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Abstract 

Icebergs release cold, fresh water and terrigenous nutrients as they drift and melt, influencing 

the local ocean properties and encouraging sea ice formation and biological production. To 

locate and quantify the freshwater flux from Antarctic icebergs, changes in their area and 

thickness have to be monitored along their trajectories. In this thesis, I developed novel 

methodology and datasets from satellite remote sensing observations to quantify the 

freshwater flux from giant Antarctic icebergs as accurately and efficiently as possible.  

First, I investigated and improved the calculation of iceberg thickness from CryoSat-2 satellite 

altimetry observations. I found that employing consistently processed elevations is essential to 

detect changes in iceberg freeboard. Moreover, I developed a method to account for the 

evolution of the snow layer on icebergs during multi-annual drift and assessed its impact on 

iceberg thickness estimates. Combining these with measurements of iceberg area derived from 

satellite imagery, I estimate the volume loss (378 ± 57 km3) and freshwater flux (106 ± 35 Gt) 

from the B30 iceberg over 6.5 years. 

Next, I built on this methodology and applied it to the A68A iceberg, whose melting affected the 

ecosystem near South Georgia. I further improved the method by adding ICESat-2 data and 

automatically colocating altimetry tracks over the floating iceberg with a map of initial iceberg 

thickness. Overall, A68A released 802 ± 34 Gt of ice along its trajectory and 152 ± 61 Gt through 

basal melting near South Georgia.  

Finally, I developed a deep neural network (based on U-net) to map the extent of giant icebergs 

in Sentinel-1 imagery. While each manual delineation takes several minutes, U-net reduces the 

time to 0.01 sec. Evaluating the performance compared to two standard segmentation 

techniques, I found that U-net achieves a higher F1 score (0.84 versus 0.62) and is more robust 

to sea ice, other icebergs and nearby coast.  
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In this chapter, I introduce icebergs as an important part of the polar environment. Starting with 

a definition of icebergs and their main characteristics, I then explain how they interact with and 

affect their surrounding while they drift and melt. I also outline what we can learn from them 

for climate science and glaciology. The next section summarises how icebergs have been moni-

tored and what we have learnt about them so far, focussing on remote sensing observations of 

icebergs. Finally, I provide a synopsis of remaining challenges and state how my thesis work 

addresses some of these. Throughout the thesis, I focus on the largest, tabular icebergs around 

Antarctica. 

1.1. Definition and main characteristics of icebergs 

An iceberg is a large floating piece of ice, which has calved from an ice shelf or a glacier. Accord-

ing to the International Ice Patrol, icebergs have a freeboard (i.e. height above the waterline) of 

at least 5 m and a minimum length of 15 m. Smaller pieces are called bergy bits or growlers. 

Marine terminating glaciers are mainly found in the Arctic and around the Antarctic Peninsula 

and calve rather small icebergs due to their smaller, bedrock-confined calving front (Bigg, 2015; 

Sulak et al., 2017; Dryak and Enderlin, 2020). Smaller icebergs can have a variety of shapes in-

cluding sloped, dome-shaped, pinnacles, tabular and weathered (Romanov, Romanova and 

Romanov, 2012). In contrast, a large part of the Antarctic continent is fringed with ice shelves 

(Rignot et al., 2013; Shepherd, Fricker and Farrell, 2018), which calve much larger tabular ice-

bergs (Romanov, Romanova and Romanov, 2012; Bigg, 2015).  These icebergs are usually several 

kilometres long and can reach lengths of hundreds of kilometres in exceptional cases (Arrigo and 

van Dijken, 2003; Bigg, 2015; Budge and Long, 2018). Because the ice shelves are already float-

ing, the resulting icebergs have a relatively flat surface and are called tabular icebergs (Figure 

1.1). Depending on the thickness of the mother ice shelf, these bergs have keel depths of 140 – 

600 m (Dowdeswell and Bamber, 2007).  

The U.S. National Ice Center (NIC) names and tracks icebergs that are at least 18.5 km (10 nau-

tical miles) long or cover an area of at least 68.6 km2 (20 square nautical miles). These are also 

called giant icebergs (Bigg, 2015). They are named with a letter indicating from which sector in 

Antarctica they calved (A = 0-90° W, Weddell Sea and Bellingshausen Sea, B = 90-180° W, 

Amundsen and Eastern Ross Sea, C=90-180° E, Western Ross and Wilkes Land Sea, D=0-90° E, 

Amery and Eastern Weddell Sea, see Figure 1.2) and a sequential number. A68, for example, was 

the 68th iceberg from the first quadrant recorded by NIC. When an iceberg breaks into two or 

more pieces and each of the pieces is large enough to be tracked, they are called A68A and A68B 
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for example, using ascending letters according to when the pieces have broken off. The larger 

of the two pieces, also referred to as the mother iceberg, receives the lower letter (e.g. A68A). 

In this thesis, I focus on such giant tabular Antarctic icebergs that are named and tracked by the 

NIC.  

 

Figure 1.1: Cartoon of how a tabular iceberg is formed from a fractured ice shelf. Image credit: 
Megan Thompson-Munson 

Annual calving flux estimates around Antarctica range from 1089 Gt (Rignot et al., 2013) over 

1300 and 1332 Gt (Gladstone, Bigg and Nicholls, 2001; Depoorter et al., 2013) to 2016 Gt (Jacobs 

et al., 1992). The most recent estimate by Greene et al. (2022) is 1411 Gt per year. This is in the 

same order of magnitude as basal ice shelf melting, meaning that icebergs account for about 

half of all ice loss from Antarctica (Depoorter et al., 2013; Rignot et al., 2013; Adusumilli et al., 

2020). This already makes them a significant component of the polar environments. Giant ice-

bergs contribute about half of all iceberg calving (Duprat, Bigg and Wilton, 2016). At any time, 

about 50-90 large icebergs are tracked by the NIC, containing 6,000-18,000 km2 of ice in total 

(Tournadre et al., 2015). The largest iceberg on the NIC record was B15, which calved in 2000 

from the Ross Ice Shelf and was initially 295 km long with an area of 11,000 km2 (Arrigo and van 

Dijken, 2003; Budge and Long, 2018). Figure 1.2 shows all recorded positions of giant Antarctic 

icebergs since 1978. 
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1.2. Importance of icebergs 

Icebergs influence and interact with their environment along their drift trajectory in a number 

of ways. They pose a hazard to shipping and marine infrastructure in case of collision. Scientifi-

cally, the release of cold, fresh meltwater is the main interest, as it influences the local ocean 

circulation, facilitates sea ice formation and fosters biological production. Moreover, icebergs 

indicate how ice shelves will react to warming ocean and air temperatures, as icebergs experi-

ence them already today when reaching lower latitudes. 

 

Figure 1.2: Iceberg tracks from all named icebergs between 1978 and 2021 as given by Brigham 
Young University (Budge and Long, 2018). The naming sectors (A-D) are also shown. 

1.2.1. Icebergs as a hazard 

The most commonly known hazard of icebergs lies in potential collisions with ships (Savage, 

2007; Liu, Amdahl and Løset, 2011; Romanov, Romanova and Romanov, 2012; Bigg et al., 2018). 

The International Ice Patrol was founded after Titanic sank due to a collision with an iceberg 
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(Murphy and Cass, 2012). Today, and especially in the Arctic also offshore structures are endan-

gered by collision with icebergs (Savage, 2007; Eik and Gudmestad, 2010) and cables and pipe-

lines can potentially be damaged by the deep iceberg keels (Savage, 2007; Bigg, 2015). Apart 

from man-made structures, icebergs also frequently collide with ice shelves or other icebergs, 

which can induce calving of new icebergs or fragmentation of the existing ones (MacAyeal et al., 

2008). 

When icebergs ground on the sea bed, they leave plough marks, which are also used to derive 

iceberg- and hence ice shelf thicknesses of the past (Wise et al., 2017). Vice versa, if iceberg 

thickness is known, iceberg grounding provide independent estimates of sea floor topography 

(Liu et al., 2022). The downside is that grounding or scouring icebergs kill or damage the benthos 

and thereby mobilize carbon (Dunlop, Barnes and Bailey, 2014; Barnes, 2017). In case of occa-

sional iceberg scouring, the regions become recolonised and more diverse in species. However, 

if scouring happens too frequently, the slow growing benthic fauna cannot recover (Gutt, 2001). 

The weight of a grounded, capsizing iceberg can also trigger submarine landslides (Normandeau 

et al., 2021). And finally, depending on the location, the sheer size of a grounded iceberg can 

block access of penguin colonies to their feeding grounds (Kooyman et al., 2007) or alter the 

local ocean currents (Robinson and Williams, 2012). It can also prevent sea ice from breaking up 

(Remy et al., 2008), which in turn reduces phytoplankton growth and primary production (Arrigo 

et al., 2002; Arrigo and van Dijken, 2003). 

1.2.2. Impact on local oceanography and sea ice 

Icebergs release cold freshwater along their drift trajectory as they melt. The freshwater input 

leads to a cooling and freshening of the surrounding sea water (Jenkins, 1999; Helly et al., 2011; 

Merino et al., 2016 and Figure 1.3). Lower sea surface temperatures in turn also cool the local 

air temperature, acting as a negative climate feedback (Schloesser et al., 2019). In terms of den-

sity change, the freshening effect dominates over the cooling and therefore density is reduced 

(Stephenson et al., 2011). This means that the meltwater plume rises and as it rises, it causes 

ocean mixing and upwelling (Huppert and Turner, 1978; Helly et al., 2011; Stephenson et al., 

2011 and Figure 1.4). On the other hand, meltwater intrusion causes an intensified stratification 

of the ocean, where less mixing and convective overturning take place (Merino et al., 2016). This 

results in sub-surface warming and acts as a positive feedback (Schloesser et al., 2019). While 

the cooling effect stimulates Antarctic bottom water formation, the stronger stratification ra-

ther hinders it (Jongma et al., 2009). Modelling studies, however, found a net increase in pro-

duction of Antarctic bottom water by 10 % due to dynamic icebergs (Jongma et al., 2009; Martin 
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and Adcroft, 2010). Helly et al. (2011) analysed conductivity, temperaure and depth (CTD) 

measurements around a giant iceberg and found that deep water down to 1500 m depth and 

19 km away from were affected. The effects persist for at least 10 days after iceberg transit 

(Helly et al., 2011).  

 

Figure 1.3: Anomalies in a) sea surface salinity b) sea surface temperature c) sea ice fraction and 
d) convective layer depth caused by the inclusion of icebergs in a model. Extracted from Jongma 
et al. (2009). 

Because iceberg melting reduces the temperature and salinity of the surface water, it also facil-

itates sea ice formation (Jongma et al., 2009; Marsh et al., 2015). Jongma et al. (2009) found 

that sea ice extent grows by 12 %  due to the freshening effect and by 6 % due to the cooling 

effect when icebergs were included in a model (Figure 1.3). Merino et al. (2016) found an in-

crease in both sea ice concentration and sea ice thickness across the Southern Ocean except in 

the Bellingshausen Sea.  Overall, annual mean sea ice volume is around 10 % higher and the 

amplitude of the seasonal cycle rises (Merino et al., 2016). On local scales, icebergs provoke sea 

ice ridging upstream of their drift trajectory (Hunke and Comeau, 2011; Morison and Goldberg, 

2012). Downstream they leave a wake of open water behind, where new ice can form (Hunke 

and Comeau, 2011; Morison and Goldberg, 2012; Bigg, 2015).  

1.2.3. Impact on local biology 

Apart from delivering cold freshwater during the melt process, icebergs also contain terrigenous 

nutrients, which are released as they melt, and act as a fertilizer to the surrounding ocean (Smith 

et al., 2013 and Figure 1.4). In large parts of the Southern Ocean productivity is iron-limited 

(Raiswell et al., 2008). Icebergs were found to deliver a manifold of bio-available iron to the 

Southern Ocean compared to atmospheric dust (Raiswell et al., 2016). However, it is not yet well 

understood, how the iron is distributed within icebergs, i.e. different icebergs – even from the 

same glacier – exhibit varying concentrations and it is unclear whether e.g. the bottom contains 

more iron then upper layers (Hopwood et al., 2019). Other research suggests that bergs from 
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the sectors A and D contain more nutrients due to the geology of this area (Duprat, Bigg and 

Wilton, 2016). 

In addition to the release of micro-nutrients, upwelling further increases the availability of 

macro-nutrients and both foster biological production (Schwarz and Schodlok, 2009 and Figure 

1.4). This mainly holds true for free-drifting icebergs in open water (Smith et al., 2013), as a 

surrounding sea ice cover would hinder phytoplankton growth. However, even for icebergs sur-

rounded by sea ice, primary production can occur in the wake of icebergs (Jacobs, Gordon and 

Amos, 1979). The higher availability of nutrients leads to diatom species growth, higher phyto-

plankton and microbial abundance (Smith et al., 2007; Vernet et al., 2011). In situ measurements 

underneath and near the C18A iceberg also indicate that the biomass and organic carbon fluxes 

were twice as high as at the control site (Smith et al., 2011). The authors therefore estimate an 

overall mass flux of 350 tons per day and an organic carbon flux of 15.8 tons per day caused by 

the C18A iceberg (Smith et al., 2011). Overall, 10-20% of the Southern Ocean downward carbon 

flux is due to iceberg fertilisation (Duprat, Bigg and Wilton, 2016), acting as a negative climate 

feedback (Wu and Hou, 2017). As a consequence of the increased food availability, higher krill 

concentration and more seals and whales have been observed near icebergs (Vernet et al., 

2012). Several studies also document 2-6 times higher abundance of sea birds around icebergs 

(Smith et al., 2007; Ruhl et al., 2011; Joiris, 2018). 

 

Figure 1.4: Physical, chemical and biological processes induced by icebergs. Extracted from Smith 
et al. (2013). 
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The area of impact is around 4-10 times the iceberg’s length and is observed both upstream and 

downstream along the drift trajectory. The upstream effect is due to the buoyancy of the melt-

water plume, which gets transported there by the ocean currents (Duprat, Bigg and Wilton, 

2016). Time-wise, enhanced chlorophyll levels can be observed for more than a month after 

iceberg passage (Duprat, Bigg and Wilton, 2016). 

1.2.4. Importance for glaciology  

Iceberg calving can have an effect on the stability of the remaining mother ice shelf (Jansen et 

al., 2015; Borstad, McGrath and Pope, 2017; Hogg and Gudmundsson, 2017) and flow speed of 

upstream glaciers (De Angelis and Skvarca, 2003; Rignot et al., 2004; De Rydt et al., 2021). But-

tressing refers to the stabilizing effect that ice shelves have on the inland ice sheet (Shepherd, 

Fricker and Farrell, 2018). How much impact a calving event has, depends on how much the lost 

part contributed to the buttressing effect and the new ice front geometry (Jansen et al., 2015; 

Fürst et al., 2016). Ice shelf areas that contribute little to the stability of the ice shelf and do not 

cause a speed-up, if they are removed, are called passive shelf areas. These were mapped and 

quantified by Fürst et al. (2016) and are shown in Figure 1.5. 

As giant icebergs calve from the Antarctic ice shelves, they inherent many of their physical char-

acteristics and experience similar stress environments (Gade, 1979; Scambos et al., 2005; 

Engelhardt and Engelhardt, 2017). A huge difference, however, is that icebergs drift and often 

turn North at some point (Gladstone, Bigg and Nicholls, 2001; Orheim et al., 2022), which ex-

poses them to warmer water, waves and warmer air temperatures that drive their decay 

(Scambos et al., 2008; Bigg, 2015). As these conditions might also occur at ice shelf fronts in the 

future, with air and ocean temperatures increasing and sea ice cover reducing, studying iceberg 

decay can act as a proxy to predict the response of the Antarctic ice shelves to such conditions 

(Scambos et al., 2005). Dryak and Enderlin (2020) find high correlation between melt rates of 

icebergs around the Antarctic Peninsula and ablation rates of nearby glaciers, following that 

submarine melting is the dominating driver for both. Another already documented similarity is 

hydro-fracturing: When air temperatures are warm enough to saturate surface melting on an 

iceberg, this can lead to a rapid disintegration within a short time period (Scambos et al., 2008). 

The same mechanism caused the collapse of the Wilkins, George VI and Larsen-A and -B ice 

shelves (Rott, Skvarca and Nagler, 1996; Scambos, Hulbe and Fahnestock, 2003; Rack and Rott, 

2004; Scambos et al., 2009) and has been observed on other ice shelves prior to a series of 

calving events (Liu et al., 2015). Furthermore, the same models are used for basal melting of ice-

shelves and icebergs (Hellmer and Olbers, 1989; Holland and Jenkins, 1999; Jansen, Schodlok 
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and Rack, 2007; Bouhier et al., 2018). Fragmentation processes are still not fully understood and 

remain hard to model for both ice-shelves and icebergs (Savage, 2007; Bassis, 2011; Bigg, 2015; 

Huth et al., 2022). Therefore, understanding these processes better would be of mutual interest. 

 

Figure 1.5: Contribution of ice shelf areas to the buttressing of upstream glaciers. Passive shelf 
areas, which do not lead to a significant speed-up when they are removed, are delineated in red 
and their percentage is given for each ice shelf. Extracted from Fürst et al. (2016) 

Another overlap, which has not yet received much attention, is to study the characteristics of 

snow on icebergs and radar penetration through this snow pack (Scambos et al., 2008; Han et 

al., 2019). Determining snow depth and the scattering horizon from CryoSat-2 over Antarctic sea 

ice are subject to ongoing research and currently hinder reliable sea ice thickness products for 

Antarctica (Giles, Laxon and Worby, 2008; Willatt et al., 2010; Kern and Ozsoy, 2019; Kacimi and 

Kwok, 2020). Therefore, studying snow on icebergs in more detail and assessing the differences 

or similarities of snow and scattering horizons on icebergs, (warming) ice sheets and sea ice is 

also of common interest across the community. 
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1.3. Iceberg observations 

In this section, I review previous studies on how icebergs can be observed and what we have 

already learnt from these observations. I begin with methods to automatically detect icebergs 

in satellite data, move on to observations of iceberg abundance and distribution, and then sum-

marise drivers and observations of iceberg drift and iceberg decay. The focus lies on satellite 

remote sensing observations, but I also include some studies using in situ data or modelling. 

1.3.1. Detection of icebergs 

NIC detects the largest icebergs by manual inspection of optical and SAR imagery every week 

and provides the central position and semi axes lengths operationally. This database is comple-

mented by manual analysis of lower resolution scatterometry data by the Brigham Young Uni-

versity, who publish daily central positions every few years (Stuart and Long, 2008, 2011; Budge 

and Long, 2018). While these databases supply operational estimates of the largest icebergs’ 

position from manual analysis, many other studies have proposed automated detection tech-

niques, but are not applied operationally. 

Most studies suggest to detect icebergs in synthetic aperture radar (SAR) imagery (Willis et al., 

1996; Gill, 2001; Silva and Bigg, 2005; Wesche and Dierking, 2012; Frost, Ressel and Lehner, 

2016; Mazur, Wåhlin and Krężel, 2017; Collares et al., 2018; Barbat, Wesche, et al., 2019; Koo et 

al., 2021 and Figure 1.6). SAR imagery is independent of daylight and clouds (Collares et al., 

2018) and offers high spatial resolution. Optical imagery, in contrast, is limited to daylight and 

cloud free conditions (Sandven, Babiker and Kloster, 2007). Furthermore, icebergs, sea ice, ad-

jacent ice shelves and glaciers as well as clouds all appear white in these images, complicating 

iceberg detection (Mazur, Wåhlin and Krężel, 2017). Apart from some early work, exploiting the 

iceberg shadows in Landsat images (Williams and Macdonald, 1995; Sandven, Babiker and 

Kloster, 2007), synthetic aperture radar (SAR) imagery has been used instead.  

In most SAR images, icebergs stand out as bright targets in front of a dark ocean or sea ice back-

ground (Young et al., 1998; Wesche and Dierking, 2012; Mazur, Wåhlin and Krężel, 2017). How-

ever, this is not always the case: Iceberg backscatter depends on the properties of the snow on 

top (Ulaby and Long., 2014). When the snow is dry, icebergs appear as bright targets, but when 

the surface is thawing, they appear as dark objects – revealing a similar backscatter to their 

background or even darker than that (Young et al., 1998; Wesche and Dierking, 2012). This poses 

a big challenge for an automated detection. Furthermore, the backscatter varies slightly with 

incidence angle (Wesche and Dierking, 2012; Mazur, Wåhlin and Krężel, 2017). Also the 
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backscatter of the background is variable: Ocean backscatter is determined by surface rough-

ness, i.e. wind speed, where rougher sea appears brighter (Drinkwater, 1998; Ulaby and Long., 

2014, Figure 1.7). The backscatter of sea ice is complex and depends on the age, roughness, 

liquid water and salt content of the ice and overlaying snow (Ulaby and Long., 2014). So, wind 

roughened sea and deformed sea-ice have higher backscatter (Drinkwater, 1998; Figure 1.7), 

decreasing the contrast to icebergs. 

 

Figure 1.6: Iceberg detection in a SAR image. Extracted from Silva and Bigg (2005) and re-col-
oured for better differentiation 

Most methods employ different forms of thresholding (Willis et al., 1996; Gill, 2001; Wesche 

and Dierking, 2012; Frost, Ressel and Lehner, 2016; Mazur, Wåhlin and Krężel, 2017). Alterna-

tively, two studies used the k-means (Macqueen, 1967) segmentation method (Collares et al., 

2018) and a variation of this (Koo et al., 2021). Others employ edge detection techniques fol-

lowed by pixel bonding (Williams, Rees and Young, 1999) or a watershed algorithm (Silva and 
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Bigg, 2005). The most elaborate approaches involves a graph-based segmentation and Ensemble 

Forest Committee classification algorithm (Barbat, Wesche, et al., 2019) and fuzzy contrast en-

hancement followed by a stochastic segmentation approach (Lopez-Lopez et al., 2021). While 

all of these, still utilize SAR images, Tournadre et al. (2008) demonstrated the possibility to de-

tect small icebergs floating in open ocean using satellite altimetry, as their presence alters the 

received waveforms. This method was later extended to several altimeters and applied over 

many years (Tournadre, Girard-Ardhuin and Legrésy, 2012; Tournadre et al., 2015, 2016). 

 

Figure 1.7: Backscatter coefficients (range, mean and standard deviation) of different surfaces 
(marginal ice zone (MIZ), rough first year sea ice (FYR), smooth first year sea ice (FYS), icebergs, 
multi-year sea ice (MY) and open water (OW) in different wind speeds) in the Weddell Sea. Ex-
tracted from Drinkwater (1998) 

The remaining challenges are manifold: Some of these techniques are limited to austral winter 

images (Young et al., 1998; Williams, Rees and Young, 1999; Silva and Bigg, 2005) or still require 

manual intervention (Young et al., 1998; Silva and Bigg, 2005; Lopez-Lopez et al., 2021). Dark 
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icebergs remain a problem for all existing methods using SAR images. Many studies also report 

degrading accuracies in high wind conditions (Willis et al., 1996; Frost, Ressel and Lehner, 2016; 

Mazur, Wåhlin and Krężel, 2017). Deformed sea ice or sea ice in general is also mentioned to 

lead to false detections (Willis et al., 1996; Silva and Bigg, 2005; Tournadre, Whitmer and Girard-

Ardhuin, 2008; Wesche and Dierking, 2012; Mazur, Wåhlin and Krężel, 2017; Koo et al., 2021). 

And finally, clusters of several bergs and berg fragments too close to each other have been found 

to pose a problem (Williams and Macdonald, 1995; Williams, Rees and Young, 1999; Frost, 

Ressel and Lehner, 2016; Barbat, Wesche, et al., 2019; Koo et al., 2021). So far, previous studies 

have also focused on smaller icebergs and perform worse for larger ones or are not even appli-

cable there (Willis et al., 1996; Tournadre, Whitmer and Girard-Ardhuin, 2008; Wesche and 

Dierking, 2012; Mazur, Wåhlin and Krężel, 2017). Where reported, the detection rates range 

from 60 % (Williams and Macdonald, 1995) to 93.6 % (Barbat, Wesche, et al., 2019). 

1.3.2. Iceberg abundance and distribution 

A few of the detection methods have been implemented on larger scales to derive overall ice-

berg volume and distributions. Wesche and Dierking (2015) applied their automated threshold-

based iceberg detection algorithm (Wesche and Dierking, 2012) and manual corrections to a 

Radarsat mosaic of Antarctica from austral spring 1997, extending around 200 km into the 

Southern Ocean. From this snapshot, they find almost 7000 icebergs (0.3 to 4747.7 km2 in area). 

They calculate that these icebergs contain 5200-7400 Gt of freshwater, which is a multitude of 

the annual calving flux, suggesting a life cycle of several years. Similarly, Barbat et al. (2019a) 

applied their detection algorithm (Barbat, Wesche, et al., 2019) to three Radarsat mosaics from 

1997, 2000 and 2008. They find total iceberg mass of around 4600, 6900 and 5300 Gt in the 

respective years and estimate an average residence time of 4-6 years in the coastal zones. Mazur 

et al. (2019) applied their detection algorithm (Mazur, Wåhlin and Krężel, 2017) to SAR images 

of the Amundsen Sea embayment over 6 years and manually tracked some of the detected ice-

bergs. They found a mean annual surface area of 1537.5 km2, which is 2.5 times the annual 

calving rate and derive a mean iceberg age of 2.5 years in this area. All three studies, however, 

only cover parts of the Southern Ocean, close to the coast. 

In contrast, the ALTIBERG database (Tournadre et al., 2015) allows for statistics on small icebergs 

(< 8 km2) in open ocean over 23 years. Tournadre et al. (2016) combined these with the data-

bases of large icebergs (>200 km2) by NIC and BYU (Stuart and Long, 2008). They found that the 

size distribution follows a -3/2 power law, with the smallest icebergs (< 1 km2) making up for 

77 % of all detections and the largest class of 1000-10,000 km2 accounting for only 0.4 % of the 
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total population. This is in good agreement with a study by Wesche and Dierking (2015). On the 

other hand, the largest icebergs contribute 67.1% of the total iceberg area (Tournadre et al., 

2016) and hence an even larger percentage of total iceberg volume - as larger bergs are also 

thicker (Bigg et al., 1997).  

Ship observations complement the satellite data to derive iceberg abundance and distribution 

over the whole Southern Ocean and several decades. Since 1947 iceberg sightings have been 

recorded on a number of ships travelling to Antarctica (Romanov, Romanova and Romanov, 

2017; Orheim et al., 2022). Romanov et al. (2017) evaluate 60,000 observations from these 

cruises between 1997 and 2014 to map the iceberg concentration and find that on average 

132,269 ± 7 % icebergs are present in the Southern Ocean at any time. They also estimate the 

instantaneous iceberg area and volume to be 55,805 km2 ± 32 % and 16,893 km3 ± 33% respec-

tively. Their area and volume estimates are based on average observed iceberg length and free-

board for different iceberg shapes (Romanov, Romanova and Romanov, 2012), focussing on 

small and medium-sized icebergs. Furthermore, they employ a constant freeboard to thickness 

and length to width ratio, which leads to the high uncertainties and will not represent giant 

icebergs accurately, but allows for an overall estimate of total iceberg volume. Likewise, Orheim 

et al. (2022) analyse ship observations between 1976 and 2009 and derive a similar concentra-

tion map as well as a very similar instantaneous number of icebergs of 130,000 icebergs. 

 

Figure 1.8: Mean monthly volume (km3 per 100x100 km2 grid cell) of (a) small icebergs in open 
ocean between 1992-2014 and (b) large icebergs between 2002-2012. The lines in (a) indicate 
the mean sea ice extent, which impacts where icebergs can be detected. Blue is the mean annual 
maximum extend, black the mean maximum extend in summer and red the minimum extend in 
summer. Extracted from Tournadre et al. (2016)  

Spatially, icebergs are most abundant close to the coast – near their calving position and follow-

ing the Antarctic coastal current – and along the ‘iceberg alley’, which follows a current along 
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the eastern side of the Antarctic Peninsula and then turning north east towards and beyond 

South Georgia (Tournadre et al., 2016, Figure 1.8). The spatial patterns of small and large bergs 

are similar, as most of the small icebergs calve from large icebergs, but the smaller ones take 

slightly different routes and spread the freshwater further (Tournadre et al., 2016). These maps 

are also in good agreement with the ones produced from ship-borne observations (Romanov, 

Romanova and Romanov, 2017; Orheim et al., 2022). 

On inter-annual timescales, it is apparent from several data sets that the calving, abundance and 

distribution of small to medium sized icebergs is relatively constant (Mazur, Wåhlin and Kalén, 

2019; Orheim et al., 2022). In contrast, giant iceberg calving is episodic (MacAyeal et al., 2008; 

Greene et al., 2022), leading to high inter-annual variability in the distribution of giant icebergs 

as well as total iceberg area and volume, where they contribute the most (Jacka and Giles, 2007; 

Tournadre et al., 2016; Mazur, Wåhlin and Kalén, 2019 and Figure 1.9). A seasonal analysis of 

ship observations is hampered by the fact that they mainly stem from austral summer months 

and the few winter observations sample other areas of lower sea ice concentration (Orheim et 

al., 2022). The altimetry data are affected in a similar way, as it has to date only been applicable 

in open ocean and therefore sea ice extent is negatively correlated with the amount of icebergs 

detected, meaning that no seasonal differences were derived from this dataset, either 

(Tournadre et al., 2016, Figure 1.9).  

 

Figure 1.9: Inter-annual variation of total iceberg volume in the open Southern Ocean (All, green) 
and different sectors (South Atlantic (SA) in black, South Indian (SI) in red and South Pacific (SP) 
in blue). The seasonal variation is because the detection method only works in open ocean and 
hence sea ice extent has a large influence on the number of detectable icebergs. It does not 
reflect actual seasonal changes. Therefore, the yearly maxima are the most representative. Ex-
tracted from Tournadre et al. (2016). 

1.3.3. Iceberg drift 

Iceberg distributions correlate with the calving rates of the adjacent ice shelves and glaciers only 

within a narrow band close to the coast (Romanov and Romanova, 2018). Unless they ground 

on shallower parts of the sea floor, where giant icebergs can even last for decades (Barbat et al., 
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2021), they drift and therefore get redistributed (Romanov and Romanova, 2018; Mazur, Wåhlin 

and Kalén, 2019).  

Iceberg drift is caused by a number of forces (Bigg et al., 1997 and Figure 1.10). For large icebergs 

ocean currents are the main driver of iceberg drift (Crepon, Houssais and Guily, 1988; Wagner, 

Dell and Eisenman, 2017; Romanov and Romanova, 2018). They can therefore also act as tracers 

of the ocean currents (Williams, Rees and Young, 1999). With a draft of several hundred meters, 

their net movement is generally slower and slightly diverted (Ekman spiral) compared to the 

surface current (Morgan and Budd, 1978). In areas of weaker or absent ocean currents, wind 

becomes the dominating factor (Romanov and Romanova, 2018). Smaller icebergs with less 

mass are less affected by ocean currents and three times more by wind (Crepon, Houssais and 

Guily, 1988; Rackow et al., 2017; Wagner, Dell and Eisenman, 2017). In contrast, the impact of 

wind decreases to less than 10 % for bergs longer than 12 km (Wagner, Dell and Eisenman, 

2017). The magnitude of Coriolis force depends on iceberg mass, and hence larger (heavier) ice-

bergs veer more to the left (Gladstone et al., 2001; Orheim et al., 2022). When icebergs are 

surrounded by sea ice, sea ice drag becomes a relevant a factor (Lichey and Hellmer H., 2001). 

In case of a nearly closed sea ice cover, icebergs and the surrounding sea ice can form a solid 

block with coherent drift and the sea ice drift, which is mainly forced by wind, steers the icebergs 

(Vinje, 1980; Schodlok et al., 2006). Depending on the thickness and age of the sea ice, sea ice 

concentrations of 86-93 % are needed for the sea ice to control iceberg drift (Lichey and Hellmer 

H., 2001; Schodlok et al., 2006).  

 

Figure 1.10: Main drivers of iceberg drift and resulting iceberg motion. W is wind-related forcing, 
C is the Coriolis force and O is ocean-current drag. Extracted from Gladstone, Bigg and Nicholls 
(2001) 
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Most icebergs initially follow the Antarctic Coastal Current (Orheim et al., 2022) driving them 

counter-clockwise along the coast (Tchernia and Jeannin, 1984). Four ‘exit routes’ have been 

identified, where some of these icebergs turn north (Figure 1.11) until they reach and follow the 

clock-wise Antarctic Circumpolar Current (Tchernia and Jeannin, 1984; Gladstone, Bigg and 

Nicholls, 2001; Orheim et al., 2022). The largest exit zone is the ‘iceberg alley’ (Stuart and Long, 

2011; zone 3 in Figure 1.11). While icebergs drifting just east of the Antarctic Peninsula tend to 

move uniformly northwards, icebergs following exit paths 4a and 4b (Figure 1.11) were found to 

take more meandering paths (Schodlok et al., 2006). Because wind and the Coriolis force act 

differently on different sized icebergs, bigger bergs tend to stay in the Antarctic Coastal Current 

longer and tend to take more northerly routes after exiting along the Antarctic Peninsula 

(Orheim et al., 2022). This also explains the iceberg concentration maps for small and large ice-

bergs (Figure 1.8, Tournadre et al., 2016) and the routes of the largest icebergs recorded by BYU 

(Figure 1.2, Budge and Long, 2018). It should, however, be noted that the recorded giant iceberg 

trajectories end when the icebergs fall below the aerial and length thresholds to be tracked, but 

will survive a bit longer (Rackow et al., 2017).  

Figure 1.11: Exit zones 1-4b, where icebergs leave the Antarctic Coastal Current and turn north-
wards. These zones are characterised by higher iceberg concentration (colour map). Extracted 
from Orheim et al. (2022) 
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Budge and Long (2018) calculated average drift speeds for the giant icebergs in their database 

(Figure 1.2) and found 1.45 km/day near land, 4.83 km/day in sea ice and 5.02 km/day in open 

ocean. Koo et al. (2021) tracked the giant B43 iceberg and found a maximum drift speed of 

20 km/day. Other studies include smaller icebergs, but are limited to specific regions: Mazur et 

al. (2019) find average drift speeds of 4.32 km/day in the Amundsen Sea. In the Weddell Sea 

similar drift speeds between 3.2 km/day and 7.5 km/day have been reported using satellite ob-

servations (Gladstone and Bigg, 2002; Collares et al., 2018; Barbat et al., 2021). However, a mean 

speed of 13.7 km/day in the coastal current of the Weddell Sea was measured by buoys sending 

daily GPS positions (Schodlok et al., 2006). Generally, larger icebergs have been found to move 

more slowly than smaller ones (Rackow et al., 2017). All of these studies find great variation in 

daily drift speed with minima around zero and maxima around 50 km/day (Tchernia and Jeannin, 

1984; Aoki, 2003; Schodlok et al., 2006). Seasonal variations in drift speed are related to varia-

tions in ocean current speed (Aoki, 2003) and sea ice cover (Lichey and Hellmer H., 2001). 

1.3.4. Iceberg melting 

Iceberg drift and decay influence each other, since drift depends on the (remaining) iceberg 

mass and iceberg decay depends on the surrounding environmental conditions, which evolve 

with the drift. Hence, iceberg models often combine drift and decay (Bigg et al., 1997; Wagner, 

Dell and Eisenman, 2017). In the following, I will first outline the drivers of iceberg melting and 

how these are represented in iceberg models. Then I will describe how iceberg melting can be 

observed using satellite remote sensing techniques and summarise previously observed melt 

rates. 

Initially, iceberg melting was modelled to investigate whether towing icebergs as freshwater 

supply from polar regions to arid regions like Australia would be possible and profitable (Weeks 

and Campbell, 1973; Morgan and Budd, 1978; Schwerdtfeger, 1979; Lawson and Russell-Head, 

1982). These studies found that melt rates increase from a few meters per year in cold near-

coastal waters to about 100 m/year near the convergence using heat transfer theory (Morgan 

and Budd, 1978 and Figure 1.12). Neshyba and Josberger (1980) summarised the findings from 

several laboratory, theoretical and in situ studies and conclude that melting is proportional to 

the temperature above freezing 𝑇𝑑
1.6. Likewise, Russell-Head (1980) derived a simple relation-

ship where the daily melt rate R [m] is modelled as a function of ocean temperature [°C] and 

1.8°C are added to yield temperature above freezing: 𝑅 = 0.018 (𝑇 + 1.8)1.5. Their and Morgan 

and Budd (1978)’s graph are shown in Figure 1.12. 
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Figure 1.12: Iceberg melt rate (m per day) as a function of ocean temperature above melting. 
Dots show average side melt rates and triangles represent melting at the base. The relationship 
derived by Morgan and Budd (1978) is included as a dotted line. Extracted from Russell-Head 
(1980) 

More recent models of iceberg melting consider more complex interaction with the environ-

ment based on three main processes: (i) wave erosion at the waterline (ii) sidewall melting 

through buoyant convection and (iii) melting at the iceberg’s base (Bigg et al., 1997; England et 

al., 2020; Wagner et al., 2017 and Figure 1.13). The first two terms act on the sides of the ice-

berg, reducing iceberg area. Here, waves are dominating over the melting term (Silva, Bigg and 

Nicholls, 2006; Kubat et al., 2007). Wave erosion depends on sea state (Bigg et al., 1997), ocean 

temperature (Rackow et al., 2017) and sea ice concentration, which dampens the waves 

(Gladstone, Bigg and Nicholls, 2001; England, Wagner and Eisenman, 2020). Sidewall melting 

through buoyant convection is a function of ocean temperature (England, Wagner and 
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Eisenman, 2020). The last term refers to melting at the iceberg’s base, reducing iceberg thick-

ness. The most common representation is based on forced convection and depends on the tem-

perature difference between the iceberg and the surrounding ocean, their relative velocity and 

iceberg length (Weeks and Campbell, 1973; Bigg et al., 1997; England, Wagner and Eisenman, 

2020). Alternatively, a thermal turbulent exchange model, which was developed for ice shelves 

(Hellmer and Olbers, 1989; Holland and Jenkins, 1999), is used (Silva, Bigg and Nicholls, 2006; 

Jansen, Schodlok and Rack, 2007). Bouhier et al. (2018) compared both representations to ob-

servations of two giant icebergs (B17A and C19A) and found better agreement with the latter 

model. While wave erosion is the dominating factor in the beginning, (basal) melting becomes 

the main driver after a few years (Rackow et al., 2017). Finally, surface melt and air forced con-

vection should be mentioned as additional drivers of iceberg decay (Bigg et al., 1997; Savage, 

2007). Compared to basal melt, side melt and wave action, they contribute very little to iceberg 

decay, though (Schwerdtfeger, 1979; Kubat et al., 2007; Savage, 2007). Only towards the end of 

an iceberg’s life cycle, extensive surface melting can cause hydrofracturing and a rapid disinte-

gration of large icebergs (Scambos et al., 2008).  

 

Figure 1.13: Schematic of processes causing iceberg melting. Extracted from Bigg (2015) and 
slightly modified 

Lab experiments have shown that only in a quiescent state icebergs melt equally from all sides. 

In strong relative current speeds, sidewall melting is more pronounced than basal melting and 

fastest at the side facing the current (Hester et al., 2021 and Figure 1.14). At the base of the 

iceberg, a 50% increase in melt rate has been observed at about 2.5 times the iceberg draft away 

from the front  (Hester et al., 2021). For a 400 m draft, this would mean that melting is strongest 

1 km away from the side facing the current. These experiments have also shown that the aspect 
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ratio (length/draft) has a large impact on the overall melt rate. As sidewall melting is quicker 

than basal melting and smaller icebergs have a lower aspect ratio, their overall melting is an 

average of side and basal melting. For giant icebergs, in contrast, the surface at the base is sig-

nificantly larger than the side walls and hence the overall melt rate is approximately equal to 

the basal melt rate (Hester et al., 2021) and lower than for small bergs (Kubat et al., 2007; Hester 

et al., 2021). The spreading of the meltwater is determined by the relative velocity between the 

ocean current and the meltwater plume. Laboratory experiments have shown that in low rela-

tive velocities the meltwater spreads at the surface. In contrast, in high relative velocities the 

plume distributes over the depth of the iceberg draft and is transported away from the iceberg, 

enhancing further melting (FitzMaurice, Cenedese and Straneo, 2017; Hester et al., 2021). 

 

Figure 1.14: Lab experiment of iceberg melting without (left) and with (right) a background cur-
rent. From top to bottom, each image is taken 2 minutes apart. The ice block is dyed blue to 
visualise melting and meltwater distribution. Extracted from Hester et al. (2021) 

Increased and improved satellite remote sensing techniques offer the possibility to observe the 

decay of giant icebergs from space. Repeat satellite altimetry measurements of iceberg free-

board allow to quantify the thickness change, and hence basal melting of selected tabular ice-

bergs (Scambos et al., 2005, 2008; Jansen, Schodlok and Rack, 2007; Tournadre et al., 2015; 

Bouhier et al., 2018; Li et al., 2018; Han et al., 2019). Different strategies have been used to 

compare subsequent altimetry tracks over drifting and rotating icebergs: The easiest approach 

is to assume even iceberg thickness and to compare different freeboard observations regardless 

of where they sample the iceberg (Scambos et al., 2008; Bouhier et al., 2018). Others only cal-

culate freeboard change where the satellite tracks intersect, significantly reducing the number 

of observations (Li et al., 2018; Han et al., 2019). The most elaborate approach is to build a map 

of initial freeboard pre-calving from several tracks, while the iceberg only moves with the ice 

shelf and to then colocate subsequent tracks over the floating iceberg with the initial thickness 
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map (Jansen, Schodlok and Rack, 2007 and Figure 1.15). The latter two methods are more accu-

rate, but require near coincident satellite imagery to know where each track samples the ice-

berg.  

 

Figure 1.15: Maps of iceberg freeboard over time together with the location of individual altim-
etry tracks. Extracted from Jansen, Schodlok and Rack (2007) 

Another challenge is that estimates of iceberg density, snow depth and snow density are re-

quired to convert iceberg freeboard observations to thickness estimates and that they evolve 

over several years of iceberg drift. Therefore, some studies stick with observations of freeboard 

change rather than calculating actual thickness change and freshwater inputs (Scambos et al., 



1. Introduction to Antarctic tabular icebergs 

 

23 

 

2008; Li et al., 2018). Other studies simply use a fixed freeboard to thickness ratio of 1:8 

(Tournadre et al., 2015; Bouhier et al., 2018). Jansen, Schodlok and Rack (2007) also employ an 

empirical relationship of freeboard to thickness, ignoring additional snowfall during the drift, 

but model the initial iceberg density as an exponential decrease from ice density to snow 

density. Han et al. (2019) account for snowfall during the iceberg drift, but assume bulk densities 

of 300 and 917 kg/m3 for snow and iceberg respectively. 

The observed rates of freeboard and thickness change are highly dependent on the location of 

the chosen iceberg, i.e. whether it is surrounded by sea ice, grounded or drifting in open ocean 

and on the surrounding ocean temperature and currents. Li et al. (2018) for example found a 

freeboard reduction of 0.02 m/month during a 22-month grounding period and 0.76 m/month 

for the same iceberg (C28B) when it was drifting in open ocean. Scambos et al. (2008) observe 

essentially no freeboard change for the A22A iceberg while it is drifting in the Weddell Sea sur-

rounded by sea ice, but about 1 m/month of freeboard loss in the Scotia Sea. Similarly, Jansen 

et al. (2007) observe an increase in basal melting (thickness change) of 0.2 m/month close to 

the Ronne Ice Shelf to 13.5 m/month in the Scotia Sea, which they relate to changes in ocean 

temperature and current speed. Dryak and Enderlin (2020) find melt rates between 0.15 – 

3 m/month around the Antarctic Peninsula and a high correlation with ablation rates of nearby 

glaciers, following that submarine melting is the dominating driver for both. The observation 

time also affects the results, because icebergs drift through these different environments and 

tend to decay more slowly in the beginning, i.e. close to their origin. Han et al., (2019) studied 

the A68A iceberg in the beginning of its life cycle and found a small basal melt rate of 1.07 

m/month. In contrast, Tournadre et al. (2015) and Bouhier et al. (2018) only start their analysis 

once icebergs reach open ocean and find much higher melt rates of around 3 m/month and 1-

20 m/month respectively. Shipborne observations have found dissolution rates of 0.9-

1.5 m/month (Jacka and Giles, 2007) to 3.6 m/month (Hamley and Budd, 1986) in water tem-

peratures of 1°C, which is within the satellite derived estimates. 

1.3.5. Iceberg fragmentation 

Apart from melting, iceberg fragmentation contributes to the decay process and breakage is 

even the dominant mechanism for larger icebergs (Hamley and Budd, 1986; Tournadre et al., 

2015; England, Wagner and Eisenman, 2020). However, fracturing is not very well understood 

and stochastic in nature (Savage, 2007; Bassis, 2011). This makes it hard to predict iceberg frag-

mentation and such processes are often missing in iceberg models (Bouhier et al., 2018; England, 
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Wagner and Eisenman, 2020). The importance of including fragmentation processes to yield re-

alistic iceberg life times and trajectories, which agree with observations, has been demonstrated 

by England et al. (2020) and is visualised in Figure 1.16. The only mechanism included in some 

models is the ‘footloose mechanism’, which has been described by Wagner et al. (2014): Erosion 

at the waterline forms a subsurface ‘foot’, which induces an upwards buoyancy stress and 

causes calving once the ‘foot’ has grown to a certain length. For a 300 m thick iceberg, a 72 m 

foot will lead to a calving event of 780 m length. In situ observations of giant icebergs in the Ross 

Sea show that also collisions with other giant bergs or nearby ice shelves can trigger break-ups 

(MacAyeal et al., 2008). Scambos et al. (2008) combine in situ observations with satellite meas-

urements and describe three kinds of fragmentation processes for giant icebergs: rift calvings, 

edge wastings and rapid disintegration. Rift calvings can occur at any time during the iceberg life 

cycle along pre-existing fractures. Edge wastings occur regularly outside the sea ice edge and 

rapid disintegration involves a series of calving events at the end of an iceberg’s life (Scambos 

et al., 2008). Rift calving has also been observed by Goodman et al. (1980), who found that small 

initial cracks propagate in each oscillation of ocean swell until the iceberg fractures. Most re-

cently, another break up mechanism has been observed and modelled for the A68 iceberg: In 

this case ocean current shear was found to have triggered break up (Huth et al., 2022).  

Figure 1.16: Impact of including iceberg fragmentation in a model. The inclusion of a break-up 
process matches iceberg area observations for the B17a iceberg much better. Extracted from 
England et al. (2020) 
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Iceberg fragmentation and sidewall melting can be observed in satellite imagery and calculated 

from a time series of iceberg outlines (Scambos et al., 2008; Bouhier et al., 2018; Li et al., 2018; 

Han et al., 2019; Lopez-Lopez et al., 2021). Just like the observations of thickness change, also 

rates of area change are often related to the surrounding conditions. Scambos et al. (2008) find 

that fragmentation accelerates once the iceberg is no longer sheltered by sea ice. Rapid frag-

mentation is observed when the firn is saturated with surface melt water (Figure 1.17). Han et 

al. (2019) and Lopez-Lopez et al. (2021) studied the A68A iceberg during the first 1.5 years after 

calving, when it was still surrounded by sea ice. They both find a minor decrease in iceberg area 

of 2 % (Han et al., 2019) and 3.7 % after a further two months (Lopez-Lopez et al., 2021). In 

contrast, Bouhier et al. (2018) only start their study once icebergs have reached open water. For 

C19A they find that area loss increased from 2.6 km2/day in colder waters to 9.5 km2/day when 

ocean temperature was above zero. In the last 10 days, the iceberg then lost two major pieces 

of 340 and 370 km2. Li et al. (2018) report that for their two icebergs (C28A and C28B) area 

decreased steadily throughout austral summer at a rate of 8.1-16.5 km2/month. They attribute 

these changes to edge wastings, sidewall melting and wave erosion. During austral winter they 

observe a few sudden fragmentation events – interpreted as rift calvings triggered by ocean 

swell and basal melting, but otherwise iceberg area remains constant. 

 

Figure 1.17: Area change of two giant tabular icebergs. Extracted from Scambos et al. (2008) 

1.3.6. Iceberg volume loss and freshwater input 

When estimates of iceberg area and iceberg thickness change are combined (Bouhier et al., 

2018) or when assumptions are made for iceberg thickness (Silva, Bigg and Nicholls, 2006; Barbat 

et al., 2021),  it is also possible to estimate iceberg volume loss and freshwater inputs. Alterna-

tively, iceberg volume and volume change – especially of smaller icebergs – can be calculated 

from digital elevation models. The digital elevation models can either be derived from TANDEM-

X SAR interferometry (Dammann et al., 2019), WorldView stereo-satellite images (Enderlin and 
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Hamilton, 2014; Enderlin et al., 2016, 2018; Dryak and Enderlin, 2020) or in some parts of the 

Arctic by using the ArcticDEM (Shiggins, Lea and Brough, 2022).  

Bouhier et al. (2018) estimated the volume loss of two giant icebergs in the Southern Ocean and 

found that melting was the dominant factor for the B17A iceberg, contributing more than 60 % 

to the total volume loss. However, for the C19A iceberg, fragmentation was the dominant com-

ponent, contributing 75 % to the overall volume loss (Bouhier et al., 2018 and Figure 1.18). In 

both cases, fragmentation accelerates towards the end. Barbat et al. (2021) estimate the total 

mass loss of icebergs in the Weddell Sea over 10 years by tracking 414 icebergs with surface 

areas between 3.4 km2 and 3612 km2. They derive a total volume loss of 683 Gt/year and an 

average disintegration rate of 37 %/year in this area. The loss rate is generally higher for small 

icebergs, though (Kubat et al., 2007), meaning that large bergs can survive for many years or 

even decades (Budge and Long, 2018). Barbat et al. (2021) also estimate the decrease in iceberg 

mass per size class. While icebergs of 1–10 km2 only contribute 0.2 Gt/year, the largest icebergs 

> 1000 km2 contribute 498 Gt/year, which is the majority of the observed overall mass loss.  

 

Figure 1.18: Volume loss of two giant tabular icebergs B17A and C19A. Extracted from Bouhier 
et al. (2018) 

This makes iceberg melting a significant contribution to the overall freshwater budget of the 

Southern Ocean. Compared to the excess of precipitation over evaporation (P-E), iceberg melt-

ing contributes 5-20 % across the Southern Ocean (Marsh et al., 2015; Rackow et al., 2017). 

South of 63°S, total iceberg melting even reaches 66 % of P-E (Silva, Bigg and Nicholls, 2006). 

And in some areas including coastal areas, the Scotia Sea, the western Weddell Sea and Pridz 

Bay iceberg melting exceeds P-E (Gladstone, Bigg and Nicholls, 2001; Silva, Bigg and Nicholls, 
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2006; Marsh et al., 2015; Rackow et al., 2017 and Figure 1.19). Compared to the freshwater 

input from melting sea ice, iceberg meltwater contributes more than 20 % along the sea ice edge 

(Rackow et al., 2017), but is an order of magnitude smaller across the whole Southern Ocean 

(Marsh et al., 2015). Outside the sea ice edge, iceberg melting is the sole freshwater contribution 

from frozen ice (Rackow et al., 2017 and Figure 1.19). Compared to coastal sea ice production 

rates (opposite sign), iceberg meltwater flux is also 5-20 % according to Rackow et al. (2017) and 

more than 100 % according to Marsh et al. (2015) in some places around the coast. 

 

Figure 1.19: Meltwater input from precipitation-evaporation (first panel), icebergs (second 
panel) and sea ice (third panel) and relative contribution of icebergs compared to precipitation-
evaporation and sea ice (lower panels respectively). Extracted from Rackow et al. (2017) 

1.4. Main remaining challenges  

After an introduction to the importance of icebergs and a summary of what previous studies 

have already found out, I now point out some of the remaining challenges.  

Many studies stress the need for an improved representation of icebergs as a freshwater source 

around Antarctica (Merino et al., 2016; Stern, Adcroft and Sergienko, 2016; Schloesser et al., 

2019). To date, most global climate models are lacking realistic freshwater fluxes from icebergs 

(Jongma et al., 2009) and giant icebergs are not included in any of them (Schloesser et al., 2019; 

Huth et al., 2022).  



1. Introduction to Antarctic tabular icebergs 

 

28 

 

Iceberg models are usually based on work by Bigg et al. (1997), which was developed for icebergs 

in the Arctic and they all make a number of simplifications: Some models neglect sea ice 

(Wagner, Dell and Eisenman, 2017), which can have significant impact on the steering and shel-

tering of icebergs (Schodlok et al., 2006). Also iceberg grounding is sometimes not resolved 

(Wagner, Dell and Eisenman, 2017), but can significantly increase the iceberg life cycle (Barbat, 

Rackow, et al., 2019). Furthermore, models treat icebergs as non-interacting passive particles 

(Rackow et al., 2017; Wagner, Dell and Eisenman, 2017), although melting icebergs have been 

shown to influence ocean properties (Jenkins, 1999; Helly et al., 2011; Merino et al., 2016). It is 

also challenging to account for the rotation of icebergs, so most models assume a fixed orienta-

tion relative to the currents (Bigg et al., 1997), choose random orientations (Wagner, Dell and 

Eisenman, 2017) or treat them as points (Rackow et al., 2017). The main problem, however, is 

that iceberg fragmentation processes are hard to predict or their cause is not understood well 

enough yet (Rackow et al., 2017; Wagner, Dell and Eisenman, 2017; Huth et al., 2022) and there-

fore missing in models (Rackow et al., 2017). This is also stressed by the fact that a new break-

up mechanism has been found and described only very recently (Huth et al., 2022). A missing 

representation of fragmentation mechanisms has large implications for iceberg drift, decay and 

life time (Wagner, Dell and Eisenman, 2017). Observations could help to understand some of 

these processes better. 

Another major problem is that most models only include smaller icebergs (Gladstone, Bigg and 

Nicholls, 2001; Merino et al., 2016; Schloesser et al., 2019; Huth et al., 2022). This leads to a 

misrepresentation in several ways:  It introduces  geographic biases, as small icebergs melt fur-

ther south than larger ones (Silva, Bigg and Nicholls, 2006; Stern, Adcroft and Sergienko, 2016; 

Rackow et al., 2017; England, Wagner and Eisenman, 2020; Huth et al., 2022). Moreover, it leads 

to an artificial seasonality, which is no longer the case when giant icebergs are added (Rackow 

et al., 2017). In terms of iceberg decay, it biases the decay rates, as small icebergs melt quicker 

(Kubat et al., 2007; Hester et al., 2021). These shortcomings have implications for the circulation 

and stratification of the Southern Ocean (England, Wagner and Eisenman, 2020), sea ice for-

mation (Stern, Adcroft and Sergienko, 2016), biochemistry (Rackow et al., 2017) and the South-

ern Ocean’s carbon cycle (Smith et al., 2011). Therefore, “the impact of icebergs on climate can-

not be assessed without an accurate representation of their drift trajectories, breakup, and 

meltwater distribution.” (Huth et al., 2022) 

Especially for giant icebergs, satellite measurements are a very powerful tool to study icebergs 

and to quantify their freshwater flux. Here, methods have been developed to study selected 

icebergs (Jansen, Schodlok and Rack, 2007; Scambos et al., 2008; Bouhier et al., 2018; Li et al., 
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2018; Han et al., 2019). To date, these methods are quite tedious, though, and cannot be auto-

mated. Extending them to all giant icebergs for an operational scenario requires automation of 

several steps, but the most laborious task is to derive iceberg outlines. Automated detection 

techniques have so far focussed on detecting smaller icebergs (Willis et al., 1996; Tournadre, 

Whitmer and Girard-Ardhuin, 2008; Wesche and Dierking, 2012; Mazur, Wåhlin and Krężel, 

2017). Applications are limited to a selected region (Mazur, Wåhlin and Kalén, 2019), near-

coastal waters (Wesche and Dierking, 2015; Barbat, Rackow, et al., 2019) or open ocean 

(Tournadre, Whitmer and Girard-Ardhuin, 2008; Tournadre et al., 2015). They also struggle with 

the varying appearance of icebergs, sea ice, and ocean in SAR imagery in certain conditions (see 

Section 1.3.1). For operational observations of iceberg thickness, a harmonisation and synthesis 

of existing methods would be desirable. So far, they take different approaches to handle altim-

etry tracks over a floating iceberg and to convert freeboard to thickness. A better representation 

of the snow layer on top of icebergs and the evolution of snow and ice density over several 

years, when the iceberg is experiencing a variety of environmental conditions, would improve 

the accuracy of thickness estimates and hence melt rates. Similarly, an investigating of the scat-

tering horizon of altimeters in such a thick and old snowpack is yet missing. 

1.5. Thesis aim 

The aim of this thesis is to develop novel methodology and datasets from satellite remote sens-

ing observations to quantify the freshwater flux from giant Antarctic icebergs as accurately and 

efficiently as possible.  

1.6. Thesis objectives 

To address the thesis aim, the following research objectives have been defined: 

1. Develop methodology to derive estimates of iceberg thickness change with improved ac-

curacy. This will be achieved through (i) the use of consistently processed elevation data, 

(ii) an automatic colocation of altimetry tracks over the floating iceberg with heights pre-

calving and (iii) considering the evolution of snow and ice density during a multi-annual 

drift 

2. Create new datasets of changes in area, freeboard, thickness, volume and mass of two 

giant icebergs along their trajectories. This will be achieved by applying the improved 

methodology to the B30 and A68A icebergs 
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3. Develop a novel algorithm for automatic iceberg segmentation in SAR imagery to improve 

efficiency. This will be achieved by training a deep neural network  

4. Evaluate the accuracy of different methods to automatically derive iceberg area. This will 

be achieved by first comparing estimates from (i) orthogonal axes lengths and (ii) arc-

lengths of altimetry overpasses to manually derived outlines and later by applying (iii) a k-

means segmentation approach, (iv) an Otsu thresholding technique and (v) my neural net-

work approach to SAR imagery and again assessing them compared to manually derived 

outlines 

1.7. Thesis structure 

In Chapter 2, I investigate area, thickness and volume changes of the B30 iceberg from a synergy 

of satellite imagery and altimetry observations. Here, I investigate the methodology in detail, 

quantify the impact of certain processing steps and develop most of the methodological ad-

vances. I also compare manual delineations of iceberg area to two simple approximations of 

iceberg area in this chapter. Chapter 3 builds on Chapter 2 and applies a similar method to the 

famous A68A iceberg. Here, I extend the use of satellite altimetry to include measurements from 

ICESat-2 and improve the method by automating the collocation step for altimetry observations. 

In both chapters, mass loss and freshwater flux of these icebergs are derived along their trajec-

tory and in Chapter 3 the impact on the local ecosystem is discussed. Chapter 4 then addresses 

the remaining bottleneck that iceberg outlines require manual delineation. In this chapter, I sug-

gest a neural network approach to automatically segment giant icebergs in SAR imagery and 

compare the results to two standard-segmentation methods. Chapter 5 finally sums up the main 

findings, provides a synthesis of the three results chapters and proposes directions of future 

research. Chapters 2, 3 and 4 have been written as independent journal articles to convey the 

results to the research community. Author contribution statements are provided at the begin-

ning of this thesis and each chapter. The work from Chapter 2 has been published in The Cry-

osphere and the work from Chapter 3 has been published in Remote Sensing of Environment. 

The work from Chapter 4 is currently under review in The Cryosphere. Small additions have been 

made to the chapters after the viva. The published/submitted papers are appended (Appendices 

A, B and C). 
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Abstract 

Icebergs account for half of all ice loss from Antarctica and, once released, present a hazard to 

maritime operations. Their melting leads to a redistribution of cold fresh water around the 

Southern Ocean which, in turn, influences water circulation, promotes sea ice formation, and 

fosters primary production. In this study, we combine CryoSat-2 satellite altimetry with MODIS 

and Sentinel-1 satellite imagery and meteorological data to track changes in the area, freeboard, 

thickness, and volume of the B30 tabular iceberg between 2012 and 2018. We track the iceberg 

elevation when it was attached to Thwaites Glacier and on a further 106 occasions after it calved 

using Level 1b CryoSat data, which ensures that measurements recorded in different acquisition 

modes and within different geographical zones are consistently processed. From these data, we 

map the iceberg’s freeboard and estimate its thickness taking snowfall and changes in snow and 

ice density into account. We compute changes in freeboard and thickness relative to the initial 

average for each overpass and compare these to estimates from precisely located tracks using 

the satellite imagery. This comparison shows good agreement (correlation coefficient 0.87), and 

suggests that colocation reduces the freeboard uncertainty by 1.6 m. We also demonstrate that 

the snow layer has a significant impact on iceberg thickness change. Changes in the iceberg area 

are measured by tracing its perimeter and we show that alternative estimates based on arc 

lengths recorded in satellite altimetry profiles and on measurements of the semi-major and 

semi-minor axes also capture the trend, though with a 48 % overestimate and a 15 % underes-

timate, respectively. Since it calved, the area of B30 has decreased from 1500 ± 60 to 426 ± 

27 km2, its mean freeboard has fallen from 49.0 ± 4.6 to 38.8 ± 2.2 m, and its mean thickness 

has reduced from 315 ± 36 to 198 ± 14 m. The combined loss amounts to an 80 ± 16 % reduction 

in volume, two thirds (69 ± 14 %) of which is due to fragmentation and the remainder (31 ± 11 %) 

is due to basal melting. 

2.1. Introduction 

Iceberg calving accounts for roughly half of all ice loss from Antarctica (Depoorter et al., 2013; 

Rignot et al., 2013). At any time, about 50-90 large tabular icebergs are tracked in the Southern 

Ocean containing 7 000 to 17 000 km3 of ice in total (Tournadre et al., 2015). For maritime op-

erators it is essential to know the location of icebergs in order to reduce the risk of collision 

(Power et al., 2001; Eik and Gudmestad, 2010; Bigg et al., 2018). The thickness of an iceberg 
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determines if and where it will ground on the seabed, which has implications for maritime op-

erations as well as for marine geophysics. Iceberg thickness also influences a wide range of phys-

ical and biological interactions with the Antarctic environment. Grounded icebergs can, for ex-

ample, alter the local ocean circulation (Grosfeld et al., 2001; Robinson and Williams, 2012), 

influence melting of the adjacent ice shelves (Robinson and Williams, 2012), and prevent local 

sea ice from breaking up (Nøst and Østerhus, 1998; Remy et al., 2008). This, in turn, can impact 

the local primary production (Arrigo et al., 2002; Remy et al., 2008) and pose an obstacle to 

penguin colonies on their way to their feeding grounds (Kooyman et al., 2007). Temporarily 

grounded icebergs leave plough marks on the sea floor which can be an important geological 

record (Wise et al., 2017) but also impact on marine benthic communities (Gutt, 2001; Barnes, 

2017). Therefore, iceberg thickness is an important parameter.  

Changes in iceberg thickness are also important, because they control the quantity of cold fresh 

water and terrigenous nutrients released into the ocean as icebergs melt (Gladstone, Bigg and 

Nicholls, 2001; Silva, Bigg and Nicholls, 2006). The release of relatively cold fresh water facilitates 

sea ice growth (Bintanja, Van Oldenborgh and Katsman, 2015; Merino et al., 2016), immediately 

lowers the sea surface temperature (Merino et al., 2016), and has been found to even influence 

ocean water down to 1500 m depth (Helly et al., 2011) as well as lead to upwelling of deep ocean 

properties (Jenkins, 1999). In terms of nutrients, icebergs have shown to be the main source of 

iron in the Southern Ocean (Raiswell et al., 2016; Wu and Hou, 2017; Laufkötter et al., 2018) and 

therefore foster primary production in the proximity of icebergs (Helly et al., 2011; Biddle et al., 

2015; Duprat, Bigg and Wilton, 2016), which in turn increases the abundance of krill and seabirds 

(Smith et al., 2007; Joiris, 2018) around icebergs. Furthermore, a range of studies have demon-

strated that including more realistic iceberg distributions, trajectories, and volumes in climate 

models leads to a redistribution of fresh water and heat flux, which agrees better with observa-

tions than models that only include small icebergs or that treat iceberg discharge as coastal run-

off (Jongma et al., 2009; Martin and Adcroft, 2010; Rackow et al., 2017; Schloesser et al., 2019). 

To investigate each of these processes and interrelations, knowledge of iceberg thickness and 

volume and their change over time is required (England et al., 2020; Merino et al., 2016). 

Moreover, monitoring iceberg melting also presents an opportunity to gain insights into the 

response of glacial ice to warmer environmental conditions, which may develop at ice shelf 

barriers in the future (Scambos et al., 2008; Shepherd et al., 2019). 

The first detailed studies on iceberg melting were performed in the 1970’s and 1980’s, and were 

mainly based on laboratory experiments or ship-based observations (Huppert and Josberger, 



2. Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” 
using satellite altimetry and imagery 

 

46 

 

1980; Neshyba and Josberger, 1980; Russell-Head, 1980; Hamley and Budd, 1986). These studies 

found that iceberg melting, to first order, is proportional to the water temperature and that for 

large icebergs breakage dominates over melting. More recently, Silva et al. (2006) and Jansen et 

al. (2007) modelled melting of giant icebergs and the associated fresh water fluxes. The latter 

found that melting does not only depend on ocean temperature but also on iceberg drift speed 

and the surrounding ocean currents. Scambos et al. (2008) installed a range of measurement 

tools including a GPS receiver, a pre-marked accumulation mast and buried bamboo poles ob-

served with a camera on a large Antarctic iceberg to monitor melting. They differentiate be-

tween three kinds of mass loss: rift calving, edge wasting, and rapid disintegration. While rift 

calving can occur at any time within the iceberg life cycle along pre-existing fractures, edge wast-

ing is only observed outside the sea ice edge. Rapid disintegration is caused by surface melting 

and the formation of surface lakes.  

The advent of satellite remote sensing greatly increased our capability to study icebergs – espe-

cially the largest ones. A wide range of studies have employed repeat satellite imagery to track 

changes in iceberg area (Scambos et al., 2008; Bouhier et al., 2018; Budge and Long, 2018; 

Collares et al., 2018; Li et al., 2018; Han et al., 2019; Mazur, Wåhlin and Kalén, 2019). The most 

common approach to measure iceberg thickness is using satellite altimeter measurements of 

their freeboard, which began in the late 1980’s (McIntyre and Cudlip, 1987). Since then, a range 

of studies have employed laser and radar altimetry to study freeboard change of large tabular 

icebergs: Jansen et al. (2007) studied the A-38B iceberg in the Weddell and Scotia Sea with a 

combination of laser and radar altimetry, and Scambos et al. (2008) also included three Ice, 

Cloud and land Elevation Satellite (ICESat) overpasses over the A22A iceberg to derive its thick-

ness change. Both studies make use of satellite imagery to colocate the altimetry tracks and to 

compare similar areas in terms of freeboard change. In contrast, Tournadre et al. (2015) em-

ployed altimetry measurements from Envisat, Jason1, and Jason2 to analyse freeboard change 

of the C19A iceberg without any colocation. Bouhier et al. (2018) analysed thickness changes of 

the B17A and C19A icebergs in open water using altimetry data without colocation. Li et al. 

(2018) calculated freeboard change of the C28A and C28B icebergs for two years at the inter-

sections of CryoSat-2 overpasses, and Han et al. (2019) also used intersecting CryoSat-2 tracks 

to calculate freeboard change of the A68 iceberg in the Weddell Sea. When thickness and area 

changes are combined, it is possible to detect changes in iceberg volume (Tournadre, Girard-

Ardhuin and Legrésy, 2012; Bouhier et al., 2018; Han et al., 2019). However, studies to date have 
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been limited to selected icebergs, have focussed on the Weddell Sea, and have employed a va-

riety of approaches to account for the irregular sampling of altimetry tracks including manual 

colocation of entire tracks relative to the initial surface (Jansen, Schodlok and Rack, 2007), colo-

cation of intersecting tracks (Li et al., 2018; Han et al., 2019), and with no colocation at all 

(Tournadre et al., 2015; Bouhier et al., 2018). For smaller icebergs satellite stereo photogram-

metry (Enderlin and Hamilton, 2014; Sulak et al., 2017) and interferometry (Dammann et al., 

2019) have been employed to measure iceberg thickness and volume as an alternative ap-

proach, though in our experience both methods are labour intensive.  

In this study, we quantify changes in the area, freeboard, thickness, and volume of the giant 

tabular B30 iceberg, which has been adrift in the Southern Ocean since it calved from the 

Thwaites Glacier 8.5 years ago (Budge and Long, 2018; Figure 2.1). The long life-cycle and large 

drift of the B30 iceberg result in a relatively high number of observations, enabling a detailed 

study of its evolution. This is also one of the first studies to investigate iceberg thinning in the 

Southern Ocean around Marie Byrd Land. We assess the agreement between estimates of free-

board change determined relative to the average initial surface and using precise colocation 

with the aid of near-coincident satellite imagery. Moreover, we develop a methodology to ac-

count for snowfall and the evolutions of snow and ice density and examine the influence of snow 

on the iceberg thickness calculation. The next section introduces the remote sensing data used 

in this study and explains our methodology; Section 2.3 presents our results on iceberg area, 

freeboard, thickness, and volume change in turn and discusses our findings. We close with con-

clusions and a brief outlook in Section 2.4. 

2.2. Data and methods 

To chart the iceberg area change over time we delineate its extent in a sequence of Moderate 

Resolution Imaging Spectroradiometer (MODIS) optical satellite imagery and Sentinel-1 syn-

thetic aperture radar (SAR) satellite imagery. We then use CryoSat-2 satellite radar altimetry to 

determine changes in the iceberg freeboard and thickness, assuming that it is floating in hydro-

static equilibrium, and making use of the iceberg orientation relative to its initial position using 

near-coincident satellite imagery on some occasions. We account for snow accumulation and 

model variations in snow and ice density when converting iceberg freeboard to thickness. Fi-

nally, we combine both data sets to estimate the iceberg’s volume change over time.  
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2.2.1. Iceberg location  

We use daily archived iceberg positions from the Antarctic Iceberg Tracking (AIT) database ver-

sion 3.0 provided by the Brigham Young University (Budge and Long, 2018) as a baseline esti-

mate of the B30 iceberg location since it calved in 2012 (Figure 2.1). The AIT database makes use 

of coarse-resolution passive microwave scatterometer imagery in which icebergs are manually 

detected and the central position is recorded daily (Stuart and Long, 2011). It includes icebergs 

longer than 6 km adrift in the Southern Ocean between 1987 and 2019, augmented with esti-

mates of position and the semi minor and major axes lengths of icebergs longer than 18.5 km 

that are tracked operationally by the U.S. National Ice Center (NIC) using a combination of visi-

ble, infrared, and SAR imagery. 

 

Figure 2.1: Trajectory of the B30 iceberg as recorded by the Antarctic Iceberg Tracking Database 
(Budge and Long, 2018): After calving from the Thwaites Ice Shelf in 2012, it followed the coastal 
current westwards, started drifting north in 2017 and eventually disintegrated in 2019. Black 
dots mark the positions where CryoSat-2 overflights over the iceberg are available, circles depict 
the positions of the MODIS and Sentinel-1 images used in this study 
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2.2.2. Initial iceberg shape, size and calving position 

To determine the initial shape, size, and calving position of B30, we use MODIS images acquired 

before and after the calving event to identify which section of the Thwaites Ice Shelf calved to 

form the iceberg. MODIS is an instrument on the Terra and Aqua satellites by NASA launched on 

18th December 1999 and 4th May 2002, respectively. The instrument measures radiance in the 

visible and infrared range with a spatial resolution of 250 m to 1 km and covers the entire Earth 

in 1-2 days, though cloud occlusions and the absence of daylight reduce data availability for 

many applications. For this study we use bands 1 (red), 4 (green), and 3 (blue) of the MODIS 

Level 1B calibrated radiances at 500 m resolution (MOD02HKM). As B30 broke off on 24 May 

2012 (Budge and Long, 2018) in Antarctic winter, during darkness, the closest useful MODIS im-

agery is from the preceding autumn and subsequent spring. We use several MODIS images ac-

quired in the subsequent spring after calving to determine the initial shape, as it is difficult to 

unambiguously distinguish the berg from clouds and sea ice in a single image. The initial perim-

eter (Figure 2.2a, 2.3a) was then shifted and rotated to fit the situation before calving to identify 

the part of the Thwaites ice shelf that formed B30 (Figure 2.4). The initial area (in plan-view) of 

the iceberg is 1500 km2 with a long axis of around 59 km (Budge and Long, 2018). 

2.2.3. Iceberg area 

We employ three approaches to estimate the plan-view iceberg area; (i) manual delineation in 

sequential satellite imagery scenes, (ii) using measurements of the semi-major and semi-minor 

axes provided by the NIC and assuming an elliptical shape, and (iii) using measurements of their 

arc lengths recorded in satellite altimetry and assuming a circular shape. While manual delinea-

tion provides the most consistent and accurate area estimate, the axes and arc length ap-

proaches are much simpler to implement and can be fully automated. 

Our main approach to determine iceberg area is manual delineation using a sequence of 32 Sen-

tinel-1 SAR and 8 MODIS optical images. Sentinel-1A and 1B are companion imaging radar sat-

ellites launched by the European Space Agency on 3rd April 2014 and 25th April 2016, respec-

tively. Together, they provide repeat sampling of the Earth’s surface every 6 days. For this study, 

we use Level 1 Ground Range Detected (GRD) data. Depending on availability, both interfero-

metric wide (IW) and extra wide (EW) swath mode are used, but over the open ocean only EW 

data are acquired. We employ the Sentinel Application Platform (SNAP) toolbox to apply the 

orbital and radiometric corrections provided with the imagery. The SAR images were multi-
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looked with a factor of six to reduce speckle and computation time, leading to a spatial resolu-

tion of 240 m. Finally, a terrain correction was applied using the GETASSE30 (Global Earth To-

pography And Sea Surface Elevation at 30 arc second resolution) digital elevation model. The 

resulting backscatter values are scaled between their 5th and 95th percentiles. The MODIS optical 

imagery were required prior to the launch of Sentinel-1A in 2014.  

 

Figure 2.2: Outlines of the B30 iceberg derived from satellite imagery. a) Initial shape (red poly-
gon) of the B30 iceberg determined from MODIS images after calving; the background is a 
MODIS image on 11 September 2012. b) Polygon outlines derived from further MODIS and Sen-
tinel-1 imagery plotted in polar stereographic projection and used to calculate area change of 
the B30 iceberg.  

To chart changes in the iceberg area over time, we delimit its outline as a polygon in each sub-

sequent image (Figure 2.2, see also Bouhier et al., 2018; Collares et al., 2018; Han et al., 2019). 

When the iceberg is drifting in open water its outline can be detected automatically using bound-

ary detection techniques (e.g. using matlab’s bwboundaries function). However, in the presence 

of sea ice the iceberg could not be separated using this approach, and so we instead delimit its 

outline manually on such occasions (Bouhier et al., 2018). If parts of the iceberg are covered by 

clouds, we again use multiple MODIS images together, so that different parts of the iceberg are 

obscured by clouds in each image (e.g. Figure 2.3l). Also sea ice frozen to the iceberg is easier to 

distinguish from its colour and texture, when several images are used together (e.g. Figure 

2.3b, c). To estimate the uncertainty of our delineations, we buffer the polygons by the source 

imagery pixel width (500 m for MODIS images and 240 m for multi-looked Sentinel-1 images) 

and calculate the resulting difference in area. This gives a mean relative difference of 3.6 ± 0.9 %. 

Manually, outlines are usually drawn at a resolution where the whole iceberg fits on the screen, 

so using the native Sentinel-1 resolution instead would reduce this uncertainty insignificantly 
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within error. For automated approaches, higher resolution improves the uncertainty (e.g. buff-

ering those polygons with 30 m rather than 240 m pixel size reduces the average uncertainty to 

2.2 ± 1.8 %), but also increases computation time and requires more resources. As area change 

is calculated with respect to the first polygon from MODIS, the fragmentation uncertainty is 

governed by that and we stick to the multi-looked images in this study. 

Our second method of estimating the iceberg area is based on 228 measurements of the semi-

major and semi-minor axes lengths. Although iceberg area is most accurately calculated from 

delineation of their full perimeter in satellite images, the downside of this approach is that it 

requires a high degree of time-consuming manual interaction and clear imagery. This also makes 

it less reproducible and subject to individual judgement. We take the size of an ellipse calculated 

from the semi major and minor axis provided by the NIC and compare this with our imagery-

based iceberg area calculations. The NIC operationally tracks icebergs longer than 18.5 km using 

a combination of visible, infrared, and SAR imagery. Observations are made weekly, but espe-

cially in the early days longer data gaps exist, and not every estimate of semi axes length is based 

on a new manual observation, but some are just duplicated from the previous observation. Their 

estimates of semi axes lengths are also rounded to nautical miles (1.852 km), leading to a step-

wise evolution of iceberg area with only 8 different estimates. We base our trend estimate and 

analysis solely on these 8 estimates, because we are confident that these are unique observa-

tions. The uncertainty of this approach is governed by the assumption of an elliptical iceberg 

shape and the irregular, rounded updates. 

Our third and final method of estimating the iceberg area is to make use of 106 CryoSat-2 satel-

lite altimeter overpasses, which are also used to calculate the iceberg’s thickness. We record the 

arc lengths of the iceberg sampled by these tracks and estimate iceberg area by assuming the 

iceberg has a circular shape. Depending on the position and relative orientation of the iceberg 

with respect to each overpass, CryoSat-2 will occasionally sample the long axis but more often 

a shorter corner. This leads to considerable variations in the area estimates, and in general an 

underestimation. We employ a ten-point moving mean over time to reduce the variability. The 

principal uncertainty of this approach is because one-dimensional arc lengths cannot reliably 

represent a two-dimensional area especially when the shape is evolving and if it is unknown 

which part of the shape was sampled. 
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2.2.4. Iceberg orientation 

To track the iceberg shape and rotation in later images relative to its initial orientation, we rec-

ord the iceberg’s orientation in all satellite images that are near-coincident in time with CryoSat-

2 overflights (Figure 2.3). To orientate the iceberg, we manually identify the coordinates of one 

corner of the initial iceberg polygon outline at the time of each new overpass and adjust the 

rotation angle to align (colocate) all images to a common orientation (Figure 2.8a-l). This allows 

us to transform the iceberg coordinates at the time of each image acquisition relative to the 

equivalent position at the time just before it calved. 

 

Figure 2.3: Satellite imagery with near-coincident CryoSat-2 tracks of iceberg freeboard and the 
manually transformed initial polygon shape plotted on top. The initial polygons are used to 
determine the relative position of each new overpass. 

2.2.5. Initial iceberg freeboard  

We use CryoSat-2 satellite altimetry to determine freeboard and thickness of the B30 iceberg. 

CryoSat-2 is a satellite radar altimeter that employs SAR processing to achieve along track reso-

lution of 250 m. It was launched by the European Space Agency on 8 April 2010 in a 369-day 

repeat period with a 30-day sub cycle. We use Level 1B baseline C data from the CryoSat-2 Sci-

ence server and apply the Centre for Polar Observation and Modelling sea ice processing system 

(Tilling, Ridout and Shepherd, 2018) to deduce surface height. Specifically, we apply ionospheric, 

wet and dry tropospheric and inverse barometer corrections and account for the ocean tide, 

long period tide, ocean loading tide, earth tide and geocentric pole tide (Tilling, Ridout and 

Shepherd, 2018). For consistency, a common 70 % threshold retracker is applied to measure-

ments acquired in both SAR and SAR interferometric mode and over all surface types. Using 

Level 1B data is important, because the Level 2 products are generated using different retrackers 
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and different biases for different modes and surface types, and so the signals acquired during 

different parts of the iceberg trajectory are not comparable. Iceberg freeboard is calculated by 

subtracting the adjacent mean sea surface height from the iceberg surface height.  

 

Figure 2.4: Initial freeboard heights of the B30 iceberg overlain on a MODIS image on 19 March 
2012 (before calving). a) Filtered CryoSat-2 measurements of 145 days before calving, b) Gridded 
CryoSat-2 data, c) Standard deviation of the gridding, d) Number of measurements per grid cell 

Although satellite altimeters only sample icebergs along 1-dimensional profiles beneath their 

ground track while they are drifting, it is possible to build up a detailed 2-dimensional picture of 

their surface over time prior to calving while their movement is relatively modest. To map the 

initial freeboard height of B30, we combine all CryoSat-2 tracks recorded within almost 5 months 

(1 January 2012 to 24 May 2012) before it calved (Figure 2.4a). The Thwaites Ice Shelf flows at 

3.9 km per year on average (Mouginot, Rignot and Scheuchl, 2019), and so we adjust earlier 

tracks to account for this movement. Because the Thwaites Ice Shelf has a particularly rugged 

and crevassed surface topography, the point-of-closest-approach (POCA) varies. To make differ-

ent overpasses more comparable, we remove outliers by deleting freeboard heights greater 

than 60 m or below 20 m freeboard (Tournadre et al., 2015), and crevasses by deleting free-

board heights falling either below the median minus one standard deviation or below the 5-

point moving mean minus the 5-point moving standard deviation. After outlier removal, the 

mean initial iceberg freeboard is 45.5 m above the adjacent sea level with a wide spread of 8.1 m 

standard deviation. When crevasses are excluded, the mean freeboard is 49.0 m with a much 

lower standard deviation of 4.6 m. Because the resulting freeboard measurements are still quite 

sparse, we average them within 5 km grid cells to obtain a continuous reference surface (Figure 

2.4). The number and standard deviation of the gridded freeboards give an indication of the 

variance within each grid cell. The mean standard deviation within each grid cell is 3.3 m, the 

standard deviation across different grid cells is 3.1 m and the overall standard deviation of all 
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heights within the polygon is 4.6 m. We compare the gridded initial freeboard to measurements 

from the first CryoSat overpass when the iceberg is adrift, acquired shortly after calving, to check 

they are consistent, and find a mean difference of -0.4 m. As this value is considerably lower 

than the iceberg freeboard variability, we conclude that the ice shelf was floating freely prior to 

calving also, and that the gridded heights are representative of the initial freeboard. 

 

Figure 2.5: Example of CryoSat-2 freeboard measurements along one track. The blue line shows 
which heights were identified as iceberg and the red line shows the remaining heights after fil-
tering out crevasses. 

2.2.6. Iceberg freeboard change 

When icebergs are adrift, their motion is sufficiently large to mean that they are only sampled 

in 1-dimensional profiles along satellite altimeter ground tracks (Figure 2.3) and only the largest 

tabular icebergs are sampled frequently enough to derive changes in their freeboard. We extract 

surface heights over the B30 iceberg when it is adrift (e.g. Figure 2.5) using the position from the 

AIT database as an initial estimate of its location. However, because the AIT positions and tim-

ings are approximate and the iceberg has a significant extent, we investigate all CryoSat-2 

ground tracks that pass within 1-degree latitude and 2-degrees longitude of the database posi-

tion. We automatically extract measurements sampling the iceberg with the following steps: 

Track segments are truncated to exclude altimeter echoes from targets where the first or last 

freeboard height is more than 3 m, to exclude measurements from the nearby continent, and 

we also exclude tracks that do not contain freeboard measurement between 20 and 60 m, to 

ensure that they sample the iceberg. We consider all freeboard heights between the first and 

last echo falling in the range of 20 to 60 m as potential iceberg measurements (Tournadre et al., 
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2015). To avoid including adjacent icebergs or berg fragments, we exclude segments with more 

than 10 measurements of ocean or sea ice, identified as surface heights in the range -3 to +3 m, 

between potential iceberg measurements.  We also remove crevasses and other rugged features 

using the same editing steps applied to determine the surface height prior to calving. As a final 

check, we calculate the distance of these remaining heights to the AIT database location, and 

discard measurements that are further away than half the iceberg length (28 km) to ensure we 

are tracking B30. 

We apply two different techniques to calculate changes in the iceberg freeboard. For 12 tracks 

we are able to calculate precise changes in freeboard with spatial definition by making use of 

near-coincident satellite imagery to account for the rotation and translation of the iceberg rela-

tive to its initial position prior to calving (Jansen, Schodlok and Rack, 2007) and consider the 

estimated movement between the time of the nearest satellite image and altimeter acquisi-

tions. At 94 other times, we compute the freeboard height change as the difference of mean 

freeboard from each new overpass relative to the initial mean surface height. While these ob-

servations are of poorer certainty, they provide denser temporal sampling and fill gaps between 

the colocated measurements. The first colocation method assigns both the initial heights and 

the new measurements to their closest 5 km grid cell and averages them to ensure that the same 

locations are compared. We account for the iceberg drift between the times of the satellite ac-

quisitions, allowing a maximum separation of 72 hours (though most overpasses are separated 

by less than 24 hours). If the image is from a different date than the CryoSat track, we correct 

the distance travelled based on the daily iceberg locations from the AIT database. In any case, 

we account for the drift in our uncertainty estimate performing a Monte Carlo simulation with 

1000 slightly differently collocated samples per track. These are normally distributed around our 

estimated translation and rotation with a standard deviation of 15° per day and a drift speed of 

3 km per day (Scambos et al., 2008) scaled by the respective time separation. We then calculate 

the freeboard difference for each of the 1000 slightly differently colocated tracks and use the 

resulting standard deviation of freeboard change from these samples as the uncertainty of our 

colocation. This is combined with the standard deviation of the gridded CryoSat-2 freeboard 

data (of the new track and of the reference) to yield a conservative uncertainty estimate for the 

colocated tracks. The second method ignores the relative position and orientation of the iceberg 

at the time of the altimeter overpasses (Tournadre et al., 2015; Bouhier et al., 2018), and simply 

compares the mean freeboard along each new track to the mean surface height before calving. 

Although this method is easiest, since it does not rely on additional image data to locate the 
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track, it cannot account for potential spatial variations in the iceberg freeboard. Because of this, 

we restrict the new overpasses to those including at least 20 measurements, as tracks sampling 

only the edges of an iceberg tend to be inaccurate. As uncertainty estimate we combine the 

standard deviation of each new overpass with the standard deviation of the initial height. As a 

first check to see if the mean freeboard from a single overpass can be compared to the mean 

initial height, we calculate the mean height for each of the 15 tracks over the pre-calved iceberg 

(Figure 2.4a) and find a standard deviation of 2.8 m compared to the mean initial height of 49.0 

± 4.6 m. 

2.2.7. Iceberg thickness 

We compute iceberg thickness 𝐻 (freeboard plus draft) from our estimates of iceberg freeboard 

heights ℎfb assuming hydrostatic equilibrium and that CryoSat-2 does not penetrate through the 

snow layer (Eq. 1; Zwally et al., 2008). Besides these freeboard heights, iceberg thickness also 

depends on column-average densities of sea-water 𝜌𝑤  , ice 𝜌𝑖 , and snow 𝜌𝑠  as well as snow 

depth ℎ𝑠. Including a snow layer in this equation is important, because the snow layer adds to 

the observed freeboard and disguises a part of the ice freeboard change. On the other hand the 

additional load of the snow layer pushes the iceberg downwards. Both effects are taken into 

consideration. We assume sea-water density to be 1024 kg m-3 (Fichefet and Morales Maqueda, 

1999) and set its uncertainty to 2 kg m-3. Due to the long life cycle of the B30 iceberg of 6.5 years 

and the changing environmental conditions it experiences during this time, we allow the ice and 

snow densities to evolve with time. Snow depth is also time-varying, and estimates of this and 

of snow and ice density are introduced successively. 

𝐻 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
ℎfb −  

(𝜌𝑤−𝜌𝑠)

𝜌𝑤−𝜌𝑖
ℎ𝑠           (1) 

At calving, we set snow depth to zero. Already existing snow, which fell on the ice shelf, is ac-

counted for by using the ice density profile of the Thwaites Ice Shelf with lower density at the 

surface (Figure 2.6a), but we do not call it snow in the following. To estimate the thickness of 

the snow layer that accumulated since calving, we download hourly ERA5 Reanalysis snowfall, 

snowmelt, and snow evaporation data (Copernicus Climate Change Service, 2018), accumulate 

it daily and interpolate it in space and time to the iceberg’s trajectory. Snowmelt and snow evap-

oration are subtracted from the snowfall (Figure 2.6b). However, this snow estimate does not 

account for snow being blown off the iceberg or onto the iceberg from the continent (Fedotov, 

Cherepanov and Tyshko, 1998; Leonard and Maksym, 2011). We refer to the snow layer as all 
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additional snowfall since calving, even if some of it will become firn. To convert snow water 

equivalent (SWE) to snow depth, we need to know snow density. 

 

Figure 2.6: Illustration of how iceberg thickness is calculated at calving (a) and after calving (b) 
with the different processes affecting iceberg thickness that we account for labelled in red. The 
ice density profile is calculated using Eq. 3 with ice densities of the Thwaites Ice Shelf by 
Ligtenberg, Helsen and Van Den Broeke (2011). 

Snow density is time variable because snow compacts gradually during the iceberg’s life time of 

several years as a function of snow depth ℎ𝑠 [m], the mean air temperature 𝑇 [°C], and the 

mean wind speed 𝑣 [m · s−1] (Eq. 2; International Organization for Standardization, 1998). We 

use hourly ERA5 Reanalysis 2 m air temperature data and calculate wind speed from the ERA5 

Reanalysis 10 m eastwards and northwards wind components (Copernicus Climate Change 

Service, 2018). Both are interpolated to the iceberg’s trajectory and averaged since the day of 

calving. Because snow density depends on snow depth and snow depth depends on snow den-

sity, we calculate both iteratively starting with a snow density of 300 kg m -3. We set the uncer-

tainty in snow density to 50 kg m-3 (Kurtz and Markus, 2012) and the uncertainty in snow depth 

to 20 % (Kwok and Cunningham, 2008). 

𝜌𝑠 = (90 + 130 · √ℎ𝑠) ∙ (1.5 + 0.17 · √𝑇
3

) ∙ (1 + 0.1 · √𝑣)       (2) 

To calculate the iceberg’s ice density profile we follow the approach by Tournadre et al. (2015), 

and determine two parameters V and R to fit the surface density and the depths of the critical 

density levels (550 kg m-3 and 830 kg m-3) of the Thwaites Ice Shelf, from which it calved, as given 
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in Ligtenberg, Helsen and Van Den Broeke (2011; Eq. 3). 𝜌𝑔 is the density of pure glacial ice (915 

kg m-3). Since the mean ice density depends on ice thickness and ice thickness depends on the 

mean ice density, we iterate over both equations. We also account for ice density changes over 

the iceberg’s life cycle by calculating new mean densities as the iceberg thins (cropping the ice 

density profile from Figure 2.6a at lower depth as thickness decreases – see Figure 2.6b). This 

incrementally reduces the average ice density as the densest ice is melted at the bottom. As ice 

density uncertainty we take 10 kg m-3 (Dryak and Enderlin, 2020). 

𝜌𝑖 =
1

𝐻
 ∫ (𝜌𝑔 − 𝑉 ∙ 𝑒𝑅∙𝑧𝐻

0
) 𝑑𝑧          (3) 

2.3. Results and discussion 

We first assess changes in the B30 iceberg area using boundaries mapped from satellite imagery, 

and we compare the observed trend to less accurate estimates derived from arc-lengths and 

semi-major axes. Next, we determine the change in iceberg freeboard and we assess the impact 

of employing precise colocation using near-coincident satellite imagery. Iceberg thickness 

changes are then computed from freeboard changes using time-varying estimates of snow ac-

cumulation and snow and ice densities derived from atmospheric reanalyses. Finally, iceberg 

area and thickness changes are combined to derive the change in volume and mass. 

2.3.1. Iceberg area change 

When the B30 iceberg first calved in May 2012, it was 1500 ± 60 km2. Over the following 6.5 

years it lost 1075 ± 66 km2 of its extent, which corresponds to a 72 ± 11 % reduction at an average 

rate of 149 ± 5 km2 per year (Figure 2.7). However, because deriving iceberg outlines requires a 

high degree of time-consuming manual interaction, we also evaluate the efficacy of two alter-

native methods based on measurements of their orthogonal (semi-major and semi-minor) axes 

by the NIC and on arc lengths recorded in satellite altimetry which are considerably less labori-

ous. Although these approaches also yield progressive reductions in area (Figure 2.7), they ex-

hibit significant positive (138 km2, 14%) and negative (-426 km2, 45%) biases, respectively, due 

to under-sampling of the iceberg geometry and the necessary approximation of a regular shape 

(ellipses and circles, respectively). While an ellipse overestimates the area compared to most 

shapes with the same axes, arc lengths yield an underestimate because corners are sampled 

more often than the major axis. One idea for improvement would be to use the maximum or to 

filter out tracks that only sample one corner, but the main problem remains that a one-dimen-
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sional length measurement cannot be translated into a reasonable area estimate without know-

ing the iceberg shape, which changes over time. Nevertheless, both the orthogonal axes and 

arc-length approaches yield area estimates that are reasonably well correlated (r>0.90) with 

those determined from our manual delineation. Area trends are overestimated by 16% and un-

derestimated by 48%, respectively. While manual delineation provides the most consistent and 

most accurate area estimate, tracking iceberg axes or arc lengths yields area and area change 

estimates that are within 48% and is considerably less time consuming.  

 

Figure 2.7: Area change of the B30 iceberg from polygons delineated in satellite imagery with 
their uncertainty (red) and approximations using orthogonal axes provided by the National Ice 
Center (NIC) assuming an elliptical shape (blue) or using the arc lengths of CryoSat-2 overflights 
assuming a circular shape (black) over time (a) and as scatter plot (b). To fit the NIC trend line in 
(a) we only use unique values of orthogonal axes length (thick blue dots). These also define the 
dates of comparison in (b).  

The rate of iceberg area loss from B30 was approximately constant until 2018, after which time 

it started to lose larger sections more rapidly. Although its area has reduced steadily over time, 

it is less obvious which sections have been lost during individual calving events. However, by 

aligning the initial polygon to each subsequent image (Figure 2.3) it is possible to identify when 
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and where changes occur. The iceberg shape already appears altered on 30 th November 2014, 

after bumping into the adjacent ice shelf which likely caused the first chunks to break off. B30 

continued to lose smaller sections along its edges over the next year – either through melting at 

the sides or smaller wastings – when it was drifting along the coastal current. In 2018, bigger 

sections are lost more rapidly, as the iceberg is drifting northwards in open water. Rift calving 

can occur at any time within an iceberg life cycle along pre-existing fractures (Scambos et al., 

2008), while edge wasting is typically only observed when icebergs are travelling outside the sea 

ice pack. B30 was heavily crevassed prior to calving (e.g. visible in Figure 2.3g and i), and so even 

the smaller wastings along its edges could reflect rift calving events rather than edge wastings. 

The ‘footloose mechanism’ (Wagner et al., 2014) can become a main driver of iceberg decay in 

warm waters, when wave erosion at the waterline forms a sub-surface foot, creating a buoyancy 

stress that can lead to calving. Although it is not possible to investigate the effects of wave ero-

sion using satellite data, the effect could in principle have caused the larger break-ups that oc-

curred in 2018. 

2.3.2. Iceberg freeboard change 

To assess the change in freeboard over the survey period, we compare differences between the 

new overpasses and the initial heights in space and time (Figure 2.8). For the spatial analysis we 

chart the freeboard difference between each colocated overpass post-calving (Fig. 3) and the 

gridded initial height pre-calving (Figure 2.4b) at the same relative iceberg position. This com-

parison shows that the change in freeboard height across the iceberg is relatively homogenous 

at each epoch (Figure 2.8a-l). We then average these differences per CryoSat-2 track and chart 

the variation over time alongside the less accurate (but more abundant) estimates determined 

without colocation (Figure 2.8m). Because the observations without colocation are relatively 

imprecise, we apply a 10-point moving mean to the data and we also fit a polynomial of 3rd order 

(and starting at zero). Overall, the B30 iceberg freeboard has reduced by 9.2 ± 2.2 m during the 

6.5 years since it calved.  

To assess the importance of colocation, we compare freeboard changes calculated with and 

without this step (Figure 2.8n). The estimates are well correlated (r=0.87) and the root mean 

square difference is 1.6 m, which is a measure of the improvement in certainty associated with 

colocation and equal to the difference in mean uncertainty of colocated tracks (4.7 m) versus 

tracks without colocation (6.3 m). Also, the temporal variation of freeboard changes computed 

from observations with and without colocation are in good overall agreement (Figure 2.8m), and 



2. Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” 
using satellite altimetry and imagery 

 

61 

 

we conclude that for this iceberg we can combine the two and make use of the entire set of 

CryoSat-2 measurements. This finding should hold for other tabular icebergs where the topo-

graphic variability is smaller than the observed thinning. The variability of freeboards computed 

within each 5 km grid cell and across different grid cells are also of the same order (3.3 m and 

3.1 m, respectively), and this is likely to have reduced the impact of colocation uncertainties. For 

other icebergs with more heterogeneous freeboard across the iceberg that are less crevassed 

(i.e. with lower freeboard variabilities within the same grid cell), colocation might have a larger 

impact and more icebergs need to be studied to generalise these findings.  

 

Figure 2.8: Freeboard change of the B30 iceberg. a-l) Freeboard difference in each grid cell sam-
pled by colocated CryoSat-2 overpasses; the Δt values give the time difference between the Cry-
oSat-2 overpass and the corresponding satellite image as an indication of the colocation uncer-
tainty due to iceberg drift; Negative values indicate that the image was taken before the CryoSat 
overpass. m) mean difference of each new overpass along time. CryoSat-2 tracks that have been 
colocated are marked with a diamond, but all available CryoSat-2 overpasses have been used to 
calculate a moving mean and fit a polynomial; The shading shows the standard deviations. n) 
scatter plot of freeboard change from colocated CryoSat-2 tracks versus the same tracks used 
without colocation  
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2.3.3. Iceberg thickness change 

We compute the iceberg thickness from our measurements of its freeboard (using the moving 

mean, red line in Figure 2.8m) and by assuming that it is floating in hydrostatic equilibrium within 

the surrounding ocean with a surface snow layer. Accounting for the snow layer is important 

because it affects the ice freeboard and the iceberg buoyancy, and we take both effects into 

consideration. Based on hourly snowfall, evaporation and snowmelt derived from ERA5 

reanalyses (Copernicus Climate Change Service, 2018), we estimate that the iceberg 

accumulates 4.6 m of snow water equivalent during the 6.5 year survey period (Figure 2.9). The 

rate of accumulation is quite linear. The iceberg thickness also depends on densities of the snow 

layer, the iceberg, and the sea-water and we allow the snow layer and iceberg densities to evolve 

over time due to the changing environmental conditions it experiences during its long lifecycle. 

The mean iceberg density reduces from an initial estimate of 864 kg m-3 to a final value of 835 kg 

m-3 as a consequence of basal ice melting (Figure 2.9a). The mean change in height due to firn 

densification in West Antarctica has been estimated to be 2.79 cm per year on floating ice 

(Zwally et al., 2005); upscaling this rate gives a total of 18 cm after 6.5 years, which is significantly 

smaller than the observed freeboard loss of 9.2 m, so we don’t apply it. The snow layer compacts 

over time due to its accumulation and warming, and we estimate that its average density rises 

from 252 to 616 kg m-3 which yields a 7.2 m thick layer after 6.5 years (Figure 2.9b). We also 

investigate the impact of surface thawing; although the iceberg surface does experience 

temperatures above freezing every summer and for a total of 218 degree hours (number of 

hours above zero degrees Celsius times the temperature above zero degrees Celsius) since 

calving (Figure 2.9c), in situ observations (Scambos et al., 2008) suggest that this translates into 

only 8 to 16 cm of snow melting and this has negligible impact on the iceberg freeboard, so we 

discard this effect.  

We estimate the initial iceberg thickness to be 315 ± 36 m, on average, reducing to 198 ± 14 m 

after 6.5 years. This amounts to 117 ± 38 m of thinning (Figure 2.9d) at an average rate of 17.3 

± 1.8 m per year. Previous studies have recorded iceberg thinning rates of up to 10 m per year 

when drifting within the sea ice extent close to the coast (Morgan and Budd, 1978; Jansen, 

Schodlok and Rack, 2007; Scambos et al., 2008; Li et al., 2018; Han et al., 2019) and much higher 

rates in excess of 20 m per year when in warmer open water (Morgan and Budd, 1978; Hamley 

and Budd, 1986; Jansen, Schodlok and Rack, 2007; Scambos et al., 2008; Tournadre et al., 2015; 

Li et al., 2018). Jacka and Giles (2007) find dissolution rates of 11-18 m per year between 60 and 
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150° E based on shipborne observations over 15 years. Although all these studies were con-

ducted for different regions of the Southern Ocean, our estimated average thinning rate is in 

line with the melt rates previously reported, given that the B30 iceberg has spent most of its 

lifetime close to the coast (Figure 2.1). To assess the impact of including a snow layer in the 

thickness calculation, we also compute thickness change assuming no snow has accumulated 

since calving (Figure 2.9d); this scenario leads to an estimated 90 ± 39 m reduction in iceberg 

thickness, 23 % lower than the rate determined when the snow layer is included, which illus-

trates its importance. We expect the importance of including a snow layer to be highest in 

phases where the iceberg is melting slowly, as snow accumulation can disguise the thickness 

change in this instance. Based on the mostly linear snow accumulation, it will also be more im-

portant the longer the iceberg survives, as more snow accumulates. Apart from the snow layer, 

iceberg density is also a significant factor in our thickness change calculation, and while we have 

attempted to model the evolutions of ice density, snow density, snow accumulation, and surface 

thawing, their uncertainties are difficult to quantify. 

 

Figure 2.9: Evolution of the B30 iceberg properties: a) Ice density and snow density, b) Snow 
water equivalent (SWE) and snow depth accumulation on the B30 iceberg, c) Degree hours that 
the B30 iceberg experienced, and d) Thickness change of the B30 iceberg with snow accumula-
tion taken into consideration or without. Uncertainties are plotted as shaded areas. 
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Besides the observed thinning, the iceberg also seems to slightly thicken between mid-2014 and 

early 2015. During this time B30 was very close to the coast (Figure 2.3b-d). Therefore, a range 

of processes – both physical processes that impact the actual thickness of the iceberg and pro-

cesses that impact the freeboard measurement – could have caused this gain in thickness: First 

of all, iceberg thickness can increase through marine ice formation, when the iceberg is sur-

rounded by very cold water. Little et al. (2008) found that freezing beneath ice-shelves is con-

centrated along their western side and B30 was indeed located at the western side of Getz Ice 

Shelf at this time (Figure 2.1, 2.3b, c). Iceberg thickness can also grow through snow accumula-

tion on the surface, which we account for, but only based on reanalysis data and there might be 

additional local snowfall or snow accumulation through strong katabatic winds from the near-

by continent (Fedotov, Cherepanov and Tyshko, 1998). Furthermore, external forcing from col-

lisions with the adjacent ice-shelf might have led to a deformation (MacAyeal et al., 2008) and 

hence a compression in some parts. All of these processes can cause a physical increase in ice-

berg thickness. Apart from that, a short (partial) grounding could lead to higher measured ice-

berg freeboards (Li et al., 2018). Also surface melting could shift the scattering horizon of Cryo-

Sat-2 (Otosaka et al., 2020) and therefore appear like a freeboard increase. Indeed we observe 

a steep increase in degree hours around the turn of the year 2015. What caused the signal in 

this instance is hard to disentangle. Most probably, it was a combination of several of the men-

tioned effects.  

2.3.4. Iceberg volume and mass change 

Having calculated changes in the B30 iceberg thickness associated with snowfall and basal 

melting and changes in area due to fragmentation, we combine both to determine the overall 

change in volume (Figure 2.10). To do this, we multiply each thickness estimate with the 

imagery-based area estimates interpolated to the times of the CryoSat-2 overpasses. Unlike 

small icebergs, which can take on various shapes (Enderlin and Hamilton, 2014; Sulak et al., 

2017), large tabular icebergs inherit their shape from their parent ice shelf and therefore have 

rather homogenous thickness and near vertical walls (American Meteorological Society, 2012). 

Deviations from vertical may occur in both directions and we therefore expect them to 

approximately even out (Orheim, 1987). The larger the length to thickness ratio is, the smaller 

the impact of tilted side walls on the resulting volume. For the B30 iceberg with an initial length 

to thickness ratio of 187:1, we therefore conclude that our assumption of vertical walls has 

negligible impact on the volume. The proportion of the total volume changes associated with 

melting and fragmentation are calculated by keeping area and thickness constant (and equal to 
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their average), respectively. To compute changes in mass, we multiply the volume change due 

to fragmentation by the column-average iceberg density at each point in time, because this ice 

is lost at the sides. In contrast, we multiply the volume change due to basal melting by the 

density of pure ice (915 kg m-3), since this ice is lost at the bottom where ice density is highest. 

The total mass change is the sum of both components. Uncertainties are calculated by 

propagating the uncertainties of thickness change, area change, and ice density.  

 

Figure 2.10: Volume change of the B30 iceberg divided into loss due to basal melting (thickness 
change, blue) and due to fragmentation (area change, red), as well as total volume loss (black).  

The initial volume of B30 at the time of its calving was 472 ± 57 km3 and after 6.5 years it has 

lost 378 ± 57 km3 of ice, corresponding to a 80 ± 16 % reduction. Fragmentation accounts for 

two thirds (69 ± 14 %) of the total volume loss and basal melting is responsible for the remainder 

(31 ± 11 %). Volume changes due to fragmentation become the dominant source of ice loss to-

wards the end of our survey, consistent with previous findings (Bouhier et al., 2018). This is be-

cause the main drivers of fragmentation are surface melting, which can lead to a rapid disinte-

gration (Scambos et al., 2008) and wave erosion or wave stress (Wagner et al., 2014). Both in-

crease the further North (i.e. surrounded by open ocean and warmer air temperatures) the ice-

berg gets. The two icebergs studied by Bouhier et al., (2018) also show similar fractions of ice 
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loss due to fragmentation (60% for the B17A iceberg and 75% for the C19A iceberg). In terms of 

mass, the iceberg has lost 325 ± 44 Gt of ice in total at an average rate of 46 ± 4 Gt per year. The 

loss due to basal melting (106 ± 35 Gt) can be used as a lower estimate of the freshwater flux 

from B30. Some of the mass lost due to changes in area - in particular melting at the sides and 

smaller edge wastings, which will probably melt locally, add to the freshwater flux, but bigger 

calving events create smaller icebergs, which can survive and travel on their own (Bigg et al., 

1997; Martin and Adcroft, 2010; England, Wagner and Eisenman, 2020). To calculate the total 

freshwater flux, the melting of all fragments has to be considered (Tournadre, Girard-Ardhuin 

and Legrésy, 2012; Tournadre et al., 2016). 

2.4. Conclusions 

In this study we have derived changes in the area, freeboard, thickness, and volume of the tab-

ular B30 iceberg using a combination of satellite altimetry and satellite imagery. During the 6.5 

years after the iceberg calved in May 2012, its area reduced from 1500 ± 60 km2 to 426 ± 27 km2 

at an average rate of 149 ± 5 km2 per year. The iceberg freeboard lowered by 9.2 ± 2.2 m over 

the same period. Using estimates of the snow accumulation and changes in snow and ice den-

sity, we estimate that the iceberg thinned by 117 ± 38 m at a mean rate of 17.3 ± 1.8 m per year. 

Altogether, the iceberg lost 378 ± 57 km3 of ice, and this equates to an estimated 325 ± 44 Gt 

reduction in mass.  

We investigated the capability of automated approaches to approximate iceberg area and area 

change by comparing them to manually-derived estimates. Although the most reliable method 

of charting iceberg area change is through manual delineation in satellite imagery, we show that 

less time-consuming estimates derived from measurements of the iceberg’s orthogonal axes or 

arc-lengths are also able to capture the area and area change over time, albeit with poorer cer-

tainty. Orthogonal axes lead to estimates of area and area trends that are 14 % and 16 % higher, 

respectively, and arc-lengths lead to estimates of area and area trends that are 45 % and 48 % 

lower, due to the necessary approximate of the iceberg shape.  

We also presented a new thorough methodology to investigate iceberg freeboard and thickness 

change, using a densely sampled time series of consistently processed Level 1 CryoSat data and 

assessed the importance of colocation. Using a subset of 12 instances with colocation, we find 

that omitting this step leads to a small deterioration in the certainty of detected freeboard 

change for the B30 iceberg, but the densely sampled time series is in good agreement with the 
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colocated tracks. We expect this finding also holds for other large tabular Antarctic icebergs with 

uniform topography, when the observed freeboard change exceeds the topography and when 

enough tracks are averaged. In this case, it suggests that the procedure for tracking changes in 

iceberg thickness could be automated, given reliable estimates of their position (Budge and 

Long, 2018).  

Finally, we developed a methodology to account for snowfall and variations in snow and ice 

density due to changing environmental conditions that large icebergs experience during their 

multi-annual drift. We found that the impact of snowfall on the retrieval of iceberg thickness 

increases over time, and after 6.5 years we estimate that 7.2 metres of snow have accumulated, 

which leads to a 27 m adjustment to the iceberg thickness change. Iceberg thickness change is 

also strongly dependent on the ice density profile which we derive from the depths of critical 

density levels (Ligtenberg, Helsen and Van Den Broeke, 2011), and so in situ observations would 

help to assess the reliability of this relationship. Likewise, direct measurements of the near-sur-

face firn will help to assess the reliability of our reanalyses-based estimate of snow loading.  

More icebergs - including the fragments lost from B30 - need to be studied to generalise the 

results we have and to constrain both the fresh water flux, which influences water circulation 

(Jenkins, 1999; Grosfeld et al., 2001) and promotes sea ice formation (Bintanja, Van Oldenborgh 

and Katsman, 2015; Merino et al., 2016), and input of terrigenous nutrients such as glacial iron 

into the Southern Ocean, which fosters primary production (Helly et al., 2011; Biddle et al., 2015; 

Duprat, Bigg and Wilton, 2016). Finally, studying icebergs as they drift through warmer water 

may give unique insights into the response of glacial ice to environmental conditions which may 

become commonplace at the ice shelf front in the future (Scambos et al., 2008; Shepherd et al., 

2019).  
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Abstract 

Icebergs impact the physical and biological properties of the ocean where they drift, depending 

on the degree of melting. We use satellite imagery and altimetry to quantify the area, thickness, 

and volume change of the massive A68A iceberg from its calving off the Larsen-C Ice Shelf in July 

2017 until January 2021, when it disintegrated. A68A thinned from 235 ± 9 to 168 ± 10 m, on 

average, and lost 802 ± 34 Gt of ice in 3.5 years, 254 ± 17 Gt of which was through basal melting 

(a lower bound for the immediate fresh water input into the ocean). Basal melting peaked at 7.2 

± 2.3 m/month in the Northern Scotia Sea and an estimated 152 ± 61 Gt of freshwater was re-

leased off South Georgia, potentially altering the local ocean properties, plankton occurrence 

and conditions for predators.  

3.1. Introduction 

Icebergs impact and interact with the Antarctic environment through a range of processes. This 

begins with their calving, which may influence the stability of their parent ice shelf (Rott et al., 

1996) and flow of glaciers upstream (Rignot et al., 2004). As they drift, icebergs release cold 

fresh melt water, altering the local ocean properties (Helly et al., 2011; Jenkins, 1999) and facil-

itating sea ice growth (Bintanja et al., 2015; Merino et al., 2016). They also carry debris with 

terrigenous nutrients, which supply the majority of iron input to the Southern Ocean (Wu & Hou, 

2017), fostering biological production (Biddle et al., 2015; Duprat et al., 2016; Smith et al., 2007). 

When icebergs ground, they impact marine benthic communities (Barnes, 2017; Gutt, 2001) and 

leave plough marks on the sea floor (Wise et al., 2017). Furthermore, large icebergs can act as a 

barrier disrupting the local ocean circulation (Grosfeld et al., 2001) or blocking access of penguin 

colonies to their feeding grounds (Kooyman et al., 2007). The response of icebergs to the warmer 

climates they drift through can also inform predictions on how the Antarctic ice shelves will react 

to climate change (Scambos et al., 2008; Shepherd et al., 2019).  

A68A was the sixth largest iceberg ever recorded in satellite observations (Budge and Long, 

2018), and had a significant potential to impact its environment. Indeed when it calved from the 

Larsen-C Ice Shelf in July 2017, concerns were raised that its loss might trigger a collapse of the 

entire ice shelf (A. E. Hogg & Gudmundsson, 2017; Jansen et al., 2015). After residing close to its 

calving position for over a year, A68A started to move northwards through the Weddell Sea 

(Figure 3.1). It reached the Scotia Sea in early 2020 and approached South Georgia at the end of 

2020, where it started to disintegrate. Although this is a common trajectory for icebergs (Figure 
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3.1 and Tournadre et al., 2016), the sheer size of A68A elevates its potential to impact ecosys-

tems around South Georgia through release of fresh water and nutrients, through blockage and 

through collision with the benthic habitat (Grimm, 2021; Vernet et al., 2012). Here, we combine 

satellite imagery and satellite altimetry to chart changes in the A68A iceberg’s area, freeboard, 

thickness, volume and mass over its lifetime to assess its disintegration and melt rate in different 

environments.  

 

Figure 3.1: Trajectory of A68A (circles colored by date) and historic icebergs (yellow lines, Budge 
& Long, 2018) overlain on a bathymetric map (GEBCO Compilation Group, 2019; O. Hogg et al., 
2016). Selected outlines (date colour coded), altimetry overpasses (grey lines with black marking 
the parts that sample the iceberg) and key dates are also shown. Panels b and c are zoom regions 
of interest. 

3.2. Data and methods 

We track the iceberg’s area and area change in satellite imagery. In total, 23 Sentinel-1, 18 Mod-

erate Resolution Imaging Spectroradiometer (MODIS) and 14 Sentinel-3 scenes are used to man-

ually delineate the iceberg’s outlines using GIS software. While the Sentinel-1 Synthetic Aperture 

Radar (SAR) imagery offers all-weather capability and higher spatial resolution, MODIS and Sen-

tinel-3 optical imagery have the advantage of a higher temporal resolution, but cannot be used 
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during the polar night and on cloudy days. In optical imagery the spatial resolution is slightly 

lower and it is harder to distinguish sea ice from icebergs or clouds, which is the main error 

source. Therefore, we rely on Sentinel-1 data, if available close to the altimetry overpasses and 

use MODIS or Sentinel-3 data on the other occasions. To estimate the accuracy of our delinea-

tions we buffer the polygon outlines by two pixels and calculate the resulting difference in area. 

This gives a mean relative difference of 3.2 %.  

 

Figure 3.2: Calculation of initial iceberg freeboard map: (a) CryoSat tracks over the Larsen-C Ice 
Shelf over 1 year (12 July 2016 - 11 July 2017) before the iceberg calved, cut to the area that 
later formed the iceberg. (b) The same measurements gridded at 2 km and empty grid cells filled 
with linear interpolation. (c) Standard deviation within each grid cell. (d) Number of observations 
averaged per grid cell. The background shows a Sentinel-1 image on 10 July 2017 

Changes in the iceberg’s freeboard and thickness are derived from CryoSat-2 and ICESat-2 sat-

ellite altimetry. To generate a complete map of the initial iceberg freeboard and thickness, we 

collect all CryoSat-2 tracks over the part of the Larsen-C Ice Shelf that formed the A68A iceberg 

between 12 July 2016 and 11 July 2017 (Figure 3.2), correcting for the mean ice motion of 

696 m/year (Mouginot et al., 2019). To track changes in the iceberg freeboard while it is drifting, 

we colocate 15 overpasses from ICESat-2 and 9 overpasses from CryoSat-2 with the initial free-

board map, post them on a common 2-km grid, and difference them. For this colocation to the 

initial iceberg reference system, we digitize the iceberg outline in a near-coincident image using 

7 Sentinel-1 and 17 MODIS scenes. We then transform this outline to maximize the overlapping 

area with respect to the outline of the previous overpass by automatically searching for the op-

timal translation and rotation parameters (Figure 3.3). The rough translation is known from dif-

ferencing the centroids of both polygons, greatly reducing the search radius. This iterative pro-

cedure then yields the optimal rotation and translation parameters with respect to the initial 
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outline and hence initial thickness map, too. At least for icebergs like A68A that are non-sym-

metric and when the general shape is preserved it allows us to determine where the new over-

pass samples the iceberg and which part of the initial freeboard map this corresponds to auto-

matically. Grid cells of the initial map that are not covered by any track are filled using linear 

interpolation. 

 

Figure 3.3: Colocation of a sample ICESat-2 track and the corresponding Sentinel-1 image on 18 
September 2019: For each altimetry overpass a near-coincident image is used to derive the ice-
berg’s outline at the time of the new overpass (red, panel a). The new outline is transformed to 
maximize the overlapping area with the previous outline (blue, panel b). This is done iteratively, 
so we know the transformation of the previous polygon with respect to the initial polygon (black) 
and can transform the new overpass to the initial situation (panel c). We then grid the new track 
on the same grid as the initial freeboard measurements and difference it with these initial 
heights (panel d) 

The CryoSat-2 data are processed from Level 1B baseline D using the Centre for Polar Observa-

tion and Modelling sea ice processing system (Tilling et al., 2018). For consistency, a common 

threshold retracker is applied to measurements acquired in both SAR and SAR interferometric 

mode and over all surface types. Iceberg freeboard is calculated by subtracting the adjacent 

mean sea surface height from the iceberg surface height. For ICESat-2 we use Level 2A, ATL03 

photon data as a primary product, because iceberg heights are filtered out in the higher level 

products. For each track, we analyze the three strong beams separately and discard the weak 

beams. Low confidence flagged photons (2 and below) are filtered out and 150 photons each 

are averaged along-track, to reduce noise. We then extract the mean sea surface height, 

ocean tides and inverted barometer effect from Level 3A version 3 ATL07 data, interpolated to 

the ATL03 locations. These are subtracted from the photon heights, yielding sea surface heights 

that agree with the ATL07 sea surface heights, and to derive iceberg freeboard. Finally, we dis-
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card freeboard measurements from both altimeters below 20 and above 100 m and measure-

ments outside the iceberg polygon derived from the near-coincident satellite imagery. To make 

the higher resolution ICESat-2 data comparable to the initial heights derived from CryoSat-2, we 

also filter out crevasses searching for local minima with a prominence of 3 or more and reject 

the outer 2 km at the edges. 

Uncertainty estimates are a combination of the freeboard standard deviations and the impact 

of the colocation uncertainty. The colocation uncertainty is mainly caused by the time separa-

tion between the altimetry overpass and the corresponding image. We perform a Monte Carlo 

simulation using 1000 samples that are normally distributed around the estimated translation 

and rotation assuming a maximum (3 sigma) daily rotation of 15 degrees and a maximum trans-

lation based on the drift speed of the iceberg scaled by the time separation. The drift speed is 

calculated as the path distance (Greene et al., 2017) from the locations given in the Antarctic 

Iceberg Tracking database (Budge and Long, 2018). We then calculate the freeboard difference 

for each of the 1000 slightly differently colocated samples and take their standard deviation as 

an estimate of the impact of erroneous colocation. This colocation uncertainty is combined with 

the standard deviations of the initial freeboard and of the new overpass using uncertainty prop-

agation. The freeboard standard deviations are calculated within each grid cell. When the whole 

track is averaged to derive the mean freeboard change at one point in time, the uncertainties of 

the involved grid cells are propagated. Rather than assume that our freeboard measurement 

errors are not correlated in space or time, we employ a more conservative approach and prop-

agate the uncertainties using a full covariance matrix to account for their correlation (Storto et 

al., 2019). In the absence of independent freeboard measurements for verification, we assume 

that altimeter-derived freeboards recorded along the same track are 60 % correlated and that 

the initial freeboards, which are derived from measurements acquired along several independ-

ent tracks, are 30% correlated. The mean standard deviation of the calculated freeboard change 

is 0.45 m, with colocation contributing 22 %, the initial freeboard contributing 29 % and the new 

track contributing 49 %.  

Iceberg thickness 𝐻  is derived from iceberg freeboard ℎfb  assuming hydrostatic equilibrium 

(Eq. 1). We treat ICESat-2 and CryoSat-2 measurements in the same way, presuming neither 

penetrates the snow layer. Because the iceberg survives for several years and travels a long dis-

tance passing through varying environmental conditions, we model the evolution of the snow 

layer and iceberg density based on ERA5 Reanalysis data (Copernicus Climate Change Service, 

2018) of air temperature, wind speed and snow accumulation (Figure 3.4, Braakmann-Folgmann 

et al., 2021). The iceberg’s column-average density 𝜌𝑖 reduces from 868 to 848 kg m-3 during its 
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drift (Ligtenberg et al., 2011), because the densest, pure glacial ice is melted from the bottom. 

We estimate the uncertainty in the column average and basal ice densities to be 10 kg m-3 (Dryak 

and Enderlin, 2020) and 2 kg m-3, respectively. The density of the surface snow layer 𝜌𝑠 reaches 

465 kg m-3 after 3.5 years (International Organization for Standardization, 1998) and snow depth 

ℎ𝑠 increases by 3.3 m. We estimate the snow density and depth uncertainties to be 50 kg m -3 

(Kurtz and Markus, 2012) and 20 % (Kwok and Cunningham, 2008), respectively. As sea water 

density 𝜌𝑤 we use 1024 kg m-3 (Fichefet and Morales Maqueda, 1999) with an uncertainty of 

2 kg m-3. Altogether, the mean uncertainty in thickness change is 5.3 m, with ice density uncer-

tainty being the largest factor. To obtain a continuous representation of iceberg thickness in 

space and time, we fit a third order polynomial function of latitude, longitude and time to our 

observations of thickness change and combine this with the initial thickness map (supplemen-

tary animation, Braakmann-Folgmann et al., 2022).  

𝐻 =
𝜌𝑤

𝜌𝑤−𝜌𝑖
ℎfb −  

(𝜌𝑤−𝜌𝑠)

𝜌𝑤−𝜌𝑖
ℎ𝑠        (1) 

 

Figure 3.4: Evolution of iceberg properties based on ERA-5 Reanalysis data (Copernicus Climate 
Change Service, 2018): (a) Iceberg density and snow density; (b) snow depth and snow water 
equivalent (SWE) 

Iceberg volume is determined by multiplying iceberg thickness and area, interpolated to the 

times of the altimetry overpasses. Changes in the volume of the mother iceberg are then 

calculated by differencing each volume estimate to the initial value. We differentiate between 

volume loss through fragmentation (area loss) and volume loss through basal melting (thickness 

change) by keeping either thickness or area constant. To convert volume change to mass change, 

https://ars.els-cdn.com/content/image/1-s2.0-S0034425721005757-mmc1.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S0034425721005757-mmc1.mp4
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we multiply the loss due to fragmentation by the column-average ice density at each point in 

time, and we multiply the basal thickness change by the density of pure glacial ice. Summing 

both components gives the total iceberg mass change. Uncertainties are propagated, and we 

find that the uncertainties in area and thickness change contribute 45 % and 55 %, respectively, 

to the uncertainty of volume change.  

3.3. Results  

The initial area of the A68A iceberg was 5719 ± 77 km2. Since A68A and A68B separated just 

after calving (Budge & Long, 2018, Figure 3.5a), our initial polygon shows the outline of the A68A 

iceberg and all our results relate to A68A. During its lifetime, the iceberg’s area gradually re-

duced both through larger break-ups and continuous processes (Figure 3.1 and Figure 3.6a). A 

larger break-up took place between 2018 and 2019 and another large piece, A68C, was lost in 

April 2020. In December 2020, the A68A iceberg gave birth to several children icebergs, named 

A68D-A68F (Budge and Long, 2018), rapidly reducing the area of the remaining largest part. 

Apart from these sudden losses, iceberg area also reduced gradually through side melting and 

smaller edge-wastings. Overall, the iceberg lost 3206 ± 78 km2 up to 7 January 2021, when our 

last thickness measurement is, and 5052 ± 106 km2 by 4 March 2021 - a 56 ± 8 % and 88 ± 4 % 

reduction in area of the mother iceberg, respectively. We find distinct patterns of area change 

according to the iceberg’s geographical location (Figure 3.6a), with a mean loss rate of 200 ± 

82 km2 per year in the Weddell Sea and a more than ten times higher loss rate of 2807 ± 199 km2 

per year in the Scotia Sea until 7 January 2021, when the iceberg is drifting in open ocean.  

The maps of initial iceberg freeboard and thickness (Figure 3.2 and Figure 3.5a) reveal the ice-

berg’s topography. The mean gridded initial freeboard is 36.0 ± 0.2 m and the mean estimated 

initial iceberg thickness is 235 ± 9 m. The iceberg was thicker on the side facing the Antarctic 

Peninsula and thinnest on the Southern tip, where the crack which separated the iceberg from 

the ice shelf started (Jansen et al., 2015), and in the North. Moreover, the iceberg is covered by 

longitudinal surface structures in the former ice shelf flow direction of a few meters depth, 

which extend across the iceberg’s full width and are a few kilometers wide, widening towards 

the sea. These are not visible in optical or radar imagery, but revealed by the thickness. One of 

these features coincides with a suture zone (Jansen et al., 2013). Owing to the undulating to-

pography, gridded freeboard heights range from 22.1 to 42.6 m, and this motivates our coloca-

tion of subsequent altimetry tracks to improve confidence in estimates of freeboard and thick-

ness change.  
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Figure 3.5: Maps of the A68A iceberg thickness when it was still part of the Larsen-C Ice Shelf (a) 
and at later dates as it drifted through the Weddell and Scotia Seas (b-d). The initial thickness is 
superimposed on a Sentinel-1 image acquired on 10 July 2017, and the region from which A68B 
was formed is also indicated. On later dates, the iceberg thickness is computed at colocated 
altimetry overpasses (outlined gridcells, shaded according to date relative to the interval start) 
and modelled at the mid-point of each interval elsewhere 

The iceberg freeboard stays almost constant while in the Weddell Sea with a mean freeboard 

loss of 0.2 ± 0.1 m/year (Figure 3.6b), but starts to rapidly decrease once it enters the Scotia Sea, 

where the mean rate of freeboard lowering is 5.7 ± 0.4 m/year. Marking the location of each 

track, we observe that the initially southern part of the iceberg is the most resilient to melting. 

This explains the positive outliers in the time series, which all stem from the southern part. For 

thickness change (Figure 3.5, Figure 3.6c and supplementary animation) we record a total re-

duction of 67 ± 5 m, leaving the iceberg with a mean thickness of 168 ± 10 m close to South 

Georgia. The mean melt rates are 7.8 ± 2.1 m/year in the Weddell Sea and 49.5 ± 6.5 m/year in 

the Scotia Sea (3.0 ± 0.8 m/month in the Southern and 7.2 ± 2.3 m/month in the Northern Scotia 

Sea). We find good agreement (average RMSE 10 m, maximum RMSE 22 m) between our ob-

served iceberg thickness and the model fit (Figure 3.5). Another finding from our study is that 

CryoSat-2 and ICESat-2 freeboard and thickness measurements over the iceberg are comparable 

and can be merged into a consistent time series (see Figure 3.6b, c - especially the tracks on 5 

and 16 May 2020, which are close in time).  

https://ars.els-cdn.com/content/image/1-s2.0-S0034425721005757-mmc1.mp4
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Figure 3.6: Time series of changes in the A68A iceberg area (a), freeboard (b), thickness (c) and 
volume (d). The vertical line marks 21 January 2020, when the iceberg moved from the Weddell 
to the Scotia Sea (see Figure 3.1). In panel (a) the background shading indicates sea ice concen-
tration around the iceberg (OSI SAF, 2021) and in panel (c) the background shading indicates 
ocean temperature at the iceberg’s base (Boyer et al., 2018) 

The A68A iceberg’s initial volume was 1346 ± 53 km3. After 3.5 years, the volume of the mother 

iceberg had reduced by 924 ± 27 km3 (Figure 3.6d), which is 69 ± 3 % of its initial value. Converted 

to mass loss this corresponds to 802 ± 34 Gt lost from the mother iceberg. Fragmentation makes 
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up for 68 ± 5 % of the total mass loss and basal melting accounts for the remaining 32 ± 3 %. 

While both processes contribute roughly equally in the Weddell Sea and increase as the iceberg 

drifts northwards, fragmentation becomes the dominant wastage factor as the iceberg falls 

apart and forms numerous children icebergs in the Northern Scotia Sea (Figure 3.6d, Table 3.1). 

The total loss through basal melting (277 ± 19 km3 or 254 ± 17 Gt) can be considered as a lower 

estimate of the immediate freshwater flux along the iceberg’s trajectory. However, smaller edge 

wastings will add to this and also larger children icebergs will eventually melt, but not necessarily 

at the location where they are lost. 

Table 3.1: Annual change in the A68A iceberg area, thickness and volume in different regions 
along its trajectory. 

Annual loss rate Weddell Sea Scotia Sea Scotia Sea South Scotia Sea North 

Area [km2/year] -200 ± 82 -2807 ± 199 -1205 ± 286 -7400 ± 298 

Thickness [m/year] -7.8 ± 2.1 -49.5 ± 6.5 -36.4 ± 9.5 -86.9 ± 27.4 

Volume [km3/year] -87.3 ± 21.0 -729.4 ± 50.4 -418.3 ± 75.7 -1621.7 ± 116.0 

..through fragmen-

tation -44.7 ± 18.5 -538.3 ± 47.0 -244.1 ± 59.2 -1323.0 ± 90.9 

..through melting -42.6 ± 11.3 -191.2 ± 25.9 -174.2 ± 46.0 -298.7± 94.5 

3.4. Discussion 

Our findings compare well with previous studies of the Larsen-C Ice Shelf and of icebergs that 

followed similar trajectories. For example, our initial iceberg density of 868 kg m -3 is consistent 

with the estimated ~15 m firn air content derived from airborne observations (Holland et al., 

2011) and our estimates and spatial distribution of initial iceberg thickness and freeboard agree 

very well with ice drafts derived from the same airborne campaign (Holland et al., 2009) and 

from in situ measurements collected along the suture zone (Jansen et al., 2013). Lopez-Lopez et 

al. (2021) estimated the area of A68A between 22 July 2017 and 26 January 2019 using a largely 

automated approach, and found a decrease of ~210 km2, which is close to our estimate of 

236 km2 over a similar period (22 July 2017 to 22 January 2019). Scambos et al. (2008) identified 

three types of breakup for the A22A iceberg, which took a similar path: rift calvings, edge 

wastings and rapid disintegration. The breakups of A68B and A68C were probably rift calvings 

along pre-existing fractures; the breakup of numerous children icebergs in the last few months 

of our survey were rapid disintegration likely caused by surface melting, and edge-wasting and 

side-melting are likely the reason for the remaining area reductions (Figure 3.6a).  
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Previous studies have also reported similar rates of iceberg freeboard and thickness change. 

Scambos et al. (2008) recorded no change in freeboard (0 ± 1.3 m) for the A22A iceberg over 17 

months until it reached the tip of the Antarctic Peninsula and a reduction by 11.7 ± 2.3 m/year 

during its passage to South Georgia; we find similar rates for A68A of 0.2 ± 0.1 m/year and 

5.7 ± 0.4 m/year in the same locations. This comparison also shows that our colocation improves 

the melt rate accuracy with respect to using tracks that only sample similar parts of the iceberg. 

Han et al. (2019) estimated the rate of thickness change of A68A to be 12.89 ± 3.34 m/year 

between February and November 2018 at sparse crossing points of CryoSat-2 ground tracks. 

Although we do not have measurements for the same period, interpolation of our colocated 

estimates suggests a value of 7.0 ± 0.8 m which is in reasonable agreement. In the Weddell Sea, 

Jansen et al. (2007) report melt rates in the range 0 to 12 m per year for the A38B iceberg, in 

good agreement with our estimate of 7.8 ± 2.1 m/year for A68A. Iceberg melting increases sig-

nificantly in the Scotia Sea, and our estimate of 49.5 ± 6.5 m/year for A68A is almost identical to 

the value of ~48 m/year found by Jansen et al. (2007) for A38B. Bouhier et al. (2018) recorded 

melt rates for the B17A iceberg of 68.4 m/year in Scotia Sea South and 180 m/year in the Scotia 

Sea North. These values are approximately double the melt rates we have calculated for A68A 

in the same location (Table 3.1). A possible explanation could be that B17A started out with 

significantly higher freeboard of around 50 m, which means that its draft was exposed to ocean 

currents at a greater depth, where the water temperature is higher (Boyer et al., 2018).  Con-

cerning the contributions of melting and breakage, Tournadre et al. (2015) found that melting 

contributes only 18 % over the whole life cycle of all large Antarctic icebergs – which is a slightly 

lower estimate than the 32 % which we find for A68A during our study period. However, previ-

ous studies (Bouhier et al., 2018; Scambos et al., 2008) found that fragmentation becomes the 

dominant factor towards the end, which is also apparent from our data (Figure 3.6d, Table 3.1), 

and calculating volume loss until e.g. March 2021 (when our area change time series ends) would 

have likely increased the share of fragmentation. 

The very distinct melt rates in the Weddell and Scotia Sea can be explained by the different 

environmental conditions: First of all, icebergs experience significantly higher water and air tem-

peratures in the Scotia Sea compared to the Weddell Sea (Scambos et al., 2008; see also Figure 

3.6c and 3.7b). Based on our four averaged data points, we find high correlation (0.99) between 

the ocean temperature at the iceberg’s base and iceberg thinning rates (Figure 3.7b). Secondly, 

icebergs drifting freely in the Scotia Sea (Schodlok et al., 2006) are no longer sheltered by sea 

ice (Figure 3.6a, 3.7a), exposing them to wave erosion at the sides, forming a subsurface ‘foot’, 

which leads to calving owing to buoyancy stress (the so-called ‘footloose mechanism’; Wagner 
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et al., 2014). Apart from wave erosion at the waterline, ocean swell also induces strain on the 

iceberg, which can lead to crevasse and rift propagation (Li et al., 2018). The correlation between 

sea ice concentration and iceberg fragmentation is lower (-0.71), but still significant (Figure 

3.7a). Our observation that the initially southern part of the iceberg seems more stable (Figure 

3.6b) could be explained by the fact that this part is thinner (Figure 3.2a and Figure 3.5a) and 

therefore comes into contact with ocean water of a different temperature or current speed, as 

these are the two main drivers of iceberg melting (Bigg et al., 1997). In principle the iceberg 

could also have tilted to adjust its balance after break-offs from the northern part. Interestingly, 

we observe a notable thickness change in the Weddell Sea, although hardly any freeboard 

change was observed. This is because freeboard loss associated with basal melting and free-

board gain due to snow accumulation even out and hence a slow basal melting process can only 

be observed, when a snow layer is included in the calculations (Braakmann-Folgmann et al., 

2021). 

 

Figure 3.7: Scatter plots linking the iceberg decay processes to the environmental conditions: 
Fragmentation rate compared to sea ice concentration (a) and thinning rate compared to ocean 
temperature (b) in different regions along the trajectory 

To constrain the intrusion of fresh water and nutrients, it is essential to determine where and 

by how much icebergs are melting (Silva et al., 2006). While volume loss due to basal melting 

serves as a lower bound estimate of freshwater and nutrient input, some of the area loss due to 

sidewall melting and edge-wastings also contribute, but are difficult to quantify in satellite ob-

servations. Children icebergs and larger edge-wastings, which form in larger calving events, 

travel further and take more time to melt (Tournadre et al., 2016). How quickly these melt de-

pends on their size and the surrounding ocean conditions (Rackow et al., 2017; Stern et al., 

2016); along the A68A trajectory, for example, melt rates vary from 10 to 100 m/year (Table 3.1) 

and ocean temperature at the iceberg’s base increases from -1.8°C to just over +1°C (Figure 

3.6c). Children icebergs of sufficient length will also fragment further (England et al., 2020). And 
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unlike large tabular icebergs, smaller icebergs with lengths similar to their thickness frequently 

roll over (Hamley and Budd, 1986). To track the entire freshwater and nutrient input, the trajec-

tories and melting of all fragmented pieces would have to be considered. Furthermore, the 

amount of bioavailable iron and nutrients delivered by icebergs also depends on the amount of 

sediments contained in the iceberg (Raiswell et al., 2016). 

Despite these unknowns, our observations allow for an initial assessment of A68A’s impact on 

the ecosystem around South Georgia through scouring, melting and blockage. The closest rec-

orded distance to the island was 62 km on 15 December 2020 with a mean draft of 141 ± 11 m. 

Seafloor bathymetry reveals a couple of shallower features within a distance of 52-65 km to the 

southern coastline (Figure 3.1), where the iceberg could have grounded and where other ice-

bergs may do so in future. Although A68A did not ground, it likely hit one of these features while 

turning (Figure 3.1b). The shallowest bathymetry beneath the iceberg locations captured in sat-

ellite imagery is 150 m (O. Hogg et al., 2016). Although any scouring on the sea bed destroys the 

local benthic fauna (Barnes, 2017; Gutt, 2001), A68A’s turn will have affected only a small area. 

As it fragmented into smaller pieces, the risk of blockage to foraging grounds (Kooyman et al., 

2007) for the millions of penguins and seals, raising their offspring on South Georgia (Clarke et 

al., 2012; Joiris et al., 2015), was largely averted. For future icebergs, this scenario is most likely 

at the western tip of the island, where icebergs of similar draft can approach up to a few kilo-

meters. However, birds, seals and whales that regularly feed in the highly productive waters 

surrounding South Georgia (Atkinson et al., 2001; Joiris et al., 2015) could also be influenced by 

the large amount of melt water and nutrients released by icebergs as they drift near to the is-

land, altering the ocean properties and plankton occurrence (Arrigo et al., 2002; Smith et al., 

2013; Vernet et al., 2012). Overall, A68A spent at least 96 days (28 November 2020 to 4 March 

2021, when our observations end) within 300 km off the coastline. Assuming its children ice-

bergs melted at the same rate of 0.43 ± 0.17 m per day, we estimate that 152 ± 61 Gt of fresh 

water mixed with nutrients was released during this time. More research should be conducted 

to study the impact of this alteration on the marine life around South Georgia. As this is a com-

mon iceberg trajectory, our results could also help to predict the disintegration of other large 

tabular icebergs and to include their impact in ocean models (England et al., 2020; Martin and 

Adcroft, 2010; Rackow et al., 2017).  
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3.5. Conclusions 

We have characterized the evolution of the A68A iceberg from its calving off the Larsen-C Ice 

Shelf in July 2017 to its disintegration close to South Georgia in early-2021. Although the iceberg 

was tabular, it had significant undulations in topography across its surface. Thus, accurate colo-

cation of the iceberg’s orientation is required to derive reliable estimates of its freeboard and 

thickness change over time from satellite altimetry. We estimate that the average iceberg thick-

ness reduced from 235 ± 9 m at calving to 168 ± 10 m near South Georgia. Combined with ob-

servations of its area change determined from satellite imagery, we estimate an initial volume 

of 1346 ± 53 km3 and 802 ± 34 Gt of ice loss from the main iceberg in 3.5 years. Around one third 

(254 ± 17 Gt) of the mass loss was through basal melting, which provides a lower bound estimate 

of the direct freshwater input along the iceberg’s trajectory. Losses due to side melting and 

break-offs of smaller pieces will add to the immediate freshwater flux, and larger children ice-

bergs will also contribute as they melt. Near South Georgia we estimate a fresh water input of 

152 ± 61 Gt over ~3 months, potentially impacting the island’s rich ecosystem. We confirm that 

the distinct environmental conditions in the Weddell and Scotia Sea lead to rapidly increasing 

rates of melting and fragmentation once icebergs travel north of the Antarctic Peninsula. Our 

detailed maps of the A68A iceberg thickness change (Braakmann-Folgmann et al., 2022) will be 

useful for investigations of the impact of this calving event on the stability of the Larsen-C Ice 

Shelf, and for more detailed studies on the effects of meltwater and nutrients released in the 

vicinity of South Georgia. As this is a common iceberg trajectory, our results could also help to 

model the disintegration of other large tabular icebergs that take a similar path and to include 

their impact in ocean models. 
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Abstract 

Icebergs release cold, fresh meltwater and terrigenous nutrients as they drift and melt, influenc-

ing the local ocean properties and encouraging sea ice formation and biological production. To 

locate and quantify the fresh water flux from Antarctic icebergs, changes in their area and thick-

ness have to be monitored along their trajectories. While the locations of large icebergs are 

tracked operationally by manual inspection, delineation of their extent is not. Here, we propose 

a U-net approach to automatically map the extent of giant icebergs in Sentinel-1 imagery. This 

greatly improves the efficiency compared to manual delineations, reducing the time for each 

outline from several minutes to less than 0.01 sec. We evaluate the performance of our U-net 

and two state-of-the-art segmentation algorithms on 191 images. For icebergs, larger than cov-

ered by the training data, we find that U-net tends to miss parts. Otherwise, U-net is more robust 

to scenes with complex backgrounds, ignoring sea ice, smaller patches of nearby coast or other 

icebergs and outperforms the other two techniques achieving an F1 score of 0.84 and an abso-

lute median deviation in iceberg area of 4.1 %.  

4.1. Introduction 

Icebergs influence the environment along their trajectory through the release of cold fresh wa-

ter mixed with terrigenous nutrients (Duprat et al., 2016; Helly et al., 2011; Jenkins, 1999; 

Merino et al., 2016; Smith et al., 2007; Vernet et al., 2012). The more they melt, the higher the 

impact. However, this melting is not linear, but depends on the surrounding ocean temperature, 

current speed and many other variables that are hard to model or observe (Bigg et al., 1997; 

Bouhier et al., 2018; England et al., 2020; Jansen et al., 2007; Silva et al., 2006). Calculating fresh 

water input from satellite observations is possible and can partially be automated, but requires 

manual delineations of the iceberg outlines to calculate changes in iceberg area and to collocate 

altimetry tracks with a map of initial iceberg thickness to estimate basal melting (Braakmann-

Folgmann et al., 2022, 2021). Here, we present an automated approach using a U-net 

(Ronneberger et al., 2015) to segment giant Antarctic icebergs in Sentinel-1 images and hence 

to derive their outline and area. 

A number of methods have been proposed to automatically detect and segment icebergs in 

satellite radar imagery. Early work by Willis et al. (1996) was based on a simple thresholding 

technique and limited to certain iceberg sizes of a few hundred meters and certain wind condi-

tions. Later, the Constant False Alarm Rate (CFAR) thresholding technique has been applied to 

detect icebergs in the Arctic (Frost et al., 2016; Gill, 2001; Power et al., 2001). Wesche and 
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Dierking (2012) also used a threshold based on a K-distribution fitted to observed backscatter 

coefficients of icebergs, sea ice and open ocean followed by morphological operations. Mazur 

et al. (2017) developed an algorithm for iceberg detection in the Weddell Sea based on thresh-

olds for brightness, shape, size, etc. at five scale levels applied to ENVISAT ASAR data. Apart from 

thresholding, edge-detection techniques have been applied: Williams et al. (1999) used a stand-

ard edge-detection technique followed by pixel bonding (Sephton et al., 1994) applied to ERS-1 

images during austral winter to detect and segment icebergs in East Antarctica. Silva and Bigg 

(2005) extended this to ENVISAT images and improved the algorithm by using a slightly more 

sophisticated edge detection technique followed by a watershed segmentation and a classifica-

tion step that takes area and shape into consideration, but also requires manual interventions. 

Collares et al. (2018) use the k-means algorithm (Macqueen, 1967) to segment icebergs, which 

are then manually tracked. Koo et al. (2021) employ a built-in segmentation technique similar 

to k-means using Google Earth Engine to segment Sentinel-1 images and then apply an incidence 

angle-dependent brightness threshold to find icebergs. Calculating the similarity of the distance 

to centroid histograms of all detected icebergs, they then track one specific giant iceberg (B43). 

The most elaborate algorithm has been proposed by Barbat et al. (2019) using a graph-based 

segmentation and Ensemble Forest Committee classification algorithm with a range of hand-

crafted features.  

Despite the quantity and variety of previous approaches, a range of limitations has so far hin-

dered the operational application of an automated iceberg segmentation algorithm. Overall, 

previous studies have focused on smaller icebergs and perform worse for larger ones or are not 

even applicable there (Mazur et al., 2017; Wesche and Dierking, 2012; Willis et al., 1996). Our 

work extends previous studies with the goal is to delineate specific giant icebergs. Giant icebergs 

make up a very small part of the total iceberg population, but hold the majority of the total ice 

volume (Tournadre et al., 2016), which makes them the most relevant for freshwater fluxes. 

Apart from iceberg size, there are many remaining challenges, resulting from the variable  ap-

pearance of icebergs as well as the surrounding ocean or sea ice in SAR imagery (Ulaby and 

Long., 2014). Some of the existing techniques are therefore limited to austral winter images and 

still require manual intervention (Silva and Bigg, 2005; Williams et al., 1999). Dark icebergs re-

main a problem for all existing methods using SAR images. Many studies also report degrading 

accuracies in high wind conditions (Frost et al., 2016; Mazur et al., 2017; Willis et al., 1996). 

Deformed sea ice or sea ice in general is also mentioned to lead to false detections (Koo et al., 

2021; Mazur et al., 2017; Silva and Bigg, 2005; Wesche and Dierking, 2012; Willis et al., 1996) . 

And finally clusters of several bergs and berg fragments too close to each other have been found 
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to pose a problem (Barbat et al., 2019a; Frost et al., 2016; Koo et al., 2021; Williams et al., 1999). 

Our work aims to delineate icebergs in a variety of environmental conditions as accurately as 

possible using a deep learning technique. 

Deep neural networks can encode the most meaningful features themselves and are able to 

learn more complex non-linear relationships. They therefore outperform classic machine learn-

ing techniques in most tasks (LeCun et al., 2015; Schmidhuber, 2015). U-net is a neural network 

that was originally developed for biomedical image segmentation (Ronneberger et al., 2015). It 

has since been applied to many other domains including satellite images and polar science 

(Andersson et al., 2021; Baumhoer et al., 2019; Dirscherl et al., 2021; Mohajerani et al., 2021, 

2019; Poliyapram et al., 2019; Singh et al., 2020; Stokholm et al., 2022; Surawy-Stepney et al., 

2023; Zhang et al., 2019). U-net works well with few training examples, trains quickly and still 

achieves very good results (Ronneberger et al., 2015). A comparison between three network 

architectures (Deeplab, DenseNet and U-net) for river ice segmentation found that U-net pro-

vided the best balance between quantitative performance and good generalization (Singh et al., 

2020). Baumhoer et al. (2019) used a U-net architecture to automatically delineate ice shelf 

fronts in Sentinel-1 images with good success (108 m average deviation). As the calving front to 

ocean boundary looks very similar to an iceberg to ocean boundary and both goals have to deal 

with comparable problems like near-by sea ice and varying appearance of the ice, ocean and sea 

ice surfaces, we decided to also employ a U-net.  

4.2. Data and methods 

This section describes the Sentinel-1 input data, generation of the manually derived outlines for 

training, validation and testing, the implementation of two standard segmentation methods and 

our U-net architecture. The goal is to derive the outlines of Antarctic icebergs, which are large 

enough to receive a name and to be tracked operationally. Therefore, we aim to generate a 

binary segmentation map, where the biggest iceberg present is selected and everything else – 

including smaller icebergs, iceberg fragments and adjacent land ice – is considered as back-

ground. This approach differs from most previous work, where the goal has been to find all ice-

bergs and is targeted to monitor changes in area of these large bergs, but also to track how the 

icebergs rotate and to use their outline to automatically colocate altimetry overpasses 

(Braakmann-Folgmann et al., 2022). 
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4.2.1. Sentinel-1 input imagery  

The Sentinel-1 satellites measure the backscatter of the surface beneath them using Synthetic 

Aperture Radar (SAR). In contrast to optical imagery, SAR provides data throughout the polar 

night and independent of cloud cover (Ulaby and Long., 2014), which is frequent over the South-

ern Ocean. The Sentinel satellites are an operational satellite system with free data availability 

(Torres et al., 2012).  Sentinel-1a (2014-present) and Sentinel-1b (2016-2022) had a combined 

repeat cycle of 6 days (Torres et al., 2012), but the polar regions are sampled more frequently. 

We use the Level 1 Ground Range Detected (GRD) data. Depending on the geographic location 

around Antarctica, data are collected in either interferometric wide (IW) or extra wide (EW) 

swath mode. IW is a 250 km wide swath with 5 x 20 m native spatial resolution and EW is a 400 

km wide swath with 20 x 40 m native resolution. We use both modes depending on availability. 

While HH (horizontal transmit and horizontal receive) polarised data are available across the 

Southern Ocean, HV (horizontal transmit and vertical receive) data are only available in some 

parts. As icebergs drift across these acquisition masks and HH has been found to give the best 

results for iceberg detection (Sandven et al., 2007), we use the HH polarised data only. Should 

both modes become available across the Southern Ocean in the future, their collective use might 

be advantageous as icebergs and their surrounding cause different changes in polarisation, 

which could be exploited using e.g. the HH/HV ratio. 

We pre-process and crop the Sentinel-1 images before applying the segmentation techniques. 

First, we apply the precise orbit file, remove thermal noise and apply a radiometric calibration. 

We also multilook the data with a factor of six to reduce speckle and image size, yielding a spatial 

resolution of 240 m. Then we apply a terrain correction using the GETASSE30 (Global Earth To-

pography And Sea Surface Elevation at 30 arc second resolution) digital elevation model and 

project the output on a polar stereographic map with true latitude of 71°S. These pre-processing 

steps are conducted in the Sentinel Application Platform (SNAP). All icebergs that are longer 

than 18.5 km (10 nautical miles) or that encompass an area of at least 68.6 km2 (20 square nau-

tical miles) are named and tracked operationally every week by the National Ice Center (NIC). 

Also slightly smaller icebergs (longer than 6 km) are tracked by the Brigham Young University 

(Budge and Long, 2018), who release daily positions every few years. Therefore, we have a good 

estimate of where each of these giant icebergs should be and cannot only download targeted 

Sentinel-1 images containing these icebergs, but also crop the images around the estimated 

central position to a size of 256 x 256 pixels. Hence, every input image contains a giant target 

iceberg. Some images contain several icebergs and in this case, we are only interested in the 

largest one. To ensure that the largest bergs fit within the image, we rescale images of icebergs 
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with a major axis longer than 37 km (20 nautical miles). As the NIC also provides estimates of 

the semi major axes lengths, we apply the rescaling based on this. The rescaled images have a 

pixel resolution of 480 m instead. For all input images, we scale the backscatter between the 1st 

and 99th percentile to enhance the contrast. In this step, we also replace pixels outside the sat-

ellite scene coverage with ones, and create a mask to discard the same pixels from the predic-

tions.  

 

Figure 4.1: Spatial and temporal coverage of our dataset: The trajectories (by Budge and Long, 
2018) of the seven selected icebergs are colour-coded according to time and black squares indi-
cate the locations of the images used in this study.  

The overall dataset consists of 191 images, showing seven giant icebergs: B30, B31, B34, B35, 

B41, B42 and C34. These are between 54 and 1052 km2 in size. B30 is the only iceberg that is 

initially longer than 37 km, so we rescale the first 27 images, until its length drops below 37 km. 

A further two images of this iceberg are then used at normal resolution. Spatially, we cover dif-

ferent parts of the Southern Ocean including the Pacific and Indian Ocean side with a focus on 

the Amundsen Sea (see Figure 4.1). Temporally, our images span the years 2014-2020 and are 

scattered across all seasons. For each iceberg, the individual images are roughly one month 

apart. Far higher temporal sampling would be possible in terms of satellite image availability, 

but we aim to cover a wide range of environmental conditions, seasons and iceberg shapes and 
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sizes. As these are highly correlated in subsequent images, we decided to use only one image 

per month. 

4.2.2. Grouping of input images according to environmental conditions 

The appearance of icebergs versus the surrounding ocean or sea ice depends on their roughness, 

the dielectric properties (e.g. moisture of the ice) and the angle of satellite overpass (Figure 4.2). 

While calm ocean appears as a dark surface in SAR images, wind roughened sea appears brighter 

depending on the relative wind direction versus the satellite viewing angle (Young et al., 1998). 

Thin sea ice has a similar backscatter to calm sea (Young et al., 1998), but rougher first-year ice 

already exhibits higher backscatter and multi-year ice can reach backscatter values overlapping 

with the range of typical iceberg backscatter (Drinkwater, 1998). Icebergs with dry, compact 

snow are usually bright targets in SAR images (Mazur et al., 2017; Wesche and Dierking, 2012; 

Young et al., 1998). However, surface thawing can reduce the iceberg backscatter significantly 

(Young and Hyland, 1997), meaning that those icebergs have the same or lower backscatter than 

the surrounding ocean and sea ice, and appear as dark objects (Wesche and Dierking, 2012; see 

our Figure 4.2, last column). Furthermore, giant tabular icebergs can exhibit a gradient (Barbat 

et al., 2019b) due to variations in backscatter with the viewing angle (Wesche and Dierking, 

2012) or appear heterogeneous due to crevasses, (see Figure 4.2, third and last column), which 

also complicates segmentation and differentiation from the surrounding ocean and sea ice.  

 

Figure 4.2: Examples of input images (top row) and segmentation maps based on manually de-
rived delineations (bottom row) in different environmental conditions. From left to right these 
are B31 in open ocean, B41 surrounded by sea ice, B42 with nearby fragments, C34 and another 
similar sized iceberg, B41 close to the coast and B30 appearing dark.  

We visually group all input images into different categories to assess the performance in differ-

ent potentially challenging conditions. These groups are open ocean, sea ice, fragments, other 

bergs, coast and dark icebergs (Figure 4.2 shows one example each). We class an image as dark 

iceberg, if the iceberg appears as dark or does not stand out from the background, because both 
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have a similar intensity of grey, making it hard to pick out the berg (Wesche and Dierking, 2012). 

Images that contain coast (i.e. nearby ice shelves or glaciers on the Antarctic continent) are 

grouped into this category. Due to very similar physical conditions, ice-shelves and icebergs are 

hard to differentiate. In some cases, several giant icebergs drift very close to each other and 

both are (partially) visible in our cropped images. If another berg of similar size is present, the 

algorithms might pick the wrong berg and therefore we introduce one group of other bergs. 

There is also one case where a bigger iceberg is partially visible, but we are aiming to segment 

the largest berg that is fully visible (e.g. Figure 4.4h). Fragments occur frequently in the vicinity 

of icebergs, as icebergs regularly calve smaller bits and pieces around their edges. We assign 

images to this category if the fragments pose a challenge because they are so close to the ice-

berg, that they are easily grouped together (Koo et al., 2021). The last challenge is sea ice. Young 

and flat sea ice usually appears homogenous and dark and does not pose a problem. However, 

older, ridged sea ice and other cases where the background appears grey rather than black with 

significant structure (Mazur et al., 2017) are grouped into this category. If the sea ice is not vis-

ually apparent (i.e. young and flat) and the background appears as dark and relatively homoge-

nous or only contains fragments that are further away from the iceberg and hence there is no 

obvious challenge apparent to us, we class these images as open ocean. If several challenges are 

present (e.g. if coast and sea ice are visible), we assign the image to the most relevant group.  

4.2.3. Manual delineation of iceberg perimeters  

Although the goal is to develop an automated segmentation technique, we require manual de-

lineations of iceberg extent for training and evaluation. We manually click the iceberg perimeter 

in GIS software to yield a polygon. The accuracy of such manual delineations is estimated to be 

2-4 % of the iceberg area (Bouhier et al., 2018; Braakmann-Folgmann et al., 2022, 2021). We 

then create a binary map of the same size as the input image, where pixels within the manually 

derived polygon are defined as iceberg and everything else as background to allow a rapid eval-

uation of performance. Some examples of input images and their corresponding segmentation 

maps based on the manual outlines are shown in Figure 4.2. We regard the manually derived 

outlines as the most accurate and use these binary maps to train our neural network and to 

evaluate all automated segmentation techniques. When the area deviation of our automated 

segmentation techniques drops below 2-4 %, their prediction might be more accurate than the 

manual delineation. In any case, automated approaches are advantageous over manual deline-

ations – especially when rolled out for numerous icebergs or in operational applications, as each 

outline takes several minutes to click manually. 
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4.2.4. Iceberg segmentation with k-means and Otsu  

We implement two standard segmentation techniques as a baseline: Otsu thresholding and k-

means. In both cases, we mask out the areas that had no satellite scene coverage by setting 

them to zero (black). For the first segmentation technique, we smooth the input image with a 

5x5 Gaussian kernel. Then we apply the Otsu threshold (Otsu, 1979) yielding a binary image. The 

Otsu threshold is determined automatically based on the image’s greyscale histogram so that 

the within-class variance is minimised. To find an iceberg, we apply connected component anal-

ysis to the binary image and select the largest component. We also experimented with other 

thresholding techniques including adaptive mean and adaptive Gaussian thresholding, but 

found that the Otsu threshold gave the best results. Although different thresholding techniques 

have been proposed for iceberg detection (Frost et al., 2016; Mazur et al., 2017; Power et al., 

2001; Wesche and Dierking, 2012; Willis et al., 1996), to our knowledge none of them have used 

the Otsu method. The second technique is k-means (Macqueen, 1967) with k=2. We use random 

centre initialisation and run the algorithm for 20 iterations. We repeat this 50 times with differ-

ent initialisations and take the result with the best compactness. Afterwards, we also perform a 

connected component analysis and select the largest one. Both our standard segmentation tech-

niques are implemented using the OpenCV library (Bradski, 2000) for Python. K-means and a 

variation of it have also been applied to track selected icebergs by Collares et al. (2018) and Koo 

et al. (2021) respectively.  

4.2.5. Iceberg segmentation with U-net 

We suggest a U-net architecture to segment Sentinel-1 input images into the largest iceberg and 

background, which is based on the original U-net (Ronneberger et al., 2015) with some modifi-

cations. The input images are 256 x 256 one-channel backscatter images (as described in Sec-

tion 4.2.1 and shown in Figure 4.2). The U-net is composed of an encoder that produces a com-

pressed representation of the input image followed by a decoder that constructs a segmentation 

map from the compressed encoding with the same spatial resolution as the input (Figure 4.3). 

The encoder uses a number of convolutional layers and downsampling to generate feature maps 

at increasing levels of abstraction and spatial scale. The decoder uses further convolutional lay-

ers and upsampling to construct the required segmentation map. Cross-links convey feature 

maps from different spatial scales in the encoder to the respective decoder stage, where they 

are combined with contextual feature maps from the decoder layer below. This allows U-net to 

produce accurate segmentations whilst also considering contextual features. We use same pad-

ding in the convolutions and pooling operations, so that the feature maps remain the same size 
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at each level. We also use depth-wise separable convolutions (Chollet, 2017), which are more 

efficient. Furthermore, we added dropout of 0.3 in between the two convolutions per level to 

avoid over-fitting (Srivastava et al., 2014) and residual connections to aid the learning process 

and increase the accuracy (He et al., 2016). The outputs are one-channel 256 x 256 greyscale 

images, representing the probability that each pixel belongs to the iceberg class. During training 

these greyscale output maps are compared with the segmentation maps from our manually de-

rived outlines to alter the network parameters accordingly. When evaluating the validation and 

test data output, we convert the greyscale probability map to a binary output, where 1 corre-

sponds to the iceberg class and 0 to background (everything else), by thresholding it at 0.5. We 

find that the exact threshold has very little impact, as thresholds between 0.1-0.8 reduce the F1 

score by only 0.02 or less. The optimal threshold is 0.3-0.5. As we are only interested in the 

largest iceberg and would like to discard other smaller icebergs and iceberg fragments around, 

we also apply a connected component analysis and select the largest one (Figure 4.3). 

We train and evaluate the network using cross-validation. This means that we train seven dif-

ferent neural networks and always retain the images of one iceberg for testing as an independ-

ent dataset. The exact number of test images varies, as we have between 15 and 46 images per 

iceberg (Table 4.2). Although the images are roughly one month apart and cover a wide range 

of seasons and surroundings overall (e.g. near the calving front, surrounded by sea ice and within 

open ocean), we find that consecutive images of the same iceberg are often similar – both con-

cerning iceberg shape, size and appearance as well as the surrounding. Therefore, we do not 

mix training and test data. On the other hand, and for the same reason, we find that it stabilises 

the training process, if we draw training and validation data from the same set of icebergs. 24 

images are taken as validation data, which is used to set the best performing hyperparameters 

(i.e. network architecture, number of layers, optimizer, learning rate, loss function and batch 

size). It also determines when we stop the learning process to avoid overfitting. Depending on 

which iceberg was picked for testing, this leaves between 121-152 images for training. We also 

tried to augment the data by flipping the training images vertically and horizontally, leading to 

a tripling of the training data, but we found slightly degraded performance (F1 score for the B42 

iceberg used as test data reduces from 0.88 to 0.79). We believe that this is because consecutive 

images already show a similar iceberg shape and size in similar conditions, but with varying ro-

tation and translation through the natural drift. Therefore, in this case data augmentation does 

not help but rather lead to overfitting. We train the network end-to-end using a binary cross 

entropy loss function and a batch size of one. Higher batch sizes had little impact on the perfor-

mance and run time. The Adam optimizer (Kingma and Ba, 2015) is employed with an initial 
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learning rate of 0.001. The learning rate is halved when the validation loss has not decreased for 

eight consecutive epochs. Training is stopped when the validation loss has not improved for 

twenty epochs. In practice, this means that the networks are trained for 57-193 epochs. The 

implementation is done in Python using Keras (Chollet and Others, 2015). Training takes up to 

20 minutes on a Tesla P100 GPU with 25 GB RAM (Google Colab Pro). The prediction for 24 

images takes 0.2 seconds. 

 

Figure 4.3: Modified U-net architecture as used in this paper 
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4.3. Results and discussion 

In this section, we present and discuss the results from the three different approaches (U-net, 

Otsu and k-means). After an overall analysis, we assess the performance for each iceberg and 

evaluate the impact of iceberg size and different challenging environments. Finally, we compare 

our results to previous studies. 

4.3.1. Performance of the three methods 

We evaluate the performance of the three methods compared to the manual delineations using 

a range of metrics. True positives (TP) are all correctly classified iceberg pixels and true negatives 

(TN) are all correctly classified background pixels. False positives (FP) are pixels that were classi-

fied as iceberg, but belong to the background according to manual delineations and false nega-

tives (FN) are iceberg pixels in the manually derived segmentation map, which the algorithm has 

missed and erroneously classified as background. These are the basis for most evaluation met-

rics including the overall accuracy, the F1 score (also known as dice coefficient), misses (also 

known as false negative rate) and false alarms (also known as false positive rate). The detection 

rate is equal to the iceberg class accuracy and can be derived from 1-misses; hence, we do not 

list it separately. In the case of a large class imbalance, the F1 score is much more meaningful 

than the overall accuracy. The iceberg class makes up only 5 % of all pixels, so we focus on the 

F1 score, but list the overall accuracy for completeness. Except the F1 score, all measures are 

given in percent. In addition to these metrics commonly used to evaluate segmentation algo-

rithms, we also examine the accuracy of the resulting area estimates ai. We calculate the mean 

absolute error (MAE) in area, the mean error (area bias) and the median absolute deviation 

(MAD) in area. We focus on the MAD, as it is robust to a few complete failures. However, some 

previous studies have reported the MAE in area, but most have reported the area bias, so we 

also list these for completeness. Areas ai and 𝛼𝑖 are calculated as the sum of all iceberg pixels in 

the prediction and manually derived segmentation map respectively multiplied by the pixel area. 

All area deviations are relative deviations and given in percent compared to the iceberg area in 

the manually derived segmentation map. We also calculate the standard deviation for each met-

ric. Only the MAD is given with the 25 % and 75 % quantiles instead. 

F1 =  
2 TP

 2TP+FN+FP
         (1) 

 

Overall accuracy =  
TN+TP

 TN+TP+FN+FP
       (2) 

 

Misses =
FN

 FN+TP
         (3) 

  

False alarms =
FP

 FP+TN
         (4) 
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MAE =
1

n
 ∑

| ai−αi |

 αi  
𝑛
𝑖=1          (5) 

 

Area bias =
1

n
 ∑

ai−αi 

 αi  
𝑛
𝑖=1         (6) 

 

MAD = median (
| ai−αi |

 αi  
)        (7) 

Comparing the performance of all three techniques, we find that U-net outperforms Otsu and 

k-means in most metrics. It achieves a significantly higher F1 score (0.84 compared to 0.62, Table 

4.1) and generates a lot less false alarms (0.4 % instead of 4.7 and 5.2 %). On the other hand, 

both standard segmentation methods have fewer misses than U-net (9 % and 13 % compared 

to 21 %). On this metric Otsu scores best. In terms of iceberg area, the predictions by U-net are 

much closer to the manually derived outlines in terms of MAE and bias. Otsu and k-means clearly 

suffer from a few total failures with over 100 % deviation, which bias these metrics in their cases. 

The MAD, which is less sensitive to such outliers, is similar for the three methods, with Otsu 

scoring best (3.6 %), followed by U-net (4.1 %) and k-means (5.1 %). The 25 %-quantiles are very 

similar for all three methods (2.0, 2.1 and 2.2 % respectively). On the 75 %-quantiles, U-net 

achieves slightly better results (12.1 % area deviation, compared to 13.8 % and 14.9 % for k-

means and Otsu). This means that 75 % of all U-net predictions deviate from the manually de-

rived area by 12.1 % or less. Overall, U-net scores better in most categories, but tends to miss 

parts and misclassify iceberg as background.  

Table 4.1: Performance metrics with standard deviations of U-net, Otsu and k-means across all 
test data sets (191 images). The median absolute area deviation (MAD) is given with 25 % and 
75 % quantiles instead of standard deviation. Except the F1 score, all measures are percentages. 
Arrows indicate whether high (up) or low (down) numbers are desirable. The best score per 
metric is highlighted in bold. 

 F1 score ↑ 
Overall 

accuracy 
[%] ↑ 

Misses 
[%] ↓ 

False 
Alarms 
[%] ↓ 

MAE in area 
[%] ↓ 

Area bias  
[%] ↓ 

MAD in area 
[%] ↓ 

U-net 0.84 ± 0.30 99 ± 2 21 ± 32 0.4 ± 0.3 15 ± 26 -5 ± 29 
4.1  

[2.1 – 12.1] 

Otsu 0.62 ± 0.34 95 ± 13 9 ± 28 5.2 ± 0.3 170 ± 490 170 ± 490 
3.6  

[2.0 - 14.9] 

k-means 0.62 ± 0.33 95 ± 12 13 ± 28 4.7 ± 0.3 150 ± 460 150 ± 460 
5.1  

[2.2 – 13.8] 

4.3.2. Impact of iceberg size and different environmental conditions 

Next, we evaluate how U-net performs for each of the seven different giant icebergs (Table 4.2, 

shaded in grey), to assess the impact of the chosen test data set and different iceberg sizes. 

Here, we find that B34 gives the best results. The dataset for this iceberg is the smallest (15 

images), meaning that there are more images left for training and the background is usually not 
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too challenging. B41 gives the lowest F1 score. This dataset is the largest one, containing 46 im-

ages, and hence leaves the least images for training. Furthermore, B41 stays very close to its 

calving position for a while, which means that the first 13 images contain a significant amount 

of coast – often directly next to the iceberg (see Figure 4.2 and Figure 4.4j). In these cases all 

techniques pick the coast rather than the iceberg (see following sections). The highest MAD and 

miss rate occur for iceberg B31. Because the images of B30 – our largest berg – are resized, this 

means that B31 appears largest in the images. Therefore, we believe that the large size of the 

berg, which U-net has not seen in the training data, cause U-net to miss parts of the iceberg (e.g. 

Figure 4.4b, f). In general, we find quite variable performance depending on which iceberg is 

retained as test data. This is because the same challenges (e.g. iceberg size, shape, surrounding) 

occur in subsequent images of the same iceberg, even when they are one month apart. It is also 

the reason why we decided to evaluate the methods using cross-validation, as this makes the 

analysis less sensitive to the choice of a single iceberg as test data.  

Table 4.2: Performance of the three methods for each test data set (iceberg). The number of 
images per iceberg and their minimum and maximum size is also given. Note that most images 
of B30 are rescaled, so it appears smaller in the images. Except the F1 score, all measures are 
percentages. Arrows indicate whether high (up) or low (down) numbers are desirable. The best 
score per iceberg and metric are highlighted in bold. 

 F1 score ↑ 
Misses 
[%] ↓ 

False Alarms 
[%] ↓ 

MAD in area 
[%] ↓ 

B30 
29 images 

463-1052 km2 

U-net 0.90 15 0.3 3.3 

Otsu 0.77 9 3.2 2.7 

k-means 0.79 12 2.4 2.4 

B31 
32 images 

79-518 km2 

U-net 0.79 34 0.2 13.6 

Otsu 0.91 5 1.6 3.0 

k-means 0.93 6 1.0 1.9 

B34 
15 images 

97-241 km2 

U-net 0.97 2 0.2 2.1 

Otsu 0.83 1 1.7 1.2 

k-means 0.80 8 1.6 8.3 

B35 
21 images 

62-158 km2 

U-net 0.94 2 0.3 6.9 

Otsu 0.66 9 2.3 7.4 

k-means 0.63 10 2.5 4.0 

B41 
46 images 

54-116 km2 

U-net 0.68 33 0.7 3.5 

Otsu 0.27 13 10.5 3.8 

k-means 0.29 11 10.1 5.6 

B42 
24 images 

142-235 km2 

U-net 0.88 13 0.6 5.4 

Otsu 0.84 6 1.7 8.9 

k-means 0.76 28 1.0 18.7 

C34 
24 images 

61-101 km2 

U-net 0.81 20 0.4 3.7 

Otsu 0.20 36 10.1 4.3 

k-means 0.23 32 9.1 5.2 

 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

111 

 

 
Figure 4.4: Examples of input images (first column) and segmentation maps generated by U-net 
(second and third column showing the probability map and final segmentation map respec-
tively), Otsu (fourth column), k-means (fifth column), and from manual delineations (last col-
umn). We picked these images for illustration to cover each category of environmental condi-
tions twice and to include all icebergs (labelled on the right). 
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Also for Otsu and k-means the performance varies a lot depending on which iceberg is chosen 

as test data. The F1 scores for Otsu range from 0.20 – 0.91, being lowest for C34 and highest for 

B31. Similarly, k-means also reaches the lowest F1 score of 0.23 for C34 and the highest for B31 

of 0.93. Compared to that, U-net is more consistent reaching F1 scores between 0.68 – 0.97, but 

still exhibits significant variability. The fact that Otsu and k-means score so well for B31, also 

indicates that this data set is not hard per se. We rather suspect that we are challenging U-net 

too much when the iceberg in the test data is bigger than any iceberg in the training data. Neural 

networks are known to struggle with a domain-shift, where the test data are from a shifted 

version of the training data distribution and even more with out-of-domain samples from out-

side the training data distribution (Gawlikowski et al., 2021). Both are caused by insufficient 

training data, not or barely covering these examples. Therefore, we recommend expanding the 

training data, before applying U-net operationally or to icebergs larger than covered by the cur-

rent training data set. In contrast, iceberg B41, where U-net reaches the lowest F1 score, poses 

an even greater problem to the other algorithms, meaning that this dataset is actually challeng-

ing. Finally, we observe that U-net achieves the lowest false alarm rate on each iceberg. Otsu 

generates most false alarms (highest rate for six out of seven icebergs), but also achieves the 

lowest miss rate for four out of seven icebergs. Except for B31, U-net consistently achieves the 

highest F1 score. In terms of MAD in area, k-means and U-net score best on three out of the 

seven icebergs each. 

Grouping the images according to the surrounding environmental conditions (see Section 4.2.2) 

allows us to judge how well each method can deal with the respective challenge (Figure 4.4, 

Table 4.3). Open ocean makes up most of the images (46 %) and all methods perform very well 

with F1 scores of 0.93-0.95 and MAD in area of 2.4-3.2 %. The Otsu threshold performs best, but 

the differences between the methods are very small. The two sample images (Figure 4.4a, b) 

also illustrate that the only problem in this category is rather that U-net generally tends to miss 

parts of B31 than open ocean in itself posing a problem.  

Sea ice occurs in 14 % of our images and overall U-net achieves the best F1 score (0.88 compared 

to 0.72 and 0.74), but the Otsu threshold gives a slightly better MAD in area (4.3 % rather than 

4.8 % and 5.4 %). Visually, the U-net predictions seem to be the most robust, as sea ice is dis-

carded reliably. In contrast, the two other methods sometimes connect patches of sea ice to the 

iceberg (Figure 4.4c), but also work fine in other cases (Figure 4.4d). 

Iceberg fragments drifting in the direct proximity of the target iceberg were found in 24 % of our 

images. Overall, k-means scores best in this category with a MAD of 5.7 % compared to 5.9 % 
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and 6.9 %. In terms of F1 score, Otsu and k-means both reach 0.94, whereas U-net only reaches 

0.85. Visually, there are a few instances where Otsu connects more fragments to the iceberg 

than k-means and U-net (Figure 4.4e, f). This might be due to the Gaussian smoothing that we 

apply before the thresholding. We do not apply this step before k-means, and find that k-means 

tends to rather oversegment images, leaving small holes in the inside (Figure 4.4d, e). In the case 

of fragments, however, this turns out to be beneficial, as it allows k-means to reliably separate 

fragments from icebergs, even when they are very close by. The problem for U-net does not 

seem to be the actual fragments itself, as it rarely connects any fragments to the iceberg (Figure 

4.4e, f). However, the images containing fragments are mostly from the large B31 and B42 ice-

bergs, where U-net struggles due to their large extent. This can also be seen from the fact that 

U-net and k-means both generate only 0.4 % false alarms (fragments erroneously connected to 

the iceberg), but U-net has a much higher miss rate. 

In 3 % of all images, another similar sized or bigger berg is (partially) visible. U-net scores best in 

all categories with a large margin, yielding an F1 score of 0.96 compared to 0.12 and 0.11 and 

MAD in area of 5.9 % compared to 11 % and 110 %. Also visually, it becomes clear that U-net 

reliably picks the target iceberg and discards any other ice, while Otsu and k-means often pick 

the wrong berg or connect both with each other (Figure 4.4g, h). Considering iceberg shape and 

size in a tracking scenario could help mitigate this phenomenon, though (Barbat et al., 2021; 

Collares et al., 2018; Koo et al., 2021).  

Coast is present in 8 % of all images and U-net outperforms the other techniques, but also strug-

gles in some cases. The F1 score is 0.34 for U-net and 0.12 and 0.11 for Otsu and k-means re-

spectively. While U-net achieves a MAD of 18 %, the other methods yield over 1000 % each. 

Figure 4.4j illustrates what is happening in these cases: If too much coast is present, all algo-

rithms pick the coast rather than the iceberg (and this is much larger than the iceberg, hence 

1000 % deviation). However, U-net discards smaller parts of the coast around the image edges 

(Figure 4.4i). This is on the one hand because of the sliding convolution window and on the other 

hand, because U-net learns that the iceberg is usually in the centre (as we crop the images 

around the estimated position from operational iceberg tracking databases). Hence, U-net is 

able to correctly pick out the iceberg if not too much coast is present. For the same reason, it is 

easier for U-net to discard other bergs at the image edges. Interestingly, even when a lot of coast 

is present, U-net does not pick the full coast, but predicts either nothing or a small – almost 

iceberg shaped – part of the coast (Figure 4.4j). This could indicate that U-net even learns that 

only ice that is fully surrounded by water is an iceberg. A possible strategy to avoid misclassifi-

cations due to large amounts of coast would be the inclusion of a land mask (Barbat et al., 2019; 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

114 

 

Collares et al., 2018; Frost et al., 2016; Mazur et al., 2017; Silva and Bigg, 2005). However, ice 

shelves and glaciers advance and retreat regularly and especially the calving of icebergs them-

selves significantly alters the land mask. Thus, just after calving, the iceberg itself would be 

within the former land mask and could not be picked up. 

The last category of dark icebergs is the hardest and makes up 5 % of the overall data set. In 

these cases, all methods fail with F1 scores of 0.11-0.12 and the lowest MAD in area of 96 %. 

Again, it is interesting that U-net predicts either very small patches or nothing at all in these 

cases (Figure 4.4k, l), while the other two methods segment large areas of brighter looking 

ocean. Potentially, U-net could learn to segment dark icebergs with a lot more training exam-

ples, but we only had ten such images in our overall data set. Finally, we would like to stress that 

the occurrence of these different environmental conditions will vary and our data set is not nec-

essarily representative of all icebergs. We also find that the influence of iceberg size and envi-

ronmental conditions cannot always be disentangled, as subsequent images of the same iceberg 

are often similar and the different environmental conditions are not spread equally across the 

different test data sets (individual icebergs). 

Table 4.3: Performance of the three methods in different environmental conditions. The first 
column also indicates how often these conditions occur in our data set. Except the F1 score, all 
measures are percentages. Arrows indicate whether high (up) or low (down) numbers are desir-
able. The best values per category and metric are highlighted in bold. 

 
F1 score↑ Misses [%] ↓ 

False Alarms 
[%] ↓ 

MAD in 
area [%] ↓ 

Open ocean 

(46 %) 

U-net 0.93 11 0.1 2.8 

Otsu 0.95 2 0.4 2.4 

k-means 0.95 4 0.3 3.2 

Sea ice 

(14 %) 

U-net 0.88 14 0.3 4.8 

Otsu 0.72 3 2.4 4.3 

k-means 0.74 11 1.7 5.4 

Fragments 
(24 %) 

U-net 0.85 21 0.4 6.9 

Otsu 0.94 2 0.7 5.9 

k-means 0.94 7 0.4 5.7 

Other bergs 
(3 %) 

U-net 0.96 6 0.0 5.9 

Otsu 0.18 66 7.7 110 

k-means 0.10 86 5.7 11 

Coast 
(8 %) 

U-net 0.34 68 1.8 18 

Otsu 0.12 38 29.5 1200 

k-means 0.11 44 28.6 1200 

Dark bergs 
(5 %) 

U-net 0.12 92 1.1 96 

Otsu 0.12 54 34.3 450 

k-means 0.11 62 30.5 460 

 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

115 

 

4.3.3. Comparison to previous studies 

Previous studies state different accuracy measures and due to the slightly different goal to de-

tect all icebergs in a scene rather than finding one giant iceberg and accurately predicting its 

outline and area, they are not straightforward to compare. Two studies employ the k-means 

algorithm (Collares et al., 2018) or a variation of it (Koo et al., 2021), so we have indirectly com-

pared U-net to them. None of them report any of our accuracy measures, though. Many of the 

previous approaches rely on some form of thresholding (Frost et al., 2016; Gill, 2001; Mazur et 

al., 2017; Power et al., 2001; Wesche and Dierking, 2012; Willis et al., 1996). We somehow cov-

ered these methods by comparing U-net to the Otsu threshold, but the exact approaches vary 

and none of them have applied the Otsu threshold. Two of the threshold-based methods report 

estimates for their area deviations. Wesche and Dierking (2012) state that iceberg area was 

overestimated by 10 ± 21 % with their approach. In a following study, they find that for the 

correctly detected icebergs 13.3 % of the total area was missing (Wesche and Dierking, 2015), 

meaning a bias in the opposite direction. Mazur et al. (2017) find positive and negative area 

deviations of ± 25 % on average. For edge-detection based algorithms, Williams et al. (1999) find 

an overestimation of iceberg area by 20 % and Silva and Bigg (2005)’s approach yields an under-

estimation of iceberg area by 10-13 %. These are biases again and both approaches are limited 

to winter images. For U-net, we find a bias of - 5.0 ± 29.1 %, which is lower than previous studies, 

but comes with a relatively high standard deviation due to some complete failures where the 

iceberg is not found at all. Previous studies only compare iceberg areas where icebergs were 

detected successfully. Barbat et al. (2019) report the lowest false positive (2.3 %) and false neg-

ative (3.3 %) rates, and the highest overall accuracy (97.5 %) of all previous studies. While their 

false negative rate is lower than our false negative rate (21 %), U-net achieves a lower false 

positive rate of 0.4 % and higher overall accuracy of 99 %. In a second study, Barbat et al. (2021) 

also analyse the area deviation of the detected icebergs and find average area deviations of 

10 ± 4 %, which is also the best score reported so far. They only consider correctly detected ice-

bergs in this metric, though. We find a MAE of 15 ± 26 % for U-net, which is slightly higher, but 

contains images where the iceberg was not found at all. These cases are not included in Barbat 

et al. (2021)’s estimates. Our MAD, which is less sensitive to such outliers, is 4.1 %, with 25 % 

and 75 % quantiles of 2.1 % and 12.1 %. These metrics compare favourably to all previous stud-

ies. We also demonstrate in our study, that the performance varies depending on the chosen 

test data set and therefore, all measures and comparisons can only give an indication of the real 

performance. Judging from the data we have and comparing our results on this to previous stud-

ies as good as possible, U-net proves to be a very promising approach.  
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Qualitatively, previous studies have found degraded accuracies in challenging environmental 

conditions or excluded these from their datasets. Some studies report false detections due to 

sea ice (Koo et al., 2021; Mazur et al., 2017; Wesche and Dierking, 2012) or only applied their 

algorithm to sea-ice free conditions (Willis et al., 1996). Moreover, several previous studies have 

also encountered problems with clusters of several bergs and berg fragments too close to each 

other (Barbat et al., 2019b; Frost et al., 2016; Koo et al., 2021; Williams et al., 1999). Also U-net 

shows slightly degraded performance in these situations (4.8 and 6.9 % MAD in area compared 

to 2.8 % in open ocean and F1 scores of 0.88 and 0.85 compared to 0.93), but still achieves sat-

isfying results in most of these cases. The challenge of other big bergs does not occur in previous 

studies, since they were looking for all icebergs anyway. In terms of coast, many previous studies 

have employed a land mask (e.g. Barbat et al., 2019; Collares et al., 2018; Frost et al., 2016; 

Mazur et al., 2017; Silva and Bigg, 2005), but might miss newly calved bergs due to that. Finally, 

the problem of dark icebergs has been described in several papers (Mazur et al., 2017; Wesche 

and Dierking, 2012; Williams et al., 1999), but was rarely mentioned in the evaluation. This is 

likely because most previous studies use visual inspection to identify misses and false alarms 

(e.g. Barbat et al., 2019; Frost et al., 2016; Mazur et al., 2017; Wesche and Dierking, 2012; 

Williams et al., 1999). However, dark icebergs are hard to spot in SAR images even for humans, 

so they might be missed by the visual inspection, too, unless in our case we know that there 

must be an iceberg of a certain size and shape that we are looking for. Others limit their method 

to winter images, when dark icebergs do not occur (Silva and Bigg, 2005; Williams et al., 1999; 

Young et al., 1998). 

4.4. Conclusions 

We have developed a novel algorithm to segment giant Antarctic icebergs in Sentinel-1 images 

automatically. It is the first study to apply a deep neural network for iceberg segmentation. Fur-

thermore, it is also the first study specifically targeting giant icebergs. Comparing U-net to two 

state-of-the-art segmentation techniques (Otsu thresholding and k-means), we find that U-net 

outperforms them in most metrics. Across all 191 images, U-net achieves an F1 score of 0.84 and 

a median absolute area deviation of 4.1 %. Only the miss rate of Otsu and k-means is lower than 

for U-net, as we find that U-net overlooks parts of the largest iceberg in our dataset. We believe 

that this issue could be resolved with a larger training data set. U-net can reliably handle a vari-

ety of challenging environmental conditions including sea ice, nearby iceberg fragments, other 

bergs and small patches of nearby coast. It fails when too much coast is visible and when ice-

bergs appear dark, though. In these cases, all existing algorithms fail, but such obvious errors 
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could easily be picked out in a tracking scenario. Also compared to previous studies, we regard 

our results as promising. For an operational application, on the short-term further post-pro-

cessing could be implemented to filter outliers, but on the long run, we would suggest to enlarge 

the training data set.  

References 

Andersson, T.R., Hosking, J.S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, 

D.C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B.B., Blanchard-

Wrigglesworth, E., Aksenov, Y., Downie, R., Shuckburgh, E., 2021. Seasonal Arctic sea ice 

forecasting with probabilistic deep learning. Nat. Commun. 12, 1–12. 

https://doi.org/10.1038/s41467-021-25257-4 

Barbat, M.M., Rackow, T., Hellmer, H.H., Wesche, C., Mata, M.M., 2019a. Three Years of Near-

Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR 

Imagery. J. Geophys. Res. Ocean. 124, 6658–6672. 

https://doi.org/10.1029/2019JC015205 

Barbat, M.M., Rackow, T., Wesche, C., Hellmer, H.H., Mata, M.M., 2021. Automated iceberg 

tracking with a machine learning approach applied to SAR imagery : A Weddell sea case 

study. ISPRS J. Photogramm. Remote Sens. 172, 189–206. 

https://doi.org/10.1016/j.isprsjprs.2020.12.006 

Barbat, M.M., Wesche, C., Werhli, A. V., Mata, M.M., 2019b. An adaptive machine learning 

approach to improve automatic iceberg detection from SAR images. ISPRS J. Photogramm. 

Remote Sens. 156, 247–259. https://doi.org/10.1016/j.isprsjprs.2019.08.015 

Baumhoer, C.A., Dietz, A.J., Kneisel, C., Kuenzer, C., 2019. Automated extraction of antarctic 

glacier and ice shelf fronts from Sentinel-1 imagery using deep learning. Remote Sens. 11, 

1–22. https://doi.org/10.3390/rs11212529 

Bigg, G.R., Wadley, M.R., Stevens, D.P., Johnson, J.A., 1997. Modelling the dynamics and 

thermodynamics of icebergs. cold Reg. Sci. Technol. 26, 113–135. 

https://doi.org/10.1016/S0165-232X(97)00012-8 

Bouhier, N., Tournadre, J., Rémy, F., Gourves-Cousin, R., 2018. Melting and fragmentation laws 

from the evolution of two large Southern Ocean icebergs estimated from satellite data. 

Cryosphere 12, 2267–2285. https://doi.org/10.5194/tc-12-2267-2018 

Braakmann-Folgmann, A., Shepherd, A., Gerrish, L., Izzard, J., Ridout, A., 2022. Observing the 

disintegration of the A68A iceberg from space. Remote Sens. Environ. 270, 112855. 

https://doi.org/10.1016/j.rse.2021.112855 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

118 

 

Braakmann-Folgmann, A., Shepherd, A., Ridout, A., 2021. Tracking changes in the area, 

thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and 

imagery. Cryosphere 15, 3861–3876. https://doi.org/10.5194/tc-15-3861-2021 

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s J. Softw. Tools. 

Budge, J.S., Long, D.G., 2018. A Comprehensive Database for Antarctic Iceberg Tracking Using 

Scatterometer Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 434–442. 

https://doi.org/10.1109/JSTARS.2017.2784186 

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. Proc. - 30th 

IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 1800–1807. 

https://doi.org/10.1109/CVPR.2017.195 

Chollet, F., Others, &, 2015. Keras. 

Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J., Barbat, M.M., 2018. Iceberg drift and ocean 

circulation in the northwestern Weddell Sea, Antarctica. Deep. Res. Part II Top. Stud. 

Oceanogr. 149, 10–24. https://doi.org/10.1016/j.dsr2.2018.02.014 

Dirscherl, M., Dietz, A.J., Kneisel, C., Kuenzer, C., 2021. A novel method for automated 

supraglacial lake mapping in antarctica using sentinel-1 sar imagery and deep learning. 

Remote Sens. 13, 1–27. https://doi.org/10.3390/rs13020197 

Drinkwater, M.R., 1998. Satellite Microwave Radar Observations of Antarctic Sea Ice. Anal. SAR 

Data Polar Ocean. 145–187. https://doi.org/10.1007/978-3-642-60282-5_8 

Duprat, L.P.A.M., Bigg, G.R., Wilton, D.J., 2016. Enhanced Southern Ocean marine productivity 

due to fertilization by giant icebergs. Nat. Geosci. 9, 219–221. 

https://doi.org/10.1038/ngeo2633 

England, M.R., Wagner, T.J.W., Eisenman, I., 2020. Modeling the breakup of tabular icebergs. 

Sci. Adv. 6, 1–9. https://doi.org/10.1126/sciadv.abd1273 

Frost, A., Ressel, R., Lehner, S., 2016. Automated iceberg detection using high resolution X - band 

SAR images. Can. J. Remote Sens. 42. 

https://doi.org/https://doi.org/10.1080/07038992.2016.1177451 

Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., 

Roscher, R., Shahzad, M., Yang, W., Bamler, R., Zhu, X.X., 2021. A Survey of Uncertainty in 

Deep Neural Networks 1–41. 

Gill, R.S., 2001. Operational detection of sea ice edges and icebergs using SAR. Can. J. Remote 

Sens. 27, 411–432. https://doi.org/10.1080/07038992.2001.10854884 

Greene, C.A., Gwyther, D.E., Blankenship, D.D., 2017. Antarctic Mapping Tools for MATLAB. 

Comput. Geosci. 104, 151–157. https://doi.org/10.1016/j.cageo.2016.08.003 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

119 

 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. Proc. IEEE 

Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-Decem, 770–778. 

https://doi.org/10.1109/CVPR.2016.90 

Helly, J.J., Kaufmann, R.S., Stephenson, G.R., Vernet, M., 2011. Cooling, dilution and mixing of 

ocean water by free-drifting icebergs in the Weddell Sea. Deep. Res. Part II Top. Stud. 

Oceanogr. 58, 1346–1363. https://doi.org/10.1016/j.dsr2.2010.11.010 

Jansen, D., Schodlok, M., Rack, W., 2007. Basal melting of A-38B: A physical model constrained 

by satellite observations. Remote Sens. Environ. 111, 195–203. 

https://doi.org/10.1016/j.rse.2007.03.022 

Jenkins, A., 1999. The impact of melting ice on ocean waters. J. Phys. Oceanogr. 29, 2370–2381. 

https://doi.org/10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2 

Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. 3rd Int. Conf. Learn. 

Represent. ICLR 2015 - Conf. Track Proc. 1–15. 

Koo, Y., Xie, H., Ackley, S.F., Mestas-Nunez, A.M., Macdonald, G.J., Hyun, C.-U., 2021. Semi-

automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine. 

Cryosph. 15, 4727–4744. https://doi.org/https://doi.org/10.5194/tc-15-4727-2021 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. 

https://doi.org/10.1038/nature14539 

Macqueen, J., 1967. SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE 

OBSERVATIONS, in: Proceedings of the Fifth Berkeley Symposium on Mathematical 

Statistics and Probability. California: University of California Press., pp. 281–297. 

Mazur, A.K., Wåhlin, A.K., Krężel, A., 2017. An object-based SAR image iceberg detection 

algorithm applied to the Amundsen Sea. Remote Sens. Environ. 189, 67–83. 

https://doi.org/10.1016/j.rse.2016.11.013 

Merino, N., Le Sommer, J., Durand, G., Jourdain, N.C., Madec, G., Mathiot, P., Tournadre, J., 

2016. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea 

ice. Ocean Model. 104, 99–110. https://doi.org/10.1016/j.ocemod.2016.05.001 

Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., Milillo, P., 2021. Automatic 

delineation of glacier grounding lines in differential interferometric synthetic-aperture 

radar data using deep learning. Sci. Rep. 11, 1–10. https://doi.org/10.1038/s41598-021-

84309-3 

Mohajerani, Y., Wood, M., Velicogna, I., Rignot, E., 2019. Detection of glacier calving margins 

with convolutional neural networks: A case study. Remote Sens. 11, 1–13. 

https://doi.org/10.3390/rs11010074 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

120 

 

Otsu, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. 

Man. Cybern. C, 62–66. 

Poliyapram, V., Imamoglu, N., Nakamura, R., 2019. DEEP LEARNING MODEL FOR WATER / ICE / 

LAND CLASSIFICATION USING LARGE-SCALE MEDIUM RESOLUTION SATELLITE IMAGES. 

IGARSS 2019 - 2019 IEEE Int. Geosci. Remote Sens. Symp. 3884–3887. 

Power, D., Youden, J., Lane, K., Randell, C., Flett, D., 2001. Iceberg detection capabilities of 

radarsat synthetic aperture radar. Can. J. Remote Sens. 27, 476–486. 

https://doi.org/10.1080/07038992.2001.10854888 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image 

segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 

Notes Bioinformatics) 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 

Sandven, S., Babiker, M., Kloster, K., 2007. Iceberg observations in the barents sea by radar and 

optical satellite images, in: Proceedings of the Envisat Symposium. 

Schmidhuber, J., 2015. Deep Learning in neural networks: An overview. Neural Networks 61, 85–

117. https://doi.org/10.1016/j.neunet.2014.09.003 

Sephton, A.J., Brown, L.M., Macklin, J.T., Partington, K.C., Veck, N.J., Rees, W.G., 1994. 

Segmentation of synthetic-aperture radar imagery of sea ice. Int. J. Remote Sens. 15, 803–

825. https://doi.org/10.1080/01431169408954118 

Silva, T.A.M., Bigg, G.R., 2005. Computer-based identification and tracking of Antarctic icebergs 

in SAR Computer-based identification and tracking of Antarctic icebergs in SAR images. 

https://doi.org/10.1016/j.rse.2004.10.002 

Silva, T.A.M., Bigg, G.R., Nicholls, K.W., 2006. Contribution of giant icebergs to the Southern 

Ocean freshwater flux. J. Geophys. Res. 111, 1–8. https://doi.org/10.1029/2004JC002843 

Singh, A., Kalke, H., Loewen, M., Ray, N., 2020. River Ice Segmentation with Deep Learning. IEEE 

Trans. Geosci. Remote Sens. 58. https://doi.org/10.1109/TGRS.2020.2981082 

Smith, K.L., Robison, B.H., Helly, J.J., Kaufmann, R.S., Ruhl, H.A., Shaw, T.J., Twining, B.S., Vernet, 

M., 2007. Free-drifting icebergs: Hot spots of chemical and biological enrichment in the 

Weddell Sea. Science (80-. ). 317, 478–482. https://doi.org/10.1126/science.1142834 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A 

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–

1958. 

Stokholm, A., Wulf, T., Kucik, A., Saldo, R., Buus-Hinkler, J., Hvidegaard, S.M., 2022. AI4SeaIce: 

Toward Solving Ambiguous SAR Textures in Convolutional Neural Networks for Automatic 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

121 

 

Sea Ice Concentration Charting. IEEE Trans. Geosci. Remote Sens. 60. 

https://doi.org/10.1109/TGRS.2022.3149323 

Surawy-Stepney, T., Hogg, A.E., Cornford, S.L., Davison, B.J., 2023. Episodic dynamic change 

linked to damage on the thwaites glacier ice tongue. Nat. Geosci. 16, 37–43. 

https://doi.org/10.1038/s41561-022-01097-9 

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., 

Floury, N., Brown, M., Navas, I., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, 

C., Abbate, M.L., Croci, R., Pietropaolo, A., Huchler, M., Rostan, F., 2012. GMES Sentinel-1 

mission. Remote Sens. Environ. 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028 

Tournadre, J., Bouhier, N., Girard-Ardhuin, F., Rémy, F., 2016. Antarctic icebergs distributions 

1992–2014. J. Geophys. Res. Ocean. 121, 327–349. 

https://doi.org/10.1002/2015JC011178 

Ulaby, F.T., Long., D.G., 2014. Microwave radar and radiometric remote sensing. The University 

of Michigan Press. 

Vernet, M., Smith, K.L., Cefarelli, A.O., Helly, J.J., Kaufmann, R.S., Lin, H., Long, D.G., Murray, A.E., 

Robison, B.H., Ruhl, H.A., Shaw, T.J., Sherman, A.D., Sprintall, J., Stephenson, G.R., Stuart, 

K.M., Twining, B.S., 2012. Islands of ice: Influence of free-drifting Antarctic icebergs on 

pelagic marine ecosystems. Oceanography 25, 38–39. 

https://doi.org/10.5670/oceanog.2012.72 

Wesche, C., Dierking, W., 2015. Near-coastal circum-Antarctic iceberg size distributions 

determined from Synthetic Aperture Radar images. Remote Sens. Environ. 156, 561–569. 

https://doi.org/10.1016/j.rse.2014.10.025 

Wesche, C., Dierking, W., 2012. Iceberg signatures and detection in SAR images in two test 

regions of the Weddell Sea, Antarctica. J. Glaciol. 58, 325–339. 

https://doi.org/10.3189/2012J0G11J020 

Williams, R.N., Rees, W.G., Young, N.W., 1999. A technique for the identification and analysis of 

icebergs in synthetic aperture radar images of Antarctica. Int. J. Remote Sens. 20, 3183–

3199. https://doi.org/10.1080/014311699211697 

Willis, C.J., Macklin, J.T., Partington, K.C., Teleki, K.A., Rees, W.G., Williams, G., 1996. Iceberg 

detection using ers-1 synthetic aperture radar. Int. J. Remote Sens. 17, 1777–1795. 

https://doi.org/10.1080/01431169608948739 

Young, N.W., Hyland, G., 1997. Applications of time series of microwave backscatter over the 

Antarctic region, in: Proceedings of the Third ERS Scientic Symposium, 17-21 March 1997, 

Florence, Italy. Frascati, Italy: European Space Agency, SP-414, pp. 1007–1014. 



4. Mapping the extent of giant Antarctic icebergs with Deep Learning 

 

122 

 

Young, N.W., Turner, D., Hyland, G., Williams, R.N., 1998. Near-coastal iceberg distributions in 

East Antarctica, 50-145°E. Ann. Glaciol. 27, 68–74. https://doi.org/10.3189/1998aog27-1-

68-74 

Zhang, E., Liu, L., Huang, L., 2019. Automatically delineating the calving front of Jakobshavn 

Isbræ from multitemporal TerraSAR-X images: A deep learning approach. Cryosphere 13, 

1729–1741. https://doi.org/10.5194/tc-13-1729-2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

5 

CONCLUSION, 

SYNTHESIS AND 

FUTURE WORK 
 

 
5.1. Summary of main results .......................................................................................... 124 

5.1.1. Tracking changes in the area, thickness, and volume of the Thwaites tabular 
iceberg “B30” using satellite altimetry and imagery ........................................ 125 

5.1.2. Observing the disintegration of the A68A iceberg from space ......................... 128 
5.1.3. Mapping the extent of giant Antarctic icebergs with Deep Learning ............... 130 

5.2. Synthesis of principle findings .................................................................................. 133 
5.2.1. New datasets of giant iceberg decay ................................................................ 133 
5.2.2. Methodological advances to derive iceberg thickness ..................................... 135 
5.2.3. Methodological advances to derive iceberg area ............................................. 137 

5.3. Recommendations for future work .......................................................................... 138 
5.3.1. Investigating snow on icebergs and its impact on radar penetration .............. 138 
5.3.2. Improving U-net iceberg segmentation with more data .................................. 141 
5.3.3. Towards tracking freshwater input from giant icebergs operationally ............ 143 

5.4. Concluding remarks .................................................................................................. 146 
References ............................................................................................................................ 147 

 

  



5. Conclusion, synthesis and future work 

 

124 

 

The aim set out in the beginning of this thesis was to develop novel methodology and datasets 

from satellite remote sensing observations to quantify the freshwater flux from giant Antarctic 

icebergs as accurately and efficiently as possible. In the preceding three chapters, I have met 

this aim by improving and automating several parts of the methodology to derive iceberg 

freshwater flux from satellite remote sensing. By applying the improved method to two giant 

icebergs, I also created new datasets of iceberg area, freeboard, thickness, volume and mass 

change. In Chapter 2, I have implemented the basic methodology to derive area, thickness and 

volume changes of a giant iceberg from satellite altimetry and imagery observations. I noticed 

the importance of using consistently processed CryoSat-2 data to detect changes in iceberg 

freeboard due to melting. Then, I developed a method to account for the evolution of ice and 

snow density over the iceberg lifecycle when converting freeboard measurements to thickness 

estimates. In addition, I have investigated the impact of certain processing steps (iceberg area 

estimates, colocation of altimetry tracks and considering snowfall) on the accuracy. In Chapter 3, 

I extended the use of satellite altimetry to include measurements from ICESat-2 and made the 

method more efficient by automatically collocating the altimetry observations. In Chapter 4, I 

addressed the main remaining labour intensive step of deriving iceberg outlines. In this chapter, 

I suggest a neural network approach to map the extent of giant icebergs in SAR imagery and 

compare the results to two standard-segmentation methods, finding improved skill.  

In this chapter, I will explain how this thesis has met the aim and objectives in more detail by 

first summarising the key findings from each of the previous results chapters, then providing a 

synthesis of them and finally outlining future work that has emerged from my findings.  

5.1. Summary of main results 

In this section, I summarise the novel datasets and methodological advances developed in this 

thesis. The novel datasets are time series and maps of changes in iceberg area, freeboard, 

thickness, volume and mass of the B30 and A68A icebergs from calving until they became too 

small to be tracked. Together with my intern Ella Redmond, I also generated a time series of 

iceberg outlines for six further icebergs (B31, B34, B35, B41, B42 and C34), which were used to 

train the neural network and to evaluate different segmentation techniques. The main 

methodological advances to derive iceberg melting from satellite observations are the use of 

consistently processed CryoSat-2 data, an efficient collocation technique to compare altimetry 

tracks over the same part of the iceberg and taking the evolution of snow and ice density into 

account. All of these steps are necessary to detect changes in iceberg thickness associated with 
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basal melting. Another major advance and novelty is the deployment of a deep neural network 

to map iceberg extent. The neural network is more efficient than manual delineation and yields 

more accurate outlines than other automated techniques. 

5.1.1. Tracking changes in the area, thickness, and volume of the 
Thwaites tabular iceberg “B30” using satellite altimetry and 
imagery 

In Chapter 2, I analysed the decay of the B30 iceberg, focussing on methodological advances and 

investigations, which comprise the 

 Use of consistently processed elevation data 

 Colocation of altimetry tracks 

 Consideration of the evolution of snow density 

 Consideration of the evolution of ice density  

 Comparison of different approaches to estimate iceberg area.  

With these advances, I calculated changes in area, freeboard, thickness, volume and mass of the 

B30 iceberg over 6.5 years. The estimated area change was 1075 ± 66 km2. Freeboard reduced 

by 9.2 ± 2.2 m over the same period and this corresponds to an overall thinning of 117 ± 38 m 

at a mean rate of 17.3 ± 1.8 m per year. Overall, B30 lost 378 ± 57 km3 of ice. 69 % ± 14 % were 

due to basal melting and hence direct freshwater input into the ocean and the remaining 31 % ± 

11 % were due to a combination of sidewall melting and fragmentation. The total mass loss was 

325 ± 44 Gt. 

Although previous studies have used similar techniques to derive changes in iceberg area, 

thickness and volume, this study contributed a number of methodological advances and I 

investigated each step extensively, comparing different approaches and quantifying the impact 

of certain approximations. The first improvement from this study is the use of consistently 

processed elevations from CryoSat-2. When using Level-2 data, I noticed that different 

retrackers and biases are applied in different acquisition modes and within different 

geographical zones. When building the reference map of initial iceberg freeboard pre-calving, 

the iceberg was still attached to the ice shelf and within the continental ice mask, where CryoSat-

2 operates in SAR interferometric (SARIn) mode. A few months after calving, B30 left the area 

defined as continental ice and reached the area defined as open ocean in the Level 2 product, 

but stayed within the SARIn acquisition mask, which also covers the near-coastal areas around 

Antarctica. Once it drifted further from the continent, it then reached the area where CryoSat-

2 operates in SAR mode. This means that three different retrackers and biases are applied across 
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the iceberg life time and I found that these lead to jumps in freeboard heights. Therefore, I used 

consistently processed elevation data, instead. 

Secondly, I analysed and quantified the impact of collocating altimetry tracks over the floating 

iceberg with a map of initial iceberg freeboard pre-calving versus simply comparing freeboard 

measurements regardless of where they sample the iceberg. Overall, I found good agreement 

between measurements with and without colocation (correlation coefficient 0.87). For the B30 

iceberg, the colocation step reduced freeboard uncertainty by 1.6 m. The impact depends on 

the initial topography of the iceberg, though. For icebergs where the across-grid variation 

significantly exceeds the variation within each grid cell, the impact will be larger. B30 was a 

specifically crevassed iceberg, meaning that the variance of freeboard heights within each grid 

cell was in the same order of magnitude as across different grid cells (3.3 m and 3.1 m, 

respectively). 

The third investigation and improvement is the consideration of snow on the iceberg. Before, 

only Han et al. (2019) used snowfall reanalysis data when converting freeboard observations to 

iceberg thickness and assume a constant snow density of 300 kg m-3. In contrast to their 1.5-

year study period, I monitored changes in the B30 iceberg over 6.5 years, where 4.6 m of snow 

water equivalent accumulated and this snow evolved with time (Figure 5.1). Therefore, I 

developed a method to account for changes in snow density as a function of air temperature, 

wind speed and snow depth. This yielded an increase in the average snow density from 252 to 

616 kg m-3 and a 7.2 m thick snow layer after 6.5 years. Accounting for the snowfall over this 

multi-annual drift resulted in a 27 m or 23 % adjustment to the iceberg thickness change after 

6.5 years (Figure 5.1c), which demonstrates its importance – particularly when the iceberg 

survives for a long time and when melting is rather slow. 

 

Figure 5.1: Evolution of ice and snow density (a), snow water equivalent (SWE) and snow depth 
(b), and iceberg thickness with and without considering a snow layer (c) over the lifetime of the 
B30 iceberg 

Similarly, I improved the accuracy of ice density by modelling the ice density profi le and 

accounting for an evolving average ice density during iceberg drift. Just like snow on icebergs, 
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iceberg density has not received much attention yet, but is a crucial parameter in the conversion 

of freeboard to thickness, contributing the majority in the uncertainty budget. Here, I decided 

to model the iceberg’s ice density profile from the depths of critical density levels (Ligtenberg, 

Helsen and Van Den Broeke, 2011) of the Thwaites Ice Shelf, where B30 calved from. I then 

updated the average ice density over time, by integrating to evolving lower depths, as the 

iceberg melted from below. The average ice density therefore reduced from 864 kg m-3 at calving 

to 835 kg m-3 after 6.5 years (Figure 5.1a). 

 

Figure 5.2: Area estimates for the B30 iceberg over time based on manual delineation (red), 
compared to arc-lengths of altimetry overflights assuming a circular iceberg shape (black) and 
semi axes lengths provided by NIC assuming an elliptical iceberg shape (blue). Unique 
observations of semi axes are marked with thick blue dots and determine the times of 
correlation in (b). 

Finally, I considered two simple approaches to automate the calculation of iceberg area and to 

make the manual derivation of iceberg outlines redundant. Here, I examined whether estimates 

of the iceberg’s orthogonal axes, which are measured operationally by NIC and provided 

together with the tracks (Budge and Long, 2018), or the arc-lengths of altimetry overpasses can 

approximate iceberg area. I found that both methods are able to capture the area and area 

change over time, but with lower accuracy. Compared to the most accurate manually derived 
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outlines, orthogonal axes lead to estimates of area and area trends that are 14 % and 16 % 

higher, respectively, and arc-lengths lead to estimates of area and area trends that are 45 % and 

48 % lower. This is because iceberg shape is approximated as a circle or ellipse, which does not 

represent the actual iceberg shape accurately. Another problem with the major axes estimates 

by NIC is that they are rounded to nautical miles and are only updated occasionally, leading to 

only eight unique observations (Figure 5.2). 

5.1.2. Observing the disintegration of the A68A iceberg from space 

In Chapter 3, I applied the methodology from Chapter 2 to the famous A68A iceberg and added 

 ICESat-2 data 

 An automatic colocation of altimetry tracks 

 A more advanced uncertainty estimation 

 The analysis of scouring, melting and blockage near South Georgia  

With these improvements, I calculated changes in area, freeboard, thickness, volume and mass 

of the A68A iceberg over 3.5 years. As it approached the islands of South Georgia up to 62 km 

and stayed within 300 km off the coast for 3 months, I also calculated the freshwater input near 

the island, which likely affected the rich ecosystem there. The estimated area change was 3206 

± 78 km2 over 3.5 years. Thickness reduced by 67 ± 5 m over the same time. Overall, A68A lost 

924 ± 27 km3 of ice, which is equivalent to 802 ± 34 Gt of mass. 32 ± 3 % were due to basal 

melting and hence direct freshwater input into the ocean and the remaining 68 ± 5 % were due 

to sidewall melting and fragmentation. Near South Georgia, I estimated a freshwater input of 

152 ± 61 Gt over three months through basal melting alone. 

The addition of ICESat-2 laser altimetry brings several advantages: It increases the data 

availability and offers greater coverage due to the three beams and the smaller spatial 

resolution. Furthermore, laser altimeters scatter from the snow-air interface (Kwok et al., 2007), 

while radar altimetry is assumed to scatter from the snow-ice interface in sea ice applications 

(Beaven et al., 1995; Laxon, Peacock and Smith, 2003). However, several studies have suggested 

that CryoSat-2 might scatter from within the snow layer in certain conditions (Giles, Laxon and 

Worby, 2008; Willatt et al., 2010) and it is unlikely to penetrate a several meter thick snow layer, 

which is several years old and might have melted in between. Therefore, I decided to assume 

that CryoSat-2 is also scattered from the snow-air interface. A comparison of the respective 

thickness estimates from CryoSat-2 and ICESat-2 supports this assumption, as both agree well 

and yield a consistent time series.  
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The second improvement – both in terms of accuracy and efficiency is the automated colocation 

of altimetry tracks. Although the results from Chapter 2 indicated that the colocation step did 

not have too much influence for B30, in the case of A68A, I found significant undulations in 

topography across the initial thickness map, indicating that in this case an accurate colocation is 

crucial. That is why, I developed an automated colocation. Using the iceberg outline from a near-

coincident image, I maximise the overlapping area with respect to the previous outline. This 

iterative procedure accounts for the evolving shape of the iceberg and smaller parts breaking 

off as it evolves and yields the optimal rotation and translation parameters (Figure 5.3). For A68A 

it has proven useful and reliable, but would not work with symmetric outlines and might fail if 

the shape changes too much between two observations. 

 

Figure 5.3: Automated colocation of altimetry tracks over the floating iceberg with respect to 
the initial iceberg outline. The new outline (red) is derived from a near-coincident image (a) and 
the overlapping area to the previous outline (blue) is maximised (b). This iterative procedure 
yields the translation and rotation with respect to the initial outline (black, b) and allows us to 
transform the altimetry track accordingly (c). The new track is then gridded on the same grid as 
the initial freeboard and subtracted from it (d). 

The last methodological advance is a more detailed investigation of the uncertainty budget. 

Here, I added correlations between freeboard measurements, assuming that measurements 

from the same track are 60 % correlated and measurements forming the initial freeboard map, 

which stem from several tracks, are 30 % correlated. I also investigated the contributions from 

different components to the overall uncertainty budget. With the correlations being taken into 

account, the uncertainty from the new track dominates the uncertainty of freeboard change, 

contributing 49 %, while the initial freeboard contributes 29 % and colocation is only responsible 

for 22 % of the uncertainty. For ice thickness, the uncertainty in ice density has most impact. 

Overall, I found that the estimates of thickness and area change contribute similarly (55 % and 

45 %).  
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Apart from the methodological advances, the main added contribution of this paper is the 

analysis of scouring, melting and blockage near South Georgia, which was of wider 

environmental interest. I measured the distance of the iceberg to the island and compared the 

iceberg draft at that time to a map of seafloor bathymetry. I found that A68A approached South 

Georgia up to 62 km and that it had a mean draft of 141 ± 11 m at that time. The shallowest 

bathymetry beneath the iceberg locations captured in satellite imagery is 150 m (O. Hogg et al., 

2016). The fact that the iceberg turned slightly after and a smaller piece broke off, indicate that 

it briefly scoured the seafloor, but did not ground. This was lucky for the benthic fauna (Gutt, 

2001; Barnes, 2017) and nearby colonies of seals and penguins, who could have experienced 

blockage to their feeding grounds if A68A had grounded for a longer time and in its full size 

(Kooyman et al., 2007; Clarke et al., 2012; Joiris et al., 2015). The wildlife is also affected by 

changes in oceanographic conditions and food availability through the release of huge amounts 

of meltwater within a short time and area (Arrigo et al., 2002; Vernet et al., 2012; Smith et al., 

2013). I estimated that A68A and its children icebergs that broke off near the island, released 

152 ± 61 Gt of freshwater though basal melting within 300 km offshore and 3 months. 

5.1.3. Mapping the extent of giant Antarctic icebergs with Deep Learning 

In Chapter 4, I address the need for an efficient and accurate method to map iceberg extent in 

Sentinel-1 imagery by 

 Developing a deep neural network 

 Comparing its performance to two standard segmentation techniques  

 Investigating the impact of iceberg size  

 Analysing the performance in different challenging environmental conditions 

The neural network was trained and evaluated in a cross-validation fashion using 191 Sentinel-

1 images and corresponding manual delineations of iceberg outline. The images contain seven 

giant Antarctic icebergs between 2014-2020, where individual images of the same iceberg are 

roughly one month apart and include all seasons. Spatially, they cover different parts of the 

Southern Ocean and different environmental conditions like open ocean, sea ice, nearby coast, 

iceberg fragments, other bergs and surface thawing. I also applied two standard segmentation 

methods (Otsu thresholding and k-means) to the same images and compared the performance 

of each of the automated techniques with manually derived outlines.  

A main novelty of this work is the development of a deep neural network, as it is the first study 

to employ a deep neural network to iceberg segmentation. Deep neural networks decide on the 
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most meaningful features themselves, can encode complex non-linear relationships and are able 

to consider the wider image context. They therefore outperform classic machine learning 

techniques in most tasks (LeCun, Bengio and Hinton, 2015; Schmidhuber, 2015). U-net was 

developed for biomedical image segmentation (Ronneberger, Fischer and Brox, 2015), but has 

become popular in many domains including polar remote sensing (Baumhoer et al., 2019; 

Mohajerani et al., 2019, 2021; Poliyapram, Imamoglu and Nakamura, 2019; Zhang, Liu and 

Huang, 2019; Singh et al., 2020; Andersson et al., 2021; Dirscherl et al., 2021; Stokholm et al., 

2022; Surawy-Stepney et al., 2023). In Chapter 4, I slightly modified the original U-net 

architecture to segment Sentinel-1 images of giant Antarctic icebergs and found improved skill 

compared to other machine learning techniques. 

By comparing U-net to k-means and Otsu thresholding, which are two standard segmentation 

techniques, I showed that U-net outperforms them in most metrics. Mainly, U-net achieves a 

significantly higher F1 score (0.84 compared to 0.62). As the iceberg class only cover 5 % of all 

pixels across the whole data set, the F1 score is the most reliable metric. U-net very rarely 

mistakes background (e.g. sea ice, iceberg fragments or coast) for iceberg (0.4 % false alarm 

rate), which is a considerable improvement compared to Otsu and k-means (5.2 %  and 4.7 % 

false alarm rates). This was the case regardless of which iceberg was chosen as test data and 

across all environmental conditions. I also found that Otsu scores worst in this category across 

six out of seven icebergs and across all environmental conditions. I suspect that this is a 

consequence of the Gaussian smoothing, which was applied before the threshold. On the other 

hand, U-net tends to miss parts – especially of the largest icebergs, scoring lowest on the miss 

rate (21 % compared to 9 % and 13 %). While the median absolute deviation in iceberg area is 

similar for all three methods (3.6 - 5.1 %), the mean (absolute) deviation reveals that both Otsu 

and k-means generate a few complete failures with over 100 % area deviation. 

Investigating the metrics for each of the seven icebergs kept as test data, I analysed the impact 

of iceberg size and the sensitivity to the choice of test data. I found high variability across the 

different test data sets (icebergs) for all the methods with F1 scores ranging from 0.20 – 0.91 for 

Otsu, 0.23 - 0.93 for k-means and 0.68 - 0.97 for U-net. This clearly demonstrates the sensitivity 

of any approach to the chosen test data set and that images from the same iceberg are highly 

correlated, exhibiting the same challenges in terms of iceberg size, shape and background, even 

when individual images are one month apart. It is also the reason, why I chose to use cross-

validation. When all techniques showed decreased skill for a certain iceberg (e.g. B41), I 

concluded that the background of this iceberg is particularly challenging. In contrast, U-net 

specifically struggles with B31, but the other two techniques achieve their highest F1 scores on 
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this berg. In this case, the dataset itself is not challenging per se. B31, rather appears largest in 

the images (as images of B30, which is largest, were rescaled). This means that U-net has to 

predict larger outlines for the test data than in any of the training data, which can be considered 

a domain-shift or even an out-of-domain sample. Ideally, the training data, should therefore be 

extended to cover more icebergs of various sizes. 

 

Figure 5.4: Impact of different environmental conditions on the skill of automated methods to 
segment Sentinel-1 images into the largest iceberg and background. The first column shows 
Sentinel-1 input images in different conditions (as labelled on the right), and the following 
columns show the segmentation maps produced by U-net, Otsu, k-means and manual 
delineation 

The final analysis targeted different environmental conditions. Here, I found that all methods 

achieve very good results in open ocean. U-net is more robust to busy backgrounds like 

deformed sea ice (achieving an F1 score of 0.88 compared to 0.72 and 0.74 for Otsu and k-

means). When iceberg fragments are drifting close to the iceberg, they can easily be connected 
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to the berg by error. Although, U-net achieves a lower F1 score in this category (0.85 instead of 

0.95 for Otsu and k-means), it achieves the same low false alarm rate as k-means (0.4 instead of 

0.7 for Otsu). This indicates, that U-net does not actually struggle with erroneously connecting 

the fragments to the iceberg, but rather misses bits of the iceberg and a good amount of images 

with fragments stem from B31, where U-net misses large parts of the berg due to its size. When 

another iceberg is present, U-net reliably picks the largest target iceberg (F1 score 0.96) – 

potentially also learning that it tends to be in the centre of the image. Otsu and k-means in 

contrast pick another iceberg in most of these cases (F1 scores 0.18 and 0.10). For images 

containing coast, I found that U-net discards smaller patches of coast reliably, but fails if too 

much coast is present. In these cases, it predicts almost nothing, though, while the other 

methods find the whole coast instead of the iceberg. If the iceberg appears dark due to surface 

thawing, all methods fail (see Figure 5.4 for one example each). 

5.2. Synthesis of principal findings 

In this thesis, I have developed novel methods and datasets from satellite remote sensing 

observations to quantify the freshwater flux from giant Antarctic icebergs as accurately and 

efficiently as possible. Several methodological investigations and advances have formed a 

consolidated method to calculate iceberg freeboard, thickness and basal melting with higher 

accuracy. Novel methodology to map iceberg extent and outlines automatically, reduces the 

required amount of manual intervention significantly. Together, my results advance our 

understanding of iceberg decay, will contribute to the improvement of models and pave the way 

for an accurate and efficient operational monitoring of freshwater flux from giant icebergs using 

satellite remote sensing and artificial intelligence. 

5.2.1. New datasets of giant iceberg decay 

Throughout this thesis, I have generated new extensive datasets of changes in iceberg area, 

freeboard, thickness, volume and mass. In Chapters 2 and 3, I calculated all of these quantities 

for the B30 and A68A icebergs from their calving to their disintegration (Figure 5.5a). Chapter 4 

contributes a dataset of iceberg imagery and the corresponding outlines, from which changes in 

iceberg area of six further icebergs (B31, B34, B35, B41, B42 and C34) can be calculated over 

several years (Figure 5.6). These datasets add to the literature, where other specific giant 

icebergs had been studied or in the case of A68A extend existing studies by another two years. 

Since especially the manual outlines are tedious to generate, previous studies have focussed on 

one or two giant icebergs and adding further observations of giant iceberg decay is a valuable 
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contribution in itself. As discussed in Chapter 1, models are currently not able to represent giant 

iceberg disintegration adequately, so I expect that additional observations aid our 

understanding of iceberg decay and contribute to the improvement of models. 

 

Figure 5.5: Trajectories (a) and thickness change of B30 (b) and A68A (c) icebergs on common 
axes 

Comparing my findings on the B30 and A68A icebergs (Chapters 2 and 3), there are some 

differences, but also many similarities with respect to their decay. Both bergs calved from 

different areas of Antarctica and took distinct paths (Figure 5.5a). B30 calved from the Thwaites 

Ice Shelf in the Amundsen Sea and followed the coastal current for almost five years, before 

turning North near the Ross Sea. A68A calved from the Larsen-C Ice Shelf and moved slowly 

within the first 2.5 years, while surrounded by thick sea ice in the western Weddell Sea. It then 

passed the tip of the Antarctic Peninsula and took the ‘iceberg alley’ to approach South Georgia 

eleven months later, where it disintegrated. Despite their different origins and trajectories, their 

disintegration exhibits several similarities: The average melt rate is 17.3 m/year for B30 and 

19.3 m/year for A68A (Figure 5.5b, c). B30 stayed close to the coast for longer and A68A reached 

lower latitudes, which explain the slightly higher average melt rate of A68A. I found that the 

contribution of melting to the overall mass loss is very similar for both bergs, too: 33 % for B30 

and 32 % for A68A. Also in both cases, fragmentation became the main driver towards the end.  

Despite the similarities in method, Chapters 2 and 3 had a different focus. My main goal in 

Chapter 2 was to investigate and compare existing methodology, to quantify the impact of 

certain processing steps, where different approaches had been suggested in the literature, to 

improve the accuracy and to automate the processing where possible. The B30 iceberg was a 

good sample iceberg for this purpose, because it survived and drifted for 6.5 years, offering 

many satellite overpasses and hence observations, which enabled a detailed analysis across a 
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range of surroundings. In contrast, the focus of Chapter 3 was more on the application, analysing 

the iceberg’s interaction and impact on its environment. A68A was the biggest iceberg at that 

time and the sixth largest since the satellite record (Budge and Long, 2018). Together with its 

drift trajectory, approaching South Georgia closely and almost intact (with little fragmentation 

before), it had the potential to have a significant environmental impact. This also made A68A a 

star in the media, a concern for biologists and of huge interest to oceanographers and 

glaciologists (Tarling, 2022). For me, A68A offered the opportunity to study a giant iceberg that 

was of broader interest and where the freshwater input was of immediate significance. 

Therefore, Chapter 3 focussed more on the iceberg’s behaviour and impact near South Georgia 

and the links to the environment. Near South Georgia, I quantified the freshwater input and 

investigated scouring or grounding based on my estimates of iceberg thickness at that time. Also 

along the full trajectory, I plotted area loss together with sea ice concentration and thickness 

change together with ocean temperature, showing their interconnection (Figure 3.6). 

 

Figure 5.6: Trajectories of further icebergs, where datasets of iceberg imagery and outlines have 
been generated 

5.2.2. Methodological advances to derive iceberg thickness 

Generally, I used the same method to derive changes in iceberg thickness for both the B30 and 

A68A iceberg. Particularly, I applied the same method to account for the evolution of snow and 
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ice density, as developed in Chapter 2, to the A68A iceberg in Chapter 3. Also here, this yielded 

realistic values for snow accumulation (3.3 m after 3.5 years), snow density (465 kg m-3 after 3.5 

years) and ice density (decreasing from 868 to 848 kg m-3 as the densest ice melted from below). 

I verified the initial iceberg density of A68A with firn air content derived from airborne 

observations over the Larsen-C ice shelf (Holland et al., 2011), and found that these are 

consistent. These findings from Chapter 3 support the methodology developed in Chapter 2. 

Furthermore, I illustrated the importance of including a snow layer in the calculation of iceberg 

thickness in Chapter 2, showing that an omission would miss 27 m of iceberg thinning. Similarly, 

in Chapter 3 I found a notable thickness change in the Weddell Sea, although hardly any 

freeboard change was observed. Here, the freeboard loss associated with basal melting and 

freeboard gain due to snow accumulation evened out, confirming that a slow basal melting 

process is only detectable, when snow is included in the calculations. Overall, the 

methodological advances developed for B30 proved applicable and relevant for A68A, too. 

Only the impact of collocating altimetry tracks was different for both icebergs, as it depends on 

the iceberg’s topography. For B30 and A68A, I found large differences in topography, due to 

their different calving origin (Thwaites versus Larsen-C) and iceberg size (1500 km3 versus 

5719 km3). While in Chapter 2, I suggested to use altimetry tracks without colocation to make 

some manual intervention redundant, I found that colocation is essential for A68A and therefore 

developed an automated colocation step in Chapter 3. The B30 iceberg was relatively flat, but 

particularly crevassed, so the mean standard deviation within each grid cell was 3.3 m and the 

standard deviation across different grid cells was 3.1 m. This reduced the impact of colocation 

drastically. In contrast, A68A was a lot larger and less crevassed. Here, the gridded freeboard 

heights ranged from 22.1 to 42.6 m, with higher freeboard on the side facing the Antarctic 

Peninsula and lower freeboard on the side facing the ocean. The standard deviation within each 

grid cell was mostly below 1 m and the map of initial iceberg freeboard appears a lot smoother 

than that of B30 (Figure 5.7). Both factors increase the impact of collocation. So, from these two 

examples I conclude that if the overall topography is comparable to within grid cell variations, 

altimetry observations can be used without colocation, which is the easiest and fastest 

approach, requiring no manual interaction (as suggested in Chapter 2). However, if the across 

grid cell variations exceed the within grid cell variations, I suggest employing the automated 

colocation developed in Chapter 3 with automatically derived outlines using the U-net 

developed in Chapter 4. 
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Figure 5.7: Maps of initial iceberg freeboard from individual tracks (a), gridded (b), and their 
standard deviation (c) of the B30 iceberg (top row) and the A68A iceberg (bottom row) 

5.2.3. Methodological advances to derive iceberg area 

In both Chapter 2 and 4, I evaluated different approaches to derive estimates of iceberg area 

automatically. In Chapter 2, I first investigated two simple approaches: Here, I assumed a circular 

iceberg shape and employed arc-lengths of altimetry overflights as diameter or I assumed an 

elliptical iceberg shape using the orthogonal axes lengths provided by NIC. In both cases, I found 

degraded accuracy by 45 % and 14 % respectively. Another disadvantage of the second, more 

accurate, approach is that NIC only provides eight unique estimates over 6.5 years, limiting the 

number of observations. In between the observations, the area deviation is more than 14 %. In 
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Chapter 3, I calculated that the uncertainty in iceberg area contributes 45 % to the overall 

uncertainty in iceberg volume change, making the accuracy of iceberg area an important factor. 

Furthermore, none of those techniques yields iceberg outlines, which are needed to collocate 

the altimetry tracks. Therefore, I examined more advanced approaches to derive iceberg area 

and outlines in Chapter 4, as this is the main remaining task that requires manual intervention 

and a significant contributor to uncertainty. Here, I applied the k-means segmentation algorithm 

(Macqueen, 1967) and the Otsu thresholding technique (Otsu, 1979) and developed a deep 

neural network to segment satellite images of giant icebergs. I found that the neural network 

improves the skill in most cases. The implementation from Chapter 4 also ensures that only the 

largest iceberg in each image is segmented, yielding iceberg outlines and estimates of iceberg 

area, that could directly be incorporated into the processing scheme from Chapters 2 and 3.  

5.3. Recommendations for future work 

In this section, I outline some remaining challenges and directions of future research that have 

emerged from the findings in my thesis. Firstly, based on my findings from Chapter 2 and 3, I 

suggest investigating the characteristics of snow on icebergs and its impact on the scattering 

horizon of radar altimeters with novel datasets that have been acquired since. Secondly, I 

recommend improving the accuracy and transferability of the U-net suggested in Chapter 4 

further, by greatly extending the training data set. Finally, I propose to combine the methods 

developed across this thesis and to apply them on a larger scale, building an operational system 

to track freshwater input from giant icebergs. 

5.3.1. Investigating snow on icebergs and its impact on radar penetration 

The first remaining challenge is to understand how deep radar altimetry penetrates snow on 

icebergs and whether snow depth on icebergs can be calculated from differences in penetration 

depth of altimeters or ERA-5 reanalysis data. Good estimates of penetration depth and snow on 

icebergs are essential to calculate accurate iceberg thickness from measurements of iceberg 

freeboard. To address this aim, I suggest comparing coincident satellite and airborne 

measurements of laser and radar freeboard to determine the penetration depth. Differences in 

penetration depth could then be compared with airborne snow radar measurements and snow 

depth derived from ERA-5 reanalysis, to assess whether one of them yields good estimates of 

snow depth on icebergs. 

Snow on icebergs and the scattering horizon of radar altimeters over icebergs have barely 

received any attention so far. Only Scambos et al. (2008) made in-situ measurements of snow 
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depth on a tabular iceberg, installing pre-marked poles observed with a camera to track 

accumulation and ablation. During the installation, they also dug a snow pit and made 

measurements of firn temperature and density. They found fresh snow with 450 kg m -3 density 

on the surface and denser firn with melt layers of 650 kg m-3 density lower down. The study by 

Han et al. (2019) has been the only one accounting for snowfall during iceberg drift when 

converting iceberg freeboard to thickness. In Chapter 2, I have developed a method to account 

for the evolution of snow density during iceberg drift and assume that CryoSat-2 does not 

penetrate a several years old snow layer. This assumption is supported by a quick comparison 

of CryoSat-2 and ICESat-2 freeboard heights in Chapter 3, but a more extensive verification 

would be needed. In the meantime, many useful data have been acquired, which enable such 

an extensive analysis. 

In Chapter 2, I found that giant tabular icebergs accumulate a thick snow layer over their multi-

annual drift. B30 gathered 7.2 m of snow within the 6.5 years of observations. Therefore, I 

assume that CryoSat-2 does not penetrate this thick, old snow layer and is rather scattered from 

the air-snow interface. For sea ice applications, CryoSat-2 is mostly assumed to scatter from the 

snow-ice interface (Beaven et al., 1995; Laxon, Peacock and Smith, 2003), but this only holds 

true for fresh, dry snow. On Antarctic sea ice, observations indicate that CryoSat-2 rather 

scatters from within the snowpack (Giles, Laxon and Worby, 2008; Willatt et al., 2010). In 

Chapter 3, I then added ICESat-2 laser altimetry observations over the A68A iceberg and found 

that the time series of combined CryoSat-2 and ICESat-2 observations was in good agreement. 

Two of the tracks from CryoSat-2 and ICESat-2 are close in time, but sample different parts of 

the iceberg. This analysis supports my assumption that CryoSat-2 is rather scattered from the 

snow-air interface, but I was not able to investigate this in more detail due to the lack of 

coincident data. 

In July 2020, ESA and NASA launched the CRYO2ICE campaign with the goal to yield laser and 

radar altimetry measurements over the same areas close in time. First, the orbit of CryoSat-2 

was adjusted to receive coincident tracks over the Arctic and since June 2022, CryoSat-2 and 

ICESat-2 sample the same regions in the Antarctic every 19 orbits (roughly 31 hours). This is the 

ideal opportunity to assess the scattering horizon of CryoSat-2 compared to ICESat-2 over large 

tabular Antarctic icebergs and hence to also learn more about the properties of snow on 

icebergs. In addition to the satellite data, airborne observations will greatly benefit this analysis. 

In December 2022, airborne measurements were collected over sea ice in the Weddell Sea 

during the CRYOVEX/DEFIANT campaign. During the many aircraft flights, multiple tabular 

icebergs were also overflown. These measurements include lidar measurements, radar altimetry 
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measurements in Ka- and Ku-band, where Ku-band is the same frequency as CryoSat-2 and S/C- 

band (2-8 GHz) radar measurements, which are used to derive snow depth (Arnold et al., 2020).  

Once all the data have been pre-processed and are available, I suggest exploiting satellite and 

airborne data together to first draw conclusions about radar penetration over tabular Antarctic 

icebergs and then also to investigate and potentially improve estimates of snow depth on 

icebergs. To achieve this, I propose to conduct several comparisons (Figure 5.8). The coincident 

CRYO2ICE tracks will allow for a direct comparison of satellite lidar and radar altimetry 

measurements over Antarctic icebergs. They will reveal whether CryoSat-2 and ICESat-2 

measure comparable freeboard heights or whether CryoSat-2 freeboard is systematically lower 

as it penetrates (a part of) the snowpack (Figure 5.8a). These tracks will also indicate how much 

the agreement varies spatially and temporally, as – in contrast to the airborne data – several 

CRYO2ICE tracks will sample giant icebergs in different locations and seasons. Next, a similar 

comparison could analyse airborne lidar and radar measurements over the icebergs that were 

sampled during the campaign with higher spatial resolution (Figure 5.8b). This comparison 

allows crosschecking the results from airborne and satellite-borne measurements. Then, it 

would also be interesting to compare airborne freeboard measurements in Ku- and Ka-band 

(Figure 5.8c), again investigating the difference in radar penetration. This analysis would be 

useful in preparation for the future CRISTAL satellite mission, which will measure radar 

freeboard in Ka- and Ku-band. 

 

Figure 5.8: Schematic overview of acquired/future data (black/grey boxes) and useful 
comparisons to investigate differences in penetration depth (green arrows) and snow depth 
(blue arrows) over an iceberg. Copyright of satellite and airplane icons: NASA, ESA, Airbus and 
BAS 
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In a next step, I then propose to focus on snow depth. From the airborne S/C band data, snow 

depth can be derived (Kwok et al., 2011; Newman et al., 2014) and would be regarded as the 

best estimate. Using ERA-5 reanalysis data over the same iceberg and accounting for snow 

compaction as a function of snow depth, air temperature and wind speed, as I suggested in 

Chapter 2, the resulting snow depth could be verified with the airborne data (Figure 5.8d). 

Furthermore, if consistent differences in the scattering horizon between lidar, Ku- and Ka-band 

radar have been found (Figure 5.8a-c), these could then also be compared to the snow depth 

(Figure 5.8e) to investigate whether any difference of (future) satellite freeboard measurement 

yields snow depth on icebergs. In an optimal scenario, all these remote sensing data would be 

complemented with in situ observations on the iceberg, but such data have not been collected 

during the last CRYOVEX/DEFIANT campaign.  

5.3.2. Improving U-net iceberg segmentation with more data  

The main remaining challenge for an efficient mapping of iceberg extent and outlines in Sentinel-

1 images is that the U-net suggested in Chapter 3 misses parts of icebergs that appear larger 

than those contained in the training data. Therefore, I suggest extending the training data set to 

a wider range of iceberg sizes. The main obstacle is the generation of manual outlines for 

training. To overcome this problem, either a crowd-sourcing platform could be used or the 

neural network could be trained in a semi-supervised fashion. 

My work in Chapter 4 has demonstrated the capability of a deep neural network to segment 

Sentinel-1 images of giant icebergs, showing that the proposed U-net already outperforms 

standard segmentation algorithms in most metrics and conditions. However, the current U-net 

tends to miss parts of the largest icebergs. I believe that this happens, because when the iceberg 

appearing largest in the images is retained as test data, the training data set only contains 

smaller icebergs. Therefore, enlarging the training data set and including more icebergs of 

different sizes, would benefit the performance of the neural network and make it more robust 

and transferable to a range of iceberg sizes and conditions.  

The acquisition of a large amount of training data is usually the biggest hurdle, but also an 

essential step when training machine learning algorithms and neural networks. The amount of 

input data (i.e. Sentinel-1 images of giant Antarctic icebergs) could be increased easily, as there 

are many more icebergs tracked by the NIC and BYU and the sampling interval for each iceberg 

could be increased to a week or a few days rather than taking only one image per month. The 

challenge is that icebergs are moving targets and different areas have to be searched as they 

drift. So far, my intern Ella Redmond and I searched for the satellite images manually by drawing 
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a box around the expected position for each month and iceberg based on positions provided by 

BYU and then downloaded a dedicated image. This step could be automated with a script, but 

different areas would have to be searched at different times for each iceberg.  

Manually drawing iceberg outlines, which are used for training and evaluation, is the most 

tedious task. There are two possible solutions, when the training data are increased to a 

multitude. One way would be to use the crowdsourcing platform Amazon Mechanical Turk. 

Here, users can upload a batch of images – in this case, the cropped Sentinel-1 input images, 

and people around the world click the outlines of the iceberg for a small remuneration. This 

approach would allow the generation of many outlines in a relatively short time. As non-experts 

are commissioned with this task, a scientist should check the resulting outlines afterwards. 

Alternatively or additionally, several users could be tasked with the same outlines to crosscheck 

the consistency. 

The second possibility would be to use semi-supervised learning. In semi-supervised learning, a 

small amount of labelled data are used together with a larger amount of unlabelled data (Qi and 

Luo, 2022). The advantage is that less manual labelling is needed, but the training data set can 

be largely increased and cover a wider range of scenarios. Therefore, semi-supervised learning 

was found to outperform supervised learning (using only labelled data for training) in previous 

studies (Khaleghian et al., 2021; Marszalek et al., 2022). There are various approaches on how 

exactly the labelled and unlabelled data are used (Qi and Luo, 2022). In many cases unsupervised 

(i.e. relying on unlabelled data only) neural network architectures are used first. These extract 

useful information and a yield a good, compressed representation of the unlabelled input 

images (Huang, Pan and Lei, 2017; Qi and Luo, 2022). In a second step, the labelled data are then 

used for fine-tuning and adaption to the actual task. However, in other cases the labelled data 

are used first and unlabelled data are added later, or both are used together (Qi and Luo, 2022). 

As plenty of different approaches exist, here I only suggest one approach that seems promising, 

but would like to stress that there are almost endless options of how exactly semi-supervised 

learning can be implemented. 

Similar to unsupervised learning, in self-supervised learning no labels are needed. Here, the 

network is first given an auxiliary task that can be performed without labels to extract the main 

statistics of the data and yield a useful data representation (Dhere and Sivaswamy, 2021; Hoyer 

et al., 2021). In a second step, this representation is then used and the network is fine-tuned for 

the actual task using the labelled data. Again, there are various creative approaches of what this 

auxiliary task can be. For me, a promising idea is to learn the motion (optical flow) between 
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consecutive images. Pathak et al. (2017) suggest to segment images in a video based on areas 

that move together in consecutive frames. This can be done without labels and the segments 

are then used as pseudo ground truth to train a network that can segment single images. 

Robitaille et al. (2022) apply a similar approach to microscopy imagery of cells, leveraging the 

fact that cells move more than the background. While these algorithms focus on one moving 

object, in the case of icebergs, also the sea ice and iceberg fragments are moving, so it is not 

directly transferable to our task. However, also in autonomous driving, where several objects 

(cars, pedestrians, etc.) are moving, optical flow is often calculated together with segmentation, 

as both tasks benefit from similar features and good overall scene understanding (Chen et al., 

2019; Hoyer et al., 2021; Jiao, Tran and Shi, 2021). Hoyer et al., (2021) calculate a depth map 

(distance to objects) as auxiliary task before segmenting RGB images in autonomous driving. And 

Rashed et al. (2019) have shown that using optical flow together with RGB images improves the 

segmentation for autonomous driving.  

Therefore, I suggest estimating optical flow from consecutive SAR images of the same iceberg 

as an auxiliary task using the magnitude of additional unlabelled images first. In this case, I 

expect that denser temporal sampling would be advantageous, as consecutive scenes would be 

more similar and optical flow would be less ambiguous. This should encourage the network to 

learn a good representation of the images, understand the overall statistics and learn to group 

iceberg pixels together, as they move coherently. In a second step, this encoded representation 

can then be used in a supervised training with the few labelled data that we already have to 

generate segmentation maps. I expect that the resulting neural network would be more robust 

than the current U-net, as it would be trained with much more data. 

5.3.3. Towards tracking freshwater input from giant icebergs 
operationally 

Ultimately, the main remaining challenge is to build an operational system to track freshwater 

input from all giant Antarctic icebergs along their trajectories. To achieve this, I propose to 

combine the methods from this thesis – and ideally using an improved version of the U-net as 

proposed in the previous section. Instead of an improved U-net, for now a few simple post-

processing steps could be applied after the automated iceberg segmentation to further boost 

the accuracy. Finally, a few remaining manual steps to calculate iceberg thickness should be 

automated when applied on a larger scale. 

Across this thesis, I developed the methods to track freshwater input from giant Antarctic 

icebergs with improved accuracy and efficiency compared to previous work. Chapter 2 forms 
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the baseline, providing a consolidated and improved pipeline to calculate iceberg melting, 

fragmentation and freshwater input together with their uncertainties. Chapter 3 contributes the 

automated colocation of altimetry tracks (where needed) and a revised estimation of the 

uncertainty budget. In Chapter 4, I developed a U-net that enables automated mapping of 

iceberg extent and is more robust to challenging environmental conditions than previously 

existing methods. An improved version trained with a greater amount and variability of training 

data (as suggested in Section 5.3.2) would further boost the accuracy. Alternatively, a few simple 

post-processing steps could be employed to exclude outliers from a time series of iceberg area. 

 

Figure 5.9: Time series of predicted outlines for the B35 iceberg. Outlines are derived from the 
binary segmentation maps using OpenCV’s findContours function. a-u) shows the outlines of the 
different methods overlain on the input images and shaded in the respective colour. v) shows 
the resulting area estimates over time on a log scale  

To illustrate how automatically derived outlines can be used to track changes in iceberg area, I 

plotted time series of iceberg outlines and derived iceberg areas for the B35 iceberg as an 

example (Figure 5.9). Overall, U-net yields area estimates that agree with those from manually 

derived outlines, tracking area reductions, where they occur. Only in a few cases, iceberg area 

is slightly overestimated, because nearby fragments are erroneously added to the iceberg area 
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(Figure 5.9c, e-j and t). Compared to the standard-segmentation techniques (Otsu and k-means), 

the outlines from U-net are closer to the manually derived outlines in most cases. Apart from 

the fragments, the other two methods also generate two complete failures, picking the adjacent 

coast (Figure 5.9l) or a relatively busy background (Figure 5.9r) instead of the iceberg. U-net, in 

contrast, does not get distracted by those.  

To calculate reliable freshwater input from changes in iceberg area, area deviations below 10 % 

- ideally around 5 % would be needed. Manual delineations are usually estimated to have a 

standard deviation of 2-4 % (Bouhier et al., 2018; Braakmann-Folgmann, Shepherd and Ridout, 

2021; Braakmann-Folgmann et al., 2022). Therefore, once area deviation drops below this, it is 

not clear, whether U-net or the manual delineation is more accurate. In any case, an automated 

approach would certainly be advantageous over manual delineations – especially when rolled 

out for numerous icebergs or in operational applications, as it greatly reduces the time required 

to derive each outline. Without further post-processing or improvement, the current U-net 

achieves a mean absolute deviation of 15 %, a median absolute deviation of 4.1 % and 75 % of 

all images can be segmented with an area deviation of 12 % or less (Chapter 4).  

In a tracking scenario, obvious failures could be picked out and discarded quite easily (Figure 

5.9v). Such post-processing could for example compare the estimated iceberg area, length, or 

shape to previous estimates (Collares et al., 2018; Barbat et al., 2021; Koo et al., 2021). 

Alternatively, manual inspections can be used to discard erroneous predictions (Silva and Bigg, 

2005; Wesche and Dierking, 2015; Koo et al., 2021). Cases where U-net does not predict 

anything e.g. for large areas of coast or dark icebergs, could easily be excluded from a time 

series, too and would simply leave gaps. Also including a land mask (Barbat et al., 2019; Collares 

et al., 2018; Frost et al., 2016; Mazur et al., 2017; Silva and Bigg, 2005) would be a simple step 

to limit false predictions at the cost of losing data just after calving or when the iceberg is too 

close to the coast and hence within the land mask. Therefore, with some extra post-processing 

or manual intervention, iceberg area estimates could be improved further. Before applying U-

net operationally, I would however, suggest expanding the training data set to mitigate the 

remaining problem that U-net misses parts of large icebergs. I anticipate that this would further 

boost the overall performance – potentially making such post-processing steps redundant – and 

eventually yield an accurate fully automated method for giant iceberg segmentation. 

From these early results, I conclude that applying the U-net from Chapter 4 and some post-

processing, or ideally an improved U-net as suggested in Section 5.3.2, would greatly simplify 

the processing from Chapters 2 and 3, allowing it to be rolled out for more giant icebergs in the 
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future. Ultimately, it would be desirable to automate the whole processing chain and to build 

an operational system that tracks freshwater input from all giant icebergs along their trajectory. 

My method from Chapter 2 searches and processes altimetry tracks over the iceberg 

automatically. In Section 5.3.2 I suggested searching iceberg imagery automatically and together 

with the U-net, this would allow a completely automated calculation of changes in iceberg area. 

This leaves only a few, relatively quick steps requiring human intervention: The main remaining 

task is to find out where exactly the iceberg calved from to build the initial freeboard and 

thickness map. Given an initial polygon from U-net and comparing ice front geometry pre- and 

post-calving, the user has to shift and rotate this polygon onto the bit of the ice-shelf that calved. 

Potentially, this step could be automated similar to my automated colocation of tracks over the 

floating iceberg (Chapter 3). Apart from that, different bits of code would have to be combined 

into one pipeline, the downloading of ERA-5 data has to be automated, and extracting ice 

densities from a map by Ligtenberg, Helsen and Van Den Broeke (2011) still requires human 

intervention at the moment. Finally, I should mention that the processing relies on iceberg 

positions from the Antarctic Iceberg Tracking Database (Budge and Long, 2018) and consistently 

processed CryoSat-2 elevations. Overall, I believe that this thesis has contributed the main steps 

towards tracking freshwater input from giant icebergs operationally and that such a system 

would be a very valuable achievement. 

5.4. Concluding remarks 

Icebergs are a vital part of the polar environments, affecting their environment through their 

calving, potential grounding, and especially through the release of freshwater and nutrients 

along their drift trajectories (Rignot et al., 2004; Helly et al., 2011; Vernet et al., 2012; Smith et 

al., 2013; Bigg, 2015; Jansen et al., 2015; Barnes, 2017). As the biggest tabular icebergs from 

Antarctica hold most freshwater, their impact is largest (Silva, Bigg and Nicholls, 2006; 

Tournadre et al., 2016; Barbat et al., 2021). Satellite observations have enabled us to track 

changes in freeboard and area of selected giant icebergs (Jansen, Schodlok and Rack, 2007; 

Bouhier et al., 2018; Li et al., 2018; Han et al., 2019). With this thesis, I contributed additional 

datasets and methodological advances to quantify the freshwater flux from giant Antarctic 

icebergs with improved accuracy and higher efficiency using satellite remote sensing data and 

artificial intelligence. Besides other methodological advances, I improved the representation of 

snow on icebergs. Novel datasets – both from satellites and airborne surveys – have been 

acquired since, and could be exploited to further improve our understanding of snow on 

icebergs and the resulting scattering horizon of radar altimetry. I also developed a deep neural 
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network to map the extent of giant icebergs in Sentinel-1 imagery automatically. With this, I 

found improved performance compared to standard segmentation techniques, but the network 

misses parts of the largest icebergs due to limited training data. A multiplication of the training 

data and the use of a crowd-sourcing platform to label these or rather the use of semi-

supervised learning would further boost the performance. Finally, the (improved) neural 

network could be used to track changes in area of all giant Antarctic icebergs automatically . 

Combined with the improved and more efficient calculation of iceberg thickness, which I 

developed in this thesis, freshwater flux could eventually be tracked on an operational basis. 
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Abstract. Icebergs account for half of all ice loss from
Antarctica and, once released, present a hazard to maritime
operations. Their melting leads to a redistribution of cold
fresh water around the Southern Ocean which, in turn, influ-
ences water circulation, promotes sea ice formation, and fos-
ters primary production. In this study, we combine CryoSat-2
satellite altimetry with MODIS and Sentinel-1 satellite im-
agery and meteorological data to track changes in the area,
freeboard, thickness, and volume of the B30 tabular iceberg
between 2012 and 2018. We track the iceberg elevation when
it was attached to Thwaites Glacier and on a further 106 oc-
casions after it calved using Level 1b CryoSat data, which
ensures that measurements recorded in different acquisition
modes and within different geographical zones are consis-
tently processed. From these data, we map the iceberg’s free-
board and estimate its thickness taking snowfall and changes
in snow and ice density into account. We compute changes
in freeboard and thickness relative to the initial average for
each overpass and compare these to estimates from precisely
located tracks using the satellite imagery. This comparison
shows good agreement (correlation coefficient 0.87) and sug-
gests that colocation reduces the freeboard uncertainty by
1.6 m. We also demonstrate that the snow layer has a signifi-
cant impact on iceberg thickness change. Changes in the ice-
berg area are measured by tracing its perimeter, and we show
that alternative estimates based on arc lengths recorded in
satellite altimetry profiles and on measurements of the semi-
major and semi-minor axes also capture the trend, though
with a 48 % overestimate and a 15 % underestimate, respec-
tively. Since it calved, the area of B30 has decreased from
1500± 60 to 426± 27 km2, its mean freeboard has fallen
from 49.0± 4.6 to 38.8± 2.2 m, and its mean thickness has

reduced from 315± 36 to 198± 14 m. The combined loss
amounts to an 80%± 16 % reduction in volume, two thirds
(69%± 14 %) of which is due to fragmentation and the re-
mainder (31%± 11 %) of which is due to basal melting.

1 Introduction

Iceberg calving accounts for roughly half of all ice loss from
Antarctica (Depoorter et al., 2013; Rignot et al., 2013). At
any time, about 50–90 large tabular icebergs are tracked in
the Southern Ocean containing 7000 to 17 000 km3 of ice in
total (Tournadre et al., 2015). For maritime operators it is es-
sential to know the location of icebergs in order to reduce
the risk of collision (Bigg et al., 2018; Eik and Gudmestad,
2010; Power et al., 2001). The thickness of an iceberg deter-
mines if and where it will ground on the seabed, which has
implications for maritime operations, as well as for marine
geophysics. Iceberg thickness also influences a wide range
of physical and biological interactions with the Antarctic en-
vironment. Grounded icebergs can, for example, alter the lo-
cal ocean circulation (Grosfeld et al., 2001; Robinson and
Williams, 2012), influence melting of the adjacent ice shelves
(Robinson and Williams, 2012), and prevent local sea ice
from breaking up (Nøst and Østerhus, 1998; Remy et al.,
2008). This, in turn, can impact the local primary production
(Arrigo et al., 2002; Remy et al., 2008) and pose an obsta-
cle to penguin colonies on their way to their feeding grounds
(Kooyman et al., 2007). Temporarily grounded icebergs leave
plough marks on the sea floor which can be an important ge-
ological record (Wise et al., 2017) but also impact on marine
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benthic communities (Barnes, 2017; Gutt, 2001). Therefore,
iceberg thickness is an important parameter.

Changes in iceberg thickness are also important because
they control the quantity of cold fresh water and terrigenous
nutrients released into the ocean as icebergs melt (Gladstone
et al., 2001; Silva et al., 2006). The release of relatively cold
fresh water facilitates sea ice growth (Bintanja et al., 2015;
Merino et al., 2016), immediately lowers the sea surface tem-
perature (Merino et al., 2016), and has been found to even
influence ocean water down to 1500 m depth (Helly et al.,
2011), as well as lead to upwelling of deep ocean proper-
ties (Jenkins, 1999). In terms of nutrients, icebergs have been
shown to be the main source of iron in the Southern Ocean
(Laufkötter et al., 2018; Raiswell et al., 2016; Wu and Hou,
2017) and therefore foster primary production in the prox-
imity of icebergs (Biddle et al., 2015; Duprat et al., 2016;
Helly et al., 2011), which in turn increases the abundance of
krill and seabirds (Joiris, 2018; Smith et al., 2007) around
icebergs. Furthermore, a range of studies have demonstrated
that including more realistic iceberg distributions, trajecto-
ries, and volumes in climate models leads to a redistribu-
tion of fresh water and heat flux, which agrees better with
observations than models that only include small icebergs
or that treat iceberg discharge as coastal runoff (Jongma et
al., 2009; Martin and Adcroft, 2010; Rackow et al., 2013;
Schloesser et al., 2019). To investigate each of these pro-
cesses and interrelations, knowledge of iceberg thickness and
volume and their change over time is required (England et
al., 2020; Merino et al., 2016). Moreover, monitoring iceberg
melting also presents an opportunity to gain insights into the
response of glacial ice to warmer environmental conditions
which may develop at ice shelf barriers in the future (Scam-
bos et al., 2008; Shepherd et al., 2019).

The first detailed studies on iceberg melting were per-
formed in the 1970s and 1980s, and were mainly based on
laboratory experiments or ship-based observations (Hamley
and Budd, 1986; Huppert and Josberger, 1980; Neshyba and
Josberger, 1980; Russell-Head, 1980). These studies found
that iceberg melting, to first order, is proportional to the water
temperature and that for large icebergs breakage dominates
over melting. More recently, Silva et al. (2006) and Jansen et
al. (2007) modelled melting of giant icebergs and the asso-
ciated fresh water fluxes. The latter found that melting does
not only depend on ocean temperature but also on iceberg
drift speed and the surrounding ocean currents. Scambos et
al. (2008) installed a range of measurement tools including
a GPS receiver, a pre-marked accumulation mast, and buried
bamboo poles observed with a camera on a large Antarctic
iceberg to monitor melting. They differentiate between three
kinds of mass loss: rift calving, edge wasting, and rapid dis-
integration. While rift calving can occur at any time within
the iceberg life cycle along pre-existing fractures, edge wast-
ing is only observed outside the sea ice edge. Rapid disin-
tegration is caused by surface melting and the formation of
surface lakes.

The advent of satellite remote sensing greatly increased
our capability to study icebergs – especially the largest ones.
A wide range of studies have employed repeat satellite im-
agery to track changes in iceberg area (Bouhier et al., 2018;
Budge and Long, 2018; Collares et al., 2018; Han et al.,
2019; Li et al., 2018; Mazur et al., 2019; Scambos et al.,
2008). The most common approach to measure iceberg thick-
ness is using satellite altimeter measurements of their free-
board, which began in the late 1980s (McIntyre and Cudlip,
1987). Since then, a range of studies have employed laser
and radar altimetry to study freeboard change in large tabu-
lar icebergs: Jansen et al. (2007) studied the A-38B iceberg
in the Weddell and Scotia seas with a combination of laser
and radar altimetry, and Scambos et al. (2008) also included
three Ice, Cloud, and land Elevation Satellite (ICESat) over-
passes over the A22A iceberg to derive its thickness change.
Both studies make use of satellite imagery to colocate the al-
timetry tracks and to compare similar areas in terms of free-
board change. In contrast, Tournadre et al. (2015) employed
altimetry measurements from Envisat, Jason1, and Jason2 to
analyse freeboard change in the C19A iceberg without any
colocation. Bouhier et al. (2018) analysed thickness changes
in the B17A and C19A icebergs in open water using altimetry
data without colocation. Li et al. (2018) calculated freeboard
change in the C28A and C28B icebergs for 2 years at the
intersections of CryoSat-2 overpasses, and Han et al. (2019)
also used intersecting CryoSat-2 tracks to calculate freeboard
change in the A68 iceberg in the Weddell Sea. When thick-
ness and area changes are combined, it is possible to detect
changes in iceberg volume (Bouhier et al., 2018; Han et al.,
2019; Tournadre et al., 2012). However, studies to date have
been limited to selected icebergs, have focussed on the Wed-
dell Sea, and have employed a variety of approaches to ac-
count for the irregular sampling of altimetry tracks including
manual colocation of entire tracks relative to the initial sur-
face (Jansen et al., 2007), colocation of intersecting tracks
(Han et al., 2019; Li et al., 2018), and no colocation at all
(Bouhier et al., 2018; Tournadre et al., 2015). For smaller ice-
bergs satellite stereo photogrammetry (Enderlin and Hamil-
ton, 2014; Sulak et al., 2017) and interferometry (Dammann
et al., 2019) have been employed to measure iceberg thick-
ness and volume as an alternative approach, though in our
experience both methods are labour intensive.

In this study, we quantify changes in the area, freeboard,
thickness, and volume of the giant tabular B30 iceberg which
has been adrift in the Southern Ocean since it calved from
the Thwaites Glacier 8.5 years ago (Budge and Long, 2018;
Fig. 1). The long life cycle and large drift of the B30 iceberg
result in a relatively high number of observations, enabling
a detailed study of its evolution. This is also one of the first
studies to investigate iceberg thinning in the Southern Ocean
around Marie Byrd Land. We assess the agreement between
estimates of freeboard change determined relative to the av-
erage initial surface and using precise colocation with the
aid of near-coincident satellite imagery. Moreover, we de-
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velop a methodology to account for snowfall and the evolu-
tions of snow and ice density and examine the influence of
snow on the iceberg thickness calculation. The next section
introduces the remote sensing data used in this study and ex-
plains our methodology; Sect. 3 presents our results on ice-
berg area, freeboard, thickness, and volume change in turn
and discusses our findings. We close with conclusions and a
brief outlook in Sect. 4.

2 Data and methods

To chart the iceberg area change over time we delineate
its extent in a sequence of Moderate Resolution Imaging
Spectroradiometer (MODIS) optical satellite imagery and
Sentinel-1 synthetic aperture radar (SAR) satellite imagery.
We then use CryoSat-2 satellite radar altimetry to determine
changes in the iceberg freeboard and thickness, assuming
that it is floating in hydrostatic equilibrium and making use
of the iceberg orientation relative to its initial position using
near-coincident satellite imagery on some occasions. We ac-
count for snow accumulation and model variations in snow
and ice density when converting iceberg freeboard to thick-
ness. Finally, we combine both data sets to estimate the ice-
berg’s volume change over time.

2.1 Iceberg location

We use daily archived iceberg positions from the Antarc-
tic Iceberg Tracking (AIT) database version 3.0 provided
by Brigham Young University (Budge and Long, 2018) as
a baseline estimate of the B30 iceberg location since it
calved in 2012 (Fig. 1). The AIT database makes use of
coarse-resolution passive microwave scatterometer imagery
in which icebergs are manually detected and the central po-
sition is recorded daily (Stuart and Long, 2011). It includes
icebergs longer than 6 km adrift in the Southern Ocean be-
tween 1987 and 2019, augmented with estimates of position
and the semi-minor and semi-major axis lengths of icebergs
longer than 18.5 km that are tracked operationally by the US
National Ice Center (NIC) using a combination of visible,
infrared, and SAR imagery.

2.2 Initial iceberg shape, size, and calving position

To determine the initial shape, size, and calving position of
B30, we use MODIS images acquired before and after the
calving event to identify which section of the Thwaites Ice
Shelf calved to form the iceberg. MODIS is an instrument
on the Terra and Aqua satellites of NASA launched on 18
December 1999 and 4 May 2002, respectively. The instru-
ment measures radiance in the visible and infrared range with
a spatial resolution of 250 m to 1 km and covers the entire
Earth in 1–2 d, though cloud occlusions and the absence of
daylight reduce data availability for many applications. For
this study we use bands 1 (red), 4 (green), and 3 (blue) of

the MODIS Level 1B calibrated radiances at 500 m reso-
lution (MOD02HKM). As B30 broke off on 24 May 2012
(Budge and Long, 2018) in Antarctic winter, during dark-
ness, the closest useful MODIS imagery is from the preced-
ing autumn and subsequent spring. We use several MODIS
images acquired in the subsequent spring after calving to de-
termine the initial shape as it is difficult to unambiguously
distinguish the berg from clouds and sea ice in a single im-
age. The initial perimeter (Figs. 2a and 3a) was then shifted
and rotated to fit the situation before calving to identify the
part of the Thwaites ice shelf that formed B30 (Fig. 4). The
initial area (in plan view) of the iceberg is 1500 km2 with a
long axis of around 59 km (Budge and Long, 2018).

2.3 Iceberg area

We employ three approaches to estimate the plan-view ice-
berg area; (i) manual delineation in sequential satellite im-
agery scenes, (ii) using measurements of the semi-major and
semi-minor axes provided by the NIC and assuming an ellip-
tical shape, and (iii) using measurements of the arc lengths
recorded in satellite altimetry and assuming a circular shape.
While manual delineation provides the most consistent and
accurate area estimate, the axis and arc-length approaches
are much simpler to implement and can be fully automated.

Our main approach to determine iceberg area is manual
delineation using a sequence of 32 Sentinel-1 SAR and 8
MODIS optical images. Sentinel-1A and Sentinel-1B are
companion imaging radar satellites launched by the Euro-
pean Space Agency on 3 April 2014 and 25 April 2016,
respectively. Together, they provide repeat sampling of the
Earth’s surface every 6 d. For this study, we use Level 1
Ground Range Detected (GRD) data. Depending on avail-
ability, both interferometric wide (IW) and extra wide (EW)
swath modes are used, but over the open ocean only EW data
are acquired. We employ the Sentinel Application Platform
(SNAP) toolbox to apply the orbital and radiometric cor-
rections provided with the imagery. The SAR images were
multi-looked with a factor of 6 to reduce speckle and com-
putation time, leading to a spatial resolution of 240 m. Fi-
nally, a terrain correction was applied using the GETASSE30
(Global Earth Topography And Sea Surface Elevation at 30
arc second resolution) digital elevation model. The resulting
backscatter values are scaled between their 5th and 95th per-
centiles. The MODIS optical imagery was required prior to
the launch of Sentinel-1A in 2014.

To chart changes in the iceberg area over time, we delimit
its outline as a polygon in each subsequent image (Fig. 2,
see also Bouhier et al., 2018; Collares et al., 2018; Han et
al., 2019). When the iceberg is drifting in open water its out-
line can be detected automatically using boundary detection
techniques (e.g. using MATLAB’s bwboundaries function).
However, in the presence of sea ice the iceberg could not be
separated using this approach, and so we instead delimit its
outline manually on such occasions (Bouhier et al., 2018). If
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Figure 1. Trajectory of the B30 iceberg as recorded by the Antarctic Iceberg Tracking database (Budge and Long, 2018). After calving from
the Thwaites Ice Shelf in 2012, it followed the coastal current westwards, started drifting north in 2017, and eventually disintegrated in 2019.
Black dots mark the positions where CryoSat-2 overflights over the iceberg are available, and circles depict the positions of the MODIS and
Sentinel-1 images used in this study.

parts of the iceberg are covered by clouds, we again use mul-
tiple MODIS images together, so that different parts of the
iceberg are obscured by clouds in each image (e.g. Fig. 3l).
Also sea ice frozen to the iceberg is easier to distinguish from
its colour and texture when several images are used together
(e.g. Fig. 3b and c). To estimate the uncertainty of our delin-
eations, we buffer the polygons by the source imagery pixel
width (500 m for MODIS images and 240 m for multi-looked
Sentinel-1 images) and calculate the resulting difference in
area. This gives a mean relative difference of 3.6%± 0.9 %.

Our second method of estimating the iceberg area is based
on 228 measurements of the semi-major and semi-minor axis
lengths. Although iceberg area is most accurately calculated
from delineation of their full perimeter in satellite images,
the downside of this approach is that it requires a high de-
gree of time-consuming manual interaction and clear im-
agery. This also makes it less reproducible and subject to in-
dividual judgement. We take the size of an ellipse calculated
from the semi-major and semi-minor axes provided by the
NIC and compare this with our imagery-based iceberg area
calculations. The NIC operationally tracks icebergs longer
than 18.5 km using a combination of visible, infrared, and
SAR imagery. Observations are made weekly, but especially
in the early days longer data gaps exist, and not every esti-
mate of semi-axis length is based on a new manual observa-
tion, but some are just duplicated from the previous observa-

tion. Their estimates of semi-axis lengths are also rounded to
nautical miles (1.852 km), leading to a stepwise evolution of
iceberg area with only eight different estimates. We base our
trend estimate and analysis solely on these eight estimates
because we are confident that these are unique observations.
The uncertainty of this approach is governed by the assump-
tion of an elliptical iceberg shape and the irregular, rounded
updates.

Our third and final method of estimating the iceberg area
is to make use of 106 CryoSat-2 satellite altimeter over-
passes, which are also used to calculate the iceberg’s thick-
ness. We record the arc lengths of the iceberg sampled by
these tracks and estimate iceberg area by assuming the ice-
berg has a circular shape. Depending on the position and rel-
ative orientation of the iceberg with respect to each overpass,
CryoSat-2 will occasionally sample the long axis but more
often a shorter corner. This leads to considerable variations
in the area estimates and in general an underestimation. We
employ a 10-point moving mean over time to reduce the vari-
ability. The principal uncertainty of this approach is because
one-dimensional arc lengths cannot reliably represent a two-
dimensional area especially when the shape is evolving and
if it is unknown which part of the shape was sampled.
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Figure 2. Outlines of the B30 iceberg derived from satellite imagery. (a) Initial shape (red polygon) of the B30 iceberg determined from
MODIS images after calving; the background is a MODIS image on 11 September 2012. (b) Polygon outlines derived from further MODIS
and Sentinel-1 imagery plotted in polar stereographic projection and used to calculate area change in the B30 iceberg.

Figure 3. Satellite imagery with near-coincident CryoSat-2 tracks of iceberg freeboard and the manually transformed initial polygon shape
plotted on top. The initial polygons are used to determine the relative position of each new overpass.

2.4 Iceberg orientation

To track the iceberg shape and rotation in later images rel-
ative to its initial orientation, we record the iceberg’s orien-
tation in all satellite images that are near-coincident in time
with CryoSat-2 overflights (Fig. 3). To orientate the iceberg,
we manually identify the coordinates of one corner of the ini-
tial iceberg polygon outline at the time of each new overpass
and adjust the rotation angle to align (colocate) all images to
a common orientation (Fig. 7a–l). This allows us to transform
the iceberg coordinates at the time of each image acquisition

relative to the equivalent position at the time just before it
calved.

2.5 Initial iceberg freeboard

We use CryoSat-2 satellite altimetry to determine freeboard
and thickness of the B30 iceberg. CryoSat-2 is a satellite
radar altimeter that employs SAR processing to achieve an
along-track resolution of 250 m. It was launched by the Euro-
pean Space Agency on 8 April 2010 in a 369 d repeat period
with a 30 d sub-cycle. We use Level 1B baseline C data from
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Figure 4. Initial freeboard heights of the B30 iceberg overlain on a MODIS image on 19 March 2012 (before calving). (a) Filtered CryoSat-2
measurements of 145 d before calving, (b) gridded CryoSat-2 data, (c) standard deviation of the gridding, and (d) number of measurements
per grid cell.

the CryoSat-2 Science server and apply the Centre for Polar
Observation and Modelling sea ice processing system (Till-
ing et al., 2018) to deduce surface height. For consistency, a
common threshold retracker is applied to measurements ac-
quired in both SAR and SAR interferometric mode and over
all surface types. Using Level 1B data is important because
the Level 2 products are generated using different retrackers
and different biases for different modes and surface types,
and so the signals acquired during different parts of the ice-
berg trajectory are not comparable. Iceberg freeboard is cal-
culated by subtracting the adjacent mean sea surface height
from the iceberg surface height.

Although satellite altimeters only sample icebergs along
one-dimensional profiles beneath their ground track while
they are drifting, it is possible to build up a detailed two-
dimensional picture of their surface over time prior to calv-
ing while their movement is relatively modest. To map the
initial freeboard height of B30, we combine all CryoSat-2
tracks recorded within almost 5 months (1 January 2012 to 24
May 2012) before it calved (Fig. 4a). The Thwaites Ice Shelf
flows at 3.9 kmyr−1 on average (Mouginot et al., 2019), and
so we adjust earlier tracks to account for this movement. Be-
cause the Thwaites Ice Shelf has a particularly rugged and
crevassed surface topography, the point-of-closest-approach
(POCA) varies. To make different overpasses more compara-
ble, we remove outliers by deleting freeboard heights greater
than 60 m or below 20 m freeboard (Tournadre et al., 2015),
as well as crevasses by deleting freeboard heights falling ei-
ther below the median minus 1 standard deviation or below
the 5-point moving mean minus the 5-point moving stan-
dard deviation. After outlier removal, the mean initial iceberg
freeboard is 45.5 m above the adjacent sea level with a wide
spread of 8.1 m standard deviation. When crevasses are ex-
cluded, the mean freeboard is 49.0 m with a much lower stan-
dard deviation of 4.6 m. Because the resulting freeboard mea-
surements are still quite sparse, we average them within 5 km

grid cells to obtain a continuous reference surface (Fig. 4).
The number and standard deviation of the gridded freeboards
give an indication of the variance within each grid cell. The
mean standard deviation within each grid cell is 3.3 m, the
standard deviation across different grid cells is 3.1 m, and the
overall standard deviation of all heights within the polygon
is 4.6 m. We compare the gridded initial freeboard to mea-
surements from the first CryoSat overpass when the iceberg
is adrift, acquired shortly after calving, to check they are con-
sistent and find a mean difference of−0.4 m. As this value is
considerably lower than the iceberg freeboard variability, we
conclude that the ice shelf was floating freely prior to calv-
ing also and that the gridded heights are representative of the
initial freeboard.

2.6 Iceberg freeboard change

When icebergs are adrift, their motion is sufficiently large to
mean that they are only sampled in one-dimensional profiles
along satellite altimeter ground tracks (Fig. 3) and that only
the largest tabular icebergs are sampled frequently enough to
derive changes in their freeboard. We extract surface heights
over the B30 iceberg when it is adrift (e.g. Fig. 5) using the
position from the AIT database as an initial estimate of its
location. However, because the AIT positions and timings
are approximate and the iceberg has a significant extent, we
investigate all CryoSat-2 ground tracks that pass within 1◦

latitude and 2◦ longitude of the database position. We au-
tomatically extract measurements sampling the iceberg with
the following steps: track segments are truncated to exclude
altimeter echoes from targets where the first or last freeboard
height is more than 3 m to exclude measurements from the
nearby continent, and we also exclude tracks that do not con-
tain freeboard measurements between 20 and 60 m to en-
sure that they sample the iceberg. We consider all freeboard
heights between the first and last echo falling in the range
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of 20 to 60 m as potential iceberg measurements (Tournadre
et al., 2015). To avoid including adjacent icebergs or berg
fragments, we exclude segments with more than 10 measure-
ments of ocean or sea ice, identified as surface heights in the
range of −3 to +3 m, between potential iceberg measure-
ments. We also remove crevasses and other rugged features
using the same editing steps applied to determine the surface
height prior to calving. As a final check, we calculate the dis-
tance of these remaining heights to the AIT database location
and discard measurements that are further away than half the
iceberg length (28 km) to ensure we are tracking B30.

We apply two different techniques to calculate changes in
the iceberg freeboard. For 12 tracks we are able to calculate
precise changes in freeboard with spatial definition by mak-
ing use of near-coincident satellite imagery to account for the
rotation and translation of the iceberg relative to its initial po-
sition prior to calving (Jansen et al., 2007) and consider the
estimated movement between the time of the nearest satellite
image and altimeter acquisitions. At 94 other times, we com-
pute the freeboard height change as the difference of mean
freeboard from each new overpass relative to the initial mean
surface height. While these observations are of poorer cer-
tainty, they provide denser temporal sampling and fill gaps
between the colocated measurements. The first colocation
method assigns both the initial heights and the new measure-
ments to their closest 5 km grid cell and averages them to
ensure that the same locations are compared. We account for
the iceberg drift between the times of the satellite acquisi-
tions, allowing a maximum separation of 72 h (though most
overpasses are separated by less than 24 h). If the image is
from a different date than the CryoSat track, we correct the
distance travelled based on the daily iceberg locations from
the AIT database. In any case, we account for the drift in our
uncertainty estimate performing a Monte Carlo simulation
with 1000 slightly differently colocated samples per track.
These are normally distributed around our estimated transla-
tion and rotation with a standard deviation of 15◦ d−1 and a
drift speed of 3 km d−1 (Scambos et al., 2008) scaled by the
respective time separation. We then calculate the freeboard
difference for each of the 1000 slightly differently colocated
tracks and use the resulting standard deviation of freeboard
change from these samples as the uncertainty of our colo-
cation. This is combined with the standard deviation of the
gridded CryoSat-2 freeboard data (of the new track and of
the reference) to yield a conservative uncertainty estimate
for the colocated tracks. The second method ignores the rel-
ative position and orientation of the iceberg at the time of
the altimeter overpasses (Bouhier et al., 2018; Tournadre et
al., 2015) and simply compares the mean freeboard along
each new track to the mean surface height before calving.
Although this method is easiest since it does not rely on ad-
ditional image data to locate the track, it cannot account for
potential spatial variations in the iceberg freeboard. Because
of this, we restrict the new overpasses to those including at
least 20 measurements as tracks sampling only the edges of

Figure 5. Example of CryoSat-2 freeboard measurements along one
track. The blue line shows which heights were identified as ice-
berg, and the red line shows the remaining heights after filtering out
crevasses.

an iceberg tend to be inaccurate. As uncertainty estimate we
combine the standard deviation of each new overpass with
the standard deviation of the initial height. As a first check
to see if the mean freeboard from a single overpass can be
compared to the mean initial height, we calculate the mean
height for each of the 15 tracks over the pre-calved iceberg
(Fig. 4a) and find a standard deviation of 2.8 m compared to
the mean initial height of 49.0± 4.6 m.

2.7 Iceberg thickness

We compute iceberg thickness H (freeboard plus draft) from
our estimates of iceberg freeboard heights hfb assuming hy-
drostatic equilibrium and that CryoSat-2 does not penetrate
through the snow layer (Eq. 1; Moon et al., 2018). Besides
these freeboard heights, iceberg thickness also depends on
column-average densities of seawater ρw , ice ρi, and snow
ρs, as well as snow depth hs. Including a snow layer in
this equation is important because the snow layer adds to
the observed freeboard and disguises a part of the ice free-
board change. On the other hand the additional load of the
snow layer pushes the iceberg downwards. Both effects are
taken into consideration. We assume seawater density to be
1024 kgm−3 (Fichefet and Morales Maqueda, 1999) and set
its uncertainty to 2 kgm−3. Due to the long life cycle of the
B30 iceberg of 6.5 years and the changing environmental
conditions it experiences during this time, we allow the ice
and snow densities to evolve with time. Snow depth is also
time-varying, and estimates of this and of snow and ice den-
sity are introduced successively.

H =
ρw

ρw− ρi
hfb−

(ρw− ρs)

ρw− ρi
hs (1)
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To estimate the thickness of the snow layer, we down-
load hourly ERA5 Reanalysis snowfall, snowmelt, and
snow evaporation data (Copernicus Climate Change Service,
2018), accumulate it daily, and interpolate it in space and
time to the iceberg’s trajectory. Snowmelt and snow evapo-
ration are subtracted from the snowfall to retrieve the addi-
tional snow accumulation since calving. However, this snow
estimate does not account for snow being blown off the ice-
berg or onto the iceberg from the continent (Fedotov et al.,
1998; Leonard and Maksym, 2011). To convert snow water
equivalent (SWE) to snow depth, we need to know snow den-
sity.

Snow density is time variable because snow compacts
gradually during the iceberg’s life time of several years as
a function of snow depth hs (m), the mean air tempera-
ture T (◦C), and the mean wind speed v (ms−1) (Eq. 2; In-
ternational Organization for Standardization, 1998). We use
hourly ERA5 Reanalysis 2 m air temperature data and cal-
culate wind speed from the ERA5 Reanalysis 10 m east-
wards and northwards wind components (Copernicus Cli-
mate Change Service, 2018). Both are interpolated to the
iceberg’s trajectory and averaged since the day of calving.
Because snow density depends on snow depth and snow
depth depends on snow density, we calculate both iteratively
starting with a snow density of 300 kgm−3. We set the un-
certainty in snow density to 50 kgm−3 (Kurtz and Markus,
2012) and the uncertainty in snow depth to 20 % (Kwok and
Cunningham, 2008).

ρs =
(

90+ 130 ·
√
hs

)
·

(
1.5+ 0.17 · 3√

T
)
·(1+0.1·

√
v) (2)

To calculate the iceberg’s ice density profile we follow the
approach by Tournadre et al. (2015) and determine two pa-
rameters V and R to fit the surface density and the depths
of the critical density levels (550 and 830 kgm−3) of the
Thwaites Ice Shelf, from which it calved, as given in Ligten-
berg et al. (2011; Eq. 3); ρg is the density of pure glacial
ice (915 kgm−3). Since the mean ice density depends on ice
thickness and ice thickness depends on the mean ice den-
sity, we iterate over both equations. We also account for ice
density changes over the iceberg’s life cycle by calculating
new mean densities as the iceberg thins. This incrementally
reduces the average ice density as the densest ice is melted
at the bottom. As ice density uncertainty we take 10 kgm−3

(Dryak and Enderlin, 2020).

ρi =
1
H

H∫
0

(ρg−V · e
R·z)dz (3)

3 Results and discussion

We first assess changes in the B30 iceberg area using
boundaries mapped from satellite imagery, and we compare
the observed trend to less accurate estimates derived from

arc lengths and semi-major axes. Next, we determine the
change in iceberg freeboard, and we assess the impact of
employing precise colocation using near-coincident satellite
imagery. Iceberg thickness changes are then computed from
freeboard changes using time-varying estimates of snow ac-
cumulation and snow and ice densities derived from at-
mospheric reanalyses. Finally, iceberg area and thickness
changes are combined to derive the change in volume and
mass.

3.1 Iceberg area change

When the B30 iceberg first calved in May 2012, it was
1500± 60 km2. Over the following 6.5 years it lost 1075±
66 km2 of its extent, which corresponds to a 72%± 11 % re-
duction at an average rate of 149± 5 km2 per year (Fig. 6).
However, because deriving iceberg outlines requires a high
degree of time-consuming manual interaction, we also evalu-
ate the efficacy of two alternative methods based on measure-
ments of their orthogonal (semi-major and semi-minor) axes
by the NIC and on arc lengths recorded in satellite altimetry
which are considerably less laborious. Although these ap-
proaches also yield progressive reductions in area (Fig. 6),
they exhibit significant positive (138 km2, 14 %) and neg-
ative (−426 km2, 45 %) biases, respectively, due to under-
sampling of the iceberg geometry and the necessary approxi-
mation of a regular shape (ellipses and circles, respectively).
While an ellipse overestimates the area compared to most
shapes with the same axes, arc lengths yield an underesti-
mate because corners are sampled more often than the major
axis. One idea for improvement would be to use the max-
imum or to filter out tracks that only sample one corner,
but the main problem remains that a one-dimensional length
measurement cannot be translated into a reasonable area es-
timate without knowing the iceberg shape, which changes
over time. Nevertheless, both the orthogonal axes and arc-
length approaches yield area estimates that are reasonably
well correlated (r > 0.90) with those determined from our
manual delineation. Area trends are overestimated by 16 %
and underestimated by 48 %, respectively. While manual de-
lineation provides the most consistent and most accurate area
estimate, tracking iceberg axes or arc lengths yields area and
area change estimates that are within 48 % and is consider-
ably less time consuming.

The rate of iceberg area loss from B30 was approximately
constant until 2018, after which time it started to lose larger
sections more rapidly. Although its area has reduced steadily
over time, it is less obvious which sections have been lost
during individual calving events. However, by aligning the
initial polygon to each subsequent image (Fig. 3) it is pos-
sible to identify when and where changes occur. The ice-
berg shape already appears altered on 30 November 2014 af-
ter bumping into the adjacent ice shelf which likely caused
the first chunks to break off. B30 continued to lose smaller
sections along its edges over the next year – either through
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Figure 6. Area change in the B30 iceberg from polygons delineated in satellite imagery with their uncertainty (red) and approximations
using orthogonal axes provided by the National Ice Center (NIC) assuming an elliptical shape (blue) or using the arc lengths of CryoSat-2
overflights assuming a circular shape (black) over time (a) and as scatter plot (b). To fit the NIC trend line in (a) we only use unique values
of orthogonal axis length (thick blue dots). These also define the dates of comparison in (b).

melting at the sides or smaller wastings – when it was drift-
ing along the coastal current. In 2018, bigger sections are
lost more rapidly as the iceberg is drifting northwards in
open water. Rift calving can occur at any time within an ice-
berg life cycle along pre-existing fractures (Scambos et al.,
2008), while edge wasting is typically only observed when
icebergs are travelling outside the sea ice pack. B30 was
heavily crevassed prior to calving (e.g. visible in Fig. 3g and
i), and so even the smaller wastings along its edges could re-
flect rift calving events rather than edge wastings. The “foot-
loose mechanism” (Wagner et al., 2014) can become a main
driver of iceberg decay in warm waters when wave erosion at
the waterline forms a sub-surface foot, creating a buoyancy
stress that can lead to calving. Although it is not possible to
investigate the effects of wave erosion using satellite data,
the effect could in principle have caused the larger break-ups
that occurred in 2018.

3.2 Iceberg freeboard change

To assess the change in freeboard over the survey period, we
compare differences between the new overpasses and the ini-
tial heights in space and time (Fig. 7). For the spatial analy-
sis we chart the freeboard difference between each colocated
overpass post-calving (Fig. 3) and the gridded initial height
pre-calving (Fig. 4b) at the same relative iceberg position.
This comparison shows that the change in freeboard height
across the iceberg is relatively homogenous at each epoch
(Fig. 7a–l). We then average these differences per CryoSat-2
track and chart the variation over time alongside the less
accurate (but more abundant) estimates determined without
colocation (Fig. 7m). Because the observations without colo-
cation are relatively imprecise, we apply a 10-point moving
mean to the data, and we also fit a polynomial of 3rd order
(and starting at zero). Overall, the B30 iceberg freeboard has
reduced by 9.2± 2.2 m during the 6.5 years since it calved.

To assess the importance of colocation, we compare free-
board changes calculated with and without this step (Fig. 7n).
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Figure 7. Freeboard change in the B30 iceberg. (a–l) Freeboard difference in each grid cell sampled by colocated CryoSat-2 overpasses; the
1t values give the time difference between the CryoSat-2 overpass and the corresponding satellite image as an indication of the colocation
uncertainty due to iceberg drift. Negative values indicate that the image was taken before the CryoSat overpass. (m) Mean difference of each
new overpass through time. CryoSat-2 tracks that have been colocated are marked with a diamond, but all available CryoSat-2 overpasses
have been used to calculate a moving mean and fit a polynomial; the shading shows the standard deviations. (n) Scatter plot of freeboard
change from colocated CryoSat-2 tracks versus the same tracks used without colocation.

The estimates are well correlated (r = 0.87), and the root
mean square difference is 1.6 m, which is a measure of
the improvement in certainty associated with colocation and
equal to the difference in mean uncertainty of colocated
tracks (4.7 m) versus tracks without colocation (6.3 m). Also,
the temporal variation of freeboard changes computed from
observations with and without colocation are in good overall
agreement (Fig. 7m), and we conclude that for this iceberg
we can combine the two and make use of the entire set of
CryoSat-2 measurements. This finding should hold for other
tabular icebergs where the topographic variability is smaller
than the observed thinning. The variability of freeboards
computed within each 5 km grid cell and across different grid
cells are also of the same order (3.3 and 3.1 m, respectively),
and this is likely to have reduced the impact of colocation
uncertainties. For other icebergs with more heterogeneous
freeboard across the iceberg that are less crevassed (i.e. with
lower freeboard variabilities within the same grid cell), colo-

cation might have a larger impact, and more icebergs need to
be studied to generalise these findings.

3.3 Iceberg thickness change

We compute the iceberg thickness from our measurements
of its freeboard (using the moving mean, red line in Fig. 7m)
and by assuming that it is floating in hydrostatic equilibrium
within the surrounding ocean with a surface snow layer. Ac-
counting for the snow layer is important because it affects
the ice freeboard and the iceberg buoyancy, and we take both
effects into consideration. Based on hourly snowfall, evapo-
ration, and snowmelt derived from ERA5 reanalyses (Coper-
nicus Climate Change Service, 2018), we estimate that the
iceberg accumulates 4.6 m of snow water equivalent during
the 6.5 year survey period (Fig. 8). The rate of accumula-
tion is quite linear. The iceberg thickness also depends on
densities of the snow layer, the iceberg, and the seawater,
and we allow the snow layer and iceberg densities to evolve
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over time due to the changing environmental conditions it
experiences during its long life cycle. The mean iceberg den-
sity reduces from an initial estimate of 864 kgm−3 to a final
value of 835 kgm−3 as a consequence of basal ice melting
(Fig. 8a). The mean change in height due to firn densifica-
tion in West Antarctica has been estimated to be 2.79 cm per
year on floating ice (Zwally et al., 2005); upscaling this rate
gives a total of 18 cm after 6.5 years, which is significantly
smaller than the observed freeboard loss of 9.2 m, so we do
not apply it. The snow layer compacts over time due to its
accumulation and warming, and we estimate that its average
density rises from 252 to 616 kgm−3, which yields a 7.2 m
thick layer after 6.5 years (Fig. 8b). We also investigate the
impact of surface thawing; although the iceberg surface does
experience temperatures above freezing every summer and
for a total of 218 degree hours (number of hours above 0◦C
times the temperature above 0◦C) since calving (Fig. 8c),
in situ observations (Scambos et al., 2008) suggest that this
translates into only 8 to 16 cm of snow melting, and this has
a negligible impact on the iceberg freeboard, so we discard
this effect.

We estimate the initial iceberg thickness to be 315±36 m,
on average, reducing to 198± 14 m after 6.5 years. This
amounts to 117± 38 m of thinning (Fig. 8d) at an average
rate of 17.3± 1.8 m per year. Previous studies have recorded
iceberg thinning rates of up to 10 m per year when drift-
ing within the sea ice extent close to the coast (Han et al.,
2019; Jansen et al., 2007; Li et al., 2018; Morgan and Budd,
1978; Scambos et al., 2008) and much higher rates in excess
of 20 m per year when in warmer open water (Hamley and
Budd, 1986; Jansen et al., 2007; Li et al., 2018; Morgan and
Budd, 1978; Scambos et al., 2008; Tournadre et al., 2015).
Jacka and Giles (2007) find dissolution rates of 11–18 m per
year between 60 and 150◦ E based on shipborne observations
over 15 years. Although all these studies were conducted for
different regions of the Southern Ocean, our estimated av-
erage thinning rate is in line with the melt rates previously
reported given that the B30 iceberg has spent most of its
lifetime close to the coast (Fig. 1). To assess the impact of
including a snow layer in the thickness calculation, we also
compute thickness change assuming no snow has accumu-
lated since calving (Fig. 8d); this scenario leads to an esti-
mated 90± 39 m reduction in iceberg thickness, 23 % lower
than the rate determined when the snow layer is included,
which illustrates its importance. We expect the importance
of including a snow layer to be highest in phases when the
iceberg is melting slowly as snow accumulation can disguise
the thickness change in this instance. Based on the mostly
linear snow accumulation, it will also be more important the
longer the iceberg survives as more snow accumulates. Apart
from the snow layer, iceberg density is also a significant fac-
tor in our thickness change calculation, and while we have at-
tempted to model the evolutions of ice density, snow density,
snow accumulation, and surface thawing, their uncertainties
are difficult to quantify.

Besides the observed thinning, the iceberg also seems to
slightly thicken between mid-2014 and early 2015. During
this time B30 was very close to the coast (Fig. 3b–d). There-
fore, a range of processes – both physical processes that im-
pact the actual thickness of the iceberg and processes that
impact the freeboard measurement – could have caused this
gain in thickness. First of all, iceberg thickness can increase
through marine ice formation when the iceberg is surrounded
by very cold water. Little et al. (2008) found that freezing
beneath ice shelves is concentrated along their western side,
and B30 was indeed located at the western side of Getz Ice
Shelf at this time (Figs. 1 and 3b and c). Iceberg thickness
can also grow through snow accumulation on the surface,
which we account for, but only based on reanalysis data, and
there might be additional local snowfall or snow accumu-
lation through strong katabatic winds from the nearby con-
tinent (Fedotov et al., 1998). Furthermore, external forcing
from collisions with the adjacent ice shelf might have led to
a deformation (MacAyeal et al., 2008) and hence a compres-
sion in some parts. All of these processes can cause a phys-
ical increase in iceberg thickness. Apart from that, a short
(partial) grounding could lead to higher measured iceberg
freeboards (Li et al., 2018). Also surface melting could shift
the scattering horizon of CryoSat-2 (Otosaka et al., 2020) and
therefore appear like a freeboard increase. Indeed we observe
a steep increase in degree hours around the turn of the year
2015. What caused the signal in this instance is hard to dis-
entangle. Most probably, it was a combination of several of
the mentioned effects.

3.4 Iceberg volume and mass change

Having calculated changes in the B30 iceberg thickness as-
sociated with snowfall and basal melting and changes in
area due to fragmentation, we combine both to determine
the overall change in volume (Fig. 9). To do this, we multi-
ply each thickness estimate with the imagery-based area esti-
mates interpolated to the times of the CryoSat-2 overpasses.
Unlike small icebergs, which can take on various shapes (En-
derlin and Hamilton, 2014; Sulak et al., 2017), large tabular
icebergs inherit their shape from their parent ice shelf and
therefore have rather homogenous thickness and near vertical
walls (American Meteorological Society, 2012). Deviations
from vertical may occur in both directions, and we therefore
expect them to approximately even out (Orheim, 1987). The
larger the length to thickness ratio is, the smaller the impact
of tilted side walls on the resulting volume. For the B30 ice-
berg with an initial length to thickness ratio of 187 : 1, we
therefore conclude that our assumption of vertical walls has
negligible impact on the volume. The proportion of the to-
tal volume changes associated with melting and fragmenta-
tion is calculated by keeping area and thickness constant (and
equal to their average), respectively. To compute changes in
mass, we multiply the volume change due to fragmentation
by the column-average iceberg density at each point in time
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Figure 8. Evolution of the B30 iceberg properties: (a) ice density and snow density, (b) snow water equivalent (SWE) and snow depth
accumulation on the B30 iceberg, (c) degree hours that the B30 iceberg experienced, and (d) thickness change in the B30 iceberg with and
without snow accumulation taken into consideration. Uncertainties are plotted as shaded areas.

because this ice is lost at the sides. In contrast, we multiply
the volume change due to basal melting by the density of pure
ice (915 kgm−3) since this ice is lost at the bottom where ice
density is highest. The total mass change is the sum of both
components. Uncertainties are calculated by propagating the
uncertainties of thickness change, area change, and ice den-
sity.

The initial volume of B30 at the time of its calving was
472± 57 km3, and after 6.5 years it had lost 378± 57 km3

of ice, corresponding to a 80%± 16 % reduction. Fragmen-
tation accounts for two thirds (69%± 14 %) of the total vol-
ume loss, and basal melting is responsible for the remainder
(31%±11 %). Volume changes due to fragmentation become
the dominant source of ice loss towards the end of our sur-
vey, consistent with previous findings (Bouhier et al., 2018).
This is because the main drivers of fragmentation are surface
melting, which can lead to a rapid disintegration (Scambos
et al., 2008), and wave erosion or wave stress (Wagner et
al., 2014). Both increase the further north (i.e. surrounded by
open ocean and warmer air temperatures) the iceberg gets.
The two icebergs studied by Bouhier et al. (2018) also show
similar fractions of ice loss due to fragmentation (60 % for
the B17A iceberg and 75 % for the C19A iceberg). In terms
of mass, the iceberg lost 325±44 Gt of ice in total at an aver-
age rate of 46± 4 Gt per year. The loss due to basal melting
(106± 35 Gt) can be used as a lower estimate of the fresh-
water flux from B30. Some of the mass lost due to changes
in area – in particular melting at the sides and smaller edge

Figure 9. Volume change in the B30 iceberg divided into loss due
to basal melting (thickness change, blue) and due to fragmentation
(area change, red), as well as total volume loss (black).

wastings, which will probably melt locally – adds to the
freshwater flux, but bigger calving events create smaller ice-
bergs, which can survive and travel on their own (Bigg et
al., 1997; England et al., 2020; Martin and Adcroft, 2010).
To calculate the total freshwater flux, the melting of all frag-
ments has to be considered (Tournadre et al., 2012, 2016).
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4 Conclusions

In this study we have derived changes in the area, freeboard,
thickness, and volume of the tabular B30 iceberg using a
combination of satellite altimetry and satellite imagery. Dur-
ing the 6.5 years after the iceberg calved in May 2012, its area
reduced from 1500± 60 to 426± 27 km2 at an average rate
of 149± 5 km2 per year. The iceberg freeboard lowered by
9.2±2.2 m over the same period. Using estimates of the snow
accumulation and changes in snow and ice density, we esti-
mate that the iceberg thinned by 117±38 m at a mean rate of
17.3± 1.8 myr−1. Altogether, the iceberg lost 378± 57 km3

of ice, and this equates to an estimated 325±44 Gt reduction
in mass.

We investigated the capability of automated approaches
to approximate iceberg area and area change by comparing
them to manually derived estimates. Although the most reli-
able method of charting iceberg area change is through man-
ual delineation in satellite imagery, we show that less time-
consuming estimates derived from measurements of the ice-
berg’s orthogonal axes or arc lengths are also able to capture
the area and area change over time, albeit with poorer cer-
tainty. Orthogonal axes lead to estimates of area and area
trends that are 14 % and 16 % higher, respectively, and arc
lengths lead to estimates of area and area trends that are 45 %
and 48 % lower due to the necessary approximation of the
iceberg shape.

We also presented a new thorough methodology to in-
vestigate iceberg freeboard and thickness change using
a densely sampled time series of consistently processed
Level 1 CryoSat data and assessed the importance of coloca-
tion. Using a subset of 12 instances with colocation, we find
that omitting this step leads to a small deterioration in the cer-
tainty of detected freeboard change for the B30 iceberg, but
the densely sampled time series is in good agreement with
the colocated tracks. We expect this finding also holds for
other large tabular Antarctic icebergs with uniform topog-
raphy when the observed freeboard change exceeds the to-
pography and when enough tracks are averaged. In this case,
it suggests that the procedure for tracking changes in iceberg
thickness could be automated given reliable estimates of their
position (Budge and Long, 2018).

Finally, we developed a methodology to account for snow-
fall and variations in snow and ice density due to chang-
ing environmental conditions that large icebergs experience
during their multi-annual drift. We found that the impact of
snowfall on the retrieval of iceberg thickness increases over
time, and after 6.5 years we estimate that 7.2 metres of snow
have accumulated, which leads to a 27 m adjustment to the
iceberg thickness change. Iceberg thickness change is also
strongly dependent on the ice density profile which we de-
rive from the depths of critical density levels (Ligtenberg et
al., 2011), and so in situ observations would help to assess
the reliability of this relationship. Likewise, direct measure-

ments of the near-surface firn will help to assess the reliabil-
ity of our reanalysis-based estimate of snow loading.

More icebergs – including the fragments lost from B30 –
need to be studied to generalise the results we have and to
constrain both the fresh water flux, which influences water
circulation (Grosfeld et al., 2001; Jenkins, 1999) and pro-
motes sea ice formation (Bintanja et al., 2015; Merino et al.,
2016), and input of terrigenous nutrients such as glacial iron
into the Southern Ocean, which fosters primary production
(Biddle et al., 2015; Duprat et al., 2016; Helly et al., 2011).
Finally, studying icebergs as they drift through warmer water
may give unique insights into the response of glacial ice to
environmental conditions which may become commonplace
at the ice shelf front in the future (Scambos et al., 2008; Shep-
herd et al., 2019).
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A B S T R A C T   

Icebergs impact the physical and biological properties of the ocean where they drift, depending on the degree of 
melting. We use satellite imagery and altimetry to quantify the area, thickness, and volume change of the massive 
A68A iceberg from its calving off the Larsen-C Ice Shelf in July 2017 until January 2021, when it disintegrated. 
A68A thinned from 235 ± 9 to 168 ± 10 m, on average, and lost 802 ± 34 Gt of ice in 3.5 years, 254 ± 17 Gt of 
which was through basal melting (a lower bound for the immediate fresh water input into the ocean). Basal 
melting peaked at 7.2 ± 2.3 m/month in the Northern Scotia Sea and an estimated 152 ± 61 Gt of freshwater was 
released off South Georgia, potentially altering the local ocean properties, plankton occurrence and conditions 
for predators.   

1. Introduction 

Icebergs impact and interact with the Antarctic environment through 
a range of processes. This begins with their calving, which may influence 
the stability of their parent ice shelf (Rott et al., 1996) and flow of 
glaciers upstream (Rignot et al., 2004). As they drift, icebergs release 
cold fresh melt water, altering the local ocean properties (Helly et al., 
2011; Jenkins, 1999) and facilitating sea ice growth (Bintanja et al., 
2015; Merino et al., 2016). They also carry debris with terrigenous nu
trients, which supply the majority of iron input to the Southern Ocean 
(Wu and Hou, 2017), fostering biological production (Biddle et al., 
2015; Duprat et al., 2016; Smith et al., 2007). When icebergs ground, 
they impact marine benthic communities (Barnes, 2017; Gutt, 2001) and 
leave plough marks on the sea floor (Wise et al., 2017). Furthermore, 
large icebergs can act as a barrier disrupting the local ocean circulation 
(Grosfeld et al., 2001) or blocking access of penguin colonies to their 
feeding grounds (Kooyman et al., 2007). The response of icebergs to the 
warmer climates they drift through can also inform predictions on how 
the Antarctic ice shelves will react to climate change (Scambos et al., 
2008; Shepherd et al., 2019). 

A68A was the sixth largest iceberg ever recorded in satellite obser
vations (Budge and Long, 2018), and had a significant potential to 

impact its environment. Indeed when it calved from the Larsen-C Ice 
Shelf in July 2017, concerns were raised that its loss might trigger a 
collapse of the entire ice shelf (Hogg and Gudmundsson, 2017; Jansen 
et al., 2015). After residing close to its calving position for over a year, 
A68A started to move northwards through the Weddell Sea (Fig. 1). It 
reached the Scotia Sea in early 2020 and approached South Georgia at 
the end of 2020, where it started to disintegrate. Although this is a 
common trajectory for icebergs (Fig. 1 and Tournadre et al., 2016), the 
sheer size of A68A elevates its potential to impact ecosystems around 
South Georgia through release of fresh water and nutrients, through 
blockage and through collision with the benthic habitat (Grimm, 2021; 
Vernet et al., 2012). Here, we combine satellite imagery and satellite 
altimetry to chart changes in the A68A iceberg’s area, freeboard, 
thickness, volume and mass over its lifetime to assess its disintegration 
and melt rate in different environments. 

2. Data and methods 

We track the iceberg’s area and area change in satellite imagery. In 
total, 23 Sentinel-1, 18 Moderate Resolution Imaging Spectroradiometer 
(MODIS) and 14 Sentinel-3 scenes are used to manually delineate the 
iceberg’s outlines using GIS software. While the Sentinel-1 Synthetic 
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Aperture Radar (SAR) imagery offers all-weather capability and higher 
spatial resolution, MODIS and Sentinel-3 optical imagery have the 
advantage of a higher temporal resolution, but cannot be used during 
the polar night and on cloudy days. In optical imagery the spatial res
olution is slightly lower and it is harder to distinguish sea ice from 
icebergs or clouds, which is the main error source. Therefore, we rely on 
Sentinel-1 data, if available close to the altimetry overpasses and use 
MODIS or Sentinel-3 data on the other occasions. To estimate the ac
curacy of our delineations we buffer the polygon outlines by two pixels 
and calculate the resulting difference in area. This gives a mean relative 
difference of 3.2%. 

Changes in the iceberg’s freeboard and thickness are derived from 
CryoSat-2 and ICESat-2 satellite altimetry. To generate a complete map 
of the initial iceberg freeboard and thickness, we collect all CryoSat-2 
tracks over the part of the Larsen-C Ice Shelf that formed the A68A 
iceberg between 12 July 2016 and 11 July 2017 (Fig. 2), correcting for 
the mean ice motion of 696 m/year (Mouginot et al., 2019). To track 
changes in the iceberg freeboard while it is drifting, we colocate 15 
overpasses from ICESat-2 and 9 overpasses from CryoSat-2 with the 
initial freeboard map, post them on a common 2-km grid, and difference 
them. For this colocation to the initial iceberg reference system, we 
digitize the iceberg outline in a near-coincident image using 7 Sentinel-1 
and 17 MODIS scenes. We then transform this outline to maximize the 
overlapping area with respect to the outline of the previous overpass. At 
least for icebergs like A68A that are non-symmetric and when the gen
eral shape is preserved, this step-wise transformation yields the optimal 
rotation and translation parameters defining where the new overpass 

samples the iceberg and which part of the initial freeboard map this 
corresponds to (Fig. 3). Grid cells of the initial map that are not covered 
by any track are filled using linear interpolation. 

The CryoSat-2 data are processed from Level 1B baseline D using the 
Centre for Polar Observation and Modelling sea ice processing system 
(Tilling et al., 2018). For consistency, a common threshold retracker is 
applied to measurements acquired in both SAR and SAR interferometric 
mode and over all surface types. Iceberg freeboard is calculated by 
subtracting the adjacent mean sea surface height from the iceberg sur
face height. For ICESat-2 we use Level 2A, ATL03 photon data as a 
primary product, because iceberg heights are filtered out in the higher 
level products. For each track, we analyze the three strong beams 
separately and discard the weak beams. Low confidence flagged photons 
(2 and below) are filtered out and 150 photons each are averaged along- 
track, to reduce noise. We then extract the mean sea surface height, 
ocean tides and inverted barometer effect from Level 3A version 3 
ATL07 data, interpolated to the ATL03 locations. These are subtracted 
from the photon heights, yielding sea surface heights that agree with the 
ATL07 sea surface heights, and to derive iceberg freeboard. Finally, we 
discard freeboard measurements from both altimeters below 20 and 
above 100 m and measurements outside the iceberg polygon derived 
from the near-coincident satellite imagery. To make the higher resolu
tion ICESat-2 data comparable to the initial heights derived from 
CryoSat-2, we also filter out crevasses searching for local minima with a 
prominence of 3 or more and reject the outer 2 km at the edges. 

Uncertainty estimates are a combination of the freeboard standard 
deviations and the impact of the colocation uncertainty. The colocation 

Fig. 1. Trajectory of A68A (circles colored by date) and historic icebergs (yellow lines, Budge and Long, 2018) overlain on a bathymetric map (GEBCO Compilation 
Group, 2019; Hogg et al., 2016). Selected outlines (date colour coded), altimetry overpasses (grey lines with black marking the parts that sample the iceberg) and key 
dates are also shown. Panels b and c are zoom regions of interest. 

A. Braakmann-Folgmann et al.                                                                                                                                                                                                              



Remote Sensing of Environment 270 (2022) 112855

3

uncertainty is mainly caused by the time separation between the 
altimetry overpass and the corresponding image. We perform a Monte 
Carlo simulation using 1000 samples that are normally distributed 
around the estimated translation and rotation assuming a maximum (3 
sigma) daily rotation of 15 degrees and a maximum translation based on 
the drift speed of the iceberg scaled by the time separation. The drift 
speed is calculated as the path distance (Greene et al., 2017) from the 
locations given in the Antarctic Iceberg Tracking database (Budge and 
Long, 2018). We then calculate the freeboard difference for each of the 
1000 slightly differently colocated samples and take their standard de
viation as an estimate of the impact of erroneous colocation. This 
colocation uncertainty is combined with the standard deviations of the 
initial freeboard and of the new overpass using uncertainty propagation. 

The freeboard standard deviations are calculated within each grid cell. 
When the whole track is averaged to derive the mean freeboard change 
at one point in time, the uncertainties of the involved grid cells are 
propagated. Rather than assume that our freeboard measurement errors 
are not correlated in space or time, we employ a more conservative 
approach and propagate the uncertainties using a full covariance matrix 
to account for their correlation (Storto et al., 2019). In the absence of 
independent freeboard measurements for verification, we assume that 
altimeter-derived freeboards recorded along the same track are 60% 
correlated and that the initial freeboards, which are derived from 
measurements acquired along several independent tracks, are 30% 
correlated. The mean standard deviation of the calculated freeboard 
change is 0.45 m, with colocation contributing 22%, the initial 

Fig. 2. Calculation of initial iceberg freeboard map: (a) CryoSat tracks over the Larsen-C Ice Shelf over 1 year (12 July 2016–11 July 2017) before the iceberg calved, 
cut to the area that later formed the iceberg. (b) The same measurements gridded at 2 km and empty grid cells filled with linear interpolation. (c) Standard deviation 
within each grid cell. (d) Number of observations averaged per grid cell. The background shows a Sentinel-1 image on 10 July 2017. 

Fig. 3. Colocation of a sample ICESat-2 track and the corresponding Sentinel-1 image on 18 September 2019: For each altimetry overpass a near-coincident image is 
used to derive the iceberg’s outline at the time of the new overpass (red, panel a). The new outline is transformed to maximize the overlapping area with the previous 
outline (blue, panel b). This is done iteratively, so we know the transformation of the previous polygon with respect to the initial polygon (black) and can transform 
the new overpass to the initial situation (panel c). We then grid the new track on the same grid as the initial freeboard measurements and difference it with these 
initial heights (panel d). 
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freeboard contributing 29% and the new track contributing 49%. 
Iceberg thickness H is derived from iceberg freeboard hfb assuming 

hydrostatic equilibrium (Eq. 1). We treat ICESat-2 and CryoSat-2 mea
surements in the same way, presuming neither penetrates the snow 
layer. Because the iceberg survives for several years and travels a long 
distance passing through varying environmental conditions, we model 
the evolution of the snow layer and iceberg density based on ERA5 
Reanalysis data (Copernicus Climate Change Service, 2018) of air tem
perature, wind speed and snow accumulation (Fig. 4, Braakmann- 
Folgmann et al., 2021). The iceberg’s column-average density ρi reduces 
from 868 to 848 kg m− 3 during its drift (Ligtenberg et al., 2011), because 
the densest, pure glacial ice is melted from the bottom. We estimate the 
uncertainty in the column average and basal ice densities to be 10 kg 
m− 3 (Dryak and Enderlin, 2020) and 2 kg m− 3, respectively. The density 
of the surface snow layer ρs reaches 465 kg m− 3 after 3.5 years (Inter
national Organization for Standardization, 1998) and snow depth hs 
increases by 3.3 m. We estimate the snow density and depth un
certainties to be 50 kg m− 3 (Kurtz and Markus, 2012) and 20% (Kwok 
and Cunningham, 2008), respectively. As sea water density ρw we use 
1024 kg m− 3 (Fichefet and Morales Maqueda, 1999) with an uncertainty 
of 2 kg m− 3. Altogether, the mean uncertainty in thickness change is 5.3 
m, with ice density uncertainty being the largest factor. To obtain a 
continuous representation of iceberg thickness in space and time, we fit 
a third order polynomial function of latitude, longitude and time to our 
observations of thickness change and combine this with the initial 
thickness map (supplementary animation, Braakmann-Folgmann et al., 
2022). 

H =
ρw

ρw − ρi
hfb −

(ρw − ρs)

ρw − ρi
hs (1) 

Iceberg volume is determined by multiplying iceberg thickness and 
area, interpolated to the times of the altimetry overpasses. Changes in 
the volume of the mother iceberg are then calculated by differencing 

each volume estimate to the initial value. We differentiate between 
volume loss through fragmentation (area loss) and volume loss through 
basal melting (thickness change) by keeping either thickness or area 
constant. To convert volume change to mass change, we multiply the 
loss due to fragmentation by the column-average ice density at each 
point in time, and we multiply the basal thickness change by the density 
of pure glacial ice. Summing both components gives the total iceberg 
mass change. Uncertainties are propagated, and we find that the un
certainties in area and thickness change contribute 45% and 55%, 
respectively, to the uncertainty of volume change. 

3. Results 

The initial area of the A68A iceberg was 5719 ± 77 km2. Since A68A 
and A68B separated just after calving (Budge and Long, 2018, Fig. 5a), 
our initial polygon shows the outline of the A68A iceberg and all our 
results relate to A68A. During its lifetime, the iceberg’s area gradually 
reduced both through larger break-ups and continuous processes (Figs. 1 
and 6a). A larger break-up took place between 2018 and 2019 and 
another large piece, A68C, was lost in April 2020. In December 2020, the 
A68A iceberg gave birth to several children icebergs, named A68D-A68F 
(Budge and Long, 2018), rapidly reducing the area of the remaining 
largest part. Apart from these sudden losses, iceberg area also reduced 
gradually through side melting and smaller edge-wastings. Overall, the 
iceberg lost 3206 ± 78 km2 up to 7 January 2021, when our last 
thickness measurement is, and 5052 ± 106 km2 by 4 March 2021 - a 56 
± 8% and 88 ± 4% reduction in area of the mother iceberg, respectively. 
We find distinct patterns of area change according to the iceberg’s 
geographical location (Fig. 6a), with a mean loss rate of 200 ± 82 km2 

per year in the Weddell Sea and a more than ten times higher loss rate of 
2807 ± 199 km2 per year in the Scotia Sea until 7 January 2021, when 
the iceberg is drifting in open ocean. 

The maps of initial iceberg freeboard and thickness (Figs. 2 and 5a) 

Fig. 4. Evolution of iceberg properties based on ERA-5 Reanalysis data (Copernicus Climate Change Service, 2018): (a) Iceberg density and snow density; (b) snow 
depth and snow water equivalent (SWE). 

A. Braakmann-Folgmann et al.                                                                                                                                                                                                              



Remote Sensing of Environment 270 (2022) 112855

5

reveal the iceberg’s topography. The mean gridded initial freeboard is 
36.0 ± 0.2 m and the mean estimated initial iceberg thickness is 235 ± 9 
m. The iceberg was thicker on the side facing the Antarctic Peninsula 
and thinnest on the Southern tip, where the crack which separated the 
iceberg from the ice shelf started (Jansen et al., 2015), and in the North. 
Moreover, the iceberg is covered by longitudinal surface structures in 
the former ice shelf flow direction of a few meters depth, which extend 
across the iceberg’s full width and are a few kilometers wide, widening 
towards the sea. These are not visible in optical or radar imagery, but 
revealed by the thickness. One of these features coincides with a suture 
zone (Jansen et al., 2013). Owing to the undulating topography, gridded 
freeboard heights range from 22.1 to 42.6 m, and this motivates our 
colocation of subsequent altimetry tracks to improve confidence in es
timates of freeboard and thickness change. 

The iceberg freeboard stays almost constant while in the Weddell Sea 
with a mean freeboard loss of 0.2 ± 0.1 m/year (Fig. 6b), but starts to 
rapidly decrease once it enters the Scotia Sea, where the mean rate of 
freeboard lowering is 5.7 ± 0.4 m/year. Marking the location of each 
track, we observe that the initially southern part of the iceberg is the 
most resilient to melting. This explains the positive outliers in the time 
series, which all stem from the southern part. For thickness change 
(Figs. 5, 6c and supplementary animation) we record a total reduction of 
67 ± 5 m, leaving the iceberg with a mean thickness of 168 ± 10 m close 
to South Georgia. The mean melt rates are 7.8 ± 2.1 m/year in the 
Weddell Sea and 49.5 ± 6.5 m/year in the Scotia Sea (3.0 ± 0.8 m/ 
month in the Southern and 7.2 ± 2.3 m/month in the Northern Scotia 
Sea). We find good agreement (average RMSE 10 m, maximum RMSE 22 
m) between our observed iceberg thickness and the model fit (Fig. 5). 
Another finding from our study is that CryoSat-2 and ICESat-2 freeboard 
and thickness measurements over the iceberg are comparable and can be 

merged into a consistent time series (see Fig. 6b, c - especially the tracks 
on 5 and 16 May 2020, which are close in time). 

The A68A iceberg’s initial volume was 1346 ± 53 km3. After 3.5 
years, the volume of the mother iceberg had reduced by 924 ± 27 km3 

(Fig. 6d), which is 69 ± 3% of its initial value. Converted to mass loss 
this corresponds to 802 ± 34 Gt lost from the mother iceberg. Frag
mentation makes up for 68 ± 5% of the total mass loss and basal melting 
accounts for the remaining 32 ± 3%. While both processes contribute 
roughly equally in the Weddell Sea and increase as the iceberg drifts 
northwards, fragmentation becomes the dominant wastage factor as the 
iceberg falls apart and forms numerous children icebergs in the Northern 
Scotia Sea (Fig. 6d, Table 1). The total loss through basal melting (277 ±
19 km3 or 254 ± 17 Gt) can be considered as a lower estimate of the 
immediate freshwater flux along the iceberg’s trajectory. However, 
smaller edge wastings will add to this and also larger children icebergs 
will eventually melt, but not necessarily at the location where they are 
lost. 

4. Discussion 

Our findings compare well with previous studies of the Larsen-C Ice 
Shelf and of icebergs that followed similar trajectories. For example, our 
initial iceberg density of 868 kg m− 3 is consistent with the estimated 
~15 m firn air content derived from airborne observations (Holland 
et al., 2011) and our estimates and spatial distribution of initial iceberg 
thickness and freeboard agree very well with iceberg drafts derived from 
the same airborne campaign (Holland et al., 2009) and from in situ 
measurements collected along the suture zone (Jansen et al., 2013). 
Lopez-Lopez et al. (2021) estimated the area of A68A between 22 July 
2017 and 26 January 2019 using a largely automated approach, and 

Fig. 5. Maps of the A68A iceberg thickness when it was still part of the Larsen-C Ice Shelf (a) and at later dates as it drifted through the Weddell and Scotia Seas (b-d). 
The initial thickness is superimposed on a Sentinel-1 image acquired on 10 July 2017, and the region from which A68B was formed is also indicated. On later dates, 
the iceberg thickness is computed at colocated altimetry overpasses (outlined gridcells, shaded according to date relative to the interval start) and modelled at the 
mid-point of each interval elsewhere. 
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Fig. 6. Time series of changes in the A68A iceberg area (a), freeboard (b), thickness (c) and volume (d). The vertical line marks 21 January 2020, when the iceberg 
moved from the Weddell to the Scotia Sea (see Fig. 1). In panel (a) the background shading indicates sea ice concentration around the iceberg (OSI SAF, 2021) and in 
panel (c) the background shading indicates ocean temperature at the iceberg’s base (Boyer et al., 2018). 
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found a decrease of ~210 km2, which is close to our estimate of 236 km2 

over a similar period (22 July 2017 to 22 January 2019). Scambos et al. 
(2008) identified three types of breakup for the A22A iceberg, which 
took a similar path: rift calvings, edge wastings and rapid disintegration. 
The breakups of A68B and A68C were probably rift calvings along pre- 
existing fractures; the breakup of numerous children icebergs in the last 
few months of our survey were rapid disintegration likely caused by 
surface melting, and edge-wasting and side-melting are likely the reason 
for the remaining area reductions (Fig. 6a). 

Previous studies have also reported similar rates of iceberg freeboard 
and thickness change. Scambos et al. (2008) recorded no change in 
freeboard (0 ± 1.3 m) for the A22A iceberg over 17 months until it 
reached the tip of the Antarctic Peninsula and a reduction by 11.7 ± 2.3 
m/year during its passage to South Georgia; we find similar rates for 
A68A of 0.2 ± 0.1 m/year and 5.7 ± 0.4 m/year in the same locations. 
This comparison also shows that our colocation improves the melt rate 
accuracy with respect to using tracks that only sample similar parts of 
the iceberg. Han et al. (2019) estimated the rate of thickness change of 
A68A to be 12.89 ± 3.34 m/year between February and November 2018 
at sparse crossing points of CryoSat-2 ground tracks. Although we do not 
have measurements for the same period, interpolation of our colocated 
estimates suggests a value of 7.0 ± 0.8 m which is in reasonable 
agreement. In the Weddell Sea, Jansen et al. (2007) report melt rates in 
the range 0 to 12 m per year for the A38B iceberg, in good agreement 
with our estimate of 7.8 ± 2.1 m/year for A68A. Iceberg melting in
creases significantly in the Scotia Sea, and our estimate of 49.5 ± 6.5 m/ 
year for A68A is almost identical to the value of ~48 m/year found by 
Jansen et al. (2007) for A38B. Bouhier et al. (2018) recorded melt rates 
for the B17A iceberg of 68.4 m/year in Scotia Sea South and 180 m/year 
in the Scotia Sea North. These values are approximately double the melt 
rates we have calculated for A68A in the same location (Table 1). A 
possible explanation could be that B17A started out with significantly 
higher freeboard of around 50 m, which means that its draft was exposed 
to ocean currents at a greater depth, where the water temperature is 
higher (Boyer et al., 2018). Concerning the contributions of melting and 
breakage, Tournadre et al. (2015) found that melting contributes only 
18% over the whole life cycle of all large Antarctic icebergs – which is a 
slightly lower estimate than the 32% which we find for A68A during our 
study period. However, previous studies (Bouhier et al., 2018; Scambos 
et al., 2008) found that fragmentation becomes the dominant factor 
towards the end, which is also apparent from our data (Fig. 6d, Table 1), 
and calculating volume loss until e.g. March 2021 (when our area 
change time series ends) would have likely increased the share of 
fragmentation. 

The very distinct melt rates in the Weddell and Scotia Sea can be 
explained by the different environmental conditions: First of all, ice
bergs experience significantly higher water and air temperatures in the 
Scotia Sea compared to the Weddell Sea (Scambos et al., 2008; see also 
Fig. 6c). Secondly, icebergs drifting freely in the Scotia Sea (Schodlok 
et al., 2006) are no longer sheltered by sea ice (Fig. 6a), exposing them 

to wave erosion at the sides, forming a subsurface ‘foot’, which leads to 
calving owing to buoyancy stress (the so-called ‘footloose mechanism’; 
Wagner et al., 2014). Apart from wave erosion at the waterline, ocean 
swell also induces strain on the iceberg, which can lead to crevasse and 
rift propagation (Li et al., 2018). Our observation that the initially 
southern part of the iceberg seems more stable (Fig. 6b) could be 
explained by the fact that this part is thinner (Figs. 2a and 5a) and 
therefore comes into contact with ocean water of a different temperature 
or current speed, as these are the two main drivers of iceberg melting 
(Bigg et al., 1997). In principle the iceberg could also have tilted to 
adjust its balance after break-offs from the northern part. Interestingly, 
we observe a notable thickness change in the Weddell Sea, although 
hardly any freeboard change was observed. This is because freeboard 
loss associated with basal melting and freeboard gain due to snow 
accumulation even out and hence a slow basal melting process can only 
be observed, when a snow layer is included in the calculations (Braak
mann-Folgmann et al., 2021). 

To constrain the intrusion of fresh water and nutrients, it is essential 
to determine where and by how much icebergs are melting (Silva et al., 
2006). While volume loss due to basal melting serves as a lower bound 
estimate of freshwater and nutrient input, some of the area loss due to 
sidewall melting and edge-wastings also contribute, but are difficult to 
quantify in satellite observations. Children icebergs and larger edge- 
wastings, which form in larger calving events, travel further and take 
more time to melt (Tournadre et al., 2016). How quickly these melt 
depends on their size and the surrounding ocean conditions (Rackow 
et al., 2017; Stern et al., 2016); along the A68A trajectory, for example, 
melt rates vary from 10 to 100 m/year (Table 1) and ocean temperature 
at the iceberg’s base increases from − 1.8 ◦C to just over +1 ◦C (Fig. 6c). 
Children icebergs of sufficient length will also fragment further (England 
et al., 2020). And unlike large tabular icebergs, smaller icebergs with 
lengths similar to their thickness frequently roll over (Hamley and Budd, 
1986). To track the entire freshwater and nutrient input, the trajectories 
and melting of all fragmented pieces would have to be considered. 
Furthermore, the amount of bioavailable iron and nutrients delivered by 
icebergs also depends on the amount of sediments contained in the 
iceberg (Raiswell et al., 2016). 

Despite these unknowns, our observations allow for an initial 
assessment of A68A’s impact on the ecosystem around South Georgia 
through scouring, melting and blockage. The closest recorded distance 
to the island was 62 km on 15 December 2020 with a mean draft of 141 
± 11 m. Seafloor bathymetry reveals a couple of shallower features 
within a distance of 52–65 km to the southern coastline (Fig. 1), where 
the iceberg could have grounded and where other icebergs may do so in 
future. Although A68A did not ground, it likely hit one of these features 
while turning (Fig. 1b). The shallowest bathymetry beneath the iceberg 
locations captured in satellite imagery is 150 m (Hogg et al., 2016). 
Although any scouring on the sea bed destroys the local benthic fauna 
(Barnes, 2017; Gutt, 2001), A68A’s turn will have affected only a small 
area. As it fragmented into smaller pieces, the risk of blockage to 
foraging grounds (Kooyman et al., 2007) for the millions of penguins 
and seals, raising their offspring on South Georgia (Clarke et al., 2012; 
Joiris et al., 2015), was largely averted. For future icebergs, this scenario 
is most likely at the western tip of the island, where icebergs of similar 
draft can approach up to a few kilometers. However, birds, seals and 
whales that regularly feed in the highly productive waters surrounding 
South Georgia (Atkinson et al., 2001; Joiris et al., 2015) could also be 
influenced by the large amount of melt water and nutrients released by 
icebergs as they drift near to the island, altering the ocean properties and 
plankton occurrence (Arrigo et al., 2002; Smith et al., 2013; Vernet 
et al., 2012). Overall, A68A spent at least 96 days (28 November 2020 to 
4 March 2021, when our observations end) within 300 km off the 
coastline. Assuming its children icebergs melted at the same rate of 0.43 
± 0.17 m per day, we estimate that 152 ± 61 Gt of fresh water mixed 
with nutrients was released during this time. More research should be 
conducted to study the impact of this alteration on the marine life 

Table 1 
Annual change in the A68A iceberg area, thickness and volume in different re
gions along its trajectory.  

Annual loss rate Weddell 
Sea 

Scotia Sea Scotia Sea 
South 

Scotia Sea 
North 

Area [km^2/year] − 200 ± 82 − 2807 ±
199 

− 1205 ±
286 

− 7400 ± 298 

Thickness [m/ 
year] 

− 7.8 ± 2.1 − 49.5 ±
6.5 

− 36.4 ± 9.5 − 86.9 ± 27.4 

Volume [km^3/ 
year] 

− 87.3 ±
21.0 

− 729.4 ±
50.4 

− 418.3 ±
75.7 

− 1621.7 ±
116.0 

..through 
fragmentation 

− 44.7 ±
18.5 

− 538.3 ±
47.0 

− 244.1 ±
59.2 

− 1323.0 ±
90.9 

..through melting − 42.6 ±
11.3 

− 191.2 ±
25.9 

− 174.2 ±
46.0 

− 298.7 ±
94.5  
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around South Georgia. As this is a common iceberg trajectory, our re
sults could also help to predict the disintegration of other large tabular 
icebergs and to include their impact in ocean models (England et al., 
2020; Martin and Adcroft, 2010; Rackow et al., 2017). 

5. Conclusions 

We have characterized the evolution of the A68A iceberg from its 
calving off the Larsen-C Ice Shelf in July 2017 to its disintegration close 
to South Georgia in early-2021. Although the iceberg was tabular, it had 
significant undulations in topography across its surface. Thus, accurate 
colocation of the iceberg’s orientation is required to derive reliable es
timates of its freeboard and thickness change over time from satellite 
altimetry. We estimate that the average iceberg thickness reduced from 
235 ± 9 m at calving to 168 ± 10 m near South Georgia. Combined with 
observations of its area change determined from satellite imagery, we 
estimate an initial volume of 1346 ± 53 km3 and 802 ± 34 Gt of ice loss 
from the main iceberg in 3.5 years. Around one third (254 ± 17 Gt) of 
the mass loss was through basal melting, which provides a lower bound 
estimate of the direct freshwater input along the iceberg’s trajectory. 
Losses due to side melting and break-offs of smaller pieces will add to the 
immediate freshwater flux, and larger children icebergs will also 
contribute as they melt. Near South Georgia we estimate a fresh water 
input of 152 ± 61 Gt over ~3 months, potentially impacting the island’s 
rich ecosystem. We confirm that the distinct environmental conditions 
in the Weddell and Scotia Sea lead to rapidly increasing rates of melting 
and fragmentation once icebergs travel north of the Antarctic Peninsula. 
Our detailed maps of the A68A iceberg thickness change (Braakmann- 
Folgmann et al., 2022) will be useful for investigations of the impact of 
this calving event on the stability of the Larsen-C Ice Shelf, and for more 
detailed studies on the effects of meltwater and nutrients released in the 
vicinity of South Georgia. As this is a common iceberg trajectory, our 
results could also help to model the disintegration of other large tabular 
icebergs that take a similar path and to include their impact in ocean 
models. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112855. 

Data availability 

All data used in this study are freely available: The iceberg trajec
tories are available from https://www.scp.byu.edu/data/iceberg/, 
CryoSat-2 data from https://science-pds.cryosat.esa.int/, ICESat-2 data 
from https://openaltimetry.org/data/icesat2/ and https://nsidc.org/d 
ata/atl03, Sentinel-1 data from https://scihub.copernicus.eu/dhus/ or 
https://www.polarview.aq/antarctic, Sentinel-3 data from https://app 
s.sentinel-hub.com/eo-browser, MODIS data from https://wvs.eart 
hdata.nasa.gov/, the ERA-5 data from https://cds.climate.copernicus. 
eu/cdsapp#!/dataset/reanalysis-era5-single-levels, sea ice concentra
tion data from ftp://osisaf.met.no/archive/ice/conc_amsr and ocean 
temperature from https://www.ncei.noaa.gov/data/oceans/woa/ 
WOA18/DATA/temperature/. The daily maps of iceberg thickness are 
available from Mendeley Data (Braakmann-Folgmann et al., 2022). 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

Acknowledgments 

This work was supported by Barry Slavin and by NERC through 
National Capability funding, undertaken by a partnership between the 
Centre for Polar Observation Modelling and the British Antarctic Survey. 
We thank the three anonymous reviewers for their time and their posi
tive and constructive comments that helped to improve this paper. 

References 

Arrigo, K.R., Van Dijken, G.L., Ainley, D.G., Fahnestock, M.A., Markus, T., 2002. 
Ecological impact of a large Antarctic iceberg. Geophys. Res. Lett. 29 https://doi. 
org/10.1029/2001GL014160, 8-1-8–4.  

Atkinson, A., Whitehouse, M.J., Priddle, J., Cripps, G.C., Ward, P., Brandon, M.A., 2001. 
South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar. Ecol. 
Prog. Ser. 216, 279–308. https://doi.org/10.3354/meps216279. 

Barnes, D.K.A., 2017. Iceberg killing fields limit huge potential for benthic blue carbon in 
Antarctic shallows. Glob. Chang. Biol. 23, 2649–2659. https://doi.org/10.1111/ 
gcb.13523. 

Biddle, L.C., Kaiser, J., Heywood, K.J., Thompson, A.F., Jenkins, A., 2015. Ocean glider 
observations of iceberg-enhanced biological production in the northwestern Weddell 
Sea. Geophys. Res. Lett. 42, 459–465. https://doi.org/10.1002/2014GL062850. 

Bigg, G.R., Wadley, M.R., Stevens, D.P., Johnson, J.A., 1997. Modelling the dynamics 
and thermodynamics of icebergs. Cold Reg. Sci. Technol. 26, 113–135. https://doi. 
org/10.1016/S0165-232X(97)00012-8. 

Bintanja, R., Van Oldenborgh, G.J., Katsman, C.A., 2015. The effect of increased fresh 
water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol. 
56, 120–126. https://doi.org/10.3189/2015AoG69A001. 
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Abstract. Icebergs release cold, fresh meltwater and terrigenous nutrients as they drift and melt, influencing the local ocean 

properties and encouraging sea ice formation and biological production. To locate and quantify the fresh water flux from 

Antarctic icebergs, changes in their area and thickness have to be monitored along their trajectories. While the locations of 

large icebergs are tracked operationally by manual inspection, delineation of their extent is not. Here, we propose a U-net 10 

approach to automatically map the extent of giant icebergs in Sentinel-1 imagery. This greatly improves the efficiency 

compared to manual delineations, reducing the time for each outline from several minutes to less than 0.01 sec. We evaluate 

the performance of our U-net and two state-of-the-art segmentation algorithms on 191 images. For icebergs, larger than covered 

by the training data, we find that U-net tends to miss parts. Otherwise, U-net is more robust to scenes with complex 

backgrounds, ignoring sea ice, smaller patches of nearby coast or other icebergs and outperforms the other two techniques 15 

achieving an F1 score of 0.84 and an absolute median deviation in iceberg area of 4.1 %.  

1 Introduction 

Icebergs influence the environment along their trajectory through the release of cold fresh water mixed with terrigenous 

nutrients (Duprat et al., 2016; Helly et al., 2011; Jenkins, 1999; Merino et al., 2016; Smith et al., 2007; Vernet et al., 2012). 

The more they melt, the higher the impact. However, this melting is not linear, but depends on the surrounding ocean 20 

temperature, current speed and many other variables that are hard to model or observe (Bigg et al., 1997; Bouhier et al., 2018; 

England et al., 2020; Jansen et al., 2007; Silva et al., 2006). Calculating fresh water input from satellite observations is possible 

and can partially be automated, but requires manual delineations of the iceberg outlines to calculate changes in iceberg area 

and to collocate altimetry tracks with a map of initial iceberg thickness to estimate basal melting (Braakmann-Folgmann et al., 

2021, 2022). Here, we present an automated approach using a U-net (Ronneberger et al., 2015) to segment giant Antarctic 25 

icebergs in Sentinel-1 images and hence to derive their outline and area. 

A number of methods have been proposed to automatically detect and segment icebergs in satellite radar imagery. Early work 

by Willis et al. (1996) was based on a simple thresholding technique and limited to certain iceberg sizes of a few hundred 

meters and certain wind conditions. Later, the Constant False Alarm Rate (CFAR) thresholding technique has been applied to 

detect icebergs in the Arctic (Frost et al., 2016; Gill, 2001; Power et al., 2001). Wesche and Dierking (2012) also used a 30 
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threshold based on a K-distribution fitted to observed backscatter coefficients of icebergs, sea ice and open ocean followed by 

morphological operations. Mazur et al. (2017) developed an algorithm for iceberg detection in the Weddell Sea based on 

thresholds for brightness, shape, size, etc. at five scale levels applied to ENVISAT ASAR data. Apart from thresholding, edge-

detection techniques have been applied: Williams et al. (1999) used a standard edge-detection technique followed by pixel 

bonding (Sephton et al., 1994) applied to ERS-1 images during austral winter to detect and segment icebergs in East Antarctica. 35 

Silva and Bigg (2005) extended this to ENVISAT images and improved the algorithm by using a slightly more sophisticated 

edge detection technique followed by a watershed segmentation and a classification step that takes area and shape into 

consideration, but also requires manual interventions. Collares et al. (2018) use the k-means algorithm (Macqueen, 1967) to 

segment icebergs, which are then manually tracked. Koo et al. (2021) employ a built-in segmentation technique similar to k-

means using Google Earth Engine to segment Sentinel-1 images and then apply an incidence angle-dependent brightness 40 

threshold to find icebergs. Calculating the similarity of the distance to centroid histograms of all detected icebergs, they then 

track one specific giant iceberg (B43). The most elaborate algorithm has been proposed by Barbat et al. (2019) using a graph-

based segmentation and Ensemble Forest Committee classification algorithm with a range of hand-crafted features.  

Despite the quantity and variety of previous approaches, a range of limitations has so far hindered the operational application 

of an automated iceberg segmentation algorithm. Overall, previous studies have focused on smaller icebergs and perform 45 

worse for larger ones or are not even applicable there (Mazur et al., 2017; Wesche and Dierking, 2012; Willis et al., 1996). 

Our work extends previous studies with the goal to delineate specific giant icebergs. Giant icebergs make up a very small part 

of the total iceberg population, but hold the majority of the total ice volume (Tournadre et al., 2016), which makes them the 

most relevant for freshwater fluxes. Apart from iceberg size, there are many remaining challenges, resulting from the variable 

appearance of icebergs as well as the surrounding ocean or sea ice in SAR imagery (Ulaby and Long., 2014). Some of the 50 

existing techniques are therefore limited to austral winter images and still require manual intervention (Silva and Bigg, 2005; 

Williams et al., 1999). Dark icebergs remain a problem for all existing methods using SAR images. Many studies also report 

degrading accuracies in high wind conditions (Frost et al., 2016; Mazur et al., 2017; Willis et al., 1996). Deformed sea ice or 

sea ice in general is also mentioned to lead to false detections (Koo et al., 2021; Mazur et al., 2017; Silva and Bigg, 2005; 

Wesche and Dierking, 2012; Willis et al., 1996). And finally clusters of several bergs and berg fragments too close to each 55 

other have been found to pose a problem (Barbat et al., 2019b; Frost et al., 2016; Koo et al., 2021; Williams et al., 1999). Our 

work aims to delineate icebergs in a variety of environmental conditions as accurately as possible using a deep learning 

technique. 

Deep neural networks can encode the most meaningful features themselves and are able to learn more complex non-linear 

relationships. They therefore outperform classic machine learning techniques in most tasks (LeCun et al., 2015; Schmidhuber, 60 

2015). U-net is a neural network that was originally developed for biomedical image segmentation (Ronneberger et al., 2015). 

It has since been applied to many other domains including satellite images and polar science (Andersson et al., 2021; Baumhoer 

et al., 2019; Dirscherl et al., 2021; Mohajerani et al., 2019, 2021; Poliyapram et al., 2019; Singh et al., 2020; Stokholm et al., 

2022; Surawy-Stepney et al., 2023; Zhang et al., 2019). U-net works well with few training examples, trains quickly and still 
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achieves very good results (Ronneberger et al., 2015). A comparison between three network architectures (Deeplab, DenseNet 65 

and U-net) for river ice segmentation found that U-net provided the best balance between quantitative performance and good 

generalization (Singh et al., 2020). Baumhoer et al. (2019) used a U-net architecture to automatically delineate ice shelf fronts 

in Sentinel-1 images with good success (108 m average deviation). As the calving front to ocean boundary looks very similar 

to an iceberg to ocean boundary and both goals have to deal with comparable problems like near-by sea ice and varying 

appearance of the ice, ocean and sea ice surfaces, we decided to also employ a U-net.  70 

2 Data and methods 

This section describes the Sentinel-1 input data, generation of the manually derived outlines for training, validation and testing, 

the implementation of two standard segmentation methods and our U-net architecture. The goal is to derive the outlines of 

Antarctic icebergs, which are large enough to receive a name and to be tracked operationally. Therefore, we aim to generate a 

binary segmentation map, where the biggest iceberg present is selected and everything else – including smaller icebergs, 75 

iceberg fragments and adjacent land ice – is considered as background. This approach differs from most previous work, where 

the goal has been to find all icebergs and is targeted to monitor changes in area of these large bergs, but also to track how the 

icebergs rotate and to use their outline to automatically colocate altimetry overpasses (Braakmann-Folgmann et al., 2022). 

2.1. Sentinel-1 input imagery  

The Sentinel-1 satellites measure the backscatter of the surface beneath them using Synthetic Aperture Radar (SAR). In 80 

contrast to optical imagery, SAR provides data throughout the polar night and independent of cloud cover (Ulaby and Long., 

2014), which is frequent over the Southern Ocean. The Sentinel satellites are an operational satellite system with free data 

availability (Torres et al., 2012).  Sentinel-1a (2014-present) and Sentinel-1b (2016-2022) had a combined repeat cycle of 6 

days (Torres et al., 2012), but the polar regions are sampled more frequently. We use the Level 1 Ground Range Detected 

(GRD) data. Depending on the geographic location around Antarctica, data is collected in either interferometric wide (IW) or 85 

extra wide (EW) swath mode. IW is a 250 km wide swath with 5 x 20 m native spatial resolution and EW is a 400 km wide 

swath with 20 x 40 m native resolution. We use both modes depending on availability. While HH (horizontal transmit and 

horizontal receive) polarised data is available across the Southern Ocean, HV (horizontal transmit and vertical receive) data is 

only available in some parts. As icebergs drift across these acquisition masks and HH has been found to give the best results 

for iceberg detection (Sandven et al., 2007), we use the HH polarised data only.  90 

We pre-process and crop the Sentinel-1 images before applying the segmentation techniques. First, we apply the precise orbit 

file, remove thermal noise and apply a radiometric calibration. We also multilook the data with a factor of six to reduce speckle 

and image size, yielding a spatial resolution of 240 m. Then we apply a terrain correction using the GETASSE30 (Global Earth 

Topography And Sea Surface Elevation at 30 arc second resolution) digital elevation model and project the output on a polar 

stereographic map with true latitude of 71°S. These pre-processing steps are conducted in the Sentinel Application Platform 95 
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(SNAP). All icebergs that are longer than 18.5 km (10 nautical miles) or that encompass an area of at least 68.6 km2 (20 square 

nautical miles) are named and tracked operationally every week by the National Ice Center (NIC). Also slightly smaller 

icebergs (longer than 6 km) are tracked by the Brigham Young University (Budge and Long, 2018), who release daily positions 

every few years. Therefore, we have a good estimate of where each of these giant icebergs should be and cannot only download 

targeted Sentinel-1 images containing these icebergs, but also crop the images around the estimated central position to a size 100 

of 256 x 256 pixels. Hence, every input image contains a giant target iceberg. Some images contain several icebergs and in 

this case, we are only interested in the largest one. To ensure that the largest bergs fit within the image, we rescale images of 

icebergs with a major axis longer than 37 km (20 nautical miles). As the NIC also provides estimates of the semi major axes 

lengths, we apply the rescaling based on this. The rescaled images have a pixel resolution of 480 m instead. For all input 

images, we scale the backscatter between the 1st and 99th percentile to enhance the contrast. In this step, we also replace pixels 105 

outside the satellite scene coverage with ones, and create a mask to discard the same pixels from the predictions.  

 

 

Figure 1: Spatial and temporal coverage of our dataset: The trajectories (by Budge and Long, 2018) of the seven selected icebergs 

are colour-coded according to time and black squares indicate the locations of the images used in this study.  110 

The overall dataset consists of 191 images, showing seven giant icebergs: B30, B31, B34, B35, B41, B42 and C34. These are 

between 54 and 1052 km2 in size. B30 is the only iceberg that is initially longer than 37 km, so we rescale the first 27 images, 
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until its length drops below 37 km. A further two images of this iceberg are then used at normal resolution (Figure 4 first 

column shows rescaled images of B30 and the last one at normal resolution). Spatially, we cover different parts of the Southern 

Ocean including the Pacific and Indian Ocean side with a focus on the Amundsen Sea (see Figure 1). Temporally, our images 115 

span the years 2014-2020 and are scattered across all seasons. For each iceberg, the individual images are roughly one month 

apart. Far higher temporal sampling would be possible in terms of satellite image availability, but we aim to cover a wide range 

of environmental conditions, seasons and iceberg shapes and sizes. As these are highly correlated in subsequent images, we 

decided to use only one image per month. 

2.2. Grouping of input images according to environmental conditions 120 

The appearance of icebergs versus the surrounding ocean or sea ice depends on their roughness, the dielectric properties (e.g. 

moisture of the ice) and the angle of satellite overpass (Figure 2). While calm ocean appears as a dark surface in SAR images, 

wind roughened sea appears brighter depending on the relative wind direction versus the satellite viewing angle (Young et al., 

1998). Thin sea ice has a similar backscatter to calm sea (Young et al., 1998), but rougher first-year ice already exhibits higher 

backscatter and multi-year ice can reach backscatter values overlapping with the range of typical iceberg backscatter 125 

(Drinkwater, 1998). Icebergs with dry, compact snow are usually bright targets in SAR images (Mazur et al., 2017; Wesche 

and Dierking, 2012; Young et al., 1998). However, surface thawing can reduce the iceberg backscatter significantly (Young 

and Hyland, 1997), meaning that those icebergs have the same or lower backscatter than the surrounding ocean and sea ice, 

and appear as dark objects (Wesche and Dierking, 2012; see our Figure 2, last column). Furthermore, giant tabular icebergs 

can exhibit a gradient (Barbat et al., 2019a) due to variations in backscatter with the viewing angle (Wesche and Dierking, 130 

2012) or appear heterogeneous due to crevasses, (see Figure 2, third and last column), which also complicates segmentation 

and differentiation from the surrounding ocean and sea ice.  

 

Figure 2: Examples of input images (top row) and segmentation maps based on manually derived delineations (bottom row) in 

different environmental conditions. From left to right these are B31 in open ocean, B41 surrounded by sea ice, B42 with nearby 135 
fragments, C34 and another similar sized iceberg, B41 close to the coast and B30 appearing dark.  
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We visually group all input images into different categories to assess the performance in different potentially challenging 

conditions. These groups are open ocean, sea ice, fragments, other bergs, coast and dark icebergs (Figure 2 shows one example 

each). We class an image as dark iceberg, if the iceberg appears as dark or does not stand out from the background, because 

both have a similar intensity of grey, making it hard to pick out the berg (Wesche and Dierking, 2012). Images that contain 140 

coast (i.e. nearby ice shelves or glaciers on the Antarctic continent) are grouped into this category. Due to very similar physical 

conditions, ice-shelves and icebergs are hard to differentiate. In some cases, several giant icebergs drift very close to each 

other and both are (partially) visible in our cropped images. If another berg of similar size is present, the algorithms might pick 

the wrong berg and therefore we introduce one group of other bergs. There is also one case where a bigger iceberg is partially 

visible, but we are aiming to segment the largest berg that is fully visible (e.g. Figure 5h). Fragments occur frequently in the 145 

vicinity of icebergs, as icebergs regularly calve smaller bits and pieces around their edges. We assign images to this category 

if the fragments pose a challenge because they are so close to the iceberg, that they are easily grouped together (Koo et al., 

2021). The last challenge is sea ice. Young and flat sea ice usually appears homogenous and dark and does not pose a problem. 

However, older, ridged sea ice and other cases where the background appears grey rather than black with significant structure 

(Mazur et al., 2017) are grouped into this category. If the sea ice is not visually apparent (i.e. young and flat) and the background 150 

appears as dark and relatively homogenous or only contains fragments that are further away from the iceberg and hence there 

is no obvious challenge apparent to us, we class these images as open ocean. If several challenges are present (e.g. if coast and 

sea ice are visible), we assign the image to the most relevant group.  

2.3. Manual delineation of iceberg perimeters  

Although the goal is to develop an automated segmentation technique, we require manual delineations of iceberg extent for 155 

training and evaluation. We manually click the iceberg perimeter in GIS software to yield a polygon. The accuracy of such 

manual delineations is estimated to be 2-4 % of the iceberg area (Bouhier et al., 2018; Braakmann-Folgmann et al., 2021, 

2022). We then create a binary map of the same size as the input image, where pixels within the manually derived polygon are 

defined as iceberg and everything else as background to allow a rapid evaluation of performance. Some examples of input 

images and their corresponding segmentation maps based on the manual outlines are shown in Figure 2. We regard the 160 

manually derived outlines as the most accurate and use these binary maps to train our neural network and to evaluate all 

automated segmentation techniques. When the area deviation of our automated segmentation techniques drops below 2-4 %, 

their prediction might be more accurate than the manual delineation. In any case, automated approaches are advantageous over 

manual delineations – especially when rolled out for numerous icebergs or in operational applications, as each outline takes 

several minutes to click manually. 165 

2.4. Iceberg segmentation with k-means and Otsu  

We implement two standard segmentation techniques as a baseline: Otsu thresholding and k-means. In both cases, we mask 

out the areas that had no satellite scene coverage by setting them to zero (black). For the first segmentation technique, we 
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smooth the input image with a 5x5 Gaussian kernel. Then we apply the Otsu threshold (Otsu, 1979) yielding a binary image. 

The Otsu threshold is determined automatically based on the image’s greyscale histogram so that the within-class variance is 170 

minimised. To find an iceberg, we apply connected component analysis to the binary image and select the largest component. 

We also experimented with other thresholding techniques including adaptive mean and adaptive Gaussian thresholding, but 

found that the Otsu threshold gave the best results. Although different thresholding techniques have been proposed for iceberg 

detection (Frost et al., 2016; Mazur et al., 2017; Power et al., 2001; Wesche and Dierking, 2012; Willis et al., 1996), to our 

knowledge none of them have used the Otsu method. The second technique is k-means (Macqueen, 1967) with k=2. We use 175 

random centre initialisation and run the algorithm for 20 iterations or until an accuracy of 0.5 is reached. We repeat this 100 

times with different initialisations and take the result with the best compactness. Afterwards, we also perform a connected 

component analysis and select the largest component. K-means and a variation of it have also been applied to track selected 

icebergs by Collares et al. (2018) and Koo et al. (2021) respectively. Both our standard segmentation techniques are 

implemented using the OpenCV library (Bradski, 2000) for Python.  180 

2.5. Iceberg segmentation with U-net 

We suggest a U-net architecture to segment Sentinel-1 input images into the largest iceberg and background, which is based 

on the original U-net (Ronneberger et al., 2015) with some modifications. The input images are 256 x 256 one-channel 

backscatter images (as described in Section 2.1. and shown in Figure 2). The U-net is composed of an encoder that produces 

a compressed representation of the input image followed by a decoder that constructs a segmentation map from the compressed 185 

encoding with the same spatial resolution as the input (Figure 3). The encoder uses a number of convolutional and pooling 

layers to generate feature maps at increasing levels of abstraction and spatial scale. The decoder uses further convolutional 

layers and upsampling to construct the required segmentation map. Cross-links convey feature maps from different spatial 

scales in the encoder to the respective decoder stage, where they are combined with contextual feature maps from the decoder 

layer below. This allows U-net to produce accurate segmentations whilst also considering contextual features. We use padding 190 

in the convolutions and pooling operations, so that the feature maps remain the same size as the input at each level (spatial 

scale) and reduce by 50% in height and width between encoder levels. We also use depth-wise separable convolutions (Chollet, 

2017), which are more efficient. Furthermore, we added dropout of 0.3 in between the two convolutions per level to avoid 

over-fitting (Srivastava et al., 2014) and residual connections to aid the learning process and increase the accuracy (He et al., 

2016). The outputs are one-channel 256 x 256 arrays, representing the probability that each pixel belongs to the iceberg class. 195 

During training these output maps are compared with the segmentation maps from our manually derived outlines to alter the 

network parameters accordingly. When evaluating the validation and test data output, we convert the probability map to a 

binary output, where 1 corresponds to the iceberg class and 0 to background (everything else), by thresholding it at 0.5. As we 

are only interested in the largest iceberg and would like to discard other smaller icebergs and iceberg fragments around, we 

also apply a connected component analysis and select the largest component (Figure 3). 200 
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Figure 3: Modified U-net architecture as used in this paper 
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We train and evaluate the network using cross-validation. This means that we train seven different neural networks and always 

retain the images of one iceberg for testing as an independent dataset. The exact number of test images varies, as we have 

between 15 and 46 images per iceberg (Table 2). Although the images are roughly one month apart and cover a wide range of 205 

seasons and surroundings overall (e.g. near the calving front, surrounded by sea ice and within open ocean), we find that 

consecutive images of the same iceberg are often similar – both concerning iceberg shape, size and appearance as well as the 

surrounding. Therefore, we do not mix training and test data. On the other hand, and for the same reason, we find that it 

stabilises the training process, if we draw training and validation data from the same set of icebergs. 24 images are taken as 

validation data, which is used to set the best performing hyperparameters (i.e. network architecture, number of layers, 210 

optimizer, learning rate, loss function and batch size). It also determines when we stop the learning process to avoid overfitting. 

Depending on which iceberg was picked for testing, this leaves between 121-152 images for training. We train the network 

end-to-end using a binary cross entropy loss function and a batch size of one. Higher batch sizes had little impact on the 

performance and run time. The Adam optimizer (Kingma and Ba, 2015) is employed with an initial learning rate of 0.001. The 

learning rate is halved when the validation loss has not decreased for eight consecutive epochs. Training is stopped when the 215 

validation loss has not improved for 20 epochs. In practice, this means that the networks are trained for 57-193 epochs. The 

implementation is done in Python using Keras (Chollet and Others, 2015). Training takes up to 20 minutes on a Tesla P100 

GPU with 25 GB RAM (Google Colab Pro). The prediction for 24 images takes 0.2 seconds. 

3 Results and discussion 

In this section, we present and discuss the results from the three different approaches (U-net, Otsu and k-means). The best 220 

visualisation of the results can be found in the supplementary animations (Braakmann-Folgmann, 2023), showing iceberg 

outlines from all methods and for all 191 images. There is one animation per iceberg. Our analysis in the following is based 

mainly on statistics, but we also show some examples. After an overall analysis, we assess the performance for each iceberg 

and evaluate the impact of iceberg size and different challenging environments. Finally, we compare our results to previous 

studies. 225 

3.1. Performance of the three methods 

We evaluate the performance of the three methods compared to the manual delineations using a range of metrics. True positives 

(TP) are all correctly classified iceberg pixels and true negatives (TN) are all correctly classified background pixels. False 

positives (FP) are pixels that were classified as iceberg, but belong to the background according to manual delineations and 

false negatives (FN) are iceberg pixels in the manually derived segmentation map, which the algorithm has missed and 230 

erroneously classified as background. These are the basis for most evaluation metrics including the overall accuracy, the F1 

score (also known as dice coefficient), misses (also known as false negative rate) and false alarms (also known as false positive 

rate). The detection rate is equal to the iceberg class accuracy and can be derived from 1-misses; hence, we do not list it 
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separately. In the case of a large class imbalance, the F1 score is much more meaningful than the overall accuracy. The iceberg 

class makes up only 5 % of all pixels, so we focus on the F1 score, but list the overall accuracy for completeness. Except the 235 

F1 score, all measures are given in percent. In addition to these metrics commonly used to evaluate segmentation algorithms, 

we also examine the accuracy of the resulting area estimates ai. We calculate the mean absolute error (MAE) in area, the mean 

error (area bias) and the median absolute deviation (MAD) in area. We focus on the MAD, as it is robust to a few complete 

failures. However, some previous studies have reported the MAE in area, but most have reported the area bias, so we also list 

these for completeness. Areas ai and 𝛼𝑖 are calculated as the sum of all iceberg pixels in the prediction and manually derived 240 

segmentation map respectively multiplied by the pixel area. All area deviations are relative deviations and given in percent 

compared to the iceberg area in the manually derived segmentation map. We also calculate the standard deviation for each 

metric. Only the MAD is given with the 25 % and 75 % quantiles instead. 

F1 =  
2 TP

 2TP+FN+FP
            (1) 

 245 

Overall accuracy =  
TN+TP

 TN+TP+FN+FP
          (2) 

 

Misses =
FN

 FN+TP
            (3) 

  

False alarms =
FP

 FP+TN
           (4) 250 

 

MAE =
1

n
 ∑

| ai−αi |

 αi  

𝑛
𝑖=1            (5) 

 

Area bias =
1

n
 ∑

ai−αi 

 αi  

𝑛
𝑖=1            (6) 

 255 

MAD = median (
| ai−αi |

 αi  
)           (7) 

Comparing the performance of all three techniques, we find that U-net outperforms Otsu and k-means in most metrics. It 

achieves a significantly higher F1 score (0.84 compared to 0.62, Table 1) and generates many fewer false alarms (0.4 % instead 

of 4.7 and 5.2 %). On the other hand, both standard segmentation methods have fewer misses than U-net (9 % and 13 % 

compared to 21 %). On this metric Otsu scores best. In terms of iceberg area, the predictions by U-net are much closer to the 260 

manually derived outlines in terms of MAE and bias. Otsu and k-means clearly suffer from a few total failures with over 100 % 

deviation, which bias these metrics in their cases. The MAD, which is less sensitive to such outliers, is similar for the three 

methods, with Otsu scoring best (3.6 %), followed by U-net (4.1 %) and k-means (5.1 %). The 25 %-quantiles are very similar 

for all three methods (2.0, 2.1 and 2.2 % respectively). On the 75 %-quantiles, U-net achieves slightly better results (12.1 % 

area deviation, compared to 13.8 % and 14.9 % for k-means and Otsu). This means that 75 % of all U-net predictions deviate 265 

from the manually derived area by 12.1 % or less. Overall, U-net scores better in most categories, but tends to miss parts and 

misclassify iceberg as background.  
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Table 1: Performance metrics with standard deviations of U-net, Otsu and k-means across all test data sets (191 images). The median 

absolute area deviation (MAD) is given with 25 % and 75 % quantiles instead of standard deviation. Arrows indicate whether high 

(up) or low (down) numbers are desirable. The best score per metric is highlighted in bold. 270 

 F1 score ↑ 
Overall accuracy 

[%] ↑ 
Misses [%] ↓ 

False Alarms 

[%] ↓ 

MAE in area 

[%] ↓ 

Area bias  

[%] ↓ 

MAD in area 

[%] ↓ 

U-net 0.84 ± 0.30 99 ± 2 21 ± 32 0.4 ± 0.3 15 ± 26 -5 ± 29 4.1 [2.1 – 12.1] 

Otsu 0.62 ± 0.34 95 ± 13 9 ± 28 5.2 ± 0.3 170 ± 490 170 ± 490 3.6 [2.0 - 14.9] 

k-means 0.62 ± 0.33 95 ± 12 13 ± 28 4.7 ± 0.3 150 ± 460 150 ± 460 5.1 [2.2 – 13.8] 

 

3.2. Impact of iceberg size  

Next, we evaluate how U-net performs for each of the seven different giant icebergs (Table 2, shaded in grey and Figure 4), to 

assess the impact of the chosen test data set and different iceberg sizes. Here, we find that B34 gives the best results. The 

dataset for this iceberg is the smallest (15 images), meaning that there are more images left for training and the background is 275 

usually not too challenging. B41 gives the lowest F1 score. This dataset is the largest one, containing 46 images, and hence 

leaves the least number of images for training. Furthermore, B41 stays very close to its calving position for a while, which 

means that the first 13 images contain a significant amount of coast – often directly next to the iceberg (see Figure 4 first three 

images or supplementary animation for all images). In these cases all techniques pick the coast rather than the iceberg (as 

discussed later). The highest MAD and miss rate occur for iceberg B31. Because the images of B30 – our largest berg – are 280 

resized, this means that B31 appears largest in the images. Therefore, we believe that the large size of the berg, which U-net 

has not seen in the training data, cause U-net to miss parts of the iceberg (Figure 4 and Figure 5b, f). This is supported by the 

fact, that U-net misses large parts of B31 in the beginning (first few images in Figure 4), then misses smaller parts and once 

the iceberg has decreased to a size similar to other icebergs, U-net works fine (last four images of B31 in Figure 4). In general, 

we find quite variable performance depending on which iceberg is retained as test data. This is because the same challenges 285 

(e.g. iceberg size, shape, surrounding) occur in subsequent images of the same iceberg, even when they are one month apart 

(best seen in the supplementary animations). It is also the reason why we decided to evaluate the methods using cross-

validation, as this makes the analysis less sensitive to the choice of a single iceberg as test data.  

Also for Otsu and k-means the performance varies a lot depending on which iceberg is chosen as test data. The F1 scores for 

Otsu range from 0.20 – 0.91, being lowest for C34 and highest for B31. Similarly, k-means also reaches the lowest F1 score of 290 

0.23 for C34 and the highest for B31 of 0.93. Compared to that, U-net is more consistent reaching F1 scores between 0.68 – 

0.97, but still exhibits significant variability. The fact that Otsu and k-means score so well for B31, also indicates that this data 

set is not hard per se. We rather suspect that we are challenging U-net too much when the iceberg in the test data is bigger than 

any iceberg in the training data. Neural networks are known to struggle with a domain-shift, where the test data is from a 

shifted version of the training data distribution and even more with out-of-domain samples from outside the training data 295 
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distribution (Gawlikowski et al., 2021). Both are caused by insufficient training data, not or barely covering these examples. 

Therefore, we recommend expanding the training data, before applying U-net operationally or to icebergs larger than covered 

by the current training data set. In contrast, iceberg B41, where U-net reaches the lowest F1 score, poses an even greater 

problem to the other algorithms, meaning that this dataset is actually challenging. Finally, we observe that U-net achieves the 

lowest false alarm rate on each iceberg. Otsu generates most false alarms (highest rate for six out of seven icebergs), but also 300 

achieves the lowest miss rate for four out of seven icebergs. Except for B31, U-net consistently achieves the highest F1 score. 

In terms of MAD in area, k-means and U-net score best on three out of the seven icebergs each. 

 

Table 2: Performance of the three methods for each test data set (iceberg). The number of images per iceberg and their minimum 

and maximum size is also given. Note that most images of B30 are rescaled, so it appears smaller in the images. Arrows indicate 305 
whether high (up) or low (down) numbers are desirable. The best score per iceberg and metric are highlighted in bold. 

 F1 score ↑ Misses [%] ↓ False Alarms [%] ↓ MAD in area [%] ↓ 

B30 

29 images 

463-1052 km2 

U-net 0.90 15 0.3 3.3 

Otsu 0.77 9 3.2 2.7 

k-means 0.79 12 2.4 2.4 

B31 

32 images 

79-518 km2 

U-net 0.79 34 0.2 13.6 

Otsu 0.91 5 1.6 3.0 

k-means 0.93 6 1.0 1.9 

B34 

15 images 

97-241 km2 

U-net 0.97 2 0.2 2.1 

Otsu 0.83 1 1.7 1.2 

k-means 0.80 8 1.6 8.3 

B35 

21 images 

62-158 km2 

U-net 0.94 2 0.3 6.9 

Otsu 0.66 9 2.3 7.4 

k-means 0.63 10 2.5 4.0 

B41 

46 images 

54-116 km2 

U-net 0.68 33 0.7 3.5 

Otsu 0.27 13 10.5 3.8 

k-means 0.29 11 10.1 5.6 

B42 

24 images 

142-235 km2 

U-net 0.88 13 0.6 5.4 

Otsu 0.84 6 1.7 8.9 

k-means 0.76 28 1.0 18.7 

C34 

24 images 

61-101 km2 

U-net 0.81 20 0.4 3.7 

Otsu 0.20 36 10.1 4.3 

k-means 0.23 32 9.1 5.2 
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Figure 4: U-net derived iceberg outlines (red) plotted on top of the input images for 10 images per iceberg (columns). We always 

include the first and last image from each time series and sample the others equally in between. As the number of images per iceberg 310 
ranges from 15-46, this means that images of B34 are 1-2 months apart, while the images for B41 are 5 months apart in this figure. 

The full time series and results of all methods can be viewed in the supplementary animations (one per iceberg).  
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Figure 5: Examples of input images (first column) and segmentation maps generated by U-net (second column), Otsu (third column), 

k-means (fourth column), and from manual delineations (last column). We picked these images for illustration to cover each category 315 
of environmental conditions twice and to include all icebergs (labelled on the right). 
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3.3. Impact of different environmental conditions 

Grouping the images according to the surrounding environmental conditions (see Section 2.2.) allows us to judge how well 

each method can deal with the respective challenge (Figure 5, Table 3). Open ocean makes up most of the images (46 %) and 

all methods perform very well with F1 scores of 0.93-0.95 and MAD in area of 2.4-3.2 %. The Otsu threshold performs best, 320 

but the differences between the methods are very small. The two sample images (Figure 5a, b) also illustrate that the only 

problem in this category is rather that U-net generally tends to miss parts of B31 than open ocean in itself posing a problem.  

Sea ice occurs in 14 % of our images and overall U-net achieves the best F1 score (0.88 compared to 0.72 and 0.74), but the 

Otsu threshold gives a slightly better MAD in area (4.3 % rather than 4.8 % and 5.4 %). Visually, the U-net predictions seem 

to be the most robust, as sea ice is discarded reliably. In contrast, the two other methods sometimes connect patches of sea ice 325 

to the iceberg (Figure 5c), but also work fine in other cases (Figure 5d). 

 

Table 3: Performance of the three methods in different environmental conditions. The first column also indicates how often these 

conditions occur in our data set. Arrows indicate whether high (up) or low (down) numbers are desirable. The best values per 

category and metric are highlighted in bold. 330 

 F1 score↑ Misses [%] ↓ False Alarms [%] ↓ MAD in area [%] ↓ 

Open ocean 

(46 %) 

U-net 0.93 11 0.1 2.8 

Otsu 0.95 2 0.4 2.4 

k-means 0.95 4 0.3 3.2 

Sea ice 

(14 %) 

U-net 0.88 14 0.3 4.8 

Otsu 0.72 3 2.4 4.3 

k-means 0.74 11 1.7 5.4 

Fragments 

(24 %) 

U-net 0.85 21 0.4 6.9 

Otsu 0.94 2 0.7 5.9 

k-means 0.94 7 0.4 5.7 

Other bergs 

(3 %) 

U-net 0.96 6 0.0 5.9 

Otsu 0.18 66 7.7 110 

k-means 0.10 86 5.7 11 

Coast 

(8 %) 

U-net 0.34 68 1.8 18 

Otsu 0.12 38 29.5 1200 

k-means 0.11 44 28.6 1200 

Dark bergs 

(5 %) 

U-net 0.12 92 1.1 96 

Otsu 0.12 54 34.3 450 

k-means 0.11 62 30.5 460 
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Iceberg fragments drifting in the direct proximity of the target iceberg were found in 24 % of our images. Overall, k-means 

scores best in this category with a MAD of 5.7 % compared to 5.9 % and 6.9 %. In terms of F1 score, Otsu and k-means both 

reach 0.94, whereas U-net only reaches 0.85. Visually, there are a few instances where Otsu connects more fragments to the 

iceberg than k-means and U-net (Figure 5e, f). This might be due to the Gaussian smoothing that we apply before the 335 

thresholding. We do not apply this step before k-means, and find that k-means tends to rather oversegment images, leaving 

small holes in the inside (Figure 5d, e). In the case of fragments, however, this turns out to be beneficial, as it allows k-means 

to reliably separate fragments from icebergs, even when they are very close by. The problem for U-net does not seem to be the 

actual fragments itself, as it rarely connects any fragments to the iceberg (Figure 5e, f). However, the images containing 

fragments are mostly from the large B31 and B42 icebergs, where U-net struggles due to their large extent. This can also be 340 

seen from the fact that U-net and k-means both generate only 0.4 % false alarms (fragments erroneously connected to the 

iceberg), but U-net has a much higher miss rate. 

In 3 % of all images, another similar sized or bigger berg is (partially) visible. U-net scores best in all categories with a large 

margin, yielding an F1 score of 0.96 compared to 0.12 and 0.11 and MAD in area of 5.9 % compared to 11 % and 110 %. Also 

visually, it becomes clear that U-net reliably picks the target iceberg and discards any other ice, while Otsu and k-means often 345 

pick the wrong berg or connect both with each other (Figure 5g, h). Considering iceberg shape and size in a tracking scenario 

could help mitigate this phenomenon, though (Barbat et al., 2021; Collares et al., 2018; Koo et al., 2021).  

Coast is present in 8 % of all images and U-net outperforms the other techniques, but also struggles in some cases. The F1 

score is 0.34 for U-net and 0.12 and 0.11 for Otsu and k-means respectively. While U-net achieves a MAD of 18 %, the other 

methods yield over 1000 % each. Figure 5j illustrates what is happening in these cases: If too much coast is present, all 350 

algorithms pick the coast rather than the iceberg (and this is much larger than the iceberg, hence 1000 % deviation). However, 

U-net discards smaller parts of the coast around the image edges (Figure 5i). This is on the one hand because of the sliding 

convolution window and on the other hand, because U-net learns that the iceberg is usually in the centre (as we crop the images 

around the estimated position from operational iceberg tracking databases). Hence, U-net is able to correctly pick out the 

iceberg if not too much coast is present. For the same reason, it is easier for U-net to discard other bergs at the image edges. 355 

Interestingly, even when a lot of coast is present, U-net does not pick the full coast, but predicts either nothing or a small – 

almost iceberg shaped – part of the coast (Figure 5j). This could indicate that U-net even learns that only ice that is fully 

surrounded by water is an iceberg. A possible strategy to avoid misclassifications due to large amounts of coast would be the 

inclusion of a land mask (Barbat et al., 2019; Collares et al., 2018; Frost et al., 2016; Mazur et al., 2017; Silva and Bigg, 2005). 

However, ice shelves and glaciers advance and retreat regularly and especially the calving of icebergs themselves significantly 360 

alters the land mask. Thus, just after calving, the iceberg would be within the former land mask and could not be picked up. 

The last category of dark icebergs is the hardest and makes up 5 % of the overall data set. In these cases, all methods fail with 

F1 scores of 0.11-0.12 and the lowest MAD in area of 96 %. Again, it is interesting that U-net predicts either very small patches 

or nothing at all in these cases (Figure 5k, l), while the other two methods segment large areas of brighter looking ocean. 
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Potentially, U-net could learn to segment dark icebergs with a lot more training examples, but we only had ten such images in 365 

our overall data set. Finally, we would like to stress that the occurrence of these different environmental conditions will vary 

and our data set is not necessarily representative of all icebergs. We also find that the influence of iceberg size and 

environmental conditions cannot always be disentangled, as subsequent images of the same iceberg are often similar and the 

different environmental conditions are not spread equally across the different test data sets (individual icebergs). 

3.4. Comparison to previous studies 370 

Previous studies state different accuracy measures and due to the slightly different goal to detect all icebergs in a scene rather 

than finding one giant iceberg and accurately predicting its outline and area, they are not straightforward to compare. Two 

studies employ the k-means algorithm (Collares et al., 2018) or a variation of it (Koo et al., 2021), so we have indirectly 

compared U-net to them. None of them report any of our accuracy measures, though. Many of the previous approaches rely 

on some form of thresholding (Frost et al., 2016; Gill, 2001; Mazur et al., 2017; Power et al., 2001; Wesche and Dierking, 375 

2012; Willis et al., 1996). We somehow covered these methods by comparing U-net to the Otsu threshold, but the exact 

approaches vary and none of them have applied the Otsu threshold. Two of the threshold-based methods report estimates for 

their area deviations. Wesche and Dierking (2012) state that iceberg area was overestimated by 10 ± 21 % with their approach. 

In a following study, they find that for the correctly detected icebergs 13.3 % of the total area was missing (Wesche and 

Dierking, 2015), meaning a bias in the opposite direction. Mazur et al. (2017) find positive and negative area deviations of ± 380 

25 % on average. For edge-detection based algorithms, Williams et al. (1999) find an overestimation of iceberg area by 20 % 

and Silva and Bigg (2005)’s approach yields an underestimation of iceberg area by 10-13 %. These are biases again and both 

approaches are limited to winter images. For U-net, we find a bias of - 5.0 ± 29.1 %, which is lower than previous studies, but 

comes with a relatively high standard deviation due to some complete failures where the iceberg is not found at all. Previous 

studies only compare iceberg areas where icebergs were detected successfully. Barbat et al. (2019) report the lowest false 385 

positive (2.3 %) and false negative (3.3 %) rates, and the highest overall accuracy (97.5 %) of all previous studies. While their 

false negative rate is lower than our false negative rate (21 %), U-net achieves a lower false positive rate of 0.4 % and higher 

overall accuracy of 99 %. In a second study, Barbat et al. (2021) also analyse the area deviation of the detected icebergs and 

find average area deviations of 10 ± 4 %, which is also the best score reported so far. They only consider correctly detected 

icebergs in this metric, though. We find a MAE of 15 ± 26 % for U-net, which is slightly higher, but contains images where 390 

the iceberg was not found at all. These cases are not included in Barbat et al. (2021)’s estimates. Our MAD, which is less 

sensitive to such outliers, is 4.1 %, with 25 % and 75 % quantiles of 2.1 % and 12.1 %. These metrics compare favourably to 

all previous studies. We also demonstrate in our study, that the performance varies depending on the chosen test data set and 

therefore, all measures and comparisons can only give an indication of the real performance. Judging from the data we have 

and comparing our results on this to previous studies as good as possible, U-net proves to be a very promising approach.  395 

Qualitatively, previous studies have found degraded accuracies in challenging environmental conditions or excluded these 

from their datasets. Some studies report false detections due to sea ice (Koo et al., 2021; Mazur et al., 2017; Wesche and 

https://doi.org/10.5194/egusphere-2023-858
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



18 

 

Dierking, 2012) or only applied their algorithm to sea-ice free conditions (Willis et al., 1996). Moreover, several previous 

studies have also encountered problems with clusters of several bergs and berg fragments too close to each other (Barbat et 

al., 2019a; Frost et al., 2016; Koo et al., 2021; Williams et al., 1999). Also U-net shows slightly degraded performance in these 400 

situations (4.8 and 6.9 % MAD in area compared to 2.8 % in open ocean and F1 scores of 0.88 and 0.85 compared to 0.93), 

but still achieves satisfying results in most of these cases. The challenge of other big bergs does not occur in previous studies, 

since they were looking for all icebergs anyway. In terms of coast, many previous studies have employed a land mask (e.g. 

Barbat et al., 2019; Collares et al., 2018; Frost et al., 2016; Mazur et al., 2017; Silva and Bigg, 2005), but might miss newly 

calved bergs due to that. Finally, the problem of dark icebergs has been described in several papers (Mazur et al., 2017; Wesche 405 

and Dierking, 2012; Williams et al., 1999), but was rarely mentioned in the evaluation. This is likely because most previous 

studies use visual inspection to identify misses and false alarms (e.g. Barbat et al., 2019; Frost et al., 2016; Mazur et al., 2017; 

Wesche and Dierking, 2012; Williams et al., 1999). However, dark icebergs are hard to spot in SAR images even for humans, 

so they might be missed by the visual inspection, too, unless in our case we know that there must be an iceberg of a certain 

size and shape that we are looking for. Others limit their method to winter images, when dark icebergs do not occur (Silva and 410 

Bigg, 2005; Williams et al., 1999; Young et al., 1998). 

4 Conclusions 

We have developed a novel algorithm to segment giant Antarctic icebergs in Sentinel-1 images automatically. It is the first 

study to apply a deep neural network for iceberg segmentation. Furthermore, it is also the first study specifically targeting 

giant icebergs. Comparing U-net to two state-of-the-art segmentation techniques (Otsu thresholding and k-means), we find 415 

that U-net outperforms them in most metrics. Across all 191 images, U-net achieves an F1 score of 0.84 and a median absolute 

area deviation of 4.1 %. Only the miss rate of Otsu and k-means is lower than for U-net, as we find that U-net overlooks parts 

of the iceberg appearing largest in the images, as in this case all training samples show smaller icebergs. We believe that this 

issue could be resolved with a larger training data set. U-net can reliably handle a variety of challenging environmental 

conditions including sea ice, nearby iceberg fragments, other bergs and small patches of nearby coast. It fails when too much 420 

coast is visible and when icebergs appear dark, though. In these cases, all existing algorithms fail, but such obvious errors 

could easily be picked out in a tracking scenario. Also compared to previous studies, we regard our results as promising. For 

an operational application, on the short-term further post-processing could be implemented to filter outliers, but on the long 

run, we would suggest to enlarge the training data set.  

Code availability 425 

The code is available from the authors upon reasonable request.  
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Data availability 

Segmentation maps for all 191 images and from all three methods are shown in the supplementary animations (one animation 

per iceberg). DOI: 10.5281/zenodo.7875599 (Braakmann-Folgmann, 2023). The Sentinel-1 images are freely available from 

https://scihub.copernicus.eu/dhus/.  430 
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