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Supervisors: R. von Fáy-Siebenbürgen, M. S. Ruderman



Dedication

To the memory of my father, dear mother, loving wife “Noura” and sweet sons
“Basel and Ahmed”

To my brothers, sisters and all members of my family



Acknowledgements

First and foremost, my great thanks goes to Almighty Allah who enabled me to
complete this thesis. I would like to express my sincere thanks to my supervisor
Prof. Robertus von Fáy-Siebenbürgen for his advice, useful guidance and encour-
agement throughout my project. Without his assistance and valuable comments,
this project would not have completed.

I would like to take this opportunity to thank Prof. Michael Ruderman for his
constant assistance, inspiring guidance and useful suggestions during this study.

I am also grateful to Dr. Richard Morton who supported me in all stages of
my project. I would also thank all members (staff and colleagues) of the School of
Mathematics and Statistics for their great help through the period of my study.

My deepest and special thanks to my beloved mother, stepmother, my wife
‘Noura’, my sons for their patient and continuous encouragement; brothers, sisters
and all members of my family for their support and emotional sense.

Finally, I would like to thank the Ministry of Higher Education, Oman for the
financial support.



Abstract

The highly magnetised coronal loops have been confirmed to support a variety of
MHD waves and oscillations which are observed widely in the solar atmosphere
and most of them are seen to be rapidly damped. One of these oscillations are
interpreted as longitudinal slow (propagating or standing) MHD waves. In the
last decade, the slow MHD waves have been subject to many observational and
theoretical studies to investigate the dominant damping mechanisms. Thermal
conduction is the main dissipation mechanism that is suggested to be the essential
cause of the damping when compared to the other mechanisms. Therefore, we
concentrate here on the damping of both propagating and standing slow magneto-
acoustic waves due to thermal conduction.

In the present thesis we examine the effect of the cooling background coro-
nal plasma on damping coronal oscillations. Most of the previous studies have
assumed models with a time-independent equilibrium. Here we avoid this restric-
tion and allow the equilibrium to develop as a function of time. The background
plasma is assumed to be cooling because of thermal conduction. Moreover, the
cooling of the background temperature is assumed to have an exponential profile
with characteristic cooling times typical for solar coronal loops.

We have investigated the propagating slow magneto-acoustic waves in a ho-
mogeneous magnetised plasma embedded in a hot coronal loop. The background
plasma is assumed to be cooling due to thermal conduction in a weakly stratified
atmosphere. The influence of cooling of the background plasma on the properties
of magneto-acoustic waves is examined. The background temperature is found to
decrease exponentially with time by solving the background plasma equations.

On the other hand, we have considered the influence of a cooling background
plasma on the longitudinal standing (slow) magneto-acoustic waves generated in
a loop of hot corona. The cooling of the background plasma is dominated by
a physically unspecified thermodynamic source. A dominance of the cooling in
the absence of any dissipative mechanisms is found to amplify the oscillation
amplitude. Thermal conduction, which is presumed to be a weak, is only present
in the perturbations, causing a damping for the hot-loop oscillations.

The previous study is expanded on investigating the effect of strong thermal
conduction on the hot coronal oscillations. The competition between the cooling
of plasma and the damping of oscillations can be captured from the behaviour
of MHD waves. The hot-loop oscillations undergo strong damping due to ther-
mal conduction, although the cooling coronal plasma exerts resistive role on the
damping method by decreasing the rate of decaying for cool coronal oscillations.



Contrary to cool loops, the amplitude of very hot loops that undergoes a high
amount of cooling experiences faster damping than others. However, the damp-
ing of the standing slow (acoustic) waves, because of strong thermal conduction,
is brought to an end at a certain time instant and then the rate of damping
decreases gradually beyond this limit.

In our analytic work for the models assumed above, we have applied the WKB
theory to solve the governing equation which is derived and non-dimensionalised.
The WKB estimates are used here since they provide good approximations to
the properties of MHD waves. Further to this, we have exploited the method
of characteristics and the properties of Sturm-Liouville problems to obtain the
solution of the temporally evolving amplitude for the propagating and standing
slow MHD waves. Numerical evaluations are employed to give clear view into the
behaviour of slow acoustic waves, where the variable background plasma com-
prising the wave amplitude is measured using typical coronal values. In additions
to this, the obtained results are compared to observations.
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Chapter 1

Introduction

1.1 Background: The Structure of the Sun

Our bright star known as the Sun, which controls the solar system, has been

under study since ancient times because of different beliefs and purposes. Along

the time, scientists became aware of the importance of the Sun and its role on

creating the energy for our plant, the Earth. The discovery by high-resolution

imaging space telescopes and spectrometers in the modern age led to detection

of various dynamic phenomena in the solar interior and in its atmosphere. These

phenomena have been a focus for numerous, observational and theoretical, studies

during the last fifty years to understand the unknown processes that dominate

the energy release from the Sun into space. In general, the structure of the Sun,

which is essentially a sphere of plasma, is divided into two regions: the interior

and the exterior (the atmosphere).

1.1.1 Solar Interior

The radius of the Sun, R�, is around 6.96 × 108 m. In contrast to the surface

(photosphere), the interior of the Sun is not directly invisible. The Sun comprises

of around 90% hydrogen, ∼ 10% helium, and small amount of other elements such

as carbon, nitrogen and oxygen. The solar interior can be split into three layers:

the (nuclear) core, the (intermediate) radiative zone and the (outer) convection

zone.

The core extends to a quarter-radius of the Sun, beginning from the centre.
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1.1. BACKGROUND: THE STRUCTURE OF THE SUN

Core

Radiative Zone

Convective Zone

Photosphere

Chromosphere

Corona

Figure 1.1: Solar Structure

This region embodies half of the solar mass where the bulk of the energy is

produced. The high temperature and density in the core reach of the order of 107

K and 105 kg m−3, respectively. These are sufficiently high to support the nuclear

fusion reactions through which hydrogen is converted into helium and eventually

generates the energy.

The radiative zone extends from the border of the core up to 0.7R�. In this

layer, the energy is transported by photons that are subject to multiple collisions

due to high density of the solar interior. The photons can only move away from

the core by the absorption and emission processes. These processes are known as

radiative diffusion by which photons spend nearly 107 years to reach the surface

before the photons can be observed as a light.

The uppermost region in the solar interior is the convection zone, where the

energy is transported by convection. This layer covers the volume beyond the
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CHAPTER 1. INTRODUCTION

radiative zone, starting from 0.7R� up to the surface. The high temperature

gradient and density change in this region make up an approximately circular

convection called convection cells in which the hot plasma rises to the surface

and descend again after cooling. It is expected that the dynamic phenomena in

the convection zone are responsible for generating the magnetic field where the

dominant mechanism is the dynamo.

1.1.2 Solar Atmosphere

The exterior region of the Sun is the visible surface and above, and most obser-

vational studies of solar phenomena involve this region. The atmosphere of the

Sun is made up of four main regions: the photosphere, chromosphere, transition

region and the corona. Some parts of the atmosphere contain dominating mag-

netic field that leads to formation of numerous magnetic structures that cover the

solar atmosphere, such as sunspots, prominences, coronal loops, flares, spicules

and solar wind.

The photosphere is the lowest layer of the solar atmosphere. The majority of

observed intensity is emitted from this level where the light is recognised by white

colour. The temperature of the photosphere varies from 6500 K in the lower part

to 4300 K in the upper part. The thickness and density of the photosphere reach

around 500 km and 10−4 kg m−3, respectively. The photosphere is characterised

by the emergence of granules which cover the entire surface of the Sun. The

brightness of these granules arises because of hot up-flowing plasma. The presence

of magnetic field in the photospheric region leads to magnetic structures such as

sunspots, for example, which are overwhelmed with magnetic flux. The Earth is

as large as the largest sunspot.

The chromosphere is the next layer in the solar exterior. It has a thickness of

nearly 2,000 km. The emissions of the chromospheric region can be observed in

e.g. the Hα line. The chromospheric temperature rises gradually, ranging from

around 6000 K in the lowest part to 20,000 K near the narrow transition region

which detaches the chromosphere from the corona. One of the main structures

of the chromosphere that is seen on the solar surface are the upwardly emitted

huge plasma jets known as spicules.
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1.1. BACKGROUND: THE STRUCTURE OF THE SUN

The transition region, which lies between the chromosphere and the corona, is

a thin layer and has a thickness of roughly just a few 100 km. This layer is known

to be dynamic and is mainly visible in EUV emission lines. The temperature in

the transition region jumps up rapidly so that helium is fully ionised, reaching

around 2 MK in the corona.

The corona is the outer part of the solar atmosphere that is clearly seen from

the ground at eclipses. The temperature of the corona is much higher than that

of the photosphere, extending to over 6 MK. Thus, the heating of the solar corona

is a main problem in modern solar physics and astrophysics. As a result, one of

the main aims in observing the Sun is to determine the mechanisms that heat

the corona (Erdélyi and Ballai, 2007; Taroyan and Erdélyi, 2009). The solar

atmosphere is known to be extremely magnetised and dynamic in nature (Vaiana

et al., 1973; Schrijver et al., 1999). The highly structured corona consists of

numerous features such as coronal loops, open flux tubes, prominences etc. which

are caused by the emergence of magnetic fields from inside the Sun (Golub and

Pasachoff, 1997). Coronal loops seem to be the fundamental building blocks of

the magnetised solar atmosphere.

1.1.3 Coronal Loop Structures

A coronal loop is defined as a magnetic flux tube fixed at both ends in the dense

photospheric plasma, and extending into the solar chromosphere and corona.

Magnetic loops are considered as a phenomenon of active and quiet regions, and

the eminent structures in the solar atmosphere (Nakariakov and Verwichte, 2005;

Erdélyi, 2008; De Moortel, 2009; Mart́ınez González and Bellot Rubio, 2009).

They have been studied extensively to diagnose the properties of coronal struc-

tures and seen to emerge as arch-shaped structures. Space and ground-based

observations show that coronal loops can be divided into two distinct categories

according to their temperature. One of them is known as hot loops which can

be formed at temperatures of more than 1×106 K and observed by the X-ray

imagers, e.g. Yohkoh’s Soft X-ray Telescope (SXT) and Hinode’s X-ray Telescope

(XRT). Cool loops are the other category which exist between ∼ 20000 K and

∼ 1×106 K (Bray et al., 1991). Cool loops have been detected in EUV bands

which are formed at temperatures below 1 MK. The origin of energy that heats

11



CHAPTER 1. INTRODUCTION

coronal loops is still a puzzle but, in principle, the potential candidates are nano-

flares (DC models) and the dissipation of MHD waves (AC models).

(a) (b)

Figure 1.2: Solar coronal loops as seen by the TRACE satellite telescope in 171
Å: (a) in active region 10808 on 08/09/2005 and (b) in active region 10904 on
09/08/2006.
(http://trace.lmsal.com/POD/TRACEpodoverview.html)

Many studies investigated the properties of solar corona considering different

structures of coronal loops, size or expansion of the loop, curvature, loop cross

section, temporal behaviour, plasma dynamics, etc, which were seen in obser-

vations. For example, Cargill and Priest (1980) have studied the influence of

varying flux tube cross-sections and they noticed that the pressure difference at

the loop footpoints gives rise to the presence of subsonic and shocked flows. The

effect of the loop width on the density scale height was investigated by Petrie

(2006) who found that the changes in the stratification depends on the steady

flows. Moreover, Dymova and Ruderman (2006) and Erdélyi and Verth (2007)

examined the geometry influence on the properties of transverse coronal loop os-

cillations. They found that the ratios of the period of the fundamental mode

of the tube kink oscillations to its first overtone period depend weakly on the

loop shape and on the ratio of the loop height to the atmospheric scale height.

Further to this, Andries et al. (2005) reported that the observed period ratio can

be used as a seismological tool to estimate the density scale height in the solar

corona. For example, Ballai et al. (2011) measured the density scale height in
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1.1. BACKGROUND: THE STRUCTURE OF THE SUN

coronal loops observed by TRACE using the ratio of the two periods (see also

Orza et al., 2012). Although the traditional model of coronal loop is straight

with uniform density and magnetic field, Verth and Erdélyi (2008) and Ruder-

man et al. (2008) studied the transverse oscillations in an expanding magnetic

flux tube under the influence of magnetic and density stratification and found

that measuring the plasma density scale height is affected by the coronal loop

expansion.

More recently, the effects of density and magnetic stratification on linear longi-

tudinal magnetohydrodynamic (MHD) waves generated in an expanding coronal

loop is investigated by Luna-Cardozo et al. (2012). It is found that the frequency

ratio of the first overtone and fundamental mode depends on the density profile.

In the last decade, the twisted coronal loop embedded in different layers, con-

vective zone, photosphere and chromosphere, has been subject to an extensive

attention due to its influence on the plasma dynamics and the behaviour of MHD

waves (Linton et al., 2001; Fan and Gibson, 2003; Erdélyi, 2006; Erdélyi and Fe-

dun, 2007b; Ruderman, 2007; Carter and Erdélyi, 2008; Mart́ınez-Sykora et al.,

2009; Erdélyi and Fedun, 2010; Luoni et al., 2011). An overview of the effects of

curvature on coronal loop kink oscillations has been exhibited by Van Doorsse-

laere et al. (2009). Morton and Erdélyi (2009a) investigated the period ratio of

transverse oscillations in a coronal loop of elliptic cross-section considering stages

of its emergence from the sub-photosphere into the solar corona. They found

that increasing ellipticity leads to increases the value of the period ratio. Further

to this, non-axisymmetric oscillations of straight magnetic loops with a constant

elliptic cross-section and density have been studied by Ruderman (2003) and with

density varying along the loop have been investigated by Morton and Ruderman

(2011). There are two kink modes arising in this model, one polarised in the

direction of larger axis of the elliptic cross-section, and the other polarised in the

direction of smaller axis. The ratio of frequencies of the first overtone and the

fundamental mode is found to be the same for both kink mode oscillations.

López Fuentes et al. (2007) looked into the temporal evolution of coronal loops

observed by the Solar X-Ray Imager (SXI). They found that observed loops can

be separated into three phases: rise, main, and decay. Besides, the loop heating

during all three evolutionary phases changes slowly (increasing, reaching con-

stant level and decreasing). It is also found that the timescales of the intensity

13



CHAPTER 1. INTRODUCTION

variations are significantly longer than the cooling time and sound-transit time.

The temporal evolution of a highly dynamic loop system observed by the Tran-

sition Region and Coronal Explorer (TRACE) in the 171 and 195 Å passbands

was investigated by Tsiropoula et al. (2007). The measured radiative and con-

ductive cooling times indicate that the examined loop strands are being cooled

by radiation. Terra-Homem et al. (2003) studied the properties of propagating

MHD waves in flux tube with background flows. In the magnetic cylinder struc-

ture, they found that the steady flow can cause changes in the characteristic of

wave propagation. It is also found that the the strength of flows may lead to

crossing of modes. Contrary to solar coronal conditions, the structure of wave

propagation is found to be strongly affected by the background flow under solar

photospheric conditions. Gruszecki et al. (2008) studied observed standing fast

magneto-acoustic kink oscillations by Hinode in the presence of background flow.

The results show that uniform and inhomogeneous flows are unable to cause a

considerable change in wave period of the mode. In a recent work by Ruderman

(2010), the influence of the plasma flow on non-axisymmetric oscillations of a

thin magnetic tube was examined. It was found that both the fundamental har-

monic of kink oscillations and the ratio of frequencies of the first overtone and

fundamental harmonic are weakly affected by the flow (see also Terradas et al.,

2010).

1.2 MHD Waves in the Solar Corona

The magnetic structures play an important role in the solar corona since they can

support a wide range of magnetohydrodynamic (MHD) waves and oscillations

which are natural carriers of energy and may be the key for solving the problem

of solar coronal heating (for some recent reviews see Erdélyi, 2008; Taroyan, 2008;

Taroyan and Erdélyi, 2009; McLaughlin et al., 2011). Recent observations indi-

cate that waves and oscillations are ubiquitous in the solar atmosphere (Wang

et al., 2003b; Tomczyk et al., 2007; De Pontieu et al., 2007; Erdélyi and Fedun,

2007a; Okamoto et al., 2007; Erdélyi and Taroyan, 2008; Van Doorsselaere et al.,

2008; Jess et al., 2009). For recent reviews see Nakariakov and Verwichte (2005);

Banerjee et al. (2007); De Moortel (2009); Zaqarashvili and Erdélyi (2009); Math-

ioudakis et al. (2013). Many of the above reports highlight that the observed

14



1.2. MHD WAVES IN THE SOLAR CORONA

waves or oscillations are seen to be strongly damped. The commonly suggested

mechanisms for damping are resonant absorption (Sakurai et al., 1991; Ruder-

man and Roberts, 2002; Goossens et al., 2002; Aschwanden et al., 2003. For a

detailed review see Goossens et al., 2011) and thermal conduction (Ofman and

Aschwanden, 2002; De Moortel and Hood, 2003, 2004; De Moortel et al., 2004;

Mendoza-Briceño et al., 2004a; Erdélyi, 2008) which cause the damping of the fast

kink and the (slow or acoustic) longitudinal waves, respectively. More recently,

Morton et al. (2010) argued that radiative cooling of the background plasma may

be the damping method for coronal oscillations.

Solar coronal waves and oscillations have been observed in the visible light,

EUV, X-ray and radio bands and expressed in the form of MHD waves. Oscil-

lations in coronal loops were recently observed by TRACE (e.g. Aschwanden

et al., 1999; Nakariakov et al., 1999), SUMER (e.g. Wang et al., 2002a; Ofman

and Wang, 2002) and Hinode (e.g. Erdélyi and Taroyan, 2008), and Nobeyama

radioheliograph (e.g. Asai et al., 2001) where these magnetic loops start to oscil-

late by a disturbance which is caused by a solar flare or CME. These oscillations

were interpreted as fast kink mode MHD standing waves, longitudinal (slow mag-

netoacoustic) modes and fast sausage mode oscillations, respectively.

1.2.1 Observation of Longitudinal (Propagating and Stand-

ing) Oscillations

Propagating plasma disturbances were detected by SOHO/UVCS along coronal

plumes at a height of about 1.9 R� (Ofman et al., 1997, 1999, 2000a). De-

Forest and Gurman (1998) observed similar compressive disturbances in polar

plumes with SOHO/EIT. The observed compressive disturbances were inter-

preted as propagating slow magneto-acoustic waves, where the suggested damping

mechanism for the waves was compressive viscosity (Ofman et al., 1999, 2000b).

Similar intensity disturbances were observed in coronal loops with TRACE and

Yohkoh/SXT (Schrijver et al., 1999; Nightingale et al., 1999; De Moortel et al.,

2000; McEwan and De Moortel, 2006; Berghmans et al., 2001), and SOHO/EIT

(Berghmans and Clette, 1999). Nakariakov et al. (2000) and Mendoza-Briceño

et al. (2004a) have also interpreted these disturbances as slow magneto-acoustic

waves and they found that the wave evolution is affected by dissipation and gravi-
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tational stratification. Further to this, Erdélyi and Taroyan (2008) have observed

intensity and Doppler-shift oscillations by Hinode/EIS on February 19th, 2007.

They suggested that these oscillations are longitudinal sausage waves propagat-

ing along the loop and appear to be triggered by a footpoint microflare. The

maximum amplitude for the Doppler shift is around 4 km s−1. The periodicity of

the intensity perturbations in coronal holes is quite larger than that detected in

coronal loops.

De Moortel et al. (2002a,b) and McEwan and De Moortel (2006) have ana-

lyzed several cases of disturbances observed by TRACE, and McEwan and De

Moortel (2006) have summarized their properties (see Table 1.1). The ampli-

tudes are around 4% in the background intensity and the higher amplitudes are

observed in transition-region lines. It is suggested that the source of these oscil-

lations is the leakage of the photospheric p modes through the chromosphere and

transition region into the corona, i.e. a mechanism similar to that put forward to

explain spicule formation (De Pontieu et al., 2004; De Pontieu and Erdélyi, 2006),

transition-region moss oscillations (De Pontieu et al., 2003), and even coronal os-

cillations (De Pontieu et al., 2005). The observed examples in TRACE 171 Å

(∼ 1 MK) by McEwan and De Moortel (2006) have propagating speeds of the

order of 99.7 ± 3.9 km s−1 and other propagation speeds with different wave-

lengths approximated by various authors are given in Table 1.2. In the analyzed

examples, the energy flux was found to be of the order of 313±26 ergs cm−2 s−1,

which is considered too small when comparing with ∼ 106 ergs cm−2 s−1 that

is required to sustain a coronal loop at a temperature of about a million de-

grees. However, Tsiklauri and Nakariakov (2001) found that wide spectrum slow

waves can provide heat deposition rate near the loop footpoints, that is sufficient

to heat EUV loops when compared to observations. Only upward propagating

disturbances were reported in all cases with nearly constant speeds. The prop-

agating disturbances are quasi-periodic with periods ranging from 145 to 550

seconds with the average equal to 284 ± 10.4 seconds in the examples consid-

ered by McEwan and De Moortel (2006). Moreover, De Moortel et al. (2002c)

confirmed that loops located above sunspot oscillate with periods of around 3

minutes, while perturbations in non-spot loops have periods of about 5 minutes.

Robbrecht et al. (2001) compared the observations done by TRACE 171 Å with

observations made by EIT 195 Å and found that propagation speeds vary from 65
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to 150 km/s approximately. King et al. (2003) carried out a comparison between

TRACE 171 Å and 195 Å wavelength observations.

Parameter Average Range

Oscillation Period, P 284.0± 10.4 s 145− 550 s
Propagation Speed, v 99.7± 3.9 km s−1 O(45)−O(205) km s−1

Relative Amplitude, A 3.7%± 0.2% 0.7− 14.6%
Detection Length, Ld 8.3± 0.6 Mm 2.9− 23.2 Mm
Energy Flux, F 313± 26 erg cm−2 s−1 68− 1560 erg cm−2 s−1

Table 1.1: The average and ranges of the physical properties of the 63 oscillations
in coronal loop footpoints analyzed by De Moortel et al. (2002a); McEwan and
De Moortel (2006). See De Moortel (2009).

Speed (km/s) Wavelength [Å]

Nightingale et al. (1999) 130− 190 171&195

Schrijver et al. (1999) 70− 100 195

Berghmans and Clette (1999) 75− 200 195

De Moortel et al. (2000) 70− 165 171

Robbrecht et al. (2001) 65− 150 171&195

Berghmans et al. (2001) ∼ 300 SXT

De Moortel et al. (2002a) 122± 43 171

King et al. (2003) 25− 40 171&195

McEwan and De Moortel (2006) 98± 6 171

Erdélyi and Taroyan (2008) ∼ 170 195, 185&202

Table 1.2: Table of the propagation speeds of propagating slow MHD waves
detected in coronal loop. See De Moortel (2009).

Verwichte et al. (2010) have shown that observed coronal spectral signatures

of in-phase Doppler velocity and intensity of the observed quasi-periodic per-

turbations can be explained as propagating slow waves. It is found that slow

waves cause line asymmetries when the emission line is averaged over an oscil-

lation period or when a quasi-static plasma component in the line of sight is

included. The observed intensity oscillations with a period of ≈ 12 minutes by

EUVI instruments on the STEREO A and B spacecraft found to propagate out-

ward with phase speed corresponding to the sound speed (Marsh et al., 2009).
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These oscillations are explained in terms of the slow magneto-acoustic mode.

The three-dimensional geometry of the upward propagation obtained from ob-

servations are used to measure phase speed. The calculated phase speed, from

STEREO A and B, are 132+9.9
−8.5 km s−1 and 132+13.8

−8.4 km s−1, respectively; with

inferred loop temperature of 0.84+0.13
−0.11 MK and 0.84+0.18

−0.11 MK which is close to the

peak of the EUVI 171 Å response functions. Overall, theoretical modelling plays

an important role on identifying the observed perturbations of the EUV loops

in terms of propagating slow magneto-acoustic waves (De Moortel and Nakari-

akov, 2012). On the other hand, the interpretation of disturbances as waves or

flows is still a controversial issue due to the difficulty in analysing the data of

observations.

Oscillations interpreted as longitudinal standing (slow) magneto-acoustic waves

have been observed in hot (T > 6 MK) active region loops by the Solar Ultravio-

let Measurement of Emitted Radiation (SUMER) spectrometer on board SOHO

(Wang et al., 2002, 2003b; Taroyan et al., 2007). Wang et al. (2002) analysed two

recurring events for SUMER and Yohkoh/SXT observations. Using the measured

loop length (L ≈ 140 Mm) with temperature around 6 MK and oscillation periods

(P = 14−18 min), they found that the estimated phase speed for the fundamen-

tal mode, ct = 2L/P = 380 km s−1 is close to the sound speed. Therefore, these

oscillations were interpreted in terms of the standing fundamental longitudinal

slow mode. SUMER oscillations have periods in the range of 8.6 to 32.3 minutes

with decay times of 3.1 − 42.3 minutes and amplitudes between 12 and 353 km

s−1 (Wang et al., 2005). Moreover, Mariska (2005) has reported Doppler shift

oscillations during solar flares with Yohkoh in a high temperature region reach-

ing 12− 14 MK. These oscillations are interpreted in terms of the standing slow

mode MHD waves (Mariska, 2006). The obtained results of observations exhibit

average oscillation periods of 5.5± 2.7 minutes, decay times of 5.5± 2.5 minutes

and amplitudes of 17.1± 17.0 km s−1.

Evidence for the standing slow mode can be understood from the phase rela-

tionship between velocity and intensity where a quarter-period phase difference

is a characteristic of the standing waves, while the propagating waves exhibit an

in-phase relationship. Therefore, an approximate quarter-period delay of the in-

tensity variations behind the Doppler shift strongly support the assumption that

the oscillations observed by SUMER are slow standing modes. The observed
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oscillations in coronal loops indicate that the standing slow modes are likely trig-

gered by micro-flares which are produced by impulsive heating (Mendoza-Briceño

et al., 2002).

De Moortel and Nakariakov (2012), in a review work, conclude that the model

of magnetic flux tube remains the basis of the study of MHD waves and oscilla-

tions in the solar corona. A theoretical summary of how the slow mode, under

solar coronal conditions, can be derived from the MHD equations has been com-

posed by, e.g. Roberts (2006). The magnetic field was assumed straight in the

vertical direction in a gravitationally stratified medium. This theory has been

applied to the slow waves in coronal loops observed by SUMER and TRACE.

Luna-Cardozo et al. (2012) generalised the model to include both magnetic and

density stratification, i.e. taking into account the expanding nature of loops that

support MHD waves.

1.2.2 Damping of Slow (Propagating and Standing) MHD

Oscillations

Currently, the damping of slow magneto-acoustic waves has become a subject of

remarkable observational and theoretical study due to a possibility of revealing

physical processes that dominate energy dissipation in the coronal loops by mea-

suring the wave damping timescales. The majority of theoretical and numerical

studies on damping of propagating and standing slow MHD waves show that

the understanding of dominant mechanisms of rapid damping can be captured

from 1D, linear (Sigalotti et al., 2007) or nonlinear model (Wang, 2011). Since

the observation of slow MHD waves many theoretical studies have been focussed

on investigating the damping mechanism considering the influence of different

mechanisms such as thermal conduction, radiation, gravitational stratification

and shock dissipation (Ofman and Wang, 2002; De Moortel and Hood, 2003,

2004; Mendoza-Briceño et al., 2004a; Taroyan et al., 2005; Sigalotti et al., 2007;

Bradshaw and Erdélyi, 2008; Verwichte et al., 2008; Erdélyi et al., 2008). For

instance, the evolution of the wave amplitudes are found to be affected by dissi-

pation and gravitational stratification (Nakariakov et al., 2000; Mendoza-Briceño

et al., 2004a). Furthermore, Tsiklauri and Nakariakov (2001) have studied geo-

metrical effects on the behaviour of slow magneto-acoustic waves by taking into
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account the influence of loop plane inclination.

Ibáñez and Escalona (1993) studied the propagation of thermal and magne-

tosonic waves in an optically thin plasma. They found that thermal waves are

always damped whereas the magnetosonic waves are damped in the range of tem-

perature 104 K ≤ T < 108 K due to thermal conduction. The dissipation of slow

MHD waves travelling in an isothermal medium were studied in detail by De

Moortel and Hood (2003, 2004). Thermal conduction, compressive viscosity and

optically thin radiation, as well as the effects of gravitational stratification and a

diverging magnetic field geometry were investigated. The results of study under

coronal conditions (i.e. T ≈ 106 K) indicate that thermal conduction is the main

cause of decaying wave amplitude comparing with the other mechanisms of either

compressive viscosity or optically thin radiation. The thermal mode is found to

be purely decaying in the case of standing waves, but is oscillatory and decay-

ing in the case of propagating waves (De Moortel and Hood, 2003). However,

it was found that increasing thermal conductivity does not match the damping

rate which is detected in observations. In the limit of very large conductivity,

the perturbations are only weakly damped and additionally, travel at the slower,

isothermal sound speed (De Moortel and Hood, 2003).

Recently, Owen et al. (2009) have confirmed that the existence of thermal

conduction leads to a small phase shift between the wave velocity, energy and

density. De Moortel and Hood (2004) included also the effect of area divergence,

gravitational stratification and thermal conduction. They found that both ther-

mal conduction and area divergence cause the decay of wave amplitude whereas

gravitational stratification increases the amplitude. Due to the combination of

thermal conduction and area divergence, the perturbations can only be detected

in the first 10 − 20 Mm along the loop, which agrees well with observations. In

a non-isothermal medium, the observed perturbation amplitudes decrease very

fast as a result of damping by thermal conduction and the effect of the instru-

ment response function (TRACE 171 Å) and this is also in good agreement with

observation. In addition, Tsiklauri and Nakariakov (2001) reported that loop

curvature, an offset of the loop centre from the base of the corona and inclina-

tion with respect to the vertical, will reduce the effect of gravity along the loop

and consequently reinforce the damping of perturbations. De Moortel and Hood

(2004) studied the coupling of slow and fast MHD waves in a coronal environ-
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ment (β < 1) by using 2D model with a transversal density profile. They found

that the coupling to the fast wave is inefficient process to extract energy from the

driven slow wave and so is not enough to account for the observed rapid damping.

In the same way, Rosenthal et al. (2002) and Bogdan et al. (2003) have shown

that the coupling between the slow and fast waves is only propable in a region

where the sound and Alfvén speed are comparable (where β ∼ 1).

Fedun et al. (2009, 2011) and Vigeesh et al. (2012) have recently carried

out numerical studies to detect the influence of photospheric motion on the so-

lar atmospheric oscillations in three dimensions. They found that high- and

low-frequency waves which arise in the photosphere are transmitted through the

transition region into the solar corona by the magnetic field. Moreover, it is

found that fast and slow waves transport energy from lower atmosphere to the

solar corona and the standing waves are supported in the chromospheric region.

Overall, the energy leakage is reported to be damping the coronal oscillations.

It is also found that the phase mixing of the slow waves due to the transverse

density gradient can lead to decaying of the wave amplitude but it is too weak to

justify the observed damping. The propagation of slow (acoustic) waves in the

solar coronal loop depends on the acoustic cutoff frequency, which is the ratio of

the sound speed to twice the density scale height (Lamb, 1932). Further to this,

Lamb (1932) and Roberts (2006) have shown that the waves can only propagate

if their frequencies are greater than the cutoff frequency. For more details on the

effect of cutoff frequency on propagating and standing slow acoustic waves, see

Roberts (2006). In a three dimensional model, Marsh et al. (2011) have studied

the damping of the slow magneto-acoustic mode observed by STEREO/EUVI and

Hinode/EIS. It is found that thermal conduction is not sufficient to account for

the observed short decay length of the waves observed with STEREO/EUVI. In

comparison with thermal conduction and radiation, magnetic field line divergence

alone can be sufficient for the observed damping of coronal loops.

The observed Doppler-shift oscillations in hot flare lines, Fe XIX and Fe XXI,

with temperature reaching more than 6 MK by SUMER have been studied by

Kliem et al. (2002) and Wang et al. (2003a,b), and it is found that these oscil-

lations suffer a strong damping. Ofman and Wang (2002) and Mendoza-Briceño

et al. (2004a) found that the standing MHD waves are strongly damped be-

cause of thermal conduction in nonlinear model, whereas, using a linear MHD
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model Pandey and Dwivedi (2006) indicated that the individual influence of ther-

mal conduction or viscosity is not enough to account for the observed damping.

Mendoza-Briceño et al. (2004a) studied the influence of gravitational stratifica-

tion on damping of standing MHD waves in hot coronal loops and found that

enhanced nonlinear viscous dissipation due to gravity may reduce the damping

times by about 10− 20% compared to the unstratified loops.

In contrast, Sigalotti et al. (2007) found that thermal conduction can only be

accounted as damping mechanism when the compressive viscosity is added to the

model. Bradshaw and Erdélyi (2008) reported that the radiation due to a non-

equilibrium ionisation balance could cause up to 10% reduction of wave-damping

timescale in comparison to the equilibrium case. Verwichte et al. (2008) showed

that shock dissipation at large amplitudes gives rise to enhancement of the damp-

ing rate which is up to 50% larger than given by thermal conduction alone. In

non-isothermal, hot, gravitationally stratified coronal loops, Erdélyi et al. (2008)

investigated the damping of standing slow (longitudinal) waves under the effects

of various dissipative mechanisms such as thermal conduction, compressive vis-

cosity, radiative cooling, and heating and found that the decay time of waves

decreases with the increase of the initial temperature. Further to this, they de-

rived a relation between the damping time and the parameter determining the

apex temperature in the form of second-order scaling polynomial.

1.3 Theory of MHD Waves

The theory of MHD waves plays an important role in analysing the observed

loop oscillations throughout the study of their properties (speed, wavelength and

frequency) that are connected by the dispersion relation. In the study of wave

propagation in a magnetised plasma medium, we assume that there is a pertur-

bation about the equilibrium state of the medium and then we see the conse-

quences of this disturbance. Therefore, we write physical parameters in the form

f = f0 + f1, where the subscript ‘0’ represents equilibrium quantities and the

subscript ‘1’ indicates perturbed quantities, and substitute them into the MHD

equations. Linear equations can be obtained after neglecting the nonlinear terms

due to |f1| � |f0|. Then, manipulating algebraically the linearised MHD equa-

tions gives the governing equation of the model. Thus, the dispersion relation
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describing the nature of wave can be obtained by assuming that the perturbed

functions are proportional to exp[i(k · r− ωt)].

In order to investigate the properties of MHD waves, it is necessary to intro-

duce briefly the basic MHD equations that govern the plasma motion.

1.3.1 MHD Equations

The fundamentals of electricity and magnetism are described by electromagnetic

equations in which the combination of Maxwell’s equations and Ohm’s Law gives

the magnetic field induction equation,

∂B

∂t
= ∇× (v ×B) + η∇2B. (1.1)

This equation relates the plasma velocity v to the magnetic field B that satisfies

the condition ∇·B = 0. In Equation (1.1) η is the magnetic diffusivity (assumed

to be constant).

The behaviour of the plasma motion in the solar environment is governed by

the fluid equations which consist of equations of continuity, motion and energy.

Equation of Continuity:

The equation of mass continuity is given by

∂ρ

∂t
+∇ · (ρv) = 0, (1.2)

where ρ is the plasma density. Continuity equation represents the law of conser-

vation of mass which states that mass cannot be created or destroyed but it is

changed into a different form of mass.

Equation of Motion:

The equation of motion, which is derived from Newton’s second law of motion,

and has the form

ρ
∂v

∂t
+∇ · (ρv) = −∇p+ j×B + F, (1.3)
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where p is the plasma pressure, ∇p is the pressure gradient force exerted by the

plasma, j × B is the Lorentz force which is composed of the current density (j)

as well as the magnetic field (B), and F is an external force representing, e.g.,

the gravitational force (ρg) and a viscous force (ρν∇2v) for incompressible flow,

where g is the gravity acceleration and ν is the coefficient of kinematic viscosity

(assumed to be uniform).

Ideal Gas Law

The ideal gas law is

p =
R

µ̃
ρT, (1.4)

where R is the gas constant, µ̃ is the mean atomic weight, and T is the temper-

ature.

The Energy Equation

The energy equation states the sources and sinks of energy that control the heat

rate in the solar environment. In general, the energy equation can be written in

several forms and one of them is

ργ

γ − 1

(
∂

∂t

p

ργ
+ (v · ∇)

p

ργ

)
= −L , (1.5)

where γ = 5/3 is the ratio of specific heats and L is called the energy loss (gain)

function. Equation (1.5) is known as the entropy equation since cv ln(p/ργ) is the

entropy, where cv is the specific heat at constant volume. In an adiabatic medium

(i.e. no exchange of energy among neighbouring small volumes), L = 0.

In the solar corona, the energy loss function may be written as

L = −∇ · (κ∇T ) + ρ2Q(T )−H, (1.6)

where the first term represents the heat flux due to thermal conduction, the

second is the radiation loss function and the third is the total energy gained

through heating.

In magnetised plasmas, the thermal conduction is given by

∇ · (κ · ∇T ) = ∇‖ · (κ‖∇‖T ) +∇⊥ · (κ⊥∇⊥T ), (1.7)
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where κ is the thermal conductivity tensor. Thermal conduction along the mag-

netic field is essentially by electrons with κ‖ = κ0T
5/2 Wm−1K−1 and κ0 = 10−11.

Thermal conduction across the magnetic field that is mainly by protons is very

weak in strongly magnetised plasmas.

In the optically thin plasma approximation, where temperature is of order

& 104 K, the radiative loss function is approximated by a piecewise continuous

function of the form

Q(T ) = χTα, (1.8)

where χ and α take different values in different temperature intervals. (Rosner

et al., 1978; Priest, 2000)

1.3.2 The Propagation of MHD Waves

Here we focus on the structure of solar atmosphere by a straight magnetic field.

In what follows, we shall present some analytical studies of the behaviour of MHD

waves in the solar corona. Hence, we investigate the propagation of waves in a

magnetic cylinder when the gravity is neglected (Edwin and Roberts, 1983).

First we start by introducing the ideal MHD equations and its linearised

equations, and then identify properties of waves propagating in an unbounded

homogeneous medium (Roberts, 1981a).

1.3.3 The Ideal MHD Equations

The ideal MHD equations consist of the equations of continuity, momentum,

induction and energy as following:

∂ρ

∂t
+∇ · (ρv) = 0, (1.9)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+

1

µ0

(∇×B) ×B, (1.10)

∂B

∂t
= ∇× (v ×B), (1.11)

∂p

∂t
+ v · ∇p = −γp∇ · v, (1.12)

∇ ·B = 0, (1.13)
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where µ0 is the magnetic permeability of free space.

1.3.4 The Linearised MHD Equations

The linearised MHD equations will be obtained by writing all dependent variables

in the from

f(x, y, z, t) = f0(x, y, z) + f1(x, y, z, t), (1.14)

and neglecting terms nonlinear with respect to variables given in Equations (1.9)−
(1.13). Then the linear MHD equations are

∂ρ1
∂t

+∇ · (ρ0v1) = 0, (1.15)

ρ0
∂v1

∂t
= −∇(p1 +

1

µ0

B0 ·B1) +
1

µ0

(B0 · ∇)B1 +
1

µ0

(B1 · ∇)B0, (1.16)

∂B1

∂t
= ∇× (v1 ×B0), (1.17)

∂p1
∂t

+ v1 · ∇p0 = −ρ0c20∇ · v1, (1.18)

∇ ·B1 = 0, (1.19)

where c20 = γp0/ρ0 is the square of the sound speed and the background state is

assumed to be static and stationary (v0 = 0).

1.3.5 MHD Waves in an Unbounded Homogeneous Medium

Consider an unbounded homogeneous medium with a uniform magnetic field

B0 = B0ẑ. The basic equilibrium state is characterised by the values ρ0 and p0

for the plasma density and pressure, respectively. Thus, Equations (1.15) and

(1.18) are given in the form

∂ρ1
∂t

+ ρ0∇ · v1 = 0, (1.20)

∂p1
∂t

= −ρ0c20∇ · v1. (1.21)
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Since v1 = (v1x, v1y, v1z) and B1 = (B1x, B1y, B1z) so the induction equation

(1.17) can be written as

∂B1x

∂t
= B0

∂v1x
∂z

,
∂B1y

∂t
= B0

∂v1y
∂z

,
∂B1z

∂t
= B0(Γ−∆). (1.22)

Here ∆ = ∇ · v1 and Γ = ∂v1z/∂z.

Now, differentiating Equation (1.16) with respect to time and using Equations

(1.21) and (1.22), we obtain

∂2v1

∂t2
= c20∇∆− v2A∇(Γ−∆) + v2A

∂2v1

∂z2
− v2A

∂∆

∂z
ẑ, (1.23)

where vA = B0/(µ0ρ0)
1/2 is the Alfvén speed. Equation (1.23), by applying the

operator ∇, becomes

∂2∆

∂t2
= (c20 + v2A)∇2∆− v2A∇2Γ. (1.24)

Taking the z component of Equation (1.23) gives

∂2v1z
∂t2

= c20
∂∆

∂z
. (1.25)

Eventually, the combination of Equations (1.24) and (1.25) yields

∂4∆

∂t4
− (c20 + v2A)

∂2

∂t2
∇2∆ + c20v

2
A

∂2

∂z2
∇2∆ = 0, (1.26)

which represents the governing equation of propagating waves in an unbounded

homogeneous medium.

Obviously, Equation (1.26) has a trivial solution when ∆ = 0 for which v1z = 0

where there are no pressure changes. This constitutes the Alfvén mode which has

the dispersion relation

ω2 − k2v2A = 0, (1.27)

representing transverse oscillations driven by the tension in the magnetic field.

For non-trivial solution, we use Fourier-analysis for ∆ by writing

∆ = ∆̂(x)ei(ωt+ly+kz), (1.28)
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where ω is the frequency, and l and k are the wavenumbers. Then substituting

(1.28) into (1.26) gives

d2∆̂

dx2
− (l2 +m2

0)∆̂(x) = 0, (1.29)

where

m2
0 =

(k2c20 − ω2)(k2v2A − ω2)

(c20 + v2A)(k2c2T − ω2)
, c2T =

c20v
2
A

c20 + v2A
.

If we take the Fourier-analysis for the x-dependence in ∆̂, i.e. (∆̂ ∼ einx) then

we have from (1.29)

n2 + l2 +m2
0 = 0, (1.30)

which is

ω4 −K2(c20 + v2A)ω2 + K2k2c20v
2
A = 0, (1.31)

with the wavevector K = (n, l, k).

Then, the total form of dispersion relation for equation (1.26) is

(ω2 − k2v2A)(ω4 −K2(c20 + v2A)ω2 + K2k2c20v
2
A) = 0, (1.32)

which is the dispersion relation for the Alfvén wave, and the fast and slow

magneto-acoustic waves.

The dispersion relation (1.32) describes the propagation of waves through

obtaining the phase speed cph that relates the wave frequency ω to the wavevector

K. The solution to the dispersion relation (1.32) gives the phase speeds

c2ph = v2A cos2(φ), and c2ph =
1

2
c2ms

[
1±

(
1− 4

c2t
c2ms

cos2(φ)

)1/2
]
, (1.33)

where φ is the angle of propagation between the wavenumber k ( or the wavevector

K) and the magnetic field B0, with k = |K| cos(φ) and

c2ms = c20 + v2A, c−2t = c−20 + v−2A .

The speed cms is defined as the magnetosonic speed (or the fast speed) and ct is

identified as the tube speed (or the slow speed). The first part of Equation (1.33)
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Figure 1.3: Phase speed diagram for magnetohydrodynamic waves.
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represents the phase speed of Alfvén wave while the second gives the phase speed

of the fast and slow magneto-acoustic waves. It is clear that when φ = 0 this

means that the propagation is along the magnetic field, so both Alfvén and slow

waves can propagate only along the magnetic field with the phase speed cph ≤ vA

for the former and cph ≤ min(c0, vA) for the later (see Figure 1.3). When φ = π/2

the propagation is perpendicular to the magnetic field and the phase speed is

cph = cms which is the greatest speed can the fast wave propagates with as shown

in Figure 1.3. The phase speed of the fast wave (at any other angle) occurs

in the range max(c0, vA) ≤ cph < cms. However, the magneto-acoustic waves

are compressive since ∆ 6= 0 whereas the Alfvén wave is incompressible because

∆ = 0.

1.3.6 MHD Waves in a Magnetic Cylinder

The model of a solar coronal loop is usually assumed to take a cylindrical shape

as it appears monolithic in observation and since this loop is highly magnetized,

it is called a magnetic cylinder. The propagation of magnetoacoustic waves in

a magnetic cylinder has been studied by many researchers. In this section we

closely follow the study by Edwin and Roberts (1983).

Consider a uniform cylinder of a radius a with magnetic field B0ẑ embedded

in external magnetic field Beẑ. The equilibrium state is described by

B =

{
B0, r < a

Be, r > a
, (1.34)

with the pressure balance being given by the relation

p0 +
B2

0

2µ0

= pe +
B2
e

2µ0

. (1.35)

It follows from this equation that the ratio of densities outside and inside the

cylinder is
ρe
ρ0

=
2c20 + γv2A
2c2e + γv2Ae

, (1.36)

where p0, ρ0, c0 = (γp0/ρ0)
1/2 and vA = B0/(µ0ρ0)

1/2 are the pressure, density,

sound speed and Alfvén speed inside the cylinder, and pe, ρe, ce = (γpe/ρe)
1/2

and vAe = Be/(µ0ρe)
1/2 are the same quantities outside the cylinder. As before,
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γ is the ratio of specific heats.

The linearized MHD equations of this model in terms of cylindrical coordinates

(r, θ, z) are given by

∂2

∂t2

(
∂2

∂t2
− (c20 + v2A)∇2

)
∆ + c20v

2
A

∂2

∂z2
∇2∆ = 0, (1.37)

(
∂2

∂t2
− v2A

∂2

∂z2

)
Γ = 0, (1.38)

where in this case

∇2 ≡ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
,

and

∆ = ∇ · v, Γ = ẑ · curlv =
1

r

∂

∂r
(rvθ)−

1

r

∂vr
∂θ

.

If we take

∆ = R(r) exp i(ωt+ nθ + kz), (1.39)

then equations (1.37) and (1.38) lead to the Bessel equation for function R(r):

d2R

dr2
+

1

r

dR

dr
−
(
m2

0 −
n2

r2

)
R = 0, (1.40)

where

m2
0 =

(k2c20 − ω2)(k2v2A − ω2)

(c20 + v2A)(k2c2T − ω2)
, c2T =

c20v
2
A

c20 + v2A
.

The wave motion outside the tube is described by the same equations with the

only difference that me is substituted for m0, where

m2
e =

(k2c2e − ω2)(k2v2Ae − ω2)

(c2e + v2Ae)(k
2c2Te − ω2)

, c2Te =
c2ev

2
Ae

c2e + v2Ae
,

is taken to be positive.

For the solution bounded and regular on the axis r = 0 of the cylinder, we

have

R(r) = A0

{
In(m0r), m2

0 > 0

Jn(n0r), n2
0 = −m2

0 > 0

}
(r < a), (1.41)

where A0 is a constant and Jn is the Bessel functions of order n, and In is the
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modified Bessel function of the first kind and order n.

Outside the cylinder (r > a), we take

R(r) = A1Kn(mer), r > a, (1.42)

where A1 is a constant and Kn is the modified Bessel function of the second kind

and order n.

Now, matching the radial velocity and the total pressure at r = a because of

continuity across the cylindrical boundary, this leads to the dispersion relations

for surface and body waves which propagate in a magnetic cylinder surrounded

by magnetic region:

ρ0(k
2v2A − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)m0
I ′n(m0a)

In(m0a)
, (1.43)

for surface waves (m2
0 > 0), and

ρ0(k
2v2A − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)m0
J ′n(n0a)

Jn(n0a)
, (1.44)

for body waves (m2
0 = −n2

0 < 0).

These dispersion relations give the well-known sausage mode (symmetric)

when n = 0 whereas when n = 1 they give the kink mode (asymmetric). In

the case n > 1, this gives the so-called flute modes.

Under coronal conditions, i.e. B0 ≈ Be, vA, vAe > c0, ce and ρ0 > ρe, only

fast and slow body waves can emerge while there is no presence of surface waves.

In the incompressible limit (γ → ∞), meaning c0, ce → ∞, m0 and me tend

to |k|. Hence, Equation (1.43) becomes

ρ0
(
k2v2A − ω2

)
φn = ρe

(
k2v2Ae − ω2

)
, φn =

In(|k|a)K ′n(|k|a)

I ′n(|k|a)Kn(|k|a)
. (1.45)

As before, the sausage and kink modes are given by n = 0 and n = 1, respectively.

In the slender tube limit (|k|a � 1), Equation (1.45) gives a phase speed of the

sausage mode as

ω

k
= vA

[
1− ρe

ρ0

(
1− v2Ae

v2A

)
k2a2

4
K0(|k|a)

]
. (1.46)
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Figure 1.4: The phase speed of the sausage (solid line) and kink (dashed line)
modes in the incompressible medium for (a) vAe > vA and (b) vAe < vA. (Edwin
and Roberts, 1983)

1.4 The Influence of the Cooling of the Back-

ground Plasma on Coronal Loop Oscillations

One feature that should be taken into account when studying the nature of coronal

oscillations is the temperature evolution of the coronal plasma. There has been a

plethora of observations which show a number of different temperature evolution

scenarios (see, e.g. Winebarger et al., 2003; Nagata et al., 2003; López Fuentes

et al., 2007). Nagata et al. (2003) observed that there are at least two categories

of temperature evolution. Hot loops, which are heated to temperatures T > 2.5

MK, are seen by the X-ray imagers, e.g. Yohkoh’s Soft X-ray Telescope (SXT)

and Hinode’s X-ray Telescope (XRT). Hot loops are short lived and are seen

to undergo relatively fast cooling down to EUV temperatures (the temperature

affecting EUV absorption lines), appearing in EUV imagers. The other category

are cool loops, which are observed with temperatures in the range 0.4 − 1.3

MK in EUV images and have relatively long lifetimes. Often the temperature

change is on a slow scale when compared to the lifetime of perturbations. The

physical process of the plasma cooling depends upon the loop temperature (i.e.,

cool or hot). It has been found that radiation is the dominant mechanism for

the cooling of the EUV loops (T < 2.0 MK) whereas thermal conduction is the
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cooling mechanism for loops with T > 2.0 MK. A number of observed oscillating

coronal loops are reported to undergo a temperature decrease. This decrease has

an exponential profile with cooling times of 500−2000 seconds (Aschwanden and

Terradas, 2008; Ugarte-Urra et al., 2009).

Hot loops are thought to be heated by impulsive heating events, e.g. flares,

micro-flares, nano-flares. The origin of these energisation mechanisms could be

either waves or reconnection (Antolin et al., 2008a,b, 2009). There have been

a number of simulations investigating the evolution of coronal loops after heat-

ing events (e.g. Jakimiec et al., 1992; Cargill, 1994; Mendoza-Briceño et al.,

2004a; Aschwanden and Tsiklauri, 2009; Taroyan and Erdélyi, 2009; Taroyan and

Erdélyi, 2010; Taroyan et al., 2011). Impulsive heating events only last for a rela-

tively short time, and if the plasma reaches a hot enough temperature by the end

of the heating, thermal conduction dominates the cooling of the plasma. From

calculations by, e.g. Cargill (1994), the decrease in temperature due to thermal

conduction takes an almost exponential form.

In a recent review by De Moortel and Nakariakov (2012), it has been reported

that cooling is likely to be a natural aspect in oscillating coronal loops where

this feature is not taken into account in the earlier models. Landi et al. (2009)

have studied the cooling of observed coronal loops in active region using the data

of various instruments. It is found that the rapid cooling leads to forming loop

condensations which finally settle in prominence layer. These condensations have

been observed many times in the past but diagnosing plasma properties of cooling

loops were prevented due to the limitations of instruments. The scenario of

condensing loops was consistent with the theoretical models of loop condensations

developed by Karpen and Antiochos (2008).

In a recent theoretical work by Morton et al. (2010), the effect of radiative-

cooling of the background plasma state on the propagation of magneto–acoustic

waves in a uniformly magnetized plasma was investigated. Although the ap-

proximation of unbounded uniformity of the plasma may seem to be a severe

simplification, this step was necessary in order to give insight into the underlying

physics. The radiation mechanism was assumed to be the mechanism for the

cooling of the plasma and the plasma cooled exponentially in time, which cap-

tures well the key features of the observational data. As a result, they found that
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the slow and fast modes are damped due to cooling. The radiative cooling was

shown to damp the slow mode by up to 60% within characteristic lifetimes. This

effect is much stronger than the contribution predicted by De Moortel and Hood

(2004). Bradshaw and Cargill (2010) examined the influence of cooling plasma

on impulsively heated coronal loops due to radiative-enthalpy mechanism. The

dominant mechanism of cooling is specified by measuring the scaling between

coronal temperature and density, T ∝ nδ, where δ is determined by the relative

importance of the coronal radiative losses to the enthalpy flux to the transition

region. It is found that radiation is the dominant mechanism of cooling with a

relatively small coronal mass loss when δ has larger values whereas enthalpy is

responsible for cooling with a relatively large coronal mass loss once δ has smaller

values.

Transverse oscillations of coronal loops with slowly changing density have been

studied by Ruderman (2011). In the case of a homogeneous density along the

loop, the cooling is found to cause a reduction to the density and a growth to

the amplitude with time whereas in the case of a stratified loop with the same

temperature inside and outside, the oscillation frequency increases with time and

the cooling amplifies the kink oscillations. The latter case with constant temper-

ature of external plasma is studied and the obtained results are qualitatively the

same in both cases. Wang (2011) found that the plasma in hot loop oscillation

experiences a gradual cooling according to the observed intensity evolution in Fe

XIX, Fe XVII and Ca XIII. Despite of the plasma cooling, the rapid damping of

oscillation amplitude in Fe XIX line is found to be real but not dominated by the

cooling effect.

1.4.1 Cooling by Radiation Mechanism

We have mentioned that the cooling of the background plasma could be due to

radiation mechanism for EUV loops (T < 2.0 MK). Observationally, the cooling

of coronal loops has been found to have an exponential profile of the form

T = T0 exp

(
− t

τcool

)
, (1.47)

where T0 is the initial temperature and τcool is the cooling time scale (Aschwanden

and Terradas, 2008; Morton and Erdélyi, 2010).
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Recently, Morton et al. (2010) have considered a simple model to investigate

the influence of a radiatively cooling background plasma on the propagating MHD

waves in a homogenous coronal plasma. The model is as follows. The background

temperature (pressure) is decreasing with time. The magnetic field is uniform

and along the z direction, i.e. B0 = B0ẑ. The equilibrium plasma density is

constant. A special form of radiative function is assumed to make certain that

the analytically obtained temperature evolution of the background plasma cooled

by radiation is identical with the observed cooling profile of coronal loops.

The energy equation in this model is given as

ργ

γ − 1

(
∂

∂t

p

ργ
+ (v · ∇)

p

ργ

)
= −ρ2Q(T ) +H, (1.48)

where ρ2Q(T ) is the optically thin radiative loss function and H is the coronal

heating term.

The equilibrium in this model is radiatively unstable owing to the absence of

thermal conduction. The reduction in the coronal heating term means that the

plasma will undergo a cooling. Then, the cooling of the background plasma will

continue in a runway manner. In order to model this process to be consistent

with the observations (Aschwanden and Terradas, 2008), it is assumed that the

loss/heat terms have the form of Newtonian cooling. Therefore, a simple function

of the form δp representing the loss and heat terms is assumed to reach the ob-

served exponential cooling of the background plasma. Thus, the energy equation

for the background state when there is no background flow, i.e. v0 = 0, reduces

to

p0(t) = pi exp(−δt), (1.49)

where the ‘0’ index denotes background quantity, pi is the pressure value at t = 0

and δ is a small quantity. It is clear that the background pressure decreases with

time and perfect pressure balance is not kept, however the equilibrium nearly

holds because of low-beta plasma, β � 1. Comparing the numerical evaluation

of the pressure evolution with Equation (1.49) it is found that δ = 1/τcool. The

observed cooling times are 500 s < τcool < 2000 s. Thus, 1/2000 s−1 < δ <

1/500 s−1. Subsequently, the cooling profile of the background plasma given in

Equation (1.47) and Equation (1.49) is identical since T ∝ p0.
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Overall, in spite of the simplicity of the suggested model, the analytically

obtained solutions exhibit considerable results about the behaviour of MHD waves

in a cooling coronal plasma that give us a step along to model coronal loops. The

cooling of the plasma causes a significant change in the properties of the modes

where the frequency of the magneto-acoustic modes decreases with time. Further

to this, the damping by radiation is found to affect the slow mode more than the

fast mode where the slow mode suffers a strong damping within typical lifetimes

of oscillations observed in coronal loops. For more details, see Morton et al.

(2010).

1.4.2 Cooling by Thermal Conduction

Thermal conduction is the dominant mechanism of the plasma cooling in hot

coronal loops, T > 6 MK, (see, Mendoza-Briceño et al., 2004b; Aschwanden

and Tsiklauri, 2009). The cooling of coronal loops heated by small flares (nano-

flares) investigated by Cargill (1994). He estimated the characteristic time which

is taken by the plasma to cool by radiation, τr, and thermal conduction, τc. The

dominant method responsible for cooling can be specified by evaluating the ratio

of conductive and radiative cooling times. It is accepted that thermal conduction

is the dominant cooling process when τc < τr while radiation dominates the

cooling once τc > τr. Further to this, the temperature of regions that undergo

conductive cooling decreases roughly in an exponential form with time.

Aschwanden and Tsiklauri (2009) studied the hydrodynamic evolution of the

electron temperature and electron density for impulsively heated coronal loops

using analytical approximations. They found a function of an exponential profile

for the temperature evolution describing heating process. However, the region

of high temperature (T & 10 MK) is found to cooled by thermal conduction and

the cooling is represented by a function with an exponent of −2/5 as follows

Tcond(t) = Tp

[
1 +

(t− tp)
τcond

]−2/5
, τcond =

21

5

npkBL
2

κT
5/2
p

,

where τcond is the conduction timescale, tp is the density peak time (the time at

which the density has a peak value), Tp is the temperature at the density peak

time, np is the density peak value, L is the loop half-length, kB is the Boltzmann

37



CHAPTER 1. INTRODUCTION

constant, κ is the Spitzer thermal conductivity coefficient.

A general function describing the time evolution of the temperature T (t) in the

cooling phase for the regions of temperature (T & 1 MK) cooled by the radiative

and conductive cooling has the following quadratic formula

T (t) = Tp

[
1− (t− tp)

ncool τcool

]2
,

1

τcool
=

1

τrad
+

1

τcond
, for tp ≤ t ≤ te,

where τrad is the radiative cooling time, ncool is the cooling times (this factor

corrects for the time variation of the conductive and radiative cooling timescales).

The temperature according to this function decreases monotonically until the end

time te = tp + ncool τcool. The two phases of dominant conductive cooling and

radiative cooling are combined by the previous relation of the cooling time, τcool,

which approaches the value of the conductive cooling timescale if τcond � τrad,

and the value of the radiative cooling timescale when τrad � τcond.

To sum up, despite the fact that the effort made to understand the cooling

mechanism of the solar corona and an almost exponential form of the numeri-

cally calculated suggested general functions of cooling process, there are still no

observations for hot oscillating loops that cool exponentially according to our

knowledge.

1.5 Boundary Conditions

The careful choice of the boundary conditions in a model of coronal loop may lead

to obtain important consequences. However, there are finite number of boundary

conditions which can be physically accepted. Antiochos et al. (1985) studied

the influence of boundary conditions on thermal stability of static coronal loops.

They concluded that the perturbed quantities such as temperature, density or

pressure, at the loop footpoints vanish. In addition to this, the appropriate choice

of conditions is found to indicate that the stability is not affected by the amount of

quantities at the boundary (loop base). Furthermore, Mok and Van Hoven (1995)

studied the effect of chromospheric boundary conditions on coronal magnetic

loops using numerical simulations. It is summarised that the rigid-wall boundary

at the chromosphere and the line-tied condition are not realistic. This is because
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of dynamic plasma in the transition region.

In a static 1D isothermal medium, De Moortel and Hood (2003) studied the

properties of slow MHD waves propagation in solar coronal magnetic fields for var-

ious boundary conditions. According to observations shown by De Moortel et al.

(2002a,b), they assumed that the initial conditions for all perturbed quantities

vanish while the boundary conditions for both perturbed velocity and pressure

gradient are functions of time or zero at the loop footpoints. The results show

that the introduced boundary conditions lead to the formation of the thermal

and the slow mode where the former is found to be oscillatory and decaying, and

the latter suffers strong damping due to thermal conduction.

1.6 Outline of the Thesis

In this chapter, we have given a brief introduction about the structure of the

Sun. As mentioned before, coronal-loop structures are highly magnetised and

can support a wide range of MHD waves and oscillations. Coronal observations

indicate that waves and oscillations are ubiquitous in the solar atmosphere and

many of them are seen to be strongly damped. In this thesis, we focus only

on the damping of longitudinal slow (propagating and standing) oscillations due

to cooling background plasma. The cooling of the coronal loop is assumed an

exponential profile. The following chapters will be organised as follows.

Firstly, we investigate the propagating slow MHD wave in a uniform mag-

netised plasma under the influence of a cooling background state. In a weakly

stratified atmosphere, thermal conduction is the dominant mechanism for the

cooling background plasma in hot coronal loops. The governing equation in a 1D

form for the slow modes is derived by using dimensionless quantities. The WKB

theory is applied to obtain the dispersion relation which describes the properties

of the longitudinal acoustic mode. The analytic solution of the time-dependent

amplitude is derived by exploiting the method of characteristics. We display the

results in a system with a variable background calculated by using standard solar

coronal values and compare them to the observed oscillations.

Next, we examine the effect of dynamic background plasma on longitudi-

nal standing modes oscillating in a hot coronal loop. The background plasma
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is assumed to be decaying exponentially, with characteristic cooling times typi-

cal for coronal loops, because of a physically unspecified thermodynamic source.

The damping of coronal loop oscillations is dominated by weak thermal conduc-

tion which appears in perturbations and disappear in the background plasma.

Similarly, the governing equation is solved by the WKB approximation and the

temporally evolving amplitude is derived with the aid of the properties of Sturm-

Liouville problem. We exhibit the obtained results numerically to give further

insight into the behaviour of the MHD waves.

Finally, the work in this chapter complements the previous project and gener-

alises the results found there. The influence of the plasma cooling on longitudinal

standing MHD waves that are damping due to strong thermal conduction will be

investigated. We intend to widen the scope of our investigation into the com-

petition between the influence of cooling and damping on the amplitude of hot

oscillating loops. We have used numerical evaluations to analyse the variation of

time-dependent amplitude and compare it with the previous study.
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Chapter 2

Damping of Longitudinal

Magneto–Acoustic Oscillations in

Slowly Varying Coronal Plasma

In this chapter, we concentrate on the behaviour of propagating longitudinal

MHD waves in a cooling background plasma. We closely follow Erdélyi et al.

(2011). In most earlier studies, a time-independent equilibrium was considered.

Here we relax this restriction and allow the equilibrium to evolve in time. In

weakly stratified atmosphere, thermal conduction is assumed to be the dominant

mechanism of the background plasma cooling which is assumed to occur on a

time scale greater than the characteristic travel times of the perturbations, thus

is applicable to oscillations in hot loops. Solutions to the background plasma

equations show that the cooling profile of the plasma is exponential in time, in

qualitative agreement with observations. The dispersion relation which describes

the slow modes and their properties is derived using the WKB theory. An an-

alytic expression for the time-dependent amplitude of the waves is also derived,

and the method of characteristics is used to find an approximate analytical solu-

tion. The analytically obtained solutions are evaluated numerically to give further

insight in the behaviour of the MHD waves in a system with a time-dependent

background. The results show that thermal conduction has a dominant effect on

the slow modes, causing their amplitude to damp strongly. The rate of damp-

ing is quantified in the model and is found to be dependent upon the amount

of stratification in the plasma and the initial temperature of the background.
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The damping is also shown to be weakly dependent upon position in the slowly

varying equilibrium.

2.1 Introduction

Propagating slow magneto-acoustic waves have been a subject of many obser-

vational and theoretical studies. Coronal oscillations interpreted as propagating

slow MHD waves are seen to be strongly damped. Among various proposed

mechanisms it is found that thermal conduction is the most efficient dissipative

mechanism for oscillations in the hot corona. However, the thermal conduction

alone cannot account for the observed damping. For example, De Moortel and

Hood (2003) studied the propagation of MHD slow waves in a static 1D, isother-

mal medium where thermal conduction and compressive viscosity were considered

as damping mechanisms for perturbations. They found that a mechanism com-

plimentary to thermal conduction is needed to cause the observed damping.

In this chapter, we study further the propagation of longitudinal MHD waves

in a magnetised plasma in a weakly stratified atmosphere representing hot coronal

loops. The plasma cools due to thermal conduction. The chapter is organised as

follows. In the next section we describe the model of dynamic background plasma

and write down the linearised system of governing equations. In Section 2.3 we use

the WKB theory to obtain the analytical solution for the oscillation amplitude. In

Section 2.4 we present a numerical evaluation of the analytical solution. Finally,

the summary of the results is given in Section 2.5.

2.2 Governing Equations

Consider a magnetised plasma where the background temperature is changing

with time due to thermal conduction, while density is independent of time.

The magnetic field is uniform and stationary, and it is in the z-direction, i.e.

B0 = B0ẑ. We use the low-beta plasma approximation applicable to solar coro-

nal conditions. The rigid tube approximation that is applicable to longitudinal

wave is used. This enables us to neglect the magnetic field perturbation. As

a result, a longitudinal slow MHD wave is a superposition of two sound waves
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propagating along the magnetic field in the opposite directions. The governing

MHD equations for the plasma take the form

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+

1

µ0

(∇×B)×B + ρg, (2.2)

R

µ̃

ργ

(γ − 1)

[
∂

∂t

T

ργ−1
+ (v · ∇)

T

ργ−1

]
= κ∇2T, (2.3)

∂B

∂t
= ∇× (v ×B), (2.4)

p =
R

µ̃
ρT, (2.5)

where v is the flow velocity, B the magnetic field, g the gravity acceleration,

µ0 the magnetic permeability of free space, γ the ratio of specific heats, R the

gas constant, µ̃ the mean molecular weight, T the temperature, κ∇2T thermal

conduction term where κ = κ0T
5/2, and ρ and p are the plasma density and

pressure, respectively.

The medium is assumed to be cooling due to thermal conduction with no

temporal change in density, and it is also assumed that there is no background

flow (i.e. v0 = 0). Hence, for the background state, Equations (2.1) − (2.5)

reduce to

v0 = 0,
∂ρ0
∂t

= 0, (2.6)

dp0
dz

= −ρ0g, (2.7)

ρ0 = ρ0(z), (2.8)

p0 =
R

µ̃
ρ0T0, (2.9)

Rρ0
µ̃(γ − 1)

∂T0
∂t

= κ∇2T0, (2.10)

where the index ‘0’ denotes a background quantity.
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Equation (2.7) can be written as

1

p0
dp0 =

l

H
dz̃, (2.11)

where z = lz̃ (here l is the characteristic length scale of perturbations) and

H = p0/ρ0g. Here we are interested in a weakly stratified atmosphere where the

characteristic length scale is much smaller than the scale height H, i.e. l/H � 1,

consequently we arrive at
dp0
dz
≈ 0. (2.12)

The solution to Equation (2.10) by separation of variables, using Equations (2.9)

and (2.12), gives the temperature:

T0(z, t) = Ti exp

(
−(γ − 1)λµ̃κt

Rρi

)
[−c2z2 + c3z + c4], (2.13)

and the density:

ρ0(z) =
ρi

−c2z2 + c3z + c4
, (2.14)

which is physically valid when c2, c3 � 1 and c3 > c2. In Equation (2.13) λ

is the separation constant, c2 = λ/2, c3 and c4 are constants, Ti is the initial

temperature at z = 0, and ρi is the density at z = 0.

Note that the background temperature decreases exponentially with time. It

has been shown for radiative-cooling loops that an exponential profile provides

a good fit for the observed cooling (Aschwanden and Terradas, 2008; Morton

and Erdélyi, 2009b, 2010). To the best of our knowledge, there are no such

observations for hot loops cooling due to thermal conduction.

The form of the density profile in Equation (2.14) is consistent with a weakly

stratified atmosphere. For a gravitationally stratified atmosphere the density

profile is given by

ρ0 = ρi exp
(
− z

H

)
. (2.15)

The hydrostatic scale height H is given by H = RT/µ̃g, hence for hot loops H is

in the range 94 − 282 Mm. In the case of weak stratification, i.e. l/H � 1, the

44



2.2. GOVERNING EQUATIONS

density can be approximated as

ρ0 ≈ ρi

(
1− z

H
+

1

2

( z
H

)2)
. (2.16)

Equation (2.14) can be written

ρ0 =
ρi

1 + y
≈ ρi(1− y) ≈ ρi

[
1− (−c2z2 + c3z + c4 − 1)

]
,

upon the assumption that y is small. Comparing to Equation (2.16), the values

for the constants are c4 = 1, c3 = H−1 and c2 = λ/2 = H−2/2 and hence y is

small when z � H. This means that λ represents the effect of stratification.

Perturbing the background equations, the linearized MHD equations can be

found by writing all variables in the form of Equation (1.14).

Since thermal conduction is known to have a strong effect on slow modes,

we will concentrate our analysis on the properties of these modes. It has been

shown by a number of authors (e.g. Roberts, 2006 and Luna-Cardozo et al., 2012)

that slow modes can be isolated by assuming v1x = v1y = 0. Therefore the linear,

dissipative, MHD equations for slow modes in the presence of thermal conduction

reduce to a 1D system given by

∂ρ1
∂t

+ ρ0
∂v1
∂z

+ v1
∂ρ0
∂z

= 0, (2.17)

ρ0
∂v1
∂t

= −∂p1
∂z

, (2.18)

R

µ̃

[
ρ1

γ − 1

∂T0
∂t

+
ρ0

γ − 1

∂T1
∂t

+ ρ0T0
∂v1
∂z
− T0
γ − 1

v1
∂ρ0
∂z

]
= κ∇2T1, (2.19)

p1 =
R

µ̃
[ρ0T1 + ρ1T0] . (2.20)

Here v1 ≡ v1z and the subscript ‘1’ indicates the perturbations. Although there

are now no terms relating to the magnetic field, slow waves are still guided by

the magnetic field. Dimensionless variables can now be introduced to simplify
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the equations, where the following dimensionless quantities are defined:

ρ̃1 =
ρ1
ρi
, ρ̃0 =

ρ0
ρi
, p̃1 =

p1
pi
, T̃1 =

T1
Ti
, T̃0 =

T0
Ti
, ṽ1 =

v1

csi
,

csi =
l

τ
, c2si =

γpi
ρi
, t̃ =

t

τ
, z̃ =

z

l
, λ̃ =

(
l

H

)2

, c̃2 = lc2,

c̃3 = lc3.

Here csi is the initial sound speed, l is the characteristic wavelength of the oscil-

lations, and τ is the characteristic period of oscillations. Thus, the equation of

energy conservation in terms of dimensionless variables, will be

ρ1
∂T0
∂t

+ ρ0
∂T1
∂t

+ (γ − 1)ρ0T0∇.v1 − T0v1
∂ρ0
∂z

= σ
∂2T1
∂z2

, (2.21)

where

σ =
(γ − 1)κ ρiTi

γ p2i τ
.

When deriving Equation (2.21) we have dropped the tilde. Using coronal

values (e.g. De Moortel and Hood, 2003), we find σ that is a small quantity,

where the standard solar coronal values of all variables

T0 = 1− 6 MK,

ρ0 = 1.67× 10−12 kg m−3,

κ = 10−11 T
5/2
0 W m−1 K−1,

µ̃ = 0.6,

R = 8.3× 103 m2 s−2 deg−1,

γ = 5/3,

τ = 300 s,

(2.22)

give a value of σ = 0.04 for T = 1 MK and σ = 0.61 for T = 6 MK.

After the linearisation, the ideal-gas law equation is

p1 = ρ0T1 + ρ1T0, (2.23)
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and the continuity equation is

∂ρ1
∂t

+ ρ0
∂v1
∂z

+ v1
∂ρ0
∂z

= 0, (2.24)

while the energy equation takes the form

∂p1
∂t

+ γρ0T0
∂v1
∂z

= σ
∂2T1
∂z2

. (2.25)

Differentiating Equation (2.25) with respect to z and using Equation (2.18), we

arrive at
∂2v1
∂t2
− T0

∂2v1
∂z2

= − σ

γρ0

∂3T1
∂z3

. (2.26)

To solve the equation of energy, we start from the continuity equation and use the

gas law equation to find an equation in terms of velocity variable. Substituting

Equation (2.23) into Equation (2.24), we obtain

1

T0

∂p1
∂t
− p1
T 2
0

∂T0
∂t
− ρ0
T0

∂T1
∂t

+
ρ0T1
T 2
0

∂T0
∂t

+ ρ0
∂v1
∂z

+ v1
∂ρ0
∂z

= 0. (2.27)

The dimensionless background temperature is given by (after removing tilde)

T0(z, t) =
exp(−λσt)
ρ0(z)

,

thus
∂T0
∂t

= δT0, where δ = −λσ. (2.28)

Then, after substituting Equation (2.28) and multiplying by T0, Equation (2.27)

reduces to

∂p1
∂t
− δp1 − ρ0

∂T1
∂t

+ δρ0T1 + ρ0T0
∂v1
∂z

+ T0v1
∂ρ0
∂z

= 0. (2.29)

Substituting this equation into Equation (2.25), we obtain the following equation

(γ−1)ρ0T0
∂2v1
∂t∂z

−δρ0T0
∂v1
∂z
− ∂

∂t
(T0v1)

∂ρ0
∂z

= σ
∂3T1
∂t∂z2

−ρ0
∂2T1
∂t2

+δρ0
∂T1
∂t

, (2.30)

which represents another relation between the perturbed temperature and per-

turbed velocity in addition to Equation (2.26). Now, we aim to derive the govern-

ing equation for the velocity perturbation. Differentiating Equation (2.29) once
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with respect to t and three times with respect to z, and using Equations (2.25)

and (2.26), after some algebra, we arrive at

γ
ρ0
σ

∂4v1
∂t4
− γ

[
ρ0δ

σ
+

3

ρ20

(
∂ρ0
∂z

)2

− 2

ρ0

∂2ρ0
∂z2
− 1

ρ0

∂ρ0
∂z

∂

∂z
+

∂2

∂z2

]
∂3v1
∂t3

+ γ

[
3δ

ρ20

(
∂ρ0
∂z

)2

− 2δ

ρ0

∂2ρ0
∂z2
− δ

ρ0

∂ρ0
∂z

∂

∂z
+

(
δ − ρ0T0

σ

)
∂2

∂z2

]
∂2v1
∂t2

−
[
γδρ0T0
σ

∂2

∂z2
− 2

∂T0
∂z

∂3

∂z3
− T0

∂4

∂z4

]
∂v1
∂t

+

[
2δ
∂T0
∂z

∂3

∂z3
+ δT0

∂4

∂z4

]
v1 = 0.(2.31)

To simplify Equation (2.31) we neglect all terms of order σδ and higher powers in

σ or δ as σ and δ are small parameters. Then, after multiplying Equation (2.31)

by σ, and rearranging we obtain the governing equation in the form

γρ0
∂4v1
∂t4

− γρ0T0
∂2

∂z2
∂2v1
∂t2

= γ

[
ρ0δ +

3σ

ρ20

(
∂ρ0
∂z

)2

− 2σ

ρ0

∂2ρ0
∂z2

− σ
ρ0

∂ρ0
∂z

∂

∂z
+ σ

∂2

∂z2

]
∂3v1
∂t3

+

[
γδρ0T0

∂2

∂z2
− 2σ

∂T0
∂z

∂3

∂z3
− σT0

∂4

∂z4

]
∂v1
∂t

. (2.32)

After some algebra and eliminating the small terms under the assumption that

the background quantities are slowly varying when compared to the perturbed

quantities, the governing equation becomes

∂

∂t

[
∂2v1
∂t2
− T0

∂2v1
∂z2

]
= δ

[
∂2v1
∂t2
− T0

∂2v1
∂z2

]
+
σ

ρ0

∂2

∂z2

[
∂2v1
∂t2
− T0

γ

∂2v1
∂z2

]
. (2.33)

In the absence of thermal conduction, Equation (2.33) reduces to the wave equa-

tion that represents (longitudinal) acoustic mode propagating in a flux tube and

has the form
∂2v1
∂t2
− T0

∂2v1
∂z2

= 0, (2.34)

while in the case of unstratified atmosphere, i.e. no change in the background

plasma quantities with height, Equation (2.33) reduces to the model governing
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equation found by De Moortel and Hood (2003):

∂

∂t

[
∂2v1
∂t2
− T0

∂2v1
∂z2

]
=

σ

ρ0

∂2

∂z2

[
∂2v1
∂t2
− T0

γ

∂2v1
∂z2

]
. (2.35)

Assuming the background quantities are constant, one can Fourier analyse all

perturbations as exp(i(ωt − kz)). After that, Equation (2.33) reduces to the

dispersion relation

ω3 − iσ ω2k2 − ωk2 + i
σ

γ
k4 = 0, (2.36)

where ω is the frequency and k is the wavenumber. This dispersion relation was

obtained first by Field (1965). We see that Equation (2.33) is consistent with

earlier studies (e.g. Field, 1965 and De Moortel and Hood, 2003).

2.3 Analytical Solutions

We now seek an analytic solution to the governing Equation (2.33). Unlike pre-

vious models which include thermal conduction, there is now a temporal depen-

dence due to the temporally changing background temperature. This means that

we cannot Fourier-analyse in time. Instead, since the right hand side of Equation

(2.33) has derivatives multiplied by a small factor σ, the WKB approximation

(e.g. Bender and Ország, 1978) can be used. The accuracy of the WKB ap-

proximation increases when σ decreases. Since the variables in Equation (2.33)

depend on time t and space z, we introduce the “slow” variable t1 = σt and

the “local” variable ζ = σz to solve this equation. The slow timescale physi-

cally means that the conductive-cooling timescale is longer than the period of

the oscillations. The “local” lengthscale means that any significant changes in

quantities in the z-direction occur on length scales longer than the wavelength of

the oscillation. Now, in accordance with the WKB method, we write the velocity

perturbation in the form

v1(ζ, t1) = Q(ζ, t1) exp

(
i

σ
Θ(ζ, t1)

)
, (2.37)

where Q(ζ, t1) and Θ(ζ, t1) are functions to be determined.

Substituting Equation (2.37) into Equation (2.33) and taking the largest-order
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terms in σ, which are terms proportional to σ−5, we obtain(
∂Θ

∂t1

)2

− c2s(ζ, t1)
(
∂Θ

∂ζ

)2

= 0, cs(ζ, t1) =
√
T0. (2.38)

If we assume ∂Θ/∂t1 = ω(ζ, t1) and ∂Θ/∂ζ = k(ζ, t1), where ω(ζ, t1) is the

frequency and k(ζ, t1) is the wavenumber, then Equation (2.38) is, in fact, a tem-

porally and spatially dependent dispersion relation for the longitudinal (acoustic)

mode.

The next largest-order terms in σ (of order σ−4) give the equation for the

amplitude:

− 1

cs

∂Q

∂t1
+
∂Q

∂ζ
+

[
λ

4cs
− 1

2cs

∂cs
∂ζ
− (γ − 1)

2γρ0cs

(
∂Θ

∂ζ

)2
]
Q = 0. (2.39)

Equations (2.38) and (2.39) will be solved by using the method of characteristics,

thus we need to derive boundary conditions at z = 0.

To achieve this, we study a thin layer around z = 0 where we may assume

the spatial gradients of both T0 and ρ0 are very small, so they can be consid-

ered constant in space in this region. This enables the use of Fourier analysis

v1 ∼ exp(ikz). Equation (2.33) reduces to

d3v1
dt3

+ [σλ+ σk2]
d2v1
dt2

+ T0k
2dv1

dt
+
σ T0k

4

γ
v1 = 0. (2.40)

Next, we apply the WKB method to this equation by assuming that the pertur-

bation in terms of the variable t1, has the form

v1(t1) = Q1(t1) exp

(
i

σ
Θ1(t1)

)
. (2.41)

Substituting into Equation (2.40), the highest-order equation in σ gives

dΘ1

dt1
= cs(t1)k, (2.42)

where cs(t1) =
√
T0(t1) = exp(−λt1/2). Equation (2.42), after integrating over
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the interval [0, t1], has the solution

Θ1(t1) =
2k

λ
[1− cs(t1)]. (2.43)

The next-order equation in σ is

dQ1

dt1
−
(
λ

4
− (γ − 1)

γ

k2

2

)
Q1 = 0, (2.44)

which has the solution

Q1(t1) = exp

[(
λ

4
− (γ − 1)

γ

k2

2

)
t1

]
, (2.45)

where k is the wavenumber at z = 0.

We now have the necessary boundary conditions at z = 0 to proceed with the

solution of Equations (2.38) and (2.39) using the method of characteristics.

We introduce the variables r and s to parameterise Equations (2.38) and

(2.39). The characteristic equations of Equation (2.38) are given by

∂t1
∂s

= − 1

cs
,

∂ζ

∂s
= 1,

∂Θ

∂s
= 0,

with boundary conditions for the characteristics curves

t1(r, 0) = r, ζ(r, 0) = 0, Θ(r, 0) = Θ1(r),

where Θ1(r) is given by Equation (2.43) and (r, 0,Θ1) is a point on the curve

(t1(r, s), ζ(r, s),Θ(r, s)) which lies in the surface {(t1, ζ,Θ(ζ, t1))} that represents

the graph of the function Θ(ζ, t1). The solutions of the characteristic equations

are

s(ζ, t1) = ζ, (2.46)

r(ζ, t1) = −2

λ
ln

[
exp

(
−λt1

2

)

− λσ

2
√
c2

arctan

(
c3
√
F (ζ) + 2c2(ζ − c3σ

2c2
)

2
√
c2
√
F (ζ)− c3

√
c2(ζ − c3σ

2c2
)

)]
, (2.47)
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Θ(ζ, t1) = −2k

λ

[
exp

(
−λt1

2

)

− λσ

2
√
c2

arctan

(
c3
√
F (ζ) + 2c2(ζ − c3σ

2c2
)

2
√
c2
√
F (ζ)− c3

√
c2(ζ − c3σ

2c2
)

)
− 1

]
. (2.48)

Similarly, the characteristic equations of Equation (2.39) are

∂t1
∂s

= − 1

cs
,

∂ζ

∂s
= 1,

∂Q

∂s
=

(
λ

4cs
− 1

2cs

∂cs
∂ζ
− (γ − 1)

2γρ0cs

(
∂Θ

∂ζ

)2
)
Q,

with boundary conditions

t1(r, 0) = r, ζ(r, 0) = 0, Q(r, 0) = Q1(r),

where Q1(r) is given by Equation (2.45) and (r, 0, Q1) is a point on the curve

(t1(r, s), ζ(r, s), Q(r, s)) which lies in the surface {(t1, ζ, Q(ζ, t1))} that represents

the graph of the function Q(ζ, t1). The solutions of the characteristic equations

are Equations (2.46), (2.47) and

Q(ζ, t1) = exp

[(
λ

4
− γ − 1

γ

k2

2

){
r +

σ
√
c2

exp

(
λt1
2

)

× arctan

(
c3
√
F (ζ) + 2c2(ζ − c3σ

2c2
)

2
√
c2
√
F (ζ)− c3

√
c2(ζ − c3σ

2c2
)

)}

+
1

4
ln

(
σ2

F (ζ)

)]
, (2.49)

where

F (ζ) = −c2ζ2 + c3σζ + σ2 =
σ2

ρ0(ζ)
. (2.50)

Taking the Taylor expansion of the amplitude and ignoring the small terms under

the assumption of slowly varying background coronal plasma and weakly stratified

atmosphere, we arrive at

Q(ζ, t1) = 1−
(
γ − 1

γ

k2

2
− λ

4

)
t1 +

1

4

√
λ ζ. (2.51)

Equation (2.37), combined with Equations (2.47)−(2.50), provides a full solution
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to Equation (2.33). All other perturbed quantities can now be calculated using

Equations (2.17) − (2.20). The equations may not reveal much information yet

as they are complicated in nature. We examine a limiting case for the amplitude

to reveal some properties. Assume that λ = 0 (unstratified atmosphere), then

the system of Equations (2.47), (2.49), and (2.50) reduces to

Q(t) = exp

[(
−(γ − 1)

γ

k2

2

)
σt

]
. (2.52)

This limit is in good agreement with its counterpart in De Moortel and Hood

(2003). The amplitude of the wave is damped and the damping is dependent

upon the value of σ and k.

2.4 Numerical Evaluations

It has been shown by Morton et al. (2010) that the WKB estimates provide good

approximations to the frequency and amplitude variations in time and space when

the plasma is cooling due to radiation. We see no reasons why this should be

any different here, where thermal dissipation in the form of thermal conduction is

considered. Numerical calculations are now used to demonstrate how the analytic

solutions of the MHD waves behave in a system with a variable background.

The amplitude of the slow wave is computed using characteristic solar coronal

values. In Figure 2.1 we plot the amplitude of the longitudinal (acoustic) wave,

given in Equation (2.49), for different values of λ (which is the separation constant

and is related to the squared reciprocal of scale height) and the value of thermal

ratio σ at z = 0. It is found that the amplitude decays rapidly in time for all

values of λ and σ, over typical observed timescales of oscillations. In particular,

Figure 2.1(a) depicts that the oscillation amplitude declines dramatically under

the coronal values of temperature 1 MK. Figure 2.1(b) illustrates a faster decay

of the wave amplitude for a temperature 3 MK, i.e. for even hotter loops. The

decay of the amplitude is enhanced even further for very hot (SXT/XRT) loops,

i.e. T = 6 MK as shown in Figure 2.1(c). In each plot shown in Figure 2.1, it is

also clearly seen that increasing the stratification of the plasma, i.e. increasing λ,

decreases the rate of the damping. Because the magnitude of λ is directly related

to the rate of cooling of the background plasma, the new and important result
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Figure 2.1: The amplitude of os-
cillations with different values of
λ (0.0, 0.1, 0.5, 0.7) characterising
stratification and specific value of
σ, i.e. the value of thermal ratio, at
z = 0. (a) σ = 0.04 (T = 1 MK),
(b) σ = 0.22 (T = 3 MK), (c)
σ = 0.61 (T = 6 MK).
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here is that the strength of the damping of the oscillations is reduced due to the

introduction of the cooling background plasma compared to that predicted by De

Moortel and Hood (2003) (see, Figure 2.1 for comparison). This is clearly seen

in Equation (2.51), where the background cooling term [λt1], is in competition

with the wave damping term, which is ∝ k. We can also see in Equation (2.51)

that stratification decreases the rate of damping of the slow mode due to thermal

conduction, this is consistent with the finding of De Moortel and Hood (2004).

A note of caution is needed when interpreting these results. The temperature

of the plasma drops rapidly due to the cooling. As T → 2 MK, radiation will

start to become the dominant damping mechanism. Thus as T reaches 2 MK, the

damping of the longitudinal mode may not look as shown here. A full numerical

simulation incorporating the variable background and the variable value of σ will

need to undertaken that is well beyond the scope of the present study and may

require a full numerical approach even for an initial insight because of the complex

nature of the mathematical modelling (e.g. generating background flows, etc.).

In Figure 2.2 we show how the magnitude of the thermal-conduction coeffi-

cient, [κ], affects the rate of damping of the longitudinal (acoustic) mode. Altering

the value of κ by an order of magnitude leads to large changes in the rate of damp-

ing, i.e the amplitude of longitudinal (acoustic) wave decreases more rapidly with

an increasing value of κ.

Next, Figure 2.3 shows how the decay of the amplitude varies for different

values of z = (0.0, 0.1, 0.5). Two values of the thermal ratio σ = (0.04, 0.22) are

taken to illustrate the influence of thermal conduction on cool and hot corona,

T=(1 MK, 3 MK), and the characteristic value of λ = 0.1. This plot shows that

the strength of the damping due to thermal conduction will be the same along a

loop.

What is of interest is how the results presented here compare to observations.

We provide a quantitative comparison between reported properties of slow modes

and the theory. First, we consider slow modes in relatively cool coronal loops

(T ≈ 1 MK) observed in EUV imagers, e.g. TRACE (De Moortel, 2009). Slow

modes are observed as small intensity oscillations which have amplitudes greater

than 2% of the background intensity with an average of 4%. Hence, the slow

modes are not observed once the amplitude of the oscillation has decreased by
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Figure 2.2: The amplitude of oscillations with different values of the thermal-
conduction coefficient, κ0 = (10−10, 10−11, 10−12) m2 s−1 K−5/2 at z = 0 and
λ = 0.1 where T = 3 MK.

say, about 50%. The average distance traveled by the slow waves is 9 Mm with an

average phase speeds of ≈ 100− 120 km s−1, hence they last for ≈ 100 seconds.

Comparing this to Figure 2.1(a) we find that this is possible in the loops with

the larger values of stratification. Moreover, decay times for the slow waves in

Doppler-shift oscillations are in the range 5.7−36.8 minutes (Wang et al., 2003a).

However, the wavenumber, [k], is small for the observed oscillations (k ≈ 10−8)

and it can be seen from Equations (2.49) and (2.51) that for small values of k the

damping due to thermal conduction is negligible. Hence, if thermal conduction

is the dominant method of cooling in the corona, then we would expect to see

amplification of the observed slow modes.
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Figure 2.3: The amplitude of oscillations as function of time at different positions
along the coronal magnetic field lines, e.g. z = (0.0, 0.1, 0.5) and λ = 0.1, and
with different values of σ = (0.04, 0.22).

2.5 Discussion and Conclusion

The influence of variable background on the longitudinal (field-aligned) MHD

wave propagating in a magnetised plasma in a weakly stratified atmosphere

has been investigated. The background plasma is assumed to be cooling as the

magneto–acoustic wave propagates. Thermal conduction is the dominant mecha-

nism causing the plasma cooling and change of pressure as a function of time. The

magnetic field was assumed to be constant and directed along the z-direction. A

governing equation is derived under the assumption that the background plasma

is cooling on a time scale greater than or comparable to the characteristic period

of the perturbations. A temporally and spatially dependent dispersion relation

that describes the propagation of the longitudinal magneto–acoustic mode is ob-
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tained and an analytic equation for the time-dependent amplitude is also derived.

The effect of the cooling background due to thermal conduction on the amplitude

of hot-loop oscillations was then studied.

The governing equation is solved by using the WKB theory. Leading- and

first-order equations for the dispersion relation and wave amplitude, respectively,

are obtained and solved analytically. An approximate solution that represents the

properties of the field-aligned acoustic wave is found with the aid of the method

of characteristics. Numerical evaluation illustrates the behaviour of the analytic

solutions. A comparison of wave behaviours for a range of initial temperatures is

studied.

Although the efficiency of damping is reduced by the cooling background

plasma, the amplitude of longitudinal (acoustic) waves was found to decay rapidly

due to the influence of thermal conduction. The rate of damping of the oscillations

was found to depend on the initial temperature of the plasma and the amount

of stratification. It was previously shown that thermal conduction leads to the

damping of slow-mode oscillations. For example, the amplitude of slow modes

in this study was found to undergo damping, whereas in De Moortel and Hood

(2003) the amplitude was found to experience a stronger damping. It should be

noted that Morton et al. (2010) reported a strong damping of the slow mode due to

the cooling of the background plasma by another dissipation mechanism, namely

by radiation. Consequently, we conclude that the magneto–acoustic oscillations

of the hot corona can experience strong damping because of cooling by thermal

conduction, while radiation is the dominant method for damping cool coronal

oscillations.

Overall, the presented results of the damping of coronal oscillations imply

that both radiation and thermal-conduction mechanisms should be taken into

account. This is due to the inclusion of a cooling background plasma having

an efficient and dominating influence on the properties and lifetimes of MHD

oscillations in the cool and hot corona, respectively. The main finding is that these

dissipative processes introduce a dynamic plasma background. Such a background

is often reported in observations. The MHD wave theory of dynamic plasma is

in its early stage of development and we argue that, for an adequate model of

solar coronal processes, consideration of a dynamic plasma background in the
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modelling is essential. The temporal evolution of the background plasma has

an extremely important effect on the properties of waves in flaring and post-

flare loops and needs to be incorporated into future models. This is especially

necessary if deriving plasma parameters from magneto-seismological methods,

e.g. in applications to the solar corona.
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Chapter 3

The Effect of Variable

Background on Oscillating

Coronal Loop

This chapter deals with the effect of a variable, i.e. time-dependent, background

on the standing acoustic (i.e. longitudinal) modes generated in a hot coronal

loop. We closely follow Al-Ghafri and Erdélyi (2012). A theoretical model of 1D

geometry describing the coronal loop is applied. The background temperature

is allowed to change as a function of time and undergoes an exponential decay

with characteristic cooling times typical for coronal loops. The magnetic field

is assumed to be uniform. Thermal conduction is assumed to be the dominant

mechanism for damping hot coronal oscillations in the presence of a physically

unspecified thermodynamic source that maintains the initial equilibrium. The

coefficient of thermal conductivity is presumed to be varying as a function of

time to examine how the variation of thermal conduction affects the properties

of standing slow-mode waves.

The influence of the rapidly cooling background plasma on the behaviour of

standing acoustic (longitudinal) waves is investigated analytically. The tempo-

rally evolving dispersion relation and wave amplitude are derived by using the

WKB theory. An analytic solution for the time-dependent amplitude that de-

scribes the influence of thermal conduction on the standing longitudinal (acoustic)

wave is obtained by exploiting the properties of Sturm-Liouville problem. Next,

numerical evaluations further illustrate the behaviour of the standing acoustic

60



3.1. INTRODUCTION

waves in a system with variable, time dependent background. The results are ap-

plied to a number of detected loop oscillations. We find a remarkable agreement

between the theoretical predictions and the observations. Despite the emergence

of the cooling background plasma in the medium, thermal conduction is found

to cause a strong damping for the slow standing magneto-acoustic waves in hot

coronal loops in general. Further to this, the increase in the value of thermal con-

ductivity leads to a strong decay in the amplitude of the longitudinal standing

slow MHD waves.

3.1 Introduction

The highly magnetised solar corona has been detected to support strongly evolv-

ing MHD oscillations in hot (T ≥ 6 MK) active-region loops (Wang et al., 2002,

2003b; Taroyan et al., 2007). These oscillations are suggested to be standing-slow

mode MHD waves. The evolution of longitudinal slow MHD waves is found to be

influenced by dissipation. The observational and theoretical studies argued that

the mechanism for the rapid damping of standing oscillations is essentially caused

by thermal conduction with weak contribution from other mechanisms such as

viscosity, for example (see Ofman and Wang, 2002).

In this chapter, we intend to investigate the effect of a temporally evolving

temperature on the longitudinal standing MHD oscillations of hot coronal loops.

The background plasma is allowed to cool due to the presence of a physically

unspecified thermodynamic source. The chapter is organised as follows. In Sec-

tion 3.2 we present the model of a straight coronal loop and derive the linear

governing equation for the longitudinal standing magneto-acoustic mode. In Sec-

tion 3.3 we derive the analytical solution of oscillation amplitude using the WKB

method. Then, the evolution of oscillation amplitude is evaluated numerically in

Section 3.4. In the last section we present the conclusions of the work discussed

in this chapter.

3.2 The Model and Governing Equations

Consider a uniformly magnetised plasma in which the temperature is changing as

function of time due to a physically unspecified thermodynamic source and the
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density is a constant. The magnetic field is assumed to be uniform and aligned

with the z-axis, i.e. B0 = B0ẑ. Therefore, the background state can be described

as follows:

z=−L
2 z=0 z=L

2

Figure 3.1: Coronal loop.

T0 = T0(t), (3.1)

p0 = p0(t), (3.2)

ρ0 = const., (3.3)

B0 = const., (3.4)

ε =
P

τc
� 1. (3.5)

Here T0, p0, ρ0 and B0 are the background quantities identifying the temperature,

pressure, density and magnetic field, respectively; P is the characteristic period

of the loop’s slow oscillation, and τc is the cooling time scale.

The governing MHD equations for the plasma motion take the following form

∂ρ

∂t
+∇.(ρv) = 0, (3.6)

ρ
∂v

∂t
+ ρ(v.∇)v = −∇p+

1

µ0

(∇×B)×B, (3.7)

R

µ̃
ργ
[
∂

∂t

T

ργ−1
+ (v.∇)

T

ργ−1

]
= (γ − 1)∇(κ‖∇T ) + L, (3.8)

p =
R

µ̃
ρT, (3.9)

∂B

∂t
= ∇× (v ×B), (3.10)

where v is the velocity, B is the magnetic field, µ0 is the magnetic permeability

of free space, γ is the ratio of specific heats, R is the gas constant, µ̃ is the mean

molecular weight, T is the temperature, ∇(κ‖∇T ) is the thermal conduction term

where κ‖ = κ0T
5/2, L is a physically unspecified thermodynamic source term, ρ

and p are the plasma density and pressure, respectively.

Assuming that there is no background flow and the background density is
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constant, the previous equations determining the background plasma state reduce

to

v0 = 0, ρ0 = const., (3.11)

∇p0 = 0, (3.12)

p0 =
R

µ̃
ρ0T0, i .e. p0 ∼ T0, (3.13)

R

µ̃
ρ0

dT0
dt

= L, (3.14)

where the ‘0’ index denotes background quantity. The observed cooling of coro-

nal loops has been shown to be well-approximated by exponential profile for

radiative-cooling loops (Aschwanden and Terradas, 2008; Morton and Erdélyi,

2009b, 2010). More recently, Erdélyi et al. (2011) found that the temperature

decreases exponentially in time due to thermal conduction in hot coronal loops.

As a result, we will assume here that the cooling temperature profile of coronal

loops has the form

T0 = T0i exp

(
− t

τc

)
, (3.15)

where T0i is the initial temperature at t = 0.

Let us perturb the background state, where all variables can be written in the

form

f(z, t) = f0(t) + f1(z, t),

where the subscript ‘1’ indicates perturbed quantities. In this study we con-

sider longitudinal motions only, i.e. v = vẑ, so the linearised perturbed MHD

equations in a 1D system are

∂ρ1
∂t

+ ρ0
∂v1
∂z

= 0, (3.16)

ρ0
∂v1
∂t

= −∂p1
∂z

, (3.17)

R

µ̃

[
ρ1

dT0
dt

+ ρ0
∂T1
∂t

+ (γ − 1)ρ0T0
∂v1
∂z

]
= (γ − 1)κ0T

5/2
0

∂2T1
∂z2

, (3.18)

p1 =
R

µ̃
{ρ0T1 + T0ρ1} . (3.19)
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Here v1 ≡ v1z is the longitudinal velocity perturbation. It is clear that there are

no terms exhibiting the magnetic field but the standing waves are still guided

by the magnetic field. Non-dimensionalisation will be used to simplify the 1D

governing Equations (3.16)− (3.19). The dimensionless quantities are introduced

as

t̃ =
t

P
, z̃ =

z

L
, csi =

L

P
, p̃0 =

p0
p0i
, T̃0 =

T0
T0i

,

c2si =
γp0i
ρ0

, ρ̃1 =
ρ1
ρ0
, p̃1 =

p1
p0i
, T̃1 =

T1
T0i

, ṽ1 =
v1
csi
,

(3.20)

where the subscript i represents the value of the quantity at t = 0, L is the loop

length, and csi is the initial sound speed.

Now, we aim to find the governing equation for the perturbed velocity, which

reveals the behaviour of the standing magneto–acoustic mode subject to initial

conditions generated in a hot solar coronal loop. Using the continuity and ideal

gas law equations, Equation (3.18) in terms of dimensionless variables, removing

the tilde for the sake of simplicity, takes the form

∂2v1
∂t2
− T0

∂2v1
∂z2

= −σ
γ
T

5/2
0

∂3T1
∂z3

, σ =
(γ − 1)µ̃κ0 T

5/2
0i

RL
√
γ p0i ρ0

, (3.21)

where σ is defined as thermal ratio and found to be a small quantity under

typical solar coronal conditions (see, e.g. De Moortel and Hood, 2003) quoted in

Equation (2.22) with L = 108 m, giving characteristic values of σ ∈ [0.0068, 0.48]

for T ∈ [0.6× 106, 5× 106 K].

Equation (3.21) with the aid of Equations (3.13) and (3.19) can be rewritten

as
1

T
7/2
0

(
∂2v1
∂t2
− T0

∂2v1
∂z2

)
= −σ

γ

∂3

∂z3

[
p1
T0
− ρ1

]
. (3.22)

Differentiating with respect to time, and using Equations (3.16) and (3.17), we

obtain

∂

∂t

[
1

T
7/2
0

(
∂2v1
∂t2
− T0

∂2v1
∂z2

)]
=
σ

γ

[
γ

T0

∂4v1
∂t2∂z2

+ γ
d

dt

(
1

T0

)
∂3v1
∂t∂z2

− ∂4v1
∂z4

]
,

(3.23)
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which is the governing equation and can be recast to a convenient form for further

analysis as

∂

∂t

(
∂2v1
∂t2
− T0

∂2v1
∂z2

)
=

7

2

1

T0

dT0
dt

(
∂2v1
∂t2
− T0

∂2v1
∂z2

)
− σT 3/2

0

dT0
dt

∂3v1
∂t∂z2

+ σT
5/2
0

∂2

∂z2

(
∂2v1
∂t2
− T0

γ

∂2v1
∂z2

)
. (3.24)

There are three different cases of interest for the present context one can recover

from Equation (3.24):

Case I. In the absence of the thermal conduction [σ] and the physically unspec-

ified thermodynamic source in the energy equation [L ∝ dT0/dt] the governing

equation (3.22) reduces to

∂2v1
∂t2
− c2s

∂2v1
∂z2

= 0, cs =
√
T0 = const., (3.25)

which has the solution

v1(z, t) = α cos(πz) cos(πcst). (3.26)

This is subject to the initial and boundary conditions representing a line-tied flux

tube perturbed as the fundamental mode

v1(±1/2, t) = 0, v1(z, 0) = α cos(πz),
∂v1
∂t

(z, 0) = 0, (3.27)

where α is the initial amplitude of the standing wave at t = 0. A more general, e.g.

broad-band, perturbation would, of course, give the solution in the mathematical

form of a Fourier series.

Case II. In the case of no thermal conduction, i.e. σ = 0, the effect of cooling

of the background plasma on the system will be found by solving the following

equation
∂2v1
∂t2
− c2s

∂2v1
∂z2

= 0, cs(t) =
√
T0(t) 6= const., (3.28)

which is formally exactly Equation (3.25) but with variable background tempera-

ture, T0 = T0(t). In spite of the absence of σ, the coefficient of the bracket in the

first term in the right-hand-side of Equation (3.24) is originally derived from the
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time derivative of thermal conduction term as seen in Equation (3.22). Therefore,

this term is not added to Equation (3.28).

Case III. The effect of thermal conduction on the behaviour of the standing

acoustic waves in the presence of a physically unspecified thermodynamic source

will be investigated by solving Equation (3.24).

3.3 Analytical Solutions

Our goal now is to find an analytic solution to the governing Equation (3.28)

first in case II and next to Equation (3.24) in case III. Let us point out that

Equations (3.24) and (3.28) have derivatives multiplied by small factors σ and ε.

This enables the use of the WKB theory to obtain an approximate solution. The

WKB estimates give good approximations when the smaller value of factor used.

3.3.1 The Effect of Cooling

Case II. Let us first start to solve Equation (3.28) to establish the behaviour of

standing magneto–acoustic waves under the influence of cooling of the background

plasma. Assuming that t1 = εt which is defined as a slow timescale, meaning the

cooling timescale is (much) longer than the period of the oscillations, Equation

(3.28) will reduce to
∂2v1
∂t21
− c2s
ε2
∂2v1
∂z2

= 0. (3.29)

In line with applying the WKB estimates, let the perturbed velocity variable have

the form

v1(z, t1) = Q(z, t1) exp

(
i

ε
Θ(t1)

)
. (3.30)

The amplitude Q can be expanded in the power series as follows

Q(z, t1) = Q0 + εQ1 + · · · . (3.31)

Substituting Equations (3.30) and (3.31) into Equation (3.29), and taking terms

of order ε−3 we obtain to leading order

∂2Q0

∂z2
+
ω2

c2s
Q0 = 0, (3.32)

66



3.3. ANALYTICAL SOLUTIONS

where ω = dΘ/dt1. The boundary conditions (3.27) applicable to the function

Q0 is

Q0 = 0 at z = ±1

2
. (3.33)

Equations (3.32) and (3.33) represent a boundary-value problem that determines

the frequency of the standing longitudinal (acoustic) mode in a cooling plasma

with a varying temperature as function of time. The general solution physically

acceptable to this boundary value problem has the form

Q0(z, t1) =
∞∑
n=0

An(t1) cos ((2n+ 1)πz) , ωn(t1) = (2n+ 1)πcs(t1), (3.34)

where n = 0, 1, 2, · · · . Then, collecting terms of order ε−2, we obtain the equation

determining the amplitude

∂2Q1

∂z2
+
ω2

c2s
Q1 =

i

c2s

[
dω

dt1
Q0 + 2ω

∂Q0

∂t1

]
. (3.35)

It follows from Equation (3.27) that Q1 satisfies the boundary conditions

Q1 = 0 at z = ±1

2
. (3.36)

The boundary-value problem, Equations (3.35) and (3.36), determining Q1 has a

solution only when the right-hand-side of Equation (3.35) satisfies the compatibil-

ity condition, which is the condition that it is orthogonal to Q0 (see, Ruderman,

2011). This condition can be obtained by multiplying Equation (3.35) by Q0, in-

tegrating with respect to z from −1/2 to 1/2 and using the boundary conditions

(3.36). The compatibility condition is eventually written as∫ 1/2

−1/2

i

c2s

[
dω

dt1
Q2

0 + 2ωQ0
∂Q0

∂t1

]
dz = 0, (3.37)

which gives the amplitude of the standing wave in the following form

An(t1) = An(0) exp

(
t1
4

)
= An(0)

√
cs(0)

cs(t1)
. (3.38)
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The value of constant An(0) can be found from Equation (3.34) at t1 = 0, which

is in the form of Fourier cosine series, using the boundary condition (3.27). Then,

the solution (3.38), in scaled (i.e. physical) variables, takes the form

An(t) = α

√
cs(0)

cs(t)
. (3.39)

This result describes the variation of a time-dependent amplitude of longitudi-

nal standing waves in a dynamically cooling magnetic flux tube. Apparently,

Equation (3.39) indicates that the cooling (or heating) leads to an amplification

(decrease) of loop oscillation.

Indeed, it can be seen from this result that the physical complexity of the

cooling background is embodied implicitly in the sound speed, i.e. the phase

speed of the wave propagation. Although the governing equations in Case I and

Case II have mathematically similar form, the difference between them occurs in

the variability of the phase speed, where the sound speed is constant in Case I

and variable in Case II.

3.3.2 The Effect of Weak Thermal Conduction

Case III. the behaviour of the standing wave in a system dominated by thermal

conduction will be obtained by solving the governing Equation (3.24). Similarly,

the WKB theory will be used to find the solution of Equation (3.24).

Let us now introduce the slow time t1 = εt and a scaled variable σ = εσ̃ rep-

resenting the effect of weak thermal conduction, so that Equation (3.24) becomes

∂3v1
∂t31

+
7

2

∂2v1
∂t21
− c2s
ε2

∂3v1
∂t1∂z2

− σ̃c5s
∂3v1
∂t1∂z2

− σ̃c5s
∂4v1
∂t21∂z

2
− 5

2

c2s
ε2
∂2v1
∂z2

+
σ̃

ε2
c7s
γ

∂4v1
∂z4

= 0,

(3.40)

and the perturbed velocity by the new scaled variables and the WKB approxima-

tion is given by Equation (3.30). Substituting Equations (3.30) and (3.31) into

Equation (3.40), and taking the highest-order terms in ε, which is again ε−3, we

obtain
∂2Q0

∂z2
+
ω2

c2s
Q0 = 0, (3.41)
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with the boundary conditions

Q0 = 0 at z = ±1

2
. (3.42)

The solution to this boundary-value problem is given by

Q0(z, t1) =
∞∑
n=0

Bn(t1) cos ((2n+ 1)πz) , ωn(t1) = (2n+ 1)πcs(t1), (3.43)

where n = 0, 1, 2, · · · , and Bn(t1) stands for the amplitude of the longitudinal

standing modes, and it will be found by taking the second-highest-order terms in

ε for Equation (3.40) as follows.

The next-largest-order terms in ε, of order ε−2, result in

∂2Q1

∂z2
+
ω2

c2s
Q1 =

i

ωc2s

[(
7

2
ω2 + 3ω

dω

dt1

)
Q0 + 3ω2∂Q0

∂t1
+ c2s

∂3Q0

∂t1∂z2

+

(
5

2
c2s − σ̃ω2c5s

)
∂2Q0

∂z2
− σ̃ c

7
s

γ

∂4Q0

∂z4

]
. (3.44)

It results from Equation (3.27) that Q1 satisfies the boundary conditions

Q1 = 0 at z = ±1

2
. (3.45)

Analogous to Equations (3.35) and (3.36), this boundary-value problem has a so-

lution only when the right-hand side of Equation (3.44) satisfies the compatibility

condition. Consequently,∫ 1/2

−1/2

i

ωc2s

[(
7

2
ω2 + 3ω

dω

dt1

)
Q2

0 + 3ω2Q0
∂Q0

∂t1
+ c2sQ0

∂3Q0

∂t1∂z2

+

(
5

2
c2s − σ̃ω2c5s

)
Q0
∂2Q0

∂z2
− σ̃

c7s
γ
Q0
∂4Q0

∂z4

]
dz = 0. (3.46)

Substituting (3.43) into (3.46), we obtain the amplitude of the n-th harmonic

standing wave

Bn(t1) = Bn(0) exp

[
1

4
t1 +

σ̃

5

(
γ − 1

γ

)
(2n+ 1)2π2

(
c5s(t1)− 1

)]
, (3.47)
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which can be re-written as

Bn(t) = Bn(0) exp

[
ε

4
t+

σ

5ε

(
γ − 1

γ

)
(2n+ 1)2π2

(
c5s(t)− 1

)]
, (3.48)

where c5s(t) =
(√

T0(t)
)5

= exp(−5ε t/2). Now, Equation (3.43) with the initial

conditions (3.27) is applied to obtain the value of constants Bn(0). Hence, the

solution (3.48) is

Bn(t) = α exp

[
ε

4
t+

σ

5ε

(
γ − 1

γ

)
(2n+ 1)2π2

(
c5s(t)− 1

)]
, (3.49)

which reveals the temporal evolution of longitudinal standing-mode amplitude

due to thermal conduction in a temporally variable (cooling or heating) back-

ground plasma.

Note that, in the limit σ → 0, i.e. if there is no thermal conduction, Equation

(3.49) reduces to Equation (3.39), which represents the amplitude variation of

standing waves generated in a model of merely cooling plasma without non-ideal

effects as, e.g., thermal conduction. Moreover, in the absence of thermal conduc-

tion, Equations (3.44) and (3.46) are converted into Equations (3.35) and (3.37),

respectively; but this procedure is not straightforward because the coefficient of

thermal conduction [κ‖] is a function of time and composed of both σ and T
5/2
0

as such seen in Equation (21). Hence, we need to deal with all terms of Equa-

tions (3.44) and (3.46) to recapture Equations (3.35) and (3.37) so all steps are

demonstrated as follows.

Eliminating all terms that include σ̃, Equation (3.44) becomes

∂2Q1

∂z2
+
ω2

c2s
Q1 =

i

ωc2s

[(
7

2
ω2 + 3ω

dω

dt1

)
Q0 + 3ω2∂Q0

∂t1
+ c2s

∂3Q0

∂t1∂z2
+

5

2
c2s
∂2Q0

∂z2

]
.

(3.50)

The second term on the right hand side of Equation (3.50) can be written as

3ω
dω

dt1
Q0 = (2+1)ω

dω

dt1
Q0 =

(
−ω2 + ω

dω

dt1

)
Q0, where

dω

dt1
= −ω

2
, (3.51)

and the fourth term, after using Equation (3.41), has the form

c2s
∂3Q0

∂t1∂z2
= −ω2∂Q0

∂t1
. (3.52)
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Then, substituting Equations (3.51) and (3.52), Equation (3.50) reduces to

∂2Q1

∂z2
+
ω2

c2s
Q1 =

i

ωc2s

[(
5

2
ω2 + ω

dω

dt1

)
Q0 + 2ω2∂Q0

∂t1
+

5

2
c2s
∂2Q0

∂z2

]
. (3.53)

The first term and the last term on the right hand side of Equation (3.53) can be

combined together to give

5

2
ω2Q0 +

5

2
c2s
∂2Q0

∂z2
=

5

2
c2s

[
ω2

c2s
Q0 +

∂2Q0

∂z2

]
= 0. (3.54)

Eventually, by employing Equation (3.54), Equation (3.53) reduces to

∂2Q1

∂z2
+
ω2

c2s
Q1 =

i

ωc2s

[
ω

dω

dt1
Q0 + 2ω2∂Q0

∂t1

]
, (3.55)

which is exactly Equation (3.35) after taking ω as a common factor from the

bracket. Similarly, we can recover Equation (3.37) from Equation (3.46) by using

the same steps.

Now, expanding the sound speed by Taylor expansion and neglecting small

terms of order ε2 and higher, Equation (3.49) becomes

Bn(t) = α exp

[
ε

4
t− σ

2

(
γ − 1

γ

)
(2n+ 1)2π2

(
t− 5

4
ε t2
)]

. (3.56)

Subsequently, we can reveal some properties of the oscillation amplitude by ex-

amining various limits. For instance, assuming that ε = 0, which means that

there is no cooling in the model, Equation (3.56) is reduced to

Bn(t) = α exp

[
−σ

2

(
γ − 1

γ

)
(2n+ 1)2π2 t

]
, (3.57)

which is identical with its counterpart in De Moortel and Hood (2003). It is clear

from Equation (3.57) that the wave amplitude is subject to a damping and the

rate of damping depends on the value of σ.

3.4 Numerical Evaluations

Morton et al. (2010) and Erdélyi et al. (2011) have shown that the WKB ap-
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proximation estimates accurately the solutions to the frequency and amplitude

variations in time and space for waves supported by oscillating magnetic loops

due to plasma cooling by radiation and/or thermal conduction, respectively. The

obtained approximate solutions by the WKB theory can be motivated using nu-

merical evaluations to demonstrate a clear view of the behaviour of MHD waves

which is analytically found.

The amplitude of the longitudinal (acoustic) standing waves, that is given by

Equation (3.38), is calculated using standard solar coronal values for the back-

ground quantities. Figure 3.2 shows the dependence of the amplitude on time for

various values of ε. This figure shows that cooling causes the wave amplification,

the faster cooling the stronger the amplification. It should be mentioned that this

result is in agreement with that obtained by Erdélyi et al. (2011) who found that

the efficiency of damping is reduced by the background plasma cooling. Recall

that Figure 3.2 displays the amplitude evolution in the case when there is no

damping.

Figure 3.3 shows the time dependence of the amplitude of standing longitu-

dinal (acoustic) waves, which is given by Equation (3.48), for a range of values

of ε and various values of σ corresponding to various initial temperatures. It is

found that the variation of ε leads to a considerable change in the rate of damping

of both cool and hot loops. Figure 3.3(a) shows the evolution of the oscillation

amplitude in the EUV (cool) loops with the initial temperature. The wave damp-

ing is becoming stronger when the initial temperature increases as we can see in

Figure 3.3(b) and 3.3(c). Cooling decreases the damping rate.

Figure 3.4 illustrates the effect of varying the magnitude of thermal conduction

coefficient, κ, on the rate of damping of the standing acoustic wave using Equation

(3.48). Typical values for the coefficient of the thermal conductivity κ = κ0T
5/2
0 =

[10−10, 10−11, 10−12]T
5/2
0 are taken to shed light on the effect of thermal conduction

in hot coronal loops, T0 = 3 MK, and ε = 0.1 is assumed (see, Priest, 2000). It

is found that the rate of damping is changing rather rapidly when κ is increased

by an order of magnitude.

It is instructive to compare the obtained results with observations. We only

present here a quantitative comparison with the properties of hot loop oscillations
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Figure 3.2: The amplitude of the standing wave with various values of ε. The
time is measured in units of L/csi.

observed by SUMER (see, Wang et al., 2003a), where the standing slow-mode

waves are detected only in the region of temperature ≥ 6 MK. The periods of

oscillations are 7 − 31 minutes. The slow standing wave was observed to be

strongly damped with characteristic decay times 5.7− 36.8 minutes mainly likely

due to thermal conduction. The typical length of coronal loops is around 230 Mm.

In our work, we found that hot loop oscillations experience a strong damping

due to thermal conduction when the value of ε is small enough as shown in

Figure 3.3(c). Further to this, Figure 3.4 exhibits that the large value of thermal

conduction coefficient leads to a rapid damping. However, the observed damping

of standing acoustic modes was in a region of temperature & 6 MK as discussed

by Ofman and Wang (2002) and Mendoza-Briceño et al. (2004a) which is not

applicable for the present results.
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Figure 3.3: The time dependence of
the amplitude of a standing wave
for various values of ε and value of
σ. (a) σ = 0.0068 (T0 = 600000 K),
(b) σ = 0.17 (T0 = 3 MK), (c)
σ = 0.48 (T0 = 5 MK). The time
is measured in units of L/csi.
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Oscillations Amplitude
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Figure 3.4: The amplitude of the standing wave with different values of the
thermal-conduction coefficient, κ0=(10−10, 10−11, 10−12) m2 s−1 K−5/2 and specific
value of the ratio of period to the cooling time, ε = 0.1 where T0 = 3 MK. The
time is measured in units of L/csi.

3.5 Discussion and Conclusion

In this work, we have investigated the influence of a cooling background on the

standing longitudinal magneto-acoustic waves generated in a uniformly magne-

tised plasma. Thermal conduction is assumed to be the dominant mechanism

for damping of oscillations in hot coronal loops. The background temperature is

allowed to change as a function of time and to decay exponentially with charac-

teristic cooling times typical for coronal loops. The magnetic field is assumed to

be constant and in the z direction, which may be a suitable model for loops with

large aspect ratio. A time-dependent equation governing the plasma perturbation

is derived. It is assumed that the characteristic time of the background quan-
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tities variation is much larger that the characteristic oscillation period. Three

cases have been considered: (I) absence of thermal conduction σ and physically

unspecified cooling or heating mechanism L, (II) presence of physically unknown

thermodynamic source L only, i.e. σ = 0, (III) the influence of thermal conduc-

tion σ combined with the physically unknown mechanism L.

The WKB theory is used to find the analytical solution of the governing

equation in cases II and III, while the governing equation in case I is solved

directly and gives the undamped standing wave with constant sound speed. An

approximate solution that describes a time-dependant amplitude of the standing

acoustic mode is obtained with the aid of the properties of a Sturm-Liouville

problem. The analytically derived solutions are illustrated numerically.

In the second case, the individual influence of cooling background plasma on

hot-loop oscillation is found to cause an amplification to the amplitude of the

longitudinal standing wave. It is noted that the rate of amplification increases

with the increase of the ratio of the oscillatory period to the cooling time, ε.

In the third case, which is the most interesting, the temporally evolving am-

plitude is found to undergo a strong damping due to thermal conduction in the

hot corona. Further to this, we note that the presence of cooling in a model of a

hot coronal loop leads to a reduction in the efficiency of damping. The variation

of the ratio of the period of oscillation to the cooling time scale, ε, plays an effec-

tive role on changing the rate of damping of oscillating hot coronal loops, causing

a fast decline in the decay rate of oscillation amplitude, for ε� 1.

The obtained results are in agreement with the previous studies (Morton and

Erdélyi, 2009b, 2010; Morton et al., 2010; Erdélyi et al., 2011) and demonstrate

that the temporal evolution of coronal plasma due to dissipative process, i.e.

the cooling of the background plasma due to radiation/thermal conduction, has

a great influence on the coronal oscillations. In the modelling of solar coronal

loop, the temporally and spatially dependent dynamic background plasma must

be considered to understand the properties of observed MHD waves.
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Chapter 4

Longitudinal MHD Waves in

Strongly Dissipative

Time-Dependent Plasma

The present Chapter extends the study by Al-Ghafri and Erdélyi [2012, Solar

Phys., in press] outlined in the previous chapter, on the effect of cooling on stand-

ing slow magnetosonic waves in coronal magnetic loops. The results presented

here are submitted for publication (Al-Ghafri et al., 2012). Thermal conduction

is assumed as the damping mechanism, so it is applicable for dissipation of os-

cillations in coronal loops. In contrast to the previous chapter, the coefficient

of thermal conduction is taken to be arbitrary so that the damping time can be

comparable to the oscillation period. The use of low-beta plasma approximation

enables us to ignore the magnetic field perturbation when studying longitudinal

waves. Therefore, the governing MHD equations reduce to a 1D system describ-

ing the behaviour of standing sound waves. The background equilibrium plasma

temperature is assumed to be decaying exponentially in time with the charac-

teristic cooling time much larger than the oscillation period. Then, the WKB

theory is used to investigate the properties of longitudinal standing oscillation.

An analytic expression for the oscillation amplitude is derived. The analytically

obtained solution for the oscillation frequency and amplitude are evaluated nu-

merically. The results show that the oscillation period increases with time due to

the effect of plasma cooling. Further to this, the presence of plasma cooling also

amplifies the amplitude of oscillations in relatively cool coronal loops whereas for
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very hot coronal loop oscillations the rate of damping is enhanced by the cooling.

These theoretical results may serve as impetus for developing the tools of solar

magneto-seismology in dynamic plasmas.

4.1 Introduction

Coronal observations indicate that standing slow MHD waves are commonly de-

tected in hot coronal loops with temperatures of the order or larger than 6 MK.

Many studies have been scoped into the damping mechanisms to interpret the

observed fast damping of oscillations. Several mechanisms have been proposed.

In most of these studies, it is found that the dominant mechanism for damping

of oscillations in hot coronal loops is thermal conduction. The plasma in hot

coronal loop oscillation is found to experience a gradual cooling (Wang, 2011).

However, Wang (2011) found that the rapid damping of oscillation amplitude is

not caused by the cooling.

In this chapter we aim to study the effect of plasma cooling on the damping

rate of slow standing MHD waves in coronal loops for arbitrary (in strength)

thermal conduction coefficient. The Chapter is organised as follows. In the

next Section we formulate the problem, and present the governing equations

and boundary conditions. In Section 4.3 we carry out the analytical study of

the problem using the WKB method. In Section 4.4 the analytical solution is

examined numerically and the properties of oscillations are depicted using typical

solar coronal values. Section 4.5 contains the summary and discussion of the

results and our conclusions.

4.2 The Model and Governing Equations

We consider standing slow MHD waves in hot coronal magnetic loops. We model

a magnetic loop as a straight homogeneous magnetic flux tube of length L with

the constant magnetic field magnitude equal to B0 (see Figure 3.1). We assume

that the homogeneous plasma density, ρ0, does not vary with time. On the other

hand, both the plasma temperature, T0, and pressure, p0, are functions of time,

the temperature dependence on time being given by Equation (3.15).
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In our model the coefficient of thermal conduction along the magnetic field is

given by κ‖ = κ0T
5/2
0 , where κ0 is a constant. The strength of thermal conduction

is determined by the inverse Peclet number, σ, which is presented in Equation

(3.21). If we take L = 100 Mm and T0 = 0.6 ÷ 6 MK as typical solar coronal

values then we obtain 0.007 . σ . 0.7.

The dimensionless variables are used to solve the governing MHD equations

and introduced as in Equation (3.20) with c̃s =
√
T̃0 referring to the dimensionless

sound speed, and we put P = L/csi. In what follows we drop the tilde.

Al-Ghafri and Erdélyi (2012) have shown that the linearised system of gov-

erning equations can be reduced to one equation for v1,

∂3v1
∂t3

+
7

2
ε
∂2v1
∂t2
− 5

2
εc2s

∂2v1
∂z2
− c2s

∂3v1
∂t∂z2

− εσc5s
∂3v1
∂t∂z2

− σc5s
∂4v1
∂t2∂z2

+
σ

γ
c7s
∂4v1
∂z4

= 0.

(4.1)

Next, in order to set appropriate boundary conditions, we also need the relation

between the velocity and temperature perturbation:

∂2v1
∂t2
− c2s
γ

∂2v1
∂z2

+ ε
∂v1
∂t

= −1

γ

(
∂2T1
∂t∂z

+ ε
∂T1
∂t

)
. (4.2)

To study the damping of standing waves we need to impose the boundary condi-

tions at z = ±1/2. Since the loop ends are bounded by the dense photospheric

plasma, we assume that the perturbation velocity vanishes at these ends,

v1 = 0 at z = ±1/2. (4.3)

The thermal conduction drops dramatically at the photosphere. Hence, it is

viable to assume that the loop is thermally insulated,

∂T1
∂z

= 0 at z = ±1/2. (4.4)

Using Equation (4.2) we rewrite this boundary condition in terms of v1,

∂2v1
∂t2
− c2s
γ

∂2v1
∂z2

+ ε
∂v1
∂t

= 0 at z = ±1/2. (4.5)

Equations (4.1) and (4.2), and the boundary conditions (4.3) and (4.5) are used in
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the next section to study the damping of standing slow waves in cooling coronal

loops.

4.3 Analytical Solution

Let us introduce the ‘slow time’ t1 = εt, meaning the cooling timescale is (much)

longer than the period of the oscillations. Now, we rewrite Equation (4.1) and

the boundary condition (4.5) in terms of slow time,

ε3
∂3v1
∂t31

+
7ε3

2

∂2v1
∂t21
−5εc2s

2

∂2v1
∂z2
−εc2s

∂3v1
∂t1∂z2

−ε2σc5s
∂3v1
∂t1∂z2

−ε2σc5s
∂4v1
∂t21∂z

2
+
σc7s
γ

∂4v1
∂z4

= 0,

(4.6)

ε2
∂2v1
∂t21
− c2s
γ

∂2v1
∂z2

+ ε2
∂v1
∂t1

= 0 at z = ±1/2. (4.7)

Then, we use the WKB method and look for the solution to Equation (4.6) with

the boundary conditions (4.3) and (4.7) in the form

v1(z, t1) = Q(z, t1) exp
(
iε−1Θ(t1)

)
. (4.8)

Function Q is expanded in the power series with respect to ε, i.e.,

Q = Q0 + εQ1 + . . . . (4.9)

4.3.1 Approximation of Geometrical Optics

Substituting Equations (4.8) and (4.9) into Equation (4.6) and the boundary

conditions (4.3) and (4.7), we obtain in the leading-order approximation, often

called the approximation of geometrical optics (e.g. Bender and Ország, 1978),

∂4Q0

∂z4
+
γω

c2s

(
ω − i

σc3s

)
∂2Q0

∂z2
− i γω3

σc7s
Q0 = 0, (4.10)

Q0 = 0,
∂2Q0

∂z2
= 0 at z = ±1/2, (4.11)

where ω = dΘ/dt1. The characteristic equation for Equation (4.10) is

λ4 + αλ2 − β = 0, (4.12)
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where

α = γ
ω2

c2s
− i

γω

σc5s
, β = i

γω3

σc7s
. (4.13)

The four roots of the bi-quadratic Equation (4.12) are λ = ±ik±, where k± are

given by

k± =

√
α∓

√
α2 + 4β

2
. (4.14)

For the definitness we assume that <(k±) > 0, where < denotes the real part of

a quantity.

Then, the general solution to Equation (4.10) is

Q0(z, t1) = A1 cos (k+z) + A2 sin (k+z) + A3 cos (k−z) + A4 sin (k−z), (4.15)

where Ai(t1), i = 1, . . . , 4, are functions of time to be determined. Substituting

Equation (4.15) in the boundary conditions (4.11) we obtain two systems of linear

homogeneous algebraic equations,

A1 cos(k+/2) + A3 cos(k−/2) = 0,

A1 k
2
+ cos(k+/2) + A3 k

2
− cos(k−/2) = 0,

(4.16)

A2 sin(k+/2) + A4 sin(k−/2) = 0,

A2 k
2
+ sin(k+/2) + A4 k

2
− sin(k−/2) = 0.

(4.17)

The first system corresponds to symmetric and the second to antisymmetric eigen-

modes. Each of the two systems has a non-trivial solution only when its deter-

minant is equal to zero. This condition gives the dispersion equation. Hence, the

dispersion equation for symmetric eigenmodes is

(k2+ − k2−) cos(k+/2) cos(k−/2) = 0, (4.18)

while it is

(k2+ − k2−) sin(k+/2) sin(k−/2) = 0, (4.19)

for antisymmetric eigenmodes. Since

(k2+ − k2−)2 = α2 + 4β =
γ2ω2

c4s

(
ω2 − 1

σ2c6s
+ 2i

(2− γ)ω

γσc3s

)
6= 0,
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when ω 6= 0, the dispersion equations for symmetric and antisymmetric eigen-

modes reduce to k± = π(2n− 1) and k± = 2πn, respectively, where n = 1, 2, . . .

However, there is no solution to the eigenvalue problem formed by Equation (4.10)

and boundary conditions (4.11) that satisfies the condition k+ = k−.

Now, the two expressions of k± for symmetric and antisymmetric eigenmodes

in the case k+ 6= k− can be unified to k± = πn, where now odd n corresponds to

symmetric and even to antisymmetric eigenmodes. After simple algebra we can

rewrite this equation in terms of ω,

ω3 − i(πn)2σc5sω
2 − (πn)2c2sω + i

σc7s
γ

(πn)4 = 0, (4.20)

where two roots of this equation represent slow modes (propagating in opposite

directions) and one root refers to thermal mode (non-propagating). This disper-

sion equation is in agreement with that found by Field (1965), De Moortel and

Hood (2003) and Erdélyi et al. (2011) in an appropriate limit. Note that, in the

limit σ → 0, i.e. if there is no thermal conduction, Equation (4.20) reduces to

ω2 = (πncs)
2. In the case of very strong thermal conduction, i.e. when σ → ∞,

Equation (4.20) becomes ω2 = (πncs)
2/γ.

4.3.2 Approximation of Physical Optics

In what follows we are only interested in the fundamental longitudinal mode

corresponding to n = 1. Hence, either k+ = π or k− = π. In both cases

Equation (4.15) reduces to

Q0(z, t1) = A(t1) cos(πz), (4.21)

where A = A1 in the first case and A = A3 in the second case. Now, we need

to determine the function A(t1). To do this we proceed to the next order ap-

proximation, often called the approximation of physical optics (e.g. Bender and

Ország, 1978). Substituting Equations (4.8) and (4.9) into Equation (4.6) and

the boundary conditions (4.3) and (4.7), and collecting terms of the order of ε we
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obtain

σ

γ
c7s
∂4Q1

∂z4
+

(
σc5sω

2 − ic2sω
) ∂2Q1

∂z2
− iω3Q1 =

(
7

2
ω2 + 3ω

dω

dt1

)
Q0 + 3ω2∂Q0

∂t1

+

(
5

2
c2s + iσc5sω + iσc5s

dω

dt1

)
∂2Q0

∂z2
+
(
c2s + 2iσc5sω

) ∂3Q0

∂t1∂z2
, (4.22)

Q1 = 0,
∂2Q1

∂z2
= 0 at z = ±1/2. (4.23)

When deriving Equation (4.23) we have taken into account that Q0 = 0 at z =

±1/2.

If we put the right-hand side of Equation (4.22) equal to zero, then we obtain

the same eigenvalue problem as in the leading-order approximation. This prob-

lem has a non-trivial solution Q0 = A cos(πz). This implies that boundary-value

problem (4.22), (4.23) has a solution only when the right-hand side of Equa-

tion (4.22) satisfies the compatibility condition, which is the condition that it is

orthogonal to Q0. This condition can be obtained by multiplying Equation (4.22)

by Q0, integrating with respect to z from −1/2 to 1/2, and using the integration

by parts and the boundary conditions (4.23). As a result we obtain∫ 1/2

−1/2

[(
7

2
ω2+ 3ω

dω

dt1

)
Q2

0 + 3ω2Q0
∂Q0

∂t1
+

(
5

2
c2s + iσc5sω + iσc5s

dω

dt1

)
Q0
∂2Q0

∂z2

+
(
c2s + 2iσc5sω

)
Q0

∂3Q0

∂t1∂z2

]
dz = 0, (4.24)

which gives the following equation for the evolution of the oscillation amplitude

A,

2f(ω, t1)
dA

dt1
+

[
∂f

∂ω

dω

dt1
+ h(ω, t1)

]
A = 0, (4.25)

where

f(ω, t1) = 3ω2 − 2iπ2σc5sω − π2c2s, (4.26)

h(ω, t1) = 7ω2 − 2iπ2σc5sω − 5π2c2s. (4.27)

Now, we re-write the dispersion Equation (4.20) as

c−7s ω3 − iπ2σc−2s ω2 − π2c−5s ω + i
σ

γ
π4 = 0.
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Differentiating this equation with respect to t1, then multiplying by 2c7s, and

taking into account that cs = e−t1/2 yields

2f
dω

dt1
= −ωh. (4.28)

Substituting this result in Equation (4.25) and using Equation (4.26) we obtain

2f 2dA

dt1
= π2c2sh(1 + iσc3sω)A. (4.29)

Integrating this equation we eventually arrive at

A(t1) = A0 exp

(
π2

∫ t1

0

c2sh(1 + iσc3sω)

2f 2
dt′
)
, (4.30)

where A0 = A(0). Finally, the wave amplitude a(t1) is given by

a(t1) = |A(t1)| exp

(
−ε−1

∫ t1

0

=(ω) dt′
)
, (4.31)

where = indicates the imaginary part of a quantity.

It is instructive to compare the results obtained in this section with those

obtained by Al-Ghafri and Erdélyi (2012). These authors assumed that σ is

small and took, as mentioned earlier, σ = O(ε). For small σ we obtain from

Equation (4.20)

ω ≈ πcs + i
σπ2c5s(γ − 1)

2γ
. (4.32)

When calculating A(t1) we take ω ≈ πcs and neglect the term proportional to σ

in the exponent and in the expressions for f and h. As a result we have

A(t1) ≈ A0e
t1/4. (4.33)

Substituting Equations (4.32) and (4.33) in Equation (4.31) we obtain

a(t) = A0 exp

[(
ε

4
− σπ2(γ − 1)

2γ

)
t

]
, (4.34)

where we have also substituted t1 = εt. This expression coincides with that given

by Al-Ghafri and Erdélyi (2012) (see their Equation (51)) if we take n = 0 in the
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latter, which corresponds to the fundamental mode, and neglect the small term

proportional to εt2 in the exponent.

In the next section we use Equation (4.31) to analyse the temporary evolution

of the oscillation amplitude.

4.4 Numerical Results

In this section, we use the analytical results obtained in the previous section to

study the evolution of the periods and amplitudes of standing slow waves in cool-

ing dynamical coronal loops. Since the analytical expressions are quite complex,

we calculate the periods and amplitudes for typical solar coronal conditions nu-

merically and plot the results. The oscillation period is equal to 2π/ωr where

ωr is the real part of the frequency, ω. The frequency has been calculated using

Equation (4.20).

Figure 4.1 displays the evolution of the oscillation period with time for various

values of ε and the initial loop temperature. We see that the oscillation period

increases with time due to cooling. This is an expected result because cooling

decreases the phase speed. We can see that the effect is more pronounced in

cooler loops.

The dependence of the oscillation amplitude on time for various values of ε

and the initial loop temperature is displayed in Figure 4.2 by exploiting Equation

(4.31).

We see that, in general, the oscillation amplitude decreases due to thermal

conduction. When the loop temperature is not very high (T . 5 MK) cooling

reduces the damping rate. This feature is especially clearly seen in Figure 4.2(a).

We can observe in this figure that the damping of oscillation is very weak. This re-

sult is consistent with the general conclusion that, in cool EUV loops (T . 1 MK)

the thermal condition is too weak to cause substantial damping of standing os-

cillations (e.g. Al-Ghafri and Erdélyi, 2012). As a consequence, the amplification

of oscillations due to cooling dominates damping due to thermal conduction, and

the oscillation amplitude in cooling loops increases.

For a loop with larger temperatures (T & 3 MK) even strong cooling (ε = 0.5)
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Figure 4.1: The dependence of the oscillation period on time for various values
of ε and the loop temperature T . Recall that the time is measured in units of
L/csi. Panels (a), (b), (c) and (d) correspond to T0i = 0.6 MK, T0i = 3 MK,
T0i = 5 MK and T0i = 6 MK respectively.
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Figure 4.2: The dependence of the oscillation amplitude on time. Panels (a), (b),
(c) and (d) correspond to T0i = 0.6 MK (σ = 0.0068), T0i = 3 MK (σ = 0.17),
T0i = 5 MK (σ = 0.48) and T0i = 6 MK (σ = 0.68) respectively. The time is
measured in units of L/csi.
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cannot counter-balance damping due to thermal conductions, thus it only can

reduce the damping rate.

Figure 4.2(d) is especially interesting. We see in this figure that cooling en-

hances damping for oscillating hot coronal loops compared to relatively cool loops.

The explanation of this effect is as follows. As we have already pointed out, the

dependence of damping rate on the coefficient of thermal conduction and, conse-

quently, on the loop temperature is not monotonic. It is clearly seen in Figure 4.2

that, in the absence of cooling, damping in a loop with T = 6 MK is weaker than

that in a loop with T = 5 MK. This result is in the agreement with the obser-

vation by Sigalotti et al. (2007) that slow standing oscillations of relatively cool

loops (T ∼ 5 MK) damp faster than those in very hot loops with T ∼ 10 MK.

Cooling decreases the temperature of the loop and, as a result, damping in the

loop with the initial temperature 6 MK is becoming stronger.

It is now instructive to compare the results obtained in this chapter with those

obtained by Al-Ghafri and Erdélyi (2012). Figure 4.2(a) agrees very well with

Figure 3(a) in Al-Ghafri and Erdélyi (2012). The agreement is fairly good for

T . 3 MK. However, when the loop temperature increases further, the agreement

is less clear. This discrepancy in not surprising because Al-Ghafri and Erdélyi

(2012) assumed that damping is weak, which is less appropriate for sufficiently

hot loops.

The results shown in Figure 4.2 are obtained for κ0 = 10−11. It is expedient to

study the dependence of the damping rate on κ0. Figure 4.3 shows the dependence

of the oscillations amplitude on time for ε = 0.1, T0i = 3 MK, and various values

of κ0. This figure is plotted by applying Equations (4.31). As it can be expected,

damping becomes stronger when κ0 increases.

Figure 4.4 depicts the relation between the oscillation amplitude and the tem-

perature for various values of ε at t = 1, where Equation (4.31) is applied to illus-

trate this relation. The damping rate of coronal oscillations increases gradually,

takes its maximum at the temperature ∼ 4 MK, and then decreases onwards.

It is worth studying what should be the cooling rate to compensate damping

due to thermal condition and thus provide an undamped oscillation. In what

follows we consider the oscillation as undamped if a(2) = 1, i.e. if the oscillation
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Figure 4.3: The dependence of the oscillation amplitude on time for ε = 0.1,
T0i = 3 MK, and various values of κ0. The time is measured in units of L/csi.

amplitude at, say, t = 2 is the same as at the initial moment of time. Since the

damping rate due to thermal conduction is a function of the initial temperature, so

is the cooling rate needed to compensate the damping. The cooling rate is defined

by the parameter ε. Let us calculate the dependence of the value of ε needed

to compensate the damping on the inverse Peclet number σ analytically using

Equation (4.34) valid for weak damping, and numerically using Equation (4.31).

The results of this calculation are shown in Figure 4.5. As it can be expected,

the analytical and numerical solutions are very close for small values of σ, but

they are sufficiently different for larger values of σ.

4.5 Discussion and Conclusion

In this Chapter we have studied the effect of cooling of coronal loops on the

damping of slow standing waves. We have used the low-beta plasma and rigid flux

tube approximation, which enable us to disregard the magnetic field perturbation.
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Figure 4.4: The dependence of the oscillation amplitude on temperature for t = 1,
and various values of ε.

As a result we have reduced the problem to studying one-dimensional standing

sound waves. We have assumed that, due to cooling, the temperature in the loop

decreases exponentially with the characteristic time τc, which is much longer than

the characteristic oscillation period P . The latter assumption has allowed us to

use the WKB method with ε = P/τc as a small parameter to model the damped

oscillations. In the leading-order approximation of the WKB method, called the

approximation of geometrical optics, we have derived the dispersion equation

determining the instantaneous complex frequency of the loop oscillation. In the

next order approximation, called the approximation of physical optics, we have

obtained the equation determining the oscillation amplitude variation with time.

We have used the analytical results to calculate the dependence of the oscil-

lation period and amplitude on time numerically. We have obtained that cooling

results in the increase of the oscillation period. This is an expected result be-

cause cooling causes the decrease of the sound speed, and the oscillation period

is equal to the double time of the travel of a signal from one loop footpoint to
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Figure 4.5: The dependence of the cooling on the thermal ratio (the inverse Peclet
number) for t = 2, and a(t) = 1. The dashed and solid line correspond to the
analytical and numerical calculations, respectively.

the other. In moderately hot loops (the temperature not exceeding ∼ 5 MK)

cooling reduces the damping rate due to thermal conduction. In cold loops with

the temperature below ∼ 1 MK the damping due to thermal conduction is very

weak. As a result the effect of oscillation amplification dominates the damping

and the oscillation amplitude increases with time. In hotter loops cooling cannot

compete with damping and is able only to reduce the damping rate.

The damping rate is not a monotonic function of the temperature. While it

increases with the temperature in relative cold loops, the temperature increase in

very hot loops leads to the decrease of the damping rate. As a result, in very hot

loop with the temperature about 6 MK and higher cooling causes the damping

enhancement.
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Chapter 5

Conclusion

5.1 Overview

In the beginning of our Thesis, we have given a brief description of the Sun struc-

ture. The solar corona, which is composed of different complex features such as

coronal loops, open flux tubes, prominences, etc., was the essential region of the

solar structure for our attention in this study. Coronal loops are highly magne-

tised and can support various kinds of MHD waves which are natural carriers

of energy. The aim of our study is to deal with the properties of waves and

oscillations that are routinely observed in coronal loops. Many recent studies

that presented the observations and damping of longitudinal oscillations were

motivation for our study. In most theoretical studies, the analytically and nu-

merically obtained results were found to agree well with the observations. The

properties of MHD waves propagating in different types of uniform medium have

been presented in detail. The cooling of coronal plasma by radiation and thermal

conduction has been discussed.

In our study we have concentrated on the longitudinal slow (propagating

and standing) MHD waves which are present in solar coronal loops with the

temperatures ranging from less than 1 MK to more than 6 MK.

In contrast to previous studies, the longitudinal slow MHD waves have been

assumed here to propagate in dynamic coronal plasma, meaning that the equi-

librium is allowed to evolve with time. This is particularly relevant for flaring

and post-flare loops. Thermal conduction was the main dissipative mechanism
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responsible for cooling the background plasma in our work. In order to investi-

gate the properties of longitudinal slow MHD waves, several analytical techniques

have been used to treat the MHD equations such as linearisation, WKB theory,

method of characteristic, the properties of Sturm-Liouville problems, etc. Finally,

the analytically obtained solutions were examined using numerical evaluations.

The body of the thesis was comprised of three chapters that can be summarised

as follows.

5.2 Summary

Chapter 2 focused on the damping of propagating MHD waves in a weakly strat-

ified atmosphere with the temperature decreasing due to cooling. Thermal con-

duction was assumed to be the dominant mechanism for the cooling of coronal

loops. The cooling was assumed to occur on a time scale longer than the charac-

teristic travel times of the perturbations. The effect of cooling background plasma

on the properties of magneto-acoustic waves have been investigated. The tem-

porally evolving dispersion relation that describes the properties of MHD waves

was derived from the obtained governing equation for longitudinally propagating

slow magneto-acoustic waves. The WKB theory has been used to find an analytic

solution for the time-dependent amplitude of longitudinal slow waves. The ana-

lytically obtained solution has been evaluated numerically. The results show that

the coronal loop oscillations experience strong damping. However, the presence

of cooling and stratification gives rise to a reduction in the damping rate.

In Chapter 3, the longitudinal slow standing MHD waves generated in cooling

coronal plasma were investigated. In accordance to previous observational and

theoretical studies, the background temperature is assumed to decrease exponen-

tially with time. The standing longitudinal (acoustic) wave is damped due to the

presence of weak thermal conduction. Contrary to previous studies, the coefficient

of thermal conductivity is assumed here to be a function of time. The behaviour

of standing acoustic (longitudinal) waves has been analysed by deriving the time-

dependent dispersion relation. The variation of amplitude, due to cooling, has

been obtained by applying the properties of Sturm-Liouville problem. The ana-

lytical solution of the temporally evolving amplitude is shown numerically to give

further insight into the behaviour of the MHD waves. The evaluation illustrates
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that the increase of thermal conduction leads to a stronger decay in the ampli-

tude of the longitudinal standing slow MHD waves. As in the case of propagating

MHD waves, for the standing MHD waves it is also found that the cooling of the

background coronal plasma causes reduction in the damping rate.

Chapter 4 completes the investigation into the effect of cooling on damping the

longitudinal slow standing MHD waves. In this chapter we relaxed the condition

that the damping is weak and allowed the thermal condition to be arbitrary in

strength. The approximation of low-beta plasma and rigid flux tube enables us

to ignore the magnetic field perturbation and reduce the problem to modelling

1D standing sound waves. We assumed that the temperature of the background

plasma decays exponentially. Then, we used the WKB method to investigate the

temporal evolution of the oscillation amplitude. The analytical expression for

the amplitude has been derived. To illustrate the properties of MHD waves for

typical solar coronal conditions, we evaluated the analytically obtained solution

numerically. The results show that the influence of plasma cooling leads to an

increase in the oscillation period. This is not surprising because the cooling

deceases the phase speed. In addition to this, the oscillation amplitude of cooling

coronal loops is amplified by cooling, which reduces the damping rate in coronal

loops with moderate temperatures. In contrast, cooling enhances the damping

rate of oscillations in very hot coronal loops.

5.3 Outlook

Overall, the Thesis has concentrated on the effect of cooling on the longitudinal

slow magneto-acoustic waves generated in a dynamic coronal plasma. Thermal

conduction was the only mechanism causing the damping for coronal oscillations.

We have restricted our analysis to models where there is no background flow.

The main reason for this is mathematical simplicity.

As forthcoming works, we can formulate the following problems:

• Investigating the properties of slow MHD waves with mixed boundary con-

ditions, where the heat flux is proportional to the temperature.

• Studying the damping of oscillations due to the joint effect of thermal con-

duction and radiation.
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• Studying the damping of oscillations due to the joint effect of thermal con-

duction and viscosity.
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De Pontieu B, Erdélyi R and De Wijn A G 2003 Astrophys. J. Lett. 595, L63.
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Erdélyi R and Fedun V 2007b Solar Phys. 246, 101.
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