of testing dataset did not 

affect the results, and 2) to allow direct comparison between segmentation methods 

across a number of subjects.  

 

Datasets Initial test Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Total 66 65 64 64 67 64 

Training 52 52 51 51 53 51 

Validation 16 15 15 15 16 15 

 
Table 6.1: Number of labelled datasets (each dataset contains approximately 1000 images) within the 

training and validation databases for the initial testing subject, and the other 5 subjects for whom the 

best performing network was retrained. 

6.2.5. Evaluation metrics 

The evaluation metrics used to quantify the accuracy of the segmentations outputted 

from each of the networks were the Relative Volume Error (RVE, %), the Dice Similarity 

Coefficient (DSC), and Hausdorff Distance (HD, mm). These complementary error 

metrics (calculations outlined in Section 4.2.2.3.) were found through comparison of 

automatic and manual segmentations. 

 

Each model was checked for convergence through analysis of the training and 

validation loss curves.  

6.2.6. Statistics 

Firstly, to compare the initial results (without augmented images in the training 

database) from each of the models, the distributions of RVE, DSC, and HD found for 

the 23 muscles segmented in the testing subject by each model were tested for 

normality using a Kolmogorov-Smirnov test, concluding that they were not normally 

distributed. Thereafter, the results from the three different models were tested for 

statistically significant differences using a Wilcoxon signed-rank test. 
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After retraining the networks with the augmented images, two statistical tests were 

used. First, comparing the results with and without the augmented images included in 

the training for each network structure independently, to analyse the effect of 

incorporating the augmented imaging dataset into the training phase. To do so, a 

Wilcoxon signed-rank test was used, after a Kolmogorov-Smirnov test concluded that 

the error metrics were not normally distributed. Secondly, the segmentation 

accuracies found for the three different models after being retrained with the 

augmented images were compared. Similarly, Wilcoxon signed-rank tests were used 

to compare the RVE, DSC, and HD found using the three different networks.  

 

Finally, the error metrics found after retraining the best performing network for the 

five retested subjects were assessed for normality again using a Kolmogorov-Smirnov 

test. After failing this test, the RVE, DSC, and HD found for the five retested subjects 

were statistically tested against those found for the initial testing subject using a 

Kruskal-Wallis non-parametric Analysis of Variance (ANOVA).  



   135 

6.3. Results 

6.3.1. Initial model evaluation 

6.3.1.1. Training convergence 

All models had converged at the selected number of training epochs and each of the 

models were found to be a good fit to the training and validation data.  Figure 6.5 shows 

that for all three models, the training loss had converged at or before the 90th epoch. 

Moreover, the validation loss was unchanged from the 30th epoch, until the 90th 

meaning that the parameters found for the models at the 90th epoch were valid to use 

for the testing dataset. The RVE, DSC, and HD calculated for each segmented muscle 

(23 muscles per subject) in the testing subject are reported in Figure 6.6.  

Figure 6.5: Training (solid) and validation (dashed) loss curves calculated throughout the training 

phase for the UNet (orange), Attention UNet (green), and Spatial channel UNet (blue). The cross 

entropy loss shown was calculated for each batch training or validation data and averaged across each 

epoch. 
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6.3.1.2. Number of parameters and training time 

The details regarding number of parameters, time for each iteration, and overall 

training time are all presented in Table 6.2. The UNet and Spatial Channel UNet had 

very similar numbers of parameters, while the Attention UNet had a much larger 

number. The training time reflected the number of parameters with the training time 

of the UNet and Spatial channel UNet being comparable, but the Attention UNet 

required more time on average to train. The time to segment the testing dataset was 

less than 30 seconds for all models.  

 

 UNet Attention UNet Spatial channel 

UNet 

Number of 

parameters 

1745920 
 

2444288 
 

1749620 
 

Average batches 

per second (it/s) 

6.38 4.34 6.19 

Total training 

time (hrs) 

4.14 6.31 4.38 

 

Table 6.2: Number of parameters, average number of batches trained per second, and total training 

time for the three models tested. 

6.3.1.3. Initial segmentation accuracy 

For the 23 muscles segmented, the RVE was comparable among each of the three 

networks, with no statistically significant difference found between the results (e.g. p 

> 0.544, comparison of UNet and Attention UNet), as shown in Figure 6.6. Explicitly, the 

mean (± standard deviation) RVEs found for each of the three networks were -2.1% ± 

19.3% (UNet), -3.1% ± 21.4% (Attention UNet), and -3.5% ± 18.2% (Spatial channel 

UNet), with similar interquartile ranges.  

 

The DSCs, presented in Figure 6.6, for the Attention UNet (0.73 ± 0.06) and Spatial 

channel UNet (0.74 ± 0.06) were not significantly different (p = 0.735), whereas the 

DCS found for the UNet (0.80 ± 0.03) was significantly higher than the other models 

(p <  0.0099).  

 

The HDs found for the 23 muscles are presented in Figure 6.6 for the three networks. 

For HD, no significant differences (e.g. p > 0.225, comparison of UNet and Spatial 

channel UNet) were found between the means of the UNet (29.4 mm ± 15.1 mm), 

Attention UNet (30.9 mm ± 19.0 mm), and Spatial channel UNet (28.1 mm ± 15.2 mm). 
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Figure 6.6: The RVE (%), DSC, and HD (mm) error metrics calculated across the three models tested. 

Lines above boxplots highlight significantly different results (* refers to p<0.05, ** refers to p<0.01). 

6.3.2. Augmented data inclusion 

Across all three error metrics, the 23 muscles of the test subject were consistently 

segmented more accurately after retraining the models with the augmented dataset 

included in the training database (Figure 6.7). The UNet improved the least after 

retraining, with no significant difference for RVE (p = 0.857) across the 23 muscles, but 

the upper and lower quartiles after inclusion of the augmented data fell within the 

acceptable level of operator variability (±10% [66]). Similarly, the Attention UNet 

showed no significant improvement in RVE between augmented and not augmented 

training datasets (p = 0.074). For Spatial channel UNet there was a small significant 

reduction of RVE after training with the augmented dataset (from -3.5% to -0.5% RVE, 

difference in mean 3%, p = 0.024).  

 

Considering DSC, all three models were more accurate with the inclusion of the 

augmented data, with significant improvements for both the Attention UNet (DSC 

from 0.73 ± 0.06 to 0.79 ± 0.06, an 8.2% increase, p = 0.0074) and the Spatial channel 

UNet (mean DSC from 0.74 ± 0.06 to 0.81 ± 0.05, a 9.5% increase, p = 3.5× 10!"). The 

muscles segmented with the lowest DSC, (gracilis, adductor brevis and peroneus 

longus), were drastically improved, particularly in the Attention (from 0.56 to 0.72 for 

gracilis, from 0.66 to 0.80 for adductor brevis, from 0.66 to 0.77 for peroneus longus) 

and Spatial channel (from 0.57 to 0.72 for gracilis, from 0.65 to 0.86 for adductor 

brevis, from 0.67 to 0.76 for peroneus longus) UNet models.  

 

The HD found with the inclusion of the augmented dataset for the original (HD from 

29.5 mm ± 15.1 mm to 22.5 mm ± 11.2 mm, a 27.1% decrease, p = 7.5× 10!") and Spatial 

channel (HD from 28.1 mm ± 15.2 mm to 22.8 mm ± 13.7 mm, an 18.9% decrease, p = 
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0.026) UNets were significantly lower, with the two being comparable in response to 

the updated training database.  

 

Overall, the traditional UNet trained with the augmented images segmented the test 

subject with the greatest accuracy, with the consistently low RVE, high DSCs, and 

equivalent HDs compared to the other two models. 

 

Figure 6.7: The RVE (%), DSC, and HD (mm) for the 23 muscles of the test subject calculated using 

each of the three models tested, both with and without augmented images included in the training 

phase. The lines linking the boxplots highlight significantly improved results after inclusion of the 

augmented images (* refers to p<0.05, ** refers to p<0.01). 
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6.3.3. Selection of the best performing model 

The RVE, DSC, and HD found through automatic segmentation of the testing subject, 

using the UNet, Attention UNet, and Spatial channel UNet models after training with 

the augmented images are presented in Figure 6.8. The RVE across all three models 

were comparable (UNet: 2.2% ± 14.6%, Attention UNet: -0.8% ± 19.9%, Spatial channel 

UNet: -0.5% ± 15.8%, mean ± standard deviation), with the smallest p-value = 0.11, 

found through comparison of the UNet and Spatial channel UNet. There were 

significant differences found in the DSC (UNet: 0.81 ± 0.04, Attention UNet: 0.78 ± 

0.05, Spatial channel UNet: 0.81 ± 0.05). The mean of the UNet model was found to be 

significantly greater than that of the Attention UNet model (p = 5.9× 10!#). The same 

was true when comparing DSC between the Spatial channel UNet and the Attention 

UNet (p = 0.011). Finally, the HD found across all three models were comparable, and 

no significant differences were observed (UNet: 22.5 mm ± 11.2 mm, Attention UNet: 

23.1 mm ± 11.1 mm, Spatial channel UNet: 22.8 mm ± 13.7 mm, minimum p = 0.36 found 

comparing UNet and Spatial channel UNet). As the UNet produced a comparable 

segmentation accuracy to the others in terms of RVE, greater than the others for DSC 

(with a greater lower quartile than the Spatial channel UNet, Figure 6.8), and 

comparable HD, this model was retrained for other testing subjects.  

 

 
Figure 6.8: The RVE (%), DSC, and HD (mm), found when segmenting the one testing subject using the 

UNet, Attention UNet, and Spatial channel UNet after training with the augmented images included. 

The mean RVE, DSC, and HD found for each of the three different segmentation models, were all 

statistically analysed. * above a line connecting two bar charts signifies p < 0.05, *** signifies p <0.001. 
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6.3.4. Retraining for different testing subjects 

The UNet with the augmented images was retrained, exchanging the testing subject to 

each of the 5 subjects that were segmented in the previous studies and the results are 

shown in Figure 6.9. 

 

Overall, the results for each of the five different subjects were similar to the results 

from the initial testing subject. No statistically significant differences were found 

between the RVE (testing subject: 2.2% ± 14.6%, Subject 1: -8.6% ± 18.7%, Subject 2: -

0.9% ± 4.2%, Subject 3: -1.5% ± 12.1%, Subject 4: 2.9% ± 9.0%, Subject 5: -0.6% ± 10.5%, 

mean ± standard deviation, minimum p = 0.15 between testing subject and Subject 1). 

Subjects 2 and 4 were segmented with a significantly higher DSC (0.02 difference, p = 

0.044 for test subject vs Subject 2; 0.02 difference, p = 0.026 for test subject vs Subject 

4) compared to the initial testing subject, but Subject 3 was segmented with a 

significantly lower DSC (-0.05 difference, p-value= 0.0039). Only Subject 5 was 

segmented with a significantly lower HD than the initial test (-10.0 mm difference, p = 

0.033), the other four retested subjects were consistent with the initial test (p > 0.32). 

 

All six subjects were segmented with a mean RVE within the ±10% that would be 

acceptable with respect to an operator dependency study [66] (between -8.7% to 

3.7%). As shown in Table 6.3, the average RVE across all 23 muscles was all within the 

acceptable operator dependency level. Only Subject 1 was found to be significantly 

different to any other within the six tested subjects. The mean DSCs across all six 

tested subjects were in the range (0.76, 0.84), with Subject 3 being segmented with 

the lowest DSC and the other five subjects being segmented with a DSC > 0.81, and this 

difference in mean DSC was significantly lower than 4/5 of the other subjects. All 

muscles, other than the gracilis, were segmented with a mean DSC above 0.75, when 

averaged across the six tested subjects (Table 6.3). The HD again was very consistent 

across the cohort, with most subjects being segmented with a mean HD within the 

range (20.6, 26.7 mm), with only Subject 5 being segmented with a significantly lower 

average HD (12.9 mm) than the other five subjects. 
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Figure 6.9: RVE (%), DSC, and HD (mm) calculated from the segmentations of 23 muscles from 6 

different subjects: the initial testing subject, and the five subjects segmented in the previous chapters. 

The lines connecting the initial testing subject to the others highlight statistically significant 

differences between the distributions of results (* refers to p<0.05, ** refers to p<0.01). The longer 

line highlights the subject that was significantly different to the others. 
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Muscle 

Relative 
volume 

error (%) 

Dice 
similarity 

coefficient 

Hausdorff 
distance 

(mm) 
adductor brevis -5.5 ± 13.6 0.79 ± 0.06 16.9 ± 7.1 
adductor longus -2.1 ± 6.4 0.82 ± 0.04 15.8 ± 6.1 
adductor magnus -1.5 ± 4.3 0.84 ± 0.02 21.7 ± 7.5 
biceps femoris caput 
breve 

1.3 ± 17.2 0.81 ± 0.03 13.1 ± 5.3 

biceps femoris caput 
longum 

-5.7 ± 5.0 0.83 ± 0.03 18.8 ± 12.0 

gastrocnemius lateralis -5.1 ± 14.7 0.82 ± 0.04 24.2 ± 13.8 
gastrocnemius medialis 0.3 ± 4.4 0.84 ± 0.02 31.7 ± 21.2 
gluteus maximus -0.1 ± 5.8 0.85 ± 0.02 29.1 ± 23.6 
gracilis -7.3 ± 16.3 0.74 ± 0.07 27.9 ± 6.1 
iliacus -4.6 ± 5.0 0.82 ± 0.03 17.7 ± 4.9 
peroneus brevis -2.8 ± 11.9 0.79 ± 0.03 30.8 ± 7.7 
peroneus longus -0.3 ± 14.4 0.80 ± 0.04 16.2 ± 6.6 
rectus femoris -2.5 ± 15.5 0.84 ± 0.03 12.4 ± 6.4 
sartorius -3.3 ± 16.2 0.79 ± 0.03 28.1 ± 23.5 
semimembranosus -3.6 ± 7.1 0.84 ± 0.04 22.0 ± 19.8 
semitendinosus 2.7 ± 10.6 0.84 ± 0.02 23.2 ± 10.2 
soleus 4.7 ± 6.6 0.84 ± 0.06 17.8 ± 4.8 
tensor fasciae latae 9.8 ± 16.4 0.77 ± 0.05 24.5 ± 14.5 
tibialis anterior -8.8 ± 15.2 0.80 ± 0.05 23.3 ± 10.9 
tibialis posterior 1.1 ± 16.3 0.78 ± 0.04 20.5 ± 13.3 
vastus intermedius -0.5 ± 5.1 0.82 ± 0.04 22.0 ± 7.0 
vastus lateralis -2.5 ± 11.5 0.82 ± 0.03 29.1 ± 15.4 
vastus medialis -6.0 ± 4.6 0.84 ± 0.02 29.9 ± 15.3 

 
Table 6.3: RVE (%), DSC, and HD (mm) found for the 23 muscles included in the automatic 

segmentation. Values within the table are the mean errors (± standard deviation) averaged across the 

6 tested subjects. 

 

The segmentations generated by each of the retrained networks are presented in 

Figure 6.10. Overall, the segmentations predicted by the model were visually very 

similar to the ground truth segmentations. Both the location and geometry of all 23 

muscles assessed were well predicted. The gluteus maximus and adductor magnus 

(highlighted within Figure 6.10) were extremely well predicted, reflected by the high 

DSC found for this muscle, being above 0.85 across all subjects other than the 

adductor magnus within subject 3 (DSC = 0.81). However, there were some 

shortcomings in the predictions, particularly within the shank of Subject 3 (see light 

blue arrow pointing to tibialis anterior mislabelling, Figure 6.10) and thigh of Subject 1 
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(see purple arrow pointing to the vastus medialis mislabelling, Figure 6.10), where 

muscles were clearly mislabelled. The 2D cross sections appeared to show that the 

predictions (automatic segmentation) and references (manual segmentation) were in 

good agreement. The three error metrics suggested that there were some areas of 

disagreement. These disagreements were relatively heterogeneous between the 

different muscles considered, as shown in Table 6.3.  

 

 

Figure 6.10: Visual representation of ground truth and automatic segmentations outputted from the 

best performing model, the UNet. Three slices taken from halfway along the shank, thigh, and hip 

sections are presented, with the manual and automatic segmentations shown on the left and right, 

respectively. Each row of images corresponds to each of the six segmented subjects. The highlighted 

muscles are referred to in Section 6.3.4 above, pointing to the soleus (light yellow), gluteus maximus 

(yellow), vastus medialis (purple), and tibialis anterior (light blue). 
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6.3.5. Direct comparison between segmentation methods 

Five subjects were segmented using all four automatic approaches used within the 

thesis: left to right segmentation, inter-subject single atlas segmentation and multi-

atlas segmentation, and the traditional UNet trained with augmented images. 

Therefore, a direct comparison is drawn between the Relative Volume Error (RVE, %), 

Dice Similarity Coefficient (DSC) [131], and Hausdorff Distance (HD, mm) [132] found 

using the four different methods for the five subjects (Figure 6.11). The segmentation 

of the right limb through registration of manually segmented imaging data of the left 

limb gave the most accurate segmentation in 4 out of 5 subjects considering both RVE 

and HD. In the circumstances where the left to right registration was not the best 

performing segmentation method in terms of RVE and HD, the UNet was. In all but 1 

subject, the UNet was able to segment the 23 muscles with the highest DSC, with the 

left to right registration being the best performing segmentation method in that case. 

The optimal single atlas and multi-atlas were the 3rd or last placed segmentation 

methods across all three-error metrics in all but Subject 1.  

 

Finally, the time requirements for each of the segmentations differed widely. The left 

to right and single atlas inter-subject segmentation methods required between 1 and 

1.5 hours to segment one limb from the subjects, the multi-atlas approach required 

between 4 and 5 hours (required 4 single atlas registration iterations), and the UNet 

required around 16 hours to be trained but performed the segmentation in less than 

2 minutes. 
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Figure 6.11: Comparison of the four segmentation methods used within this thesis. Each plot presents 

the segmentation accuracy of each method for a given subject (see row labels) and considering a 

certain error metric (see column label). The background colour surrounding each boxplot denoted 

the methods rank when compared to the other methods (the best method is coloured in green, 2nd in 

yellow, 3rd in orange, and 4th in red). The rank was determined as that with the greatest (DSC), or 

lowest (RVE, HD) mean. If the mean was within 1% in RVE, 0.01 in DSC, or 1mm in HD, then the method 

with the smallest inter-quartile range was given the higher rank. 
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6.4. Discussion 

The chapter aimed to investigate the capacity of state-of-the-art CNNs to segment 23 

major lower limb muscles from T1-weighted MR images and propose novel methods 

to overcome current computational limitations and data requirements noted within 

the literature [80, 82]. Furthermore, the benefit of using the previously generated 

augmented imaging database was analysed. Though similar studies do exist in the 

literature [80, 82, 87], these state-of-the-art models have not been tested to segment 

all major lower limb muscles simultaneously in a cohort with T1-weighted images. A 

model capable of automatically segmenting all major muscles from lower limb T1-

weighted MR images whilst matching a human operator level of accuracy would be of 

great interest to the research community, as new subjects could be processed without 

the need of retraining new or existing models. 

 

Across three error metrics: RVE, DSC, and HD, the 23 muscles were segmented with a 

moderate to high level of accuracy by all three models tested. All models were shown 

to have converged through assessment of the training and validation loss curves, 

suggesting that the models were fully trained and that the training and 

backpropagation algorithms used were valid. Both the traditional UNet [114] and Spatial 

channel UNet were able to segment the muscles well within the subject initially chosen 

for testing. Upon inclusion of the augmented imaging database into the training phase, 

these networks could segment the muscles with low average RVE (UNet = -2.1%, Spatial 

channel UNet = 1.0%) and a moderately high DSC (UNet = 0.81, Spatial channel UNet = 

0.81). The Attention UNet [148] was also retrained with the augmented imaging 

database and though the RVE was comparable to the other models, this model showed 

a lower average DSC of 0.79. The Attention module has been used very effectively in 

the segmentation of other tissues but has not been used widely in multi-classification 

segmentation tasks [148, 150]. Therefore, the Attention UNet may have been negatively 

affected by the large number of classes (or muscles) in this task, given that this 

network was outperformed by the traditional UNet model. Further changes could be 

made to this network, such as incorporating a multi-headed attention module [151], but 

this would incur vast numbers of additional parameters, greatly increasing training 

time.  

 

The use of augmented imaging data, particularly within a relatively small study cohort 

(n = 11) benefitted all three of the models tested, with significantly improved 

segmentation accuracy in at least one of the three error metrics. The DSC of the 

segmentations predicted by the Attention UNet model were improved but still did not 
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match the level achieved by the other two models. The Spatial channel UNet benefitted 

the most with the inclusion of the augmented database in the training algorithm but 

achieved a comparable level of accuracy to the traditional UNet. The spatial channel 

method was designed to allow the network to reduce the number of muscles that 

could be present within each image slice. However, the disparity in the DSC found 

between the UNet and Spatial channel UNet when trained without the augmented 

database suggested that the spatial channel running in parallel with the UNet limited 

the ability of the network to segment the muscles. The high RVE and HD suggested that 

the extremities of the muscles were not well captured. For example, the testing subject 

may have a muscle present within a certain imaging slice at a given percentage along 

the lower limb, whereas this muscle might not have been present in the other subjects 

at the same location. The Spatial channel would therefore prevent the inclusion of this 

muscle in the prediction for that certain image, which would lead to an incorrect 

segmentation. When retrained with additional augmented images, which were shown 

to increase the variability of muscle structure when comparing the augmented and 

original databases [81] (Section 5.3.4), the effect of this limitation was reduced. The 

Spatial channel UNet and traditional UNet produced segmentations of similar 

accuracy, suggesting that the spatial channel did not enhance the learning process for 

the models trained in this work, which solidified the choice of model used for further 

testing. The increase in segmentation accuracy found using the Spatial channel UNet 

when retrained with the augmented images, suggested that with a more diverse 

training database (possibly with further augmentation), the segmentation accuracy 

could increase even further. 

 

Traditional UNets have been used in the past to perform multi-class segmentation of 

the muscles from MR imaging data [80, 82, 87]. The study by Ding et al. [80] segmented 

two muscle groups and two individual muscles from water and fat suppressed images, 

inputting two images into the network. The two individual muscles (gracilis and 

sartorius) were segmented with a DSC of 0.86 on average, 6.1% greater than that in 

this study. However, in this study, 23 individual muscles were segmented with an 

average DSC of 0.82 across six subjects, which is comparable. This average 

segmentation accuracy was robust, with low standard deviation (± 0.08), and was 

approaching the criteria outlined in Section 3.4.4. The disparity between the results 

presented by Ding et al. and those found in this study could be due to their use of two 

MR imaging types as a multi-channel input, where in this study only T1-weighted images 

were used, bringing less information per training iteration to the network. Zhu et al. 

[87] used a similar approach, training many different network models to segment 

muscles from only the calf. Their group presented a method to segment the calf 
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muscles with an average DSC of 0.89 using a hybrid 2D and 3D model. Comparatively, 

the muscles within the calf were segmented with an average DSC of 0.82 in the current 

study across the six tested subjects. They also tested the traditional UNet, which was 

able to segment the muscles with an average DSC of 0.87. Their study cohort consisted 

of young subjects both with and without cerebral palsy, in contrast to older post-

menopausal subjects in this study. Not only did Zhu et al. [87] have a greater number 

of subjects (n = 20), enhancing the training of the networks, but the younger subjects 

used were likely to have a more homogenous muscle tissue appearance in MR images 

due to the effects of age-related degradation of skeletal muscle tissues [53] (see Figure 

6.12 for comparison). The inhomogeneities of muscle tissues would typically lead to 

higher operator variability in the manual segmentation process, especially in cohorts 

with musculoskeletal disorders or older individuals [66]. Therefore, it was expected 

that the automatic segmentations presented in this study were less accurate than 

those reported by Zhu et al. [87]. Finally, another comparable study was that of Ni et 

al. [82], who segmented all lower limb muscles using a UNet architecture but 

exchanged the traditional 2D inputs for full 3D images. Ni et al. trained 35 individual 

networks, for a study cohort of 64 young healthy athletes (for difference in muscle 

structure see Figure 6.12), incurring extreme computational expense and training time. 

However, Ni et al. proposed a segmentation accuracy of around 0.9 in DSC, significantly 

higher than that found in this study or by Zhu et al. [87]. This again could be contributed 

to the higher homogeneity and definition of muscle appearance in the MRI in the young 

athletic cohort.  

 

 

Figure 6.12: Example MR images taken from Zhu et al. [87] (A), Ni et al. [82] (B), and an example used in 

this study. Both those used in Zhu et al. [87], and this study were T1-weigthed images, where Ni et al. 

[82] used a fat suppression acquisition sequence. 

 
After retraining the UNet model for the five subjects segmented using other methods, 

the model was mostly robust to the changes in the testing subject. Considering each 
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of the three error metrics (Figure 6.9), there was one subject that was segmented with 

significantly lower accuracy than some of the others. The subject that was segmented 

with lower accuracy than the others was not consistent across the three error metrics, 

as these metrics represent errors found in different features within the 

segmentations. Overall, the UNet model was robust, suggesting that if tested for new 

subjects (not included in the study cohort), segmentations of similar accuracy might 

be produced automatically. The comparison between the different segmentation 

methods found that the left to right registration was the most accurate segmentation 

method considering the RVE and HD, as these metrics are volumetric, and surface 

based in their comparison between different segmentations. These two metrics are 

3D in nature, well suited to the 3D registration method used in the left to right 

segmentation method, but not to the 2D UNet method. Moreover, the left to right 

registration was the best of the three deformable image registration-based 

segmentation methods. The variability in the muscle structure between opposing 

limbs is noted in the literature, but it is far smaller than the variability found between 

different subjects [66], leading to the left to right registration outperforming the other 

two registration-based approaches. The best reference that can be used to segment a 

certain target limb, is the opposing limb, and as these results highlight, even when using 

a multi-atlas approach. On the other hand, the UNet with a training database bolstered 

by augmented images generated through deformable image registration provided the 

best results in terms of DSC as these methods give predictions of the class of pixels in 

a pixelwise manner [106], which is well suited to DSC as an error metric.   

 

The results presented in this chapter did have some associated limitations. Firstly, as 

is the case with many deep learning applications, the amount of data limited the 

training phase of all three tested networks. This is clear as the augmented images 

increased segmentation accuracy across all three tested networks. Additionally, the 

training phase required a significant amount of computational time, which could be 

boosted with the use of High-Performance Computing with multiple GPU cores. These 

were not used as one of the aims of the chapter was to foster these methods in 

situations where these systems may not available. However, the Spatial channel UNet 

required a very similar amount of time to the traditional UNet, suggesting that other 

methods that enrich the learning process with meta data could be adopted with little 

effect on computational time. Moreover, the 2D approaches used throughout this 

chapter could limit the learning process as the muscle structures segmented are 3D 

in reality. Three-dimensional applications of UNet-style structures have been tested in 

medical image analysis [123], but these approaches typically affect the time and 

computational requirements on the learning process. Specifically with large images 
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such as these (~250x250x1000 pixels), a 3D application of the UNet would severely 

increase the computational expense incurred by the learning process. Additionally, the 

low number of full 3D labelled images (n = 11) could cause more bias in 3D UNet [123] 

and lead to reduced overall performance. Finally, the fact that 12 of the muscles were 

trained to be segmented from the imaging data but were not considered in the analysis 

of the results could have affected the segmentation accuracy outputted. Although this 

was a necessary choice as those muscles failed the reproducibility criteria, it could 

lead to areas of the muscles that were included being overfit.  

 

Future studies should take three things into account. First, they should expect to find 

a lower segmentation accuracy when using deep learning-based methods to segment 

subjects with MSK disorders or older individuals, as the muscles are likely to appear 

less homogenous within images. Second, the number of subjects enrolled in a cohort 

plays an important role, the greater the number of subjects, the higher the 

segmentation accuracy. Third, the MR image types should be multiple focussing on fat 

suppression, as studies using images of these types provided more accurate 

predictions than those of traditional T1-weighted images (i.e., those used in this study). 

However, using more sophisticated and less common acquisition settings could 

reduce the utility of the segmentation method, so caution is advised in this respect. 

6.5. Conclusion 

This chapter showcased the use of 2 state-of-the-art deep CNNs in the application of 

muscle segmentation, as well as a novel CNN that built in an understanding of the 

spatial location of each image. Though novel deep learning-based methods built to 

segment the muscles from MR images are still recommended, it was shown that 

knowledge of the spatial location of the images was not beneficial to the novel 

network’s training in this context. Also assessed was the benefit of training each of the 

networks with augmented images generated through image registration. It was shown 

that the accuracy of the predicted segmentations was drastically improved for 2 out 

of the 3 models, but only slightly with the third one. Augmented data is known to 

increase the robustness of segmentation models, and for spatially invariant images 

such as these, generating them through image registration is certainly a valid method 

to boost the size of a training dataset. This work highlights that the research 

community is close to presenting an automatic segmentation method that is equally 

accurate to the gold standard manual process, but it is currently more difficult for 

these automatic methods to segment inhomogeneous muscle structures. 
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Chapter 7: 
 

General discussion and conclusions 

 

 

7.1. Conclusion 

The research conducted and presented in this PhD thesis fulfilled the aims and 

objectives outlined in Chapter 1. In particular, Chapters 4-6 are all closely tied to one 

another, each with the results of the previous chapters motivating the techniques used 

to solve increasingly difficult challenges. Chapter 3 first presented an in-depth critical 

appraisal of the current gold standard approach. Manual segmentation was used to 

segment the MultiSim database (that used throughout the thesis), and the 

repeatability issues highlighted when this technique was used were presented. Many 

of the lower limb muscles were immediately removed from further study, as their 

boundaries were not able to be reliably located within the Magnetic Resonance (MR) 

images used. The second research outcome of Chapter 3 was a novel application of 

manual muscle segmentation: investigating the fat infiltration between healthy (NW), 

obese (OB), and Dynapenic Abdominal Obese (DAO) subjects. Comparisons of the level 

of fat infiltration showed that the DAO had a significantly higher level of fat infiltration 

that the NW cohort and similar level to the OB cohort. Further, the OB cohort were 

able to exert more force than the NW and DAO cohorts, DAO and NW were 

comparable. 

 

Chapter 4 centred around building an automatic muscle segmentation pipeline 

employing deformable registration to segment all lower limb muscles within one 

subject, using others as references, something that had not been explored previously. 

The intra-subject (left to right) segmentation was found to be relatively accurate with 

mean DSC between 0.75 and 0.85. On the other hand, the mean DSC found within the 

initial inter-subject segmentation was between 0.30 and 0.70. Therefore, the inter-

subject segmentation was found to be significantly less accurate than the intra-subject 

(left to right) segmentation, and it was hypothesised that the other tissues visible 
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within the scan (explicitly, the fat tissue surrounding the muscles) were skewing the 

registration, causing an inadequate registration.   

 

Chapter 5 aimed at optimising the registration and segmentation pipeline built in 

Chapter 4, to maximise the segmentation accuracy of the inter-subject segmentation 

approach. The registration pipeline was improved by pre-processing the images so 

that the fat tissue surrounding the muscle tissue was homogenised. There was a 

significant increase in segmentation accuracy in 12/20 combinations of subjects after 

the images were pre-processed, with the mean DSC of the optimal subject 

combinations being between 0.68 and 0.73 DSC. Though there was a significant 

increase in segmentation accuracy, the segmentation accuracy was still found to be 

significantly lower than the intra-subject segmentation. Therefore, a multi-atlas 

approach was used to remove inaccuracies and increase confidence in the areas of 

agreement between different inter-subject segmentation iterations. Though the multi-

atlas approach did help the segmentation accuracy, with the segmentation accuracy 

being between 0.66 and 0.75, it was found still to be lower than the intra-subject 

analysis. As the deformable image registration-based approaches used did not appear 

to have the capacity to segment the muscles to a satisfactory level, the remaining part 

of the work focused on the development, application, and testing of a deep learning 

approach. Nevertheless, considering the low number of available subjects, an 

approach to augment the training dataset was developed, using deformable 

registration. By registering the imaging data of each subject to all others, the database 

was increased from 11 subjects to 80 subjects (11 original subjects plus 69 augmented 

subjects).  

 

Chapter 6 focused on the use of CNNs to automatically segment all lower limb muscles 

simultaneously from the MultiSim cohort. Three separate analyses were investigated. 

Firstly, the benefit of the use of augmented imaging datasets was evaluated for three 

models (UNet, Attention UNet, and Spatial channel UNet). All three networks were 

significantly improved, highlighting that the augmented imaging database achieved the 

goal of alleviating the unavoidable limitation of the small number of segmented 

subjects. Secondly, the segmentation accuracy of the three models was compared for 

an initial testing subject, finding that the UNet was the optimal network model. Finally, 

the robustness of the UNet was assessed, by retraining it for the five subjects 

segmented with other models, allowing direct comparison between the segmentation 

methods. The UNet was robust to the changes in the testing subject, with mean DSC 

all between 0.80 and 0.85 across the six testing subjects. Comparing between different 

segmentation methods, the left to right registration was the optimal segmentation 
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method, but the UNet trained with the augmented images was a clear second best, 

outperforming both the single and multi-atlas registration-based methods. The 

outcome of the chapter was that deep learning-based methods, aided by deformable 

image registration can provide a good automatic segmentation model for the muscles 

from T1-weighted MR images.   

7.2. Limitations 

There were inevitable and unavoidable errors incurred in the manual process, due to 

operator dependency issues [28]. These errors would certainly have had an effect 

across all tested segmentation methods. Within the deformable image registration-

based approaches, the automatic segmentations were generated through 

deformation of the manual segmentations. Therefore, any errors associated with the 

manual segmentation would have been apparent within the automatically generated 

segmentations. Furthermore, the error metrics are all calculated by direct comparison 

with the manual segmentations that they sought to replicate. Any errors associated 

with the manual segmentations that were compared to would also affect the 

computed error metrics. These inaccuracies associated with the manual segmentation 

method would also have affected the training of the CNNs. Training CNNs with data 

generated by humans with human error included is not a novel problem, and typically 

causes the results to be limited to replicate the level of human error and not 

outperform it. Though, the effects of these inaccuracies were minimised by removing 

the muscles that failed an inclusion criterion from further study (Chapter 3 Section 2). 

These errors could not be avoided as all analyses required some reference muscle 

segmentations that should only be gathered using the gold standard approach.  

 

The imaging data used throughout the thesis was also likely to have an effect on the 

accuracy found between the different approaches. Firstly, T1-weighted images are not 

designed to highlight subtle differences between soft tissue, but rather highlight areas 

of white or grey matter [152]. Images of this acquisition setting do highlight the 

different tissues visible in the lower limb (trabecular and cortical bone, muscle, and 

fat), but other acquisition settings such as fat-suppression may highlight the muscles 

and remove other tissues. Though, scans of this acquisition setting are extremely 

common and standard clinical practise, so their use throughout this thesis were 

justified as an automatic segmentation method proven with T1-weighted images would 

have a more wide-reaching impact. Secondly, the resolution of the images may have 

affected the accuracy of the automatic segmentation methods tested, as higher 

resolution images would have more detailed features that would facilitate the isolation 
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of muscle boundaries more readily. On the other hand, with higher resolution images, 

the computational expense of all methods used would have been exaggerated, with the 

number of pixels required to be processed being greater. The selection of resolution 

of the images particularly within the long area of the lower limb must be chosen with 

caution as higher resolution images require more time to be gathered, meaning the 

subject would be in the MR imaging chamber longer. 

 

Likely the limitation of greatest impact was the small number of subjects available (n = 

11). A small cohort such as this did not impact the registration-based methods but are 

known to affect the training of neural networks [116]. The impact of this limitations for 

the neural network-based segmentation methods was alleviated using augmented 

imaging datasets (Section 6.2.2.). Moreover, there are more variables for future 

researchers to take into account, namely: the characteristics of the subjects under 

investigation (e.g. number of subjects, age, musculoskeletal disorder, sex), and the 

images they are able to acquire. The characteristics of the subjects under investigation 

impacts the potential feasibility for the methods explored to produce accurate 

segmentations as the presence of a musculoskeletal disorder (sarcopenia due to 

aging, Motor Neuron Disease, muscular dystrophy, for further examples see Section 

2.2.2) affects the homogeneity of the muscles visible within medical images [53, 60].  

7.3. Impact 

The work conducted throughout the PhD has contributed to the publication of two 

papers (one as first author [81] and one as a co-author [66]). Additionally, codes and 

databases have been written and published on GitHub and Figshare: 1) automatic pre-

processing of MR images acquired from different sections 

(https://github.com/whhenson1), 2) multi-atlas segmentation 

(https://doi.org/10.15131/shef.data.21763982), 3) augmented images and associated 

segmentations,  located at https://doi.org/10.15131/shef.data.20440164, 

and https://doi.org/10.15131/shef.data.20440203, respectively), and 4) the traditional 

UNet, Attention UNet, and Spatial channel UNet (https://github.com/whhenson1). Two 

further papers are currently in preparation for publication: “Traditional and novel 

Deep learning-based muscle segmentation from MR images enhanced with 

deformable image registration-generated augmented imaging datasets” (first author), 

and “Comparison of fat infiltration and muscle functional capacity in healthy, obese, 

and dynapenic abdominal obese adults” (shared first authorship with Dr. Lisa M 

Dowling). 
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The data and codes written in the process of producing this thesis have been made 

publicly available with the aim of focussing future researchers toward using and 

adapting existing tools to analyse data, rather than on exploring traditional (image 

registration) or probabilistic (deep learning) approaches. There are already countless 

retrospective datasets [122] that could be segmented using tools (such as those 

explored in this thesis) that could aid our understanding of the mechanisms under 

which muscle disorders operate. The impact of the thesis, therefore, is that the 

investigations into the benefits and limitations of automatic segmentation tools have 

been explored, which the author hopes will aid future researchers to apply such tools 

to more clinical research questions. 

 

Moreover, the automatic pre-processing algorithm, segmentation methods, and post-

processing techniques designed and tested within this thesis serve as groundwork for 

clinical translation of such methods to segment the muscles of real patients. The 

methods presented and tested in this thesis could be used in their current state to 

generate predictions of individual muscle characteristics of new patients within the 

clinic, which would need only minor adjustment by trained experts (such as 

radiologists). After retraining, the deep learning-based approaches, with the 

availability of a greater number of imaging datasets captured for more subjects, the 

methods presented in this thesis could be used to produce segmentations of even 

greater accuracy and enable processing of subjects and patients. The methods 

presented could be used to allow quantitative guidance of the appropriate steps to 

counter muscle disorders with targeted physiotherapy, inform clinicians whether a 

treatment is benefitting a patient, and catalyse our understanding of muscle disorders 

and the specific areas that they affect. 

 

The thesis aimed at providing the community with an automatic muscle segmentation 

tool and this has been achieved, using a variety of different methods. The motivation 

for this was to facilitate future quantitative studies into the effects and characteristics 

of muscle disorders. The potential of this tool is twofold, with the first being in 

providing clinicians with a quantitative measure of the damage to individual muscles 

allowing a better understanding of risk of an individual being diagnosed with a muscle 

disorder. The second was to enable quantitative methods to assess the progression or 

intervention of muscle disorders [90, 153]. The individual automatic muscle 

segmentation methods explored in this thesis could, with further testing on larger 

cohorts, provide a tool capable of supplying a quantitative analysis of the state of an 

individual’s muscle health to the community. 
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7.4. Future work 

Future work should be focussed on three areas: 

 

1) Further testing. The deep learning-based approaches built in Chapter 6 should 

be tested further through collecting more lower limb MR imaging data of older 

females and manually segmenting all muscles. Supplying these extra datasets 

into the training phase and pairing the new subjects with the eleven current 

subjects to generate more augmented imaging data could boost the 

segmentation accuracy found using all three of the networks tested. The more 

subjects that can be added to the database, the greater the segmentation 

accuracy is likely to be. The recently collected STH21022 database of older 

women (n = 27, normal weight, obese and dynapenic abdominal obese) could 

be incorporated into the database, as these images were acquired with 

identical scanning parameters (see Section 3.3.2.1.). Caution is advised as the 

operator repeatability of the manual segmentation process must be 

characterised for each muscle before proceeding to retrain the networks with 

additional subjects. 

 

2) Continuing the investigation of muscle fat infiltration or muscle damage into 

subjects with muscle disorders. The work outlined in Chapter 3 Section 3, 

regarding the level of fat infiltration into the quadriceps and hamstrings can be 

extended using the techniques used for automatic segmentation of individual 

muscle to quantify the level of fat infiltration into specific muscles. The 

combination of these two methods could lead to a better understanding of the 

progressive characteristics of muscle disorders and could also provide 

quantitative insight into the effects of new and existing intervention strategies.  

 

3) A robust segmentation tool capable of generating segmentations of any new 

subject. The MR images that are collected not only from within clinics but also 

research groups often are collected with varying acquisition settings and 

parameters. An automatic segmentation tool should be robust to changes such 

as these. This thesis lays the groundwork for a general answer to the question 

of which methods should be used to automatically segment individual muscles. 

The methods tested and analysed within this thesis should be carried forward 

with larger and more diverse datasets. For example, retraining the CNNs tested 

within chapter 6 (with the enhancement of data augmentation) with large 

databases consisting of many subjects from different cohorts (young and old, 
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with and without a muscle disorder, different acquisition settings) could lead 

to a robust automatic segmentation tool for any new subject that requires 

processing.  
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9.1. Appendix 1 – Automatic calculation of muscle length 

This appendix is based on a paper published in P (2020): ‘MRI-based anatomical 

characterisation of lower-limb muscles in older women’ by E. Montefiori, B. Kalkman, 

W. H. Henson, M. Paggiosi, E. McCloskey, C. Mazzà. Doi: 

https://doi.org/10.1371/journal.pone.0242973 

9.1.1. Methods 

Individual muscle segmentations were used to calculate the anatomical muscle length, 

which was calculated as the length of the centreline from the 3D muscle segmentation. 

To generate the centreline, points representing the centre of mass (see Figure 9.1) of 

each segmentation were calculated at regular cross sections (spacing of 10 mm) in the 

sagittal plane. A smooth curve was fitted to the points using a moving average filter, 

with the span of the filter being selected individually for each muscle. The muscle 

length were then denoted as the arc length of the fitted smoothed curve constituting 

the centreline of the 3D segmentations. All above computations were performed in 

MATLAB R2019b (The Mathworks Inc., Natick, MA, USA). 

Figure 9.1: The process of calculating the length of the muscle automatically. The centre of mass (red 

cross) was calculated at regular section of each muscle segmentation. These centres of masses were 

connected with a smooth line to calculate the muscle length automatically. 
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9.2. Appendix 2 – Example augmented images 

Figure 9.2 below showcases one segmented imaging slice from an original dataset and 

the augmented images that were generated by mapping the other ten subjects to 

Subject 1 (target). Visually, the augmented images are visually distinct from the target 

subject. 
 

 

Figure 9.2: Display of augmented datasets for one target subject. The image on the left shows a cross- 

section of the target subject (Subject 1) with the manual segmentations for that image shown in green. 

The 10 images on the right are cross-sections of the augmented datasets, generated when keeping 

subject 1 as the target for the registration, whilst using the other 10 subjects as the reference dataset. 

Segmentations are reported in blue. One augmented dataset marked with a red square did not pass 

the inclusion criteria, due to the discontinuity in the boundary of the body. 


