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Abstract

The abc Conjecture and its number field variant have huge implications across a wide
range of mathematics. While the conjecture is still unproven, there are a number of
partial results, both for the integer and the number field setting. Notably, Stewart
and Yu have exponential abc bounds for integers, using tools from linear forms in
logarithms [51][52], while Győry has exponential abc bounds in the number field
case, using methods from S-unit equations [20]. In this thesis, we aim to combine
these methods to give improved results in the number field case. These results are
then applied to the effective Skolem-Mahler-Lech problem, and to the smooth abc

conjecture [27].
The smooth abc conjecture concerns counting the number of solutions to a+b = c

with restrictions on the values of a, b and c. this leads us to more general methods
of counting solutions to Diophantine problems. Many of these results are asymptotic
in nature due to use of tools such as Lemmas 1.4 and 1.5 of [23]. We make these
lemmas effective rather than asymptotic other than on a set of size δ > 0, where δ is
arbitrary. From there, we apply these tools to give an effective Schmidt’s Theorem,
a quantitative Koukoulopoulos-Maynard Theorem (also referred to as the Duffin-
Schaeffer Theorem), and to give effective results on inhomogeneous Diophantine
Approximation on M0-sets, normal numbers and give an effective Strong Law of
Large Numbers. We conclude this thesis by giving general versions of Lemmas 1.4
and 1.5 of [23].
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1

Introduction

Perhaps the most simple equation one could consider is the equation

a+ b = c,

where a, b, c ∈ N. This clearly has infinitely many solutions, but one might ask
about the size of the c in terms of the primes dividing a, b and c. Under some mild
conditions that we will discuss later, the abc Conjecture then gives a sharp upper
bound for c in terms of the primes dividing the product abc [16]. We discuss this in
more depth in Chapter 2.

Despite there being no commonly accepted proof of the abc Conjecture, it is
natural to generalise the concepts from working over the integers to working over
arbitrary number fields; that is, considering the above equation over a finite extension
of Q. This leads to the Uniform abc Conjecture [16], which we also discuss in some
depth in Chapter 2.

Despite the simplicity of the equation, the abc-conjecture is of deep interest to
mathematicians, both due to its own deep statement about the natures of addition
and multiplication, but also due to its wide ranging implications should it be proven.
I mention only a few here (and expand a little further in Chapter 2), and refer the
reader to the abc Conjecture Homepage [39], created and maintained by Nitaj, for a
wide range of applications and further literature on the subject.

• Fermat’s Last Theorem: Despite having been proven by Wiles, an effective
version of the abc Conjecture gives a very efficient proof; we discuss this further
in Chapter 2.

• Erdös’ conjecture on consecutive powerful numbers: a natural number n is
called powerful if for every prime p | n, we have that p2 | n. Erdös conjectures

9



10 Chapter 1. Introduction

that there are not three consecutive powerful numbers; the abc conjecture
provides a weaker answer, that the set of powerful triples {n, n+ 1, n+ 2} is
finite.

• Roth’s Theorem: It is known that the abc Conjecture implies Roth’s Theorem
on Diophantine Approximation, and further that an effective abc result leads
to an effective version of Roth’s Theorem [54].

• Szpiro’s conjecture for elliptic curves: While being a motivation for the abc
Conjecture, the abc Conjecture implies Szpiro’s conjecture for elliptic curves
[40].

Much work has thus been done on the abc Conjecture, with Stewart and Yu
obtaining exponential bounds in the integer case using methods in linear forms in
logarithms [51][52], and Győry obtaining exponential bounds in the number field
case using methods in S-unit equations [20]’ these results will be discussed in detail
in Chapter 2.

The first half of this thesis brings these ideas together to provide an improved
exponent for an abc style bound in the number field case; we note in some cases, we
are able to achieve a sub-exponential bound. We then go on to give applications of
these results to the effective Skolem-Mahler-Lech problem (which concerns finding
zeroes in a linear recurrence sequence) and to Lagarias’ and Soundararajan’s smooth
abc Conjecture [27], details of which are given in Chapter 2.

We remark here that both the abc Conjecture and the smooth abc Conjecture
are about counting the number of solutions to a given Diophantine Equation under
certain restrictions. This heavily inspires the second topic of this thesis. There are
many results in Diophantine Approximation about counting the number of solutions
to a given Diophantine inequality, many of which use results akin to Lemmas 1.4
and 1.5 of [23]. A prime example of this is Schmidt’s Theorem, which we discuss in
Chapter 5, though we give some details here. A more historically accurate exposition
of the following is given in Chapter 5; here we give sufficient details to motivate our
discussion.

Khintchine’s Theorem tells us that given a non-increasing approximation function
ψ : N → [0, ∞), then the finiteness of the number of solutions (p, q) in positive
integers to ∣∣∣∣∣α− p

q

∣∣∣∣∣ < ψ(q)
q



11

for almost all α ∈ R depends entirely on the convergence or divergence of the sum
∞∑
q=1

ψ(q).

Notably, when the sum above diverges, then there are infinitely many solutions to
the above for almost all α. However, one may be interested in having a formula for
the number of solutions to the above, given restrictions on the size of q. Schmidt’s
Theorem gives a precise asymptotic formula for the number of solutions with q < Q

for almost all α [23]. Indeed, in the literature one can find many asymptotic formulas
for the number of solutions to various Diophantine inequalities, the proofs of which
use results like Lemmas 1.4 and 1.5 of [23]; a notable recent such result is given in
[1] in reference to the Duffin Schaeffer conjecture, proved recently by Harper and
Koukouopolous [26]. we return to this in more detail in Chapters 5 and 7 of this
thesis.

The asymptotic nature of these results come from the fact that Lemmas 1.4 and
1.5 of [23] are asymptotic. However, in some situations one may wish for explicit
results, for example in wireless communications [4], and this is the focus of the second
half of this thesis. We make Lemmas 1.4 and 1.5 of [23] effective other than on a set of
size δ (where δ > 0 and can be chosen to be arbitrarily small). After this, we prove an
effective Schmidt’s Theorem, give an effective quantitative Koukouopolous-Maynard
Theorem [26][1], give some results on inhomogeneous Diophantine approximation on
M0 sets with restricted denominators [43], give a result related to normal numbers
[23] and give an effective Law of Large Numbers. We conclude this by giving general
versions of Lemmas 1.4 and 1.5 of [23].

The structure of this thesis is as follows. In Chapter 2 we discuss the abc

Conjecture, giving background information on absolute values and heights, linear
forms in logarithms and S-unit equations, before discussing the effective Skolem-
Mahler-Lech problem and the smooth abc-Conjecture. In Chapter 3 we prove some
new abc style bounds, before giving applications of them in Chapter 4. In Chapter
5 we give some background to Diophantine Approximation, and discuss Lemmas
1.4 and 1.5 of [23] in detail, before discussing the topics we will apply our effective
theorems to. In Chapter 6 we give the proofs of the effective versions of Lemmas 1.4
and 1.5, before giving the applications mentioned above in Chapter 7. In Chapter
8 we give a very general version of Lemmas 1.4 and 1.5, before briefly discussing
potential future work in Chapter 9.



2

The abc Conjecture: Background and
Preliminaries

In this chapter we will give background for the first half of this thesis, discussing the
abc Conjecture and some background theory.

2.1 THE abc CONJECTURE

Before giving the abc conjecture, we shall discuss a related theorem, the Mason-
Stothers Theorem, published independently by Stothers in 1981 [53] and Mason in
1984 [33]. Given a polynomial f ∈ C [x], we define the radical of f to be

G(f) :=
∏
g|f

g irreducible

g.

Theorem (Mason-Stothers Theorem). Let f, g, h := f + g ∈ C [x] be relatively
prime non-constant polynomials. Then

max {deg f, deg g, deg h} < degG (fgh) − 1

This theorem leads to some nice applications, for example a neat proof of Fermat’s
Last Theorem for polynomials as follows:

Corollary. Let n ≥ 3. Then there is no solution in non-constant, relatively prime
polynomials x, y, z ∈ C [t] satisfying

x(t)n + y(t)n = z(t)n.

12



2.1. The abc Conjecture 13

We prove this to demonstrate how simple the application of the Mason-Stothers
Theorem is. We follow the proof given in [30].

Proof. Assume we have such non-constant relatively prime polynomials such that
x(t)n + y(t)n = z(t)n. Then the Mason-Stother’s Theorem states that

deg (x(t)n) = n deg(xt) ≤ degG (x(t)ny(t)nz(t)n) − 1.

We note that by the definition of G, we have that

G (x(t)ny(t)nz(t)n) = G (x(t)y(t)z(t))
= G (x(t)) +G (y(t)) +G (z(t)) .

We note further that the definition of G implies that for all f ∈ C[t], we have that
degG (f) ≤ deg (f). It thus follows that

n deg(xt) ≤ deg (x(t)) + deg (y(t)) + deg (z(t)) − 1.

We repeat this argument for y(t) and z(t) to obtain that

n deg(yt) ≤ deg (x(t)) + deg (y(t)) + deg (z(t)) − 1,

and that
n deg(zt) ≤ deg (x(t)) + deg (y(t)) + deg (z(t)) − 1.

Adding these inequalities together, we obtain that

n (deg (x(t)) + deg (y(t)) + deg (z(t))) ≤ 3 (deg (x(t)) + deg (y(t)) + deg (z(t))) − 3,

so
(n− 3) (deg (x(t)) + deg (y(t)) + deg (z(t))) ≤ −3.

This is impossible for n ≥ 3, and we have proved the corollary.

This was a known result, but the proof using Mason-Stothers Theorem is much
more elegant. Having seen the strength of this theorem, it is natural to want to
extend it, and a natural way to do so is to try and find an analogous inequality over
the integers. We note that this is not historically how the conjecture was made, but
hope the above discussion gives some motivation for the following conjecture.

Let a, b, c := a+ b be positive, pairwise coprime integers and define the radical

G(a, b, c) = G =
∏
p|abc

p a prime

p.
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In 1988, based on the Mason-Stothers Theorem in function fields and on a conjecture
of Szpiro about elliptic curves, Osterlé conjectured the following:

Conjecture (Osterlé’s Formulation of the abc Conjecture [40]). Given the set up
above, there exists a positive constant C1 such that c < GC1.

Further, Masser conjectured a stronger statement, as follows:

Conjecture (Masser’s Formulation of the abc Conjecture [35]). Given the set up
above, for all positive ϵ there exists a constant C2 (ϵ) such that c < C2 (ϵ)G1+ϵ.

While both of these conjectures are referred to as the abc conjecture, generally
the second form by Masser is focused on in the literature.

It is important to note that the coprimeness condition is necessary and we cannot
remove the dependence on ϵ in the above. To see the coprimeness condition is
necessary, consider the triple (a, b, c) = (2n, 2n, 2n+1). This triple trivially satisfies
a + b = c for all n ∈ N, but G(abc) = 2, providing infinitely many (non-coprime)
triples that would give contradictions to the statement above. Comparing the
theorem with the Mason-Stothers Theorem, one may wonder about the significance
of the ϵ in the exponent of the radical. To see we cannot remove the reliance on ϵ,
consider the following statement:

Lemma. There is no constant K such that for all coprime triples (a, b, c) ∈ Z
satisfying a+ b = c we have that

|c| ≤ KG(abc).

To prove this, we use an example from [30].

Proof. Consider the triple (an, bn, cn) =
(
1, 32n − 1, 32n

)
. This satisfies a+ b = c,

and we can show by induction that 2n divides 32n − 1. It thus follows that

G(anbncn) ≤ 3 · 2 · cn2n .

We see that for any K, we cannot have that for all n,

cn = 32n ≤ KG(anbncn) ≤ K3 · 2 · 32n

2n .
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This in fact gives an infinite family of examples showing that the abc Conjecture
as stated without the ϵ in the exponent does not hold.

These conjectures have far-reaching implications across a range of topics. We
shall give only a brief discussion here; see [8] and the references within for further
discussion on this matter. We also refer the reader to Chapter 14 of [6] and Chapter
5 of [55] for a discussion of Vojta’s conjectures, a generalisation of the second
formulation of the abc conjecture given above.

We discussed how the Mason-Stothers Theorem allows us to prove a version of
Fermat’s Last Theorem for polynomials; here we will show how the abc conjecture
directly proves a weaker version Fermat’s Last Theorem. That is, we shall show that
the equation

xn + yn = zn

has no solutions in integers for sufficiently large n ∈ N. We assume that there are
solutions; applying the abc conjecture we see that

zn ≤ C(ϵ)G ((xyz)n)1+ϵ

= C(ϵ)G (xyz)1+ϵ

≤ C(ϵ) (xyz)1+ϵ

Similarly we obtain xn ≤ C(ϵ)G (xyz)1+ϵ and yn ≤ C(ϵ)G (xyz)1+ϵ. Multiplying these
three inequalities together we see that

(xyz)n ≤ C(ϵ) (xyz)3+3ϵ .

Taking logarithms and rearranging it follows that

(n− 3 − 3ϵ) log (xyz) ≤ log (C(ϵ)) .

As by assumption xyz ≥ 2 we get an upper bound for n depending on the value
of the constant C(ϵ). Given an explicit choice of ϵ, say 1 for example, we would
be left with only finitely many n to do computations for; indeed, Fermat’s Last
Theorem was shown to hold true for many small n before Wiles’ proved the result in
full. Indeed, to prove the theorem it suffices to show the theorem is true when n is
an odd prime; using ideal factorisation, Kummer was able to show Fermat’s Last
Theorem was true for all prime exponents less than 100 with the exceptions of 37, 59
and 67 [14]. For this application, we need an effective version of the abc Conjecture;
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that is, we need to be able to find the value of C(ϵ). Regarding Wiles’ method of
proof of Fermat’s Last Theorem, we note that there are many equations where Wiles’
methods are not sufficient to give full results about finiteness of solutions. The
abc conjecture, once proved, has the potential to be used to give results on many
equations where Wiles’ method is not applicable.

2.1.0.1 Absolute Values and Heights

Throughout this thesis we shall use properties of absolute values and heights regularly.
Before continuing our discussion of the abc Conjecture, we shall give the basic
definitions and properties. Much of the material in this section is standard; we follow
[6], and in places Chapter 3 of [56], and refer the reader to references mentioned
within these books.

Definition. An absolute value on a field K is a function |·| : K → R satisfying
1. |x| ≥ 0 and |x| = 0 if and only if x = 0,

2. |xy| = |x| |y|,

3. |x+ y| ≤ |x| + |y|.

Condition 3 is famously referred to as the triangle inequality. It may be an
absolute value satisfies a stronger condition than this, the ultrametric triangle
inequality. That is, for all x, y ∈ K,

|x+ y| ≤ max {|x| , |y|} .

In this case we call the absolute value non-archimedian. Should the ultrametric
triangle inequality fail to hold for a pair (x, y) ∈ K2 then the absolute value is
archimedian.

The trivial absolute value is equal to 1 at all x ∈ K\ {0}, and is 0 for x = 0.
Generally we will not consider this absolute value, or omit it in considerations; for
example see the definition of a place below.

We call two absolute values on a field K equivalent if they define the same
topology on a field. It turns out two absolute values |·|1 , |·|2 are equivalent if and
only if there is some positive real number s such that for x ∈ K, |x|s1 = |x|2 [6].

Definition. A place υ of a field K is an equivalence class of non-trivial absolute
values.
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We denote an absolute value in the equivalence class of the place υ by |·|υ. Given
a field extension L/K and a place υ of K, we say that ω, a place of L, extends υ
and write ω | υ if and only if the restriction of any representative of ω to K is a
representative of υ. In this case, we also say that ω lies over υ.

Remark. The notation and language used here corresponds to the fact that the
non-archimedian places in number fields correspond to prime ideals of the ring of
integers of the number field.

Given a place υ of a filed K, we can consider the completion of this field with
respect to this place. This is an extension field denoted Kυ, with a place ω satisfying

• ω | υ,

• The topology induced by ω on Kυ is complete,

• K is a dense subset of Kυ with respect to the previously mentioned topology.
Given a field K and place υ, we have that Kυ exists and is unique up to isometric

isomorphism [38].
We consider the places on the rationals Q. There is only one arichmedian absolute

value, that is the ordinary absolute value |·|, which we sometimes denote by |·|∞ [56].
Given a prime number p, we define the p-adic absolute value |·|p to be

|x|p = p−ordp(x),

where ordp (x) denotes the largest exponent e such that pe divides x.. That is, given
x = m

n
= pαm

′

n′ where m, n ∈ Z, n ̸= 0, α ∈ Z and m′, n′ are coprime to p; we define
ordp (x) = α. We denote the completion of Q with respect to a p-adic absolute
value by Qp. The algebraic closure of Qp will be denoted by Qp, and by Cp we shall
denote the completion of Qp with respect to |·|p. We note further that Cp is also
algebraically closed [25]

The p-adic absolute values give us representatives for all the inequivalent non-
archimedian absolute values on Q, and Ostrowski’s Theorem tells us these are all
the places on the rationals.

Theorem (Ostrowski, 1916). Every non-trivial absolute value on the rationals is
equivalent either to |·|∞ or to |·|p for some prime p.

For a proof of this, we refer the reader to [25]. Another theorem sometimes called
Ostrowski’s Theorem tells us that the only complete archimedian fields are R and C
[10].
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We now explicitly consider absolute values over a number field. We begin with
the archimedian case. Consider a number field K; the archimedian absolute values
are determined entirely by the embeddings σ : K → C in the following way. There
are d = [K : Q] such embeddings. An embedding is said to be real if σ(K) ⊂ R, and
complex otherwise. Denote the number of real embeddings by r and the number
of complex embeddings by 2s, so that d = r + 2s. Then there are d + s distinct
places, as the complex embeddings come in conjugate pairs and these pairs generate
the same topology on K. The absolute values are defined to be |σ(x)|∞ for a given
embedding σ.

We now consider the non-archimedian places of a number field. Given a rational
prime p, the absolute value |·|p on Qp has a unique extension to K, where K is
any finite extension of Qp. This is because Qp is complete [38]. The extension of
the absolute value is as follows: given an element α ∈ K, let NK/Qp(α) denote the
norm of α; more explicitly, the determinant of the matrix associated to the linear
Qp-endomorphism of K mapping x to αx. Writing d = [K : Qp], the extension of
the p-adic absolute value of Qp to K is

|α|p =
∣∣∣NK/Qp(α)

∣∣∣1/d
p

,

where we have somewhat abused notation and let |·|p refer to both the p-adic absolute
value of Qp and its extension to K.

Now let K = Q(α) be a number field of degree d, where f is the minimal
polynomial of α over Q. We write α(p)

1 , . . . , α
(p)
d for the roots of f in Cp. This

gives us d embeddings of K into Cp, by σi : K : γ 7−→ α
(p)
i , for 1 ≤ i ≤ d. To

each embedding, we can associate an ultrametric absolute value υσ | p, where
|x|υσ = |σ(x)|p.

We note that this is similar to the archimedian case above, but to be more precise
about the number of equivalent absolute values we need to consider the decomposition
of f ∈ Q[X] into irreducible factors in Qp[X]. We will write f = f1 · · · fr, with
di = deg(fi). Assume that σ1 and σ2 are distinct embeddings of K into Cp. They
give rise to the same ultrametric absolute value if and only if σ1(α) and σ2(α) are
conjugate over Qp and thus are roots of the same irreducible factor fi [56][38]. Thus
the number of ultrametric absolute values on the field K is r.

Remark. We can start to see here how ultrametric absolute values correspond to
prime ideals of the ring of integers OK of the field. Maintaining the notation used
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above, we can often use the Dedekind-Kummer Theorem [11], to determine the prime
ideals lying over a rational prime p by considering the factorisation of the minimal
polynomial f into its irreducible factors in Qp[X] [29][38]. Each factor corresponds
to a prime ideal lying above p, and the polynomial fi can be used to explicitly find
said prime ideals. If K/Q is galois, then the Galois group permutes prime ideals
[11]. This is what is happening in the discussion above; that is, ultrametric places
correspond to prime ideals of OK . Explicitly, given a place represented by an absolute
value |·|p, one can define the corresponding prime ideal to be

Ip := {a ∈ Ok : |a|p = 0} .

In light of this remark, we could define these non-archimedian absolute values as
follows. Given a field K, let p be a prime ideal of OK . Define ordp (x) analogously
to ordp (x), but this time considering the decomposition into prime ideals of the
principal ideal xOK ; that is, define ordp (x) to be the exponent of the prime ideal p
in the prime decomposition of the ideal xOK . We then define |·|p = NmK

Q (p)−ordp(x)

[12]. Recall that the norm of a prime ideal p of the ring of integers OK of a number
field K is defined to be

NmK
Q (p) = pfp ,

where fp is the inertia degree of p over p [38]; that is

fp := [OK/p : Z/p] .

Ostrowski’s Theorem, above, tells us that the only non-trivial absolute value on
number fields are the archimedian and non-archimedian absolute values we have
discussed, up to equivalence.

We now explicitly choose representatives of places in a number field that will
make later theorems easier to state. Given a field K with a fixed non-trivial absolute
value |·|υ, we consider a finite dimensional separable extension L/K and a place ω
of L where ω | υ. For any x ∈ L, write

||x||ω :=
∣∣∣NLω/Kυ(x)

∣∣∣
υ

and
|x|ω = ||x||1/[L:K]

ω ,

where we consider the norm of the element x over the extensions of the completions
of the field with respect to the given places, Lω/Kυ.
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Remark. We note throughout this thesis we will be discussing number fields; these
have characteristic 0 and thus the extensions are separable. Over Q, we take the
representative of each place to be the ones as defined; that is, the normal absolute
value for |·|∞ and |·|p = p−ordp(·).

Remark 1. By MK we shall refer to the set of places of K normalised as above, and
by M∞

K the set of archimedian places. We shall always construct places as given
above; that is, MK is the set constructed from MQ, where over Q, if p = ∞ then |·|p
is the ordinary absolute value on Q, and if p is prime then |p|p = 1

p
. This condition

gives us |·|p as previously defined. In either case, for υ ∈ MK , υ | p, we have that

|x|υ =
∣∣∣NLυ/Qp(x)

∣∣∣ 1
[K:Q]

p
;

this fits with the notation and representatives of places chosen above.
This is all done so that the places on a number field K satisfy the product formula;

that is ∏
υ∈MK

|x|υ = 1

for any x ∈ K\ {0} [6].
We also note we shall refer to archimedian places as infinite places, and refer to

the set of infinite places of a number field K as M∞
K ; this explains the notation |·|∞.

The non-archimedian places are then referred to as finite places.

We are now in a position to defined heights on projective space, before defining
heights on elements of number fields. Roughly speaking, a height function is a
measure of the algebraic complexity needed to describe a point P ∈ PnQ.

We define the multiplicative height of the point P ∈ PnQ, represented by a
homogeneous non-zero vector x = (x0 : · · · : xn) with coordinates in number field K
by

H(x) :=
∏
υ

max
j

{
|xj|υ

}
,

where we take the maximum over the coordinates of x. We then define the absolute
logarithmic height (or simply height) of x to be

h (x) := logH (x) =
∑

υ∈MK

max
j

log |xj|υ .

We note that h (x) does not depend on the choice of K or the choice of co-
ordinates. We are also quickly able to define both multiplicative and absolute
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logarithmic height for affine space; let An
Q be the affine space of dimension n over Q;

this could be embedded into PnQ by mapping

P = (x1, . . . , xn) → [1 : x1 : · · · : xn]

We then define H(P ) and h(P ) to be the height of the image of P in PnQ.
It is convenient to introduce some notation that makes calculations with heights

easier to follow. Let log+ x := max {0, log x} on the positive real numbers, and
extend this by setting log+ 0 = 0. Then one can immediately see that for a point
P = (x1, . . . , xn) ∈ An

Q
, we have that

h(P ) =
∑

υ∈MK

max
j

log+ |xj|υ .

In the case we’re thinking about, that is, an algebraic number field K ∼= A1
K , the

height of an algebraic number α ∈ K is

h(α) =
∑

υ∈MK

log+ |α|υ .

We give the main properties of the height function that we will use throughout
the thesis.

Lemma. For algebraic numbers α1, α2, and for any algebraic number α ̸= 0 and
n ∈ Z, we have that

• h(α1α2) ≤ h(α1) + h(α2),

• h(α1 + α2) ≤ log 2 + h(α1) + h(α2),

• h(αn) = |n|h(α).

We note further that by definition, it follows that h (α) = h (−α). The proof of
the above Lemma is given in [56].

We also have Kronecker’s Theorem, which gives an exact characterisation of the
algebraic numbers which have a height of 0.

Theorem (Kronecker’s Theorem). The absolute logarithmic height of x ∈ Q is 0 if
and only if x is a root of unity.

The proof of this is contained in [6].
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We now briefly consider polynomials in order to give a formula for absolute
logarithmic height of an algebraic number in terms of its Galois conjugates. Given a
polynomial f(t1, . . . , tn) ∈ C[t1, . . . , tn], we define the Mahler Measure

M(f) := exp
(∫

Tn
log

∣∣∣f (eiθ1 , . . . , eiθn
)∣∣∣ dµ1 · · · dµn

)
,

there Tn is the n dimensional unit torus (that is, the cross product of n unit circles),
equipped with the standard measure dµ = 1

2πdθi.
This is a multiplicative function, that is M(fg) = M(f)M(g) [6]. One can show

that if f(t) = ∑d
i=0 ait

i = ad
∏d
j=1 (t− αj), where αj, 1 ≤ j ≤ d are the roots of f(t),

then we have that

logM(f) = log |ad| +
d∑
j=1

log+ |αj| .

We note that this is a special case of Jensen’s Formula for analytic functions.
We now relate the height of an algebraic number and the Mahler measure of its

minimal polynomial.

Lemma. Let α ∈ Q, with f , its minimal polynomial over Z. Then

logM(f) = deg(α) · h(α).

This is also shown in [6]. This lemma allows us to find the height of an algebraic
number by considering only archimedian absolute values and the conjugates of the
algebraic number.

We finish our discussion of heights by giving an important property of heights
that we shall use ubiquitously in this thesis.

Theorem 2.1.0.2 (Northcott’s Theorem). There are only finitely many algebraic
numbers of bounded degree and height.

The proof can also be found in [6].

Remark. We note it is necessary to bound both degree and height; if we just bound
height, then we have already seen there are infinitely many algebraic numbers with
height less than any given positive upper bound. A clear example here, given
Kronecker’s Theorem (above) are the roots of unity, which all have height 0.

We are now in a position to continue our discussion of the abc conjecture.
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2.1.1 Existing Results over The Integers

While the abc conjecture is yet to be proven in full generality, there has been progress
made in finding abc-style bounds. In [51], Stewart and Yu prove that there exists
an effectively computable positive constant C3 such that for all positive integers
a, b, c = a+ b with (a, b, c) = 1 and c > 2,

log c < G
2
3 + C3

log logG .

In [52], they were able to improve this result to

log c < C4G
1
3 (logG)3 .

To do this required the use of Yu’s work extending lower bounds for linear forms in
logarithms to the p-adic setting [59][57]. We note Yu further improved these bounds
in a series of papers [58][60][61][62]; indeed, we will use results from [62], which make
use of group varieties to strengthen the relevant bounds.

2.1.1.1 Linear Forms in Logarithms

Explicit bounds for Linear Forms in Logarithms were first given by Baker in [2],
and was followed up by 3 related papers, work for which he was awarded the Fields
Medal.

To motivate this topic a little, we begin by recalling the celebrated Gelfond-
Schneider Theorem.

Theorem (Gelfond-Schneider, 1934). If a and b are complex algebraic numbers with
a ̸= 0, 1 and b not rational, then ab is transcendental.

This theorem solved Hilbert’s seventh problem. We could equivalently formulate
the theorem as follows: for any algebraic number α ̸= 0, 1, the logarithm of α to any
algebraic base other than 0 or 1 is either rational or transcendental. It is natural
to wish to generalise this result; consider the following. Let α1, . . . , αn be non-zero
algebraic numbers and let β1, . . . , βn be algebraic numbers. Can we determine
whether β1 logα1 + · · · βn logαn is transcendental? Baker, using his theorem (which
we give below) was able to prove this sum is either 0 or transcendental, which along
with his other results solved the multi-dimensional analogue of Hilbert’s seventh
problem.
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We now give some definitions before stating Baker’s Theorems. As normal, define
the complex logarithm by log z = log |z| + i arg z, where for ease we shall choose
the argument such that −π ≤ arg z ≤ π. Let α1, . . . , αn ∈ A\ {0, 1} , β0 ∈ A and
β1, . . . , βn ∈ A\ {0}, where A denotes the set of algebraic numbers.

Define
Λ := β0 + β1 logα1 + · · · + βn logαn.

We are now in a position to state Baker’s results.

Theorem (Baker, 1967). If logα1, . . . , logαn are linearly independent over Q then
Λ ̸= 0.

That is, 1, logα1, . . . , logαn are linearly independent over A.

The next thing Baker was able to do was to give a lower bound for the value of
|Λ|. This lower bound has been much improved in time; the initial result by Baker
involved huge constants and had a factor of nn. In many cases this constant was
computationally too large to effectively use in proofs; for example Baker’s method
was applied to Catalan’s Conjecture but the constants were too large to be able to
computationally verify the conjecture, so the conjecture remained open [44]. The
version I give here is due to Matveev and is the best current result at the time of
writing; I give the version as presented at Theorem 7.1.5 of [37]. I note this result is
in terms of the absolute logarithmic height, discussed above.

Theorem (Matveev, 2000). Let α1, . . . , αn ∈ A\ {0, 1} and let K = Q (α1, . . . , αn)
be a number field of degree at most d over Q. Let

κ =

1 if K ⊂ R,

2 if K ⊂ C.

Finally, let
h (αj) :=

∑
υ∈MK

log+ |αj|υ

denote the absolute logarithmic height, where MK is the set of places on K normalised
to satisfy the product formula and log+ x = max {0, log x} for x ∈ R, x > 0. Consider

Λ = β1 logα1 + · · · + βn logαn,

with βj ∈ Z for all 1 ≤ j ≤ n.



2.1. The abc Conjecture 25

Set
B = max{|b1, . . . , |bn||}

and for 1 ≤ j ≤ n let Aj be real numbers satisfying

Aj ≥ max {dh (αj) , |logαj| , 0.16} .

Then either Λ = 0 of

log |Λ| ≥ −Cd2A1 . . . An log (ed) log (eB) ,

where
C = min

{
κ−1

(
en

2

)κ
30n+3n3.5, 26n+30

}
.

We note here that the constant does not have the nn factor present in Baker’s
earlier work; this aids us computationally in many cases. A number of problems in
Diophantine Equations can be solved using linear forms in logarithms where this
smaller constant helps us in these proofs; for a survey see Chapter 12 of [12].

Work has also been done on the p-adic analogue of Baker’s Theorem; the problem
in this setting is as follows. Let α1, . . . , αn be algebraic numbers and let p be a
rational prime such that the norm of αj is not divisible by p for all 1 ≤ j ≤ n. We
then wish to find an upper bound for ordp (α1 · · ·αn − 1); this is then a lower bound
for |α1 · · ·αn − 1|p. The bounds we have for this are now comparable to those of the
Archimedian case. We note that we can generalise the set-up above to consider the
p-adic anologue for a prime ideal p of the ring of integer OK of a number field K.

We give a result due to Yu as stated in [37]; we will give a more precise bound at
Lemma 3.1.0.3. Before stating the theorem, we recall some facts and definitions. For
any algebraic number α, there exits a d ∈ Z such that dα is an algebraic integer. We
denote the least such d by d(α) and refer to this as the denominator of α. Further,
we define α to be the maximum of the absolute values of α and its conjugates, and
call this the house of α. Finally, the size of α is defined to be s(α) = d(α) + α .

Theorem (Yu). Let p be a rational prime and let K be an algebraic number field
of degree d. Let α1, . . . , αn ∈ K such that s(αi) ≤ H for 1 ≤ i ≤ n. Further, let
b1, . . . , bn be rational integers such that

αb1
1 · · ·αbnn − 1 ̸= 0.



26 Chapter 2. The abc Conjecture: Background and Preliminaries

Set B = max {|b1| , . . . , |bn|} and let p be a prime ideal of K lying over the
rational prime p. Then

|α1 · · ·αn − 1|p ≥ (eB)−C

where C = C (H, n, d, p).

We give an easy application of this result, as also given in [37].

Theorem. Let S be a finite set of rational primes. Consider the solutions

(a, b, c) ∈ Z3

to a+ b = c such that the only primes p dividing a, b, c are contained in S and a, b
and c are coprime. Then the number of such solutions is finite.

Remark. This is our first look at the idea of smooth solutions to a Diophantine
equation; solutions such that the primes dividing them belong to a fixed set S. Later
in this chapter we will discuss the smooth abc conjecture and later in the thesis we
give some improvements on current results. This theorem also introduces the idea of
counting the number of solutions to a given Diophantine problem; the second part
of my thesis expands on these concepts.

Proof. Let |S| = s and begin by writing

a = ±pq1,1
1 · · · pq1,s

s ,

b = ±pq2,1
1 · · · pq2,s

s ,

c = ±pq3,1
1 · · · pq3,s

s ,

where 0 ≤ qi,j ∈ Z for all i, j. We let

Z = max {|a| , |b| , |c|} .

For 1 ≤ i ≤ s, we automatically have that

2qi,j ≤ p
qi,j
i ≤ Z,

and it immediately follows that specifically q1,i ≤ 2 logZ and q2,i ≤ 2 logZ.
We note that

|c|pi = 1
p
q3,i
i

= |a+ b|pi =
∣∣∣pq1,1

1 · · · pq1,s
s ± p

q2,1
1 · · · pq2,s

s

∣∣∣
pi
.
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By assumption, a, b and c are coprime, so pi cannot divide both a and b; without
loss of generality we shall assume that pi ̸| b so that |b|pi = 1. It thus follows from
these comments and the equation above that

|c|pi =
|c|pi
|b|pi

=
∣∣∣±pq1,1−q2,1

1 · · · pq1,s−q2,s
s − 1

∣∣∣
pi
.

From our comments above, we further note that |q1,i − q2,i| ≤ 4 logZ.
We now apply Yu’s Theorem on linear forms in p-adic logarithms on the above

to determine that

|c|pi =
∣∣∣±pq1,1−q2,1

1 · · · pq1,s−q2,s
s − 1

∣∣∣
pi
> exp (−C(s, pi) log logZ) .

We know however that |c|pi = 1
p
q3,i
i

, so combining this with the lower bound
obtained gives us that

p
a3,i
i < exp (C log logZ) ,

for all 1 ≤ i ≤ s and for some constant C > 0. We now apply this to the factorisation
for c, finding that

c =
s∏
i=1

p
q3,i
i < exp (C ′ log logZ) ,

where C ′ > 0 is some other constant.
If Z = |c|, then we are done; else suppose Z = max {|a| , |b|}. Then, modifying

slightly what we have done already we find that

|c| = |a+ b| = |b| ×
∣∣∣∣∣a+ b

b

∣∣∣∣∣
= |b| ×

∣∣∣±pq1,1−q2,1
1 · · · pq1,s−q2,s

s − 1
∣∣∣

≥ Z exp(−C ′′ log logZ),

where C ′′ > 0 is another constant.
From our upper bound on |c| we find that

Z exp(−C ′′ log logZ) = exp (logZ − C ′′ log logZ) < exp (C ′ log logZ) .

This gives us that Z ≤ C ′′′ for some constant C ′′′ > 0 so max {|a| , |b|} is bounded
and as |c| ≤ |a| + |b|, this gives a bound on |c|. It thus follows that the number of
coprime solutions to a+ b = c in S is bounded.
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Remark. We will use many aspects of this proof throughout the thesis; namely, we
will freely use that if a + b = c then by dividing through by (in this case) −b we
obtain that a

−b − 1 = c
−b , and we can use linear forms in logarithms in the forms

given above. Further, coprimeness conditions will allow us to apply p-adic linear
forms in logarithms as above.

Remark. If we divide the above through by c, we are considering the equation

x+ y = 1

where the primes dividing x and y belong to the set S. This is referred to as an
S-unit equations, more on which we shall discuss in Section 2.1.2.1.

Having discussed linear forms in logarithms, we now return to our discussion of
the abc Conjecture.

2.1.2 The abc conjecture and algebraic number fields

Much work has also been done generalising the abc conjecture to algebraic number
fields. Browkin discusses this direction of research in [7], while in [34] Masser discusses
some issues regarding adapting the radical G to the case of number fields. Let

NK (a, b, c) =
∏
υ

NmK
Q (p)ordp(p) ,

where υ ∈ MK and υ is taken over all finite places such that |a|υ , |b|υ , |c|υ are not
all equal, p is the prime ideal of OK corresponding to υ and p is a rational prime
such that p lies over p (we note that this is the same as the modified support (1.11)
of [34]). The Uniform abc Conjecture for number fields is then given as follows:

Conjecture (The Uniform abc Conjecture for Number Fields [16]). For every ϵ > 0
there exists a C(ϵ) > 0 such that if a+b+c = 0, a, b, c ∈ K× where K is an algebraic
number field of degree d, then

HK(a, b, c) < C(ϵ)d (|DK | ·NK (a, b, c))1+ϵ ,

where DK is the discriminant of K and HK is defined in Section 2.1.0.1.

We note that for K = Q, this reduces to the abc Conjecture given previously.
In [20], Győry shows that given a number fieldK and a, b, c ∈ K∗ with a+b+c = 0

and any ϵ > 0, there is an effectively computable C5 (ϵ) such that

log (HK (a, b, c)) < C5NK (a, b, c)1+ϵ .



2.1. The abc Conjecture 29

The key methods Győry uses to prove his results are bounds to the number of
solutions to an S-unit equation.

2.1.2.1 S-integers and S-units

We have already seen S-units in passing, here we shall give more details on this
subject. Most of this material is covered in [16].

Given a number field K, let S be a subset of MK that contains all the infinite
places and at most finitely many finite places. At this point, we recall the canonical
choice of representatives we work with as given at Remark 1. We then say that
α ∈ K is an S-integer if |α|υ ≤ 1 for all υ ∈ MK\S; equivalently, if the finite places
in S correspond to the prime ideals p1, . . . , pt, then the S-integers are the elements
α ∈ K such that ordp (α) ≥ 0 for all prime ideals not equal to one of p1, . . . , pt. We
note throughout this thesis we will somewhat abuse notation here and let p refer to
both the prime ideal and its corresponding place.

The set of S-integers forms a ring OS, and the units of OS form a group O∗
S. We

see that the ring of S-integers where S = M∞
K is just the set of algebraic integers in

K, and the units correspond to the units of OK . If S = M∞
K

⋃ {p1, . . . , pt}, then
OS = OK

[
(p1 · · · pt)−1

]
and O∗

S consists of elements α such that the principal ideal
⟨α⟩ = pn1

1 · · · pntt , where ni ∈ Z for 1 ≤ i ≤ t.
Many results about units of a ring of integers extent to S-integers; for example,

there is an S-unit theorem extending Dirichlet’s Unit Theorem.

Theorem (S-unit Theorem). Let S be a finite subset of MK containing all the
infinite places, where |S| = s. Then

O∗
S

∼= µK × Zs−1,

where µK is the set of roots of unity contained in K.

This means there are ϵ1, . . . , ϵs−1 ∈ O∗
S and ζ ∈ µK such that all elements x ∈ O∗

S

can be written in the form x = ζ × ϵa1
1 · · · ϵas−1

s−1 , where ai ∈ Z for 1 ≤ i ≤ s− 1. We
prove this similarly to how we prove Dirichlet’s Unit Theorem; that is, given the set
S containing the places υ1, . . . , υs, we can show that the map

LOGS : ϵ →
(
log |ϵ|υ1

, . . . , log |ϵ|υs
)

defines a surjective homomorphism from O∗
S to a full lattice in the real vector space{

(x1, . . . , xs) :
s∑
i=1

xi = 0
}
,
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where the kernel of the homomorphism is µK . A proof of this is given in [29].
We call such a system {ϵ1, . . . , ϵs} satisfying the S-unit theorem a system of

fundamental S-units, and we note such a system is not unique.
Continuing extending ideas about the ordinary ring of integers to S-integers,

there is an analogous S-regulator. Given a system of fundamental S-units
{ϵ1, . . . , ϵs−1}, we define this to be

RS =
∣∣∣∣det

(
log |ϵi|υj

)
i, j=1,..., s−1

∣∣∣∣ .
This definition does not depend on the choice of fundamental S-units, nor the choice
of υ1, . . . , υs−1 ∈ S.

We give a formula that will make it easier to calculate and bound the S-regulator.
It is known that

RS = RK [I(S) : P (S)] ·
t∏
i=1

log NK/Q (pi) ,

where RK is the regulator of the field K, p1, . . . , pt are the prime ideals of S, I(S)
is the group of fractional ideals of OK composed of prime ideals from p1, . . . , pt, and
P (S) is the group of principal fractional ideals of OK composed of prime ideals from
p1, . . . , pt. From here, we can see that [I(S) : P (S)] must divide the class number
hK of K, and thus we have that

RS ≤ hKRK

t∏
i=1

log NK/Q (pi)

We now consider S-unit equations. These take the form

a1x1 + · · · + anxn = 1,

where 0 ̸= ai ∈ K for some algebraic number field K, and x1, . . . , xn are unknowns
from the ring of units of K, or are S-units. More generally, we can consider these
unknowns to be elements of a finitely generated multiplicative subgroup Γ ⊂ K∗.
We will focus mostly on the case in two unknowns, that is

a1x1 + a2x2 = 1.

This is the only case that is relevant to this thesis; we shall briefly consider the
general case using n terms for completeness at the end of this section.

It was proved by Siegel in 1921 that the above equation has only finitely many
solutions for units of a number field, and by Mahler in 1933 for S-units in Q. The
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general case for a number field K follows from the work of Parry in 1950. In the rest
of this section, we discuss effective upper bounds for the heights of the solutions to
S-unit equations over number fields K; the results generally follow from applications
of Baker’s method. There are now many effective bounds for the numbers of solutions
to S-unit equations; the result we shall use most in this thesis is as follows.

Lemma 2.1.2.2 ([20]). Let F be an algebraic number field of degree d with set
of normalised places MF , and let S be a finite subset of MF which contains S∞,
the set of infinite places. Let s be the cardinality of S, p1, . . . , pt the prime ideals
corresponding to finite places of S and let P = maxi NmF

Q (pi). Further let RS be
the S-regulator of F . Given α, β, non-zero elements of F , we consider the S-unit
equation αx+ βy = 1 in x, y, where x, y are S-units. Let r denote the unit rank of
F and let R = max {hF , C6(r, d)R}, where C6 (r, d) is given explicitly in [20] and
R denotes the regulator of the field F . Let H = max {h(α), h(β), 1} Then, if t = 0,
all solutions x, y of the above equation satisfy

max {h(x), h(y)} ≤ C7 (r, d)R log∗(R)H,

where C7 is also given explicitly in [20] and log∗ x = max {log x, 1}.
Maintaining the notation above, if t > 0 then we obtain

max {h(x), h(y)} ≤ C8 (r, d, t)hFR (log∗ R) Rt+1 (log∗ R)
(

P

log∗ P

)
RSH,

where C8 (r, d, t) is again explicitly given in [20].

This result has recently been improved; in [31], Le Fourn is able give bounds for
the heights of solutions of S-unit equations in terms of the norm of the third largest
ideal in the set S, as follows.

Let K be an algebraic number field of degree d, and S a subset of MK consisting
of all infinite places and finitely many finite places. We will let s = |S|. Let PS
denote the norm of the largest prime in S, and let P ′

S denote the norm of the third
largest prime in S. Let R denote the regulator of K, hK the class number of K and
let r be the unit rank. Further, let RS be the S-regulator of K, as defined above.

Theorem (Theorem 1.4 of [31]). Given the notation above, consider the S-unit
equation

αx+ βy = 1,
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with α, β ∈ K∗ and x, y ∈ OS.
If S contains at most two finite places, all solutions of the above satisfy

max {h (x) , h (y)} ≤ C(d, s)RS log∗(RS) max
{
h (α) , h (β) , 1, π

d

}
,

where C(d, s) is the constant c26(s, d) in formula (30) of [21].
For any set of places S, all solutions of the above satisfy

max {h (x) , h (y)} ≤ C ′(d, s)P ′
SRS

(
1 + log∗ RS

log∗ P ′
S

)
max

{
h (α) , h (β) , 1, π

d

}
,

where C ′(d, s) is c1(s, d) from Theorem 1 of [21].

We note that this bound cannot be directly used to prove Theorem 2.1.3.3 of this
thesis (which we will state later) as the constants C(d, s) and C ′(d, s) contain terms
of the form ss, where s = |S|. In [19], Győry is able to give an improved constant
where the dependence of s in the constant is s5, which gives us a bound that leads
to the result given. Before stating Győry’s bound, we define some terms.

We maintain the notation above, and let R = max {hK , C(d, r)RK}, where C is
given in [19], the value of which depends on whether r = 0, 1 or ≥ 2. Further, in the
case that S contains 2 or fewer finite places, we set P ′

S to be equal to 1.
We are now in a position to give the lemma.

Lemma 2.1.2.3 ([19]). Let t > 0, and consider the S-unit equation is x, y

αx+ βy = 1,

where α, β ∈ K∗ and x, y ∈ O∗
S. Again, let H = max {h (α) , h (β) , 1} Every

solution to this S-unit equation satisfies

max {h(x), h(y)} < C(d, r, s, t)Rt+4 P ′
S

log∗ P ′
S

(
1 + log∗ logPS

log∗ P ′
S

)
RSH,

where C(d, r, s, t) = s5 (16e)3r+4t+7 d4r+2t+7.

2.1.3 abc Style Results

Initially we introduce some notation we will use throughout this thesis and give
some further comments on the notation. Let K be a number field of degree d and
let a, b, c ∈ OK\ {0} be such that a+ b+ c = 0. Further, assume that aOK , bOK
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and cOK are pairwise coprime; that is aOK + bOK = OK , and similarly for all other
pairs. Let L = HCF (K) be the Hilbert Class Field of K (that is, the maximal
abelian unramified extension of K [11]) and let

G =
∏

P prime ideal
P⊂OL

P|(abc)OL

NmL
Q (P) .

Let pa be the prime ideal of OL of greatest norm dividing aOL, and similarly for pb

and pc. If a is a unit, then we write that pa = 1 with norm 1, and similarly for b and
c. Write pmax for the prime ideal of OL of greatest norm dividing G. A priori, this is
equal to one of pa, pb, pc.

In Section 3.2 we will show that we can write a = uaa
′ where ua is a unit and a′

satisfies
C9 log

∣∣∣NL/Q (a′)
∣∣∣ ≤ h (a′) ≤ C10 log

∣∣∣NL/Q (a′)
∣∣∣ ,

where C9, C10 are computable constants, and similarly for b and c. We assume without
loss of generality that

h(a′) ≤ h(b′) ≤ h(c′). (2.1)

Given these definitions, we are in a position to state our main theorems.

Theorem 2.1.3.1. Given the set up above, relabeling a, b and c if necessary to
satisfy (2.1), there exists an effectively computable constant C11 depending only on
the field K such that

logHL(a, b, c) <
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2 max
{
NmL

Q (pb) , NmL
Q (pc)

}) 1
3 ·
(2.2)

·GC11
log log logG

log logG .

We will then give various corollaries to put the product of norms of prime ideals in
terms of the radical G, namely Corollaries 3.2.1.1-3.2.1.6. Importantly, in Corollary
3.2.1.6 we will give conditions that allow us to attain a sub-exponential bound.

In later parts we will give related results that can be easier to manipulate due to
fewer prime ideals on the right hand side of the inequality, attaining the following
theorem.
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Theorem 2.1.3.2. Given the set up above, there exists an effectively computable
number C12 depending only on the field K such that

logHL(a, b, c) <
(
NmL

Q (pb) NmL
Q (pc)2

) 1
2 GC12

log log logG
log logG

= NmL
Q (pb)

1
2 NmL

Q (pc)GC12
log log logG

log logG . (2.3)

We will then deduce Corollaries 3.3.1.1-3.3.1.7, again giving conditions in Corollary
3.3.1.4 that give a sub-exponential bound in terms of the radical G.

We will then discuss how exploiting the bound of Győry [19] on the solutions of
S-unit equations enables us to reduce the dependency on prime ideals to give the
following result with no further conditions:

Theorem 2.1.3.3. Given the set up above, there exists an effectively computable
constant C13 depending on K such that

logHL(a, b, c) <
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc) NmL
Q (p′

c) NmL
Q (q)

) 1
3 ·

GC13
log log logG

log logG , (2.4)

where p′
c is the prime ideal of third largest norm dividing cOL and q is the prime

ideal of OL of third largest norm dividing bcOL.

From Theorem 2.1.3.3 we will deduce that

logHL(a, b, c) < G
1
3 +C14

log log logG
log logG . (2.5)

The results given in this thesis, in particular Theorem 2.1.3.3, allow us to give
a new method of solving the effective Skolem-Mahler-Lech problem [42] of order
3. Additionally, we use Corollary 3.3.1.4 to expand on results by Lagarias and
Soundararajan regarding smooth solutions to the abc equation [27]. We briefly
discuss both these problems here.

2.1.4 Background for the Applications of Results

The results given in this paper allow us to give a new method of solving the effective
Skolem-Mahler-Lech problem [42] of order 3. We note that this problem has been
resolved, but we give a new method to resolve this problem [42]. Additionally, we are
able to expand on results by Lagarias and Soundararajan regarding smooth solutions
to the abc equation [27]. We briefly discuss both these problems here.
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2.1.4.1 The Effective Skolem-Mahler-Lech Problem

First we discuss the effective Skolem-Mahler-Lech problem. The problem is, given a
linear recurrence sequence, to decide whether said sequence contains zeroes. Before
stating the problem, we shall state some definitions. The material that follows is
adapted mostly from [15].

We recall that a linear recurrence sequence is a sequence (ax) of elements of a
commutative ring with 1, R, satisfying a homogeneous linear recurrence relation
(also called a difference equation)

a(x+ n) = c1a(x+ n− 1) + · · · + cna(x), (2.6)

where c1, . . . , cn ∈ R [15]. We note, we will take R to be an algebraic number field,
which is the case in the majority of applications of linear recurrence sequences.

The polynomial
f(x) = xn − c1x

n−1 − · · · cn

associated to the recurrence relation above is referred to as its characteristic poly-
nomial, and the recurrence relation is said to be of order n. If the ring R has no
zero divisors (which will always be the case in this thesis), then all linear recurrence
sequences satisfy a recurrence relation of minimal length; in this case the character-
istic polynomial of the minimal length relation is called the minimal polynomial; the
degree of the minimal polynomial is called the degree of the sequence.

For a sequence of the type above, the values a1, . . . , an are the initial values and
they determine the rest of the sequence; we note different sequences of numbers can
satisfy the same recurrence relation if the initial values are different. Indeed, given
a polynomial f defined over a field, define L(f) to be the set of all possible linear
recurrence sequences satisfying (2.6), and L∗(f) the set of all sequences for which
f is the characteristic polynomial of the sequence. We see that if g divides f then
L(g) ⊂ L(f). Further, if f is irreducible then L∗(f) consists of all elements of L(f)
other than the identically zero sequences.

We note that L(f) is in fact a finite dimensional vector space of dimension n; to
see this consider the following. Take n sequences ai satisfying (2.6) we shall refer to
as impulse sequences, with initial values ai(j) = δij, where i, j ∈ {1, . . . , n}. Then
any linear recurrence sequence satisfying (2.6) can be uniquely represented as a
linear combination

a(x) =
n∑
i=1

a(i)ai(x)
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for x ∈ N. To see this, we note that the right hand side of the above satisfies (2.6),
as do linear combinations of solutions. Further, the right hand side has the same
initial values as the recurrence relation a.

From this point, we will explicitly consider difference equations over a number
field; the following comments have analogues in various different fields and rings.
For full details, we refer the reader to [15].

Recall, given a linear recurrence relation

ax+n = c1ax+n−1 + · · · + cnax,

and initial terms a1, . . . , an ∈ R, we can find a formula for the m’th term. Given
the recurrence relation, we find the characteristic polynomial

f(X) = Xn − c1X
n−1 − · · · − cn−1X − cn,

with roots r1, . . . , rl with multiplicities m1, . . . , ml respectively. The x’th term of
the sequence then is given by

ax = g1(x)rx1 + · · · + gl(x)rxl ,

where gi(x) are polynomials with deg (gi) ≤ mi − 1 which depend on the initial
values a1, . . . , an.

Given a linear recurrence equation, it is natural to ask whether the sequence
contains zeroes, and if so what structure they take; this is the content of the
Skolem-Mahler-Lech Theorem, which is as follows.

Theorem (Skolem-Mahler-Lech). If a sequence of numbers satisfies a linear recur-
rence relation over a field of characteristic zero, then the zeroes of this sequence can be
decomposed into the union of a finite set, and finitely many arithmetic progressions.

Remark. We note that there exists an algorithm to tell us if there are infinitely many
zeroes, and if so to find the decomposition of these zeros into periodic sets guaranteed
to exist by the Skolem–Mahler–Lech Theorem [5]. The effective Skolem-Mahler-Lech
problem then is to find an algorithm to determine whether there exists at least
one zero in a given linear recurrence sequence (importantly in the case where the
only zeroes are non-periodic, as an algorithm to find the periodic zeroes exists) [42].
This would allow us to effectively answer whether a given linear recurrence relation
contains any zeroes.
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In Chapter 4 we will give a new method of determining if a linear recurrence
sequence of order 3 contains zeroes. For further references of preexisting methods
and results on this problem and related problems we refer the reader to [22] [49] [41]
and the references contained within them.

2.1.4.2 The smooth abc conjecture

We now discuss the smooth abc Conjecture, also referred to as the xyz conjecture
given by Lagarias and Soundararajan in [27]. Given a Diophantine equation, we may
consider the set of solutions such that all solutions have a decompositions consisting
of primes from a given set S; in this section we consider smooth solutions of the
equation a+ b = c over the rational integers.

Given a triple a, b, c := a+ b ∈ N, define the smoothness of the triple

S(a, b, c) := max {p : p | abc} .

In [27], Lagarias and Soundararajan give the following conjecture, which they refer
to as the xyz conjecture.

Conjecture 2.1.4.3 (xyz conjecture). There exists a positive constant κ such that
the following hold.

a) For each ϵ > 0 there are only finitely many integer solutions (X, Y, Z) to the
equation X + Y = Z with (X, Y, Z) = 1 and

S (X, Y, Z) < (logH (X, Y, Z))κ−ϵ .

b) For each ϵ > 0 there are infinitely many integer solutions (X, Y, Z) to the
equation X + Y = Z with (X, Y, Z) = 1 and

S (X, Y, Z) < (logH (X, Y, Z))κ+ϵ .

When a triple (X, Y, Z) satisfies X + Y = Z and (X, Y, Z) = 1, we will call the
triple a primitive solution. Lagarias and Soundararajan go on to conjecture that
κ = 3

2 . They note however that to prove the above conjecture, one need only prove
that there exists a κ0 > 0 satisfying part a) and a κ1 < ∞ satisfying part b). As a)
and b) are independent, monotonicity would then imply the existence of a unique
constant κ.

Lagarias and Soundararajan prove part b) assuming the Generalised Riemann
Hypothesis, and show that the abc conjecture implies part a). Further, in Corollary
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1 of [24], Harper is able to show unconditionally that the xyz-smoothness exponent
κ is finite, and showed that part b) of the conjecture holds.

Unconditionally, Lagarias and Soundararajan are able to give the following result.

Theorem (Theorem 2.2 of [27]). For each ϵ > 0 there are only finitely many solutions
to X + Y = Z satisfying (X, Y, Z) = 1 and

S (X, Y, Z) ≤ (3 − ϵ) log logH (X, Y, Z) .

The proof of this, and the improvement we will give below depend heavily on
Northcott’s Theorem, as given at Theorem 2.1.0.2. Using results from this paper,
we will improve this bound with the following theorem.

Theorem 2.1.4.4. Let ϕ : R → R be a function such that ϕ (x) < log log x with

lim
x→+∞

ϕ (x) = +∞.

Then there are finitely many integer solutions to X +Y = Z satisfying (X, Y, Z) = 1
and

S (X, Y, Z) ≤ log logH (X, Y, Z)
log log logH (X, Y, Z)

log log log logH (X, Y, Z)ϕ (log logH (X, Y, Z)) . (2.7)

We note that this result implies that there are only finitely many primitive integer
triples (X, Y, Z) satisfying X + Y = Z with

S (X, Y, Z) < c log logH (X, Y, Z)

for any constant c ∈ R, c > 0. This is because for any such c, there is a value H
such that for any H (X, Y, Z) > H,

log log logH (X, Y, Z)
log log log logH (X, Y, Z)ϕ (log logH (X, Y, Z)) > c,

and by Northcott’s Theorem, there are only finitely many triples (X, Y, Z) satisfying
H (X, Y, Z) < H. The statement above then follows from Theorem 2.1.4.4, and
along with the result given in Theorem 2.1.4.4 is also an improvement on the 3 − ϵ

in Theorem 2.2 of [27].
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Remark. We make a small remark that Mochizuki claims to have proven the abc
conjecture; however, this result relies on Mochizuki’s results in Inter-universal
Teichmüller Theory [36], the veracity of which is currently being debated [47]. Due
to the status this result has within the mathematical community at the time of
writing, we will make limited reference to this work in the rest of this thesis.

When this manuscript was completed, Professor Győry informed me about a
sharper abc inequality over Q and imaginary quadratic number fields by Mochizuki,
Fesenko, Hoshi, Minamide and Porowski (submitted for publication). However, this
result also relies on Mochizuki’s results in Inter-universal Teichmüller Theory.

We further note that independently, using different methods, Győry has been
able to show a similar result to that of these results, but over the base field K [18].
We discuss this further in Chapter 3.
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Proofs of the Main abc Theorems

3.1 PRELIMINARY DEFINITIONS AND LEMMAS

We begin by recalling some of the ideas already mentioned in the last chapter, before
giving some key lemmas we will use throughout the following two chapters.

Given a number field K, recall the definitions of h(x) and HK(x1, . . . , xn); we
note that

h(x) = d logHK(x, 1),

where HK(x, 1) is defined in the previous chapter and [F : Q] = d.
It is worth pointing out that HK (x1, . . . , xn) is the projective height, so it gives

the same value for any representative of [x1 : · · · : xn] ∈ Pn−1 (K). Explicitly, this
means that for any (a, b, c) ∈ P2 (K) and any k ∈ K× we have that

HK (a, b, c) = HK (ka, kb, kc) . (3.1)

In particular, since in the set up of this article c ̸= 0, we have that

HK (a, b, c) = HK

(
a

c
,
b

c
, 1
)
.

We will generally be considering the height over the Hilbert Class Field L. In
this case, as [K : Q] = d,

h(x) = dhK logHL(1, x),

where hK is the class number of K. This follows as [L : K] = hK [6] [56]

40
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We note that for any x, y, z ∈ K where K is an algebraic number field of degree
d,

logHF (x, y, z) = logHF

(
x

z
,
y

z
, 1
)

≤ 2dmax
(
h
(
x

z

)
, h

(
y

z

))
. (3.2)

This follows directly from (4.3) of [20].
We now state some pre-existing lemmas which we will repeatedly use throughout

the proof of Theorem 2.1.3.1. In the rest of the paper, C1, C2, . . . denote effectively
computable constants, and we will, where relevant, state what these constants depend
on. In many cases, the constants depend on properties determined by a certain field;
in these cases we will sometimes explicitly give which properties of the field the
constants depend on.

We first give a result about the existence of a set of fundamental S-units which
will make computation throughout the paper easier.

Lemma 3.1.0.1. Given a set of places S of size s consisting of all infinite places
and finitely many finite places of the field F, we can find a system of fundamental
units η1, . . . , ηs−1 such that

(i)
s−1∏
i=1

h(ηi) ≤ C3RS,

(ii) max
1≤i≤s−1

h(ηi) ≤ C4RS if s ≥ 3,

(iii) if υ1, . . . , υs−1 are any distinct places from S, then the absolute values of
the entries of the inverse matrix of (log |ηi|υj)i, j=1,..., s−1 do not exceed C5,

where RS is the S-unit regulator of F .

Proof. This is Proposition 4.1.8 of [17]

Throughout this paper we will use such a system of fundamental units, and often
refer to them as "the fundamental units" of the field in question.

Lemma 3.1.0.2. Let F be a number field of degree d, and let α ∈ OF\O∗
F . Then

there is an effectively computable number C6 (F ), depending on the fundamental units
of OF , and an ϵ ∈ O∗

F such that

ϵα ≤ C6

∣∣∣NF/Q (α)
∣∣∣1/d

where α denotes the house of α.
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We recall that α , the house of α, is defined to be the maximal absolute value of
the conjugates of α over C.

Proof. This is Lemma 1.3.8 from [37].

Lemma 3.1.0.3. Let α1, . . . , αn be algebraic numbers and F a number field of
degree d containing α1, . . . , αn. Let p be a prime ideal of OF lying above the rational
prime p with ramification index ep and residue class degree fp. For α ∈ F, α ≠ 0,
we write ordp (α) for the exponent to which p divides the principal fractional ideal
generated by α in F , and we set ordp (0) = +∞. Let b1, . . . bn be integers, and set
Θ = αb1

1 · · ·αbnn − 1. Assume that Θ ̸= 0. Finally, set h′ (αj) = max
{
h (αj) , 1

16e2d2

}
.

Then

ordp (Θ) < (16ed)2(n+1) n5/2 log (2nd) log (2d) · enp
NmF

Q (p)(
log NmF

Q (p)
)2

n∏
i=1

h′ (αi) logB,

where B = max {|b1| , . . . , |bn| , 3}.

Proof. This is a consequence of the main theorem of [62], given on page 190.

Lemma 3.1.0.4. Let F be a number field with ring of integers OF . Apply a total
ordering to the prime ideals, so that if NmF

Q (x) > NmF
Q (y), then x ≻ y. Arbitrarily

order ideals of the same norm. Then there is an effectively computable positive
constant C7 such that for every positive integer r we have

r∏
i=1

NmF
Q (pi)

log NmF
Q (pi)

>
(
r

C7

)r
.

Proof. Let πF (x) denote the number of prime ideals in number field F of norm
less than or equal to x. By the Landau Prime Ideal Theorem [28], we know that
πF (x) ∼ x

log x . Partially order the prime ideals as in the statement of the Lemma.
Then by Landau,

πF
(
NmF

Q (pj)
)

∼
NmF

Q (pj)
log

(
NmF

Q (pj)
) .

Thus by Landau, there exists an effectively computable number C8 such that

NmF
Q (pj)

log
(
NmF

Q (pj)
) > j/C8.
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Thus, using the inequality r! ≥ (r/e)r, we see that

r∏
j=1

NmF
Q (pj)

log
(
NmF

Q (pj)
) > r!

Cr20
≥
(
r

C9e

)r
≥
(
r

C7

)r
,

which proves the claim in the lemma.

We finally state a lemma that we will use to tidy our end arguments.

Lemma 3.1.0.5. If x, a ∈ R, a ̸= e, with a
log a < x, then a < max {e, 2x log x}.

Proof. For a < e the statement is automatically true, so we consider only a > e. If
a

log a < x, then
a < x log a. (3.3)

As a
log a < x, we see that log a− log log a < log x. Further, as log a <

√
a, we can

show that log a
2 < log a− log log a.

Combining these we get that

log a < 2 log x. (3.4)

Multiplying together (3.3) and (3.4) and cancelling log a, we obtain that a < 2x log x.

3.2 PROOF OF THE MAIN THEOREM

Let K be a number field with ring of integers OK , class number hK , and Hilbert
Class Field L. Let [K : Q] = d, so by the tower law, [L : Q] = hKd.

Take a, b, c := −a− b ∈ OK so that

a+ b+ c = 0, (3.5)

with the assumption that aOK , bOK and cOK are coprime. We write

aOK = pe1
1 · · · pett

bOK = qf1
1 · · · qfuu

cOK = rg1
1 · · · rgvv , (3.6)

where pi, qj, and rk are prime ideals of OK and ei, fj, gk are integers.
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A key property of L = HCF (K) is that every ideal I of OK is principal in OL;
that is IOL = αOL for some α ∈ OL. By Lemma 3.1.0.2, we can pick the generator
of each ideal so that if α is the generator, then

h (α) ≤ log α ≤ log
(

C10 (K)
∣∣∣NL/Q (α)

∣∣∣1/d) = C11 (K) log
∣∣∣NL/Q (α)

∣∣∣ . (3.7)

We note that the dependence of the constants is on K rather than L, as L is
uniquely determined by K. Further, for such algebraic α we have

log
∣∣∣NL/Q (α)

∣∣∣ ≤ dh (α) ,

giving us that

C12 (K) log
∣∣∣NL/Q (α)

∣∣∣ ≤ h (α) ≤ C13 (K) log
∣∣∣NL/Q (α)

∣∣∣ . (3.8)

Recalling this, we write

piOL = aiOL

qjOL = bjOL

rkOL = ckOL, (3.9)

where ai, bj, ck satisfy (3.7).
We can also write aOL, bOL and cOL as a product of prime ideals of OL. Knowing

this, we will write
G =

∏
P prime ideal

P⊂OL
P|(abc)OL

NmL
Q (P) . (3.10)

Note that by our assumptions this is equivalent to taking the field to be L in equation
(1.7) of [34]. Further we will denote the prime ideal of OL of largest norm dividing
aOL by pa, and similarly for b and c.

From (3.9) we can write a, b, c as follows:

a = uaa
e1
1 · · · aett

b = ubb
f1
1 · · · bfuu

c = ucc
g1
1 · · · cgvv (3.11)

where ua, ub and uc are units of OL. We will also often write uaa′ + ubb
′ + ucc

′ = 0
where a′ = ∏s

i=1 ai and similarly for b′ and c′. After relabeling if needed, we can
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assume that (2.1) holds. We note that if h (c′) ≤ 1 then straightforwardly the claim
holds. This is because necessarily h(a′) ≤ h(b′) ≤ h(c′) ≤ 1 and Theorem 2.1.3.1
readily follows from (3.2). Similarly, after some work we do below finding a bound
on h(c′), we see that if h(b′) ≤ 1 then again we’ll find the claim straightforwardly
follows, and the same logic will hold if h(a′) ≤ 1. Thus we assume in the following
that

1 < h(a′) ≤ h(b′) ≤ h(c′). (3.12)

Dividing through by ucc′ = c in (3.5) we obtain that

−uaa
′

ucc′ − ubb
′

ucc′ = 1, (3.13)

so we are in a position to apply Lemma 2.1.2.2.
Before doing this, we note that by the remarks around (3.1), logHL (a, b, c) =

logHL

(
a
c
, b
c
, 1
)
. This allows us to move between representatives of the projective

point [a : b : c] ∈ P2 (L).
First, following the notation from Lemma 2.1.2.2, initially take S to be the set of

infinite places of L. Applying this to (3.13), we obtain that

max
{
h
(

−ua
uc

)
, h

(
−ub
uc

)}
= max

{
h
(
ua
uc

)
, h

(
ub
uc

)}
≤ C14 (K) max

{
h

(
a′

c′

)
, h

(
b′

c′

)
, 1
}
. (3.14)

We note similar bounds also hold if we divide (3.5) through by uaa
′ or ubb′.

Recall that h (xy) ≤ h (x) + h (y) [6][56]. By this fact and our assumptions on
h(a′), h(b′) and h(c′), we deduce that

max
{
h

(
a′

c′

)
, h

(
b′

c′

)
, 1
}

≤ max {h (a′) + h (c′) , h (b′) + h (c′)} ≤ 2h (c′) .

It thus follows that

h

(
uaa

′

ucc′

)
≤ h

(
ua
uc

)
+ h (a′) + h (c′)

≤ C15h (c′) + 2h (c′)
= C16h (c′) . (3.15)
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Similarly, we also obtain that

h

(
ubb

′

ucc′

)
≤ C17h (c′) . (3.16)

We again apply Lemma 2.1.2.2, but this time with a different set of S-units.
Now let S = S∞ ∪ {p : p | cOL} where p refers both to the prime ideal p and its
corresponding place. Applying Lemma 2.1.2.2 in this case to (3.13), we obtain that

max
{
h
(
ua
ucc′

)
, h

(
ub
ucc′

)}
≤ C18 (K)

(
213.32Rd

)t ( NmL
Q (pc)

log∗ NmL
Q (pc)

)
 ∏

p∈OL
p|cOL

log NmL
Q (p)

max {h (a′) , h (b′) , 1}

≤ C18 (K)
(
213.32Rd

)t
NmL

Q (pc)
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h (b′) .

We note that, to make the argument easier to follow, we have brought out the
parts of the constant from Lemma 2.1.2.2 that depend on t. Again, L is defined
by K uniquely, hence the dependence of the constants here on K rather than L.
Further, by (3.12), we have that max {h (a′) , h (b′) , 1} = h (b′). We further note
that by (4.21) of [20] and the arguments that follow in that paper, we have that

(
213.32Rd

)t
≤
(
213.32d

)t2
Rt ≤ G

C19(K)
log logG .

Applying this to the above we obtain that

max
{
h
(
ua
ucc′

)
, h

(
ub
ucc′

)}
≤ C18 (K)G

C19(K)
log logGNmL

Q (pc)


∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h (b′) .

(3.17)
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From (3.17) we obtain that

h

(
uaa

′

ucc′

)
≤ h

(
ua
ucc′

)
+ h (a′)

≤ C18 (K)G
C19(K)
log logGNmL

Q (pc)


∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h (b′) + h (a′)

≤ C20 (K)G
C19(K)
log logGNmL

Q (pc)


∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h(b′). (3.18)

Similarly, we find that

h

(
ubb

′

ucc′

)
≤ C21 (K)G

C22(K)
log logGNmL

Q (pc)


∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h(b′). (3.19)

We now choose another set S, this time containing the infinite places and
the finite places corresponding to the prime ideals dividing bcOL; that is, S =
S∞ ∪ {p : p | bcOL}. Applying Lemma 2.1.2.2 to (3.13) with this S we obtain that

max
{
h
(
ua
ucc′

)
, h

(
ubb

′

ucc′

)}
≤ C23 (K)G

C24(K)
log logG max

{
NmL

Q (pb) , NmL
Q (pc)

}
 ∏

p∈OL
p|bcOL

log NmL
Q (p)

max {h (a′) , 1} . (3.20)
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From (3.12) and (3.20) we obtain that

h

(
uaa

′

ucc′

)
≤ h

(
ua
ucc′

)
+ h (a′)

≤ C25 (K)G
C26(K)
log logG max

{
NmL

Q (pb) , NmL
Q (pc)

}
· (3.21)

·

 ∏
p∈OL
p|bcOL

log NmL
Q (p)

h (a′) + h (a′)

≤
(

C27 (K)G
C26(K)
log logG max

{
NmL

Q (pb) , NmL
Q (pc)

})
· (3.22)

·


 ∏

p∈OL
p|bcOL

log NmL
Q (p)


h (a′) . (3.23)

Similarly, we find that

h

(
ubb

′

ucc′

)
≤ C28G

C29(K)
log logG max

{
NmL

Q (pb) , NmL
Q (pc)

} ∏
p∈OL
p|bcOL

log NmL
Q (p)

h(a′).

(3.24)

By consideration of (3.15), (3.16), we see that

max
{
h

(
uaa

′

ucc′

)
, h

(
ubb

′

ucc′

)}
< max {C16, C17}h (c′)

= C30h (c′) , (3.25)

while (3.18) and (3.19) show that
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max
{
h

(
uaa

′

ucc′

)
, h

(
ubb

′

ucc′

)}
< max {C20, C21}G

max{C22(K), C24(K)}
log logG NmL

Q (pc) · (3.26)
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h(b′)

= C31G
C32(K)
log logGNmL

Q (pc)


∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p)

h(b′).

(3.27)

In the same way, it follows from (3.21) and (3.24) that

max
{
h

(
uaa

′

ucc′

)
, h

(
ubb

′

ucc′

)}
< max {C27, C28}G

max{C26(K), C29(K)}
log logG ·

· max
{
NmL

Q (pb) , NmL
Q (pc)

} ∏
p∈OL
p|bcOL

log NmL
Q (p)

h(a′)

= C33G
C34(K)
log logG max

{
NmL

Q (pb) , NmL
Q (pc)

}
·

·

 ∏
p∈OL
p|bcOL

log NmL
Q (p)

h(a′). (3.28)

We next prove the following lemma.

Lemma 3.2.0.1. Let α ∈ {a, b, c}. Then

h (α′) ≤ C35

(
max
p|⟨α⟩L

ordp (α)
)

logG.

Proof. If α is a unit, then we define max ordp (α) := 1.
By construction of α′, we have that h (α′) ≤ C36 log NmL

Q (αOL). This follows
from the fact that

∣∣∣NL/Q (α′)
∣∣∣ =

∣∣∣NL/Q (α)
∣∣∣ = NmL

Q (αOL) .
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We write a factorisation of αOL = P
g1,L
1,L · · ·PguL,L

uL,L
into prime ideals of OL. Note

this may be different to the ideals given in (3.9), as the ideals in (3.9) may not be
prime. Working with this prime factorisation, we obtain that

log NmL
Q (αOL) = log

(
uL∏
i=1

NmL
Q

(
pui,Li,L

))

=
uL∑
i=1

ui,L log
(
NmL

Q (pi,L)
)

≤
(

max
p|⟨α⟩L

ordp (α)
)

logG.

The claim then follows.

It follows immediately from (3.2), (3.25) and Lemma 3.2.0.1 that
logHL (a, b, c)

C30 logG ≤ max
p|⟨c⟩L

ordp (c) . (3.29)

Similarly, it follows from (3.2), (3.26) and Lemma 3.2.0.1 that
logHL (a, b, c)

C31G
C32(K)
log logG logGNmL

Q (pc)

∏p∈OL
p|cOL
p̸=pc

log NmL
Q (p)


≤ max

p|⟨b⟩L
ordp (b) . (3.30)

Further, it follows from (3.2), (3.28) and Lemma 3.2.0.1 that
logHL (a, b, c)

C33G
C34(K)
log logG logG max

{
NmL

Q (pb) , NmL
Q (pc)

}(∏
p∈OL
p|bcOL

log NmL
Q (p)

)
≤ max

p|⟨b⟩L
ordp (a) . (3.31)

We will use Lemma 3.1.0.3 to establish upper bounds for the right-hand sides of
(3.29), (3.30) and (3.31). In order to do this we need to write ordp (c), ordp (b) and
ordp (a) in a form where we’re able to use Lemma 3.1.0.3.

By the coprimeness of aOL, bOL and cOL we see that

ordp (c) = ordp

(
c

b

)
= ordp

(
−a− b

b

)

= ordp

(
−a

b
− 1

)
= ordp

(
−ua
ub
ae1

1 · · · aett b
f1
1 . . . bfuu − 1

)
. (3.32)
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Similarly we find that

ordp (b) = ordp

(
−uc
ua
cg1

1 · · · cgvv a−e1
1 . . . a−et

t − 1
)
, (3.33)

and

ordp (a) = ordp

(
−ub
uc
bf1

1 · · · bfuu c
−g1
1 . . . c−gv

v − 1
)
. (3.34)

To apply Lemma 3.1.0.3 we need to bound exponents ei, fj, gk and bound the
heights of the units h (ua) , h (ub) and h (uc).

First note that

max {ordp (a) , ordp (b) , ordp (c)} ≤ logHL (a, b, c) , (3.35)

directly from the definition of HL.
This follows from the definitions of projective and absolute logarithmic heights.
In order to use Yu’s bound, we need to manage the heights of ua, ub and uc. To

do this, we will use fundamental units of O∗
L. By Dirichlet’s Unit Theorem, there

exist fundamental units ξ1, . . . , ξr of OL, where r is the unit rank of OL such that
all units u of OL can be written u = µξδ1

1 · · · ξδrr , with µ a root of unity. We note
again that finding a set of fundamental units is computable, for example see [9], and
we can find a nice system satisfying (3.1.0.1). Indeed, we could use any system of
fundamental units, but this choice is helpful should one wish to explicitly compute
the constants. Thus once found, the product ∏r

i=1 h
′(ξi) we will obtain applying

Lemma 3.1.0.3 can be upper bounded constants depending on the field. It remains
to find an upper bound for maxi δi.

Note that (3.14) gives us that

h
(
ua
uc

)
≤ C37h (c′) .

Further,

h (c′) ≤ C38 (K) log
∣∣∣NL/Q (c)

∣∣∣ ≤ C39 (K)h (c) ≤ C40 (K) logHL(a, b, c).

It follows from the above comments that

h
(
ua
uc

)
≤ C41 (K) logHL(a, b, c). (3.36)
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Let L have r1 real embeddings ϵ1, . . . , ϵr1 and 2r2 complex embeddings
ϵr1+1, ϵr1+1, . . . , ϵr2 , ϵr2 . By Dirichlet’s Unit Theorem, there are r := r1 + r2 − 1
fundamental units ξ1, . . . , ξr, such that for any unit u ∈ O∗

L, u = µξδ1
1 · · · ξδrr where µ

is a root of unity in L and δi ∈ Z for all i.
We now prove a lemma that gives an upper bound for maxi |δi|.

Lemma 3.2.0.2. Given the set up above,

max
i

{|δi| , 3} ≤ C42 (K) logHL(a, b, c). (3.37)

Proof. We consider the unit u = ua
uc

, but this choice is arbitrary and the logic that
follows holds for all relevant quotients of the units ua, ub and uc. Write, as we do
above, u = µξδ1

1 · · · ξδrr where µ is a root of unity in L and δi ∈ Z for all i. As shown
in the proof of inequality 4.3.2 in [17], it is shown that

max {3, |δ1| , . . . , |δr|} ≤ C43(L)h(u).

As L depends only on K, the dependency in the constant is really only on K. We
remark that in the notation of [17], S consists only of the infinite places of the field
L.

We have shown above at (3.36) that

h (u) = h
(
ua
uc

)
≤ C41 (K) logHL(a, b, c).

Combining these inequalities gives the result.

Out of interest, we give an alternative proof, which gives us one way to see where
inequality 4.3.2 of [17] comes from.

Second proof of Lemma 3.2.0.2. Recall that there are r + 1 distinct embeddings of
L into C. Let us denote these embeddings by ei, i = 1 . . . , r + 1 . Furthermore for
all i = 1 . . . , r + 1, let us define

εi : L → R

α → log |ei(α)|.

Let u be an element of L. We see that

h (u) = 1
2

r+1∑
i=1

Ni |εi (u)| ,
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where Ni = 1 if the image of ei is a subset of R, and Ni = 2 in the complimentary
case, when the image of ei is not a subset of R. This is because

h(u) =
r+1∑
i=1

Ni log max (|ei(u), 1|) = −
r+1∑
i=1

Ni log min (|ei(u), 1|) ,

where Ni is defined as above. Thus

2h(u) =
r+1∑
i=1

Ni log max (|ei(u), 1|) −
r+1∑
i=1

Ni log min (|ei(u), 1|)

=
r+1∑
i=1

Ni |log |ei(u)||

=
r+1∑
i=1

Ni |εi(u)| ,

and thus the identity follows.
We now take advantage of some properties of ua, ub and uc so we will write them

explicitly. In what follows we use the case u = ua
uc

, but it is true for the other relevant
quotients of ua, ub and uc. Write ua

uc
= µξδ1

1 · · · ξδrr where µ is a root of unity. From
the comments above it follows that

h
(
ua
uc

)
= 1

2

r+1∑
i=1

Ni

∣∣∣∣∣∣εi
µ r∏

j=1
ξ
δj
j

∣∣∣∣∣∣
= 1

2

r+1∑
i=1

Ni

∣∣∣∣∣∣
r∑
j=1

δjεi(ξj)
∣∣∣∣∣∣ ,

(3.38)

where we lose the µ as it is a root of unity, so for all i, εi (µ) = 0.
From (3.36), we know that h

(
ua
uc

)
≤ C41 logHL(a, b, c), giving us an upper bound

for the absolute logarithmic height of the unit. Along with (3.38), this implies that,
for all i = 1, . . . , r + 1, we have∣∣∣∣∣∣

r∑
j=1

δjεi(ξj)
∣∣∣∣∣∣ < C44 (K) logHL(a, b, c). (3.39)

That is, (3.36) implies that all the exponents δj, j = 1, . . . , r satisfy (3.39). This
holds for all εi, i = 1, . . . , r + 1, so (3.39) gives us a system of r + 1 inequalities.

We pick any r inequalities of r+1 in the system (3.39). For the sake of concreteness,
let us take the first r inequalities. We are going to deduce the upper bound for the
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system of inequalities (3.39) where i = 1, . . . , r. Note that the left-hand side of these
inequalities are coordinates of the vector

M


δ1
...
δr

 ,

where the matrix M is defined by

M := (εi(ξj))1≤i,j≤r.

By definition, the absolute value of determinant of M is equal to the regulator of the
number field L, and is thus non-zero. Hence M is non-degenerate. Importantly, the
matrix M depends only on the number field L. Further, as the value of the regulator
is independent of the choice of the r inequalities we picked, it shows that our choice
of inequalities is irrelevant and we obtain the same result given a different choice of
r inequalities from the r + 1 in (3.39).

It follows that the solutions to the system of inequalities (3.39) for i = 1, . . . , r
are given by M−1B, where B is an r-dimensional cube
[−C44 (K) logHL (a, b, c) , C44 (K) logHL (a, b, c)]r. Thus these solutions form a
parallepiped, the form of which depends on M (hence eventually on L only, which
is uniquely determined by K) and the linear size is given by C45 (K) logHL(a, b, c).
This means that the solutions δi have an upper bound of the form

C46C45 logH(a, b, c)

, where the constant C46 depends on M (hence actually depends on K) only. We
thus conclude that

max
i

|δi| ≤ C47 (K) logHL(a, b, c),

as claimed.

Importantly, as commented during the proof, the method is not changed if we
choose a different unit such as ua

ub
and so on. Thus this lemma holds for all relevant

units in this paper.
We return to considering (3.32). We can now use the above after writing the

unit in terms of fundamental units as follows:
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ordp (c) = ordp

(
−ua
ub
ae1

1 · · · aett b
f1
1 . . . bfuu − 1

)
= ordp

(
µξδ1

1 · · · ξδrr ae1
1 · · · aett b

f1
1 · · · bfuu − 1

)
(3.40)

where µ is a root of unity. We are in a position to apply Lemma 3.1.0.3. Using
the notation of Lemma 3.1.0.3, from (3.35) and Lemma 3.2.0.2 we obtain that
logB ≤ C48 (K) log logHL(a, b, c).

Applying Lemma 3.1.0.3 on (3.40), we obtain that

ordp (c) <C49 (K)r+t+u+2 (r + t+ u+ 1)5/2 log (2d (r + t+ u+ 1))
NmL

Q (pc)(
log NmL

Q (pc)
)2

h′(µ)h′(ξ1) · · ·h′(ξr)h′(a1) · · ·h′(at)h′(b1) · · ·h′(bu) log logHL(a, b, c).
(3.41)

Note that h (µ) = 0 as µ is a root of unity so h′(µ) = 1
16e2d2 , which we take into the

constant. Further, we recall our system of fundamental units satisfies (3.1.0.1) so we
take ∏r

i=1 h
′(ξi) into the constant.

We further note that
∣∣∣NL/Q (ai)

∣∣∣ = NmL
Q (⟨ai⟩) =

(
NmK

Q (pi)
)fK , and similarly

for bj and ck [29]. We recall that by definition, fK ≤ d [38]. Further, the norms of
all these prime ideals are greater than 1, so for all x ∈ {a1, . . . , as, b1, . . . , bt} , if
ax is the prime ideal associated with x, h′(x) ≤ C50 (K) log NmK

Q (ax). Putting this
together with the inequality above, with other bounds used as necessary, we obtain
that

ordp (c) ≤C51 (K)t+u (r + t+ u+ 1)7/2 log logHL(a, b, c)

NmL
Q (pc)

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
. (3.42)

Similarly, we see that by considering (3.33) in the same way as above, we obtain
that

ordp (b) = ordp

(
−uc
ua
cg1

1 · · · cgvv a−e1
1 . . . a−et

t − 1
)

= ordp

(
µ′ξ

δ′
1

1 · · · ξδ′
r
r c

g1
1 · · · cgvv a−e1

1 . . . a−et
t − 1

)
. (3.43)

Following the same line of reasoning as above we obtain that

ordp (b) ≤C52 (K)t+v (r + t+ v + 1)7/2 log logHL(a, b, c)

NmL
Q (pb)

t∏
i=1

log
(
NmK

Q (pi)
)

·
v∏
j=1

log
(
NmK

Q (rj)
)
. (3.44)
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In the same way, by considering (3.34) we further obtain that

ordp (a) = ordp

(
−ub
uc
bf1

1 · · · bfuu c
−g1
1 . . . c−gv

v − 1
)

= ordp

(
µ′′ξ

δ′
1

1 · · · ξδ′
r
r b

f1
1 · · · bfuu c

−g1
1 . . . c−gv

v − 1
)
, (3.45)

and as before, applying Lemma 3.1.0.3 gives us that

ordp (a) ≤C53 (K)u+v (r + u+ v + 1)7/2 log logHL(a, b, c)

NmL
Q (pa)

u∏
i=1

log
(
NmK

Q (qi)
)

·
v∏
j=1

log
(
NmK

Q (rj)
)
. (3.46)

From this point, all constants depend on the field K, in particular on the degree
of the field d, so we omit these dependencies.

By combining (3.29) and (3.42) we obtain that

logHL(a, b, c)
log logHL(a, b, c) <Ct+u54 (r + t+ u+ 1)7/2 logG · NmL

Q (pc)

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
. (3.47)

Similarly, combining (3.30) and (3.44) gives us that

logHL(a, b, c)
log logHL(a, b, c) <Ct+v55 G

C32(K)
log logG (r + t+ v + 1)7/2 logG · NmL

Q (pb) · NmL
Q (pc)

t∏
i=1

log
(
NmK

Q (pi)
)

·
v∏
j=1

log
(
NmK

Q (rj)
)

·
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) .

(3.48)

Applying the same idea, combining (3.31) and (3.46) gives us that

logHL(a, b, c)
log logHL(a, b, c) <Cu+v

56 G
C34(K)
log logG (r + u+ v + 1)7/2 logG · NmL

Q (pa) ·

· max
{
NmL

Q (pb) , NmL
Q (pc)

} u∏
i=1

log
(
NmK

Q (pi)
)

·

·
v∏
j=1

log
(
NmK

Q (rj)
)

·
∏

p∈OL
p|bcOL

log NmL
Q (p) . (3.49)

Multiplying together (3.47), (3.48) and (3.49) and bounding some terms for ease,
we obtain that
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(
logHL(a, b, c)

log logHL(a, b, c)

)3

<Ct+u+v
57 G

C58
log logG (r + t+ u+ v)21/2 (logG)3 ·

·
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2
)

·

·
(
max

{
NmL

Q (pb) , NmL
Q (pc)

})( t∏
i=1

log
(
NmK

Q

)
(pi)

)3

·

·

 u∏
j=1

log
(
NmK

Q (qj)
)3

·
(

v∏
k=1

log
(
NmK

Q (rk)
))3

·

·
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) ·

∏
p∈OL
p|bcOL

log NmL
Q (p) . (3.50)

We note that r depends on the field, so we can write (r + (t+ u+ v))21/2 ≤
C59 (t+ u+ v)21/2. Further, for sufficiently large C60 this will absorb (t+ u+ v)21/2,
so we can move this into the constant. We thus obtain that

(
logHL(a, b, c)

log logHL(a, b, c)

)3

<Ct+u+v
61 G

C58
log logG (logG)3 ·

·
(
NmL

Q (pa) NmL
Q (pb)

)
NmL

Q (pc)2 ·

· max
{
NmL

Q (pb) , NmL
Q (pc)

}
·
(

t∏
i=1

log
(
NmK

Q (pi)
))3

·

·

 u∏
j=1

log
(
NmK

Q (qj)
)3

·
(

v∏
k=1

log
(
NmK

Q (rk)
))3

·

·
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) ·

∏
p∈OL
p|bcOL

log NmL
Q (p) . (3.51)

Next we aim to deal with
t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)

·
v∏
k=1

log
(
NmK

Q (rk)
)
.

First note that NmK
Q (P)hK = NmL

Q (POL), where P is a prime ideal of OK . We
follow an idea from the first part of Section 3 of [52]. Let N be the number of prime
ideals of OL such that the prime ideal P | (abc) OL. By definition, these all lie above
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primes p of OK , so N ≥ t+ u+ v. Thus from these comments and Lemma 3.1.0.4
we obtain that (

t+ u+ v

C62

)t+u+v
≤
(
N

C63

)N
< G, (3.52)

where C63 is the constant given by Lemma 3.1.0.4. It follows that

t+ u+ v < C64
logG

log logG. (3.53)

By the arithmetic-geometric mean inequality we obtain that

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)

·
v∏
k=1

log
(
NmK

Q (rk)
)

≤

 1
t+ u+ v

 t∑
i=1

log
(
NmK

Q (pi)
)

+
u∑
j=1

log
(
NmK

Q (qj)
)

+
v∑
k=1

log
(
NmK

Q (rk)
)t+u+v

≤


1

t+ u+ v

∑
P⊂OL
Pprime

P|(abc)OL

log
(
NmL

Q (P)
)

t+u+v

≤
(

logG
t+ u+ v

)t+u+v

. (3.54)

It follows from (3.53) and (3.54) that

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)

·
v∏
k=1

log
(
NmK

Q (rk)
)
< GC65

log log logG
log logG . (3.55)

The same logic can be used to show that
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) < GC66

log log logG
log logG , (3.56)

and that ∏
p∈OL
p|bcOL

log NmL
Q (p) < GC67

log log logG
log logG .

We note that for large enough constant C68 or large enough G,

G
C69

log logG < GC68
log log logG

log logG .
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Applying these to (3.51), we obtain that
(

logHL(a, b, c)
log logHL(a, b, c)

)3

<Ct+u+v
70 (logG)3

(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2
)

·

· max
{
NmL

Q (pb) , NmL
Q (pc)

}
·GC71

log log logG
log logG . (3.57)

Further, from Lemma 3.1.0.4 we obtain that

Ct+u+v
70 < G

C72
log logG . (3.58)

Further, note that logG = G
log logG

logG . Thus we obtain that
(

logHL(a, b, c)
log logHL(a, b, c)

)3

<
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2
)

·

· max
{
NmL

Q (pb) , NmL
Q (pc)

}
GC73( log log logG

log logG + 1
log logG+ log logG

logG ). (3.59)

We take the cube root of both sides, before applying Lemma 3.1.0.5, obtaining

logHL(a, b, c) <
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2 max
{
NmL

Q (pb) , NmL
Q (pc)

}) 1
3

GC74( log log logG
log logG + 1

log logG+ log logG
logG ). (3.60)

Note, the dominant term in the power of G is log log logG
log logG . Combining this with

the above proves Theorem 2.1.3.1.

3.2.1 Corollaries of Theorem 2.1.3.1

In this section we show various corollaries of Theorem 2.1.3.1. The first two corollaries
depend on the Class Group of K and the ideals that pb and pc lie above.

Corollary 3.2.1.1. Assume that NmL
Q (pb) > NmL

Q (pc) and that pb and pc both lie
over prime ideals of OK that do not generate the class group of K. Then

logHL(a, b, c) < G
1
3 +C75

log log logG
log logG . (3.61)
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Proof. By assumption,(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2 max
{
NmL

Q (pb) , NmL
Q (pc)

})
=
(
NmL

Q (pa) NmL
Q (pb)2 NmL

Q (pc)2
)
.

Recall that in the Hilbert Class Field L, a prime ideal p of OK splits into hK
P

prime
ideals of OL, where P is the order of [p] in the Class Group of K. By assumption,
there must be at least two prime ideals dividing bOL with the same norm NmL

Q (pb),
and similarly for NmL

Q (pc).
It follows that (

NmL
Q (pa) NmL

Q (pb)2 NmL
Q (pc)2

)
≤ G,

and the claim follows.

Corollary 3.2.1.2. Assume that NmL
Q (pb) < NmL

Q (pc) and that pc lies above a
prime ideal of OK that has order greater than 2 in the class group of K. Then

logHL(a, b, c) < G
1
3 +C76

log log logG
log logG . (3.62)

Proof. By assumption,(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)2 max
{
NmL

Q (pb) , NmL
Q (pc)

})
=
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)3
)
.

By the comments in the proof of the previous corollary, our assumption here
gives us that there are at least 3 prime ideals of OL dividing cOL with the same
norm, NmL

Q (pc). It follows that(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc)3
)

≤ G,

and the claim follows.

The following corollary holds regardless of the class field of K.

Corollary 3.2.1.3. Assume that NmL
Q (pb) > NmL

Q (pc). Then

logHL(a, b, c) < G
2
3 +C77

log log logG
log logG .

Proof. Note that NmL
Q (pa) NmL

Q (pb) NmL
Q (pc) ≤ G. Further, by assumption

NmL
Q (pc) max

{
NmL

Q (pb) , NmL
Q (pc)

}
= NmL

Q (pb) NmL
Q (pc)

≤ G.

Thus the corollary follows.
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Corollary 3.2.1.4. Assume that NmL
Q (pa) > NmL

Q (pb) > NmL
Q (pc) . Then

logHL(a, b, c) < G
5
9 +C78

log log logG
log logG .

If max
{
NmL

Q (pb) , NmL
Q (pc)

}
= NmL

Q (pc) then we obtain that

logHL(a, b, c) < G
2
3 +C79

log log logG
log logG .

Proof. By assumption, NmL
Q (pb) NmL

Q (pc) ≤ G
2
3 and NmL

Q (pb) ≤ G
1
2 , NmL

Q (pc) ≤
G

1
3 . Applying this to Theorem 2.1.3.1 gives both parts of the corollary.

Remark. If we assume that none of a, b, c are units of OK then the only as-
sumption we need to obtain the first inequality in the corollary above is that
max

{
NmL

Q (pa) , NmL
Q (pb) , NmL

Q (pc)
}

= NmL
Q (pa). This follows as then by assump-

tion, NmL
Q (pb) ≤ G

1
3 , NmL

Q (pc) ≤ G
1
3 . The argument follows.

We now present some corollaries that depend on the value of

max
{
NmL

Q (pb) , NmL
Q (pc)

}
.

Corollary 3.2.1.5. Assume that max
{
NmL

Q (pb) , NmL
Q (pc)

}
< (logHL (a, b, c))α

for 0 < α < 2
3 . Then

logHL(a, b, c) < G
1

3−2α+C80
log log logG

log logG .

Proof. Consider (3.59). Applying the assumption, we can rewrite this as(
logHL(a, b, c)

log logHL(a, b, c)

)3

< G (logHL(a, b, c))2αGC81
log log logG

log logG .

Dividing through by (logHL(a, b, c))2α we obtain that

(logHL(a, b, c))3−2α

(log logHL(a, b, c))3 < G1+C82
log log logG

log logG .

Taking the 3 − 2α’th root and applying a variant of Lemma 3.1.0.5 gives the
result.

Corollary 3.2.1.6. Assume that NmL
Q (pmax) < (logHL (a, b, c))α for 0 < α < 3

5 .
Then

logHL (a, b, c) < G
C83

3−5α
log log logG

log logG

= GC84
log log logG

log logG . (3.63)
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Remark. We note that we can write this in the following terms. For any given ε > 0,
given the assumptions of the theorem and corollary there is a computable number
C85 such that

logHL (a, b, c) < GC85·ε.

Proof. Consider Theorem 2.1.3.1. By assumption,

logHL (a, b, c) < (logHL (a, b, c))
5α
3 G

log log logG
log logG .

Dividing through, we obtain that

(logHL (a, b, c))1− 5α
3 < G

log log logG
log logG .

Take the 1
1− 5α

3
’th root and the result follows.

3.3 METHOD ONLY USING TWO S-UNIT BOUNDS

Part of the difficulty in analysing cases in the previous section comes from the number
of prime ideals on the right hand side of (3.60). If we only use two S-unit bounds
then, while in general the bound is worse, it is easier to analyse for corollaries. We
now prove Theorem 2.1.3.2, as stated in the Chapter 2.

We follow the main text until (3.26). We then do not use the S-unit bound
obtained by letting S be equal to the infinite places and finite places corresponding
to the prime ideals of OL dividing bcOL. Following the argument of the main text,
we obtain (3.47) and (3.48). Multiplying these together we obtain that(

logHL(a, b, c)
log logHL(a, b, c)

)2

<Ct+u+v
86 G

C32
log logG (r + t+ u+ v)7 (logG)2

(
NmL

Q (pb) NmL
Q (pc)2

)( t∏
i=1

log
(
NmK

Q (pi)
))2

 u∏
j=1

log
(
NmK

Q (qj)
)2

·
(

v∏
k=1

log
(
NmK

Q (rk)
))2

·

∏
p∈OL
p|cOL
p̸=pc

log NmL
Q (p) . (3.64)
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From here we follow the arguments of the proof of the main theorem, obtaining(
logHL(a, b, c)

log logHL(a, b, c)

)2

<
(
NmL

Q (pb) NmL
Q (pc)2

)
GC87( log log logG

log logG + 1
log logG+ log logG

logG ).

(3.65)
We take the square root of both sides, before applying Lemma 3.1.0.5, obtaining

logHL(a, b, c) <
(
NmL

Q (pb) NmL
Q (pc)2

) 1
2 GC88( log log logG

log logG + 1
log logG+ log logG

logG )

= NmL
Q (pb)

1
2 NmL

Q (pc)GC89( log log logG
log logG + 1

log logG+ log logG
logG ). (3.66)

Again, log log logG
log logG is the dominant term in the exponent of G. This completes the

proof of Theorem 2.1.3.2.
From this point, there are many corollaries we can find, similarly to in the

previous section. However, given that there are fewer prime ideal on the right hand
side of (3.66), they are generally easier to prove. Further, Theorem 2.1.3.1 and
Theorem 2.1.3.2 are independent, so if NmL

Q (pa) is sufficiently large in comparison
to NmL

Q (pb) and NmL
Q (pc), Theorem 2.1.3.2 could give a better bound.

3.3.1 Corollaries Of Theorem 2.1.3.2

This corollary relies on the class group of OK .

Corollary 3.3.1.1. Assume that the prime ideal r ⊂ OK that pc ⊂ OL lies above
does not generate the class group of K. Then there exits an effectively computable
constant C90 such that

logHL(a, b, c) < G
1
2 +C90

log log logG
log logG .

Proof. Let r be a prime ideal of OK dividing cOK such that pc ⊂ OL lies above r.
Assume that r does not generate the class group of K. Then in L = HCF (K), r
splits into hK/P prime ideals, where hK is the class number of K and P is the order
of [r] in CK [11] [38]. As r does not generate the class group of K, then the order of
[r] is at least 2. As r splits in OL, we know that all prime ideals lying above r in
OL have the same norm. By assumption, we have at least two such ideals in OL, so
NmL

Q (pb)
(
NmL

Q (pc)
)2
< G. More explicitly, there is another prime ideal p′

c of OL

lying above r such that NmL
Q (pc) = NmL

Q (p′
c). It then follows from Theorem 2.1.3.2

that
logHL(a, b, c) < G

1
2 +C90

log log logG
log logG .
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The following corollaries give different bounds depending on pmax or max ordp (c).

Corollary 3.3.1.2. Assume that

NmL
Q (pc) < Gα

with 0 < α < 1, or that
max ordp (c) < Gα

with 0 < α < 1. Then there exits an effectively computable constant C91 such that

logHL(a, b, c) < G
1+α

2 +C91
log log logG

log logG . (3.67)

Further, if max
{
NmL

Q (pb) , NmL
Q (pc)

}
< Gα then

logHL(a, b, c) < G
3α
2 +C92

log log logG
log logG . (3.68)

Remark. We note that 3α
2 < 1 for α < 2

3 , and further that 3α
2 < 1+α

2 for α < 1
2 . Thus,

our second bound is better than our first given in this corollary for α < 1
2 .

Corollary 3.3.1.3. Assume that NmL
Q (pmax) > Gα for α > 1

3 , and that pa = pmax.
Then

logHL(a, b, c) < G
3−3α

2 +C93
log log logG

log logG .

If NmL
Q (pmax) ≤ G

1
3 it follows directly from Theorem 2.1.3.2 that

logHL(a, b, c) < G
1
2 +C94

log log logG
log logG .

Remark. Note we have the assumption that α > 1
3 in order to make sure that

3−3α
2 < 1.

Further, the second inequality given is the same case as α = 1
3 in the last part of

Corollary 3.3.1.2.

Proof. We first assume that NmL
Q (pc) < Gα where α ∈ (0, 1). Thus

NmL
Q (pb) NmL

Q (pc)2 < G1+α < G2.

Thus from Theorem 2.1.3.2, we obtain that
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logHL(a, b, c) < G
1+α

2 +C95
log log logG

log logG . (3.69)

We now assume that max ordp (c) < Gα for some α ∈ (0, 1). Then, in place of
(3.42), we have that for all p | cOL, ordp (c) < Gα. It follows from (3.29) that

logHL(a, b, c) < C96 (logG)Gα.

We note that for α < 1
2 , this bound is actually better than the bound that follows.

As in the proof for the main theorem, (3.48) still holds. Multiplying the above
and (3.48) we obtain that

(logHL(a, b, c))2

log logHL(a, b, c) <Ct+v97 (r + t+ v + 1)
7
2 (logG)2 GαNmL

Q (pb) · NmL
Q (pc)

t∏
i=1

log
(
NmK

Q (pi)
)

·
v∏
j=1

log
(
NmK

Q (rj)
)

·
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) .

(3.70)

We note that NmL
Q (pb) · NmL

Q (pc) ≤ G. Further, we can use the techniques from
above to tidy terms in the same way as we did for the main theorem to obtain

(logHL(a, b, c))2

log logHL(a, b, c) < G1+αGC98
log log logG

log logG . (3.71)

Taking the square root and applying a variant of Lemma 3.1.0.5, we obtain that

logHL(a, b, c) < G
1+α

2 +C99
log log logG

log logG . (3.72)

This proves the first part of Corollary 3.3.1.2. The further comments follow
directly from Theorem 2.1.3.2 when we bound NmL

Q (pb) and NmL
Q (pc) above by Gα.

This gives us that
logHL(a, b, c) < G

3α
2 +C100

log log logG
log logG ,

as claimed, where 3α
2 < 1 for α < 2

3 , and is a better bound than given above for
α < 1

2 .
It also follows directly from Theorem 2.1.3.2 that if

max
{
NmL

Q (pb) , NmL
Q (pc)

}
< Gα,

then
logHL(a, b, c) < G

3α
2 +C101

log log logG
log logG .



66 Chapter 3. Proofs of the Main abc Theorems

Corollary 3.3.1.4. Assume now that NmL
Q (pc) < (logHL(a, b, c))α with 0 < α < 1,

or that
max ordp (c) < (logHL(a, b, c))α with 0 < α < 1. Then there exits an effectively
computable constant C102 such that

logHL(a, b, c) < G
1

2−α+C102
log log logG

log logG .

Furthermore, if max
{
NmL

Q (pb) , NmL
Q (pc)

}
< (logHL(a, b, c))α for α < 2

3 , then
directly from Theorem 2.1.3.2 we obtain that

logHL(a, b, c) < G
C103
2−3α

log log logG
log logG

= GC104
log log logG

log logG . (3.73)

This is the best bound we achieve in this text.

Remark. We note that the second inequality in this corollary gives a sub-exponential
bound, an improvement on the bounds given in [51][52].

To more easily compare with existing results, we note we can slightly weaken
this upper bound. Inequality (3.73) implies that given any ε > 0 there exists some
computable C105 such that

logHL (a, b, c) < GC105·ϵ,

where importantly C105 does not depend on ϵ.

Proof. We first assume that NmL
Q (pc) < (logHL (a, b, c))α with α ∈ (0, 1). Then

from this assumption and (3.65), we obtain that

(logHL(a, b, c))2−α

(log logHL(a, b, c))2 < G ·GC106
log log logG

log logG . (3.74)

By assumption, 2 − α > 1, and we take this root to obtain that

logHL(a, b, c)
(log logHL(a, b, c))

2
2−α

< G
1

2−α+C107
log log logG

log logG . (3.75)

Note that 1 > 1
2−α >

1
2 . Applying a variant of Lemma 3.1.0.5, we obtain that

logHL(a, b, c) < G
1

2−α+C108
log log logG

log logG . (3.76)
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Now instead assume that max ordp (c) < (logHL(a, b, c)α for some α ∈ (0, 1).
Then as above, from (3.29) we obtain that

logHL(a, b, c) < C109 logG (logHL(a, b, c))α .

It immediately follows that

(logHL(a, b, c))1−α < C109 logG.

Again, we still have (3.48), as obtained by following the main argument. We
multiply (3.48) by the above to obtain

(logHL(a, b, c))2−α

log logHL(a, b, c) <Ct+v110 (r + t+ v + 1)
7
2 (logG)2 NmL

Q (pb) · NmL
Q (pc)

t∏
i=1

log
(
NmK

Q (pi)
)

·
v∏
j=1

log
(
NmK

Q (rj)
)

·
∏

p∈OL
p|cOL
p̸=pc

log NmL
Q (p) .

(3.77)

As before, we can use the same method of tidying as in the proof of the main
theorem to show that

(logHL(a, b, c))2−α

log logHL(a, b, c) < G1+C111
log log logG

log logG .

Taking the 2 −α’th root and applying a variant of Lemma 3.1.0.5, we obtain that

logHL(a, b, c) < G
1

2−α+C112
log log logG

log logG .

This concludes the proof of the first part of Corollary 3.3.1.4.
To see the strongest case, we appeal directly to Theorem 2.1.3.2. Assume that

Nm (pmax) < log (HL(a, b, c))α

with α < 2
3 . Then we can bound NmL

Q (pb) and NmL
Q (pc) above by log (HL(a, b, c))α,

obtaining

logHL(a, b, c) < (logHL(a, b, c))
3α
2 GC113( log log logG

log logG + 1
log logG+ log logG

logG ).

It then follows that

(logHL(a, b, c))1− 3α
2 < GC113( log log logG

log logG + 1
log logG+ log logG

logG ).
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Taking the 1
1− 3α

2
’th root gives us the result, namely that

logHL(a, b, c) < G
C113
2−3α( log log logG

log logG + 1
log logG+ log logG

logG ).

Finally, we recall that the dominant term in the exponent is log log logG
log logG , so we

obtain that
logHL(a, b, c) < G

C114
2−3α( log log logG

log logG ).

As commented in the statement of the theorem, this is of the form

logHL(a, b, c) < GC115·ϵ.

Remark. While the assumptions are hard to compare due to their different natures,
we can see that for all α ∈ (0, 1), 1+α

2 ≥ 1
2−α . Thus, generally speaking, the bound

of Corollary 3.3.1.4 is better than that of Corollary 3.3.1.2. More concretely, given
(a, b, c) that satisfy the assumptions of both Corollary 3.3.1.2 and 3.3.1.4, Corollary
3.3.1.4 gives a better bound in terms of the radical G than that of Corollary 3.3.1.2.

Corollary 3.3.1.5. Assume that NmL
Q (pmax) > Gα for α > 1

3 , and that pa = pmax.
Then

logHL(a, b, c) < G
3−3α

2 +C116
log log logG

log logG .

If NmL
Q (pmax) ≤ G

1
3 it follows directly from Theorem 2.1.3.2 that

logHL(a, b, c) < G
1
2 +C117

log log logG
log logG .

Remark. Note we have the assumption that α > 1
3 in order to make sure that

3−3α
2 < 1.

Further, the second inequality given is the same case as α = 1
3 in the last part of

Corollary 3.3.1.2.

Proof. Assume that NmL
Q (pmax) > Gα, and assume that pa = pmax. Then considering

(3.66), we note that
NmL

Q (pb) NmL
Q (pc)2 <

(
G1−α

)3
,

so (
NmL

Q (pb) NmL
Q (pc)2

) 1
2 < G

3−3α
2 .
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It follows that
logHL(a, b, c) < G

3−3α
2 +C118

log log logG
log logG . (3.78)

We note that 3−3α
2 < 1 for α > 1

3 .

Corollary 3.3.1.6. Assume ordpcc < Gα for 0 < α ≤ 1. Then

logHL (a, b, c) < Gmax{α, 3
4}+C119

log log logG
log logG .

Proof. Assume that ordpcc < Gα.
Note that we can write

max
p|⟨c⟩L

ordp (c) = max

max
p|cOL
p̸=pc

ordp (c) , ordpc (c)

 .
By assumption, we attain the bound

max
p|⟨c⟩L

ordp (c) = max

max
p|cOL
p̸=pc

ordp (c) , Gα

 . (3.79)

From the above and (3.29), it follows directly that

logHL (a, b, c) < C120 logGmax

max
p|cOL
p̸=pc

ordp (c) , Gα

 . (3.80)

We now consider cases depending on NmL
Q (pc).

First assume that NmL
Q (pmax) < G

1
2 . Then we can directly use Corollary 3.3.1.2

to obtain the bound given there, namely

logHL(a, b, c) < G
3
4 +C121

log log logG
log logG .

Thus from the above and (3.80), we obtain that

logHL (a, b, c) < Gmax{ 3
4 , α}+C122

log log logG
log logG

Assume now instead that NmL
Q (pmax) ≥ G

1
2 . It immediately follows that for all

other prime ideals p contributing to G, we have that NmL
Q (p) < G

1
2 .

Consider now maxp|cOL
p̸=pc

ordp (c). We apply Yu’s bound as before on this, taking

the above comments into consideration. It follows that

max
p|cOL
p̸=pc

ordp (c) <Ct+u123 (r + t+ u+ 1)7/2 log logHL(a, b, c)NmL
Q (p)

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
, (3.81)
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where NmL
Q (p) < G

1
2 . Following the same logic as the main text, we obtain that

logHL(a, b, c)
log logHL(a, b, c) <Ct+u124 (r + t+ u+ 1)7/2 logG ·G

1
2

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
. (3.82)

Note that (3.48) still holds, and NmL
Q (pb) NmL

Q (pc) ≤ G. Multiplying (3.48) and
(3.82), tidying terms as we do in the text, and considering (3.80), we obtain that

logHL (a, b, c)
log logHL (a, b, c) <max

{
G

3
4 +C125

log log logG
log logG , Gα+C126

log log logG
log logG

}
. (3.83)

More concisely, after applying Lemma 3.1.0.5, we obtain that

logHL (a, b, c) < Gmax{α, 3
4}+C127

log log logG
log logG . (3.84)

Thus, in either case depending on NmL
Q (pmax), we obtain that

logHL (a, b, c) < Gmax{α, 3
4}+C128

log log logG
log logG . (3.85)

Corollary 3.3.1.7. Assume that ordpcc < (logHL (a, b, c))α for 0 < α < 1. Then

logHL (a, b, c) < max
{
G

3
4 +C129( log log logG

log logG ), C130 (logG)
1

1−α

}
.

Proof. Assume that ordpc(c) < (logHL(a, b, c))α for some 0 < α < 1. As in Corollary
3.3.1.6 it immediately follows that

max
p|⟨c⟩L

ordp (c) = max

max
p|cOL
p̸=pc

ordp (c) , ordpc (c)


≤ max

max
p|cOL
p̸=pc

ordp (c) , (logHL (a, b, c))α
 . (3.86)

This along with (3.29) implies that

logHL(a, b, c) < max

max
p|cOL
p̸=pc

ordp (c) logG, C131 (logHL (a, b, c))α logG

 .
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If

max

max
p|cOL
p̸=pc

ordp (c) logG, (logHL (a, b, c))α logG

 = C132 (logHL (a, b, c))α logG,

then we can see that

logHL(a, b, c) < C133 (logG)
1

1−α .

We now consider two cases.
In the first case we assume that NmL

Q (pmax) < G
1
2 . In this case we can appeal

directly to Corollary 3.3.1.2, obtaining that

logHL(a, b, c) < G
3
4 +C134( log log logG

log logG ).

For the second case we assume that NmL
Q (pmax) ≥ G

1
2 and follow the same

argument as in Case 2 in Corollary 3.3.1.6.
As before, we see that for all prime ideals p ̸= pmax contributing to G, we have

that NmL
Q (p) < G

1
2 . Applying Yu’s bound on maxp|cOL

p̸=pc

ordp (c) again, we find that

max
p|cOL
p̸=pc

ordp (c) <Cs+t135 (r + t+ u+ 1)7/2 log logHL(a, b, c) · NmL
Q (p)

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
,

Again, we know that NmL
Q (p) < G

1
2 . Following the logic of the main argument

and the proof of Corollary 3.3.1.6, it again follows that

logHL(a, b, c)
log logHL(a, b, c) <Cs+t136 (r + t+ u+ 1)7/2 logG ·G1−β

t∏
i=1

log
(
NmK

Q (pi)
)

·
u∏
j=1

log
(
NmK

Q (qj)
)
.

After tidying as we have previously and applying Lemma 3.1.0.5, it follows that

logHL(a, b, c) < G
3
4 +C137

log log logG
log logG .

Combining these results, in both cases we obtain that

logHL (a, b, c) < max
{
G

3
4 +C138

log log logG
log logG , C113 (logG)

1
1−α

}
.
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3.4 APPLICATION OF GYŐRY’S BOUND

In this section, we prove Theorem 2.1.3.3. We begin by considering Lemma 2.1.2.3.
In the statement of the Lemma, we see that the constant depends on t; we note that
by (4.14) of [20] gives us that

t < C139
logG

log logG. (3.87)

Similarly as in Section 3.2, we can deduce that
(
213.32dR

)t
≤ G

C140
log logG ,

so
Rt ≤ G

C141
log logG

Further, using 3.87, we can bound

C142(d, r, s, t) = s5 (16e)3r+4t+7 d4r+2t+7 ≤ C143G
C144

log logG

This, as done in the proof of the earlier theorems, allows us to remove the
dependency on t when we apply Lemma 2.1.2.3. We note this is the same line of
reasoning as used in [18].

When we apply Lemma 2.1.2.3 in the places we previously applied Lemma 2.1.2.2
we attain (after moving things into the constant) essentially the same bounds with
pa, pb, pc replaced by p′

a, p
′
b and p′

c where p′
a is the prime ideal of third largest norm

dividing aOL and similarly for p′
b and p′

c. If fewer than three prime ideals divide a, b
or c then we define the corresponding norm to be 1.

We follow the proof of the main theorem, but we replace any use of Lemma
2.1.2.2 with Lemma 2.1.2.3. For the most part, all that changes is any occurrence
of pa, pb and pc arising from the use of Lemma 2.1.2.2 is replaced by p′

a, p
′
b and p′

c.
We follow the line of reasoning from the main text up until (3.14). For this first
application of S-units, where we have no finite places, we continue to use Lemma
(2.1.2.2) as it is simpler in this case than Lemma 2.1.2.3. As before, we obtain (3.25).

As before, now let S = S∞ ∪ {p : p | cOL} . Applying Lemma 2.1.2.3 to

−uaa
′

ucc′ − ubb
′

ucc′ = 1,
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we obtain that

max
{
h
(

− ua
ucc′

)
, h

(
− ub
ucc′

)}
< C145G

C146
log logGP ′

SRS

(
1 + log+ PS

log+ logP ′
S

)
·

· max {h (a′) , h (b′) , 1}

< C147G
C148

log logGNmL
Q (p′

c)RS log+
(
NmL

Q (pc)
)

·

· max {h (a′) , h (b′) , 1}

< C149G
C148

log logGNmL
Q (p′

c)

 ∏
p⊂OL
p|cOL

log NmL
Q (p)

 ·

· logG · h (b′)

≤ C150G
C151

log log logG
log logG NmL

Q (p′
c) · ∏

p⊂OL
p|cOL

log NmL
Q (p)

h (b′) , (3.88)

where the line of reasoning about max
{
h (a′) , h (b′) , 1, π

d

}
follows from assumption

(3.12), and the last line follows as

logG = G
log logG

logG ≤ GC152
log log logG

log logG

for a sufficiently large constant and large enough G. We are thus able to replace
(3.26) with

max
{
h

(
uaa

′

ucc′

)
, h

(
ubb

′

ucc′

)}
<C153G

C154
log log logG

log logG NmL
Q (p′

c) ·

·

 ∏
p⊂OL
p|cOL

log NmL
Q (p)

h (b′) .

As before, we now let S = S∞ ∪ {p : p | bcOL}. Applying Lemma 2.1.2.3 again,
following the same method as above, in place of (3.28) we obtain that

max
{
h
(

− ua
ucc′

)
, h

(
−ubb

′

ucc′

)}
<C155G

C156
log log logG

log logG NmL
Q (q) ·

·

 ∏
p⊂OL
p|bcOL

log NmL
Q (p)

h (a′) ,
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where q is the prime ideal of OL of third largest norm dividing bcOL. We note that
this is not necessarily pb or pc, though it may have the same norm as one of them,
and could indeed be either of them.

We now follow the argument of the main text again, using the above inequalities
in place of (3.26) and (3.28) as necessary, and we end up obtaining

logHL(a, b, c) <
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc) NmL
Q (p′

c) NmL
Q (q)

) 1
3 ·

·GC157( log log logG
log logG + 1

log logG+ log logG
logG ) (3.89)

in place of (3.60). As before, log log logG
log logG is the dominant term in the exponent of G,

so we can write

logHL(a, b, c) <
(
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc) NmL
Q (p′

c) NmL
Q (q)

) 1
3 GC158

log log logG
log logG .

(3.90)

We explore some cases. If q = p′
b then

NmL
Q (pa) NmL

Q (pb) NmL
Q (pc) NmL

Q (p′
c) NmL

Q (p′
b) ≤ G.

If q = p′
c then there exists a prime ideal p′′

c , the prime of second largest norm
dividing cOL. Note that NmL

Q (p′
c) ≤ NmL

Q (pc)′′ ≤ NmL
Q (pc), and all these primes

divide abcOL so their norms contribute to G. Thus, in this case we obtain that

NmL
Q (pa) NmL

Q (pb) NmL
Q (pc) NmL

Q (p′
c) NmL

Q (p′
c) < NmL

Q (pa) NmL
Q (pb) NmL

Q (pc) ·

· NmL
Q (p′

c) NmL
Q (p′′

c )
≤ G.

We have dealt with the cases where q = p′
b and q = p′

c. Using the notation above,
there are four further possibilities for q, namely pb, pc, p

′′
b , p

′′
c . If q = p′′

b or p′′
c

then substituting into the above expression, it follows from the definition of G that
NmL

Q (pa) NmL
Q (pb) NmL

Q (pc) NmL
Q (p′

c) NmL
Q (q) < G.

On the other hand, if q = pb or pc, we can still upper bound this by G. Assume
q = pb. Then we deduce that NmL

Q (pb) ≤ NmL
Q (p′

c) ≤ NmL
Q (pc). It follows then that
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NmL
Q (pa) NmL

Q (pb) NmL
Q (pc) NmL

Q (p′
c) NmL

Q (pb) < NmL
Q (pa) NmL

Q (pb) ·

· NmL
Q (pc) NmL

Q (p′
c)

2

≤ G.

The argument is symmetric so applies if q = pb. Thus in all cases we obtain that

logHL(a, b, c) < G
1
3 +C159

log log logG
log logG . (3.91)

We note that for given a, b, c, once we know the prime ideals dividing aOK , bOK

and cOK , the inequality (3.90) may be stronger than that given in (3.91).

3.5 SOME REMARKS

A combination of methods and results by Győry and Yu [21] and Győry [20], [19]
with the method of Le Fourn [31] can be used directly to find results over the base
field, as done by Győry in [18]. Further, in terms of S, Győry improved the S-unit
bound given by Le Fourn. Győry’s result regarding the abc conjecture is as follows.

Let K be a number field and let a, b, c := a+ b belong to K∗. Define

NK =
∏
υ

NmK
Q (p)ordp(p) ,

where υ is taken from the set of finite places such that |a|υ , |b|υ and |c|υ are not all
equal, and p is the rational prime such that p ∩ Z = p. Then there is a computable
constant C160 depending only on d = [K : Q] and ∆K such that

logHK (a, b, c) < C160N
1
3 + log log logNK

log logNK
K .

This is an immediate consequence of the sub-exponential inequality in [18] before
estimating P ′ from above by N

1
3
K , where P ′ denotes the third largest norm of prime

ideals involved.
Győry’s combination of his method with that of Le Fourn’s enables him to state

his results entirely over the base field K, rather than over the Hilbert Class Field.
We note that for the case where the base field K has class number 1, the results
are in essence the same. On the other hand, the dependence on the norms of prime
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ideals in this thesis allows us to state corollaries depending on these norms, leading
to the sub-exponential bound for example. Further, we believe they may allow some
attack at open problems such as the smooth abc conjecture [27].

For all these results, we have considered them in terms of logHL (a, b, c). We
note that HL (a, b, c) = HK (a, b, c)hK , as hK = [L : K]. Thus, as hK depends on
the field, after taking the logarithm we can incorporate the hK into our computable
constant and have the height in terms of the base field K. However, so far we have
been unable to do the same for the radical G.



4

Applications of the abc Results

4.1 APPLICATION TO EFFECTIVE SKOLEM-MAHLER-LECH
PROBLEM

In this section we will use our main result to allow us to determine whether a linear
recurrence sequence of degree three with no repeated roots of the characteristic
polynomial has zeroes. As noted in the introduction, there exists an algorithm to
determine whether there are periodic zeroes, so we are concerned with the case when
there are only potentially finitely many zeroes.

4.1.1 Case Where all Terms are Coprime

Consider a linear recurrence sequence of the following form:

an = c1an−1 + c2an−2 + c3an−3, n = 3, 4, 5, . . .

where the values of a0, a1 and a2 are known. We form the characteristic polynomial
of the sequence

x3 − c1x
2 − c2x− c3

and assume that this has distinct roots r1, r2, r3. Let K = Q (r1, r2, r3). We further
assume the roots are pairwise coprime when considered as principal ideals of the
ring of integers OK .

By our assumptions, we know that we can write

an = k1r
n
1 + k2r

n
2 + k3r

n
3

77
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where k1, k2, k3 are constants depending on a0, a1 and a2. We further assume k1, k2

and k3 are coprime, but we will look at ways to try and deal with this when not
coprime later.

For ease, we use the result obtained by using Győry’s bound, that is the inequality
given at (3.91). Assume there exists an n such that an = 0. Explicitly,

0 = k1r
n
1 + k2r

n
2 + k3r

n
3 .

We are in a position to use the result. Let L = HCF (K) and define G as above.
Then,

logH (k1r
n
1 , k2r

n
2 , k3r

n
3 ) < G

1
3 +C1

log log logG
log logG .

Without loss of generality, assume that

h (r1) ≤ h (r2) ≤ h (r3) .

Note that
H (k1r

n
1 , k2r

n
2 , k3r

n
3 ) = H

(
k1

k3
rn1 ,

k2

k3
rn2 , r

n
3

)
.

Further, by comparing definitions,

h (rn3 ) ≤ logH
(
k1

k3
rn1 ,

k2

k3
rn2 , r

n
3

)
.

Moreover, h (rn3 ) = nh (r3) [56]. Combining all this we obtain that

nh (r3) < G
1
3 +C2

log log logG
log logG .

It follows that

n <
G

1
3 +C2

log log logG
log logG

h (r3)
,

giving an upper bound for n.
Explicitly, given a recurrence relation satisfying the given conditions, we first

check whether there are any periodic zeroes in arithmetic progressions; as noted in
Chapter 2, there exists and algorithm to do this [42]. If so, we are done. If not, we
apply the above method, which gives an upper bound for the maximal value of n
such that an = 0. We numerically check the values of ax for x less than the obtained
upper bound. This answers the question as to whether the recurrence sequence has
a zero.
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Example 1. Consider the linear recurrence sequence with a0 = 9, a1 = 46, a2 = 254
and

an = 10an−1 − 31an−2 + 30an−3.

This sequence has characteristic polynomial

x3 − 10x2 + 31x− 30,

with roots 2, 3 and 5. Thus,

an = k12n + k23n + k35n,

where k1, k2 and k3 are to be found. They are found to be k1 = 7, k2 = −11 and
k3 = 13, so

an = 7 · 2n − 11 · 3n + 13 · 5n.

This means G = 2 · 3 · 5 · 7 · 11 · 13 = 30030. The largest logarithmic height of
the roots is h (5) = log 5. It follows that if an = 0, then

n <
30030

1
3 +C3

log log log 30030
log log 30030

log 5
< 20 · 43C4 .

In principle, C3 and C4 can be computed following the proof given in this paper. This
gives an upper bound for n.

In this example, once we derive an = 7 · 2n + 11 · 3n + 13 · 5n, it is clear there are
no zeroes. With more complicated examples, it may not be so obvious.

4.1.2 Case Where Terms are Not Coprime

Assume we have a linear recurrence relation as above with characteristic polynomial
f(x) with roots r1, r2, r3. There are constants k1, k2, k3 such that

an = k1r
n
1 + k2r

n
2 + k3r

n
3 .

We assume nothing about coprimeness. If they are all coprime, we’re done as
above. We thus assume k1r

n
1 , k2r

n
2 , k3r

n
3 are not coprime.

If there exists an n such that an = 0, then the same prime ideal must divide all 3
terms. We can see this as if

0 = k1r
n
1 + k2r

n
2 + k3r

n
3 ,
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then
−k1r

n
1 = k2r

n
2 + k3r

n
3 ,

and it follows if a prime ideal divides two of these as ideals, it has to divide the
third.

More rigorously,

ordp (a+ b) ≥ min {ordp (a) , ordp (b)} , (4.1)

with equality when ordp (a) ̸= ordp (b). The claim directly follows from this. It
also follows from this that at least two of the terms are divisible by the prime ideal
to the same order.

We consider these as ideals of OK . Assume that q is a prime ideal of OK dividing
all three terms, and that ordq (k1r

n
1 ) = ordq (k2r

n
2 ) = l. We write

k1r
n
1 OK = p

ek1, 1
k1, 1 · · · pek1, a

k1, a p
n·er1, 1
r1, 1 · · · pn·er1, b

r1, b ql

k2r
n
2 OK = p

ek2, 1
k2, 1 · · · pek2, c

k2, a p
n·er2, 1
r2, 1 · · · pn·er2, d

r2, b ql

k3r
n
3 OK = p

ek3, 1
k3, 1 · · · pek3, f

k3, f p
n·er3, 1
r3, 1 · · · pn·er3, g

r3, b qm,

where these ideals are prime ideals of OK .
Note, it may be the case that l = m. Also, if q | rn1 , this implies that l = an for

some a, but we will see this doesn’t matter for the argument. Finally, it may be
that there is a further prime ideal that divides all three terms; if so, we apply the
following process iteratively on all prime ideals dividing all three terms.

We now move to the Hilbert Class Field L. All the ideals above are principal as
ideals of OL, so we can write

k1r
n
1 = u1p

ek1, 1
k1, 1 · · · pek1, a

k1, a p
n·er1, 1
r1, 1 · · · pn·er1, b

r1, b ql

k2r
n
2 = u2p

ek2, 1
k2, 1 · · · pek2, c

k2, a p
n·er2, 1
r2, 1 · · · pn·er2, d

r2, b ql

k3r
n
3 = u3p

ek3, 1
k3, 1 · · · pek3, f

k3, f p
n·er3, 1
r3, 1 · · · pn·er3, g

r3, b qm,

where the terms on the right hand side are all elements of L that generate the
relevant principal ideals. Thus, we can now write

an =u1p
ek1, 1
k1, 1 · · · pek1, a

k1, a p
n·er1, 1
r1, 1 · · · pn·er1, b

r1, b ql

+ u2p
ek2, 1
k2, 1 · · · pek2, c

k2, a p
n·er2, 1
r2, 1 · · · pn·er2, d

r2, b ql

+ u3p
ek3, 1
k3, 1 · · · pek3, f

k3, f p
n·er3, 1
r3, 1 · · · pn·er3, g

r3, b qm.
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By (4.1), we see that m ≥ l. We thus divide through the above equation by ql.
After repeating this for all prime ideals dividing all three terms, the remaining terms
on the right hand side will all be coprime. We now assume that there exists an n

such that an = 0, and we are in the same position as Section 4.1.1, and the argument
follows identically.

Remark. We note that this application also follows from Győry’s result [18].

4.2 SMOOTH SOLUTIONS TO THE abc CONJECTURE

In this section we will prove Theorem 2.1.4.4. We will first prove the following
lemma.

Lemma 4.2.0.1. Let (X, Y, Z) ∈ Z3 be a triple with smoothness S (X, Y, Z) and
radical G (X, Y, Z) defined as above. Then

G (X, Y, Z) ≤ e3S(X,Y, Z). (4.2)

Proof. From [45] and [46], we know that for n > 2,

n log n < pn < 2n log n.

where pn denotes the n’th rational prime.
It follows that for n ≥ 6,

pn ≤ 2n log n.

Indeed, computationally we can check primes 2, 3, 5, 7, 11 and we find that for n > 2
the above inequality holds.

Further, by Rosser’s Theorem [46],

pn > n log n.

Thus, it follows that the product of the first k primes satisfies the following
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inequality:
k∏
i=1

pi ≤ 2 · 3 ·
k∏
i=3

2i log i

= 2 · 3 · 2k−2 (4 · 5 · · · k) ·
k∏
i=3

log i

= 2k−2 · k! ·
k∏
i=3

log i

≤ 2k · kk ·
k∏
i=3

log i. (4.3)

We now take logs of each side of the inequality attaining

log
(

k∏
i=1

pi

)
≤ log

(
2k · kk ·

k∏
i=3

log i
)

= k log 2 + k log k + log
(

k∏
i=3

log i
)

= k log 2 + k log k +
k∑
i=3

log log i

≤ k log 2 + k log k + k log log k
≤ k log 2 + k log k + k log k
≤ 3k log k
≤ 3pk (4.4)

where the last line follows from Rosser’s Theorem.
It thus follows that for a triple of pairwise coprime integers satisfying X +Y = Z

with smoothness S (X, Y, Z),

G (X, Y, Z) ≤
∏

p prime
p≤S(X,Y, Z)

p

≤ e3S(X,Y, Z), (4.5)

by the above inequality.

We are now in a position to prove Theorem 2.1.4.4.

Proof. By Northcott’s Theorem, we can assume in the following that H (X, Y, Z) >
B for any given bound B as we will only be excluding finitely many possible solutions
(X, Y, Z) satisfying (2.7).
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For ease of notation, write

T := log logH (X, Y, Z) . (4.6)

By assumption, we have that

S (X, Y, Z) < T
log T

log log Tϕ (T ) . (4.7)

We study triples (X, Y, Z) satisfying (4.7), and note that for a sufficiently large
H (X, Y, Z),

T
log T

log log Tϕ (T ) < (logH (X, Y, Z))
1
2 ,

so we can apply Corollary 3.3.1.4. We note the choice of the exponent to be 1
2 is

incidental; indeed any exponent less than 2
3 could have been chosen. Further, the

Hilbert Class Field of Q is itself Q [11], so the radical G in this case is defined over
Q and coincides with the radical given in [27].

By Corollary 3.3.1.4, we know that

logH (X, Y, Z) < GC5
log log logG

log logG .

From the upper bound for G given at (4.2) in Lemma 4.2.0.1, we obtain from
the above that

logH (X, Y, Z) < e
3C5S(X,Y, Z) log log log e3S(X, Y, Z)

log log e3S(X, Y, Z)

= eC6S(X,Y, Z) log log 3S(X,Y, Z)
log 3S(X, Y, Z) . (4.8)

It follows from the above that

log logH (X, Y, Z) = T < C6S (X, Y, Z) log log 3S (X, Y, Z)
log 3S (X, Y, Z) . (4.9)

We recall that by Northcott’s Theorem again, we can assume that S (X, Y, Z)
can be larger than any given constant while only dropping finitely many solutions
to X + Y = Z. Thus, only loosing finitely many solutions, for sufficiently large
S (X, Y, Z) it follows from (4.9) that

T < C7S (X, Y, Z) log logS (X, Y, Z)
logS (X, Y, Z) . (4.10)
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Taking logarithms on both side of inequality (4.10), we can assume S (X, Y, Z)
is large enough to give that

log T < log
(

C7S (X, Y, Z) log logS (X, Y, Z)
logS (X, Y, Z)

)
= log C7 + logS (X, Y, Z) + log log logS (X, Y, Z) − log logS (X, Y, Z)
< 2 logS (X, Y, Z) . (4.11)

For ease later, we divide the above by 2 to give that
1
2 log T < logS (X, Y, Z) . (4.12)

For triples (X, Y, Z) satisfying (4.7), taking logarithms in inequality (4.7) we deduce
that

logS (X, Y, Z) < log
(
T

log T
log log Tϕ (T )

)
= log T + log log T − log log log T − log ϕ (T )
< 2 log T. (4.13)

We note that this also implies that for sufficiently large S (X, Y, Z),

log logS (X, Y, Z) < 2 log log T.

Substituting this and (4.12) into (4.7) we obtain that

S (X, Y, Z) < T
log T

log log Tϕ (T )

< T
2 logS (X, Y, Z)

1
2 log log (S (X, Y, Z))ϕ (T )

= 4T logS (X, Y, Z)
log log (S (X, Y, Z))ϕ (T ) . (4.14)

Rearranging the above we obtain that
1
4
S (X, Y, Z) log logS (X, Y, Z)

logS (X, Y, Z) ϕ (T ) < T (4.15)

We now have two inequalities relating S and T , namely (4.10) and (4.15) given
above. We compare these directly to find that

1
4
S (X, Y, Z) log logS (X, Y, Z)

logS (X, Y, Z) ϕ (T ) < T < C7
S (X, Y, Z) log logS (X, Y, Z)

logS (X, Y, Z) ,

(4.16)
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which we rewrite as

S (X, Y, Z) log logS (X, Y, Z)
logS (X, Y, Z) ϕ (T ) < T < C8

S (X, Y, Z) log logS (X, Y, Z)
logS (X, Y, Z) .

(4.17)

Cancelling terms on both sides gives us that

ϕ (T ) < C8. (4.18)

However, ϕ (T ) tends to +∞ as T tends to +∞, and as T = log logH (X, Y, Z),
this happens as H (X, Y, Z) gets arbitrarily large. Thus, there is a value B such
that if H (X, Y, Z) > B, then (4.18) cannot hold. This gives an upper bound for
values of H (X, Y, Z) such that the triple satisfies the assumptions of the theorem.
It thus follows by Northcott’s Theorem that there are only finitely many primitive
triples (X, Y, Z) satisfying (X + Y = Z) with

S (X, Y, Z) ≤ log logH (X, Y, Z)
log log logH (X, Y, Z)

log log log logH (X, Y, Z)ϕ (log logH (X, Y, Z))

We note that we could also directly prove that there are only finitely many
primitive integer triples (X, Y, Z) satisfying X + Y = Z with

S (X, Y, Z) < c log logH (X, Y, Z)

for any constant c ∈ R, c > 0 using the same method of proof as above, though this
result follows from Theorem 2.1.4.4 as stated previously.

We further note that this method of proof could be employed in certain number
fields (hence why we appeal to Northcott’s Theorem as opposed to simpler techniques);
however, the Conjecture currently only holds for integers. It is an open problem to
generalise the Conjecture to number fields [27]
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Quantitative Diophantine Approximation:
Background and Preliminaries

5.1 DIOPHANTINE APPROXIMATION AND METRIC NUMBER
THEORY

Roughly speaking, we can think of Diophantine approximation as a branch of number
theory that studies quantitatively the density of the rationals within the reals. This
area is very associated with Metric Number Theory, where we are often interested
in studying the size (in terms of, for example, the Lebesgue measure or Hausdorff
dimension) of Diophantine sets satisfying certain properties. One problem here is,
given an approximating function ψ : N → [0, ∞), to determine the size of the set

W (ψ) := lim sup
q→∞

{
x ∈ [0, 1) :

∣∣∣∣∣x− p

q

∣∣∣∣∣ < ψ(q)
q

, for some p ∈ N
}
.

We say that the elements of W (ψ) are ψ-approximable; and note that x ∈ W (ψ) if
there exist infinitely many positive integers (p, q) satisfying∣∣∣∣∣x− p

q

∣∣∣∣∣ < ψ(q)
q

. (5.1)

It is clear that every x ∈ R is within 1
2q of a rational number with denominator

q; that is, we can take ψ(q) = 1
2 for all q and it is clear that µ (W (ψ)) = 1, where

µ denotes the Lebesgue measure on R. It is natural to ask how far this can be
improved.

We now consider ψ(q) = 1/q; in this case, the theory of continued fractions
tells us that every x is 1

q
-approximable. In fact, this is the content of a theorem of

Dirichlet.

86
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Theorem (Dirichlet’s Theorem, 1842). For any x ∈ R and N ∈ N, there exist
p, q ∈ Z such that ∣∣∣∣∣x− p

q

∣∣∣∣∣ < 1
qN

,

with 1 ≤ q ≤ N .

This has the following immediate corollary; we note the proof of the following can
also be given via continued fractions, the theory of which is older than Dirichlet’s
Theorem.

Theorem. Let x ∈ R\Q. Then there exist infinitely many p, q such that gcd(p, q) = 1
and ∣∣∣∣∣x− p

q

∣∣∣∣∣ < 1
q2 . (5.2)

We note that this theorem is true for all x ∈ R if we remove the condition that
gcd(p, q) = 1. Further, to connect this with our discussion above, we note we have
shown that µ

(
W
(

1
q

))
= 1; we recall in our definition of W (ψ) we do not insist that

gcd (p, q) = 1.
We make some brief comments on the connection between these approximations

and continued fractions; in fact we can find best approximations to real numbers α
by considering convergents of continued fractions. More explicitly, given α ∈ R, we
call the rational number p

q
, (p, q) ∈ Z × N with gcd (p, q) = 1 a best approximation

to α if |qα− p| ≤ 1
2 , and for all (p′, q′) ∈ Z × N with q′ < q, we have that

|q′α− p′| > |qα− p|.

We now consider the following Theorem:

Theorem (Legendre). Let α ∈ R \ Q. Let p, q be coprime integers with q > 0 and
let ∣∣∣∣∣α− p

q

∣∣∣∣∣ ≤ 1
2q2 .

Then p
q

is a best approximation to α.

The connection to continued fractions becomes clear in with the next theorem.

Theorem (Vahlen, 1895). Let α ∈ R \ Q. Then at least one of any two consecutive
convergents of the continued fraction of α satisfies the inequality∣∣∣∣∣α− p

q

∣∣∣∣∣ < 1
2q2 .
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We have shown through the theory of continued fractions that we can improve
inequality (5.2) by a factor of a half; that is, we can replace 1

q2 with 1
2q2 in Dirichlet’s

Theorem; removing the coprime condition also allows this improvement for rationals.
We note that this had been shown before Vahlen, and will show this below.

Now it is natural to ask how much we can improve inequality (5.2), and a theorem
by Hurwitz shows that we can only improve this inequality for all x ∈ R so far.

Theorem (Hurwitz’s Theorem, 1891). Let x ∈ R \ Q. Then there exist infinitely
many p, q such that gcd(p, q) = 1 and∣∣∣∣∣x− p

q

∣∣∣∣∣ < 1√
5q2

. (5.3)

We note that the constant 1/
√

5 is the best constant possible; for all ε > 0, we
can find an irrational x such that∣∣∣∣∣x− p

q

∣∣∣∣∣ < 1
(
√

5 + ε)q2
(5.4)

has only finitely many coprime solution pairs (p, q). Namely, if we take x to be
the Golden Ratio ϕ = 1+

√
5

2 then for any ε, we can only find finitely many integer
solution pairs (p, q) with gcd (p, q) = 1 to (5.4)..

This comment means that if we take ψ(q) < 1√
5q then (5.1) will not hold for all

x ∈ R. This naturally leads us to ask under what conditions on ψ can we say that
W (ψ) has full measure? Khintchine gave the following elegant theorem as an answer
to this question:

Theorem (Khintchine, 1924). Let ψ : N → [0,+∞) be a function. Suppose ψ is
(eventually) non-increasing. Then

µ(W (ψ)) =

0, if ∑∞
q=1 ψ(q) < +∞,

1, if ∑∞
q=1 ψ(q) = +∞,

where µ is the Lebesgue measure on [0, 1).

One may wonder why W (ψ) must have either full or zero measure; this is due to
a zero-one law, further discussion of which can be found in [23][3].

Khintchine’s Theorem tells us that, if ψ is non-increasing, the convergence or
divergence of the sum

∞∑
q=1

ψ(q) (5.5)
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entirely determines whether or not almost all x ∈ [0, 1) are ψ-approximable; for
further details we refer the reader to [23]. We note that Khintchine’s Theorem lets
us give immediate improvements on the example ψ(q) = 1

q
given above; for example,

as
∞∑
q=1

1
q log(q + 1) = +∞,

we know that W
(

1
q log(q+1)

)
has full Lebesgue measure; that is we can improve the

function given previously by a logarithmic factor.
One may ask whether we can remove the condition that ψ is monotonic in

Khintchine’s Theorem. In the convergence case, the condition can be removed as
the proof is an application of the Borel-Cantelli Lemma. The divergence case is
somewhat more tricky, and monotonicity is required. In [13], Duffin and Schaeffer
consider the function ϑ which is non-monotonic, such that ∑q ϑ(q) diverges, but
µ (W (ϑ)) = 0; we briefly give some details below and refer the reader to [13] for
further information. We follow the ideas from [13], and follow the presentation of [3].

We recall two well known facts; for any N ∈ N, prime p and s > 0 we have

∑
q|N

q =
∏
p|N

(1 + p),

and that ∏
p

(1 + p−s = ζ(s)
ζ(2s) .

The second equality here gives us that

∏
p

(
1 + p−1

)
= ∞,

so it follows that we can find a sequence of square-free positive integers (Ni)i,
i = 1, 2, . . . such that gcd (Ni, Nj) = 1 for i ̸= j, and

∏
p|Ni

(
1 + p−1

)
> 2i + 1. (5.6)

We now define

ϑ(q) =


2−i−1q
Ni

if q > 1 and q | Ni for some i,

0 else.
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One can show using the convergence Borel-Cantelli Lemma that µ (W (ϑ)) = 0, but
it is shown by the first fact and (5.6) that

∞∑
q=1

ϑ(q) =
∞∑
i=1

2−i−1 1
ni

∑
q>1
q|Ni

q = ∞.

This shows that the assumption that ψ is monotonic is necessary in Khintichine’s
Theorem.

Duffin and Schaeffer went on to consider a generalisation of this problem, con-
sidering arbitrary approximation functions ψ : N → R+. We note that, contrary
to Dirichlet’s Theorem above, we do not have the condition that gcd(p, q) = 1 in
the definition of W (ψ). Duffin and Schaeffer also added this condition to relate the
rational p

q
with the error of approximation ψ(q)

q
uniquely. They thus considered the

set

W ′(ψ) := lim sup
q→∞

{
x ∈ [0, 1) :

∣∣∣∣∣x− p

q

∣∣∣∣∣ < ψ(q)
q

, for some p ∈ N, gcd (p, q) = 1.
}
.

They went on to give the following conjecture (previously known as the Duffin-
Schaeffer Conjecture) which was proven by Koukoulopoulos and Maynard in 2019.

Theorem (Koukoulopoulos-Maynard, 2019). Let ψ : N → [0,+∞) be a function.
Then

µ(W ′(ψ)) =

0, if ∑∞
q=1

ψ(q)φ(q)
q

< +∞,

1, if ∑∞
q=1

ψ(q)φ(q)
q

= +∞,

where µ is the Lebesgue measure on [0, 1) and φ(x) is the Euler phi function, defined
to be the number of natural numbers coprime to x that are less than or equal to x.

That is, the convergence (or divergence respectively) of the series
∞∑
q=1

ψ(q)φ(q)
q

(5.7)

implies that the Lebesgue measure of W ′(ψ) is 0 (or 1 respectively).
Again, the convergence case follows directly from the Borel-Cantelli Lemma,

while the divergence case required deeper insight; for the full proof we refer to [26].
We return to results around this theorem later in the thesis.

Khintchine’s Theorem tells us about the measure of W (ψ), but to gain a deeper
understanding of Khintchine’s Theorem is to consider the number of solutions to
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(5.1), given that 1 ≤ q ≤ Q for a fixed Q ∈ N. We add the further restriction that
ψ : N → [0, 1/2); this ensures that given any integer q, there is maximally one p such
that (p, q) satisfy (5.1). Thus, counting solution pairs (p, q) to (5.1) is equivalent to
counting the number of q’s for which we can find a p satisfying (5.1), subject to the
condition that 1 ≤ q ≤ Q. More explicitly, given x ∈ [0, 1) and Q ∈ N we define

S(x,Q) := #
{
q ∈ N ∩ [1, Q] :

∣∣∣∣∣x− p

q

∣∣∣∣∣ < ψ(q)
q

, for some p ∈ N
}

;

that is, S(x, Q) is the number of integer pairs (p, q) satisfying (5.1) and 1 ≤ q ≤ Q.
In this context, Khintchine’s Theorem tells us that if ψ is non-increasing and

(5.5) is divergent, then for almost every x ∈ [0, 1),

lim
Q→∞

S(x,Q) = +∞.

We have seen that there are infinitely many solutions satisfying (5.1), but Khintchine’s
Theorem does not give a growth rate in the number of solutions, nor does it suggest
any quantitative relation between S(x, Q) and ψ. We refer to these problems as the
quantitative problem of Khintchine’s Theorem. Schmidt was able to give asymptotic
relations between S(x, Q) and ψ; we give the statement as stated in [23]:

Theorem (Schmidt, 1960). Let ψ : N → [0, 1/2). Suppose ψ is non-increasing and
(5.5) diverges. Then for any ε > 0 and almost every x ∈ [0, 1), as Q → ∞ we have
that

S(x,Q) = 2Ψ(Q) +Oψ,ε,x

(
Ψ1/2(Q) log2+ε Ψ(Q)

)
,

where for any Q ∈ N, Ψ(Q) is defined to be

Ψ(Q) :=
Q∑
q=1

ψ(q).

Roughly speaking, Schmidt’s Theorem tells us that given x ∈ [0, 1), the number
of solution pairs (p, q) to (5.1) such that 1 ≤ q ≤ Q is approximately equal to 2Ψ(Q)
when Q is sufficiently large.

In order for the result to hold for almost all x ∈ R, we have that the error term
is asymptotic; that is, the error term above involves an implicit constant which
depends on the point x. These asymptotics make it hard for researchers to apply
these theorems to practical experiments; one example of a field where these results
may be useful is signal processing, where it is known that Diophantine approximation
gives results in this area [4].
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5.1.1 Some Asymptotic Results

In many cases, the proofs of statements like Schmidt’s Theorem rely on tools such
as Lemmas 1.4 and 1.5 of [23], which we state here for completeness.

Lemma (Lemma 1.4 of [23]).
Let (X, Σ, µ) be a measure space such that 0 < µ(X) < ∞. Let fk(x), k ∈ N be a
sequence of non-negative real valued functions, and let fk, ϕk be sequences of real
numbers such that

0 ≤ fk ≤ ϕk ≤ 1, k ∈ N.

Suppose that for every N ≥ 1 we have that
∫
X

(
N∑
k=1

(fk(x) − fk)
)2

dµ ≤ KΦ(N), (5.8)

where K is an absolute constant and Φ(N) = ∑N
k=1 ϕk. We further assume that

Φ(N) → ∞ as N → ∞. Then for every ε > 0 and almost all x ∈ X, we have that
∞∑
k=1

fk(x) =
N∑
k=1

fk +O
(
Φ2/3(N) log(Φ(N) + 2)1/3+ε

)
.

Under a stronger assumption, we can improve the asymptotics, as we see below
in Lemma 1.5 of [23].

Lemma (Lemma 1.5 of [23]).
Let (X, Σ, µ) be a measure space such that 0 < µ(X) < ∞. Let fk(x), k ∈ N be a
sequence of non-negative real valued functions, and let fk, ϕk be sequences of real
numbers such that

0 ≤ fk ≤ ϕk, k ∈ N.

Let Φ(N) = ∑N
k=1 ϕk and assume that Φ(N) → ∞ as N → ∞. Suppose that for

arbitrary integers m, n, (1 ≤ m < n) we have that

∫
X

 ∑
m≤k<n

(fk(x) − fk)
2

dµ ≤ K
∑

m≤k<n
ϕk, (5.9)

where K is an absolute constant. Then for every ε > 0 and almost all x ∈ X, we
have that

∞∑
k=1

fk(x) =
N∑
k=1

fk +O
(

Φ1/2(N) log(Φ(N) + 2)3/2+ε + max
1≤k≤N

fk

)
.
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The proof of both of these relies on the Borel-Cantelli Lemmas, which we state
here as it will be used throughout the rest of this thesis. We give the Borel-Cantelli
Lemmas as stated in [23]. Though we will only use the first Borel-Cantelli Lemma,
we state both for completeness.

Lemma (The first Borel-Cantelli Lemma). Let X be a measure space with measure
λ. Let Aj, j = 1, 2, . . . be a collection of measurable subsets of X. Then, if

∞∑
j=1

µ (Aj) < +∞,

then almost all members of X (with respect to λ) belong to only finitely many of the
Aj.

This is sometimes referred to as the convergence Borel-Cantelli Lemma. The
divergence case is a little trickier; we need some form of independence between the
sets.

Lemma (The second Borel-Cantelli Lemma). Let X be a measure space with measure
λ, and suppose that λ (X) = T < ∞. Let Aj, j = 1, 2, . . . be a collection of
measurable subsets of X such that

Tλ (Aj ∩ Ak) = λ(Aj)λ(Ak)

for j ̸= k. Then, if
∞∑
j=1

λ(Aj) = ∞,

almost all members of X belong to infinitely many of the Aj.

Remark. We note that if T = 1, this is the standard definition of independence.
We also note that the independence condition can be weakened to an independence
condition often referred to as quasi-independence on average: this is the condition
where there exists a constant C > 0 such that

Q∑
s, t=1

λ (As ∩ at) ≤ C

 Q∑
s=1

λ (As)
2

holds for infinitely many Q ∈ N. We can then conclude that

λ

(
lim sup
q→∞

∩∞
t=1 ∪∞

q=t Aq

)
= 1
C
.
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For further discussion of this we refer the reader to [50][3].
We finally remark that Lemmas 1.4 and 1.5 of [23], as stated above can be

considered stronger versions of the divergence Borel-Cantelli Lemma.

The aim of the next chapter is to make Lemmas 1.4 and 1.5 of [23] effective other
than on a subset of size δ, where the choice of δ can depend upon the application of
the effective lemma. We will then apply these effective theorems, and some similar,
in a variety of contexts which we shall now discuss.

5.2 BACKGROUND FOR APPLICATIONS

In Chapter 7 of this thesis, we will give applications of the theorems proved in
Chapter 6 to the following topics:

• Effective Schmidt’s Theorem

• Quantitative Koukoulopoulos-Maynard Theorem (see [1])

• Inhomogeneous Diophantine Approximation on M0-sets (see [43])

• Normal numbers

• Strong Law of Large Numbers

We have discussed Schmidt’s Theorem above, so the rest of this subsection will
discuss the background for the rest of these topics.

5.2.1 Quantitative Koukoulopoulos-Maynard Theorem

Expanding on the work of Koukoulopoulos and Maynard, an asymptotic relation for
the quantitative Duffin-Schaeffer type problem is given by Aistleitner, Borda and
Hauke in [1]; that is, the paper gives an asymptotic description of the number of
solutions satisfying (5.1) with the extra condition that gcd (p, q) = 1. They proved
the following theorem.

Theorem (Aistleitner, Borda, Hauke, 2022). Let ψ : N → [0, 1/2]. Suppose (5.7)
diverges and let C > 0 be arbitrary. Then for almost every x ∈ [0, 1), we have that

S ′(x,Q) = Ψ′(Q)
(

1 +Oψ,C,x

(
1

(log(Ψ′(Q)))C

))
, (5.10)
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as Q → ∞, where

S ′(x,Q) := #
{
q ∈ N ∩ [1, Q] :

∣∣∣∣∣x− p

q

∣∣∣∣∣ < ψ(q)
q

, for some p ∈ N with gcd (p, q) = 1.
}
,

(5.11)

and Ψ′(Q) is defined to be

Ψ′(Q) := 2
Q∑
q=1

ψ(q)φ(q)
q

.

The proof of this involves an application of a result akin to Harman’s Lemma
1.4 [23], which we give explicitly here. We note the version below is given in a more
general setting than in [1].

Lemma 5.2.1.1. Suppose that (X, Ω, µ) is a measure space such that 0 < µ (X) <
∞ and let K be a positive real constant. Let fq : X → [0, K] be a sequence of
µ-measurable functions and let fq, ϕq be sequences of real numbers such that

0 ≤ fq ≤ ϕq ≤ K.

Write Ψ(Q) = ∑Q
q=1 ϕq, and suppose that Ψ(Q) → ∞ and Q → ∞. Suppose that for

C > 4 and for every Q ∈ N,

∫
X

 ∑
1≤q≤Q

(fq(x) − fq)
2

dµ = O

(
Ψ(Q)2

(log Ψ(Q))C

)
. (5.12)

Then for almost all x ∈ X, as Q → ∞,

∑
1≤q≤Q

fq(x) =
∑

1≤q≤Q
fq +O

 Ψ(Q)
(log Ψ(Q))

√
C−1

 .
This is proved in the necessary case in Section 2 of [1], following the method of

proof of Lemma 1.4 of [23]. In Chapter 6, we prove the more general lemma above,
before proving an effective version that we shall apply to give a quantitative version
of Aistleitner, Borda and Hauke’s result.

We note that in this thesis, I will give this effective up to an implicit constant,
which we will discuss more in Chapter 7. This constant has been found by my
collaborator and will be published separately.
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5.2.2 Inhomogeneous Diophantine Approximation on M0-sets

The effective versions of Lemmas 1.4 and 1.5 of [23] that we will prove can also be
applied to give effective results akin to those in [43], which is about inhomogeneous
Diophantine approximation on M0-sets. For background and motivation we refer
the reader to the introduction and further discussion in [43]; however, we begin this
section by recalling some definitions to make this paper more self contained.

As usual, the Fourier transform of a non-atomic probability measure µ is defined
by

µ̂(t) =
∫
e−2πitxdµ(x), t ∈ R.

A closed set E ⊂ R is said to be an M0-set if there exists a probability measure µ
on E such that µ̂ vanishes at infinity.

Given an increasing sequence of natural numbers A = (qn)n∈N, we call A lacunary
if there exists a constant K > 1 such that for all n ∈ N,

qn+1

qn
≥ K. (5.13)

Relatedly, let α ∈ (0, 1). We say that a sequence of increasing natural numbers
A is α-separated if there exists a constant m0 ∈ N such that for any integers
m0 ≤ m < n, we have that if

1 ≤ |sqm − tqn| < qm
α

for some s, t ∈ N, then
s > m12.

Finally, let ψ : N → R+ be a real, positive function and let γ ∈ [0, 1]. We define
the counting function

R(x, N) = R(x, N ; γ, ψ, A) = # {1 ≤ n ≤ N : ∥qnx− γ∥ ≤ ψ(qn)} , (5.14)

where ∥α∥ := min {|α−m| : m ∈ Z} denotes the absolute distance from α to its
nearest integer.

We will prove effective versions of Theorems 1 and 4 of [43]; we state these here
for full completeness.

Theorem (Theorem 1 of [43]). Let µ be a probability measure supported on a subset
F of [0, 1]. Let A = (qn)n∈N be a lacunary sequence of natural numbers. Let γ ∈ [0, 1]
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and ψ : N → [0, 1] be a real, positive function. Suppose that there exists a constant
A > 2 such that

µ̂(t) = O
(
(log |t|)−A

)
as |t| → ∞. Then, for any ε > 0, we have that

R(x, N) = 2Ψ(N) +O
(
Ψ(N)2/3 (log(Ψ(N) + 2))2+ε

)
for µ-almost all x ∈ F , where

Ψ(N) =
N∑
n=1

ψ(qn).

We now consider Theorem 4 of [43]

Theorem (Theorem 4 of [43]). Let µ be a probability measure supported on a subset
F of [0, 1]. Let A = (qn)n∈N be an increasing sequence of natural numbers that is
α-separated and satisfies

log qn > Cn1/B (5.15)

for all n ≥ 2, and for some constants B ≥ 1 and C > 0.
Let γ ∈ [0, 1] and let ψ : N → [0, 1] be a real, positive function. Suppose there

exists a constant A > 2B such that

µ̂(t) = O
(
(log |t|)−A

)
.

Then, for any ε > 0, we have that

R(x,N) = 2Ψ(N) +O
(
(Ψ(N) + E(N))1/2 (log (Ψ(N) + E(N) + 2))2+ε

)
,

for µ-almost all x ∈ F , where Ψ(N) is given above and

E(N) =
∑∑

1≤m<n≤N
(qm, qn) min

(
ψ(qm)
m

,
ψ(qn)
qn

)
. (5.16)

We will make both of these theorems effective other than on a subset of measure
less than or equal to an arbitrary δ > 0.
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5.2.3 Normal numbers

We begin by recalling some definitions. Set b ∈ N, b ≥ 2. Recall that for any real
number α there is a unique expansion base b such that

α = [α] +
∞∑
n=1

anb
−n, (5.17)

where [α] denotes the integer part of α, 0 ≤ an < b and an < b − 1 infinitely
often. Given a fixed α, denote by A(d, b, N) the number of times d is in the set
{a1, . . . , aN}. We say that α is simply normal to base b if

lim
N→∞

A(d, b, N)
N

= 1
b

for all d, 0 ≤ d < b.
We call α entirely normal to base b if it is simply normal base bn for all n = 1, 2, . . . .

We say α is absolutely normal if it is entirely normal to all bases b > 1.
These definitions are different to those first given by Borel; Theorem 1.2 of [23]

shows the definitions are equivalent.
An easy application of Lemma 1.4 of [23] quickly shows that almost all real

numbers are simply normal to a base b, which we will give below. Applying the
effective version of Lemma 1.4 of [23] in its place allows us to give an upper bound
on the number of times a given digit d appears in the base b expansion for almost
all real α other than on a subset of measure less than or equal to an arbitrary δ.

To give an example of how we can apply Lemma 1.4 of [23] in the asymptotic
form, we will prove that almost all numbers are simply normal to a given base b; we
follow the second proof of this given in [23].

We need only prove the result holds in the interval [0, 1), as once this is proven,
the result holds over all of R. By the kth digit of a real number x ∈ [0, 1) we mean
ak given by (5.17), setting α = x. set d to be some integer such that 0 ≤ d ≤ b− 1
and write

fk(x) =

1 if the kth digit of x is d,

0 else.

We further set fk = 1
b
. We now consider the set

{x ∈ [0, 1) : the kth and jth digits of x are both d, j ̸= k}.
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We note that this set is the union of certain intervals (where we assume k ≥ j) of
the type

[db−j + db−k + α, db−j + (d+ 1)b−k + α),

where α ranges over all fractions of the form

k−1∑
n=1
n̸=j

anb
−n, 0 ≤ an ≤ b− 1.

We can see there are bk−2 intervals, each of length b−k. It follows that, for j ̸= k,
∫ 1

0
fk(x)fj(x)dx = µ ({x ∈ [0, 1) : the kth and jth digits of x are both d, j ̸= k})

= b−2.

It then follows that

∫ 1

0

(
N∑
k=1

(fk(x) − fk)
)2

dx =
N∑
k=1

b−1
(
1 − b−1

)
.

thus we can apply Lemma 1.4 of [23] as given above with ϕk = b−1 and K = 1,
obtaining that (taking ϵ = 2

3)

A(d, b, N) =
N∑
k=1

fk(x) = N

b
+O

(
N2/3 (log (N + 2))

)

for almost all x ∈ [0, 1). Thus,

lim
N→∞

A(d, b, N)
N

= 1
b

for almost all α, proving that almost all numbers are normal.
Using the effective version of Lemma 1.4 of [23] in the above will allow us to give

bounds on the number of times a given digit can appear in the base b expansion for
all α other than on a subset of measure δ.

5.2.4 Strong Law of Large Numbers

Let (X, Σ, µ) to be a probability space. For any k ∈ N, let (Fk(x)) be sequence of
µ-integrable random variables with mean F and variance σ2 > 0 on the probability
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measure space (X,Ω, µ). The strong law of large numbers says that if all the Fk are
independent, then for µ-almost every x ∈ X,

lim
N→∞

1
N

N∑
k=1

Fk(x) = F.

In fact, the assumption that all Fk are independent is stronger than needed for
the conclusion to hold. In fact, if it holds that for any m,n ∈ N, m < n then

∫
X

 n∑
k=m+1

(Fk(x) − F )
2

dµ ≤ σ2(n−m) max (1, F ). (5.18)

We will prove this when we give our Strong Law of Large Numbers. It then follows
from Lemma 1.5 of [23] that for almost every x ∈ X, as N → ∞,

1
N

N∑
k=1

Fk(x) = F +O
(
N−1/2 log2 N

)
→ F.

With our effective versions of the lemmas from Harman, we will be able to give
effective bounds in the above rather than the given asymptotics.

5.3 GENERAL FORMS OF LEMMAS 1.4 AND 1.5 OF [23]

As noted above, to prove their asymptotic theorem, Aistleitner, Borda and Hauke
use a variant on Lemma 1.4 of [23]. This raises the question of how generally can we
write these lemmas? As remarked in [23], it is difficult to provide great improvements
on the Lemmas as written, but in Chapter 8 we will write these Lemmas in as general
a form as possible.
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Probabilistic Results and their Proofs

The main tool in proving the asymptotic results above are results of the kind of
Lemma 1.4 and 1.5 of [23]. Here we state effective versions of these lemmas which
will be use in the applications mentioned in the introduction.

6.1 RESULTS

Theorem 6.1.0.1 (Effective Version of Lemma 1.4 in [23]). Let (X, Ω, µ) be a
measure space, and suppose that 0 < µ(X) < +∞. Let fk(x), k ∈ N, be a sequence
of non-negative µ-measurable functions, where for all k ∈ N, x ∈ X, we have that
fk(x) < C for some constant C ∈ R. Let {fk ∈ R}k∈N and {φk ∈ R}k∈N be sequences
of real numbers such that for any k ∈ N,

0 ≤ fk ≤ φk ≤ 1. (6.1)

For any N ∈ N, define

Φ(N) =
N∑
k=1

φk,

and suppose that limN→∞ Φ(N) = +∞. Further, assume that there exists K > 0
such that for any N ∈ N we have that∫

X

(
N∑
k=1

(fk(x) − fk)
)2

dµ(x) ≤ KΦ(N). (6.2)

Then for any ε > 0 and δ > 0, there exists Eε,δ ⊂ X and Kε,δ > 0 such that
µ(Eε,δ) < δ and for any x ∈ X \ Eε,δ and N ∈ N,∣∣∣∣∣

N∑
k=1

fk(x) −
N∑
k=1

fk

∣∣∣∣∣ ≤ Kε,δ

(
Φ2/3(N) log1/3+ε (Φ(N) + 2)

)
,

101
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where

Kε,δ = max {X, Y } ,

Nε,δ = min
{
n ∈ N : Φ(n) > j3

ε,δ log1+ε(jε,δ + 2)
}
,

jε,δ = 1 +
exp

(
1 + log−1−ε 3

εδ
K

)1/ε ,
where Φ0 = min {Φ(n) ∈ R+ : n ∈ N} is the minimal non-zero value Φ attains and

X = CNε,δ

max
(
Φ

2/3
0 log1/3+ε(Φ0 + 2), 1

) ,
Y = 4

log2ε/3 (Φ0 + 2)

(
log 4
log 3

)1+ε (
4 + 1 + ε

log 3 + 1
4 log1+ε 4

)
.

Similarly, we are able to come up with an effective version of Lemma 1.5 from
[23], as follows.

Theorem 6.1.0.2 (Effective Version of Lemma 1.5 in [23]). Let (X,Ω, µ) be a
measure space, and suppose that 0 < µ(X) < +∞. Let fk(x), k ∈ N, be a sequence
of non-negative µ-measurable functions, where for all k ∈ N, x ∈ X, we have that
fk(x) < C for some constant C ∈ R. Let {fk ∈ R}k∈N and {φk ∈ R}k∈N be sequences
of real numbers such that, for all k ∈ N,

0 ≤ fk ≤ φk.

For any N ∈ N, let

Φ(N) =
N∑
k=1

φk.

and suppose that limN→∞ Φ(N) = +∞. Further, assume that there exists K > 0
such that for any m,n ∈ N, if m < n then

∫
X

 n∑
k=m+1

(fk(x) − fk)
2

dµ(x) ≤ K (Φ(n) − Φ(m)) . (6.3)

Then for any ε > 0 and δ > 0, there exists Eε,δ ⊂ X and Kε,δ > 0 such that
µ(Eε,δ) < δ and for any x ∈ X \ Eε,δ and N ∈ N,∣∣∣∣∣

N∑
k=1

fk(x) −
N∑
k=1

fk

∣∣∣∣∣ ≤ Kε,δ

(
Φ1/2(N) log3/2+ε Φ(N) + max

1≤k≤N
fk

)
,
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where

Kε,δ = max {X ′, Y ′} ,

Nε,δ = max {n ∈ N : Φ(n) < rε,δ},

rε,δ =
⌈(2K

εδ

)1/ε⌉
+ 1,

where Φ0 = min {Φ(n) ∈ R+ : n ∈ N} is the minimal non-zero value Φ attains, and

X ′ = CNε,δ

max
(
Φ

1/2
0 log3/2+ε(Φ0 + 2) + f1, 1

) ,
Y ′ = 2

log3/2+ε/2 2

(
1 + 1√

2 log3/2+ε 4

)(
log 4
log 3

)3/2+ε

.

The proof in [1] involves an application of a result akin to Harman’s Lemma
1.4 [23], which is given at Lemma 5.2.1.1. Later in this chapter we prove this
lemma, before proving the following effective version, which we will use to prove the
quantitative Koukoulopoulos-Maynard Theorem referred to in the previous chapter.

Theorem 6.1.0.3. Suppose that (X, Ω, µ) is a measure space such that 0 < µ (X) <
∞, and let K be a positive real constant. Let fq : X → [0, K] be a sequence of
µ-measurable functions and let fq, ϕq be sequences of real numbers such that

0 ≤ fq ≤ ϕq ≤ K.

Write Ψ(Q) = ∑Q
q=1 ϕq, and suppose that Ψ(Q) → ∞ and Q → ∞. Let C > 4 and

C > 0, and suppose that for every n ∈ N,

∫
X

 ∑
1≤q≤n

(fq(x) − fq)
2

dµ = C
(

Ψ(Q)2

(log Ψ(Q))C

)
(6.4)

Then for any δ > 0, there exists an EC, δ ⊂ X such that µ(EC, δ) < δ and for any
x ∈ X \ EC, δ,

Q∑
q=1

fq(x) ≤
Q∑
q=1

fq + max
kC, δK, 2 eΨ (Q) +K

(log Ψ (Q))
√
C−1

+K

 ,
where

kC, δ := min
{
k ∈ R : Ck−

√
C

2

(
1 + 2k√

C − 2

)
< δ

}
. (6.5)
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The choice of C depends on the application one has in mind; for our applications
we will take C to be the implicit constant from (5.12), as used in [1]. In this case, a
bound for the constant C (which is also the constant in (6.4)) has been established
and will be published separately due to the length of the calculation. This is the
remaining implicit constant mentioned in Chapter 5.

We will now give the proof of the above results.

6.2 PROOFS

6.2.1 Proof of Theorem 6.1.0.1

Pick any ε > 0. For any N ∈ N and x ∈ X, define

Ψ(N, x) =
N∑
k=1

fk(x),

Ψ(N) =
N∑
k=1

fk,

E(N, x) = Ψ(N, x) − Ψ(N).

For any j ∈ N, define

Nj = min
{
n ∈ N : Φ(n) > j3 log1+ε (j + 2)

}
, (6.6)

Aj =
{
x ∈ X : |E(Nj, x)| > j2 log1+ε (j + 2)

}
. (6.7)

we note that as Ψ(N) → ∞, Nj is well-defined for all j ∈ N. Considering (6.2), we
see that

µ (Aj) min
x∈Aj

(
|E (Nj, x) |2

)
≤
∫
Aj

 Nj∑
k=1

(fk(x) − fk)2

 dµ(x)

≤
∫
X

 Nj∑
k=1

(fk(x) − fk)2

 dµ(x)

≤ KΦ(Nj). (6.8)
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It follows immediately from the above and (6.7) that

µ (Aj) ≤ KΦ(Nj)
minx∈Aj (|E (Nj, x) |2)

≤ KΦ(Nj)(
j2 log1+ε(j + 2)

)2

= KΦ(Nj)(
j4 log2+2ε(j + 2)

) . (6.9)

For any j ∈ N, log1+ε 3 ≤ j3 log1+ε (j + 2). Further, by (6.1) and (6.6) we see
that

j3 log1+ε (j + 2) < Φ(Nj) ≤ j3 log1+ε (j + 2) + 1.

By applying the above and (6.7) to (6.9), we obtain that

µ(Aj) ≤ Kj3 log1+ε (j + 2) +K

j4 log2+2ε (j + 2)

≤ (1 + log−1−ε 3)Kj3 log1+ε (j + 2)
j4 log2+2ε (j + 2)

= 1 + log−1−ε 3
j log1+ε (j + 2)

K.

We now pick any δ > 0. Let

jε,δ = 1 +
exp

(
1 + log−1−ε 3

εδ
K

)1/ε .
It follows that

∞∑
j=jε,δ

µ(Aj) <
∫ ∞

jε,δ−1

(1 + log−1−ε 3)K
x log1+ε x

dx

= 1 + log−1−ε 3
ε logε(jε,δ − 1)K ≤ δ. (6.10)

Let

Eε,δ =
∞⋃

j=jε,δ
Aj.

Notice that, by sub-additivity of measures and (6.10),

µ(Eε,δ) = µ

 ∞⋃
j=jε,δ

Aj

 ≤
∞∑

j=jε,δ
µ(Aj) < δ.

After this initial set up, we can now give some lemmas we will use to complete the
proof.
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Lemma 6.2.1.1. For any j ∈ N, j ≥ 2, we have that

Ψ(Nj) − Ψ(Nj−1) ≤
(

3 + 1 + ε

log 3 + 1
4 log1+ε 4

)
j2 log1+ε (j + 2),

where Nj is given at (6.6).

Proof. Define g : R+ → R by

g(j) = j3 log1+ε(j + 2).

Pick any j ∈ N such that j ≥ 2. By the Mean Value Theorem, there exists
ξj ∈ (j − 1, j) such that

g(j) − g(j − 1) = g′(ξj)

= 3ξ2
j log1+ε (ξj + 2) +

ξ3
j

ξj + 2(1 + ε) logε (ξj + 2)

≤ 3ξ2
j log1+ε (ξj + 2) +

ξ2
j

log 3(1 + ε) log1+ε (ξj + 2)

=
(

3 + 1 + ε

log 3

)
ξ2
j log1+ε (ξj + 2)

<

(
3 + 1 + ε

log 3

)
j2 log1+ε (j + 2).

We note that by (6.6), we have that

Φ (Nj − 1) ≤ j3 log1+ε (j + 2) < Φ (Nj) .

From this, (6.1), and the fact that j ≥ 2, we have that

Φ(Nj) − Ψ(Nj) ≥ Φ(Nj−1) − Ψ(Nj−1).

More explicitly, this is because

Φ(Nj) − Ψ(Nj) = (Φ(Nj−1) − Ψ(Nj−1)) +
Nj∑

k=Nj−1+1
(φk − ψk) ,
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and by (6.1) both terms on the right hand side are greater than equal to zero. Now,
from the above and that j ≥ 2 we see that

Ψ(Nj) − Ψ(Nj−1) ≤ Φ(Nj) − Φ(Nj−1)
= Φ(Nj − 1) + φNj − Φ(Nj−1)
≤ g(j) − g(j − 1) + 1

<

(
3 + 1 + ε

log 3

)
j2 log1+ε (j + 2) + j2 log1+ε(j + 2)

4 log1+ε 4

=
(

3 + 1 + ε

log 3 + 1
4 log1+ε 4

)
j2 log1+ε (j + 2),

as stated in the lemma.

Lemma 6.2.1.2. For any ε > 0 and j ∈ N, j ≥ 2, we have that

j2 log1+ε (j + 2) ≤ 4
log2ε/3 (Φ0 + 2)

(
log 4
log 3

)1+ε

Φ2/3(Nj−1) log1/3+ε (Φ(Nj−1) + 2).

Proof. Since j ≥ 2,

j2 log1+ε (j + 2)
(j − 1)2 log1+ε (j + 1)

≤ 4
(

log 4
log 3

)1+ε

.

Thus, considering (6.6), we see that

j2 log1+ε (j + 2) ≤ 4
(

log 4
log 3

)1+ε

(j − 1)2 log1+ε (j + 1)

≤ 4
(

log 4
log 3

)1+ε

Φ2/3(Nj−1) log(1+ε)/3 (Φ(Nj−1) + 2)

≤ 4
log2ε/3 (Φ0 + 2)

(
log 4
log 3

)1+ε

Φ2/3(Nj−1) log1/3+ε (Φ(Nj−1) + 2),

as stated in the lemma.

We are now in a position to complete the proof of Theorem 6.1.0.1. Pick any
x ∈ X \ Eε,δ and N ∈ N such that N > Njε,δ . Since by assumption,

lim
n→∞

Φ(n) = +∞,
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there exists j ∈ N such that Nj−1 ≤ N < Nj and j > jε,δ. Hence x ̸∈ Aj. It then
follows from (6.7), Lemma 6.2.1.1 and Lemma 6.2.1.2 that

Ψ(N, x) − Ψ(N) ≤ Ψ(Nj, x) − Ψ(Nj−1)
≤ Ψ(Nj, x) − Ψ(Nj) + Ψ(Nj) − Ψ(Nj−1)
≤ |E(Nj, x)| + Ψ(Nj) − Ψ(Nj−1)

≤ j2 log1+ε (j + 2) +
(

3 + 1 + ε

log 3 + 1
4 log1+ε 4

)
j2 log1+ε (j + 2)

=
(

4 + 1 + ε

log 3 + 1
4 log1+ε 4

)
j2 log1+ε (j + 2)

≤ 4
log2ε/3 (Φ0 + 2)

(
log 4
log 3

)1+ε (
4 + 1 + ε

log 3 + 1
4 log1+ε 4

)
·

· Φ2/3(Nj−1) log1/3+ε (Φ(Nj−1) + 2)

≤ 4
log2ε/3 (Φ0 + 2)

(
log 4
log 3

)1+ε (
4 + 1 + ε

log 3 + 1
4 log1+ε 4

)
·

· Φ2/3(N) log1/3+ε (Φ(N) + 2). (6.11)

We now consider N ≤ Nε,δ. We note that by the definition of fk(x) and fk, we have
that for all N ∈ N,

−N ≤
N∑
k=1

(fk(x) − fk) ≤ CN.

It follows that
N∑
k=1

(fk(x) − fk) ≤ N(C + 1).

We note that if C ≥ 1, then we have that∣∣∣∣∣
N∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ NC. (6.12)

We now assume that C ≥ 1; indeed if it is not, then all the functions fk(x) are also
bounded above by 1. Thus, for all N ≤ Nε,δ inequality (6.12) holds, and for all
N > Nε,δ we have inequality (6.11). This proves the theorem.

6.2.2 Proof of Theorem 6.1.0.2

We now prove Theorem 6.1.0.2. As commented in [23], we improve the spacing
between Nj ’s to improve the bound obtained in Theorem 6.1.0.1. We initially follow
the proof of Lemma 1.5 in [23], before quantifying the remainder term.
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For any j ∈ N, define

nj = max {n ∈ N : Φ(n) < j}.

For all j ∈ N, j can be written in binary as

j =
⌊log2 j⌋∑
v=0

2vb(j, v),

where b : N × N0 → {0, 1}.
Define rj = ⌊log2 j⌋ and let

Bj =
{

(i, s) ∈ N0 × N0 : i =
rj∑

v=s+1
2v−sb(j, v), b(j, s) = 1, 0 ≤ s ≤ rj

}
.

Notice that |Bj| ≤ rj + 1 and

(0, nj] =
⋃

(i,s)∈Bj

(
ni2s , n(i+1)2s

]
. (6.13)

A concrete example of how this works is given in [23] for j = 37.
Returning to the proof, we now define for any (i, s) ∈ N0 × N0 and x ∈ X a

function F : N0 × N0 ×X → R as follows:

F (i, s, x) =
n(i+1)2s∑
k=ni2s+1

(fk(x) − fk).

Then, by (6.13), for any x ∈ X,
nj∑
k=1

(fk(x) − fk) =
∑

(i,s)∈Bj

F (i, s, x). (6.14)

For any ε > 0, define

Mε =
√

2
log3/2+ε/2 2

> 1.

We now give some lemmas we will use in the rest of the proof.

Lemma 6.2.2.1. For any ε > 0 and δ > 0, there exists Eε,δ ⊂ X and rε,δ ∈ N such
that µ(Eε,δ) < δ, and for any x ∈ X \ Eε,δ and r ∈ N, if r > rε,δ then∣∣∣∣∣

nr∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ Mε

(
r1/2 log3/2+ε (r + 2)

)
.
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Proof. By (6.14), it suffices to prove that there exists rε,δ ∈ N such that for any
r ∈ N such that r > rε,δ,∣∣∣∣∣∣

∑
(i,s)∈Br

F (i, s, x)
∣∣∣∣∣∣ ≤

∑
(i,s)∈Br

|F (i, s, x)| ≤ Mε

(
r1/2 log3/2+ε (r + 2)

)
.

For any r, i, s ∈ N0, x ∈ X, define

G(r, x) =
r∑
s=0

2r−s−1∑
i=0

F 2(i, s, x), (6.15)

Φ(i, s) =
n(i+1)2s∑
k=ni2s+1

φk := Φ(n(i+1)2s)

Ar =
{
x ∈ X : G(r, x) > r2+ε2r

}
. (6.16)

Pick any r ∈ N. By (6.3),
∫
X
G(r, x) dµ(x) ≤ K

r∑
s=0

2r−s−1∑
i=0

Φ(i, s)

= K
r∑
s=0

2r−s−1∑
i=0

(
Φ(n(i+1)2s) − Φ(ni2s)

)
= K

r∑
s=0

Φ(n2s)

≤ K(r + 1)Φ(n2r)
< 2Kr2r.

Since

r2+ε2rµ(Ar) ≤
∫
Ar
G(r, x) dµ(x) < 2rK2r,

we obtain that
µ(Ar) < 2Kr−1−ε.

Pick any δ > 0 and define

rε,δ = 1 +
⌈(2K

εδ

)1/ε⌉
.

It follows that
∞∑

r=rε,δ
µ(Ar) <

∫ ∞

rε,δ−1

2K
x1+εdx = 2K

ε(rε,δ − 1)ε ≤ δ.
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We now take

Eε,δ =
∞⋃

r=rε,δ
Ar.

As in the previous proof, we note that by the sub-additivity of measures,

µ(Eε,δ) = µ

 ∞⋃
r=rε,δ

Ar

 ≤
∞∑

r=rε,δ
µ(Ar) < δ.

Pick any x ∈ X \ Eε,δ. For any r ∈ N, r > rε,δ, we necessarily have that x ̸∈ Ar and

G(r, x) ≤ r2+ε2r. (6.17)

Pick any j ∈ N such that j > 2rε,δ . Then ⌊log2 j⌋+1 > rε,δ. Taking r = ⌊log2 j⌋+1 >
rε,δ, we find that

∑
(i,s)∈Bj

|F (i, s, x)| =
r∑
s=0

2r−s−1∑
i=0

|F (i, s, x)|χBj(i, s),

where χBj(i, s) is the characteristic function on Bj. Notice that 2r ≤ 2j. Applying
this, the Cauchy-Schwarz inequality, (6.15), (6.16) and (6.17) gives us that

∑
(i,s)∈Bj

|F (i, s, x)| ≤

 r∑
s=0

2r−s−1∑
i=0

|F (i, s, x)|2
1/2 r∑

s=0

2r−s−1∑
i=0

χBj(i, s)
1/2

= G1/2(r, x)|Bj|1/2

≤ r1+ε/22r/2r1/2

= 2r/2r3/2+ε/2

≤
√

2j1/2 log3/2+ε/2
2 j

≤
√

2
log3/2+ε/2 2

j1/2 log3/2+ε/2 j

≤ Mε

(
j1/2 log3/2+ε/2 j

)
,

which proves the lemma.

Lemma 6.2.2.2. For any ε > 0 and r ∈ N,

(r + 1)1/2 log3/2+ε (r + 3) ≤
√

2
(

log 4
log 3

)3/2+ε

r1/2 log3/2+ε (r + 2).
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Proof. This follows from the following bound:

(r + 1)1/2 log3/2+ε (r + 3)
r1/2 log3/2+ε (r + 2)

=
√
r + 1
r

(
log (r + 3)
log (r + 2)

)3/2+ε

≤
√

2
(

log 4
log 3

)3/2+ε

.

The lemma follows.

We are now able to finish the proof of Theorem 6.1.0.2. Pick any ε > 0 and δ > 0.
By Lemma 6.2.2.1, there exists some µ-measurable Eε,δ ⊂ X and rε,δ ∈ N such that
µ(Eε,δ) < δ and for any x ∈ X \ Eε,δ and r ∈ N with r > rε,δ,∣∣∣∣∣

nr∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ Mε

(
r1/2 log3/2+ε (r + 2)

)
.

Pick any n ∈ N such that n > nrε,δ . Since by assumption

lim
N→∞

Φ(N) = lim
r→∞

nr = +∞,

there exists r ∈ N such that nr < n < nr+1 and r > rε,δ. Notice that for any x ∈ X,
nr∑
k=1

fk(x) ≤
n∑
k=1

fk(x) ≤
nr+1∑
k=1

fk(x),

and for any x ∈ X \ Eε,δ∣∣∣∣∣
nr∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ Mε

(
r1/2 log3/2+ε (r + 2)

)
, (6.18)

and ∣∣∣∣∣
nr+1∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ Mε

(
(r + 1)1/2 log3/2+ε (r + 3)

)
. (6.19)

We note that Mε > 1, Φ(nr+1) < r + 1 and r ≤ Φ(nr + 1), so
nr+1∑

k=nr+1
fk = fnr+1 +

nr+1∑
k=nr+2

fk

≤ fnr+1 +
nr+1∑

k=nr+2
φk

≤ max
1≤k≤n

fk + Φ(nr+1) − Φ(nr + 1)

< max
1≤k≤n

fk + (r + 1) − r

= 1 + max
1≤k≤n

fk.
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Since
nr∑
k=1

fk(x) −
n∑
k=1

fk ≤
n∑
k=1

(fk(x) − fk) ≤
nr+1∑
k=1

fk(x) −
n∑
k=1

fk,

we get that
nr∑
k=1

(fk(x) − fk) − 1 − max
1≤k≤n

fk ≤
n∑
k=1

(fk(x) − fk)

≤
nr+1∑
k=1

(fk(x) − fk) + 1 + max
1≤k≤n

fk.

Notice that r1/2 log3/2+ε (r + 2) > 1. Hence by this, (6.18) and (6.19) we get that

−Mε

(
1 + 1

log3/2+ε 3

)(
r1/2 log3/2+ε (r + 2) + max

1≤k≤n
fk

)
≤ −Mε

(
r1/2 log3/2+ε (r + 2)

)
− 1 − max

1≤k≤n
fk

≤
n∑
k=1

(fk(x) − fk)

≤ Mε

(
(r + 1)1/2 log3/2+ε (r + 3)

)
+ 1 + max

1≤k≤n
fk

≤ Mε

(
1 + 1√

2 log3/2+ε 4

)(
(r + 1)1/2 log3/2+ε (r + 3) + max

1≤k≤n
fk

)

≤
√

2Mε

(
1 + 1√

2 log3/2+ε 4

)(
log 4
log 3

)3/2+ε (
r1/2 log3/2+ε (r + 2) + max

1≤k≤n
fk

)
.

(6.20)

Thus, as r ≤ Φ(n),∣∣∣∣∣
n∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤

√
2Mε

(
1 + 1√

2 log3/2+ε 4

)(
log 4
log 3

)3/2+ε

·

·
(
r1/2 log3/2+ε (r + 2) + max

1≤k≤n
fk

)
≤ Kε,δ

(
Φ1/2(n) log3/2+ε (Φ(n) + 2) + max

1≤k≤n
fk

)
. (6.21)

We now consider N ≤ Nε,δ. We have that for all n ∈ N,

−N max
1≤k≤N

fk ≤
N∑
k=1

(fk(x) − fk) ≤ NC.

It follows immediately that∣∣∣∣∣
N∑
k=1

(fk(x) − fk)
∣∣∣∣∣ ≤ N

(
C + max

1≤k≤N
fk

)
.
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For all N ≤ Nε,δ we have that inequality (6.21) holds, and for all N > Nε,δ. This
concludes the proof of Theorem 6.1.0.2.

6.2.3 Proof of Lemma 5.2.1.1

Proof. We essentially follow the proof given in [1]. Initially assume C > 4. Define
for any k ∈ N,

Qk = min
{
Q ∈ N : Ψ(Q) ≥ ek

1/
√
C
}
,

and let

Bk =
x ∈ X :

∣∣∣∣∣∣
∑

1≤q≤Qk
(fq(x) − fq)

∣∣∣∣∣∣ ≥ Ψ (Qk)
(log Ψ (Qk))C/4

 .
By (5.12) we obtain that

µ (Bk) ·
(

Ψ (Qk)
(log Ψ (Qk))C/4

)2

≤
∫

Bk

 ∑
1≤q≤Qk

(fq(x) − fq)
2

dµ

≤
∫
X

 ∑
1≤q≤Qk

(fq(x) − fq)
2

dµ

= O

(
Ψ(Qk)2

(log Ψ(Qk))C

)
.

It immediately follows that

µ (Bk) ≤ O
(
(log Ψ (Qk))−C/2

)
≤ O

(
k−

√
C/2
)
. (6.22)

As C > 4 we have that ∞∑
k=1

µ (Bk) < +∞,

so applying the Borel-Cantelli Lemma we find that almost all x ∈ X are contained
in at most finitely many of the sets Bk. That is, for almost all x there exists a k0(x)
such that for all k > k0(x), we have that∣∣∣∣∣∣

∑
1≤q≤Qk

(fq(x) − fq)
∣∣∣∣∣∣ ≤ Ψ (Qk)

(log Ψ (Qk))C/4 .

For any Q ≥ 3 there is a k ∈ N such that Qk ≤ Q ≤ Qk+1. This means that
Qk∑
q=1

ϕq ≤
Q∑
q=1

ϕq ≤
Qk+1∑
q=1

ϕq.
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As by assumption ϕq ≤ K for all q ∈ N, we have that Ψ (Qk) ∈
[
ek

1√
C , ek

1√
C +K

]
.

It follows that

Ψ(Qk+1)
Ψ(Qk)

= 1 +O
(
k

−1+ 1√
C

)
= 1 +O

(
(log Ψ(Qk))1−

√
C
)
.

From these formulae and the triangle inequality, it follows that for almost all
x ∈ X there exists a Q0 := Q0(x) such that for all Q > Q0 we have that

∣∣∣∣∣∣
∑

1≤q≤Q
(fq(x) − fq)

∣∣∣∣∣∣ = O

 Ψ(Q)
(log Ψ(Q))

√
C−1

 .
This proves the lemma.

This method of proof is directly taken from [1] and applied to general measure
spaces rather than the specific one needed for their paper. The proof of Theorem 1
in [1] is now a special case of the above lemma. We further note that in the proof
in [1], they allow C to be arbitrary, and use this to give a further asymptotic term,
which we shall not do as we wish to make this result effective.

6.2.4 Proof of Theorem 6.1.0.3

Proof. First we note that by (6.4), for arbitrary C > 0 there exists a C ∈ R such
that ∫

X

 ∑
1≤q≤Q

(fq(x) − fq)
2

dµ ≤ C Ψ(Q)2

(log Ψ(Q))C
.

As before, for C > 4 and any k ∈ N, let

Qx = min
{
Q ∈ R : Ψ(Q) ≥ ex

1√
C

}
, x ≥ 1, (6.23)

and let

Bk =
x ∈ X :

∣∣∣∣∣∣
∑

1≤q≤Qk
(fq(x) − fq)

∣∣∣∣∣∣ ≥ Ψ (Qk)
(log Ψ (Qk))C/4

 .
We note that we will generally consider x ∈ N when considering Qx; however, we
will need to take an integral so have defined this over the reals.
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By (6.4) we obtain that

µ (Bk) ·
(

Ψ (Qk)
(log Ψ (Qk))C/4

)2

≤
∫

Bk

 ∑
1≤q≤Qk

(fq(x) − fq)
2

dµ

≤
∫
X

 ∑
1≤q≤Qk

(fq(x) − fq)
2

dµ

≤ C Ψ(Qk)2

(log Ψ(Qk))C
,

so it follows that
µ (Bk) ≤ C (log Ψ (Qk))−C

2 ≤ Ck−
√
C

2 , (6.24)

where the second inequality follows from (6.23).
Let

kC, δ := min
{
k ∈ N : Ck−

√
C

2

(
1 + 2k√

C − 2

)
< δ

}

Then, by the integral test for convergence and that C > 4, it follows that

∞∑
k=kC, δ

µ(Bk) ≤ µ(BkC, δ) +
∫ ∞

kC, δ

µ(Bx)dx

≤ C
(
k

−
√
C

2
C, δ +

∫ ∞

kC, δ

x−
√
C

2 dx
)

= C
(
k

−
√
C

2
C, δ + 2

2 −
√
C

[
x1−

√
C

2

]∞

kC, δ

)

= Ck−
√
C

2
C, δ

(
1 + 2kC, δ√

C − 2

)
< δ.

Define
EC, δ =

∞⋃
k=kC, δ

Bk.

Then by the above, µ (EC, δ) < δ.
We also note as before, as C > 4 and by considering (6.24) we have that∑∞

k=1 µ(Bk) converges, so by the Borel-Cantelli lemma, for almost all x ∈ X, there
exists a k0 = k0(x) such that for all k > k0,∣∣∣∣∣∣

∑
1≤q≤Qk

(fq(x) − fq)
∣∣∣∣∣∣ ≤ Ψ (Qk)

(log Ψ (Qk))C/4 .
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For any Q ∈ N, Q ≥ 3, as before we have that there exists k ∈ N satisfying
Qk ≤ Q ≤ Qk+1 and so

Qk∑
q=1

ϕq ≤
Q∑
q=1

ϕq ≤
Qk+1∑
q=1

ϕq.

By the definition of Qk and as ϕq ≤ K for all q,

Ψ(Qk) ∈
[
ek

1√
C
, ek

1√
C +K

]
.

Following methods from earlier in this paper, we prove the following lemma.

Lemma 6.2.4.1. For any k ∈ N we have that

0 ≤ Ψ (Qk+1) − Ψ (Qk) ≤ eΨ (Qk) (log Ψ (Qk))1−
√
C

√
C

+K.

Proof. We follow the same method we used to prove Lemma 6.2.1.1. Let

g(x) = ex
1/

√
C

.

Then by the mean value theorem, for any k ∈ N, there exists some ξk ∈ (k, k + 1)
such that

g(k + 1) − g(k) = g′(ξk).

Calculating, we see that for any x ∈ (k, k + 1),

g′(x) = ex
1√
C x

1√
C

−1
√
C

≤ e(k+1)
1√
C (k + 1)

1√
C

−1
√
C

≤ e · ek
1√
C k

1√
C

−1
√
C

≤ eΨ (Qk) k
1√
C

−1
√
C

,

where the last line follows from the definition of Qk.
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Note that Ψ (Qk+1 − 1) < e(k+1)
1√
C . We now consider

Ψ (Qk+1) − Ψ (Qk) = Ψ (Qk+1 − 1) + ϕQk+1 − Ψ (Qk)

≤ e(k+1)
1√
C − ek

1√
C +K

= g(k + 1) − g(k) +K

≤ eΨ (Qk) k
1√
C

−1
√
C

+K

≤ eΨ (Qk) (log Ψ (Qk))1−
√
C

√
C

+K,

where the second to last line follows from Lemma 6.2.4.1, and the last line from the
definition of Qk given at (6.23).

We now prove the result. Given Q ∈ N such that Q > kC, δ, with Qk ≤ Q < Qk+1,
we see that for any x ∈ X \ EC, δ,∣∣∣∣∣∣

Q∑
q=1

(fq(x) − fq)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
Qk+1∑
q=1

fq(x) −
Qk∑
q=1

fq

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
Qk+1∑
q=1

fq(x) − Ψ(Qk)
∣∣∣∣∣∣

=
∣∣∣∣∣∣
Qk+1∑
q=1

fq(x) − Ψ (Qk+1) + Ψ (Qk+1) − Ψ(Qk)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
Qk+1∑
q=1

fq(x) − Ψ (Qk+1)
∣∣∣∣∣∣+ |Ψ (Qk+1) − Ψ(Qk)|

≤ Ψ (Qk+1)
(log Ψ (Qk+1))C/4 + eΨ (Qk) (log Ψ (Qk))1−

√
C

√
C

+K, (6.25)

where the last line follows as Q > kC, δ and from Lemma 6.2.4.1.
We note that

Ψ (Qk+1)
(log Ψ (Qk+1))C/4 ≤ e(k+1)

1√
C +K

(log Ψ (Qk))C/4

≤ e · ek
1√
C +K

(log Ψ (Qk))C/4

≤ eΨ (Qk) +K

(log Ψ (Qk))C/4 .
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Substituting this into (6.25), we obtain that∣∣∣∣∣∣
Q∑
q=1

(fq(x) − fq)
∣∣∣∣∣∣ ≤ eΨ (Qk) +K

(log Ψ (Qk))C/4 + eΨ (Qk) (log Ψ (Qk))1−
√
C

√
C

+K

≤ eΨ (Qk) +K

(log Ψ (Qk))
√
C−1

+ eΨ (Qk)
(log Ψ (Qk))

√
C−1

+K

≤ 2 eΨ (Qk) +K

(log Ψ (Qk))
√
C−1

+K

≤ 2 eΨ (Q) +K

(log Ψ (Q))
√
C−1

+K

It follows that
Q∑
q=1

fq(x) ≤
Q∑
q=1

fq + 2 eΨ (Q) +K

(log Ψ (Q))
√
C−1

+K. (6.26)

This inequality holds for Q > kC, δ. We now consider when Q ≤ kC, δ. As fq(x)
and fq are bounded above by K for all q, we trivially have that

−kC, δK ≤ −QK ≤
Q∑
q=1

(fq(x) − fq) ≤ QK ≤ kC, δK. (6.27)

Combining (6.26) and (6.27), we see that for all Q ∈ N, we have that∣∣∣∣∣∣
Q∑
q=1

fq(x) −
Q∑
q=1

fq

∣∣∣∣∣∣ ≤ max
{
kC, δK, 2 eΨ (Q) +K

(log Ψ (Q))C
+K

}
.
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Applications of the Probabilistic Results

In this chapter we give various applications of the results given in the previous
chapter, as lined out in Chapter 5.

7.1 EFFECTIVE SCHMIDT’S THEOREM

In this section we prove the following quantitative version of Schmidt’s Theorem.

Theorem 7.1.0.1 (Effective Schmidt’s Theorem). Let ψ : N → [0, 1/2) be a non-
increasing function. Suppose (5.5) diverges. Then for any ε > 0 and δ > 0, there
exists some measurable Eε,δ ⊂ [0, 1) such that µ(Eε,δ) < δ and for any x ∈ [0, 1)\Eε,δ
and Q ∈ N,

|S(x,Q) − 2Ψ(Q)| ≤ max
(
Nε,δ, Kε

(
Ψ1/2(Q) log2+ε(Ψ(Q) + 1)

))
,

where

Nε,δ = 2 max
{
n ∈ N :

⌈(2Kε

εδ

)1/ε⌉
+ 1 > A

}
,

A = 69Ψ(n) log (3Ψ2(n) + 3) log (2 log (3Ψ2(n) + 3)),

Kε = 28 + 35 (4)ε

ψ1/2(1) log2+ε (ψ(1) + 1)
· 26 (ε+ 1) · 1.75ε.

Roughly speaking, this tells us that other than on a set of Lebesgue measure less
than δ we can give an effective double bound for the size of S(x, Q). We further
note that if we let δ → 0 and Q → ∞ we regain Schmidt’s Theorem as given above.

120
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We now prove Theorem 7.1.0.1. The proof given in this section is based on
Section 4.1 of [23]; the proof given there is an improvement based on Schmidt’s
original method.

Let ψ : N → (0, 1/2] be a non-increasing function. Suppose (5.5) diverges. We
begin by making the Lemmas 4.1, 4.2 and 4.3 from [23] effective.

Lemma 7.1.0.2 (Effective Lemma 4.1 in [23]). For any M,N, k ∈ N, if M < N

then

0 ≤ N −M + 1 −
N∑

n=M

φ(k, n)
n

≤ N −M

k
+ logN, (7.1)

where

φ(k, n) :=
∑

1≤m≤n,
gcd (m,n)≤k

1.

Proof. The lower bound follows from the fact that for any k, n ∈ N, φ(k, n) ≤ n.
We now focus on the upper bound.

Notice that for any k, n ∈ N,

φ(k, n) ≥ n−
∑
d |n
d>k

n∑
m=1

m≡0 mod d

1.

Thus, for any M,N ∈ N, if M < N then

N∑
n=M

φ(k, n)
n

≥
N∑

n=M

1 − 1
n

∑
d |n
d>k

n

d



= N −M + 1 −
N∑

d=k+1

1
d

N∑
n=M

n≡0 mod d

1


≥ N −M + 1 −

N∑
d=k+1

(1
d

(
N −M

d
+ 1

))

= N −M + 1 −
N∑

d=k+1

N −M

d2 −
N∑

d=k+1

1
d

≥ N −M + 1 − N −M

k
− logN
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Lemma 7.1.0.3 (Effective Lemma 4.2 in [23]). Given an eventually non-increasing
function ψ : N → R, for any M,N, k ∈ N, if M < N then(

1 − 1
k

) N∑
n=M

ψ(n) − ψ(M) logM −
N∑

n=M

ψ(n)
n

≤
N∑

n=M

ψ(n)φ(k, n)
n

≤
N∑

n=M
ψ(n).

Proof. Pick any M,N, k ∈ N with M < N . By partial summation,
N∑

n=M

ψ(n)φ(k, n)
n

=
N−1∑
n=M

(
(ψ(n) − ψ(n+ 1))

n∑
m=M

φ(k,m)
m

)
+ ψ(N)

N∑
m=M

φ(k,m)
m

(7.2)

We recall that φ(k, n)
n

≤ 1, and applying this to the above and summing over n
we find that

N−1∑
n=M

(
(ψ(n) − ψ(n+ 1))

n∑
m=M

φ(k,m)
m

)
+ ψ(N)

N∑
m=M

φ(k,m)
m

≤
N∑

n=M
ψ(N),

which establishes the upper bound of the lemma.
To establish the lower bound, we consider the upper bound of (7.1) akin to the

above, and we applying this to (7.2), we obtain that
N∑

n=M

ψ(n)φ(k, n)
n

=
N−1∑
n=M

(
(ψ(n) − ψ(n+ 1))

n∑
m=M

φ(k,m)
m

)
+ ψ(N)

N∑
m=M

φ(k,m)
m

≥
N−1∑
n=M

(
(ψ(n) − ψ(n+ 1)) (n−M + 1 − n−M

k
log n)

)
= (ψ(M) − ψ(M + 1)) (1 − logM) +

(ψ(M + 1) − ψ(M + 2))
(

2 − 1
k

− log(M + 1)
)

+ · · ·

+ (ψ(N − 1) − ψ(N))
(

(N −M) − N −M − 1
k

− log(N − 1)
)

+ ψ(N)
(
N −M + 1 − N −M

k
− logN

)

=
M∑

n=M
ψ(n) − 1

k

N∑
m=M+1

ψ(m) − ψ(M) logM+

N∑
l=M+1

ψ(l) (log l − log(l + 1))

≥
(

1 − 1
k

) N∑
n=M

ψ(n) − ψ(M) logM −
N∑

n=M

(
ψ(n)
n

)
,

where the last line follows as log l − log(l + 1) > −1
l

for all positive l ∈ N
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We now give some definitions before stating and proving Lemma 7.1.0.4. For any
N ∈ N, define

Ψ(N) :=
N∑
n=1

ψ(n),

Γ(N) := Ψ2(N) + 1 ≥ 1,
L(N) := log (3Γ(N)) ≥ log 3 > 1,
L2(N) := log (2L(N)) ≥ log (2 log 3) > 1/2,
Φ(N) :=

∑
1≤m≤N,

gcd (m,N)≤Γ(N)

1 ≤ N. (7.3)

Lemma 7.1.0.4 (Effective Lemma 4.3 in [23]). For any N ∈ N,

0 ≤
N∑
n=1

ψ(n)
(

1 − Φ(n)
n

)
≤ 41L(N)L2(N).

Proof. The first inequality follows directly from (7.3), as for any N ∈ N,

N∑
n=1

ψ(n)Φ(n)
n

≤
N∑
n=1

ψ(n).

The rest of the proof deals with the second inequality. Pick any N ∈ N. Define
M0 := 0 and let

Mj := 22j ,

h := min{j ∈ N : Ψ(N) < Mj} ≥ 1,
Vr := min{V ∈ N ∪ {0} : Ψ(V ) ≥ Mr}.

Suppose initially that h ≥ 2. By the definition of h we have that

2h−1 log 2 = logMh−1 ≤ log Ψ(N) < 0.5L(N).

It follows that
2h+1 log 2 < 2L(N),

so upon taking logs, we obtain that

(h+ 1) log 2 + log log 2 < L2(N).



124 Chapter 7. Applications of the Probabilistic Results

It follows that

h <
L2(N) − log log 2

log 2

<
L2(N)
log 2

and, from the bounds on L2(N) above, that

3 + h <

(
3

log (2 log 3) + 1
log 2

)
L2(N).

In the case that h = 1, these inequalities are trivially true.
We consider the terms in the right hand side of the above, noting that if Mr ≤ Ψ(n)

then Mr
2 + 1 ≤ Γ(n) and φ(Mr

2 + 1, n) ≤ Φ(n). Applying these and Lemma 7.1.0.3,
it follows that

N∑
n=1

ψ(n)Φ(n)
n

≥
∑

0≤r≤h−1

∑
1≤n≤N

Mr≤Ψ(n)<Mr+1

ψ(n)φ(Mr
2 + 1, n)

n

≥
N∑
n=1

ψ(n)−
N∑
n=1

ψ(n)
n

+
h−1∑
r=0

 1
Mr

2 + 1
∑

1≤n≤N
Mr≤Ψ(n)<Mr+1

ψ(n) + ψ(Vr) log Vr


 .

Considering the sums in the final line of the above, we note that

h−1∑
r=0

 1
Mr

2 + 1
∑

1≤n≤N,
Mr≤Ψ(n)<Mr+1

ψ(n)

 <
h−1∑
r=0

Mr+1

Mr
2 + 1

< 3 + h

<

(
3

log (2 log 3) + 1
log 2

)
L2(N),

and the assumption that ψ is non-increasing gives us that
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h−1∑
r=0

ψ(Vr) log Vr ≤
h−1∑
r=0

(
ψ(Vr)

Vr∑
n=1

1
n

)

≤
N∑
n=1

 1
n

h−1∑
r=1, Vr>n

ψ(Vr)


≤
N∑
n=1

ψ(n)
n

h

≤ 1
log 2L2(N)

N∑
n=1

ψ(n)
n

.

Applying Hölder’s inequality, as 1/L(N) < 1 we obtain that

N∑
n=1

ψ(n)
n

≤
(

N∑
n=1

ψ(n)1+L(N)
)1/(1+L(N)) ( N∑

n=1

1
n1+1/L(N)

)L(N)/(1+L(N))

We recall that for any ε < 1,

N∑
n=1

n−1−ε < 2
∫ ∞

1/2

1
x1+εdx < 8

ε
.

Substituting this into the above, with ε = 1/L(N), we obtain that

N∑
n=1

ψ(n)
n

≤ 8Ψ(N)1/L(N)L(N) ≤ 8
√
eL(N).

The above follows as, letting Ψ(N) = x, we note that Ψ(N)1/L(N) is of the form
x1/ log (3x2+3). By standard methods in calculus, we note that for any x ≥ 0,

x1/ log (3x2+3) ≤
√
e.

Combining the results above, we get that

N∑
n=1

ψ(n)
(

1 − Φ(n)
n

)
≤ 8

√
eL(N) +

(
3

log (2 log 3) + 1
log 2

)
L2(N)+

1
log 2L2(N)8

√
eL(N)

≤ A · L(N)L2(N),
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where

A =
(

8
√
e

log (2 log 3) + 3
log 3 log (2 log 3) + 1

log (2 log 2) log 3 + 8
√
e

log (2 log 2)

)

The result then follows by computing the value

A < 41.

We are now in a position to prove Theorem 7.1.0.1.

Proof of Theorem 7.1.0.1. We are going to apply Theorem 6.1.0.2.
Denote by µ the Lebesgue measure on [0, 1) and let S∗(α, u, v) be the number of

solutions n ∈ N to

|αn−m| < ψ(n), gcd (m,n) ≤ Γ(n), u < n ≤ v.

We now compute ∫
[0,1)

S∗(α, 0, N) dα

as follows. For any u, v ∈ N, if u < v then∫
[0,1)

S∗(α, u, v) dα =
v∑

n=u+1

∫
[0,1)

S∗(α, n− 1, n) dα = 2
v∑

n=u+1
ψ(n)Φ(n)

n
.

We recall that, by the definition of S, we have that,∫
[0,1)

S(α, n) dα = ψ(n).

Notice that for any N ∈ N, S(α,N) ≥ S∗(α, 0, N). By Lemma 7.1.0.4, we get that
for any v ∈ N,∫

[0,1)
(S(α, v) − S∗(α, 0, v)) dα = 2

v∑
n=1

ψ(n)
(

1 − Φ(n)
n

)
≤ 82L(v)L2(v).

For any n ∈ N, define G : N → R+ by G(n) = L(n)/L2(n). Thus, for any N ∈ N,

µ
({
α ∈ [0, 1) : S(α,N) − S∗(α, 0, N) > L2(N)

})
≤ 82
G(N) .

For any j ∈ N ∪ {0}, let vj = min {n ∈ N : L(n) ≥ 2j}. Then
∞∑
j=0

1
G(vj)

< +∞.
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Hence, by the Borel-Cantelli Lemma, for almost every α ∈ [0, 1) and j > j(α),

0 < S(α, vj) − S∗(α, 0, vj) < L2(vj).

Note that
2j−1 ≤ L(vj) ≤ L(N) ≤ 2j ≤ L(vj) ≤ 2j+1.

It follows that 4L(N) ≥ 2j+1 ≥ L(vj), so 16L2(N) ≥ L2(vj). Thus, for almost every
α ∈ [0, 1),

0 < S(α,N) − S∗(α, 0, N) ≤ 16L2(N). (7.4)

We now study S∗(α, 0, N). We are going to apply Theorem 6.1.0.2 on S∗(α, 0, N).
Pick any u, v ∈ N with u < v. Notice that for any n ∈ N,

1 − Φ(n)
n

≤ 1 ≤ 2L(n)L2(n).

Let

d∗(n) :=
∑

d |n, 1≤d≤Γ(n)
1

Ψ(u, v) :=
∑

u<n≤v
ψ(n).

Then

Ψ(u, v)
v∑

n=u+1
ψ(n)

(
1 − Φ(n)

n

)
=

n∑
n=u+1

ψ(n)
(

1 − Φ(n)
n

)
+

v∑
r=u+1

ψ(r)
(

1 − Φ(r)
r

)
v∑

m=u+1
ψ(m)

≤
v∑

n=u+1
2ψ(n)L(n)L2(n)+

v∑
r=u+1

ψ(r)
(

1 − Φ(r)
r

)
Ψ(r).

Hence, the assumptions of Theorem 6.1.0.2 are satisfied, as by Lemma 4.4 of [23]
and inequality (4.2.10) of [23] we have that,∫

[0,1)
(S∗(α, u, v) − 2Ψ(u, v))2 dα ≤ 4

∑
u<n≤v

d∗(n)ψ(n)+

4Ψ(u, v)
∑

u<n≤v
ψ(n)

(
1 − Φ(n)

n

)

≤ 4
∑

u<n≤v
Bψ(n),
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where
B = d∗(n) + 2L(n)L2(n) +

(
1 − Φ(n)

n

)
Ψ(n).

By Theorem 6.1.0.2, for any ε > 0 and δ > 0 there exists some measurable
Eε,δ ⊂ [0, 1) such that µ(Eε,δ) < δ and for any x ∈ [0, 1) \ Eε,δ and N ∈ N,

|S∗(α, 0, N) − 2Ψ(N)| ≤ Kε,δ,0

(
Ψ1

1/2(N) log3/2+ε Ψ1(N) + 1
2

)
,

where by Lemma 7.1.0.4, with ψ0 := ψ(1) > 0, we have

Kε,δ,0 = 4
log2ε/3 (ψ0 + 2)

(
log 4
log 3

)1+ε (
4 + 1 + ε

log 3 + 1
4 log1+ε 4

)

≤ 26(ε+ 1)
(

log 4
log 3 log2/3 2

)ε
≤ 26(ε+ 1)1.75ε,

Ψ1(N) :=
N∑
n=1

(
d∗(n) + 2L(n)L2(n) +

(
1 − Φ(n)

n

)
Ψ(n)

)
ψ(n)

≤
N∑
n=1

d∗(n)ψ(n) + 43Ψ(N)L(N)L2(N).

Notice that for any N ∈ N,
N∑
n=1

d∗(n)ψ(n) =
N∑
n=1

ψ(n)
∑

d |n, d≤Γ(n)
1 =

Γ(N)∑
d=1

N/d∑
n=1

ψ(kd)

≤
∑

d≤Γ(N)

Ψ(N)
d

≤ Ψ(N) log (3Γ(N)) = Ψ(N)L(N)

≤ 1
log (2 log 3)Ψ(N)L(N)L2(N).

Thus we find that

Ψ1(N) ≤
(

43 + 1
log (2 log 3)

)
Ψ(N)L(N)L2(N) < 45Ψ(N)L(N)L2(N),

and taking

ψ′
0 = Ψ1(1) ≤ 45ψ(1) log

(
3(ψ2(1) + 1)

)
log (2 log

(
3(ψ2(1) + 1)

)
) ≤ 30,

we find that

Ψ1
1/2(N) log3/2+ε Ψ1(N) + 1

2 ≤ ψ′
0

1/2 log3/2+ε ψ′
0 + 1/2

ψ0
1/2 log2+ε (ψ0 + 1)

Ψ1/2(N) log2+ε (Ψ(N) + 1)

≤ 35(4)ε

ψ0
1/2 log2+ε (ψ0 + 1)

Ψ1/2(N) log2+ε (Ψ(N) + 1).



7.2. Quantitative Koukoulopoulos-Maynard Theorem 129

Hence, by the triangle inequality and (7.4),

|S(α,N) − 2Ψ(N)| ≤ |S(α,N) − S∗(α, 0, N)| + |S∗(α, 0, N) − 2Ψ(N)|

≤ 16L2(N) + 35(4)εKε,δ,0

ψ0
1/2 log2+ε (ψ0 + 1)

Ψ1/2(N) log2+ε (Ψ(N) + 1)

≤
(

16(log (3ψ0
2 + 3))2

ψ0
1/2 log2+ε (ψ0 + 1)

+ 35(4)εKε,δ,0

ψ0
1/2 log2+ε (ψ0 + 1)

)
·

· Ψ1/2(N) log2+ε Ψ(N)

≤ 28 + 35(4)εKε,δ,0

ψ0
1/2 log2+ε (ψ0 + 1)

Ψ1/2(N) log2+ε (Ψ(N) + 1)

≤ Kε,Ψ1/2(N) log2+ε (Ψ(N) + 1),

where Kε is given in the statement of the theorem. This proves the theorem.

7.2 QUANTITATIVE KOUKOULOPOULOS-MAYNARD THEO-
REM

Using the probabilistic tools from the previous chapter, we are able to give an explicit
version of this theorem.

Theorem 7.2.0.1 (Effective Aistleitner-Borda-Hauke Theorem). Let ψ : N →
[0, 1/2] be a function and let C > 4. Suppose (5.7) diverges. Then there exists some
measurable EC, δ ⊂ [0, 1) such that µ (EC, δ) < δ, and for any x ∈ [0, 1) \ EC, δ we
have that

|S ′(x,Q) − Ψ′(Q)| ≤ max
kC, δ2 ,

2eΨ′(Q) + 1
(log Ψ′ (Q))

√
C−1

+ 1
2

 ,
up to a constant depending only on C found following the proof of Theorem 2 in [1],
where S ′(x,Q) and Ψ′(Q) are given above, and kC, δ is given in (6.5).

We now give the proof of Theorem 7.2.0.1 using Theorem 6.1.0.3.

Proof. The proof follows that of [1], using Theorem 6.1.0.3 in place of Theorem 1 of
[1]. First define

Aq := [0, 1]
⋂ ⋃

1≤p≤q
gcd(p, q)=1

(
p− ψ(q)

q
,
p+ ψ(q)

q

)
, q ∈ N
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We now note that if µ is the Lebesgue measure on [0, 1], then

µ (Aq) = 2φ(q)ψ(q)
q

.

In Theorem 6.1.0.3, we set fq = ϕq = µ (Aq) and set fq(x) = 1Aq(x), where 1Aq

denotes the characteristic function on Aq. We note that this means that Ψ(Q) as
defined in Theorem 7.2.0.1 and Theorem 6.1.0.3 are equivalent.

We now note that

∫ 1

0

 Q∑
q=1

(
1Aq(x) − µ (Aq)

)2

dx =
∑
q, r≤Q

µ (Aq ∩ Ar) − Ψ(Q)2.

By Theorem 2 of [1], we have that

∑
q, r≤Q

µ (Aq ∩ Ar) − Ψ(Q)2 = OC

(
Ψ(Q)2

(log Ψ(Q))C

)
,

with an implied constant depending on C. We note that this implied constant is the
constant that has been calculated, with the working to be published separately due
to length. We can thus apply Theorem 6.1.0.3 and the statement follows.

7.3 INHOMOGENEOUS DIOPHANTINE APPROXIMATION ON
M0-SETS

We will now prove the following effective versions of Theorems 1 and 4 of [43].

Theorem 7.3.0.1 (Effective Theorem 1 of [43]). Let F ⊂ [0, 1] and µ be an non-
atomic probability measure supported on F . Let γ ∈ [0, 1] and ψ : N → (0, 1] be a
function. Let A = (qn)n∈N be a lacunary sequence of positive integers. Suppose there
exists ν > 0 and A > 2 such that for any t ∈ Z \ {0},

|µ̂(t)| ≤ ν(
log+ |t|

)A . (7.5)

Then for any ε > 0 and δ > 0, there exists µ-measurable Eε,δ ⊂ F such that
µ(Eε,δ) < δ and for any x ∈ F \ Eε,δ and N ∈ N,

|R(x,N) − 2Ψ(N)| ≤ 2Kε,δ/2
(
Ψ(N)2/3 (log Ψ(N) + 2)2+ε

)
+ t1,δ, (7.6)
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where α ∈ (0, 1), log+(β) := max (0, log β) and

Ψ(n) =
n∑
k=1

ψ(k) (7.7)

Φ(N) = Ψ4/3(log+ Φ(N) + 1) + Ψ(N), (7.8)
K = 6 max (48, c1, c2), (7.9)

c1 = 22
K0 − 1 , (7.10)

c2 = 12
( 3

22/3 + 1
)

(1 + ζ(A− 1)) + 8
K0 − 1

+ 18νC−A
(√

2ζ
(
A− 1

2

) (
2 + α−A

)
+ 2A+1ζ

(
A

2

))
,

(7.11)

t1,δ = 1
2 +

(
(1 − A)δ

2(3 + ν/CA)

)1/(1−A)

, (7.12)

where Nε,δ, rε,δ, and Kε,δ and Φ0 are given in Theorem 6.1.0.2.

Theorem 7.3.0.2 (Effective Theorem 4 of [43]). Let F ⊂ [0, 1] and µ be an non-
atomic probability measure supported on F . Let γ ∈ [0, 1] and ψ : N → (0, 1] be a
function. Let A = (qn)n∈N be an α-separated sequence. Suppose there exists ν > 0
and A > 2 such that for any t ∈ Z \ {0}, (7.5) is satisfied. Further, assume that
A = (qn)n∈N satisfies the following growth condition:

log qn > Cn1/B (7.13)

Then for any ε > 0 and δ > 0, there exists µ-measurable Eε,δ ⊂ F such that
µ(Eε,δ) < δ and for any x ∈ F \ Eε,δ and N ∈ N,

|R(x,N) − 2Ψ(N)| ≤ Kε,δ/2

((
Ψ(N)

(
log+ Ψ(N) + 2

)
+ E(N)

)1/2

(
log

(
Ψ(N)

(
log+ Ψ(N) + 2

)
+ E(N)

))3/2+ε
+ 2

)
+ t2,δ,

(7.14)

where R(x,N) and Ψ(N) are given at (5.14) and (7.7) respectively and Kε,δ is given
in Theorem 6.1.0.2.
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Further,

E(N) =
∑∑

1≤m<n≤N
(qm, qn) min

(
ψ(qm)
qm

,
ψ(qn)
qn

)
,

Φ(N) = Ψ(N)
(
log+ Ψ(N) + 2

)
+ E(N), (7.15)

K = 2 max (48, c3), (7.16)

c3 = 4 + 18νC−A
(√

2ζ
(
A

B
− 1

2

) (
2 + α−A

)
+ 2A+1ζ

(
A

2B

))
+ c2, (7.17)

t2,δ = 1
2 +

(
(1 − min (9, A/B))δ

2(1 + ν/CA)

)1/(1−min (9,A/B)))

, (7.18)

where c2 is given by (7.11).

Remark. Lacunary sequence A = (qn)n∈N satisfies (7.13) with B = 1.

We note that t1,δ and t2,δ are needed to account for some assumptions made
during the proofs, namely (7.19) and (7.29). In our proofs, we will initially make
these assumptions, before proving Lemma 7.3.0.10, which allows us to remove them.

We note that if µ is the Lebesgue measure on [0, 1], then µ is a probability
measure and (7.5) is satisfied as the Fourier transform of the Lebesgue measure is
the Dirac distribution.

In what follows we will make some results of [43] effective, before going on to
prove the theorems above. Specifically, we make Lemmas 5 to 8 and Propositions 1
& 2 in [43] effective, then apply the results to Theorem 1 and 4 in that paper to give
the quantitative versions. We begin by giving explicit versions of Lemmas 5 to 8 of
[43]; initially we just give the statements of the effective versions of Lemmas 5-8 of
[43], and we give the proofs of these results after all the statements.

Lemma 7.3.0.3 (Effective Lemma 5 in [43]). Let µ be a non-atomic probability
measure supported on F ⊂ [0, 1] and (qn)n∈N be an increasing sequence of positive
integers greater than 4. Suppose there exists B ≥ 1 and C > 0 such that growth
condition (7.13) is satisfied. Let γ ∈ [0, 1] and ψ : N → (0, 1] be a function. Suppose
there exists A > 2B such that (7.5) is satisfied.

Further suppose that for any τ > 1 and n ∈ N,

ψ(qn) ≥ 3n−τ . (7.19)

It then follows that for arbitrary a, b ∈ N, if a < b then we have that∣∣∣∣∣
b∑

n=a
µ
(
Eγ
qn

)
− 2

b∑
n=a

ψ(qn)
∣∣∣∣∣ ≤ min

(
m1,m2

b∑
n=a

ψ(qn)
)
, (7.20)
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where for any q ∈ N,

Eγ
q = Eγ

q (ψ) := {x ∈ [0, 1] : ∥qx− γ∥ ≤ ψ(q)}, (7.21)

m1 = m1(A,B) = 3 + 3ζ
(
A

B
− 1

)
, (7.22)

m2 = 3
22/3 < 2. (7.23)

As commented previously, (7.19) leads to another error term. We deal with the
error term associated to this in Lemma 7.3.0.10.

We now give a bound for the value

S(m,n) :=
∑

k∈Z\{0}
Ŵ+
m,n(k)µ̂(−k),

where

W+
m,n(k) =

qm−1∑
p=0

δ p+γ
qm

(k)
 ∗ χ+

ψ(qm)
qm

,εm
(k)
qn−1∑

r=0
δ r+γ
qn

(k)
 ∗ χ+

ψ(qn)
qn

,εn
(k)
 ,
(7.24)

where ∗ denotes convolution, δx is the Dirac delta-function at the point x ∈ R
and

χ+
δ,ε(x) :=


1 if ||x|| ≤ δ

1
δε

(δ − ||x||) if (1 − ε)δ < ||x|| ≤ δ

0 if ||x|| > δ,

where ||x|| denotes the distance from x ∈ R to the nearest integer; that is, ||x|| :=
min{|x−m| : m ∈ Z}.

Lemma 7.3.0.4 (Effective Lemma 6 in [43]). Let µ be a probability measure supported
on F ⊂ [0, 1]. Let A = (qn)n∈N be an increasing sequence of positive integers greater
than 4. Suppose there exists B ≥ 1 and C > 0 such that growth condition (7.13) is
satisfied. Let γ ∈ [0, 1], ψ : N → (0, 1], let (εn)n∈N be a sequence of real numbers in
(0, 1] and let α ∈ (0, 1). Suppose there exists A > 2B such that (7.5) is satisfied.
Then for any m,n ∈ N, if m < n then

|S(m,n)| ≤9νC−A ψ(qm)
nA/Bεn1/2 + 9νC−A

(
1 + 1

αA

)
ψ(qn)

mA/Bεm1/2 + (7.25)

9 · 2AνC−A

nA/Bεm1/2εn1/2 + |T (m,n)|, (7.26)
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where T is defined based on the value of α that

T (m,n) = Tα(m,n) :=
∑∑
s, t∈Z\{0}

1≤|sqm−tqn|<qmα

Ŵ+
qm,γ,ϵm(sqm)Ŵ+

qn,γ,ϵn(tqn)µ̂(sqm − tqn),

(7.27)
and Ŵ+

qm,γ,ϵm(sqm) is the Fourier transform of (7.24).

The following two lemmas give effective bounds on the size of the quantity
T (m, n) appearing above. Lemma 7.3.0.5 deals with lacunary sequences and Lemma
7.3.0.6 deals with α-separated sequences.

Lemma 7.3.0.5 (Effective Lemma 7 in [43]). Let µ be a probability measure supported
on F ⊂ [0, 1]. Let A = (qn)n∈N be an lacunary sequence of natural numbers, with the
constant from the definition at (5.13) given by K = K0. Let γ ∈ [0, 1], α ∈ (0, 1), ψ :
N → (0, 1] and (εn)n∈N be a decreasing sequence of real numbers in (0, 1]. Then for
arbitrary a, b ∈ N with a < b, we have that

∑∑
a≤m<n≤b

|T (m,n)| ≤ 11K ′
b∑

n=a

ψ(qn)
εn1/2 ,

where T (m, n) depends on α and it is given by (7.27), and K ′ is given by

K ′ = 1
K0 − 1 > 0. (7.28)

Lemma 7.3.0.6 (Effective Lemma 8 in [43]). Let µ be a probability measure supported
on F ⊂ [0, 1]. Let A = (qn)n∈N be an α-separated increasing sequence with m0 = 1.
Let γ ∈ [0, 1], ψ : N → (0, 1] and (εn)n∈N be a sequence of real numbers in (0, 1].
Suppose that for any n ∈ N,

ψ(qn) ≥ n−9 (7.29)

and εn−1 ≤ 2n. Then for arbitrary a, b ∈ N, if a < b then

∑∑
a≤m<n≤b

|T (m,n)| ≤ 2
b∑

n=a
ψ(qn),

where T (m, n) is given by (7.27).

Again, the assumption (7.29) leads to another error term; this is dealt with
in Lemma 7.3.0.10. For the sake of simplicity, each of the proofs is written as an
expansion the original proof in [43]; we refer heavily to the original paper throughout.
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Before beginning the proofs, we make a slight remark that, as commented in [43],
the equality part for identity (3.2.5 in [23]) does not always hold. In general, we
have the following result instead:

Lemma 7.3.0.7. Let f : N → [0, 1/2] be a function, (aj)j, (bj)j be sequences of
integers and

Ej = {x ∈ [0, 1] : ∥ajx+ bj∥ < f(j)}.

Then for any j, k ∈ N, the Lebesgue measure λ of Ej ∩ Ek is upper bounded by

λ(Ej ∩ Ek) ≤ 4f(j)f(k) + 2 gcd (aj, ak) min
(
f(j)
aj

,
f(k)
ak

)
.

Proof. Let Fi = {x ∈ [0, 1] : ∥x + bi∥ < f(i)}, cj = aj/ gcd (aj, ak) and ck =
ak/ gcd (aj, ak). Since Fk is an open interval, for any y ∈ R, the number of integers
in the translation cjFk − y is at most

λ(cjFk) + 1 ≤ cjλ(Fk) + 1 ≤ 2cjf(k) + 1.

By Lemma 3.1 in [23] and the argument contained there,

λ(Ej ∩ Ek) ≤ 1
cjck

λ(cjFk) (λ(ckFj) + 1) = 1
cjck

(2ckf(j))(2cjf(k) + 1)

= 4f(j)f(k) + 2 gcd (aj, ak)
f(j)
aj

,

and the result follows by interchanging the indices j and k for the last inequality.

Hence, (3.2.5 in [23]) should be applied in this context by setting Ej = Eγ
qj

,
aj = qj, f(j) = ψ(qj), correcting the equals sign to ≤, and multiplying the second
term by a factor of 2 to obtain

λ(Eγ
qm ∩ Eγ

qn) ≤ 4ψ(qm)ψ(qn) + 2 gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
,

Thus, by (105 in [43]), we can modify (88 in [43]) to see that

Ŵ+
m,n(0) ≤ 4(1 + εm)(1 + εn)ψ(qm)ψ(qn)+

2(1 + εm)(1 + εn) gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)

≤ 4ψ(qm)ψ(qn) + 12εmψ(qm)ψ(qn) + 8 gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
,

(7.30)
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as the sequence (εn)n∈N is bounded above by 1.
We are now in a position to prove the results above.

Proof of Lemma 7.3.0.3. Pick any sequence (εn)n∈N of real numbers in (0, 1]. By
our assumptions, following the original proof in [43], we see that for any a, b ∈ N, if
a < b then

P (a, b) :=
∣∣∣∣∣
b∑

n=a
µ(Eγ

qn) − 2
b∑

n=a
ψ(qn)

∣∣∣∣∣ ≤
b∑

n=a
ψ(qn)εn +

b∑
n=a

3
nA/Bεn1/2 . (7.31)

Recall that, by definition, for any n ∈ N, Ψ(n) = ∑n
k=1 ψ(n). For any n ∈ N, let

εn = min
(
1, (Ψ(n))−2

)
.

From (7.31) and Lemma D4 in [43], following the argument of the original proof, we
obtain that

P (a, b) ≤ 3 + 3
∞∑
n=1

1
nA/B−1 = 3 + 3ζ(A/B − 1).

To finish the proof, we need to establish the “other" upper bound. Set τ = A/B

in (7.19), and let εn = 2−2/3 ∈ (0, 1). Then (7.31) allows us to deduce that

P (a, b) ≤
b∑

n=a

(
εn + 1

nA/(2B)εn1/2

)
ψ(qn) ≤

b∑
n=a

(
εn + 1

εn1/2

)
ψ(qn) = 3

22/3

b∑
n=a

ψ(qn).

We note there is no factor of 3 in the above, as the 3 on the right hand side of (7.31)
is cancelled by (7.19).

The upper bound is optimal in this method by the choice of (εn)n∈N; the inequal-
ities are true for any choice of (εn)n∈N, and the function f1 : R+ → R+ defined for
x > 0 by

f1(x) = x+ 1
x1/2 ,

has its global minimum of 3/22/3 at x = εn = 2−2/3.

Proof of Lemma 7.3.0.4. This proof is done by splitting S(m, n) into various parts.
Following from the original proof, it suffices to improve some estimates.

By (7.5) and (7.13), for any n ∈ N and t ∈ Z \ {0},

|µ̂(−tqn)| ≤ νC−An−A/B.
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By (47 in [43]) and (53 in [43]),

|S1(m,n)| ≤ 9νC−A ψ(qm)
nA/Bεn1/2

|S2(m,n)| ≤ 9νC−A ψ(qn)
mA/Bεm1/2 ,

where |S1(m,n)| and |S2(m,n)| are given at the beginning of the proof of Lemma 6
in [43].

We now find an explicit bound for S4(m, n). Notice that, given the restriction
|sqm − tqn| ≥ qn/2 imposed on s, t ∈ Z \ {0}, by (7.13) and (7.5) we have that

|µ̂(sqm − tqn)| ≤ ν

logA |sqm − tqn|
≤ ν

logA (qn/2)

≤ 2Aν
logA qn

≤ 2AνC−An−A/B,

where the second line follows because for any n ∈ N, qn ≥ 4, and from that we
deduce that

log qn
log (qn/2) ≤ 2.

We can now give an explicit upper bound for S4 as definied in the original proof. We
find that

|S4(m,n)| ≤ 9(2)AνC−A 1
nA/Bεm1/2εn1/2 .

To bound S6 as given in the original proof, note that for qnα ≤ |sqm−tqm| < qn/2,
by (7.13) and (7.5), we have that

|µ̂(sqm − tqn)| ≤ ν

αA logA qn
≤ νC−A 1

αA
m−A/B.

It follows from the argument of the original proof that

|S6(m,n)| ≤ 9νC−A 1
αA

ψ(qn)
mA/Bεm1/2 .

Hence the result follows by adding these estimates together, as in the original
proof.

Proof of Lemma 7.3.0.5. Set

D = D(m,n) = qm
qnψ(qm)εm1/2 .
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Notice that, from the original proof and that as εn ≤ 1, using (51 of [43]) and (52 of
[43]), we have that

|T (m,n)| ≤
∑
t∈N

min
(

4
π2
q2
m

q2
n

1
t2ψ(qm)εm

, (2 + εm)ψ(qm)
)

(2 + εn)ψ(qn)

≤ 9
⌊D⌋∑
t=1

(ψ(qm)ψ(qn)) + 4
π2
qm

2

qn2
ψ(qn)

ψ(qm)εm

+∞∑
t=⌊D⌋+1

1
t2

≤ 11qm
qn

ψ(qn)
εm1/2 ≤ 11qm

qn

ψ(qn)
εn1/2 .

This follows as (εn)n∈N is decreasing, and by applying the following estimate:

+∞∑
t=⌊D⌋+1

1
t2

≤ π2

6

∫ ∞

D

dt

t2
= π2

6D = π2

6
qnψ(qm)εm1/2

qm
,

Thus, by (5.13), we find that qm ≤ K0
m−nqn. By the formula for geometric sums,

we find that
n−1∑
m=1

qm
qn

≤
n−1∑
m=1

K0
m−nqn
qn

<
∞∑
i=1

K0
−i = 1/K0

1 − 1/K0
= 1
K0 − 1 = K ′.

Proof of Lemma 7.3.0.6. Notice that, from the original proof, for any m,n ∈ N,

|T (m,n)| ≤
∑

s>m3/ψ(qm)

1
π2sψ(qm)εm

(2 + εn)ψ(qn)

= 3
π2

ψ(qn)
ψ(qm)εm

∑
s>m3/ψ(qm)

1
s2

≤ 1
2
ψ(qn)
m3εm

≤ ψ(qn)
m2 ,

by reasoning akin to that in the proof of Lemma 7.3.0.5. Hence for any a, b ∈ N, if
a < b then

∑∑
a≤m<n≤b

|T (m,n)| ≤
b∑

n=a+1

(
ψ(qn)

b−1∑
m=a

1
m2

)
<
π2

6

b∑
n=a

ψ(qn).

We finish the proof by noting that π2/6 < 2.
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Our next aim is to establish explicit estimates for Propositions 1 and 2 in [43].
Before we can do this, we first need to find explicit estimates for some inequalities.
Take δ ∈ (0, 1] and for any n ∈ N,

εn := min
{

1
2δ ,

1
(∑n

k=a ψ(qk))δ

}
,

notice that
εn

−1 ≤ max
{
2δ, nδ

}
< 2n. (7.32)

In the case that ∑b
k=a ψ(qk) > 2, inequality (102 in [43]) can be modified to

∑∑
a≤m<n≤b

1
nA/Bεm1/2εn1/2 ≤ ζ

(
A

B

) b∑
k=a

ψ(qk).

For the case of ∑b
k=a ψ(qk) ≤ 2, the inequality (103 in [43]) can be modified into

∑∑
a≤m<n≤b

1
nA/Bεm1/2εn1/2 ≤ 2ζ

(
A

2B

) b∑
k=a

ψ(qk).

Since the Riemann Zeta function is decreasing on R+, and

ζ
(
A

B

)
< ζ

(
A

2B

)
< 2ζ

(
A

2B

)
,

in both cases we have that
∑∑
a≤m<n≤b

1
nA/Bεm1/2εn1/2 ≤ 2ζ

(
A

2B

) b∑
k=a

ψ(qk). (7.33)

By (7.32), we have that
∞∑
n=1

1
nA/Bεn1/2 <

∞∑
n=1

√
2n

nA/B
=

√
2ζ
(
A

B
− 1

2

)
.

Thus we can make the inequality before (104 in [43]) explicit by applying Lemma
7.3.0.4 and (7.33) to obtain

∑∑
a≤m<n≤b

|S(m,n)| ≤9νC−A
(√

2ζ
(
A

B
− 1

2

) (
2 + α−A

)
+ 2A+1ζ

(
A

2B

)) b∑
n=a

ψ(qn)+

∑∑
a≤m<n≤b

|T (m,n)|.

We now note that(
3
2 + log x

2 log (3/2)

)
≤
(

3
2 log 2 + 1

2 log (3/2)

)
log x ≤ 4 log x.
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Thus, we make inequality (108 in [43]) explicit, showing that for any δ > 0 and
a, b ∈ N,

∑∑
a≤m<n≤b

εmψ(qm)ψ(qn) ≤ 4
(

b∑
n=a

ψ(qn)
)2−δ

log
(

b∑
n=a

ψ(qn)
)
.

Before proceeding, we remark there is a typo on (109 in [43]); the correct version
should state:

∑∑
a≤m<n≤b

W+
m,n(0) ≤ 2

(
b∑

n=a
ψ(qn)

)2

+O

(
b∑

n=a
ψ(qn)

)2−δ

log
(

b∑
n=a

ψ(qn)
)

(7.34)

+O

 ∑∑
a≤m<n≤b

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

) ; (7.35)

the coefficient of the main term in [43] is 4 instead of 2. Hence, by (7.30) and bounds
given above, (7.34) is explicitly given by

∑∑
a≤m<n≤b

W+
m,n(0) ≤ 2

(
b∑

n=a
ψ(qn)

)2

+ 24
(

b∑
n=a

ψ(qn)
)2−δ

log
(

b∑
n=a

ψ(qn)
)

+ 4
∑∑
a≤m<n≤b

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
.

We are now in a position to make Propositions 1 and 2 of [43] effective. By
applying Lemma 7.3.0.5 with α = 1/2 for the formula for T , the implicit constants
of inequality (110 in [43]) are given by

∑∑
a≤m<n≤b

|T (m,n)| ≤ 11K ′
b∑

n=a

ψ(qn)
εn1/2 ≤ 11K ′

ε
1/2
b

b∑
n=a

ψ(qn) ≤ 11K ′
(

b∑
n=a

ψ(qn)
)1+δ/2

,

where K ′ = 1/(K0 − 1), and as the sequence (qn)n∈N is lacunary, inequality (111 in
[43]) becomes

∑∑
a≤m<n≤b

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
≤ K ′

b∑
n=a

ψ(qn).

We are now able to give explicit estimates for the inequalities on page 8620 in
[43] . If the assumptions of Proposition 1 in [43] are satisfied, as inequality (104 in
[43]) has been made effective, we see that

∑∑
a≤m<n≤b

µ(Eγ
m ∩ Eγ

n) ≤2
(

b∑
n=a

ψ(qn)
)2

+ 24
(

b∑
n=a

ψ(qn)
)2−δ

log+
(

b∑
n=a

ψ(qn)
)

+

11K ′
(

b∑
n=a

ψ(qn)
)1+δ/2

+X
b∑

n=a
ψ(qn), (7.36)
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where
X = 4K ′ + 9νC−A

(√
2ζ
(
A

B
− 1

2

) (
2 + α−A

)
2A+1ζ

(
A

2B

))
If instead the assumptions in Proposition 2 in [43] are satisfied, we similarly have

that

∑∑
a≤m<n≤b

µ(Eγ
m ∩ Eγ

n) ≤2
(

b∑
n=a

ψ(qn)
)2

+ 24
(

b∑
n=a

ψ(qn)
)2−δ

log+
(

b∑
n=a

ψ(qn)
)

+ Y
b∑

n=a
ψ(qn) + 4

∑∑
a≤m<n≤b

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
,

(7.37)

where
Y =

(
2 + 9νC−A

(√
2ζ
(
A

B
− 1

2

) (
2 + α−A

)
+ 2A+1ζ

(
A

2B

)))
We now obtain explicit versions of Proposition 1 and 2 in [43] by applying Lemma

7.3.0.3, setting δ = 2/3 and δ = 1 to (7.36) and (7.37) respectively. Notice that by
Lemma 7.3.0.3 with the stated assumptions,

4
(

b∑
n=a

ψ(qn)
)2

≤
(

b∑
n=a

µ(Eγ
qn)
)2

+ 4m1(m2 + 1)
b∑

n=a
ψ(qn),

where m1 and m2 are given in (7.22).

Proposition 7.3.0.8 (Effective Proposition 1 in [43]). Let F, µ, A = (qn)n∈N, γ

and ψ be as in Theorem 7.3.0.1. Further, assume that ψ satisfies (7.19). Then, for
arbitrary a, b ∈ N, with a < b we have that

2
∑∑
a≤m<n≤b

µ(Eγ
qm ∩ Eγ

qn) ≤
(

b∑
n=a

µ(Eγ
qn)
)2

+ 48
(

b∑
n=a

ψ(qn)
)4/3

log+
(

b∑
n=a

ψ(qn)
)

+ c1

(
b∑

n=a
ψ(qn)

)4/3

+ c2

b∑
n=a

ψ(qn),

where c1 and c2 are given in (7.10) and (7.11) respectively.

Proposition 7.3.0.9 (Effective Proposition 2 in [43]). Let F, µ, A = (qn)n∈N, γ

and ψ be as in Theorem 7.3.0.2. Further, assume ψ satisfies (7.19), q1 > 4 and that
A is α-separated with the implicit constant m0 = 1. Then, for arbitrary a, b ∈ N
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with a < b, we have that

2
∑∑
a≤m<n≤b

µ(Eγ
qm ∩ Eγ

qn) ≤
(

b∑
n=a

µ(Eγ
qn)
)2

+ 8
∑∑
a≤m<n≤b

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)

+48
(

b∑
n=a

ψ(qn)
)

log+
(

b∑
n=a

ψ(qn)
)

+ c3

b∑
n=a

ψ(qn),

where c3 is given in (7.17).

Finally, we can make use of Theorem 6.1.0.2 to make Theorems 1 and 4 in [43]
effective, modulo the error term from assumptions (7.19) and (7.29). For Theorem 1
in [43], we take the following parameter in Theorem 6.1.0.2:

φn = ψ(qn)Ψ(n)1/3
(
log+ Ψ(n) + 1

)
+ 2ψ(qn).

Notice that for any ε > 0 and N ∈ N,

Φ1/2(N) log3/2+ε Φ(N) + 2 ≤ 2Ψ2/3(N)(log Ψ(N) + 2)2+ε,

where Φ is as given in the original proof or in (7.8). Upon taking B = 1 in the above,
we have proven Theorem 7.3.0.1, as in this theorem A = (qn)n∈N is lacunary, and as
remarked satisfies (7.13) with B = 1.

For Theorem 4 in [43], we set parameters of Theorem 6.1.0.2 as follows:

φn = ψ(qn)
(
log+ Ψ(n) + 2

)
+

n−1∑
m=1

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
,

Φ(N) =
N∑
n=1

φn ≤ Ψ(N)
(
log+ Ψ(N) + 2

)
+ E(N),

where

E(N) =
N−1∑
m=1

N∑
n=m+1

gcd (qm, qn) min
(
ψ(qm)
qm

,
ψ(qn)
qn

)
.

Taking B as needed to satisfy (7.13), Theorem 7.3.0.2 follows.
We now consider the final, extra term in each each effective theorem, which

allow us to remove the two extra assumptions in Lemma 7.3.0.3 and Lemma 7.3.0.6,
namely conditions (7.19) and (7.29). In the following lemma, we consider this extra
term.
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Lemma 7.3.0.10. Let ψ : N → (0, 1] be a function and A = (qn)n be an increasing
sequence of positive integers. Suppose there exists ν > 0 and A > 2 such that for
any t ∈ R \ [−1, 1], (7.5) is satisfied. Suppose there exists B ≥ 1 and C > 0 such
that A > 2B and (7.13) is satisfied. Suppose Ψ(n) = ∑n

k=1 ψ(k) is unbounded. Let
ω : N → [0,+∞) be a function. Suppose

∞∑
n=1

ω(n) < +∞.

Define an auxiliary function ψ∗(qn) = max (ψ(qn), ω(n)). Then for every δ > 0 there
exists Fδ ⊂ F such that µ(Fδ) < δ and for any x ∈ F \ Fδ and N ∈ N,

|R(x,N ; γ, ψ,A) −R(x,N ; γ, ψ∗,A)| ≤ tδ,

where

tδ = min
{
t ∈ N :

∞∑
n=t

(
ω(n) + ν

CAnA/B

)
<
δ

3

}
. (7.38)

Proof. By the definition of the counting function (5.14), for any x ∈ F , we have that

R(x,N ; γ, ψ,A) ≤ R(x,N ; γ, ψ∗,A) ≤ R(x,N ; γ, ψ,A) +R(x,N ; γ, ω,A).

It follows that, for any x ∈ F ,

|R(x,N ; γ, ψ,A) −R(x,N ; γ, ψ∗,A)| ≤ R(x,N ; γ, ω,A).

It suffices to find an upper for R(x,N ; γ, ω,A), for any x ∈ F \ Fδ, for some
measurable Fδ ⊂ F such that µ(Fδ) < δ. By Theorem 2 in [43], we see that for
almost every x ∈ F , the extra term is exactly given by the counting function

R(x,N ; γ, ω,A)

For any q ∈ N, define

Eq = {x ∈ F : ∥qx− γ∥ ≤ ω(q)}.

By Lemma 2 in [43], we know that for any q ∈ N, if q ≥ 4 then

µ(Eq) ≤ 3ω(q) + min
{

3 max
s∈Z

|µ̂(sq)| , 2
∞∑
s=1

|µ̂(sq)|
s

}
.
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By the assumptions of the lemma,

max
s∈Z\{0}

|µ̂(sqn)| ≤ ν

logA qn
≤ ν

CAnA/B
.

Hence, by taking the summation, for any t ∈ N, we have that

µ

( ∞⋃
n=t

Eqn

)
≤

∞∑
n=t

µ(Eqn) ≤ 3
∞∑
n=t

w(n) + 3ν
CA

∞∑
n=t

1
nA/B

≤ 3
∞∑
n=t

(
ω(n) + ν

CAnA/B

)
.

As the right-most term converges when t = 1, we get that for any δ > 0, there exists
tδ ∈ N such that

µ

 ∞⋃
n=tδ

Eqn

 ≤ δ,

where tδ is given by (7.38). By taking Fδ = ⋃
n=tδ Eqn , we get that µ(Fδ) < δ and

for any x ∈ F \ Fδ,

R(x,N ; γ, ω,A) < tδ.

This lemma tells us that it is possible to make two such extra assumptions on
ψ and the counting result differs by an additive constant which depends only on ω.
In the proof for Theorem 7.3.0.1, we have taken τ = A/B in (7.19). That is, for
Theorem 7.3.0.1, tδ is given by

tδ = min
{
t ∈ N :

∞∑
n=t

(
3n−A/B + ν

CAnA/B

)
<
δ

3

}
.

To get a concrete estimate, an upper bound for this tδ can be obtained by noticing
that if(

3 + ν

CA

) ∞∑
n=t

1
nA/B

≤
(

3 + ν

CA

) ∫ ∞

t−1/2

dx

xA/B
= 3 + ν/CA

1 − A/B

(
t− 1

2

)1−A/B
< δ,

then

tδ ≤ 1
2 +

(
(1 − A/B)δ
3 + ν/CA

)1/(1−A/B)

.

Also, for Theorem 7.3.0.2, tδ is given by

tδ = min
{
t ∈ N :

∞∑
n=t

(
n−9 + ν

CAnA/B

)
<
δ

3

}
.
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To get a concrete estimate, an upper bound for this tδ can be obtained by noticing
that if d = min (9, A/B),

∞∑
n=t

(
n−9 + ν

CAnA/B

)
≤
(

1 + ν

CA

) ∞∑
n=t

1
nd

≤
(

1 + ν

CA

) ∫ ∞

t−1/2

dx

xd

= 1 + ν/CA

1 − d

(
t− 1

2

)1−d
< δ,

then

tδ ≤ 1
2 +

(
(1 − min (9, A/B))δ

1 + ν/CA

)1/(1−min (9,A/B)))

.

Our new respective set Eε,δ for Theorems 7.3.0.1 and 7.3.0.2 is given by Eε,δ =
E ′
ε,δ/2 ∪ Fδ/2, where E ′

ε,δ/2 is given by Theorem 6.1.0.2 with the parameters given
above, and Fδ/2 is given in Lemma 7.3.0.10. This completes the proofs of Theorems
7.3.0.1 and 7.3.0.2.

7.4 NORMAL NUMBERS

An easy application of Lemma 1.4 of [23], as given in Chapter 5, quickly shows that
almost all real numbers are simply normal to a base b. Applying Theorem 6.1.0.1 in
its place allows us to give an upper bound on the number of times a given digit d
appears in the base b expansion for almost all real α other than in a set of measure
at most δ.

Theorem 7.4.0.1. For any δ > 0, there exists a set Eδ of measure at most δ such
that for any real number α ∈ [0, 1) \ Eδ, the number of times a given digit d appears
in its base b expansion in (5.17) up to the N-th digit (that is, A(d, b, N)) satisfies

A(d, b, N) ≤ min
{
N,

N

b
+Kε, δ

(
N2/3 log1/3+ε (N + 2)

)}
,

where Kε, δ is given in Theorem 6.1.0.1.

We note that the size of the constant Kε, δ impacts the size we need N to be for

N

b
+Kε, δ

(
N2/3 log1/3+ε (N + 2)

)
< N
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to hold; N is clearly a trivial upper bound for A(d, b, N).
The proof follows the one given in [23] but replaces the use of the ineffective

lemma with the effective version given at Theorem 6.1.0.1.

Proof. As the integer part of α has no bearing on whether α is simply normal base
b, we can without loss of generality restrict α ∈ [0, 1). Further, let ak denote the
k-th digit in the base b expansion of α as given at (5.17). Set d ∈ Z, 0 ≤ d < b.

Let

fk(α) =

1 if the k-th digit of α is d,

0 otherwise.

Further, let
fk = b−1.

We note that for j ̸= k,
∫ 1

0
fk(x)fj(x)dx = µ ({x ∈ [0, 1) : the k-th and j-th digits of x are both d}) = b−2.

It thus follows that

∫ 1

0

(
N∑
k=1

(fk(x) − fk)
)2

dx =
N∑
k=1

b−1
(
1 − b−1

)
.

More justification for these equalities can be found in Chapter 5.
It follows that we can apply Theorem 6.1.0.1 with φk = b−1 and K = 1. We note

that ΦN ≤ N
b
,
∑N
k=1 fk ≤ N

b
and the result then follows.

7.5 STRONG LAW OF LARGE NUMBERS

In this section, we will give an effective version of strong law of large numbers.
Let (X, Σ, µ) to be a probability space. For any k ∈ N, let (Fk(x)) be sequence

of µ-integrable identically distributed random variables with mean F and variance
σ2 > 0 on the probability measure space (X,Ω, µ). The strong law of large numbers
says that if all the Fk are independent, then for µ-almost every x ∈ X,

lim
N→∞

1
N

N∑
k=1

Fk(x) = F.
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In fact, the assumption that all Fk are independent is stronger than needed for
the conclusion to hold. In fact, if we have that

∫
X

 n∑
k=m+1

(Fk(x) − F )
2

dµ ≤ σ2(n−m) max (1, F ), (7.39)

for any m,n ∈ N with m < n, then it follows from Lemma 1.5 of [23] that for almost
every x ∈ X, as N → ∞,

1
N

N∑
k=1

Fk(x) = F +O
(
N−1/2 log2 N

)
→ F.

The following lemma shows that assumption (7.39) is indeed weaker than indepen-
dence. In fact, we further show that the assumption that all the Fk(x) are identical
is unnecessary too.

Lemma 7.5.0.1. Suppose all Fk(x) are independent, with finite means Fk and
variances σ2

k. We assume there is a finite universal bound on the means Fk, and
write F̃k = max {Fk, 1}. Similarly, assume there is a finite universal bound on the
σ2
k and write σ2 = maxk {σ2

k, 1}. Then for any m,n ∈ N with m < n,

∫
X

 n∑
k=m+1

(Fk(x) − Fk)
2

dµ ≤ K
n∑

k=m+1
F̃k, (7.40)

for a constant K > 0

Proof. For any m,n ∈ N, if m < n then, as the Fk(x) are independent, we have that

∫
X

 n∑
k=m+1

(Fk(x) − Fk)
2

dµ =
n∑

k=m+1

∫
X

(Fk(x) − Fk)2 dµ

=
n∑

k=m+1
σ2
k

≤ (n−m)σ2

≤ σ2
n∑

k=m+1
F̃k.

Thus, the Lemma holds with K = σ2. In the case that the Fk(x) are identically
distributed, from the final inequality we obtain (7.39).
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Our effective version of strong law of large numbers is as follows:

Theorem 7.5.0.2.
Let (X, Σ, µ) to be a probability space. For any k ∈ N, let (Fk(x)) be sequence of
µ-integrable random variables with finite means Fk and finite variances σ2

k > 0 on
the probability measure space (X,Ω, µ). We assume there is a finite universal bound
for the variances, which we denote by σ2, and assume there is a finite universal
bound for the means Fk. Let F̃k = max {Fk, 1}, so that ∑∞

k=1 F̃k diverges.
Suppose that (7.40) holds for any m,n ∈ N with m < n. Then for any ε > 0 and

δ > 0, there exists some µ-measurable Eε,δ ⊂ X such that µ(Eε,δ) < δ and for any
x ∈ X \ Eε,δ and N ∈ N,∣∣∣∣∣ 1

N

N∑
k=1

(Fk(x) − Fk)
∣∣∣∣∣ ≤ Kε,δ

(
Φ1/2(N) log3/2+ε (Φ(N))

N
+ Φ0

N

)
, (7.41)

where Φ(N) = ∑N
k=1 F̃k and

Kε,δ = max {α, β} ,

Nε,δ =
⌈
rε,δ
Φ0

− 1
⌉
,

rε,δ =

(

2σ2

εδ

)1/ε
+ 1,

with
α = Nε,δ

max
(
Φ

1/2
0 log3/2+ε(Φ0 + 2) + F, 1

) ,
and

β = 2
log3/2+ε/2 2

(
1 + 1√

2 log3/2+ε 4

)(
log 4
log 3

)3/2+ε

,

where
Φ0 = max

k

{
F̃k
}
.

We note that we do not need an assumption about the random variables being
identically and independently distributed.

Proof. The proof is essentially a direct application of Theorem 6.1.0.2. Take K = σ2,
C = 1 and for any k ∈ N, fk(x) = Fk(x), fk = Fk, φk = F̃k and Φ0 as defined
above. We apply Theorem 6.1.0.2, and the results follow by dividing both sides in
the inequality by N . Although C = 1 may not be a universal bound of Fk(x), it
follows from the proof of Theorem 6.1.0.2 that it suffices to assume that C = 1.
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If all the Fk(x)’s are identically distributed, then F̃k = F is the same for all k.
Thus, Φ(N) = NF , so substituting this into (7.41), we obtain that∣∣∣∣∣ 1

N

N∑
k=1

(Fk(x) − Fk)
∣∣∣∣∣ ≤ Kε,δ

(
F 1/2 log3/2+ε (NF )

N1/2 + F

N

)
.



8

General Versions of Counting Lemmas

As noted previously, [1] uses a theorem very much like Lemma 1.4 of [23], but not
quite the same. We give general versions of Lemmas 1.4 and 1.5 of [23].

Theorem 8.0.0.1. Let (X, Σ, µ) be a measure space and suppose that 0 < µ(X) <
+∞. Let fi(x), i ∈ N be a sequence on non-negative µ-measurable functions, where
for all i ∈ N, x ∈ X we have that fi(x) < K for some constant K ∈ R. Further, let
fi, ϕi ∈ R be sequences of real numbers such that for any i ∈ N,

0 ≤ fi ≤ ϕi ≤ K. (8.1)

For any N ∈ N define

Φ(N) =
N∑
i=1

ϕi,

and suppose that limN→∞ Φ(N) = +∞. Further, assume that for all N ∈ N we have
that ∫

X

(
N∑
i=1

(fi(x) − fi)
)2

dµ = O(F (Φ(N))), (8.2)

where F : R → R is an eventually strictly increasing function. Further, assume that
G : N → R and H : N → R are eventually strictly increasing functions, and that

∞∑
k=1

F (k)
H(k − 1)2 < +∞. (8.3)

We further define I : N → R such that

I(k) ≍ (G(k + 1) −G(k)) , (8.4)

150
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and assume that I is eventually strictly increasing. That is, there exist positive
constants c, C > 0 such that

cI(k) ≤ G(k + 1) −G(k) ≤ CI(k),

with I eventually strictly decreasing. Then

N∑
i=1

fi(x) =
N∑
i=1

fi +O
(
H(G−1(Φ(N))) + I(G−1(Φ(N)))

)
,

where we have assumed that Φ(N) is sufficiently large so that G is strictly increasing
on (Φ(N) − ε, +∞) so the inverse makes sense on the restricted domain.

We note that we are able to write the conclusion in terms of Φ(N) due to the
invertibility of G on the restricted range; indeed, we alternatively could write the
conclusion as

N∑
i=1

fi(x) =
N∑
i=1

fi +O (H(k − 1) + I(k − 1)) ,

where k is defined so that
Nk−1 ≤ N < Nk,

with
Nk = min {N ∈ N : Φ(N) ≥ G(k)} .

In some cases, for example Lemma 1.4 of [23], it is easier to argue for asymptotics
in terms of Φ(N) from this result in terms of k; see the examples given below.

We now show the theorem above implies some results we have already seen. We
first consider Lemma 1.4 of [23]. We define the functions as follows:

FΦ((N)) =
N∑
k=1

ϕk = Φ(N),

G(k) = k3(log 2k)1+ε,

H(k) = k2(log 2k)1+ε,

I(k) = k2(log 2k)1+ε.

We can check these functions satisfy the conditions in the theorem. We thus find
that

N∑
i=1

fi(x) =
N∑
i=1

fi +O
(
k2(log 2k)1+ε

)
,
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where k is defined as above so that Nk−1 ≤ N < Nk. Upon noting that

k2(log 2k)1+ε = O
(
Φ(Nk−1)2/3 log (Φ(N) + 2)

)
(this is shown explicitly in Lemma 6.2.1.2, or follows from the definitions of Gkm
and NK), we attain the result given.

We now consider the case of Lemma 5.2.1.1. Define the functions as follows:

F (Φ(N)) =
∑N
k=1 ϕk(

log∑N
k=1 ϕk

)C = Φ(N)
(log Φ(N))C

,

G(k) = ek
1/

√
C

,

H(k) = Φ(Nk)
(Φ(Nk))C/4 ,

I(k) = (log Φ(Nk))−
√
C+1 .

We note that Nk is defined to be the smallest N such that Φ(N) ≥ G(k) and thus
H and I are functions of k. Following the reasoning given in the proof of Lemma
5.2.1.1 then gives the result.

Proof of Theorem 8.0.0.1. Define

Nk = min {N : Φ(N) ≥ G(k)} . (8.5)

Further, let

Bk =
x ∈ X :

∣∣∣∣∣∣
Nk∑
i=1

(fi(x) − fi)
∣∣∣∣∣∣ ≥ H(k − 1)

 .
We find that by (8.2),

µ(Bk) (H(k − 1))2 ≤
∫

Bk

Nk∑
i=1

(fi(x) − fi)
2

dµ

≤
∫
X

Nk∑
i=1

(fi(x) − fi)
2

dµ

= O (F (Φ(Nk))) = O (F (k)) (8.6)

as Nk is defined in terms of k. It immediately follows that

µ(Bk) ≤ O

(
F (k)

H(k − 1)2

)
.
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By (8.3) we have that
∞∑
k=1

F (k)
H(k − 1)2

converges, so it follows that
∞∑
k=1

µ(Bk) ≤ O

( ∞∑
k=1

F (k)
H(k − 1)2

)

converges. Applying the Borel-Cantelli Lemma we see that almost all x ∈ X belong
to at most finitely many Bk; that is, for almost all x ∈ X, there exists a k(x) such
that for all k > k(x), we have that∣∣∣∣∣∣

Nk∑
i=1

(fi(x) − fi)
∣∣∣∣∣∣ ≤ H(k − 1). (8.7)

We now need to bound the value of Φ(Nk) − Φ(Nk−1). By (8.5) we note that

Φ(Nk) − Φ(Nk−1) = Φ(Nk − 1) + ϕNk − Φ(Nk−1)
≤ O (G(k) +K −G(k − 1))
≤ O (I(k − 1)) (8.8)

where the last line follows from (8.4).
It now follows that, for x ∈ X such that x ̸∈ ⋃

k Bk isn’t in the exceptional set,
for sufficiently large N such that Nk−1 ≤ N ≤ Nk where k − 1 > k(x) we have that

∣∣∣∣∣
N∑
i=1

(fi(x) − fi)
∣∣∣∣∣ ≤

∣∣∣∣∣∣
Nk∑
i=1

fi(x) −
Nk−1∑
i=1

fi

∣∣∣∣∣∣
=
∣∣∣∣∣∣
Nk∑
i=1

fi(x) − Φ(k) + Φ(k) − Φ(k − 1)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
Nk∑
i=1

fi(x) − Φ(k)
∣∣∣∣∣∣+ |Φ(k) − Φ(k − 1)|

≤ O (H(k − 1) + I(k − 1)) . (8.9)

We note that this is the result given in the remark above. We now take advantage of
the invertibility of G on the restricted domain.

By definition, Φ(Nk−1) ≥ G(k − 1). We recall that we have

Φ(Nk−1) ≤ Φ(N) ≤ Φ(Nk),



154 Chapter 8. General Versions of Counting Lemmas

as Nk−1 ≤ N ≤ Nk. Assume k is large enough that G is strictly increasing, so the
inverse of G exists on the restricted domain we are considering. Then, as G is strictly
increasing, so is G−1. Thus

G−1 (Φ(N)) ≥ G−1 (Φ(Nk−1)) ≥ G−1 (G(k − 1)) = k − 1.

Now, as H and I are also eventually strictly increasing, assuming k is large enough
we can substitute the above into (8.9) to find that∣∣∣∣∣

N∑
i=1

(fi(x) − fi)
∣∣∣∣∣ ≤ O

(
H(G−1(Φ(N))) + I(G−1(Φ(N)))

)
.

We now do the same for Lemma 1.5 of [23]

Theorem 8.0.0.2. Let X be a measure space with measure µ such that 0 < µ(X) <
∞. Let fk(x), k = 1, 2, . . . be a sequence of non-negative, µ-measurable functions,
and let fk, φk be sequences of real numbers such that

0 ≤ fk ≤ φk. (8.10)

Write
Φ(N) =

N∑
k=1

φk,

and assume that Φ(N) → ∞ as N → ∞.
Suppose that for arbitrary integers m, n, 1 ≤ m < n we have that

∫
X

 ∑
m≤k<n

(fk(x) − fk)
2

dµ = O

F̃
 ∑
m≤k<n

φk

 , (8.11)

where F̃ : R → R+ is an increasing function. Further, let G̃, H̃ and Ĩ : N → R+ be
increasing functions such that the number

nj = max
{
n : F̃ (Φ(n)) = F̃

(
n∑
k=1

φk

)
< G̃(j), j ∈ N

}
,

is well defined,
∞∑
r=1

G̃ (2r)
r1+εĨ(2r)H̃(r)

converges, and that
F̃ (Φ(nj) = O

(
F̃ (Φ(nj+1)

)
.
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Then

N∑
k=1

fk(x) =
N∑
k=1

fk +O
(
AB + max

1≤k≤N
fk

)
, (8.12)

where

A =
(
log

(
G̃−1

(
F̃ (Φ (N))

))
+ 2

)3/2+ε,

B =
(
Ĩ
(
G̃−1

(
F̃ (Φ (N))

))
H̃
(
log

(
G̃−1

(
F̃ (Φ (N))

))))1/2
.

We note that, roughly speaking, the purpose of function F̃ is to let you change
the growth of the asymptotic bound in (8.11), G̃ is to let you control the rate that
nj grows, and H̃ and Ĩ are to let you control the size of the sets

{
x ∈ X : G(r, x) > r2+εĨ (2r) H̃(r)

}
,

which we will apply the Borel-Cantelli Lemma to in the proof.
We note that Lemma 1.5 follows from the above by setting the functions to the

following:

G̃(j) = j

F̃ (x) = x

H̃(j) = 1
Ĩ(j) = j.

we then note that G̃−1(j) = j, and putting these into (8.12) gives us the result of
Lemma 1.5 of [23] as expected.

Proof of Theorem 8.0.0.2. Define the sequence n1, n2, . . . by

nj = max
{
n : F̃ (Φ(n)) = F̃

(
n∑
k=1

φk

)
< G̃(j)

}
. (8.13)

We note that the nj need not be distinct.
Suppose that (8.12) holds for N = nj for all j. Then, if nr < n < nr+1, we have

that
nr∑
k=1

fk(x) ≤
n∑
k=1

fk(x) ≤
nr+1∑
k=1

fk(x),
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while
nr∑
k=1

fk(x) =
nr∑
k=1

fk +O
((
Ĩ(r)H̃(r)

)1/2
(log(r + 2))3/2+ε

)
,

and
nr+1∑
k=1

fk(x) =
nr+1∑
k=1

fk +O
((
Ĩ(r + 1)H̃(r + 1)

)1/2
(log(r + 3))3/2+ε

)
.

Note that by (8.10), we have that

∑
nr<k≤nr+1

fk ≤ max
k≤nr+1

fk + Φ (nr+1) − Φ (nr + 1)

≤ 1 + max
k≤n

fk.

Combining these results then gives us (8.12) under the assumptions mentioned.
It thus remains to establish the result for N = nj . Following the proof of Lemma

1.5 in [23], we express the integer j in binary scale as

j =
∑

0≤υ≤log2 j

b(j, υ)2υ.

We then let

B(j) =
{

(i, s) : i =
r∑

υ=s+1
b(j, υ)2υ−s, b(j, s) = 1, 0 ≤ s ≤ r

}
,

where r = r(j) = [log2 j]. We further define

F (i, s, x) =
∑

u0<k≤u1

(fk(x) − fk) ,

where, for t ∈ {0, 1}, we define

ut = ut(i, s) = max {n > 0 : Φ(n) < (i+ t)2s} , (8.14)

with the convention that max ∅ = 0. This notation splits up [1, nj] into a suitably
small number of blocks; that is,

(0, nj] =
⋃

(i, s)∈B(j)
(u0, u1] ,

with u0, u1 given by (8.14). For further discussion of this, see the discussion and
example below (6.13).
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To complete the proof and establish the result for N = nj, it remains to demon-
strate that∑

(i, s)
|F (i, s, x)| = O(([log2 j] + 1)3/2+ε Ĩ (j + 1)1/2 H̃([log2 j] + 1)1/2.).

Set
G(r, x) =

∑
0≤s≤r
i<2r−s

F 2(i, s, x)

and
Φ(i, s) =

∑
u0<k≤u1

φk,

with ut given by (8.14). We now note that by (6.2.4) and (8.13) we have that

∫
X
G(r, x)dµ = O

 ∑
0≤s≤r

0≤i<2r−s

F̃ (Φ (i, s))


≤ O

(
(r + 1)F̃ (Φ(n2r))

)
≤ O

(
(r + 1) G̃ (2r)

)
.

It follows that

µ
{
x ∈ X : G(r, x) > r2+εĨ (2r) H̃(r)

}
< O

(
G̃ (2r)

r1+εĨ(2r)H̃(r)

)
.

By assumption, ∑∞
r=1

G̃(2r)
r1+εĨ(2r)H̃(r) converges. Thus, by the Borel-Canteli lemma, for

almost all x ∈ X we have that

G(r, x) < r2+εĨ(2r)H̃(r), (8.15)

for r > r(x).
We now let r = [log2 j] + 1, and suppose x belongs to the set for which (8.15)

holds. Recall that |B(j)| ≤ r. An application of the Cauchy-Schwarz inequality
gives us that∑

(i, s)∈B(j)
|F (i, s, x)| ≤ |B(j)|1/2G1/2(r, x)

≤ r1/2
(
r2+εĨ(2r)H̃(r)

)1/2

≤ r1/2r1+ε
(
Ĩ(2r)H̃(r)

)1/2

= r3/2+ε
(
Ĩ(2r)H̃(r)

)1/2

≤ ([log2 j] + 1)3/2+ε Ĩ (j + 1)1/2 H̃([log2 j] + 1)1/2.
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Now we note that by (8.13),

F̃ (Φ(nj)) < G̃(j) ≤ F̃ (Φ(nj+1)) .

As G̃(j) and F̃ (j) are strictly increasing, it follows that

j ≤ G̃−1
(
F̃ (Φ (nj+1))

)
.

Now, as by assumption F̃ (Φ(nj) = OF̃ (Φ(nj+1), for N = nj , we have established
that

N∑
k=1

fk(x) =
N∑
k=1

fk +O (A′B′) ,

where

A′ =
(
log

(
G̃−1

(
F̃ (Φ (nj))

))
+ 2

)3/2+ε
,

B′ = Ĩ
(
G̃−1

(
F̃ (Φ (nj))

))1/2
H̃
(
log

(
G̃−1

(
F̃ (Φ (nj))

)))1/2
,

and establishing this completes the proof.



9

Future Work

To conclude, I will give some general discussions about some potential future work.
I will split this into the two sections of my thesis.

9.1 ON THE abc CONJECTURE

Other than the obvious open work here, there are a few potential directions the work
in this thesis could be took.

The results contained, for example at Theorem 2.1.3.1, involve an implicit constant
depending just on the choice of number field K. It would be nice to make this
constant as explicit as possible (it will still depend on things like the structure of
the unit group) to make applications more explicit when needed.

The main results are also proven over the Hilbert Class Field of the chosen
number field K; this is to help deal with factorisation and allow us to apply results
in linear forms in logarithms. It would be nice to be able to use these methods over
the base field. In the case the base field K has class number one, we are fine as
HCF (K) = K. It does not seem too tricky to apply these methods in a number
field with class number two, as any factorisation into irreducible elements has the
same number of elements in the factorisation, so we may be able to, with some work,
apply linear forms as we have in this thesis in that case. For fields of class number 3
and above, this problem seems harder as different factorisations can have different
numbers of elements [32], so this would require some thought.

Another possible direction forward would be to consider trying to prove a variant
of these results for an abcd-style conjecture; that is, to consider equations of the
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form a1 + ....+ an−1 = an in coprime integers. This is hard to do with the methods
in this thesis, as we only have effective bounds for S-unit equations in two variables
[16]. However, for some families of equations like the above, we may be able to
use bounds on decomposable form equations. These bounds unfortunately have
extra dependencies that their unit equation bounds do not, which means we can’t
immediately apply them to all equations of the form above. A result in this direction
however, would lead to the effective Skolem-Mahler-Lech application being able to
be used for families of recurrence relations for larger recurrences.

Finally, as given by Lagarias and Soundararajan in [27], one may wish to generalise
results on the smooth abc Conjecture to general number fields. As of writing, this has
not been possible; the issue comes from the necessary scaling as discussed around the
Uniform abc Conjecture. In the smooth case, the left hand side of the conjectured
inequality can be thought of as additive due to the logarithmic factor, while the
right hand side contains no such logarithm and is thus multiplicative. This makes
finding a conjecture where both left and right hand sides scale appropriately tricky.

9.2 ON QUANTITATIVE DIOPHANTINE APPROXIMATION

Generally, most future work in this area would be in finding further places to apply
these effective theorems to give effective results. One such place could be in target
problems for dynamical systems; in this case the results could be considered to tell us
the maximal distance the orbit of all points outside an exceptional set could get from
a target, under the assumption that the conditions in the theorems hold. Another
potential place that these could be applied is in statistics, akin to our Strong Law
of Large Numbers. One such potential application that has been suggested is in
volatility testing in mathematical finance.

The other obvious work that could be done would be to make our general forms
of the Lemmas effective; that is, to give effective versions of the results found in
Chapter 8.
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