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Abstract

The contents of this thesis involve two different areas of research pertaining to the
dynamics of quantum fields on a classical and curved spacetime.

In the first, we analyse under which circumstances it is possible to extend a
Hadamard State defined on a region of a Globally Hyperbolic Spacetime onto a
larger region within the same spacetime, while keeping it Hadamard. We find
that it is possible to do so, as long as we sacrifice knowledge of the state near
the boundary of the original region. Our method can be employed in any locally
covariant theory with a suitable notion of state space. This method can be made
constructive for conformally ultrastatic spacetimes, employing a modified version
of the Alcubierre warp drive. Furthermore, we were able to verify our ideas via
numerical simulation in the context of 2-dimensional Minkowski spacetime.

The second area is linked to an experimental endeavour. We study how long
it takes for an Unruh-DeWitt detector to thermalise while being accelerated in a
uniform circular trajectory in a 3-dimensional spacetime. This is as opposed to
the usual setting in the Unruh effect, where the detector is accelerated in uniform
linear motion and the waiting time for thermalisation is infinite. However, the
linear accelerations needed for this to happen are not attainable in a laboratory.
So, the alternative of exploring finite times in a circular trajectory seems more
approachable for experimental settings – in particular, within the analogue gravity
research programme, which inspired this research. Under the assumption that the
waiting time 𝜆 and the detector’s energy gap 𝐸 are inversely related, we found
that the temperature is non-linear in 𝐸 . Yet, further study is needed as if 𝐸 and 𝜆
are inversely related, thermalisation is not obtained in finite time.
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1

Introduction

Therefore Ilúvatar gave to their
vision Being, and set it amid the
Void, and the Secret Fire was sent
to burn at the heart of the World;
and it was called Eä.

Valaquenta, J. R. R. Tolkien

During the 20th century, two major theoretical frameworks of physics were
formulated: Quantum Field Theory (QFT) and General Relativity (GR). The first
gave us a detailed insight into our description of matter and its interactions while
the second helped us to understand the nature of spacetime and its relationship to
gravitation.

However, QFT presents certain issues of its own and also when we try to make
it compatible with GR. It is precisely this last problem that started the quest towards
formulating a Quantum Theory of Gravity (QG), but all of the attempts into
finding such theory have not been successful as of yet. Nonetheless, these attempts
were not in vain since there is an intermediate point in common: semiclassical
gravity, which is described by considering quantum fields propagating on curved
spacetimes, giving origin to the so-called Quantum Field Theory in Curved
Spacetime (QFTCS).

Given that the spacetime has a classical treatment, QFTCS can not provide a
fundamental theory of the observable nature, as opposed to what is expected from
QG. Nevertheless, QFTCS remains relevant when studying quantum phenomena

13



14 Chapter 1. Introduction

taking place when the curvature of the spacetime is significant but not to the
extent that QG is needed. The basic idea of QTFCS is to reconcile the postulates
of GR with those of Quantum Field Theory (QFT).

The foundations of GR are easy to identify: the spacetime structure is encoded
in a manifold equipped with a Lorentzian metric. Usually, this metric and any
other field are dynamical objects whose evolution is governed by a well-posed
Cauchy problem [43, 15] provided by the Einstein Field Equations (EFE). So,
their dynamical evolution can be determined uniquely once initial data is provided
on a Cauchy surface. However, it must be noted that often in QFTCS this metric
is taken as given and might not necessarily be a solution to the EFE.

On the other hand, the foundations of QFT are not so easy to identify. A
good way to illustrate this is when one considers the vacuum state in Minkowski
Spacetime. Choosing this state relies on the notion of Poincaré covariance as
the vacuum is defined as the state with maximal symmetry and lowest energy.
Therefore, selecting a vacuum state in a generic spacetime seems like a rather
difficult task, and as a matter of fact it can be shown that it is not possible [25, 30].
Hence, it seems that the concept of vacuum state is not a fundamental element of
QFT. This goes against the usual dictum of QFT in Minkowski spacetime since in
this particular setting the vacuum seems to be the bedrock of the theory.

Nonetheless, it is possible to find a class of states that have the same singular
structure (i.e. high-energy behaviour) as the Minkowski vacuum state. This is
the so-called Hadamard class and it allows us to extend the action of the state to
an algebra containing polynomials of the field and its derivatives evaluated at a
particular point–such as the energy density. Hadamard states are guaranteed to
exist on Globally Hyperbolic Spacetimes, which are often deemed as physically
reasonable spacetimes as they do not allow for naked singularities nor closed-
timelike curves. In addition to this, Hadamard states guarantee the existence of
Wick polynomials and hence of a well-defined perturbation theory. Because of
the aforementioned, the Hadamard class is often deemed as physically reasonable
and its members generalise the notion of a vacuum state to a generic curved
spacetime.

Another considerable problem with QFT in Minkowski spacetime is the
presence of infinities. In the original formulation of the theory, quantities



15

such as the energy density of the field are infinite, which clearly indicates that
something is wrong with the theory. Although the renormalisation programme
has been successful at providing a method to extract physically meaningful and
experimentally verifiable quantities from QFT predictions–with the agreement
between theory and experiment being quite remarkable–it remains to check
whether the theory is mathematically consistent or not. Checking for mathematical
consistency is not merely a scientific ethics exercise, it is important because it
might help us to identify the foundations of QFT.

The algebraic [42] and axiomatic [59] methods are certainly taking steps in the
right direction and have made exceptional progress in recent years. The Algebraic
QFT approach transfers the attention from the Hilbert space representations of a
field to the algebraic relations satisfied by it. This is very convenient for QFTCS
as in the usual treatment of QFT symmetries are used to select states, and every
state gives rise to a representation. Hence, by avoiding the use of representations,
the formulation is valid in a generic spacetime.

This thesis contains two different lines of research that will add to the QFTCS
literature. The first studies under which circumstances a Hadamard state can be
extended from one region onto a larger one in a globally hyperbolic spacetime.
Our findings indicate that this is possible to do if one gives up knowledge of the
state on a region near the boundary that can be made arbitrarily small. Our method
is constructive as it involves building a commutative diagram in the category of
globally hyperbolic spacetimes. We will give an explicit construction for the
class of conformally ultrastatic spacetimes. Moreover, we carry out analytical
and numerical computations to show that this can be done for the Minkowski
vacuum state in two-dimensional spacetime, and we also study the properties of
the extended state.

The second line of research studies the response of a detector moving in
a uniform circular trajectory. As it is well-known, Unruh [62, 63] found that
an observer undergoing uniform linear acceleration starts thermalising. As the
acceleration needed to observe a temperature of 1𝐾 is of the order of 1020𝑚/𝑠2,
verifying this experimentally has proven rather difficult. That is why a new
proposal arose from the University of Nottingham analogue gravity experimental
programme: instead of linear acceleration let us put a detector in uniform circular
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motion and wait for it to thermalise. Then, the question shifts to: how long does
one have to wait to get a thermal response in the detector? Our findings show that,
assuming that the detector’s energy gap 𝐸 and the interaction time 𝜆 are related
as 𝐸𝜆 = 𝑆0 (where 𝑆0 is real constant), then one can not detect this response after
some finite time. However, if one modifies this power law, then the response
function becomes very similar to that of the finite time case. Their difference
is a term 𝑂 (𝜆−4). In this sense, our work combines some of the results found
in [26] and [9]. In the first, the waiting time is addressed while in the second a
small energy gap is considered to approach the near-sonic limit when the speed
of the detector is large. Moreover, we also obtained some evidence indicating
that a deeper study of the parameter space might improve the size of the detected
temperature, as the ranges obtained for it thus far are still beyond experimental
verification.

Both lines of research are very different and have little in common, but they add
to the knowledge of two fundamental notions for the theoretical and experimental
understanding of QFTCS, that of a state and a detector. Moreover, it is worth
mentioning that having such different research projects was beneficial to the
author as it required learning a larger breadth of techniques and theory. Without a
doubt, this will be useful for any future endeavours in research and allows to have
more fluency in the large area of knowledge that is QFTCS.



2

Preliminaries

The beginning is the most
important part of the work.

Plato, The Republic

In this section we will lay out all the framework needed to deal with globally
hyperbolic spacetimes, quantum fields defined on them, and states associated
to said fields. Unless indicated otherwise, these are our conventions for the
rest of this text. 𝐶∞

0 (𝑆) is the real vector space of compactly-supported and
real-valued smooth functions over 𝑆. We denote Minkowski spacetime by M.
The Fourier transform of a function 𝑓 is denoted by ℱ [ 𝑓 ] and its definition is
ℱ [ 𝑓 ] (𝑢) =

∫ ∞
−∞ 𝑑𝑥 𝑒

−𝑖𝑢𝑥 𝑓 (𝑥). The symmetric tensor product for tensors of the
same type is taken to be 𝐴 ⊗𝑠 𝐵 = (𝐴 ⊗ 𝐵 + 𝐵 ⊗ 𝐴)/2. Most of the geometrical
definitions are taken from [53] and [65].

2.1 globally hyperbolic spacetimes

Definition 2.1.1. Consider a spacetime (𝑀, 𝑔). Then, a curve is a smooth
mapping 𝛾 : 𝐼 → 𝑀 where 𝐼 ⊆ R is an open interval. A curve is said to be causal
if its tangent vector 𝑣 is timelike (𝑔(𝑣, 𝑣) > 0) or null (𝑔(𝑣, 𝑣) = 0) at all the points
of the curve. Also, 𝑝 is said to be a future endpoint of 𝛾 if 𝑝 = lim𝑡→sup 𝐼 𝛾(𝑡). A
past endpoint is defined in a similar fashion but in this case using the infimum. A
curve is said to be future (past) inextendible if it has no future (past) endpoints.

17
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Definition 2.1.2. The set of events that may be reached by a future directed
causal curve emerging from 𝑝 ∈ 𝑀 is called the causal future 𝐽+(𝑝), more
precisely,

𝐽+(𝑝) = {𝑞 ∈ 𝑀 | 𝛾(𝑠) is a future directed causal curve with

𝛾(0) = 𝑝 and 𝛾(1) = 𝑞}.

By convention 𝑝 ∈ 𝐽+(𝑝). If 𝑆 ⊂ 𝑀, its causal future is the union of the causal
futures of its points, i.e. 𝐽+(𝑆) := ∪𝑝∈𝑆𝐽+(𝑝). The causal past of a point 𝐽−(𝑝)
or a set 𝐽−(𝑆) may be defined in a similar fashion.

Definition 2.1.3. A subset 𝑆 is said to be achronal if there are no points within
it that can be joined by a timelike curve.

Definition 2.1.4. Consider a spacetime (𝑀, 𝑔) and let 𝑆 ⊂ 𝑀 be an achronal
subset. Then, its future Cauchy development 𝐷+

𝑔 (𝑆) with respect to the metric 𝑔
is given by

𝐷+
𝑔 (𝑆) = {𝑝 ∈ 𝑀 | Any past inextendible causal curve through 𝑝 intersects 𝑆.}

To define its past Cauchy development 𝐷−
𝑔 (𝑆) just exchange past for future in the

definition. Moreover, the Cauchy development 𝐷𝑔 (𝑆) is defined as their union,
i.e. 𝐷𝑔 (𝑆) = 𝐷+

𝑔 (𝑆) ∪ 𝐷−
𝑔 (𝑆)

Definition 2.1.5. A subset 𝑆 in a spacetime 𝑀 is said to be causally convex in
𝑀 if every causal curve with endpoints in 𝑆 has image entirely contained in 𝑂 as
well. Henceforth, we will denote by O(𝑀) the set of all open causally convex
subsets of 𝑀 .

It is worth mentioning that in [49][Prop 3.43] it is proven that if a set 𝑆 is
causally convex, then 𝐷±

𝑔 (𝑆) (and hence 𝐷𝑔 (𝑆)) will be causally convex as well.

Definition 2.1.6. If Σ is a closed, achronal set in a spacetime (𝑀, 𝑔) such that
𝐷𝑔 (Σ) = 𝑀, then it is called a Cauchy surface. If a spacetime has a Cauchy
surface, then we say that it is globally hyperbolic.
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Definition 2.1.7. We say that diffeomorphism 𝛼 : 𝑀 → 𝑀 is an isometry if it
maps the metric into itself. Hence, 𝛼∗𝑔 = 𝑔 for every 𝑝 ∈ 𝑀 . An upshot of this
is that 𝛼∗ : 𝑇𝑝𝑀 → 𝑇𝛼(𝑝)𝑀 will preserve inner products, so for 𝑢, 𝑣 ∈ 𝑇𝑝𝑀 we
will have

𝑔(𝑢, 𝑣) |𝑝 = 𝛼∗𝑔(𝛼∗𝑢, 𝛼∗𝑣) |𝛼(𝑝) = 𝑔(𝛼∗𝑢, 𝛼∗𝑣) |𝛼(𝑝) .

If the one-parameter group of diffeomorphisms 𝛼𝜏 generated by a vector 𝜉
corresponds to a group of isometries, then we will refer to 𝜉 as a Killing vector
field.

Intuitively speaking, a Killing vector field 𝜉 keeps distances intact in a rod as
long as said rod is moving along the direction of 𝜉. The Lie derivative £ of the
metric 𝑔 vanishes along 𝜉, as it can be seen from

£𝜉𝑔 = lim
𝜏→0

1
𝜏
(𝑔 − 𝛼∗𝑔) = 0. (2.1)

From this and the identity £𝜉𝑔𝜇𝜈 = ∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇 we can deduce the so-called
Killing equation

∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇 = 0.

Definition 2.1.8. A Killing horizon is a null hypersurface in 𝑀 where a Killing
vector becomes null. See [44] for further reference.

For the sake of brevity, from now on we will refer to a Killing horizon simply
as a horizon.

2.2 quantum fields and states

The algebraic approach to QFT in curved spacetime is powerful since it allows us
to study the algebraic relations of quantum fields without referencing any specific
Hilbert space representation. For the purposes of this thesis, we shall consider
the simplest model available: the linear Klein-Gordon scalar field 𝜙 on a globally
hyperbolic spacetime 𝑀 . The classical field 𝜙 satisfies the equation

𝑃𝑔𝜙 :=
(
□𝑔 + 𝑚2 + 𝜉𝑅𝑔

)
𝜙 = 0 (2.2)

with mass 𝑚 ≥ 0, scalar curvature 𝑅𝑔, coupling 𝜉 and d’Alembert operator □𝑔.
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Definition 2.2.1. Let us denote by 𝒜(𝑀, 𝑔) the unital ∗-algebra over C that is
generated by the following choice of generators and relations. The generators are
the field operators 𝜙( 𝑓 ), where the functions 𝑓 , 𝑔 ∈ 𝐶∞

0 (𝑀) act as labels. For
these generators the following relations hold:

R-linearity: 𝜙(𝑎 𝑓 + 𝑏𝑔) = 𝑎𝜙( 𝑓 ) + 𝑏𝜙(𝑔).

Hermiticity: 𝜙( 𝑓 )∗ = 𝜙( 𝑓 ).

Solution: 𝜙(𝑃𝑔 𝑓 ) = 0.

Commutation relations: [𝜙( 𝑓 ), 𝜙(𝑔)] = 𝑖𝐸𝑀 ( 𝑓 , 𝑔)1𝒜(𝑀) .

The bilinear functional 𝐸𝑀 ( 𝑓 , 𝑔) is formed from the fundamental solution 𝐸𝑀 :=
𝐸−
𝑀
− 𝐸+

𝑀
where 𝐸∓

𝑀
is the advanced/retarded Green operator – c.f. [13][Chapter

5, Remark 5.2.2]. They satisfy the relations 𝑃𝑔𝐸±
𝑀
𝑓 = 0 = 𝐸±

𝑀
𝑃𝑔 𝑓 and thus

𝑃𝑔𝐸𝑀 𝑓 = 0 = 𝐸𝑀𝑃𝑔 𝑓 . Its form is given by 𝐸𝑀 ( 𝑓 , 𝑔) =
∫
𝑀

dvol𝑀 𝑓 (𝐸𝑀𝑔).

The algebra 𝒜(𝑀, 𝑔) is also known as the Canonical Commutation Relations
(CCR) algebra and it contains a lot of elements; those which are Hermitian are
said to be the elementary observables of our theory.

Definition 2.2.2. (Timeslice axiom) If 𝑂 is a causally convex set in (𝑀, 𝑔),
we will denote by 𝒜(𝑀, 𝑔;𝑂) the subalgebra of 𝒜(𝑀, 𝑔) generated by 𝜙( 𝑓 )
with 𝑓 ∈ 𝐶∞

0 (𝑂). Then, if 𝑂 contains a Cauchy surface of (𝑀, 𝑔) there exists a
unital ∗-algebra isomorphism between 𝒜(𝑀, 𝑔) and 𝒜(𝑀, 𝑔;𝑂). Furthermore,
in particular, we have

𝒜(𝑀, 𝑔;𝑂) = 𝒜(𝑀, 𝑔;𝐷𝑔 (𝑂)). (2.3)

So far, we have defined the field stressing the importance of its algebraic
relations. Next, we will define states on the algebra of the fields.

Using the GNS construction [42] we can build a Hilbert space for each given
state and therefore obtain representations for the field algebra, yielding the usual
understanding of QFT.
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Definition 2.2.3. A state 𝜔 is a positive normalised linear functional 𝜔 :
𝒜(𝑀, 𝑔) → C, i.e. 𝜔 is an element of the dual space of the algebra 𝒜(𝑀, 𝑔)∗

such that 𝜔(1) = 1 and the positivity condition 𝜔(𝐴∗𝐴) ≥ 0 is fulfilled for
𝐴 ∈ 𝒜(𝑀, 𝑔). Also, if 𝑂 is a causally convex subset of (𝑀, 𝑔), we introduce the
following notation

𝜔𝑂 := 𝜔|A(𝑀,𝑔;𝑂) (2.4)

The action of a state on an element of the algebra will be known as soon as
we determine how it behaves for each monomial of the field, which introduces the
notion of a 𝑛-point function.

Definition 2.2.4. Let 𝑓𝑖 ∈ 𝐶∞
0 (𝑀) for natural number 𝑖 such that 0 < 𝑖 ≤ 𝑛.

The 𝑛-point function𝑊𝑛 of a state 𝜔 is defined by

𝑊𝑛 ( 𝑓1, . . . , 𝑓𝑛) := 𝜔(𝜙( 𝑓1) · · · 𝜙( 𝑓𝑛)).

It should be stressed that if for all 𝑛 ∈ N, two states have the same 𝑛-point
functions, then they are identical. Also, from Definition 2.2.1 it is easy to see that
the 𝑛-point functions are 𝑛-fold solutions to the Klein-Gordon equation, that is

𝑊𝑛 (𝑃𝑔 𝑓1, . . . , 𝑓𝑛) = 𝑊𝑛 ( 𝑓1, 𝑃𝑔 𝑓2, . . . , 𝑓𝑛) = 𝑊𝑛 ( 𝑓1, . . . , 𝑃𝑔 𝑓𝑛) = 0.

If we assume that𝑊𝑛 is continuous with respect to the test-function topology on
𝐶∞

0 (𝑀), then, in virtue of the Schwartz kernel theorem we can write𝑊𝑛 using
its distributional kernel𝑊𝑛 ∈ D′(𝑀×𝑛), where D′(𝑈) denotes the space of all
distributions on𝑈:

𝑊𝑛 ( 𝑓1, . . . , 𝑓𝑛) =
∫
𝑀×𝑛

𝑊𝑛 (𝑝1, . . . , 𝑝𝑛) 𝑓1(𝑝1) · · · 𝑓𝑛 (𝑝𝑛)dvol𝑀×𝑛 .

2.3 hadamard states

Clearly, Definition 2.2.3 is rather general, since there are many states satisfying
it and there is not a clear way to select a physically meaningful one. Even in
Minkowski spacetime, there are many states of physical interest such as Poincaré
invariant vacuum, thermal and coherent states. However, if one reduces the scope
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of the search to that of states that make physical sense, then a class of states
emerges naturally: the Hadamard class [21]. Let us be more precise about what
we mean when we say states that make physical sense. We are referring to states in
an arbitrary spacetime whose ultraviolet behaviour is similar to the one present in
states with finite energy density in Minkowski spacetime which share a common
singularity structure with the vacuum. In this sense, we say that these states
generalise the notion of the Minkowski vacuum state to a generic spacetime.

Recall that to obtain a finite energy density for a state in Minkowski spacetime
one has to build Wick polynomials. The usual approach is to reorder the
annihilation and creation operators to get a well-defined expression. However, in
order to do so, one must choose a vacuum state and this is not possible in a covariant
setting [30, 25]. So, if we ought to develop a fully covariant theory we need to use
a different approach where instead of reordering, we subtract divergences. To see
that this is effectively what one does in Minkowski spacetime when building Wick
polynomials consider the following example: the distributional kernel two-point
function𝑊2

0 (𝑥, 𝑦) for the Minkowski vacuum state 𝜔0 has a well-known singular
structure [37, 35] (see [12] for a precise statement). To define a regular object
one usually introduces the Wick polynomial as

: 𝜙(𝑥)𝜙(𝑦) := 𝜙(𝑥)𝜙(𝑦) −𝑊2
0 (𝑥, 𝑦)1𝒜(𝑀) . (2.5)

So, this entails that 𝜔0(: 𝜙(𝑥)𝜙(𝑦) :) will have no singularities. To illustrate this,
we will consider interactions which at the same time will allow us to have a look
at the perturbative treatment of the theory. One of the simplest examples is the
scalar field in Minkowski spacetime with the 𝜙4 potential. Within this setting, we
need to calculate certain products of polynomials, such as : 𝜙(𝑥)2 :: 𝜙(𝑦)2 :. To
do this we make use of the Wick’s theorem(see [13][Section 5.3.1]), which yields

: 𝜙(𝑥)2 :: 𝜙(𝑦)2 :=: 𝜙(𝑥)2𝜙(𝑦)2 : +4 : 𝜙(𝑥)𝜙(𝑦) : 𝑊2
0 (𝑥, 𝑦) + 2𝑊2

0 (𝑥, 𝑦)
2.

In order to have a well-defined perturbation theory, the expression above needs
to form an algebra where the product is given by Wick’s theorem. Nevertheless,
𝑊2

0 (𝑥, 𝑦) exhibits a singular behaviour for null-related 𝑥 and 𝑦 since it can be
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written as

𝑊2
0 (𝑥, 𝑦) =

1
4𝜋2

1
𝜎(𝑥, 𝑦) − 2𝑖𝜀0+

= lim
𝜀→0+

∫
𝑑4𝑘

(2𝜋)3Θ(𝑘0)𝛿(𝑘2)𝑒−𝑖𝑘 ·(𝑥−𝑦)𝑒−𝜀𝑘0 , (2.6)

where 𝜎(𝑥, 𝑦) = 𝑡2 − (®𝑥 − ®𝑦)2, the quantity 𝑡 is the time difference at said points
and Θ is the Heaviside step function. Next, we will check if pointwise products
of this two-point function happen to be a distribution. This is not the case in
general but is needed for Wick’s theorem to make sense. If we observe the last
integral in (2.6) we realise that it only has support when Θ(𝑘0)𝛿(𝑘2) ≠ 0, which
is precisely the future light cone. Furthermore, calculating𝑊2

0 (𝑥, 𝑦)
2–after using

the convolution theorem– yields

𝑊2
0 (𝑥, 𝑦)

2

= lim
𝜀→0+

∫
𝑑4𝑘

(2𝜋)6

∫
𝑑4𝑞 Θ(𝑞0)𝛿(𝑞2)Θ(𝑘0 − 𝑞0)𝛿((𝑘 − 𝑞)2)𝑒−𝑖𝑘 ·(𝑥−𝑦)𝑒−𝜀𝑘0 .

(2.7)

Due to the oscillatory behaviour in 𝑘 , we only need to check whether the integral
over 𝑞 converges or not. Thus, we need to verify that the integrand is rapidly
decreasing in 𝑞. To this end, we will follow closely the argument given in [7]. Fix
any 𝑘 and consider a large 𝑞 in the sense of the Euclidean norm for R4. Then,
at some point, we will have 𝛿(𝑞2) = 0 and the Heaviside function Θ(𝑘0 − 𝑞0)
will also vanish as we will have 𝑘0 − 𝑞0 < 0 for large 𝑞0. Hence, we conclude
that the integral must be rapidly decreasing in 𝑞. In other words, due to the
high-energy behaviour (large 𝑞) of Minkowski’s vacuum state, the integral above
is well defined which implies that the Wick theorem yields a finite answer and
therefore, perturbation theory is consistent.

This nice behaviour at high energies exhibited by the vacuum state in
Minkowski is enough to guarantee that all of the products that may arise due to
normal-ordering are well-defined. Thus, it seems reasonable to ask for this same
behaviour for any other physical state in Minkowski, not just the vacuum. This is
the so-called Hadamard condition, which dictates that any state that obeys it must
have the same singular structure as the Minkowski vacuum.
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As a closing remark before defining the Hadamard condition in a more formal
way, we would like to point out the importance of having a well-defined notion
of objects such as : 𝜙(𝑥)2 : in curved spacetimes. Consider the semi-classical
Einstein Field Equations (SEFE), which read

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 = 8𝜋𝜔(𝑇𝜇𝜈),

where 𝑅𝜇𝜈 and 𝑅 are the Ricci tensor and scalar, respectively. The left-hand
side (the geometric terms) is considered to be classical. On the other hand,
the right-hand side contains the stress-energy tensor 𝑇𝜇𝜈 which will contain our
quantum fields and in many cases (such as the scalar field) involves terms that are
quadratic in the field and its derivatives. If one chooses a state that satisfies the
Hadamard condition, then 𝜔(𝑇𝜇𝜈) can be regularised which in turn implies that
the SEFE will be well-defined. Note that in particular, the energy density contains
terms that are quadratic in the field. To promote the procedure sketched above to
a covariant setting, instead of subtracting the two-point function of the vacuum
state we subtract a Hadamard parametrix (properly explained in Definition 2.3.3).

Finally, it is worth mentioning that Radzikowski [54, 55] reformulated the
Hadamard condition in terms of microlocal analysis, which allows one to prove
results for Hadamard states on general backgrounds. We shall also have a
brief overlook of this reformulation. In their famous paper [44] Kay and Wald
introduced a rigorous definition of Hadamard states specifying their short-scale
behaviour via the notion of a global Hadamard parametrix. Their definition relies
on the possibility of assigning a unique geodesic between two points, which is
known to be possible if said points lie in a convex normal neighbourhood.

However, it was noted recently that this notion might run into problems if
the points are spacelike separated as it is possible to find many convex normal
neighbourhoods containing them. Moretti addressed and amended this technical
issue in [52]. Small but significant changes need to be made to the original
definition and so, fortunately, it seems that all of the results proven before still
hold.

Definition 2.3.1. Let (𝑀, 𝑔) be a spacetime. A strong convex covering of 𝑀 is
a covering C of 𝑀 made of normal convex open sets such that 𝐶 ∩ 𝐶′ is normal



2.3. Hadamard States 25

convex if 𝐶, 𝐶′ ∈ C and 𝐶 ∩ 𝐶′ ≠ ∅.

Definition 2.3.2. Let C be a strong convex covering of (𝑀, 𝑔) and A be an
open neighbourhood of the diagonal Δ𝑀 := {(𝑝, 𝑝) |𝑝 ∈ 𝑀} defined as

A :=
⋃
𝐶∈C

𝐶 × 𝐶. (2.8)

Then, the signed squared geodesic distance 𝜎 ∈ 𝐶∞(A) is

𝜎(𝑝, 𝑝′) := 𝑔( ¤𝛾𝑝𝑞 (0), ¤𝛾𝑝𝑞 (0)) |𝑝 = ±
(∫ 1

0

√︃
|𝑔( ¤𝛾𝑝𝑞 (𝑡), ¤𝛾𝑝𝑞 (𝑡)) |𝑑𝑡

)2

(2.9)

for 𝑝, 𝑞 ∈ A where 𝛾𝑝𝑞 : [0, 1] → 𝑀 is the unique geodesic segment between 𝑝
and 𝑞.

Definition 2.3.3. Consider a four-dimensional spacetime (𝑀, 𝑔), let C be a
strong convex covering of it, and construct A as in 2.3.2. For any natural number
𝑛, let 𝑣𝑛 ∈ 𝐶∞(A) and define 𝑡 (𝑝, 𝑝′) := 𝑇 (𝑝) − 𝑇 (𝑝′), where 𝑇 is a smooth
global time function increasing towards the future. Furthermore, let 𝑢 ∈ 𝐶∞(A)
be a function such that 𝑢(𝑝, 𝑝) = 1, this function is known in the literature as the
Van Vleck-Morette determinant. Then, the global Hadamard parametrix of order
𝑁 is defined via the following boundary-valued distribution

𝐻
(𝑁)
𝑔 (𝑝, 𝑝′) = 1

4𝜋2
𝑢(𝑝, 𝑝′)

𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+

+ 1
4𝜋2

𝑁∑︁
𝑛=0

𝑣𝑛 (𝑝, 𝑝′)𝜎(𝑝, 𝑝′)𝑛 log
[
𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+

𝜆2

]
where 𝜆 > 0 is a length scale and the branch cut of the logarithm is taken along
the negative real axis.

The Hadamard parametrix is a bisolution to the Klein-Gordon equation, and
so the 𝑢 and 𝑣𝑛 functions are determined by the local geometry. In particular, the
𝑣𝑛 functions in the definition above can be calculated from recursive integration
of 𝜎(𝑝, 𝑝′) (c.f. Appendix A of [51]). It must be noted that if we fix 𝑝′, then
𝐻

(𝑁)
𝑔 (𝑝, 𝑝′) is an approximate solution to the Klein-Gordon equation (3.1). The

error in this approximation is of order 𝜎𝑁 . So, in order to arrive at a true
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parametrix one has to take the limit 𝑁 → ∞. This can be done. However, as we
will see in a moment some caution is needed.

Let 𝜒 : R → [0, 1] be a smooth function so that 𝜒(𝑥) ≡ 1 for |𝑥 | ≤ 1/2
and 𝜒 ≡ 0 for |𝑥 | ≥ 1. Then, as noted in [33][Sect. 4.3], there exists a strictly
increasing sequence of positive numbers 𝑐𝑛 such that

∞∑︁
𝑛=0

𝑣𝑛 (𝑝, 𝑝′)𝜎(𝑝, 𝑝′)𝑛𝜒(𝑐𝑛𝜎(𝑝, 𝑝′))

converges uniformly to a function 𝑣(𝑝, 𝑝′) ∈ 𝐶∞(A).

Definition 2.3.4. With this, we can define the global Hadamard parametrix as
the following boundary-valued distribution

𝐻𝑔 (𝑝, 𝑝′) =
1

4𝜋2

(
𝑢(𝑝, 𝑝′)

𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+
+ 𝑣(𝑝, 𝑝′) log

[
𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+

𝜆2

] )
,

where 𝜆 and 𝑡 are as in Definition 2.3.3.

As noted above, the Hadamard parametrix is a distributional bisolution to
the Klein-Gordon equation – up to smooth functions of both arguments. That is,
there exists 𝑠 ∈ 𝐶∞(A) such that for all 𝑓 , ℎ ∈ 𝐶∞

0 (𝑀) we have∫
A
𝐻𝑔 (𝑝, 𝑝′) (𝑃𝑔 𝑓 ) (𝑝)ℎ(𝑝′)dvol𝑀×𝑀

=

∫
A
𝐻𝑔 (𝑝, 𝑝′) 𝑓 (𝑝) (𝑃𝑔ℎ) (𝑝′)dvol𝑀×𝑀

=

∫
A
𝑠(𝑝, 𝑝′) 𝑓 (𝑝)ℎ(𝑝′)dvol𝑀×𝑀 .

where 𝑃𝑔 is the differential operator associated to the general Klein-Gordon
equation as in (2.2). The volume form dvol𝑀×𝑀 is defined in 𝑀 × 𝑀 and each
spacetime is equipped with the metric 𝑔.

Definition 2.3.5. A state 𝜔 is said to have the Hadamard form in (𝑀, 𝑔) if for
𝑓 ∈ 𝐶∞(𝑀 × 𝑀), its two point𝑊2 function can be written as

𝑊2(𝑝, 𝑝′) = 𝐻𝑔 (𝑝, 𝑝′) + 𝑓 (𝑝, 𝑝′).
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It must be noted that the parametrix is completely determined by the local
geometry whereas 𝑓 will depend on the specific choice of state and that is why
this defines a class of states instead of a particular state. Note that𝑊2(𝑝, 𝑝′) −
𝐻𝑔 (𝑝, 𝑝′) ∈ 𝐶∞(𝑀 × 𝑀) and therefore this procedure mimics the divergence
removal that takes place in the Wick polynomials in (2.5). Retaking the discussion
we had for the two-point function for Minkowski spacetime in (2.7) leads us to
realise that in order to have a well-defined perturbation theory, we need rapidly
decreasing Fourier integrals. This implies that we need to consider the high-energy
part of the spectrum and see whether it satisfies the Hadamard condition or not.

There is a rather remarkable reformulation that allows us to characterise this
high-energy behaviour in a coordinate-independent way which can be done by
making use of tools from microlocal analysis, namely the wavefront set. We will
proceed to explain these notions following closely the treatment in [50]. The
wavefront set tells us how a distribution fails to be smooth via the decay of the
Fourier transform of the product of this distribution with a test function. To see
this, recall the Fourier transform for any 𝑓 ∈ 𝐶∞

0 (R𝑛) has rapid decay, i,e. for
every 𝑁 there exists a constant 𝐶𝑁 such that |ℱ [ 𝑓 ] (𝑘) | ≤ 𝐶𝑁

(1+|𝑘 |𝑁 ) for sufficiently
large 𝑘 .

Then if we take a distribution 𝑢 and multiply it by a test function 𝑓 with
𝑓 (𝑥0) ≠ 0 for 𝑥0 ∈ supp( 𝑓 ) we will obtain a compactly supported distribution
𝑓 𝑢. If the resulting distribution is smooth, then it will have a Fourier transform
ℱ [ 𝑓 𝑢] with rapid decay; failure to do so in a neighbourhood of 𝑥0 will indicate
in which directions 𝑘 of Fourier space we do not have rapid decay. Summarising,
the wavefront set tells us where a distribution is singular and in which directions
we should expect this singular behaviour to propagate.

Definition 2.3.6. Let 𝑘0 ∈ R𝑛 for 𝑛 ∈ N. We say that a neighbourhood 𝑂 of 𝑘0

is conic if 𝑘 ∈ 𝑂 implies 𝜆𝑘 ∈ 𝑂 for all 𝜆 > 0. A regular directed point for the
distribution 𝑢 ∈ D′(R𝑛) is the pair (𝑥0, 𝑘0) ∈ R𝑛 × (R𝑛\{0}) that satisfies: there
exists a smooth compactly supported function 𝑓 with 𝑓 (𝑥0) ≠ 0 and a fixed 𝐶𝑁
such that for 𝑘 in a conic neighbourhood of 𝑘0, the following holds

|ℱ [ 𝑓 𝑢] (𝑘) | ≤ 𝐶𝑁

(1 + |𝑘 |)𝑁
, 𝑁 ∈ N, 𝑘 ∈ Con(𝑘0).
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The wavefront set𝑊𝐹 (𝑢) is the complement in R𝑛 × (R𝑛\{0}) of the set all of
the regular directed points of 𝑢.

Although we defined the wavefront set forR𝑛, this definition can be generalised
to smooth manifolds [61], and the wavefront set becomes a subset of the cotangent
bundle of the manifold, i.e. 𝑊𝐹 (𝑢) ⊂ 𝑇∗𝑀\{0} where {0} denotes the zero
section. The wavefront set allows us to formulate the Hadamard condition without
making any allusion to coordinates. A diffeomorphism 𝜓 : 𝑀 → 𝑁 defines
a pull-back 𝜓∗𝑢 ∈ D′(𝑁) via 𝜓∗𝑢( 𝑓 ) := 𝑢(𝜓∗ 𝑓 ) for all 𝑓 ∈ 𝐶∞

0 (𝑀). The
wavefront set behaves nicely under pull-backs as it satisfies

𝑊𝐹 (𝜓∗𝑢) = 𝜓∗𝑊𝐹 (𝑢) := {(𝜓−1(𝑥), 𝜓∗𝑘) | (𝑥, 𝑘) ∈ 𝑊𝐹 (𝑢)},

where 𝜓∗𝑘 is to be understood in the usual sense of pull-back of covectors.

Definition 2.3.7. Let 𝜔 be a state on the algebra of quantum linear scalar fields.
We say that the state satisfies the Hadamard condition if its two-point function
has the following wavefront set

𝑊𝐹 (𝑊2) = {(𝑥, 𝑦; 𝑘𝑥 ,−𝑘𝑦) ∈ 𝑇∗𝑀2\{0} | (𝑥, 𝑘𝑥) ∼ (𝑦, 𝑘𝑦), 𝑘𝑥 ⊲ 0},

where (𝑥, 𝑘𝑥) ∼ (𝑦, 𝑘𝑦) indicates that 𝑥 and 𝑦 are connected by a null geodesic 𝛾
such that 𝑘𝑥 is coparallel (in the sense of parallel transport) and cotangent to 𝛾
at 𝑥, 𝑘𝑦 is its parallel transport from 𝑥 to 𝑦 along 𝛾 and 𝑘𝑥 ⊲ 0 denotes that the
covector is future directed.

The next result due to Radzikowski [54] establishes a connection between
Hadamard condition and form (see Definition 2.3.5).

Theorem 2.3.1 (Radzikowski). Let𝑊2 be the two-point function for a state 𝜔,
then𝑊2 satisfies the Hadamard condition if and only if it is of Hadamard form.

We would like to point out that Hadamard states may be defined for any globally
hyperbolic spacetime, which brings us to a full circle since they are considered to
be physically reasonable spacetimes. Some examples of Hadamard states include
all vacuum and thermal states on ultrastatic spacetimes, and asymptotic vacuum
and thermal states in Friedmann-Lemaître-Robertson-Walker spacetimes [29].
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2.4 kms states

Thermodynamic equilibrium states are of paramount importance in quantum
theory. The Gibbs states are an example of these equilibrium states and the
textbook literature usually tells us that they are characterised by a density matrix
𝜌 = 𝑒−𝛽𝐻/𝑍 , where 𝐻 is the Hamiltonian associated with the system under
consideration and 𝑍 is a normalisation constant. If the Cauchy surface is non-
compact then the spectrum of 𝐻 is usually continuous, so 𝐻 can not be a trace
class operator.

The KMS states were created to generalise the notion of a thermodynamic
equilibrium state –henceforth, we will refer to it as a thermal state– and overcome
some technical challenges as the one we just mentioned. If the spacetime under
consideration happens to have a complete timelike Killing vector field, then it is
possible to define a thermal state whose time evolution will be associated to this
vector field.

Following the philosophy adopted throughout this text, we will seek to define
this notion without making any reference to any Hilbert space representation. The
KMS states obey a condition that precisely does this, as the only elements needed
to formulate it are the algebra, isometries of the spacetime and the expectation
value provided by a state 𝜔. It is worth mentioning that the KMS condition is
usually stated for 𝐶∗-algebras [41], so we will adapt it to the context of the algebra
A(𝑀, 𝑔) in Definition 2.2.1 .

Definition 2.4.1 (KMS condition). Let 𝑀 be a globally hyperbolic spacetime
and 𝛼𝜏 : 𝑀 → 𝑀 be a 1-parameter group of isometries generated by a timelike
Killing vector field (c.f Definition 2.1.7). Then, the action on the algebra 𝒜(𝑀, 𝑔)
is defined as 𝛼𝜏 (𝜙( 𝑓1) · · · 𝜙( 𝑓𝑛)) = 𝜙( 𝑓1,𝜏) · · · 𝜙( 𝑓𝑛,𝜏) where 𝑓𝜏 (𝑝) = 𝑓 (𝛼−𝜏 (𝑝)).
Since the isometries are a 1-parameter group, we have 𝛼𝜏 ◦ 𝛼𝜎 = 𝛼𝜏+𝜎 and it can
be shown that they are automorphisms of 𝒜(𝑀, 𝑔). For our purposes, it is just
necessary to introduce the KMS condition for the two-point function. We say that
a state 𝜔 is a KMS state with inverse temperature 𝛽 if two conditions are met:
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1. For the observables 𝑎, 𝑏 ∈ 𝒜(𝑀), the function

𝐹𝑎,𝑏 (𝜏1, 𝜏2) = 𝜔(𝛼𝜏1 (𝑎)𝛼𝜏2 (𝑏))

has an analytic continuation to the strip 𝑆 = {(𝜁1, 𝜁2) ∈ C2 |0 < Im(𝜁2) −
Im(𝜁1) < 𝛽}.

2. This function is bounded and continuous at the boundary of the strip. Also,
on the boundary 𝐹𝑎,𝑏 (𝜏1, 𝜏2 + 𝑖𝛽) = 𝐹𝑏,𝑎 (𝜏2, 𝜏1).

As we mentioned before, the usual thermal equilibrium states such as the
Gibbs state obey the KMS condition (in its usual formulation for 𝐶∗-algebras).
As a matter of fact, if the chosen algebra happens to be a matrix algebra, then a
KMS state will turn out to be a Gibbs state. Also, as the time evolution of said
state is defined by a Killing vector field, the state will be static with respect to it –
that is, it will be invariant with respect to it.

In general, showing that a state is KMS involves calculations that can get
somewhat cumbersome. However, it is a criterion that is deeply connected to
symmetries, as a consequence of the definition is that a KMS state will have a time
translation invariant two-point function. In consequence, there is an alternative
way to show that it satisfies the KMS condition:

Definition 2.4.2. We say that a function 𝑓 : R→ R satisfies the detailed balance
condition at temperature 𝑇 > 0 (in units where the Boltzmann constant equals
one) if

𝑓 (−𝑢) = 𝑒𝑢/𝑇 𝑓 (𝑢).

Then, a state will satisfy the KMS condition at 𝛽 = 1/𝑇 if and only if the
Fourier transform of its two-point function restricted to a time-like worldline
satisfies the detailed balance condition at temperature 𝑇 (c.f. [26][Prop. 4.3]).

2.5 locally covariant quantum field theory

In this section, we shall outline the basic features of the Locally Covariant
formulation of a Quantum Field Theory (LCQFT) by following the canonical
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references [29, 32]. Our exposition will be in close agreement to that found in
[29], where the scalar field is used as an example that highlights the main notions
of this framework. The main idea of LCQFT is to think of a QFT as a functor
𝒜 : Loc → Alg between the category of globally hyperbolic spacetimes Loc and
the category of unital ∗-algebras Alg, which will be defined below; a grosso modo,
this relates spacetimes and their isometries to algebras and their homomorphisms.
More precisely, the categories are:

Loc The objects are globally hyperbolic spacetimes M = (𝑀, 𝑔, 𝔬, 𝔱) where 𝑀 is
a manifold of dimension 𝑛, equipped with metric 𝑔, orientation 𝔬 and a time
orientation 𝔱. By orientation, we refer to choosing one of the components
of the set of non-zero smooth 𝑛-forms on 𝑀 , whereas a time orientation is
choosing a component of the set of non-zero timelike 1-forms on 𝑀 . The
morphisms are smooth isometric embeddings1 with causally convex image
(c.f. Def. 2.1.5), that preserve both the orientation and the time-orientation.

Alg The objects are unital ∗-algebras. The morphisms are the unit-preserving
∗-monomorphisms.

At this stage, this description might seem too abstract, so let us elaborate further
on why these categories were chosen in such a way. To this end, we will modify
slightly the notation in Definition 2.2.1 for the remainder of this section and
Chapter 4. Basically, one does a relabelling for the algebra 𝒜(𝑀) → 𝒜(M).
This induces corresponding relabellings for the field 𝜙 → 𝜙M, the Klein-Gordon
operator 𝑃𝑔 → 𝑃M and fundamental solution 𝐸𝑀 → 𝐸M.

The aim of these categories is to encode the principle of locality, that is, that
causal relations between points in M should be preserved under the image 𝜓(M)
(with respect to N) of a map 𝜓 : M → N. Of course this is not the case in general
and because of this we incorporated very specific choices in the definition of our
categories. To gain some insight into this, let us consider the CCR algebras 𝒜(M)
and 𝒜(N). As test functions label the generators of these algebras, we would
like to push forward them from 𝐶∞

0 (M) to 𝐶∞
0 (N). To do so, we need 𝜓 to be

1An isometric embedding between manifolds 𝑀 and 𝑀 ′ is a smooth embedding 𝜓 : 𝑀 → 𝑀 ′

which preserves the metric in the sense that 𝑔 is equal to the pullback of 𝑔′ by 𝜓, i.e. 𝑔 = 𝜓∗𝑔′.
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smoothly invertible, so that we can define (𝜓∗ 𝑓 ) (𝑝) := 𝑓 (𝜓−1(𝑝)) for 𝑝 ∈ 𝜓(M)
and (𝜓∗ 𝑓 ) (𝑝) = 0 otherwise. So, in algebraic terms for 𝑓 ∈ 𝐶∞

0 (M), we define

𝒜(𝜓)𝜙M( 𝑓 ) := 𝜙N(𝜓∗ 𝑓 ), (2.10)

which only makes sense if the algebraic relations in Definition 2.2.1 hold for
both 𝒜(M) and 𝒜(N). Clearly, linearity and hermiticity follow immediately.
Nevertheless, the solution relation along with (2.10) yields 0 = 𝒜(𝜓)𝜙M(𝑃M 𝑓 ) =
𝜙N(𝜓∗𝑃M 𝑓 ), and so, for every 𝑓 ∈ 𝐶∞

0 (M) we must have 𝜙N(𝜓∗𝑃M 𝑓 ) = 0. In
other words, we need 𝜓∗𝑃M 𝑓 = 𝑃N𝜓∗ 𝑓 , which is indeed the case as by assumption
𝜓 is an isometry. The commutation relations hold at a formal level as the only
morphisms allowed in Alg are unit preserving ∗-homomorphisms, from this we
obtain

𝑖𝐸N(𝜓∗ 𝑓 , 𝜓∗𝑔)1𝒜(N) = [𝜙N(𝜓∗ 𝑓 ), 𝜙N(𝜓∗𝑔)] = [𝒜(𝜓)𝜙M( 𝑓 ),𝒜(𝜓)𝜙M(𝑔)]
= 𝒜(𝜓) [𝜙M( 𝑓 ), 𝜙M(𝑔)] = 𝑖𝐸M( 𝑓 , 𝑔)1𝒜(N) .

From this we may conclude that 𝐸N(𝜓∗ 𝑓 , 𝜓∗𝑔) = 𝐸M( 𝑓 , 𝑔) for all smooth 𝑓 and
𝑔 compactly supported in M whereupon we find that

𝐸M = (𝜓 × 𝜓)∗𝐸N. (2.11)

Given that we know how the wavefront set (see Definition 2.3.6) behaves under
pull-back, we can conclude that 𝑊𝐹 (𝐸M) ⊂ (𝜓 × 𝜓)∗𝑊𝐹 (𝐸N). Since the
wavefront set of the fundamental solution contains null-covectors sitting at future
or past related points, 𝜓 must necessarily map null-covectors from N to M and
preserve time-orientation, which is granted since 𝜓 is an isometry.

So far, we have motivated the need for specific choices of objects and
morphisms in our categories. We see that if we want to map test functions from M
to N, while preserving locality and fulfilling the CCR relations, then our choices
for 𝜓 are rather restricted. Not only this but also we can not just simply use any
algebra morphism, as we need them to be unit-preserving. It must be noted that
in the discussion above we used the scalar field to motivate and illustrate the main
ideas. However, these categories are valid in much more general settings such as
the Maxwell or Dirac fields. This explains why we have specified the categories
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above in such a way, although it must be mentioned that this is not specific to the
scalar field, as it just served as an example to illustrate the main points of our
definitions.

Finally, to account for the need for the image of 𝜓 being causally convex,
recall that the singularities of both 𝐸M and 𝐸N travel along geodesics, so if we
want (2.11) to hold, we will need every causal curve in N with endpoints in 𝜓(M)
to also lie within 𝜓(M). A nice feature emerges from our categorical approach to
QFT, that is, functoriality. Consider we have a spacetime L such that 𝜏 : L → M,
then if we use 𝜓 as defined above, we find 𝜓 ◦ 𝜏 : L → N. Inserting this into the
functor relation yields

𝒜(𝜓 ◦ 𝜏)𝜙L( 𝑓 ) = 𝜙N((𝜓 ◦ 𝜏)∗ 𝑓 ) = 𝒜(𝜓)𝜙M(𝜏∗ 𝑓 )) = 𝒜(𝜓) (𝒜(𝜏)𝜙L( 𝑓 )),

since this is for an arbitrary generator, we conclude

𝒜(𝜓 ◦ 𝜏) = 𝒜(𝜓) ◦𝒜(𝜏). (2.12)

Now that we have made acquainted ourselves with the categories, we can be more
specific about what it means for a QFT to be a functor. However, before doing so,
we need to introduce some definitions that will allow us to choose useful classes
of objects and morphisms in the categories defined above.

Definition 2.5.1. Let 𝑂 be a causally convex subset of M ∈ Loc. Then, a
region is the restriction M|𝑂 = (𝑂, 𝑔 |𝑂 , 𝔬 |𝑂 , 𝔱 |𝑂). We note that since it is also
an object in Loc, it is a spacetime in its own right. Furthermore, the inclusion
𝑂 ↩−→ 𝑀 induces the morphism M|𝑂 M

𝜄(𝑀;𝑂) which embeds the region into
the original spacetime.

Definition 2.5.2 (Cauchy morphism). We say that a morphism 𝜓 : M → N in
Loc is Cauchy if its image 𝜓(𝑀) contains a Cauchy surface for 𝑁 .

Definition 2.5.3 (Kinematic algebra). Let 𝜄𝑀;𝑂 : M
��
𝑂

→ M ∈ Loc be the
inclusion morphism. Note that M|𝑂 = (𝑂, 𝑔 |𝑂 , 𝔬 |𝑂 , 𝔱 |𝑂) is an object in Loc,
and thus, a spacetime. Then, the functor 𝒜 defines the morphism 𝒜(𝜄𝑀;𝑂) :
𝒜(M

��
𝑂
) → 𝒜(M), where 𝒜(M) and 𝒜(M

��
𝑂
) being objects in Alg. Since this

morphism is mapping towards 𝒜(M) we define the kinematic algebra as the
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image of 𝒜(𝜄𝑀;𝑂), i.e. 𝒜
kin(M;𝑂) = 𝒜(𝜄𝑀;𝑂) (𝒜(M

��
𝑂
)) which describes the

physics lying within 𝑂, for a certain theory.

With this, we are in a position to introduce the three main ingredients of a
Locally Covariant QFT.

Definition 2.5.4. A Locally Covariant QFT is a functor

𝒜 : Loc → Alg.

that satisfies the following:

• [Einstein Causality] For 𝑂1 and 𝑂2 causally disjoint, i.e. 𝑂1 ⊂ 𝑂′
2, we

have

[𝒜kin(M;𝑂1),𝒜kin(M;𝑂2)] = {0},

where we introduced 𝑂′ := 𝑀\𝐽𝑀 (𝑂), the open causal complement of a
region 𝑂 ⊂ 𝑀 .

• [Timeslice axiom] If 𝜓 : 𝑀 → 𝑁 is a Cauchy morphism, then 𝒜(𝜓) is an
isomorphism, which is a morphism that has a two-sided inverse. In other
words, if 𝜓 is a Cauchy morphism, then 𝒜(𝜓)−1 exists.

It can be checked (c.f. [29][Section 4.3]) that the free Klein-Gordon field
satisfies the requirements above.
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Hadamard State Extension in Two-dimensional
Minkowski Spacetime

Se vogliamo che tutto rimanga
come è, bisogna che tutto cambi.
If we want everything to remain as
it is, everything must change.

Giuseppe Tomasi di Lampedusa, Il
Gattopardo

The vacuum of Quantum Field Theory (QFT) in flat spacetime is defined
as the state of minimal energy and maximal symmetry specified via Poincaré
invariance. This state is of paramount importance to QFT in flat spacetime
because every inertial observer recognises the state as distinguished. Also, several
general properties of QFT such as the spin-statistics theorem and PCT symmetry
can be derived from the high degree of symmetry of this state in combination
with other axioms [60]. Because of this, when one deals with curved spacetimes
it may be quite tempting to find a preferred state mimicking the aforementioned
procedure.

However, a generic spacetime possesses no symmetries at all and so, no single
state can be distinguished as in flat spacetime. As a matter of fact, a no-go theorem
excluding the possibility of a local and covariant distinguished state can be found
in [25, 30]. To overcome this problem one has to give up the search for a single
distinguished state and instead, study a class of physically acceptable states, the

35
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most notable being the class of Hadamard states [44, 52]. These states have been
studied exhaustively because they possess very nice mathematical properties that
permit the evaluation of Wick polynomials, including the stress-energy tensor
and time-ordered products, which are essential to the study of the semi-classical
Einstein Field Equations and perturbative QFT models [50].

Since Hadamard states are very relevant to QFT in curved spacetime, it is
natural to address the following question:

Suppose one has a globally hyperbolic spacetime 𝑀 equipped with
a metric 𝑔0 containing regions 𝑇 and 𝑆 enclosed within as shown
in Figure 3.1. Then, can one extend an arbitrary Hadamard state
from the smaller region (𝑇) to the larger one (𝑆) while keeping it
Hadamard?

𝑆

𝑇

𝑀

Figure 3.1: We want to extend the state
from𝑇 to 𝑆 while keeping it Hadamard.

𝑆

𝑇

𝑆

𝑀

Figure 3.2: We are giving up the region
𝑇 \ 𝑆.

Unfortunately, there are examples that show that the answer is no. In [22] it is
shown that the so-called S-J States [3, 4] fail to be Hadamard at the boundary
of 𝑇 . Moreover, it is known from the lore of QFT in curved spacetime that the
renormalised stress-energy tensor with respect to the Rindler vacuum, diverges at
the boundary of the Rindler wedge. Instead one can shift the focus to a relaxed
version of it to obtain a positive answer.
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Suppose that you have the same spacetime with (𝑀, 𝑔0), 𝑇, 𝑆 as
before, suppose 𝑆 ⊂ 𝑇 is specified as shown in Figure 3.2. Then, can
one extend an arbitrary Hadamard state from the smaller region (𝑆)
to the larger one (𝑆) while keeping it Hadamard?

Our findings indicate that this can be done for conformally ultrastatic spacetime
using methods from Locally Covariant QFT [29] and can be found in Section 4.3.
Our method is constructive in nature and it relies on finding a modified metric
𝑔 for the spacetime 𝑀 such that at time 𝑡 = 0 we can specify a region P of the
original one (𝑇) and tilt its lightcones so that they follow a trajectory 𝜌 until at
time 𝑡 = 𝑡𝐹 they reach a region F, where their tilt will agree with that of the cones
of P. Then, the state 𝜔 will be extended to the state �̃� which will be defined
in the region 𝑆 that is taken to be the Cauchy development of F. All of this is
summarised in Figure 3.3.

𝑇

𝑃𝑡 = 0
𝝆(𝒕)

𝐹𝑡 = 𝑡𝐹

𝑡 = 𝑡𝐹 + 2𝜀

𝑆

𝑆

Figure 3.3: The metric is 𝑔0 for 𝑇, 𝑆, 𝑆 and the green regions. The spacetime
enclosed by the teal lines has metric 𝑔. Note that its lightcones agree with those
of 𝑔0 at 𝑡 = 0 and 𝑡 = 𝑡𝐹 .

This takes care of the extension, but we also intend to preserve the state i.e. we
want the restriction of the extended state �̃� to the region 𝑆 to match the restriction
of 𝜔 to the same region. To this end, we need to introduce another region 𝐾 such
that the metric 𝑔 restricted to it will coincide with 𝑔0. If this is the case, then
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one can take initial data surface {0} × 𝜎 ⊂ 𝑆 at time 𝑡 = 0 and propagate it to
time 𝑡 = 𝑡𝐹 using the advanced Green operator of 𝑔0. This will yield another data
surface {𝑡𝐹} × 𝜆 ⊂ 𝐹. Then, we do the same for the data surface {𝑡𝐹} × 𝜆 ⊂ 𝐹 at
𝑡 = 𝑡𝐹 and propagate the data into the past to time 𝑡 = 0 using the retarded Green
operator of Minkowski, which yields yet another surface {0} × 𝜅. This procedure
is illustrated in Figure 3.4. It is worth mentioning that the metric 𝑔 that allows for

𝐹𝑡 = 𝑡𝐹

𝑡 = 0

𝐾
𝝆(𝒕)

𝑡 = 𝑡𝐹 + 2𝜀

𝑆

Figure 3.4: As 𝑔 = 𝑔0 within 𝐾 , the advanced/retarded Green operators of (𝑀, 𝑔)
will be those of (𝑀, 𝑔0). Hence, the propagation of boundaries of initial data
surfaces will be along the null-trajectories of 𝑔0 which are denoted by diagonal
lines. First, we propagate an initial data surface 𝜎 from 𝑡 = 0 to 𝑡 = 𝑡𝐹 using the
advanced Green operator of (𝑀, 𝑔). Then, we propagate the resulting surface at
𝑡 = 𝑡𝐹 into the past to time 𝑡 = 0. The resulting surface 𝜅 is such that its Cauchy
development under either 𝑔 or 𝑔0 renders 𝐾 .

this to happen resembles a lot the famous Alcubierre metric [5]. However, in this
instance, we are warping null trajectories instead of timelike ones.

The main objective of this Chapter is to provide a proof of concept of our
ideas in a simple scenario: we expand the vacuum state 𝜔0 defined over a region
𝑇 of the two-dimensional Minkowski spacetime onto a state �̃� defined over a
larger region 𝑆 and show that: (a) it is still Hadamard and (b) it agrees with 𝜔0 in
𝑆 where 𝑆 ⊂ 𝑇 .

Although it is known that massless QFT in two dimensions runs into complica-
tions (see [16]), this can be resolved if one modifies the algebra. One option is to
choose derivatives of the field instead of the field itself. Another option is to smear
the field against a test function with support in the region under consideration. We
will choose the latter as we are interested in extending the state from a compact
region 𝑇 onto a larger compact region 𝑆. To do this, we study the energy density
of the extended state �̃� in the expanded region of spacetime 𝑆 and see that: (a) it
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is Hadamard and (b) it matches the energy density of the original state 𝜔 when
restricted to the region 𝑆.

3.1 preliminaries

In this section, we will adapt the general framework provided in Chapter 2 to
the two-dimensional and conformally invariant case. Since in this case we have
𝑚 = 0, the field equation simplifies to

𝑃𝑔𝜙 = □𝑔𝜙 = 0. (3.1)

Remark 3.1.1. (Timeslice axiom) If 𝑂 is a causally convex set in (𝑀, 𝑔), we
will denote by 𝒜(𝑀, 𝑔;𝑂) the subalgebra of 𝒜(𝑀, 𝑔) generated by 𝜙( 𝑓 ) with
𝑓 ∈ 𝐶∞

0 (𝑂). Then, if 𝑂 contains a Cauchy surface of (𝑀, 𝑔) there exists a
unital ∗-algebra isomorphism between 𝒜(𝑀, 𝑔) and 𝒜(𝑀, 𝑔;𝑂). Furthermore,
in particular, we have

𝒜(𝑀, 𝑔;𝑂) = 𝒜(𝑀, 𝑔;𝐷𝑔 (𝑂)).

The Hadamard parametrix introduced in Definition 2.3.3 has a different form
in two-dimensional spacetimes, which is the content of the following definition.

Definition 3.1.1. Consider a two-dimensional spacetime (𝑀, 𝑔). Then using
the conventions in Definition 2.3.3, we define the Hadamard parametrix of order
𝑁 as

𝐻
(𝑁)
𝑔 (𝑝, 𝑝′) = 1

4𝜋

𝑁∑︁
𝑛=0

𝑣𝑛 (𝑝, 𝑝′)𝜎(𝑝, 𝑝′)𝑛 log
[
𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+

𝜆2

]
.

Following the same procedure as in Definition 2.3.4, we can define the global
Hadamard parametrix as the following boundary-valued distribution

𝐻𝑔 (𝑝, 𝑝′) =
𝑣(𝑝, 𝑝′)

4𝜋
log

[
𝜎(𝑝, 𝑝′) + 2𝑖𝑡0+

𝜆2

]
,

where 𝜆 and 𝑡 are as in Definition 2.3.3. As noted in Definition 2.3.4, the
Hadamard parametrix is a distributional bisolution to the Klein-Gordon equation
up to smooth functions of both arguments. So, in particular, this covers the
conformally invariant case given by (3.1).
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3.2 state extension

In this section we will analyse all the geometrical features that are necessary to
expand the region 𝑇 into 𝑆 while preserving a region 𝐾. We are going to set
our manifold to be the two-dimensional Minkowski spacetime (M, 𝑔0) where
𝑔0 = diag(1,−1) in standard coordinates (𝑡, 𝑥) ∈ R2. Roughly speaking, the
expansion procedure consists of defining various regions withinM and finding a
globally hyperbolic metric 𝑔 over R2 which coincides with 𝑔0 in some of these
regions while also expanding a part of the region 𝑇 on which the state was
originally defined. By expansion, we mean that if 𝑃 is a subregion of 𝑇 , then
𝐷𝑔0 (𝑃) ⊂ 𝐷𝑔 (𝑃).

The metric 𝑔 is a slight modification of that of Alcubierre [5], which is a
solution for Einstein Field Equations known for allowing a massive particle to
travel faster than speed of light. This solution has been well-studied and it is
known that the massive particle is not travelling faster than light in reference to
a local frame, but rather that the geometry of spacetime is warping around the
particle within a finite distance known as the warp bubble, thus allowing for it to
reach a point before a light-ray. We modified this metric to consider not a massive
particle but a photon, which will allow us to specify a trajectory for an ingoing or
outgoing null worldline. To perform the expansion, one needs to follow the steps
described below.

the state extension procedure

(SEP.I) We start by studying the original region. Given 0 < 𝑟𝑇 , define the following
diamond

𝑇 = 𝐷𝑔0 ({0} × (−𝑟𝑇 , 𝑟𝑇 )).

(SEP.II) Define the past region 𝑃 to be the slice

𝑃 = ((−𝜀, 𝜀) × R) ∩ 𝑇

of 𝑇 for some 0 < 𝜀. Choose 𝜀 so that (11/2)𝜀 < 𝑟𝑇 .
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(SEP.III) As (11/2)𝜀 < 𝑟𝑇 we may choose 𝑡𝐹 so that 𝑡𝐹 > 2𝜀 and 𝑟𝑇 > 2𝑡𝐹 + (3/2)𝜀.
Then there is an 𝑟𝑆 > 0 so that 𝑟𝑆 + 2𝑡𝐹 + (3/2)𝜀 < 𝑟𝑇 . With this, we define
a diamond

𝑆 = 𝐷𝑔0 ({0} × (−𝑟𝑆, 𝑟𝑆)),

which will be known as the matching region. See Figure 3.5.

𝑇

𝑃𝑡 = 0

𝑡 = 𝑡𝐹

𝑆 𝑟𝐾 = 𝑟𝑆 + 2𝑡𝐹

Figure 3.5: The original (𝑇), past (𝑃) and matching (𝑆) regions. Dashed lines are
light rays under 𝑔0.

(SEP.IV) Define also 𝑟𝐾 = 𝑟𝑆 + 2𝑡𝐹 and

𝐾 = 𝐷𝑔0 ({0} × (−𝑟𝐾 , 𝑟𝐾)) ∩ (−𝜀, 𝑡𝐹 + 2𝜀) × R,

which will be referred to as the protected region. Note that 𝑃 contains a
Cauchy surface of 𝐾 .

(SEP.V) Choose 𝑟𝐹 > 𝑟𝑇 + 𝑡𝐹 , and define the future region as the slice

𝐹 = 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )) ∩ (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀) × R. (3.2)
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(SEP.VI) Introduce the final region via the diamond

𝑆 = 𝐷𝑔0 (𝐹). (3.3)

(SEP.VII) Define 𝑟𝐻 = 𝑟𝐾 − 𝑡𝐹 and introduce

𝐻 = 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐻 , 𝑟𝐻)) ∩ (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀) × R.

By using the definition of 𝑟𝐾 above we see that 𝑟𝐻 = 𝑟𝑆 + 𝑡𝐹 . See Figure
3.6.

At this point is worth noting that with the definitions of the regions introduced so
far we can deduce the following nestings:

𝑆 ⊂ 𝑇 ⊂ 𝑆, 𝑆 ⊂ 𝐷𝑔0 (𝐻), and 𝐻 ⊂ 𝐾. (3.4)

The nesting 𝑆 ⊂ 𝑇 is immediate. To see why 𝑇 ⊂ 𝑆, see Appendix A.4. The other
relations are proven in a similar fashion.

(SEP.VIII) Now seek a globally hyperbolic metric 𝑔 on R2 so that (a) 𝑔 = 𝑔0 on
𝑃 ∪ 𝐾 ∪ 𝐹, (b) if we define

𝐸 = 𝐷𝑔 (𝑃) ∩ (−∞, 𝑡𝐹 + 2𝜀) × R,

then 𝐹 ⊂ 𝐸 and (c) 𝐹 ∩ ({𝑡𝐹} ×R) = 𝐸 ∩ ({𝑡𝐹} ×R). Note that because of
(b), (c) and the definition of 𝐹 in (3.2) we can see that 𝐸 contains a Cauchy
surface for 𝐹 with respect to both 𝑔 and 𝑔0. See Figure 3.7.

To specify the metric 𝑔 we introduce T = (−𝜀, 𝑡𝐹 + 𝜀) and specify a smooth
function 𝜌 : T → R obeying

𝜌(0) = 𝑟𝑇 , 𝜌(𝑡𝐹) = 𝑟𝐹 + 𝑟𝑇 ,
𝑑𝜌

𝑑𝑡
≥ −1, (3.5)

where 𝑑𝜌/𝑑𝑡 |I = −1 for I = (−𝜀, 𝜀) ∪ (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀). Next define 𝑣 ∈ 𝐶∞(R)
by

𝑣 =


𝑑𝜌

𝑑𝑡
+ 1 𝑡 ∈ T

0 𝑡 ∈ R \ T
(3.6)
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𝑊

(𝑡𝐹 , 𝑟𝐹)

𝑡

𝑟

𝜀

−𝜀

𝑡𝐹

𝑡𝐹 + 𝜀

𝑡𝐹 − 𝜀

𝑟𝑇

Figure 3.8: Plot of 𝜌(𝑡) and 𝑊𝑅. We have 𝑔 = 𝑔0 in the shaded regions and
outside of𝑊 . Dashed lines are light rays under 𝑔0.

for which we clearly have 0 ≤ 𝑣. Then, choose 𝑟𝐵 such that 0 < 𝑟𝐵−𝜀 < 𝜌𝑚𝑖𝑛−𝑟𝐾
where 𝜌𝑚𝑖𝑛 is the minimum of 𝜌. Then, define the right and left warp bubbles at
time 𝑡 as the intervals

𝐵𝑅,𝑡 = (𝜌(𝑡) − 𝑟𝐵, 𝜌(𝑡) + 𝑟𝐵), 𝐵𝐿,𝑡 = (−𝜌(𝑡) − 𝑟𝐵,−𝜌(𝑡) + 𝑟𝐵).

Their corresponding warp zones are defined as

𝑊𝐿/𝑅 =
⋃
𝑡∈T

{𝑡} × 𝐵𝐿/𝑅,𝑡 . (3.7)

One more thing is needed to build the metric, choose 𝑓𝐿/𝑅 ∈ 𝐶∞
0 (R2) to take

values in [0, 1] such that 𝑓𝑅 ≡ 1 on a neighbourhood of
⋃
𝑡∈[0,𝑡𝐹 ] (𝑡, 𝜌(𝑡)) and

𝑓𝑅 ≡ 0 outside 𝑊𝑅. The function 𝑓𝐿 obeys the same, but in this case we have
𝑓𝐿 ≡ 1 on a neighbourhood of

⋃
𝑡∈[0,𝑡𝐹 ] (𝑡,−𝜌(𝑡)) and 𝑓𝐿 ≡ 0 outside𝑊𝐿 . (These

functions certainly exist, c.f. [1][Prop. 6.5.8].) Next, define 𝑓 = 𝑓𝑅 − 𝑓𝐿 the
metric 𝑔 on R2 by

𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − (𝑑𝑥 − 𝑓 𝑣𝑑𝑡) ⊗ (𝑑𝑥 − 𝑓 𝑣𝑑𝑡). (3.8)
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As noted above, (𝑡, 𝑥) are the inertial coordinates in Minkowski spacetime (M, 𝑔0)
where 𝑔0 = 𝑑𝑡 ⊗ 𝑑𝑡− 𝑑𝑥 ⊗ 𝑑𝑥. Note that we have 𝑔 = 𝑔0 outside of𝑊 and in R\T ,
as can be seen in Figure 3.8. Next, we show that (R2, 𝑔) is globally hyperbolic.

Lemma 3.2.1. Let 𝑔 be as in (3.8) then, (R2, 𝑔) is globally hyperbolic.

Proof. See Appendix A.1. □

Next, we prove one of our main results. Which is, that the metric 𝑔 meets the
requirements from (SEP.VIII).

Proposition 3.2.1. Let 𝐹 be as in (3.2), then

𝐹 ∩ ({𝑡𝐹} × R) = 𝐸 ∩ ({𝑡𝐹} × R) and 𝐹 ⊂ 𝐸.

this proves (b) and (c) in (SEP.VIII).

Proof. See Appendix A.3. □

Proposition 3.2.2. The metric 𝑔 coincides with 𝑔0 on 𝑃, 𝐾 and 𝐹. This proves
(a) in (SEP.VIII).

Proof. To prove that 𝑔 = 𝑔0 when restricted to 𝑃 and 𝐹, observe that 𝑃 and 𝐹
are contained within I × R. Given that 𝑣 = 0 in I, it follows that (3.8) becomes
𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − 𝑑𝑥 ⊗ 𝑑𝑥 = 𝑔0. Next, we prove that regions 𝐾 and 𝑊𝐿 ∪𝑊𝑅 are
disjoint, which is equivalent to proving that

𝜌(𝑡) − 𝑟𝐵 > 𝑟𝐾 − |𝑡 | for all 𝑡 ∈ [−𝜀, 𝑡𝐹 + 2𝜀] . (3.9)

Note that from (SEP.VII) we see that 𝜌min > 𝑟𝐵 + 𝑟𝐾 , so it follows immediately
that (3.9) is satisfied when 𝑡 = 0. Moreover, as 𝑑𝜌/𝑑𝑡 + 1 = 𝑣 ≥ 0, we deduce that
it also holds for all positive 𝑡 in the range. Likewise, 𝑑𝜌/𝑑𝑡 − 1 < 0 for 𝑡 < 0 in
the range, so the inequality also holds for negative 𝑡. Therefore, (3.9) holds for all
𝑡 in the range. □

In order to prove (b) in (SEP.VIII) we need an intermediate result, which is
to prove that 𝐸 really is the set contained within the curves 𝜌(𝑡) and −𝜌(𝑡) for the
time interval (−∞, 𝑡𝐹 + 2𝜀).
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Proposition 3.2.3. Let 𝐸+ and 𝐸− be regions in R2 defined by

𝐸− = {(𝑡, 𝑥) : 𝑡 ≤ 0, |𝑥 | < 𝑟𝑇 + 𝑡}, 𝐸+ = {(𝑡, 𝑥) : 0 ≤ 𝑡 < 𝑡𝐹 + 2𝜀, |𝑥 | < 𝜌(𝑡)},

observe that they intersect on {0} × (−𝑟𝑇 , 𝑟𝑇 ). We claim that 𝐸 = 𝐸+ ∪ 𝐸−.

Proof. See Appendix A.2. □

𝑆

𝑆

𝐹

𝑃

𝑇

Figure 3.9: The 𝑇, 𝑃, 𝑆, 𝐹 and 𝑆 regions.

The final thing we need to check is that 𝑇 ⊂ 𝑆.

Proposition 3.2.4. The region 𝑇 lies inside 𝑆.

Proof. See Appendix A.4. □

So, we can conclude that this metric does expand the region 𝑇 into the region
𝐸 whilst leaving the regions 𝑃, 𝐾 , and 𝐹 unaltered. Now our procedure will stop
dealing with regions and will focus on aspects regarding quantum states. It must
be noted that if𝑈 in a spacetime 𝑀 is causally convex for two different metrics 𝑔
and 𝑔0, and if 𝑔 and 𝑔0 are equal on𝑈, then 𝒜(𝑀, 𝑔;𝑈) � 𝒜(𝑀, 𝑔0;𝑈). From
now on we will identify these algebras if this is the case, and so, a state can be
defined seamlessly on each.
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(SEP.IX) Consider the original state 𝜔 defined in 𝑇 . With the notation introduced
in (2.4), this is 𝜔𝑇 . Note that the restriction of this state to 𝑃, 𝐾 and 𝑆
will also determine the corresponding state within those regions, which
is not difficult to see given that 𝒜(𝑀; 𝑃), 𝒜(𝑀;𝐾) and 𝒜(𝑀; 𝑆) are
subalgebras of 𝒜(𝑀;𝑇).

(SEP.X) By making use of the timeslice axiom on (𝑀, 𝑔), the state 𝜔𝑇 determines a
state 𝜔𝑃 on 𝒜(𝑀, 𝑔; 𝑃) and since 𝑃 is causally convex this also determines
a state on 𝒜(𝑀, 𝑔0; 𝑃). As 𝐸 = 𝐷𝑔 (𝑃), by timeslice we see that 𝜔𝑃
determines 𝜔𝐸 as

𝒜(𝑀, 𝑔; 𝑃) = 𝒜(𝑀, 𝑔;𝐷𝑔𝑃) = 𝒜(𝑀, 𝑔; 𝐸).

Since 𝐹 ⊂ 𝐸 , we see that 𝜔𝐸 determines 𝜔𝐹 on 𝒜(𝑀, 𝑔; 𝐹), since 𝐹
is causally convex and 𝑔 |𝐹 = 𝑔0 |𝐹 , this state will also be defined on
𝒜(𝑀, 𝑔0; 𝐹) as well.

Note that 𝒜(𝑀; 𝑃) ⊂ 𝒜(𝑀;𝑇), so, 𝜔𝑇 determines 𝜔𝐸 , which, as indicated
above, determines 𝜔𝐹 .

(SEP.XI) Observe that 𝑆 = 𝐷𝑔0 (𝐹) and hence by timeslice, 𝜔𝐹 on

𝒜(𝑀, 𝑔; 𝐹) � 𝒜(𝑀, 𝑔0; 𝐹) � 𝒜(𝑀, 𝑔0;𝐷𝑔0 (𝐹))

determines a extended state 𝜔 on 𝒜(𝑀, 𝑔0, 𝑆) which we will denote as
𝜔
𝑆
. This is the end of the procedure.

By using the definition of 𝑆 in (3.3) found within (SEP.VII) along with the
timeslice axiom once more, we arrive to 𝒜(𝑀; 𝐹) � 𝒜(𝑀;𝐷𝑔0𝐹) � 𝒜(𝑀; 𝑆).
Consequently 𝜔𝐹 determines 𝜔. So far, it is not difficult to see that the procedure
that we have just described does take care of extending the state. However, it
remains unclear if it preserves it, so, proving this will be our next task.

Theorem 3.2.1. Consider the original (𝜔) and extended (𝜔) states as given in
(SEP.IX)-(SEP.XI). Then, following the notation introduced in (2.4), we have that

𝜔𝑆 = 𝜔𝑆 .
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Proof. Suppose 𝑈 (resp. 𝑈0) is an open causally convex subset of (𝑀, 𝑔) resp.
(𝑀, 𝑔0). Then an 𝑛-point function of a state on 𝒜(𝑀, 𝑔;𝑈) is an 𝑛-fold solution
to □𝑔 on𝑈×𝑛, while an 𝑛-point function of a state on 𝒜(𝑀, 𝑔0;𝑈0) is an 𝑛-fold
solution to □𝑔0 on 𝑈×𝑛

0 . The 𝑛-point functions of a state restricted to a smaller
region are the restrictions of the 𝑛-point functions. So, let us denote the 𝑛-point
function of a state 𝜔 over a region𝑈 by𝑊𝑛

𝑈
, e.g.: 𝑊𝑛

𝑇
is the 𝑛-point function of

𝜔𝑇 and so, it is an 𝑛-fold □𝑔0-solution on 𝑇×𝑛.

We would like to draw the reader’s attention onto two things that are entailed
in (SEP.VIII). The first is that 𝑃, 𝐾 and 𝐹 are contained within 𝐸 ; the second is
that 𝑔 = 𝑔0 on 𝑃 ∪ 𝐾 ∪ 𝐹. This means that𝑊𝑛

𝐸
is an 𝑛-fold □𝑔-solution on 𝐸×𝑛

that also agrees with𝑊𝑛
𝑇

on 𝑃×𝑛.

Noticing that (SEP.VI) indicates that 𝐹 ⊂ 𝑆 and as noted above 𝐹 ⊂ 𝐸 , a
similar argument leads us to deduce that𝑊𝑛

𝑆
is an 𝑛-fold □𝑔0-solution on 𝑆×𝑛 that

agrees with 𝑊𝑛
𝐸

on 𝐹×𝑛. Also from above we know that 𝑔 |𝐾 = 𝑔0, then □𝑔 and
□𝑔0 agree on 𝐾, so 𝑊𝑛

𝐸
|𝐾×𝑛 and 𝑊𝑛

𝑇
|𝐾×𝑛 obey the same equations and agree on

(𝐾 ∩ 𝑃)×𝑛; therefore they agree on all of 𝐾×𝑛 as 𝐾 ∩ 𝑃 contains a Cauchy surface
of 𝐾 . In (SEP.VII) it is noted that 𝐻 ⊂ 𝐾 , so in particular,𝑊𝑛

𝐸
and𝑊𝑛

𝑇
agree on

the subset 𝐻×𝑛.

Since according to (SEP.VI) we also have 𝐻 ⊂ 𝐹, then 𝑊𝑛
𝑇

and 𝑊𝑛

𝑆
agree

on 𝐻×𝑛; as they are both 𝑛-fold □𝑔0-solutions, they agree on 𝐷𝑔0 (𝐻)×𝑛 which
contains 𝑆×𝑛. Therefore the states 𝜔𝑇 and 𝜔𝑆 have identical n-point functions on
𝑆×𝑛 and therefore restrict to the same state on 𝒜(𝑀, 𝑔0; 𝑆). □

Remark 3.2.1. For purposes that will be clearer later on, we want to point out
that the only assumptions needed to prove the theorem above are the relevant set
inclusions and that the metric 𝑔 becomes 𝑔0 in selected regions.

For the purpose of numerical investigation, we need to specify a trajectory
𝜌 in (3.5) and the test function 𝑓 in (3.8). To this end, for 𝑡 ∈ (𝜀, 𝑡𝐹 − 𝜀) we
introduce the function

𝐼𝜀,𝑡𝐹 ,𝑎 (𝑡) :=
𝑟𝐹 + 𝑟𝑇√

𝜋

Γ(𝑎 + 3/2)
Γ(𝑎 + 1)

∫ −(𝑡𝐹−2𝑡)/(𝑡𝐹−2𝜀)

−1
(1 − 𝑥2)𝑎 𝑑𝑥 (3.10)
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and choose our trajectory to be

𝜌(𝑡) =


−𝑡 −𝜀 < 𝑡 ≤ 𝜀

−𝑡 + 𝐼𝜀,𝑡𝐹 ,𝑎 (𝑡) 𝜀 < 𝑡 < 𝑡𝐹 − 𝜀

𝑟𝐹 + 𝑟𝑇 − 𝑡 𝑡𝐹 − 𝜀 ≤ 𝑡 < 𝑡𝐹 + 𝜀.

Next, for 𝑠 ∈ (0, 1), 𝑧 ∈ R and making use of the beta function 𝐵(𝑥, 𝑦) we define

𝛽𝑏 (𝑠) :=
1

𝐵(𝑏, 𝑏)

∫ 𝑠

0
𝑥𝑏−1(1 − 𝑥)𝑏−1 𝑑𝑥 (3.11)

𝐽𝑟𝐵,𝑏 (𝑧) :=



0 𝑧 ≤ −1 − 𝑟𝐵
𝛽𝑏 (𝑟𝐵 + 𝑧 + 1) −1 − 𝑟𝐵 < 𝑧 < −𝑟𝐵
1 −𝑟𝐵 ≤ 𝑧 ≤ 𝑟𝐵
𝛽𝑏 (𝑟𝐵 − 𝑧 + 1) 𝑟𝐵 < 𝑧 < 𝑟𝐵 + 1

0 𝑟𝐵 + 1 ≤ 𝑧

, (3.12)

with this, we choose our test functions to be

𝑓𝑅 (𝑡, 𝑥) = 𝐽𝑟𝐵,𝑏 (𝑥 − 𝜌(𝑡) − 𝑟𝑇 ), 𝑓𝐿 (𝑡, 𝑥) = 𝐽𝑟𝐵,𝑏 (𝑥 + 𝜌(𝑡) + 𝑟𝑇 ). (3.13)

It must be noted that although the SEP procedure requires 𝑓 and 𝜌 to be smooth,
our choices are not. This should not cause any trouble given that after some point,
the computer is not able to distinguish between a smooth function and a function
of finite differentiability class. It is not hard to find out how many continuous
derivatives we have for each function, which will depend on the parameters 𝑎 and
𝑏.

Proposition 3.2.5. Let 𝐼𝜀,𝑡𝐹 ,𝑎 and 𝛽𝑏 be as in (3.10) and (3.11). Also, assume
that 𝑎, 𝑏 ∈ N with 𝑎 < 𝑏. If we introduce 𝑁 = 2𝑎 and 𝑀 = min{2𝑎, 2(𝑏 − 1)},
then 𝜌 ∈ 𝐶𝑁 (T ) (where T is as in (3.5)) and 𝑓 ∈ 𝐶𝑀 (R2).

Proof. See Appendix A.5. □

If we set the following values for the parameters

𝑟𝑇 = 1, 𝑟𝑆 =
1
2
, 𝑟𝐹 = 2, 𝑟𝐾 =

9
10
,

𝑡𝐹 =
1
5
, 𝑟𝐵 = 𝜀 =

1
20
, 𝑎 = 2, 𝑏 = 3, (3.14)
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Figure 3.11: Plot of 𝑣(𝑡) for the chosen parameters.

we obtain a concrete form of the functions that we will use for our numeric
investigations. By setting 𝑎 = 2 and 𝑏 = 3 in Proposition 3.2.5 we note that
𝜌 ∈ 𝐶4(T ), 𝑣 ∈ 𝐶3(T ) and 𝑓 ∈ 𝐶4(R2); their plots can be found in Figures 3.10,
3.11 and 3.12.

3.3 null coordinates

Although the metric (3.8) in (𝑡, 𝑥) coordinates carries out the expansion, it is useful
to write it in term of other coordinates. These new coordinates acquire constant
values along null-geodesics, and in consequence are called null coordinates. To
obtain the null-geodesics we have to solve the following equations

𝑑𝑥

𝑑𝜆
= [𝑘 + 𝑓 (𝑟 (𝜆), 𝑡 (𝜆)) · 𝑣(𝑡 (𝜆))] 𝑑𝑡

𝑑𝜆
, ( for 𝑘 ∈ {−1, 1}), (3.15)

setting 𝑡 = 𝜆 and integrating numerically using Maple with a continuous 7th-8th
order Runge-Kutta method we can plot the ingoing and the outgoing null geodesics.
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Figure 3.12: Plot of 𝑓𝐿 and 𝑓𝑅 .

Our results are in Figures 3.13 and 3.14 where the black trajectories correspond
to the images of 𝜌(𝑡) and −𝜌(𝑡), respectively. Before continuing, we will outline
the ray-tracing procedure. By ray-tracing, we mean that we need to specify a point
(𝑡′, 𝑥′) in the future, find the solution to (3.15) that passes through it, and then see
what is the value of𝑈 or 𝑉 in the far past for that solution – for our purposes, it
suffices to check the value of that solution at 𝑡 = 0. This yields surfaces for𝑈 and
𝑉 as functions of (𝑡, 𝑥), its plots can be found in Figures 3.15 and 3.17.

Proposition 3.3.1. Via ray-tracing it is possible to construct global coordinates
(𝑈,𝑉) and a smooth function Ω such that

𝑔 = 𝑒2Ω(𝑈,𝑉)𝑑𝑈 ⊗𝑠 𝑑𝑉. (3.16)

The conformal factor is given by

𝑒2Ω(𝑈,𝑉)

2
=

����� 𝜕 (𝑡, 𝑥)𝜕 (𝑈,𝑉)

�����. (3.17)

Proof. It is well-known that any two-dimensional metric is locally conformal to
a metric of the form 𝑑𝑈 ⊗𝑠 𝑑𝑉 . As a matter of fact, this result holds globally
for a globally hyperbolic spacetime (c.f. [31]). Also, we know that under a
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transformation 𝑔 ↦→ 𝑔, we will have det(𝑔) =
��𝜕 (𝑡, 𝑥)/𝜕 (𝑈,𝑉)��2det(𝑔), from

(3.8) we deduce that det𝑔 = −1 and so, we conclude that

𝑔 = 𝑒2Ω(𝑈,𝑉)𝑑𝑈 ⊗𝑠 𝑑𝑉. (3.18)

Proposition 4.2 in [31] gives a conformal map Φ from 𝑀 onto a relatively compact
region in Minkowski (i.e. its closure is compact in Minkowski), which we can write
as Φ(𝑝) = (𝑇 (𝑝), 𝑋 (𝑝)). Then 𝑈 (𝑝) = 𝑇 (𝑝) − 𝑋 (𝑝) and 𝑉 (𝑝) = 𝑇 (𝑝) + 𝑋 (𝑝)
give global coordinates on 𝑀 so that (3.18) holds for some smooth Ω. The
coordinates 𝑈 and 𝑉 are harmonic, so they must satisfy the wave equation
□(𝑔,𝑀)𝑈 = □(𝑔,𝑀)𝑉 = 0 and since they are light-like coordinates, both 𝑑𝑈 and
𝑑𝑉 are null. Also, to avoid degeneracy in the metric (3.18) 𝑑𝑈 and 𝑑𝑉 must be
non-zero.

As 𝑈 satisfies the wave equation and in the region 𝑡 < 𝜀 we have 𝑔 = 𝑔0,
we find that for smooth 𝑓 and ℎ with non-vanishing derivatives, a solution is
𝑈 (𝑡, 𝑥) = 𝑓 (𝑡−𝑥)+ℎ(𝑡+𝑥). Then 𝑑𝑈 = ( 𝑓 ′+ℎ′)𝑑𝑡−( 𝑓 ′−ℎ′)𝑑𝑥 and since its null,
we find that either 𝑓 ′ or ℎ′ must vanish. Without loss of generality assume that ℎ′

does, then ℎ is a constant that can be absorbed into 𝑓 and so,𝑈 (𝑡, 𝑥) = 𝑓 (𝑡 − 𝑥).
The same reasoning can be followed to see that 𝑉 (𝑡, 𝑥) = ℎ(𝑡 + 𝑥), if we introduce
𝑢 = 𝑡 − 𝑥 and 𝑣 = 𝑡 + 𝑥, we find that𝑈 = 𝑓 (𝑢) and 𝑉 = ℎ(𝑣).

On the grounds that 𝑢 and 𝑣 each map the 𝑡 < 0 region onto the whole real
line, we see that 𝑓 and ℎ are defined on R. Moreover, 𝑢 and 𝑣 have non-vanishing
derivatives, so, they are invertible onto their images. Also, by construction,𝑈 and
𝑉 are each constant along appropriate families of null geodesics which by global
hyperbolicity, must reach the 𝑡 < 0 region; therefore𝑈 and 𝑉 will never take any
value that they can not take on 𝑡 < 0. Lastly, for an open set𝑂 define �̂� = 𝑓 −1(𝑈)
and �̂� = ℎ−1(𝑉) which are coordinates mapping 𝑀 to 𝑂 ×𝑂 ⊂ R2, in which

𝑔 = 𝑒2Ω̂𝑑�̂� ⊗𝑠 𝑑�̂�

and �̂� = 𝑢, �̂� = 𝑣 on 𝑡 < 0. Because �̂� and �̂� are constant along appropriate
nulls, this means that we can determine �̂� (𝑡, 𝑥) and �̂� (𝑡, 𝑥) by ray tracing. To
avoid confusion, from now on we will drop the hats, and the coordinates𝑈 and 𝑉
are to be understood as global coordinates on R2. □
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Figure
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The fact that we can write the metric globally as in (3.16) will be very useful
when we compute the stress-energy tensor as it acquires a rather simplified form
in these coordinates - c.f. Proposition 3.4.1. Furthermore, one of the main
advantages of working in two dimensions is that if one can find 𝑈 and 𝑉 as
functions of (𝑡, 𝑥) then one can do the same for the conformal factor exp(2Ω).
The following Proposition and Corollary elaborate on this.

Proposition 3.3.2. The following expressions relate the original coordinates
(𝑡, 𝑥) with the new coordinates (𝑈,𝑉)��� 𝜕𝑡

𝜕𝑈

𝜕𝑡

𝜕𝑉

��� = 1
4
𝑒2Ω(𝑈,𝑉) , (3.19)

𝜕𝑥

𝜕𝑈
= ( 𝑓 𝑣 − 1) 𝜕𝑡

𝜕𝑈
, (3.20)

𝜕𝑥

𝜕𝑉
= ( 𝑓 𝑣 + 1) 𝜕𝑡

𝜕𝑉
. (3.21)

Proof. Because of Proposition 3.3.1 we know that it is possible to write the metric
(3.8) making use of 𝑑𝑡 = (𝜕𝑡/𝜕𝑈)𝑑𝑈 + (𝜕𝑡/𝜕𝑉)𝑑𝑉 and 𝑑𝑥 = (𝜕𝑥/𝜕𝑈)𝑑𝑈 +
(𝜕𝑥/𝜕𝑉)𝑑𝑉 , this results in

𝑔 =

((
𝜕𝑡

𝜕𝑈

)2
−

(
𝜕𝑥

𝜕𝑈
− 𝑓 𝑣

𝜕𝑡

𝜕𝑈

)2
)
𝑑𝑈 ⊗ 𝑑𝑈

+
((
𝜕𝑡

𝜕𝑉

)2
−

(
𝜕𝑥

𝜕𝑉
− 𝑓 𝑣

𝜕𝑡

𝜕𝑉

)2
)
𝑑𝑉 ⊗ 𝑑𝑉

+ 2
(
𝜕𝑡

𝜕𝑈

𝜕𝑡

𝜕𝑉
−

(
𝜕𝑥

𝜕𝑈
− 𝑓 𝑣

𝜕𝑡

𝜕𝑈

) (
𝜕𝑥

𝜕𝑉
− 𝑓 𝑣

𝜕𝑡

𝜕𝑉

))
𝑑𝑈 ⊗𝑠 𝑑𝑉. (3.22)

Comparing (3.22) with (3.18) we conclude that for 𝑘, 𝑘′ ∈ {−1, 1} we will have

𝜕𝑥

𝜕𝑈
= (𝑘 + 𝑓 𝑣) 𝜕𝑡

𝜕𝑈
(3.23)

𝜕𝑥

𝜕𝑉
= (𝑘′ + 𝑓 𝑣) 𝜕𝑡

𝜕𝑉
(3.24)

𝑒2Ω = 2
𝜕𝑡

𝜕𝑈

𝜕𝑡

𝜕𝑉
− 2

(
𝜕𝑥

𝜕𝑈
− 𝑓 𝑣

𝜕𝑡

𝜕𝑈

) (
𝜕𝑥

𝜕𝑉
− 𝑓 𝑣

𝜕𝑡

𝜕𝑉

)
. (3.25)

Substituting (3.23) and (3.24) into (3.17) yields

𝑒2Ω = 2|𝑘 − 𝑘′| | (𝜕𝑡/𝜕𝑈) (𝜕𝑡/𝜕𝑉) |,
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so, we necessarily must have (a) 𝑘 = −𝑘′ and (b) 𝑑𝑡 ≠ 0 for any value of (𝑈,𝑉)
[from this and (3.23-3.24) it follows that 𝑑𝑥 ≠ 0 as well]. Clearly, (a) implies that

𝑒2Ω = 4
𝜕𝑡

𝜕𝑈

𝜕𝑡

𝜕𝑉
. (3.26)

We choose 𝑘 = −1 to adhere to the usual convention of null coordinates. Making
this substitution in (3.23), (3.24) and (3.25) leads to our result. □

Corollary 3.3.1. The following identities for the derivatives

𝜕𝑡

𝜕𝑈
=
𝑒2Ω

2
𝜕𝑉

𝜕𝑥
,

𝜕𝑡

𝜕𝑉
= −𝑒

2Ω

2
𝜕𝑈

𝜕𝑥
,

𝜕𝑥

𝜕𝑈
= −𝑒

2Ω

2
𝜕𝑉

𝜕𝑡
,

𝜕𝑥

𝜕𝑉
=
𝑒2Ω

2
𝜕𝑈

𝜕𝑡
,

(3.27)

lead us to deduce that the conformal factor acquires the following form

Ω(𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥)) = −1
2

ln
���𝜕𝑈
𝜕𝑥

𝜕𝑉

𝜕𝑥

���. (3.28)

Proof. Since |𝜕 (𝑡, 𝑥)/𝜕 (𝑈,𝑉) | = 𝑒2Ω/2 we know that (𝜕 (𝑡, 𝑥)/𝜕 (𝑈,𝑉)) =

(𝜕 (𝑈,𝑉)/𝜕 (𝑡, 𝑥))−1 must hold everywhere. Also, as | (𝜕 (𝑈,𝑉)/𝜕 (𝑡, 𝑥)) | = 2𝑒−2Ω,
we will have (

𝜕𝑡
𝜕𝑈

𝜕𝑡
𝜕𝑉

𝜕𝑥
𝜕𝑈

𝜕𝑥
𝜕𝑉

)
=

(
𝜕𝑈
𝜕𝑡

𝜕𝑈
𝜕𝑥

𝜕𝑉
𝜕𝑡

𝜕𝑉
𝜕𝑥

)−1

=
𝑒2Ω

2

(
𝜕𝑉
𝜕𝑥

− 𝜕𝑈
𝜕𝑥

− 𝜕𝑉
𝜕𝑡

𝜕𝑈
𝜕𝑡

)
,

from which it follows that (3.27) hold. To deduce (3.28), just substitute (3.27)
into (3.19). □

As it will be shown later in Section 3.1, this will allow us to find the
stress-energy tensor in terms of the original coordinates (𝑡, 𝑥).

3.3.1 States in null coordinates

Our choice of coordinates in Proposition 3.3.1 is particularly useful when comput-
ing the renormalised stress-energy tensor because it acquires a rather simple form.
However, before going into this, we will discuss some necessary aspects of the
states of the quantum field under different coordinates, namely Cartesian (𝑡, 𝑥)
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and null (𝑈,𝑉). Then, we consider Minkowski spacetime with the following
systems of global coordinates

(𝑡, 𝑥) ∈ R2 and (𝑢 = 𝑡 − 𝑥, 𝑣 = 𝑡 + 𝑥) ∈ R2. (3.29)

Consider the global system of coordinates in Proposition 3.3.1 given by

(𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥)) ∈ R2 such that𝑈 (𝑡, 𝑥) = 𝑢 and 𝑉 (𝑡, 𝑥) = 𝑣 for 𝑡 ≤ 𝜀. (3.30)

Next, let us write the Minkowski metric as

𝑔0 = 𝑑𝑡 ⊗ 𝑑𝑡 − 𝑑𝑥 ⊗ 𝑑𝑥 = 𝑑𝑢 ⊗𝑠 𝑑𝑣 (3.31)

and introduce two conformally related metrics, given by

�̃�0 = 𝑑𝑈 ⊗𝑠 𝑑𝑉 𝑔 = 𝑒2Ω�̃�0, (3.32)

the conformal factor is as defined in Eq. (3.18) and the metric 𝑔 is given in (𝑡, 𝑥)
coordinates in Eq. (3.8). Observe that 𝑔0 and �̃�0 coincide in the region where
𝑡 ≤ 𝜀 as both are the Minkowski metric in this region. Furthermore, we remind
the reader that we can obtain𝑈, 𝑉 and Ω as functions of (𝑡, 𝑥) using the methods
found in Section 3.3.

In the remainder of this section, we will show that the two-point function for 𝑔
in the (𝑡, 𝑥) coordinates, can be written in terms of the two-point function for 𝑔0

in terms of the (𝑈,𝑉) coordinates, which as we mentioned before, are functions
of (𝑡, 𝑥). In order to get us to this result, let us recall some basic facts from the
methods of characteristics in partial differential equations.

The main idea is as follows: suppose we that 𝜙0 is a solution to the Klein-
Gordon equation for Minkowski spacetime and we know its form on the region
where 𝑡 ≤ 𝜀. Furthermore, suppose that 𝜙 is a solution to the Klein-Gordon
equation for our warped spacetime. Then, we can determine 𝜙 from 𝜙0.

Also, we would like to stress that as noted in (3.30), we have (𝑈,𝑉) = (𝑢, 𝑣)
for 𝑢 + 𝑣 ≤ 𝜀. And so, a solution to □�̃�0𝜙0 = 0 can be written in terms of the
(𝑢, 𝑣) coordinates.

Proposition 3.3.3. Let 𝜙0 and 𝜙 be solutions to the massless wave equation
in (R2, �̃�0) and (R2, 𝑔), respectively. Impose the boundary condition 𝜙 = 𝜙0 in
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(−∞,R) × R. Then, let us consider the region where 𝑢 + 𝑣 ≤ 𝜀 and denote the
solution to □�̃�0𝜙0 = 0 in the (𝑢, 𝑣) coordinate system (written in terms of 𝑢 and 𝑣)
as (𝑢,𝑣)𝜙0(𝑢, 𝑣). Then, if we do the same for □𝑔𝜙 = 0 in the (𝑈,𝑉) coordinates
by writing (𝑈,𝑉)𝜙(𝑈,𝑉), we find that

(𝑈,𝑉)𝜙(𝑈,𝑉) = (𝑢,𝑣)𝜙0(𝑈,𝑉). (3.33)

Proof. Making use of (3.31) and (3.32) we deduce that �̃�0 = exp(−2Ω)𝑔. Ad-
ditionally, as 𝜙 is a solution to the massless wave equation in (R2, 𝑔), then
□𝑔𝜙 = 0 which in turn implies that exp(−2Ω)□�̃�0𝜙 = 0 and consequently that
𝜕2( (𝑈,𝑉)𝜙)/𝜕𝑈𝜕𝑉 = 0. Hence, 𝜙(𝑡, 𝑥) = 𝑓 (𝑈 (𝑡, 𝑥)) + ℎ(𝑉 (𝑡, 𝑥)) for appropriate
functions 𝑓 and ℎ.

Moreover, as we are considering the region 𝑡 = 𝑢 + 𝑣 ≤ 𝜀, then (3.29) and
(3.30) imply that 𝜙(𝑡, 𝑥) = 𝑓 (𝑡−𝑥)+ℎ(𝑡+𝑥). Therefore 𝑓 and ℎ can be determined
everywhere by knowing 𝜙 in 𝑡 ≤ 𝜀. In fact, we find that

if (𝑢,𝑣)𝜙0(𝑢, 𝑣) = 𝑓 (𝑢) + ℎ(𝑣) on 𝑢 + 𝑣 ≤ 𝜀
then (𝑈,𝑉)𝜙(𝑈,𝑉) = 𝑓 (𝑈) + ℎ(𝑉) for all𝑈, 𝑉,

so (𝑈,𝑉)𝜙(𝑈,𝑉) = (𝑢,𝑣)𝜙0(𝑈,𝑉).

□

Equation (3.33) reads as: the solution for □𝑔𝜙 = 0 in (𝑈,𝑉) coordinates is the
same as the solution obtained for □�̃�0𝜙 = 0 in (𝑢, 𝑣) coordinates upon substitution
of 𝑢 with𝑈 and 𝑣 with 𝑉 . Note that (3.33) is not a consequence of a coordinate
transformation since this would be (𝑈,𝑉)𝜙(𝑈,𝑉) = (𝑢,𝑣)𝜙0(𝑢(𝑈,𝑉), 𝑣(𝑈,𝑉)).
Let us follow the same train of thought with bisolutions; this will allow us to
make contact with our main goal: finding the two-point function for (R2, 𝑔) with
(𝑡, 𝑥) coordinates in terms of the two-point function for (R2, 𝑔0) with (𝑈,𝑉)
coordinates.

Proposition 3.3.4. Let 𝜔0 be a bisolution to the Klein-Gordon equation in
(R2, �̃�0), that is, (□�̃�0 ⊗ 1)𝜔0 = 0 and (1 ⊗ □�̃�0)𝜔0 = 0. Also, let us denote by 𝜔
the bisolution to □𝑔 with boundary condition 𝜔 = 𝜔0 in ((−∞, 𝜀) × R)×2. Then,
following the notation from Proposition 3.3.3, we claim that

(𝑈,𝑉)×(𝑈,𝑉)𝜔(𝑈,𝑉 ;𝑈′, 𝑉 ′) = (𝑢,𝑣)×(𝑢,𝑣)𝜔0(𝑈,𝑉 ;𝑈′, 𝑉 ′).
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Proof. We begin by noting that because of the boundary condition, the claim
holds in ((−∞, 𝜀) × R)×2. Also, this fixes 𝜔 completely in R2 × R2 in a similar
fashion as 𝑓 and ℎ were fixed in Proposition 3.3.3. Next, we need to check
that under these assumptions, 𝜔 will be a bisolution to □𝑔. As it was noted in
Proposition 3.3.3 we have □𝑔 = exp(−2Ω)□�̃�0 , from this same Proposition it also
follows that

(𝑈,𝑉)×(𝑈,𝑉) (□𝑔 ⊗ 1)𝜔(𝑈,𝑉 ;𝑈′, 𝑉 ′)

= exp(−2Ω) 𝜕2

𝜕𝑈𝜕𝑉

(
(𝑈,𝑉)×(𝑈,𝑉)𝜔

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′)

= exp(−2Ω) 𝜕2

𝜕𝑈𝜕𝑉

(
(𝑢,𝑣)×(𝑢,𝑣)𝜔0

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′)

= exp(−2Ω) (𝑢,𝑣)×(𝑢,𝑣) (□𝑔0 × 1)𝜔0(𝑢, 𝑣 : 𝑢′, 𝑣′)
= 0,

following a similar approach it is possible to show that (𝑈,𝑉)×(𝑈,𝑉) (1 ⊗ □𝑔)𝜔 =

0. □

Therefore, the two-point functions are related as follows

(𝑈,𝑉)×(𝑈,𝑉)𝜔(𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥);𝑈 (𝑡′, 𝑥′), 𝑉 (𝑡′, 𝑥′))
= (𝑢,𝑣)×(𝑢,𝑣)𝜔0(𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥);𝑈 (𝑡′, 𝑥′), 𝑉 (𝑡′, 𝑥′)),

which can be rephrased as

𝜔(𝑡, 𝑥; 𝑡′, 𝑥′) = (𝑢,𝑣)×(𝑢,𝑣)𝜔0(𝑈 (𝑡, 𝑥), 𝑉 (𝑡, 𝑥);𝑈 (𝑡′, 𝑥′), 𝑉 (𝑡′, 𝑥′))

or yet, in a conceptually clearer although visually intricate formulation, we find

𝜔(𝑡, 𝑥; 𝑡′, 𝑥′) =

𝜔0

(
𝑉 (𝑡, 𝑥) +𝑈 (𝑡, 𝑥)

2
,
𝑉 (𝑡, 𝑥) −𝑈 (𝑡, 𝑥)

2
;
𝑉 (𝑡′, 𝑥′) +𝑈 (𝑡′, 𝑥′)

2
,
𝑉 (𝑡′, 𝑥′) −𝑈 (𝑡′, 𝑥′)

2

)
.

The following Corollary is just an immediate step towards a bigger result.

Corollary 3.3.2. Let 𝜔 and 𝜔0 be bisolutions as in Proposition 3.3.4. Also,
let 𝐻�̃�0 and 𝐻𝑔0 be the Hadamard parametrix associated to (R2, �̃�0) and (R2, 𝑔0),
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respectively. Then,

(𝑈,𝑉)×(𝑈,𝑉)
( (
∇𝜕/𝜕𝑈 ⊗ 1

)
(𝜔 − 𝐻�̃�0)

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′)

= (𝑢,𝑣)×(𝑢,𝑣)
( (
∇𝜕/𝜕𝑢 ⊗ 1

)
(𝜔0 − 𝐻𝑔0)

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′).

A similar result holds for 𝜕/𝜕𝑉 and 𝜕/𝜕𝑣. Furthermore, the same result for the
second slot is proven in a similar way.

Proof. We begin by observing that (R2, 𝑔0) is isometric to (R2, �̃�0) under the
map (𝑢, 𝑣) ↦→ (𝑈,𝑉) and in consequence, the Hadamard parametrices obey the
following property

(𝑈,𝑉)×(𝑈,𝑉)𝐻�̃�0 (𝑈,𝑉 ;𝑈′, 𝑉 ′) = (𝑢,𝑣)×(𝑢,𝑣)𝐻𝑔0 (𝑈,𝑉 ;𝑈′, 𝑉 ′).

Using this, we calculate

(𝑈,𝑉)×(𝑈,𝑉)
( (
∇𝜕/𝜕𝑈 ⊗ 1

)
(𝜔 − 𝐻�̃�0)

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′)

=
𝜕

𝜕𝑈
(𝑈,𝑉)×(𝑈,𝑉) (𝜔 − 𝐻�̃�0) (𝑈,𝑉 ;𝑈′, 𝑉 ′)

= (𝑢,𝑣)×(𝑢,𝑣)
( (
∇𝜕/𝜕𝑈 ⊗ 1

)
(𝜔0 − 𝐻𝑔0)

)
(𝑈,𝑉 ;𝑈′, 𝑉 ′).

□

In order to make contact with the usual physics vernacular, we will refer to
bisolutions as two-point functions from now on. Also, for a state 𝜔 we will denote
its corresponding two-point function by 𝜔(𝑝, 𝑝′), unless indicated otherwise.

3.4 the stress-energy tensor of an extended state

A good way to see if we actually extended the state according to the requirements
stated in Section 3.1, is to calculate the stress-energy tensors of the original and
extended states. We have argued in Section 3.3.1 that the regions where these
states are defined on are conformally related spacetimes. So, if one takes the
original state 𝜔 to be the Minkowski vacuum in 𝑇 , the stress-energy tensor of the
extended state 𝜔 should be conformally related to it in 𝐸 (hence on 𝑆) and agree
with that of 𝜔 on 𝑆.
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It must be noted that one needs to be careful when computing the regularised
stress-energy tensor when the dimension of the spacetime is even (our case)
because proceeding in a naïve way will lead to a stress-energy tensor that is not
conserved and that does not account for the conformal anomaly. However, all of
these problems can be fixed (c.f. [64] or [51] for a more rigorous approach) by
subtracting a term of the form 𝑔𝜇𝜈 (𝑧)𝑄(𝑧)–where𝑄 is a local curvature term–from
𝜔(𝑇𝜇𝜈)).

The previous section lays the foundation needed to compute the stress-energy
tensor. Usually one has to consider the point-split version of a differential operator,
examine its action on the two-point function and take the coincidence limit making
use of the so-called Synge’s rule (c.f. Chapter 8 in [36]). In the author’s viewpoint,
this procedure is rather obscure and can easily lead to mistakes when not done
with extreme precaution. Because of this, we will introduce a slightly different
formulation of this.

As it is widely known, the bisolutions considered in the previous section
often happen to be distributions that have a very particular singular structure.
This structure is completely determined by the state and the local geometry.
Furthermore, it can be encoded into the Hadamard parametrix 3.1.1. As it
contains the singularities from the two-point function, their difference introduces
the notion of regularised two-point function.

Definition 3.4.1. Let 𝑓 ∈ 𝐶∞(𝑀 × 𝑀) and denote its value on the diagonal by
[ 𝑓 ], that is, [ 𝑓 ] (𝑝) = 𝑓 (𝑝, 𝑝).

A famous example where this notation shows its usefulness is when one defines
regularised expectation values of two-point functions at a point 𝑝. Suppose we
are given a Hadamard parametrix 𝐻𝑔 (𝑝, 𝑝′) associated to (𝑀, 𝑔). Then, for a
two-point function 𝜔(𝑝, 𝑝′) of the Hadamard form, we have the regularised object

𝑤(𝑝) =
[
𝜔 − 𝐻𝑔

]
(𝑝).

Note that 𝑤 ∈ 𝐶∞(𝑀). This follows from Definition 2.3.5 of Hadamard form,
which implies that (𝜔 − 𝐻𝑔) ∈ 𝐶∞(𝑀 × 𝑀). The notation introduced above can
be extended to tensors. For instance, if we consider the smooth covector field
given by (∇ × 1) 𝑓 , then, [(∇ × 1) 𝑓 ] (𝑝) will be a covector at 𝑝, which is a rank
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(0, 1) tensor. Recalling that a bi-covector field is an element of the tensor product
of smooth sections of cotangent bundles, we can apply the same logic to the
smooth bi-covector field (∇ ×∇) 𝑓 to obtain the rank (0, 2) tensor [(∇ ×∇) 𝑓 ] (𝑝).
Since the stress-energy tensor is a rank (0, 2), we are on good grounds to define it.

Definition 3.4.2. Let 𝜔(𝑝, 𝑝′) be a two-point function and 𝐻𝑔 (𝑝, 𝑝′) the
Hadamard parametrix associated to (𝑀, 𝑔). Consider the rank (0, 2) tensor
[(∇ × ∇)(𝜔 − 𝐻𝑔)] (𝑝), then, using its components we define

𝐷𝜇𝜈 (𝑝) = [(∇ × ∇)(𝜔 − 𝐻𝑔)]𝜇𝜈 (𝑝)

and introduce the regularised stress-energy tensor for a conformally-invariant
massless scalar field in two dimensions, which is given by

⟨: 𝑇𝜇𝜈 [𝑔] :⟩𝜔 (𝑝) = 𝐷𝜇𝜈 (𝑝) −
1
2
𝑔𝜇𝜈 (𝑝)𝑔𝜌𝜎 (𝑝)𝐷𝜌𝜎 (𝑝). (3.34)

Clearly, if we consider Minkowski spacetime and the two-point function of the
vacuum state, we will have ⟨: 𝑇𝜇𝜈 [�̃�0] :⟩𝜔0 (𝑝) ≡ 0.

Corollary 3.4.1. Let 𝜔 and 𝜔0 be two-point functions as specified in Section
3.3.1. If we consider components of the stress-energy tensor following the notation
introduced in that Section, we will have

⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝑈𝑈 [�̃�0] :⟩𝜔 (𝑈,𝑉) = ⟨: (𝑢,𝑣)×(𝑢,𝑣)𝑇𝑢𝑢 [𝑔0] :⟩𝜔0 (𝑈,𝑉)
⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝑈𝑉 [�̃�0] :⟩𝜔 (𝑈,𝑉) = ⟨: (𝑢,𝑣)×(𝑢,𝑣)𝑇𝑢𝑣 [𝑔0] :⟩𝜔0 (𝑈,𝑉)
⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝑉𝑉 [�̃�0] :⟩𝜔 (𝑈,𝑉) = ⟨: (𝑢,𝑣)×(𝑢,𝑣)𝑇𝑣𝑣 [𝑔0] :⟩𝜔0 (𝑈,𝑉).

Note that these formulae are not that of a coordinate transformation. So, in
particular, we observe that ⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝜇𝜈 [�̃�0] :⟩𝜔 (𝑈,𝑉) ≡ 0.

Proof. As (3.34) indicates, the components of the stress-energy tensor can be
found by taking derivatives of the regularised two-point function. So, by using
Corollary 3.3.2, the result follows immediately. □

Let us adapt the previous results to the case where the original data is the
two-point function 𝜔0 for the Minkowski vacuum state with the 𝑔0 metric in
(𝑢, 𝑣) coordinates. Thus, from the start we can calculate quantities such as ⟨:
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(𝑢,𝑣)×(𝑢,𝑣)𝑇𝑢𝑢 [𝑔0] :⟩𝜔0 , etc. So, provided we can compute ⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝜇𝜈 [𝑔0] :⟩𝜔
from them for a certain state 𝜔, we can make use of the conformal transformation
rule (see Section 6 in [10]) and obtain ⟨: (𝑡,𝑥)×(𝑡,𝑥)𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔, the regularised
two-point function for the conformally related state 𝐶𝜔.

It must be noted that this conformal transformation rule is remarkably simple
in the two-dimensional case, hence our choice to study it. It might not be evident
why we can go from ⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔 to ⟨: (𝑡,𝑥)×(𝑡,𝑥)𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔 but this
is certainly the case as it has been proven in Section 3.3.

To summarise: in principle, the expectation value ⟨: (𝑡,𝑥)×(𝑡,𝑥)𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔 can
be computed easily using a conformal transformation rule once ⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝜇𝜈 [�̃�0] :⟩𝜔
is known in terms of ⟨: (𝑢,𝑣)×(𝑢,𝑣)𝑇𝑢𝑢 [𝑔0] :⟩𝜔0 . Henceforth, to prevent hand fatigue,
we will denote ⟨: (𝑡,𝑥)×(𝑡,𝑥)𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔 by ⟨: 𝑇𝜇𝜈 [𝑔] :⟩𝐶𝜔, the same subscripts will
be omitted for ⟨: (𝑈,𝑉)×(𝑈,𝑉)𝑇𝜇𝜈 [�̃�0] :⟩𝜔 unless it is indicated otherwise.

Proposition 3.4.1. Let ⟨𝑇𝜇𝜈 [�̃�0]⟩𝜔 be the regularised stress-energy tensor with
respect to a reference state𝜔 (not necessarily the vacuum) in Minkowski spacetime
(M, 𝑔). Then, this defines a conformally related regularised stress-energy tensor
given by

⟨𝑇𝜇𝜈 [𝑔]⟩𝐶𝜔 = 𝑒−2Ω⟨𝑇𝜇𝜈 [�̃�0]⟩𝜔 + 𝜃𝜇𝜈 +
𝑒−2Ω

24𝜋
𝜕2Ω

𝜕𝑈𝜕𝑉
𝑔𝜇𝜈 (3.35)

where the 𝜃𝜇𝜈 symbols are as follows

𝜃𝑈𝑈 :=
1

12𝜋

[
𝜕2Ω

𝜕𝑈2 −
(
𝜕Ω

𝜕𝑈

)2
]

𝜃𝑉𝑉 :=
1

12𝜋

[
𝜕2Ω

𝜕𝑉2 −
(
𝜕Ω

𝜕𝑉

)2
]

𝜃𝑈𝑉 = 𝜃𝑉𝑈 = 0.

Proof. According to (6.136) in [10] the coordinates in Proposition 3.3.1 lead to

⟨𝑇𝜇𝜈 [𝑔]⟩𝐶𝜔 =

(
det(𝑔)
det(�̃�0)

)−1/2
⟨𝑇𝜇𝜈 [�̃�0]⟩𝜔 + 𝜃𝜇𝜈 −

𝑅

48𝜋
𝑔𝜇𝜈 . (3.36)

In our particular setting 𝑅 = −2𝑒−2Ω(𝜕2Ω/𝜕𝑈𝜕𝑉) and det(𝑔) = −𝑒4Ω whilst
det(�̃�0) = −1, substituting this into (3.36) yields our final result. □
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If the reference state used in evaluating the expectation value in the RHS is
the vacuum state, then the resulting state in the LHS will be a conformal vacuum.
However, the first term will vanish only if the spacetime is conformal to all of
Minkowski. If not, it will contribute. As our reference state is Minkowski vacuum,
this result simplifies further into:

Corollary 3.4.2. The components of the stress-energy tensor (3.35) are given
by

𝑇𝑈𝑈 =
1

12𝜋

(
𝜕2Ω

𝜕𝑈2 −
(
𝜕Ω

𝜕𝑈

)2
)
,

𝑇𝑉𝑉 =
1

12𝜋

(
𝜕2Ω

𝜕𝑉2 −
(
𝜕Ω

𝜕𝑉

)2
)
,

𝑇𝑈𝑉 =
1

24𝜋
𝜕2Ω

𝜕𝑈𝜕𝑉
.

Proof. Making use of (3.35) we evaluate

⟨: 𝑇𝑈𝑈 [𝑔] :⟩𝐶𝜔 = 𝑒−2Ω⟨: 𝑇𝑈𝑈 [�̃�0] :⟩𝜔 + 𝜃𝑈𝑈 ,

from which it is clear that a similar result holds for ⟨: 𝑇𝑉𝑉 [𝑔] :⟩𝐶𝜔. for the
remaining component, we obtain

⟨: 𝑇𝑈𝑉 [𝑔] :⟩𝐶𝜔 = 𝑒−2Ω⟨𝑇𝑈𝑉 [�̃�0]⟩𝜔 + 1
24𝜋

𝜕2Ω

𝜕𝑈𝜕𝑉
𝑔𝜇𝜈

Because of Corollary 3.4.1 we know that ⟨: 𝑇𝜇𝜈 [�̃�0] :⟩𝐶𝜔 ≡ 0, this along with the
definition of the 𝜃 symbols introduced in Proposition 3.4.1 proves the claim. □

3.5 discussion

To obtain any of the components of the stress-energy tensor, we need to compute
the second derivatives of Ω. This has been done numerically and we have set up
our numerical scheme so that the following quantities are easy to obtain

𝜕𝑈

𝜕𝑡
,
𝜕𝑈

𝜕𝑥
,
𝜕𝑉

𝜕𝑡
,
𝜕𝑉

𝜕𝑥
,
𝜕Ω

𝜕𝑡
,
𝜕Ω

𝜕𝑥
.
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Figure 3.19: Energy density E (given in (3.37)) for our timelike observer.
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Because of this, it is convenient to write the second derivatives of Ω in terms
of these first derivatives. According to Corollary 3.3.1 we have

𝜕

𝜕𝑈
=
𝑒2Ω

2

(
𝜕𝑉

𝜕𝑥

𝜕

𝜕𝑡
− 𝜕𝑉

𝜕𝑡

𝜕

𝜕𝑥

)
,

𝜕

𝜕𝑉
= −𝑒

2Ω

2

(
𝜕𝑈

𝜕𝑥

𝜕

𝜕𝑡
− 𝜕𝑈

𝜕𝑡

𝜕

𝜕𝑥

)
,

which in turn implies that

𝜕2Ω

𝜕𝑈2 =
𝑒2Ω

2

(
𝜕𝑉

𝜕𝑥

𝜕

𝜕𝑡
− 𝜕𝑉

𝜕𝑡

𝜕

𝜕𝑥

) [
𝜕Ω

𝜕𝑈

]
.

In order to gain further insight into the state expansion, we will study the
energy density for a timelike observer in the (𝑡, 𝑥) coordinates. The work done in
Proposition 3.3.2 and Corollary 3.3.1 guarantees that all of the relevant quantities
can be written as a function of these coordinates, so its usefulness will become
clearer in a moment.

Since our goal is to compute the energy density for a timelike observer, we
choose one with a constant timelike vector tangent to its trajectory given by
𝑊 = 𝜕/𝜕𝑈 + 𝜕/𝜕𝑉 . For this observer, the energy density is given by

E = 𝑇𝑈𝑈 + 2𝑇𝑈𝑉 + 𝑇𝑉𝑉 (3.37)

and its plots can be found in Figures 3.19, 3.24 and 3.25. More detailed plots for
selected times are found in Figures 3.20, 3.21, 3.22 and 3.23 Moreover, the energy
density at time 𝑡 = 𝑡𝐹 for this observer is in Figure 3.26. Our current choice of
parameters

𝑟𝑇 = 1, 𝑟𝑆 = 1/2, 𝑡𝐹 = 1/5, 𝑟𝐾 = 9/10,

led to all of these plots. Note that from Figure 3.19 we can observe that the energy
density remains zero in the protected region defined by 𝐷𝑔0 ({0} × (−𝑟𝐾 , 𝑟𝐾)), as
𝑟𝐾 = 9/10. In particular, our choice of parameters leads to 𝑟𝐻 = 𝑟𝐾 − 𝑡𝐹 = 7/10
as it can be seen from (SEP.VII). Hence, from Figure 3.20 we can deduce that
the energy density at time 𝑡 = 𝑡𝐹 is zero within (−𝑟𝐻 , 𝑟𝐻) for 𝑟𝐻 = 7/10.

The numerical evidence provided by these plots therefore indicate that we
can conclude that the Minkowski vacuum state was indeed extended to another
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Figure 3.24: E for our timelike observer projected into the 𝑡 − E plane.
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Figure 3.25: E for our timelike observer projected into the 𝑅 − E plane.
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Hadamard state defined in a larger region 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )), while
being preserved in 𝐷𝑔0 ({0} × (−𝑟𝐾 , 𝑟𝐾)). Moreover, there is agreement with the
extended state and the Minkowski vacuum at 𝐷𝑔0 ({0} × (−𝑟𝑆, 𝑟𝑆)).

It might seem that we have found a contraption to extend the two-dimensional
Minkowski vacuum onto a larger region while keeping it Hadamard and in
agreement with the original state in a subset of the original region. However, this
is not a special feature of 1 + 1 dimensional QFT. The purpose of this chapter was
to show that it can be done and to illustrate the main ideas behind this extension
procedure. In the next chapter we will show why this can be done and not only
with diamonds in two-dimensional Minkowski spacetime, but rather more general
settings.



4

Hadamard State Extension

There are things known and there
are thing unknown, and in between
are the doors of perception.

Aldous Huxley, The Doors of
Perception

In Chapter 3 we showed that a state can be extended from a region 𝑇 onto
a larger region 𝑆 while keeping it Hadamard, if one introduces another region
𝑆 ⊂ 𝑇 and gives up knowledge of the states on 𝑇 \𝑆, which can be made arbitrarily
small. This involved the construction of some additional auxiliary spacetimes
with very specific characteristics and the use of a modified warp-drive metric. In
our exposition of this, it seems that we just made some clever decisions that are
exclusive to vacuum states in two-dimensional Minkowski spacetime. However,
this is not the case as there are deeper reasons as to why the regions and the
metric had to be specified in such a way. From the two-dimensional example
one can observe that treating each region as a spacetime on its own right and the
embeddings relating these regions are crucial elements of our construction.

The LCQFT framework is precisely the ideal one to deal with these notions
and in this chapter we will explain why each region was specified with such
characteristics and how this fits in a more general setting, not only for two-
dimensional spacetimes but rather globally hyperbolic spacetimes in an arbitrary
number of dimensions. Also, we will discuss some possible applications to
quasifree states, symmetries and multiple extension–in some cases it is possible

77



78 Chapter 4. Hadamard State Extension

to extend to the whole of the spacetime. Finally, it must be noted that as it will be
seen soon, spacetimes will be denoted in bold font and this will mean that they
are objects in a category. However, if one wants to make any comparison between
what is written in this Chapter and our two-dimensional model (c.f. Chapter 3),
this makes little difference.

4.1 preliminaries

From now on we will assume that the timeslice property (see 2.5.4) holds, that
is: if 𝜓 happens to be a Cauchy morphism, then 𝒜(𝜓) will be an isomorphism,
i.e. a morphism for which a two-sided inverse 𝒜(𝜓)−1 exists. Also, in Chapter 2
we introduced some concepts that now will have to be made compatible with the
LCQFT framework, we will reformulate this into the category theory language.
We begin by introducing the notion of a state space.

Definition 4.1.1. Let us denote the set of all states on the algebra by 𝒜
∗
+,1. Then,

a state space S for an algebra 𝒜, is a set 𝑆 of states on 𝒜 that is algebraically
closed under operations in 𝒜 and under finite convex sums. In more concrete
terms, let 𝜔 ∈ S be a state, then for any 𝐴, 𝐵𝑖 ∈ 𝒜 and 𝜆𝑖 > 0 (with 𝜔(𝐵∗

𝑖
𝐵𝑖) > 0

and
∑
𝑖 𝜆𝑖 = 1), we have that the state 𝜔′ defined by

𝜔′(𝐴) =
𝑁∑︁
𝑖=1

𝜆𝑖
𝜔(𝐵∗

𝑖
𝐴𝐵𝑖)

𝜔(𝐵∗
𝑖
𝐵𝑖)

is also in S. With the additional condition that
∑
𝑖 𝜆𝑖𝜔𝑖 ∈ S for a family of states

𝜔𝑖 ∈ S.

Next, we will define the category of topological convex spaces TCvx. First, we
recall that a convex space is a set admitting abstract form of convex combinations
subject to axioms (see [34, Section 3] for discussion and references, and [40] for
the original definitions).

Definition 4.1.2 (Topological Convex Space). Let 𝑋 and 𝑌 be convex spaces. A
map 𝑓 is said to respect convex combinations 𝑝𝑋 + (1 − 𝑝)𝑌 (with 𝑝 ∈ [0, 1]) if,
for all 𝑝 we have 𝑓 (𝑝𝑋 + (1 − 𝑝)𝑌 ) = 𝑝 𝑓 (𝑋) + (1 − 𝑝) 𝑓 (𝑌 ). Then, the category
of topological convex spaces TCvx is defined as:
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TCvx Each object is a convex space𝐶 equipped with a topology in which forming
convex combinations is continuous as a function [0, 1] × 𝐶 × 𝐶 → 𝐶 with
respect to that topology. The morphisms are the continuous functions
respecting convex combinations.

There is a contravariant functor Alg 𝒯−→ TCvx defined by

𝒜 ↦→ 𝒜
∗
+,1 (equipped the with weak- ∗ topology)

𝛼 ↦→ 𝛼∗ |,

where 𝒜 and 𝒜
∗
+,1 denote a ∗- algebra and its full set of states, respectively. We

remind the reader that the weak-∗ topology on 𝒜
∗ is the weakest topology that

makes all elements of 𝒜 continuous as linear functionals on A∗. Furthermore,
the bar in 𝛼∗ | denotes the restriction of 𝛼∗ to a map between ℬ

∗
+,1 → 𝒜

∗
+,1 that is

both automatically convex and continuous under the weak-∗ topology.

Definition 4.1.3. A state space for a theory 𝒜 : Loc → Alg is any subfunctor
𝒮 of 𝒯 ◦𝒜 : Loc → TCvx such that 𝒮(M) ⊂ 𝒜

∗
+,1(M) is closed with respect

to operations induced by 𝒜(M). In other words, for a morphism 𝜓 : M → N in
Loc, we have

𝒮(𝜓) : 𝒮(N) → 𝒮(M)
𝒮(𝜓) = 𝒯(𝒜(𝜓)) = 𝒜(𝜓)∗ |𝒮(N) .

Remark 4.1.1. There are two possibilities when mapping states, depending on
whether the morphism 𝜓 : M → N is Cauchy or not.

• Let 𝜓 be any morphism and 𝜔N ∈ 𝒮(N), then 𝒮(𝜓)𝜔N ∈ 𝒮(M). More
concretely, 𝒮(𝜓) : 𝒮(N) → 𝒮(M).

• Let𝜓 be a Cauchy morphism and𝜔M ∈ 𝒮(M), then
(
𝒜(𝜓)−1)∗ |𝒮(M)𝜔M ∈

𝒮(N), i.e.
(
𝒜(𝜓)−1)∗ |𝒮(M) : 𝒮(M) → 𝒮(N). Hence,

(
𝒜(𝜓)−1)∗ |𝒮(M) =

𝒮(𝜓)−1.

4.1.1 The General State Extension Problem

All of the above lays the groundwork required for stating in detail the problem
introduced in Chapter 3. For readability let us write it once more:
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M

S T S̃
𝜄𝑇;𝑆

𝜄𝑀;𝑆

𝜄�̃�;𝑇

𝜄𝑀;𝑇

𝜄𝑀;�̃�

Figure 4.1: Original spacetimes provided in the GSEP.

Suppose that you have the same spacetime with (𝑀, 𝑔0), 𝑇, 𝑆 as
before, suppose 𝑆 ⊂ 𝑇 is specified as shown in Figure 3.2. Then, can
one extend an arbitrary Hadamard state from the smaller region (𝑆)
to the larger one (𝑆) while keeping it Hadamard?

The question above can be reformulated in more formal and detailed terms as
follows:
General state extension problem
Given a locally covariant theory 𝒜 and a state space 𝒮 for it, consider the
following question: Fixing M ∈ Loc and a causally convex open set (c.f. Def
2.1.5) 𝑇 ⊂ 𝑀, can one find causally convex subsets 𝑆, 𝑆 ⊂ 𝑀 with 𝑆 ⊂ 𝑇 ⊂ 𝑆

and a continuous convex map E : 𝒮(T) → 𝒮(S̃) such that𝒮(𝜄𝑆;𝑆) ◦E = 𝒮(𝜄𝑇 ;𝑆)?
If so, we say that the triple (𝑆, 𝑆, E) solves the state extension problem for
(𝒜,𝒮,M, 𝑇).

Next, we prove that the General State Extension Problem (GSEP) can be
rewritten as a geometrical problem if we construct additional auxiliary spacetimes
and suitable morphisms between them.

Theorem 4.1.1 (General State Extension). Let (𝒜,𝒮) be a locally covariant
theory with state space satisfying the timeslice condition. For any fixed M ∈ Loc
and causally convex open subset 𝑇 in M, suppose that there exist commuting
diagrams in Loc such as the one in Figure 4.1 for the original regions provided
in the GSEP. Moreover, for some additional auxiliary regions we have a Diagram
such as in Figure 4.2, where the arrows marked with "𝑐" are Cauchy and T = M|𝑇 ,
S = M|𝑆 and S̃ = M|𝑆 for some open causally convex sets 𝑆, 𝑆 of M. Then, setting

E = 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮
(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
,

the triple (𝑆, 𝑆, E) solves the General State Extension Problem for (𝒜,𝒮, 𝑇, 𝑀).
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𝒮(M)

𝒮(S) 𝒮(T) 𝒮(S̃)

𝒮(𝜄𝑀;𝑆) 𝒮(𝜄𝑀;�̃�)

𝒮(𝜄𝑀;𝑇 )

𝒮(𝜄𝑇;𝑆) 𝒮(𝜄�̃�;𝑇 )

Figure 4.3: Original spacetimes provided in the GSEP.

Proof. Consider the Diagram in Figure 4.2, which is comprised by objects and
morphisms in Loc. Next, in virtue of Definition 4.1.3 we apply the contravariant
functor 𝒮 to each object and morphism in Diagrams 4.1 and 4.2 which yields the
following commuting diagrams where ≃ indicates the existence of 𝒮−1–opening
the possibility to reverse the arrow–since there is an algebra morphism due to
the fact that 𝜄𝐸 ;𝑃, 𝜄𝐻;𝐿 and 𝜄𝑆;𝐹 are Cauchy morphisms. Hence, due to Remark
4.1.1 the morphisms 𝒮(𝜄𝐸 ;𝑃)−1, 𝒮(𝜄𝐻;𝐿)−1 and 𝒮(𝜄𝑆;𝐹)−1 must exist. Next, we
will find the formula for the convex map by making use of the tools we have
introduced so far: the LCQFT framework, Diagram 4.4 and, the ability to move
states discussed in Remark 4.1.1. Then, making use of the aforementioned tools,
a state 𝜔T ∈ 𝒜(T)∗ may be mapped to a state 𝜔S̃ ∈ 𝒜(S̃) by making use of
𝜔S̃ = E ◦ 𝜔T, where E is given by following formula

E = 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮
(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
. (4.1)

Now, we want to check that the restriction of 𝜔T to S is the same as the restriction
of 𝜔S̃ to S, i.e. 𝒮(𝜄𝑆;𝑆) (E(𝜔T)) = 𝒮(𝜄𝑇 ;𝑆) (𝜔T). For this purpose, we turn our
attention to Diagram 4.4 and notice that all of the following relations hold due to
commutativity

𝒮(𝜄𝑇 ;𝑆) = 𝒮(𝜄𝑆;𝑅)−1 ◦𝒮(𝜄𝑃;𝑅) ◦𝒮(𝜄𝑇 ;𝑃) (4.2)

𝒮(𝜄𝑃;𝑅) = 𝒮(𝜄𝐻;𝑅) ◦𝒮(𝜄𝐸 ;𝐻) ◦𝒮(𝜄𝐸 ;𝑃)−1 (4.3)

𝒮(𝜄𝐸 ;𝐻) = 𝒮(𝜄𝐻;𝐿)−1 ◦𝒮(𝜄𝐸 ;𝐿) (4.4)

𝒮(𝜄𝐸 ;𝐿) = 𝒮(𝜄𝐹;𝐿) ◦𝒮(𝜄𝐸 ;𝐹) (4.5)

𝒮(𝜄𝐹;𝐿) = 𝒮(𝜄𝑆;𝐿) ◦𝒮(𝜄𝑆;𝐹)−1. (4.6)

Next, we insert (4.6) into (4.5) and then substitute this in (4.4) to obtain

𝒮(𝜄𝐸 ;𝐻) = 𝒮(𝜄𝐻;𝐿)−1 ◦𝒮(𝜄𝑆;𝐿) ◦𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹), (4.7)
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substituting (4.7) into (4.3) yields

𝒮(𝜄𝑃;𝑅) = 𝒮(𝜄𝐻;𝑅) ◦𝒮(𝜄𝐻;𝐿)−1 ◦𝒮(𝜄𝑆;𝐿) ◦𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮(𝜄𝐸 ;𝑃)−1.

(4.8)

Finally, putting (4.8) into (4.2) gives

𝒮(𝜄𝑇 ;𝑆) =𝒮(𝜄𝑆;𝑅)−1 ◦𝒮(𝜄𝐻;𝑅) ◦𝒮(𝜄𝐻;𝐿)−1 ◦𝒮(𝜄𝑆;𝐿)
◦𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮(𝜄𝐸 ;𝑃)−1 ◦𝒮(𝜄𝑇 ;𝑃),

since the first four terms obey𝒮(𝜄𝑆;𝑅)−1 ◦𝒮(𝜄𝐻;𝑅) ◦𝒮(𝜄𝐻;𝐿)−1 ◦𝒮(𝜄𝑆;𝐿) = 𝒮(𝜄𝑆;𝑆)
and the remaining terms are E, our result is

𝒮(𝜄𝑇 ;𝑆) = 𝒮(𝜄𝑆;𝑆) ◦ E,

which completes our proof. □

Note that, while the diagram (4.4) implies that

𝒮(𝜄𝑇 ;𝑆) = 𝒮(𝜄𝑆;𝑆) ◦ E = 𝒮(𝜄𝑇 ;𝑆) ◦𝒮(𝜄𝑆;𝑇 ) ◦ E,

the morphism 𝒮(𝜄𝑇 ;𝑆) is not expected to be monic, so we may not conclude that
𝒮(𝜄𝑆;𝑇 ) ◦ E is the identity on 𝒮(T); that is, the extended state will generally
differ from the original outside 𝑆. Let us comment on the roles of some of these
regions. As we mentioned before our original region is T. To expand it into a
larger region we may take a lozenge P at time 𝑡 = 0 and then consider its Cauchy
development under the metric 𝑔, which we denote by E. This metric is built
so that its light-cones tilt smoothly in such a way that (a) at 𝑡 = 0 and 𝑡 = 𝑡𝐹

they agree with those of (𝑀, 𝑔0), (b) the light-cones also tilt for K and all of the
spacetimes within it. Since the light cones in E tilt back to those of M after time
𝑡𝐹 , we may take another lozenge 𝐹 and define the extended region 𝑆 as its Cauchy
development under 𝑔0. The region S is that where the extended state agrees with
the one originally specified on T.

Regions such as K,L and H are needed to make the diagram commutative
so that the restriction of the original and extended to S is well-defined. This is
because the restriction to S of extended state E𝜔 is determined by the restriction
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of this same state to H and in particular to L. This, by uniqueness of solutions
of the Klein-Gordon equation (c.f. Theorem 3.2.1 and its companion Remark
3.2.1) is determined by the restriction of the original state 𝜔 to restricted to 𝐾,
which in turn is determined by the original state in T. Therefore, K,L and H act
as interpolators that guarantee that E𝜔 |A(𝑆) = 𝜔 |A(𝑆) .

After inspecting the proof it becomes clear that due to functoriality, we can
solve the (GSEP) as long as we can build Diagram 4.2 in Loc. Finding this
construction is not a minor undertaking and it is a problem on its own right: the
Region Expansion Problem (REP), which is explained in more detail and solved
in section 4.2.

4.1.2 The G-Equivariant State Extension Problem

Now suppose that M has a nontrivial group of symmetries Aut(M). We will
formulate a symmetric version of the general state extension problem and show
how it may also be reduced to a geometric problem. In particular, this allows
symmetries of the original state to be reflected in symmetries of the extended one.
Let 𝑇 be any open causally convex subset of M and suppose 𝐺 is a subgroup of
Aut(M). We say that 𝑇 is 𝐺-symmetric relative to M if 𝛾(𝑇) = 𝑇 for each 𝛾 ∈ 𝐺,
which implies that there is a homomorphism 𝛾 ↦→ 𝛾𝑇 from 𝐺 to Aut(T) such that

𝜄𝑀;𝑇 ◦ 𝛾𝑇 = 𝛾 ◦ 𝜄𝑀;𝑇 (4.9)

for all 𝛾 ∈ 𝐺. Of course, the underlying map of 𝛾𝑇 is simply the restriction of 𝛾
to 𝑇 . This allows us to formulate a symmetric version of our previous problem:
The G-equivariant state extension problem
Suppose 𝑇 is a causally convex open subset of 𝑀 that is 𝐺-symmetric relative to
𝑀 . A solution (𝑆, 𝑆, E) to the General State Extension Problem for (𝒜,𝒮, 𝑇, 𝑀)
is 𝐺-equivariant if 𝑆 and 𝑆 are 𝐺-symmetric relative to M and the extension map
obeys

E ◦𝒮(𝛾𝑇 ) = 𝒮(𝛾𝑆) ◦ E (∀𝛾 ∈ 𝐺). (4.10)

In this case, we say that (𝑆, 𝑆, E) solves the 𝐺-Equivariant State Extension
Problem for (𝒜,𝒮, 𝑇, 𝑀, 𝐺).
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In particular, a 𝐺-equivariant extension map extends 𝐺-invariant states on
𝑇 to 𝐺-invariant states on 𝑆. To proceed, it is useful to extend the notion of
symmetry 𝐺 from objects to diagrams. Namely, a diagram in Loc is said to be
𝐺-symmetric if there is a homomorphism𝐺 → Aut(𝑂), 𝛾 ↦→ 𝛾𝑂 for every object
𝑂 in the diagram, and that for every arrow 𝑓 : 𝑂 → 𝑂′ in the diagram one has
the compatibility condition

𝛾𝑂′ ◦ 𝑓 = 𝑓 ◦ 𝛾𝑂 . (4.11)

In particular, 𝑇 is 𝐺-symmetric relative to M if and only if the diagram T
𝜄M;𝑇−→ M

is 𝐺-symmetric. More abstractly, any diagram in Loc can be identified with a
functor Δ : I → Loc for some small (in our case, finite) indexing category I; 𝐺-
symmetry of the diagram then means that there is a homomorphism 𝐺 → Aut(Δ)
(i.e., into the natural isomorphisms of Δ to itself). In our case we want to require
additionally that 𝛾M = 𝛾 for all 𝛾 ∈ 𝐺, which is equivalent to saying that the
symmetry of the diagram is compatible with/extends the action of 𝐺 on M.

Theorem 4.1.2 (G-Equivariant State Extension). If there exists a commuting
Diagram of the form 4.2 that satisfies the conditions stated in Theorem 4.1.1 and is
additionally G-symmetric then (𝑆, 𝑆, E) solves the 𝐺-Equivariant State Extension
Problem for (𝒜,𝒮, 𝑇, 𝑀) with E defined as in (4.1).

Proof. We begin by noticing that 𝛾𝑂 ∈ Aut(𝑂) are isomorphisms (in particular,
Cauchy morphisms) for any 𝛾 ∈ 𝐺. This implies the existence of 𝒜(𝛾𝑂)−1

and hence of 𝒮(𝛾𝑂)−1. Next, consider 𝛾𝑂 , 𝛾𝑂′ and an arrow 𝑓 : 𝑂 → 𝑂′

in Loc. By virtue of the compatibility condition (4.11) and the existence of
𝒮(𝛾𝑂)−1, 𝒮(𝛾′

𝑂
)−1, we have

𝒮(𝛾𝑂) ◦𝒮(𝜄𝑂′;𝑂) = 𝒮(𝜄𝑂′;𝑂) ◦𝒮(𝛾𝑂′) (4.12)

𝒮(𝜄𝑂′;𝑂) ◦𝒮(𝛾𝑂′)−1 = 𝒮(𝛾𝑂)−1 ◦𝒮(𝜄𝑂′;𝑂). (4.13)
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From this one can see that,

E ◦𝒮(𝛾𝑇 ) = 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮
(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
◦𝒮(𝛾𝑇 )

= 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮
(
𝜄𝐸 ;𝑃

)−1 ◦𝒮(𝛾𝑃) ◦𝒮
(
𝜄𝑇 ;𝑃

)
= 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦

(
𝒮(𝛾𝑃)−1 ◦𝒮

(
𝜄𝐸 ;𝑃

) )−1
◦𝒮

(
𝜄𝑇 ;𝑃

)
= 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦

(
𝒮

(
𝜄𝐸 ;𝑃

)
◦𝒮(𝛾𝐸 )−1

)−1
◦𝒮

(
𝜄𝑇 ;𝑃

)
= 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮(𝛾𝐸 ) ◦𝒮

(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
,

where in the first equality we just substituted E, in the second we used (4.12)
setting 𝑂 = 𝑃 and 𝑂′ = 𝑇 , the third and fifth are just identities and, in the fourth
we used (4.13) setting𝑂 = 𝑃 and𝑂′ = 𝐸 . Continuing in a similar fashion, always
trying to shift the symmetry term to the left, by using either (4.12) or (4.13) with
the appropriate source and target regions, we get

E ◦𝒮(𝛾𝑇 ) = 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮(𝛾𝐸 ) ◦𝒮
(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
= 𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝛾𝐹) ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮

(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
=

(
𝒮(𝛾𝐹)−1 ◦𝒮(𝜄𝑆;𝐹)

)−1
◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮

(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
=

(
𝒮(𝜄𝑆;𝐹) ◦𝒮(𝛾𝑆)−1

)−1
◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮

(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
= 𝒮(𝛾𝑆) ◦𝒮(𝜄𝑆;𝐹)−1 ◦𝒮(𝜄𝐸 ;𝐹) ◦𝒮

(
𝜄𝐸 ;𝑃

)−1 ◦𝒮
(
𝜄𝑇 ;𝑃

)
= 𝒮(𝛾𝑆) ◦ E,

which is the required equivariance property (4.10). □

4.2 the region expansion problem

In the previous section we demonstrated that the GSEP reduces to constructing
auxiliary spacetimes and morphisms between them in the form of Diagrams 4.1
and 4.2 in the category Loc. In this section we first reduce that construction
to a geometric Region Expansion Problem (REP), which we will then solve for
conformally ultrastatic globally hyperbolic spacetimes, thereby solving the GSEP
for these spacetimes.
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Before starting, we remind the reader that if 𝑂 is a causally convex set (c.f.
Def 2.1.5), then its Cauchy development 𝐷𝑔 (𝑂) ∈ O(𝑀) is the set of all the
points in the manifold for which any inextendible piecewise-smooth causal curve
that passes through them intersects 𝑂. Furthermore, we can define the future
(past) Cauchy development in an analogous fashion but for past (future) directed
causal curves. We denote this by 𝐷+

𝑔 (𝑂) (𝐷−
𝑔 (𝑂)).

Also, we introduce the regular domains and standard form concepts. A regular
domain (c.f. [47][Proposition 5.46]) is an embedded codimension-0 manifold
with boundary. A globally hyperbolic spacetime M with metric 𝑔0 is said to be in
standard form [8] if it is diffeomorphic to R × Σ with metric 𝑔0 = 𝛽𝑑𝑡 ⊗ 𝑑𝑡 − ℎ𝑡 ,
where for each 𝑡 ∈ R, {𝑡} × Σ is a smooth spacelike Cauchy surface, ℎ𝑡 is the
induced metric on it and 𝛽 : R × Σ → (0,∞) is smooth. Henceforth, we will
require that 𝑑𝑡 is future-pointing.
The main idea in the REP is to make a geometrical construction that generalises the
diagrams in Figures 3.6 and 3.7 in the setting of a globally hyperbolic spacetime.
The region expansion problem
Let Σ be a smooth spacelike Cauchy surface in globally hyperbolic spacetime
M and suppose 𝜏 is the interior of a regular domain in Σ. Assume without loss
of generality that Σ is identified with the 𝑡 = 0 hypersurface in a standard form
representation of M with metric 𝑔0. The Region Expansion Problem for (𝜏, Σ,M)
is to find a globally hyperbolic metric 𝑔 on R × Σ, positive constants 𝑡𝐹 , 𝜀 with
𝑡𝐹 > 2𝜀, and subsets 𝜎, 𝜆, 𝜅, 𝜙 of Σ such that the following conditions are met.

REP 1 Each set 𝜎, 𝜆, 𝜅, 𝜙 is the interior of a regular domain in Σ, and the
following nesting is satisfied:

𝜎 ⊏ 𝜆 ⊏ 𝜅 ⊏ 𝜏 ⊏ 𝜙 ⊏ Σ, (4.14)

where 𝐴 ⊏ 𝐵 means that the closure of 𝐴 is contained in 𝐵.
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REP 2 The following relations between Cauchy developments hold:

𝐷𝑔 ({0} × 𝜏) ∩ ({𝑡𝐹} × Σ) = {𝑡𝐹} × 𝜙, (4.15)

𝐷𝑔0 ({0} × 𝜅) ∩ ({𝑡𝐹} × Σ) = {𝑡𝐹} × 𝜆, (4.16)

𝐷𝑔0 ({𝑡𝐹} × 𝜆) ∩ ({0} × Σ) = {0} × 𝜎 (4.17)

𝐷𝑔0 ({0} × 𝜏) ⊂ 𝐷𝑔0 ({𝑡𝐹} × 𝜙). (4.18)

REP 3 Let I = (−𝜀, 𝜀) ∪ (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀), then 𝑔 = 𝑔0 when restricted to I × Σ

and 𝐷𝑔0 ({0} × 𝜅) ∩ ((−𝜀, 𝑡𝐹 + 𝜀) × Σ).

REP 4 The hypersurfaces {0} × 𝜏 and {𝑡𝐹} × 𝜙 are achronal with respect to 𝑔.

Moreover, we can extend this problem to include symmetries of the Cauchy
surface in the following way: let 𝐺 be any group of isometries of (Σ, ℎ𝑡) where
each 𝛾 ∈ 𝐺 induces an automorphism 𝛾𝑀 = id×𝛾 of M and 𝛾(𝜏) = 𝜏. Then, we
demand in addition that

𝛾(•) = •, (for 𝜎, 𝜆, 𝜅, 𝜙) (4.19)

𝑔 = 𝛾∗𝑀𝑔. (4.20)

for all 𝛾 ∈ 𝐺. In this case we say that the symmetric region expansion problem
has been solved.

Theorem 4.2.1 (Region Expansion). Let (𝒜,𝒮) be a locally covariant theory
with state space satisfying the timeslice condition. Let Σ be a smooth spacelike
Cauchy surface in a globally hyperbolic spacetime M, and suppose 𝜏 is the
interior of a regular domain in Σ. Then any solution to the REP for (𝜏, Σ,M)
may be used to construct a solution to the GSEP for (𝒜,𝒮, 𝑇,M), where 𝑇 is the
Cauchy development of 𝜏 in M. Moreover, if (Σ, ℎ𝑡) admits an isometry group,
then the symmetric REP can be solved.

Proof. Consider any solution to the REP (using the notation introduced in the
statement). We begin by noticing that, as M is in standard form, then

𝑇 = 𝐷𝑔0 ({0} × 𝜏).
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In a similar fashion, we introduce T := (−𝜀, 𝑡𝐹 + 𝜀) and the past-originated sets

𝑃 = ((−𝜀, 𝜀) × Σ) ∩ 𝑇, 𝑆 = 𝐷𝑔0 ({0} × 𝜎), 𝑅 = 𝑆 ∩ 𝑃 (4.21)

𝐾 = 𝐷𝑔0 ({0} × 𝜅) ∩ (T × Σ) . (4.22)

Defining T ′ := (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀), we can designate the future-originated sets

𝐿 = 𝐷𝑔0 ({𝑡𝐹} × 𝜆) ∩ (T ′ × Σ) , 𝐹 = 𝐷𝑔0 ({𝑡𝐹} × 𝜙) ∩ (T ′ × Σ) (4.23)

𝐻 = 𝐷𝑔0 ({𝑡𝐹} × 𝜆) ∩ (T × Σ) , 𝑆 = 𝐷𝑔0 ({𝑡𝐹} × 𝜙) ∩ (T × Σ) . (4.24)

Recalling that the Cauchy development of an acausal topological hypersurface is
open and globally hyperbolic [53, Lem. 14.43], and that the intersection of two
globally hyperbolic subsets is globally hyperbolic, the sets

𝑇, 𝑆, 𝑃, 𝑅, 𝐾, 𝐹, 𝐿, 𝐻 and 𝑆

are globally hyperbolic when equipped with the metric 𝑔0 and serve as the
underlying manifolds for the following objects in Loc

T, S, P, R, K, F, L, H and S̃.

These spacetimes are endowed with the metric, orientation and time orientation
induced from M. From (4.14) in REP 1 it follows that

𝑅 ⊂ 𝑆 ⊂ 𝑇, 𝑅 ⊂ 𝑃 ⊂ 𝑇, 𝑅 ⊂ 𝐾 ⊂ 𝑇, 𝐿 ⊂ 𝐹 ⊂ 𝑆, 𝐿 ⊂ 𝐻 ⊂ 𝑆. (4.25)

Next, we recall that if a set 𝐴 is closed and achronal, then Int𝐷 (𝐴), Int𝐷+(𝐴) and
Int𝐷−(𝐴) are causally convex [49, Prop. 3.43]. Also, as any achronal topological
hypersurface 𝐵 is a Cauchy surface for its Cauchy development, we will have
𝐷 (𝐵) = Int𝐷 (𝐵).

So, from this we note that all of the sets above are causally convex and since
all of them share metric, orientation and time orientation and thus the obvious
inclusions are morphisms in Loc. The latter fact also implies that {0} × 𝜏 is a
Cauchy surface for T and P, while {0} × 𝜎 is a Cauchy surface for R and S, and
{𝑡𝐹} × 𝜙 is a Cauchy surface for L, H, F and S̃. This means that the inclusions
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𝜄𝑇 ;𝑃, 𝜄𝑆;𝑅, 𝜄𝑆;𝐹 and 𝜄𝐻;𝐿 are Cauchy morphisms. All this gives rise to the following
parts of Diagram 4.2:

T P

S R K

𝑐

𝜄𝑇;𝑃

𝜄𝑇;𝑆 𝜄𝑇;𝑅
𝜄 𝑃;𝑅

𝑐

𝜄𝑆;𝑅 𝜄𝐾 ;𝑅

(4.26)
F

L S̃

H

𝜄
𝑆;𝐹
𝑐

𝜄𝐻
;𝐿

𝑐

𝜄𝐹:𝐿

𝜄�̃�;𝐿

𝜄 �̃�;𝐻

(4.27)
which commute trivially because all the morphisms are inclusions. Next, we
define an open set 𝐸 in terms of the Cauchy development of {0} × 𝜏 under the
modified metric 𝑔, by

𝐸 = 𝐷𝑔 ({0} × 𝜏) ∩ (T × Σ), (4.28)

As {0} × 𝜏 is achronal with respect to 𝑔, by REP 4, we deduce that 𝐸 is globally
hyperbolic when endowed with 𝑔 and has {0} × 𝜏 as a Cauchy surface. Equipping
𝐸 with metric 𝑔, orientation and time orientation agreeing with those of M on 𝑃,
we obtain a spacetime E ∈ Loc.

Recalling the definition of I ⊂ T in REP 3, we note that we have the nesting

{0} × 𝜏 ⊂ 𝑃 ⊂ I × Σ. (4.29)

Looking at REP 3, we observe that

𝑔 = 𝑔0, (when restricted to 𝑃, 𝐾, 𝐹). (4.30)

Before proceeding any further, we would like to establish an intermediate result
concerning Cauchy developments.
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𝑟𝑇

𝑇

𝑃

𝐾

𝑟𝑆

𝑆

𝑅
0

Figure 4.5: The regions defined so far.

Lemma 4.2.1. Let 𝐴 and 𝐵 be subsets of 𝑀 . (a) If 𝐴 and 𝐵 are acausal obeying
𝐴 ⊂ 𝐷+(𝐵), then

𝐷 (𝐴) ⊂ 𝐷 (𝐵). (4.31)

(b) If 𝐵 is achronal and 𝐵 ⊂ 𝐴 is such that 𝐷𝑔0 (𝐵) ∩ 𝐴 is timelike compact [58]
and 𝑔 = 𝑔0 when restricted to 𝐷𝑔0 (𝐵) ∩ 𝐴, the following holds

𝐷𝑔0 (𝐵) ∩ 𝐴 ⊂ 𝐷𝑔 (𝐵) ∩ 𝐴. (4.32)

Proof. See Appendix B.1.1. □

Applying (4.32) in turn to 𝐴 = (−𝜀, 𝜀) ×Σ, 𝐵 = {0} × 𝜏 and 𝐴 = T ×Σ, 𝐵 =

{0} × 𝜅 yields

𝑃 =𝐷𝑔0 ({0} × 𝜏) ∩ ((−𝜀, 𝜀) × Σ) ⊂ 𝐷𝑔 ({0} × 𝜏) ∩ ((−𝜀, 𝜀) × Σ) ⊂ 𝐸,

(4.33)

𝐾 =𝐷𝑔0 ({0} × 𝜅) ∩ (T × Σ) ⊂ 𝐷𝑔 ({0} × 𝜅) ∩ (T × Σ) ⊂ 𝐸, (4.34)
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where the last inclusion in the first relation follows from the definition of I ⊂ T
in REP 3 and in the second it was obtained by making use of the fact that 𝜅 ⊏ 𝜏
according to (4.14) in REP 1.

From (4.30) we see that P and K share metric, orientation and time-orientation
with E, this means that these inclusions induce the morphisms 𝜄𝐸 ;𝐾 , 𝜄𝐸 ;𝑃. Next,
noting that (4.16) in REP 3 implies that {𝑡𝐹} × 𝜙 ⊂ 𝐷𝑔 ({0} × 𝜏), we make use
of (4.31) to obtain 𝐷𝑔 ({𝑡𝐹} × 𝜙) ⊂ 𝐷𝑔 ({0} × 𝜏). After taking the intersection
with T × Σ and using (4.32) with 𝐴 = T × Σ, 𝐵 = {𝑡𝐹} × 𝜙 this becomes

𝐹 = 𝐷𝑔0 ({𝑡𝐹} × 𝜙) ∩ (T × Σ) ⊂ 𝐷𝑔 ({𝑡𝐹} × 𝜙) ∩ (T × Σ)
⊂ 𝐷𝑔 ({0} × 𝜏) ∩ (T × Σ) = 𝐸. (4.35)

Using the same argument we used before, we note that this inclusion induces the
morphism 𝜄𝐸 ;𝐹 . Considering the definition of 𝐻 given in (4.24) we can write
𝐻 = 𝐷𝑔0 ({𝑡𝐹} × 𝜆) ∩ (T × Σ). Moreover, using (4.16) in REP 2, (4.31) and
(4.32) we deduce 𝐷𝑔0 ({𝑡𝐹} × 𝜆) ⊂ 𝐷𝑔0 ({0} × 𝜅), after taking the intersection
with T × Σ we obtain

𝐻 ⊂ 𝐾 =⇒ 𝐻 ⊂ 𝐸, 𝐿 ⊂ 𝐾 and 𝐿 ⊂ 𝐸, (4.36)

which in the same fashion as before, gives the morphisms 𝜄𝐸 ;𝐿 , 𝜄𝐾;𝐻 , 𝜄𝐸 ;𝐻 . The
same argument can be used with (4.18) from REP 2 to show that 𝑆 ⊂ 𝐻, this
along with (4.25) lets us conclude that

𝑅 ⊂ 𝐻, (4.37)

using the same argument one last time this results in the morphism 𝜄𝐻;𝑅.

Exploiting the achronality of {0} × 𝜏 once more, we realise that it is also
a Cauchy surface for E. Recalling that it was also a Cauchy surface for P, we
conclude that the inclusion 𝜄𝐸 ;𝑃 is also a Cauchy morphism. The inclusions
between these regions and E can be summarised in the following diagram, which
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𝐹
𝑡 = 𝑡𝐹

𝑃
𝑡 = 0

𝐾

𝑅

𝝆(𝒕)
𝐸+

𝑡 = 𝑡𝐹 + 𝜀

Figure 4.6: Detail of the construction for both cases. We have 𝑔 = 𝑔0 in green
regions and to the future of the dotted line extending the past boundary of 𝐹.

is also part of Diagram 4.2

F

P E L

K H

𝜄𝐸;𝐹

𝜄𝐸;𝑃
𝑐

𝜄𝐸;𝐿

𝜄𝐸;𝐾

𝜄𝐾 ;𝐻

𝜄𝐸;𝐻

(4.38)
which also commutes because as in the previous diagram, all of the morphisms
involved are inclusions. Next, we join the diagrams (4.26, 4.27) and (4.38) by
introducing the inclusions 𝜄𝑆;𝑆, 𝜄𝐻;𝑅 and 𝜄𝑆;𝑇 .

As all of the regions defined by these sets share metric, orientation and
time-orientation, we see that it suffices to prove that 𝑇 ⊂ 𝑆 and 𝑅 ⊂ 𝐻–as 𝑆 ⊂ 𝑇
implies 𝑆 ⊂ 𝑆. Considering condition (4.18) from REP 2 and intersecting both
sides with T × Σ we obtain 𝑇 ⊂ 𝑆, which means that

𝑆 ⊂ 𝑇 ⊂ 𝑆

and that the morphisms 𝜄𝑆;𝑆, 𝜄𝑆;𝑇 are well-defined and hence we have completed
Diagram 4.2. The only morphisms that we need to complete the Diagram 4.1 are
the trivial inclusions 𝜄𝑀;𝑆, 𝜄𝑀;𝑇 and 𝜄𝑀;𝑆. Given that all the morphisms appearing
in Diagrams 4.1 and 4.2 correspond to subset inclusions, the diagram commutes
in full.
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Furthermore, each isometry 𝛾 of (Σ, ℎ𝑡) induces an automorphism 𝛾𝑀 , its
action on 𝑇 is

𝛾𝑀 [𝑇] = 𝛾𝑀
[
𝐷𝑔0 ({0} × 𝜏)

]
= 𝐷𝛾∗

𝑀
𝑔0 (𝛾𝑀 [{0} × 𝜏)]) = 𝐷𝑔0 ({0} × 𝜏) = 𝑇,

where to obtain the last equality we used (4.19) and that

𝛾∗𝑀𝑔0 = 𝛾∗𝑀 (1 ⊕ −ℎ) = (id×𝛾)∗(1 ⊕ −ℎ) = 1 ⊕ −ℎ = 𝑔0

because 𝛾 is an isometry of (Σ, ℎ). The same formula holds if 𝜏 and𝑇 are replaced
by (𝜎, 𝑆), (𝜅, 𝐾), (𝜆, 𝐿) and (𝜙, 𝐹). This implies that

𝛾𝑀 (•) = •, (for 𝑆, 𝑇, 𝐾, 𝐿, 𝐹),

which is precisely the notion of symmetry of a set introduced in Section 4.1.2.
Moreover, the symmetry is carried on to 𝐸 , as it can be seen from

𝛾𝑀 [𝐸] = 𝛾𝑀
[
𝐷𝑔 ({0} × 𝜏)

]
= 𝐷𝛾∗

𝑀
𝑔 (𝛾𝑀 [{0} × 𝜏)]) = 𝐷𝑔 ({0} × 𝜏) = 𝐸,

where we have used (4.19) and (4.20) to get the last equality. Given that the
definition of the remaining spacetimes in Diagram 4.2 depends on the ones we
just mentioned, all of its objects are symmetric.

Next, we need to prove that the diagram itself is symmetric, for this we note
for any O, O′ in said diagram such that 𝑓 : O → O′, we have

O

O O′

O′

𝑓𝛾𝑂

𝑓 𝛾𝑂′

which implies that we have 𝑓 ◦𝛾𝑂 = 𝛾𝑂′◦ 𝑓 , which corresponds to the compatibility
condition (4.11) that is needed for a diagram to be 𝐺-symmetric. □

4.3 solution to the rep in conformally ultrastatic spacetimes

In this section we will solve the region expansion problem in spacetimes with
conformally ultrastatic metrics, that is 𝑔0 as in Section 4.2 with 𝛽 ≡ 1 and
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£𝜕/𝜕𝑡ℎ𝑡 = 0 and for any regular domain interior 𝜏 whose boundary has nonzero
normal injectivity radius–the largest radius such that the normal exponential map
at 𝜏 is still a diffeomorphism. Moreover, as the Cauchy developments in the REP
are conformally invariant, we will present a solution in ultrastatic spacetimes that
is valid for their conformally related counterparts. As it will be seen shortly, if
among other things we assume that 𝜕𝜏 has non-zero injectivity radius, then we
can solve the REP for ultrastatic spacetimes.

Our solution relies on the metric ℎ adopting a block diagonal form near 𝜕𝜏.
This is analogous to adopting Gaussian normal coordinates [45][Proposition 3.2],
which diagonalises the metric locally. However, the method we will introduce
does not require to adopt any coordinate system on 𝜕𝜏. This means that this
diagonalisation will be valid not only locally, but for neighbourhoods contained
within the normal injectivity radius.

𝜕𝜏𝜕𝜏

𝜏

𝑁

Υ(𝑁)

Σ

(−𝑟∗, 𝑟∗)

Figure 4.7: The original region 𝜏 with the neighbourhoods 𝑁 and Υ(𝑁). Note
that in this particular instance, the injectivity radius of 𝜕𝜏 is finite.
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Lemma 4.3.1. Suppose 𝜏 is the interior of a regular domain in Σ and suppose its
boundary 𝜕𝜏 has nonzero normal injectivity radius 𝑟0, whereupon

Υ(𝑠, 𝑦) = exp⊥(𝑠𝑛𝑦), (4.39)

defines a diffeomorphism from (−𝑟0, 𝑟0) × 𝜕𝜏 onto its image (see Figure 4.7),
where 𝑛𝑦 is the outward normal unit vector to 𝜕𝜏 at 𝑦 and exp⊥ is the normal
exponential map. For any 𝑟∗ ∈ (0, 𝑟0), choose 𝜁 ∈ 𝐶∞(R) with 0 ≤ 𝜁 ′ < 1
obeying

𝜁 (𝑠) =


𝑠 |𝑠 | < 𝑟∗
(𝑟0 + 2𝑟∗)/3 𝑠 ≥ (𝑟0 + 𝑟∗)/2

−(𝑟0 + 2𝑟∗)/3 𝑠 ≤ −(𝑟0 + 𝑟∗)/2.

(4.40)

Then, setting 𝑁 = (−𝑟∗, 𝑟∗) × 𝜕𝜏 there is a smooth function 𝑟 : Σ → R given by

𝑟 (exp⊥ 𝑠𝑛𝑦) = 𝜁 (𝑠) (4.41)

for (𝑠, 𝑦) ∈ (−𝑟0, 𝑟0) × 𝜕Σ, and satisfying 𝑑𝑟 ≡ 0 outside Υ((−𝑟0, 𝑟0) × 𝜕𝜏). In
particular, 𝜕𝜏 = 𝑟−1(0) and 𝑟 ≤ −𝑟∗ on 𝜏 \Υ(𝑁), while 𝑟 ≥ 𝑟∗ on (Σ \ 𝜏) \Υ(𝑁).
And so, the metric ℎ𝑡 pulls back to 𝑁 as

Υ∗ℎ𝑡 |{𝑠}×𝜕𝜏 = 1 ⊕ ℎ̃𝑠 (4.42)

where 𝑠 ↦→ ℎ̃𝑠 is a smooth map from (−𝑟∗, 𝑟∗) to the smooth Riemannian metrics
on 𝜕𝜏.

Proof. Note that as 𝑟 and 𝜁 are smooth, so will be the metric. Also, as 𝑟∗ < 𝑟0

this metric is well-defined on 𝑁 . Then, the only thing we need to prove is
that the pull-back of the metric to 𝑁 has a block diagonal form. To this end,
consider an arbitrary curve 𝑡 ↦→ 𝑦(𝑡) in 𝜕𝜏 and the smooth 2-parameter map
(𝑠, 𝑡) ↦→ 𝜇(𝑠, 𝑡) = Υ(𝑠, 𝑦(𝑡)), with tangent fields 𝑈 = 𝜕𝜇/𝜕𝑠, 𝑉 = 𝜕𝜇/𝜕𝑡. Then
𝑈 is a unit geodesic vector field and [𝑈,𝑉] = 0. From this we see that the absolute
derivative is 𝐷

𝑑𝑠
ℎ(𝑈,𝑉) = ℎ(𝑈,∇𝑈𝑉) = ℎ(𝑈,∇𝑉𝑈) = 1

2∇𝑉ℎ(𝑈,𝑈) = 0, which
means that for a constant 𝑐 we have ℎ(𝑈,𝑉) = 𝑐. However, given that𝑈 is normal
to 𝑉 at 𝑠 = 0, we deduce that this constant is zero and thus ℎ(𝑈,𝑉) = 0.
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Moreover, since𝑈 = Υ∗(1, 0) and 𝑉 = Υ∗(0, ¤𝑦(0)), we obtain

(Υ∗ℎ) | (𝑠,𝑦(0)) ((1, 0), (0, ¤𝑦(0)) = 0

and as 𝑦(𝑡) was an arbitrary smooth curve we have the desired block diagonal
form; finally, as𝑈 is a unit field we already know (Υ∗ℎ) ((1, 0), (1, 0)) = 1. □

This is the required block diagonal form of ℎ𝑡 on Υ(𝑁). Using the diagonal
form, it is easily seen that the length of any curve between two level sets 𝑟−1(𝑟1)
and 𝑟−1(𝑟2) of 𝑟 contained in Υ(𝑁) is bounded below by |𝑟1 − 𝑟2 |, which is
attained by radial geodesics.

Remark 4.3.1. Note that 𝑟 has the role of radial coordinate in Υ(𝑁) since
𝑟 (𝑝) ∈ (−𝑟∗, 𝑟∗) if and only if 𝑝 ∈ Υ(𝑁) and Υ−1(𝑝) ∈ {𝑟 (𝑝)} × 𝜕𝜏. Outside 𝑁
it need not be a valid coordinate.

So, as long as we choose an open neighbourhood of 𝜕𝜏 the metric 𝑔 can be
written in a block diagonal form. This gives us some freedom in choosing the size
of this neighbourhood, which will be encoded on a variable 𝑟∗ of radial nature.

The main idea is to carry an expansion within 𝑁 . At some point, we will
like to make use of a generalised version of the uniqueness argument found in
Theorem 3.2.1. So, the expansion has to be done in such a way we can specify
a region 𝜎 inside a protected region 𝜅 where the metric 𝑔 becomes 𝑔0. In our
current setting, these regions will play the roles, respectively, of 𝑆 and 𝐾 found in
(SEP.III) (see Figures 3.6 and 3.7 for further reference). The size of these regions
will depend on parameters 𝑟𝑆 and 𝑟𝐾 . They have to be chosen so the following
happens: a radial null geodesic to travel from 𝜕𝜎 at time 𝑡 = 0 to a time 𝑡𝐹 and
back to 𝑡𝐹 while always staying in the protected region. Because of this, we will
have specific choices for them found in the following Theorem.

Theorem 4.3.1. Let 𝜏 be the interior of a regular domain in Σ with nonzero
normal injectivity radius 𝑟0, and for any 𝑟∗ ∈ (0, 𝑟0) let 𝑁 , Υ and 𝑟 be as in
Lemma 4.3.1. Solutions to the REP may be found as follows: choose 𝑟𝑆 ∈ (0, 𝑟∗),
𝑡𝐹 ∈ (0, 𝑟𝑆/2), and an arbitrary 0 < 𝛿 ≪ 1. Then, fix 𝑟𝐹 so that

𝑡𝐹 < 𝑟𝐹 <
𝑟∗

1 + 𝛿 (4.43)
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and define (necessarily) positive

𝑟𝐿 = 𝑟𝑆 − 𝑡𝐹 , 𝑟𝐾 = 𝑟𝑆 − 2𝑡𝐹 . (4.44)

Recalling that 0 < 𝑟𝐾 < 𝑟𝐿 < 𝑟𝑆 we define the nested sets 𝜎 ⊂ 𝜆 ⊂ 𝜅 ⊂ 𝜙 as

𝜎 = 𝑟−1((−∞,−𝑟𝑆)), 𝜆 = 𝑟−1((−∞,−𝑟𝐿)), 𝜅 = 𝑟−1((−∞,−𝑟𝐾)) (4.45)

and

𝜙 = 𝑟−1((−∞, 𝑟𝐹)), (4.46)

which correspond to the interior of regular domains in Σ. Note the absence of a
minus sign in front of 𝑟𝐹 in the definition of 𝜙.

To specify a metric, we remind the reader that T = (−𝜀, 𝑡𝐹 + 𝜀) and I =

(−𝜀, 𝜀) ∪ (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀), then we choose a smooth function 𝜌 : T → (−𝑟∗, 𝑟∗)
obeying

𝜌(0) = 0, 𝜌(𝑡𝐹) = 𝑟𝐹 ,
𝑑𝜌

𝑑𝑡
≥ −1, (4.47)

where equality is achieved in I, i.e. 𝑑𝜌/𝑑𝑡 |I = −1. Next set,

𝑣 =


𝑑𝜌

𝑑𝑡
+ 1 𝑡 ∈ T

0 𝑡 ∈ R \ T
(4.48)

for which we clearly have 0 ≤ 𝑣. Also, choose

0 < 𝑟𝐵 < min(𝑟𝐾 , 𝑟∗ − 𝜌𝑚𝑎𝑥 , 𝑟∗ + 𝜌𝑚𝑖𝑛) (4.49)

where 𝜌𝑚𝑎𝑥 and 𝜌𝑚𝑖𝑛 are the maximum and minimum of 𝜌, this minimum
is necessarily positive because 𝑟𝐾 > 0 and due to the codomain of 𝜌. Let
𝜌±(𝑡) = 𝜌(𝑡) ± 𝑟𝐵, then, we define the warp bubble 𝐵(𝑡) and the warp zone𝑊 as

𝐵(𝑡) = 𝑟−1((𝜌−(𝑡), 𝜌+(𝑡))), 𝑊 =
⋃
𝑡∈T

{𝑡} × 𝐵(𝑡).

From this, now it is easy to explain why 𝑟𝐵 was chosen as in (4.49). This prevents
the warp bubble from meeting the protected zone specified by 𝑟𝐾 or going out
from T × 𝑁 . Furthermore, choose 𝑓 ∈ 𝐶∞

0 (R × Σ) to take values in [0, 1] such
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𝑊

(𝑡𝐹 , 𝑟𝐹)

𝑡

𝑟

𝜀

−𝜀

𝑡𝐹

𝑡𝐹 + 𝜀

𝑡𝐹 − 𝜀

Figure 4.8: Plot of 𝜌(𝑡), 𝑔 = 𝑔0 in the shaded regions.

that 𝑓 ≡ 1 on a neighbourhood of
⋃
𝑡∈[0,𝑡𝐹 ]{𝑡} × 𝑟−1(𝜌(𝑡)) and 𝑓 ≡ 0 outside𝑊 .

(This function certainly exists, c.f. [1][Prop. 6.5.8].) Next, define the metric 𝑔 on
R × Σ by

𝑔 = 𝑔0 − ( 𝑓 𝑣)2𝑑𝑡 ⊗ 𝑑𝑡 + 2 𝑓 𝑣𝑑𝑡 ⊗𝑠 𝑑𝑟 (4.50)

where 𝑟 is the function defined in Lemma 4.3.1.

Proof. We are going to show that all of the parameters, sets and metric provided
above are enough to satisfy the requirements given in REP 1-REP 4. Almost all
the work goes into checking REP 2. However, before doing so we need to check
that the metric (4.50) is globally hyperbolic indeed.

Lemma 4.3.2. Let 𝑔 be the metric (4.50) then, (R × Σ, 𝑔) is globally hyperbolic.

Proof. See Appendix B.1.2. □

Remark 4.3.2. The metric (A.2) can be written as

𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − (𝑑𝑟 − 𝑓 𝑣𝑑𝑡) ⊗ (𝑑𝑟 − 𝑓 𝑣𝑑𝑡) − ℎ̃𝑟 , (4.51)

which resembles the famous Alcubierre warp drive [5], the difference being that,
in this case, we are specifying photon trajectories rather than that of a spaceship.
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The trajectory is given by 𝜌 (implicitly defined by 𝑣 = 1 + 𝑑𝜌/𝑑𝑡) while 𝑓 defines
the warp bubble around it.

REP 1. Note that −𝑟𝑆,−𝑟𝐿 ,−𝑟𝐾 ,−𝑟𝐹 are regular values of 𝑟 because 𝑑𝑟 ≠ 0
on Υ(𝑁), given that inf 𝑟 = −𝑟0 we know that 𝑟−1( [−𝑟0, 𝑏]) = 𝑟−1((−∞, 𝑏])
and by [47][Prop. 5.47] we deduce that 𝑟−1( [−𝑟0, 𝑏]) is a regular domain for
𝑏 ∈ {−𝑟𝑆,−𝑟𝐿 ,−𝑟𝐾 ,−𝑟𝐹}. To see that its interior is 𝑟−1((−𝑟0, 𝑏)) note that points
in 𝑟−1(𝑐) for a regular value 𝑐 have nearby points intersecting both 𝑟−1((−∞, 𝑐))
and 𝑟−1((𝑐,∞)), so any interior point 𝑝 of 𝑟−1( [𝑎, 𝑏)]), where 𝑎, 𝑏 are regular
values, has 𝑟 (𝑝) ∈ (𝑎, 𝑏); conversely, any point with 𝑟 (𝑝) ∈ (𝑎, 𝑏) has a
neighbourhood in 𝑟−1( [𝑎, 𝑏]) by continuity of 𝑟.

Next, from (4.45-4.46) and the definition of 𝑟 in Lemma 4.3.1 we observe that

𝜕𝜎 = 𝑟−1(−𝑟𝑆), 𝜕𝜆 = 𝑟−1(−𝑟𝐿), 𝜕𝜅 = 𝑟−1(−𝑟𝐾) (4.52)

and

𝜕𝜙 = 𝑟−1(𝑟𝐹). (4.53)

so because of [47][Corollary 5.14] the boundaries are indeed codimension-1
embedded submanifolds of Σ. In addition, we note that the radii of these regions
given in (4.44) obey 0 < 𝑟𝐾 < 𝑟𝐿 < 𝑟𝑆, and together with the observation that
𝜏 ⊏ 𝜙 we see that (4.14) is satisfied.

Remark 4.3.3. Recall that in an ultrastatic spacetime, a curve 𝑡 ↦→ (𝑡, 𝑠(𝑡)) is
an affine null geodesic if and only if 𝑡 ↦→ 𝑠(𝑡) is a unit speed geodesic. Using
this and the definition of 𝜎 given in (4.45), we deduce that 𝑟𝑆 is the distance in
Σ between 𝜕𝜎 and 𝜕𝜏, this is the same as the infimum of the light-travel time
between R × 𝜕𝜎 and R × 𝜕𝜏. The same holds for 𝜆, 𝜅 and 𝜙.

As noted above, most of the work comes in verifying that REP 2 is satis-
fied. Because of this, we will prove REP 3 and REP 4 first, as this is rather
straightforward. To this end we will first obtain a preliminary result.

Lemma 4.3.3. Let 𝐼𝐾 = (0, 𝑟∗ − 𝑟𝐾), then 𝐷+
𝑔0 ({0} × 𝜅) ∩ (𝐼𝐾 × Σ) = ∪𝑡∈𝐼𝐾 {𝑡} ×

𝑟−1(−∞,−𝑟𝐾 − 𝑡).
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Proof. First, we prove that 𝐷+
𝑔0 ({0}×𝜅)∩(𝐼𝐾×Σ) ⊃ ∪𝑡∈𝐼𝐾 {𝑡}×𝑟−1(−∞,−𝑟𝐾−𝑡),

that is, any past-directed inextendible causal curve 𝑐(𝑡) = (𝑡, 𝑥(𝑡)) passing through
a point in ∪𝑡∈𝐼𝐾 {𝑡} × 𝑟−1(−∞,−𝑟𝐾 − 𝑡) meets {0} × 𝜅, for which it is sufficient
that if

𝑟 (𝑥(𝑡∗)) < −𝑟𝐾 − 𝑡∗ (4.54)

for some 𝑡∗ ∈ 𝐼𝐾 , then 𝑟 (𝑥(𝑡)) < −𝑟𝐾−𝑡 must hold for any 0 ≤ 𝑡 < 𝑡∗. To show this,
note that causality demands that 0 ≤ 𝑔0( ¤𝑐, ¤𝑐), which in turn implies |𝑑𝑟/𝑑𝑡 | ≤ 1.
Integrating it and making use of (4.54) yields, after some rearrangement, the
result we were seeking.

Next, we prove the other inclusion, that is 𝐷+
𝑔0 ({0}×𝜅)∩(𝐼𝐾×Σ) ⊂ ∪𝑡∈𝐼𝐾 {𝑡}×

𝑟−1(−∞,−𝑟𝐾 − 𝑡), or conversely: any point outside ∪𝑡∈𝐼𝐾 {𝑡} × 𝑟−1(−∞,−𝑟𝐾 − 𝑡)
lies on some past-directed causal curve that avoids {0} × 𝜅. Note that we need
not to worry about points (𝑡, 𝑥) for which 𝑟 (𝑥) ≥ −𝑟𝐾 because 𝑔0 is ultrastatic
and thus 𝐷+

𝑔0 ({0} × 𝜅) ⊂ R
+ × 𝜅. So consider (𝑡∗, 𝑥∗) with

−𝑟𝐾 > 𝑟 (𝑥∗) ≥ 𝑟𝐾 − 𝑡∗ (4.55)

for 𝑡∗ ∈ 𝐼𝐾 . A radially inward future-directed null geodesic through (𝑡∗, 𝑥∗) obeys
𝑟 (𝑥(𝑡)) = 𝑟 (𝑥(0)) − 𝑡, making use of (4.55) leads to 𝑟 (𝑥(0)) ≥ −𝑟𝐾 . □

Note that in the proof presented above we need 𝑟 to measure radial geodesic
distance. That is, we need 𝑟 (𝑥(𝑡)) to be within (−𝑟∗, 𝑟∗), which is actually the
case.

Corollary 4.3.1. Let 𝐼𝐿 = (0, 𝑡𝐹), then 𝐷−
𝑔0 ({𝑡𝐹} × 𝜆) ∩ (𝐼𝐿 × Σ) = ∪𝑡∈𝐼𝐿 {𝑡} ×

𝑟−1(−∞,−𝑟𝐿 − 𝑡𝐹 + 𝑡).

Proof. The proof follows from the same argument we used in the previous
Lemma, but on this occasion, the RHS of inequalities (4.54) and (4.55) must read
−𝑟𝐿 + 𝑡 − 𝑡𝐹 , and the first holds for 𝑡∗ < 𝑡 ≤ 𝑡𝐹 . □

REP 3. From the definition of 𝑣 in (4.48), it is clear that 𝑔 = 𝑔0 when restricted
to I × Σ. To see that 𝑔 = 𝑔0 in 𝐾, we just need to show that the sets 𝐾 and 𝑊
are disjoint. To see this, note that because of the definition of 𝑟𝐵, 𝜌(𝑡) and 𝜌−(𝑡)



4.3. Solution to the REP in conformally ultrastatic spacetimes 103

in Theorem 4.3.1, we will have −𝑟𝐾 − 𝑡 < −𝑟𝐵 − 𝑡 ≤ −𝑟𝐵 + 𝜌(𝑡) = 𝜌−(𝑡), so if
we consider a point 𝑝 ∈ 𝐾 with coordinates (𝑡, 𝑥), because of Lemma 4.3.3 we
conclude that 𝑟 (𝑥) ≤ −𝑟𝐾 − 𝑡 and thus 𝑟 (𝑥) < 𝜌−(𝑡), which means that 𝑝 ∉ 𝑊 .
Because of this, we see that 𝑔 = 𝑔0 in 𝐾 , which ends our proof for REP 3.

REP 4. Consider a causal curve 𝑐(𝑠) = (𝑡 (𝑠), 𝑥(𝑠)). The metric (4.50) yields

𝑔( ¤𝑐, ¤𝑐) = ¤𝑡
[
(1 − 𝑓 2𝑣2) ¤𝑡 + 2 𝑓 𝑣 ¤𝑟

]
− ℎ𝑡 ( ¤𝑥, ¤𝑥) ≥ 0, (4.56)

given that ℎ𝑡 is Riemannian, we see that the causal vector defined by ¤𝑐 = (¤𝑡, ¤𝑥) has
nonzero time component and therefore has constant sign along the curve. Hence
any hypersurface of the form {𝑡} × Σ is acausal, so in particular is achronal. As
𝜏, 𝜙 ⊂ Σ, we conclude that {0} × 𝜏 and {𝑡𝐹} × 𝜙 are achronal as well.

REP 2. Before proving our main result we need to prove an intermediate Lemma.

Lemma 4.3.4. For the modified metric 𝑔 and 𝐼𝐸 = [0, 𝑡𝐹 + 𝜀), we have 𝐷+
𝑔 ({0} ×

𝜏) ∩ (𝐼𝐸 × Σ) = ∪𝑡∈𝐼𝐸 {𝑡} × 𝑟−1((−∞, 𝜌(𝑡))).

Proof. First, we will show 𝐷+
𝑔 ({0} × 𝜏) ∩ (𝐼𝐸 ×Σ) ⊃ ∪𝑡∈𝐼𝐸 {𝑡} × 𝑟−1((−∞, 𝜌(𝑡))).

Making use of Lemma 4.2.1 (a) and the fact that 𝜅 ⊏ 𝜏, we have 𝐷𝑔 ({0} × 𝜅) ⊂
𝐷𝑔 ({0} × 𝜏). In addition to this, using Lemma 4.2.1 (b) with 𝐴 = 𝐼𝐸 × Σ and
𝐵 = {0} × 𝜅 we obtain

𝐷+
𝑔0 ({0} × 𝜅) ∩ (𝐼𝐸 × Σ) ⊂ 𝐷+

𝑔 ({0} × 𝜏) ∩ (𝐼𝐸 × Σ), (4.57)

where we have used that 𝑊 ∩ 𝐾 = ∅ (as shown in the proof of REP3), and so
𝑔 = 𝑔0 in 𝐾. By Lemma 4.3.3 we know that

⋃
𝑡∈𝐼𝐾 {𝑡} × 𝑟−1(−∞,−𝑟𝐾 − 𝑡) is

contained in the RHS of (4.57), so we just need to consider the remaining points.
Hence, it is just necessary to show that every past-directed inextendible causal

curve 𝑐(𝑡) = (𝑡, 𝑥(𝑡)) passing through a point in

𝑋 = ∪𝑡∈𝐼𝐸 {𝑡} × 𝑟−1( [−𝑟𝐾 − 𝑡, 𝜌(𝑡))) (4.58)

necessarily intersects {0} × 𝜏. Clearly, if the curve remains in 𝑋 then it certainly
meets {0} × 𝜏. By the same logic, if at some time we have 𝑟 (𝑥(𝑡)) < −𝑟𝐾 − 𝑡,
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then it must intersect {0} × 𝜅 ⊂ {0} × 𝜏. Thus, we only need to show that 𝑐(𝑡)
can not ever have 𝑟 (𝑥(𝑡)) > 𝜌(𝑡).

We will prove by contradiction, to this end let us assume that the curve can
leave 𝑋 at a certain time. Thus, for some time 0 < 𝑡∗ the curve is in 𝑋 , which
means that we have 𝑟 (𝑥(𝑡∗)) < 𝜌(𝑡∗). Then, at some point before 𝑐(𝑡∗) the curve
leaves 𝑋 , which means that it must necessarily intersect (𝑡, 𝜌(𝑡)) at some time
𝑡𝑐 = sup{𝑡 < 𝑡∗ : 𝑟 (𝑥(𝑡)) > 𝜌(𝑡)}. Hence, at this contact time 𝑟 (𝑥(𝑡𝑐)) = 𝜌(𝑡𝑐).

As it was noted in Remark 4.3.2, because of (4.42) the metric (4.50) pulls
back to (4.51) in Υ(𝑁), then, for 𝑐(𝑡) we will have 𝑔(𝑑𝑐/𝑑𝑡, 𝑑𝑐/𝑑𝑡) ≥ 0 which
can be written as ����𝑑𝑟𝑑𝑡 − 𝑓 𝑣

���� ≤ 1. (4.59)

By continuity, we may assume without loss of generality that 𝑐(𝑡) is in the
vicinity of (𝑡, 𝜌(𝑡)) for all 𝑡 ∈ [𝑡𝑐, 𝑡∗] such that 𝑓 ≡ 1 on this portion of 𝑐(𝑡).
Hence, causality (4.59) demands that 𝑑𝜌/𝑑𝑡 ≤ 𝑑𝑟/𝑑𝑡. By hypothesis we have
that 𝑟 (𝑥(𝑡∗)) < 𝜌(𝑡∗) and 𝑟 (𝑥(𝑡𝑐)) = 𝜌(𝑡𝑐). So, we deduce that 𝑑𝑟/𝑑𝑡 < 𝑑𝜌/𝑑𝑡
for some 𝑡 ∈ (𝑡𝑐, 𝑡∗) (actually for a set of nonzero measure). But given that
𝑓 (𝑐(𝑡)) = 1, this contradicts causality of 𝑐(𝑡). This contradiction arose from
the assumption that our causal curve can cross 𝜌 at some time 𝑡, therefore, we
must have that 𝑟 (𝑡) < 𝜌(𝑡) for every 𝑡, which proves our claim. Consequently, we
deduce that

𝐷+
𝑔 ({0} × 𝜏) ∩ (𝐼𝐸 × Σ) ⊃

⋃
𝑡∈𝐼𝐸

{𝑡} × 𝑟−1(−∞, 𝜌(𝑡)). (4.60)

Next, we need to check that this set inclusion also happens in the opposite
direction, or conversely, that every point outside the RHS of (4.60) lies on some
past-directed inextendible causal curve that avoids {0} × 𝜏. This is tantamount to
proving that

if 𝑟 (𝑥(𝑡)) ≥ 𝜌(𝑡) for some 𝑡 > 0 =⇒ 𝑟 (𝑥(0)) ≥ 𝜌(0) = 0. (4.61)

As (4.59) just depends on the radial coordinate, it is enough to consider that a
causal radially inward trajectory passing through a point outside 𝑋 never meets
{0} × 𝜏. Also, as it is saturated for null trajectories, we just need to consider this
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case as the rest will follow from continuity. So, consider the radially inward null
curve that passes through a point outside 𝑋 at time 𝑡∗, that is, 𝜌(𝑡∗) ≤ 𝑟 (𝑥(𝑡∗)) for
some 𝑡∗ ∈ 𝐼𝐸 . For this trajectory, (4.59) demands

𝑑𝑟

𝑑𝑡
− 1 − 𝑑𝜌

𝑑𝑡
=
𝑑𝑟

𝑑𝑡
− 𝑣 ≤ 𝑑𝑟

𝑑𝑡
− 𝑓 𝑣 = −1 (4.62)

where the inequality follows from 𝑣 being positive and we have used its definition
(3.6) in the equality to the left. Integrating this yields 𝑟 (𝑥(𝑡∗)) − 𝜌(𝑡∗) ≤
𝑟 (𝑥(0)) − 𝜌(0), by hypothesis the LHS is positive or zero, hence 𝜌(0) ≤ 𝑟 (𝑥(0)).
This shows that the null geodesic lies outside {0} × 𝜏 for all 𝑡 ∈ 𝐼𝐸 , which means
that (4.61) is true, thus

𝐷+
𝑔 ({0} × 𝜏) ∩ (𝐼𝐸 × Σ) ⊂

⋃
𝑡∈𝐼𝐸

{𝑡} × 𝑟−1(−∞, 𝜌(𝑡)),

this together with (4.60) proves our claim. □

Next, we make use of Corollary 4.3.1 along with Lemmas 4.3.3 and 4.3.4 to
prove that the relations (4.15), (4.16) and (4.17) in REP 2 hold. For the first, we
observe that

𝐷+
𝑔 ({0} × 𝜏) ∩ (𝐼𝐸 × Σ) ∩ ({𝑡𝐹} × Σ) =

(⋃
𝑡∈𝐼𝐸

{𝑡} × 𝑟−1(−∞, 𝜌(𝑡))
)
∩ ({𝑡𝐹} × Σ)

= {𝑡𝐹} × 𝑟−1(−∞, 𝑟𝐹) = {𝑡𝐹} × 𝜙,
(4.63)

where we used Lemma 4.3.4 in the first equality, (4.47) for the second and (4.46)
for the third. Because 𝐷+

𝑔 ({0} × 𝜏) ∩ ({𝑡𝐹} × Σ) = 𝐷𝑔 ({0} × 𝜏) ∩ ({𝑡𝐹} × Σ),
we find that (4.63) proves (4.15). For the second, that is (4.16), we have

𝐷+
𝑔0 ({0} × 𝜅) ∩ (𝐼𝐾 × Σ) ∩ ({𝑡𝐹} × Σ)

=

(⋃
𝑡∈𝐼𝐾

{𝑡} × 𝑟−1(−∞,−𝑟𝐾 − 𝑡)
)
∩ ({𝑡𝐹} × Σ)

which follows from Lemma (4.3.3). Resuming our computation yields

𝐷+
𝑔0 ({0} × 𝜅) ∩ (𝐼𝐾 × Σ) ∩ ({𝑡𝐹} × Σ) = {𝑡𝐹} × 𝑟−1(−∞,−𝑟𝐾 − 𝑡𝐹)

= {𝑡𝐹} × 𝑟−1(−∞,−𝑟𝐿) = {𝑡𝐹} × 𝜆,
(4.64)
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these equalities follow from (4.44) and (4.45), respectively. Noting that 𝐷+
𝑔0 ({0}×

𝜅) ∩ ({𝑡𝐹} ×Σ) = 𝐷𝑔0 ({0} × 𝜅) ∩ ({𝑡𝐹} ×Σ), we deduce that (4.64) proves (4.16).
Finally, for the third relation (4.16), we obtain

𝐷+
𝑔0 ({𝑡𝐹} × 𝜆) ∩ (𝐼𝐿 × Σ) ∩ ({0} × Σ)

=

(⋃
𝑡∈𝐼𝐿

{𝑡} × 𝑟−1(−∞,−𝑟𝐿 − 𝑡𝐹 + 𝑡)
)
∩ ({0} × Σ)

= {0} × 𝑟−1(−∞,−𝑟𝐿 − 𝑡𝐹) = {0} × 𝑟−1(−∞,−𝑟𝑆) = {0} × 𝜎, (4.65)

the first, third and fourth equality follow from Corollary 4.3.1, (4.44) and (4.45),
respectively.

In a similar fashion as before, 𝐷−
𝑔0 ({𝑡𝐹} × 𝜆) ∩ ({0} × Σ) = 𝐷𝑔0 ({𝑡𝐹} × 𝜆) ∩

({0} × Σ), and thus we see that implies that (4.17) holds. For the last relation
(4.18), it suffices to prove that {0} × 𝜏 ⊂ 𝐷−

𝑔0 ({𝑡𝐹} × 𝜙) and then use Lemma
4.2.1 (a). We will do this by contradiction. That is, we will assume there is a
future-directed inextendible 𝑔0 causal curve 𝑐(𝑡) = (𝑡, 𝑥(𝑡)) that passes through
𝑝 ∈ {0} × 𝜏 that fails to meet {𝑡𝐹} × 𝜙, so 𝑟 (𝑥(0)) < 0 and 𝑟 (𝑥(𝑡𝐹)) ≥ 𝑟𝐹 .
Moreover, there must be a 𝑡∗ ∈ (0, 𝑡𝐹)

(𝑟 ◦ 𝑥)′(𝑡∗) = ((𝑟 ◦ 𝑥) (𝑡𝐹) − (𝑟 ◦ 𝑥) (0))/𝑡𝐹 > 𝑟𝐹/𝑡𝐹 . (4.66)

From causality we get 1 ≥ (𝑟 ◦𝑥)′(𝑡)2+ ℎ(𝑑𝑐/𝑑𝑡, 𝑑𝑐/𝑑𝑡), which along with (4.66)
leads to 1 ≥ (𝑟𝐹/𝑡𝐹)2 + ℎ(𝑑𝑐/𝑑𝑡, 𝑑𝑐/𝑑𝑡) |𝑡=𝑡∗ , which is a contradiction since from
(4.43) we know that that 𝑟𝐹 > 𝑡𝐹 . Therefore, we have {0} × 𝜏 ⊂ 𝐷−

𝑔0 ({𝑡𝐹} × 𝜙),
making use of this together with (4.31) implies that

𝐷𝑔0 ({0} × 𝜏) ⊂ 𝐷𝑔0 ({𝑡𝐹} × 𝜙).

□

4.4 discussion

As noted in [24], Hadamard States form a State Space. Hence, as we have found
a solution to the REP (see 4.2), this implies we found a solution to the GSEP
(4.1) for the State Space of Hadamard States. Consequently, we have achieved
extending a state while keeping its Hadamard property. So, the next logical
question is: what other properties of the state can kept after extending?



4.4. Discussion 107

4.4.1 Quasifree states

Recalling that a state 𝜔0 on M is quasifree if its 𝑛-point functions are determined
by the 2-point function via

𝜔0(𝑒𝑖𝜆𝜙M ( 𝑓 )) = 𝑒−𝜆2𝑊 ( 𝑓 , 𝑓 )/2 (4.67)

and vanish for odd 𝑛. We will investigate if a quasifree state remains quasifree
after being extended. For 𝜔 ∈ 𝒮(𝑀), 𝑓 ∈ 𝐶∞

0 (M) and 𝜆 ∈ R, we write

ZM [𝜔; 𝑓 ;𝜆] = 𝜔(𝑒𝑖𝜆𝜙M ( 𝑓 )) (4.68)

in the sense of a formal series in 𝜆. Let M, N ∈ Loc, then for a morphism
𝜓 : M → N in Loc we can define the push forward 𝜓∗ : 𝐶∞

0 (M) → 𝐶∞
0 (N) as

follows

𝜓∗ 𝑓 = ( 𝑓 ◦ 𝜓−1) · I𝜓(M) , (4.69)

where · is the usual function pointwise product and I𝐵 is the characteristic function
of the set 𝐵. With this, we can exchange mappings between states for mappings
between test functions in the functional (4.68) in a formal way via

ZM [𝒮(𝜓)𝜔; 𝑓 ;𝜆] = (𝒮(𝜓) ◦ 𝜔) (𝑒𝑖𝜆𝜙M ( 𝑓 )) = 𝜔(𝒜(𝜓)𝑒𝑖𝜆𝜙M ( 𝑓 )) = 𝜔(𝑒𝑖𝜆𝜙N (𝜓∗ 𝑓 ))
= ZN [𝜔;𝜓∗ 𝑓 ;𝜆] . (4.70)

If 𝜓 : M → N is Cauchy, there exist maps 𝜁 : 𝐶∞
0 (N) → 𝐶∞

0 (M) so that

𝐸M𝜁 𝑓 = 𝜓
∗𝐸N 𝑓 ( 𝑓 ∈ 𝐶∞

0 (N)). (4.71)

Any such morphism 𝜁 will be called a "timeslice map", this notion was first
introduced in [27]. An example is obtained by setting 𝜁 = (𝑃𝜒𝐸)N, so

𝜓∗(𝑃𝜒𝐸)N 𝑓 = (𝑃𝜒𝐸)N 𝑓 ◦ 𝜓, with (𝑃𝜒𝐸)N 𝑓 ∈ 𝐶∞
0 (𝜓(M)), (4.72)

where we have introduced the shorthand notation (𝑃𝜒𝐸)N for 𝑃N𝜒N𝐸N and
𝜒N ∈ 𝐶∞(N) is identically zero to the future of a Cauchy surface Σ+

N of 𝜓(M)
and equals unity to the past of another. In the following, we write ¥𝜓 to
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denote a specific (though arbitrary) choice of timeslice map corresponding to a
Cauchy morphism 𝜓. Although there is no canonical timeslice map, note that
𝜙M(¥𝜓 𝑓 ) = 𝒜(𝜓)−1𝜙N( 𝑓 ) holds for every such maps and all test functions 𝑓 on
N. With this, we can do something similar to (4.70) but in the opposite direction,

ZN [𝒮(𝜓)−1𝜔; 𝑓 ;𝜆] = ZM [𝜔;¥𝜓 𝑓 ;𝜆] . (4.73)

Next, to see the effect of the extension map we compute ZS̃ [E𝜔; 𝑓 ;𝜆] using Eq.
(4.1) for E. This yields

ZS̃ [𝒮(𝜄𝑆;𝐹)−1
𝒮(𝜄𝐸 ;𝐹)𝒮

(
𝜄𝐸 ;𝑃

)−1
𝒮

(
𝜄𝑇 ;𝑃

)
𝜔; 𝑓 ;𝜆]

= ZF [𝒮(𝜄𝐸 ;𝐹)𝒮
(
𝜄𝐸 ;𝑃

)−1
𝒮

(
𝜄𝑇 ;𝑃

)
𝜔;¥𝜄�̃�;𝐹

𝑓 ;𝜆]
= ZE [𝒮

(
𝜄𝐸 ;𝑃

)−1
𝒮

(
𝜄𝑇 ;𝑃

)
𝜔; (𝜄𝐸 ;𝐹)∗¥𝜄�̃�;𝐹

𝑓 ;𝜆]
= ZP [𝒮

(
𝜄𝑇 ;𝑃

)
𝜔;¥𝜄𝐸;𝑃 (𝜄𝐸 ;𝐹)∗¥𝜄�̃�;𝐹

𝑓 ;𝜆]
= ZT [𝜔; (𝜄𝑇 ;𝑃)∗¥𝜄𝐸;𝑃 (𝜄𝐸 ;𝐹)∗¥𝜄�̃�;𝐹

𝑓 ;𝜆],

where in the first line we just substituted the definition of E given in (4.1) and
in the rest of the lines we exchange maps to test function maps with (4.70) and
(4.73), accordingly. The last expression suggests introducing the map

ext = (𝜄𝑇 ;𝑃)∗¥𝜄𝐸;𝑃 (𝜄𝐸 ;𝐹)∗¥𝜄�̃�;𝐹
, ext : 𝐶∞

0 (S̃) → 𝐶∞
0 (T),

which allows us to write our result as

ZS̃ [E𝜔; 𝑓 ;𝜆] = ZT [𝜔; ext 𝑓 ;𝜆] . (4.74)

Let us denote a quasifree state by 𝜔0, in this case the functional (4.68) becomes
ZM [𝜔0; 𝑓 ;𝜆] = 𝑒−𝜆2𝑊 ( 𝑓 , 𝑓 )/2, where𝑊 is the two-point function. Using this and
(4.74) it is not difficult to see that

ZS̃ [E𝜔0; 𝑓 ;𝜆] = ZT [𝜔0; ext 𝑓 ;𝜆] = 𝑒−𝜆2𝑊 (ext 𝑓 ,ext 𝑓 )/2, (4.75)

hence, 𝜔𝑆 will also be quasifree.
It is worth mentioning that although ext depends on the choice of the two times-

lice maps used in its construction, the 2-point function ( 𝑓 , 𝑔) ↦→ 𝑊 (ext 𝑓 , ext 𝑔)
is independent of these choices – this is immediate because the LHS of (4.75)
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does not depend on them. The fact that the quasifree property is kept after the
extension is remarkable and should not be taken for granted. As a matter of fact,
it relies crucially in the existence of Cauchy morphisms between some of our
regions; which were originally needed for quite different reasons. This might be
of interest for applications in the context of perturbative QFT as this alongside
the fact that the extended state is also Hadamard, implies that the structure of the
Wick algebra structure of the linear scalar field is preserved.

4.4.2 Symmetries

On first glance, it might seem that our current formulation of symmetries is not
well-suited to deal with the whole of a Globally Hyperbolic Spacetime. However,
it is not possible to have full symmetries once we have introduced regular domains
such as 𝜏 ⊂ Σ. This is due to the fact that in general, an isometry of (R × Σ, 𝑔)
will not preserve the Cauchy surface Σ.

Recall that if we want the REP to be compatible with symmetries, we need to
preserve the regular domains 𝜏, 𝜎, 𝜅, 𝜆 and 𝜙 under the action of all the members
of an isometry group 𝐺. But, as all of the relevant regions are diamonds defined
via the Cauchy developments of regular domains, it would be odd to expect that
the symmetries of the whole spacetime are preserved. This can be illustrated via
the following example: consider our spacetime to be Minkowski and let 𝜏 be the
ball of radius 𝑟𝑇 sitting at the origin. Clearly, the Poincaré group can not be an
appropriate isometry group, nonetheless, 𝑆𝑂 (3) (which is a subgroup) is.

So, as introducing the regular domains in 𝑀 may already break pre-existing
symmetries, the only thing one can hope for is to prove that isometries of Σ are
preserved under the REP, which is precisely what we have done. This is good for
applications since it tells us that the extension not only preserves the Hadamard
property, but also some important characteristics of the original state that will
help us to quickly identify familiar features in the extended state.

4.4.3 Extension to the whole spacetime

So far, we have considered the problem of extending a state from one region to a
slightly expanded region. A natural question is: can we repeat this procedure?
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If so, one could ask: how many more times? This leads to inquiring whether
or not we can extend to the whole spacetime. Some work has been done in this
direction, however, it requires to be formulated in more precise terms. The main
idea is to have a sequence of extensions 𝜔𝑛 with nested protected regions 𝑆𝑛 so
that

⋃
𝑆𝑛 = 𝑀. Then, assuming additivity for this sequence, it is possible to

obtain a state on 𝒜(𝑀) that agrees with the original state on 𝑆1.
It is also worth mentioning that we are working on this subject with the same

methodology used in REP. That is, we solve the abstract problem to see what is
needed from the sequence of 𝜔𝑛 and 𝑆𝑛. After finding this, then we would go on
to building a specific solution using a construction similar to the one found in
Section 4.3. This certainly restricts the class of spacetimes and possible choices
for 𝜏, 𝜎 and 𝜙.

This is due to the fact that we need each of the boundaries 𝜕𝜏𝑛 to always have
non-zero (outward) normal injectivity radius for each 𝑛. So, this restricts our
choices of 𝜏 and Σ. In particular, note that Σ can not be compact, as in this case
there will be 𝑚 ≥ 0 such that 𝜕𝜏𝑚 has zero injectivity radius. Please note that this
does not mean that one can not find such a sequence if Σ is compact, but rather
that our construction can not be applied as it makes use of the notion of injectivity
radius. A good way to guarantee that 𝜕𝜏𝑛+1 will never have a vanishing injectivity
radius, is to require that the extrinsic curvature of 𝜕𝜏𝑛 is non-negative. With this,
we rule out the existence of conjugate points thus guaranteeing that Υ in Lemma
4.3.1 is always a diffeomorphism.



5

Detector Response in Uniform Circular Motion

-Let’s go.
-We can’t.
-Why not?
-We’re waiting for Godot.

Samuel Beckett, Waiting for Godot

Quantum Field Theory has many predictions and the Unruh Effect [62,
63] is one of the most astonishing as it predicts that an observer moving with
linear acceleration 𝑎 in empty space will start thermalising with temperature
𝑇𝑈 = 𝑎/(2𝜋). Unfortunately, verifying this experimentally is not an easy task as
an observer would need to attain a linear acceleration of the order of 108𝑚/𝑠2 to
reach a temperature of 10−12𝐾, which is the lowest temperature measured in a
laboratory as of today.

Also, in the original presentation of the Unruh effect, it was not easy to discern
whether or not it was just a result of the mathematical formulation of QFT or
a physical effect. However, Unruh and DeWitt could demonstrate that if one
introduces a detector, then its response: (a) depends on its proper time and (b) its
response matches the one given by 𝑇𝑈 .

Since then, many experimental proposals have been put forth [14, 11, 2, 39]
and our research intends to propose yet another one with a novel approach. Instead
of a linearly accelerated detector, we study one following a uniform circular
trajectory. Additionally, we drop the usual assumption that the detection time
is very large and introduce the following question: how long does one have to

111
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wait for thermalisation? Our findings indicate that a thorough study of the space
of experimental parameters must be made in order to increase the size of the
detected temperature and decrease waiting times.

5.1 preliminaries

Throughout this section, we will make use of standard Minkowski coordinates
𝑥 = (𝑡, ®𝑥) with ®𝑥 ∈ R2 for which the metric reads 𝑔 = −1 ⊕ 𝑒, where 𝑒 is the
2-dimensional Euclidean metric.

Definition 5.1.1. If for𝑈 ⊆ R and measure 𝜇 : 𝑈 → R, the measurable function
𝑓 : 𝑈 → C satisfies

∫
𝑈
| 𝑓 |𝑑𝜇 < ∞, then we say that 𝑓 belongs to the vector space

𝐿1(𝑈, 𝑑𝜇) and we define its 𝐿1-norm as | | 𝑓 | |1,𝑈 :=
∫
𝑈
| 𝑓 |𝑑𝜇. If 𝑈 = R we will

drop the𝑈 subscript from the notation.
Also, for 𝑓 , 𝑔 : 𝑈 → C let us introduce the inner-product over𝑈 defined as

⟨ 𝑓 , 𝑔⟩𝑈 :=
∫
𝑈
𝑓 𝑔 𝑑𝜇 which induces the 𝐿2-norm | | 𝑓 | |2,𝑈 =

√︁
⟨ 𝑓 , 𝑓 ⟩; we say that

𝑓 ∈ 𝐿2(𝑈, 𝑑𝜇) if | | 𝑓 | |2,𝑈 < ∞, note that 𝐿2(𝑈, 𝑑𝜇) is also a vector space and we
will also drop the subscript if𝑈 = R.

Definition 5.1.2. The Fourier transform of a function 𝑓 is denoted by ℱ [ 𝑓 ]
and its definition is ℱ [ 𝑓 ] (𝑢) =

∫ ∞
−∞ 𝑑𝑥 𝑒

−𝑖𝑢𝑥 𝑓 (𝑥). Following this defini-
tion, Plancherel’s formula becomes ⟨ℱ [ 𝑓 ],ℱ [𝑔]⟩ = 2𝜋⟨ 𝑓 , 𝑔⟩ where 𝑓 , 𝑔 ∈
𝐿1(R, 𝑑𝑥) ∩ 𝐿2(R, 𝑑𝑥).

The sine and cosine transforms are defined as 𝒮[ 𝑓 ] (𝑢) =
∫ ∞
0 𝑑𝑥 sin(𝑢𝑥) 𝑓 (𝑥)

and 𝒞[ 𝑓 ] (𝑢) =
∫ ∞
0 𝑑𝑥 cos(𝑢𝑥) 𝑓 (𝑥), respectively. The convolution of two

functions 𝑓 and 𝑔 is given by [ 𝑓 ∗ 𝑔] (𝑥) :=
∫
R
𝑑𝑦 𝑓 (𝑦)𝑔(𝑥 − 𝑦).

The symmetric tensor product is taken to be 𝐴 ⊗𝑠 𝐵 = (𝐴 ⊗ 𝐵 + 𝐵 ⊗ 𝐴)/2. It
also is important to note that in this Chapter we have changed our sign convention
to (−, +, +, +), as opposed to the rest of this thesis. Also, as we will only be
working with the two-point function of the Minkowski vacuum, we will denote it
with W.
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5.2 the unruh effect

The Unruh effect is the phenomenon where a uniformly linearly-accelerated
detector interacting with a quantum field becomes thermalised with a temperature
proportional to the acceleration 𝑎. The wordline of an observer in Minkowski
spacetime with uniform linear acceleration 𝑎 in the 𝑧 direction is given by
𝑐(𝜏) = (sinh(𝑎𝜏)/𝑎, 𝑥0, 𝑦0, cosh(𝑎𝜏)/𝑎) where 𝑥0 and 𝑦0 are constants. This
observer is at rest if with respect to coordinates (𝜏, 𝜉) (following the conventions
established in [17]) such that

𝑡 =
𝑒𝑎𝜉

𝑎
sinh(𝑎𝜏), 𝑧 =

𝑒𝑎𝜉

𝑎
cosh(𝑎𝜏). (5.1)

This is not the most obvious choice of coordinates, but it has the advantage of
rendering the metric into a conformally flat form

𝑔 = 𝑒2𝑎𝜉
(
−𝑑𝜏2 + 𝑑𝜉2

)
+ 𝑑𝑥2

⊥,

which has a Killing vector given by 𝑣 = (𝜕/𝜕𝜏) = 𝑎[𝑧(𝜕/𝜕𝑡) + 𝑡 (𝜕/𝜕𝑧)],
whereupon we deduce that the Killing horizon is at

𝜕𝑊 = {(𝑡, 𝑧) ∈ R2 |𝑡 + 𝑧 = 0 or 𝑡 − 𝑧 = 0}.

Also, it must be noted that these coordinates do not cover all of Minkowski
spacetime, but they do cover the right wedge sitting at the origin defined by
𝑊 = {(𝑡, 𝑧, ®𝑥⊥) ∈ R𝑑 , ®𝑥⊥ ∈ R𝑑−2 | 𝑧 > |𝑡 |} also known as the Rindler wedge.
We would like to stress the fact that 𝜏 plays a privileged role: first, surfaces of

𝑊

𝑀

Figure 5.1: The Rindler wedge𝑊 .

constant 𝜏 are Cauchy surfaces, from which we deduce that𝑊 is indeed globally
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hyperbolic and therefore can be considered a spacetime in its own right. Further,
the translation 𝛼𝜏′ : 𝜏 → 𝜏 + 𝜏′ corresponds to a Lorentz boost and is an isometry
of𝑊 . Thus, we see that this spacetime is static with Lorentz boosts now playing
the role of time translations. The orbits of these boosts are timelike everywhere
and complete in 𝑊 , which means that 𝜏 ∈ (−∞,∞). Said orbits correspond to
the wordlines of uniformly accelerated observers in Minkowski spacetime and
they become null in the boundary of the Rindler wedge.

Next, we turn our attention to the quantum theory of a scalar field in 𝑊 .
Consider a unital ∗-algebra 𝒜(𝑊) over the Rindler wedge whose generators 𝜙( 𝑓 )
are labelled by 𝑓 ∈ 𝐶∞

0 (𝑊). The field satisfies the usual CCR relations (2.2.1)
which are identical to those of Minkowski spacetime because 𝐸𝑀 the fundamental
solution, is locally the same. However, the main difference with the Minkowski
case comes from the fact that the algebra 𝒜(𝑊) only contains elements of the
form 𝜙( 𝑓 ) with 𝑓 compactly supported in𝑊 , in particular, those away from the
boundary of the Rindler wedge. And so, 𝒜(𝑊) can be seen as a proper subalgebra
of the algebra of Minkowski spacetime.

Because of this, we can obtain a state 𝜔𝑊 on the Rindler wedge by restricting
the Minkowski vacuum 𝜔 to𝑊 . However, this restriction does not yield a pure
state. This can be seen from the following argument, which we will formulate
in 𝑑-dimensions (2 < 𝑑) as little effort to do so is needed. The 𝑑-dimensional
two-point function for the Minkowski vacuum 𝜔 in the massless case is given by

W(𝑥, 𝑥′) = lim
𝜀→0+

Γ(𝑑/2 − 1)
4𝜋𝑑/2𝜎𝜀 (𝑥 − 𝑥′) (𝑑−2)/2 , 𝜎𝜀 (𝑥 − 𝑥′) := (𝑥 − 𝑥′ − 𝑖𝜀Δ𝑡)2,

(5.2)

where Δ𝑡 is a (fixed) future-directed timelike vector. If we consider 𝑥 ∈ 𝑊 and
𝑧′ ∈ 𝑊𝐿 = {(𝑡, 𝑧, ®𝑥⊥) ∈ R𝑑 , ®𝑥⊥ ∈ R𝑑−2 | − 𝑧 > |𝑡 |}, where the region 𝑊𝐿 is
known as the left wedge, we find that W(𝑥, 𝑥′) ≠ 0.

Thus, there must be correlations between these disjoint wedges and in
consequence, the restriction of 𝜔 to 𝒜(𝑊) is not a pure state. A state that is
not pure is known as mixed, and the usual description of said states is given by
density matrices. However, as intuitive as it may be, the idea of density matrices
is not totally accurate in the given setting, as they do not have a Hilbert space
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representation. This is why we will adapt these ideas to the level of algebraic
states.

Usually, when one encounters a mixed state, certain questions regarding the
thermal equilibrium properties associated with said state arise quite naturally. As
we mentioned in 2.4.1, KMS states allow us to formulate the notions pertaining to
thermal equilibrium in terms of the state and isometries of the spacetime. It turns
out that the restriction of 𝜔 to 𝒜(𝑊) is a KMS state with respect to the isometries
𝛼𝜏′ : 𝜏 → 𝜏 + 𝜏′, given by Lorentz boosts in Minkowski spacetime. Furthermore,
its inverse temperature is 𝛽 = 2𝜋/𝑎, where 𝑎 is the uniform acceleration of the
observer along the orbits generated by the Lorentz boosts, as we will show now
explicitly.

Theorem 5.2.1. When restricted to the algebra of the Rindler wedge, the
Minkowski vacuum state satisfies the KMS condition with respect to isometries
defined by the Lorentz boost 𝛼𝜏′ : 𝜏 → 𝜏 + 𝜏′. The inverse temperature of this
state is 𝛽 = 2𝜋/𝑎.

Proof. To prove this we need to see that the Minkowski vacuum state satisfies
the KMS condition (c.f. Definition 2.4.1) for 𝑎 = 𝜙( 𝑓 ), 𝑏 = 𝜙(𝑔) with 𝑓 , 𝑔

supported in the interior of the Rindler wedge. This holds if for 𝑥, 𝑥′ ∈ W the
distribution 𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = 𝜔(𝜙(𝑥), 𝛼𝜃+𝑖𝜌𝜙(𝑥′)) has the distributional boundary
values

lim
𝜌→0+

𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = 𝐹𝑥,𝑥′ (𝜃), lim
𝜌→𝛽−

𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = 𝐹𝑥′,𝑥 (𝜃). (5.3)

To prove this, we write the 𝜎𝜀 (𝑥, 𝑥′) in (5.2) in terms of the Rindler coordinates
(5.1) which results in

𝜎𝜀 (𝑥, 𝑥′) = 𝑎−2{𝑒2𝑎𝜉 + 𝑒2𝑎𝜉′ − 2𝑒𝑎(𝜉+𝜉
′) cosh(𝑎(𝜏 − 𝜏′))

+ 2𝑖𝜀[𝑒𝑎𝜉 sinh(𝑎𝜏) − 𝑒𝑎𝜉′ sinh(𝑎𝜏′)] + 𝜀2} + (®𝑥⊥ − ®𝑥′⊥)2. (5.4)

For our purposes, it is convenient to slightly modify the 𝑖𝜀 prescription, to do
this we are going to use the same method as in [23][Section 2.5]. After a minor
rearrangement of terms, this allows us to write (5.4) as

𝜎𝜀 (𝑥, 𝑥′) = (®𝑥⊥ − ®𝑥′⊥)2 + 𝑎−2{(𝑒𝑎𝜉 − 𝑒𝑎𝜉′)2 − 4𝑒𝑎(𝜉+𝜉
′) sinh

(
𝑎
2 (𝜏 − 𝜏

′ − 2𝑖𝜀)
)2}.
(5.5)
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This is possible because when 𝑥 and 𝑥′ are null-separated, both (5.4) and (5.5)
have positive imaginary parts. If we introduce the functions 𝐼 (𝑥, 𝑥′) = 𝑎−2(𝑒𝑎𝜉 −
𝑒𝑎𝜉

′)2 + (®𝑥⊥ − ®𝑥′⊥)2 we can write

𝜎𝜀 (𝑥, 𝑥′) = 𝐼 (𝑥, 𝑥′) −
4𝑒𝑎(𝜉+𝜉′)

𝑎2 sinh
(
𝑎
2 (𝜏 − 𝜏

′ − 2𝑖𝜀)
)2
,

from which it follows that the distribution 𝐹𝑥,𝑥′ can be written as

𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = lim
𝜀→0+

Γ(𝑑/2 − 1)
4𝜋𝑑/2

[𝜎𝜀+(𝜌+𝑖𝜃)/2(𝑥, 𝑥′)]−(𝑑−2)/2.

To take the limit we note that the function 𝑓 (𝜀, 𝜌) := 𝜎𝜀+𝜌/2(𝑥, 𝑥′) is continuous,
hence lim𝜌→0+ 𝑓 (𝜀, 𝜌) exists pointwise for each 𝜀 ≠ 0. Moreover, observe that
lim𝜀→0+ 𝑓 (𝜀, 𝜌) converges uniformly for 𝜌 ≠ 0, so by making use of the Moore-
Osgood theorem [57] we deduce that we can exchange the limits. In particular, if
we take 𝜌 → 0+ we deduce that

lim
𝜌→0+

𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = lim
𝜀→0+

Γ(𝑑/2 − 1)
4𝜋𝑑/2

[𝜎𝜀+𝑖𝜃/2(𝑥, 𝑥′)]−(𝑑−2)/2 = 𝐹𝑥,𝑥′ (𝜃)

which verifies the first equation in (5.3). For the limit 𝜌 → 𝛽− we recall that
𝛽 = 2𝜋/𝑎 so, we have lim𝜌→𝛽− 𝑓 (𝜀, 𝜌) = lim𝜌→𝛽− 𝜎𝜀+𝜌 (𝑥, 𝑥′) = 𝜎−𝜀 (𝑥′, 𝑥)
where we used the fact that 𝐼 (𝑥, 𝑥′) is symmetric in its arguments. Note that this
limit exists for each 𝜀 ≠ 0, also lim𝜀→0+ 𝑓 (𝜀, 𝜌) = 𝜎𝜀 (𝑥, 𝑥′) converges uniformly
for 𝜌 ≠ 𝛽 so we can exchange limits again. And so, we obtain

lim
𝜌→𝛽−

𝐹𝑥,𝑥′ (𝜃 + 𝑖𝜌) = lim
𝜀→0+

Γ(𝑑/2 − 1)
4𝜋𝑑/2

𝜎−𝜀 (𝑥′, 𝑥)−(𝑑−2)/2 = 𝐹𝑥′,𝑥 (𝜃),

which verifies the second condition in (5.3). □

It must be noted that we have proved that the KMS condition holds in the case
where the observables 𝑎 and 𝑏 are single fields. The general result follows from
using the quasifree property of the Minkowski vacuum state, which allows us to
deduce all 𝑛-point functions from 2-point functions.

Furthermore, the upshot of Theorem 5.2.1 is that if an observer is in the
Minkowksi vacuum state 𝜔, after undergoing uniform acceleration 𝑎, it will
thermalise with temperature

𝑘𝐵𝑇𝑈 =
ℏ𝑎

2𝜋𝑐
(5.6)
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where we have restored constants: 𝑘𝐵 = 1.380649×10−23𝐽 ·𝐾−1 is the Boltzmann
constant, ℏ = 1.054571817... × 10−34𝐽 · 𝑠 the (reduced) Planck constant and
𝑐 = 2.99792458 × 108𝑚 · 𝑠−1 is the speed of light.

Note that this observer corresponds to a static observer in Rindler spacetime.
This might seem a little puzzling since if the state is in Minkowski vacuum, an
observer at rest will say that there are no particles present. However, it is important
to mention that the KMS temperature is not necessarily the physical temperature
of the vacuum. Hence, this does not contradict the fact that accelerated observers
thermalise, it just shows that the notion of vacuum state or particles is not
fundamental. Both observers will agree on the fact that the two-point function
of the field is given by W and in consequence, they will calculate the same
probabilities for measuring any field observables.

5.3 unruh-dewitt detector

To measure the temperature experimentally, one needs to introduce a theoretical
model for a detector. This is the so-called Unruh-DeWitt detector. From now on
we will follow closely the exposition of the theory given in Section 3 of [26]. We
will consider a detector to be a pointlike two-level quantum system with Hilbert
space H𝐷 = C2 that moves along the wordline 𝑥(𝜏). This Hilbert space is spanned
by the orthonormal basis {|0⟩, |1⟩} with 𝐻𝐷 |0⟩ = 0 and 𝐻𝐷 |1⟩ = 𝐸𝑔𝑎𝑝 |1⟩, where
𝐻𝐷 is the detector’s Hamiltonian and 𝐸𝑔𝑎𝑝 is its energy gap – from now on we
will write 𝐸 when no confusion might arise.

The quantum field 𝜙 is the minimally-coupled Klein-Gordon scalar field with
mass 𝑚 ≥ 0 whose Hilbert space H𝜙 is known to contain Hadamard state vectors1
and admit a unitary time evolution generated by a Hamiltonian 𝐻𝜙. Therefore, the
Hilbert space of the total system is H = H𝜙 ⊗ H𝐷 and the total Hamiltonian is

𝐻 = 𝐻𝜙 ⊗ 1𝐷 + 1𝜙 ⊗ 𝐻𝐷 + 𝐻𝑖𝑛𝑡 ,

where 𝐻𝑖𝑛𝑡 (𝜏) = 𝑐𝜒(𝜏)Φ(𝑥(𝜏)) ⊗ 𝜇 is the interaction Hamiltonian which is
constituted by 𝑐, a coupling constant; 𝜒 ∈ 𝐶∞

0 (R), the detector’s switching
function and the detector’s monopole moment operator is 𝜇 = |0⟩⟨1| + |1⟩⟨0|.

1Vectors |𝜙𝑖⟩ for which the two-point function ⟨𝜙𝑖 |𝜙(𝑥′)𝜙(𝑥′′) |𝜙𝑖⟩ satisfies the Hadamard
condition.
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Suppose that before the interaction starts, the detector is in |0⟩ and the field in
some Hadamard state |𝜙𝑖⟩. Then, after the interaction has ceased, the probability
of finding the detector in |1⟩, regardless of the final state of the field, is (according
to first order perturbation theory) [62, 10, 64]

𝑃 = 𝑐2 |⟨1|𝜇(0) |0⟩|2F (𝐸),

where

F (𝐸) =
∫
R2
𝑑𝜏′ 𝑑𝜏′′𝜒(𝜏′)𝜒(𝜏′′)𝑒−𝑖𝐸 (𝜏′−𝜏′′) ⟨𝜙𝑖 |𝜙(𝑥(𝜏′))𝜙(𝑥(𝜏′′)) |𝜙𝑖⟩ (5.7)

is called the response function. The internal structure of the detector is encoded
by the constant factor 𝑐2 |⟨1|𝜇(0) |0⟩|2, hence, the transition probability will depend
only on the response function (c.f. [20]). Note that as |𝜙𝑖⟩ is by assumption
Hadamard, W(𝜏′, 𝜏′′) := ⟨𝜙𝑖 |𝜙(𝑥(𝜏′))𝜙(𝑥(𝜏′′)) |𝜙𝑖⟩ is a well-defined distribution.

From now on we are going to consider two-point functions whose pull-back
is time translation independent, i.e. they satisfy the property W(𝜏′, 𝜏′′) =

W(𝜏′ − 𝜏′′), the upshot of this is that F (𝐸) will be invariant under translations
in 𝜒. If we make the additional assumption that the detector is switched on for a
long time, we will arrive at the usual Unruh effect. So, if we divide (5.7) by the
interaction time and let this time tend to infinity, we find that the response function
F (𝐸) is proportional to the stationary response function F𝑠 (𝐸) independent of 𝜒
defined by

F𝑠 (𝐸) = ℱ(W)(𝐸).

This Fourier transform can be calculated via contour methods (c.f. [28][Sect
III.B]) whereupon we find that for the Minkowski vacuum state, we will have

F𝑠 (𝐸) =
1

2𝜋

(
𝐸

𝑒2𝜋𝐸/𝑎 − 1

)
. (5.8)

We can find the usual result for Unruh temperature 𝑇𝑈 = 𝑎/(2𝜋) by substituting
the stationary response function F𝑠 (𝐸) in (2.4.2), which agrees with Theorem
5.2.1 and is clearly independent of the energy gap 𝐸 .
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5.4 detector in uniform circular motion

Next, we study a detector that is in uniform circular motion, rather than the
uniform linear acceleration in the usual Unruh effect formulation. It is natural
to think that one would study the properties of the rotating vacuum in order to
understand the detector response. However, this introduces some remarkable
differences with respect to the usual Unruh effect.

An initial approach would be to think of cylindrical coordinates (𝑡, 𝑟, 𝜙, 𝑧)
for R4 and implement the rotation for an angular velocity Ω via the coordinate
transformation 𝜙 → 𝜙 +Ω𝑡. Note that this is rather naïve as this transformation
does not define a Lorentz frame. However, it illustrates the point we want to make.
In these coordinates the metric becomes

𝑔 = (−1 +Ω2𝑟2)𝑑𝑡 ⊗ 𝑑𝑡 + 𝑑𝑟 ⊗ 𝑑𝑟 + 𝑟2𝑑𝜙 ⊗ 𝑑𝜙 + 2Ω𝑟2𝑑𝑡 ⊗𝑠 𝑑𝜙 + 𝑑𝑧 ⊗ 𝑑𝑧

and so the wordline of a detector will be the integral curve of the Killing vector
𝜉 = 𝜕/𝜕𝑡 which will be timelike if Ω𝑟 < 1, null if Ω𝑟 = 1 and spacelike if Ω𝑟 > 1.
Also, observe that in this case there is no event horizon as opposed to the Rindler
coordinates (5.1).

The form of the solutions to the Klein-Gordon equation in the rotating frame
are the same (after relabelling modes) to those of the nonrotating frame (c.f. [48]).
Consequently, all of the 𝑛-point functions of the ground state with respect to
translations in 𝑡, will also be identical to those of the Minkowski vacuum and
therefore the states will be the same (c.f. 2.2.4). This is already very different to
the usual Unruh effect where clearly the Minkowski vacuum is different to the
Rindler vacuum as accelerated detectors give no response in the Rindler vacuum
state but thermalise in the Minkowski vacuum. Yet, in our present case, since
the rotating and nonrotating states are the same, a rotating detector will give no
response in the Minkowksi vacuum state.

This is certainly puzzling, more so if we consider that the detector response
per unit time can be calculated (c.f. [18]) and is different from zero when Ω𝑟 < 1
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since it is given by

F𝑟𝑜𝑡 (𝐸) =
√
−1 +Ω2𝑟2

4𝜋2 ℱ [W𝑟𝑜𝑡]
(√︁

−1 +Ω2𝑟2𝐸
)
, (5.9)

W𝑟𝑜𝑡 (𝑠) = lim
𝜀→0+

(−(𝑠 − 𝑖𝜀)2 + 4𝑟2 sin(Ω𝑠/2)2)−1. (5.10)

It may be argued that the problem arises from doing a Galilean coordinate
transformation and that one instead must use a local Lorentz frame [19] given
by 𝑡 → 𝛾(𝑡 + Ω𝑟2𝜙), 𝜙 → 𝛾(𝜙 + Ω𝑡). Unfortunately, this renders the metric
multi-valued. This happens because the constant time surfaces are helicoidal with
jumps in time proportional to Ω𝑟2, and so, there is no Cauchy surface for this
geometry.

This seems even more strange than the previous case, nonetheless, a rather
elegant solution was found by Korsbakken and Leinaas [46] by the means of a
clever reformulation: instead of trying to build a rotating vacuum state, let us
consider a detector rotating in the unit circle (𝑟 = 1) in the Minkowski vacuum
state. The difference might be subtle but is remarkably important, as now the
emphasis is on understanding the detector response.

What Korsbakken and Leinaas do, is analyse a detector in a stationary trajectory
that admits a frame that is both accelerated uniformly (with acceleration 𝑎) and
rotating (with angular velocity Ω) with respect to an inertial rest frame. Within
this reformulation, (5.9) could be understood as a limiting case when 𝑎 is very
small and Ω is kept fixed. When 𝑎 > Ω there will be an event horizon and a
static limit, which is defined by certain values of 𝑎 and Ω for which the detector’s
trajectory becomes timelike.

Beyond the static limit the field will have negative-energy modes which implies
that in the detectors frame the Minkowski vacuum is no longer a ground state. As
a matter of fact, the detector’s response comes from radiating into negative-energy
modes, or absorbing positive-energy ones. The other case they study is when
𝑎 < Ω, for which the event horizon disappears and it can be interpreted as uniform
circular motion. Since there is no longer a horizon, Minkowski vacuum can no
longer be seen as a thermal state, and so the interpretation of the detector response
might seems elusive and ill-defined.
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Figure 5.2: 𝑇 as a function of 𝐸 published by Korsbakken and Leinaas in [46]. In
their notation 𝜔 is the angular velocity and Δ𝐸 the energy gap.

However, Korsbakken and Leinaas also found that if we assume that the
response function always satisfies the detailed balance condition at temperature
𝑇 = 1/𝛽, then one can show that this temperature varies continuously with respect
to changes the parameter Ω/𝑎. See Figure 5.2 to see the plot of 𝑇 as a function
of 𝐸 , originally published in [46]. Therefore, by assuming that the detector’s
response function satisfies the detailed balance condition (2.4.2) we can still
expect thermalisation. This thermalisation is due to different causes from the one
observed in the Unruh effect, but both of them can be related by a continuous
transition when Ω/𝑎 varies continuously. Also, now the temperature will depend
on the energy gap 𝐸 and will be independent of it only when Ω = 0, which is the
usual Unruh effect.



122 Chapter 5. Detector Response in Uniform Circular Motion

5.5 response function for a detector in uniform circular motion

In the previous section, we mentioned that assuming that the detailed balance
condition still holds for a rotating detector in a spacetime with no horizon
is of paramount importance to deem the detector response as thermal. This
assumption is somewhat puzzling as there are many questions on the interpretation
of temperature in this case, or even of the validity of the perturbation theory used
to arrive to this result. As the conceptual side is rather opaque, experimental
proposals to test this assumption have been envisaged.

Initially this seems like a challenging task, nevertheless the analogue spacetime
programme [6] simplifies the situation as it allows us to simulate relativistic
phenomena in non-relativistic laboratory environments. In particular, in [39]
it has been proposed to use a Bose-Einstein Condensate (BEC) as an analogue
spacetime because its phonons are the fastest perturbations within the condensate.
This allows us of thinking of them as analogues of photons, as they are the fastest
signals that can be propagated in the BEC, but with the added advantage that the
analogue speed of light defined by them is 12 orders of magnitude lower than
the usual one. A laser coupled to this condensate serves as the detector and is in
uniform circular motion in 2 + 1 spacetime dimensions.

With this experimental setting in mind, we will analyse a detector in planar
uniform circular motion. More specifically, we ask:

How long does one has to wait for a 2-level detector in circular motion
to become thermalised, as a function of its speed 𝑣 and the energy
gap 𝐸 in the detector?

In the possible experimental settings, the energy gap is usually small while the
waiting time is large. To this end, we will assume that the energy gap 𝐸 and the
waiting time 𝜆 are related as 𝐸𝜆 = 𝑆0 for a positive constant 𝑆0. This assumption
was made on the grounds that we are expecting physical scenarios where the
energy gap of the detector is very small compared to the waiting time in the
laboratory. We will adapt the results of [26] and [9] under this assumption to find
an asymptotic expression (as 𝐸 → 0) for the transition function. It is important
to note that in [26] they were interested in large 𝐸 . So, will follow their approach



5.5. Response function for a detector in uniform circular motion 123

in considering a finite observation time (encoded in the support of 𝜒) and modify
it for the small 𝐸 case.

One point worth noting is that this expression can be taken up to an arbitrary
order in 𝐸 and the upshot of this is that the thermalisation temperature 𝑇 of the
detector will depend non-linearly on 𝐸 (as we expected) as 𝐸 → 0. In other work
(see [9][Sect. 4.3]) it is more normal to have a linear relation between 𝐸 and 𝑇 for
small 𝐸 . Thus, a nonlinear relation could have implications for the observability
of the thermalisation and this will be a focus of the work as it develops further.

Definition 5.5.1. For a continuous function 𝑔, we define its dilation by 𝜇 as
𝒟𝜇 [𝑔(𝑥)] = 𝑔(𝜇 · 𝑥). Note that when 𝜇 = −1 we have a reflection and it shall be
denoted by ℛ.

Hence, we are interested in studying the case where the response function is
time translation independent but the detector may switch on and off. So (5.7)
remains as it is, which corresponds to the general case. In this form, it is not
obvious that F (𝐸) will be invariant under translations in time. To see that this
indeed happens, make the change of variable (𝜏′, 𝜏′′) → (𝑠 = 𝜏′′ − 𝜏′, 𝑡 = 𝜏′′)
and define 𝜒𝐸 (𝜏) := 𝑒−𝑖𝐸𝜏𝜒(𝜏), with this (5.7) becomes

F (𝐸) =
∫
R2
𝑑𝑡 𝑑𝑠 𝜒(𝑡)𝜒(𝑡 − 𝑠)𝑒−𝑖𝐸𝑠W(𝑠) =

∫
R2
𝑑𝑡 𝑑𝑠 𝜒𝐸 (𝑡 − 𝑠)𝜒𝐸 (𝑡)W(𝑠)

=

∫
R
𝑑𝑠 [ℛ𝜒𝐸 ∗ 𝜒𝐸 ] (𝑠)W(𝑠) = 1

2𝜋

∫
R
𝑑𝜔ℱ [ℛ𝜒𝐸 ∗ 𝜒𝐸 ] (𝜔)ℱ [W](𝜔)

where in the last line we made use of Parseval’s identity. Next we make use of
another identity, ℱ [ℛ𝜒𝐸 ] (𝜔) = ℱ [𝜒𝐸 ] (𝜔) to obtain

F (𝐸) = 1
2𝜋

∫
R
𝑑𝜔ℱ [ℛ𝜒𝐸 ] (𝜔)ℱ [𝜒𝐸 ] (𝜔)ℱ [W](𝜔)

=
1

2𝜋

∫
R
𝑑𝜔 |ℱ [𝜒𝐸 ] (𝜔) |2ℱ [W](𝜔).

Finally, we observe that as ℱ [𝜒𝐸 ] (𝜔) = ℱ [𝜒] (𝜔 − 𝐸), we can make the change
of variable 𝜔 → 𝜔 + 𝐸 and arrive at

F (𝐸) = 1
2𝜋

∫
R
𝑑𝜔 |ℱ [𝜒] (𝜔) |2ℱ [W](𝐸 + 𝜔). (5.11)
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Note that (5.8) and (5.11) are quite different, so allowing the detector to switch
on and off has an striking consequence in the final form of the response function.
Also, observe that time is implicitly included in the support of the switching
function 𝜒, nonetheless, this is not the only relevant time scale that can be studied.
This is because in this particular instance, the support of 𝜒 just tells us for how
long the detector is switched on.

Still, we also need to account for the interaction time 𝜆 of the detector with the
field, regardless of whether the former is making measurements or not. In order to
study this interaction time, we introduce an adiabatically scaled switching function
𝜒𝜆 (see [26]) which in turn will lead us to define an interaction time-dependent
response function F𝜆 (𝐸).

Definition 5.5.2. Define the adiabatically scaled switching function as 𝜒𝜆 (𝜏) :=
𝜒(𝜏/𝜆). Here 𝜆 > 0 is the interaction time of the field and the detector. Then, we
define

F𝜆 (𝐸) :=
F (𝐸)
𝜆

.

Note that one expects that under the scaling 𝜒𝜆 (𝜏) introduced above, the
response function F (𝐸) will be proportional to 𝜆. As we will be interested in
studying its behaviour for large 𝜆, it makes sense to take the ratio. Moreover, as
ℱ [𝜒𝜆] (𝜔) = 𝜆ℱ [𝜒] (𝜆𝜔), from (5.11) we obtain

F𝜆 (𝐸) =
𝜆

2𝜋

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜆𝜔) |2ℱ [W](𝐸 + 𝜔)

=
1

2𝜋

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2ℱ [W](𝐸 + 𝜔/𝜆). (5.12)

Recall that the Bochner-Schwartz theorem states that a continuous function 𝑓

on R is positive definite if and only if it is the Fourier transform of a finite
non-negative measure 𝜇 of at most polynomial growth–c.f. [56]. Thus, 𝑓 is a
tempered distribution.

Proposition 5.5.1. Let F∞(𝐸) := lim𝜆→∞ F𝜆 (𝐸), then

F∞(𝐸) = ℱ [W](𝐸) | |𝜒 | |22. (5.13)
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Proof. As argued in [26][Section 4.1], we note that as the distribution W is of
positive type, the Bochner-Schwartz theorem indicates that it must be a tempered
distribution, whereupon we deduce that ℱ [W] must be a polynomially bounded
measure. Hence, there must be positive constants 𝐴, 𝐵 and 𝑛 ∈ N0 so that for
1 ≤ 𝜆 we will have

|ℱ [W](𝐸 + 𝜔/𝜆) | ≤ 𝐴 + 𝐵(𝐸 + 𝜔/𝜆)2𝑛 ≤ 𝐴 + 𝐵( |𝐸 | + |𝜔 |/𝜆)2𝑛

≤ 𝐴 + 𝐵( |𝐸 | + |𝜔|)2𝑛.

Also, as 𝜒 ∈ 𝐶∞
0 (R), its Fourier transform ℱ [𝜒] (𝜔) decays faster that any inverse

power of 𝜔, we deduce that the integrand in (5.12) is dominated by an integrable
function that does not depend on 𝜆. Therefore, we can take the limit under the
integral to obtain our result. □

From now on we will assume that F∞(𝐸) satisfies detailed balance, i.e.
F∞(−𝐸) = 𝑒𝐸/𝑇F∞(𝐸). This follows from the fact that if ℱ [W] satisfies
the detailed balance condition at temperature 𝑇 (see Definition 2.4.2), then the
response function F (𝐸) will do so as well. Expecting F∞(𝐸) to satisfy detailed
balance is reasonable since after an infinite interaction time we should have
thermalisation–as in the usual Unruh effect– with temperature given as a function
of the energy gap 𝐸 in the following fashion

1
𝑇

=
1
𝐸

ln
(
F (−𝐸)
F (𝐸)

)
.

However, as it was mentioned above, we are not interested in studying the usual
Unruh effect since we are studying situations where the temperature depends on
𝐸 . Given that we want to find an asymptotic expansion as 𝐸 → 0 for the response
function (5.7), we want to work more on its current form to end up with a more
manageable expression.

5.6 asymptotic expansion of the response function

We begin by studying the scenario where the interaction time between the field
and the detector is taken to be very large and thus not relevant to the other
time scale relevant to the experiment, the support of the switching function.
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Recalling that we are using standard Minkowski coordinates, we introduce the
notation (Δ®𝑥)2 := (𝑥(𝜏′) − 𝑥(𝜏′′))2 + (𝑦(𝜏′) − 𝑦(𝜏′′))2, Δ𝑡 = 𝑡 (𝜏′) − 𝑡 (𝜏′′) and
(Δ𝑥)2 := −(Δ𝑡)2 + (Δ®𝑥)2. The two-point function in 2 + 1 dimensions is given by

W(𝑥′, 𝑥′′) = lim
𝜀→0+

1
4𝜋

1√︁
(Δ®𝑥)2 − (Δ𝑡 − 𝑖𝜀)2

= lim
𝜀→0+

1
4𝜋

1√︁
(Δ𝑥)2 + 2𝑖𝜀Δ𝑡 + 𝜀2

.

(5.14)
Note that this two-point function depends only on the difference of its arguments
𝑠 := 𝜏′ − 𝜏′′, and so, W(𝜏′, 𝜏′′) = W(𝜏′ − 𝜏′′) = W(𝑠). Because of this, from
now on, W will denote the single variable distribution. The worldline for uniform
circular motion in 2+1 dimensions is 𝑥(𝜏) = (𝛾𝜏, 𝑅 cos( 𝛾𝑣𝜏

𝑅
), 𝑅 sin( 𝛾𝑣𝜏

𝑅
)), where

𝑘 =
2𝑅
𝛾𝑣
, (5.15)

and 𝑅 is the radius of the trajectory, 𝑣 < 1 its speed and 𝛾 the Lorentz factor. In
this case we have

(Δ𝑥)2 = (𝑥(𝑠) − 𝑥(0))2 = −4𝑅2
(
𝑧2

𝑣2 − sin(𝑧)2
)
,

(
with 𝑧 =

𝑠

𝑘

)
and so, the pullback two-point function to a circular trajectory in Minkowski
spacetime is given by

WS1 (𝜏′ − 𝜏′′) = lim
𝜀→0+

1
4𝜋

1√︁
4𝑅2 sin((𝜏 − 𝜏′)/𝑘)2 − (𝛾(𝜏 − 𝜏′) − 𝑖𝜀)2

.

For brevity’s sake, from now on we will denote the pullback of this function by
W.

We will find the asymptotically small 𝐸 expansion of F (𝐸) keeping 𝜒 and 𝑣
arbitrary but fixed. Also, initially, we will not consider interaction time as we
want to compare this with the result found in "2+1" [9].

Definition 5.6.1. Define the functions

𝑅𝑣 (𝑧)
·
=

1√︁
𝑧2 − 𝑣2 sin(𝑧)2

, 𝑄𝑣 (𝑧)
·
= 1− 𝑧𝑅𝑣 (𝑧), 𝑆𝑣 (𝑧)

·
=
𝑄𝑣 (𝑧)
𝑧

− 1 − 𝛾
𝑧(1 + 𝑧2)

,

(5.16)
with R+ serving as their domain. Henceforth we will consider the odd extension
of these functions. That is, extending the domain to R with 𝑓 (−𝑥) = − 𝑓 (𝑥).
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The Fourier transform ℱ [W] can be read off from (2.5) and (4.3) in [9].
Making use of the definitions above and, reminding the reader that 𝒮 denotes the
sine transform (c.f. Definition 5.1.2), we obtain

ℱ [W](𝐸) = 1
4
− 1

2𝜋𝛾
𝒮[𝑅𝑣] (𝑘𝐸). (5.17)

and so, we can substitute (5.17) into (5.11) and use Parseval’s identity to obtain

F (𝐸) =
| |𝜒 | |22

4
− 1

4𝜋2𝛾

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝒮[𝑅𝑣] (𝑘 (𝐸 + 𝜔)). (5.18)

Our strategy to simplify this expression is to write the integral associated with the
sine transform in the expression above. Then, make use Fubini’s theorem in the
second term to exchange the integration order and then expand the sine term using
Taylor’s theorem. However, for large 𝑧, 𝑅𝑣 (𝑧) = 1/𝑧+(𝑣2/2) sin(𝑧)2/𝑧3+𝑂 (1/𝑧5),
which would not allow us to use Fubini. Subtracting the divergence leads to the
following decomposition

𝒮[𝑅𝑣] (𝜁) = 𝒮[𝑅𝑣 − 1/𝑧] (𝜁) +𝒮[1/𝑧] (𝜁) = −𝒮[𝑄𝑣 (𝑧)/𝑧] (𝜁) +
𝜋

2
sgn(𝜁)

(5.19)

where we have used the definition of 𝑄𝑣 in (5.6.1) and the identity 𝒮[1/𝑧] (𝑢) =
(𝜋/2)sgn(𝑢).

Next, we take the sine in the remaining integral, expand it as sin(𝑘 (𝐸 +𝜔)𝑧) =
sin(𝑘𝐸𝑧) cos(𝑘𝜔𝑧) + cos(𝑘𝐸𝑧) sin(𝑘𝜔𝑧) and drop the last term due to the fact
that |ℱ [𝜒] (𝜔) |2 is even. This leads to∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝒮[𝑅𝑣] (𝑘 (𝐸 + 𝜔)) = 𝜋

2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2sgn(𝐸 + 𝜔)

−
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

∫ ∞

0
𝑑𝑧 sin(𝑘𝐸𝑧) cos(𝑘𝜔𝑧)𝑄𝑣 (𝑧)

𝑧
(5.20)

where we have made us of the fact that 𝑘 > 0 to simplify the sgn term.

Remark 5.6.1. From (5.16) we see that, as 𝑄𝑣 (𝑧) = 1 − 𝑧𝑅𝑣 (𝑧), then

𝑄𝑣 (𝑧) = 1 − 1√︁
1 − 𝑣2sinc(𝑧)2

< 0 (5.21)
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Its 𝐿1 norm is an analytic function in 𝑣 < 1, experimental considerations
(sonic limit) amount to consider 𝑣 ≤ 0.99, which in turn leads to the bound
| |𝑄𝑣 | |1 ≤ 𝑀 ≈ 3.809 (c.f. Proposition C.2.1). Moreover, for large 𝑧, we
have 𝑄𝑣 (𝑧)/𝑧 = −(𝑣2/2) sin(𝑧)2/𝑧3 + 𝑂 (1/𝑧5), while for 𝑧 near the origin,
𝑄𝑣 (𝑧)/𝑧 = (1 − 𝛾)/𝑧 +𝑂 (𝑧).

Because of this, we see that the inner integrand is integrable over 𝑧. Let us
introduce two definitions,

𝐽1 [𝜙] (𝐸) =
∫ ∞

−∞
𝑑𝜔 𝜙(𝜔)sgn(𝜔 + 𝐸) (5.22)

𝐽2 [ 𝑓 ] (𝐸) =
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

∫ ∞

0
𝑑𝑧 sin(𝑘𝐸𝑧) cos(𝑘𝜔𝑧) 𝑓 (𝑧) (5.23)

this allows us to write∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝒮[𝑅𝑣] (𝑘 (𝐸 + 𝜔)) = 𝜋

2
𝐽1 [|ℱ [𝜒] |2] (𝐸) − 𝐽2

[
𝑄𝑣 (𝑧)
𝑧

]
(𝐸).

(5.24)

Definition 5.6.2. Define the linear functional for bounded 𝑓 and fixed (but
arbitrary) 𝜒 ∈ 𝐶∞

0 (R)

𝑀𝑝 [ 𝑓 ] :=
∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ 𝜒(𝑧) 𝑓 (𝑧 − 𝑧′) (𝑧 − 𝑧′)𝑝𝜒(𝑧′)

with 𝑝 ∈ N0.

The asymptotic expansions of 𝐽1 and 𝐽2 (c.f. Corollary C.2.1 and Proposition
C.2.4) in our case are given by

𝐽1 [|ℱ [𝜒] |2] (𝐸) = 2
𝑙−1∑︁
𝑛=0

(−1)𝑛 𝑀2𝑛 [1]
(2𝑛 + 1)!𝐸

2𝑛+1 +𝑂 (𝐸2𝑙+1), (5.25)

𝐽2 [𝑄𝑣 (𝑧)/𝑧] (𝐸) =
𝜋

𝑘

𝑙−1∑︁
𝑛=0

(−1)𝑛
𝑀2𝑛+1 [𝒟1/𝑘 {𝑄𝑣 (𝑧)/𝑧}]

(2𝑛 + 1)! 𝐸2𝑛+1 +𝑂 (𝐸2𝑙+1).

(5.26)

And so, if we make of use (5.25) and (5.26), we can write (5.24) as∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝒮[𝑅𝑣] (𝑘 (𝐸 + 𝜔))

=
𝜋

𝑘

𝑙−1∑︁
𝑛=0

(−1)𝑛
𝑀2𝑛 [𝑘] − 𝑀2𝑛+1

[
𝒟1/𝑘 {𝑄𝑣 (𝑧)/𝑧}

]
(2𝑛 + 1)! 𝐸2𝑛+1 +𝑂 (𝐸2𝑙+1). (5.27)
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Noting that 𝑀𝑝 [ 𝑓 (𝑧)] = 𝑀𝑝+1 [ 𝑓 (𝑧)/𝑧], we deduce

𝑀2𝑛 [𝑘] − 𝑀2𝑛+1

[
𝒟1/𝑘

{
𝑄𝑣 (𝑧)
𝑧

}]
= 𝑀2𝑛+1

[
𝑘

𝑧
−𝒟1/𝑘

{
𝑄𝑣 (𝑧)
𝑧

}]
= 𝑀2𝑛+1 [𝒟1/𝑘𝑅𝑣] . (5.28)

And so, if we make use of Plancherel’s formula, (5.27) and (5.28), we can write
the response function (5.18) as

F (𝐸) =
| |𝜒 | |22

4
− 1

4𝜋𝛾𝑘

𝑙−1∑︁
𝑛=0

(−1)𝑛
𝑀2𝑛+1 [𝒟1/𝑘𝑅𝑣]

(2𝑛 + 1)! 𝐸2𝑛+1 +𝑂 (𝐸2𝑙+1), (5.29)

where | | · | |2 denotes the 𝐿2 norm in 𝐿2(R, 𝑑𝑧). At this stage a question arises:
how far one must go in the expansion? The detailed balance condition along with
some experimental considerations will shed some light on this. Using (2.4.2) we
can obtain the temperature 𝑇 as a function of the energy gap 𝐸 as follows

1
𝑇 (𝐸) =

1
𝐸

ln
(
F (−𝐸)
F (𝐸)

)
,

from (5.29) we note that F (𝐸) only contains odd powers of 𝐸 above zeroth order.
Hence, the response function can be written as

F (𝐸) = 𝑎0 + 𝑎1𝐸 + 𝑎3𝐸
3 +𝑂 (𝐸5). (5.30)

where the coefficients are given by

𝑎0 =
| |𝜒 | |22

4
, 𝑎1 = −

𝑀1 [𝒟1/𝑘𝑅𝑣]
4𝜋𝛾𝑘

, 𝑎3 =
𝑀3 [𝒟1/𝑘𝑅𝑣]

24𝜋𝛾𝑘
(5.31)

And so, if we assume that 𝑎0 ≠ 0 and 𝑎1 ≠ 0, the temperature for small energies is

𝑇 (𝐸) = −1
2
𝑎0
𝑎1

+ 1
6

(
𝑎1
𝑎0

+ 3
𝑎0𝑎3

𝑎2
1

)
𝐸2 +𝑂 (𝐸4). (5.32)

With this, we can explain why we decided to truncate at𝑂 (𝐸5). The formula above
is nonlinear in 𝐸 . This could be very convenient for experimental purposes as it
gives room to modify the parameters so that 𝑎𝑖 yields a significant contribution in
the 𝐸2 term. Note that the coefficient for a fifth power and above will not affect
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the second order term in the temperature, and so, the truncation at this point will
give us all the information we need for the simplest case of nonlinear behaviour.

Next, we define 𝑇0 := −𝑎0/(2𝑎1) and study the nature of this quantity, in
particular whether if it is positive-definite or negative-definite for fixed 𝜒 and 𝑣.

Proposition 5.6.1. Consider that 𝜒 ∈ 𝐶∞
0 (R) is a positive-definite and even

function. Then, for odd 𝑝, we have

𝑀2𝑛+1 [𝒟1/𝑘𝑅𝑣] ≥ 0.

Proof. From Definition 5.6.2 and (5.6.1) we obtain

𝑀2𝑛+1 [𝒟1/𝑘𝑅𝑣] =
∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ 𝜒(𝑧)𝑅𝑣 ((𝑧 − 𝑧′)/𝑘) (𝑧 − 𝑧′)𝑝𝜒(𝑧′)

= 𝑘

∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ 𝜒(𝑧) (𝑧 − 𝑧′)𝑝−1√︁

1 − 𝑣2sinc(𝑧 − 𝑧′)2
𝜒(𝑧′).

If we choose odd 𝑝, then 𝑝 − 1 will be even and since 𝜒 is positive-definite in R,
the integrand will also be. This concludes the proof. □

Because of this, we can conclude that for fixed 𝜒 and 𝑣, where the former is
arbitrary but even and positive-definite, we will have 𝑎1 < 0. From this and the
fact that regardless of our choice of 𝜒 we will have 𝑎0 = | |𝜒 | |22 > 0, it follows that
𝑇0 > 0.

5.7 asymptotic expansion of the response function for large times

Next, to study the case that depends on the interaction time we consider the
adiabatically scaled switching function 𝜒𝜆 and its corresponding response function
F𝜆 from Definition 5.5.2, with the additional choice that the energy gap and the
interaction time are related via

𝐸𝜆 = 𝑆0, (5.33)

where 𝑆0 > 0 is a constant. In this scenario, we analyse the behaviour of F𝜆 (𝐸)
for large 𝜆. Using (5.18), (5.19), the power law (5.33) and the behaviour of the
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Fourier transform under scaling we can define F𝜆 (𝐸) := F (𝐸)/𝜆 to obtain:

F𝜆 (𝐸) :=
| |𝜒 | |22

4
− 1

8𝜋𝛾

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2sgn((𝑆0 + 𝜔)/𝜆)

+ 1
4𝜋2𝛾

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝒮[𝑄𝑣 (𝑧)/𝑧] ((𝑆0 + 𝜔)/𝜆).

Using (5.22) to write the second term using 𝐽1 and introducing 𝜒𝑒 (𝑧) = 𝑒𝑖𝑧𝑆0𝜒(𝑧)
leads to

F𝜆 (𝐸) :=
| |𝜒 | |22

4
− 𝐽1 [|ℱ [𝜒] |2] (𝐸)

8𝜋𝛾
+

∫ ∞

−∞

𝑑𝜔

4𝜋2𝛾
|ℱ [𝜒𝑒] (𝜔) |2𝒮

[
𝑄𝑣 (𝑧)
𝑧

] (
𝑘𝜔

𝜆

)
,

(5.34)

Our current goal now is to compute this expression. To deal with the third term,
we need to go further in the asymptotics of 𝑄𝑣 (𝑧)/𝑧 for large 𝑧, these are

𝑄𝑣 (𝑧)
𝑧

= −𝑣
2

2
sin(𝑧)2

𝑧3
− 3𝑣4

8
sin(𝑧)4

𝑧5
+ ...

=
1
𝑧

𝑙−1∑︁
𝑛=1

(
𝑛 − 1/2
𝑛

) (
𝑣

sin(𝑧)
𝑧

)2𝑛
+𝑂

(
1

𝑧2𝑙+1

)
. (5.35)

Recalling the asymptotics of𝑄𝑣 near the origin given in Remark 5.6.1, we remove
the singularity at the origin and improve decay at infinity, this leads to introduce
the odd function

𝑆𝑣 (𝑧) =
𝑄𝑣 (𝑧)
𝑧

− 1 − 𝛾
𝑧(1 + 𝑧2)3 + 𝑣

2

2
sin(𝑧)2

𝑧(1 + 𝑧2)2 + 𝑣
2

2
sin(𝑧)2

𝑧(1 + 𝑧2)
+ 3

8
𝑣4 sin(𝑧)4

𝑧(1 + 𝑧2)2 .

(5.36)

Let it be noted that we have chosen terms of the form sin(𝑧)2𝑛/𝑧(1+ 𝑧2)𝑛 instead of
sin(𝑧)2𝑛/𝑧2𝑛+1 to avoid introducing new singularities for small 𝑧. The asymptotics
of (5.36) can be deduced from those of 𝑄𝑣, for 𝑧 near the origin we will have

𝑆𝑣 (𝑧) = 𝑂 (𝑧) (as 𝑧 → 0), 𝑆𝑣 (𝑧) = 𝑂 (1/𝑧7) (as 𝑧 → ∞), (5.37)

from which we deduce that 𝑆𝑣 ∈ 𝐿1(R, 𝑑𝑧).
We would like to make a small note about what we mean by improving the decay

at infinity. As it will be seen later in Proposition C.3.1, we want an asymptotic
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expansion that requires of us to differentiate the sine transform at least five times.
Because of (C.2.3), we see that this amounts to 𝒮

(5) [𝑆𝑣 (𝑧)] (𝜁) = 𝒞[𝑧5𝑆𝑣 (𝑧)] (𝜁).
So, if we want this expression to be well-defined, we need a decay at infinity

of at least 𝑂 (1/𝑧7). Consequently, the original sine transform in (5.34) can be
written as

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = 𝒮[𝑆𝑣 (𝑧)] (𝜁) +𝒮

[
1 − 𝛾

𝑧(1 + 𝑧2)3

]
(𝜁) − 𝑣2

2
𝒮

[
sin(𝑧)2

𝑧(1 + 𝑧2)2

]
(𝜁)

− 1
2
𝑣2
𝒮

[
sin(𝑧)2

𝑧(1 + 𝑧2)

]
(𝜁) − 3

8
𝑣4
𝒮

[
sin(𝑧)4

𝑧(1 + 𝑧2)2

]
(𝜁). (5.38)

As 𝑆𝑣 ∈ 𝐿1(R+, 𝑑𝑧) we can conclude that the 𝒮[𝑆𝑣 (𝑧)] (𝜁) term in (5.38) is
continuous in 𝜁 . The other terms are continuous as well. For the second one
this is seen by direct calculation and the others are all transforms of elements in
𝐿1(R+, 𝑑𝑧). Thus, 𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) will be continuous as well.

Our goal is to compute (5.34), which means that this quantity must be
integrated when its argument is small. Because of this, the following claim is one
of the most relevant parts of our analysis

Lemma 5.7.1. Consider (5.38). Then, (a) the following asymptotic expansion is
valid for 𝜁 near the origin

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = 𝑞1𝜁 + 𝑞2sgn(𝜁)𝜁2 + 𝑞3𝜁

3 +𝑂 (𝜁4). (5.39)

The explicit form of these constants, for fixed 𝑣, is

𝑞1 =

∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧)

𝑞2 =
𝜋

4

(𝑣
2

)2

𝑞3 = −1
6

[∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
+ 𝜋

2

(
1 − 1

𝑒2

) (𝑣
2

)2
]
.

(b) for large 𝜁 the asymptotic expansion is

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = sgn(𝜁) 𝜋

2
(1 − 𝛾) (1 + 𝑒−|𝜁 |𝑃2( |𝜁 |)) + 𝑜(1/𝜁5).

Proof. See Appendix C.3. □
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Recall that the power law (5.33) indicates that 𝐸 = 𝑆0/𝜆 and that we have
introduced 𝜒𝑒 (𝑧) = 𝑒𝑖𝑧𝑆0𝜒(𝑧). This sine transform is an integrand in our orig-
inal expression (5.34), computing the integral yields the following asymptotic
expansion:

Proposition 5.7.1. Let 𝑞 : R→ C be bounded with 𝑞(𝑧) = 𝑞1𝑧 + 𝑞2sgn(𝑧)𝑧2 +
𝑞3𝑧

3 + 𝑂 (𝑧4) as 𝑧 → 0. Then, for 𝐸 near the origin, the following asymptotic
expansion is valid∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝑞(𝑘𝜔/𝜆) = 𝑞1𝐸 + 𝑞2sgn(𝐸)𝐸2 + 𝑞3𝐸

3 +𝑂 (𝐸4).

where the coefficients are defined as

𝑞1 := 2𝜋𝑘 | |𝜒 | |22𝑞1, 𝑞2 :=
𝑘2

𝑆2
0

(∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2

)
𝑞2

𝑞3 := 2𝜋
𝑘3

𝑆2
0

(
𝑆2

0 | |𝜒 | |
2
2 + 3| |𝜒′| |22

)
𝑞3

Proof. See Appendix C.4. □

And so, we can conclude that the response function for large 𝜆 (5.34) has the
following form

F𝜆 (𝐸) = 𝑎0 + 𝑎1𝐸 + 𝑎2sgn(𝐸)𝐸2 + 𝑎3𝐸
3 +𝑂 (𝐸4). (5.40)

Recalling that according to Definition 5.6.2 we have

𝑀𝑛 [1] =
∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′𝜒(𝑧) (𝑧 − 𝑧′)𝑛𝜒(𝑧′)

which along with (5.25) and Proposition 5.7.1 implies that the 𝑎𝑖 coefficients in
(5.40) are given by

𝑎0 =
| |𝜒 | |22

4
, 𝑎1 = −𝑀0 [1] − 𝑞1

4𝜋𝛾
, 𝑎2 =

𝑞2

4𝜋2𝛾
, 𝑎3 =

1
4𝜋𝛾

(
𝑀2 [1]

6
+ 𝑞3
𝜋

)
.
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and can be written in a more explicit form as follows

𝑎0 =
| |𝜒 | |22

4
, 𝑎1 = −

𝑀0 [1] − 2𝑘 | |𝜒 | |22𝑞1

4𝜋𝛾
,

𝑎2 =
𝑘2

4𝜋2𝛾𝑆2
0

(∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2

)
𝑞2,

𝑎3 =
1

2𝜋𝛾

(
𝑀2 [1]

12
+ 𝑘

3

𝑆2
0

(
𝑆2

0 | |𝜒 | |
2
2 + 3| |𝜒′| |22

)
𝑞3

)
. (5.41)

Defining 𝑇0 := −𝑎0/(2𝑎1), we deduce that the detailed balance condition in
(2.4.2) yields the following temperature

𝑇𝜆 (𝐸) = 𝑇0 +
𝑎2𝑎0

2 𝑎12 |𝐸 | +
3
(
𝑎1𝑎3 − 𝑎2

2) 𝑎0
2 + 𝑎1

4

6 𝑎0𝑎13 𝐸2 +𝑂
(
𝐸3

)
. (5.42)

Although 𝑇0 might seem to be a non-positive quantity, it is not. Using the
definition of 𝑎0 and 𝑎1 we can show that 𝑇0 > 0, and that if the support of the test
function 𝜒 is small compared to |𝑞1 |, then 𝑇0 is a constant determined by 𝑣.

Proposition 5.7.2. Denote the support of 𝜒 by 𝑙 (𝑆). Then, 𝑇0 is positive and
obeys the bound ����� 1

𝑇0
− 4𝑘 |𝑞1 |

𝜋𝛾

����� ≤ 2𝑙 (𝑆)2

𝜋𝛾
. (5.43)

Moreover if 𝑙 (𝑆) <<
√︁

2𝑘 |𝑞1 |, then

𝑇0 ≈ 𝜋𝛾

4𝑘 |𝑞1 |
. (5.44)

Proof. First, from the definition of 𝑞1 in Lemma 5.7.1 and the fact that𝑄𝑣 is never
positive, we conclude that 𝑞1 is negative. Because of this we write 𝑞1 = −|𝑞1 |
and see that 𝑎1 must be negative. Moreover, as 𝑎0 is positive, we conclude that 𝑇0

is positive. Next, as 𝜒 is compactly supported, let us denote its support by 𝑆 and

its length by 𝑙 (𝑆). Then, 𝑀0 [1] =
(∫
𝑆
𝜒

)2
= ⟨1𝑆, 𝜒⟩2 where 1𝑆 is the indicator

function for 𝑆. Hence,

𝑀0 [1]
| |𝜒 | |22

=
⟨1𝑆, 𝜒⟩2

| |𝜒 | |22
≤ ||1𝑆 | |22 = 𝑙 (𝑆)2.



5.8. The model 135

Making use of this we get����� 1
𝑇0

− 4𝑘 |𝑞1 |
𝜋𝛾

����� = 2
𝜋𝛾

𝑀0 [1]
| |𝜒 | |22

≤ 2𝑙 (𝑆)2

𝜋𝛾
.

Which proves the first part. For the second, we observe that if the RHS in the
previous inequality is significantly smaller than the LHS, then the inequality
saturates, and our result follows immediately. □

5.8 the model

Our main objective is to know how long does it take for a detector to thermalise
in terms of its speed 𝑣 and energy gap 𝐸 . Since the energy gap obeys the relation
𝐸𝜆 = 𝑆0, we can deduce the waiting time from it. The switching function 𝜒

is yet to be determined, so now we will specify it and all of the other relevant
parameters, that is, we are going to choose a model.

This model will be studied via numerical analysis and has to be chosen keeping
in mind that the range 90/100 < 𝑣 < 99/100 is the one relevant to some of the
experimental proposals. We think that this could indicate what are the energy
gap ranges (hence waiting times) for which we could observe thermalisation in a
laboratory setting. More concretely, choosing a model will allow us to evaluate
the 𝑎𝑖 coefficients of the time-dependent (5.41) case.

As an initial approximation, we choose 𝜒 to be the even, positive-definite and
non-smooth function supported on [−𝛽, 𝛽] defined as

𝜒(𝑧) =


1 + 𝑧/𝛽, −𝛽 ≤ 𝑧 ≤ −𝛽/2

1/2 −𝛽/2 < 𝑧 < 𝛽/2

1 − 𝑧/𝛽 𝛽/2 ≤ 𝑧 ≤ 𝛽

for which we have

| |𝜒 | |22 =
𝛽

3
, | |𝜒′| |22 =

1
𝛽
, 𝑀0 [1] =

9
16
𝛽2, 𝑀2 [1] =

15
64
𝛽4. (5.45)

It must be noted that we have relaxed the condition that 𝜒 has to be smooth
because we are performing a numerical analysis. To determine the 𝑎𝑖 coefficients,
we start by analysing the 𝑞𝑖 ones in Lemma 5.7.1.
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Figure 5.3: Plot of 𝐼1(𝑣) and 𝐼3(𝑣).

In contrast the simplicity of 𝑞2, both 𝑞1 and 𝑞3 contain integrals, which shall
be evaluated by numerical means. For this purpose, we define the following
functions

𝐼1(𝑣) =
∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧),

𝐼3(𝑣) =
∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
+ 𝜋

2

(
1 − 1

𝑒2

) (𝑣
2

)2

and integrate numerically using Maple. Their plots for different values of 𝑣 within
the range 90/100 < 𝑣 < 99/100 can be found in Figure 5.3. This is consistent
with the fact that these integrals do exist.

To check the validity of the asymptotic expansion of 𝒮 [𝑄𝑣 (𝑧)/𝑧] presented
in Lemma 5.7.1, we chose the particular value 𝑣 = 99/100 and compare this to
the sine transform obtained via numerical integration. We plotted both outcomes
results in Figure 5.4. Moreover, as the coefficients 𝑞1, 𝑞2 and 𝑞3 in Lemma
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Figure 5.4: Plot of 𝒮[𝑄𝑣 (𝑧)/𝑧] (𝜁).

5.7.1 just depend in the values that 𝑣 can take, they naturally define the following
functions:

𝑞1(𝑣) = 𝐼1(𝑣), 𝑞2(𝑣) =
𝜋

4

(𝑣
2

)2
, 𝑞3(𝑣) = − 𝐼3(𝑣)

6
− 𝜋

12

(
1 − 2

𝑒2

) (𝑣
2

)2
;

which are plotted for several values of 𝑣 < 1 in Figure 5.5.
Before we continue, we note that as 𝜒 is even then 𝜒′ will be odd. This vastly

simplifies the calculation of the Fourier transform:

ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) = 2𝑖 (𝑆0𝒞[𝜒] (𝜔) −𝒮[𝜒′] (𝜔))

= 2𝑖(𝑆0 + 𝜔)
cos(𝛽𝜔/2) − cos(𝛽𝜔)

𝛽𝜔2 . (5.46)

The integral can be evaluated in closed form, however the final result is too long
and it is not immediate to extract anything useful to our purposes from it. Next,
we need to choose the remaining parameters; first, we set

𝑆0 = 1, 𝑅 = 1
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Figure 5.5: Plot of 𝑞1(𝑣), 𝑞2(𝑣) and 𝑞3(𝑣).

and hence, in virtue of (3.23), 𝑘 = 2/(𝛾𝑣); thus it just remains to choose 𝛽.
To bring some clarity on some convenient values for 𝛽, we write (5.42) as

𝑇𝜆 (𝐸) = 𝑇0 + 𝑇1 |𝐸 | + 𝑇2𝐸
2 + 𝑂 (𝐸3). If we truncate the error term, we see that

a stationary point for this function is2 𝐸∗ = −𝑇1/(2𝑇2). If we denote by 𝑇∗ the
value of the temperature at this point and note that according to (5.42) we have
𝑇1 := −(𝑎2/𝑎1)𝑇0, we find

𝑇∗ = 𝑇0

(
1 + 3

4
𝑎2

2

𝑎2
1

𝑇0
𝑇2

)
.

So, regardless of 𝑇∗ being a maximum or a minimum, it depends on 𝑇0. Therefore,
if 𝑇0 is large, the possibility of measuring thermalisation in a laboratory improves.

To this end, we focus our attention on fixing the remaining parameters in
such a way 𝑇0 becomes large. From Proposition 5.7.2 it follows that as 𝑙 (𝑆) (or,
equivalently 𝛽) decreases, then the lower bound on 𝑇0 increases. This is precisely
what we want to do. Hence, we set 𝛽 = 1/100 and compare it with the bound on

2Modulo a sgn(𝐸) term that is irrelevant due to the fact that 𝑇𝜆 (𝐸) is even
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Figure 5.6: Expected and approximated behaviours of 𝑇0.

the aforementioned Proposition. This yields

2𝛽 = 𝑙 (𝑆) = 1/50 << 1.602740577 = inf
0.9<𝑣<0.99

√︁
2𝑘 |𝑞1 |, (5.47)

where the infimum was computed using Maple. Conveniently so, (5.47) indicates
that according to Proposition 5.7.2, 𝑇0 acquires a remarkably simple (approximate)
form, which is

𝑇0 =
𝜋𝛾

4𝑘 |𝑞1 |
.

To test whether our choice for 𝛽 is reasonable or not, we present a plot in Figure
5.6 of the expected 𝑇0 = −𝑎0/(2𝑎1) and the approximation 𝑇0 = 𝜋𝛾/(4𝑘 |𝑞1 |) as
a function of 𝑣; this shows that both expressions are in close agreement, thus
verifying the chosen value for 𝛽.

The aforementioned parameter choices allows us to write the 𝑎𝑖 coefficients
in terms of 𝑞𝑖. Particularly, the integral in the 𝑎2 coefficient of (5.41) can be
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Figure 5.7: Plot of 𝑇 for different values of 𝑣.

calculated numerically by substituting the values of the parameters into the
integrand in (5.46). Hence, we find that the coefficients are

𝑎0 =
1

1200
, 𝑎1(𝑣) = − 1

400𝜋𝛾

(
(3/4)2

100
+ 4

3
|𝑞1(𝑣) |
𝑣𝛾

)
,

𝑎2(𝑣) =
4(1.124992 × 10−4)

𝜋2𝛾3𝑣2 𝑞2(𝑣),

𝑎3(𝑣) =
1

600𝜋𝛾

(
5
12

(3/4)2

100
+ 8

𝑞3(𝑣)
𝛾3𝑣3 (1 + 3002)

)
.

5.9 discussion

In order to obtain several plots of 𝑇 (𝐸) for different values of 𝑣, we make
use of the coefficients found above and (5.42). Our results can be found in
Figure 5.7. Making use of these coefficients and (5.42) to produce several
plots of 𝑇 (𝐸) for different values of 𝑣; our findings are in Figure 5.7. First,
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we observe that increasing the speed does not imply more temperature; on the
contrary, the greater the speed the lower the observable temperature becomes.
If we restore constants, then the temperature must be multiplied by a factor of
ℏ/(𝑘𝐵 · 𝑐) = 2.547841002.. × 10−20𝐾 , where 𝑐 is the speed of the phonons in the
analogue spacetime. This indicates that the observable temperatures 𝑇 for these
values of 𝑣 have the range 4.130639743×10−5𝑝𝐾 ≤ 𝑇 ≤ 1.402276341×10−4𝑝𝐾

where 𝑝 stands for pico, which is a factor of 10−12. Unfortunately, according to
[39] the smallest temperatures we can detect are in the order of picoKelvins, so
this choice of parameters is not convenient for experimental purposes.

Also, since the assumed power law is 𝐸 = 𝑆0/𝜆, from Figure 5.7 we infer
that waiting will not result in a detectable thermalisation. To understand why the
observable temperature is so low we will study the same range 0.9 ≤ 𝑣 ≤ 0.99.
However, on this occasion, we will keep the value of 𝑆0 unassigned and will
assume the constant 𝑅 to be small, which implies that 𝑘 (3.23) will also be. This
assumption is reasonable for experimental purposes as one can not expect to
have the detector following a circular trajectory with a very large radius in an
experimental setting.

Under this assumption, we will not necessarily have the conditions to use the
approximation of 𝑇0 in (5.44). This is due to the fact that for 𝑣 ≈ 0.99, we have
𝛾 ≈ 7 and consequently, 𝑘 = 2𝑅/(𝛾𝑣) ≈ (2/7)𝑅. So, for small 𝑅 it is difficult to
get 𝑙 (𝑆) <<

√︁
2𝑘 |𝑞1 |. However, for small 𝑘 , the 𝑎𝑖 coefficients in (5.41) simplify

to

𝑎0 =
𝛽

12
, 𝑎1 = − (3/8)2

𝜋𝛾
𝛽2, 𝑎2 = 0, 𝑎3 =

5/83

𝜋𝛾
𝛽4. (5.48)

where we have used (5.45) to calculate the 𝛽 dependency of these coefficients.
We would like to draw the reader’s attention onto the fact that 𝛽 determines the
plateau length of 𝜒. With this simplification, the temperature 𝑇𝜆 (𝐸) in (5.42) is
now approximated by

𝑇𝜆 (𝐸) = 𝑇0 −
(
𝑇0
𝑎3
𝑎1

+ 1
12𝑇0

)
𝐸2 +𝑂

(
𝐸3

)
.

For fixed 𝐸 , this can be understood as a function of 𝛽 by substituting the values
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of the coefficients according to (5.48), and so we obtain

𝑇𝜆 (𝛽; 𝐸) = 8𝜋𝛾
33𝛽

+ 𝛽
(
5𝜋𝛾
35 − 9

25𝜋𝛾

)
𝐸2 +𝑂

(
𝐸3

)
.

The term in parenthesis multiplying 𝐸2 is a strictly increasing function of 𝑣, it is
also positive and of order unity for our chosen range. We want to find the value of
𝛽 that maximises the detected temperature for fixed 𝐸 and 𝑣. Since 𝛽 > 0 we find
that 𝑇𝜆 (𝛽; 𝐸) only has a global minimum, however it will increase as long as

𝛽 >
2

3|𝐸 |

√︄
2𝜋𝛾

3

(
5𝜋𝛾
35 − 9

25𝜋𝛾

)−1
.

To have a better understanding of this, now we shall address the other time scale
in action: the total interaction time 𝜆. Clearly, scenarios that have the support
of the switching function larger than the interaction time are of no experimental
interest. As in such scenarios, the detector would be switched on even when it is
not detecting with the quantum field.

Bearing this in mind, we address the original question: how long does it
take for a detector in uniform circular motion to thermalise? We know that
F∞(𝐸) := lim𝜆→∞ F𝜆 (𝐸) corresponds to a situation where a detector with fixed
energy gap 𝐸 , has attained thermalisation after 𝜆 → ∞. So, we will assume that
a necessary condition for thermalisation after a large–but finite–interaction time
𝜆, is that if for some 𝜀 > 0 and fixed 𝐸 we have

|F𝜆 (𝐸) − F∞(𝐸) | = 𝑂 (𝜆−𝜀) (as |𝜆 | → ∞). (5.49)

In addition, let us assume that F∞(𝐸) ≤ F𝜆 (𝐸) ≤ F∞(𝐸) [1 +𝑂 (𝜆−𝜀)], which in
particular implies that F∞(−𝐸) ≤ F𝜆 (−𝐸). This does not need to hold in general,
but (5.57) motivates this assumption. Using this along with the fact that F∞(𝐸)
satisfies detailed balance–that is F∞(−𝐸) = 𝑒𝐸/𝑇F∞(𝐸)– leads us to find

ln
(
F𝜆 (−𝐸)
F𝜆 (𝐸)

)
≥ ln

(
F∞(−𝐸)
F𝜆 (𝐸)

)
=
𝐸

𝑇
− ln

(
F𝜆 (𝐸)
F∞(𝐸)

)
≥ 𝐸

𝑇
− ln (1 +𝑂 (𝜆−𝜀)) ,

a similar argument leads to the upper bound from which it follows that

𝐸

𝑇
− ln (1 +𝑂 (𝜆−𝜀)) ≤ ln

(
F𝜆 (−𝐸)
F𝜆 (𝐸)

)
≤ 𝐸

𝑇
+ ln

(
1 + 𝑒𝐸/𝑇𝑂 (𝜆−𝜀)

)
.
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Observe that thermalisation is attained when the logarithm terms vanish, and
so, as long as 𝐸 is near the origin and 𝜆 is large, this will happen. Note that
this even holds if we consider 0 < 𝛼 < 1 in a generalised power law of the form
𝐸 = 𝑆0/𝜆𝛼−1.

However, this choice of power law is not as free as one would expect. As
a matter of fact, it turns out that our choice of power law was not suitable for
thermalisation. To see why this is the case, let us make use of (5.13), (5.40) and
(5.17) to study the difference

F𝜆 (𝐸) − F∞(𝐸) = 𝑎0 + 𝑎1

(
𝑆0
𝜆

)
+ 𝑎2sgn

(
𝑆0
𝜆

) (
𝑆0
𝜆

)2

+ 𝑎3

(
𝑆0
𝜆

)3
−ℱ [W](𝐸) | |𝜒 | |22 +𝑂 (𝜆−4).

Making use of the power law (5.33), decomposition (5.19) and the value of 𝑎0 as
specified in (5.41), the expression above yields

F𝜆 (𝐸) − F∞(𝐸) = 𝑎1

(
𝑆0
𝜆

)
+ 𝑎2sgn

(
𝑆0
𝜆

) (
𝑆0
𝜆

)2
+ 𝑎3

(
𝑆0
𝜆

)3

+
||𝜒 | |22
2𝜋𝛾

(
𝜋

2
sgn

(
𝑆0
𝜆

)
−𝒮

[
𝑄𝑣 (𝑧)
𝑧

] (
𝑘𝑆0
𝜆

))
+𝑂 (𝜆−4).

Furthermore, making use of Lemma 5.7.1 and simplifying we find

F𝜆 (𝐸) − F∞(𝐸) =
(
𝑎1 − 𝑘

𝑞1 | |𝜒 | |22
2𝜋𝛾

) (
𝑆0
𝜆

)
+

(
𝑎2 − 𝑘2 𝑞2 | |𝜒 | |22

2𝜋𝛾

)
sgn

(
𝑆0
𝜆

) (
𝑆0
𝜆

)2

+
(
𝑎3 − 𝑘3 𝑞3 | |𝜒 | |22

2𝜋𝛾

) (
𝑆0
𝜆

)3
+
||𝜒 | |22
4𝛾

sgn(𝐸) +𝑂 (𝜆−4).

In virtue of the remaining values of 𝑎𝑖 in (5.41) along with the model relations in
(5.45), after simplifying and reordering we reach

|F𝜆 (𝐸) − F∞(𝐸) | ≤ 𝛽

12𝛾
+ 9

16
𝑆0𝛽

2

𝜆
+ 1

2𝜋𝛾

(
5𝛽4

28 + 3𝑞3

𝛽𝑆2
0

) (
𝑆0
𝜆

)3

+ 𝑘2𝑞2

4𝜋2𝛾

(
1
𝑆2

0

∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2 + 𝛽

3

) (
𝑆0
𝜆

)2
+𝑂 (𝜆−4).
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Finally, the integral might be estimated by making use of (5.46) from which we can
see that |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2 ≤ 4(𝑆0 +𝜔)2/(𝛽𝜔2)2. After another rearrangement,
this we find that

|F𝜆 (𝐸) − F∞(𝐸) | ≤ 𝛽

12𝛾
+ 9

16
𝑆0𝛽

2

𝜆
+ 𝑘2𝑞2

12𝜋2𝛾

(
7 · 8
𝛽2𝑆3

0
+ 𝛽

) (
𝑆0
𝜆

)2

+ 1
2𝜋𝛾

(
5𝛽4

28 + 3𝑞3

𝛽𝑆2
0

) (
𝑆0
𝜆

)3
+𝑂 (𝜆−4). (5.50)

From the expression above it is easy to deduce that thermalisation can be hardly
reached as |F𝜆 (𝐸) − F∞(𝐸) | ≠ 𝑂 (𝜆−𝜀) due to the presence of the first term. If
we wanted to attain thermalisation the first term in the bound has to be very small
with respect to |F𝜆 (𝐸) − F∞(𝐸) | and the other terms. However, if this were the
case, then the terms containing 1/𝛽 would be very large.

This argues why the right-hand side can not vanish for any large 𝜆 and any
choice of 𝛽. This is due to the current choice of power law 𝐸𝜆 = 𝑆0. Let us drop
the power law assumption (5.33). If we use the response functions (5.12) and
(5.13) along with the decompositions (5.17) and (5.19). Hence, the difference
becomes

F𝜆 (𝐸) − F∞(𝐸) = − 1
8𝜋𝛾

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸))

+ 1
4𝜋2𝛾

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 [𝒮[𝑄𝑣 (𝑧)/𝑧] (𝑘 (𝐸 + 𝜔/𝜆)) −𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝑘𝐸)] ,

(5.51)

define 𝑓 (𝜔) := sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸). Note that supp( 𝑓 ) = (−∞,−𝜆 |𝐸 |) and
that 𝑓 ≡ 2 on its support. With this, we see that the first integral in (5.51) becomes∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸))

= −2sgn(𝜆𝐸)
∫ ∞

𝜆 |𝐸 |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2, (5.52)

which can only vanish if as 𝜆 → ∞, we have 𝜆 |𝐸 | → ∞. This certainly is not the
case for our choice of power law in (5.33) which is 𝐸𝜆 = 𝑆0 and explains why
there are non-vanishing terms in (5.50) as 𝜆 grows large. Note that this power law
implies that it is not possible to take the limit 𝜆 → ∞ with 𝐸 fixed.
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The source of this problem was assuming that 𝐸 and 𝜆 are inversely related
via the chosen power law. So, to avoid this, we will now study what happens if

𝐸 (𝜆) = 𝑔(𝜆)
𝜆
, (5.53)

where 𝑔 is yet to be determined but is even and satisfies 𝑔(𝜆)/𝜆 → 0 as |𝜆 | → ∞.
With this we see that (5.52) acquires the form∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸))

= −2sgn(𝑔(𝜆))
∫ ∞

|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2, (5.54)

So, if we want small energy gaps, large waiting times and thermalisation, it seems
that we need to demand that 𝑔 satisfies

𝑔(𝜆)
𝜆

→ 0 as |𝜆 | → ∞ (5.55)

𝑔(𝜆) → ∞ as |𝜆 | → ∞. (5.56)

Note that under these assumptions, (5.52) vanishes. Next, we make use of the
small arguments for 𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝜁) in Lemma 5.7.1, with this we find that

𝒮[𝑄𝑣 (𝑧)/𝑧] (𝑘 (𝐸 + 𝜔/𝜆)) −𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝑘𝐸)

= 𝑞1
𝑘𝜔

𝜆
+ 𝑞2 (sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸)) 𝐸2 + 𝑞2sgn(𝐸 + 𝜔/𝜆) 𝑘𝜔

𝜆

(
2𝐸 + 𝑘𝜔

𝜆

)
+ 𝑞3

𝑘𝜔

𝜆

(
3𝐸2 + 3𝐸

𝑘𝜔

𝜆
+ 𝑘

2𝜔2

𝜆2

)
+𝑂 (𝜆−4).

We will drop the terms that are odd in 𝜔 due to the fact that in (5.51) they are
under the 𝜔 integral and |ℱ [𝜒] (𝜔) |2 is even, this yields∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (𝒮[𝑄𝑣 (𝑧)/𝑧] (𝑘 (𝐸 + 𝜔/𝜆)) −𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝑘𝐸))

= 𝑞2𝐸
2
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (sgn(𝐸 + 𝜔/𝜆) − sgn(𝐸))

+
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

[
𝑞2sgn(𝐸 + 𝜔/𝜆) 𝑘𝜔

𝜆

(
2𝐸 + 𝑘𝜔

𝜆

)
+ 3𝐸𝑞3

𝑘2𝜔2

𝜆2

]
+𝑂 (𝜆−4).
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Next, in the expression above we will substitute (5.52) and (5.53). Moreover,
making use of 𝑖𝑠𝜔𝑠ℱ [ℎ] (𝜔) = ℱ [ℎ(𝑛)] (𝜔) for ℎ differentiable enough–with
𝑠 ∈ N0–alongside Plancherel’s formula allows us to further simplify this to∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (𝒮[𝑄𝑣 (𝑧)/𝑧] (𝑘 (𝐸 + 𝜔/𝜆)) −𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝑘𝐸))

= −2sgn(𝑔(𝜆)) 𝑞2𝑔(𝜆)2

𝜆2

∫ ∞

|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 + 6𝜋𝑞3

𝑘2𝑔(𝜆)
𝜆3 | |𝜒′| |22

+ 𝑘
2𝑞2

𝜆2 sgn(𝑔(𝜆)/𝜆)
∫ |𝑔(𝜆) |

−|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒′] (𝜔) |2

+ 2𝑔(𝜆)𝑘𝑞2

𝜆2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2sgn((𝑔(𝜆) + 𝜔)/𝜆)𝜔 +𝑂 (𝜆−4)

where we have made use of an argument similar to those within Proposition C.2.3.
We want to study these terms for large 𝜆. The first two terms vanish. Regarding
the third term, note that the integral obeys the bound

1
𝜆2

����� ∫ |𝑔(𝜆) |

−|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒′] (𝜔) |2

����� ≤ 2|𝑔(𝜆) |
𝜆2 sup|ℱ [𝜒′] (𝜔) |2,

the supremum on the right hand side certainly exists because𝜒 ∈ 𝐶∞
0 (R), then

ℱ [𝜒′] must be smooth and has fast-decay. Because of the fast-decay, we can
deduce that the fourth term is bounded by a constant independent of 𝜆 that we
shall denote as 𝑉 . Therefore, we can conclude that����� ∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 (𝒮[𝑄𝑣 (𝑧)/𝑧] (𝑘 (𝐸 + 𝜔/𝜆)) −𝒮[𝑄𝑣 (𝑧)/𝑧]] (𝑘𝐸))

�����
≤ 2

𝑞2𝑔(𝜆)2

𝜆2

∫ ∞

|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 + 6𝜋𝑞3

𝑘2𝑔(𝜆)
𝜆3 | |𝜒′| |22

+ 2𝑘2𝑞2 |𝑔(𝜆) |
𝜆2 sup|ℱ [𝜒′] (𝜔) |2 + 2𝑔(𝜆)𝑘𝑞2

𝜆2 𝑉 +𝑂 (𝜆−4),

and making use of this result in combination (5.51) and (5.54) we can deduce that

|F𝜆 (𝐸) − F∞(𝐸) | ≤ 1
4𝜋𝛾

∫ ∞

|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

+ |𝑔(𝜆) |
2𝜋2𝛾𝜆

(
𝑞2 |𝑔(𝜆) |

𝜆

∫ ∞

|𝑔(𝜆) |
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 + 3𝜋𝑞3

𝑘2

𝜆2 | |𝜒
′| |22

+ 𝑘
2𝑞2
𝜆

sup|ℱ [𝜒′] (𝜔) |2 + 𝑘𝑞2
𝜆
𝑉

)
+𝑂 (𝜆−4). (5.57)
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This seems to indicate that a good candidate is

𝑔(𝜆) = 𝜆𝛼 0 < 𝛼 < 1.

Note that this makes the integrals vanish as |𝜆 | → ∞, and so we end up with the
sought form specified in (5.49), from which we can conclude that this will achieve
thermalisation.

From this we can see that the proposed power law (5.33) will not lead to
thermalisation under the assumption that the switching function is of adiabatic
nature. Moreover, as we have motivated throughout this section, we need to have
a more dedicated study of the parameter space as it is yet not clear under which
regimes a continuous variation of the parameters will lead to a continuous family
of temperature curves. Also, there might be an ideal range which makes more
feasible the detection of thermalisation in a laboratory.



6

Conclusions

Por la mañana escribir, por la tarde
corregir, por las noches leer y en
las horas muertas ejercer la
diplomacia, el disimulo, el encanto
dúctil. (Write in the morning,
revise in the afternoon, read at
night, and spend the rest of your
time exercising your diplomacy,
stealth, and ductile charm.)

Roberto Bolaño, Los Detectives
Salvajes (The Savage Detectives)

All of the aforementioned has made very clear that this thesis deals with two
lines of research relevant to the study of quantum fields in curved spacetime. Due
to their content, both are autonomous for all pragmatic instances. Because of this,
it is not easy to establish a connection between these lines of research unless we
want to dwell into forced arguments. Therefore, we will conclude on the overall
work first and then we will present specific conclusions concerning each topic.

At this stage the reader might be wondering why the present document is
deemed as a thesis instead of two theses. However, it is the author’s firm belief that
the strength of this text resides on containing two different lines of work, as they
contribute towards its breadth. Although both lines of research make ample use of
the conceptual foundations envisaged by General Relativity and Quantum Field

148
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Theory, each project required very different frameworks and specific approaches.
The Hadamard State Extension project is abstract in nature, but we were able

to do some numerical computations to prove that our claims hold in a simple
model. This was very satisfying, as it is always pleasant seeing how abstract and
general underpinnings coalesce into explicit and concrete results. During the
investigation of this problem, we implemented techniques pertaining to Locally
Covariant QFT, Algebraic QFT and Lorentzian Geometry. On the mathematical
side, this makes use of notions related to Category Theory, Operator Algebras
and Semi-Riemannian Geometry.

After we were convinced that a Hadamard state could be extended, we did
some numerical investigations in which we had to process non-linear ODEs in
data grids of approximately 50, 000 points, which is a considerable size. Even
though this is a simple numerical problem at the conceptual level, the technical
implementation needed some work and had several modifications. Therefore,
some notions of scientific computing were also needed for this project.

Contrastingly so, the Detector Response project is very concrete as it was
motivated by an ongoing experimental venture. For its research, we implemented
methods commonly used both in Fourier and Asymptotic Analysis. There was
also some numerical analysis, but it was rather straightforward as it was only
used to verify the validity of certain asymptotic approximations. Still, doing
asymptotic analysis is not a minor undertaking, as a matter of fact, Prof. Chris
Fewster once sagely said that "...asymptotic analysis is an art". This is certainly
true, as every situation requires a bespoken approach depending on what is needed
of it.

Our findings regarding the extension of Hadamard states may be summarised
as follows. If one wants to extend a Hadamard state from a region onto a larger
one, then one can do so as long as knowledge of the state is sacrificed near the
boundary of the original region. This is not to be taken for granted and has
profound implications. Imagine you have a Hadamard state in your laboratory,
then one could ask: why should it be Hadamard outside the laboratory? The
results obtained in our research show that the state can indeed be extended to a
Hadamard state outside the laboratory and since one cannot see it outside the
laboratory it may as well be taken without loss of generality to be Hadamard.
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Moreover, not being able to probe it near the boundary does not introduce any
problem whatsoever, as it is known that one can not probe arbitrarily close to the
boundary of a region anyway.

The numerical exploration carried out afterwards confirms these ideas in
a simple setting where it is easy to see clearly the impact of our choice of
parameters. As we mentioned earlier, the numerical problem needed to be solved
is a highly non-linear one over an extensive data grid. As it is known, numerical
differentiation is somewhat unstable, which led to some outlying points in the
surface plots. Although one can still distinguish the main features of said surfaces,
we hope to find a better method to get rid of the outlying points. At some stage,
we tried averaging over certain regions, but this eroded important aspects of the
plots and on some occasions generated incorrect results. For instance, regions
with negative energy density would be misrepresented, which can give rise to
incorrect interpretations.

The more abstract results regarding Hadamard states show that the extension
can be performed between regions of a globally hyperbolic spacetime. However,
our explicit construction is just for conformally ultrastatic spacetimes. So, finding
an explicit construction for general globally hyperbolic spacetimes seems like the
next thing to do. Another thing to be done is formulating the extension to the
whole of the spacetime in more precise terms. As for now, the general direction is
clear but some technical details need to be revised carefully. Finally, an interesting
future line of research would be considering the case when the original region 𝑇
is not simply connected or even if its components are disconnected.

Although the Detector Response is a more concrete problem, some of its
aspects remain unclear. As we discussed at the beginning of the corresponding
Chapter, the notion of a rotating vacuum is problematic in this context. Hence,
instead of using it, we shifted our focus to a detector following a circular trajectory
in the usual Minkowski vacuum state. However, in this setting, something similar
to a ergosphere emerges as beyond it the time axis becomes spacelike. The
upshot of this is there will be both positive and negative energy modes. This is
problematic as we usually associated the detector response was due to emission
into the positive energy modes. Nonetheless in the present case, there might be
a mixing of modes, which complicates interpreting this as temperature. So, the
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detector will certainly exhibit a response, nonetheless, it is yet unclear if said
response will be consistent with a thermal spectrum.

In other words, it still is uncertain if it is correct to think of the detector as
an accelerated thermometer or if it is detecting something else. So, if there is
an experiment where the detector exhibits response, can we really say we have
detected the Unruh effect? Yet, the work by Korsbakken and Leinaas shows
something interesting regarding this matter. If we consider a detector that is
rotating uniformly with speed Ω and moving with linear acceleration 𝑎, then
we can see that when the ratio Ω/𝑎 vanishes we obtain the Unruh temperature,
as one would expect. Moreover, continuous variation of this ratio will lead to
a continuous family of temperature curves. So, this supports the idea that if a
rotating detector has a response, then it corresponds to what we call the Unruh
effect. Nevertheless, more clarification and further study on this topic is necessary
as many of the details are still rather opaque.

Aside from these considerations, the results that we obtained indicate although
it is reasonable to assume that the interaction time 𝜆 and the energy gap 𝐸 are
related, one has to be careful when choosing their relation. This is because not all
choices will lead to thermalisation in a finite interaction time. As a matter of fact,
our initial choice 𝐸𝜆 = 𝑆0 (where 𝑆0 is a constant) can not attain thermalisation
for any value of 𝜆. We actually discussed under which circumstances the relation
between 𝐸 and 𝜆 are expected to lead to thermalisation, but it was at a late stage
during research. So, a future line of work that looks promising is studying relations
of the type 𝐸 (𝜆) = 𝑆0𝜆

𝛼−1 where 0 < 𝛼 < 1. Other subject worth studying in
the future, is how the choices of the switching function 𝜒 affect the observed
temperature. We mention this because we chose a 𝜒 that led to a temperature that
is too low to observe in an experimental setting. Therefore, more study on the
parameter space needs to be done in order to increase the chances of detection
in a laboratory. Nevertheless, the asymptotic approximations that we obtained
are valid and accurate to the sought level. So one can use them to study the two
aforementioned questions.

In conclusion, this thesis involved the understanding of quantum fields in
curved spacetimes from many perspectives, from theory to experiment and from
abstraction to application. This compelled me to learn a wide range of techniques
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that certainly augmented and enhanced my research skillset. It is particularly
pleasant to me that part of this work might have potential to influence forthcoming
experiments. The breadth of technique and applications presented in this work
certainly indicates that the research area of Quantum Field Theory in Curved
Spacetime is a deeply rich one.



A

Hadamard State Extension for Two-Dimensional
Minkowski Spacetime

a.1 proof of lemma 3.2.1

Lemma A.1.1. Let 𝑔 be as in (3.8), that is

𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − (𝑑𝑥 − 𝑓 𝑣𝑑𝑡) ⊗ (𝑑𝑥 − 𝑓 𝑣𝑑𝑡). (A.1)

Then, (R2, 𝑔) is globally hyperbolic.

Proof. We start by showing that 𝑔 is Lorentzian on R2, which we divide into𝑊
and R2 \𝑊 with 𝑊 = 𝑊𝐿 ∪𝑊𝑅. On the second region 𝑓 ≡ 0 and so 𝑔 = 𝑔0,
which is clearly Lorentzian. The metric 𝑔 can be written as

𝑔 = (1 − 𝑓 2𝑣2)𝑑𝑡 ⊗ 𝑑𝑡 + 2 𝑓 𝑣𝑑𝑡 ⊗𝑠 𝑑𝑥 − 𝑑𝑥 ⊗ 𝑑𝑥, (A.2)

since the tangent bundle can be decomposed as 𝑇R2 = 𝑇R ⊕ 𝑇R any vector at 𝑝
can be written as 𝑣 = 𝑣𝑡𝜕/𝜕𝑡 + 𝑣𝑥𝜕/𝜕𝑥. A basis is given by{

𝜕

𝜕𝑡
+ (1 + 𝑓 𝑣) 𝜕

𝜕𝑥
,
𝜕

𝜕𝑡
− (1 − 𝑓 𝑣) 𝜕

𝜕𝑥

}
,

letting 𝑘 ∈ {−1, 1}, we can write 𝑣𝑘 = 𝜕/𝜕𝑡 + 𝑘 (1 + 𝑘 𝑓 𝑣)𝜕/𝜕𝑟 and calculate the
norm of the these elements easily

𝑔 (𝑣𝑘 , 𝑣𝑘 ) = (1 − 𝑓 2𝑣2) + 2𝑘 𝑓 𝑣(1 + 𝑘 𝑓 𝑣) − (1 + 𝑘 𝑓 𝑣)2

= −2 𝑓 2𝑣2 + 2 𝑓 𝑣(𝑘 + 𝑓 𝑣) − 2𝑘 𝑓 𝑣 = 0

153
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which indicates they are null and given that they constitute a basis, we conclude
that the metric is also Lorentzian in𝑊 (c.f. p.141 [53]) and thus in R2.

Finally, to show that 𝑔 is globally hyperbolic we will use a domination
argument. We say that a metric 𝑔1 dominates the metric 𝑔2 if 𝑔1 ≥ 𝑔2 as quadratic
forms, a consequence of this is that if 𝑔1 is globally hyperbolic then 𝑔2 must be
globally hyperbolic as well, this can be seen from the fact that every 𝑔2-causal
curve is necessarily 𝑔1-causal. First, note that since 0 ≤ 𝑓 ≤ 1 is smooth and
𝑣 ≥ 0 is compactly supported, the supremum of 𝑓 𝑣 must exist. Denote it by 𝐹+
and introduce

𝑔′ = 𝑔0 + 𝐹+𝑑𝑡 ⊗ 𝑑𝑡 +
𝐹+

1 + 𝐹+
𝑑𝑥 ⊗ 𝑑𝑥 = (1 + 𝐹+)𝑑𝑡 ⊗ 𝑑𝑡 −

1
1 + 𝐹+

𝑑𝑥 ⊗ 𝑑𝑥.

We claim that 𝑔′ ≥ 𝑔; to prove this, we see that 𝑔′ − 𝑔 = [𝐹+ + 𝑓 2𝑣2]𝑑𝑡 ⊗ 𝑑𝑡 −
2 𝑓 𝑣𝑑𝑡 ⊗𝑠 𝑑𝑥 + 𝐹+ [1+ 𝐹+]−1𝑑𝑥 ⊗ 𝑑𝑥, thinking of 𝑔′− 𝑔 as a 2× 2 matrix it follows
that

det(𝑔′ − 𝑔) = 𝐹2
+ − 𝑓 2𝑣2

1 + 𝐹+
≥ 0, tr(𝑔′ − 𝑔) = 𝐹+

1 + 𝐹+
(2 + 𝐹+) + 𝐹2 > 0.

And so, we can see that its eigenvalues are non-negative and conclude that 𝑔′ ≥ 𝑔
everywhere in R2.

Given that 𝑔′ is conformal to (1 + 𝐹+)2𝑑𝑡 ⊗ 𝑑𝑡 − 𝑑𝑥 ⊗ 𝑑𝑥 and this is globally
hyperbolic, it implies that it and the metrics that it dominates must be globally
hyperbolic as well, in particular 𝑔, which concludes our proof. □

a.2 proof of proposition 3.2.3

Proposition A.2.1. Let 𝐸+ and 𝐸− be regions in R2 defined by

𝐸− = {(𝑡, 𝑥) : 𝑡 ≤ 0, |𝑥 | < 𝑟𝑇 + 𝑡}, 𝐸+ = {(𝑡, 𝑥) : 0 ≤ 𝑡 < 𝑡𝐹 + 2𝜀, |𝑥 | < 𝜌(𝑡)},

observe that they intersect on {0} × (−𝑟𝑇 , 𝑟𝑇 ). We claim that 𝐸 = 𝐸+ ∪ 𝐸−.

Proof. We will begin by showing that 𝐸± ⊂ 𝐸 . As 𝑔 = 𝑔0 in 𝐸− and 𝐾, and
both these sets lie in 𝐷𝑔0 (𝑃), it is enough to show that every past-inextendible
curve passing through a point in 𝐸+ \ 𝐾 necessarily intersects 𝑃. To do this, we
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consider a causal curve, that is, a curve 𝛾(𝑠) = (𝑡 (𝑠), 𝑥(𝑠)) for which 𝑔( ¤𝛾, ¤𝛾) ≥ 0.
So, from (3.8) it follows that

¤𝑡
(
(1 − 𝑓 2𝑣2) ¤𝑡 + 2 𝑓 𝑣 ¤𝑥

)
≥ ¤𝑥2 (A.3)

which in turn, can be rewritten as����𝑑𝑥𝑑𝑡 − 𝑓 𝑣

���� ≤ 1. (A.4)

Next, we prove that if |𝑥(𝑡∗) | < 𝜌(𝑡∗) for some 0 < 𝑡 < 𝑡∗, then this inequality
holds all earlier times. First, we analyse the case when 0 < 𝑡, and prove by
contradiction. Let us do this separately for points either in the right warp bubble
𝑊𝑅 (hence 𝑓𝐿 ≡ 0) or the left warp bubble𝑊𝐿 (hence 𝑓𝑅 ≡ 0).

To this end, let us assume that the causal curve can leave 𝐸 at positive time.
This means that at some time 𝜏 ∈ (0, 𝑡) we will have 𝜌(𝜏) = |𝑥(𝜏) |. So in 𝑊𝑅

this is 𝜌(𝜏) = 𝑥(𝜏) while in 𝑊𝐿 it is −𝜌(𝜏) = 𝑥(𝜏). Without loss of generality,
we choose the largest of the "contact" times, hence, 𝜏 := supR+{𝑡 : 𝑥(𝑡) = 𝜌(𝑡)}
and, immediately after this the curve lie inside 𝐸 . This means that if 𝑥 is near𝑊𝑅,
we will have 𝑥(𝜏 + 𝜂) < 𝜌(𝜏 + 𝜂) for some 0 < 𝜂 small enough so that 𝑥(𝜏 + 𝜂) is
in the region where 𝑓𝑅 = 1. For 𝑥 near𝑊𝐿 we have −𝜌(𝜏 + 𝜂) < 𝑥(𝜏 + 𝜂) and 𝜂
is such that 𝑥 is at a region where 𝑓𝐿 = 1. From 𝑓 = 𝑓𝑅 − 𝑓𝐿 and by virtue of the
bounds in (A.4), it follows that −1 + 𝑣 ≤ 𝑑𝑥/𝑑𝑡 for 𝑥 near𝑊𝑅 and 𝑑𝑥/𝑑𝑡 ≤ 1 − 𝑣
for 𝑥 near𝑊𝐿 for all times between 𝜏 and 𝜏 + 𝜂.

Moreover, by definition 𝑑𝜌/𝑑𝑡 = −1 + 𝑣, substituting this into the previous
inequalities yields 𝑑𝜌/𝑑𝑡 ≤ 𝑑𝑥/𝑑𝑡 and 𝑑𝑥/𝑑𝑡 ≤ −𝑑𝜌/𝑑𝑡, which integrate to

𝜌(𝜏 + 𝜂) − 𝜌(𝜏) ≤ 𝑥(𝜏 + 𝜂) − 𝑥(𝜏) for 𝑥 near𝑊𝑅, (A.5)

𝑥(𝜏 + 𝜂) − 𝑥(𝜏) ≤ −𝜌(𝜏 + 𝜂) + 𝜌(𝜏) for 𝑥 near𝑊𝐿 . (A.6)

On the other hand, by hypothesis if 𝑥 is near𝑊𝑅 then 𝜌(𝜏) = 𝑥(𝜏), while if it is
near𝑊𝐿 then 𝜌(𝜏) = −𝑥(𝜏). So (A.5) and (A.6) become 𝜌(𝜏 + 𝜂) ≤ 𝑥(𝜏 + 𝜂) and
𝑥(𝜏 + 𝜂) ≤ −𝜌(𝜏 + 𝜂), respectively. This contradicts the remaining parts of our
hypothesis: 𝑥(𝜏 + 𝜂) < 𝜌(𝜏 + 𝜂) for𝑊𝑅 and −𝜌(𝜏 + 𝜂) < 𝑥(𝜏 + 𝜂) for𝑊𝐿 .

Said contradiction arose on the assumption that our causal curve can cross 𝜌
at some time 𝑡. Therefore, we must have that |𝑥(𝑡) | < 𝜌(𝑡) for every 𝑡, from this,
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it is easy to see that 𝐸+ ⊂ 𝐷+
𝑔 (𝑃). Also, when 𝑡 ≤ 0 we have that 𝑔 = 𝑔0, which

in turn implies that 𝐷−
𝑔 (𝑃) = 𝐸−. Taking these two last equations, we see that

𝐸+ ∪ 𝐸− ⊂ 𝐸 .
Next, we need to check that 𝐷+

𝑔 (𝑃) ∩ [0, 𝑡𝐹 + 2𝜖) × R ⊂ 𝐸+, or conversely
that every point outside 𝐸+ lies on some past-directed causal curve that avoids 𝑃.
As before, we will separate this into two separate cases depending on whether
the point under consideration is near𝑊𝑅 or𝑊𝐿 . For the𝑊𝑅 (𝑊𝐿) case, consider
a right(left)-moving future-directed null geodesic through a point outside 𝐸+,
this is respectively, 𝜌(𝑡1) < 𝑥(𝑡1) and 𝑥(𝑡1) < −𝜌(𝑡1) for some 𝑡1 ∈ [0, 𝑡𝐹 + 2𝜖).
Making use of (A.3) for this trajectory, we get 𝑑𝑥/𝑑𝑡 − 𝑓𝑅𝑑𝜌/𝑑𝑡 = −1 + 𝑓𝑅 ≤ 0
for𝑊𝑅 and 𝑑𝑥/𝑑𝑡 + 𝑓𝐿𝑑𝜌/𝑑𝑡 = −1+ 𝑓𝐿 ≤ 0 for𝑊𝐿 . In the case of𝑊𝑅, integration
yields the following for 0 ≤ 𝑡0 < 𝑡1

𝑥(𝑡1) − 𝑥(𝑡0) + 𝜌(𝑡0) − 𝜌(𝑡1) ≤ 𝑟 (𝑡1) − 𝑟 (𝑡0) −
∫ 𝜌(𝑡1)

𝜌(𝑡0)
𝑓𝑅 𝑑𝜌

′

= −(𝑡1 − 𝑡0) +
∫ 𝑡1

𝑡0

𝑓𝑅 𝑑𝑡
′ ≤ 0, (A.7)

while for𝑊𝐿 we have

𝑥(𝑡1) − 𝑥(𝑡0) + 𝜌(𝑡1) − 𝜌(𝑡0) ≥ 𝑥(𝑡1) − 𝑥(𝑡0) +
∫ 𝜌(𝑡1)

𝜌(𝑡0)
𝑓𝐿 𝑑𝜌

′

= 𝑡1 − 𝑡0 −
∫ 𝑡1

𝑡0

𝑓𝐿 𝑑𝑡
′ ≥ 0 (A.8)

from which we get 𝑥(𝑡1) − 𝜌(𝑡1) ≤ 𝑥(𝑡0) − 𝜌(𝑡0) and respectively −𝑥(𝑡1) − 𝜌(𝑡1) ≤
−𝑥(𝑡0) − 𝜌(𝑡0). Since in both cases the point lies outside 𝐸+, both LHS are greater
than zero, which leads us to conclude that the null geodesic lies outside 𝑃 for all
𝑡0 ∈ [0, 𝑡𝐹 +2𝜀). Therefore, we have the inclusion 𝐷+

𝑔 (𝑃) ∩ [0, 𝑡𝐹 +2𝜖) ×R ⊂ 𝐸+,
which demonstrates our claim: 𝐷𝑔 (𝑃) ∩ (−∞, 𝑡𝐹 + 2𝜖) × R = 𝐸 . □

a.3 proof of proposition 3.2.1

Proposition A.3.1. Let 𝐹 be as in (3.2), then

𝐹 ∩ ({𝑡𝐹} × R) = 𝐸 ∩ ({𝑡𝐹} × R) and 𝐹 ⊂ 𝐸.

this proves (b) and (c) in (SEP.VIII).
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Proof. Because of Proposition 3.2.3, we know that 𝐸 lies within the curves 𝜌 and
−𝜌, so, at time 𝑡 = 𝑡𝐹 we obtain

𝐸 ∩ ({𝑡𝐹} × R) = {𝑡𝐹} × (−𝜌(𝑡𝐹), 𝜌(𝑡𝐹)) = {𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )

where in the second equality we have used that 𝜌(𝑡𝐹) = 𝑟𝐹 + 𝑟𝑇 as indicated in
(3.5). From the definition of 𝐹 in (3.2), we see that

𝐹 ∩ ({𝑡𝐹} × R) = 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )) ∩ ({𝑡𝐹} × R)
= {𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 ), (A.9)

proving the first identity. To prove that 𝐹 ⊂ 𝐸 , we observe that from the definition
of 𝐹 in (3.2), we can infer that

𝐹 = {(𝑡, 𝑥) : 𝑡𝐹 − 𝜀 < 𝑡 < 𝑡𝐹 + 𝜀, |𝑥 | < 𝑟𝐹 + 𝑟𝑇 − |𝑡 − 𝑡𝐹 |}.

If we recall that the definition of 𝜌 in (3.5) indicates that 𝑑𝜌/𝑑𝑡 = −1 for the
interval (𝑡𝐹 − 𝜀, 𝑡𝐹 + 𝜀). So, if we choose 𝑡 in said interval, integrate over (𝑡𝐹 , 𝑡)
and rearrange, we will get 𝜌(𝑡) = 𝑟𝐹 + 2𝑡𝐹 − 𝑡. Also, as it is straightforward to
show that 𝑟𝐹 + 𝑟𝑇 − |𝑡 − 𝑡𝐹 | ≤ 𝑟𝐹 + 2𝑡𝐹 − 𝑡 = 𝜌(𝑡), one may deduce from (A.9)
that any element inside 𝐹 must necessarily be inside 𝐸 and so, we conclude that
𝐸 ⊂ 𝐹. □

a.4 proof of proposition 3.2.4

Proposition A.4.1. The region 𝑇 lies inside 𝑆.

Proof. Note that the surface {𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 ) is a Cauchy surface for 𝐹
and so, 𝐹 ⊂ 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )). This along with the definition of 𝑆
in (3.3) leads us to conclude that 𝑆 = 𝐷𝑔0 ({𝑡𝐹} × (−𝑟𝐹 − 𝑟𝑇 , 𝑟𝐹 + 𝑟𝑇 )). Since a
Cauchy development under the Minkowski metric is well-known, it is not difficult
to deduce that

𝑇 = {(𝑡, 𝑥) : |𝑡 | < 𝑟𝑇 , |𝑥 | < 𝑟𝑇 − |𝑡 − 𝑟𝑇 |},
𝑆 = {(𝑡, 𝑥) : |𝑡 | < 𝑟𝐹 + 𝑟𝑇 , |𝑥 | < 𝑟𝐹 + 𝑟𝑇 − |𝑡 − 𝑡𝐹 |}.

Since 𝑟𝑇 − |𝑡 − 𝑟𝑇 | < 𝑟𝐹 + 𝑟𝑇 − |𝑡 − 𝑡𝐹 | for any 𝑡 ∈ (−𝑟𝑇 , 𝑟𝑇 ), we see that 𝑇 ⊂ 𝑆. □
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a.5 proof of proposition 3.2.5

Proposition A.5.1. Let 𝐼𝜀,𝑡𝐹 ,𝑎 and 𝛽𝑏 be as in (3.10) and (3.11). Also, assume
that 𝑎, 𝑏 ∈ N with 𝑎 < 𝑏. If we introduce 𝑁 = 2𝑎 and 𝑀 = min{2𝑎, 2(𝑏 − 1)},
then 𝜌 ∈ 𝐶𝑁 (T ) (where T is as in (3.5)) and 𝑓 ∈ 𝐶𝑀 (R2).

Proof. Consider in (3.10), as the integrand is a polynomial of degree 2𝑎 which we
will denote by 𝑃2𝑎 (𝑡) then 𝐼𝜀,𝑡𝐹 ,𝑎 (𝑡) = 𝑃2𝑎+1(𝑡). Differentiating this polynomial
2𝑎 + 1 times will yield a constant 𝑐2𝑎+1 ≠ 0. the same argument can be used
to infer that taking 2𝑏 − 1 derivatives of 𝛽𝑏 in (3.11) will result in a constant
𝑑2𝑏−1 ≠ 0. Hence, we deduce that

𝜌(2𝑎+1) (𝑡) =

𝑐2𝑎+1 for 𝑡 ∈ (𝜀, 𝑡𝐹 − 𝜀)

0 otherwise
,

𝐽
(2𝑏−1)
𝑟𝐵,𝑏

(𝑧) =


𝑑2𝑏−1 −1 < 𝑧 + 𝑟𝐵 < 0

(−1)2𝑏−1𝑑2𝑏−1 0 < 𝑧 − 𝑟𝐵 < 1

0 otherwise .

So, if we set 𝑁 = 2𝑎 it follows that 𝜌 ∈ 𝐶𝑁 (T ). For 𝑓 a little more works needs
to be done. Taking 𝑀 derivatives of 𝑓𝑅 with respect to 𝑟 leads to

𝜕𝑀

𝜕𝑟𝑀
𝑓𝑅 (𝑡, 𝑟) =

𝑑𝑀

𝑑𝑟𝑀
𝐽𝑟𝐵,𝑏 (𝑟 − 𝜌(𝑡) − 𝑟𝑇 ),

however, if we do the same but in this turn with respect to 𝑡 we obtain

𝜕𝑀

𝜕𝑡𝑀
𝑓𝑅 (𝑡, 𝑟) =

𝑀−1∑︁
𝑚=0

(
𝑀 − 1
𝑚

)
(−1)𝑚+1 𝑑

(𝑀−𝑚)

𝑑𝑡 (𝑀−𝑚) [𝜌(𝑡)]
𝑑 (𝑚+1)

𝑑𝑡 (𝑚+1)
[
𝐽𝑟𝐵,𝑏 (𝑟 − 𝜌(𝑡) − 𝑟𝑇 )

]
.

Similar results hold for 𝑓𝐿 . Because of this and given that 𝑓 = 𝑓𝑅 − 𝑓𝐿 , we see
that derivatives of 𝑓 will be continuous as long as both derivatives of 𝜌 and 𝐽𝑟𝐵,𝑏
are. Thus, we conclude that 𝑓 ∈ 𝐶𝑀 (R2) where 𝑀 = min{2𝑎, 2(𝑏 − 1)}. □



B

Hadamard State Extension

b.1 proofs of section 4.2

B.1.1 Proof of Lemma 4.2.1

Lemma B.1.1. Let 𝐴 and 𝐵 be subsets of 𝑀 . (a) If 𝐴 and 𝐵 are acausal obeying
𝐴 ⊂ 𝐷+(𝐵), then

𝐷 (𝐴) ⊂ 𝐷 (𝐵). (B.1)

(b) If 𝐵 is achronal and 𝐵 ⊂ 𝐴 is such that 𝐷𝑔0 (𝐵) ∩ 𝐴 is timelike compact [58]
and 𝑔 = 𝑔0 when restricted to 𝐷𝑔0 (𝐵) ∩ 𝐴, the following holds

𝐷𝑔0 (𝐵) ∩ 𝐴 ⊂ 𝐷𝑔 (𝐵) ∩ 𝐴. (B.2)

Proof. To prove (a), take a point 𝑝 ∈ 𝐷 (𝐴) and exclude the trivial case when
𝑝 ∈ 𝐵. Then this point must lie either in 𝐷+(𝐴) or 𝐷−(𝐴). In the first case,
we know that any inextendible past-directed causal curve that passes through 𝑝
must meet 𝐴 and by hypothesis also 𝐵. Since we excluded the case 𝑝 ∈ 𝐵, if
𝑝 ∈ 𝐷−(𝐴) then there are two options: 𝑝 ∈ 𝐼+(𝐵) or 𝑝 ∈ 𝐼−(𝐵).

If 𝑝 ∈ 𝐼+(𝐵) take any inextendible past directed causal inextendible curve
through 𝑝 and make it future directed inextendible as well, then it will certainly
meet 𝐴, as 𝑝 ∈ 𝐷−(𝐴). Since 𝐴 ⊂ 𝐷+(𝐵), this curve also hits 𝐵 and this must
happen to the past of 𝑝, from which we deduce that 𝑝 ∈ 𝐷+(𝐵). If 𝑝 ∈ 𝐼−(𝐵)
take any future directed causal inextendible curve through 𝑝 and make it past
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inextendible as well; thus it must meet 𝐴 and therefore also 𝐵 (as 𝐴 ⊂ 𝐷+(𝐵)). It
must meet 𝐵 in the future of 𝑝, hence 𝑝 ∈ 𝐷−(𝐵).

A similar argument is valid for 𝐴 ⊂ 𝐷−(𝐵), from this we conclude a more
general statement: for acausal sets 𝐴, 𝐵, we can write 𝐷 (𝐴) = 𝐷 (𝐴+) ∪ 𝐷 (𝐴−),
where 𝐴± = 𝐴 ∩ 𝐷±(𝐵), hence 𝐷 (𝐴) ⊂ 𝐷 (𝐵).

To prove (b), consider any inextendible past [future] directed 𝑔-causal curve
through a point 𝑝 of 𝐷𝑔0 (𝐵) in 𝐼+(𝐵) ∩ 𝐴 [𝐼−(𝐵) ∩ 𝐴]. This curve eventually
leaves 𝐷𝑔0 (𝐵) ∩ 𝐴 by timelike compactness and inextendibility, but the portion
inside it, is a 𝑔0-causal curve that is intextendible within 𝐷𝑔0 (𝐵) ∩ 𝐴–as 𝑔 = 𝑔0 in
𝐷𝑔0 (𝐵) ∩ 𝐴, and even on its boundary by continuity. Thus the curve must hit 𝐵,
and since the curve was arbitrary, we deduce that 𝑝 ∈ 𝐷+

𝑔 (𝐵) ∩ 𝐴 [𝐷−
𝑔 (𝐵) ∩ 𝐴].

As 𝑝 is arbitrary as well, we obtain the inclusion. □

B.1.2 Proof of Lemma 4.3.2

Lemma B.1.2. Let 𝑔 be the metric (4.50), that is

𝑔 = 𝑑𝑡 ⊗ 𝑑𝑡 − (𝑑𝑟 − 𝑓 𝑣𝑑𝑡) ⊗ (𝑑𝑟 − 𝑓 𝑣𝑑𝑡) − ℎ̃𝑟 . (B.3)

Then, (R × Σ, 𝑔) is globally hyperbolic.

Proof. We start by showing that 𝑔 is Lorentzian on R × Σ, which we divide into
𝑊 and (R × Σ) \𝑊 . On the second region 𝑓 ≡ 0 which indicates 𝑔 = 𝑔0, which
is clearly Lorentzian. From the definition of 𝑟𝐵 we note that 𝑟𝐵 < 𝑟∗ − 𝜌𝑚𝑎𝑥
hence 𝑟𝐵 + 𝜌𝑚𝑎𝑥 < 𝑟∗, which leads us to |𝜌+ | < 𝑟∗. A similar argument shows
that |𝜌− | < 𝑟∗, therefore𝑊 is contained in Υ(𝑁) whereupon we conclude that𝑊
never touches the region where 𝑑𝑟 = 0.

Then, 𝑟 is a valid coordinate in𝑊 , so if we consider 𝑝 ∈ 𝑊 , we can choose
(𝑡, 𝑟, 𝑦) with 𝑦 ∈ 𝜕𝜏 as coordinates for 𝑝. Furthermore, as the metric ℎ𝑡 takes a
block diagonal form given by (4.42), the metric 𝑔 becomes, after pull back by Υ,

𝑔 = (1 − 𝑓 2𝑣2)𝑑𝑡 ⊗ 𝑑𝑡 + 2 𝑓 𝑣𝑑𝑡 ⊗𝑠 𝑑𝑟 − 𝑑𝑟 ⊗ 𝑑𝑟 − ℎ̃𝑟 . (B.4)

With these coordinates, there is a mapping id × Υ : R × (−𝑟∗, 𝑟∗) × 𝜕𝜏 → 𝑀 so
that the tangent bundle may be decomposed as 𝑇𝑀 = 𝑇R ⊕ 𝑇 (−𝑟∗, 𝑟∗) ⊕ 𝑇 (𝜕𝜏)
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and thus any vector at 𝑝 can be written as 𝑣 = 𝑣𝑡𝜕/𝜕𝑡 + 𝑣𝑟𝜕/𝜕𝑟 + 𝑣𝜏 where
𝜕/𝜕𝑡 = (id ×Υ)∗(1, 0, 0), 𝜕/𝜕𝑟 = (id ×Υ)∗(0, 1, 0) and 𝑣𝜏 ∈ 𝑇𝑝 (𝜕𝜏). A basis is
given by {

𝜕

𝜕𝑡
+ (1 + 𝑓 𝑣) 𝜕

𝜕𝑟
,
𝜕

𝜕𝑡
− (1 − 𝑓 𝑣) 𝜕

𝜕𝑟
, 𝑣𝜏

}
,

letting 𝑘 ∈ {−1, 1}, we can write 𝑣𝑘 = 𝜕/𝜕𝑡 + 𝑘 (1 + 𝑘 𝑓 𝑣)𝜕/𝜕𝑟 and calculate the
norm of the two first elements easily

𝑔 (𝑣𝑘 , 𝑣𝑘 ) = (1 − 𝑓 2𝑣2) + 2𝑘 𝑓 𝑣(1 + 𝑘 𝑓 𝑣) − (1 + 𝑘 𝑓 𝑣)2

= −2 𝑓 2𝑣2 + 2 𝑓 𝑣(𝑘 + 𝑓 𝑣) − 2𝑘 𝑓 𝑣 = 0

which indicates they are null. All of the other elements are clearly spacelike and
given that they constitute a basis, we conclude that the metric is also Lorentzian
in𝑊 (c.f. p.141 [53]) and thus in R × Σ.

Finally, to show that 𝑔 is globally hyperbolic we will use a domination
argument. We say that a metric 𝑔1 dominates the metric 𝑔2 if 𝑔1 ≥ 𝑔2 as quadratic
forms, a consequence of this is that if 𝑔1 is globally hyperbolic then 𝑔2 must be
globally hyperbolic as well, this can be seen from the fact that every 𝑔2-causal
curve is necessarily 𝑔1-causal.

First, note that since 0 ≤ 𝑓 ≤ 1 is smooth and 𝑣 ≥ 0 is compactly supported,
the supremum of 𝑓 𝑣 must exist, denote it by 𝐹+ and introduce

𝑔′ = 𝑔0 + 𝐹+𝑑𝑡 ⊗ 𝑑𝑡 +
𝐹+

1 + 𝐹+
𝑑𝑟 ⊗ 𝑑𝑟,

then, we claim that [
(1 + 𝐹+)𝑑𝑡 ⊗ 𝑑𝑡 −

ℎ𝑡

1 + 𝐹+

]
≥ 𝑔′ ≥ 𝑔. (B.5)

To prove the second inequality, we see that 𝑔′−𝑔 = [𝐹++ 𝑓 2𝑣2]𝑑𝑡 ⊗ 𝑑𝑡−2 𝑓 𝑣𝑑𝑡 ⊗𝑠
𝑑𝑟 + 𝐹+ [1 + 𝐹+]−1𝑑𝑟 ⊗ 𝑑𝑟, thinking of 𝑔′ − 𝑔 as a 2 × 2 matrix it follows that

det(𝑔′ − 𝑔) = 𝐹2
+ − 𝑓 2𝑣2

1 + 𝐹+
≥ 0, tr(𝑔′ − 𝑔) = 𝐹+

1 + 𝐹+
(2 + 𝐹+) + 𝑓 2𝑣2 > 0.

From this, we can see that its eigenvalues are non-negative and conclude that 𝑔′ ≥ 𝑔
everywhere in R × Σ. To prove the first inequality, we need an intermediate result
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first. Consider the curve 𝛾(𝑢) = Υ(𝑠(𝑢), 𝑦(𝑢)) and its tangent vector 𝑣 = ¤𝛾(0),
making use of (4.40) and (4.41), inside Υ(𝑁) we have ∇𝑣𝑟 = 𝜁 ′ 𝑑𝑠𝑑𝑢 |𝑢=0 ≤ 𝑑𝑠

𝑑𝑢
|𝑢=0

and ℎ𝑡 pulls back to 1 ⊕ ℎ̃𝑟 so that ( 𝑑𝑠
𝑑𝑢
|𝑢=0)2 ≤ ℎ𝑡 (𝑣, 𝑣) from which we deduce

that (∇𝑣𝑟)2 ≤ ℎ𝑡 (𝑣, 𝑣) inside Υ(𝑁). Outside Υ(𝑁), we know that 𝑑𝑟 = 0 and
hence ∇𝑣𝑟 = 0, which along with the fact that ℎ𝑡 is Riemannian implies that
(∇𝑣𝑟)2 ≤ ℎ𝑡 (𝑣, 𝑣) in all of R × Σ and thereby it follows that 𝑑𝑟 ⊗ 𝑑𝑟 ≤ ℎ𝑡 . From
this we deduce that

𝑔′ = (1 + 𝐹+)𝑑𝑡 ⊗ 𝑑𝑡 − ℎ𝑡 + 𝐹+
1+𝐹+ 𝑑𝑟 ⊗ 𝑑𝑟 ≤ (1 + 𝐹+)𝑑𝑡 ⊗ 𝑑𝑡 − (1 + 𝐹+)−1ℎ𝑡 ,

which is the remaining inequality. Given that the l.h.s. of (B.5) is conformal to
(1 + 𝐹+)2𝑑𝑡 ⊗ 𝑑𝑡 − ℎ𝑡 and this is globally hyperbolic, it implies that it and the
metrics that it dominates must be globally hyperbolic as well, in particular 𝑔,
which concludes our proof.

□



C

Detector Response

Throughout this appendix we will always assume that 𝜒 ∈ 𝐶∞
0 (R) and is real-

valued. Also, to make what follows more understandable, we remind the reader
of our conventions from 5.1. Throughout this section, we will make use of
standard Minkowski coordinates 𝑥 = (𝑡, ®𝑥) with ®𝑥 ∈ R2 for which the metric reads
𝑔 = −1 ⊕ 𝑒, where 𝑒 is the 2-dimensional Euclidean metric.

c.1 conventions

Definition C.1.1. If for 𝑈 ⊆ R and measure 𝜇 : 𝑈 → R, the measurable
function 𝑓 : 𝑈 → C satisfies

∫
𝑈
| 𝑓 |𝑑𝜇 < ∞, then we say that 𝑓 belongs to the

vector space 𝐿1(𝑈, 𝑑𝜇) and we define its 𝐿1-norm as | | 𝑓 | |1,𝑈 :=
∫
𝑈
| 𝑓 |𝑑𝜇. If

𝑈 = R we will drop the𝑈 subscript from the notation.
Also, for 𝑓 , 𝑔 : 𝑈 → C let us introduce the inner-product over𝑈 defined as

⟨ 𝑓 , 𝑔⟩𝑈 :=
∫
𝑈
𝑓 𝑔 𝑑𝜇 which induces the 𝐿2-norm | | 𝑓 | |2,𝑈 =

√︁
⟨ 𝑓 , 𝑓 ⟩; we say that

𝑓 ∈ 𝐿2(𝑈, 𝑑𝜇) if | | 𝑓 | |2,𝑈 < ∞, note that 𝐿2(𝑈, 𝑑𝜇) is also a vector space and we
will also drop the subscript if𝑈 = R.

Definition C.1.2. The Fourier transform of a function 𝑓 is denoted by ℱ [ 𝑓 ]
and its definition is ℱ [ 𝑓 ] (𝑢) =

∫ ∞
−∞ 𝑑𝑥 𝑒

−𝑖𝑢𝑥 𝑓 (𝑥). Following this defini-
tion, Plancherel’s formula becomes ⟨ℱ [ 𝑓 ],ℱ [𝑔]⟩ = 2𝜋⟨ 𝑓 , 𝑔⟩ where 𝑓 , 𝑔 ∈
𝐿1(R, 𝑑𝑥) ∩ 𝐿2(R, 𝑑𝑥).

The sine and cosine transforms are defined as 𝒮[ 𝑓 ] (𝑢) =
∫ ∞
0 𝑑𝑥 sin(𝑢𝑥) 𝑓 (𝑥)

and 𝒞[ 𝑓 ] (𝑢) =
∫ ∞
0 𝑑𝑥 cos(𝑢𝑥) 𝑓 (𝑥), respectively. The convolution of two

functions 𝑓 and 𝑔 is given by [ 𝑓 ∗ 𝑔] (𝑥) :=
∫
R
𝑑𝑦 𝑓 (𝑦)𝑔(𝑥 − 𝑦).

163
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Note that in this Appendix we have changed our sign convention to (−, +, +, +),
as opposed to the rest of the Chapter and Appendices in this thesis. Also, as we
will only be working with the two-point function of the Minkowski vacuum, we
will denote it with W.

c.2 miscellaneous results

Proposition C.2.1. The quantity | |𝑄𝑣 | |1 is an analytic function for 𝑣 < 1 and
can be expressed as | |𝑄𝑣 | |1 =

∑∞
𝑛=1 𝑎𝑛𝑣

2𝑛 for 𝑎𝑛 = 𝜋
𝑛!(𝑛−1)!

𝐴(2𝑛−1,𝑛−1)
22𝑛 where

𝐴(2𝑛 − 1, 𝑛 − 1) are the Eulerian numbers [38]. Furthermore, as experimental
considerations dictate that 𝑣2 ≤ 99/100, the bound | |𝑄𝑣 | |1 ≤ 𝑀 is satisfied where
𝑀 ≈ 7.617235504.

Proof. Note that

| |𝑄𝑣 | |1 =

∫ ∞

−∞
𝑑𝑧 |1 − [1 − 𝑣2sinc(𝑧)2]−1/2 |

=

∫ ∞

−∞
𝑑𝑧

∞∑︁
𝑛=1

(
𝑛 − 1/2
𝑛

)
𝑣2𝑛sinc(𝑧)2𝑛.

We can exchange the sum and the integral using 𝑈 (𝑘) = 𝑒𝑘−1/2 − 1 as domi-
nating function for the partial sums. To see why this is the case, let 𝑓𝑛 (𝑧) =(𝑛−1/2

𝑛

)
𝑣2𝑛sinc(𝑧)2𝑛 and 𝑠𝑘 (𝑧) be its 𝑘-th partial sum, then

|𝑠𝑘 (𝑧) | ≤
𝑘∑︁
𝑛=1

�����(𝑛 − 1/2
𝑛

)����� ≤ 𝑘∑︁
𝑛=1

(𝑛 − 1/2)𝑛
𝑛!

≤
𝑘∑︁
𝑛=1

(𝑘 − 1/2)𝑛
𝑛!

<

∞∑︁
𝑛=1

(𝑘 − 1/2)𝑛
𝑛!

= 𝑈 (𝑘),

where we have made use of the inequality
(𝑛
𝑘

)
≤ 𝑛𝑘/𝑘!. Making use of this and

the identity
∫ ∞
−∞ 𝑑𝑧 sinc(𝑧)2𝑛 = 𝜋

(2𝑛−1)!𝐴(2𝑛 − 1, 𝑛 − 1) (where 𝐴(𝑛, 𝑚) are the
Eulerian numbers, c.f. [38]), we arrive at

| |𝑄𝑣 | |1 = 𝜋

∞∑︁
𝑛=1

(
𝑛 − 1/2
𝑛

)
𝑣2𝑛

(2𝑛 − 1)!𝐴(2𝑛 − 1, 𝑛 − 1) =:
∞∑︁
𝑛=1

𝑎𝑛𝑣
2𝑛.
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Where we have made use of the identity
(𝑛−1/2

𝑛

)
= 2−2𝑛 (2𝑛)!/(𝑛!)2, to define the

𝑎𝑛 the coefficients as

𝑎𝑛 :=
𝜋

𝑛!(𝑛 − 1)!
𝐴(2𝑛 − 1, 𝑛 − 1)

22𝑛 .

To verify that the series converges we will make use of two asymptotic forms.
The first is Stirling’s approximation: 𝑛!(𝑛 − 1)! → (𝑛!)2 → 2𝜋𝑛(𝑛/𝑒)2𝑛 as
𝑛 → ∞. The second can be found making use of (6.3) in [38], which leads to
𝐴(2𝑛 − 1, 𝑛 − 1) → 𝑐1(2𝑛)2𝑛−1 exp(−𝑐2𝑛) as 𝑛 → ∞ where 𝑐1 ∼ 𝑂 (ln(1)) and
2 < 𝑐2.

Thus, for large 𝑛, we have 𝑎𝑛 → 𝑐1𝑒
−(𝑐2−2)𝑛/𝑛2 which leads to lim𝑛→∞ |𝑎𝑛+1/𝑎𝑛 | =

𝑒−(𝑐2−2) < 1, whereupon we conclude that the series converges as long as 𝑣2 < 1.
Note that due to experimental considerations 𝛾 ≤ 10, hence 𝑣2 ≤ 99/100 which
leads to the following bound

| |𝑄𝑣 | |1 ≤
∞∑︁
𝑛=1

𝑎𝑛 (99/100)𝑛 ≈ 7.617235504

□

Proposition C.2.2. Let 𝜒 ∈ 𝐶∞
0 (R) and 𝑓 be a bounded odd function, then, the

following identities hold for 𝑛 ∈ N0:∫ ∞

−∞
𝑑𝑧 𝑧2𝑛 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) = 1

𝑘2𝑛+1𝑀2𝑛 [1]∫ ∞

−∞
𝑑𝑧 𝑧2𝑛+1 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) 𝑓 (𝑧) = 1

𝑘2𝑛+2𝑀2𝑛+1 [𝒟1/𝑘 𝑓 ]

Proof. For bounded 𝑔 and 𝑠 ∈ N0, we write∫ ∞

−∞
𝑑𝑧 𝑧𝑠 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧)𝑔(𝑧) = 1

𝑘 𝑠+1

∫ ∞

−∞
𝑑𝑧 𝑧𝑠 [𝜒 ∗ℛ[𝜒]] (𝑧)𝑔(𝑧/𝑘),

where in the last equality we made the change of variable 𝑧 → 𝑧/𝑘 , next, we write
the convolution explicitly, which leads to

1
𝑘 𝑠+1

∫ ∞

−∞
𝑑𝑧 𝑧𝑠𝑔

( 𝑧
𝑘

) ∫ ∞

−∞
𝑑𝑧′ 𝜒(𝑧′)𝜒(−𝑧 + 𝑧′)

=
(−1)𝑠
𝑘 𝑠+1

∫ ∞

−∞
𝑑𝑧 𝑧𝑠𝑔

(
− 𝑧
𝑘

) ∫ ∞

−∞
𝑑𝑧′ 𝜒(𝑧′)𝜒(𝑧 + 𝑧′),
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where we made the change of variable 𝑧 → −𝑧. Making a last change of variable
𝑧 → 𝑧 − 𝑧′ leads to the formula∫ ∞

−∞
𝑑𝑧 𝑧𝑠 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧)𝑔(𝑧))

=
(−1)𝑠
𝑘 𝑠+1

∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ (𝑧 − 𝑧′)𝑠𝑔

(
− 𝑧 − 𝑧

′

𝑘

)
𝜒(𝑧′)𝜒(𝑧) (C.1)

So, if we set 𝑔 = 1, 𝑠 = 2𝑛 in (C.1), we will obtain∫ ∞

−∞
𝑑𝑧 𝑧2𝑛 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) = 1

𝑘2𝑛+1

∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ (𝑧 − 𝑧′)2𝑛𝜒(𝑧′)𝜒(𝑧)

=
1

𝑘2𝑛+1𝑀2𝑛 [1],

where we made use of Definition 5.6.2, this is the first identity. For the second,
we set 𝑠 = 2𝑛 + 1 and 𝑔 = 𝑓 where 𝑓 is odd in (C.1) and use Definition 5.6.2 once
more, this yields∫ ∞

−∞
𝑑𝑧 𝑧2𝑛+1 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) 𝑓 (𝑧)

=
1

𝑘2𝑛+2

∫ ∞

−∞
𝑑𝑧

∫ ∞

−∞
𝑑𝑧′ (𝑧 − 𝑧′)2𝑛+1 𝑓

(
𝑧 − 𝑧′
𝑘

)
𝜒(𝑧′)𝜒(𝑧)

=
1

𝑘2𝑛+2𝑀2𝑛+1 [𝒟1/𝑘 𝑓 ] .

□

Proposition C.2.3. Let 𝜙 be smooth and even function with 𝜙 ∈ 𝐿1(R, 𝑑𝑧). If
we define

𝐽1 [𝜙] (𝐸) =
∫ ∞

−∞
𝑑𝜔 𝜙(𝜔)sgn(𝜔 + 𝐸),

then, the following asymptotic expansion is valid for 𝐸 near the origin and 0 ≤ 𝑙

𝐽1 [𝜙] (𝐸) = 2
𝑙−1∑︁
𝑛=0

𝜙(2𝑛) (0)
(2𝑛 + 1)!𝐸

2𝑛+1 +𝑂 (𝐸2𝑙+1).

Proof. We begin by splitting the integral defined by 𝐽1 [𝜙] (𝐸) into∫
|𝜔|> |𝐸 |

𝑑𝜔 𝜙(𝜔)sgn(𝐸 + 𝜔) +
∫ |𝐸 |

−|𝐸 |
𝑑𝜔 𝜙(𝜔)sgn(𝐸 + 𝜔).
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Observe that the first integral vanishes because the integrand agrees with an odd
function on the integration region. Furthermore, we note that∫ |𝐸 |

−|𝐸 |
𝑑𝜔 𝜙(𝜔)sgn(𝐸 + 𝜔) = sgn 𝐸

∫ |𝐸 |

−|𝐸 |
𝑑𝜔 𝜙(𝜔) = 2sgn(𝐸) 𝑓 ( |𝐸 |), (C.2)

where the last equality is due to the fact that 𝜙 is even and we have introduced
𝑓 (𝑥) =

∫ 𝑥

0 𝑑𝜔 𝜙(𝜔). Note that for 0 ≤ 𝑛, we have 𝑓 (𝑛+1) (𝑥) = 𝜙(𝑛) (𝑥), and so,
even derivatives of 𝑓 will vanish at the origin.

Because of this, for 𝜆𝐸 ∈ [0, 1], we make use of Taylor’s theorem with
remainder to write

2sgn(𝐸) 𝑓 ( |𝐸 |) = 2sgn(𝐸)
( 2𝑙∑︁
𝑛=0

𝑓 (𝑛) (0)
𝑛!

|𝐸 |𝑛 + 𝑓 (2𝑙+1) (𝜆𝐸𝐸)
(2𝑙 + 1)! |𝐸 |2𝑙+1

)
= 2sgn(𝐸)

( 2𝑙∑︁
𝑛 odd

𝜙(𝑛−1) (0)
𝑛!

|𝐸 |𝑛 + 𝜙
(2𝑙) (𝜆𝐸𝐸)
(2𝑙 + 1)! |𝐸 |2𝑙+1

)
where we have discarded the even terms of the sum due to the fact that 𝑓 has even
derivatives at the origin. Since we are assuming that 𝜙 is smooth, we can see that
the second term is bounded, whereupon we conclude

2sgn(𝐸) 𝑓 ( |𝐸 |) = 2sgn(𝐸)
2𝑙∑︁

𝑛 odd

𝜙(𝑛−1) (0)
𝑛!

|𝐸 |𝑛 +𝑂 (𝐸2𝑙+1).

Making the change 𝑛→ 2𝑛 + 1 leads to

2sgn(𝐸)
𝑙−1∑︁
𝑛=0

𝜙(2𝑛) (0)
(2𝑛 + 1)! |𝐸 |

2𝑛+1 +𝑂 (𝐸2𝑙+1) = 2
𝑙−1∑︁
𝑛=0

𝜙(2𝑛) (0)
(2𝑛 + 1)!𝐸

2𝑛+1 +𝑂 (𝐸2𝑙+1),

which is our result. □

Corollary C.2.1. Consider Proposition C.2.3 and set 𝜙 = |ℱ [𝜒] |2, then

𝐽1 [|ℱ [𝜒] |2] (𝐸) = 2
𝑙−1∑︁
𝑛=0

(−1)𝑛 𝑀2𝑛 [1]
(2𝑛 + 1)!𝐸

2𝑛+1 +𝑂 (𝐸2𝑙+1).

Proof. The convolution theorem reads

|ℱ [𝜒] |2 = ℱ [𝜒 ∗ℛ[𝜒]], (C.3)
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also, recall that differentiating the Fourier transform yields 𝑑𝑠/𝑑𝜔𝑠 (ℱ [ 𝑓 ] (𝜔)) =
ℱ [(−𝑖)𝑠𝑧𝑠 𝑓 (𝑧)] (𝜔) for 𝑠 ∈ N. So, setting 𝑠 = 2𝑛 leads us to obtain

𝑑2𝑛

𝑑𝜔2𝑛

(
|ℱ [𝜒] (𝜔) |2

) ���
𝜔=0

= (−1)𝑛ℱ [𝑧2𝑛 [𝜒 ∗ℛ[𝜒]] (𝑧)] (0)

= (−1)𝑛
∫ ∞

−∞
𝑑𝑧 𝑧2𝑛 [𝜒 ∗ℛ[𝜒]] (𝑧) = (−1)𝑛𝑘2𝑛+1

∫ ∞

−∞
𝑑𝑧 𝑧2𝑛 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧).

Writing the convolution explicitly and making use of the notation introduced in
Proposition C.2.2, we conclude that

𝑑2𝑛

𝑑𝜔2𝑛

(
|ℱ [𝜒] (𝜔) |2

) ���
𝜔=0

= (−1)𝑛𝑀2𝑛 [1], (C.4)

which proves our result. □

Proposition C.2.4. Let 𝑓 ∈ 𝐿1(R, 𝑑𝑧) be an odd function and define

𝐽2 [ 𝑓 ] (𝐸) =
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

∫ ∞

0
𝑑𝑧 cos(𝑘𝜔𝑧) sin(𝑘𝐸𝑧) 𝑓 (𝑧).

We claim that the following asymptotic expansion holds for 𝐸 near the origin

𝐽2 [ 𝑓 ] (𝐸) =
𝜋

𝑘

𝑙−1∑︁
𝑛=0

(−1)𝑛
𝑀2𝑛+1 [𝒟1/𝑘 𝑓 ]

(2𝑛 + 1)! 𝐸2𝑛+1 +𝑂 (𝐸2𝑙+1).

Proof. Define 𝐹𝐸 (𝜔, 𝑧) [ 𝑓 ]
·
= |ℱ [𝜒] (𝜔) |2 cos(𝑘𝜔𝑧) sin(𝑘𝐸𝑧) 𝑓 (𝑧), note that

since 𝑓 ∈ 𝐿1(R, 𝑑𝑧), then 𝐹𝐸 ∈ 𝐿1(R × R, 𝑑𝜔 𝑑𝑧) and thus, we can use Fubini’s
theorem to swap the integration order. The integral over 𝜔 is∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2 cos(𝑘𝜔𝑧) = 2𝜋[𝜒 ∗ℛ[𝜒]] (𝑘𝑧),

where the equality is due to Fourier’s inversion theorem and the fact that since
𝜒 ∈ 𝐶∞

0 (R), then its Fourier transform will have rapid decay and thus will be
integrable. For the remaining integral we use the fact that 𝑓 is odd to arrive to

2𝜋
∫ ∞

0
𝑑𝑧 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) sin(𝑘𝐸𝑧) 𝑓 (𝑧)

= 𝜋

∫ ∞

−∞
𝑑𝑧 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) sin(𝑘𝐸𝑧) 𝑓 (𝑧).
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Using Taylor’s theorem with remainder, we write

sin(𝑘𝐸𝑧) =
2𝑙∑︁
𝑛=0

sin(𝑛) (0) (𝑘𝐸𝑧)
𝑛

𝑛!
+ sin(2𝑙+1) (𝜆𝐸𝑧𝑘𝐸𝑧)

(𝑘𝐸𝑧)2𝑙+1

(2𝑙 + 1)!

for some 𝜆𝐸𝑧 ∈ [0, 1], note that the last term in the sum vanishes and that all
of the sine derivatives are bounded by the unit. Furthermore, as 𝜒 is compactly
supported, the integration range becomes finite, without loss of generality assume
it is contained within the [−𝐿, 𝐿] interval, with this we see that the remainder
obeys ��� ∫ ∞

−∞
𝑑𝑧 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) sin(2𝑙+1) (𝜆𝐸𝑧𝑘𝐸𝑧) 𝑓 (𝑧)

(𝑘𝐸𝑧)2𝑙+1

(2𝑙 + 1)!

���
≤ |𝑘𝐸𝐿 |2𝑙+1

(2𝑙 + 1)!

∫ 𝐿

−𝐿
𝑑𝑧

���[𝜒 ∗ℛ[𝜒]] (𝑘𝑧) 𝑓 (𝑧)
���.

The RHS is bounded because 𝑓 is absolutely integrable on the real line, with this
we can write 𝐽2 as the following expansion

𝐽2(𝐸) [ 𝑓 ] = 𝜋
𝑙−1∑︁
𝑛=0

(−1)𝑛 (𝑘𝐸)
2𝑛+1

(2𝑛 + 1)!

∫ ∞

−∞
𝑑𝑧 𝑧2𝑛+1 [𝜒 ∗ℛ[𝜒]] (𝑘𝑧) 𝑓 (𝑧) +𝑂 (𝐸2𝑙+1)

which in virtue of Proposition C.2.2 can be written in its final form

𝐽2(𝐸) [ 𝑓 ] =
𝜋

𝑘

𝑙−1∑︁
𝑛=0

(−1)𝑛
𝑀2𝑛+1 [𝒟1/𝑘 𝑓 ]

(2𝑛 + 1)! 𝐸2𝑛+1 +𝑂 (𝐸2𝑙+1).

□

Proposition C.2.5. For 𝑛 ∈ N define the following family of integrals

𝛼𝑛 (𝜁) =
∫ ∞

0
𝑑𝑧

sin(𝜁 𝑧)
𝑧(1 + 𝑧2)𝑛

.

Then, if we introduce

𝑃𝑛 (𝑢) =
𝑛∑︁

𝑚=0
𝑐𝑛,𝑚𝑢

𝑚, with 𝑐𝑛,𝑚 = − (2𝑛 − 𝑚)!
𝑚!(𝑛 − 𝑚)!

2𝐹1(1, 𝑚 − 𝑛;𝑚 − 2𝑛; 2)
22𝑛−𝑚+1

(a) it can be shown that a closed form expression for this family of integrals is

𝛼𝑛 (𝜁) = sgn(𝜁) 𝜋
2
+ 𝜋 sgn(𝜁)𝑒−|𝜁 |

(𝑛 − 1)! 𝑃𝑛−1( |𝜁 |).

And (b) this function is continuous at the origin for every 𝑛 and acquires the value
𝛼𝑛 (0) = 0.
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Proof. To prove (a), we note that as the 𝛼𝑛 (𝜁) is odd in 𝜁 we can write 𝛼𝑛 (𝜁) =
sgn(𝜁)𝛼𝑛 ( |𝜁 |) and use the evenness of the integrand in 𝑧 to extend the integration
domain to the real line then extend further into the complex plane. Let 𝐶1 be the
upper semi-circle closing [−𝑅, 𝑅] with a bump that avoids the pole at the origin
and 𝐶2 the lower semi-circle closing [−𝑅, 𝑅] with a bump that encloses this pole.
Then, we have

𝛼𝑛 ( |𝜁 |) = lim
𝑅→∞

1
4𝑖

(∮
𝐶1

𝑑𝑧
𝑒𝑖 |𝜁 |𝑧

𝑧(1 + 𝑧2)𝑛
−

∮
𝐶2

𝑑𝑧
𝑒−𝑖 |𝜁 |𝑧

𝑧(1 + 𝑧2)𝑛

)
.

Note that each of these contours surrounds a pole of order 𝑛 at 𝑧 = 𝑖 and 𝑧 = −𝑖,
respectively. A straightforward calculation yields

𝛼𝑛 ( |𝜁 |) =
𝜋

2
+ 𝜋

2(𝑛 − 1)!

(
lim
𝑧→𝑖

𝑑𝑛−1

𝑑𝑧𝑛−1

[
𝑒𝑖 |𝜁 |𝑧

𝑧(𝑧 + 𝑖)𝑛

]
+ lim
𝑧→−𝑖

𝑑𝑛−1

𝑑𝑧𝑛−1

[
𝑒−𝑖 |𝜁 |𝑧

𝑧(𝑧 − 𝑖)𝑛

] )
=
𝜋

2
+ 𝜋

(𝑛 − 1)! lim
𝑧→𝑖

𝑑𝑛−1

𝑑𝑧𝑛−1

[
𝑒𝑖 |𝜁 |𝑧

𝑧(𝑧 + 𝑖)𝑛

]
, (C.5)

where we made the change of variable 𝑧 → −𝑧 in the second limit. These
derivatives can be further simplified making use of the Leibniz rule and the fact
that complex exponentials are eigenfunctions of iterated derivatives, which yields

𝑑𝑛−1

𝑑𝑧𝑛−1

[
𝑒𝑖 |𝜁 |𝑧

𝑧(𝑧 + 𝑖)𝑛

]
=

𝑛−1∑︁
𝑚=0

(
𝑛 − 1
𝑚

)
𝑑𝑚𝑒𝑖 |𝜁 |𝑧

𝑑𝑧𝑚
𝑑𝑛−1−𝑚

𝑑𝑧𝑛−1−𝑚

[
1

𝑧(𝑧 + 𝑖)𝑛

]
= 𝑒𝑖 |𝜁 |𝑧

𝑛−1∑︁
𝑚=0

(
𝑛 − 1
𝑚

)
(𝑖 |𝜁 |)𝑚 𝑑

𝑛−1−𝑚

𝑑𝑧𝑛−1−𝑚

[
1

𝑧(𝑧 + 𝑖)𝑛

]
. (C.6)

As we are mainly interested with the behaviour in |𝜁 |, we introduce the following
coefficients

𝑐𝑛,𝑚 = 𝑖𝑚
(
𝑛

𝑚

)
lim
𝑧→𝑖

𝑑𝑛−𝑚

𝑑𝑧𝑛−𝑚

[
1

𝑧(𝑧 + 𝑖)𝑛+1

]
, (C.7)

and the following identity

𝑑𝑁

𝑑𝑧𝑁

[
1

(𝑧 + 𝑧0)𝑀

]
= (−1)𝑁 (𝑀 + 𝑁 − 1)!

(𝑀 − 1)!
1

(𝑧 + 𝑧0)𝑀+𝑁 . (C.8)

Making use of Leibniz in (C.7) we find

𝑐𝑛,𝑚 = 𝑖𝑚
(
𝑛

𝑚

)
lim
𝑧→𝑖

𝑛−𝑚∑︁
𝑗=0

(
𝑛 − 𝑚
𝑗

)
𝑑 𝑗

𝑑𝑧 𝑗

(
1
𝑧

)
𝑑𝑛−𝑚− 𝑗

𝑑𝑧𝑛−𝑚− 𝑗

(
1

(𝑧 + 𝑖)𝑛+1

)
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differentiating 1/𝑧 𝑗-times and using the identity (C.8) leads to

𝑐𝑛,𝑚 = 𝑖𝑚 (−1)𝑛−𝑚
(
𝑛

𝑚

)
(𝑛 − 𝑚)!
𝑛!

lim
𝑧→𝑖

𝑛−𝑚∑︁
𝑗=0

(2𝑛 − 𝑚 − 𝑗)!
(𝑛 − 𝑚 − 𝑗)!

1
𝑧 𝑗+1

1
(𝑧 + 𝑖)2𝑛−𝑚− 𝑗+1

= − 1
22𝑛−𝑚+1

1
𝑚!

𝑛−𝑚∑︁
𝑗=0

(2𝑛 − 𝑚 − 𝑗)!
(𝑛 − 𝑚 − 𝑗)! 2 𝑗 , (C.9)

the last equality is obtained after a straightforward simplification of terms. Next,
observe that the hypergeometric function reduces to a polynomial when one of its
two first arguments is a negative integer −𝑁 , in which case we have

2𝐹1(𝛼,−𝑁; 𝛾; 𝑧) =
𝑁∑︁
𝑗=0

(−1) 𝑗
(
𝑁

𝑗

) (𝛼) 𝑗
(𝛾) 𝑗

𝑧 𝑗

where (𝜆) 𝑗 denotes the rising factorial defined by

(𝜆) 𝑗 =


1 𝑗 = 0

𝜆(𝜆 + 1) · · · (𝜆 + 𝑗 − 1) 𝑗 > 0.

For our purposes we want the reader to note that

2𝐹1(1,−𝐿;−𝐿 − 𝑛; 2) =
𝐿∑︁
𝑗=0

(−1) 𝑗𝐿!
(𝐿 − 𝑗)!

2 𝑗

(−𝐿 − 𝑛) 𝑗

=

𝐿∑︁
𝑗=0

𝐿!
(𝐿 − 𝑗)!

2 𝑗

(𝐿 + 𝑛 + 1 − 𝑗) 𝑗
, (C.10)

where the last equality follows from the identity (−𝑀)𝑁 = (−1)𝑁 (𝑀 + 1 − 𝑁)𝑁 .
Setting 𝐿 = 𝑛 − 𝑚 in (C.10) leads to

2𝐹1(1,−𝐿;−𝐿 − 𝑛; 2) =
𝑛−𝑚∑︁
𝑗=0

(𝑛 − 𝑚)!
(𝑛 − 𝑚 − 𝑗)!

2 𝑗

(2𝑛 − 𝑚 + 1 − 𝑗) 𝑗

=
(𝑛 − 𝑚)!
(2𝑛 − 𝑚)!

𝑛−𝑚∑︁
𝑗=0

(2𝑛 − 𝑚 − 𝑗)!
(𝑛 − 𝑚 − 𝑗)! 2 𝑗 . (C.11)

And so, in order to go back to the the coefficients 𝑐𝑛,𝑚 we substitute (C.11) into
(C.9), which leads to

𝑐𝑛,𝑚 = − (2𝑛 − 𝑚)!
𝑚!(𝑛 − 𝑚)!

2𝐹1(1, 𝑚 − 𝑛;𝑚 − 2𝑛; 2)
22𝑛−𝑚+1 . (C.12)
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Thus, taking the limit in (C.5) by making use of (C.6) and (C.12) results in

𝛼𝑛 ( |𝜁 |) =
𝜋

2
+ 𝜋𝑒−|𝜁 |

(𝑛 − 1)!

𝑛−1∑︁
𝑚=0

𝑐𝑛−1,𝑚 |𝜁 |𝑚 .

We define the following polynomial with real coefficients

𝑃𝑛 (𝑢) =
𝑛∑︁

𝑚=0
𝑐𝑛,𝑚𝑢

𝑚, (C.13)

with this, our expression becomes

𝛼𝑛 (𝜁) = sgn(𝜁) 𝜋
2
+ 𝜋 sgn(𝜁)𝑒−|𝜁 |

(𝑛 − 1)! 𝑃𝑛−1( |𝜁 |).

To prove (b) consider (C.9), set 𝑚 = 0 and make use of the identity
∑𝑛
𝑗=0 2 𝑗 (2𝑛 −

𝑗)!/(𝑛 − 𝑗)! = 22𝑛𝑛!. This results in

𝑐𝑛,0 = − 1
22𝑛+1

𝑛∑︁
𝑗=0

(2𝑛 − 𝑗)!
(𝑛 − 𝑗)! 2 𝑗 = − 22𝑛

22𝑛+1𝑛! = −1
2
𝑛!

and so, 𝑃𝑛 ( |𝜁 |) = −𝑛!/2 + ∑𝑛
𝑚=1 𝑐𝑛,𝑚𝑢

𝑚. Consequently, we find

𝛼𝑛 (𝜁) =
𝜋

2
sgn(𝜁)

(
1 − 𝑒−|𝜁 |

)
+ 𝜋sgn(𝜁)𝑒−|𝜁 |

(𝑛 − 1)!

𝑛−1∑︁
𝑚=1

𝑐𝑛−1,𝑚 |𝜁 |𝑚 .

From which we can easily see that for every 𝑛 this function is continuous at the
origin. □

Proposition C.2.6. Consider 𝛼𝑛 as given in Proposition C.2.5, then, the
following asymptotic expansions hold for 𝜁 near the origin

𝛼1(𝜁) =
𝜋

2
𝜁

(
1 + 𝜁

2

6

)
− 𝜋

4
sgn(𝜁)𝜁2 +𝑂 (𝜁4)

𝛼2(𝜁) =
𝜋

4
𝜁

(
1 − 𝜁2

6

)
+𝑂 (𝜁4)

𝛼3(𝜁) =
𝜋

16
𝜁

(
3 − 𝜁2

6

)
+𝑂 (𝜁5).
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Proof. First, we begin by calculating all of the relevant polynomials using (C.13),
this yields

𝑃0(𝑢) = −1
2
, 𝑃1(𝑢) = −1

2
− 𝑢

4
, 𝑃2(𝑢) = −1 − 5𝑢

8
− 𝑢

2

8

Next we calculate the alpha terms by making use of (C.16), for the first we have

𝛼1(𝜁) =
𝜋

2
sgn(𝜁) (1 − 𝑒−|𝜁 |) = 𝜋

2
𝜁

(
1 + 𝜁

2

6

)
− 𝜋

4
sgn(𝜁)𝜁2 +𝑂 (𝜁4),

the second equality corresponds to its asymptotic expansion for 𝜁 near the origin.
For the next term we obtain

𝛼2(𝜁) =
𝜋

2
sgn(𝜁)

(
1 − 𝑒−|𝜁 |

(
|𝜁 |
2

+ 1
))

=
𝜋

4
𝜁

(
1 − 𝜁2

6

)
+𝑂 (𝜁4),

Proceeding in a similar fashion we find the last term

𝛼3(𝜁) =
𝜋

2
sgn(𝜁)

(
1 − 𝑒−|𝜁 |

(
1 + 5|𝜁 |

8
+ 𝜁

2

8

))
=
𝜋

16
𝜁

(
3 − 𝜁2

48

)
+𝑂 (𝜁5).

□

Corollary C.2.2. Let 𝜁0 ≠ 0, then, the following asymptotic expansions are
valid for 𝜁 near the origin and 𝜁0 > |𝜁 |

𝛼1(𝜁 + 𝜁0) + 𝛼1(𝜁 − 𝜁0) = 𝜋𝜁 (1 + 𝜁2/3!)𝑒−|𝜁0 | +𝑂 (𝜁5)

𝛼2(𝜁 + 𝜁0) + 𝛼2(𝜁 − 𝜁0) =
𝜋𝑒−|𝜁0 |

2
𝜁

(
1 + |𝜁0 | +

|𝜁0 | − 1
6

𝜁2
)
+𝑂 (𝜁5)

Proof. Since 𝛼𝑛 is odd and smooth away from the origin, from Taylor’s theorem
it follows that

𝛼𝑛 (𝜁 + 𝜁0) + 𝛼𝑛 (𝜁 − 𝜁0) = 2𝛼′𝑛 (𝜁0)𝜁 +
2
3!
𝛼
(3)
𝑛 (𝜁0)𝜁3 +𝑂 (𝜁5).

The derivatives of 𝛼1 can be calculated with relative ease, we find that 𝛼′1(𝜁0) =
𝛼
(3)
1 (𝜁0) = 𝜋𝑒−|𝜁0 |/2, which proves the first expansion. Likewise, for 𝛼2 we obtain
𝛼′2(𝜁0) = 𝜋(1 + |𝜁0 |)𝑒−|𝜁0 |/4 and 𝛼(3)

2 (𝜁0) = −𝜋(1 − |𝜁0 |)𝑒−|𝜁0 |/4, which proves
the second expansion. □
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Proposition C.2.7. Let 𝑓 (𝑧) and 𝑧 · 𝑓 (𝑧) be absolutely integrable functions on
R. Then 𝒮[ 𝑓 (𝑧)]′(𝜁) = 𝒞[𝑧 · 𝑓 (𝑧)] (𝜁) and 𝒞[ 𝑓 (𝑧)]′(𝜁) = −𝒮[𝑧 · 𝑓 (𝑧)] (𝜁).

Proof. We will use a dominated convergence argument. Define the function
𝐹 (𝑧, 𝜁) = 𝑓 (𝑧) sin(𝑧𝜁) in R × R, then |𝜕𝐹 (𝑧, 𝜁)/𝜕𝜁 | ≤ |𝑧 · 𝑓 (𝑧) |. For every 𝑧,
𝐹 (𝑧, 𝜁) has continuous derivatives with respect to 𝜁 . This, in combination with
the mean value theorem gives�����𝐹 (𝑧, 𝜁 + ℎ) − 𝐹 (𝑧, 𝜁)ℎ

����� =
�����𝜕𝐹 (𝑧, 𝜁 + 𝜆𝑧ℎ)𝜕𝜁

����� ≤ |𝑧 · 𝑓 (𝑧) |, 𝜆𝑧 ∈ [0, 1] .

Since the RHS is absolutely integrable, we can use it as dominating function to
take the sought derivatives under the integral sign, which proves the claim. □

Corollary C.2.3. Let 𝑓 ∈ 𝐿1(R, 𝑑𝑧) and suppose there is 𝑚 ∈ N0 so that
𝑧𝑘 · 𝑓 (𝑧) ∈ 𝐿1(R, 𝑑𝑧) for all 0 ≤ 𝑘 ≤ 𝑚. Then, the following identities are valid
for 𝜁 ∈ R

𝒮[ 𝑓 (𝑧)] (2𝑛) (𝜁) = (−1)𝑛𝒮[𝑧2𝑛 · 𝑓 (𝑧)] (𝜁),
𝒮[ 𝑓 (𝑧)] (2𝑛+1) (𝜁) = (−1)𝑛𝒞[𝑧2𝑛+1 · 𝑓 (𝑧)] (𝜁)

and

𝒞[ 𝑓 (𝑧)] (2𝑛) (𝜁) = (−1)𝑛𝒞[𝑧2𝑛 · 𝑓 (𝑧)] (𝜁),
𝒞[ 𝑓 (𝑧)] (2𝑛+1) (𝜁) = (−1)𝑛+1

𝒮[𝑧2𝑛+1 · 𝑓 (𝑧)] (𝜁).

Proof. This follows immediately from the fact that 𝑧𝑚 · 𝑓 (𝑧) ∈ 𝐿1(R, 𝑑𝑧) and
Proposition C.2.7. □

c.3 proof of lemma 5.7.1

We will compute asymptotic expansions of 𝒮 [𝑄𝑣 (𝑧)/𝑧] (𝜁) for both small and
large arguments. Since 𝑧 · 𝑄𝑣 (𝑧)/𝑧 = 𝑄𝑣 (𝑧) and 𝑄𝑣 ∈ 𝐿1(R, 𝑑𝑧), according to
Proposition (C.2.1) we have 𝒮 [𝑄𝑣 (𝑧)/𝑧]′ (𝜁) = 𝒞 [𝑄𝑣 (𝑧)] (𝜁). In particular,
this derivative exists at the origin and so, we can read off 𝑞1 which is given by

𝑞1 = 𝒮

[
𝑄𝑣 (𝑧)
𝑧

] (1)
(0) =

∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧).
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For the next terms more work is needed as the LHS will no longer be absolutely
integrable. However, the decomposition that (5.38), recall that according to it we
have

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = 𝒮[𝑆𝑣 (𝑧)] (𝜁) +𝒮

[
1 − 𝛾

𝑧(1 + 𝑧2)3

]
(𝜁) − 𝑣2

2
𝒮

[
sin(𝑧)2

𝑧(1 + 𝑧2)2

]
(𝜁)

− 1
2
𝑣2
𝒮

[
sin(𝑧)2

𝑧(1 + 𝑧2)

]
(𝜁) − 3

8
𝑣4
𝒮

[
sin(𝑧)4

𝑧(1 + 𝑧2)2

]
(𝜁). (C.14)

Fro now we will focus in the last four terms of (C.14). This makes us consider
the following family of integrals for 𝑛 ∈ N

𝛼𝑛 (𝜁) =
∫ ∞

0
𝑑𝑧

sin(𝜁 𝑧)
𝑧(1 + 𝑧2)𝑛

. (C.15)

In Proposition C.2.5 we show that this can be calculated in closed form,

𝛼𝑛 (𝜁) = sgn(𝜁) 𝜋
2
+ 𝜋 sgn(𝜁)𝑒−|𝜁 |

(𝑛 − 1)! 𝑃𝑛−1( |𝜁 |), (C.16)

where 𝑃𝑛 (𝜁) is a polynomial with real coefficients. Making use of the indentities

sin(𝑧)2 sin(𝜃) = (1/2) sin(𝜃) − (1/4) (sin(𝜃 + 2𝑧) + sin(𝜃 − 2𝑧))

sin(𝜃) sin(𝑧)4 =
3
8

sin(𝜃) − 1
4
(sin(𝜃 + 2𝑧) + sin(𝜃 − 2𝑧))

+ 1
16

(sin(𝜃 + 4𝑧) + sin(𝜃 − 4𝑧)),

we find simplifications of some sine transforms in terms of 𝛼𝑛:

𝒮

[
1

𝑧(1 + 𝑧2)𝑛

]
(𝜁) = 𝛼𝑛 (𝜁) (C.17)

𝒮

[
sin(𝑧)2

𝑧(1 + 𝑧2)𝑛

]
(𝜁) = 𝛼𝑛 (𝜁)

2
− 𝛼𝑛 (𝜁 + 2) + 𝛼𝑛 (𝜁 − 2)

4
(C.18)

𝒮

[
sin(𝑧)4

𝑧(1 + 𝑧2)𝑛

]
(𝜁) = 3

8
𝛼𝑛 (𝜁) −

𝛼𝑛 (𝜁 + 2) + 𝛼𝑛 (𝜁 − 2)
4

+ 𝛼𝑛 (𝜁 + 4) + 𝛼𝑛 (𝜁 − 4)
16

.

(C.19)
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Thus, we can make use of (C.17), (C.18) and (C.19) to write the last three terms
of (C.14) as

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = 𝒮[𝑆𝑣 (𝑧)] (𝜁) + (1 − 𝛾)𝛼3(𝜁)

−
(
𝛼1(𝜁) −

𝛼1(𝜁 + 2) + 𝛼1(𝜁 − 2)
2

+ 𝛼2(𝜁) −
𝛼2(𝜁 + 2) + 𝛼2(𝜁 − 2)

2

) (𝑣
2

)2

− 3
(
3
4
𝛼2(𝜁) −

𝛼2(𝜁 + 2) + 𝛼2(𝜁 − 2)
2

+ 𝛼2(𝜁 + 4) + 𝛼2(𝜁 − 4)
8

) (𝑣
2

)4
.

(C.20)

Since our goal is to obtain the next terms in the asymptotic expansion for 𝜁 near
the origin, we present those of the 𝛼 terms, which can be found in Proposition
C.2.6 and Corollary C.2.2. They are

𝛼1(𝜁) =
𝜋

2
𝜁

(
1 + 𝜁

2

6

)
− 𝜋

4
sgn(𝜁)𝜁2 +𝑂 (𝜁4) (C.21)

𝛼2(𝜁) =
𝜋

4
𝜁

(
1 − 𝜁2

6

)
+𝑂 (𝜁4) (C.22)

𝛼3(𝜁) =
𝜋

16
𝜁

(
3 − 𝜁2

6

)
+𝑂 (𝜁5). (C.23)

𝛼1(𝜁 + 𝜁0) + 𝛼1(𝜁 − 𝜁0) = 𝜋𝜁
(
1 + 𝜁

2

6

)
𝑒−|𝜁0 | +𝑂 (𝜁5) (C.24)

𝛼2(𝜁 + 𝜁0) + 𝛼2(𝜁 − 𝜁0) =
𝜋𝑒−|𝜁0 |

2
𝜁

(
1 + |𝜁0 | +

|𝜁0 | − 1
6

𝜁2
)
+𝑂 (𝜁5). (C.25)

So, to calculate the second order term, we note two things that vastly simplify the
calculation. The first is: as 𝒮[𝑆𝑣 (𝑧)] (𝜁) is odd in 𝜁 , all of its even derivatives
will vanish at the origin, in particular the second derivative. The second, is that
the only alpha term with a quadratic contribution is 𝛼1. Then, remembering we
already have taken into account a signum factor in (5.39), we conclude that

𝑞2 =
𝜋

4

(𝑣
2

)2
.
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For the last term we need to calculate the third derivative, this is done in Proposition
C.3.1 where it is found that

𝒮[𝑆𝑣 (𝑧)] (3) (0) = −
∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
+ (1 − 𝛾) 𝜋

16
− 𝜋

4

(
1 + 1

𝑒2

) (𝑣
2

)2
− 3𝜋

4

(
3
4
+ 1
𝑒2 − 3

4𝑒4

) (𝑣
2

)4
.

(C.26)

With this, we conclude that the third constant is

𝑞3 =
1
6
𝒮[𝑆𝑣 (𝑧)] (3) (0) − (1 − 𝛾) 𝜋

6 · 16
− 𝜋

6 · 4

(
1 − 3

𝑒2

) (𝑣
2

)2

+ 𝜋

2 · 4

(
3
4
+ 1
𝑒2 − 3

4𝑒4

) (𝑣
2

)4

substituting the value of 𝒮[𝑆𝑣 (𝑧)] (3) (0) given in C.26 we find the last coefficient

𝑞3 = −1
6

∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
− 𝜋

12

(
1 − 1

𝑒2

) (𝑣
2

)2
.

Finally, to see that the error is𝑂 (𝜁4), observe that although some of the asymptotic
expansions in (C.25) and (C.29) are up to 𝑂 (𝜁5), two of them are 𝑂 (𝜁4). To
prove (b), we recall that 𝑆𝑣 ∈ 𝐿1(R, 𝑑𝑧) and make use of the Riemann-Lebesgue
Lemma to observe that, as 𝑆𝑣,𝑙 can be differentiated at least five times, for large 𝜁
we will have the estimate

𝒮[𝑆𝑣] (𝜁) = 𝑜(1/𝜁5). (C.27)

Additionally, making use of (C.16) we find that for large |𝜁 |

𝛼𝑛 (𝜁 + 𝜁0) = sgn(𝜁) 𝜋
2
+ 𝜋 sgn(𝜁)𝑒−|𝜁 |

(𝑛 − 1)! 𝑃𝑛−1( |𝜁 |). (C.28)

And so, making use of (C.27) and (C.28) it follows that for (C.20) we will have

𝒮

[
𝑄𝑣 (𝑧)
𝑧

]
(𝜁) = sgn(𝜁) 𝜋

2
(1 − 𝛾) (1 + 𝑒−|𝜁 |𝑃2( |𝜁 |)) + 𝑜(1/𝜁4),

which is the sought expression.
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Proposition C.3.1. For 𝜁 near the origin, we find

𝒮[𝑆𝑣 (𝑧)] (𝜁) = 𝒮[𝑆𝑣 (𝑧)] (1) (0)𝜁 +𝒮[𝑆𝑣 (𝑧)] (3) (0)
𝜁3

6
+𝑂 (𝜁5), (C.29)

where the first and third derivatives are given by

𝒮[𝑆𝑣 (𝑧)] (1) (0) =
∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧) − (1 − 𝛾)3𝜋

16
+ 𝜋

4

(
3 − 5

𝑒2

) (𝑣
2

)2

+ 3𝜋
4

(
3
4
− 3
𝑒2 + 5

4𝑒4

) (𝑣
2

)4
,

𝒮[𝑆𝑣 (𝑧)] (3) (0) = −
∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
+ (1 − 𝛾) 𝜋

16
− 𝜋

4

(
1 + 1

𝑒2

) (𝑣
2

)2
− 3𝜋

4

(
3
4
+ 1
𝑒2 − 3

4𝑒4

) (𝑣
2

)4
.

Proof. To find an expansion for 𝜁 near the origin, we need to prove rigorously
that we can make use of Taylor’s theorem. This can be proven by noting that
𝑧𝑚𝑆𝑣 (𝑧) ∈ 𝐿1(R+, 𝑑𝑧) for 𝑚 ≤ 5 and by making use of Corollary C.2.3. Then,
we can write the derivatives of 𝒮[𝑆𝑧 (𝑧)] (𝜁) up to the fifth order. This alongside
Taylor’s theorem with remainder results in

𝒮[𝑆𝑣 (𝑧)] (𝜁) = 𝒮[𝑆𝑣 (𝑧)] (1) (0)𝜁1 + 𝒮[𝑆𝑣 (𝑧)] (3) (0)
3!

𝜁3 +
𝒮[𝑆𝑣 (𝑧)] (5) (𝜆𝜁 𝜁)

5!
𝜁5,

for some 𝜆𝜁 ∈ [0, 1]. Note that for the remainder we have |𝒮[𝑆𝑣 (𝑧)] (5) (𝜆𝜁 𝜁) | ≤
| |𝑆𝑣 (𝑧)𝑧5 | |1. And so, because of the aforementioned asymptotics of 𝑆𝑣 we
conclude that we can write

𝒮[𝑆𝑣 (𝑧)] (𝜁) = 𝒮[𝑆𝑣 (𝑧)] (1) (0)𝜁 +𝒮[𝑆𝑣 (𝑧)] (3) (0)
𝜁3

6
+𝑂 (𝜁5)

Since our goal is to calculate 𝑞1, 𝑞2 and 𝑞3 in C.3, there is no need to calculate
the first derivative.

Nonetheless, we will do it as it sheds some light on the method and will
quench the curiosity of the inquisitive reader. Consider 𝑆𝑣 as given in (5.36),
substitute that into (C.20) and take the derivative of the sine transform using
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Corollary C.2.3, this at 𝜁 = 0 results in

𝒮[𝑆𝑣 (𝑧)] (1) (0)

= 𝒞

[
𝑄𝑣 (𝑧) −

1 − 𝛾
(1 + 𝑧2)3 + 𝑣

2

2
sin(𝑧)2

(1 + 𝑧2)2 + 𝑣
2

2
sin(𝑧)2

(1 + 𝑧2)
+ 3

8
𝑣4 sin(𝑧)4

(1 + 𝑧2)2

]
(0)

=

∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧) − (1 − 𝛾)𝛼(1)

3 (0) +
(
𝛼
(1)
1 (0) + 𝛼(1)

2 (0) − 𝛼(1)
1 (2) − 𝛼(1)

2 (2)
) (𝑣

2

)2

+ 3

(
3
4
𝛼
(1)
2 (0) − 𝛼(1)

2 (2) +
𝛼
(1)
2 (4)

4

) (𝑣
2

)4
.

Substituting the values of the derivatives of 𝛼𝑛 according to each case leads to

𝒮[𝑆𝑣 (𝑧)] (1) (0) =
∫ ∞

0
𝑑𝑧 𝑄𝑣 (𝑧) − (1 − 𝛾) 3𝜋

16
+ 𝜋

4

(
3 − 5

𝑒2

) (𝑣
2

)2

+ 3𝜋
4

(
3
4
− 3
𝑒2 + 5

4𝑒4

) (𝑣
2

)4
.

Because of Proposition C.2.1 we know that the integral exists. The first derivative
for the 𝛼𝑛 terms also exist as it can be seen in Proposition C.2.5 and can be
computed with relative ease.

To calculate the third derivative, we proceed as above. That is: we substitute
(5.36) into (C.20), take the third derivative of the sine transform using Corollary
C.2.3 and evaluate at 𝜁 = 0. Note that according to Proposition C.2.5 the third
derivative of 𝛼2 and 𝛼3 exists at the origin. We wont differentiate 𝛼1 as it will
help us to get rid of the divergence in the integral. Hence,

𝒮[𝑆𝑣 (𝑧)] (3) (0) = −
∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
− (1 − 𝛾)𝛼(3)

3 (0)

+
(
𝛼
(3)
2 (0) − 𝛼(3)

2 (2)
) (𝑣

2

)2
+ 3

(
3
4
𝛼
(3)
2 (0) − 𝛼(3)

2 (2) +
𝛼
(3)
2 (4)

4

) (𝑣
2

)4
.

To see that the integral exists, just consider the asymptotics for large 𝑧 of𝑄𝑣 given in
(5.35). With this, one can deduce that the integrand will be (𝑣/2)2 sin(𝑧)2/(1+ 𝑧2)
plus a term 𝑂 (1/𝑧2). Next, we substitute the 𝛼𝑛 derivatives, which leads to

𝒮[𝑆𝑣 (𝑧)] (3) (0) = −
∫ ∞

0
𝑑𝑧 𝑧2

(
𝑄𝑣 (𝑧) +

𝑣2

2
sin(𝑧)2

1 + 𝑧2

)
+ (1 − 𝛾) 𝜋

16

− 𝜋

4

(
1 + 1

𝑒2

) (𝑣
2

)2
− 3𝜋

4

(
3
4
+ 1
𝑒2 − 3

4𝑒4

) (𝑣
2

)4
.

This concludes our proof. □
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c.4 proof of proposition 5.7.1

For the first term we have to calculate the integral
𝑘

𝜆

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔 =

𝑘

𝜆

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2(𝜔 + 𝑆0) = 2𝜋𝑘 | |𝜒 | |22𝐸,

(C.30)

where we have used the definition of 𝜒𝑒, Plancherel’s formula, the evenness
of |ℱ [𝜒] (𝜔) |2 and the relation 𝐸 = 𝑆0/𝜆. Before we analyse the remaining
terms, we would like to note that | 𝑓𝑒 |2 = | 𝑓 |2 for real-valued 𝑓 and the following
identities are a consequence of this

𝜒′𝑒 = (𝑖𝑆0𝜒 + 𝜒′)𝑒, |𝜒′𝑒 |2 = 𝑆2
0 |𝜒 |

2 + |𝜒′|2. (C.31)

Thus, for the next order term we will have
𝑘2

𝜆2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔2sgn

(𝜔
𝜆

)
=
𝑘2

𝜆2 sgn(𝜆)
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒′𝑒] (𝜔) |2sgn(𝜔)

where we have made use of the well-known identity (𝑖𝜔)𝑛ℱ [ 𝑓 ] (𝜔) = ℱ [ 𝑓 (𝑛)] (𝜔),
which is valid for an arbitrary function 𝑓 and 𝑛 ∈ N0. Next, in virtue of (C.31)
we deduce

𝑘2

𝜆2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔2sgn

(𝜔
𝜆

)
=
𝑘2

𝜆2 sgn(𝜆)
∫ ∞

−∞
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2sgn(𝜔 + 𝑆0).

Since |ℱ [ 𝑓 ] (𝜔) |2 is even for real-valued 𝑓 , we use the same argument from
Proposition C.2.3 to find

𝑘2

𝜆2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔2sgn

(𝜔
𝜆

)
=
𝑘2

𝜆2 sgn(𝜆)sgn(𝑆0)
∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2.

The power law 𝐸𝜆 = 𝑆0 leads us to the final expression for the second term

𝑘2

𝜆2

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔2sgn

(𝜔
𝜆

)
=
𝑘2𝐸2

𝑆2
0

sgn(𝐸)
∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2. (C.32)



C.4. Proof of Proposition 5.7.1 181

For the third order term, we use the definition of 𝜒𝑒 once more, this yields

𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔3 =

𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2(𝜔 + 𝑆0)3

dropping the terms that are odd in 𝜔 results in

𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔3

= 3𝑆0
𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2𝜔2 + 𝑆3

0
𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒] (𝜔) |2.

Finally, we use Plancherel’s formula to obtain the final form of this term

𝑘3

𝜆3

∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝜔3 = 2𝜋𝑆0

𝑘3

𝜆3

(
3| |𝜒′| |22 + 𝑆

2
0 | |𝜒 | |

2
2

)
. (C.33)

And so, we make use of (C.30), (C.32) and (C.33) to deduce that our final
expression is∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2𝑞

(
𝑘
𝜔

𝜆

)
= 2𝜋𝑘𝑞1 | |𝜒 | |22𝐸 + 𝑘

2

𝑆2
0
𝑞2

(∫ |𝑆0 |

−|𝑆0 |
𝑑𝜔 |ℱ [𝑖𝑆0𝜒 + 𝜒′] (𝜔) |2

)
sgn(𝐸)𝐸2

+ 2𝜋
𝑘3

𝑆2
0
𝑞3

(
𝑆2

0 | |𝜒 | |
2
2 + 3| |𝜒′| |22

)
𝐸3 + 𝐼 (𝜆).

Where we have introduced the error 𝐼 (𝜆), our next goal is to prove that this term
is 𝑂 (1/𝜆4) as 𝜆 → ∞. Said error is defined as

𝐼 (𝜆) =
∫ ∞

−∞
𝑑𝜔 |ℱ [𝜒𝑒] (𝜔) |2

(
𝑞

(
𝑘
𝜔

𝜆

)
− 𝑞1 ·

(
𝑘
𝜔

𝜆

)
− 𝑞2 ·

(
𝑘
𝜔

𝜆

)2
− 𝑞3 ·

(
𝑘
𝜔

𝜆

)3
)
.

Introduce a fixed 𝜀 > 0 that is arbitrary but small and define𝑉𝜀 = (−∞, 𝜀)∪(𝜀,∞).
Making the change of variable 𝜔 ↦→ 𝜆𝜔, we find that

|𝐼 (𝜆) | ≤ |𝜆 |
∫ 𝜀

−𝜀
𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2

��𝑞(𝑘𝜔) − 𝑞1 · (𝑘𝜔) − 𝑞2 · (𝑘𝜔)2 − 𝑞3 · (𝑘𝜔)3��
+ |𝜆 |

∫
𝑉𝜀

𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2
(
|𝑞(𝑘𝜔) | + |𝑞1 · (𝑘𝜔) | + |𝑞2 · (𝑘𝜔)2 | + |𝑞3 · (𝑘𝜔)3 |

)
.

(C.34)
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By hypothesis on 𝑞, we observe for small 𝑧 we have |𝑞(𝑧) − 𝑞1𝑧 − 𝑞2𝑧
2 − 𝑞3𝑧

3 | ≤
𝐶 |𝑧 |4 for some 𝐶 > 0. Moreover, 𝑞(𝑧) is bounded, i.e. |𝑞(𝑧) | ≤ 𝑞0 for some
𝑞0 > 0. With this, we deduce that

|𝐼 (𝜆) | ≤ 𝐶𝑘4 |𝜆 |
∫ 𝜀

−𝜀
𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2 |𝜔|4

+ |𝜆 |
∫
𝑉𝜀

𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2
(
𝑞0 + |𝑞1 · (𝑘𝜔) | + |𝑞2 · (𝑘𝜔)2 | + |𝑞3 · (𝑘𝜔)3 |

)
,

reversing the change of variable in the first integral and recalling that 𝜒𝑒 (𝑧) =
𝑒𝑖𝑧𝑆0𝜒(𝑧), we obtain

𝜆5
∫ 𝜀

−𝜀
𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2 |𝜔|4 =

∫ 𝜆𝜀

−𝜆𝜀
𝑑𝜔 |ℱ [𝜒] (𝜔 − 𝑆0) |2 |𝜔|4 =

=

∫ 𝜆𝜀

−𝜆𝜀
𝑑𝜔 |ℱ [𝜒] (𝜔) |2(𝜔4 + 6𝜔2𝑆2

0 + 𝑆
4
0)

where as usual, we have dropped terms that are odd in 𝜔. Observing that for a
positive-valued function 𝑓 and 𝑈 ⊂ R we have

∫
𝑈
𝑓 (𝜔)𝑑𝜔 ≤

∫
R
𝑓 (𝜔)𝑑𝜔, we

deduce that the following bound is satisfied

𝜆5
∫ 𝜀

−𝜀
𝑑𝜔 |ℱ [𝜒𝑒] (𝜆𝜔) |2 |𝜔|4

=

∫ 𝜆𝜀

−𝜆𝜀
𝑑𝜔 |ℱ [𝜒′′] (𝜔) |2 + 6𝑆2

0

∫ 𝜆𝜀

−𝜆𝜀
𝑑𝜔 |ℱ [𝜒′] (𝜔) |2 + 𝑆4

0

∫ 𝜆𝜀

−𝜆𝜀
𝑑𝜔 |ℱ [𝜒] (𝜔) |2

≤ 2𝜋
(
| |𝜒′′| |22 + 6𝑆2

0 | |𝜒
′| |22 + 𝑆

4
0 | |𝜒 | |

2
2

)
.

Introduce the 𝜆-independent term 𝐶′ := 2𝜋𝐶𝑘4
(
| |𝜒′′| |22 + 6𝑆2

0 | |𝜒
′| |22 + 𝑆

4
0 | |𝜒 | |

2
2

)
.

As 𝜀 is fixed, in the 𝜆 → ∞ regime, we conclude that 𝐼 is bounded as follows

|𝐼 (𝜆) |

≤ 𝐶′

𝜆4 + |𝜆 |
∫
𝑉𝜀

𝑑𝜔 |ℱ [𝜒] (𝜆(𝜔 − 𝑆0)) |2
(
𝑞0 + |𝑞1(𝑘𝜔) | + |𝑞2(𝑘𝜔)2 | + |𝑞3(𝑘𝜔)3 |

)
.

(C.35)

We want to show that the last integral goes faster to zero than 𝑂 (1/𝜆4) as 𝜆 → ∞.
To do so, we make the change of variable 𝜔 → 𝜔 + 𝑆0, this yields another

fourth-order polynomial in 𝜔 (with coefficients 𝑝𝑖) multiplying the squared
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modulus of the Fourier transform. This means that we need to show that terms of
the form

𝐾𝑛,𝜀 (𝜆) =
∫ ∞

𝜀

𝑑𝜔 |ℱ [𝜒] (𝜆𝜔) |2𝜔𝑛 (𝑛 ∈ N)

go faster to zero than 𝑂 (1/𝜆4) as 𝜆 → ∞. As 𝜒 is a compactly-supported smooth
function, its Fourier transform has fast-decay.

In consequence, for an arbitrary fixed 𝑁 ∈ N (which will be taken so that
𝑁 > 𝑛) we have |ℱ [𝜒𝑒] (𝜆𝜔) |2 ≤ 𝑀 (1 + (𝜆𝜔)2)−𝑁 where 𝑀 > 0 is a constant.
With this, we deduce the following bound

|𝐾𝑛,𝜀 (𝜆) | ≤
𝑀

|𝜆 |𝑛+1

∫ ∞

𝜀

𝜆𝑑𝜔
(𝜆𝜔)𝑛

(1 + (𝜆𝜔)2)𝑁
≤ 𝑀

|𝜆 |𝑛+1

∫ ∞

𝜆𝜀

𝑑𝑥 𝑥𝑛−2𝑁 = 𝑂

(
1
𝜆2𝑁

)
where we have introduced the new variable 𝑥 = 𝜆𝜔. And so, we see that the
second integral in our original expression (C.35) vanishes faster that 𝑂 (1/𝜆4).
With this, we conclude that when |𝜆 | → ∞, (or equivalently |𝐸 | → 0) we will
have

|𝐼 (𝜆) | ≤ 𝑂
(

1
𝜆4

)
= 𝑂 (𝐸4).
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