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Abstract 

 

Anal cancer is a rare disease typically treated with concurrent chemoradiotherapy. 

Lack of understanding of prognostic factors renders options for treatment 

individualisation limited. Due to the rarity of the cancer, single-centre data are rarely 

sufficient for robust prognostic model development. Distributed learning enables the 

analysis of datasets from multiple centres without exchanging sensitive individual-level 

patient data. This thesis aimed to determine prognostic factors for patients treated for 

anal cancer with modern radiotherapy by using distributed learning to analyse real-

world data across an international consortium. 

To achieve this, a local anal cancer data warehouse was established, which includes 

data for 568 patients treated at Leeds Cancer Centre between 2013 and 2022. The 

literature was systematically reviewed to identify established prognostic factors for 

anal cancer outcomes after treatment with conformal radiotherapy. 19 studies were 

evaluated, and N stage, T stage, and sex were identified as the most prevalent clinical 

prognostic factors for the majority of outcomes explored. 

The atomCAT1 three-centre proof-of-concept study was successful in demonstrating 

the value of distributed learning in outcome modelling for rare cancers. This study 

guided the expansion of the initial collaboration into an international consortium 

consisting of 14 radiotherapy treatment centres. Distributed learning was implemented 

for collaborative prognostic model development and validation across the atomCAT 

consortium. In the atomCAT2 study, the distributed learning analysis of data from 

1,099 patients treated across 12 centres established nodal involvement, male sex, 

older age, and larger primary tumour size as prognostic for poorer overall survival; 

male sex, higher T stage, and larger primary tumour size as prognostic for poorer 

locoregional control; and nodal involvement and larger primary tumour size as 

prognostic for poorer freedom from distant metastasis. These results may guide the 

design of future clinical trials in anal cancer and may ultimately aid the personalisation 

of treatment for future patients.  
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Chapter 1 - Introduction 

 

1.1 Opening statement 

This thesis focuses on the development and validation of outcome prediction models 

for anal cancer across multiple UK and European centres. The main aim is to 

demonstrate the feasibility of developing such models without sharing sensitive patient 

data, through the employment of a novel data analysis technique called distributed (or 

federated) learning. To achieve this, the study explores and addresses several research 

questions, which are fundamental to learning from every single patient treated for anal 

cancer and as a result improving outcomes for future patients. 

Leeds Cancer Centre (LCC) is a large tertiary cancer centre treating thousands of 

patients each year. However, only a small percentage of these patients participate in 

clinical trials. This means that the routinely collected data for all patients treated are not 

contributing to the improvement of treatment of future patients. This is an issue, 

particularly for rare cancers such as anal cancer, where each centre will only treat a few 

patients each year (e.g. in Leeds 40-50 patients), and patient data are rarely shared 

nationally and internationally between centres. Existing solutions depend on data being 

pooled from multiple locations in large repositories and analysed centrally. This leads 

to data privacy and ethical concerns regarding individual-level patient data sharing, 

which hinder potential collaborations between centres. Such approaches are also 

technically challenging, especially when dealing with complex data, for example 

detailed radiotherapy, imaging, and biomarker data. There are thus significant barriers 

to learning from every patient treated for anal cancer.  

To address these challenges, this thesis describes the evaluation of patient data 

availability at LCC and the establishment of a local anal cancer patient data warehouse. 

Subsequently, it investigates the availability of established factors which impact anal 

cancer patient outcomes after radiotherapy through a systematic review of the literature. 

The routine patient data from the local database and the identified prognostic factors 

can then feed into the development of distributed outcome models of increasing 

complexity. The formation of the atomCAT (Anal cancer Treatment Outcome Modelling 

with Computer Aided Theragnostics) consortium, which initially consisted of an initial 

pilot of three centres and was later extended to 14 centres from the UK and Europe, is 
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central to this work. This collaboration renders the analysis of data from a large number 

of patients possible, which in turn allows us to advance our understanding of anal cancer 

in a real-world setting. Robust outcome prediction models may inform the design of 

future clinical trials and support shared decision-making regarding treatment of future 

patients. 

 

1.1.1 Introduction chapter overview 

This introductory chapter covers several aspects of anal cancer, including standard 

treatment in the UK, focusing mainly on the radiotherapy aspects of treatment. The anal 

cancer treatment pathway will be described in detail, beginning from the first stages of 

diagnosis, and ending at the follow-up procedures that are carried out once treatment 

is complete. The data-driven approaches used to identify factors affecting patient 

outcomes will then be discussed, emphasising the significance of prognostic research 

in this field. The need for more multicentre and international collaborations to carry out 

outcome modelling for anal cancer will be highlighted. Distributed learning will be 

discussed as an approach to promote further collaboration between centres, and details 

will be provided regarding its present and possible future applications, as well as its 

current limitations. Specifically, reasons why distributed learning may be of significant 

value to anal cancer prognostic research will be discussed. At the end, the overall aims 

of this research will be specified, and the specific aims of the following chapters of this 

thesis will be summarised.  

 

1.2 Anal cancer and modern radiotherapy 

1.2.1 Anal cancer epidemiology 

Anal cancer is a rare disease comprising about 0.3% of all cancers [1]. Over the past 

few decades, a rise in incidence has been observed. In England, the incidence rate 

increased from 1.54 (95% CI, 1.42-1.66) to 2.31 (95% CI, 2.18-2.45) per 100,000 

person-years between 2001 and 2017 [2]. Females are twice as likely to be diagnosed 

with anal cancer in Northern Europe (age standardised incidence rates of 0.79 per 

100,000 person-years in males compared to 1.60 per 100,000 person-years in females) 

and in Western Europe (age standardised incidence rates of 0.96 per 100,000 person-
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years in males compared to 2.00 per 100,000 person-years in females) [1]. The median 

age of diagnosis of anal cancer in the UK is 67 years [2]. 

Apart from female sex, multiple other risk factors associated with the development of 

anal cancer have been identified. These include human papilloma virus (HPV) infection, 

human immunodeficiency virus (HIV) infection, multiple sexual partners, receptive anal 

intercourse, history of cervical, vulvar or vaginal carcinoma, and smoking [3]. 

Importantly, epidemiological studies have indicated that more than 8 out of 10 anal 

cancers are linked to HPV infection [4]. Since HPV infection incidence has also been on 

the rise [5], this could provide a potential explanation for the rising incidence of HPV-

related cancers, such as cancers of the anus, cervix, vulva, vagina and oropharynx. It 

is worth noting that HPV-positive cancers appear to be more sensitive to radiation than 

HPV-negative cancers, although the mechanism underlying this difference is not clearly 

understood [6]. 

 

1.2.2 Types of anal cancer 

Anal cancers can be broadly classified into two categories: cancers of the anal margin 

and cancers of the anal canal [7]. Figure 1-1 illustrates the anatomy of the anal region 

and shows the location of the anal canal and the anal margin. 

 

Figure 1-1. Cross-section of the rectum and anal canal, showing the position of the of 

the anal canal and the anal margin. CRUK [8]. Reproduced under the Creative Commons 

Attribution-Share Alike 4.0 International license [https://creativecommons.org/licenses/by-sa/4.0/]. 
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85% of all anal cancer arises in between the anal canal and the anal verge. Anal margin 

cancers are relatively uncommon, comprising only about 15% of all anal cancers. 

Histologically, squamous cell carcinomas (SCC) are the most common lesions, 

comprising about three quarters of the total number of anal canal cancers [7]. 

Other pathology found at the anal verge or canal include adenocarcinoma (treated as 

rectal adenocarcinoma), and less commonly, cloacogenic carcinoma, basal cell 

carcinoma, Bowen’s disease, and Paget’s disease [9]. These patients are treated 

differently to patients found to have SCC. The work carried out and discussed in this 

thesis focuses specifically on SCC anal cancer, as it is the most common form of anal 

cancer and will be referred to as anal cancer from this point onwards. 

 

1.2.3 Diagnosis and pre-treatment investigations 

Anal cancer typically presents in the form of a perianal mass and the most frequently 

encountered non-specific symptoms include anal bleeding, anal or perianal pain and 

weight loss [10]. In cases where a patient presents with these symptoms and anal 

cancer is suspected, a patient will be referred to a colorectal surgeon. The diagnosing 

clinician then performs a digital rectal examination, as well as a physical examination of 

the inguinal lymph nodes to identify any abnormal growths [11]. If anal cancer is 

suspected, the patient will undergo an examination under anaesthetic and biopsy. The 

definitive diagnosis of anal cancer depends on biopsy-proven histology [12].  

After the initial anal cancer diagnosis, various imaging modalities are utilised in order to 

collect more information on the extent of the disease. These include computed 

tomography (CT), positron emission tomography (PET)/CT and magnetic resonance 

imaging (MRI) scans. In most centres, multiple modalities are employed since each 

technique presents its own advantages. Contrast CT scans are mainly used to assess 

the presence of involved lymph nodes and distant metastases, PET/CT scans are used 

to identify the extent of local disease, involved lymph nodes and distant metastases, 

and MRI scans are highly effective in assessing locoregional disease and lymph node 

metastases [12].  

The biopsy results as well as the various scan images are subsequently reviewed and 

discussed in a Colorectal Multidisciplinary Team (MDT) meeting [13]. This team consists 

of experts in different disciplines, such as clinical oncologists, medical oncologists, 

surgeons, radiologists, histopathologists, and clinical nurse specialists [14], who meet 



 

 
 

 

5 

in order to review the patient’s diagnosis, assess the extent of the disease and select 

the most appropriate treatment plan according to the available evidence.  

 

1.2.3.1 Anal cancer staging, grouping, and grading 

During the MDT meeting, the patient’s cancer is staged according to the tumour-node-

metastasis (TNM) staging system developed by the American Joint Committee on 

Cancer (AJCC) [15]. The TNM staging system is designed to classify the patient’s 

cancer into risk categories and considers the size of the tumour (T stage), spread to 

nearby lymph nodes (N stage) and to other organs (M stage). Over the past few 

decades, the AJCC Cancer Staging Manual has been updated multiple times to 

incorporate the latest evidence from research and clinical trials. Specifically for anal 

cancer, there have been substantial changes in nodal staging between the previous 

version (AJCC TNM v7) [16] and the most recent version (AJCC TNM v8) [17], which is 

being used since 2016, as presented in Table 1-1.  The categorisation for T stage and 

M stage did not change.  

 
Table 1-1. AJCC staging for anal cancer. For N stage, the classification is shown for 

both AJCC TNM version 7 and version 8 to emphasise the changes that took place. 

T stage 
Tumour size 

N stage (v7) 
Nodal involvement 

N stage (v8) 
Nodal involvement 

M stage 
Metastasis 

Tx 

Primary tumour 
not examined or 
cannot be 
assessed 

Nx 

Nodal involvement 
not examined or 
cannot be 
evaluated 

Nx 

Nodal involvement 
not examined or 
cannot be 
evaluated 

Mx 

Metastasis not 
examined or 
cannot be 
evaluated 

T0 
No evidence of 
primary tumour 

N0 
No lymph node 
involvement 

N0 
No lymph node 
involvement 

M0 
No metastasis 
to distant 
organs Tis 

Early-stage 
cancer that 
hasn’t spread to 
other tissue 

T1 <2cm N1 
Perirectal lymph 
node involvement 

N1a 

Inguinal, perirectal 
or internal iliac 
lymph node 
involvement 

M1 
Metastasis to 
distant organs 

T2 >2cm and <5cm N2 
Internal iliac 
and/or inguinal 
node involvement 

N1b 
External iliac lymph 
node involvement 

T3 >5cm 

N3 

Perirectal and 
inguinal and/or 
internal iliac 
and/or inguinal 
node involvement 

N1c 

Inguinal, perirectal 
or internal iliac, 
and external iliac 
node involvement T4 

Any size, 
cancer has 
invaded other 
nearby organs 
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Once the cancer’s TNM staging is determined, its overall stage group [17] can 

subsequently be assigned by combining the T, N and M stages together. The overall 

eight stage group categories are summarised in Table 1-2. 

The tumour can also be further characterised by its histological grade [15], which refers 

to how the cells look under a microscope. A lower grade (G1) means that the cancer 

cells are well differentiated and resemble normal cells. G2 and G3 are assigned to 

cancers with cells that are moderately or poorly differentiated, respectively, and 

therefore look rather different from normal cells. This grading system helps clinicians 

predict how fast the cancer will grow, which may in turn influence the plans for 

management. 

 
Table 1-2. AJCC v8 group staging for anal cancer [15]. 

Stage group TNM stages included Description 

0 Tis – N0 – M0 
Early-stage cancer that hasn’t spread to other 
tissue. No nodal involvement and no 
metastasis to other organs. 

I T1 – N0 – M0 
The tumour is smaller than 2cm across. No 
nodal involvement and no metastasis to other 
organs. 

IIA T2 – N0 – M0 
The tumour is larger than 2cm and smaller 
than 5cm across. No nodal involvement and 
no metastasis to other organs. 

IIB T3 – N0 – M0 
The tumour is larger than 5cm across. No 
nodal involvement and no metastasis to other 
organs. 

IIIA 
T1 – N1 – M0 

or 
T2 – N1 – M0 

The tumour is smaller than 5cm across. Nodal 
involvement but no metastasis to other 
organs. 

IIIB T4 – N0 – M0 
The tumour is any size and is growing into 
other nearby organs. No nodal involvement 
and no metastasis to other organs. 

IIIC 
T3 – N1 – M0 

or 
T4 – N1 – M0 

The tumour is larger than 5cm across or it is 
any size and is growing into other nearby 
organs. Nodal involvement but no metastasis 
to other organs. 

IV Tany – Nany – M1 

The tumour is any size and is or isn’t growing 
into other nearby organs. Nodal involvement 
or no nodal involvement. The cancer has 
metastasised to distant organs. 
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1.2.4 Management of anal cancer 

1.2.4.1 History of clinical trials in anal cancer 

Treatment for anal cancer using radiotherapy combined with chemotherapy was first 

described by Nigro et al. in 1974 [18,19] and then supported by three landmark trials 

[20–22], which defined external beam radiotherapy and concurrent chemotherapy with 

5-fluorouracil (5-FU) and mitomycin C (MMC) as the standard of care. Prior to this, the 

standard treatment involved abdominoperineal resection (APR) surgery. This procedure 

involved the complete removal of the sigmoid colon, rectum and the anus [23], resulting 

in permanent colostomy and the need for a stoma bag, which significantly impacted the 

patient’s quality of life. This treatment regimen also yielded low survival rates as well as 

high locoregional and distant relapse rates.  

Combined modality chemoradiotherapy led to a complete response in 84% of the 

patients, did not involve a permanent colostomy and thus preserved sphincter function 

in a majority of patients. Therefore, the improvement in quality of life conferred by this 

approach led to the widespread acceptance of chemoradiotherapy as the gold standard 

of care, with surgery left as a salvage treatment (except for local excision of some T1N0 

anal margin tumours). Over the last four decades, a number of multicentre trials have 

been conducted in the UK and abroad, in order to evaluate and optimise the treatment 

of anal cancer with chemoradiation, as summarised in Table 1-3.  

These include the ACT 1 [20], RTOG 8704 [21], EORTC [22], RTOG 9811 [24], EXTRA 

[25], ACCORD 03 [26], ACT 2 [27], ACCORD 16 [28], RTOG 0529 [29] trials. 

 
Table 1-3. Summary of past anal cancer clinical trials. 5-FU: 5-fluorouracil; MMC: 

Mitomycin. 

Trial name Phase 
Number of 

patients and 
randomisation 

What was investigated Conclusions 

ACT 1 [20] 3 
585 

Randomised 

Is combined modality therapy 
(radiotherapy and 
chemotherapy) better than 
radiotherapy alone in patients 
with anal cancer? 

Combined modality treatment 
leads to lower risk of local failure 
and death from anal cancer. 
Radiotherapy and 5-FU should be 
the standard treatment for most 
patients. 

RTOG 8704 [21] 3 
310 

Randomised 

Is adding MMC to the standard 
regimen important? What is the 
role of salvage chemoradiation 
in patients with residual tumours 
after chemoradiation? 

MMC leads to greater toxicity, but 
its addition to the standard 
chemoradiation regimen is 
justified. In patients with residual 
tumours after chemoradiation, 
salvage chemoradiation should be 
attempted before salvage surgery. 
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EORTC [22] 3 
110 

Randomised 

Does concomitant radiotherapy 
and chemotherapy improve local 
disease control and reduce the 
need for colostomy? 

Locoregional control rates were 
significantly improved when 
radiotherapy and chemotherapy 
were used concomitantly. The 
need for colostomy was reduced 
in patients with locally advanced 
disease. Late side effects did not 
increase significantly. 

RTOG 9811 [24] 3 
598 

Randomised 

Does changing the standard 
treatment (concurrent 
radiotherapy and chemotherapy 
with MMC and 5-FU) to 
induction chemotherapy with 
cisplatin and 5-FU, followed by 
concurrent radiotherapy and 
chemotherapy with cisplatin and 
5-FU improve disease-free 
survival? 

The combination of induction 
chemotherapy with cisplatin and 
5-FU, followed by cisplatin, 5-FU 
and radiation did not significantly 
improve disease-free survival 
compared to MMC, 5-FU and 
radiation. 

EXTRA [25] 2 
21 

Non-randomised 

Is the combination of 
capecitabine, mitomycin and 
radiotherapy feasible, efficient 
and well-tolerated in anal cancer 
patients? 

The combination of capecitabine, 
mitomycin and radiotherapy leads 
to minimal toxicity and acceptable 
compliance. 

ACCORD 03 [26] 3 
283 

Randomised 

Does an increase in 
radiotherapy boost dose or two 
cycles of induction 
chemotherapy lead to improved 
colostomy-free survival? 

Neither an increase in 
radiotherapy boost dose nor two 
cycles of induction chemotherapy 
leads to improved colostomy-free 
survival. 

ACT 2 [27] 3 
940 

Randomised 

Does replacing mitomycin with 
cisplatin improve response to 
chemoradiotherapy? Does 
maintenance chemotherapy 
after chemoradiation improve 
survival? 

Replacing mitomycin with cisplatin 
does not significantly improve 
response to chemoradiotherapy. 
Maintenance chemotherapy after 
chemoradiation does not improve 
survival. The standard treatment 
(5-fluorouracil and radiotherapy) 
should remain unchanged. 

ACCORD 16 [28] 2 
16 

Non-randomised 

Does adding cetuximab to 
standard chemoradiotherapy 
improve the objective response 
rate in patients with locally 
advanced disease? 

The addition of cetuximab to 
standard chemoradiotherapy 
leads to significant and 
unacceptable toxicity. 

RTOG 0529 [29]  2 
52 

Non-randomised 

Does using dose-painted IMRT 
reduce grade 2+ toxicity? 

The use of dose-painted IMRT is 
linked with reduced grade 2+ 
hematologic and grade 3+ 
dermatologic and gastrointestinal 
toxicity. 

 

1.2.4.2 Radiotherapy planning and delivery – Treatment modalities 

Before radiotherapy is delivered, careful treatment planning needs to be carried out by 

a multi-disciplinary team that includes clinical oncologists, dosimetrists, and physicists. 

In this process, the treatment target volumes are delineated on a CT scan in order to 

direct the radiotherapy treatment fields to the appropriate treatment targets [30]. In the 

past, radiotherapy planning was based on outlining structures in two dimensions. The 

first phase of radiotherapy treatment was non-conformal, where only two treatment 

fields (anterior and posterior) were outlined to cover the disease and any at-risk nodes. 

The second phase consisted of outlining a planned volume that covered the primary 

tumour and nodal disease, as illustrated in Figure 1-2. 
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Figure 1-2. 2D Treatment plan with outlines of the anterior/posterior treatment fields, the 

primary tumour and nodal disease. 

 
However, the introduction of three-dimensional conformal radiotherapy (3D-CRT) in the 

1990s led to the adaptation of three-dimensional treatment target volumes and plans on 

axial CT images, which in turn led to increased treatment accuracy and therefore 

improved delivery. 

Modern treatment plans include delineations of the gross tumour volume (GTV), the 

clinical target volume (CTV), the planning target volume (PTV) and the organs at risk 

(Figure 1-3) [31]. The GTV covers the primary tumour (GTV-T) and any involved nodes 

(GTV-N), whereas the CTV covers the entire elective volume, which comprises of the 

nodal volumes to which the cancer might have potentially spread. Therefore, the CTV 

is generally much larger than the GTV. The PTV is the overall treatment volume that 

includes the GTV and CTV, but is expanded further to account for all the uncertainties 

conferred by treatment planning and delivery [32]. The organs at risk (OAR) are also 

delineated. The OAR are critical healthy anatomical structures that may receive a 

significant radiation dose and are generally outside the PTV but may overlap. They 

rarely overlap with the CTV. In anal cancer, the OAR include the small bowel, large 

bowel, rectum, bladder, external genitalia, bone marrow, and the right and left femoral 

heads. These regions are spared and receive the lowest dose of radiation possible.
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Figure 1-3. Conformal 3D treatment plan, showing the delineated volumes in multiple views: (a) transverse, (b) coronal, (c) sagittal. The 

dose-volume histogram is also shown in (d). GTV: Gross tumour volume; PTV: planning target volume; CTV: clinical target volume. 
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More recently, the use of MRI/CT and PET/CT images for target volume delineation has 

been explored and compared [33]. It has been demonstrated that there is a good 

agreement in GTV delineation between these modalities. Therefore, a combination of 

imaging modalities can be utilised for target volume delineation to improve accuracy. 

In anal cancer, radiotherapy is commonly delivered as external-beam radiotherapy 

(EBRT) with linear accelerators and aims to adequately target and treat the tumour 

volume and associated lymph nodes, while sparing surrounding normal tissue and 

especially the OAR [34]. 3D-CRT used 3D imaging as well as multileaf collimators 

(MLCs) in the linear accelerator head to shape the beams so that they conform to the 

target’s shape, therefore helping to shield normal tissue [35].  

Further advances in the 2000s led to the introduction of intensity-modulated radiation 

therapy (IMRT), where MLCs move across the field within a beam, allowing even more 

control over the targeting of tumour volumes and sparing of normal tissue. IMRT also 

allows the delivery of a simultaneous integrated boost, in which varying doses can be 

given to different target volumes during the same treatment fraction [36]. The dose can 

therefore be delivered all at once instead of sequentially, leading to shorter treatment 

times. The effectiveness of this technique has been confirmed by the RTOG0529 [29] 

phase 2 trial (Table 1-3), which also indicated that it leads to lower levels of hematologic, 

dermatologic, and gastrointestinal toxicity. Thus, IMRT was established as the standard 

technique for radiotherapy delivery to anal cancer patients in the UK [32]. 

An enhanced type of IMRT, volumetric-modulated arc therapy (VMAT) is now used in 

the majority of treating hospitals. During VMAT, the radiation beams are delivered while 

the treatment gantry is moving around the patient instead of being static. Therefore, the 

tumour can be treated faster and more efficiently. The use of VMAT has also been linked 

to further improvements in patient outcomes and reductions in acute toxicity [37,38]. As 

a result, VMAT is currently the recommended technique for the treatment of patients 

with anal cancer and is currently the most commonly used type of IMRT in UK hospitals 

[12]. 

An alternative way to deliver radiation, other than EBRT, is via brachytherapy. 

Brachytherapy involves placing a sealed radioactive source directly into or next to the 

tumour, and it is an effective method of delivering high doses of radiation to the tumour 

whilst avoiding normal tissue [39]. Despite this technique not being commonly utilised 

for the treatment of anal cancer in the UK, a number of European centres favour its use. 
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High-dose brachytherapy is usually used in combination with EBRT to deliver a boost 

to the primary tumour [40]. Evidence has shown that due to the high dose delivered to 

the tumour, the reduced dose to healthy tissue and the reduction in overall treatment 

time conferred by brachytherapy, it results in excellent response to treatment, with 

improved local control and a reduction in treatment toxicity [40–42]. However, 

prospective RCTs need to be conducted in the future, in order to further confirm the role 

and the optimal dose of brachytherapy for the management of anal cancer. For the 

purpose of this project, no patients treated with brachytherapy were studied. 

 

1.2.4.3 Standard radiotherapy in the UK 

The current standard therapy for anal cancer in the UK involves concomitant 

radiotherapy, delivered via IMRT/VMAT, and chemotherapy. The primary aim of this 

treatment is to cure the disease, achieve locoregional control and preserve the function 

of the anus, whilst maintaining the best possible quality of life for the patient. The current 

radiotherapy schema is stratified according to tumour stage, as summarised in Table 1-

4 [32]. 

In 2016, a prospective audit of anal cancer practice across the UK was carried out [43]. 

This study confirmed that the majority of UK centres delivered radiotherapy to patients 

with anal cancer with IMRT, which was linked to higher rates of radiotherapy completion, 

lower toxicity, and fewer treatment interruptions compared to two-phase conformal 

radiotherapy. 

 
Table 1-4. Radiotherapy regimens for anal cancer patients in the UK, categorised by 

disease stage, according to the national guidance for IMRT in anal cancer [32]. The 

symbol # denotes radiotherapy fractions. 

Tumour stage 
Gross anal 

disease dose 
Gross nodal 
disease dose 

Elective nodes 
dose 

T1/T2 N0 
(and T2N1 at clinician’s 
discretion) 

50.4Gy in 28# (1.8Gy 
per #) in 5.5 weeks 

50.4Gy in 28# (1.8Gy 
per #) in 5.5 weeks 

40Gy in 28# (1.43Gy 
per #) in 5.5 weeks 

T3/4N0 or Tany N2/3  
(and T2N1 at clinician’s 
discretion) 

53.2Gy in 28# (1.9Gy 
per #) in 5.5 weeks 

50.4Gy in 28# (1.8Gy 
per #) in 5.5 weeks. 

40Gy in 28# (1.43Gy 
per #) in 5.5 weeks 
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1.2.4.4 Standard chemotherapy in the UK 

Standard concomitant chemotherapy for localised anal cancer in the UK consists of 

mitomycin-C (12 mg/m2 bolus day 1, capped at 20 mg) and 5-FU (1000 mg/m2 in 1L 

normal saline over 24 hours, days 1-4 and days 29-32, capped at 2 m2) or capecitabine 

(825 mg/m2 twice daily on days of radiotherapy) [32].  

The combination of 5-FU and cisplatin may also be prescribed in some centres, 

particularly to patients with advanced disease, or to patients who cannot receive 

mitomycin-C. Elderly and/or frail patients who cannot tolerate two chemotherapy drugs 

may receive 5-FU alone [44].  

Additional alternative agents are also available and may sometimes be prescribed to 

patients with advanced anal cancer, or to patients that have already received standard 

chemotherapy with mitomycin-C and 5-FU. These alternative agent combinations 

include Carboplatin with paclitaxel (Taxol), Oxaliplatin with leucovorin and 5-FU, 

Docetaxel (Taxotere) with cisplatin and 5-FU, and finally cisplatin with Leucovorin and 

5-FU [44]. 

 

1.2.4.5 Ongoing and future developments in anal cancer radiotherapy 

The RTOG 9811 [24] and ACT 2 [27] trials reported that patients presenting with locally 

advanced tumours and nodal involvement have poorer outcomes after treatment. 

Additionally, different patterns of relapse were observed between early and late anal 

cancers after chemoradiotherapy. Therefore, the relationship between disease stage, 

radiotherapy dose and response to treatment needs to be investigated further. A small 

number of tumour control probability (TCP) models have been developed using 

literature-based data. These models were trained using large cohorts to explore the 

relationship between radiotherapy dose and treatment response [45,46]. The findings 

from these studies provide the rationale for individualised radiotherapy dosing in anal 

cancer patients, suggesting that a lower radiotherapy dose should be delivered to small 

tumours (dose de-escalation), and a higher radiotherapy dose should be delivered to 

large tumours (dose escalation). 

The above hypothesis is being investigated in the ongoing PLATO trial [47]. PLATO 

consists of three separate trials (ACT3, ACT4, ACT5) that investigate the role of dose 

de-escalation and escalation according to how advanced the anal cancer is at diagnosis 

[48]. ACT3 is a non-randomised phase 2 trial in patients with T1N0 anal margin tumours, 
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which evaluates the strategy of local excision where patients with microscopic margins 

>1mm have local excision only followed by observation, and those with ≤1mm margins 

receive additional lower-dose CRT using 41.4Gy in 23 fractions. ACT4 is a randomised 

phase 2 trial that aims to investigate whether dose de-escalation leads to equivalent or 

higher locoregional control rates whilst reducing side effects for patients with 

intermediate-risk anal cancer (T1-2N0). ACT5 is a randomised and integrated pilot - 

phase 2 - phase 3 trial that addresses high risk disease (T3-4N0 or TanyNode positive). 

It aims to explore whether dose escalation (using two alternative schedules – 58.8Gy in 

28 fractions or 61.6Gy in 28 fractions) reduces local recurrence rates in patients with 

locally advanced anal cancer, without significantly increasing treatment side effects. 

Apart from dose individualisation, other ongoing developments in anal cancer 

radiotherapy include the implementation of proton therapy, immunotherapy, and 

adaptive radiotherapy. Proton therapy is a type of radiation therapy that delivers protons 

instead of X-rays [49]. Currently, two ongoing trials (ClinicalTrials.gov IDs: 

NCT03018418 and NCT05055635) are exploring the role of proton therapy in the 

treatment of anal cancer.  NCT03018418 is a phase 1 feasibility trial to evaluate if the 

dose to normal tissue is lower with the use of proton compared to photon beams in the 

primary treatment of anal cancer. NCT05055635 is a non-randomised phase 2 trial 

evaluating the role of proton beam radiotherapy in recurrent anal cancer.  

Immunotherapy refers to the treatment of cancer by delivering drugs which activate or 

suppress the patient’s immune system. Immunotherapy drugs commonly consist of 

targeted antibodies, tumour-infecting viruses, checkpoint inhibitors, or cytokines. 

Immunotherapy aims to trigger the immune system, in order to help it identify and 

destroy cancer cells more effectively [50]. The CORINTH (NCT04046133) phase 1b trial 

explores the safety and tolerability of the immunotherapy drug pembrolizumab, an 

immune checkpoint inhibitor, in patients with advanced (stage 3 and 4) anal cancer. The 

aim of the trial is to determine whether pembrolizumab can be added safely to standard 

CRT. The RADIANCE trial (NCT04230759) is a randomised phase 2 trial which aims to 

examine whether adding the immunotherapy drug durvalumab to the standard 

chemoradiotherapy regimen in patients with advanced anal cancer improves disease-

free survival. Another phase 3 trial (NCT03233711) aims to determine the efficacy of 

giving the monoclonal antibody nivolumab to patients with high-risk disease after 

standard chemoradiotherapy and establish whether it improves disease-free survival for 

this group of patients.  
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Lastly, adaptive radiotherapy involves re-planning a patient after the initiation of 

radiotherapy, either at pre-specified time intervals, between the delivery of a certain 

number of fractions, or daily prior to treatment delivery, in order to account for the 

changes in tumour and normal tissue anatomy that occur during treatment [51,52]. The 

currently recruiting ROAR phase 2 trial (NCT05438836) will explore whether daily online 

adaptive radiotherapy significantly reduces treatment-related gastrointestinal toxicity. In 

this trial, a new treatment plan will be created each time a patient receives radiotherapy. 

Each new plan will account for the changes in tumour and normal tissue anatomy that 

occur during the course of the radiotherapy treatment [51]. 

 

1.2.5 Patient outcomes after radiotherapy 

1.2.5.1 Follow-up procedure 

Initial clinical response to treatment is evaluated at 6 weeks following completion of 

chemoradiotherapy through a digital rectal examination. Patients’ will then have an MRI 

scan and/or a PET/CT scan at 3 months from the end of treatment to evaluate imaging 

response to treatment. Complete response is achieved when there are no residual 

tumours or ulcers. According to the ESMO-ESSO-ESTRO clinical practice guidelines, 

patients who have completely responded to treatment are then followed-up every 3 to 

6 months for the first two years after treatment, and subsequently every 6 to 12 months 

for the next three years [12]. These follow-up appointments consist of discussion around 

symptoms of recurrence and side effects, a digital rectal examination, and palpation of 

the inguinal lymph nodes. In order to evaluate the presence or absence of locoregional 

and metastatic disease, a further MRI scan at 6 months from the end of treatment is 

standard based on the results from ACT2 trial. Patients will also undergo CT restaging 

scans at 12, 24 and 36 months after the end of their treatment (although individual 

centres practice may vary). In cases where residual or recurrent tumours are detected, 

additional imaging (e.g. further MRI or PET/CT scans) and/or examination under 

anaesthetic +/- biopsy will be organised if required, following discussion at MDT.   

 

1.2.5.2 Locoregional failure 

Locoregional failure is commonly defined as persistent disease or recurrence, either at 

the primary tumour site, or at the surrounding pelvic region and inguinal nodes [53,54]. 

In a study by Shakir et al. [53], which analysed the records of 385 anal cancer patients 
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treated with conformal radiotherapy techniques in 5 UK centres, 86.7% of patients 

achieved a complete clinical response. Moreover, a three-year overall survival of 85.6% 

and a three-year disease-free survival of 75.6% was reported.  

The study reported a disease recurrence rate of 19.2%, and notably the majority of 

relapses (83.4%) occurred at the site of the primary disease. This highlights the 

challenge of achieving locoregional tumour control in a subset of patients, and that most 

patients will fail locoregionally before getting metastatic disease. Currently, patients that 

have persistent disease after treatment or relapse locoregionally receive salvage 

surgery. This leads to acceptable overall survival and disease-free survival rates, but 

also high rates of surgical complications [55,56] that negatively impact the patient’s 

quality of life. Therefore, efforts focusing on effective treatment of locoregional disease 

should be maximised. 

 

1.2.5.3 Distant metastasis 

Distant metastasis rates after chemoradiotherapy for anal cancer have been reported 

to be approximately 15% [12]. In most cases, the cancer metastasises to the liver, lungs, 

para-aortic nodes, or skin. Further treatment is planned according to the site and 

distribution of metastasis, and usually involves systemic treatment (e.g. chemotherapy) 

[57]. Patients with distant metastases have a poor prognosis, as only approximately 

30% of patients survive for more than 5 years [58].  

 

1.2.5.4 Treatment-related toxicity  

Despite the relatively high survival rates achieved by modern treatment [37,59,60], 

chemoradiotherapy leads to numerous early and late side effects that may impact the 

quality of life of patients, even years after the end of treatment.  

Common early side effects include radiation dermatitis, gastrointestinal toxicity (e.g. 

diarrhoea, bowel frequency and urgency), and urinary tract toxicity (e.g. dysuria) [61,62]. 

Additionally, patients receiving concurrent chemotherapy have a risk of various forms 

of haematological toxicity, such as anaemia, leukopenia and thrombocytopenia [12,61]. 

Therefore, full blood counts are taken from the patients weekly to track and manage 

these side effects. Various approaches are employed to reduce treatment-related side 

effects and improve tolerance to treatment, including the use of antibiotics and anti-

emetics, as well as the provision of psychological support and advice regarding nutrition. 
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Additionally, chemoradiotherapy may result in fertility loss and/or early menopause, 

which is discussed with the patient before treatment. Female patients can choose to 

undergo cryopreservation of embryos or oocytes, and male patients may consider 

sperm banking. 

One of the most common late side effects after chemoradiotherapy for anal cancer is 

faecal incontinence. It has been confirmed in various patient cohorts that more than a 

third of anal cancer survivors suffer from some degree of faecal incontinence [63,64]. 

Other late side effects include radiation proctitis, ulceration, dysuria, atrophy of the 

vaginal mucosa in female patients and impotence in male patients [62,64]. 

 

1.2.5.5 Patient-reported outcomes and health-related quality of life 

Patient-reported outcomes (PROs) refer to reports received directly from patients in 

regards to their health-related quality of life [65]. PROs can provide valuable information 

on patients’ experience during and after their treatment, as well as what side effects 

they are experiencing and how severe they are. They can be used alongside primary 

outcome measures assessed by the treating clinician, in order to acquire a more 

complete view of how the cancer and the treatment impact the patient’s quality of life 

[66]. 

Despite the growth in PRO research in anal cancer, there is still room for improvement 

in the methodology used to collect data from patients, which will allow for the 

widespread adoption of PROs in clinical practice [67]. The EORTC quality of life group 

has addressed this issue through the development and validation of a questionnaire 

that is specific to anal cancer [68]. This questionnaire consists of 27 questions and can 

be used to collect PRO data from patients at different time-points during their treatment 

and follow-up. Efforts in collecting and analysing PROs from patients with anal cancer 

should be maximised, as they are fundamental in understanding the disease from a 

patient’s perspective, which may in turn aid in the improvement of treatment for future 

patients. 

 

1.2.5.6 Factors impacting patient outcomes and personalised medicine 

Even though research and clinical trials carried out during past few decades have 

yielded substantial insights on anal cancer and its underlying biology, the translation of 

this information into novel therapies that can be implemented in the clinic remains a 
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considerable challenge. One of the most important aspects that needs to be addressed 

is the heterogeneity in outcomes observed between patients.  

Identifying which clinical factors, imaging factors and molecular biomarkers are 

prognostic and potentially predictive will help us better understand how this 

heterogeneity in outcomes arises. This insight can then be used to design innovative 

treatments for groups of patients with specific characteristics, leading to a more stratified 

or individualised approach to cancer treatment. Ongoing prospective trials [47] will 

address this in time, but valuable knowledge can in the meantime be extracted from 

data on routine treatment in local, national or international patient cohorts.  

 

1.3 Data-driven approaches to improve patient outcomes 

1.3.1 Limitations of randomised controlled trials 

Most new discoveries and interventions in cancer are initially evaluated in randomised 

controlled trials (RCTs) before clinical adaptation, in order to demonstrate their safety 

and efficacy [69]. However, the majority of RCTs suffer from several limitations. Firstly, 

in many RCTs, there is a significant time interval between the trial conceptualisation 

and initiation phases [70]. Patient recruitment rates can also be slow, especially for rare 

cancers such as anal cancer, where the number of new patients diagnosed each year 

is usually small, even in large regional centres [71]. Therefore, there is often a long time 

interval between the conceptualising a trial and obtaining results. Other RCT limitations 

include limited follow-up periods, high costs, and high non-completion rates. 

Importantly, only a small percentage (5-15%) of the total number of patients participate 

in RCTs, which highlights that their results and conclusions might not be fully 

generalisable to the whole patient population [69].  

Several studies have investigated this issue; they have demonstrated that women, 

children, patients with other common medical conditions, and elderly patients are 

commonly excluded, and therefore under-represented in RCTs [72–74]. Between the 

years of 2016 to 2018, more than a third of new cancers diagnoses in the UK were in 

people older than 75 years [75]. Despite this, almost 75% of older patients with 

colorectal cancer, including anal cancer, were deemed ineligible for inclusion in clinical 

trials [73,74]. This is problematic since the exclusion of this population of patients leads 

to significant gaps in knowledge on the benefits and risks conferred by the novel cancer 
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treatments and strategies being tested in RCTs. As a result, access to new therapies 

for these patients can be severely restricted [74]. This is an even bigger challenge for 

rare cancers, where overall patient populations are small, making it even harder to test 

new treatment strategies, such as dose de-escalation [76], in elderly or frail patients. 

One possible solution for this challenge is the collection and analysis of data from 

routine clinical practice. Even though routine data are generally of lower quality 

compared to data collected from RCTs, they can be more representative of the entire 

patient population and may therefore aid uncover novel insights on the disease in 

question. These may be more generalisable and could be used to improve treatment 

for future patients. The NHS England report from 2016 which set out a strategy for 

achieving world-class cancer outcomes further highlighted the importance of routine 

data in supporting improvements in cancer care and outcomes [77,78]. 

 

1.3.1.1 Routine data generation and collection 

The cancer diagnosis, treatment and follow-up pathway previously described yields 

large amounts of routine data for each patient with anal cancer. This includes data that 

can be broadly classified in eight main categories: personal data, baseline clinical data, 

diagnostic data, radiotherapy planning and delivery data, non-radiotherapy related 

treatment data, follow-up data, outcome data, and supplementary data. A breakdown of 

each category is summarised in Table 1-5. Routinely collecting and storing these data 

for future use in research can provide real-world evidence to drive advances in anal 

cancer radiotherapy planning and delivery.  

 
Table 1-5. Routine data collected for each patient with anal cancer after diagnosis, as 

well as during treatment and follow-up. 

Category Examples of data generated and collected 

Personal data 
Name, surname, sex and gender, date of birth, ethnicity, 
socioeconomic background. 

Baseline clinical data 

Date of diagnosis, place of diagnosis, site of tumour, tumour 
morphology, TNM stage, tumour size, number of nodes involved, 
health-related family history, previous cancer diagnosis, co-morbidities, 
performance status, site-specific information (such as HIV and HPV 
status for anal cancer). 

Diagnostic data Biopsy, diagnostic CT, MR and PET image. 
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Radiotherapy treatment 
planning and delivery 
data 

Time between diagnosis and start of treatment, radiotherapy technique 
used for treatment (eg. IMRT/VMAT), radiotherapy dose and 
fractionation schedule (prescribed and delivered), full radiotherapy 
treatment data stored as DICOM files (including treatment plan, 
structure set, dose distribution and on-treatment imaging). 

Non-radiotherapy related 
treatment data 

Chemotherapy-specific data, surgery-specific data, immunotherapy-
specific data. 

Follow-up data Biopsies, follow-up CT, MR and PET images. 

Outcome data 
Survival, local and regional failure, distant metastases, toxicity, patient-
reported outcomes. 

Supplementary data 
Hospital admission during treatment, clinical trial information 
(considered/approached for inclusion, participation), surveys on patient 
experience. 

 
 

1.3.1.2 Routine data in Leeds Cancer Centre 

Currently, routine data from patients diagnosed and treated for anal cancer in LCC are 

stored in several distinct databases or clinical systems and can only be accessed by 

the patient’s direct clinical care team, as well as by authorised individuals for the 

purposes of audit and research. Typically, patient data are stored in electronic health 

record systems such as the Patient Pathway Manager (PPM), in radiotherapy-specific 

software systems such as MOSAIQ and Monaco, and in picture archiving and 

communication systems (PACS). A more detailed description of these systems is 

provided in Chapter 2. 

 

1.3.1.3 Leeds anal cancer database 

As discussed in the previous section, routine data in LCC are stored in various systems 

and databases that are not fully linked. Therefore, neither of these include all relevant 

data for each individual patient. Consequently, clinicians or researchers looking to get 

a complete view of a patient’s diagnosis, treatment, and follow-up journey need to 

access and collect data from multiple sources.  

Once these data are collected, they need to be carefully pre-processed and cleaned, in 

order to validate their quality. Most real-world data suffer from several limitations that 

need to be addressed before they are analysed and used for research purposes [79]. 

Firstly, the data need to be carefully reviewed to ensure the number of errors or 

inaccuracies is minimised, especially when the data are automatically extracted from 

clinical systems. The presence of missing values is another important aspect that 
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negatively affects the quality of a dataset. Dealing with missing values can pose a 

significant challenge. Even though the topic of missing value imputation has been 

studied extensively, selecting the correct approach is complex process [80,81] and may 

necessitate the expertise of data scientists and statisticians to adequately address. 

Lastly, different databases and systems may include overlapping information and 

patient cohorts. When extracting data from these, it is not uncommon to identify 

discrepancies in the data for the same patient. In these cases, additional evaluation of 

the data sources needs to take place, which may cause further delays. Assessing a 

dataset’s quality is particularly complicated for non-clinical staff, who do not have first-

hand experience in how data are generated and stored. For example, interpreting and 

extracting free-text data from clinicians’ notes by researchers is not only arduous, but 

may also lead to more errors, impinging on the overall quality of the dataset. 

As part of this PhD project, the Leeds anal cancer data warehouse was developed, with 

the aim of curating anal cancer data from various systems into a single data warehouse, 

in order to address the challenges discussed above. Chapter 2 of this thesis discusses 

in detail the work conducted to set up the data warehouse as well as the future plans to 

improve it. 

 

1.3.1.4 National and international cancer databases 

Institutional cancer databases can help us uncover new insights that can contribute to 

the improvement of treatment for future patients. However, these can be small and only 

include data from limited numbers of patients. In the past few decades, multiple national 

and international cancer databases have been created, aiming to link data from multiple 

cancer treatment centres. Due to the large amounts of data included and the variation 

in the patient cohorts, they can be analysed to identify patterns that would otherwise not 

be detectable by solely analysing data from single-institutional databases [82]. Through 

this approach, novel evidence-based interventions may be discovered, which may 

ultimately lead to improvements in patient survival and quality of life [83]. 

Despite their benefits, national and international cancer databases also suffer from 

several limitations. Notably, the validity of these databases has been scrutinised [84], 

as it is incredibly difficult to validate the accuracy of the data. This is because data 

originate from numerous sources, which may use different data entry and data coding 

approaches. Other limitations include the absence of various clinically important data 
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items, duplicate reports from different sources and lastly large amounts of missing data 

[85]. All these need to be taken into consideration during the pre-processing and 

analysis phases when using data extracted from such databases. 

 

1.3.2 Prognostic research overview 

Prognostic research focuses on the estimation of the probability of a disease-related 

outcome after the end of treatment, given the specific characteristics of a patient at 

baseline (at diagnosis) [86,87]. Prognostic models have been proposed in cancer 

research for use in clinical treatment for more than 20 years [88] and have a wide range 

of potential applications, including the prediction of recurrence risk [89,90] and survival 

after the end of treatment [91–93]. 

The data generated from RCTs and from routine clinical practice can be used to develop 

prognostic models, which can yield insights into which factors impact patient outcomes 

after chemoradiotherapy for anal cancer. These models may ultimately help us stratify 

patients into risk groups, in order to develop more stratified or personalised treatment 

strategies. Currently, established prognostic factors are being used to stratify treatment 

for anal cancer in the UK, as shown in Table 1-4 [32]. Patients diagnosed with a small 

tumour (T1 or T2) and no involved nodes receive a lower radiotherapy dose than 

patients diagnosed with larger tumours (T3), tumours invading nearby organs (T4) or 

with involved nodes. This approach aims to minimise side effects in patients with lower 

risk disease, whilst still maintaining favourable oncological outcomes. 

Prognostic models can also be used as clinical decision support tools, assisting 

clinicians in making informed decisions about patient management following a diagnosis 

[94]. Additionally, radiotherapy planning can be optimised through the development of 

normal tissue complication probability (NTCP) prediction models [95]. These models 

estimate the probability of dose-induced complications in normal tissue adjacent to the 

tumour and can therefore be used to compare the efficiency of different treatment 

strategies [96].  The majority of prognostic models fit into the data science framework 

of machine learning [97]. 
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1.3.2.1 Prognostic factor research 

According to the PROgnosis RESearch Strategy (PROGRESS) initiative [86], one of the 

main themes of prognostic research is to identify key factors that are associated with a 

certain prognosis [98]. 

Prognostic factors are defined as patient or disease-related characteristics that are 

linked with a certain outcome after therapy, such as death, locoregional failure, or 

distant metastasis. On an individual level, the identification of prognostic factors is vital, 

as they can be used to predict the chance of recovery from the disease, or the risk of 

disease relapse. This information can feed into the clinical and treatment-related 

decision-making prior to treatment. On a collective level, established prognostic factors 

can contribute to the design of new RCTs. For instance, anal cancer staging is currently 

being used in the PLATO trial to guide radiotherapy dose escalation and de-escalation 

strategies [47]. Prognostic factors can also be used as building blocks to develop robust 

prognostic models, as discussed in the next section.  

However, current prognostic factor research methodology generally exhibits several 

weaknesses. Firstly, a large number of prognostic factor studies are poorly designed 

and do not employ appropriate statistical analysis techniques [99]. The reporting of 

prognostic studies is also often poor [100], leading to inadequate replication of their 

results by other studies [101]. In order for a prognostic factor to be truly informative, a 

factor’s prognostic capacity should be generalisable across multiple studies examining 

different but similar patient cohorts. Therefore, more well-designed prognostic factor 

studies need to be conducted. These should ideally analyse data from large cohorts 

with the appropriate statistical techniques and should report the methodology employed 

as well as their results in a transparent manner. 

 

1.3.2.2 Prognostic modelling research 

Prognostic modelling research builds upon prognostic factor research, by using 

combinations of identified prognostic factors to develop models that can predict the 

probability of specific clinical outcomes in individual patients [102]. Prognostic model 

research consists of three phases: developing and internally validating the model, 

externally validating the model, and lastly establishing its clinical impact.  

Firstly, robust model development highly depends on the quantity and quality of data 

used as well as the extent of missing data [103]. In general, models developed using 
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large datasets consisting of high-quality data are more robust and can yield more 

accurate predictions. In addition, to ensure model robustness, the outcome measure 

and definition should be clearly defined, and the appropriate model form chosen. Once 

a model is developed, it needs to be validated. Internal validation is carried out using a 

dataset consisting of a similar population to the population used to train the model and 

ensures that the model is reproducible and does not suffer from overfitting. Overfitting 

refers to the model very closely fitting the set of data it was trained on (effectively fitted 

on “noise” in the data) but failing to adequately perform on a separate dataset with a 

similar patient population. Internal validation is commonly carried out by employing 

resampling techniques, such as bootstrapping and cross-validation to correct for over-

optimism of the model’s performance [104].  

In external validation, the model’s performance is evaluated on a completely different 

dataset in order to establish the generalisability of the model [105]. The model’s 

performance can be determined in various ways, including measuring its discrimination, 

calibration, and overall performance [106,107]. Discrimination metrics determine a 

model’s ability to accurately predict that an event will take place among patients who 

have that event (“case”), compared to patients that do not (“control”). One of the most 

commonly used metrics of model discrimination is Harrell’s C-statistic, which can be 

visualised by constructing a Receiver Operating Characteristics (ROC) curve [108]. This 

statistic denotes the estimated probability that for a pair of “case” and “control” patients, 

the model assigns a higher risk to the “case” patient. Calibration metrics evaluate the 

model’s ability to correctly predict the absolute risk of an event. In other words, a model 

that produces predictions that align with the observed values is thought to be well-

calibrated [107]. The calibration of the model can be visualised by plotting a calibration 

or validation graph, where the x-axis represents the model’s predictions, and the y-axis 

represents the observed outcomes. For binary outcomes, the y-axis only includes 0 and 

1 values. The intercept and the slope of the calibration graph can then be assessed to 

deduce whether the model is well calibrated. The intercept can indicate whether model 

predictions are systematically too high or too low, whereas the calibration slope should 

be 1. Calibration slopes smaller than 1 may signify model overfitting, or that shrinkage 

of the model coefficients is needed [106]. Lastly, the R2 Brier score [109] is a metric that 

can be used to measure the overall performance of the model, encompassing both the 

discrimination and the calibration aspects. 
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Once a model has been established, its development and validation strategy as well as 

its results need to be reported in a transparent and reproducible manner. The TRIPOD 

(Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis) Statement is a 22-item checklist, which includes all aspects that should be 

addressed when reporting the development and validation of outcome prediction 

models [110,111].  

Despite the large number of prognostic models reported in the literature, only few have 

been adopted for use in clinical practice [112–114]. This is mainly due to poor reporting 

of model development, inadequate external validation of results, and the lack of clinical 

impact studies, which assess the benefits and costs of using a model in clinical practice. 

These need to be addressed, in order to increase the impact of prognostic model 

research. This highlights the need for collaboration between different research groups, 

especially in the context of rare cancers. Through collaboration, more robust models 

can be developed by linking multiple datasets and analysing bigger patient cohorts. 

Moreover, one or a few datasets within the collaboration can be reserved for external 

validation purposes. Lastly, the impact and effectiveness of the model can then be 

assessed in multiple treatment centres. 

 

1.3.2.3 Survival analysis 

Survival analysis can be employed to predict the time duration until a specific outcome 

of interest occurs after cancer treatment, such as complete response to treatment, 

locoregional recurrence, distant metastasis, or death [115]. This analysis explicitly 

handles censored data and variation in follow-up between patients. Moreover, through 

survival analysis, the effect that various factors have on these events of interest can be 

determined. The majority of survival analyses employ a combination of statistical 

techniques, including the Kaplan-Meier estimator, log-rank tests, and Cox proportional 

hazards regression [116]. 

The Kaplan-Meier method makes use of two functions; the survival function and the 

hazard function, in order to estimate the survival curve [115,116]. The survival function 

S(t) estimates the probability of surviving to the time t, whereas the hazard function h(t) 

estimates the probability of dying at time t, given that the individual has survived up to 

that time. The survival curve is the plot of the Kaplan-Meier survival probability (S(t)) 

against time (t) and can be estimated using the observed survival times. The Kaplan-
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Meier method does not assume an underlying probability distribution. Through this 

approach, the median survival time can be calculated. In order to compare the survival 

curves from two groups, a log-rank test can be carried out [115,116]. This is a non-

parametric statistical hypothesis test that assesses whether the probability of an event 

occurring at any time point is the same for the two groups. However, this test cannot 

account for other explanatory factors. 

The Cox proportional hazards regression model, first developed by David Cox more 

than 50 years ago [117], is analogous to a multiple regression model. Cox regression 

modelling can be conducted to explore the effect of multiple prognostic factors upon the 

time a specified event takes to happen, and to calculate the hazard ratios for each factor. 

The Cox proportional hazards regression approach assumes ‘proportional hazards’, i.e. 

that the effects of specific factors on the hazard function are independent of time. This 

approach assumes that the hazard function can be split into a time-dependent part, 

which does not depend on any of the covariates, and a time-independent part, which 

contains the co-variate effects. [116]. The model can be written as: 

Equation 1-1 

λ(𝑡|𝒁) =  λ0(𝑡)exp(𝛽𝑇𝒁) =  λ0(𝑡)exp(𝛽1𝑍1 + 𝛽2𝑍2+ . . . + 𝛽𝑝𝑍𝑝) 

where λ0(𝑡) is the baseline hazard function (baseline hazard when all the explanatory 

factors are 0); Z = {Z1, Z2, …, Zp} is a p dimensional vector of explanatory factors; and 

𝜷 = {𝛽1, 𝛽2, . . . , 𝛽𝑝} is a p dimensional vector of model coefficients. The factor coefficients 

are estimated from the data [118], using partial likelihood based methods. The Breslow’s 

partial likelihood function is commonly used to estimate 𝜷 using individual level patient 

data, in cases where tied event times are present [119], and is expressed as: 

Equation 1-2 

 

where 𝐷 is the total number of distinct event times; 𝒟𝑖 is the index set of subjects with 

observed events (e.g. death); ℛ𝑖 is the index set of subjects at risk for the event, at the 

𝑖-th distinct event time with 𝑖 = 1, ..., 𝐷; 𝑑𝑖=|𝒟𝑖| is the count of tied survival times at event 

time 𝑖. Finally, 𝐳𝑙 = {𝑧𝑙1, 𝑧𝑙2, …, 𝑧𝑙𝑝} is the realization of the 𝑝 dimensional explanatory 

variable 𝐙 for a subject indicated by the superscript 𝑙. 
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The coefficients are then iteratively optimised until the partial likelihood is maximised, 

using the Newton-Raphson algorithm [120], which is expressed as: 

Equation 1-3 

 

where the parameters 𝜷𝜏 are updated until convergence, in order to maximize the 

likelihood function at the 𝜏-th iteration. Finally, the baseline hazard function in Breslow’s 

approach can be defined as:  

Equation 1-4 

 

where 𝑡𝑖 is 𝑖-th distinct event time, and is the optimised estimate from Equation 1-3 

that maximizes the likelihood function. 

The hazard ratio is calculated by exponentiating the factor coefficient (HRx = exp(𝜷x)) 

and is defined as the ratio of the risk of an event occurring at a particular point in time 

in one group (e.g. female patients) compared to another group (e.g. male patients). For 

instance, a hazard ratio of 2 with the female group being the baseline would signify that 

males are twice as likely to die at a particular point in time compared to females. The 

hazard ratio is time independent; therefore, the risk of males dying would be twice the 

risk of females dying at any point in time. 

 

1.3.2.4 Stratified and personalised medicine 

The ultimate goal of prognostic research is to identify prognostic factors which can be 

used to develop robust prognostic models, that can subsequently contribute to the 

advancement of novel stratified or personalised medicine approaches. Currently, the 

treatment of some types of cancer follows a one-size-fits-all approach, where the same 

treatment or the same dose is given to all patients with a specific cancer [121], with the 

exception of patients with metastases, which typically receive a different treatment to 

patients with localised cancer. However, every patient and every tumour are different, 

and these differences need to be considered in order to deliver the best possible care 

to the patient. In stratified medicine, each subgroup of patients with similar biological or 

risk characteristics is prescribed a targeted treatment [122]. Personalised medicine 
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approaches proceed one step further; each individual patient receives a treatment that 

is targeted specifically to their distinct characteristics. Through stratified and 

personalised medicine, clinicians and patients together can select the most appropriate 

treatment that will confer the most clinical benefit and the least harm. This decision can 

be informed by using established and clinically impactful prognostic models. The 

characteristics of a newly diagnosed patient with cancer can be used as input for the 

model, which then returns the predicted risk group that the patient belongs to, or the 

predicted probability that the patient will have a certain event after their initial treatment. 

This information can be vital in making the correct decisions regarding a patient’s care. 

 

1.3.3 Prognostic research in anal cancer 

Multiple prognostic factor studies have focused on investigating the effect of different 

factors on several disease-related outcomes in anal cancer, such as overall survival, 

disease-free survival, progression-free survival, and metastasis-free survival. The 

majority of these studies are retrospective, included small cohorts of less than 100 

patients [123], or employed non-conformal radiotherapy techniques [124]. The results 

from studies that analysed cohorts treated with crude, non-conformal radiotherapy 

techniques may not be generalisable to current clinical practice, as non-conformal 

techniques were likely to deliver a radiotherapy dose that differed significantly from the 

prescribed dose [125]. Furthermore, due to the rarity of anal cancer, none of the few 

prospective RCTs that have already been completed have used conformal radiotherapy 

(3D-CRT / IMRT / VMAT) for the treatment of the participating patients and reported on 

factors that were deemed to be prognostic.  

In a period of 20 years (between 2000 and 2020), only 19 studies analysed large cohorts 

of more than 100 patients treated with conformal radiotherapy and reported on survival 

and disease-related outcomes. The results and prognostic factors identified by these 

studies are discussed in detail in the systematic review of the literature that was carried 

out as part of this thesis Chapter 3. Overall, T stage, N stage, sex, pre-treatment biopsy 

HPV load, as well as the presence of baseline leukocytosis, neutrophilia and anaemia 

were found to be the most commonly identified prognostic factors for the outcomes 

explored. Recently published prognostic studies that fulfil the above criteria also confirm 

the prognostic role of T stage [126,127], sex [128], baseline neutrophilia [129] and 

anaemia [127] for a variety of anal cancer outcomes. Additional prognostic factors were 
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also identified, including age [126], AJCC stage [126], baseline eosinophilia [127], 

baseline lymphopenia [129], and the hemo-eosinophils inflammation (HEI) index [128]. 

The number of robust prognostic studies in anal cancer remains small to this day. More 

prognostic studies need to be conducted in order to support the design of future RCTs 

and the growth of stratified and personalised medicine. These studies need to analyse 

sufficiently large datasets in order to develop statistically powerful models and identify 

the most relevant prognostic factors, especially factors with relatively limited effect size 

or with low prevalence. For rare cancers such as anal cancer, it might be a considerable 

challenge to collect enough patient data at single treatment centres. One possible 

solution for this issue it to establish multi-centre collaborations, in order to link and 

analyse datasets from multiple centres. 

 

1.3.4 Multicentre collaboration in anal cancer 

1.3.4.1 Sample size considerations and need for bigger datasets 

New prognostic models must be developed using appropriately sized cohorts relative to 

the model complexity, to ensure that model predictions are accurate when applied to 

new patients [130]. Therefore, the minimum sample size required for the dataset used 

for model development should be calculated prior to the analysis. In the past, the 10 

events-per-variable rule of thumb was considered as standard approach for calculation 

of the required sample size [131]. When applying this approach, the number of events 

of interest in the patient population is divided by 10 to dictate the number of parameters 

that can be included in the model. Conversely, if a number of prespecified parameters 

must be included in the model, the required minimum number of events in the dataset 

can be calculated. Over the past decade, the sample size calculation paradigm has 

been shifting away from this rule, since it was claimed to be too simplistic for use in 

clinical prognostic modelling [132–134]. More robust techniques have now been 

developed [135], which take into account the overall event rate, how long the cohort 

was followed up, the expected performance of the new model and the maximum degree 

of model overfitting allowed. 

Small development datasets can lead to numerous issues relating to the performance 

of the resulting model. Prognostic models developed using small datasets are often 

over-optimistic [136]. Such models appear to perform well when tested on a similar 

patient cohort, but due to overfitting, their performance drops significantly when making 
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predictions on a different cohort. Poor model calibration as a result of inadequate 

sample size has been reported in multiple studies [137]. Additionally, the power to 

identify relevant prognostic factors in studies with small datasets, especially factors with 

relatively limited effect size or with low prevalence, may be limited. Any factors identified 

and their effect estimates may suffer from small sample bias. Furthermore, externally 

validating a prognostic model using a small dataset can only provide information on how 

the model performs on that specific population or setting [138]. In order for the model to 

be considered generalisable to the whole patient population and thus clinically impactful, 

it needs to be externally validated using a large enough dataset that consists of a varied 

patient cohort, treatment periods and settings. 

 

1.3.4.2 Multicentre prognostic studies in anal cancer 

One of the most effective ways of accumulating enough data to carry out robust 

prognostic factor and modelling research for a rare cancer is by linking smaller 

institutional datasets together. Even though the number of published studies with large 

cohorts exploring factors affecting anal cancer outcomes after conformal radiotherapy 

is relatively small (n=23), more than half of these (n=13) were multicentre studies. 

Importantly, all 13 multicentre studies were published within the last 10 years, 

emphasising the direction that research in this area is heading towards.  

The value of national and international collaboration has been demonstrated by 

numerous other large studies that analysed data from national and international anal 

cancer databases. As mentioned previously, a prospective national database consisting 

of 242 cases treated in 40 UK centres has been published [43]. Outcomes in the patient 

cohort treated with IMRT were reported, and were subsequently compared to the 

outcomes reported by the ACT 2 trial [27], which employed older, non-conformal 

radiotherapy techniques. The results indicated that IMRT confers superior outcomes, 

which helped lead to its widespread adoption throughout the UK. In France, 60 

radiotherapy centres collaboratively developed the ANABASE multicentric cohort, which 

includes data from more than 1000 patients treated between 2015 and 2020 [139]. The 

final analysis, reported in abstract form only, demonstrated that treatment with IMRT 

(814 patients) leads to good outcomes for the majority of patients [140]. A 

complimentary analysis using the same cohort aimed to compare outcomes between 

HIV positive and HIV negative patients [139]. The study reported significantly poorer 

overall survival rates for HIV positive patients, but no significant differences in treatment 
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toxicity. A similar study was conducted in Italy, which involved the analysis of a national 

cohort of 987 patients [141]. The study’s results were in accordance with the UK and 

French studies regarding the efficacy of IMRT treatment. In addition, this study also 

confirmed the prognostic impact of lymph node involvement and histological grade on 

anal cancer outcomes.  

Although the anal cancer scientific community calls for further collaboration, not only 

nationally, but also across international borders [142], there are still significant barriers 

that need to be addressed and overcome in order to form new collaborations. 

 

1.3.4.3 Local barriers to using patient data for research 

To begin with, in order to form a new collaboration, patient data need to be collected 

locally. This can be a challenge in itself, since gaining the necessary approvals required 

to access patient data is a lengthy process that may take months [143]. The researchers 

seeking to collect these data must be able to prove to data providers and governance 

bodies that their research will preserve patient privacy and that the results will be 

beneficial to patients and the public [144]. Appropriate governance is of utmost 

importance for patient confidentiality protection, however, approval processes for 

patient data collection require further streamlining [145]. Even when the necessary 

approvals to access and collect data are granted, physical access to the data can be 

inefficient [144]. In some cases, data can only be accessed in secure environments, 

which may involve travel outside of the researcher’s usual environment. Furthermore, 

these secure environments may be limited in terms of computing capacity, software, 

and access hours.  

 

1.3.4.4 Barriers to multicentre collaboration and possible solutions 

The aforementioned barriers to using patient data for research can become even more 

prominent when the data need to be linked with data from external organisations and 

analysed in a multicentre setting [146].  

An important barrier to multicentre collaboration is the lack of standardised procedures 

[143]. For instance, in many cases, the computer infrastructure used varies between 

different centres and across countries. The data generated throughout the patient 

treatment pathway may therefore be stored in different formats or using different scoring 

systems, making it very challenging to link datasets originating from multiple centres. 



 

 
 

 

32 

The quality of the data can also vary from centre to centre, rendering quality assurance 

processes incredibly complicated.  

Importantly, ethical considerations and data protection regulations often limit sharing of 

data between centres and thus make data sharing across institutions and countries very 

challenging. Approval processes are usually time-consuming and bear unnecessarily 

high costs [143].  

Distributed learning, a novel data analysis technique, offers a promising solution to 

some of the barriers discussed and may aid the foundation of future multicentre 

collaborations. 

 

1.4 Distributed learning 

1.4.1 What is distributed learning? 

Distributed learning is an approach that can be applied to collaboratively develop robust 

models using local datasets originating from multiple centres, without having to 

exchange any sensitive patient data between centres [147]. Only non-identifiable, 

processed, and aggregated information in the form of mathematical parameters, such 

as model coefficients, is shared between centres in order to train and validate a 

distributed model. Consequently, distributed learning strategies preserve patient data 

privacy and minimise Information Governance issues related to sharing data with 

external organisations [148]. Notably, it has been proven by multiple studies that a 

number of distributed models are mathematically equivalent to models developed 

through the traditional, central learning approach, in which all data is shared between 

centres and collated into a single dataset [149,150]. This evidences that these 

distributed models and their centralised counterparts yield exactly the same results and 

exhibit the same performance. As a result, a wide range of research questions can be 

investigated within a multicentre setting through distributed learning. The differences 

between central learning and distributed learning model development are illustrated in 

Figure 1-4.  
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Figure 1-4. Centralised (A) vs distributed learning (B) approach to model development. 

In centralised model development (A), the datasets from each participating centre are 

combined to form a central repository, which is then analysed to create the centralised 

model. In distributed model development (B), the data from each participating centre 

never leave the originating centre. Instead, the model is sent to each centre, where it is 

updated locally. The updated local models are then sent back to a central location, 

where they are aggregated. This is an iterative approach, where the process is repeated 

until the aggregated model converges according to pre-specified convergence criteria, 

generating the final distributed model.  

 

1.4.1.1 Distributed learning methods 

There are three distinct distributed learning methods that can be differentiated according 

to various computational principles [147]. They all have in common the fact that a model 

is trained within a network that consists of multiple nodes. A node is set up at each 

individual participating centre and is linked to the local dataset. The three distributed 

learning methods, ensembling, split learning and federated learning, differ in three major 

ways, as demonstrated in Figure 1-5: (1) how the model parameters are transmitted 

within the network, (2) the way the nodes interact with each other within the network 

and (3) what type of data is exchanged between them. 

A B 
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Figure 1-5. Diagram highlighting the differences between centralised learning and three 

types of distributed learning (ensembling, split learning and federated learning), 

according to the information and model parameters shared between nodes. 

 
To begin with, the ensembling approach involves constructing multiple smaller or 

simpler models [151]. Through this approach, each node (or centre) in a multicentre 

collaboration trains its own local model using only its local dataset. When all models are 

trained, they can then be combined to yield the final results. There are various ways 

that the models can be combined. The simplest way is to obtain the output from all 

models and average it. A more sophisticated way is to combine all models together into 

a single meta-model, which uses the output from each simpler model as its input. Since 

each simpler model is trained independently, no individual level data needs to be shared 

between nodes. The only information being exchanged between nodes are aggregated 

statistics calculated during the model training phase at each node, or the resulting 

trained local models. One major limitation of this approach is that if the simpler models 

are trained using small datasets with inadequate number of samples, the resulting meta-

model may not be robust.  

The second distributed learning approach is split learning. Through this approach, only 

one model is constructed, but it is split into multiple sections and each section is trained 

by an individual node [152]. This method usually involves having a central node that 
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receives the outputs from the other training nodes and aggregates them to make the 

final prediction. This is an iterative approach, where the central node sends back the 

error gradient to each of the training nodes, which then use it to update their outputs. 

The procedure is then repeated until the error from each of the training nodes is 

adequately small. Split learning only requires the exchange of extracted features from 

the training nodes and error gradients from the central node, and therefore preserves 

individual level data privacy.  

The final distributed learning method is federated learning [153]. This approach involves 

a network of nodes collaboratively constructing a single model and a central server that 

handles the communication between the individual nodes. During the training phase, 

the global model is located at the central server, which sends it to each of the 

participating nodes. Subsequently, each node uses its local dataset to compute an 

update to the model and sends the updated model back to the central server, where 

updates from all nodes are aggregated and a new global model is computed. This is 

also an iterative approach that aims to minimise the prediction error. When the new 

global model is computed, the central server also calculates the error gradient. The 

model and error gradient are then sent back to all nodes, which use this information to 

further update the model. This process is repeated until the global model converges 

according to pre-specified convergence criteria, such as small error margins or robust 

model performance in terms of discrimination or predictive capability [149]. Only model 

updates, such as model coefficients and parameters, as well as error gradients are 

shared between the nodes and the central server. The nodes do not directly interact 

with each other, and there is no exchange of individual level data at any point during 

the model training phase. 

This thesis focuses solely on federated learning methods. For simplicity, from this point 

onwards, the term distributed learning refers specifically to federated learning. 

 

1.4.1.2 Privacy of distributed learning approaches 

One of the main benefits conferred by distributed learning is privacy preservation, which 

can be separated into three aspects: data privacy, model privacy and model output 

privacy [148]. It is vital all three aspects of privacy are considered and preserved when 

employing distributed learning. 
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Preserving data privacy involves applying data de-identification procedures, and is 

essential when dealing with patient data [154]. Through these procedures, all available 

information that can be used to identify a certain individual, including names, dates of 

birth and addresses, is deleted. Any identifiable information that cannot be deleted 

because it needs to be analysed has to be converted into useable non-identifiable 

information. For instance, the date of death or date of cancer recurrence may need to 

be used for prognostic model development. However, this identifiable information first 

needs to be de-identified by converting the dates to number of days since baseline (e.g. 

date of diagnosis, or date of treatment start). Another way of preserving data privacy is 

to ensure that access to the data is restricted to authorised individuals only, and that no 

patient data leave the originating centre. 

Ensuring model privacy and model output privacy in distributed learning can be 

challenging, but various cryptographic solutions and differentially private mechanisms 

have been developed to address this [155,156]. These aim to prevent leakage of 

individual level patient data during model training via distributed learning. Data leakage 

refers to the unauthorised passage of data from inside the originating organisation to a 

destination outside its secured network. Additionally, multiparty protocols are employed, 

ensuring that all computations and all communication between nodes and the central 

server are secure [149]. As this is an emerging and growing field, numerous recent 

studies have focused on developing new distributed learning approaches that aim to 

ensure model privacy [147,156–159]. 

In particular, the study by Brink et al. [159] has demonstrated that during the 

optimisation of a distributed Cox regression model, there is a risk of individual level 

patient data leakage. This can happen in cases where event times are unique (no ties) 

and there is no censoring. In such cases, individual level data from the patient that 

survives the longest need to be shared between centres during the distributed Cox 

regression model optimisation phase. As this is an iterative process, data from multiple 

patients can be reconstructed outside the originating centre. In cases where event times 

are not unique and there is censoring, the reconstruction of individual level patient data 

would still be possible but would be much more challenging. The authors have proposed 

an alternative approach that prevents the issue of data leakage. In this approach, the 

partial likelihood is calculated locally at each participating centre, and as a result, it is 

no longer necessary to share individual level data from the patient that survives the 

longest between centres. The limitation of this approach is that it depends on stratified 
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Cox regression using a local baseline hazard function that is unique to each centre. This 

means that this approach does not provide a global model which can be applied to an 

independent patient cohort afterwards. Moreover, a study by Huth et al. [160] has 

established that it is possible to reverse engineer individual-level data in some 

distributed learning systems. This is a significant limitation of a number of existing 

distributed learning frameworks. To address this limitation, possible defence strategies 

are being explored. The novel insights uncovered will enhance the privacy and security 

of distributed learning systems in the future. 

 

1.4.1.3 Data considerations  

In order to render distributed learning analysis feasible and reproducible, the data 

storage and pre-processing aspects need to be taken into consideration during the initial 

phases of the research [148]. Since centres may employ different workflows in terms of 

how the patient data are generated and stored in their local systems, it is vital that a 

detailed data model and data dictionary are agreed upon between all participating 

centres in a multicentre collaboration. The Findable, Accessible, Interoperable, 

Reusable (FAIR) Guiding Principles [161] have recently been developed with the aim of 

improving data management and accelerating the extraction of valuable knowledge 

from datasets. In order to make data originating from clinical systems FAIR, several 

tools need to be deployed [162] at each participating centre. Firstly, the clinical systems 

in which the relevant data can be sourced from need to be identified. Since multiple 

clinical system sources may be available at specific centres, it is important that the 

relevant data within a single centre are combined into a single dataset. Therefore, 

software needs to be developed that effectively extracts the data, combines, and 

transforms them to the required format, and subsequently loads it into a local data 

repository. For multicentre analyses, the next step is to standardise the data in all local 

repositories to ensure that they match. This can be achieved by using medical 

ontologies, such as the National Cancer Institute Thesaurus [163] and the Radiation 

Oncology Ontology [164]. These provide cross-mapped and controlled terminologies 

that match the data between the participating centres. As a result, clinical data from 

multiple disconnected local repositories are linked and transformed into FAIR data, 

supporting the detection of novel relationships [164].    
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1.4.2 Distributed learning applications in healthcare and oncology 

The field of distributed learning in healthcare and oncology has been steadily growing 

over the last two decades, as indicated by the number of new publications in this field 

(Figure 1-6). A spike in publications during the COVID-19 pandemic (2020 and 2021) 

has been observed, further highlighting the utility of distributed learning as a way of 

overcoming data sharing barriers in research. 

 

Figure 1-6. Number of new “distributed learning” or “federated learning” research 

articles published each year between 2000 and 2022. (Source: PubMed search [165]) 

 
A systematic review published in 2020 by Zerka et al. [148] identified 127 published 

research articles applying a distributed learning approach in the context of healthcare. 

The review reports a wide range of distributed learning applications in medicine. As an 

example, electronic health records were analysed using a distributed learning approach 

to study the relationship between the use of medication in pregnant women and foetal 

loss [166]. Another study, which also used data from electronic health records, aimed 

to predict hospitalisations due to heart disease [167]. Both of these studies 

demonstrated that applying distributed learning preserves patient data privacy whilst 

minimising bias and maintaining high statistical efficiency of the resulting models. 

Moreover, the use of distributed learning has been proven to be beneficial in the field of 

medical imaging [168] for a variety of applications, such as automated support for 

clinical diagnoses of retinopathy [169] and various highly heterogeneous psychiatric 

disorders [170]. Genome-wide association studies (GWAS) may also benefit from 

applying a distributed learning methodology to analyse larger number of samples 

through multicentre collaborations [171]. As a result, these studies may uncover key 

insights on the relationship between genetic variants and certain diseases. 
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Distributed learning approaches also have the potential to support the stratification and 

personalisation of cancer therapy through robust multicentre prognostic research [172]. 

The training and validation of prognostic models using a distributed learning framework 

has proven to be feasible in multiple instances. Jochems et al. developed a distributed 

Bayesian network model for non-small cell lung cancer to predict survival at two years, 

using data from two centres, across two countries [173]. Upon validation of this 

distributed model on an independent dataset from a third centre, it was concluded that 

its performance is comparable to the performance of a centralised model. Another study 

from the same research group constructed a distributed Bayesian network to predict 

dyspnoea after radiotherapy for lung cancer [174]. The model was trained and validated 

using data from five centres across three countries and also exhibited similar 

performance to its centralised counterpart. Both of these studies demonstrate the 

feasibility of distributed learning for the development of prognostic models in oncology 

research. More specifically, radiation oncology research could be advanced by the 

adoption of the distributed learning methodology. It has been established that radiomics 

data from CT scans could be incorporated for the training of distributed prognostic 

models [175,176]. The EuroCAT IT infrastructure has been developed by Deist et al. in 

order to facilitate the adoption of distributed learning methodologies for radiation 

oncology by more centres [149]. Currently, there are various available open-source and 

commercial platforms, including DistriM [177], the Varian Learning Portal [178], Clara 

[179] and GRIN [180] that can be used to support the execution of distributed learning 

projects. 

The Vantage6 (priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight 

eXchange) platform [181] has been used to carry out the distributed learning analysis 

described in this thesis (Chapters 4 and 6). The Vantage6 architecture consists of 

multiple components, including a researcher, a server and one or multiple nodes. In 

summary, the researcher can pose a question that may be answered using data that 

are available at different centres. Each centre has its own separate node set up, which 

can only access the local data. The researcher sends the question to the server as a 

task by calling a function. This can be done using a range of programming languages, 

including R or Python. The server then processes the task and handles administrative 

functions, such as the authorisation and authentication of the nodes. The task is 

subsequently delivered to each of the participating nodes as a Docker image, where it 

is executed. When the task is complete and once a solution has been reached, the 
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results are transmitted back to the researcher via the server. Through this approach, 

the data never leave the centre they originate from.  

With the recent increase in number of centres adopting a distributed learning approach, 

more robust and generalisable distributed prognostic models will be developed in the 

near future. The ultimate aim of distributed learning in oncology would be to develop 

models that can be used as decision support tools that are fully integrated within the 

clinic, allowing information to be shared between centres across the globe in a 

standardised and dynamic fashion, therefore enabling truly personalised cancer therapy 

[175].  

 

1.4.3 Distributed Cox proportional hazards algorithm 

As previously discussed, traditional centralised Cox modelling (Section 1.3.2.3) involves 

collecting all available patient data in a single repository. However, Lu et al. [150] has 

adapted the Cox regression algorithm for use in a distributed learning setting. The study 

authors have also demonstrated that the distributed Cox regression model generates 

the same model outputs as a traditional centralised Cox regression model trained with 

the same data. In practice, a distributed and a centralised model produced near-

identical model coefficients, with differences in the range of 10-15 to 10-12. This paper 

also proved that the distributed and centralised models are mathematically equivalent 

under the Breslow likelihood assumption. 

To construct a distributed model using data from M participating centres, the first and 

second order derivatives 𝑙′(𝛽) and 𝑙″(𝛽) of the partial likelihood function (Equation 1-2) 

need to be calculated by the distributed Cox regression algorithm: 

Equation 1-5 
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Equation 1-6 

 

where 𝒟𝑘𝑖 and ℛ𝑘𝑖 are subsets of 𝒟𝑖 and ℛ𝑖 signifying individuals from the 𝑘-th centre, 

and 𝑘 = 1, 2, …, 𝑀. In Equation 1-6, the count 𝑑𝑖 is replaced by 𝑑𝑖 = ∑𝑀𝑘=1|𝒟𝑘𝑖|, so that it 

can be aggregated from multiple distributed centres. According to Equations 1-5 and 1-

6, the derivatives of the log likelihood function are naturally decomposed through the 

calculation and the subsequent sharing of locally aggregated values from each centre. 

Through this decomposition, the sum of derivatives learned from the distributed centres 

is guaranteed to be exactly the same as the derivative calculated from the central 

repository that is analysed to develop the centralized Cox model. The following steps 

are executed to update the distributed Cox regression model using data from multiple 

distributed centres: 

1. The first step involves the local initialisation for all centres.  Based on the local 

data, each centre initialises index subsets ℛ𝑘𝑖 and 𝒟𝑘𝑖. The aggregated statistic 

∑𝐷𝑖=1∑𝑙∈𝒟𝑘𝑖𝑧𝑙𝑟 from each centre is then sent to the global server. Since this value 

remains unchanged during the entire learning process, sharing this value with 

the global server during the initialisation phase avoids additional communication 

overhead. 

2. The next step involves global initialisation. The distinct event times from each 

centre are sent to the global server, in order to initialize the parameters 𝐷 and 

|𝒟𝑘𝑖|. Subsequently, based on Equation 1-5, the global server aggregates the 

incoming statistics from all centres 𝑧ˆ𝑟=∑𝑀
𝑘=1∑𝐷

𝑖=1∑𝑙∈𝒟𝑘
𝑖𝑧𝑙

𝑟. The server then 

initializes 𝜷0 and distributes it to each centre. 

3. The third step involves a parallel update that is carried out in all centres. Each 

centre receives the updated 𝜷𝜏 from the global server. Using this, the following 

aggregated statistics are calculated: and , 

. These statistics are then sent back to the global server. 
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4. Using the statistics received from each centre, the global server calculates the 

first and second derivatives of the likelihood function, according to Equations 1-

5 and 1-6. 

5. The statistic 𝜷𝜏+1 is then updated using the Newton-Raphson algorithm (Equation 

1-3), and the updated 𝜷𝜏+1 is sent back to each site. 

6. Steps 3 to 5 are repeated until the parameters converge. 

7. In the final step, the converged model parameters to are sent to each centre. 

This algorithm was adapted by a group of researchers at the Netherlands 

Comprehensive Cancer Organisation (IKNL) for use in the Vantage6 distributed 

learning infrastructure [182], and it has been used for the training of distributed outcome 

models in the atomCAT1 and atomCAT2 studies, which form part of this thesis 

(Chapters 4 and 6). 

 

1.4.4 Distributed learning for anal cancer outcome modelling 

A distributed learning approach may be ideally suited for outcome prediction modelling 

in rare cancers such as anal cancer. It could help in the acquisition of sufficient patient 

data from multiple different centres with the aim of developing robust generalisable 

models, while working around many of the barriers associated with physical data 

sharing. By using this novel technology to promote collaboration and link hospitals 

nationally and across the world, a diverse cohort of patients, which is representative of 

the overall patient population, may be analysed. Therefore, this ensures that we learn 

from every patient treated for anal cancer; not only from patients who are eligible to 

participate in RCTs. 

 

1.5 Research overview 

1.5.1 Aims and objectives 

The primary aim of this research is to demonstrate the feasibility of conducting 

distributed learning across multiple institutions for anal cancer outcome modelling. The 

work carried out involves the evaluation of data availability, the creation of a local anal 

cancer patient data warehouse, the deployment of the distributed learning technical 

infrastructure, and finally development of distributed outcome models of increasing 
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complexity, incorporating radiotherapy-specific data. The specific objectives of this 

research are to: 

1. Establish a local data warehouse that consists of comprehensive data from 

patients treated for anal cancer in LCC. 

2. Conduct a systematic review to identify prognostic factors for disease-related 

outcomes in anal cancer reported in the literature. 

3. Carry out a proof-of-concept study in collaboration with two other European 

centres to demonstrate the feasibility of distributed learning in outcome modelling 

for rare cancers. 

4. Develop a prospective study protocol and statistical analysis plan, detailing the 

plans for extension of the distributed learning outcome modelling work.  

5. Establish a wider consortium that consists of anal cancer radiotherapy treatment 

centres across the world. Securely link international databases in individual 

centres to analyse and learn from complex individual-level patient data through 

distributed learning. 

 

1.5.2 Chapter overview 

Chapter 2: Development of a comprehensive institutional anal cancer data warehouse 

for real-world data analysis 

The aim of this chapter is to describe the development of a comprehensive data 

warehouse consisting of data from patients treated for anal cancer at LCC since January 

2013. The data warehouse is now available to clinicians and researchers on an ongoing 

basis. In this chapter, the data collection and quality evaluation procedures are 

documented, highlighting the proportion of data items that could be automatically 

extracted, and the amount of manual entry and manual review required to develop an 

institutional data warehouse. The work outlined in this chapter feeds into the subsequent 

chapters and forms a key development for the application of this research in clinical 

practice. The manuscript detailing this work is being prepared for publication. 

 

Chapter 3: Prognostic factors for patients with anal cancer treated with conformal 

radiotherapy – a systematic review 

In this chapter, the existing literature is evaluated by systematic review in order to 

identify established prognostic factors for a variety of disease-related outcomes in anal 
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cancer, focusing on patients treated with curative intent using modern conformal 

radiotherapy techniques. The prognostic factors identified will be considered as 

potential predictor variables for the distributed learning models developed in 

subsequent chapters (Chapters 4 and 6). This work was published in the journal BMC 

Cancer [183]. 

 

Chapter 4: Predicting outcomes in anal cancer patients using multi-centre data and 

distributed learning – A proof-of-concept study 

The aim of the work described in this chapter is to demonstrate the feasibility of 

distributed learning for outcome prediction modelling in a rare cancer. To achieve this, 

an overall survival model for anal cancer was developed through distributed learning. 

The model was collaboratively developed using data from patients treated at LCC 

(Leeds, UK), MAASTRO clinic (Maastricht, the Netherlands) and Oslo University 

Hospital (Oslo, Norway), without the exchange of any individual-level patient data 

between the three centres. This work supported the growth of the collaboration into a 

larger international consortium. This proof-of-concept study was published in the journal 

Radiotherapy and Oncology [184].  

 

Chapter 5: Development and validation of prognostic models for anal cancer outcomes 

using distributed learning: protocol for the international multi-centre atomCAT2 study 

The aim of this chapter is to outline the research proposal for the international multi-

centre atomCAT2 project and the procedures to be followed during its course. The 

prospective study protocol includes details on the atomCAT2 study design, the patient 

population to be analysed, and the outcomes to be investigated. The protocol also pre-

specifies all models to be developed as part of the analysis, including which prognostic 

factors are to be analysed in each model. Lastly, a prospective sample size calculation 

and a detailed statistical analysis plan are provided. The atomCAT2 study protocol was 

published in the journal Diagnostic and Prognostic Research [185]. 

 

Chapter 6: Prognostic models for anal cancer using distributed learning: the 

international multi-centre atomCAT2 study 

In this chapter, the aim is to describe the development and validation of prediction 

models for anal cancer outcomes after chemoradiotherapy through distributed learning. 
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To achieve this, a consortium of 14 international cancer treatment centres based in the 

UK and Europe has been formed. A cohort of more than 1099 patients treated across 

12 centres was analysed, in order to develop and validate models for overall survival, 

locoregional control and distant metastasis, as well as to identify key prognostic factors 

and their effect size. This has provided unique insights and may guide the design of 

future anal cancer clinical trials. The manuscript for the atomCAT2 study is currently 

being prepared for publication. 

 

Chapter 7: Discussion 

This chapter aims to bring together and synthesise the research described in the 

previous chapters as a whole. The main findings from the research conducted are 

discussed in relation to the literature. The limitations of this research are also discussed 

in more detail, and potential directions for future work are indicated. 

 

1.6 References 

[1] Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Pineros M, et al. Global Cancer 

Observatory: Cancer Today. France: International Agency for Research on Cancer. 

2018. https://gco.iarc.fr/today (accessed September 29, 2020). 

[2] Cancer Research UK. Anal cancer incidence by sex and UK country 2020. 

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-

cancer-type/anal-cancer/incidence#heading-Zero (accessed September 29, 2020). 

[3] Shridhar R, Shibata D, Chan E, Thomas CR. Anal cancer: current standards in care 

and recent changes in practice. CA Cancer J Clin 2015;65:139–62. 

https://doi.org/10.3322/caac.21259. 

[4] Gami B, Kubba F, Ziprin P. Human Papilloma Virus and Squamous Cell Carcinoma of 

the Anus. Clin Med Insights Oncol 2014;8:CMO.S13241. 

https://doi.org/10.4137/CMO.S13241. 

[5] Lin C, Franceschi S, Clifford GM. Human papillomavirus types from infection to cancer 

in the anus, according to sex and HIV status: a systematic review and meta-analysis. 

Lancet Infect Dis 2018;18:198–206. https://doi.org/10.1016/S1473-3099(17)30653-9. 

[6] Liu C, Mann D, Sinha UK, Kokot NC. The molecular mechanisms of increased 

radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an 

extensive review. J Otolaryngol - Head Neck Surg J Oto-Rhino-Laryngol Chir Cervico-

Faciale 2018;47:59. https://doi.org/10.1186/s40463-018-0302-y. 

[7] Salati SA. Anal Cancer : A Review. Int J Health Sci 2012;6:206–30. 

https://doi.org/10.12816/0006000. 

[8] Cancer Research UK. Diagram showing the anatomy of the anus CRUK 2014. 

https://commons.wikimedia.org/wiki/File:Diagram_showing_the_anatomy_of_the_an

us_CRUK_282.svg (accessed November 8, 2022). 



 

 
 

 

46 

[9] Wietfeldt E, Thiele J. Malignancies of the Anal Margin and Perianal Skin. Clin Colon 

Rectal Surg 2009;22:127–35. https://doi.org/10.1055/s-0029-1223845. 

[10] Sauter M, Keilholz G, Kranzbühler H, Lombriser N, Prakash M, Vavricka SR, et al. 

Presenting symptoms predict local staging of anal cancer: a retrospective analysis  of 

86 patients. BMC Gastroenterol 2016;16:46. https://doi.org/10.1186/s12876-016-

0461-0. 

[11] Siegel R, Werner RN, Koswig S, Gaskins M, Rödel C, Aigner F, et al. Clinical Practice 

Guideline: Anal Cancer—Diagnosis, Treatment and Follow-up. Dtsch Arzteblatt Int 

2021;118:217–24. https://doi.org/10.3238/arztebl.m2021.0027. 

[12] Glynne-Jones R, Nilsson PJ, Aschele C, Goh V, Peiffert D, Cervantes A, et al. Anal 

cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment  and 

follow-up. Radiother Oncol J Eur Soc Ther Radiol Oncol 2014;111:330–9. 

https://doi.org/10.1016/j.radonc.2014.04.013. 

[13] Dinneen A. The Colorectal Service Multidisciplinary Team (MDT) - Cancer Services 

Information for Patients. East North Herts NHS Trust 2015. https://clinical-

pathways.org.uk/sites/default/files/leaflet/colorectal-cancer-mdt-updated-112016.pdf 

(accessed November 8, 2022). 

[14] University College London Hospitals NHS Foundation Trust. Colorectal and anal 

cancer multidisciplinary team (MDT) - Information for patients, relatives and carers. 

Univ Coll Lond Hosp NHS Found Trust 2021. https://www.uclh.nhs.uk/patients-and-

visitors/patient-information-pages/colorectal-and-anal-cancer-multidisciplinary-team-

mdt (accessed November 8, 2022). 

[15] Amin MB, American Joint Committee on Cancer, American Cancer Society, editors. 

AJCC cancer staging manual. Eight edition / editor-in-chief, Mahul B. Amin, MD, FCAP 

; editors, Stephen B. Edge, MD, FACS [and 16 others] ; Donna M. Gress, RHIT, CTR-

Technical editor ; Laura R. Meyer, CAPM-Managing editor. Chicago IL: American Joint 

Committee on Cancer, Springer; 2017. 

[16] Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th Edition of 

the AJCC Cancer Staging Manual and the Future of TNM. Ann Surg Oncol 

2010;17:1471–4. https://doi.org/10.1245/s10434-010-0985-4. 

[17] Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. 

The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a 

population-based to a more “personalized” approach to cancer staging: The Eighth 

Edition AJCC Cancer Staging Manual. CA Cancer J Clin 2017;67:93–9. 

https://doi.org/10.3322/caac.21388. 

[18] Nigro ND, Vaitkevicius VK, Considine B. Combined therapy for cancer of the anal 

canal: A preliminary report. Dis Colon Rectum 1974;17:354–6. 

https://doi.org/10.1007/BF02586980. 

[19] Nigro ND, Vaitkevicius VK, Buroker T, Bradley GT, Considine B. Combined therapy for 

cancer of the anal canal: Dis Colon Rectum 1981;24:73–5. 

https://doi.org/10.1007/BF02604287. 

[20] UKCCCR Anal Cancer Trial Working Party. Epidermoid anal cancer: results from the 

UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, 

and mitomycin. The Lancet 1996;348:1049–54. https://doi.org/10.1016/S0140-

6736(96)03409-5. 



 

 
 

 

47 

[21] Flam M, John M, Pajak TF, Petrelli N, Myerson R, Doggett S, et al. Role of mitomycin 

in combination with fluorouracil and radiotherapy, and of salvage chemoradiation in 

the definitive nonsurgical treatment of epidermoid carcinoma of the anal canal: results 

of a phase III randomized intergroup study. J Clin Oncol 1996;14:2527–39. 

https://doi.org/10.1200/JCO.1996.14.9.2527. 

[22] Bartelink H, Roelofsen F, Eschwege F, Rougier P, Bosset JF, Gonzalez DG, et al. 

Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the 

treatment of locally advanced anal cancer: results of a phase III randomized trial of the 

European Organization for Research and Treatment of Cancer Radiotherapy and 

Gastrointestinal Cooperative Groups. J Clin Oncol 1997;15:2040–9. 

https://doi.org/10.1200/JCO.1997.15.5.2040. 

[23] Perry W, Connaughton J. Abdominoperineal Resection: How Is It Done and What Are 

the Results? Clin Colon Rectal Surg 2007;20:213–20. https://doi.org/10.1055/s-2007-

984865. 

[24] Ajani JA, Winter KA, Gunderson LL, Pedersen J, Benson AB, Thomas C, et al. 

Intergroup RTOG 98–11: A phase III randomized study of 5-fluorouracil (5-FU), 

mitomycin, and radiotherapy versus 5-fluorouracil, cisplatin and radiotherapy in 

carcinoma of the anal canal. J Clin Oncol 2006;24:4009–4009. 

https://doi.org/10.1200/jco.2006.24.18_suppl.4009. 

[25] Glynne-Jones R, Meadows H, Wan S, Gollins S, Leslie M, Levine E, et al. EXTRA—A 

Multicenter Phase II Study of Chemoradiation Using a 5 Day per Week Oral Regimen 

of Capecitabine and Intravenous Mitomycin C in Anal Cancer. Int J Radiat Oncol 

2008;72:119–26. https://doi.org/10.1016/j.ijrobp.2007.12.012. 

[26] Peiffert D, Tournier-Rangeard L, Gérard J-P, Lemanski C, François E, Giovannini M, 

et al. Induction Chemotherapy and Dose Intensification of the Radiation Boost in 

Locally Advanced Anal Canal Carcinoma: Final Analysis of the Randomized 

UNICANCER ACCORD 03 Trial. J Clin Oncol 2012;30:1941–8. 

https://doi.org/10.1200/JCO.2011.35.4837. 

[27] James RD, Glynne-Jones R, Meadows HM, Cunningham D, Myint AS, Saunders MP, 

et al. Mitomycin or cisplatin chemoradiation with or without maintenance chemotherapy 

for treatment of squamous-cell carcinoma of the anus (ACT II): a randomised, phase 

3, open-label, 2×2 factorial trial. Lancet Oncol 2013;14:516–24. 

https://doi.org/10.1016/S1470-2045(13)70086-X. 

[28] Deutsch E, Lemanski C, Pignon JP, Levy A, Delarochefordiere A, Martel-Lafay I, et al. 

Unexpected toxicity of cetuximab combined with conventional chemoradiotherapy in  

patients with locally advanced anal cancer: results of the UNICANCER ACCORD 16 

phase  II trial. Ann Oncol Off J Eur Soc Med Oncol 2013;24:2834–8. 

https://doi.org/10.1093/annonc/mdt368. 

[29] Kachnic LA, Winter K, Myerson RJ, Goodyear MD, Willins J, Esthappan J, et al. RTOG 

0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy 

in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute 

Morbidity in Carcinoma of the Anal Canal. Int J Radiat Oncol 2013;86:27–33. 

https://doi.org/10.1016/j.ijrobp.2012.09.023. 

[30] Rao S, Guren MG, Khan K, Brown G, Renehan AG, Steigen SE, et al. Anal cancer: 

ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann Oncol 

2021;32:1087–100. https://doi.org/10.1016/j.annonc.2021.06.015. 



 

 
 

 

48 

[31] Burnet NG. Defining the tumour and target volumes for radiotherapy. Cancer Imaging 

2004;4:153–61. https://doi.org/10.1102/1470-7330.2004.0054. 

[32] Muirhead R, Adams RA, Gilbert DC, Harrison M, Glynne-Jones R, Sebag-Montefiore 

D, et al. National guidance for IMRT in anal cancer 2016. 

http://analimrtguidance.co.uk/national-anal-imrt-guidance-v3.pdf (accessed January 

31, 2022). 

[33] Rusten E, Rekstad BL, Undseth C, Al-Haidari G, Hanekamp B, Hernes E, et al. Target 

volume delineation of anal cancer based on magnetic resonance imaging or positron 

emission tomography. Radiat Oncol 2017;12:147. https://doi.org/10.1186/s13014-017-

0883-z. 

[34] Glynne-Jones R, Tan D, Hughes R, Hoskin P. Squamous-cell carcinoma of the anus: 

progress in radiotherapy treatment. Nat Rev Clin Oncol 2016;13:447–59. 

https://doi.org/10.1038/nrclinonc.2015.218. 

[35] Murray L, Lilley J. Radiotherapy: technical aspects. Radiotherapy 2020;48:p79-83. 

https://doi.org/10.1016/j.mpmed.2019.11.003. 

[36] Martin D, Balermpas P, Winkelmann R, Rödel F, Rödel C, Fokas E. Anal squamous 

cell carcinoma - State of the art management and future perspectives. Cancer Treat 

Rev 2018;65:11–21. https://doi.org/10.1016/j.ctrv.2018.02.001. 

[37] Franco P, Arcadipane F, Ragona R, Mistrangelo M, Cassoni P, Munoz F, et al. 

Volumetric modulated arc therapy (VMAT) in the combined modality treatment of anal  

cancer patients. Br J Radiol 2016;89:20150832. https://doi.org/10.1259/bjr.20150832. 

[38] Possiel J, Ammon HE, Guhlich M, Conradi L-C, Ghadimi M, Wolff HA, et al. Volumetric 

Modulated Arc Therapy Improves Outcomes in Definitive Radiochemotherapy for Anal 

Cancer Whilst Reducing Acute Toxicities and Increasing Treatment Compliance. 

Cancers 2021;13:2533. https://doi.org/10.3390/cancers13112533. 

[39] Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, et al. 

Brachytherapy: An overview for clinicians. CA Cancer J Clin 2019;69:386–401. 

https://doi.org/10.3322/caac.21578. 

[40] Frakulli R, Buwenge M, Cammelli S, Macchia G, Farina E, Arcelli A, et al. 

Brachytherapy boost after chemoradiation in anal cancer: a systematic review. J 

Contemp Brachytherapy 2018;10:246–53. https://doi.org/10.5114/jcb.2018.76884. 

[41] Falk AT, Claren A, Benezery K, François E, Gautier M, Gerard J-P, et al. Interstitial 

high-dose rate brachytherapy as boost for anal canal cancer. Radiat Oncol 

2014;9:240. https://doi.org/10.1186/s13014-014-0240-4. 

[42] Ali ZS, Solomon E, Mann P, Wong S, Chan KKW, Taggar AS. High dose rate 

brachytherapy in the management of anal cancer: A review. Radiother Oncol 

2022;171:43–52. https://doi.org/10.1016/j.radonc.2022.03.019. 

[43] Muirhead R, Drinkwater K, O’Cathail SM, Adams R, Glynne-Jones R, Harrison M, et 

al. Initial Results from the Royal College of Radiologists’ UK National Audit of Anal 

Cancer Radiotherapy 2015. Clin Oncol 2017;29:188–97. 

https://doi.org/10.1016/j.clon.2016.10.005. 

[44] The American Cancer Society medical and editorial content team. Chemotherapy for 

Anal Cancer 2017. https://www.cancer.org/cancer/anal-

cancer/treating/chemotherapy.html (accessed November 8, 2022). 



 

 
 

 

49 

[45] Muirhead R, Partridge M, Hawkins MA. A tumor control probability model for anal 

squamous cell carcinoma. Radiother Oncol 2015;116:192–6. 

https://doi.org/10.1016/j.radonc.2015.07.014. 

[46] Johnsson A, Leon O, Gunnlaugsson A, Nilsson P, Höglund P. Determinants for local 

tumour control probability after radiotherapy of anal cancer. Radiother Oncol 

2018;128:380–6. https://doi.org/10.1016/j.radonc.2018.06.007. 

[47] ISRCTN registry [Internet]. London: BMC. ISRCTN88455282, PLATO - Personalising 

anal cancer radiotherapy dose 2016. https://doi.org/10.1186/ISRCTN88455282. 

[48] Sebag-Montefiore D, Adams R, Bell S, Berkman L, Gilbert DC, Glynne-Jones R, et al. 

The Development of an Umbrella Trial (PLATO) to Address Radiation Therapy Dose 

Questions in the Locoregional Management of Squamous Cell Carcinoma of the Anus. 

Int J Radiat Oncol 2016;96:E164–5. https://doi.org/10.1016/j.ijrobp.2016.06.1006. 

[49] Tian X, Liu K, Hou Y, Cheng J, Zhang J. The evolution of proton beam therapy: Current 

and future status (Review). Mol Clin Oncol 2017. 

https://doi.org/10.3892/mco.2017.1499. 

[50] Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell 

basic science to clinical practice. Nat Rev Immunol 2020;20:651–68. 

https://doi.org/10.1038/s41577-020-0306-5. 

[51] Brock KK. Adaptive Radiotherapy: Moving Into the Future. Semin Radiat Oncol 

2019;29:181–4. https://doi.org/10.1016/j.semradonc.2019.02.011. 

[52] Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. Cancers Head 

Neck 2020;5:1. https://doi.org/10.1186/s41199-019-0046-z. 

[53] Shakir R, Adams R, Cooper R, Downing A, Geh I, Gilbert D, et al. Patterns and 

Predictors of Relapse Following Radical Chemoradiation Therapy Delivered Using 

Intensity Modulated Radiation Therapy With a Simultaneous Integrated Boost in Anal 

Squamous Cell Carcinoma. Int J Radiat Oncol 2020;106:329–39. 

https://doi.org/10.1016/j.ijrobp.2019.10.016. 

[54] Nilsson MP, Nilsson ED, Johnsson A, Leon O, Gunnlaugsson A, Scherman J. Patterns 

of recurrence in anal cancer: a detailed analysis. Radiat Oncol 2020;15:125. 

https://doi.org/10.1186/s13014-020-01567-7. 

[55] Guerra GR, Kong JC, Bernardi M-P, Ramsay RG, Phillips WA, Warrier SK, et al. 

Salvage Surgery for Locoregional Failure in Anal Squamous Cell Carcinoma. Dis 

Colon Rectum 2018;61:179–86. https://doi.org/10.1097/DCR.0000000000001010. 

[56] Bogach J, Fenech D, Chu W, Ashamalla S, Ung Y, Taggar AS, et al. Salvage surgery 

for locally recurrent anal cancer after intensity modulated radiation therapy with 

concurrent chemotherapy. Cancer Treat Res Commun 2021;26:100287. 

https://doi.org/10.1016/j.ctarc.2020.100287. 

[57] Sclafani F, Adams RA, Eng C, Benson AB, Glynne-Jones R, Sebag-Montefiore D, et 

al. InterAACT: An international multicenter open label randomized phase II advanced 

anal cancer trial comparing cisplatin (CDDP) plus 5-fluorouracil (5-FU) versus 

carboplatin (CBDCA) plus weekly paclitaxel (PTX) in patients with inoperable locally 

recurrent (ILR) or metastatic disease. J Clin Oncol 2015;33:TPS792–TPS792. 

https://doi.org/10.1200/jco.2015.33.3_suppl.tps792. 

[58] Rao S, Sclafani F, Eng C, Adams RA, Guren MG, Sebag-Montefiore D, et al. 

International Rare Cancers Initiative Multicenter Randomized Phase II Trial of Cisplatin 



 

 
 

 

50 

and Fluorouracil Versus Carboplatin and Paclitaxel in Advanced Anal Cancer: 

InterAAct. J Clin Oncol 2020;38:2510–8. https://doi.org/10.1200/JCO.19.03266. 

[59] Yordanov K, Cima S, Richetti A, Pesce G, Martucci F, Azinwi NC, et al. Concurrent 

chemoradiation with volumetric modulated Arc therapy of patients treated for anal 

cancer—acute toxicity and treatment outcome. J Gastrointest Oncol 2017;8:361–7. 

https://doi.org/10.21037/jgo.2017.03.09. 

[60] Jhaveri J, Rayfield L, Liu Y, Chowdhary M, Tian S, Cassidy RJ, et al. Impact of intensity 

modulated radiation therapy on survival in anal cancer. J Gastrointest Oncol 

2018;9:618–30. https://doi.org/10.21037/jgo.2018.05.07. 

[61] Pepek JM, Willett CG, Wu QJ, Yoo S, Clough RW, Czito BG. Intensity-modulated 

radiation therapy for anal malignancies: a preliminary toxicity  and disease outcomes 

analysis. Int J Radiat Oncol Biol Phys 2010;78:1413–9. 

https://doi.org/10.1016/j.ijrobp.2009.09.046. 

[62] Koerber SA, Slynko A, Haefner MF, Krug D, Schoneweg C, Kessel K, et al. Efficacy 

and toxicity of chemoradiation in patients with anal cancer--a  retrospective analysis. 

Radiat Oncol Lond Engl 2014;9:113. https://doi.org/10.1186/1748-717X-9-113. 

[63] Bentzen AG, Guren MG, Vonen B, Wanderås EH, Frykholm G, Wilsgaard T, et al. 

Faecal incontinence after chemoradiotherapy in anal cancer survivors: Long-term 

results of a national cohort. Radiother Oncol 2013;108:55–60. 

https://doi.org/10.1016/j.radonc.2013.05.037. 

[64] Pan YB, Maeda Y, Wilson A, Glynne-Jones R, Vaizey CJ. Late gastrointestinal toxicity 

after radiotherapy for anal cancer: a systematic literature review. Acta Oncol 

2018;57:1427–37. https://doi.org/10.1080/0284186X.2018.1503713. 

[65] Philpot LM, Barnes SA, Brown RM, Austin JA, James CS, Stanford RH, et al. Barriers 

and Benefits to the Use of Patient-Reported Outcome Measures in Routine Clinical 

Care: A Qualitative Study. Am J Med Qual 2018;33:359–64. 

https://doi.org/10.1177/1062860617745986. 

[66] Weldring T, Smith SMS. Patient-Reported Outcomes (PROs) and Patient-Reported 

Outcome Measures (PROMs). Health Serv Insights 2013;6:HSI.S11093. 

https://doi.org/10.4137/HSI.S11093. 

[67] Gilbert A, Francischetto EO, Blazeby J, Holch P, Davidson S, Sebag-Montefiore D, et 

al. Choice of a patient-reported outcome measure for patients with anal cancer for use 

in cancer clinical trials and routine clinical practice: a mixed methods approach. Lancet 

Lond Engl 2015;385 Suppl 1:S38. https://doi.org/10.1016/S0140-6736(15)60353-1. 

[68] Sodergren SC, Johnson CD, Gilbert A, Darlington A-S, Cocks K, Guren MG, et al. 

International validation of the EORTC QLQ-ANL27, a field study to test the anal 

cancer-specific health-related quality of life questionnaire. Int J Radiat Oncol Biol Phys 

2022;S0360301622035076. https://doi.org/10.1016/j.ijrobp.2022.11.002. 

[69] Burbach JPM, Kurk SA, Coebergh van den Braak RRJ, Dik VK, May AM, Meijer GA, 

et al. Prospective Dutch colorectal cancer cohort: an infrastructure for long-term 

observational, prognostic, predictive and (randomized) intervention research. Acta 

Oncol 2016;55:1273–80. https://doi.org/10.1080/0284186X.2016.1189094. 

[70] Young RC. Cancer Clinical Trials — A Chronic but Curable Crisis. N Engl J Med 

2010;363:306–9. https://doi.org/10.1056/NEJMp1005843. 

https://doi.org/10.1016/j.ijrobp.2022.11.002


 

 
 

 

51 

[71] Bennette CS, Ramsey SD, McDermott CL, Carlson JJ, Basu A, Veenstra DL. 

Predicting Low Accrual in the National Cancer Institute’s Cooperative Group Clinical 

Trials. J Natl Cancer Inst 2016;108:djv324. https://doi.org/10.1093/jnci/djv324. 

[72] Van Spall HGC, Toren A, Kiss A, Fowler RA. Eligibility Criteria of Randomized 

Controlled Trials Published in High-Impact General Medical Journals: A Systematic 

Sampling Review. JAMA 2007;297:1233. https://doi.org/10.1001/jama.297.11.1233. 

[73] Bellera C, Praud D, Petit-Monéger A, McKelvie-Sebileau P, Soubeyran P, Mathoulin-

Pélissier S. Barriers to inclusion of older adults in randomised controlled clinical trials 

on Non-Hodgkin’s lymphoma: A systematic review. Cancer Treat Rev 2013;39:812–7. 

https://doi.org/10.1016/j.ctrv.2013.01.007. 

[74] Canouï-Poitrine F, Lièvre A, Dayde F, Lopez-Trabada-Ataz D, Baumgaertner I, 

Dubreuil O, et al. Inclusion of Older Patients with Cancer in Clinical Trials: The SAGE 

Prospective Multicenter Cohort Survey. The Oncologist 2019;24:e1351–9. 

https://doi.org/10.1634/theoncologist.2019-0166. 

[75] Cancer Research UK. Cancer incidence by age 2021. 

https://www.cancerresearchuk.org/health-professional/cancer-

statistics/incidence/age#ref- (accessed November 8, 2022). 

[76] Charnley N, Choudhury A, Chesser P, Cooper RA, Sebag-Montefiore D. Effective 

treatment of anal cancer in the elderly with low-dose chemoradiotherapy. Br J Cancer 

2005;92:1221–5. https://doi.org/10.1038/sj.bjc.6602486. 

[77] NHS England. Achieving world-class cancer outcomes: a strategy for England 2015 – 

2020 2017. https://www.england.nhs.uk/publication/achieving-world-class-cancer-

outcomes-a-strategy-for-england-2015-2020/ (accessed November 8, 2022). 

[78] Spencer K, Morris E. Collection of routine cancer data from private health-care 

providers. Lancet Oncol 2019;20:1202–4. https://doi.org/10.1016/S1470-

2045(19)30545-5. 

[79] Sajjadnia Z, Khayami R, Moosavi MR. Preprocessing Breast Cancer Data to Improve 

the Data Quality, Diagnosis Procedure, and Medical Care Services. Cancer Inform 

2020;19:1176935120917955. https://doi.org/10.1177/1176935120917955. 

[80] Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: A gentle 

introduction to imputation of missing values. J Clin Epidemiol 2006;59:1087–91. 

https://doi.org/10.1016/j.jclinepi.2006.01.014. 

[81] Lin W-C, Tsai C-F. Missing value imputation: a review and analysis of the literature 

(2006–2017). Artif Intell Rev 2020;53:1487–509. https://doi.org/10.1007/s10462-019-

09709-4. 

[82] The potential and limitations of data from population-based state cancer registries. Am 

J Public Health 2000;90:695–8. https://doi.org/10.2105/AJPH.90.5.695. 

[83] Parkin DM. The role of cancer registries in cancer control. Int J Clin Oncol 

2008;13:102–11. https://doi.org/10.1007/s10147-008-0762-6. 

[84] Lyu HG, Haider AH, Landman AB, Raut CP. The opportunities and shortcomings of 

using big data and national databases for sarcoma research. Cancer 2019;125:2926–

34. https://doi.org/10.1002/cncr.32118. 

[85] Yang DX, Khera R, Miccio JA, Jairam V, Chang E, Yu JB, et al. Prevalence of Missing 

Data in the National Cancer Database and Association With Overall Survival. JAMA 

Netw Open 2021;4:e211793. https://doi.org/10.1001/jamanetworkopen.2021.1793. 



 

 
 

 

52 

[86] Hemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, et al. Prognosis 

research strategy (PROGRESS) 1: A framework for researching clinical outcomes. 

BMJ 2013;346:e5595–e5595. https://doi.org/10.1136/bmj.e5595. 

[87] Kent P, Cancelliere C, Boyle E, Cassidy JD, Kongsted A. A conceptual framework for 

prognostic research. BMC Med Res Methodol 2020;20:172. 

https://doi.org/10.1186/s12874-020-01050-7. 

[88] Maclin PS, Dempsey J, Brooks J, Rand J. Using neural networks to diagnose cancer. 

J Med Syst 1991;15:11–9. https://doi.org/10.1007/BF00993877. 

[89] Kim W, Kim KS, Lee JE, Noh D-Y, Kim S-W, Jung YS, et al. Development of Novel 

Breast Cancer Recurrence Prediction Model Using Support Vector Machine. J Breast 

Cancer 2012;15:230. https://doi.org/10.4048/jbc.2012.15.2.230. 

[90] Tseng C-J, Lu C-J, Chang C-C, Chen G-D. Application of machine learning to predict 

the recurrence-proneness for cervical cancer. Neural Comput Appl 2014;24:1311–6. 

https://doi.org/10.1007/s00521-013-1359-1. 

[91] Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of 

three data mining methods. Artif Intell Med 2005;34:113–27. 

https://doi.org/10.1016/j.artmed.2004.07.002. 

[92] Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD. Predicting the prognosis of 

breast cancer by integrating clinical and microarray data with Bayesian networks. 

Bioinformatics 2006;22:e184–90. https://doi.org/10.1093/bioinformatics/btl230. 

[93] Chen Y-C, Ke W-C, Chiu H-W. Risk classification of cancer survival using ANN with 

gene expression data from multiple laboratories. Comput Biol Med 2014;48:1–7. 

https://doi.org/10.1016/j.compbiomed.2014.02.006. 

[94] Abu-Hanna A, Lucas PJF. Prognostic Models in Medicine: AI and Statistical 

Approaches. Methods Inf Med 2001;40:1–5. https://doi.org/10.1055/s-0038-1634456. 

[95] Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use 

of Normal Tissue Complication Probability Models in the Clinic. Int J Radiat Oncol 

2010;76:S10–9. https://doi.org/10.1016/j.ijrobp.2009.07.1754. 

[96] Troicki FT, Troicki FT, Troicki FT, Perez CA, Thorstad WL, Fisher BJ, et al. Normal 

Tissue Complication Probability (NTCP). In: Brady LW, Yaeger TE, editors. Encycl. 

Radiat. Oncol., Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, p. 560–560. 

https://doi.org/10.1007/978-3-540-85516-3_341. 

[97] Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning 

applications in cancer prognosis and prediction. Comput Struct Biotechnol J 

2015;13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005. 

[98] Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams K, Kyzas PA, et al. 

Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research. PLoS 

Med 2013;10:e1001380. https://doi.org/10.1371/journal.pmed.1001380. 

[99] Simon R, Altman D. Statistical aspects of prognostic factor studies in oncology. Br J 

Cancer 1994;69:979–85. https://doi.org/10.1038/bjc.1994.192. 

[100] Kyzas PA, Loizou KT, Ioannidis JPA. Selective Reporting Biases in Cancer 

Prognostic Factor Studies. JNCI J Natl Cancer Inst 2005;97:1043–55. 

https://doi.org/10.1093/jnci/dji184. 

[101] Kyzas PA, Denaxa-Kyza D, Ioannidis JPA. Almost all articles on cancer prognostic 

markers report statistically significant results. Eur J Cancer 2007;43:2559–79. 

https://doi.org/10.1016/j.ejca.2007.08.030. 



 

 
 

 

53 

[102] Steyerberg EW, Moons KGM, van der Windt DA, Hayden JA, Perel P, Schroter S, 

et al. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. 

PLoS Med 2013;10:e1001381. https://doi.org/10.1371/journal.pmed.1001381. 

[103] Harrell FE. Regression modeling strategies: with applications to linear models, 

logistic and ordinal regression, and survival analysis. Second edition. Cham 

Heidelberg New York: Springer; 2015. 

[104] Steyerberg EW. Clinical prediction models: a practical approach to development, 

validation, and updating. New York, NY: Springer; 2009. 

[105] Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External 

validation of multivariable prediction models: a systematic review of methodological 

conduct and reporting. BMC Med Res Methodol 2014;14:40. 

https://doi.org/10.1186/1471-2288-14-40. 

[106] Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. 

Assessing the Performance of Prediction Models: A Framework for Traditional and 

Novel Measures. Epidemiology 2010;21:128–38. 

https://doi.org/10.1097/EDE.0b013e3181c30fb2. 

[107] Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination 

and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature. 

JAMA 2017;318:1377. https://doi.org/10.1001/jama.2017.12126. 

[108] Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for evaluating 

overall adequacy of risk prediction procedures with censored survival data. Stat Med 

2011;30:1105–17. https://doi.org/10.1002/sim.4154. 

[109] Brier GW. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF 

PROBABILITY. Mon Weather Rev 1950;78:1–3. https://doi.org/10.1175/1520-

0493(1950)078<0001:VOFEIT>2.0.CO;2. 

[110] Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The 

TRIPOD Statement. Ann Intern Med 2015;162:55. https://doi.org/10.7326/M14-0697. 

[111] Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, 

et al. Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med 

2015;162:W1. https://doi.org/10.7326/M14-0698. 

[112] Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC, et al. A 

prognostic index in primary breast cancer. Br J Cancer 1982;45:361–6. 

https://doi.org/10.1038/bjc.1982.62. 

[113] Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. 

Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 

1998;97:1837–47. https://doi.org/10.1161/01.CIR.97.18.1837. 

[114] Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation 

of Clinical Classification Schemes for Predicting Stroke: Results From the National 

Registry of Atrial Fibrillation. JAMA 2001;285:2864. 

https://doi.org/10.1001/jama.285.22.2864. 

[115] Clark TG, Bradburn MJ, Love SB, Altman DG. Survival Analysis Part I: Basic 

concepts and first analyses. Br J Cancer 2003;89:232–8. 

https://doi.org/10.1038/sj.bjc.6601118. 



 

 
 

 

54 

[116] Bewick V, Cheek L, Ball J. Statistics review 12: Survival analysis. Crit Care 

2004;8:389. https://doi.org/10.1186/cc2955. 

[117] Cox DR. Regression Models and Life-Tables. J R Stat Soc Ser B Methodol 

1972;34:187–220. 

[118] Fox J, Weisberg S. An R companion to applied regression. Third edition. Los 

Angeles: SAGE; 2019. 

[119] Breslow NE. Analysis of Survival Data under the Proportional Hazards Model. Int 

Stat Rev Rev Int Stat 1975;43:45. https://doi.org/10.2307/1402659. 

[120] Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. 2nd ed. 

Hoboken, N.J: J. Wiley; 2002. 

[121] Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: 

evolution and development into theranostics. P T Peer-Rev J Formul Manag 

2010;35:560–76. 

[122] Hingorani AD, Windt DA v. d., Riley RD, Abrams K, Moons KGM, Steyerberg EW, et 

al. Prognosis research strategy (PROGRESS) 4: Stratified medicine research. BMJ 

2013;346:e5793–e5793. https://doi.org/10.1136/bmj.e5793. 

[123] Jones MP, Hruby G, Metser U, Sridharan S, Capp A, Kumar M, et al. FDG-PET 

parameters predict for recurrence in anal cancer - results from a  prospective, 

multicentre clinical trial. Radiat Oncol Lond Engl 2019;14:140. 

https://doi.org/10.1186/s13014-019-1342-9. 

[124] Tomaszewski JM, Link E, Leong T, Heriot A, Vazquez M, Chander S, et al. Twenty-

five-year experience with radical chemoradiation for anal cancer. Int J Radiat Oncol 

Biol Phys 2012;83:552–8. https://doi.org/10.1016/j.ijrobp.2011.07.007. 

[125] Aggarwal A, Gayadeen S, Robinson D, Hoskin PJ, Mawdsley S, Harrison M, et al. 

Clinical target volumes in anal cancer: Calculating what dose was likely to have been 

delivered in the UK ACT II trial protocol. Radiother Oncol 2012;103:341–6. 

https://doi.org/10.1016/j.radonc.2012.03.007. 

[126] Lu Y, Wang X, Li P, Zhang T, Zhou J, Ren Y, et al. Clinical characteristics and 

prognosis of anal squamous cell carcinoma: a retrospective audit of 144 patients from 

11 cancer hospitals in southern China. BMC Cancer 2020;20:679. 

https://doi.org/10.1186/s12885-020-07170-z. 

[127] Rimini M, Franco P, Bertolini F, Berardino DB, giulia ZM, Stefano V, et al. The 

Prognostic Role of Baseline Eosinophils in HPV-Related Cancers: a Multi-institutional 

Analysis of Anal SCC and OPC Patients Treated with Radical CT-RT. J Gastrointest 

Cancer 2022. https://doi.org/10.1007/s12029-022-00850-y. 

[128] Rimini M, Franco P, De Bari B, Zampino MG, Vagge S, Frassinetti GL, et al. The 

Prognostic Value of the New Combined Hemo-Eosinophil Inflammation Index (HEI 

Index): A Multicenter Analysis of Anal Cancer Patients Treated with Concurrent 

Chemo-Radiation. Cancers 2021;13:671. https://doi.org/10.3390/cancers13040671. 

[129] Kim E, Kim TH, Jung W, Kim K, Chang AR, Park HJ, et al. Prognostic impact of 

neutrophilia and lymphopenia on survival in anal cancer treated with definitive 

concurrent chemoradiotherapy: a retrospective multicenter study. Int J Clin Oncol 

2022;27:553–62. https://doi.org/10.1007/s10147-021-02094-5. 

[130] Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculating 

the sample size required for developing a clinical prediction model. BMJ 

2020;368:m441. https://doi.org/10.1136/bmj.m441. 



 

 
 

 

55 

[131] Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance 

of different strategies for estimating the out-of-sample validity of logistic regression 

models. Stat Methods Med Res 2017;26:796–808. 

https://doi.org/10.1177/0962280214558972. 

[132] Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. 

Performance of logistic regression modeling: beyond the number of events per 

variable, the role of data structure. J Clin Epidemiol 2011;64:993–1000. 

https://doi.org/10.1016/j.jclinepi.2010.11.012. 

[133] van Smeden M, de Groot JAH, Moons KGM, Collins GS, Altman DG, Eijkemans 

MJC, et al. No rationale for 1 variable per 10 events criterion for binary logistic 

regression analysis. BMC Med Res Methodol 2016;16:163. 

https://doi.org/10.1186/s12874-016-0267-3. 

[134] van Smeden M, Moons KG, de Groot JA, Collins GS, Altman DG, Eijkemans MJ, et 

al. Sample size for binary logistic prediction models: Beyond events per variable 

criteria. Stat Methods Med Res 2019;28:2455–74. 

https://doi.org/10.1177/0962280218784726. 

[135] Riley RD, Snell KI, Ensor J, Burke DL, Harrell Jr FE, Moons KG, et al. Minimum 

sample size for developing a multivariable prediction model: PART II - binary and time-

to-event outcomes. Stat Med 2019;38:1276–96. https://doi.org/10.1002/sim.7992. 

[136] Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external 

validation of a multivariable prognostic model: a resampling study: Sample size 

considerations for validating a prognostic model. Stat Med 2016;35:214–26. 

https://doi.org/10.1002/sim.6787. 

[137] Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A 

calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin 

Epidemiol 2016;74:167–76. https://doi.org/10.1016/j.jclinepi.2015.12.005. 

[138] Riley RD, Ensor J, Snell KIE, Debray TPA, Altman DG, Moons KGM, et al. External 

validation of clinical prediction models using big datasets from e-health records or IPD 

meta-analysis: opportunities and challenges. BMJ 2016:i3140. 

https://doi.org/10.1136/bmj.i3140. 

[139] Evin C, Quéro L, Le Malicot K, Blanchet-Deverly S, François E, Buchalet C, et al. 

MO-0226 Clinical outcomes of HIV-positive patients with anal cancer in the ANABASE 

multicentric cohort. Radiother Oncol 2022;170:S185–6. https://doi.org/10.1016/S0167-

8140(22)02328-3. 

[140] Vendrely V, Lemanski C, Pommier P, Le Malicot K, Francois E, Rivin Del Campo E, 

et al. OC-0270 Final results of the French national cohort ANABASE: treatment and 

outcome in anal cancer. Radiother Oncol 2022;170:S226–7. 

https://doi.org/10.1016/S0167-8140(22)02528-2. 

[141] Caravatta L, Mantello G, Valvo F, Franco P, Gasparini L, Rosa C, et al. Radiotherapy 

with Intensity-Modulated (IMRT) Techniques in the Treatment of Anal Carcinoma 

(RAINSTORM): A Multicenter Study on Behalf of AIRO (Italian Association of 

Radiotherapy and Clinical Oncology) Gastrointestinal Study Group. Cancers 

2021;13:1902. https://doi.org/10.3390/cancers13081902. 

[142] IMACC Faculty. The First International Multidisciplinary Anal Cancer Conference 

2021. https://events.au.dk/imacc2021/conference (accessed November 7, 2022). 



 

 
 

 

56 

[143] Skripcak T, Belka C, Bosch W, Brink C, Brunner T, Budach V, et al. Creating a data 

exchange strategy for radiotherapy research: Towards federated databases and 

anonymised public datasets. Radiother Oncol 2014;113:303–9. 

https://doi.org/10.1016/j.radonc.2014.10.001. 

[144] Cavallaro F, Lugg-Widger F, Cannings-John R, Harron K. Reducing barriers to data 

access for research in the public interest—lessons from covid-19. BMJ Opin 2022. 

https://blogs.bmj.com/bmj/2020/07/06/reducing-barriers-to-data-access-for-research-

in-the-public-interest-lessons-from-covid-19/ (accessed November 8, 2022). 

[145] Ford E, Boyd A, Bowles JKF, Havard A, Aldridge RW, Curcin V, et al. Our data, our 

society, our health: A vision for inclusive and transparent health data science in the 

United Kingdom and beyond. Learn Health Syst 2019;3. 

https://doi.org/10.1002/lrh2.10191. 

[146] Mourby MJ, Doidge J, Jones KH, Aidinlis S, Smith H, Bell J, et al. Health Data 

Linkage for UK Public Interest Research: Key Obstacles and Solutions. Int J Popul 

Data Sci 2019;4:1093. https://doi.org/10.23889/ijpds.v4i1.1093. 

[147] Kirienko M, Sollini M, Ninatti G, Loiacono D, Giacomello E, Gozzi N, et al. Distributed 

learning: a reliable privacy-preserving strategy to change multicenter collaborations 

using AI. Eur J Nucl Med Mol Imaging 2021;48:3791–804. 

https://doi.org/10.1007/s00259-021-05339-7. 

[148] Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RTH, Jochems A, et al. 

Systematic Review of Privacy-Preserving Distributed Machine Learning From 

Federated Databases in Health Care. JCO Clin Cancer Inform 2020:184–200. 

https://doi.org/10.1200/CCI.19.00047. 

[149] Deist TM, Jochems A, van Soest J, Nalbantov G, Oberije C, Walsh S, et al. 

Infrastructure and distributed learning methodology for privacy-preserving multi-centric 

rapid learning health care: euroCAT. Clin Transl Radiat Oncol 2017;4:24–31. 

https://doi.org/10.1016/j.ctro.2016.12.004. 

[150] Lu C-L, Wang S, Ji Z, Wu Y, Xiong L, Jiang X, et al. WebDISCO: a web service for 

distributed cox model learning without patient-level data sharing. J Am Med Inform 

Assoc JAMIA 2015;22:1212–9. https://doi.org/10.1093/jamia/ocv083. 

[151] Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A 

Survey on Distributed Machine Learning. ACM Comput Surv 2021;53:1–33. 

https://doi.org/10.1145/3377454. 

[152] Vepakomma P, Gupta O, Swedish T, Raskar R. Split learning for health: Distributed 

deep learning without sharing raw patient data 2018. 

https://doi.org/10.48550/ARXIV.1812.00564. 

[153] Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated 

Learning: Strategies for Improving Communication Efficiency. ArXiv161005492 Cs 

2017. 

[154] Kayaalp M. Modes of De-identification. AMIA Annu Symp Proc AMIA Symp 

2017;2017:1044–50. 

[155] Pinkas B. Cryptographic techniques for privacy-preserving data mining. ACM 

SIGKDD Explor Newsl 2002;4:12–9. https://doi.org/10.1145/772862.772865. 

[156] Froelicher D, Troncoso-Pastoriza JR, Pyrgelis A, Sav S, Sousa JS, Bossuat J-P, et 

al. Scalable Privacy-Preserving Distributed Learning 2020. 

https://doi.org/10.48550/ARXIV.2005.09532. 



 

 
 

 

57 

[157] Jayaraman B, Wang L, Evans D, Gu Q. Distributed Learning without Distress: 

Privacy-Preserving Empirical Risk Minimization. In: Bengio S, Wallach H, Larochelle 

H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Adv. Neural Inf. Process. Syst., 

vol. 31, Curran Associates, Inc.; 2018. 

[158] Chamikara MAP, Bertok P, Khalil I, Liu D, Camtepe S. Privacy preserving distributed 

machine learning with federated learning. Comput Commun 2021;171:112–25. 

https://doi.org/10.1016/j.comcom.2021.02.014. 

[159] Brink C, Hansen CR, Field M, Price G, Thwaites D, Sarup N, et al. Distributed 

learning optimisation of Cox models can leak patient data: Risks and solutions 2022. 

[160] Huth M, Gusinow R, Contento L, Tacconelli E, Hasenauer J. Accessibility of 

covariance information creates vulnerability in Federated Learning frameworks. 

Bioinformatics; 2022. https://doi.org/10.1101/2022.10.09.511497. 

[161] Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. 

The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 

2016;3:160018. https://doi.org/10.1038/sdata.2016.18. 

[162] Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn C, et 

al. Distributed learning on 20 000+ lung cancer patients – The Personal Health Train. 

Radiother Oncol 2020;144:189–200. https://doi.org/10.1016/j.radonc.2019.11.019. 

[163] Sioutos N, Coronado S de, Haber MW, Hartel FW, Shaiu W-L, Wright LW. NCI 

Thesaurus: A semantic model integrating cancer-related clinical and molecular 

information. J Biomed Inform 2007;40:30–43. 

https://doi.org/10.1016/j.jbi.2006.02.013. 

[164] Traverso A, van Soest J, Wee L, Dekker A. The radiation oncology ontology (ROO): 

Publishing linked data in radiation oncology using semantic web and ontology 

techniques. Med Phys 2018;45:e854–62. https://doi.org/10.1002/mp.12879. 

[165] National Library of Medicine. PubMed.gov search: “distributed learning” or 

“federated learning.” PubMedGov n.d. 

https://pubmed.ncbi.nlm.nih.gov/?term=%28distributed+learning%29+OR+%28feder

ated+learning%29&sort= (accessed November 9, 2022). 

[166] Duan R, Boland MR, Liu Z, Liu Y, Chang HH, Xu H, et al. Learning from electronic 

health records across multiple sites: A communication-efficient and privacy-preserving 

distributed algorithm. J Am Med Inform Assoc 2020;27:376–85. 

https://doi.org/10.1093/jamia/ocz199. 

[167] Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis ICh, Shi W. Federated 

learning of predictive models from federated Electronic Health Records. Int J Med Inf 

2018;112:59–67. https://doi.org/10.1016/j.ijmedinf.2018.01.007. 

[168] Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and 

federated machine learning in medical imaging. Nat Mach Intell 2020;2:305–11. 

https://doi.org/10.1038/s42256-020-0186-1. 

[169] Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, et al. Distributed deep 

learning networks among institutions for medical imaging. J Am Med Inform Assoc 

2018;25:945–54. https://doi.org/10.1093/jamia/ocy017. 

[170] Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Španiel F, et al. Multi-center 

machine learning in imaging psychiatry: A meta-model approach. NeuroImage 

2017;155:10–24. https://doi.org/10.1016/j.neuroimage.2017.03.027. 



 

 
 

 

58 

[171] Constable SD, Tang Y, Wang S, Jiang X, Chapin S. Privacy-preserving GWAS 

analysis on federated genomic datasets. BMC Med Inform Decis Mak 2015;15:S2. 

https://doi.org/10.1186/1472-6947-15-S5-S2. 

[172] Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CML, et al. ‘Rapid 

Learning health care in oncology’ – An approach towards decision support systems 

enabling customised radiotherapy’. Radiother Oncol 2013;109:159–64. 

https://doi.org/10.1016/j.radonc.2013.07.007. 

[173] Jochems A, Deist TM, El Naqa I, Kessler M, Mayo C, Reeves J, et al. Developing 

and Validating a Survival Prediction Model for NSCLC Patients Through Distributed 

Learning Across 3 Countries. Int J Radiat Oncol 2017;99:344–52. 

https://doi.org/10.1016/j.ijrobp.2017.04.021. 

[174] Jochems A, Deist TM, van Soest J, Eble M, Bulens P, Coucke P, et al. Distributed 

learning: Developing a predictive model based on data from multiple hospitals without 

data leaving the hospital – A real life proof of concept. Radiother Oncol 2016;121:459–

67. https://doi.org/10.1016/j.radonc.2016.10.002. 

[175] Lambin P, Zindler J, Vanneste BGL, De Voorde LV, Eekers D, Compter I, et al. 

Decision support systems for personalized and participative radiation oncology. Adv 

Drug Deliv Rev 2017;109:131–53. https://doi.org/10.1016/j.addr.2016.01.006. 

[176] Shi Z, Zhovannik I, Traverso A, Dankers FJWM, Deist TM, Kalendralis P, et al. 

Distributed radiomics as a signature validation study using the Personal Health Train 

infrastructure. Sci Data 2019;6:218. https://doi.org/10.1038/s41597-019-0241-0. 

[177] Radiomics. Radiomics Insight-based decision making 2022. https://radiomics.bio 

(accessed November 9, 2022). 

[178] Czeizler E, Wiessler W, Koester T, Hakala M, Basiri S, Jordan P, et al. Using 

federated data sources and Varian Learning Portal framework to train a neural network 

model for automatic organ segmentation. Phys Med 2020;72:39–45. 

https://doi.org/10.1016/j.ejmp.2020.03.011. 

[179] Powell K. NVIDIA Clara Platform to Usher in Next Wave of Medical Instruments. 

Clara Dram Boost Capab Leg Instrum Setting Future AI Med Devices 2018. 

https://blogs.nvidia.com/blog/2018/09/12/nvidia-clara-platform/ (accessed November 

9, 2022). 

[180] Mandl KD, Glauser T, Krantz ID, Avillach P, Bartels A, Beggs AH, et al. The 

Genomics Research and Innovation Network: creating an interoperable, federated, 

genomics learning system. Genet Med 2020;22:371–80. 

https://doi.org/10.1038/s41436-019-0646-3. 

[181] Moncada-Torres A, Martin F, Sieswerda M, Van Soest J, Geleijnse G. VANTAGE6: 

an open source priVAcy preserviNg federaTed leArninG infrastructurE for Secure 

Insight eXchange. AMIA Annu Symp Proc AMIA Symp 2020;2020:870–7. 

[182] IKNL. Distributed Cox regression algorithm 2019. 

[183] Theophanous S, Samuel R, Lilley J, Henry A, Sebag-Montefiore D, Gilbert A, et al. 

Prognostic factors for patients with anal cancer treated with conformal radiotherapy—

a systematic review. BMC Cancer 2022;22:607. https://doi.org/10.1186/s12885-022-

09729-4. 

[184] Theophanous S, Choudhury A, Lønne P-I, Samuel R, Guren MG, Berbee M, et al. 

Predicting outcomes in anal cancer patients using multi-centre data and distributed 



 

 
 

 

59 

learning – A proof-of-concept study. Radiother Oncol 2021;159:183–9. 

https://doi.org/10.1016/j.radonc.2021.03.013. 

[185] Theophanous S, Lønne P-I, Choudhury A, Berbee M, Dekker A, Dennis K, et al. 

Development and validation of prognostic models for anal cancer outcomes using 

distributed learning: protocol for the international multi-centre atomCAT2 study. Diagn 

Progn Res 2022;6:14. https://doi.org/10.1186/s41512-022-00128-8. 

 

 
  



 

 
 

 

60 

Chapter 2 - Development of a comprehensive institutional anal 

cancer data warehouse for real-world data analysis 

 

2.1 Abstract 

2.1.1 Introduction 

Analysis of routine patient data generated from clinical practice can support the 

continuous development and improvement of clinical practice. However, these data are 

commonly stored in multiple systems/databases without seamless interoperability. 

Information Governance and data regulatory policies are a potential barrier to accessing 

data for research purposes. This highlights the need for cancer data warehouses which 

integrate heterogeneous data from multiple sources, with well-specified data 

dictionaries and clear processes for data quality assurance and cleaning. In this study, 

we aimed to develop a comprehensive data warehouse of patients treated at Leeds 

Cancer Centre, using anal cancer as an exemplar. 

 

2.1.2 Materials and methods 

The data warehouse development process encompassed the identification of relevant 

data items and their respective data sources. A combination of automatic and manual 

data extraction was employed, with considerable quality assessment of initial data 

extraction as part of the data warehouse development. A process for data de-

identification was implemented to facilitate access to clinicians and researchers on an 

ongoing basis for research and audit purposes. Further maintenance and data updating 

was designed to be as automated as possible.  

 

2.1.3 Results 

Retrospective data from 568 patients treated with radiotherapy for anal cancer in LCC 

between January 2013 and September 2022 were collected. The data warehouse 

consists of 194 anal cancer-related data items, which were defined in a comprehensive 

data dictionary. Automatically extracted data items were evaluated to be of high quality, 

although the quality of manually collected data items requires further improvement. 
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2.1.4 Conclusion 

Authorised local researchers and clinicians can now access the available high quality, 

de-identified data, which are ready for analysis in future research studies. Ultimately, 

the insights obtained by analysing these data may help advance future clinical 

management of patients diagnosed with anal cancer. 

 

2.2 Introduction 

The analysis of routine patient data generated from clinical practice throughout the 

cancer diagnosis, treatment, and follow-up pathway can provide cancer treatment 

centres with a number of benefits [1]. Firstly, analysing these data can yield a better 

understanding of changes in patient referral and treatment patterns. Additionally, 

routinely collected patient data can be used to learn directly from cohorts with 

characteristics that reflect the makeup of local patients. Therefore, such analyses 

provide real-world data on treatments and outcomes which do not suffer from the issues 

that are prevalent in randomised controlled trials (RCTs) [2]. Even though RCTs remain 

the gold standard for initially demonstrating the efficacy of novel interventions, they 

suffer from several weaknesses. RCTs are carried out under strict conditions, aiming to 

minimise bias and ensure that the outcome being measured is only affected by the 

intervention under investigation. However, in most cases, this does not reflect real-world 

healthcare settings, where numerous external factors influence patient outcomes during 

and after treatment [3]. Moreover, the patient population that participates in RCTs may 

not be fully representative of the overall patient population [4]. Evidence in RCTs is 

typically derived from patients that are much younger and fitter than the average patient 

[5,6]. The analysis of routinely-collected patient data can therefore be used to 

complement RCT evidence [7], particularly in cases where rare populations or under-

represented groups are being considered. 

However, routine clinical data are commonly stored in multiple different 

systems/databases without seamless interoperability. Additionally, due to the highly 

sensitive nature of these data, Information Governance (IG) and data regulatory policies 

are a potential barrier to accessing data for research purposes. While essential from a 

patient privacy perspective, such policies can introduce inefficiencies for researchers 

aiming to collect and analyse patient data.  
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Raw routine data are seldomly generated with audit and research as the main purpose. 

Consequently, routine data may need considerable pre-processing to ensure high 

quality prior to the analysis phase [8]. This is often done on a ‘per project’ basis, with 

limited consideration of future (re-)use of data; i.e. with limited thoughts to 

documentation of data providence, coding, interoperability and visibility. Many clinical 

researchers will recognise dealing with old project spreadsheets, with perplexing 

column names and coding systems, and no updates once a project is complete and an 

abstract or paper submitted. These studies may have partly overlapping cohorts and 

information, signifying duplication of effort and inefficient use of resources.  

The above challenges call for the development of cancer data warehouses which 

integrate heterogeneous data from multiple sources, with well-specified data 

dictionaries and clear processes for data quality assurance and cleaning [9]. To ensure 

safe use of data for research, such data warehouses also need appropriate governance 

processes to ensure control of data access, and technical infrastructure to support 

these. This paper describes the methodology employed to develop a cancer data 

warehouse fulfilling the above requisites, within the context of a radiotherapy data 

warehouse in Leeds Cancer Centre (LCC). We use anal cancer as an exemplar. 

Anal cancer is a rare cancer with an increasing incidence rate. it is treated with a 

combination of radiotherapy and chemotherapy [10], with three-year overall survival of 

85.6% and a three-year disease-free survival of 75.6% [11,12]. Using real-world data to 

understand patient outcomes on a local, national, and international level is particularly 

relevant in cases of rare cancer, where access to high quality data limits our ability to 

develop models with sufficient data to establish new models of care.  

The aim of this study was to develop a comprehensive data warehouse of patients with 

anal cancer treated at LCC which is updated in a process that is as automated as 

possible. By implementing this approach, we aimed to establish a methodology that can 

be reproduced across disease sites, allowing for easy and efficient utilisation of real-

world data. Here, we document the information governance arrangements, as well as 

the data collection and quality evaluation procedures, highlighting the proportion of data 

items that could be automatically extracted, and the amount of manual entry and manual 

review required to develop an institutional data warehouse. 
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2.3 Materials & Methods 

2.3.1 Ethics and governance for data collection and data warehouse 

development 

This project sits within the framework of a HRA reviewed and REC approved research 

database (called ‘LeedsCAT’); REC reference 19/YH/0300, IRAS project ID 255585. 

LeedsCAT aims to learn from every radiotherapy patient treated at LCC, by repurposing 

existing oncology databases for evaluation, audit, and research purposes. The 

LeedsCAT Governance board consists of clinicians, scientific leads, radiographers, 

scientific computing leads, an Information and Technology Security Officer, a Research 

and Innovation representative, a Patient and Public Involvement (PPI) representative 

and a project manager. All LCC proposed projects involving retrospective patient data 

analysis are considered by the Governance board. All patient data is rigorously de-

identified at the earliest opportunity and access to any patient data including de-

identified data is strictly controlled with only named individuals having access. The data 

storage is split up into four tiers where data access is allowed to clinical staff, LCC 

research staff, LCC non-research staff and distributed learning, respectively. For this 

specific work on anal cancer, approval was obtained from the LeedsCAT Governance 

board (See Appendix D for the LeedsCAT letter of approval). 

 

2.3.2 Identification of relevant data items and data sources 

The initial phase of the data warehouse development involved identifying and defining 

relevant data items. This process was carried out by a team of researchers, medical 

physicists, and clinical oncologists to ensure all data items that might be useful in future 

research are included in the data warehouse. In order to reach consensus, the current 

literature on anal cancer was explored to identify data items that are commonly analysed 

[13]. Additional data items were added, including items that were analysed in previous 

anal cancer studies conducted at LCC, as well as items deemed relevant according to 

the clinical expertise of the involved clinical oncologists, and according to the results of 

the core outcome set for clinical trials of chemoradiotherapy interventions for anal 

cancer (CORMAC) consensus [14]. 

Upon identifying all relevant data items, the most appropriate data sources were 

pinpointed. There were four main data sources: Patient Pathway Manager (PPM), 

Monaco (Elekta AB), MOSAIQ (Elekta AB), and ChemoCare. PPM is LCCs electronic 
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health record [15]. It includes personal and baseline clinical data, histopathology 

reports, and general clinical notes, as well as summary radiotherapy, chemotherapy, 

and surgery-related data. Clinical notes often include important free-text information on 

the patient’s diagnosis, multidisciplinary team meeting discussions, and outcome data. 

Monaco [16] is a treatment planning system developed by Elekta, which is used to 

generate radiotherapy plans, and can be used to carry out tasks such as treatment 

volume delineation and plan optimisation. MOSAIQ [17], which is a radiation oncology 

information system also developed by Elekta, is used to manage radiotherapy booking 

and scheduling. Moreover, MOSAIQ aids with the communication and control of the 

linear accelerators that are used to deliver radiation to patients. Specifically, it links the 

patient’s radiotherapy treatment plan to the linear accelerator. MOSAIQ can record and 

verify, as well as store radiotherapy-specific notes. Lastly, ChemoCare [18] is the clinical 

system used at LTHT to schedule chemotherapy treatments and manage 

chemotherapy prescriptions. Through ChemoCare, administered dosages and patient 

appointments are tracked and recorded, in order to facilitate communication between 

oncologists, pharmacists, and nurses. 

A plan was devised detailing how to collect data for each item. Data collection for each 

item depended on which database or clinical system the data item could be sourced 

from, and in which form it was originally stored in. Data items were classified into three 

main categories: (1) data items to be primarily automatically extracted from their source, 

(2) data items to be primarily manually collected from their source, and (3) data items 

to be automatically calculated from other data items. A selected list of data items that 

were automatically extracted from their source were also manually reviewed by a 

researcher or a clinician to ensure accuracy and high quality (see Data Quality 

Evaluation section).  

 

2.3.3 Data dictionary and structure of the data warehouse 

The next phase entailed the generation of a data dictionary (Appendix E). For each data 

item, the data dictionary specified the data type, the data length, whether null values 

were allowed or not, as well as a short description defining the data item. Additionally, 

for numerical data items, the units of measurement were specified (SI units were used 

where possible). The coding system devised for all categorical data items was also 

denoted where relevant. The data dictionary indicated where each data item was 
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sourced and how the data could be collected (automatically extracted, manually 

collected, automatically calculated, or via a combination of automatic extraction and 

manual review). Finally, the data quality score (discussed below) of each data item was 

included, along with a justification. 

The data warehouse structure consisted of multiple inter-linked tables. The first table 

included all identifiable patient data, such as name, surname, and all dates, including 

date of birth, date of diagnosis (defined as the date that the radiotherapy treatment 

referral form was added to MOSAIQ), and date of start of radiotherapy. A unique, 

project-specific identification number (ID) was assigned to each patient, which was then 

used in all other tables. All other tables included de-identified patient data only, as 

indicated in Table 2-1. All dates were converted to number of days after the start of 

radiotherapy. Lastly, a link table was created with the aim of linking together all tables 

that used different ID numbers. A visual representation of the data warehouse 

architecture is provided in Figure 2-1. 

 
Table 2-1. Structure of the Leeds anal cancer data warehouse. MEPP signifies tables 

that can include multiple entries per patient. 

Table Data included Specific examples of data items 

A All identifiable patient data Patient name, surname, date of birth, date of 

death (if relevant), date of diagnosis, date of 

first radiotherapy fraction. 

B Demographics, pre-existing 

comorbidities, diagnostic 

data, follow-up data 

Age, baseline TNM staging, baseline 

performance status, tumour histology, data on 

treatment response, outcome data (survival, 

locoregional control, freedom from distant 

metastasis). 

C Radiotherapy data Prescribed radiotherapy dose to primary 

tumour, involved nodes and elective nodes, 

overall treatment duration, delivered 

radiotherapy doses. 

D Chemotherapy data (MEPP) Chemotherapy regimen, duration of 

chemotherapy, number of chemotherapy 

cycles, when did the patient receive 

chemotherapy. 

E Surgery data (MEPP) Type of surgery, intent, when did the patient 

receive surgery. 

F Hospital admissions (MEPP) Reason for admission, when was the patient 

admitted and discharged. 
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G Clinical trial data Which trial does/did the patient participate in, 

when was the patient recruited, outcome 

H Link table Linking all other tables together by matching 

identification numbers. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Diagram depicting the Leeds anal cancer data warehouse architecture. 

 

2.3.4 Identification of patients treated for anal cancer 

The main inclusion criterion for the data warehouse was pelvic radiotherapy for anal 

cancer. No exclusion took place according to whether patients received chemotherapy 

or not. Similarly, patients that were treated with palliative intent or who had surgery prior 

to radiotherapy were not excluded. The following strategy was used to identify patients 

treated in LCC for inclusion: firstly, the radiotherapy planning code (a code used at LCC, 

which is generated at the point of creating a radiotherapy plan) was used to search 

MOSAIQ for patients treated with radiotherapy at LCC between 2013 and 2020. The 

results of this search were filtered by the radiotherapy treatment site. Only patients with 
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radiotherapy treatment sites that included the keywords “anus” or “anal” were selected. 

A similar search was conducted using the International Classification of Diseases 10th 

revision (ICD10) diagnosis code in MOSAIQ. The same radiotherapy treatment site 

filters were applied to the results of this search as well. The two lists of identified patients 

were merged and duplicate IDs were removed. Patients that were identified in only one 

of the two searches were manually reviewed. Patient records were accessed in PPM 

by a researcher to ensure these patients were indeed diagnosed and treated for anal 

cancer. The final list only encompassed patients that received pelvic radiotherapy for 

anal cancer. A small number of patients that only received surgery and no radiotherapy 

were not identified and were therefore not included in the data warehouse. 

 

2.3.5 Data collection procedure 

The data collection procedure was divided into three phases: automatic data extraction, 

manual data collection and automatic calculation from already collected data.  

Data items that could be sourced from MOSAIQ or ChemoCare were automatically 

extracted using a series of SQL queries. The SQL queries were extensively tested and 

validated to ensure integrity and consistency in results, and were executed using 

Microsoft SQL Server Integration Services (SSIS). SSIS is an Extract Transform Load 

(ETL) tool which is widely implemented in the healthcare sector for pre-processing, 

aggregation, and integration of data from multiple databases and clinical systems. SSIS 

supports the seamless long-term maintenance and updating of the data warehouse. 

Separate ETL pipelines were developed for the tables including identifiable and de-

identified data, which utilised the SQL queries to collect data from MOSAIQ and 

ChemoCare. A number of pre-processing steps were applied within the ETL pipeline to 

clean and condition the data for ingestion into the data warehouse. As illustrated in 

Figure 2-2, these pipelines were then integrated together within SSIS to ensure that all 

the tables in the data warehouse are updated with minimal effort. 
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Figure 2-2. Schematic depicting the separate ETL pipelines developed for each table. 

 
Data items that could be sourced from PPM had to be manually collected due to access 

restrictions to the system’s backend (the backend communicates with the system and 

renders content to push to the frontend, which is accessible by end users), which were 

put in place by LCC’s IT team. Therefore, bulk data extraction from PPM was not 

possible. Additionally, data that could be sourced from the radiotherapy plans stored in 

Monaco had to be manually collected. A decision was made to limit manual data 

collection to a subset of the patients treated with IMRT/VMAT (as these would be 

included in the atomCAT studies, see Chapters 4 and 6). In PPM, patient records were 

individually accessed by a researcher (ST) and the relevant data were recorded in a 

spreadsheet. A number of data items were collected from clinic letters, multidisciplinary 

team meeting letters or clinician’s notes. These items were only available in free-text 

format (baseline TNM staging, locoregional control and freedom from distant metastasis 

data). A subset of the manually collected data were reviewed by a clinical oncologist 

(AG) to confirm high quality, and to resolve any ambiguities. Radiotherapy treatment 

plans in Monaco were accessed by ST in order to collect primary tumour gross tumour 

volume (GTV) data for patients treated with VMAT. A medical physicist (AA) helped 

resolve any ambiguities. Lastly, all manually collected data were imported into the data 

warehouse and merged with the automatically extracted data. 
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2.3.6 Missing data 

Missing data in the data warehouse were stratified into three categories: (1) “Not 

available”, referring to data with an identified source which we attempted to obtain but 

the data could not be found in the originating database or clinical system; (2) “Not 

relevant”, referring to data that were not relevant for specific patients (e.g. date of death 

for patients that were alive); and (3) “Not assessed”, referring to information which may 

exist for an individual patient but was not obtained one way or another; e.g. data whose 

source could not be identified (e.g. nuclear medicine data and HPV status), or data with 

an identified source that we did not attempt to obtain (e.g. comorbidity and treatment 

toxicity data). The data dictionary specifies how each type of missing data was coded 

for relevant data items. 

 

2.3.7 Data quality evaluation 

Data quality within the warehouse was evaluated using two approaches. The quality of 

data items was evaluated and recorded in the data dictionary. A quality score between 

0 and 10 was assigned to data items, which depended on the following criteria: (1) which 

database or clinical system the data item was sourced from, (2) how the data were 

originally recorded in the source database/clinical system (if known), (3) whether the 

data item was automatically extracted or manually collected, (4) if the data were 

automatically extracted, whether manual review was required, (5) if manual review was 

required, the rate of agreement between the automatically extracted and manually 

collected data, and (6) if there was a high rate of disagreement, the underlying reason. 

A justification for the quality score assigned to each data item was also provided in the 

data dictionary. The quality of data items that were added to the database for internal 

use (e.g. ID numbers), and of data items with missing data stratified as “Not assessed” 

(see previous section) for the majority of patients was not assessed.  

The quality of nine data items that were automatically extracted was evaluated 

quantitatively, to assess the robustness of the automatic data extraction process. This 

list of data items encompassed a range of data types (dates, categorical and numerical 

data items). For a subset of patients (n=246), data for a number of these items were 

also manually collected from a different database or clinical system for further manual 

review. For instance, the prescribed radiotherapy dose to the primary tumour was 

initially extracted from MOSAIQ automatically but was also manually collected from 
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clinical notes in PPM. The manually collected data formed the initial data quality 

evaluation dataset. In order to render this evaluation procedure more robust, the data 

quality evaluation dataset was expanded using data from four existing research anal 

cancer datasets. These datasets consisted of anal cancer data that were previously 

manually collected by clinicians (AG, AS, CJ, RS) in LCC for research purposes. The 

datasets encompassed different but overlapping cohorts of patients (n=133, 90, 289, 

76) and data items for patients treated for anal cancer between July 2008 and May 

2018. The final data quality evaluation dataset consisted of data from 476 patients. 

The data quality evaluation dataset was compared against the corresponding 

automatically extracted data. The date of diagnosis varied considerably across three of 

the existing research datasets. Therefore, the date of diagnosis comparison between 

automatically extracted and manually collected data was carried out separately for each 

dataset. The data collected for each patient via the two methods were compared to 

estimate the rate of agreement and the rate of discrepancy between the two data 

collection methods. Any discrepancies in data between the two data collection methods 

were explored further to identify the source and reasons of discrepancy, and the data 

stored in the data warehouse were updated where necessary. Lastly, additional 

columns were added to the data warehouse to signify whether the patient had been 

included in specific research cohorts. 

 

2.3.8 Updating the data warehouse with new patients 

A plan was devised with the aim of updating the data warehouse with newly diagnosed 

patients. The initial database used for development included patients treated up until 

January 2020. Thus, as a test of viability, a cohort of patients treated for anal cancer 

from January 2020 to September 2022 was added to the data warehouse. The strategy 

for identification of patients treated for anal cancer specified above was repeated using 

the following date limits: 1st January 2020 to 31st September 2022. The identified 

patient NHS IDs were used for the automatic data extraction from MOSAIQ and 

ChemoCare and for the manual collection of data from PPM and Monaco, following the 

methodology outlined above. The ETL pipelines used to update the de-identified patient 

data and chemotherapy data tables are provided as exemplars (Figures 2-3 and 2-4, 

respectively). 
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The automatically extracted data were directly added into the data warehouse. The 

manually collected data were recorded in a separate spreadsheet, which was then 

merged with the data warehouse. 

 

Figure 2-3. ETL pipeline used to update the de-identified patient data table. 

 

Figure 2-4. ETL pipeline used to update the chemotherapy table. 
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2.3.9 Technical infrastructure and data access 

The data stored in the data warehouse can be accessed via SQL Views, which provides 

an intuitive interface to end users whilst ensuring data security. This approach also 

enables end users to access data in a number of formats and interfaces. Data can be 

loaded directly into other applications, such as Microsoft Excel, SPSS, Power BI, as well 

as integrated development environments for R and Python, for further analysis. 

The data warehouse is currently hosted on a dedicated clinical oncology server which 

is based on the Microsoft SQL Server platform. The server is fully secured behind a 

firewall with strict access control in place. Access to the SQL views and the underlying 

tables is managed using Schema and Object level permissions, ensuring that only users 

with the correct level of authorisation are able to access the data.   

 

2.4 Results 

The flow of data across the various phases of the study is summarised in Figure 2-5. 

 

2.4.1 Data integrity and completeness 

The patient search yielded a list of 579 patients. Upon manually reviewing this list, a 

small number of patients were identified as false positive hits. Specifically, 2% (n=11) 

of the patients identified by the search were patients diagnosed with and treated for 

rectal cancer instead of anal cancer. These patients were removed from the data 

warehouse, yielding the final list of 568 patients treated with radiotherapy for anal cancer 

in LCC between January 2013 and September 2022. A total of 80% of these patients 

were treated with IMRT/VMAT (n=463). Figure 2-6 illustrates the number of patients 

treated per year. A median of 58 patients were treated for anal cancer in LCC each year. 

As Figure 2-6 indicates, the largest number of patients were treated in 2016 (n=69).  
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Figure 2-5. Summary of the flow of data across all phases of the study.

Patients identified from the automatic search

(n=579)

Patients excluded following the review of 

discrepancies in search results (n=11)

Patients included in the data 

warehouse (n=568)

Data quality evaluation dataset (n=476), 

consisting of combined data from:

- Manually collected data (n=246)

- Dataset 1 (n=133)

- Dataset 2 (n=289)

- Dataset 3 (n=90)

- Dataset 4 (n=76)

Patients included in the data 

quality evaluation (n=568)
Patients included in the data 

completeness evaluation for 

automatically extracted data 

items (n=568)

Patients treated with 

IMRT/VMAT (n=463)

Manual data collection 

attempted for 246 patients

Patients included in the 

atomCAT2 dataset (n=197)

Patients excluded (n=49) based on:

- Treatment with palliative intent

- Prior pelvic radiotherapy

- Participation in PLATO trial

- Missing data for essential data 

items (n=21) Patients included in the data 

completeness evaluation for 

manually collected data items 

(n=246)
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Figure 2-6. Number of patients with anal cancer treated with radiotherapy each year 

(2013-2022) at Leeds Cancer Centre. 

 
The data warehouse consists of 194 anal cancer-related data items stored in eight 

tables, excluding data items related to patient IDs and data items added for internal use. 

From these, a total of 47 data items were automatically extracted, 31 were manually 

collected, 18 were calculated from other data items (14 from automatically extracted 

and 4 from manually collected data items), and 98 were not assessed. Data items that 

were not assessed consist of data items related to comorbidity (n=53) and treatment 

toxicity (n=27), as well as nuclear medicine-related data items (n=6) and data items 

whose source could not be identified (n=12). These data items have not been fully 

extracted yet; therefore, they were not included in subsequent evaluations of data 

completeness and quality. 

The automatically extracted data items exhibit high levels of data completeness, as 

indicated in Figure 2-7. In summary, from the 47 automatically extracted data items, 43 

have complete data for more than 80% of patients, three (diagnosis site, histology, total 

number of hospital admission days) have complete data for 61-80% of patients, and 

one data item (histology grade) has complete data for only 25% of patients. No 

automatically extracted data items have missing data for more than 80% of patients. 
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Figure 2-7. Histogram summarising the results of the data completeness evaluation for 

the automatically extracted and manually collected data items. 

 
The data completeness pattern of the manually collected data items slightly differs 

(Figure 2-7). A small number of these data items have missing data for more than 80% 

of patients (n=3, 10%). The majority of manually collected data items have complete 

data for 21%-80% of patients (n=17, 55%), and 11 data items (35%) have complete 

data for 81%-100% of patients. The manually collected data items with complete data 

for more than 81% of patients are the following: originating hospital (the hospital that 

originally referred the patient to LCC), locoregional recurrence status, locoregional 

recurrence date, locoregional recurrence site, distant metastasis status (diagnosed at 

follow-up), distant metastasis date, distant metastasis site (diagnosed at follow-up), T 

stage, N stage, M stage, and primary tumour GTV. 

 

2.4.2 Data quality 

The data quality of the 96 data items that were automatically extracted, manually 

collected, and automatically calculated from other data items was evaluated. The data 

quality scores throughout all the evaluated data items range from 1 to 10, with a mean 

data quality score of 6.9. The mean quality score is 8.3 for automatically extracted data 

items, 4.6 for manually collected data items, and 7.4 for automatically calculated data 

items. The quality score distribution of all 96 data items is presented in Figure 2-8. 
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Only two data items are deemed to be of low quality with a score of 2 or less, both of 

which are manually collected data items (whether the tumour was located in the anal 

canal or in the anal margin, and whether the patient had an altered chemotherapy 

schedule, e.g. missed doses). The lowest scoring automatically collected data items 

include surgery date, surgery type and surgery intent, all of which have a quality score 

of 4. The low quality scores can be attributed to the lack of access to data about surgical 

treatment outside of Leeds Teaching Hospitals NHS Trust. The majority of data items 

have a high quality score of 7 or more (n=52, 54%), most of which are automatically 

extracted data items (n=39). Only two manually collected data items have a quality 

score of 7 or higher; primary tumour size (GTV) and originating hospital. 

Figure 2-8. Distribution of data item quality scores, stratified by the type of data 

collection/extraction method. 

 
The results from the additional evaluation of automatically extracted data are 

summarised in Table 2-2. 
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Table 2-2. Quality evaluation of automatically extracted data through comparison with manually collected data. Manually collected data were 

available from the combined data quality evaluation dataset (476 patients). The date of diagnosis varied across the research datasets that formed 

the data quality evaluation dataset and were therefore evaluated separately. Datasets 1, 2, and 3 included data from 133, 289, and 90 patients, 

respectively. DQED: Data quality evaluation dataset; N/A: Not applicable; Gy: Gray. 

Data item 
Manually 

collected data 
available in 

Available data by both 
automatic extraction and 

manual collection 

Agreement between 
automatically extracted and 

manually collected data 

Differences between 
automatic and manual 

extraction 

Date of death DQED  77 100% No differences 

Histology DQED 381 100% No differences 

Histological grade DQED 144 100% No differences 

Prescribed 
radiotherapy fractions 

DQED 330 92% 

1 fraction 7 

2 fractions 3 

3 to 5 fractions 12 

More than 5 fractions 5 

Prescribed dose to 
primary tumour 

DQED 282 84% 

Equal to or less than 1Gy 18 

Between 1.01Gy and 2Gy 4 

Between 2.01Gy and 5Gy  11 

More than 5Gy 19 

Delivered radiotherapy 
fractions 

DQED 246 95% 

1 fraction 3 

2 fractions 1 

3 to 5 fractions 7 

More than 5 fractions 2 

Delivered dose to 
primary tumour 

DQED 246 1% 

Equal to or less than 1Gy 32 

Between 1.01Gy and 2Gy 185 

Between 2.01Gy and 5Gy  7 

More than 5Gy 19 

Chemotherapy regimen DQED 119 100% No differences 

Date of diagnosis 

Dataset 1 101 0% 

Equal to or less than 7 days 4 

Between 8 and 14 days 3 

Between 15 and 28 days 53 

More than 28 days 41 

Dataset 2 150 10% 

Equal to or less than 7 days 19 

Between 8 and 14 days 31 

Between 15 and 28 days 46 

More than 28 days 39 

Dataset 3 88 1% 

Equal to or less than 7 days 11 

Between 8 and 14 days 34 

Between 15 and 28 days 26 

More than 28 days 16 
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Overall, the automatically extracted data and the manually collected data in the data 

quality evaluation dataset are in perfect agreement for all three categorical data items 

(histology, histological grade, and chemotherapy regimen). The same applies for the 

date of death. For the number of prescribed fractions and the number of delivered 

fractions, there is a high rate of agreement between the two data collection methods 

(92% and 95%, respectively). For the date of diagnosis, low rates of agreement are 

observed between the automatically extracted data and the manually collected data in 

Dataset 1 (0%), Dataset 2 (10%) and Dataset 3 (0%). For the disagreements observed 

between automatically extracted and manually collected data through the comparison 

with all three datasets (n=323), diagnosis dates differ by less than 8 days in 11% of 

cases, between 8 and 28 days in 59% of cases, and by more than 28 days in 30% of 

cases. High rates of disagreement between each of the three research datasets are 

also prevalent, highlighting the issue of non-uniform definitions of date of diagnosis used 

across datasets. This will be discussed further later in this chapter. Low rates of 

agreement between the two data collection methods are also observed for the 

prescribed and delivered dose to primary tumour. Where the differences in prescribed 

and delivered dose between the automatic extraction and manual collection were large 

(more than 2Gy), the patient records in MOSAIQ were individually accessed by a 

researcher (ST) to determine whether the automatic extraction yielded incorrect data. 

The automatic extraction was incorrect in 15 cases for the prescribed dose and only 5 

cases for the delivered dose. These errors were found in patients who had a replan, 

irrespective of the radiotherapy technique used. In these cases, the replan was not 

captured by the automatic extraction, and therefore the replanned prescribed and 

delivered doses were missing altogether. Only the doses from the original plan were 

registered. The data warehouse was updated following the manual review. 

 

2.4.3 Data extraction for use in the atomCAT2 study 

Data from the data warehouse were extracted for use in the atomCAT2 international 

multicentre study, which aims to develop prediction models for anal cancer outcomes 

through distributed learning [19]. The data warehouse was firstly filtered to identify 

patients treated with VMAT for primary anal cancer, for which manual data collection 

was attempted (n=246). Patients treated with palliative intent, patients who had prior 

pelvic radiotherapy or who were participants in the PLATO trial [20] were excluded 

(n=28). A further 21 patients were excluded due to missing data for essential data items 
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(See Chapters 5 and 6). A final list of 197 patients with complete data for essential data 

items was identified and formed the atomCAT2 study cohort from LCC. For these 

patients, a variety of baseline patient data were extracted from the data warehouse, 

including age at the start of radiotherapy, sex, baseline TNM staging, histology, primary 

tumour GTV, prescribed primary tumour dose, radiotherapy technique used for 

treatment, and chemotherapy regimen. Moreover, overall survival, locoregional control 

and freedom from distant metastasis data were also extracted. The resulting dataset 

was analysed in combination with anal cancer data from 11 other centres, in order to 

identify key prognostic factors for the outcomes that explored (Chapter 6). The models 

that were developed will allow for the prediction of outcomes in individual patients, which 

may inform current clinical practice and subsequently aid the stratification or 

personalisation of anal cancer treatment. 

 

2.5 Discussion 

We achieved our aim of developing a comprehensive data warehouse of anal cancer 

patients treated at Leeds Cancer Centre. This framework was developed with the 

potential to be updated and modified to expand the type of data included. The data 

warehouse development process initially encompassed the identification of 194 relevant 

data items and their respective data sources in collaboration with clinicians who treat 

anal cancer. A combination of automatic and manual data extraction was employed, 

with considerable quality assessment of initial data extraction as part of the data 

warehouse development. A process for data de-identification was implemented to 

facilitate access to clinicians and researchers on an ongoing basis for research and 

audit purposes. Further maintenance and data updating was designed to be as 

automated as possible.  

Preserving patient data privacy was of utmost importance for this project. By taking 

advantage of the governance processes established in LCC through LeedsCAT, we 

ensured that only authorised individuals can access the data available in the data 

warehouse. Central to LeedsCAT is a philosophy of least needed data access, which 

was also adopted for this project. Compliance with Caldicott principles, IG and research 

governance is also embedded in the LeedsCAT approach. LeedsCAT expedites 

radiotherapy research by creating and maintaining reusable and sustainable project 

resources. By following the LeedsCAT principles, we aimed to support research activity 
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at LCC that not only results in the improvement of clinical practice, but also promotes 

the improvement of clinical data quality at the source, thus improving the data quality 

for both future clinical practice and future research.  

Numerous challenges arose throughout the data warehouse development and updating 

process. To begin with, agreeing on the relevant data items and subsequently 

documenting them effectively was a complex iterative task that required input from a 

multidisciplinary team. Notably, research projects that utilise retrospective patient data 

often overlook the importance of fully defining relevant data items that are analysed 

[21,22]. This is one aspect in which RCTs excel at and that we aimed to address within 

this project. Many data items included in the warehouse, including TNM staging, are 

dynamic and may be updated multiple times when additional diagnostic procedures 

(e.g. additional imaging) are undertaken. For such data items, a robust definition had to 

be pre-specified in the data dictionary to ensure that data collection across patients is 

consistent. For the purpose of the data warehouse, the baseline TNM staging was 

defined as the final staging at the point of radiotherapy initiation. For all patients, 

baseline TNM staging data were manually collected from the last clinic letter before the 

beginning of radiotherapy. Upon generating a comprehensive data dictionary, the 

identification of data sources posed a significant challenge for a range of data items. 

For instance, the more accurate baseline TNM staging and outcome data were found in 

free-text form within clinic letters (PPM). While TNM staging is documented in PPM, the 

coded staging is often inaccurate, as is it is not systematically updated once the final 

diagnostic imaging is reviewed. For response assessment outcome data, this 

information may only be found in free-text imaging reports or summarised within clinic 

letters, and therefore cannot be readily extracted in an automatic fashion. This renders 

the continuous updating of the data warehouse for existing and new patients difficult, 

unless additional structures are introduced to ensure consistent recording in a single 

clinical system.  

Despite the comprehensive data dictionary and data warehouse developed, there are 

several limitations. Firstly, the patient identification procedure leads to a small 

percentage of false positive hits. These most likely result from miscoding of the 

radiotherapy treatment site during manual data entry. In order to detect these false 

positive hits, a manual review of the patient list generated by the search may need to 

be undertaken. This can be carried out during the manual data collection, since 

accessing patient records can confirm whether the patient was treated for anal cancer 
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or for a different cancer. However, there is no way of identifying false negative hits, as 

in, patients that were treated for anal cancer but were misclassified as being treated for 

a different type of cancer. Estimating how many patients with anal cancer were not 

classified as such would be challenging. 

In terms of the data collection process, this would ideally be carried out in a fully 

automated fashion for all data items. However, this is currently not possible. In order to 

render the automated extraction of data from patient record systems (e.g. PPM) 

possible, access to the system’s backend would be required and natural language 

processing techniques would need to be implemented to extract the data [23]. Another 

barrier to fully automating the data collection process is that, at present, the primary 

tumour GTV can only be manually collected from the radiotherapy treatment plans in 

Monaco. To address this, scripting could be employed to handle the automatic data 

extraction of these data from DICOM [24] treatment plan stores.  

The current version of the data warehouse does not include data for a large number of 

data items, such as comorbidity and treatment toxicity data items. These data are 

currently not consistently recorded but could potentially be manually collected from clinic 

letters in PPM. However, there are often more than 10 clinic letters available for each 

patient, and all these would need to be reviewed comprehensively to extract all relevant 

data. To automate the data collection process for these data items, complex natural 

language processing approaches would need to be employed [25]. Lastly, the HPV 

status of the majority of patients included in the data warehouse is missing, despite this 

being an important factor that is commonly analysed in anal cancer research [26–28]. 

This is due to the status not being routinely assessed in LCC at present. 

The data quality evaluation process has also identified several aspects that could be 

improved. Firstly, the date of diagnosis appears to vary considerably between the 

automatically extracted data and the manually collected data. There are also substantial 

discrepancies in diagnosis dates between the research datasets that were used to carry 

out the data quality evaluation. This highlights that the definition of this data item is 

inconsistent throughout the whole patient pathway and that currently there is no single 

standard way of defining it. Additional variation can be introduced when these data are 

manually collected by different individuals, depending on the timing of the data collection 

and where the data are sourced from. Specifically, data for the diagnosis date that were 

automatically extracted from MOSAIQ were added to the data warehouse. This date of 
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diagnosis reflects the date that the radiotherapy treatment referral form was added to 

the system and therefore it is not defined as the clinical diagnosis date. Alternative 

definitions for the diagnosis date include the date of pathological diagnosis, the date of 

MDT review, and the date of the first clinic letter, among others. As a result, the 

automatically extracted data that were included in the data warehouse are not the 

ground truth. Despite this, by automatically extracting date of diagnosis data from a 

single source, we ensured that the data item is fully standardised and consistent across 

all patients. The delivered radiotherapy dose also differs between the automatically 

extracted and manually collected data, with the majority of differences being less than 

2Gy. These small differences can be attributed to rounding errors during manual data 

collection or may be linked to MOSAIQ recording the dose in the dose specification 

point for each beam as the per-fraction dose delivered, which differs from the mean 

dose to the entire volume. This was a historical issue relating to how information about 

doses was transferred from Monaco to MOSAIQ, which has been resolved since 2020. 

Large differences between the automatically extracted and manually collected data in 

both prescribed and delivered doses (more than 2Gy) were observed in cases where 

patients had a replan or a two-phase plan that was not recorded correctly, and therefore 

not captured by the automatic extraction. All large discrepancies were manually 

reviewed to ensure that the final data added to the warehouse were correct. 

Plans have been devised with the aim of improving numerous aspects of the data 

warehouse in the future. Firstly, we are hoping to develop a pipeline that automatically 

updates the data warehouse at regular intervals. This would involve updating the 

existing patients with more up-to-date data, as well as incorporating data for newly 

diagnosed patients. In order to achieve this, the data collection methodology needs to 

be as automated as possible. Therefore, access to PPM backend needs to be obtained 

in order to be able to automatically extract data. In order to extract data items that are 

only available in free-text form, we aim to test and implement natural language 

processing algorithms. Lastly, we aim to develop an automated system that handles the 

automatic extraction of GTV values from radiotherapy treatment plans. The next step 

would be to establish a workflow to prospectively collect a core set of data for all new 

patients diagnosed with anal cancer. This would involve collaborating with the Leeds 

clinical oncology team to identify which data items are essential, and to generate an 

appropriate and user-friendly data input approach. Future work on the data warehouse 

could also involve expanding the data collection to other cancer sites and incorporating 
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more complex data which are not currently available, such as nuclear medicine data, 

patient reported outcome data, as well as radiotherapy planning and imaging data. The 

data warehouse could also be linked to other existing anal cancer research at LCC, 

including linkage to tissue and blood immune signatures and predictive biomarkers. This 

local data warehouse could also be potentially linked with national or international anal 

cancer data warehouses and registries to carry out even more robust analyses. Lastly, 

an intuitive user interface could be developed, including a customisable dashboard. This 

would allow researchers and clinicians accessing the data warehouse to quickly get a 

high-level overview of the data they need. 

In conclusion, routine data from patients treated for anal cancer in Leeds Cancer Centre 

were collected from multiple sources, using automatic data extraction and manual data 

collection approaches, and were collated into a comprehensive data warehouse. 

Researchers and clinicians at LCC can now access the available high quality, de-

identified data, which are ready for analysis in future research studies (Chapters 4 and 

6) and in local quality improvement work. Ultimately, the insights obtained by analysing 

these data may help advance clinical management of patients diagnosed with anal 

cancer in the future. 
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Chapter 3 - Prognostic factors for patients with anal cancer 

treated with conformal radiotherapy - a systematic review 

 

3.1 Abstract 

3.1.1 Aims 

Anal cancer is primarily treated using concurrent chemoradiotherapy (CRT), with 

conformal techniques such as intensity modulated radiotherapy (IMRT) and volumetric 

arc therapy (VMAT) now being the standard techniques utilised across the world. 

Despite this, there is still very limited consensus on prognostic factors for outcome 

following conformal CRT. This systematic review aims to evaluate the existing literature 

to identify prognostic factors for a variety of oncological outcomes in anal cancer, 

focusing on patients treated with curative intent using contemporary conformal 

radiotherapy techniques. 

 

3.1.2 Materials and methods 

A literature search was conducted using Medline and Embase to identify studies 

reporting on prognostic factors for survival and cancer-related outcomes after conformal 

CRT for anal cancer. The prognostic factors which were identified as significant in 

univariable and multivariable analysis, along with their respective factor effects (where 

available) were extracted. Only factors reported as prognostic in more than one study 

were included in the final results. 

 

3.1.3 Results 

The results from 19 studies were analysed. In both univariable and multivariable 

analysis, N stage, T stage, and sex were found to be the most prevalent and reliable 

clinical prognostic factors for the majority of outcomes explored. Only a few biomarkers 

have been identified as prognostic by more than one study – pre-treatment biopsy HPV 

load, as well as the presence of leukocytosis, neutrophilia and anaemia at baseline 

measurement. The results also highlight the lack of studies with large cohorts exploring 

the prognostic significance of imaging factors. 
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3.1.4 Conclusion 

Establishing a set of prognostic and potentially predictive factors for anal cancer 

outcomes can guide the risk stratification of patients, aiding the design of future clinical 

trials. Such trials will in turn provide us with greater insight into how to effectively treat 

this disease using a more personalised approach.  

 

3.2 Background 

First reported in 1974 by Nigro et al. [1] and established by two phase III trials [2, 3], 

concurrent chemoradiotherapy (CRT) is the current standard of care for localised anal 

squamous cell carcinoma (ASCC). The introduction of three-dimensional conformal 

radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and latterly volumetric 

arc therapy (VMAT) [4] has allowed for substantial reduction in dose to pelvic organs at 

risk (OAR) and associated toxicity, with far fewer unplanned treatment breaks as a 

result. The current UK standard for anal cancer comprises of IMRT/VMAT and 

concurrent chemotherapy with 5-fluorouracil (5-FU) or capecitabine and mitomycin C 

(MMC), with surgery reserved as salvage treatment [5]. 

Anal cancer is a rare cancer, and only a handful of late phase clinical trials have been 

conducted over the last four decades [2, 3, 6–9]. Other than the single arm phase II 

RTOG 0529 [10] trial, these trials were conducted prior to widespread adoption of 

conformal radiotherapy techniques, such as 3D-CRT or IMRT/VMAT. Similarly, much 

of the published literature on prognostic factors in anal cancer consists of retrospective 

series, often small cohorts [11, 12] or cohorts of patients treated with older techniques 

[13, 14]. No systematic review of studies identifying prognostic factors after treatment 

with conformal radiotherapy has previously been conducted. 

Despite advances in radiotherapy planning and delivery, locoregional control remains 

challenging, and patients usually fail locoregionally before getting metastatic disease. A 

UK multi-centre retrospective review by Shakir et al. [15] analysed 385 anal cancer 

patients treated with contemporary radiotherapy techniques, and demonstrated a 85.6% 

three-year overall survival. Initial complete clinical response rates were high at 86.7%, 

but over time 24.4% of patients relapsed, with the majority of relapses (83.4%) being 

local.  
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Establishing risk factors for oncological outcomes, in particular locoregional control 

following conformal chemoradiotherapy, could help optimise future treatment strategies 

and aid in the design and analysis of new clinical trials [16]. A consensus on prognostic 

factors could inform research by determining specific patient risk groups and the 

development of personalised treatment approaches, tailored to individual patient 

characteristics [17], and/or the introduction of novel agent combinations. This 

systematic review evaluates the literature to identify prognostic factors for a variety of 

disease-related outcomes in anal cancer, focusing on patients treated with curative 

intent using conformal radiotherapy techniques and contemporary treatment schedules. 

 

3.3 Methods 

A systematic review was undertaken according to PRISMA 2020 [18]. A comprehensive 

literature search was conducted using the Medline and Embase databases, to identify 

studies reporting on prognostic factors for survival and cancer-related outcomes after 

conformal chemoradiotherapy for anal cancer. The search terms included ‘radiotherapy’ 

AND ‘anal cancer’ AND ‘prognostic factor’, as well as related terms (see Supplementary 

material A - Section 3.8.1, for the full search strategies). Only studies published after 

1st January 2000 and up to and including 30th June 2020 were considered. An initial 

scoping search showed that no studies conducted prior to 2000 had a majority of 

patients treated using conformal techniques.  

Studies were included if they: (1) comprised of at least 70% of patients treated with 

solely conformal radiotherapy techniques (3D-defined targets on CT, beams conformed 

to targets e.g. using multileaf collimators, 3D dose calculation and dose distribution 

optimisation), (2) reported survival or disease-related outcomes and (3) examined 

prognostic factors for outcomes using univariable (UVA) or multivariable (MVA) 

analysis. Studies were excluded if (1) patients were treated with 2D radiotherapy 

techniques and/or fields based solely on bony landmarks, if (2) cohorts included less 

than 100 patients or (3) were derived from population-level databases, or if (4) treatment 

with palliative intent. The cut-off of 100 patients was chosen to ensure that the 

prognostic factors identified are generalisable and to decrease the likelihood of 

identifying spurious prognostic factors from studies that suffer from small sample size 

bias. All (5) meta-analysis studies, reviews, animal model studies, conference 

abstracts/letters and studies without English translation were also excluded. 
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Two independent reviewers (ST and RS) screened and reviewed all relevant articles. A 

third independent reviewer (AA) assisted in reconciling differences in cases of 

disagreement. One reviewer (ST) extracted and analysed data from all relevant articles, 

including: study location, publication year, study design, source of participants, 

participant selection criteria, number of patients included, treatment period, 

radiotherapy technique administered, radiotherapy schedule, chemotherapy regimen, 

follow-up procedure, core clinical/patient characteristics, outcomes reported/definitions, 

statistical analysis used, prognostic variables tested, prognostic variables identified as 

significant and corresponding effect estimates. An independent reviewer (RS) repeated 

the data extraction from a subset (20%) of all relevant articles to ensure that the data 

extraction process was reproducible. The methodological quality of all relevant articles 

was assessed independently by two reviewers (ST, RS) using the National Institutes of 

Health (NIH) Quality Assessment Tool for Case Series Studies [19]. Any disagreements 

were reviewed independently by a third reviewer (AA) to achieve consensus. 

Reported outcomes and outcome definitions were extracted from each study and 

stratified into nine categories for further analysis. Disease activity and survival outcomes 

were firstly grouped according to the CORMAC review [20], which was used as the initial 

reporting framework for outcome stratification. Additional categories were inductively 

derived after the data extraction process.  

For each study, factors analysed for their prognostic impact were extracted, whether 

they were shown to have a significant relationship with outcome, and the statistical 

method used for analysis. The factors were grouped into three broader categories: 

clinical factors, biomarkers and imaging factors. The total number of times a factor was 

tested in UVA for each of the nine outcomes was counted across all studies. Where 

factors tested were not reported explicitly, it was assumed that all reported patient 

characteristics were tested. Prognostic factors which were identified as significant in 

each study, along with their respective factor effect in the form of hazard ratios (HRs) 

were extracted (where available), and the proportion of times each factor was identified 

as prognostic for each outcome was calculated. Since the majority of studies did not 

report which factors were tested in MVA for each distinct outcome, the total number of 

times each factor was tested could not be counted. Therefore, only the prognostic 

factors and their respective factor effects were extracted. Only factors reported as 

prognostic in more than one study were included in the final results. 
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3.4 Results 

3.4.1 Literature search 

1567 studies published between 1st January 2000 and 30th June 2020 were identified, 

404 of which were duplicates. Titles and abstracts of 1163 unique studies were 

screened. 1021 were excluded and the final 142 studies assessed for eligibility, of which 

123 were excluded after reviewing the full text. 48 studies employed non-conformal 

radiotherapy techniques in more than 30% of patients. Other main factors for exclusion 

were sample size less than 100 (n=29) and incomplete reporting on the radiotherapy 

technique (n=21). Ultimately, 19 studies [15, 21–38] were included in this literature 

review (Figure 3-1). 

 

 
Figure 3-1. PRISMA flow diagram depicting the number of studies that were identified, 

included and excluded, and the reasons for exclusion. 

 

3.4.2 Study characteristics 

Included studies were retrospective case series (n=19), either single institutional (n=10) 

or multi-institutional (n=9). Patients were treated between 1989-2018 with median 

follow-up range of 14.9-70.0 months. The most common radiotherapy techniques 
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employed were a combination of 3D-CRT and IMRT/VMAT (n=9), followed by IMRT 

only (n=6). Dose ranged from 45Gy/25 fractions to 63Gy/35 fractions and chemotherapy 

regimens were mainly MMC and 5-FU based, with three studies including the option of 

cisplatin. Statistical techniques for UVA were log-rank tests (n=12) and univariable Cox 

regression (n=9), with four studies using both. Multivariable Cox regression was applied 

for MVA in all but one study, which used logistic regression instead. Regarding quality, 

16 were deemed good and three deemed fair (Supplementary material B, Section 

3.8.2). A short follow-up (of less than 36 months, as used for the primary endpoint in 

the PLATO trial [17]) was a common issue in eight studies. Due to the lack of universal 

reporting of effect sizes for prognostic factors, it was not possible to carry out a meta-

analysis on the data. Table 3-1 presents the main characteristics for all included studies 

(Supplementary material C, Section 3.8.3, presents a more detailed version including 

information on cancer subtype and location in the included cohorts, TNM staging version 

used and all predictors tested). 

 

3.4.3 Outcomes 

Outcome definitions varied considerably. Supplementary material D, Section 3.8.4 

presents the definitions extracted from each study and how they were categorised. Nine 

outcome categories were used: three disease activity (freedom-from-disease, 

locoregional failure (LRF) and distant failure) as well as six survival categories (overall 

survival (OS), disease-free survival (DFS), colostomy-free survival (CFS), cancer-

specific survival, local failure-free survival and metastasis-free survival (MFS)). 

Disease-free survival and progression-free survival were grouped together, as 

definitions overlapped in most papers. Local and regional failures were grouped with 

locoregional failures, due to the small number of studies reporting only on the latter. 

Freedom-from-disease, a category which was not included in CORMAC, was devised 

in order to include definitions of time-to-recurrence, time-to-failure (not specified as 

local, regional or distant) and disease-free survival where death was not considered an 

event. Commonly investigated outcomes were OS (n=17), LRF (n=11) and DFS (n=11). 

Supplementary material E, Section 3.8.5 lists all outcomes reported, along with all 

factors tested.
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Table 3-1. Overview of study characteristics, including treatment techniques and regimens. * used to differentiate between two studies by 

the same author published in the same year. MC: multi-centre. SC: single-centre. EU: Europe. NA: North America. IN: International. NR: not reported. 

Gy: Gray. MMC: mitomycin C. Cap: capecitabine. 5-FU: 5-fluorouracil. Cisp: cisplatin. UV: univariable. BV: bivariable. MV: multivariable. Cox: Cox 

regression. Log-rank: log-rank statistical test.  

# Study Location 

Number 

of 

patients 

Years of 

treatment 

Radiotherapy 

technique 
Radiotherapy regimen Chemotherapy regimen 

Median 

follow-up 

(months) 

Type of statistical 

analysis used 
Quality 

1 
Shakir et al. (2020) 

[15] 
MC, EU 385 2013-2018 IMRT 

50.4Gy/28 fractions for T1/2N0, 

53.2Gy/28 fractions for T1/2N+ or 

T3/4Nany 

MMC and Cap or 5-FU 24.0 UV Cox, MV Cox Good 

2 
Martin et al. (2020) 

[21] 
SC, EU 223 1996-2017 

3D-CRT (58%) 

IMRT (42%) 

50–50.4Gy in 1.8–2Gy/fraction, 

boost of 5.4–9 Gy 
5-FU and MMC or Cisp 46.0 UV Cox, MV Cox Good 

3 
de Bellefon et al. (2020) 

[22] 
SC, EU 193 2005-2017 IMRT 

45Gy in 1.8Gy/fraction, boost of 

14.4–20Gy (1.8–2 Gy/fraction) 
5-FU and MMC 70.0 UV Cox, MV Cox Good 

4 
Brown et al. (2019) 

[23] 
SC, EU 189 2008-2016 

2D/ 3D-CRT (79%) 

VMAT (21%) 
49.6Gy in 1.8Gy/fraction 5-FU and MMC 35.1 MV logistic Good 

5 
Rouard et al. (2019) 

[24] 
MC, EU 165 2006-2016 IMRT 

45–50Gy in 1.8 or 2Gy/fraction, 

boost of 15–20 Gy 
5-FU and MMC 33.8 BV Cox, MV Cox Good 

6 
Franco et al. (2018) 

[25] 
MC, EU 161 NR IMRT 50–50.4Gy in 1.8–2Gy/fraction 5-FU and MMC 27.0 

Log-rank, UV Cox, 

MV Cox 
Good 

7 
Call et al. (2016) 

[26] 
MC, NA 152 NR IMRT 51.25Gy/28 fractions 

5-FU and MMC (75% of 

patients) 
26.8 Log-rank, MV Cox Fair 

8 
Balermpas et al. (2017) 

[27] 
MC, EU 150 NR 

3D-CRT 

IMRT 
53.4Gy in 1.8–2Gy/fraction 5-FU and MMC 40.0 Log-rank, MV Cox Good 

9 
Rodel et al. (2018) 

[28] 
MC, EU 140 NR 

3D-CRT 

IMRT 
53.4Gy (range 46.8–64.8Gy) 5-FU and MMC 40.0 Log-rank, MV Cox Good 
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10 
Schernberg et al. (2017) 

[29] 
MC, EU 133 2000-2015 

IMRT (77%) 

3D-CRT (23%) 

49.5Gy/30 fractions (centre 1), 

45Gy/25 fractions (centre 2) 

Cisp and 5-FU or Cap / 

MMC and 5-FU or Cap 
37.4 Log-rank, MV Cox Good 

11 
Martin et al. (2019) 

[30] 
SC, EU 126 2004-2016 

IMRT (65%) 

3D-CRT (35%) 
59.4Gy in 1.8 or 2Gy/fraction 5-FU and MMC NR 

Log-rank, UV Cox, 

MV Cox 
Good 

12 
Oehler-Janne et al. (2008) 

[31] 
MC, IN 121 1997-2006 3D-CRT 52Gy-60Gy depending on centre 5-FU and MMC or Cisp 36.0 

Log-rank, UV Cox, 

MV Cox 
Good 

13 
Susko et al. (2020) 

[32] 
SC, NA 111 2005-2018 

3D-CRT 

IMRT 
55.8Gy/30 fractions 5-FU and MMC 28.0 

Log-rank, UV Cox, 

MV Cox 
Good 

14 
Cardenas et al. (2017) 

[33] 
SC, NA 110 2003-2013 

IMRT (75%) 

2D-CRT (25%) 

50.4Gy/28 fractions for T2N0, 

54Gy/30 fractions for T3/4Nany 
5-FU and MMC 28.6 UV Cox, MV Cox Fair 

15 
Bitterman et al. (2015) 

[34] 
SC, NA 109 2004-2013 

IMRT (60%) 

3D-CRT (40%) 
45Gy+ in 1.8Gy/fraction 5-FU and MMC 14.9 Log-rank, MV Cox Good 

16 
Fraunholz et al. (2013) 

[35] 
MC, EU 103 1989-2011 3D-CRT 50.4Gy in 1.8 or 2Gy/fraction 5-FU and MMC 44.0 Log-rank, MV Cox Good 

17 
Schernberg et al. (2017)* 

[36] 
SC, EU 103 2006-2016 

IMRT (53%) 

3D-CRT (47%) 

45Gy/25 fractions of 1.8Gy or 

44Gy/22 fractions of 2Gy 
5-FU and MMC or Cap 38.7 Log-rank, MV Cox Good 

18 
Hosni et al. (2018) 

[37] 
SC, NA 101 2008-2013 IMRT 

45Gy/25 fractions for T1N0, 

54Gy/30 fractions for T1/2N+ or 

63Gy/35 fractions for T3/4Nany 

5-FU and MMC 56.5 UV Cox, MV Cox Fair 

19 
Oblak et al. (2016) 

[38] 
SC, EU 100 2003-2013 

3D-CRT 

IMRT 
45Gy/25 fractions 5-FU and MMC or Cap 52.0 Log-rank, MV Cox Good 
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3.4.4 Clinical prognostic factors 

Table 3-2 presents clinical factors identified as prognostic for each outcome in more 

than one study, categorised by UVA and MVA. For prognostic factors identified in MVA, 

the range of factor effects (HRs) across studies is also reported. Eight unique prognostic 

factors were established by more than one study in UVA and seven in MVA (See 

Supplementary material F, Section 3.8.6 for full results). 

 
Table 3-2. Clinical factors identified as prognostic for worse outcomes by more than one 

study. These clinical factors were identified through univariable and multivariable 

analysis, and were stratified by outcome. A number of studies reported on “gender”, 

however this was analysed in conjunction with “sex” throughout the study, since “sex” 

is used when reporting on biological factors instead of gender identity, or psychosocial 

or cultural factors. HR: Hazard Ratio. N/A: Not available. *Factor effects (HRs) were 

provided by only one study for this prognostic factor, therefore the effect range could 

not be determined. 

Univariable analysis 

Outcome 
(number of studies 
reporting outcome) 

Factor 
Times 

identified as 
prognostic 

Total times 
tested 

Studies which identified factor as 
prognostic 

Overall survival 
(n=17) 

Higher N stage 10 16 [15],[21],[22],[25],[26],[27],[28],[35],[36],[38] 

Higher T stage 9 16 [15],[21],[22],[27],[28],[35],[36],[37], [38] 

Male sex 7 12 [15],[21],[25],[27],[28],[29],[37] 

Worse performance 
status 

3 4 [15],[29],[38] 

Older age 3 4 [24],[27],[37] 

Incomplete/interrupted 
RT or breaks 

2 2 [15],[24] 

Longer CRT duration 2 5 [36],[38] 

Locoregional failure 
(n=11) 

Higher N stage 7 11 [15],[21],[26],[27],[28],[30],[38] 

Higher T stage 7 11 [15],[21],[26],[27],[28],[32],[38] 

Male sex 5 9 [15],[21],[27],[28],[29] 

Worse performance 
status 

4 4 [15],[24],[29],[38] 

Longer CRT duration 2 2 [32],[38] 

Disease-free survival 
(n=11) 

Male sex 5 8 [21],[27],[29],[30],[37] 

Higher N stage 4 9 [21],[22],[27],[30] 

Higher T stage 4 10 [21],[22],[28],[37] 
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Metastasis-free survival 
(n=5) 

Higher T stage 5 5 [21],[22],[30],[35],[36] 

Higher N stage 4 4 [21],[30],[35],[36] 

Male sex 2 4 [21],[30] 

Freedom from disease 
(n=4) 

Higher N stage 4 4 [15],[28],[31],[38] 

Male sex 2 3 [15],[28] 

Higher T stage 2 3 [15],[38] 

 
Colostomy-free survival 
(n=4) 
  

Higher T stage 3 4 [22],[26],[37] 

Cancer-specific survival 
(n=3) 

Higher T stage 2 3 [35],[38] 

Higher N stage 2 3 [35],[38] 

Multivariable analysis 

Outcome 
(number of studies 
reporting outcome) 

Factor 
Times 

identified as 
prognostic 

Factor effect 
range (HR) 

Studies which identified factor as 
prognostic 

Overall survival 
(n=17) 

Male sex 7 1.92 – 4.80 [15],[21],[25],[27],[28],[29],[37] 

Higher T stage 3 2-88 – 4.98 [22],[34],[37] 

Older age 3 1.05 – 2.43 [24],[37],[37] 

Higher N stage 3 1.88 – 5.80 [25],[26],[36] 

Higher AJCC stage 2 2.23 – 2.82 [22],[38] 

Locoregional failure 
(n=11) 

Male sex 4 2.08 – 3.40 [15],[21],[27],[29] 

Higher N stage 3 2.23 – 3.58 [15],[21],[30] 

Incomplete/interrupted 
RT or breaks 

2 2.47 – 4.96 [15],[22] 

Worse performance 
status 

2 3.82 – 5.50 [24],[29] 

Disease-free survival 
(n=11) 

Male sex 4 2.13 – 3.60 [21],[27],[29],[37] 

Higher T stage 3 2.57 – 7.02 [22],[23],[37] 

Higher N stage 2 N/A* [21],[23] 

Metastasis-free survival 
(n=5) 

Male sex 2 3.87 – 4.08 [21],[23] 

Higher T stage 2 2.61 – 3.54 [21],[22] 

Higher N stage 2 2.41 – 4.49 [21],[30] 

 
Freedom from disease 
(n=4) 
  

Male sex 2 2.16 – 2.16 [15],[28] 

 
Colostomy-free survival 
(n=4) 
  

Higher T stage 3 3.65 – 4.10 [22],[26],[37] 
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In UVA, T stage, N stage and sex were the most commonly tested factors for all seven 

outcomes for which prognostic factors were identified (Table 3-1). T stage was 

prognostic for all outcomes; in 56% of the studies that tested it for OS, in 64% for LRF, 

in 40% for DFS, in 100% for MFS, in 67% for freedom-from-disease, in 75% for CFS 

and in 67% for cancer-specific survival. Similarly, N stage was prognostic for six of 

seven outcomes. It was prognostic in 63% of the studies testing for OS, in 64% for LRF, 

in 44% for DFS, in 100% for MFS, in 100% for freedom-from-disease and in 67% for 

cancer-specific survival. The third most identified prognostic factor in UVA was sex. It 

was prognostic for five of the seven outcomes, in 58% of the studies that tested it for 

OS, in 56% for LRF, in 63% for DFS, in 50% for MFS and in 67% for freedom-from-

disease. Performance status was also identified as prognostic in 75% of the studies that 

tested it for OS, and in 100% of studies that tested it for LRF. 

In MVA, sex retained its prognostic significance, appearing as the predominant 

prognostic factor for six of the seven outcomes, altogether identified in nine studies [15, 

21, 22, 25, 27–29, 35, 37]. Other commonly identified prognostic factors included higher 

T stage (OS, DFS, MFS and CFS; identified in seven studies [21–23, 26, 28, 34, 37]) 

and higher N stage (OS, LRF, DFS, MFS; identified in seven studies [15, 21, 23, 25, 26, 

30, 36]). The rest of the factors were identified as prognostic for a single outcome only; 

age and AJCC stage for OS, as well as incomplete/interrupted radiotherapy and 

performance status for LRF. 

 

3.4.5 Biomarkers and imaging prognostic factors 

A smaller number of studies (n=8) examined the prognostic significance of biomarkers 

[25, 27–30, 35, 36, 38]. Only four unique biomarkers were deemed prognostic overall 

by more than one study in both UVA and MVA (Table 3-3 and Supplementary material 

G, Section 3.8.7).  

In UVA, HPV16 load from pre-treatment biopsies was found to be prognostic for OS (2/3 

– 67% of studies [27, 28]) and for LRF (2/3 – 67% of studies [27, 28]), whereas the 

presence of baseline neutrophilia (circulating blood neutrophil count of more than 

7500/mm3 in one study and more than 7G/L in the second study) was found to be 

prognostic for OS (2/2 – 100% of studies [29, 36]) and DFS (2/2 – 100% of studies [29, 

36]). Additionally, baseline anaemia (haemoglobin count <13g/dL) was deemed 

prognostic for OS only (2/2 – 100% of studies [29, 36]) and the presence of baseline 
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leukocytosis markers (white blood cell count >10000/mm3 in one study and more than 

10G/L in the second study) for DFS only. 

 
Table 3-3. Biomarkers identified as prognostic for worse outcomes by more than one 

study. These biomarkers were identified through univariable and multivariable analysis 

and were stratified by outcome. HPV: human papillomavirus. HR: Hazard ratio. 

Univariable analysis 

Outcome  
(number of 

studies reporting 
outcome) 

Factor 
Times identified 
as prognostic 

Total times 
tested 

Studies which 
identified factor as 

prognostic 

Overall survival 
(n=17) 

Lower HPV16 load 2 3 [27],[28] 

Neutrophilia 2 2 [29],[36] 

Anaemia 2 2 [29],[36] 

 
Locoregional failure 
(n=11) 
  

Lower HPV16 load 2 3 [27],[28] 

Disease-free survival 
(n=11) 

Leukocytosis 2 2 [29],[36] 

Neutrophilia 2 2 [29],[36] 

Multivariable analysis 

Outcome  
(number of 

studies reporting 
outcome) 

Factor 
Times identified 
as prognostic  

Factor effect 
range (HR) 

Studies which 
identified factor as 

prognostic 

Overall survival 
(n=17) 

Leukocytosis 2 4.60 – 19.90 [29],[36] 

Neutrophilia 2 4.40 – 22.70 [29],[36] 

 
Locoregional failure 
(n=11) 
  

Lower HPV16 load 2 3.57 – 4.51 [27],[28] 

Disease-free survival 
(n=11) 

Leukocytosis 2 6.90 – 7.10 [29],[36] 

Neutrophilia 2 5.00 – 7.60 [29],[36] 

Anaemia 2 2.50 – 5.30 [29],[36] 

 
In MVA, baseline neutrophilia retained its prognostic significance for both OS (two 

studies [29, 36]) and DFS (two studies [29, 36]), whereas HPV16 load retained its 

prognostic significance for LRF (two studies [27, 28]) only. Baseline leukocytosis was 

found to be prognostic for DFS (two studies [29, 36]) and for OS (two studies [29, 36]). 

Lastly, baseline anaemia was identified as prognostic for DFS (two studies [29, 36]) 

only.  
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Only two studies [23, 33] investigated imaging-related prognostic factors. In UVA, one 

study [33] identified post-treatment PET-CT SUVmax (positron emission tomography 

and computed tomography maximum standardized uptake value) and change in 

SUVmax (pre- vs. post-treatment) to be prognostic for OS. The pre-treatment and post-

treatment SUVmax values were both found to be prognostic for local failure-free 

survival. In MVA, the post-treatment SUVmax and the change in SUVmax retained 

prognostic significance for OS. In the second study [23], a selection of radiomics 

markers were identified as prognostic for DFS (Supplementary material H, Section 

3.8.8). For local failure-free survival, only the high post-treatment SUVmax was deemed 

prognostic in MVA (Supplementary material H, Section 3.8.8). 

 

3.5 Discussion 

This systematic review summarises the findings from studies examining prognostic 

factors for anal cancer outcomes following CRT with contemporary conformal 

radiotherapy techniques. By limiting our findings to studies with cohorts treated with 

conformal radiotherapy techniques, we aimed to ensure that the prognostic factors 

identified are the most informative to current practice and are representative of the more 

prevalent HPV-driven biology and the higher survival rates which have been observed 

in the past few years. N stage, T stage, and sex were established as the most prevalent 

and reliable clinical prognostic factors for the majority of outcomes explored, in both 

UVA and MVA. Few biomarkers have been identified as prognostic by more than one 

study: pre-treatment biopsy HPV load, as well as the presence of leukocytosis, 

neutrophilia and anaemia at baseline measurement. The review also highlighted the 

lack of studies with large cohorts exploring the prognostic significance of imaging 

factors.  

Due to the rarity of anal cancer, only few randomised prospective clinical trials have 

been conducted to date; none of which have employed conformal radiotherapy 

techniques and reported on prognostic factors. Reports from randomised trials using 

non-conformal radiotherapy techniques support the prognostic role of N stage, T stage 

and sex [3, 39]. Male sex and a higher N stage were found to be strong prognostic 

indicators for worse OS [3, 40, 41], for higher risk of local failure [3, 42] and LRF [41]. 

The prognostic role of T stage was less apparent, since higher T stage was only found 

to be prognostic for worse OS [40] and local failure [42]. Our results suggest that a 
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higher T stage is prognostic for higher risk of LRF in UVA, but not in MVA. Although the 

aforementioned trials used highly standardised approaches and studied a relatively 

large number of patients, crude radiotherapy techniques were employed, therefore the 

prescribed and received radiotherapy doses are likely to differ significantly [43]. 

In terms of tumour biomarkers, HPV status is the strongest previously-established 

prognostic indicator in anal cancer [44, 45]. A previous study [46] also established the 

prognostic significance of p16INK4A in anal cancer, a biomarker commonly used as a 

surrogate for HPV involvement. In line with these findings, our results confirm the 

prognostic role of pre-treatment biopsy HPV load in anal cancer. Treatment modification 

based on HPV status is currently being tested in a head and neck cancer clinical trial, 

where treatment is stratified based on the HPV status of the cancer [47]. Apart from 

HPV load, no other tumour biomarkers were identified as prognostic in this review.  In 

terms of haematological biomarkers, long-term outcome data from the ACT1 

randomised controlled trial reported that a higher baseline white blood cell count is 

prognostic for worse OS [41], supporting our results (Table 3-3). Baseline anaemia, 

another haematological biomarker identified as prognostic in our review, may carry 

important clinical implications. Although not predictive of OS in the ACT1 data, it was 

independently predictive of anal cancer death. In cervical cancer, another HPV-driven 

cancer, blood transfusions are given if haemoglobin levels are below 10g/dl prior to CRT 

and this may be an area of future clinical consideration in anal cancer treatment.  

Due to the lack of studies exploring imaging factors, it is difficult to put our review 

findings into perspective. Future radiomics research in this setting should focus on 

multicentre cohorts; but we also noted the lack of secondary or explorative radiomics 

research from prospective trials. Further research in this area may for instance help 

identify tumour volumes of greater radiotherapy resistance for boosting. 

Three other reviews have previously investigated prognostic factors for anal cancer. 

One systematic review focused solely on biomarkers and did not include any information 

on general, pathological or treatment-related prognostic factors [48]. A second 

systematic review examined the prognostic factors for the specific subset of HIV-

positive anal cancer patients undergoing highly active antiretroviral therapy (HAART) 

[49]. The third review [50] explored clinical, treatment-related as well as molecular 

prognostic factors, but was a narrative rather than a systematic review. None focused 

specifically on identifying prognostic factors for outcomes after conformal radiotherapy. 
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The current work has several limitations. As anal cancer is rare, reports exploring this 

topic are often single-centre studies with small cohorts, meaning that the power to 

identify relevant prognostic factors, especially factors with relatively limited effect size 

or with low prevalence, may be limited. Any factors identified and their effect estimates 

may suffer from small sample bias [51]. We opted for a sample size of 100 patients as 

the cut-off point, following an initial screen of available studies, in order to ensure that a 

reasonable number of studies could be included in the final analysis and the factors 

identified were generalisable. Through the initial screen, only 43 studies which had 

cohorts of more than 20 patients were identified. If studies with 20-100 patients had 

been included, seven additional studies exploring biomarkers and 12 additional studies 

exploring imaging factors would have been considered, and a larger number of factors 

would potentially be identified as prognostic. Only few of the studies included in this 

review distinguished between cancers of the anal canal and perianal cancers 

(Supplementary material C, Section 3.8.3). Therefore, it was not possible to identify 

prognostic factors for a specific tumour location or subtype. Additionally, the TNM 

staging version used varied from the 6th edition to the 8th edition across studies 

(Supplementary material C, Section 3.8.3) and some studies did not report the version 

used at all. As a result, in this review all tumour and nodal staging information was 

analysed together, without accounting for the version used. 

There was large variation in treatment regimens, factors tested and outcome definitions 

between studies. This renders the identification of prognostic factors for anal cancer 

challenging and highlights the need for uniform outcome definitions, not only in clinical 

trials and research, but also in routine clinical practice [52]. The studies themselves 

suffer from several limitations as well, especially in the statistical methodology. The 

majority of studies applied a univariable screening technique to select factors for MVA. 

Generally, univariable screening should be avoided for such analyses, as it invalidates 

the effect and significance estimates in MVA [53, 54], and more robust approaches 

should be used instead [53, 55]. Moreover, a considerable number of studies did not 

report on factor effects acquired from UVA or MVA, therefore we could not summarise 

factor effects across studies. Since a meta-analysis could not be conducted, only a 

summary of factor effects is reported in this review. Lastly, the proportion of times each 

factor was identified as prognostic, which is a better indicator of the reliability of the 

prognostic significance of a factor, could not be calculated from MVA results, due to a 

lack of detail about the total number of times each factor was tested for each outcome.  
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Overall, this study confirms the prognostic value of only few well-established clinical 

factors and biomarkers relevant to contemporary clinical practice. No novel prognostic 

factors have been identified. This emphasises the lack of studies with large cohorts 

treated with conformal radiotherapy that report on prognostic factors, especially studies 

exploring biomarkers and imaging factors. In spite of the remarkable advances in anal 

cancer treatment efficacy and the reduction of toxicity through conformal CRT, our 

understanding of the biomarker and imaging factors that predict the outcomes of this 

disease is still very limited. To tackle the challenge of prognostic factor identification, 

larger multi-institutional studies and prospective clinical trials would need to be 

conducted, not only on a national scale, but also on an international scale using 

approaches that link data across borders [56].  

 

3.6 Conclusions 

This systematic review confirms the following prognostic factors for outcomes following 

anal cancer treatment with conformal CRT: T stage, N stage, sex, pre-treatment biopsy 

HPV load, as well as the presence of baseline leukocytosis, neutrophilia and anaemia. 

The prognostic information presented can be used as a starting point for variable 

selection in future prognostic modelling studies. Additionally, by establishing a set of 

prognostic and potentially predictive factors for anal cancer outcomes, we may be able 

to stratify patients into risk groups in order to design more personalised clinical trials in 

the future. Radiotherapy dose modification based on risk by T and N stage is being 

evaluated in the currently recruiting PLATO clinical trial [17], with translational research 

into prognostic biomarkers and imaging embedded within the trial design. This will in 

turn provide us with greater insight into how to effectively treat this disease using a more 

personalised approach.  
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3.8 Supplementary material 

3.8.1 Supplementary material A. Full search strategies employed in Embase and 

Medline to identify relevant papers between January 1st 2000 and June 30th 2020. 

Table 3-A1. Complete search strategy used in Embase. 

Database: Embase Classic+Embase <1947 to 2020 June 30> 

1 exp radiotherapy/ (599698) 

2 Radiation Oncology/ (3434) 

3 (radiotherap* or radiotreat* or roentgentherap* or radiosurg*).tw. (285655) 

4 
((radiat* or radio* or irradiat* or roentgen or x-ray or xray) adj4 (therap* or treat* or 
repair* or oncolog* or surg*)).tw. (396128) 

5 (RT or RTx or XRT).tw. (308595) 

6 exp chemoradiotherapy/ (52074) 

7 (chemoradiotherap* or radiochemotherap* or chemoradiation*).tw. (53407) 

8 (CRT or CRTx or CCRT or NCRT or RCTx or RT-CT or chemoRT).tw. (38794) 

9 or/1-8 [radiotherapy or chemeradiotherapy] (1107122) 

10 exp Anus cancer/ (8197) 

11 ((anus or anal) adj5 (cancer* or neoplas* or carcinoma* or tumo?r*)).tw,kw. (10640) 

12 or/10-11 [anal cancer] (13164) 

13 (predict* and (outcome* or risk* or model*)).tw. (1210603) 

14 (validate or rule*).tw. (376396) 

15 predict*.ti. (470931) 

16 
((history or variable* or criteria or scor* or characteristic* or finding* or factor*) and 
(predict* or model* or decision* or identify or prognose)).tw. (3153437) 

17 
(prognostic and (history or variable* or criteria or scor* or characteristic* or finding* or 
factor* or model*)).tw. (343683) 

18 ROC Curve/ (57455) 

19 
(stratification or discrimination or discriminate or c-statistic or c statistic or area under 
the curve or AUC or calibration or indices or algorithm or multivariable or (model and 
outcome) or classif*).tw. (2013800) 

20 ((model* or clinical).tw. or logistics models/) and decision.tw. (183621) 

21 or/13-20 [predictive factor or outcomes] (5491959) 

22 
9 and 12 and 21 [radiotherapy or chemoradiotherapy and anal cancer and predictive 
factors for outcomes] (1219) 

23 limit 22 to yr="2000 -Current" (1134) 

24 remove duplicates from 23 (1109) 
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Table 3-A2. Complete search strategy used in Medline. 

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-
Indexed Citations and Daily <1946 to June 30, 2020> 

1 exp Radiotherapy/ (184934) 

2 Radiation Oncology/ (4114) 

3 (radiotherap* or radiotreat* or roentgentherap* or radiosurg*).tw. (179332) 

4 
((radiat* or radio* or irradiat* or roentgen or x-ray or xray) adj4 (therap* or treat* or 
repair* or oncolog* or surg*)).tw. (244503) 

5 (RT or RTx or XRT).tw. (201228) 

6 exp Chemoradiotherapy/ (14534) 

7 (chemoradiotherap* or radiochemotherap* or chemoradiation*).tw. (30229) 

8 (CRT or CRTx or CCRT or NCRT or RCTx or RT-CT or chemoRT).tw. (18166) 

9 or/1-8 [radiotherapy or chemeradiotherapy] (615114) 

10 exp Anus Neoplasms/ (6335) 

11 ((anus or anal) adj5 (cancer* or neoplas* or carcinoma* or tumo?r*)).tw,kw. (6355) 

12 or/10-11 [anal cancer] (9210) 

13 (predict* and (outcome* or risk* or model*)).tw. (847317) 

14 (validate or rule*).tw. (265142) 

15 predict*.ti. (325883) 

16 
((history or variable* or criteria or scor* or characteristic* or finding* or factor*) and 
(predict* or model* or decision* or identify or prognose)).tw. (2253192) 

17 
(prognostic and (history or variable* or criteria or scor* or characteristic* or finding* or 
factor* or model*)).tw. (216359) 

18 ROC Curve/ (57771) 

19 
(stratification or discrimination or discriminate or c-statistic or c statistic or area under 
the curve or AUC or calibration or indices or algorithm or multivariable or (model and 
outcome) or classif*).tw. (1421211) 

20 ((model* or clinical).tw. or logistics models/) and decision.tw. (123422) 

21 or/13-20 [predictive factor or outcomes] (3986478) 

22 
9 and 12 and 21 [radiotherapy or chemoradiotherapy and anal cancer and predictive 
factors for outcomes] (522) 

23 limit 22 to yr="2000-2020" (458) 
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3.8.2 Supplementary material B. Complete results from the study quality appraisal 
by both reviewers (ST and RS), including the assessment criteria used. Y: Yes. N: No. 
NR: Not reported. 

Case series study appraisal criteria: 
1. Was the study question or objective clearly stated?  
2. Was the study population clearly and fully described, including a case definition? 
3. Were the cases consecutive? 
4. Were the subjects comparable? Reasonably homogeneous study population 
5. Was the intervention clearly described? 
6. Were the outcome measures clearly defined, valid, reliable, and implemented consistently 
across all study participants? 
7. Was the length of follow-up adequate? 3 years according to PLATO 
8. Were the statistical methods well-described? 
9. Were the results well-described? 
 

Table 3-B1. Study quality appraisal by ST. 

Study/Criterion 1 2 3 4 5 6 7 8 9 
Quality rating 

(Good/Fair/Poor) 
Type of study 

Shakir et al. (2020) Y Y Y Y Y Y N Y Y Good Case series 

Martin et al. (2020) Y Y NR Y Y Y Y Y Y Good Case series 

de Bellefon et al. (2020) N Y Y Y Y Y Y Y Y Good Case series 

Brown et al. (2019) Y Y Y Y N Y N Y Y Good Case series 

Rouard et al. (2019) Y Y Y Y Y Y N Y Y Good Case series 

Franco et al. (2018) Y Y NR Y Y Y N Y Y Good Case series 

Call et al. (2016) N Y NR Y Y Y N Y Y Fair Case series 

Balermpas et al. (2017) N Y NR Y Y Y Y Y Y Good Case series 

Rodel et al. (2018) N Y NR Y Y Y Y Y Y Good Case series 

Schernberg et al. (2017) Y Y Y Y Y Y Y Y Y Good Case series 

Martin et al. (2019) Y Y NR Y Y Y NR Y Y Good Case series 

Oehler-Janne et al. (2008) Y Y Y N Y Y Y Y Y Good Case series 

Susko et al. (2020) Y Y NR Y Y Y N Y Y Good Case series 

Cardenas et al. (2017) Y Y NR Y Y N N Y Y Fair Case series 

Bitterman et al. (2015) N Y Y Y Y Y N Y Y Good Case series 

Fraunholz et al. (2013) Y Y NR Y Y Y Y Y Y Good Case series 

Schernberg et al. (2017)* Y Y Y Y Y N Y Y Y Good Case series 

Hosni et al. (2018) N Y NR Y Y N Y Y Y Fair Case series 

Oblak et al. (2016) Y Y Y Y Y Y Y Y Y Good Case series 

 
 

Table 3-B2. Study quality appraisal by RS. 

Study/Criterion 1 2 3 4 5 6 7 8 9 
Quality rating 

(Good/Fair/Poor) 
Type of study 

Shakir et al. (2020) Y Y Y Y Y Y N Y Y Good Case series 

Martin et al. (2020) Y Y NR Y Y Y Y Y Y Good Case series 

de Bellefon et al. (2020) Y Y Y Y Y Y Y Y Y Good Case series 

Brown et al. (2019) Y Y Y Y Y Y N Y Y Good Case series 

Rouard et al. (2019) Y Y Y Y Y Y N Y Y Good Case series 
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Franco et al. (2018) Y Y NR Y Y Y N Y Y Good Case series 

Call et al. (2016) Y Y NR Y Y Y N Y Y Good Case series 

Balermpas et al. (2017) N Y NR Y Y Y Y Y Y Good Case series 

Rodel et al. (2018) N Y NR Y Y Y Y Y Y Good Case series 

Schernberg et al. (2017) Y Y Y Y Y Y Y Y Y Good Case series 

Martin et al. (2019) Y Y NR Y Y Y NR Y Y Good Case series 

Oehler-Janne et al. (2008) N Y Y N Y Y Y Y Y Good Case series 

Susko et al. (2020) Y Y Y Y Y N N Y Y Good Case series 

Cardenas et al. (2017) Y Y NR Y Y N N Y Y Fair Case series 

Bitterman et al. (2015) Y Y Y Y Y Y N Y Y Good Case series 

Fraunholz et al. (2013) Y Y NR Y Y Y Y Y Y Good Case series 

Schernberg et al. (2017)* Y Y Y Y Y N Y Y Y Good Case series 

Hosni et al. (2018) N Y NR Y Y N Y Y Y Fair Case series 

Oblak et al. (2016) Y Y Y Y Y Y Y Y Y Good Case series 
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3.8.3 Supplementary material C. Complete overview of study characteristics, including the predictors tested in each study. NR: not 
reported. SCC: Squamous cell carcinoma. RT: radiotherapy. CRT: chemoradiotherapy. MMC: Mitomycin C.  
 

# Study 
Year of 

publication 
Location Study design 

Number 
of 

patients 

Years of 
treatment 

RT technique 

Cancer 
subtype and 
location in 

cohort 

TNM staging 
version used 

Median 
follow-up 
(months) 

Type of 
statistical 

analysis used 
Predictors tested 

Quality 
score 

1 

Patterns and Predictors of 
Relapse Following Radical 
Chemoradiation Therapy 
Delivered Using Intensity 
Modulated Radiation 
Therapy with a 
Simultaneous Integrated 
Boost in Anal Squamous 
Cell Carcinoma [Shakir et 
al. (2020)] 

2020 
Multi-centre, 

Europe 
Retrospective 385 2013-2018 IMRT 

SCC of the 
anal canal and 

anal margin 
7 & 8 24.0 

Univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Age, sex, 
performance 
status, T stage, N 
stage (TNM 7 and 
8), RT completion, 
chemotherapy type 

Good 

2 

Acute organ toxicity 
correlates with better 
clinical outcome after 
chemoradiotherapy in 
patients with anal 
carcinoma [Martin et al. 
(2020)] 

2020 
Single centre, 

Europe 
Retrospective 223 1996-2017 

3D-CRT (58%) 
and IMRT (42%) 

SCC (location 
not specified) 

7 46.0 

Univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

T stage, N stage, 
age, sex, high 
grade acute organ 
toxicity (HGAOT) 

Good 

3 

Long-term follow-up 
experience in anal canal 
cancer treated with 
Intensity-Modulated 
Radiation Therapy: Clinical 
outcomes, patterns of 
relapse and predictors of 
failure [de Bellefon et al. 
(2020)] 

2020 
Single centre, 

Europe 
Retrospective 193 2005-2017 IMRT 

SCC of the 
anal canal 

7 & 8 70.0 

Univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Only significant 
factors reported - T 
stage, N stage, 
AJCC stage, sex, 
RT breaks, 
exclusive RT, lack 
of MMC, residual 
disease 

Good 

4 

Prediction of outcome in 
anal squamous cell 
carcinoma using radiomic 
feature analysis of pre-
treatment FDG PET-CT 
[Brown et al. (2019)] 

2019 
Single centre, 

Europe 
Retrospective 189 2008-2016 

2D/ 3D-CRT 
(79%) and 

VMAT (21%) 

SCC (location 
not specified) 

NR 35.1 
Multivariable 
logistic 
regression 

Only significant 
factors reported - 
Multiple FDG-PET 
scan variables, 
sex, age, T stage, 
N stage 

Good 
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5 

Intensity-modulated 
radiation therapy of anal 
squamous cell carcinoma: 
Relationship between 
delineation quality and 
regional recurrence 
[Rouard et al. (2019)] 

2019 
Multi-centre, 

Europe 
Retrospective 165 2006-2016 IMRT 

SCC of the 
anal canal and 

anal margin 
NR 33.8 

Bivariable Cox 
regression, 
multivariable 
Cox 
regression 

Sex, age, 
performance 
status, 
immunodepression, 
smoking status, 
tumour localisation, 
T stage, N stage, 
location of involved 
lymph nodes, 
tumour size, 
keratinisation, 
differentiation, HPV 
status, RT breaks, 
tumour boost 
technique, tumour 
total dose, 
chemotherapy 
type, multiple 
delineation 
variables 

Good 

6 

The prognostic role of 
hemoglobin levels in 
patients undergoing 
concurrent chemo-
radiation for anal cancer 
[Franco et al. (2018)] 

2018 
Multi-centre, 

Europe 
Retrospective 161 NR IMRT 

SCC of the 
anal canal and 

anal margin 
NR 27.0 

Log-rank 
analysis, 
univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Age, sex, T stage, 
N stage, response 
to treatment, 
overall treatment 
duration, RT total 
dose, boost, OTT, 
basal haemoglobin 
levels 

Good 

7 

Intensity-modulated 
Radiation Therapy for Anal 
Cancer Results From a 
Multi-Institutional 
Retrospective Cohort 
Study [Call et al. (2016)] 

2016 
Multi-centre, 

North 
America 

Retrospective 152 NR IMRT 
SCC (location 
not specified) 

NR 26.8 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Dose, N stage, T 
stage, RT duration 

Fair 

8 

Human papilloma virus 
load and PD-1/PD-L1, 
CD8+ and FOXP3 in anal 
cancer patients treated 
with chemoradiotherapy: 
Rationale for 
immunotherapy 
[Balermpas et al. (2017)] 

2017 
Multi-centre, 

Europe 
Retrospective 150 NR 

3D-CRT and 
IMRT 

SCC (location 
not specified) 

NR 40.0 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Age, gender, T 
stage, N stage, 
grade, HPV load, 
and CD8, PD1, PD-
L1, FOXP3, 
pCASP8 
expression 

Good 

9 

Prognostic impact of RITA 
expression in patients with 
anal squamous cell 
carcinoma treated with 
chemoradiotherapy [Rodel 
et al. (2018)] 

2018 
Multi-centre, 

Europe 
Retrospective 140 NR 

3D-CRT and 
IMRT 

SCC (location 
not specified) 

NR 40.0 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Gender, T stage, N 
stage, HPV-16 
DNA load, RITA 
expression 

Good 



 

 

 

113 

10 

External validation of 
leukocytosis and 
neutrophilia as a 
prognostic marker in anal 
carcinoma treated with 
definitive chemoradiation 
[Schernberg et al. (2017)] 

2017 
Multi-centre, 

Europe 
Retrospective 133 2000-2015 

IMRT (77%) and 
3D-CRT (23%) 

SCC (location 
not specified) 

7 37.4 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Age, sex, T stage, 
N stage, 
performance 
status, 
leukocytosis, 
neutrophilia, 
anaemia, 
lymphopenia, 
monocytosis, 
thrombocytosis 

Good 

11 

C-Reactive Protein-to-
Albumin Ratio as 
Prognostic Marker for Anal 
Squamous Cell Carcinoma 
Treated with 
Chemoradiotherapy [Martin 
et al. (2019)] 

2019 
Single centre, 

Europe 
Retrospective 126 2004-2016 

IMRT (65%) and 
3D-CRT (35%) 

SCC (location 
not specified) 

7 NA 

Log-rank 
analysis, 
univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Age, sex, HIV 
status, T stage, N 
stage, grade, C 
reactive protein to 
Albumin ratio, RT 
modality, RT total 
dose 

Good 

12 

HIV-specific differences in 
outcome of squamous cell 
carcinoma of the anal 
canal: a multicentric cohort 
study of HIV-positive 
patients receiving highly 
active antiretroviral therapy 
[Oehler-Janne et al. 
(2008)] 

2008 
Multi-centre, 
International 

Retrospective 121 1997-2006 3D-CRT 
SCC of the 
anal canal 

NR 36.0 

Log-rank 
analysis, 
univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Not explicitly 
reported - Age, 
sex, WHO 
performance 
status, histologic 
subtype, tumour 
size, N stage, M 
stage, CDC stage, 
CD4 count, viral 
load, HAART type 

Good 

13 

Factors Impacting 
Differential Outcomes in 
the Definitive Radiation 
Treatment of Anal Cancer 
Between HIV-Positive and 
HIV-Negative Patients 
[Susko et al. (2020)] 

2020 
Single centre, 

North 
America 

Retrospective 111 2005-2018 
3D-CRT and 

IMRT 
SCC (location 
not specified) 

NR 28.0 

Log-rank 
analysis, 
univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Age, sex, T stage, 
N stage, HIV 
status, time from 
diagnosis to 
treatment, 
treatment duration 

Good 

14 

Quantitative FDG-PET/CT 
predicts local recurrence 
and survival for squamous 
cell carcinoma of the anus 
[Cardenas et al. (2017)] 

2017 
Single centre, 

North 
America 

Retrospective 110 2003-2013 
IMRT (75%) and 
2D-CRT (25%) 

SCC (location 
not specified) 

NR 28.6 

Univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

Multiple FDG-PET 
scan variables, RT 
modality, 
chemotherapy, T 
stage, N stage, HIV 
status 

Fair 

15 

Comparison of anal cancer 
outcomes in public and 
private hospital patients 
treated at a single radiation 
oncology center [Bitterman 
et al. (2015)] 

2015 
Single centre, 

North 
America 

Retrospective 109 2004-2013 
IMRT (60%) and 
3D-CRT (40%) 

SCC (location 
not specified), 
cloacogenic 
(n=2) and 

adeno (n=2) 
carcinomas 

NR 14.9 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Referral from public 
hospital, HIV 
status, T stage, RT 
technique, RT 
duration, RT delay 

Good 
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16 

Epidermal Growth Factor 
Receptor Expression As 
Prognostic Marker in 
Patients With Anal 
Carcinoma Treated With 
Concurrent 
Chemoradiation Therapy 
[Fraunholz et al. (2013)] 

2013 
Multi-centre, 

Europe 
Retrospective 103 1989-2011 3D-CRT 

SCC, 
basaloid, 

cloacogenic 
(location not 

specified) 

7 44.0 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Age, sex, HIV 
status, T stage, N 
stage, grade, 
EGFR expression 

Good 

17 

Leukocytosis and 
neutrophilia predicts 
outcome in anal cancer 
[Schernberg et al. (2017)*] 

2017 
Single centre, 

Europe 
Retrospective 103 2006-2016 

IMRT (53%) and 
3D-CRT (47%) 

SCC (location 
not specified) 

6 38.7 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Leukocytosis, 
neutrophilia, 
anaemia, T stage, 
N stage, CRT 
duration 

Good 

18 

The ongoing challenge of 
large anal cancers: 
prospective long term 
outcomes of intensity-
modulated radiation 
therapy with concurrent 
chemotherapy [Hosni et al. 
(2018)] 

2018 
Single centre, 

North 
America 

Retrospective 101 2008-2013 IMRT 

SCC of the 
anal canal, 
SCC of the 

anal canal with 
perianal 

extension 

7 56.5 

Univariable 
Cox 
regression, 
multivariable 
Cox 
regression 

T stage, N stage, 
sex, age, grade, 
maximum tumour 
size, RT 
interruption 

Fair 

19 

The impact of anaemia on 
treatment outcome in 
patients with squamous 
cell carcinoma of anal 
canal and anal margin 
[Oblak et al. (2016)] 

2016 
Single centre, 

Europe 
Retrospective 100 2003-2013 

3D-CRT and 
IMRT 

SCC of the 
anal canal and 

anal margin 
7 52.0 

Log-rank 
analysis, 
multivariable 
Cox 
regression 

Pre-treatment Hb, 
on-treatment Hb, 
end-of-treatment 
Hb, performance 
status, T stage, N 
stage, stage, 
histology, tumour 
site, blood 
transfusion, overall 
radiation time, 
operation 

Good 
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3.8.4 Supplementary material D. Outcome definitions given in each study, stratified into nine categories. The final stratification yielded 
three disease activity outcome categories and six survival outcome categories. 
 

# 

Outcomes 
(number of 

studies reporting 
outcome) 

Outcomes included Study Definition 

1 
Overall survival 
(n=17) 

Overall survival 
Martin et al. (2020) 
[21] 

Survival times were calculated from start of CRT to the date of respective events or last follow-up. Assessed with death of any cause 
as the respective event. 

Overall survival 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: death from any cause. 

Overall survival 
Rouard et al. (2019) 
[24] 

The time between the first day of RT and the death (all causes). Surviving patients were censored at the date of last follow-up or five 
years after D1. 

Overall survival 
Franco et al. (2018) 
[25] 

Calculated from the date of diagnosis to that of death from any cause or lost at observation. 

Overall survival 
Call et al. (2016) 
[26] 

Not defined. 

Overall survival 
Balermpas et al. (2017) 
[27] 

Calculated from the beginning of CRT to death for any reasons or to cancer-related death, or the day of the last follow-up. 

Overall survival 
Rodel et al. (2018) 
[28] 

Defined from the beginning of CRT to the day of death from any reasons. 

Overall survival 
Schernberg et al. (2017) 
[29] 

The time between the diagnosis and the time of death. 

Overall survival 
Martin et al. (2019) 
[30] 

Calculated from start of CRT to the date of event or last follow-up. Assessed with death of any cause as the respective event. 

Overall survival 
Oehler-Janne et al. (2008) 
[31] 

Calculated from the beginning of RT to the day of death or the date of last follow-up. 

Overall survival 
Susko et al. (2020) 
[32] 

The time from last radiation treatment to date of death or last follow‐up. 

Overall survival 
Cardenas et al. (2017) 
[33] 

Not defined. 

Overall survival 
Bitterman et al. (2015) 
[34] 

The time from initiation of CRT to death due to any cause or most recent follow-up. 

Overall survival 
Fraunholz et al. (2013) 
[35] 

The time from start of CRT until death resulting from any cause, or the date of last follow-up visit. 

Overall survival 
Schernberg et al. (2017)* 
[36] 

Not defined 

Overall survival 
Hosni et al. (2018) 
[37] 

Not defined 

Overall survival 
Oblak et al. (2016) 
[38] 

The time interval from the beginning of the treatment to the death due to any cause. 

2 
Locoregional 
failure (n=11) 

Locoregional recurrence 
Shakir et al. (2020) 
[15] 

All failures at site of primary tumor, within the pelvis or inguinal nodes, with or without distant failure, including both patients who failed 
to achieve CR at 6 months and those occurring more than 6 months after completion of CRT after initial CR. 

Local failure 
Shakir et al. (2020) 
[15] 

Persistence or recurrence at the site of initial primary tumor. The site of failure was determined based on physical examination, imaging, 
and pathology. 

Regional failure 
Shakir et al. (2020) 
[15] 

Persistence or recurrence elsewhere in the pelvis or inguinal nodes at any point. The site of failure was determined based on physical 
examination, imaging, and pathology. 

Local relapse-free survival 
Martin et al. (2020) 
[21] 

Survival times were calculated from start of CRT to the date of respective events or last follow-up. Calculated using non-complete 
response at first restaging or locoregional recurrence after initial complete response as event.  
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Locoregional failure 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: residual disease, local and/or regional recurrences. 

Locoregional recurrence 
Rouard et al. (2019) 
[24] 

The time between the first day of RT and the date of first local or regional recurrence. 

Local recurrence 
Rouard et al. (2019) 
[24] 

The time between the first day of RT and the date of local recurrence. 

Regional recurrence 
Rouard et al. (2019) 
[24] 

The time between the first day of RT and the date of regional recurrence.  

Local control 
Call et al. (2016) 
[26] 

Defined as the time to local relapse. *No definition for locoregional failure given. Local and regional failure definitions stated separately 
only. 

Regional control 
Call et al. (2016) 
[26] 

Defined as the time to regional relapse. *No definition for locoregional failure given. Local and regional failure definitions stated 
separately only. 

Cumulative incidence of 
locoregional failure 

Balermpas et al. (2017) 
[27] 

Calculated from the beginning of CRT to non-complete response at restaging or locoregional tumor detection after initial complete 
response. 

Cumulative incidence of 
locoregional failure 

Rodel et al. (2018) 
[28] 

The time to non-complete response at restaging or locoregional tumour detection after initial complete response. All time-to-event end 
points were measured from the start of CRT.  

Locoregional control 
Schernberg et al. (2017) 
[29] 

The time between the diagnosis and the time of loco-regional recurrence. 

Locoregional control rate 
Martin et al. (2019) 
[30] 

Calculated from start of CRT to the date of event or last follow-up. Calculated using non-complete response at first restaging or 
locoregional recurrence after initial complete response as event. 

Freedom from local 
recurrence 

Susko et al. (2020) 
[32] 

The time from last radiation treatment to locally recurrent disease or last follow‐up. 

Locoregional control 
Oblak et al. (2016) 
[38] 

The time interval from the beginning of the treatment to the appearance of local and/or regional progression. 

3 
Disease-free 
survival (n=11) 

Disease-free survival 
Martin et al. (2020) 
[21] 

Survival times were calculated from start of CRT to the date of respective events or last follow-up. Calculated using the date of diagnosis 
of locoregional failure, distant metastases, or death of any cause. 

Disease-free survival 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: death from any cause or recurrence. 

Progression-free survival 
Brown et al. (2019) 
[23] 

Comprises of locoregional failure (LRF), new distant metastatic disease and death, based on which occurred first. 

Disease-free survival 
Rouard et al. (2019) 
[24] 

The time between the first day of RT and the date of local, regional or metastatic recurrence or death, whichever occurred first. 

Progression-free survival 
Franco et al. (2018) 
[25] 

The time interval between diagnosis and disease recurrence and/or progression at any site, death or lost at follow-up. 

Disease-free survival 
Balermpas et al. (2017) 
[27] 

Measured from the beginning of CRT to the day of locoregional failure or distant recurrence, or death from any cause. 

Progression-free survival 
Schernberg et al. (2017) 
[29] 

The time between the diagnosis and the time of recurrence or death. 

Disease-free survival 
Martin et al. (2019) 
[30] 

Calculated from start of CRT to the date of event or last follow-up. Calculated using the date of diagnosis of locoregional failure, distant 
metastases, or death of any cause. 

Disease-free survival 
Bitterman et al. (2015) 
[34] 

The time from initiation of CRT to the occurrence of local, regional, or distant recurrence, death, or most recent follow-up. 

Progression-free survival 
Schernberg et al. (2017)* 
[36] 

Not defined 

Disease-free survival 
Hosni et al. (2018) 
[37] 

Not defined 

4 
Distant failure 
(n=5) 

Distant relapse 
Shakir et al. (2020) 
[15] 

Development of disease outside of the pelvis or inguinal nodes independent of locoregional status at any point. Failure within the 
common iliac nodes was considered distant failure. 

Distant control 
Call et al. (2016) 
[26] 

Defined as the time to distant relapse. 
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Cumulative incidence of 
distance metastases 

Rodel et al. (2018) 
[28] 

Any occurrence of distant metastasis during CRT, at re-staging, or during follow-up. All time-to-event end points were measured from 
the start of CRT. 

Freedom from distant 
metastasis 

Susko et al. (2020) 
[32] 

The time from last radiation treatment to distant recurrence of disease or last follow‐up. 

Distant metastases control 
Schernberg et al. (2017)* 
[36] 

The time between the diagnosis and the time of distant metastasis. 

5 
Metastasis-free 
survival (n=5) 

Distant metastasis-free 
survival 

Martin et al. (2020) 
[21] 

Survival times were calculated from start of CRT to the date of respective events or last follow-up. Calculated using the date of diagnosis 
of distant metastases or death of any cause as event. 

Metastasis-free survival 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: death or distant relapse. 

Distant metastasis-free 
survival 

Martin et al. (2019) 
[30] 

Calculated from start of CRT to the date of event or last follow-up. Calculated using the date of diagnosis of distant metastases or death 
of any cause as event. 

Distant metastases-free 
survival 

Fraunholz et al. (2013) 
[35] 

The time from the start of CRT to the diagnosis of distant metastases or to death, or the date of last follow-up visit. 

Distant failure-free 
survival 

Schernberg et al. (2017)* 
[36] 

Not defined 

6 
Freedom from 
disease (n=4) 

Disease-free survival 
Shakir et al. (2020) 
[15] 

Event defined as either a failure to achieve CR at 6 months or subsequent relapse (local, regional, or distant). 

Time to failure 
Shakir et al. (2020) 
[15] 

Interval from start of CRT to date of detection of recurrence. Last follow-up was considered the last clinic visit or date of death. 

Disease-free survival 
Rodel et al. (2018) 
[28] 

Defined from the beginning of CRT to the day of locoregional failure or distant recurrence. 

Time to recurrence 
Oehler-Janne et al. (2008) 
[31] 

Calculated from the beginning of RT to the day of recurrence or the date of last follow-up. 

Disease-free survival 
Oblak et al. (2016) 
[38] 

The time interval from the beginning of the treatment to the appearance of local and/or regional progression and/or appearance of 
distant metastases. 

7 
Colostomy-free 
survival (n=4) 

Colostomy-free survival 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: death or definitive colostomy. A colostomy performed 
before radiotherapy was considered as a failure on the first day of treatment as long as it was not reversed later on. 

Colostomy-free survival 
Call et al. (2016) 
[26] 

Defined as the time to the date of a colostomy procedure. 

Colostomy-free survival 
Bitterman et al. (2015) 
[34] 

Measured from initiation of CRT to diverting colostomy or salvage abdominoperineal resection (APR), death, or most recent follow-up 
without surgery. 

Colostomy-free survival 
Hosni et al. (2018) 
[37] 

Not defined 

8 
Cancer-specific 
survival (n=3) 

Cancer-specific survival 
de Bellefon et al. (2020) 
[22] 

Calculated starting from the first day of radiotherapy and defined as follows: death from SCCAC. 

Cancer-specific survival 
Fraunholz et al. (2013) 
[35] 

The time from start of CRT until death resulting from the cancer, or the date of last follow-up visit. 

Disease-specific survival 
Oblak et al. (2016) 
[38] 

The time interval from the beginning of the treatment to the death because of cancer. 

9 
Local failure-free 
survival (n=2) 

Local recurrence-free 
survival 

Cardenas et al. (2017) 
[33] 

Not defined. 

Local failure-free survival 
Fraunholz et al. (2013) 
[35] 

The time from start of CRT to the first local tumor detection after CRT (ie. noncomplete response or local tumor recurrence after 
complete response) or to death (if the latter event occurred before a local failure was diagnosed), or the date of last follow-up visit. 
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3.8.5 Supplementary material E. All outcomes reported in each study, along with all factors tested in both univariable and 
multivariable analysis. 
 

# Study Outcomes 
Factors identified as prognostic using univariable 

analysis 
Factors identified as prognostic using multivariable 

analysis 

1 Shakir et al. (2020) [15] 
Locoregional recurrence, distant relapse, 
persistent disease, disease-free survival, 
overall survival 

Sex, performance status, T stage, N stage, RT completion, 
chemotherapy type 

Sex, N stage, RT completion, performance status 

2 Martin et al. (2020) [21] 
Local relapse free survival, distant 
metastasis-free survival, disease-free 
survival, overall survival 

T stage, N stage, gender, high grade acute organ toxicity T stage, N stage, gender, high grade acute organ toxicity 

3 de Bellefon et al. (2020) [22] 
Locoregional failure, overall survival, 
colostomy-free survival, disease-free 
survival, metastasis-free survival 

T stage, AJCC stage, N stage, exclusive RT, lack of MMC, 
RT breaks 

T stage, N stage, AJCC stage, sex, RT breaks, exclusive 
RT, lack of MMC, residual disease 

4 Brown et al. (2018) [23] Progression-free survival N/A - No univariable analysis performed. 

T stage, N stage, planned total RT dose, planned total RT 
fractions, Minimum CT value, GLCM entropy log10- PET, 
GLCM entropy log2- PET, NGLDM busyness- PET, total 
SMTV, total TLG 

5 Rouard et al. (2019) [24] 
Overall survival, locoregional recurrence, 
local recurrence, regional recurrence 

Age, immunodepression, definitive RT break, anal tumour 
boost technique, anal tumour total dose, performance 
status, active smoking, differentiation, lack of MMC, N 
stage, external iliac involvement at diagnosis, inguinal 
involvement at diagnosis, keratinisation, PLNA with NC 
delineation, involved LN not boosted, internal iliac 
delineation 

Age, immunodepression, performance status, active 
smoking, external iliac involvement at diagnosis, PLNA 
with NC delineation 

6 Franco et al. (2018) [25] 
Progression-free survival, overall 
survival 

Sex, N stage, basal haemoglobin levels, response to 
treatment 

Sex, N stage, basal haemoglobin levels, response to 
treatment 

7 Call et al. (2016) [26] 
Overall survival, local control, regional 
control, distant control, colostomy-free 
survival 

N stage, T stage N stage, T stage, RT duration 

8 Balermpas et al. (2017) [27] 
Cumulative incidence of locoregional 
failure, disease-free survival, overall 
survival 

Age, sex, T stage, N stage, HPV16 load, p16, CD8, PD-1, 
PD-L1, FOXP3, pCASP-8 

Age, sex, HPV16 load, p16, CD8, PD-1, PD-L1, FOXP3, 
pCASP-8 

9 Rodel et al. (2018) [28] 

Cumulative incidence of locoregional 
failure, cumulative incidence of 
distance metastases, disease-free 
survival, overall survival 

Gender, T stage, N stage, HPV16 load, RITA expression Gender, T stage, N stage, HPV16 load, RITA expression 

10 Schernberg et al. (2017) [29] 
Overall survival, progression-free 
survival, locoregional control, distant 
metastases control 

Leukocytosis, neutrophilia, anaemia, sex, performance 
status 

Leukocytosis, neutrophilia, anaemia, sex, performance 
status 

11 Martin et al. (2019) [30] 
Locoregional control rate, disease-free 
survival, distant metastasis-free survival, 
overall survival 

C reactive Protein to Albumin Ratio (CAR), gender, N 
stage 

C reactive Protein to Albumin Ratio (CAR), N stage 
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12 
Oehler-Janne et al. (2008) 
[31] 

Overall survival, time to recurrence N/A - No univariable analysis performed. N stage, severe acute skin toxicity 

13 Susko et al. (2020) [32] 
Freedom from local recurrence, freedom 
from distant metastasis, overall survival 

T stage, time from diagnosis to RT initiation, RT duration T stage, time from diagnosis to RT initiation, RT duration 

14 Cardenas et al. (2017) [33] 
Local recurrence–free survival, overall 
survival 

Pretreatment SUVmax, posttreatment SUVmax, 
ΔSUVmax, 5-FU/MMC chemotherapy, use of IMRT 

Posttreatment SUVmax, ΔSUVmax, 5-FU/MMC 
chemotherapy, use of IMRT 

15 Bitterman et al. (2015) [34] 
Overall survival, disease-free survival, 
colostomy-free survival 

N/A - No univariable analysis performed. T stage, use of IMRT 

16 Fraunholz et al. (2013) [35] 
Local failure-free survival, distant 
metastases-free survival, cancer-specific 
survival, overall survival 

Sex, T stage, N stage, grade, EGFR expression Sex, N stage, grade 

17 
Schernberg et al. (2017)* 
[36] 

Overall survival, progression-free 
survival, locoregional failure-free 
survival, distant failure-free survival 

Leukocytosis, neutrophilia, anaemia, T stage, N stage, 
CRT duration 

Leukocytosis, neutrophilia, anaemia, N stage, CRT 
duration 

18 Hosni et al. (2018) [37] 
Colostomy-free survival, disease-free 
survival, colostomy-free survival 

N/A - Univariable analysis performed but no significant 
prognostic factors identified 

T stage, sex, age, anal canal cancer with perianal 
extension 

19 Oblak et al. (2016) [38] 
Locoregional control, disease-free 
survival, disease-specific survival, 
overall survival 

Pretreatment Hb level, mean on-treatment Hb level, end-
of-treatment Hb level, performance status, T stage, N 
stage, overall disease stage, histologic tumour type, 
tumour site, blood transfusion, overall ratiation time, 
operation 

Pre-treatment Hb level, overall disease stage 
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3.8.6 Supplementary material F. Clinical factors identified as prognostic for worse outcomes through univariable and multivariable 
analysis, stratified by outcome. Where available, factor effects and parameterisation used for analysis are also included. 
 

Univariable analysis 

Outcome  
(number of studies 
reporting outcome) 

Risk factor 
Times 

identified as 
prognostic 

Total times 
tested 

Factor effect  
(HR, 95% CI) 

Note Study 

Overall survival (n=17) 

Higher N stage 10 16 

3.40 (1.59-7.27) Multiple categories (N0,N1,N2,N3) Shakir et al. (2020) [15] 

N/A N0 vs N+ Martin et al. (2020) [21] 

N/A N0 vs N+ de Bellefon et al. (2020) [22] 

2.11 (1.31-2.90) N0 vs N+ Franco et al. (2018) [25] 

N/A Multiple categories (N0,N1,N2,N3) Call et al. (2016) [26] 

N/A N0 vs N+ Balermpas et al. (2017) [27] 

N/A N0 vs N+ Rodel et al. (2018) [28] 

N/A N0 vs N+ Fraunholz et al. (2013) [35] 

N/A N0 vs N+ Schernberg et al. (2017)* [36] 

N/A N0 vs N+ Oblak et al. (2016) [38] 

Higher T stage 9 16 

4.15 (1.21-14.25) Multiple categories (T1,T2,T3,T4) Shakir et al. (2020) [15] 

N/A T1-2 vs T3-4 Martin et al. (2020) [21] 

N/A T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

N/A T1-2 vs T3-4 Balermpas et al. (2017) [27] 

N/A T1-2 vs T3-4 Rodel et al. (2018) [28] 

N/A T1-2 vs T3-4 Fraunholz et al. (2013) [35] 

N/A T1-2 vs T3-4 Schernberg et al. (2017)* [36] 

3.59 (1.30-9.88) T1-2 vs T3-4 Hosni et al. (2018) [37] 

N/A T1-3 vs T4 Oblak et al. (2016) [38] 

Male sex 7 12 

2.93 (1.64-5.24) Female/Male Shakir et al. (2020) [15] 

N/A Female/Male Martin et al. (2020) [21] 

2.23 (1.42-3.05) Female/Male Franco et al. (2018) [25] 

N/A Female/Male Balermpas et al. (2017) [27] 

N/A Female/Male Rodel et al. (2018) [28] 

N/A Female/Male Schernberg et al. (2017) [29] 

3.38 (1.09-10.50) Female/Male Hosni et al. (2018) [37] 

Worse performance status 3 4 

11.61 (2.56-52.75) 
Multiple categories 
(PS0,PS1,PS2,PS3) 

Shakir et al. (2020) [15] 

N/A 0 vs 1/2 Schernberg et al. (2017) [29] 

N/A 0 vs 1-3 Oblak et al. (2016) [38] 

Older age 3 4 

2.15 (1.16-3.98) <65 vs ≥65 Rouard et al. (2019) [24] 

N/A ≤59 vs >59 Balermpas et al. (2017) [27] 

1.05 (1.00-1.09) Continuous Hosni et al. (2018) [37] 

Incomplete/interrupted RT or breaks 2 2 
6.21 (2.98-12.95) No/Yes Shakir et al. (2020) [15] 

3.25 (1.15-9.13) No/Yes Rouard et al. (2019) [24] 

Longer CRT duration 2 5 N/A No/Yes Schernberg et al. (2017)* [36] 
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N/A ≤ 1.08 months vs > 1.08 months Oblak et al. (2016) [38] 

Immunodepression 1 1 3.70 (1.30-10.51) Yes/No Rouard et al. (2019) [24] 

External RT 1 2 2.38 (1.05-5.55) Brachytherapy vs External RT Rouard et al. (2019) [24] 

Lower anal tumour total dose 1 3 2.04 (1.04-4.00) ≥64Gy vs <64Gy Rouard et al. (2019) [24] 

No response to treatment 1 1 6.26 (2.73-14.40) Yes/No Franco et al. (2018) [25] 

Diagnosis to RT initiation 1 1 1.02 (1.00-1.04) Continuous Susko et al. (2020) [32] 

Lack of 5-FU/MMC chemotherapy 1 1 12.5 No/Yes Cardenas et al. (2017) [33] 

Higher tumour grade 1 5 N/A G1-2 vs G3 Fraunholz et al. (2013) [35] 

Anal canal cancer with perianal 
extension 

1 1 3.04 (1.10-8.38) No/Yes Hosni et al. (2018) [37] 

Larger maximum primary tumor size 1 3 1.16 (1.02-1.32) Continuous Hosni et al. (2018) [37] 

Higher AJCC stage 1 1 N/A I/II vs IIIA/IIIB Oblak et al. (2016) [38] 

Histologic tumour type 1 2 N/A Basaloid vs squamous Oblak et al. (2016) [38] 

Blood transfusion 1 1 N/A No/Yes Oblak et al. (2016) [38] 

Operation 1 1 N/A No/Yes Oblak et al. (2016) [38] 

Locoregional failure 
(n=11) 

Higher N stage 7 11 

3.05 (1.63-5.73) Multiple categories (N0,N1,N2,N3) Shakir et al. (2020) [15] 

N/A N0 vs N+ Martin et al. (2020) [21] 

N/A Multiple categories (N0,N1,N2,N3) Call et al. (2016) [26] 

N/A N0 vs N+ Balermpas et al. (2017) [27] 

N/A N0 vs N+ Rodel et al. (2018) [28] 

N/A N0 vs N+ Martin et al. (2019) [30] 

N/A N0 vs N+ Oblak et al. (2016) [38] 

Higher T stage 7 11 

5.17 (1.55-17.28) Multiple categories (T1,T2,T3,T4) Shakir et al. (2020) [15] 

N/A T1-2 vs T3-4 Martin et al. (2020) [21] 

N/A T1-2 vs T3-4 Call et al. (2016) [26] 

N/A T1-2 vs T3-4 Balermpas et al. (2017) [27] 

N/A T1-2 vs T3-4 Rodel et al. (2018) [28] 

4.43 (1.93-10.16) Multiple categories (T1,T2,T3,T4) Susko et al. (2020) [32] 

N/A T1-3 vs T4 Oblak et al. (2016) [38] 

Male sex 5 9 

1.78 (1.09-2.91) Female/Male Shakir et al. (2020) [15] 

N/A Female/Male Martin et al. (2020) [21] 

N/A Female/Male Balermpas et al. (2017) [27] 

N/A Female/Male Rodel et al. (2018) [28] 

N/A Female/Male Schernberg et al. (2017) [29] 

Worse performance status 4 4 

1.90 (1.14-3.19) 
Multiple categories 
(PS0,PS1,PS2,PS3) 

Shakir et al. (2020) [15] 

3.01 (1.05-8.66) No/Yes Rouard et al. (2019) [24] 

N/A 0 or 1 vs ≥2 Schernberg et al. (2017) [29] 

N/A 0 vs 1-3 Oblak et al. (2016) [38] 

Longer RT duration 2 2 
1.05 (1.02-1.08) Continuous Susko et al. (2020) [32] 

N/A ≤ 1.08 months vs > 1.08 months Oblak et al. (2016) [38] 

Incomplete/interrupted RT 1 2 5.29 (2.83-9.90) No/Yes Shakir et al. (2020) [15] 

Active smoking 1 1 2.22 (1.07-4.61) No/Yes Rouard et al. (2019) [24] 

Differentiation 1 1 4.31 (1.25-14.89) Poorly/moderately/well differentiated Rouard et al. (2019) [24] 

Lack of MMC chemotherapy 1 1 2.56 (1.16-5.88) Yes/No Rouard et al. (2019) [24] 
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Immunodepression 1 1 3.54 (1.06-11.83) No/Yes Rouard et al. (2019) [24] 

External RT 1 1 3.57 (1.05-12.5) Brachytherapy vs External RT Rouard et al. (2019) [24] 

Higher number of involved LN at 
diagnosis 

1 1 3.69 (1.24-11.04) <2 vs ≥2 Rouard et al. (2019) [24] 

External iliac involvement at diagnosis 1 1 4.65 (1.55-13.93) No/Yes Rouard et al. (2019) [24] 

Inguinal involvement at diagnosis 1 1 3.16 (1.10-9.11) No/Yes Rouard et al. (2019) [24] 

No keratinisation 1 1 3.13 (1.03-9.10) Yes/No Rouard et al. (2019) [24] 

Higher PLNA with NC delineation 1 1 5.77 (1.29-25.78) <10 vs ≥10 Rouard et al. (2019) [24] 

Higher number of involved LN not 
boosted 

1 1 3.30 (1.03-10.52) 0 or 1 vs ≥2 Rouard et al. (2019) [24] 

NC Internal iliac delineation 1 1 4.20(1.17-15.08) Conforming vs NC Rouard et al. (2019) [24] 

Longer time to RT initiation from 
diagnosis 

1 1 1.05 (1.02-1.08) Continuous Susko et al. (2020) [32] 

Higher AJCC stage 1 1 N/A I/II vs IIIA/IIIB Oblak et al. (2016) [38] 

Squamous histologic tumour type 1 1 N/A Basaloid vs squamous Oblak et al. (2016) [38] 

Operation 1 1 N/A No/Yes Oblak et al. (2016) [38] 

Disease-free survival 
(n=11) 

Male sex 5 8 

N/A Female/Male Martin et al. (2020) [21] 

N/A Female/Male Balermpas et al. (2017) [27] 

N/A Female/Male Schernberg et al. (2017) [29] 

N/A Female/Male Martin et al. (2019) [30] 

2.33 (1.00-5.46) Female/Male Hosni et al. (2018) [37] 

Higher N stage 4 9 

N/A N0 vs N+ Martin et al. (2020) [21] 

N/A N0 vs N+ de Bellefon et al. (2020) [22] 

N/A N0 vs N+ Balermpas et al. (2017) [27] 

N/A N0 vs N+ Martin et al. (2019) [30] 

Higher T stage 4 10 

N/A T1-2 vs T3-4 Martin et al. (2020) [21] 

N/A T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

N/A T1-2 vs T3-4 Rodel et al. (2018) [28] 

6.25 (2.70-17.40) T1-2 vs T3-4 Hosni et al. (2018) [37] 

Worse performance status 1 2 N/A 0 vs 1/2 Schernberg et al. (2017) [29] 

High grade acute organ toxicity 1 1 N/A No/Yes Martin et al. (2020) [21] 

Anal canal cancer with perianal 
extension 

1 1 2.92 (1.26-6.75) No/Yes Hosni et al. (2018) [37] 

Larger maximum primary tumor size 1 2 1.23 (1.12-1.34) Continuous Hosni et al. (2018) [37] 

Distant failure (n=5) 

Male sex 1 3 N/A Female/Male Rodel et al. (2018) [28] 

Higher T stage 1 5 N/A T1-2 vs T3-4 Rodel et al. (2018) [28] 

Higher N stage 1 5 N/A N0 vs N+ Rodel et al. (2018) [28] 

Worse performance status 1 1 N/A 0 vs 1/2 Schernberg et al. (2017) [29] 

Metastasis-free 
survival (n=5) 

Higher T stage 5 5 

N/A T1-2 vs T3-4 Martin et al. (2020) [21] 

N/A T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

N/A T1-2 vs T3-4 Martin et al. (2019) [30] 

N/A T1-2 vs T3-4 Fraunholz et al. (2013) [35] 

N/A T1-2 vs T3-4 Schernberg et al. (2017)* [36] 

Higher N stage 4 5 
N/A N0 vs N+ Martin et al. (2020) [21] 

N/A N0 vs N+ Martin et al. (2019) [30] 
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N/A N0 vs N+ Fraunholz et al. (2013) [35] 

N/A N0 vs N+ Schernberg et al. (2017)* [36] 

Male sex 2 4 
N/A Female/Male Martin et al. (2020) [21] 

N/A Female/Male Martin et al. (2019) [30] 

Higher tumour grade 1 3 N/A In HIV- patients only Fraunholz et al. (2013) [35] 

Longer CRT duration 1 1 N/A <50 days vs >50 days Schernberg et al. (2017)* [36] 

Freedom from disease 
(n=4) 

Higher N stage 4 4 

4.02 (2.25-7.17) Multiple categories (N0,N1,N2,N3) Shakir et al. (2020) [15] 

N/A N0 vs N+ Rodel et al. (2018) [28] 

N/A N0 vs N+ Oblak et al. (2016) [38] 

N/A In HIV- patients Oehler-Janne et al. (2008) [31] 

Male sex 2 3 
1.85 (1.18-2.92) Female/Male Shakir et al. (2020) [15] 

N/A Female/Male Rodel et al. (2018) [28] 

Higher T stage 2 3 
4.48 (1.56-12.87) Multiple categories (T1,T2,T3,T4) Shakir et al. (2020) [15] 

N/A T1-3 vs T4 Oblak et al. (2016) [38] 

Worse performance status 1 3 1.94 (1.21-3.12) 
Multiple categories 
(PS0,PS1,PS2,PS3) 

Shakir et al. (2020) [15] 

Incomplete/interrupted RT 1 1 4.98 (2.74-9.05) No/Yes Shakir et al. (2020) [15] 

Severe acute skin toxicity 1 1 N/A No/Yes In HIV- patients Oehler-Janne et al. (2008) [31] 

Higher AJCC stage 1 1 N/A I/II vs IIIA/IIIB Oblak et al. (2016) [38] 

Squamous histologic tumour type 1 2 N/A Basaloid vs squamous Oblak et al. (2016) [38] 

Longer overall radiation time 1 1 N/A ≤ 1.08 months vs > 1.08 months Oblak et al. (2016) [38] 

Operation 1 1 N/A No/Yes Oblak et al. (2016) [38] 

Colostomy-free 
survival (n=4) 

Higher T stage 3 4 

N/A T3-4 vs T1-2 de Bellefon et al. (2020) [22] 

N/A T3-4 vs T1-2 Call et al. (2016) [26] 

3.83 (1.68-8.77) T3-4 vs T1-2 Hosni et al. (2018) [37] 

Anal canal cancer with perianal 
extension 

1 1 3.47 (1.56-7.74) No/Yes Hosni et al. (2018) [37] 

Larger maximum primary tumour size 1 1 1.18 (1.08-1.29) Continuous Hosni et al. (2018) [37] 

Cancer-specific 
survival (n=3) 

Higher T stage 2 3 
N/A T1-2 vs T3-4 Fraunholz et al. (2013) [35] 

N/A T1-3 vs T4 Oblak et al. (2016) [38] 

Higher N stage 2 3 
N/A N0 vs N+ Fraunholz et al. (2013) [35] 

N/A N0 vs N+ Oblak et al. (2016) [38] 

Higher tumour grade 1 1 N/A G1-2 vs G3 Fraunholz et al. (2013) [35] 

Higher AJCC stage 1 3 N/A I/II vs IIIA/IIIB Oblak et al. (2016) [38] 

Longer overall radiation time 1 1 N/A ≤ 1.08 months vs > 1.08 months Oblak et al. (2016) [38] 

Operation 1 1 N/A No/Yes Oblak et al. (2016) [38] 

Local failure-free 
survival (n=2) 

Lack of 5-FU/MMC chemotherapy 1 1 4.76 No/Yes Cardenas et al. (2017) [33] 

Lack of IMRT radiotherapy 1 1 5.56 No/Yes Cardenas et al. (2017) [33] 

Male sex 1 1 N/A Female/Male Fraunholz et al. (2013) [35] 

Higher T stage 1 2 N/A T1-2 vs T3-4 Fraunholz et al. (2013) [35] 

Higher N stage 1 2 N/A N0 vs N+ Fraunholz et al. (2013) [35] 

Higher tumour grade 1 1 N/A G1-2 vs G3 Fraunholz et al. (2013) [35] 
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Multivariable analysis 

Outcome (number of 
studies reporting 

outcome) 
Factor Times identified as prognostic 

Factor effect 
(HR, 95% CI) 

Note Study 

Overall survival (n=17) 

Male sex 7 

4.00 (2.11-7.56) Female/Male Shakir et al. (2020) [15] 

1.92 (1.10-3.45) Female/Male Martin et al. (2020) [21] 

3.66 (1.56-8.60) Female/Male Franco et al. (2018) [25] 

3.13 (1.47-6.66) Female/Male Balermpas et al. (2017) [27] 

3.05 (1.42-6.55) Female/Male Rodel et al. (2018) [28] 

4.80 (1.60-14.50) Female/Male Schernberg et al. (2017) [29] 

4.50 (1.42-14.27) Female/Male Hosni et al. (2018) [37] 

Higher T stage 3 

4.91 (2.25-10.72) T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

2.88 (1.12-7.46) T1-2 vs T3-4 Bitterman et al. (2015) [34] 

4.98 (1.69-14.72) T1-2 vs T3-4 Hosni et al. (2018) [37] 

Older age 3 

2.43 (1.29-4.60) <65 vs ≥65 Rouard et al. (2019) [24] 

2.32 (1.13-4.73) ≤59 vs >59 Balermpas et al. (2017) [27] 

1.05 (1.00-1.09 Continuous Hosni et al. (2018) [37] 

Higher N stage 3 

2.25 (1.00-5.17) N0 vs N+ Franco et al. (2018) [25] 

1.88 (1.16-3.10) Multiple categories (N0,N1,N2,N3) Call et al. (2016) [26] 

5.80 N0 vs N+ Schernberg et al. (2017)* [36] 

Higher AJCC stage 2 
2.82 (1.22-6.53) I/II/III vs IV de Bellefon et al. (2020) [22] 

2.23 (1.17-4.26) I/II vs IIIA/IIIB Oblak et al. (2016) [38] 

Worse performance status 1 10.71 (1.94-58.95) 
Multiple categories 
(PS0,PS1,PS2,PS3) 

Shakir et al. (2020) [15] 

Incomplete/interrupted RT 1 4.22 (1.78-10.00) No/Yes Shakir et al. (2020) [15] 

Exclusive RT 1 3.38 (1.29-10.72) No/Yes de Bellefon et al. (2020) [22] 

Lack of MMC 1 1.88 (0.92-3.85) No/Yes de Bellefon et al. (2020) [22] 

Immunodepression 1 5.05 (1.72-14.80) No/Yes Rouard et al. (2019) [24] 

No response to treatment 1 6.96 (2.96–16.50) Yes/No Franco et al. (2018) [25] 

Longer diagnosis to RT initiation 1 1.02 (1.00-1.05) Continuous Susko et al. (2020) [32] 

Lack of 5-FU/MMC chemotherapy 1 9.09 No/Yes Cardenas et al. (2017) [33] 

Lack of IMRT radiotherapy 1 4.00 (1.30-12.5) No/Yes Bitterman et al. (2015) [34] 

Locoregional failure 
(n=11) 

Male sex 4 

2.08 (1.24-3.48) Female/Male Shakir et al. (2020) [15] 

2.22 (1.16-4.38) Female/Male Martin et al. (2020) [21] 

2.56 (1.04-6.25) Female/Male Balermpas et al. (2017) [27] 

3.40 (1.30-9.40) Female/Male Schernberg et al. (2017) [29] 

Higher N stage 3 

2.23 (1.13-4.39) Multiple categories (N0,N1,N2,N3) Shakir et al. (2020) [15] 

3.00 (1.55-5.81) N0 vs N+ Martin et al. (2020) [21] 

3.58 (1.25-10.26) N0 vs N+ Martin et al. (2019) [30] 

Incomplete/interrupted RT or breaks 2 
4.96 (2.40-10.27) No/Yes Shakir et al. (2020) [15] 

2.47 (1.15-5.30) No/Yes de Bellefon et al. (2020) [22] 
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Worse performance status 2 
3.82 (1.31-11.09) <2 vs ≥2 Rouard et al. (2019) [24] 

5.50 (2.20-14.00) 0 vs 1/2 Schernberg et al. (2017) [29] 

Exclusive RT 1 3.41 (1.21-9.57) No/Yes de Bellefon et al. (2020) [22] 

Lack of MMC 1 3.11 (1.28-7.56) No/Yes de Bellefon et al. (2020) [22] 

Active smoking 1 2.31 (1.11-4.82) No/Yes Rouard et al. (2019) [24] 

Immunodepression 1 7.25 (1.54-34.20) No/Yes Rouard et al. (2019) [24] 

External iliac involvement at diagnosis 1 7.89 (2.54-24.56) No/Yes Rouard et al. (2019) [24] 

Higher PLNA with NC delineation 1 9.09 (1.96-42.15) <10 vs ≥10 Rouard et al. (2019) [24] 

Higher T stage 1 4.37 (1.83-10.47) Multiple categories (T1,T2,T3,T4) Susko et al. (2020) [32] 

Longer time to RT initiation from 
diagnosis 

1 1.06 (1.03-1.010) Continuous Susko et al. (2020) [32] 

Disease-free survival 
(n=11) 

Male sex 4 

2.13 (1.19-3.85) Female/Male Martin et al. (2020) [21] 

2.27 (2.38-4.35) Female/Male Balermpas et al. (2017) [27] 

3.60 (1.50-8.60) Female/Male Schernberg et al. (2017) [29] 

2.46 (1.04-5.73) Female/Male Hosni et al. (2018) [37] 

Higher T stage 3 

2.57 (1.42-4.66) Categorical de Bellefon et al. (2020) [22] 

7.02 (2.76-17.83) T1-2 vs T3-4 Hosni et al. (2018) [37] 

NA 
Multiple categories (T1,T2,T3,T4), 
variable weighting reported (-0.011) 

Brown et al. (2019) [23] 

Higher N stage 2 

3.06 (1.70-5.49) N0 vs N+ Martin et al. (2020) [21] 

NA 
Multiple categories (N0,N1,N2,N3), 
variable weighting reported (-0.019) 

Brown et al. (2019) [23] 

Lower planned total RT dose 1 NA 
Continuous, variable weighting 
reported (0.007) 

Brown et al. (2019) [23] 

Fewer planned total RT fractions 1 NA 
Continuous, variable weighting 
reported (0.012) 

Brown et al. (2019) [23] 

High grade acute organ toxicity 1 2.13 (1.20-3.70) No/Yes Martin et al. (2020) [21] 

Higher AJCC stage 1 2.23 (0.99-5.01) I/II/III vs IV de Bellefon et al. (2020) [22] 

Worse performance status 1 4.90 (2.10-11.50) 0 vs 1/2 Schernberg et al. (2017) [29] 

Longer CRT duration 1 33.33 <50 days vs >50 days Schernberg et al. (2017)* [36] 

Distant failure (n=5) 
Male sex 1 3.83 (1.20-12.27) Female/Male Rodel et al. (2018) [28] 

Higher T stage 1 4.24 (1.43-12.57) T1-2 vs T3-4 Rodel et al. (2018) [28] 

Metastasis-free 
survival (n=5) 

Male sex 2 
4.08 (1.63-10.19) Female/Male Martin et al. (2020) [21] 

3.87 (1.08-13.84) Female/Male Fraunholz et al. (2013) [35] 

Higher T stage 2 
3.54 (1.52-8.23) T1-2 vs T3-4 Martin et al. (2020) [21] 

2.61 (1.45-4.70) T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

Higher N stage 2 
2.41 (1.0405.62) N0 vs N+ Martin et al. (2020) [21] 

4.49 (1.20-16.80) N0 vs N+ Martin et al. (2019) [30] 

Higher AJCC stage 1 3.05 (1.41-6.62) I/II/III vs IV de Bellefon et al. (2020) [22] 

Higher tumour grade 1 5.88 (1.72-20.00) G1-2 vs G3 Fraunholz et al. (2013) [35] 

Freedom from disease 
(n=4) 

Male sex 2 
2.16 (1.34-3.48) Female/Male Shakir et al. (2020) [15] 

2.16 (1.09-4.26) Female/Male Rodel et al. (2018) [28] 

Higher N stage 1 2.73 (1.43-5.21) Multiple categories (N0,N1,N2,N3) Shakir et al. (2020) [15] 

Incomplete/interrupted RT 1 4.50 (2.26-8.97) No/Yes Shakir et al. (2020) [15] 

Colostomy-free 
survival (n=4) 

Higher T stage 3 
4.10 (2.23-7.52) T1-2 vs T3-4 de Bellefon et al. (2020) [22] 

4.00 (1.03-17.09) T1-2 vs T3-4 Call et al. (2016) [26] 
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3.65 (1.59-8.37) T1-2 vs T3-4 Hosni et al. (2018) [37] 

Male sex 1 1.90 (1.10-3.10) Female/Male de Bellefon et al. (2020) [22] 

Residual disease 1 7.78 (3.41-17.77) No/Yes de Bellefon et al. (2020) [22] 

Exclusive RT 1 3.03 (1.39-6.57) No/Yes de Bellefon et al. (2020) [22] 

Anal canal cancer with perianal 
extension 

1 3.17 (1.42-7.09) No/Yes Hosni et al. (2018) [37] 

Cancer-specific 
survival (n=3) 

Male sex 1 4.13 (1.24-13.63) Female/Male Fraunholz et al. (2013) [35] 

Higher N stage 1 6.25 (1.51-25.00) N0 vs N+ Fraunholz et al. (2013) [35] 

Higher AJCC stage 1 3.52 (1.38-9.03) I/II vs IIIA/IIIB Oblak et al. (2016) [38] 
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3.8.7 Supplementary material G. Biomarkers identified as prognostic for worse outcomes through univariable and multivariable 
analysis, stratified by outcome. Where available, factor effects and parameterisation used for analysis are also included. 
 

Univariable analysis 

Outcome 
(number of 

studies 
reporting 
outcome) 

Factor 

Times 
identified 

as 
prognostic 

Total times 
tested 

Factor effect 
(HR, 95% CI) 

Note Study 

Overall survival 
(n=17) 

Lower HPV16 load 2 3 
N/A >/≤ median Balermpas et al. (2017) [27] 

N/A >/≤ median Rodel et al. (2018) [28] 

Neutrophilia 2 2 
N/A Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Anaemia 2 2 
N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017) [29] 

N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017)* [36] 

Lower basal heamoglobin levels 1 1 2.00 (1.20-3.33) Continuous Franco et al. (2018) [25] 

Lower CD8 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower PD-1 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower RITA expression 1 1 N/A >/≤ WS6 Rodel et al. (2018) [28] 

Leukocytosis 1 2 N/A Present (leukocytes >10G/L) vs absent Schernberg et al. (2017) [29] 

High C reactive protein to albumin ratio 1 1 N/A ≤/> 0.117  Martin et al. (2019) [30] 

Lower pre-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower mean on-treatment heamoglobin 
levels 

1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower end-of-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Locoregional 
failure (n=11) 

Lower HPV16 load 2 3 
N/A >/≤ median Balermpas et al. (2017) [27] 

N/A >/≤ median Rodel et al. (2018) [28] 

Lower p16 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower CD8 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower PD-1 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower PD-L1 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Weaker FOXP3 phosporylation 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Weaker pCasp-8 phosporylation 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower RITA expression 1 1 N/A >/≤ WS6 Rodel et al. (2018) [28] 

Leukocytosis 1 1 N/A Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

Neutrophilia 1 1 N/A Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

Anaemia 1 1 N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017) [29] 

High C reactive protein to albumin ratio 1 1 N/A ≤/> 0.117  Martin et al. (2019) [30] 

Lower pre-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower mean on-treatment heamoglobin 
levels 

1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower end-of-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Leukocytosis 2 2 N/A Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 
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Disease-free 
survival (n=11) 

N/A Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 2 2 
N/A Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Lower CD8 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower PD-1 expression 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Weaker FOXP3 phosporylation 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Weaker pCasp-8 phosporylation 1 1 N/A >/≤ median Balermpas et al. (2017) [27] 

Lower HPV16 load 1 2 N/A >/≤ median Balermpas et al. (2017) [27] 

Anaemia 1 2 N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017) [29] 

High C reactive protein to albumin ratio 1 1 N/A ≤/> 0.117  Martin et al. (2019) [30] 

Distant failure 
(n=5) 

Lower HPV16 load 1 1 N/A >/≤ median Rodel et al. (2018) [28] 

Lower RITA expression 1 1 N/A >/≤ WS6 Rodel et al. (2018) [28] 

Leukocytosis 1 1 N/A Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

Neutrophilia 1 1 N/A Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

Metastasis-free 
survival (n=5) 

High C reactive protein to albumin ratio 1 1 N/A ≤/> 0.117  Martin et al. (2019) [30] 

Leukocytosis 1 1 N/A Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 1 1 N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Anaemia 1 1 N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017)* [36] 

Freedom from 
disease (n=4) 

Lower HPV16 load 1 1 N/A >/≤ median Rodel et al. (2018) [28] 

Lower RITA expression 1 1 N/A >/≤ WS6 Rodel et al. (2018) [28] 

Lower pre-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower end-of-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Cancer-specific 
survival (n=3) 

EGFR expression 1 1 N/A Intermediate/Intense vs Absent/Weak Fraunholz et al. (2013) [35] 

Lower pre-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Lower end-of-treatment heamoglobin levels 1 1 N/A > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Local failure-
free survival 
(n=2) 

Leukocytosis 1 1 N/A Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 1 1 N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Multivariable analysis 

Outcome 
(number of 

studies 
reporting 
outcome) 

Factor 

Times 
identified 

as 
prognostic 

Total times 
tested 

Factor effect 
(HR, 95% CI) 

Note Study 

Overall survival 
(n=17) 

Leukocytosis 2 
4.60 (1.40-14.90) Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

19.90 Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 2 
4.40 (1.30-14.80) Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

22.70 Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Lower basal heamoglobin levels 1 1.89 (1.15-3.03) Continuous Franco et al. (2018) [25] 

Lower HPV16 load 1 2.27 (1.05-5.00) >/≤ median Balermpas et al. (2017) [27] 

Lower RITA expression 1 3.19 (1.29-7.86) >/≤ WS6 Rodel et al. (2018) [28] 

High C reactive protein to albumin ratio 1 4.47 (1.53-13.03) ≤/> 0.117  Martin et al. (2019) [30] 

Anaemia 1 5.40 Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017)* [36] 
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Lower pre-treatment heamoglobin levels 1 2.38 (1.08-5.26) > 120 g/L vs ≤ 120 g/L Oblak et al. (2016) [38] 

Locoregional 
failure (n=11) 

Lower HPV16 load 2 
3.57 (1.29-10) >/≤ median Balermpas et al. (2017) [27] 

4.51 (1.15-13.46) >/≤ median Rodel et al. (2018) [28] 

Lower p16 expression 1 3.13 (1.30-7.14) >/≤ median Balermpas et al. (2017) [27] 

Lower CD8 expression 1 4.00 (1.20-14.29) >/≤ median Balermpas et al. (2017) [27] 

Lower PD-1 expression 1 3.45 (1.39-8.33) >/≤ median Balermpas et al. (2017) [27] 

Lower PD-L1 expression 1 3.70 (1.11-12.5) >/≤ median Balermpas et al. (2017) [27] 

Lower RITA expression 1 4.35 (1.45-13.02) >/≤ WS6 Rodel et al. (2018) [28] 

Leukocytosis 1 4.50 (1.30-15.60) Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

Neutrophilia 1 3.60 (1.20-11.60) Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

Anaemia 1 4.10 (1.30-12.40) Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017) [29] 

Disease-free 
survival (n=11) 

Leukocytosis 2 
7.10 (2.50-20.20) Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

6.90 Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 2 
5.00 (1.70-14.50) Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

7.60 Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Anaemia 2 
5.30 (1.90-14.70) Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017) [29] 

2.50 Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017)* [36] 

Lower CD8 expression 1 2.38 (1.15-5.00) >/≤ median Balermpas et al. (2017) [27] 

Lower PD-1 expression 1 2.17 (1.16-4.00) >/≤ median Balermpas et al. (2017) [27] 

Weaker FOXP3 phosporylation 1 1.85 (1.00-3.45) >/≤ median Balermpas et al. (2017) [27] 

Weaker pCasp-8 phosporylation 1 2.04 (1.06-3.84) >/≤ median Balermpas et al. (2017) [27] 

Lower HPV16 load 1 2.50 (1.27-5.00) >/≤ median Balermpas et al. (2017) [27] 

Distant failure 
(n=5) 

Leukocytosis 1 4.00 (1.60-10.30) Absent vs present (leukocytes >10G/L) Schernberg et al. (2017) [29] 

Neutrophilia 1 3.30 (1.20-9.10) Absent vs present (neutrophils >7G/L) Schernberg et al. (2017) [29] 

Metastasis-free 
survival (n=5) 

Leukocytosis 1 N/A Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 1 N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 

Anaemia 1 N/A Absent vs present (hemoglobin count < 13.0 g/dL) Schernberg et al. (2017)* [36] 

Freedom from 
disease (n=4) 

Lower HPV16 load 1 2.28 (1.08-4.79) >/≤ median Rodel et al. (2018) [28] 

Lower RITA expression 1 2.19 (1.07-4.47) >/≤ WS6 Rodel et al. (2018) [28] 

Local failure-
free survival 
(n=2) 

Leukocytosis 1 N/A Absent vs present (leukocytes >10000/mm3) Schernberg et al. (2017)* [36] 

Neutrophilia 1 N/A Absent vs present (neutrophils >7500/mm3) Schernberg et al. (2017)* [36] 
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3.8.8 Supplementary material H. Imaging factors identified as prognostic for worse outcomes through univariable and multivariable 
analysis, stratified by outcome. Where available, factor effects are also included. 
 

Univariable analysis 

Outcome  
(number of studies reporting 

outcome) 
Factor 

Times identified 
as prognostic 

Total times 
tested 

Factor effect 
(HR) 

Study 

Overall survival (n=17) 
Higher posttreatment SUVmax 1 1 3.23 Cardenas et al. (2017) [33] 

Smaller ΔSUVmax 1 1 4.35 Cardenas et al. (2017) [33] 

Local failure-free survival (n=2) 
Lower pretreatment SUVmax 1 1 3.57 Cardenas et al. (2017) [33] 

Higher posttreatment SUVmax 1 1 4.35 Cardenas et al. (2017) [33] 

Multivariable analysis 

Outcome  
(number of studies reporting 

outcome) 
Factor Times identified as prognostic Factor effect Study 

Overall survival (n=17) 
Higher posttreatment SUVmax 1 2.77 Cardenas et al. (2017) [33] 

Smaller ΔSUVmax 1 3.33 Cardenas et al. (2017) [33] 

Distant failure (n=5) 

Minimum CT value 1 N/A Brown et al. (2019) [23] 

GLCM entropy log10- PET 1 N/A Brown et al. (2019) [23] 

GLCM entropy log2- PET 1 N/A Brown et al. (2019) [23] 

NGLDM busyness- PET 1 N/A Brown et al. (2019) [23] 

Total SMTV 1 N/A Brown et al. (2019) [23] 

Total TLG 1 N/A Brown et al. (2019) [23] 

Local failure-free survival (n=1) Higher posttreatment SUVmax 1 5.88 Cardenas et al. (2017) [33] 
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Chapter 4 - Predicting outcomes in anal cancer patients using 

multi-centre data and distributed learning - a proof-of-concept 

study 

 

4.1 Abstract 

4.1.1 Background and purpose  

Predicting outcomes is challenging in rare cancers. Single-institutional datasets are 

often small and multi-institutional data sharing is complex. Distributed learning allows 

machine learning models to use data from multiple institutions without exchanging 

individual patient-level data. We demonstrate this technique in a proof-of-concept study 

of anal cancer patients treated with chemoradiotherapy across multiple European 

countries. 

 

4.1.2 Materials and methods 

atomCAT is a three-centre collaboration between Leeds Cancer Centre (UK), 

MAASTRO Clinic (The Netherlands) and Oslo University Hospital (Norway). We trained 

and validated a Cox proportional hazards regression model in a distributed fashion 

using data from 281 patients treated with radical, conformal chemoradiotherapy for anal 

cancer in three institutions. Our primary endpoint was overall survival. We selected 

disease stage, sex, age, primary tumour size, and planned radiotherapy dose (in EQD2) 

a priori as predictor variables.   

 

4.1.3 Results 

The Cox regression model trained across all three centres found worse overall survival 

for high risk disease stage (HR=2.02), male sex (HR=3.06), older age (HR=1.33 per 10 

years), larger primary tumour volume (HR=1.05 per 10cm3) and lower radiotherapy dose 

(HR=1.20 per 5 Gy). A mean concordance index of 0.72 was achieved during validation, 

with limited variation between centres (Leeds=0.72, MAASTRO=0.74, Oslo=0.70). The 

global model performed well for risk stratification for two out of three centres. 
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4.1.4 Conclusions  

Using distributed learning, we accessed and analysed one of the largest available multi-

institutional cohorts of anal cancer patients treated with modern radiotherapy 

techniques. This demonstrates the value of distributed learning in outcome modelling 

for rare cancers.  

 

4.2 Introduction 

Prediction models for cancer outcomes can support clinical decision making, and hold 

the promise for individualisation of cancer treatment and radiotherapy plan optimisation. 

Development of robust and validated models is often hampered by lack of access to 

data, however, especially across countries and institutions. This is particularly the case 

for rare cancers. 

“Distributed learning” facilitates the development and validation of statistical models 

using data across multiple institutions without transferring individual patient data outside 

the originating institution. This is one of several novel methodologies developed to 

preserve patient data privacy [1,2], such as differential privacy and encryption [3]. Our 

distributed learning approach is an open-source solution (Vantage6) which prevents 

insider attacks by blocking any direct connection between data hosts [4,5]. Only locally 

aggregated statistics (model coefficients and fit errors) are exchanged between the data 

centres and the central server. Model development in the distributed learning framework 

is an iterative mathematical optimization problem where the coefficients of a single 

globally-convergent model will be determined by minimizing the total error [6]. The 

general methodology has been shown to be scalable up to vast numbers of patients [7]. 

The distributed learning approach may be ideally suited to rare diseases, where single-

institutional datasets are limited in size and sharing data between institutions is 

restricted by data protection regulations and related ethical considerations [8]. One such 

example is anal cancer; a rare disease with an incidence rate around 2.1 per 100,000 

person-years in Northern Europe and twice the incidence in women relative to men [9]. 

Currently, the standard treatment for localised disease involves concomitant 

radiotherapy and chemotherapy [10], which leads to a complete response in 

approximately 3 out of 4 patients. 5-year overall survival rates of 75% have previously 

been reported [11–13]. Further improvements in disease control and survival have 
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proven challenging, and questions remain around optimal tumour dose [14–16].  

Additionally, patients that undergo standard treatment commonly suffer from various 

early and late side effects, such as gastrointestinal symptoms that range from mild to 

severe [17]. This highlights the need for a personalised approach to anal cancer 

chemoradiotherapy. Such individualisation will be dependent on the development of 

outcome prediction models [18], which again require sufficient data for model training 

and validation. A distributed learning approach may help obtaining sufficient patient data 

from different institutions in order to develop robust and generalisable models, while 

circumventing many of the barriers associated with individual-level patient data sharing. 

In this proof-of-concept study, we aimed to show the feasibility of our distributed learning 

approach for patients with anal cancer receiving radical chemoradiotherapy. A 

prediction model for overall survival (OS), employing established baseline clinical 

factors and radiotherapy dose as predictors, was applied on data across institutions in 

three European countries. OS was chosen as our outcome of interest as this is an 

important outcome measure in anal cancer research [19] and a robust endpoint across 

institutions. 

We hypothesise that a global Cox proportional hazards model developed without 

exchange of any individual-level patient data is highly reproducible in a multi-centre 

setting, when evaluated through an “internal-external” validation cycle [20], despite the 

small sample sizes within each participating centre. Furthermore, we hypothesize that 

we can define risk groups across institutions.  

 

4.3 Materials & Methods 

The study protocol was developed collaboratively by the three participating institutions 

prior to study initiation: Leeds Cancer Centre (UK), MAASTRO Clinic (The Netherlands), 

Oslo University Hospital (Norway). Patients were treated with chemoradiotherapy with 

radical intent for anal squamous cell carcinoma (ASCC), with conformal radiotherapy 

(forward-planned 3D conformal (3D-CRT) or intensity-modulated radiation 

therapy/volumetric modulated arc therapy (IMRT/VMAT)). Baseline, treatment and 

outcome data were available. The main outcome of interest for this proof-of-concept 

study was overall survival (OS). Death from any cause was counted as an event, with 

patients censored at the time of local data collection. Survival interval was calculated 
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from the date of the first fraction of radiotherapy, to either date of death or the last follow-

up date if alive. 

For candidate outcome predictors, the literature on anal cancer chemoradiotherapy was 

reviewed, and expert input sought from three consultant clinical oncologists specialising 

in anal cancer. Importantly, we considered only predictors available at start of treatment 

(thus not radiotherapy compliance or treatment gaps). The following predictor variables 

were chosen, based on published data, clinical experience, and data availability in 

participating institutions: disease stage - low risk (Stage I-II, T1N0 or T2N0 or T3N0) 

versus high risk (Stage III, T4N(any) or T(any)N+) according to TNM v8 [21]; sex; age; 

primary tumour size (gross tumour volume, GTV, on planning CT); and primary tumour 

prescribed dose (converted from physical dose to equivalent dose in 2 Gy per fraction, 

EQD2α/β=10Gy). For disease stage, there is ongoing debate as to whether T3N0 tumours 

should be regarded as low or high risk [16]. The model was thus also fitted with T3N0 

tumours assigned to the high rather than the low risk group. Additionally, histology 

(basaloid SCC: yes/no) was identified as a potential predictor, but was not included in 

the final analysis due to a large proportion of missing SCC subtype data in one 

institution. A data code book was shared between all institutions, for standardised data 

collection and reporting. 

 

4.3.1 Patient data collection 

For Leeds Cancer Centre, a subset of patients treated for anal cancer between 2015 

and 2018 with baseline and outcome data available were included. All patients were 

treated with VMAT and simultaneous integrated boost (SIB). Patients were identified 

through existing research databases, and additional data was sourced as necessary 

from clinical databases. Tumour volumes were extracted manually from radiotherapy 

plans. Survival data were based on patient electronic records, which are automatically 

linked to the NHS England death registry. 

At MAASTRO Clinic, patients treated by radiotherapy for primary anal cancer with 

radical intent between 2008 and 2017 were retrieved from electronic treatment records. 

All radiotherapy was in the form of either 3D-CRT (n=26; prior to 2013) or VMAT (n=55; 

after 2013), with dose to the primary tumour escalated by either sequential boost or SIB. 

Tumour volumes were extracted manually from radiotherapy planning delineations. 
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Dates of death were obtained from the electronic patient records, which were 

automatically updated from a Dutch citizens registry. 

For Oslo University Hospital, anal cancer patients enrolled in the prospective ANCARAD 

trial (ClinicalTrials registration NCT01937780) receiving treatment between 2013 and 

2017 were included. All patients received chemoradiotherapy using 3D-CRT (40 

patients), IMRT (11 patients) or VMAT (69 patients), with boosts delivered either 

sequentially (109 patients) or as SIB (11 patients). Baseline and outcome data were 

prospectively collected as part of the ANCARAD trial. Additional baseline data were 

retrieved as necessary from clinical databases. Tumour volumes were extracted from 

radiotherapy structure sets in the treatment planning system using an in-house script. 

Details on the radiotherapy and concomitant chemotherapy schedules used at each 

centre are shown in Table 4-1. 

 

Table 4-1. Radiotherapy and concomitant chemotherapy treatment schedules used at 

each of the three centres. 

 Leeds MAASTRO Oslo 

Radiotherapy 
regimen 

Most patients were 
prescribed 50.4-53.2 Gy 
to the primary tumour, 
50.4Gy to involved nodes 
and 40 Gy to elective 
nodal volumes in 28 
fractions. 5 patients were 
treated with doses above 
53.2 Gy. 

All patients were 
prescribed 54-66 Gy to 
the primary tumour and 
39-49.5 Gy to elective 
lymph nodes in 30-33 
fractions. 

All patients were 
prescribed 54-58 Gy to 
the primary tumour and 
pathological lymph nodes 
and 46 Gy to elective 
nodal volumes in 27-29 
fractions. 

Chemotherapy 
regimen 

Mitomycin-C (12 mg/m2 
bolus day 1, capped at 20 
mg) and 5-FU (1000 
mg/m2 in 1 L normal 
saline over 24 hours, days 
1-4 and days 29-32, 
capped at 2 m2). 

Mitomycin-C (10 mg/m2 
bolus day 1) plus either 
capecitabine (2 x 825 
mg/m2 per radiotherapy 
treatment day) or 
continuous 5-FU (750 
mg/m2 days 1-5 and 29-
33); 11 patients who were 
elderly/frail or had 
T1N0M0 disease were 
treated with 66 Gy 
radiotherapy only. 

Mitomycin-C (10 mg/m2 
bolus day 1, capped at 20 
mg) and 5-FU (1000 
mg/m2 in 1 L normal 
saline over 24 hours, days 
1-4), according to national 
guidelines. Patients with 
T1-T2 and N0 tumours 
received a single cycle (5-
FU: days 1-4, MMC: day 
1); patients with T3-4 
tumours or N+ received 
two cycles (additional 
cycle in the fifth treatment 
week; 5-FU days 29-32, 
MMC day 29). 
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4.3.2 Institutional data access & data protection approvals 

Each institution acquired separate local approvals for accessing and collecting patient 

data for research. As no individual patient data were exchanged between institutions, 

no data sharing agreements or additional patient consent were needed. Local 

information governance and data protection review of the distributed learning 

infrastructure were obtained wherever appropriate. In Leeds, the study was approved 

by LeedsCAT; a radiotherapy-specific institutional research governance board. In 

MAASTRO, IRB approval was obtained to extract patient data from electronic records. 

In Oslo, Regional Ethics Committee approval was obtained for re-use of data from the 

ANCARAD trial (via an amendment), and the local data protection officer reviewed and 

approved the distributed learning infrastructure. 

 

4.3.3 Distributed learning architecture 

We used the Vantage6 v0.2.4 software to set up three components; (1) “nodes” where 

patient-level data is accessed and where local model coefficients are computed, (2) a 

trusted coordinating “server” that performs aggregation of coefficients, and (3) a 

“researcher” that provides the model to be trained. The purpose was to fit a distributed 

Cox model for overall survival for anal cancer (see Figure 4-1). For additional security, 

all patient data were pseudonymized and stripped of protected health information (e.g. 

dates of treatments, dates of birth/death, generic medical record numbers, etc). 

Nodes were set up on common personal computers (either physical or virtual) running 

any one of well-supported operating systems (Windows/MacOS/Ubuntu) with an 

installation of Python (v3.6 or later), Docker Desktop community edition, and Vantage6 

v0.2.4. The complete source code for the infrastructure implementation is available 

[https://github.com/IKNL/vantage6 - Version 0.2.4]. Network connectivity was fully 

compliant with local institutional policies, and only one secured network port through the 

institution firewall was enabled for Vantage6 traffic. 

The Leeds node was set up as a Windows 10 Pro virtual machine (Intel(R) Xeon(R) 

Gold 5118 CPU, 16GB RAM), and only accessible by NHS Trust users granted the 

appropriate permissions. Patient data were extracted from a clinical database, de-

identified, and forwarded to the virtual machine. The MAASTRO node was set up as a 

physical Surface Book 2 laptop (Intel(R) Core i7-8650 CPU, 16GB RAM) running 

https://github.com/IKNL/vantage6
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Windows 10 Pro, and pseudonymized patient data accessed via a mapped folder 

directing to an internal storage server. The Oslo node was set up on a Lenovo ThinkPad 

laptop (Intel(R) i7-4600M CPU, 16GB RAM), running Ubuntu Linux 18.04 as a virtual 

machine, which can easily be cloned when setting up nodes for new projects. The Oslo 

node was physically decoupled from the hospital network, and pseudonymized data 

was transferred to the machine via an encrypted external hard disk drive. 

The central coordination server takes the role of trusted messaging “broker” for the 

collaboration network. Only key-authenticated messages were allowed to pass between 

researcher and server, and between node and server. The server administrator 

maintains a registry of collaborations, researchers, institutions and institution 

administrators, as well as unique encryption keys for each role. For this proof-of-concept 

run, the server was set up by MAASTRO as an Ubuntu Linux 18.04 virtual instance 

(30GB storage, 4 GB memory) on the Microsoft Azure cloud computing service based 

in Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. Distributed learning as a multinational collaboration to train a distributed Cox 

model for overall survival in anal cancer across three data nodes with a trusted 

coordination server in the Microsoft Azure cloud. 



 

 

 

138 

4.3.4 Descriptive data analysis 

Summary statistics were exchanged between centres in order to explore cohort 

differences prior to modelling. Categorical variables were tested using a chi-squared 

test, and numerical variables were tested using a one-way ANOVA test. All tests were 

carried out using summary statistics (number of patients, mean and standard deviation 

values) rather than individual patient data. Estimated 3-year survival rates and potential 

follow-up times were calculated by each centre individually using the ‘survival’ package 

in R [22], employing the Kaplan-Meier estimator. Median follow-up time was based on 

the inverse Kaplan Meier estimator [23]. 

 

4.3.5 Distributed Cox algorithm 

The Distributed Cox algorithm developed by Lu et al. [2] was adapted to the Vantage6 

v0.2.4 infrastructure as R scripts (v.3.6.2). The source code has been made openly 

accessible on GitHub (https://github.com/AnanyaCN/d_coxph). Scripts for computing 

model coefficients, median risk score, and leave-one-centre-out model validation were 

packaged as application “containers” (via Docker) that were locally executed in each 

node. 

 

4.3.6 Cox model development and validation 

The primary analysis involved the development and validation of a Cox proportional 

hazards model across all centres. The performance of the model was initially assessed 

using Harrell’s concordance index (c-index) [24] on a per-centre basis. The global 

model’s performance was assessed on all data from all three institutions, which has 

been recommended by Steyerberg and Altman and TRIPOD [20,25] since small 

datasets should not be split during the model training phase. A more robust estimate for 

out-of-sample performance was obtained using a closed-loop “leave-one-centre-out” 

method [20], where new models were trained using data from two sites and then 

validated on the third site. This was repeated three times to cover the possible 

combinations, thus resulting in different c-indices which provide an estimate of the over-

optimism of the global model. Additionally, the Schoenfeld residuals for each model 

variable were examined on a per centre level for the global model, and were tested for 

association with time, in order to examine whether the proportional hazard assumptions 

were fulfilled [26]. 

https://github.com/AnanyaCN/d_coxph
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4.3.7 Visualisation of model performance 

We evaluated the performance of the global model for risk stratification on a centre level. 

The individual patient risk score was defined as the overall risk for a patient relative to 

the baseline and was calculated as the exponent of the patient’s linear predictor (LP) 

value (risk=e[LP]). A global median risk score from the global Cox regression model 

was estimated in an iterative procedure, with the median of the medians as a starting 

value. The global median risk score was used as cut-off for defining risk categories (high 

vs low risk), based on individual patient risk scores. Each centre subsequently produced 

a Kaplan-Meier data object independently in R, with their local survival curves stratified 

by risk categories, and then shared these objects. These only contained the coordinate 

points required to plot events and censored patients in a figure. 

 

4.4 Results 

A total of 281 patients were included in the analysis - 80 patients from Leeds, 81 patients 

from MAASTRO, and 120 patients from Oslo; see Table 4-2 for patient characteristics. 

There were no significant differences in disease stage, age at the start of radiotherapy, 

or primary tumour GTV between the three cohorts. The Oslo cohort had a significantly 

higher proportion of female to male patients, as expected from the Norwegian anal 

cancer epidemiology [27]. EQD2 had the highest variance between cohorts, with a 

difference of 7.4Gy between the highest (MAASTRO) and lowest (Leeds) in mean dose. 

Moreover, all three cohorts had comparable outcomes and follow-up times. The 3-year 

survival estimates of Leeds were comparable to both other centres, while the 95% 

confidence intervals of MAASTRO and Oslo did not overlap. 
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Table 4-2. Overview of patient and treatment characteristics categorised by centre. P-

values represent cohort comparisons using either chi-squared or one-way ANOVA 

tests. GTV: Gross tumour volume. EQD2: Equivalent dose in 2 Gy fractions (ɑ/β=10Gy). 

IQR: Interquartile range. CI: Confidence interval. 

 Leeds MAASTRO Oslo p-value 

Disease stage 

 
Low risk (T1-3N0) 28 (35%) 33 (41%) 58 (48%) 0.16 

High risk (T4N(any) or T(any)N+) 52 (65%) 48 (59%) 62 (52%) 

Sex 

 
Female 53 (66%) 46 (57%) 88 (73%) 0.05 

Male 27 (34%) 35 (43%) 32 (27%) 

Age at the start of radiotherapy (years) 

 
Mean  

(sd, range) 

60  

(12, 29-86)  

61  

(11, 28-84) 

62  

(10, 40-89) 

0.44 

Primary tumour GTV (cm3) 

 
Mean  

(sd, range) 

64.8  

(58.7, 2.1-284.9) 

57.5  

(72.4, 0.8-433.0) 

78.1 

(69.4, 4.1-459.4) 

0.09 

Primary tumour dose (EQD2) 

 
Mean  

(sd, range) 

52.8  

(2.7, 49.1-62.6) 

60.2  

(2.7, 59.4-66.2) 

56.3  

(2.0, 54.0-58.1) 

<0.0001 

Potential follow-up time (months) 

 
Median  

(IQR) 

46  

(38-51) 

42  

(32-63) 

49  

(39-61) 

N/A 

Estimated 3-year survival 

 
Survival  

(std error, 95%CI) 

83%  

(4%, 76-92%) 

78%  

(5%, 70-88%) 

93%  

(2%, 89-98%) 

N/A 

Outcome 

 
Alive 66 (83%) 63 (78%) 107 (89%) N/A 

Dead 14 (17%) 18 (22%) 13 (11%) 
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The results of the global Cox regression model, trained on all three nodes, are 

summarised in Table 4-3 in the form of hazard ratio (HR) estimates.  

 

Table 4-3. Results of the global distributed multivariate Cox regression analysis across 

all three centres. Age, primary tumour GTV and primary tumour dose were treated as 

continuous variables. The HRs represent a change of 10 years in age; 10cm3 in primary 

tumour GTV; and 5 Gy in primary tumour dose (EQD2). GTV: Gross tumour volume. 

EQD2: Equivalent dose in 2 Gy fractions (ɑ/β=10Gy). CI: Confidence interval 

 Hazard ratio (95% CI) 

High risk disease (compared to low risk disease) 2.02 (0.90-4.54) 

Male sex (compared to female sex) 3.06 (1.54-6.11) 

Age at the start of RT 1.33 (0.98-1.82) 

Primary tumour GTV 1.05 (1.02-1.09) 

Primary tumour dose (EQD2) 0.83 (0.48-1.43) 

 

The results of the global model suggest that higher risk disease, older age at the start 

of radiotherapy, male sex, lower radiotherapy dose, and a greater volume primary 

tumour (GTV) are associated with worse overall survival. The global model’s 

performance was assessed on each node, yielding a c-index of 0.72 for Leeds, 0.74 for 

MAASTRO, and 0.70 for Oslo. The c-indices from all three nodes are similar, suggesting 

that the model performs consistently well across centres.  

In addition, the c-indices from the leave-one-centre-out validation runs (Table 4-4) 

suggest that the model performance remains stable when model training is carried out 

using data from only two centres and validated on a third, completely independent 

dataset. Moreover, the effects of factors are similar across centres, as all three runs 

produced similar hazard ratios for all variables. The only exception is prescription dose, 

where one model showed somewhat discordant effects. Notably, the effect of the 

primary tumour GTV is most consistent across the three validation runs. The overall 

results of the global model as well as the leave-one-centre-out validation runs were not 

considerably impacted when including T3N0 tumours in the high risk group 

(Supplementary material A, Section 4.7.1). The Schoenfeld test results convey that the 

proportional hazard assumptions were fulfilled for all variables in all three centres 

(Supplementary material B, Section 4.7.2). 
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Table 4-4. Results from the three leave-one-centre-out validation runs. Each column 

represents one run, consisting of model training (and associated hazard ratios, HR) on 

two nodes and validation on the third, independent node. Factor effects are presented 

in terms of hazard ratios with 95% confidence intervals; HR (95% CI). The HRs 

represent a change of 10 years in age; 10cm3 in primary tumour GTV; and 5 Gy in 

primary tumour dose (EQD2). The resulting c-index from each validation run is also 

reported. GTV: Gross tumour volume. EQD2: Equivalent dose in 2 Gy fractions 

(ɑ/β=10Gy). 

Training nodes MAASTRO 

Oslo 

Leeds 

Oslo 

Leeds 

MAASTRO 

Validation node Leeds MAASTRO Oslo 

High risk disease (compared 

to low risk disease) 

2.52 (0.93-6.78) 1.96 (0.68-5.67) 1.85 (0.71-4.86) 

Male sex (compared to 

female sex) 

3.59 (1.55-8.33) 3.83 (1.57-9.37) 2.12 (0.92-4.90) 

Age at the start of RT 1.10 (0.74-1.64) 1.47 (0.99-2.17) 1.48 (1.05-2.10) 

Primary tumour GTV 1.04 (1.00-1.08) 1.08 (1.03-1.13) 1.07 (1.03-1.11) 

Primary tumour dose (EQD2) 0.97 (0.46-2.04) 0.35 (0.14-0.87) 0.97 (0.59-1.59) 

Validation c-index 0.70 0.73 0.68 

 

Risk scores were calculated using the global model. A global median risk score of 0.98 

was used as the cut-off to define risk categories. Patients with individual risk scores 

lower than 0.98 were assigned in the low risk category, whereas patients with risk scores 

greater than 0.98 were assigned in the high risk category. The low risk category 

consisted of 141 patients (Leeds: 41, MAASTRO: 40, Oslo: 60); the high risk category 

included 140 patients (Leeds: 39, MAASTRO: 41, Oslo: 60). The Kaplan-Meier curves 

(Figure 4-2) convey that there is a good separation in overall survival between the low 

and high risk categories for two of the centres. For the third centre, the separation is 

small compared to the other centres.  

 



 

 

 

143 

Figure 4-2. Kaplan-Meier overall survival curves for each centre’s cohort, stratified into 

low and high risk categories. The curves were constructed using the global model, which 

was trained on data from all three centres. The HR of the high risk category relative to 

the low risk category is 4.39 [95% CI = 1.22-15.73] for Leeds, 4.02 [1.32-12.23] for 

MAASTRO and 1.73 [0.56-5.31] for Oslo. 

 

4.5 Discussion 

This proof-of-concept study demonstrates the feasibility of privacy preserving 

distributed learning for anal cancer. We trained and validated a Cox proportional 

hazards regression model [28] in a distributed fashion, using patient data from three 

European institutions, with clinical and treatment-related factors, and demonstrated 

robust model performance. Our approach is unique compared to previously published 
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studies employing distributed learning, since we developed and applied a Cox 

proportional hazards regression model with a time-to-event outcome for a rare cancer. 

In contrast, other studies have explored binary outcomes using support-vector 

machines [6] or logistic regression [7]. In addition, the distributed learning architecture 

employed in our study is public, open-source and uses Docker containers for enhanced 

security.  

Our analysis involved data for 281 patients treated with modern conformal radiotherapy 

techniques, including radiotherapy-specific data (GTV volume and prescription dose). 

This makes for one of the largest available cohorts of anal cancer patients treated with 

modern radiotherapy, and the only such study with robust multi-centre validation of 

outcome predictors. Shakir et al [29] reported outcome data from 385 patients treated 

with IMRT in five UK centres, with median follow-up of 24 months. de Meric de Bellefon 

et al [30] recently published long-term outcomes, including late toxicity data, for 193 

patients treated with IMRT in a single French centre. No other studies have reported on 

cohorts of this size, and none with multi-national data. Our study could only be realised 

using the distributed learning methodology, which averted any need for data sharing 

agreements and data protection reviews.  

We found, as expected, worse outcomes for patients with more advanced disease. This, 

and worse survival for males, mirrors previous results in the literature, including long-

term data from RTOG 98-11 [31] and data from a large, prospective Nordic database 

[32]. Uniquely, by utilising data from 3D planned radiotherapy, we were able to include 

a volumetric measure of primary tumour size (GTV volume); with an increased risk 

observed for larger tumours even in multivariate analysis taking staging into account. 

Tumour size appears to be the most stable factor across all model runs. The relatively 

weak predictive power of radiation dose was expected as overall survival, and not 

tumour control, was used as endpoint. Still, the observed effect size was equivalent to 

that reported for local control in the study by Johnsson et al [14].  

Our analysis was limited to data available in routine clinical records for two of the 

participating centres, and as such potential predictors for outcome were restricted. We 

selected up front the three clinical factors which we expected to have the largest impact 

on survival (stage, age, sex), in addition to two radiotherapy-related factors (GTV 

volume, dose). This process necessarily required some prioritisation, and other factors 

could equally well have been included such as HPV status, chemotherapy prescription, 
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anatomical site (anal canal versus anal margin), and performance status. We did not 

examine non-linear effects of age, dose or GTV volume, nor interactions between 

factors; all of which might be of interest in a more definitive study. Other limitations 

include variation in staging and GTV definition between centres, as one would expect 

from a non-prospective multi-centre analysis. 

Importantly, the current study was designed to test the feasibility of distributed learning 

in a rare cancer, with the prospect of accessing combined patient cohorts rivalling the 

largest reported in the literature. It was not designed as a quality improvement exercise, 

and as such did not attempt to compare outcomes between centres for specific tumour 

stages or other patient subgroups. Neither did we set out to produce a definitive model 

to guide treatment or to test novel predictors for outcome. In its current state, this model 

is not ready to be used for individual patient predictions. In addition to the inherent 

limitations related to the medium-size data set, a global baseline survival curve cannot 

be provided, which prevents individual patient survival risk estimates. This is a 

deficiency in the current implementation of Vantage6, which will be addressed in future 

versions. We examined the use of our global model for risk stratification on an individual 

centre level, and found good results for two centres. The inability of the model to 

properly stratify patients in the third centre (Figure 4-2) may possibly be caused by the 

high overall survival in that data subset. This emphasises that more centres, with more 

diverse data, will be needed to develop definitive models. 

For optimisation and individualisation of anal cancer radiotherapy, models for 

locoregional tumour control and late toxicity are needed. For this, more complex 

radiotherapy data, such as dose volume histogram metrics for both tumour and normal 

tissue and detailed toxicity and recurrence data are required. Studies also suggest a 

role for imaging biomarkers for outcome prediction [33–35]. We plan to extend our 

distributed learning analysis to include both, in a larger network of centres. 

     We note further that distributed learning per se is not unique and is not perfect when 

the number of patients per centre is low. We used containerised applications, which 

provide an isolated execution space to the software and are easily shareable. 

Containerisation technologies also make it difficult for external parties to tamper with 

the software. This makes the model algorithms re-usable and agnostic to the specifics 

of each node installation. We have shown that this implementation works with a diverse 

collection of hardware and operating systems.   
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In conclusion, we have demonstrated the utility of privacy preserving distributed learning 

for analysing multi-national cohorts of patients with rare cancers. We aim to expand the 

network with more institutions, and also the complexity of our outcome prediction 

models. 
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4.7 Supplementary material 

4.7.1 Supplementary material A. When including T3N0 tumours in the high risk 

group, 2 patients changed category in the Leeds cohort, 3 in the MAASTRO cohort and 

12 in the Oslo cohort. Table 4-A1 presents the results of the global model with this 

alternative grouping for disease stage. The validation c-indices derived from the global 

model are 0.74 for Leeds, 0.73 for MAASTRO, and 0.71 for Oslo. The results from the 

leave-one-centre-out validation runs using the alternative grouping for disease stage 

are shown in Table 4-A2. 

 

Table 4-A1. Results of the global distributed multivariate Cox regression analysis across 

all three centres, carried out with the alternative grouping for disease stage, for which 

T3N0 tumours were assigned to the “high risk” group. Age, primary tumour GTV and 

primary tumour dose were treated as continuous variables. The HRs represent a 

change of 10 years in age; 10cm3 in primary tumour GTV; and 5 Gy in primary tumour 

dose (EQD2). GTV: Gross tumour volume. EQD2: Equivalent dose in 2 Gy fractions 

(ɑ/β=10Gy). CI: Confidence interval 

 Hazard ratio 

(95% CI) 

High risk disease (compared to 

low risk disease) 

1.46 (0.62-3.45) 

Male sex (compared to female 

sex) 

2.40 (1.26-4.59) 

Age at the start of RT 1.30 (0.95-1.78) 

Primary tumour GTV 1.06 (1.02-1.09) 

Primary tumour dose (EQD2) 0.87 (0.54-1.41) 

 

 

 

 

 

 

 

 

 

 



 

 

 

150 

Table 4-A2. Results from the three leave-one-centre-out validation runs, carried out with 

the alternative grouping for disease stage, for which T3N0 tumours were assigned to 

the “high risk” group. Each column represents one run, consisting of model training on 

two nodes and validation on the third, independent node. Factor effects are presented 

in terms of hazard ratios with 95% confidence intervals; HR (95% CI). The HRs 

represent a change of 10 years in age; 10cm3 in primary tumour GTV; and 5 Gy in 

primary tumour dose (EQD2). The resulting c-index from each validation run is also 

reported. GTV: Gross tumour volume. EQD2: Equivalent dose in 2 Gy fractions 

(ɑ/β=10Gy). 

Training nodes MAASTRO 

Oslo 

Leeds 

Oslo 

Leeds 

MAASTRO 

Validation node Leeds MAASTRO Oslo 

High risk disease (compared 

to low risk disease) 
1.58 (0.53-4.70) 1.89 (0.62-5.70) 1.85 (0.71-4.86) 

Male sex (compared to 

female sex) 
3.02 (1.32-6.87) 2.70 (1.19-6.16) 2.12 (0.92-4.90) 

Age at the start of RT 1.06 (0.71-1.58) 1.46 (0.98-2.17) 1.48 (1.05-2.10) 

Primary tumour GTV 1.05 (1.00-1.09) 1.07 (1.02-1.12) 1.07 (1.03-1.11) 

Primary tumour dose (EQD2) 0.98 (0.47-2.06) 0.45 (0.22-0.94) 0.97 (0.59-1.59) 

Validation c-index 0.69 0.73 0.67 

 

4.7.2 Supplementary material B. Table 4-B1. Schoenfeld test results for all variables 

included in our model, categorised by centre. 

Variable 
Schoenfeld test p-value 

Leeds MAASTRO Oslo 

Disease stage 0.74 0.62 0.22 

Sex 0.10 0.38 0.14 

Age at the start of RT 0.11 0.98 0.99 

Primary tumour GTV 0.22 0.20 0.38 

Primary tumour dose (EQD2) 0.76 0.45 0.77 
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Chapter 5 - Development and validation of prognostic models for 

anal cancer outcomes using distributed learning: protocol for the 

international multi-centre atomCAT2 study 

 

5.1 Abstract 

5.1.1 Background 

Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes 

conferred by state-of-the-art chemoradiotherapy, further improving disease control and 

reducing toxicity has proven challenging. Developing and validating prognostic models 

using routinely collected data may provide new insights for treatment development and 

selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient 

data, especially from single centres, to develop and validate robust models. Moreover, 

multi-centre model development is hampered by ethical barriers and data protection 

regulations that often limit accessibility to patient data. Distributed (or federated) 

learning allows models to be developed using data from multiple centres without any 

individual-level patient data leaving the originating centre, therefore preserving patient 

data privacy. This work builds on the proof-of-concept three-centre atomCAT1 study 

and describes the protocol for the multi-centre atomCAT2 study, which aims to develop 

and validate robust prognostic models for three clinically important outcomes in anal 

cancer following chemoradiotherapy. 

 

5.1.2 Methods 

This is a retrospective multi-centre cohort study, investigating overall survival, 

locoregional control and freedom from distant metastasis after primary 

chemoradiotherapy for anal squamous cell carcinoma. Patient data will be extracted 

and organised at each participating radiotherapy centre (n=18). Candidate prognostic 

factors have been identified through literature review and expert opinion. Summary 

statistics will be calculated and exchanged between centres prior to modelling. The 

primary analysis will involve developing and validating Cox Proportional Hazards 

models across centres for each outcome through distributed learning. Outcomes at 
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specific timepoints of interest and factor effect estimates will be reported, allowing for 

outcome prediction for future patients. 

 

5.1.3 Discussion 

The atomCAT2 study will analyse one of the largest available cross-institutional cohorts 

of patients with anal cancer treated with chemoradiotherapy. The analysis aims to 

provide information on current international clinical practice outcomes and may aid the 

personalisation and design of future anal cancer clinical trials through contributing to a 

better understanding of patient risk stratification. 

 

5.2 Background 

Anal cancer is a rare disease encompassing only approximately 0.3% of all cancer 

cases across the world [1, 2], but with a gradually increasing incidence [3]. A 

combination of radiotherapy and chemotherapy has been established as the standard 

treatment for localised disease for the last three decades [4–6]. This treatment confers 

relatively good outcomes, with 75% overall survival rates reported at 5 years [7–10]. 

Despite this, it has proven challenging to determine the optimal therapeutic radiotherapy 

dose and to further improve disease control [11–13].  

A study by Shakir et al. [14], which analysed data from 385 patients with anal cancer 

treated in five UK centres with conformal radiotherapy techniques, reported that the site 

of primary disease was the most common site of relapse (83.4% of cases). In addition, 

the majority of patients experienced locoregional failure prior to getting metastatic 

disease. This emphasises the need to establish an effective treatment for locoregional 

control with an optimal radiotherapy dose. Even though ongoing prospective clinical 

trials [13] are focusing on this issue, clinical data acquired through standard practice 

can also be analysed for the development and validation of prognostic models, to further 

inform clinical practice [15, 16]. 

Prognostic and predictive models have been proposed in cancer research for more than 

20 years [17] and have a wide range of potential applications, including prediction of 

cancer susceptibility [18, 19], recurrence risk [20, 21] and survival [22–24]. In particular, 

prognostic models can be used as decision support tools in the clinic, assisting clinicians 

in making informed decisions about patient management following a diagnosis [25]. 
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However, developing robust prognostic models for anal cancer is particularly 

challenging. Due to the rarity of the cancer, it can be difficult to obtain sufficient data for 

robust model training and validation. In addition, ethical barriers and data protection 

regulations often limit the ability to share data between centres and thus render multi-

centre model development unfeasible [26]. A novel data analysis methodology called 

distributed learning (DL) [27] has paved the way towards model development between 

institutions and across international borders. 

Distributed learning, also sometimes referred to as federated learning, is a privacy-

preserving approach that facilitates the development of robust statistical models using 

data distributed over multiple sites [28]. The main premise of this approach is that no 

individual-level patient data leaves the originating centre; only non-identifiable 

aggregated statistics (model coefficients and fit errors) are exchanged between 

institutions and a central server. Consequently, adopting this methodology minimises 

privacy issues related to patient data sharing since it does not breach data privacy 

barriers. DL algorithms operate in an iterative process where the local dataset in each 

centre is used to calculate local model coefficients and fit errors. These are sent to the 

central server, where a single globally-convergent model is determined by minimizing 

the total error [29]. This methodology is applicable for the development of models with 

a relatively small number of patients [27], but has also been proven to be upscalable to 

more than 20,000 patients [30].  

A DL approach may be ideally suited for prognostic modelling in rare cancers such as 

anal cancer. It could facilitate acquisition of sufficient patient data from multiple 

international centres with the aim of developing robust generalisable models, while 

working around many of the barriers associated with physical data sharing. The 

feasibility of this approach in anal cancer has previously been demonstrated in the 

atomCAT1 proof-of-concept study [31]. Using data from three international radiotherapy 

centres, a Cox proportional hazards model for overall survival was trained and validated 

in a distributed fashion. The study analysed one of the largest available cohorts of 

patients with anal cancer treated with conformal radiotherapy and carried out robust 

multi-centre validation of outcome predictors. However, the analysis was limited to a 

single outcome only (overall survival), whereas other clinically important outcomes such 

as locoregional control and freedom from distant metastasis were not taken into 

consideration. 
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The atomCAT2 (Anal cancer Treatment Outcome Modelling with Computer Aided 

Theragnostics) study aims to develop prediction models for anal cancer outcomes after 

chemoradiotherapy through distributed learning. To achieve this, a consortium of 18 

international cancer treatment centres based in the UK, Europe, Australia and Canada 

has been formed. A cohort of more than 1,000 patients will be analysed to develop and 

validate models for overall survival, locoregional control and distant metastasis, as well 

as to identify key prognostic factors and their effect size. This will provide unique insights 

and may aid the personalisation of treatment according to each patient’s unique 

characteristics. 

 

5.3 Methods 

5.3.1 Study design and patient population 

This is a retrospective multi-centre cohort study, investigating outcomes after primary 

(chemo)radiotherapy for anal squamous cell carcinoma (ASCC). The inclusion and 

exclusion criteria are summarised in Table 5-1. Patient data will be extracted and 

organised within the informatics infrastructure at 18 participating radiotherapy centres, 

where subjects have consented to treatment with chemoradiotherapy. Routine and 

standard of care data will be used, and no prospective data collection will be explicitly 

carried out for the purpose of this study. Using a pragmatic approach, centres will be 

encouraged to include data for all patients treated in their centre fulfilling the inclusion 

criteria (Table 5-1). However, pre-existing patient cohorts, representing a subset of 

available patient cases, will be accepted. Future expansion to more participating centres 

internationally is planned. 

Patients have been treated according to each participating centre’s protocol, which may 

include radiotherapy only or varying chemoradiotherapy regimens. Centres will be 

asked to briefly outline their main treatment and follow-up protocols as part of study 

participation.  
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Table 5-1. Participant inclusion and exclusion criteria. 3D-CRT: Three-dimensional 

conformal radiation therapy. IMRT: Intensity-modulated radiation therapy. VMAT: Volumetric 

modulated arc therapy. 

Inclusion criteria 

• Radical intent external beam radiotherapy treatment for primary anal squamous cell 

carcinoma, with or without concomitant chemotherapy 

• Radiotherapy delivered using modern radiotherapy techniques (3D-CRT, IMRT or VMAT) 

Exclusion criteria 

• Palliative treatment 

• Prior pelvic radiotherapy 

• Brachytherapy (either primary or as boost treatment) 

 

5.3.2 Outcome definitions 

Three outcomes will be explored: overall survival, locoregional control and freedom from 

distant metastasis. These were identified as key outcome research measures in anal 

cancer by the CORMAC initiative [32]. 

 

5.3.2.1 Overall survival 

Overall survival will be calculated in days from the first fraction of radiotherapy to either 

event or censoring, whichever happens first. An event is defined as death from any 

cause at any point during follow-up. Patients will be censored at the last clinical follow-

up date if alive. 

 

5.3.2.2 Locoregional control  

Time to locoregional control will be calculated in days from the first fraction of 

radiotherapy to either event or censoring, whichever happens first. An event is defined 

as any of the following as a first event: (1) Abdominoperineal resection to control 

locoregional disease at any point during follow-up. This will always take precedence in 

terms of date for locoregional recurrence. (2) Locoregional disease progression, during 

treatment or in follow-up (irrespective of whether complete or partial response have 

been initially achieved), not managed by surgery. This will preferably be confirmed with 

biopsy, in which case the date of biopsy will count, but will alternatively be based on 

imaging and clinical examination only (date of imaging will be used). (3) Lack of 

complete response (non-clearance of disease) at 26 weeks (6 months) from first fraction 
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of radiotherapy, as defined by clinical examination, imaging and/or biopsy [33]. In case 

of uncertainty or where limited information is available, the date where treatment failure 

or locoregional recurrence is first noted in the patient records will be used. 

Patients will be censored at death, at last clinical follow-up, if undergoing 

abdominoperineal resection for non-disease related reasons (e.g. due to treatment 

complications), or in case of distant metastases. 

The site of failure (primary tumour versus pelvic / initially involved nodes) will be noted 

to allow for separate analysis of local and locoregional failure. Failures in pelvic lymph 

nodes (inguinal, perirectal, internal iliac or external iliac nodes) or in lymph nodes which 

were part of the original treatment volumes (which may be the case e.g. for common 

iliac or para-aortic lymph nodes) will be defined as locoregional failures. 

 

5.3.2.3 Freedom from distant metastasis 

Freedom from distant metastasis will be calculated in days from the start of radiotherapy 

to either event or censoring, whichever happens first. An event is defined as distant 

disease recurrence (previously untreated lymph node metastasis outside the pelvis, or 

other metastatic sites such as lung, liver, bone) as a first event. This may be confirmed 

with biopsy, in which case the date of biopsy will count as the date of recurrence, or 

alternatively based on imaging (date of imaging will be used). In case of any uncertainty 

or where limited information is available, the date where distant progression is first noted 

in the patient records will be used. Site(s) of failure will be noted. Patients will be 

censored at local recurrence, at death, or at last clinical follow-up. 

 

5.3.3 Identification of relevant prognostic factors  

Already-established prognostic factors for the outcomes in question have been 

identified through a systematic review of the literature [34]. Studies published after 2000 

which reported on disease-related outcomes and examined prognostic factors in 

multivariable analysis for overall survival, locoregional control, and freedom from distant 

metastasis were reviewed. In these studies, at least 70% of patients were treated with 

conformal radiotherapy techniques (3D-defined targets on computed tomography (CT), 

beams conformed to targets e.g. using multi-leaf collimators (MLCs), 3D dose 

calculation and optimisation of dose distributions). This approach identified the initial list 
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of relevant data to be collected; this was subsequently reviewed by three senior clinical 

oncologists with expertise in anal cancer treatment, and additional factors were added. 

 

5.3.4 Data collection and completeness 

Relevant patient data will be identified and extracted from existing research and clinical 

databases. Data extraction from databases will be carried out in an automated fashion 

where possible, with additional manual review if needed. Each participating centre will 

be responsible for ensuring good data quality by spot checking all extracted data to 

identify any outliers and to make sure the coding system used is correct, according to 

the data dictionary provided. Data items are classified as either “essential” or “optional”. 

For “essential” data items, centres will aim for at most 10% missing data for any given 

data item across their study cohort. If more than 10% of data is missing for an individual 

data item, imputation techniques will be implemented according to the framework set 

out below (see “Missing Data” section). For “optional” data items, missing data will be 

accepted. Each centre will contribute data from a minimum of 40 patients to ensure a 

representative sample and achieve a reasonable balance of patient heterogeneity, as 

well as limit reporting of subgroups with one or only a few patients. See Supplementary 

material A (Section 5.6.1) for full definition and coding of data items. 

 

5.3.5 Missing data 

For outcome data, Complete Case analysis will be used for each of the three outcomes. 

That is, if data is missing for a specific outcome for a patient, that patient will not 

contribute to the corresponding analysis. For potential prognostic factors, a mixed 

approach will be used: If more than 90% of patients per centre have complete data for 

all factors for a given analysis, then Complete Case analysis will be used as the primary 

analysis for that centre. If not, missing value imputation [35] will be used according to 

the framework set out below before any models are fitted, and Complete Case analysis 

will be performed as a robustness check. Missing data imputation has only been 

sparsely explored in the context of distributed learning and there is only limited 

precedence to guide best practise [36, 37]. Initially, we will implement the missing data 

imputation framework described below, but this may be adapted based on our ability to 

implement more robust techniques in a distributed setting. 
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Where data for potential prognostic factors is missing for a small number of patients in 

individual centres (>10% but ≤50%), local data imputation techniques will be employed. 

Missing data will be imputed using only the local dataset, and prior to any distributed 

model optimisation. The k-Nearest Neighbour (KNN) algorithm [38, 39] will be used to 

carry out the imputation [40]. Using this algorithm, each missing value will be replaced 

by a value that is as close as possible to the true value, obtained from related cases in 

the whole dataset. This technique aims to preserve the original structure of the dataset 

and avoids distorting the distribution of the imputed data item. To implement KNN, an 

appropriate value of k will be first determined through exploration of the data in each 

centre, using the square root of the sample size as a starting point [38, 41]. All available 

essential data items, as well as outcome data [42], will be included in the imputation 

model. 

Where data for potential prognostic factors is systematically missing in specific centres 

(>50% data missing for any specific item), the general assumption will be that imputation 

based on the local centre data will be unreliable. In this case, consortium-wide 

regression will be implemented to impute the missing data items.  

As an initial plan, a regression model will first be trained using data from all centres 

apart from the centre where the data item is missing. This model will then be run in the 

centre where the data is missing to impute the missing values. If two or more centres 

are missing the same data item, this approach will not be technically feasible due to 

limitations of the DL infrastructure that will be used. In this case, for continuous data 

items, the mean from each centre (apart from the centres with missing data) will be used 

to calculate the global “median of means” value for that data item. This value will be 

assigned to all patients in the centres where the data item is missing. For categorical 

data items, the frequency of each category across the global cohort for the data item 

that is missing will be calculated (excluding centres with the missing data item). 

Categories will then be assigned to each patient at random in centres where the data 

item is missing, ensuring the local frequency distribution is the same as the global 

frequency distribution. 

In parallel to the main consortium analysis, an independent exploratory study will be 

carried out to evaluate the feasibility of various imputation techniques in the context of 

distributed learning. Once feasible and robust techniques have been identified, we will 
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look at implementing these to improve on the missing data imputation framework 

described above. 

 

5.3.6 Sample size 

The atomCAT1 proof-of-concept study [31] demonstrated the ability to combine data 

from three centres for 281 patients. A Cox regression model for overall survival was 

fitted to the global dataset, taking five baseline factors into account. Its performance 

was evaluated using Harrell’s concordance index (c-index). The internal-external 

validation approach returned a c-index of 0.70, which is considered as “good” model 

performance. 

The “pmsampsize” [43] package in R was used to estimate the minimum sample size 

required for the atomCAT2 models. The parameters required to carry out this calculation 

include: R-squared (calculated from the c-index), number of candidate predictor 

parameters, shrinkage (level of reduction of the estimated predictor effect estimates to 

address overfitting), overall event rate in the population, mean follow-up time anticipated 

for individuals in the model development dataset and timepoint of interest for prediction. 

Table 5-2 illustrates how many patients will be needed to fit a Cox proportional hazards 

model for overall survival in atomCAT2, aiming for similar performance to the model 

developed in the atomCAT1 study, with varying number of parameters. These estimates 

assume an event rate of 16% at 36 months, with a median follow-up of 46 months, a c-

index of 0.70 (corresponding to R2CSapp of 0.0676) and a shrinkage value of 0.90. 

Sample size estimates in this setting are very robust to variations in event rate, and are 

thus also valid for models for locoregional control and freedom from distant metastases 

(with an event rate of 25% and 15% at 5 years, respectively [7]). 

The number of prognostic factors which will be included in the final models will be based 

on the total number of patients available across the consortium. The analysis plan will 

be finalised when the total number of available patients are confirmed. Currently, we 

aim to include data from at least 1,000 patients, which would allow for eight parameters 

to be estimated per model. The number of prognostic factors included in the model could 

be the same or different to the number of parameters depending on the number of 

categories for the categorical factors and the parameterisation of the continuous factors. 
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Table 5-2. Estimated minimum sample size for a range of parameters, for the overall 

survival model (also valid for the locoregional control and freedom from distant 

metastasis models). 

Parameters included 
in the model 

Minimum sample 
size 

5 641 

6 769 

7 897 

8 1025 

9 1153 

10 1283 

11 1409 

 

5.3.7 Statistical analysis 

5.3.7.1 Descriptive data analysis 

Summary statistics will be shared with the central study team in order to explore cohort 

differences prior to modelling. Categorical variables will be summarised as proportions 

to the total number of patients per centre, expressed as percentages. Summary 

statistics will be calculated for numerical variables (mean, standard deviation, range, 

variance). 

Summary statistics for the global cohort will be reported. Categorical variables will be 

summarised as proportions to the total number of patients in the global cohort, 

expressed as percentages. For numerical variables, random effect meta-analysis will 

be used (using the “meta” package in R), with inverse variance weighting for pooling, 

reporting the overall mean and 95% confidence intervals (calculated from overall 

standard deviations). The range will be reported as the lowest and highest values across 

the global cohort, calculated from the range from each centre. 

Estimated 3-year survival / freedom from recurrence rates will be calculated by each 

centre individually, using the Kaplan-Meier estimator (using the “survival” package in 

R). The median potential follow-up time will be calculated based on the inverse Kaplan-

Meier estimator for each outcome for each centre separately. 
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5.3.7.2 Model specification 

The prognostic factors that will be included in each of the three primary models are 

specified in Table 5-3. The factors are listed in the order that they will be prioritised for 

analysis based directly on the findings from the systematic review and expert opinion. 

The factors are ordered according to the total number of times found to be prognostic 

in multivariable analysis. Additional factors were added by senior clinical oncologists. 

Factors found to be prognostic in univariable analysis but not in multivariable analysis 

may be included in the secondary models. The number of factors included in each model 

will depend on the final sample size for each outcome, as detailed above. For each 

factor, the primary parameterisation used (e.g. categorisation for categorical variables) 

is listed, with alternatives to be explored in secondary analyses. The parameterisation 

of all variables for the primary and secondary models was determined after a detailed 

discussion with clinical oncologists and represents the relationship they expect to see 

from clinical experience, as well as the expected data distribution. See Supplementary 

material B (Section 5.6.2) for secondary model specification. 

 

Table 5-3. Specification of the primary models for overall survival, locoregional control 

and freedom from distant metastasis. N stage: nodal stage. T stage: tumour stage. GTV: 

Gross tumour volume. EQD2: Equivalent dose in 2Gy fractions (α/β=10Gy). SCC: 

Squamous cell carcinoma. 3D-CRT: Three-dimensional conformal radiation therapy. 

IMRT: Intensity-modulated radiation therapy. VMAT: Volumetric modulated arc therapy. 

 

Prognostic factors to be included in the primary models 

Overall survival  
model 

Locoregional control 
model 

Freedom from distant 
metastasis model 

1 N stage: N0 vs N+ Sex: Female vs Male N stage: N0 vs N+ 

2 T stage: T1-2 vs T3-4 N stage: N0 vs N+ T stage: T1-2 vs T3-4 

3 Sex: Female vs Male T stage: T1-2 vs T3-4 Sex: Female vs Male 

4 
Age: Modelled as a 
continuous, linear factor 

Age: Modelled as a 
continuous, linear factor 

Age: Modelled as a 
continuous, linear factor 

5 
Primary tumour GTV (cm3): 
Modelled as a continuous, 
log-transformed factor 

Primary tumour GTV (cm3): 
Modelled as a continuous, 
log-transformed factor 

Primary tumour GTV (cm3): 
Modelled as a continuous, 
log-transformed factor 
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6 
Primary tumour dose 
(EQD2): Modelled as a 
continuous, linear factor 

Primary tumour dose (EQD2): 
Modelled as a continuous, 
linear factor 

Primary tumour dose (EQD2): 
Modelled as a continuous, 
linear factor 

7 
Histology: SCC vs Basaloid 
SCC 

Histology: SCC vs Basaloid 
SCC 

Histology: SCC vs Basaloid 
SCC 

8 

Chemotherapy regimen: [No 
chemotherapy] vs [Mitomycin 
C-based regimen] vs 
[Cisplatin-based regimen] 

Chemotherapy regimen: [No 
chemotherapy] vs [Mitomycin 
C-based regimen] vs 
[Cisplatin-based regimen]; 

Chemotherapy regimen: [No 
chemotherapy] vs [Mitomycin 
C-based regimen] vs 
[Cisplatin-based regimen]; 

9 
RT technique: [3D-CRT] vs 
[IMRT] vs [VMAT] 

RT technique: 3D-CRT vs 
IMRT vs VMAT 

RT technique: 3D-CRT vs 
IMRT vs VMAT 

 

5.3.7.3 Cox model development and reporting 

The primary analysis will involve the development and internal validation (Type 2b 

validation according to TRIPOD [44]) of Cox Proportional Hazards models using 

distributed learning [45] across all participating centres, separately for each outcome 

(overall survival, locoregional control, and freedom from distant metastasis). The 

primary model to be developed for each outcome is detailed above. Secondary analyses 

(Supplementary material B, Section 5.6.2) will be used to explore the robustness of the 

results to the choices made for the primary model. As an additional assessment of 

model robustness, another secondary analysis will be conducted. In this analysis, the 

specified models (Table 5-3) will be trained only on datasets comprising of more than 

20 events, as a way of testing whether the number of events per centre affects the 

behaviour of the models.  

The factor effects from each model will be reported in the form of Hazard Ratios (HRs) 

along with 95% confidence intervals (CIs). The ‘baseline’ outcome rate at specific 

timepoints of interest (e.g. 2 years, 3 years and 5 years) will be calculated. Combining 

the baseline outcome rate with the factor effect estimates (HRs) will allow for outcome 

prediction for a future patient, rendering the model useable for future prediction. 

 

5.3.8 Evaluation and visualisation of model performance 

Model performance will be initially assessed using Harrell’s concordance index (c-index) 

[46] on a per-centre basis, with a weighted average c-index (and standard deviation) 

also reported. A more robust estimate for out-of-sample performance will be obtained 

using a closed-loop internal-external “leave-one-centre-out” cross-validation method 

[47], where the model will be optimised using data from all but one sites and then 
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validated on the last site. This will be repeated to cover the possible combinations, 

resulting in different c-indices which provide an estimate of the over-optimism of the 

global model. The weighted average and interquartile range (IQR) of these c-index 

values will be reported. The factor effects from each of these validation models will be 

aggregated and the summary effects will be reported in the form of HR range for each 

factor across all models. 

The calibration of the global model (performance check for the prediction aspect of the 

model) will be assessed by constructing calibration curves and quantifying the 

calibration slope [48, 49], on a local (per-centre) level. Calibration curves will use three 

groups per centre (low/medium/high risk, based on their predicted outcomes), and will 

compare average predicted outcome within each group with the observed outcome at 

3 years, using the Kaplan-Meier estimator. This is the initial plan for evaluation of the 

model calibration, and the final plan may be altered depending on the size of each 

centre’s cohort, as well as the number of events per centre.  

The model development and validation procedure and results will be reported in 

accordance with the TRIPOD statement and checklist [50]. This protocol has also been 

checked against the relevant parts of the TRIPOD checklist for prediction model 

development and validation. 

 

5.3.9 Distributed learning infrastructure 

The infrastructure that will be used for this study is very similar to the infrastructure 

implemented in atomCAT1 [31]. The Distributed Cox algorithm developed by Lu et al. 

[45] was adapted to the Vantage6 v2.0 infrastructure as R scripts (v.3.6.2). The source 

code will be made openly accessible on GitHub. Scripts for computing model 

coefficients and leave-one-centre-out model validation will be packaged as application 

“containers” (via Docker) and will be locally executed in each centre. All other scripts 

that will be used for the data analysis will be uploaded in a GitLab repository, which will 

be made public at the end of the project. 
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5.3.10 Organisation and policies 

The atomCAT2 study will be conducted as part of a wider atomCAT consortium. Details 

of consortium engagement and project management will be described in detail in a 

collaborative research agreement, which will be signed by all participating centres.  

Medical Data Works BV (MDW, https://medicaldataworks.nl/) implements a privacy 

preserving distributed infrastructure that investigators in atomCAT2 will use. Therefore, 

an Infrastructure User Agreement will be signed as a contractual agreement between 

each centre and MDW. MDW will not be considered as a “processor” of clinical data 

according to the definition in the EU General Data Protection Regulation but is solely 

the provider of the information technology infrastructure and the central server. As the 

infrastructure provider, MDW will enforce the legal use of algorithms and data stations, 

and this agreement shall define the terms and conditions for the use of the infrastructure. 

 

5.4 Discussion 

This paper describes the protocol and statistical analysis plan for the international multi-

centre atomCAT2 study. The study will aim to develop and validate robust prognostic 

models for three clinically important outcomes in anal cancer after treatment with 

conformal radiotherapy. Key prognostic factors for each outcome will also be identified 

and validated.  

Only patients treated with conformal radiotherapy techniques  (e.g. 3D-conformal, 

intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy 

(VMAT)), will be included in the cohort for analysis as these techniques have been 

proven to reduce the dose delivered to normal tissues, minimising toxicity and reducing 

overall treatment duration and the need for treatment breaks [51–54]. Therefore, by 

limiting our cohort to patients treated with conformal radiotherapy, we ensure that the 

prognostic models developed will be informative to current clinical practice. These 

models will include a range of established prognostic factors, identified through a 

comprehensive review of the literature and confirmed by three experts from three 

different centres. A range of additional less-established prognostic factors will also be 

tested in secondary models, to quantify their effect size and assess their eligibility as 

clinically relevant predictors of outcome.  
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Most of the literature which reports on outcomes and prognostic factors in anal cancer 

after conformal radiotherapy are retrospective studies which include small cohorts from 

a single centre. The results from the prognostic models developed in these studies may 

therefore suffer from small sample size bias and might not be generalisable [55] across 

centres and countries. To our knowledge, only three previous studies have analysed 

more than 200 patients with conformal radiotherapy [14, 31, 56], only one of which was 

multi-national and conducted multi-centre validation of outcome predictors. The cohorts 

that will be included in atomCAT2 will not only be significantly larger in size, but also 

more heterogeneous, since treatment dose and delivery schedules vary between 

radiotherapy centres, especially across different countries.  

The analysis will be limited to retrospective data that is readily available in clinical and 

radiotherapy planning databases in a large number of centres. Therefore, some factors 

that could potentially be prognostic, such as HPV status and baseline performance 

status, may not be included in the primary models as they are not routinely collected in 

all centres. Since atomCAT2 is a non-prospective multi-centre analysis, it is expected 

that some data will vary between centres, including tumour staging, GTV definitions and 

outcome definitions. Steps have been taken to take the variation into consideration and 

minimise it as much as possible, including providing pre-specified definitions for all three 

outcomes and asking centres to indicate the staging version and GTV definition used. 

Despite this, some variation is unavoidable, which may affect the results. Additionally, 

it is expected that some essential data will be missing in a number of centres.  

The methods for handling missing data have been specified in the protocol, however, 

these are substantially limited to what can currently be implemented in the DL setting 

without having to share individual-level patient data between centres. The field of 

missing data imputation in the context of DL is still in its infancy and does not currently 

have established standards. So far, only few studies have been conducted with the aim 

of developing or evaluating imputation techniques that can be implemented in a DL 

setting [36, 37]. Our initial imputation plan for data missing for a small number of patients 

in individual centres proposes the implementation of the KNN algorithm, which is a 

single imputation approach. In this case, one unique value will be imputed for each 

patient with missing data, resulting in a single complete dataset [57, 58]. This will likely 

produce relatively unbiased estimates, especially if only a small proportion of the data 

is missing [57, 59]. However, it is worth noting that these approaches fail to take into 
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account the uncertainty of the missing values [60], which often results in 

underestimation of the variability and standard errors that are too small [61]. If data for 

a single data item is missing in the majority of patients in an individual centre, we also 

propose single imputation (using the data from the remaining centres), but assigning 

the same value to all missing data from the centre in question (also referred to as single 

value imputation). We recognise that this approach may introduce significant bias, 

leading to a change in the distribution shape and a significant decrease in standard 

deviation of the data item being imputed [62]. Using more advanced approaches to 

impute missing data, such as multiple imputation by chained equations (MICE) [63], 

would be ideal but cannot be applied through the DL infrastructure at this point. Further 

methodological research is needed to incorporate robust data imputation techniques to 

a privacy-preserving setting in order to tackle the problem of missing data, which is 

particularly common in medical datasets. 

Future research beyond atomCAT2 will include incorporation of imaging and radiomics 

data to the models to increase their complexity and the potential insights gained. A 

number of studies have reported various imaging-related prognostic factors in anal 

cancer [64–66], which might prove to be clinically relevant. Moreover, strong efforts from 

the research community are being put into increasing the utility of DL in medical 

research by adapting different statistical methods and models to the existing 

infrastructure. In the future, it may be possible to develop competing risk models [67] in 

a distributed fashion, allowing multiple outcomes to be analysed in combination. 

Additionally, other algorithms such as random survival forests [68], may be implemented 

in DL to carry out the analysis instead of Cox regression. Random survival forests allow 

for a larger number of factors to be considered and factor selection is embedded within 

the methodology, which may in turn improve learning performance. This will be 

particularly useful in cases where many factors need to be considered. Alternative 

approaches to DL could also be considered for prognostic model development without 

having to share individual-level patient data between centres. For example, a 

multivariate meta-analysis approach [69–71] could be adopted, where summary 

statistics and regression coefficients from different prognostic models can be combined 

into a new prediction model. However, there are various issues with this approach, 

which may have a negative impact on the performance of the resulting prediction model, 

such as inconsistent covariate adjustment across models and high levels of model 

heterogeneity [72]. One significant advantage of the distributed learning approach over 
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a meta-analysis approach is that a distributed Cox regression model generates the 

same model outputs as a centralised Cox regression model trained with the same data 

[45]. It has also been proven that distributed and centralised Cox regression models are 

equivalent from a mathematical perspective. This might not be true in all cases where 

meta-analysis approaches to prognostic model development are employed. 

In conclusion, the atomCAT2 models will be developed using one of the largest cohorts 

of patients with anal cancer treated with conformal radiotherapy techniques ever 

analysed and will be validated across centres and countries. The models will allow for 

the prediction of outcomes in individual patients, which will inform current clinical 

practice and may subsequently aid with the personalisation of anal cancer treatment. 

The results of the atomCAT2 study may guide patient risk stratification, which may in 

turn facilitate the design of future prospective clinical trials in anal cancer. 
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5.6  Supplementary material 

5.6.1 Supplementary material A. Data dictionary 

Essential data items are denoted in bold. All other data items are optional. 

All missing values will be coded as NA. 

 

Baseline characteristics 

• Biological sex [sex]: Binary variable 

o 0 – Male 

o 1 – Female 

• Age at the start of radiotherapy (years) [age]: Continuous numerical variable 

• TNM staging: Categorical variables 

o T stage [t_stage] 

▪ 1: T1 

▪ 2: T2 

▪ 3: T3 

▪ 4: T4 

o N stage [n_stage] 

▪ for TNM version 7:   0: N0;   1: N1;   2: N2;   3:  N3 

▪ for TNM version 8:   0: N0;   1: N1a;   2: N1b;   3: N1c 

o M stage [m_stage] 

▪ 0: M0 

▪ 1: M1 

• TNM staging version [tnm_version]: Discrete numerical variable 

• Primary tumour GTV (cm3) [pr_tumour_gtv]: Continuous numerical variable 

• Histology [histology]: Binary variable 

o 0 – SCC 

o 1 – Basaloid SCC 

• HPV status [hpv_status]: Binary variable 

o 0 – Negative 

o 1 – Positive 

• Performance status [perf_status]: Categorical variable 

o 0 – Fully active, able to carry on all pre-disease performance without 

restriction. 
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o 1 – Restricted in physically strenuous activity but ambulatory and able to 

carry out work of a light or sedentary nature, e.g., light housework, office 

work. 

o 2 – Ambulatory and capable of all self-care but unable to carry out any work 

activities. Up and about more than 50% of waking hours. 

o 3 – Capable of only limited self-care, confined to bed or chair more than 

50% of waking hour. 

o 4 – Completely disabled. Cannot carry on any self-care. Totally confined to 

bed or chair. 

• Metastasis site at diagnosis [met_site_diag]: Categorical variable 

o 0 – No distant metastasis 

o 1 – Lymph nodes outside pelvis  

o 2 – Viscera or bones 

o 3 – Multiple sites 

• GTV delineation definition [gtv_definition]: Categorical variable 

▪ This variable does not need to be assessed for each patient individually, only on 

a per-centre level. 

o 1 – Primary tumour only 

o 2 – Primary tumour and anal canal in areas of tumour involvement 

o 3 – Primary tumour and entire anal canal 

• Differentiation grade [diff_grade]: Categorical variable 

o 0 – Well differentiated 

o 1 – Moderately differentiated 

o 2 – Poorly differentiated 

 

Treatment-related factors 

• Radiotherapy technique [rt_technique]: Categorical variable 

o 1 – 3D-CRT 

o 2 – IMRT 

o 3 – VMAT 

• Total prescribed dose (in EQD2α/β=10Gy): Continuous numerical variable 

o To primary tumour [prescr_dose_prtumour] 

o To involved lymph nodes [prescr_dose_invnodes1, 

prescr_dose_invnodes2] 

o To elective nodes [prescr_dose_elenodes1, prescr_dose_elenodes2] 
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• Concurrent chemotherapy? [conc_chemo]: Binary variable 

o 0 – No  

o 1 – Yes  

• Concurrent chemotherapy – number of cycles [conc_chemo_cycles]: Discrete 

numerical variable 

• Concurrent chemotherapy – drugs used [conc_chemo_drugs]: Categorical 

variable   

o 0 – No chemotherapy 

o 1 – Mitomycin C and 5-Fluorouracil  

o 2 – Mitomycin C and Capecitabine 

o 3 – Cisplatin and 5-Fluorouracil 

o 4 – Cisplatin and Capecitabine 

o 5 – Other 

• Total number of prescribed treatment fractions [prescr_fractions]: Discrete 

numerical variable 

• Total number of delivered treatment fractions [deliv_fractions]: Discrete numerical 

variable 

• Overall treatment time (days) [overall_treatment_time]: Discrete numerical variable 

• Completed radiotherapy treatment? [compl_treatement]: Binary variable 

o 0 – No  

o 1 – Yes  

• Treatment breaks? [treatment_breaks]: Binary variable 

▪ Defined as any extension to the treatment time of more than 2 days over the 

planned overall treatment time (as defined by RCR [73]) – extensions due to 

planned breaks such as holidays should not be included. 

▪ Estimated from the total number of delivered fractions - gives expected 

treatment time - compared to overall treatment time 

▪ We don’t need chart checks for breaks for all patients, but just an estimate of 

whether treatment time is extended compared to expected 

o 0 – No  

o 1 – Yes 

• Simultaneous or sequential boost? [boost]: Categorical variable 

o 0 – No boost 

o 1 – Simultaneous boost  

o 2 – Sequential boost 
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• Total delivered dose (in EQD2α/β=10Gy): Continuous numerical variable 

o To primary tumour [deliv_dose_prtumour] 

o To involved lymph nodes [deliv_dose_invnodes1, deliv_dose_invnodes2] 

o To elective nodes [deliv_dose_elenodes1, deliv_dose_elenodes2] 

 

Outcomes 

• Overall survival status [os_status]: Binary variable 

o 0 – Alive 

o 1 – Dead 

• Overall survival - follow-up time (days) [os_fup]: Discrete numerical variable 

o Calculated in number of days from the first fraction of radiotherapy to either 

event or censoring, whichever happens first. 

• Locoregional failure [lrf_status]: Binary variable 

o 0 – No  

o 1 – Yes  

• Site of locoregional failure [lrf_site]: Categorical variable 

o 0 – No locoregional failure 

o 1 – Primary tumour  

o 2 – Pelvic lymph nodes / lymph nodes in the primary treatment volume 

o 3 – Primary tumour and lymph nodes simultaneous 

o 4 – Other 

• Locoregional failure - follow-up time (days) [lrf_fup]: Discrete numerical variable 

o Calculated in number of days from the first fraction of radiotherapy to either 

event or censoring, whichever happens first. 

• Distant metastasis [dm_status]: Binary variable 

o 0 – No  

o 1 – Yes  

• Site of distant metastasis [dm_site]: Categorical variable 

o 0 – No distant metastasis 

o 1 – Lymph nodes outside pelvis  

o 2 – Viscera or bones 

o 3 – Multiple sites 

• Distant metastasis - follow-up time (days) [dm_fup]: Discrete numerical variable 

o Calculated in number of days from the first fraction of radiotherapy to either 

event or censoring, whichever happens first. 



 

 

 

177 

Availability of imaging and treatment plans 

In future analysis, baseline imaging biomarkers will be explored and incorporated to the 

models. The availability of the following factors will be assessed in each centre: 

• Pre-treatment FDG PET-CT scan available: Binary variable 

o 0 – No  

o 1 – Yes  

• Pre-treatment MRI scan available: Binary variable 

o 0 – No  

o 1 – Yes  

• Treatment planning CT scan available: Binary variable 

o 0 – No  

o 1 – Yes  

• Full 3D dose distributions for all treatment phases available: Binary variable 

o 0 – No  

o 1 – Yes  

• Radiotherapy structure set data available: Binary variable 

o 0 – No  

o 1 – Yes  

• Dose-volume histogram (DVH) data available: Binary variable 

o 0 – No  

o 1 – Yes 

 

5.6.2 Supplementary material B. Specification of secondary models 

Overall survival secondary models 

A range of secondary models for overall survival will be fit, in order to test the robustness 

of the primary model, as well as explore the impact of having a different set of factors or 

different factor parameterisation on the model fit. The following changes will be made to the 

primary model in separate secondary models:  

1. TNM staging: will replace T stage and N stage. Categories: Low risk (T1-3N0) vs 

High risk (T4N(any) or T(any)N+). 

2. Age: Modelled as a categorical factor instead of continuous. Categories: [18-39] vs 

[40-59] vs [60-79] vs [80-99]. 

3. Age: Modelled as a continuous, non-linear factor. Multiple transformations will be 

tested prior to the analysis and the most appropriate transformation will be applied.  
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4. Primary tumour GTV (cm3): Modelled as a categorical factor instead of continuous. 

Categories: [0-49.99] vs [50-99.99] vs [100-149.99] vs [150-199.99] vs [200+]. 

5. Chemotherapy regimen: will be included as a factor with 5 categories. Categories: 

[No chemotherapy] vs [Mitomycin C and 5-Fluorouracil] vs [Mitomycin C and 

Capecitabine] vs [Cisplatin and 5-Fluorouracil] vs [Cisplatin and Capecitabine] vs 

[Other]. 

6. Incomplete/Interrupted treatment will be included as a binary factor: No vs Yes 

7. Performance status will be included as a categorical factor: 0 vs 1 vs 2 vs 3 vs 4 

(See Supplementary material A for categorisation). 

Note: Items 6 and 7 were found to be prognostic for overall survival in univariable analysis 

in the systematic review, but not in multivariable analysis. These are optional data items in 

atomCAT2. We will assess the amount of data available and if possible, secondary models 

which include these factors will be fit. 

 

Locoregional control secondary models 

A range of secondary models for locoregional control will be fit. The following changes to 

the primary model will be made in separate secondary models:  

1. Performance status will be included as a categorical factor: 0 vs 1 vs 2 vs 3 vs 4 

(See Supplementary material A for categorisation). 

2. TNM staging: will replace T stage and N stage. Categories: Low risk (T1-3N0) vs 

High risk (T4N(any) or T(any)N+). 

3. Overall treatment time: will be included as a continuous, linear factor. 

4. Age: Modelled as a categorical factor instead of continuous. Categories: [18-39] vs 

[40-59] vs [60-79] vs [80-99]. 

5. Age: Modelled as a continuous, non-linear factor. Multiple transformations will be 

tested prior to the analysis and the most appropriate transformation will be applied.  

6. Primary tumour GTV (cm3): Modelled as a categorical factor instead of continuous. 

Categories: [0-49.99] vs [50-99.99] vs [100-149.99] vs [150-199.99] vs [200+]. 

7. Incomplete/Interrupted treatment will be included as a binary factor: No vs Yes. 

Note: Items 1 and 7 were found to be prognostic for locoregional control in univariable 

analysis, but not in multivariable analysis. These are optional data items in atomCAT2. We 

will assess the amount of data available and if possible, secondary models which include 

these factors will be fit. 
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Freedom from distant metastasis secondary models 

A range of secondary models for freedom from distant metastasis will be fit. The following 

changes to the primary model will be made in separate secondary models:  

1. TNM staging: will replace T stage and N stage. Categories: Low risk (T1-3N0) vs 

High risk (T4N(any) or T(any)N+). 

2. Age: Modelled as a categorical factor instead of continuous. Categories: [18-39] vs 

[40-59] vs [60-79] vs [80-99]. 

3. Age: Modelled as a continuous, non-linear factor. Multiple transformations will be 

tested, and the most appropriate transformation will be applied.  

4. Primary tumour GTV (cm3): Modelled as a categorical factor instead of continuous. 

Categories: [0-49.99] vs [50-99.99] vs [100-149.99] vs [150-199.99] vs [200+]. 

5. Chemotherapy regimen: will be included as a factor with 5 categories. Categories: 

[No chemotherapy] vs [Mitomycin C and 5-Fluorouracil] vs [Mitomycin C and 

Capecitabine] vs [Cisplatin and 5-Fluorouracil] vs [Cisplatin and Capecitabine] vs 

[Other]. 
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Chapter 6 - Prognostic models for anal cancer using distributed 

learning: the international multi-centre atomCAT2 study 

 

6.1 Abstract 

6.1.1 Background 

Anal cancer is a rare disease typically treated with concurrent chemoradiotherapy. Lack 

of understanding of prognostic factors means that the options for individualisation of 

treatment are limited. Due to the rarity of the cancer, single centre (or even single 

country) data are unlikely to be sufficient for robust development of prognostic models. 

Distributed learning can allow for analysis of datasets from multiple centres, without 

exchanging sensitive individual-level patient data. The aim of this study was to 

collaboratively develop and validate prediction models for multiple anal cancer 

outcomes through distributed learning in an international consortium. 

 

6.1.2 Methods 

This was a retrospective cohort analysis of patients treated with radical intent for anal 

cancer using conformal radiotherapy in 12 treatment centres based across the UK and 

Europe. A prospective study protocol and a comprehensive statistical analysis plan 

were collaboratively developed and published. Collected data included baseline patient 

characteristics and treatment characteristics. Distributed multivariable Cox Proportional 

Hazards models for overall survival, locoregional control, and freedom from distant 

metastasis were developed and validated across all participating centres using the 

Vantage6 distributed learning infrastructure. 

 

6.1.3 Results 

Data from 1,099 patients treated from 2004 to 2022 were analysed. Nodal involvement 

(HR=1.41, 95% confidence interval 1.06-1.89), male sex (HR=1.69, 95% CI 1.30-2.17), 

older age (HR=1.34 per 10 years, 95% CI 1.18-1.52), and larger primary tumour size 

were associated with poorer overall survival. Male sex (HR=1.89, 95% CI 1.41-2.56), 

higher T stage (HR= 1.55 for T3-4 versus T1-2, 95% CI 1.08-2.22), and larger primary 

tumour size were prognostic for poorer locoregional control. Nodal involvement (HR= 
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2.59, 95% CI 1.67-4.00) and larger primary tumour size were prognostic for poorer 

freedom from distant metastasis. All models exhibited satisfactory performance (cross-

validated weighted c-indices 0.60, 0.56, 0.56). 

 

6.1.4 Conclusion 

Analysis of a large, contemporary, and international anal cancer cohort provided unique 

insights into the contrasting prognostic effects of various factors on three clinically 

important outcomes. These results could inform the design of future clinical trials and 

the stratification of patients into risk groups, with the ultimate aim of improving outcomes 

for future patients. 

 

6.2 Background 

Anal cancer is a rare disease comprising approximately 0.3% of the total number of 

cancer cases [1,2]. Over the last two decades, incidence rates have been gradually 

increasing [3]. The current standard therapy for localised anal cancer consists of 

concurrent chemotherapy and radiotherapy [4–6]. In the majority of treatment centres, 

radiotherapy is delivered conformally via intensity-modulated radiation therapy (IMRT) 

or volumetric modulated arc therapy (VMAT).  

The current standard treatment with IMRT/VMAT confers favourable outcomes:  

complete clinical response rates of 86.7%, as well as three-year overall survival rates 

of 85.6% and three-year disease-free survival rates of 75.6% have been reported in a 

modern UK multicentre cohort [7]. Notably, the majority of disease relapses (83.4%) 

have been reported to occur at the site of the primary disease, highlighting the challenge 

of achieving locoregional tumour control in a subset of patients. Therefore, a better 

understanding of the prognostic factors for each outcome is needed, which would 

enable the development of a more stratified approach to treatment. Even though 

ongoing prospective clinical trials are currently trying to address this issue [8], clinical 

practice can meanwhile be informed by prognostic models that are developed using 

clinical data generated from routine practice [9,10]. 

Training and validation of robust prognostic models relies on the availability of large 

amounts of high-quality data [11,12]. Therefore, conducting robust analyses of 

prognostic factors for anal cancer outcomes can be particularly challenging: Due to the 
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rarity of the disease, each centre treats only a small number of patients every year, and 

as a result it can take years to obtain sufficient data. In addition, sharing data between 

centres is limited by ethical barriers and data protection regulations, which render 

traditional multi-centre data analysis unfeasible [13]. A data analysis approach called 

distributed learning (DL), or federated learning [14], has paved the way towards 

collaborative data analysis across centres and international borders. 

DL can be implemented to develop prognostic models using local datasets originating 

from multiple centres, without having to exchange any sensitive individual-level patient 

data between centres [15]. Only non-identifiable aggregated information in the form of 

mathematical parameters, such as model coefficients, is shared between centres in 

order to train and validate a distributed model. Therefore, distributed learning strategies 

do not breach patient data privacy and minimise issues related to data sharing [16]. DL 

models are trained iteratively through the exchange of local model coefficients and fit 

errors between each participating centre and a central server. At each iteration, the 

central server aggregates the model coefficients computed locally in each centre and a 

single globally-convergent model is determined by minimizing the total error [17]. The 

process is repeated until the pre-specified convergence criteria are fulfilled. 

This methodology is ideal for the prognostic model development for rare cancers, 

including anal cancer. Through DL, sufficient amounts of data from multiple centres can 

be analysed to develop generalisable models, whilst avoiding the aforementioned data 

sharing barriers. The atomCAT1 proof-of-concept study [18] has demonstrated the 

feasibility of this approach for anal cancer outcome modelling. In atomCAT1, a Cox 

proportional hazards model for overall survival was trained and validated in a distributed 

fashion, using data from three international radiotherapy treatment centres. However, 

this study only addressed overall survival as the outcome of interest. 

To extend this work further, we established the international atomCAT consortium (Anal 

cancer Treatment Outcome Modelling with Computer Aided Theragnostics), which 

consists of 12 cancer treatment centres based in the UK and across Europe. In the 

atomCAT2 study, we aimed to develop and validate prediction models for multiple anal 

cancer outcomes after chemoradiotherapy through distributed learning. These models 

can be used to identify key prognostic factors for the outcomes explored, and to 

determine their effect size. The results from this study may guide the design of future 

clinical trials in anal cancer. 
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6.3 Methods 

6.3.1 Prospective study protocol & statistical analysis plan 

A prospective study protocol and a comprehensive statistical analysis plan for the 

atomCAT2 study were collaboratively developed, published [19] and registered in Open 

Science Foundation [20]. 

 

6.3.2 Institutional data access & data protection approvals 

Each centre acquired separate local approval for accessing and collecting patient data 

for research. Each local coordinating investigator provided a copy of the letter 

confirming that use of data for research had been approved (e.g. from the Institutional 

Review Board, IRB), including approval reference number, to the central study 

coordinator. For UK centres, a central project application was submitted for review by 

the Health Research Authority (HRA) and the Research Ethics Committee (REC), to 

allow for coordinated approval across the National Health Service (NHS). The central 

project application received HRA and REC approval (IRAS project ID: 303103, REC 

reference: 22/WA/0081). The atomCAT2 study assumed radiotherapy being the 

standard of care, with no intervention performed specific to this protocol. Therefore, no 

informed patient consent was needed to collect the data required for the analyses. 

 

6.3.3 Study design & patient population 

In this retrospective multi-centre cohort study, outcomes after primary 

(chemo)radiotherapy for anal squamous cell carcinoma (ASCC) were investigated. 

Patients were treated according to each participating centre’s protocols, which 

consisted of concurrent radiotherapy and chemotherapy with varying regimens or 

radiotherapy only.  

Patients treated with radical intent external beam radiotherapy for primary ASCC, with 

or without concomitant chemotherapy were included. Inclusion was restricted to patients 

treated with conformal radiotherapy techniques (forward-planned 3D conformal 

radiotherapy (3D-CRT) or IMRT/VMAT). Patients treated with palliative intent, and 

patients who had received prior pelvic radiotherapy or brachytherapy (either primary or 

as boost treatment) were excluded.  
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6.3.4 Outcome definitions 

Three outcomes were explored: overall survival, locoregional control and freedom from 

distant metastasis. The CORMAC initiative has identified these as key outcome 

research measures in anal cancer [21].  

Overall survival was calculated in days from the first fraction of radiotherapy to either 

event or censoring, whichever happened first. An event was defined as death from any 

cause at any point during follow-up. Patients were censored at the last clinical follow-up 

date if alive. 

Time to locoregional control was calculated in days from the first fraction of radiotherapy 

to either event or censoring, whichever happened first. An event was defined as either 

abdominoperineal resection to control locoregional disease during follow-up, or 

locoregional disease progression during follow-up (not managed by surgery), or lack of 

complete response at 26 weeks from the first radiotherapy fraction. Patients were 

censored at death, at last clinical follow-up, if undergoing abdominoperineal resection 

for non-disease related reasons, or in case of distant metastases. 

Freedom from distant metastasis was calculated in days from the start of radiotherapy 

to either event or censoring, whichever happened first. An event was defined as distant 

disease recurrence (previously untreated lymph node metastasis outside the pelvis, or 

other metastatic sites such as lung, liver, bone) as a first event. Patients were censored 

at local recurrence, at death, or at last clinical follow-up. 

The complete definitions for all three outcomes can be found in the study protocol [19]. 

 

6.3.5 Identification of relevant prognostic factors  

To identify established prognostic factors for the outcomes in question, a systematic 

review of the literature was conducted [22]. This review analysed studies which were 

published after 2000 and reported on anal cancer outcomes after treatment with 

conformal radiotherapy. Only studies with large cohorts (>100 patients) were 

investigated. Factors identified as prognostic through multivariable analysis in multiple 

studies were selected and prioritised (based on the number of studies reporting on 

them), which formed an initial list of relevant data to be collected. This list was reviewed 

by three senior clinical oncologists (AG, MGG, MB), who added additional relevant 
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factors. A data dictionary was created and shared between all centres, for standardised 

data collection and reporting. 

 

6.3.6 Patient data collection 

Patient data were identified and extracted from existing research and clinical databases 

at each participating centre. To ensure good data quality, each centre spot checked all 

extracted data, ensuring adherence to the data coding system specified in the data 

dictionary and identifying any outliers. As a prerequisite, each dataset consisted of data 

from a minimum of 40 patients to ensure a representative sample, to achieve a 

reasonable balance of patient heterogeneity, and to limit reporting of subgroups with 

only a few patients. Prior to the analysis, all patient data was pseudonymized and 

stripped of protected health information, such as treatment dates, birth and death dates, 

as well as generic medical record numbers. 

 

6.3.7 Missing data 

The study protocol [19] specified a framework on how to deal with missing data at 

individual centres, in multiple different scenarios. According to this framework, since 

only fewer than 10% of patients at each centre had missing data items for the primary 

analyses, complete-case analysis was implemented for these analyses. The one 

exception was the gross tumour volume (GTV, cm3), which was not routinely delineated 

in one centre and was systematically missing for the majority of patients in another 

centre. The mean GTV across all other centres was used to calculate the global “median 

of means” value. This value was assigned to all patients with missing GTV data in the 

two centres. 

 

6.3.8 Sample size 

A prospective sample size calculation was carried out using the framework set out by 

Riley et al. [23], and was implemented using the “pmsampsize” package in R, in order 

to determine the minimum sample size required to fit a Cox proportional hazards model 

for each of the three outcomes. The number of prognostic factors which were included 

in the final models was based on the total number of patients available across the 

consortium. The detailed methodology used to carry out the sample size calculation is 

provided in the study protocol [19]. 
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6.3.9 Statistical analysis 

6.3.9.1 Descriptive data analysis 

The descriptive data analysis, which included the calculation of summary statistics and 

survival statistics from each centre, was conducted according to the framework set out 

in the study protocol [19]. The overall summary statistics for continuous variables were 

calculated using weighted means. Two-year, three-year and 5-year overall survival, 

locoregional control and freedom from distant metastasis were estimated by Kaplan-

Meier methods. Potential follow-up times were based on the inverse Kaplan-Meier 

estimator [24]. 

 

6.3.9.2 Cox model development and reporting 

The primary analysis consisted of the development and Type 2b internal validation [25] 

of distributed multivariable Cox Proportional Hazards models [26] across all participating 

centres, separately for overall survival, locoregional control, and freedom from distant 

metastasis. The primary models were pre-specified in the study protocol [19]. Based on 

the available patient numbers, 8 parameters could be included in the primary models. 

The predictors used were consequently age, sex, T stage, nodal involvement, gross 

tumour volume (GTV), prescribed dose to primary tumour and histology (as per the 

prioritisation lists in the study protocol). For GTV, a log10 transformation was applied 

prior to model inclusion. All analyses were run as multivariable models, with no data 

driven factor selection or model reduction. 

For each model developed, the estimated factor effects were reported as Hazard Ratios 

(HRs), along with 95% confidence intervals (CIs). Factors were deemed prognostic if 

their 95% CIs did not overlap with 1. For each of the three outcomes, the baseline 

outcome rates at 2 years, 3 years and 5 years were calculated. The baseline outcome 

rate can be defined as the outcome rate when all model factors are set to their baseline 

value. To calculate the baseline outcome rates, all categorical factors were set to 0, the 

age at the start of radiotherapy was set to 35 years, the prescribed dose to the primary 

tumour was set to 40 EQD2α/β=10Gy, and the log10 of GTV was set to 0.02572. The 

combination of the baseline outcome rate and the factor effect estimates (HRs) enables 

the prediction of outcomes for future patients, rendering the model useable for individual 

patient outcome prediction. 
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6.3.9.3 Evaluation and visualisation of model performance 

Model performance was assessed using Harrell’s concordance index (c-index) [27] on 

a per-centre basis. The global weighted mean c-index was also calculated. A closed-

loop internal-external “leave-one-centre-out” cross-validation method [28] was applied 

to obtain the out-of-sample performance. During this validation phase, the model was 

trained using data from all but one centres and was then validated on the last centre. 

The procedure was repeated to cover all possible combinations. The resulting c-indices 

provided an estimate of the over-optimism of the global model. The weighted mean c-

index values were reported. 

The model development and validation procedure and results were reported in 

accordance with the TRIPOD statement and checklist [29]. 

 

6.3.9.4 Model calibration 

For the model calibration, the baseline outcome rates at three years were calculated at 

each participating centre. The weighted mean baseline outcome rates across the entire 

consortium were then calculated. These were used at each participating centre 

alongside the factor coefficients from each model to calculate the predicted three-year 

overall survival, locoregional control and freedom from distant metastasis rates for each 

patient. Subsequently, the mean predicted outcome rates were calculated and were 

used to split local cohorts into low risk and high risk groups. Then, the mean predicted 

three-year outcome rates for each risk group were computed. The actual (observed) 

three-year outcome rates for each risk group were estimated by Kaplan-Meier methods. 

For each outcome, the mean predicted outcome rates for the low risk and high risk 

groups were plotted against the respective actual outcome rates to give an indication of 

model calibration. 

 

6.3.10 Distributed learning architecture 

The Vantage6 v2.3.4 software was used to establish the three elements required to 

carry out an analysis via distributed learning. The first component is a “node”, where 

individual-level patient data is accessed, and local model coefficients are computed. 

The second component is a trusted coordinating “server”, which handles the 

communication with the nodes and performs the aggregation of coefficients from all 
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nodes. The final component is a “researcher”, which provides a pre-specified model for 

training and validation. 

At each participating centre, the DL node was set up on either a physical or a virtual 

personal computer running either Windows, MacOS or Ubuntu, with an installation of 

Python (v3.7 or v3.8), Docker Desktop (personal edition), and the Vantage6 v2.3.4 

Python library. The source code for the infrastructure implementation is openly 

accessible [https://github.com/IKNL/vantage6 - Version 2.3.4]. Network connectivity 

was fully compliant with local institutional policies, and only one secured network port 

through the institution firewall was enabled for Vantage6 traffic. 

The Distributed Cox algorithm developed by Lu et al. [26] was adapted to the Vantage6 

v2.3.4 infrastructure as R scripts (v.3.6.2) and is publicly available on GitHub 

[https://github.com/IKNL/vtg.coxph].  

Medical Data Works BV (MDW, https://medicaldataworks.nl/) provided and maintained 

the DL infrastructure that was used to conduct the atomCAT2 DL analysis. 

Scripts for model coefficient computation and leave-one-centre-out model validation 

were packaged as application containers via Docker and were locally executed at each 

centre. 

 

6.4 Results 

6.4.1 Summary of patient characteristics and survival statistics 

A total of 1,119 patients treated from 2004 to 2022 across 12 participating centres were 

identified for inclusion in the analysis. A small number of these patients (n=16) had 

missing data in essential data items (outcome data was missing for 13 patients, 

histology data for 2 patients, and T stage data for 1 patient) and were therefore 

excluded, in order to carry out complete-case analysis.   

As a result, data from a total of 1,099 patients treated between 2004 and 2022 were 

analysed during the model training and validation phase. Based on the sample size 

calculation (Sections 5.3.6 and 6.3.8) and the total number of patients available), 8 

parameters could be included in the models. Table 6-1 summarises the patient 

characteristics of the cohort included in the analysis, stratified by centre. The survival 

statistics for the three outcomes explored are provided in Table 6-2. 

https://github.com/IKNL/vantage6
https://medicaldataworks.nl/


 

 

 

189 

The overall cohort had a weighted mean age of 63 at the start of radiotherapy, with the 

majority of patients (68%) being females. The patient age was consistent across 

centres. The primary tumour volume ranged considerably across centres, from a mean 

of 23.9cm3 in Centre 6 to a mean of 76.1cm3 in Centre 3. The tumours were 

predominantly squamous cell carcinomas (88%). The mean prescribed dose to primary 

tumour (in equivalent dose in 2Gy per fraction, α/β=10Gy, EQD2α/β=10Gy) was relatively 

consistent across centres, ranging from 49.8Gy to 60.1Gy. The most common 

chemotherapy regimen was MMC and 5FU, which was prescribed to 73% (n=801) of all 

patients. Only 7% (n=74) of patients did not receive any chemotherapy. 

233 (21%) of patients in the overall cohort died, 174 (16%) failed locoregionally, and 

125 (11%) had a distant metastasis. Weighted mean potential follow-up times across 

the entire cohort were 54.3 months for overall survival, 46.6 months for locoregional 

control, and 46.3 months for freedom from distant metastasis. The two-year, three-year, 

and five-year overall survival, locoregional control and freedom from distant metastasis 

rates, calculated at each centre individually, are presented in Figure 6-1. 

The overall cohort had a weighted mean overall survival rate of 88% at 2 years, 84% at 

3 years and 77% at 5 years. The weighted mean locoregional control rates were 85% 

at 2 years, 83% at 3 years, and 81% at 5 years. Weighted mean freedom from distant 

metastasis rates across the entire cohort were 89% at 2 years, 88% at 3 years, and 

87% at 5 years. Overall survival rates varied more than locoregional control and 

freedom from distant metastasis rates across centres. At 2 years, mean overall survival 

ranged from 82% to 97% between centres, at 3 years from 75% to 97%, and at 5 years 

from 66% to 87%. The differences in locoregional control rates between centres were 

less apparent, ranging from 78% to 91% at 2 years, 73% to 90% at 3 years, and 73% 

to 89% at 5 years. Lastly, freedom from distant metastasis was more consistent across 

centres than the other two outcomes, ranging from 84% to 96% at 2 years and 3 years, 

and from 80% to 94% at 5 years. 
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Table 6-1. Summary statistics for patient and treatment characteristics. SD: standard deviation; GTV: Gross tumour volume; SCC: 

Squamous cell carcinoma; MMC: Mitomycin C; 5FU: 5-fluorouracil; Cap: Capecitabine; Cispl: Cisplatin. 

 

 

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6 Centre 7 Centre 8 Centre 9 Centre 10 Centre 11 Centre 12 Overall cohort

197 150 128 112 97 82 77 61 53 50 48 44 1099

2015-2021 2014-2022 2013-2017 2016-2021 2011-2016 2009-2021 2008-2017 2008-2021 2004-2017 2010-2022 2016-2018 2013-2022 2004-2022

Male 61 (31%) 48 (32%) 35 (27%) 27 (24%) 25 (26%) 35 (43%) 33 (43%) 21 (34%) 23 (43%) 13 (26%) 19 (40%) 9 (20%) 349 (32%)

Female 136 (69%) 102 (68%) 93 (73%) 85 (76%) 72 (74%) 47 (57%) 44 (57%) 40 (66%) 30 (57%) 37 (74%) 29 (60%) 35 (80%) 750 (68%)

Mean 61.5 63.3 62.8 62.8 61.9 59.5 61.3 62.0 63.6 63.9 62.1 64.8 63.3

(sd, range) (11.0, 29-87) (12.3, 29-90) (10.6, 40-89) (11.0, 34-86) (10.6, 40-87) (12.2, 35-86) (10.4, 29-85) (9.7, 44-83) (10.5, 39-84) (10.3, 42-84) (9.5, 38-78) (12.6, 39-90) (11.1, 29-90)

T1-2 109 (55%) 99 (66%) 73 (57%) 60 (54%) 58 (60%) 53 (65%) 56 (73%) 23 (38%) 21 (40%) 20 (40%) 34 (71%) 26 (59%) 632 (57%)

T3-4 88 (45%) 51 (34%) 55 (43%) 52 (46%) 39 (40%) 29 (35%) 21 (27%) 38 (62%) 32 (60%) 30 (60%) 14 (29%) 18 (41%) 467 (43%)

N0 95 (48%) 79 (53%) 69 (54%) 45 (40%) 57 (59%) 41 (50%) 33 (43%) 36 (59%) 21 (40%) 15 (30%) 28 (58%) 19 (43%) 538 (49%)

N+ 102 (52%) 71 (47%) 59 (46%) 67 (60%) 40 (41%) 41 (50%) 44 (57%) 25 (41%) 32 (60%) 35 (70%) 20 (42%) 25 (57%) 561 (51%)

Mean 55.7 68.6 76.1 64.4 91.0 23.9 59.2 73.6 62.0 50.3 56.5 43.6 62.3

(sd, range) (88.3, 1.1-974.4) (68.6, 1.79-446.0) (67.5, 4.1-459.4) (68.7, 0.3-314.6) (101.9, 3.9-651.2) (32.2, 1.1-212.0) (73.8, 0.8-433.0) (67.9, 1.8-328.3) (0, 62.0-62.0) (34.1, 8.8-143.8) (14.7, 10.0-85.0) (69.60, 1.9-357.4) (71.7, 0.3-974.4)

Primary tumour 

only

Primary tumour only Primary tumour 

and  anal canal at 

the level of the 

tumour

Primary tumour 

only

Primary tumour only 

for the majority. For 

some patients, 

primary tumour and 

anal canal at the 

level of the tumour

Primary tumour 

and anal canal at 

the level of the 

tumour

Primary tumour 

only

Primary tumour 

only

N/A - Used 

consortium mean 

GTV

Primary tumour 

only

Used consortium 

mean GTV for 

most patients. 

Where GTV is 

available: Primary 

tumour only.

Primary tumour only

SCC 180 (92%) 132 (88%) 107 (84%) 95 (85%) 90 (93%) 80 (98%) 76 (99%) 57 (93%) 37 (70%) 41 (82%) 42 (88%) 33 (75%) 970 (88%)

Basaloid SCC 17 (8%) 18 (12%) 21 (16%) 17 (15%) 7 (7%) 2 (2%) 1 (1%) 4 (7%) 16 (30%) 9 (18%) 6 (12%) 11 (25%) 129 (12%)

Mean 52.04 51.8 56.4 51.4 49.8 55.3 60.1 53.5 52.5 54.0 59.6 56.9 53.8

(sd, range) (1.7, 52.0-65.2) (3.83, 40.7-63.6) (2.0, 54.0-58.1), (4.5, 40.7-62.6) (4.2, 28.3-54.9) (2.0, 49.6-60.0) (2.5, 54-66) (3.4, 49.6-60) (2.1, 54.6-58.4) (3.0, 49.6-60.0) (2.3, 58.4-63.7) (4.2, 44.3-62.0) (4.3, 28.3-66.0)

No chemotherapy 1 (1%) 13 (9%) 9 (7%) 20 (18%) 0 (0%) 6 (7%) 12 (16%) 6 (10%) 0 (0%) 0 (0%) 1 (2%) 6 (14%) 74 (7%)

MMC and 5FU 176 (89%) 100 (67%) 114 (88%) 77 (69%) 94 (97%) 67 (82%) 0 (0%) 49 (80%) 48 (90%) 44 (88%) 0 (0%) 32 (73%) 801 (73%)

MMC and Cap 14 (7%) 33 (22%) 1 (1%) 14 (13%) 0 (0%) 7 (9%) 64 (83%) 0 (0%) 3 (6%) 0 (0%) 47 (98%) 5 (11%) 188 (17%)

Cispl and 5FU 1 (1%) 0 (0%) 4 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 5 (8%) 0 (0%) 2 (4%) 0 (0%) 0 (0%) 12 (1%)

Cispl and Cap 0 (0%) 1 (1%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 3 (<1%)

Other 5 (3%) 3 (2%) 0 (0%) 0 (0%) 3 (3%) 2 2%) 1 (1%) 1 (2%) 2 (4%) 4 (8%) 0 (0%) 0 (0%) 21 (2%)

Number of patients

Treatment period

Sex

Age at the start of radiotherapy (years)

T stage

N stage

Primary tumour GTV (cm3)

Primary tumour dose (EQD2 α/β=10)

Chemotherapy regimen

GTV delineation

Histology
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Table 6-2. Summary of survival statistics, including potential follow-up times, by outcome and centre. 

  

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6 Centre 7 Centre 8 Centre 9 Centre 10 Centre 11 Centre 12 Overall cohort

197 150 128 112 97 82 77 61 53 50 48 44 1099

Deaths 43 (22%) 35 (23%) 20 (16%) 13 (12%) 26 27%) 14 (17%) 21 (27%) 17 (28%) 22 (42%) 5 (10%) 11 (23%) 6 1(4%) 233 (21%)

Locoregional failures 33 (17%) 25 (17%) 13 (10%) 15 (13%) 18 (19%) 13 (16%) 13 (17%) 10 (16%) 10 (19%) 8 (16%) 12 (25%) 4 (9%) 174 (16%)

Distant metastases 25 (13%) 17 (11%) 7 (5%) 5 (4%) 16 (16%) 12 (15%) 10 (13%) 5 (8%) 9 (17%) 5 (10%) 7 (15%) 7 (16%) 125 (11%)

Median 56.7 42.5 62.3 42.3 79.8 46.4 47.8 44.5 110.4 37.6 36.9 43.9 54.3

Survival 83% 78% 92% 88% 86% 82% 75% 80% 75% 97% 78% 86% 83%

(std error, 95% CI) (3%, 78%-89%) (4%, 71%-86%) (2%, 88%-97%) (3%, 82%-95%) (4%, 79%-93%) (5%, 72%-92%) (5%, 66%-82%) (5%, 71%-92%) (6%, 64%-88%) (3%, 92%-100%) (6%, 67%-91%) (6%, 75%-98%) (2%, 80%-87%)

Median 43.1 31.3 61.5 39.3 73.1 43.6 39.6 37.6 83.1 36.0 36.9 40.9 46.6

Survival 82% 80% 90% 85% 82% 81% 75% 83% 83% 80% 73% 89% 82%

(std error, 95% CI) (3%, 77%-88%) (4%, 73%-89%) (3%, 85%-96%) (4%, 78%-92%) (4%, 75%-90%) (5%, 72%-92%) (4$, 82%-96%) (5%, 74%-94%) (5%, 73%-94%) (7%, 68%-93%) (7%, 61%-87%) (5%, 79%-100%) (2%, 80%-86%)

Median 42.2 28.8 61.4 39.3 75.8 42.6 39.6 36.6 86.8 35.6 34.7 42.0 46.3

Survival 87% 86% 95% 96% 86%% 85% 86% 91% 84% 87% 84% 86% 81%

(std error, 95% CI) (3%, 82%-92% (3%, 79%-93%) (2%, 91%-99%) (2%, 93%-100%) (4%, 84%-96% (5%, 76%-95%) (4%, 78%-94%) (4%, 84%-99%) (5%, 74%-95%) (6%, 77%-98%) (6%, 73%-96%) (6%, 76%-99%) (1%, 85%-90%)

Overall survival - potential follow-up time (months)

Number of patients

Number of events

Estimated 3-year overall survival

Locoregional control - potential follow-up time (months)

Estimated 3-year locoregional control

Freedom from distant metastasis - potential follow-up time (months)

Estimated 3-year freedom from distant metastasis
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Figure 6-1. Two year, three-year, and five-year (a) overall 

survival, (b) locoregional control and (c) freedom from 

distant metastasis rates, calculated using Kaplan-Meier 

methods at each participating centre. 

(a) (b) 

(c) 
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6.4.2 Multivariable models for overall survival, locoregional control and freedom 

from distant metastasis 

The results from the overall survival, locoregional control and freedom from distant 

metastasis global models, trained using all available data from all centres, are presented 

in Table 6-3. The age at the start of radiotherapy, the primary tumour size and the 

prescribed dose to the primary tumour were modelled as continuous variables. The 

factor effects are expressed in the form of HR estimates.  

 
Table 6-3. Summary of results from the overall survival, locoregional control, and 

freedom from distant metastasis models trained on all 12 cohorts. 

Factor 

Hazard ratio (95% CI) 

Overall survival 
Locoregional 

control 
Freedom from 

distant metastasis 

Nodal involvement  
(N+ relative to N0) 

1.41 (1.06 - 1.89) 1.35 (0.97 - 1.89) 2.59 (1.67 - 4.00) 

T stage  
(T3-4 relative to T1-2) 

1.27 (0.94 - 1.73) 1.55 (1.08 - 2.22) 1.19 (0.79 - 1.79) 

Sex  
(Female relative to male) 

0.59 (0.46 - 0.77) 0.53 (0.39 - 0.71) 0.89 (0.60 - 1.30) 

Age at the start of 
radiotherapy (per 10 years) 

1.34 (1.18 - 1.52) 1.04 (0.10 - 1.20) 1.07 (0.91 - 1.27) 

Gross tumour volume  
(log10) 

1.98 (1.39 - 2.84) 2.40 (1.59 - 3.63) 1.77 (1.11 - 2.83) 

Prescribed dose to primary 
tumour (per 10 Gy) 

1.11 (0.79 - 1.58) 1.31 (0.88 - 1.95) 1.28 (0.80 - 2.03) 

Histology  
(Basaloid SCC relative to 
SCC) 

1.02 (0.69 - 1.52) 0.70 (0.41 - 1.22) 0.80 (0.44 - 1.45) 

 

Nodal involvement, male sex, older age, and larger primary tumour size were 

associated with poorer overall survival. Moreover, male sex, higher T stage and larger 

primary tumour size were associated with worse locoregional control. Lastly, nodal 

involvement and larger primary tumour size were associated with worse freedom from 

distant metastasis. 
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6.4.3 Global model performance and leave-one-centre-out validation 

The performance of each global model was assessed on each node, yielding a weighted 

mean c-index of 0.603 for the overall survival model, 0.564 for the locoregional control 

model and 0.563 for the freedom from distant metastasis model. As indicated in Table 

6-4, the performance of all three models varied considerably across centres for all 

outcomes explored, ranging from 0.45 to 0.72 for overall survival, from 0.37 to 0.85 for 

locoregional control and from 0.36 to 0.78 for freedom from distant metastasis.  

The leave-one-centre-out validation c-indices are also summarised in Table 6-4. The 

weighted mean leave-one-centre-out validation c-index values for all three models were 

very similar to the respective global model validation c-index values, with a difference 

of less than 0.002 in all three cases. This suggests that model performance remains 

stable when model training is carried out using data from all but one completely 

independent dataset, which was used for validation. 

 
Table 6-4. Summary of results from the global validation and the leave-one-centre-out 

validation of the overall survival, locoregional control, and freedom from distant 

metastasis models. For the leave-one-centre-out validation, each model was trained on 

all but one cohort, and subsequently validated on the last, independent cohort.  

Centre 
Number of 

patients 

Overall survival Locoregional control 
Freedom from distant 

metastasis 

Global 
model 
c-index 

LOCOV 
c-index 

Global 
model 
c-index 

LOCOV 
c-index 

Global 
model 
c-index 

LOCOV 
c-index 

1 197 0.57 0.57 0.60 0.59 0.49 0.49 

2 150 0.72 0.72 0.56 0.55 0.52 0.52 

3 128 0.63 0.62 0.58 0.58 0.59 0.60 

4 112 0.51 0.51 0.60 0.61 0.68 0.68 

5 97 0.55 0.55 0.49 0.49 0.59 0.59 

6 82 0.66 0.66 0.53 0.53 0.55 0.55 

7 77 0.59 0.59 0.47 0.47 0.61 0.60 

8 61 0.63 0.63 0.62 0.62 0.50 0.50 

9 54 0.55 0.55 0.50 0.50 0.51 0.51 

10 50 0.45 0.45 0.37 0.37 0.36 0.36 

11 48 0.71 0.71 0.61 0.61 0.71 0.71 

12 43 0.65 0.65 0.85 0.85 0.78 0.78 

Weighted mean 0.60 0.60 0.56 0.56 0.56 0.56 
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6.4.4 Model calibration 

Figure 6-2 presents the calibration plots for three-year overall survival, locoregional 

control, and freedom from distant metastasis. The closer the points are to the dashed 

reference line, the stronger the calibration, signifying that the predicted outcome rates 

correspond more closely to the actual (observed) outcome rates. The overall survival 

model calibration plot (Figure 6-2a) and the locoregional control model calibration plot 

(Figure 6-2b) indicate a moderate calibration for the low risk groups, but substantially 

weaker calibration for the high risk groups, especially for the smaller cohorts. The 

calibration appears to be considerably stronger for freedom from distant metastasis 

(Figure 6-2c) for both the low risk and high risk groups. Overall, the calibration of all 

three models appears to be weaker for the smaller cohorts compared to the larger 

cohorts. 

 

  

Figure 6-2. Calibration plots for 3-year (a) 

overall survival, (b) locoregional control, 

and (c) freedom from distant metastasis, 

encompassing data from all 12 centres. 

The size of the points represents the size 

of the originating cohort. 

(c) 

(a) (b) 
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6.5 Discussion 

We developed and validated models for three clinically important outcomes in anal 

cancer via DL in a large, multi-centre cohort of 1,099 patients. Nodal involvement, male 

sex, older age, and larger primary tumour size were identified as prognostic for poorer 

overall survival. Male sex, higher T stage, and larger primary tumour size were found to 

be associated with poorer locoregional control. Nodal involvement and larger primary 

tumour size were deemed prognostic for poorer freedom from distant metastasis. All 

three models exhibited satisfactory performance and were not over-optimistic, as 

demonstrated by the leave-one-centre-out validation. 

To our knowledge, the multi-national atomCAT2 cohort is the largest contemporary 

international anal cancer cohort ever analysed. The outcome prediction models were 

developed using real-world data and reflect the real-world heterogeneity of outcomes 

observed across centres. Analysing a cohort of 1,099 patients with anal cancer meant 

that a large number of parameters (n=8) could be included in the models, enabling us 

to investigate their effect separately on the three outcomes of interest. By prospectively 

carrying out a sample size calculation, we aimed to reduce the chance of model 

overfitting and to ensure that the overall risk of each outcome is estimated precisely 

[23].  As suggested by the results from the leave-one-centre-out validation (Table 4), 

none of the models developed suffer from overfitting. Since the weighted mean c-indices 

from the global models and from the leave-one-centre-out validation models are very 

similar, we can assume that the models can be used to carry out predictions in new, 

completely independent datasets, without exhibiting a significant drop in performance. 

Additionally, since the models were trained using data from multiple centres, which 

employed different treatment techniques and protocols, the results can be considered 

generalisable. 

Other similar studies which carried out multivariable modelling to identify prognostic 

factors for anal cancer outcomes after conformal radiotherapy included data from 1,015 

patients [30] (abstract only), 987 patients [31] and 385 patients [7] in their analysis. All 

of these were multi-centre, although none analysed international cohort data. This 

highlights the importance of multi-centre collaborations in the field of anal cancer 

outcome modelling. The DL methodology was the key to establishing the atomCAT2 

collaboration, as it eliminated the need for complex cross-border data sharing 

agreements, which could have taken years to get in place.  
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The results from this study largely confirm results from previous, smaller studies. A 

higher N stage or lymph node involvement [31,31–33], male sex [7,30,34–37], and older 

age [37,38] were previously established as prognostic for poorer overall survival in 

multiple studies. In the locoregional control model, male sex was found to be prognostic, 

further confirming the findings from previous studies [7,34–36].  For freedom from 

distant metastasis, the negative effect of higher N stage was established, which 

confirmed the findings from two other studies [34,39]. However, a number of previously 

established prognostic factors were not confirmed as prognostic in this study, including 

higher T stage for overall survival [37,40,41], higher N stage or nodal involvement 

[7,34,39] for locoregional control, as well as higher T stage [34,40] and male sex [34,42] 

for freedom from distant metastasis. Importantly, our results suggest that the prescribed 

radiotherapy dose is not prognostic for any of the three outcomes that were explored. 

This contradicts the findings from previous studies which have developed tumour control 

probability (TCP) models using literature-based data [43] and through the analysis of a 

large Nordic database [44]. These studies explored the relationship between 

radiotherapy dose and treatment response and their results demonstrated a clear dose-

response relationship. More specifically, both studies concluded that a lower 

radiotherapy dose should be delivered to small tumours (dose de-escalation), and a 

higher radiotherapy dose should be delivered to large tumours (dose escalation). This 

hypothesis is currently being investigated in the ongoing PLATO trial [8], which aims to 

investigate the role of dose de-escalation and escalation according to how advanced 

the anal cancer is at diagnosis. The results from this trial will provide vital information 

on the effect of the radiotherapy dose on patient outcomes that could lead to the 

establishment of treatment stratification approaches. Lastly, a novel finding from the 

atomCAT2 results is that the primary tumour size (GTV in cm3) was found to be 

prognostic for all three outcomes explored.  This emphasises the need to explore the 

effect of imaging-specific factors on various anal cancer outcomes, in order to establish 

their prognostic value.  

To our knowledge, only two phase III prospective clinical trials have reported prognostic 

factors on anal cancer outcomes; the RTOG 98-11 [45] and ACT II trials [46], both of 

which were multicentre and were characterised by high quality data curation, but were 

conducted in the pre-IMRT era. The prognostic factors identified in this study largely 

agree with the results from these two trials. Nodal involvement and male sex were found 

to be prognostic for worse overall survival in both trials [45,46]. Older age was 
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associated with poorer overall survival in the ACT II trial [46], and a larger primary 

tumour size was associated with poorer overall survival in the RTOG 98-11 trial [45]. 

Male sex was also deemed prognostic for worse locoregional control in the ACT II trial 

[46]. However, the results from the ACT II trial also suggest that nodal involvement is 

prognostic for poorer locoregional control, a finding that could not be confirmed by the 

results from the atomCAT2 study. The above suggest that, overall, prognostic factors 

identified in the pre-IMRT era are mostly consistent with the prognostic factors identified 

by analysing a cohort treated with modern radiotherapy techniques. Additionally, even 

though the atomCAT2 study analysed data from a much more heterogeneous 

population, the overall conclusions are very similar to those of the aforementioned trials. 

A number of study limitations are related to the technical aspects of the DL 

implementation. Since the DL methodology and infrastructure is relatively new, there 

are still a number of prognostic modelling aspects that cannot be carried out in a fully 

distributed fashion. For instance, feature selection in the context of DL has only been 

sparsely explored. Only a small number of studies have tried to adapt centralised 

feature selection algorithms for use in a distributed setting [47]. This is also true for 

missing data imputation techniques. Even though a large number of feasible centralised 

approaches to missing data imputation are currently available [48,49] only a few of these 

have been adapted for use via the DL infrastructure [50,51], and additional evidence is 

needed to confirm their validity. Therefore, a simple approach of complete-case 

analysis, and overall mean imputation was carried out to address the data missingness 

in the atomCAT2 cohort. Mean imputation is suboptimal, and as a result, the imputed 

data could have negatively affected the accuracy of the results. Moreover, the GTV 

delineation was not uniform across centres (Table 1); in the majority of centres, the GTV 

included the primary tumour only, whereas for a small number of centres the GTV 

included the primary tumour and the anal canal on level with the tumour. Due to the 

retrospective nature of this study, this limitation could not be addressed. Finally, 

potential correlations between the various factors analysed could not be assessed 

across the entire cohort due to technical constraints with the DL infrastructure. This is 

important, since the primary tumour size (GTV) is likely to be correlated to T stage, 

although this could not be explicitly tested, apart from on a per-centre basis. However, 

GTV and T stage are related but distinct measures in the assessment of anal cancer. 

GTV is a direct measurement of the size of the primary tumour, whereas the T stage 

classification accounts for the size of the primary tumour as well as the extent to which 
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it has grown into nearby structures. Tumours of any size can be classified as T4, even 

small tumours with a small GTV, in cases where the tumour has invaded nearby 

structures. Therefore, including both GTV and T stage as factors in an outcome 

prediction model may improve the performance of the model by capturing slightly 

different aspects of the disease. This notion is supported by the results from the 

locoregional control model (Table 6-3), which indicate that both GTV and T stage were 

associated with worse locoregional control. However, only GTV was associated with 

poorer overall survival and freedom from distant metastasis. In order to robustly test 

whether it is informative to use both factors in our models, sensitivity analyses can be 

undertaken. In these analyses, models can be developed without GTV or T stage, in 

order to investigate whether this change affects the effect of the other factor, as well as 

the overall performance of the model. For instance, if GTV is removed from the overall 

survival model and T stage becomes prognostic, this would suggest that the two factors 

are partly providing the same information and only one should be included in the model. 

In addition, the performance of the sensitivity analysis models (in terms of c-index) can 

be compared with the performance of the primary models to provide further evidence 

as to whether both factors should be included in the model, or only one.  

Various plans have been devised for future analyses, to extend the work conducted. A 

range of secondary and exploratory analyses will be carried out, in order to explore 

alternative coding/parameterisation of factors, and to assess the robustness of the 

results to the choices made for the primary models. To further evaluate the model 

robustness, they will also be trained only on datasets comprising of more than 20 

events, to evaluate whether the number of events per centre affects the behaviour of 

the models. Due to time limitations, the calibration of the models could not be assessed 

fully. In the work presented above, the mean predicted outcome rate from each 

individual centre was used to stratify local cohorts into risk groups. This means that risk 

groups were defined differently in each centre, and hence, this does not provide a risk 

stratification that could be applied to a future patient diagnosed with anal cancer. 

However, this approach can still provide an indication of model calibration and 

performance. To improve upon this approach, the weighted mean outcome rates across 

the entire consortium need to be calculated and subsequently used to stratify patients 

into low risk and high risk groups. This analysis will take place before the work is 

submitted for publication. Future work beyond atomCAT2 includes exploring more 

complex research questions in anal cancer via the established consortium, using DL. 
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This may involve the inclusion of biomarker data, as well as additional radiotherapy-

specific data in our models, such as imaging and radiomics data. 

In conclusion, the atomCAT2 study analysed the largest contemporary, international 

anal cancer cohorts, with all patients treated with conformal radiotherapy. It has 

provided unique insights into the distinct prognostic effect of different patient and 

disease characteristics on overall survival, locoregional control and freedom from 

distant metastasis. The results from the atomCAT2 study could inform the design of 

future clinical trials and the stratification of patients into risk groups, with the ultimate 

aim of improving outcomes for future patients. 
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Chapter 7 - Discussion 

 

7.1 Summary of aims 

This thesis project aimed to determine prognostic factors for patients with anal cancer 

treated with chemoradiotherapy using real-world data, across an international 

consortium. To achieve this, it was necessary to: 

• Establish a local structure for data collection and use within Leeds Cancer Centre 

by incorporating anal cancer patient data from various disparate sources and 

collating them into a single data warehouse (Chapter 2). 

• Systematically review and summarise the literature on prognostic factors to 

identify established prognostic factors for a range of clinically important disease-

related outcomes for use within the prognostic models (Chapter 3). 

• Establish the feasibility and effectiveness of a distributed learning approach 

through the atomCAT1 proof-of-concept study (Chapter 4). 

• Prospectively develop and publish a study protocol and data analysis plan for the 

atomCAT2 study (Chapter 5). 

• Implement this approach in a larger international consortium, in order to develop 

prognostic models for anal cancer outcomes (Chapter 6). 

Through the analysis of a large cohort of anal cancer patients treated at multiple 

international centres, it was possible to collaboratively develop distributed prediction 

models for multiple anal cancer outcomes and identify distinct prognostic factors for 

overall survival, locoregional control and freedom from distant metastasis. Specifically, 

nodal involvement, male sex, older age, and larger primary tumour size were identified 

as prognostic for poorer overall survival. Male sex, higher T stage, and larger primary 

tumour size were found to be associated with poorer locoregional control. Nodal 

involvement and larger primary tumour size were deemed prognostic for poorer freedom 

from distant metastasis. The results from this work can feed into the design of future 

clinical trials, which may ultimately guide the establishment of more personalised 

approaches to anal cancer radiotherapy. 

In the following sections, the main results, limitations, and potential future directions of 

each study are discussed in more detail. 
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7.2 Leeds anal cancer data warehouse (Chapter 2) 

7.2.1 Summary of results 

In this study, an institutional data warehouse was created, consisting of comprehensive 

information on patients with anal cancer treated in LCC, including high quality data for 

patients treated with VMAT. A comprehensive data dictionary was generated, in order 

to document all relevant data items and to facilitate the use of the data warehouse in 

the future. Four LCC databases and clinical systems were identified as the main sources 

of data, and additional data was sourced from existing research datasets. The amount 

of automatic data extraction, as well as manual data collection and manual review 

required to develop the data warehouse was evaluated. Subsequently, robust data 

quality evaluation was conducted, identifying data items of high quality, and highlighting 

areas where data quality needs to be improved. A plan was devised on how to update 

the data warehouse at regular intervals by executing a semi-automatic pipeline. The 

data warehouse can be accessed by authorised researchers and clinicians at LCC for 

research and audit. 

 

7.2.2 Limitations 

Currently, the data included in the data warehouse cannot be continually updated in a 

fully automated manner, as some manual data collection and review is required. This 

represents a major limitation of the work. The current version of the data warehouse 

also lacks some data items which are considered to be important for anal cancer 

research, including HPV and HIV status. HPV infection has previously been established 

as a prognostic factor for worse overall survival and locoregional control [1,2]. However, 

the HPV status of patients is currently not routinely assessed at LCC and therefore this 

data is unavailable. The HIV status of patients is routinely assessed, however, 

accessing the relevant data through automated methods was challenging and will be an 

area of future development within the warehouse. The source of other important data 

items, such as baseline comorbidity data and treatment toxicity data has been identified, 

but the data could not be easily collected due to being stored in free-text form. The 

automatic extraction of free-text data from their source could not be implemented since 

NLP algorithms [3] were not available at the time of the data warehouse development. 

Patient reported outcome data were available for some patients, however, they are not 

yet routinely collected and therefore were not included in this version. 
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In addition, the quality of a number of data items is lacking for various reasons that are 

documented in the data dictionary. The main reasons for low data quality include lack 

of data provenance, i.e. lack of meta-data specifying the origin of the data and how they 

were originally recorded; lack of clear ontologies, i.e. lack of standardised data 

definitions; and finally, lack of interoperability across the different databases and clinical 

systems from which the data were sourced from [4]. 

 

7.2.3 Perspectives and future work 

Potential future work on the Leeds anal cancer data warehouse involves devising and 

implementing a pipeline for continuous updating of the data for existing and new patients 

at regular intervals, with as little manual data entry as possible. To achieve this, several 

objectives need to be achieved. Firstly, in collaboration with clinicians, a set of essential 

data items that can be prospectively collected at the point of diagnosis, at the MDT 

discussion meeting, and during follow-up need to be identified. These data items should 

be recorded directly by the clinical care team using a system that will be tailored to their 

preferences. The prospective data should then be integrated into the data warehouse 

automatically. Moreover, we aim to update the existing automatic data extraction 

pipeline, in order to be able to pull data from PPM backend. In order to do this, the 

necessary access permissions need be obtained, and a new data extraction pipeline 

needs to be set up. For data items that are only recorded and stored in free-text form in 

PPM (TNM staging, outcome data, baseline comorbidity data and treatment toxicity 

data), we aim to implement natural language processing techniques to enable automatic 

extraction. In order to ensure that the extracted data is accurate and of high quality, a 

proportion of the data will require manual review. Data items with an unidentified source 

may be further explored to confirm whether they can be extracted automatically.   

Additional future work could include extending the range of data items that are included 

in the data warehouse. For instance, data on baseline tissue biomarkers can be 

collected from histopathology samples and incorporated in the data warehouse. As 

discussed in Chapter 3, only a small number of biomarkers have been identified as 

prognostic for anal cancer outcomes. Therefore, through the collection and analysis of 

biomarkers that predict treatment response, valuable insights may be gained. For 

instance, in patients with treatment-sensitive disease, dose reduction may reduce side-

effects, whilst in patients with treatment-resistant disease, additional targeted 
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combination therapies could potentially improve outcomes. Furthermore, a range of 

complex radiotherapy-specific data can be added to the data warehouse. A pipeline 

which extracts radiomics features from diagnostic imaging (pre-treatment PET-CT scan, 

pre-treatment MRI scan, treatment planning CT) and automatically updates the data 

warehouse can be developed. Other types of radiotherapy-specific data that can be 

added include 3D dose distributions for all treatment phases [5], radiotherapy structure 

set data [6] and dose-volume histograms [7]. These data may be analysed in future 

atomCAT studies, as discussed further in Chapter 5. 

Importantly, the work described in this thesis has primarily focused on survival and 

cancer-related outcomes, as well as on prognostic factors for these. The next step 

would be to consider treatment-related toxicity and quality of life. To do so, patient-

reported outcome data should be incorporated into the data warehouse and into future 

atomCAT work. As previous studies have highlighted, efforts in collecting and analysing 

PROs from patients with anal cancer should be maximised, since they are fundamental 

in understanding the disease from a patient’s perspective, which may in turn aid in the 

improvement of treatment for future patients. A prospective study conducted in two 

Danish treatment centres has reported that toxicity scores as assessed by patients 

themselves only weakly agree with the equivalent scores from a clinician [8]. More 

recently, a number of studies analysed PROs relating to toxicity during and after 

chemoradiotherapy for anal cancer. One study reported that nine out of ten patients felt 

that their quality of life had deteriorated since their diagnosis [9]. Additionally, nine out 

of ten patients did not feel comfortable discussing their diagnosis with friends and family. 

In terms of psychological outcomes, the majority of patients reported feeling anxious 

(81%), fearful (78%) and depressed (73%) on a daily basis. Physical outcomes 

resembled clinician-assessed outcomes more closely, with the majority of patients 

reporting faecal incontinence (71%), radiation proctitis (68%) and urinary incontinence 

(65%). The study by Gilbert et al. analysed PROs from 121 patients across 40 UK 

radiotherapy treatment centres at baseline and at one-year follow-up [10]. The PRO 

analysis indicates that the majority of side effects significantly improve one year after 

the end of treatment, including pain, anxiety, appetite loss, blood and mucus in stools, 

and buttock pain. Similar results were reported in a study carried out in Texas, USA, 

although with a much smaller patient cohort of 21 patients [11]. The above highlight the 

importance of collecting and analysing PROs, instead of relying solely on the clinician’s 

assessment, in order to achieve a patient-centred approach to treatment.  
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7.3 Systematic review of prognostic factors in anal cancer (Chapter 3) 

7.3.1 Summary of results 

In this systematic review of the literature, 19 published studies which analysed large 

cohorts of patients treated for anal cancer with conformal radiotherapy and which 

identified prognostic factors on disease-related outcomes through univariable and 

multivariable analysis were reviewed. The most prevalent prognostic factors identified 

were T stage, N stage, sex, pre-treatment biopsy HPV load, as well as the presence of 

baseline leukocytosis, neutrophilia, and anaemia. A different set of prognostic factors 

was identified for each of the outcomes explored. No imaging factors were identified as 

prognostic by more than one of the analysed studies. Moreover, all identified factors 

were relatively well-known, ‘classic’ prognostic factors, such as age and disease stage, 

with limited information about underlying tumour biology or identifying histopathological 

subgroups. This highlights the need for further prognostic factor research in anal cancer.  

 

7.3.2 Limitations 

The main limitations of this systematic review are discussed in detail in Chapter 3, with 

additional limitations discussed here. Even though the literature search was limited to 

studies with large cohorts of 100 patients or more, this number was slightly arbitrary and 

does not guarantee that the results from the included studies are robust. Prior to the 

initiation of any multivariable modelling study, a prospective sample size calculation 

should be carried out. This should be ideally conducted using robust statistical 

techniques [12], instead of the commonly used 10 events per variable rule of thumb 

[13–15]. Depending on the number of patients that are available for analysis, the 

appropriate number of factors to be included in the model can be selected. If a larger 

number of factors are included in the model, the study may be underpowered, resulting 

in small sample bias [16] and the identification of non-generalisable prognostic factors,  

which are only prognostic in the analysed cohort. The majority of studies explored in 

this systematic review did not report whether they had carried out a prospective sample 

size calculation. Therefore, it was impossible to fully assess the quality of the results 

conferred from these studies. Lastly, the substantial variation between studies, 

especially in terms of outcome definitions, staging version used, treatment regimens 

and methodology employed, renders them less comparable. The effect size of the 
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identified prognostic factors was also not universally reported; therefore, it was not 

possible to carry out a meta-analysis. 

 

7.3.3 Perspectives 

To render the results from prognostic factor research robust and generalisable, large 

cohorts of patients should be analysed. This systematic review has highlighted the lack 

of large studies exploring the effect of prognostic factors on survival and disease-related 

outcomes after conformal radiotherapy for anal cancer in cohorts of more than 100 

patients. This was addressed in the atomCAT2 study (Chapter 6), where 1,099 patients 

treated across multiple international radiotherapy centres were jointly analysed and the 

prognostic value of multiple factors was confirmed. Furthermore, additional 

prospectively planned studies, as well as external validation studies are needed to 

validate the results from prognostic factor studies. These validated factors can then be 

used for the stratification of patients in risk groups, which may guide the design of future 

RCTs in anal cancer. This systematic review has also emphasised the lack of large 

prognostic factor studies evaluating imaging factors and biomarkers. In the future, this 

could be addressed by the established atomCAT consortium. As discussed in Section 

7.5.3, future atomCAT outcome models could include imaging factors and biomarkers, 

in order to determine their prognostic value in a large international cohort of more than 

1,000 patients. 

 

7.4 atomCAT1 proof-of-concept study (Chapter 4) 

7.4.1 Summary of results 

The atomCAT1 study demonstrated that it is feasible to implement distributed learning 

in order to analyse data from patients treated for a rare cancer in multiple international 

centres, and to collaboratively develop outcome prediction models without exchanging 

individual level patient data between centres. The distributed models demonstrated 

good performance that was stable between centres and yielded clinically expected 

factor effects. This study enabled us to expand the collaboration and establish the 

atomCAT consortium. 
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7.4.2 Limitations 

In atomCAT1, only overall survival was explored as the outcome of interest. This is a 

limitation, since a number of disease-related outcomes have been identified as clinically 

important in the literature [17,18], which should be addressed. Additionally, the 

systematic review (Chapter 3) indicated that the relevant prognostic factors vary 

between different outcomes, and as a result, these outcomes need to be analysed 

separately. Thus, in order to consider the individualisation of treatment for future 

patients, we need to separately identify patients who are at risk of locoregional failure 

and of distant disease progression. This limitation was addressed in the atomCAT2 

study, which not only analysed overall survival, but also locoregional control and 

freedom from distant metastases.  

Unlike for atomCAT2, no prospective sample size calculation was carried out. This was 

due to the proof-of-concept nature of the study, where the model performance achieved 

was of secondary importance. In order to develop a robust outcome model with the 

number of factors included in the global atomCAT1 model (n=5), a minimum sample 

size of 641 would be required [12,19], which was unrealistic at for a study solely 

demonstrating the feasibility of the approach.  

Even though the factors analysed in the atomCAT1 models were pre-specified based 

on expected clinical relevance, the correlation between factors was not investigated a 

priori. However, the resulting model performance might have been affected by the 

inclusion of correlated variables. This is part of a larger issue relating to feature selection 

in the distributed learning setting, which is discussed in more detail in Section 7.5.2. 

There is currently no feasible way to test for factor correlation across multiple datasets 

in a fully distributed fashion.  

In terms of the disease staging factor, T3N0 disease was classified as low risk in the 

main atomCAT1 analysis, according to the AJCC (v8) staging for anal cancer [20]. 

However, in the PLATO trial [21] T3N0 disease is considered as high risk.  Albeit few 

studies have provided the exact oncological outcome rates according to TNM staging, 

the findings of RTOG 98-11 [22], ACT I [23] and ACT II [24] trials indicate significantly 

worse disease-free survival and progression-free survival rates for T3 tumours 

compared to smaller tumours. Therefore, the choice of classifying T3N0 disease as low 

risk might have impacted the overall model performance. 
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Lastly, providing the baseline survival curve is best practise when reporting the results 

from prediction models, to allow the prediction of survival probability estimates for 

individual patients. Unfortunately, the implementation of Vantage6 used to carry out the 

atomCAT1 analysis did not support the calculation of the baseline survival function in a 

fully distributed manner. Consequently, it was not possible to provide the baseline 

survival curve without sharing individual-level patient data between centres. This was 

recognised as a significant limitation. While the atomCAT1 study represents proof-of-

principle work, and the resulting model should thus not be considered ready to use for 

patient outcome prediction, this information will be necessary for larger scale work.  

 

7.4.3 Future work 

Future work is described in Chapters 5 and 6 and discussed further in the next section 

(7.5). 

 

7.5 atomCAT2 study protocol and results (Chapters 5 and 6) 

7.5.1 Summary of results 

A comprehensive prospective study protocol was developed for the atomCAT2 study, 

which included robust outcome definitions, data items to be collected and their 

definitions, a plan on how to handle missing data in different scenarios, and a 

prospective sample size calculation. Moreover, a robust prospective statistical analysis 

plan was devised, which specified how the descriptive data analysis would be carried 

out, which factors would be included in the primary and secondary models for each 

outcome, how the models would be developed and validated, how model performance 

should be evaluated and how the results would be reported. The protocol also described 

the distributed learning architecture to be implemented and what tasks each 

participating centre had to complete in order to prepare for the analysis phase. During 

the atomCAT consortium recruitment phase, the protocol was shared with a large 

number of international anal cancer treatment centres. Through this approach, 11 new 

centres were recruited, and the collaboration was expanded to a total of 14 centres 

across the UK and Europe, which formed the international atomCAT consortium (Figure 

7-1). From these, a total of 12 centres participated in the atomCAT2 analysis within the 

timescale allowed for completing my PhD. 
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Figure 7-1. Map of Europe showing the location of all centres that are part of the 

international atomCAT consortium. The two centres marked in red did not participate in 

the first round of atomCAT2 analysis. 

 
In the atomCAT2 study, models for three clinically important outcomes in anal cancer 

were developed and validated by analysing a large, multi-centre cohort of 1,099 patients 

via distributed learning. In this cohort, a different set of factors were identified as 

prognostic for each of the outcomes explored (nodal involvement, male sex, older age, 

and larger primary tumour size were found prognostic for poorer overall survival; male 

sex, higher T stage, and larger primary tumour size for poorer locoregional control; and 

nodal involvement and larger primary tumour size for poorer freedom from distant 

metastasis). All three models exhibited satisfactory performance and were not over-

optimistic. 
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7.5.2 Limitations 

The most prevalent limitations of the atomCAT2 analysis relate to the current limitations 

of the distributed learning infrastructure and technology. More specifically, distributed 

learning in oncology and prognostic research is still an emerging field with lots of 

knowledge gaps. To this day, only a limited number of algorithms have been adapted 

for use in a distributed setting. For instance, feature selection is an essential part of 

outcome model development, which guides the identification of the most appropriate 

prognostic factors for the outcome of interest [25]. Established feature selection 

methods are necessary when developing models using high-dimensional data that 

consists of a large pool of candidate factors. Even though numerous centralised feature 

selection algorithms exist [26], only few studies have explored feature selection 

implementation in the distributed learning framework [27]. In atomCAT2, the 

identification of relevant prognostic factors for the outcomes explored was guided by a 

systematic review of the literature (Chapter 3) and expert opinion from clinicians. Even 

though this process was robust, it could be further informed by employing distributed 

feature selection methodology, as this would allow a larger number of candidate 

features to be considered for model development. 

Moreover, handling missing data when conducting outcome modelling using clinical 

datasets can be a complex and challenging task [28]. This challenge is particularly 

prevalent in the context of model development through distributed learning, where 

sharing of individual-level patient data between centres is not permissible. In cases 

where data is missing at random (MAR) or missing not at random (MNAR) [29] in 

individual centres, there is no consensus on which is the most robust approach to handle 

missing data without negatively affecting the performance of the resulting distributed 

outcome model. The simple techniques used to handle missing data in atomCAT2, such 

as complete case analysis and overall mean imputation are rarely optimal options, as 

they produce biased results, significantly reducing the statistical power of the resulting 

models [30]. Instead, more complex approaches such as regression-based imputation 

and multiple imputation are likely to perform better [28]. However, these approaches 

have not yet been adapted for use in a distributed setting. It is therefore important that 

future research focuses on exploring different options for data imputation, in order to 

evaluate whether they can be applied in a distributed setting and identify which have 

the smallest negative effect on the performance of distributed outcome models. 
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Currently, missing data imputation has only been sparsely explored in the context of 

distributed learning and there is only limited precedence to guide best practise [31,32]. 

Additional aspects of the atomCAT2 analysis were limited by the current implementation 

of the distributed learning infrastructure. Robust outcome modelling involves calculating 

of the baseline hazard function. However, this calculation has not yet been implemented 

in the distributed learning infrastructure, and consequently the atomCAT2 analysis could 

not cover this. Instead, only baseline outcome rates at specific timepoints of interest 

were calculated. Moreover, the discrimination of the atomCAT2 models was evaluated 

using Harrell’s concordance index [33], which is not the ideal performance metric when 

a time range is of primary interest, since it has been shown to be over-optimistic and 

sensitive to the study censoring distribution [33]. Other performance metrics, such as 

Gönen and Heller's unbiased concordance statistic K [34], the Royston-Sauerbrei D 

statistic [35] and the Brier score [36] might be more appropriate for this analysis. 

However, these have not yet been implemented and further work is needed to test their 

convergence and accuracy in a distributed setting. Lastly, for the model calibration 

phase, the patient cohorts at each participating centre were stratified into two risk 

groups (low risk, high risk). However, in the centres with smaller cohorts, it is likely that 

there was insufficient information to create meaningful calibration due to the small 

number of events for each outcome (deaths for overall survival, locoregional failures for 

locoregional control and distant metastases for freedom from distant metastasis) in each 

of the risk groups. 

 

7.5.3 Future work 

The work carried out for the atomCAT2 study has the potential to be extended in several 

directions. Firstly, even though the atomCAT2 analysis is privacy-preserving, an 

independent trusted third party could be invited to re-create the distributed atomCAT2 

models via a centralised approach, in order to test the accuracy of the distributed models 

and the reported results. This can further confirm that the distributed algorithms and 

their centralised counterparts converge at the same point. 

Furthermore, as the atomCAT consortium has now been fully established, it can be 

further expanded, with the aim of providing a forum for discussion and collaboration on 

key research questions in anal cancer, with a focus on improving patient outcomes and 

quality of life after treatment. Using the infrastructure of existing research groups, 
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including the International Rare Cancers Initiative [37], may be one way to expand the 

range of the international centres involved. To achieve a more patient-centred 

approach, patients that have previously been diagnosed or treated for anal cancer, as 

well as members of the public who have had first-hand experience with the disease, can 

be engaged to guide the future direction that the atomCAT research will take. Patient 

and public involvement (PPI) groups can be involved in various stages of future 

research, including the definition and prioritisation of key research questions from the 

patient’s perspective, the design of future studies, and the dissemination of the findings 

from future research [38,39]. Through this approach, future atomCAT research will be 

more relevant to the needs of the patients. 

Future atomCAT outcome models may incorporate more complex data, such as 

biomarkers, imaging, and radiotherapy-specific treatment data. Moreover, these data 

can be analysed in conjunction with patient-reported outcomes (PROs; see Section 

7.2.3), as they can yield essential insights on the disease from the patient’s perspective, 

which may in turn guide the design of improved treatment strategies. Lastly, use of 

distributed learning methodology in atomCAT2 provides an exemplar for other rare 

cancers where single-centre datasets are limited and where international, multi-centre 

analyses are necessary for bringing the field forward.  

 

7.6  Challenges in setting up the atomCAT consortium and the atomCAT2 

study 

Forming the international atomCAT consortium and setting up the international multi-

centre atomCAT2 study presented numerous challenges that are not fully addressed in 

the study protocol publication (Chapter 5) nor in the atomCAT2 paper (Chapter 6).  

The centre recruitment phase involved reaching out to as many centres as possible, via 

both open and closed recruitment. This phase was time consuming and took more than 

three months to complete. Even after the official recruitment phase was concluded, 

more centres were recruited through networking at the IMACC conference [40], where 

the results of the atomCAT1 study were presented and the atomCAT2 study was 

promoted. The initial list of interested centres included centres from Canada and 

Australia, which had a 15-hour difference between them. As a result, finding a suitable 

time for the consortium meetings was problematic. To overcome this, consortium 
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meetings were arranged at alternating times which would work for the Australian centre 

and the Canadian centre, respectively. Moreover, all meetings were recorded, and 

comprehensive meeting notes were taken. These were made available to all centres, 

including centres that could not join the meetings. 

Keeping all interested centres engaged and tracking their progress on the project set 

up was also particularly challenging. The main tasks to be carried out by all participating 

centres included: collecting the relevant patient data and adding them to the atomCAT2 

template dataset, gaining a local approval for data collection and for use of the data for 

research (for example from an Institutional Review Board, IRB, or a local Research 

Ethics Committee, REC), reviewing and signing an infrastructure user agreement and 

a collaboration agreement, and finally setting up the distributed learning infrastructure 

on a local computer. Some centres progressed quicker than others on these tasks, and 

as a result, a comprehensive spreadsheet was created to track each centre’s progress. 

This spreadsheet was regularly updated and was used as a guide for keeping with the 

project timelines and aided the progression to the next phases of the project.  

In terms of the local ethics approvals, a number of UK centres have established 

governance structures for use of radiotherapy and oncology data for research (e.g. 

LeedsCAT, see Chapter 2; and the corresponding ukCAT in Manchester [41]), which 

could approve the use of data for the purposes of this project. Therefore, no further 

approvals were required for these centres. In Leeds, in addition to the LeedsCAT 

governance board approval, the project was reviewed and approved by the Caldicott 

Guardian at LTHT and by The Trust Information Governance Department. For UK 

centres which did not have this infrastructure in place and could not gain a local approval 

to access and collect patient data for atomCAT2, a central project application was 

submitted for review by the Health Research Authority (HRA) and the Research Ethics 

Committee (REC). Even though no individual level patient data had to leave the 

originating centre at any time, the study was considered research (as patient data were 

accessed and used beyond individual patient care) and thus had to undergo full HRA 

and REC review. In order to achieve this, an Integrated Research Application System 

(IRAS) form had to be filled in and fully reviewed and approved by the study sponsor 

(University of Leeds). Due to the novelty of distributed learning, it was difficult to 

effectively communicate how the study was going to achieve its goals whilst ensuring 

that no patient data would leave the originating organisation. Overall, this was a lengthy 
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process which took approximately seven months to complete, from the date of providing 

the sponsor with the study protocol to the date of the first site being approved. 

Due to the privacy-preserving nature of the study, no data sharing agreement was 

needed. However, a collaboration agreement had to be reviewed and signed by all 

participating centres prior to the analysis. Initially, the collaboration agreement from 

another distributed learning project led by MAASTRO clinic was used as a template, 

since it had already undergone many rounds of review by multiple international centres, 

some of which were also participating in atomCAT2. The first draft of the agreement 

was circulated to all centres in April 2021, at which point centres were asked to identify 

the point of contact for their legal teams and to begin the review process. Getting all 

participating centres to agree to the terms of the agreement was particularly challenging. 

Multiple rounds of review by all centres and subsequent updating of the agreement 

according to feedback were carried out in order to generate the final version. One 

particular issue with the collaboration agreement was the difference between European 

Union (EU) and United Kingdom (UK) laws and regulations regarding data protection 

and privacy, and more specifically General Data Protection Regulation (GDPR). The 

participating centres from the UK asked to remove any clauses related to GDPR, 

whereas European centres insisted that GDPR should be mentioned in the agreement. 

This was complicated further when individual European centres reworded the GDPR 

clause according to their default definitions, which in some cases contradicted the 

wording from other European centres. Overall, it took more than a year to get the 

collaboration agreement approved by all centres, and a further five months to collect all 

signatures. The final version of the agreement was fully signed in November 2022. 

Installing and setting up the distributed learning infrastructure in all centres was another 

challenging aspect of the study. This task involved installing new software and opening 

a network port in each centre’s IT system. Instructions were provided to all centres 

detailing how to do this, but technical issues were still present, mainly due to restricted 

user permissions. Lastly, various technical issues with the distributed Cox regression 

algorithm [42] and the validation algorithm [43] had to be managed prior to the analysis, 

primarily related to the Vantage6 version used for atomCAT2. After multiple rounds of 

debugging by the software developers at the Netherlands Comprehensive Cancer 

Organisation (IKNL) meetings, the algorithms were ready to be implemented in 

Vantage6 v2.3.4. 
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7.7 Practicing open science 

Open science can be defined as “a collaborative culture enabled by technology that 

empowers the open sharing of data, information, and knowledge within the scientific 

community and the wider public to accelerate scientific research and understanding” 

[44]. Even though open science practices have not yet adopted by the entire scientific 

community, their popularity and necessity has been growing over the past decade 

[45,46]. 

Open science principles have been implemented throughout the set up and execution 

of the atomCAT2 project. Despite not being able to openly share individual-level patient 

data due to patient confidentiality, other aspects of open science other than “open data” 

have been engaged. Through the implementation of the distributed learning 

infrastructure, the aim was to facilitate knowledge sharing between international cancer 

treatment centres. All software used to carry out atomCAT2 is freely and openly 

available online and can be accessed by anyone, including the Vantage6 distributed 

learning infrastructure [47], the distributed Cox regression model [42], and the 

distributed model validation algorithm [43]. For statistical data analysis, the R language 

was used [48], which is also open source. The sample size calculation, and all other 

data analysis plans were documented in a way that facilitates reproducibility of results. 

Finally, the atomCAT2 study protocol was published in an open access journal [19] and 

has been pre-registered in Open Science Foundation [49]. 

 

7.7 Conclusion 

This thesis has addressed many aspects of anal cancer radiotherapy, both on a local 

and an international scale. A comprehensive local anal cancer data warehouse was 

developed, which is now accessible by clinicians and researchers at LCC. The literature 

was systematically reviewed and established prognostic factors for a range of anal 

cancer outcomes after conformal radiotherapy were identified. The feasibility of 

implementing distributed learning for outcome modelling in a rare cancer was 

demonstrated in a multicentre collaboration. The collaboration was subsequently 

extended, and an international consortium of radiotherapy treatment centres was 

formed. Through the atomCAT consortium and by applying a distributed learning 

approach, robust and generalisable outcome prediction models were developed using 
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real-world data from the largest cohort of anal cancer patients treated with conformal 

radiotherapy that has ever been analysed. Finally, prognostic factors for the three 

outcomes explored were determined. The results from the atomCAT2 study have the 

potential to significantly impact the way anal cancer is managed in the future by guiding 

the design of future RCTs in anal cancer, and ultimately aiding the personalisation of 

treatment. Further research beyond atomCAT2 may entail the exploration of more 

complex research questions in anal cancer through the established consortium and via 

the distributed learning methodology. Specifically, this may involve the analysis of 

biomarker data, as well as additional radiotherapy-specific data, such as imaging and 

radiomics data. 

Importantly, the work undertaken has demonstrated the potential of distributed learning 

as a powerful tool for analysing datasets across hospitals and across country borders 

without compromising patient privacy. This is particularly relevant in the medical field, 

where patient privacy is paramount, and large-scale collaborations are required to 

further advance research. Distributed learning enables the access to a large pool of 

diverse real-world data that can be analysed to yield robust insights. The results 

obtained from such analyses can be validated and compared across borders and 

healthcare systems, rendering them generalisable to a greater proportion of the relevant 

population.  

The distributed learning approach has the potential to revolutionise medical research 

on a global scale in the coming years, not only in the context of rare cancers, where 

single-centre datasets are limited in size, but in the context of other cancers as well. 

Advancements in the field of precision medicine have led to the recognition that each 

tumour is biologically unique, and as a result there is a need for the development of 

novel personalised treatment approaches. Cancer subtyping based on molecular and 

genetic tumour characteristics is becoming increasingly important for effective cancer 

treatment, and consequently an increasing number of cancers are expected to be 

divided into subtypes in the coming years. Ultimately, this will extend the potential and 

applicability of the distributed learning approach, since patient cohorts with specific 

cancer subtypes available in individual centres might no longer be large enough for 

meaningful analyses. New avenues for distributed analyses will open up as the 

methodology will become applicable to large number of cohorts that were not previously 

considered. 



 

 

 

221 

In conclusion, by enabling researchers to work together across multiple centres and 

countries, distributed learning can help overcome the challenges posed by limited 

resources and data silos. This can, in turn, enable healthcare professionals to make 

more informed decisions which can lead to improved patient outcomes. It is hoped that 

the work in this thesis will inspire further collaborations and advancements in medical 

research, leading to a better understanding of disease outcomes and ultimately 

significant improvements in patient care across the world. 
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Appendix B – HRA approval letter for the atomCAT2 study 
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Appendix C – REC approval letter for the atomCAT2 study 
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Appendix D – LeedsCAT approval letter for the data warehouse
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Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score
Patient_INT_IDENT IDENTITY No Primary/Foreign Key - DO NOT EXPOSE AutoIncrement Number N/A N/A

Patient_StartingDate datetime No Date used for calculating relative time Patient_FirstTxStartDateTime MosClinDose_Hst 10 Depends on radiotherapy start date

Patient_NHSNumber nchar 10 No Patient NHS number MosClinIdent 9 Not yet nationally validated

Patient_HospitalNumber nchar 16 No Patient Hospital Number MosClinIdent 10

Patient_Surname nvarchar 64 Yes MosClinPatient 9 Because there could be a delay in updating name changes

Patient_Forename nvarchar 64 Yes MosClinPatient 9 Because there could be a delay in updating name changes

Patient_BirthDate date Yes MosClinPatient 10

Patient_DeathDate date Yes MosClinAdmin 9 Relies on PPM being updated. MANUALLY REVIEWED.

Patient_OriginHospital nvarchar 64 Yes Manual extraction 7 Potentially prone to human error. Some missing data

Patient_DiagnosisDate date Yes Date of diagnosis MosClinMedical 5 Prone to human error and linkage errors. MANUALLY REVIEWED.

Patient_FirstTxStartDateTime datetime Yes Radiotherapy start date
dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and collected

Patient_FirstTxEndDateTime datetime Yes Radiotherapy end date
dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and collected

Patient_PermanentColostomyDate date Yes Date of permanent colostomy procedure Manual Extraction 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Patient_LocoregionalRecurrenceDate date Yes Date of recurrence diagnosis Manual extraction 6 Prone to human error and subjective interpretation

Patient_DistantMetastasisDate date Yes Date of distant metastasis diagnosis Manual extraction 5 Prone to human error and subjective interpretation

Patient_3monthClinicalRespAssessDate date Yes Date of 3 month treatment response assessment Manual extraction 5 Prone to human error and subjective interpretation

Patient_6MonthClinicalRespAssessDate date Yes Date of 6 month treatment response assessment Manual extraction 5 Prone to human error and subjective interpretation

Patient_PFSdate date Yes Progression free survival at last clinical contact

Date only available if Anon_PFS=1. 

Patient_PFSdate = (SELECT MIN(Dates) 

FROM (VALUES (Patient_DeathDate), 

(Patient_LocoregionalRecurrenceDate),

(Patient_DistantMetastasisDate)) AS 

value(Dates))

5
Prone to human error and subjective interpretation. Calculated using 

other data items

Patient_FirstStagingScan date Yes Date of staging scan Manual extraction N/A Unidentified source, missing data

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score

Anon_INT_IDENT int No Primary Key - DO NOT EXPOSE Autoincrement N/A N/A

Anon_MethodOfRelativeTime nvarchar 50 No
What is the starting date when calculating time 

passed?
Treatment Start Date N/A N/A N/A

Anon_Historic bit Yes Is the data from previous datasets
0 = No

1 = Yes
N/A N/A N/A

Anon_Static bit Yes Is it data locked and static
0 = No

1 = Yes
N/A N/A N/A

Anon_Reviewed bit Yes Has this data been reviewed?
0 = No

1 = Yes
N/A N/A N/A

Anon_Gender int Yes

0 = Male

1 = Female

2 = Other

-1 = Not available

-2 = Not assessed / Not relevant

MosClinAdmin 8 Gender could be changed or incorrecly recorded

Anon_HIVstatus int Yes

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Unidentified source, missing data

Anon_HPVstatus int Yes

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Not routinely assessed, missing data

Anon_Smoking int Yes Is the patient a smoker? 

0 = Never

1 = Previous

2 = Current

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Table 2. Demographics, pre-existing comorbidities, diagnostic data, follow-up data

Table 1. Identifiable patient data

Appendix E – Data dictionary for the Leeds anal cancer data warehouse 
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Anon_AbSurgeryA int Yes Comorbidities - Surgery - Appendiectomy

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AbSurgeryCS int Yes Comorbidities - Surgery - C-Section

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AbSurgeryH int Yes Comorbidities - Surgery - Hysterectomy

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationAA int Yes
Comorbidities - Medication - Ant-acids  (e.g. 

omeprazole & lansoprazole)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationACE int Yes
Comorbidities - Medication - ACE inhibitors (e.g. 

ramipril)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationAD int Yes

Comorbidities - Medication - Antidepressants 

(e.g. citalopram, venlafaxine, prozac/fluoxetine, 

amitryptilline)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationAP int Yes
Comorbidities - Medication - Antiplatelets (e.g. 

aspirin, clopidogrel)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationI int Yes Comorbidities - Medication - Inhalers

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationNSAID int Yes
Comorbidities - Medication - NSAIDs (e.g. 

Ibuprofen)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationP int Yes Comorbidities - Medication - Paracetamol

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationS int Yes
Comorbidities - Medication - Statins (e.g. 

simvastatin)

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationWT int Yes Comorbidities - Medication - Warfarin/tinzaparin

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MedicationO int Yes Comorbidities - Medication - Other

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_DiabetesTypeOne int Yes Comorbidities - Type.1.Diabetes

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_DiabetesTypeTwo int Yes Comorbidities - Type.2.Diabetes

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data
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Anon_DiabetesOther int Yes Comorbidities - Diabetes.Other

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MIAccute int Yes Comorbidities - Acute.MI

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_CCF int Yes Comorbidities - CCF

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Angina int Yes Comorbidities - Angina.CAD

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Hypertension int Yes Comorbidities - Hypertension

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Arrhythmia int Yes Comorbidities - Arrhythmia

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_VenousInsuffieciency int Yes Comorbidities - Venous.Insuffieciency

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_VenousVaricoseVeins int Yes Comorbidities - Varicose.Veins

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_VenousTromboembolic int Yes
Comorbidities - 

Venous.Thromboembolic.Disease

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Cardiomyopathy int Yes Comorbidities - Cardiomyopathy

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Respiratory int Yes Comorbidities - Respiratory.System

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Asthma int Yes Comorbidities - Asthma

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_LungDisease int Yes Comorbidities - Restrictive.Lung.Disease

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_COPD int Yes Comorbidities - COPD

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Maladsorption int Yes Comorbidities - Malabsorption

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data
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Anon_IBD int Yes Comorbidities - IBD

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_PeticUlcers int Yes Comorbidities - Peptic.Ulcers

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Pancreatitis int Yes Comorbidities - Pancreatitis

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_LiverDysfunction int Yes Comorbidities - Liver.Dysfunction

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Renal int Yes Comorbidities - Renal

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Paraplegia int Yes Comorbidities - Paraplegia

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Neuromuscuar int Yes Comorbidities - Neuromuscuar

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Parkinsons int Yes Comorbidities - Parkinsons

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Demyelination int Yes Comorbidities - Demyelination

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MND int Yes Comorbidities - MND

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_TIA int Yes Comorbidities - TIA

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Stroke int Yes Comorbidities - Stroke

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Dementia int Yes Comorbidities - Dementia

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Rheumatological int Yes Comorbidities - Rheumatological

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_RA int Yes Comorbidities - RA

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data



 

 

 

243 

  

Anon_PsoriaticArthritis int Yes Comorbidities - Psoriatic.Arthritis

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Gout int Yes Comorbidities - Gout

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AnkSpond int Yes Comorbidities - Ank.Spond

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Maligancy int Yes Comorbidities - Malignancy

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Obesity int Yes Comorbidities - Obesity

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_Hyperlipidaemia int Yes Comorbidities - hyperlipidaemia

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_PAD int Yes Comorbidities - PAD

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_SpinalCordInjury int Yes Comorbidities - Spinal.Cord.Injury

0 = No

1 = Yes

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuDiarrhoea int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuConstipation int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuFaecalIncont int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuFlatulence int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuAbdomBloat int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuAnalPain int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuNausea int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuAnorexia int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuUrinaryFreq int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuUrinaryInco int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data
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Anon_AcuUniraryReten int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuHaematuria int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuProctitis int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuHaemorrhoid int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuVaginalMucos int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuLowerGIMucos int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuOralMucos int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuSkinToxicity int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuGIHaemorrhage int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuNeutropenia int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuAnaemia int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuThrombocyt int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_AcuFatigue int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_PainCramping int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_OtherAcuteTox int Yes Acute toxicity

Scored from 0 to 5

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_MethodOfAcuTox int Yes Method for determining Acute Toxicity

0 = Prospective

1 = Retrospective

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction N/A Only available in free-text form, missing data

Anon_ToxicityScoring nvarchar 255 Yes Toxicity scoring system used Manual Extraction N/A Only available in free-text form, missing data
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Anon_PerfStatus int Yes WHO performance status

0 = Fully active, able to carry on 

all pre-disease performance 

without restriction

1 = Restricted in physically 

strenuous activity but ambulatory 

and able to carry out work of a 

light or sedentary nature, e.g., 

light house work, office work

2 = Ambulatory and capable of 

all selfcare but unable to carry 

out any work activities. Up and 

about more than 50% of waking 

hours

3 = Capable of only limited 

selfcare, confined to bed or chair 

more than 50% of waking hours

4 = Completely disabled. Cannot 

carry on any selfcare. Totally 

confined to bed or chair

5 = Dead

-1 = Not available

-2 = Not assessed / Not relevant

ChemoCare 6
ChemoCare schema very complicated. Data extracted may 

correspond to a different treatment/diagnosis.

Anon_ICD10Label nchar 100 Yes ICD10 disease classification [dbo].[MosClinMedical].[TPG_ID] 8

This is manually interpreted by non clinical staff and is error prone 

and very generic. Quality will be improved further in the coming 

months

Anon_DiagnosisSite nvarchar 100 Yes Site of diagnosis [dbo].[MosClinMedical].[TPG_ID] 8

This is manually interpreted by non clinical staff and is error prone 

and very generic. Quality will be improved further in the coming 

months

Anon_DaysToFirstTxStart int Yes

fn_getTimeBetweenEvents_NoD

efault(Year,Patient_StartingDate, 

Patient_FirstTxStartDateTime)

dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10

Depends on radiotherapy start date, which is automatically recorded 

and collected.

Anon_DaysToFirstTxEnd int Yes

fn_getTimeBetweenEvents_NoD

efault(Year,Patient_StartingDate, 

Patient_FirstTxEndDateTime)

dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10

Depends on radiotherapy end date, which is automatically recorded 

and collected.

Anon_FirstTreatmentIntent int Yes Intent of the first treatment

0 = Pallative

1 = Adjuvant

2 = Radical

-1 = Not available

[MosClinPatCPlan].[TX_Intent] 8 Potentially prone to human error during data recording

Anon_AgeAtFirstStart int Yes Age at the starting date

fn_getTimeBetweenEvents_NoD

efault(Year,Patient_StartingDate, 

MosClinPatient.Birth_DtTm)

dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10

Depends on radiotherapy start date and date of birth. Both are 

automatically recorded and collected.

Anon_FirstStagingMod int Yes Was staging assessed with a CT scan? 

0 = CT

1 = MRI

2 = PET

-1 = Not available

Manual Extraction N/A Nuclear medicine data item, missing data

Anon_FirstPETInjectedDose int Yes Injected dose during PET scan Manual Extraction N/A Nuclear medicine data item, missing data

Anon_FirstPETFastingBloodSugar int Yes Did patient fast before PET scan?

0 = No

1 = Yes

-1 = Not available

Manual Extraction N/A Nuclear medicine data item, missing data

Anon_DaysToFirstStagingScan int Yes
Number of days between starting date and 

staging scan

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_FirstStagingScan)

Manual Extraction N/A Nuclear medicine data item, missing data

Anon_FirstStagingScanner nvarchar 100 Yes Staging scanner ID Manual Extraction N/A Nuclear medicine data item, missing data

Anon_FirstStageLabel nvarchar 255 Yes Method of assessing TNM staging Manual Extraction 6
Staging versions changed at specific timepoints. However, patients 

may have been classified using the previous version

Anon_FirstT nchar 2 Yes T staging at diagnosis Manual Extraction 6
Collected from clinic notes. Can vary from note to note (replans) and 

prone to human error. Missing data for pre-VMAT patients

Anon_FirstN nchar 2 Yes N staging at diagnosis Manual Extraction 6
Collected from clinic notes. Can vary from note to note (replans) and 

prone to human error. Missing data for pre-VMAT patients
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Anon_FirstM nchar 2 Yes M staging at diagnosis Manual Extraction 6
Collected from clinic notes. Can vary from note to note (replans) and 

prone to human error. Missing data for pre-VMAT patients

Anon_MetastasisSiteAtDiag int Yes
Site of distant metastasis prior to anal cancer 

treatment

0 = No distant metastasis

1 = Lymph nodes outside pelvis 

2 = Viscera or bones

3 = Multiple sites

-1 = Not available

Manual Extraction 6
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_FirstHistology nvarchar 255 Yes Tumour histology Automatic Extraction 9 MANUALLY REVIEWED.

Anon_FirstHistologyGrade int Yes

0 = Tumour grade was assessed 

but could not be identified

1 = low/good diff

2 = medium/mod diff

3 = high/poor diff

-1 = Not available

-2 = Not assessed / Not relevant

Automatic Extraction 9 MANUALLY REVIEWED.

Anon_FirstPrimaryTumourSize int Yes Primary tumour size (Gross Tumor Volume)
If --999 = Not assessed / Not 

relevant
Manual Extraction 8

Collected from treatment plans. Prone to human error (but not very 

likely). Only available for VMAT patients.

Anon_FirstAnalMargin int Yes

0 = Anal margin

1 = Anal canal

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction 2 Unidentified source, missing data

Anon_PermanentColostomy int Yes
Has the patient undergone a permanent 

colostomy procedure?

0 = No

1 = Yes

-1 = Not available

Manual Extraction 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Anon_ResectionSurgery int Yes Did the patient undergo resection surgery?

0 = No

1 = Yes

-1 = Not available

Manual Extraction 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Anon_LocoregionalRecurrence int Yes
Has the patient been diagnosed with a 

locoregional recurrence?

0 = No

1 = Yes

-1 = Not available

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_LocoregionalRecurrenceSite nvarchar 100 Yes Site of recurrence Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_DaysToLocoregionalRecurrence int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_LocoregionalRecurrence

Date)

-99999 = No locoregional 

recurrence

Automatically calculated 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_MetastasisSiteAfterTreatment int Yes
Site of distant metastasis post anal cancer 

treatment

0 – No distant metastasis

1 – Lymph nodes outside pelvis 

2 – Viscera or bones

3 – Multiple sites

-1 = Not available

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_DaysToDistantMetastasis int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_DistantMetastasisDate)

-99999 = No locoregional 

recurrence

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_Death int Yes Has the patient died?

0 = No

1 = Yes

-1 = Not available

MosClinAdmin 9 Relies on PPM being updated

Anon_DeathDueToAnalCancer int Yes Was the death due to anal cancer?

0 = No

1 = Yes

-1 = Not available

Manual Extraction 3
Unidentified source, missing data. Very difficult to confirm whether 

death was due to anal cancer

Anon_DaysToDeath int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_BirthDate 

,Patient_DeathDate)

-99999 = Patient is alive

MosClinAdmin 9 Relies on PPM being updated. MANUALLY REVEWIED

Anon_3MonthClinicalResponse nvarchar 255 Yes
Clinical response at 3 months after end of 

treatment
Manual Extraction 5

Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients
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Anon_3MonthImageResponse int Yes
Imaging method of assessing clinical response 3 

months after end of treatment

0=CT

1=PET

2=MRI

0.1 = CT and PET

0.2 = CT and MRI

1.2 = PET and MRI

3 = PET/CT and MRI

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_DaysTo3monthClinicalRespAssess int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_3monthClinicalRespAss

essDate)

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_6MonthClinicalResponse nvarchar 255 Yes
Clinical response at 6 months after end of 

treatment
Manual Extraction 5

Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_6MonthImageResponse int Yes
Imaging method of assessing clinical response 6 

months after end of treatment

0=CT

1=PET

2=MRI

0.1 = CT and PET

0.2 = CT and MRI

1.2 = PET and MRI

3 = PET/CT and MRI

-1 = Not available

-2 = Not assessed / Not relevant

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_DaysTo6MonthClinicalRespAssess int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_6MonthClinicalRespAss

essDate)

Manual Extraction 5
Collected from clinic notes. Prone to human error. Missing data for 

pre-VMAT patients

Anon_TotalAdmissionDaysPerPatient int Yes Total number of admission days for each patient Automatic calculation 7
Admission(s) could be unrelated to anal cancer. Only includes 

admissions to LTHT

Anon_Trial int Yes Did the patient participate in a trial?

0 = No

1 = Yes

-1 = Not available

[dbo].[MosClinPatTrial] 8
Only radiotherapy-related trials included. MOSAIQ data available 

2014 onwards

Anon_PFS int Yes
Progression free survival (no failure/mets or nil at 

death)

If Anon_Death =1 OR if 

Anon_LocoregionalRecurrence=

1 OR if Anon_DistantMetastasis

=1 then Anon_PFS=1. Otherwise 

Anon_PFS=0

Manual Extraction 5 Calculated using other fields.

Anon_DaysToPFS int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_PFSdate)

-99999 = Patient has not had 

disease progression

Manual Extraction 5 Calculated using other fields.

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score

Patient_INT_IDENT int No Foreign Key - DO NOT EXPOSE INTERNAL N/A N/A

Patient_bPETscanDate date Yes Date of PET Staging Scan Manual Extraction N/A Nuclear medicine data item, missing data

Patient_MRIscanDate date Yes Date of MRI Staging Scan Manual Extraction N/A Nuclear medicine data item, missing data

Patient_TxStartDateTime datetime Yes Radiotherapy start date
dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and extracted

Patient_TxEndDateTime datetime Yes Radiotherapy end date
dbo.fn_getLastTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and extracted

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Anon_DaysTobPETscan int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_bPETscanDate)

Manual Extraction N/A Nuclear medicine data item, missing data

Table 3. Radiotherapy data
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Anon_DaysToMRIscan int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_MRIscanDate)

Manual Extraction N/A Nuclear medicine data item, missing data

Anon_DaysToTxStart int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_TxStartDateTime)

dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and extracted

Anon_DaysToTxEnd int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_TxEndDateTime)

dbo.fn_getLastTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)
10 Automatically recorded and extracted

Anon_OverallTreatmentTime int Yes
Anon_DaysToTxEnd - 

Anon_DaysToTxStart

dbo.fn_getLastTreatmentDtTmFromSiteI

D_JPCB(SIT_ID)  minus  

dbo.fn_getFirstTreatmentDtTmFromSiteI

D_JPCB(SIT_ID) 

10 Automatically recorded and extracted

Anon_CompletedTreatment int Yes

0 = No

1 = Yes

-1 = Not available

IS  [dbo].[MosClinSite][Fractions] =  

[dbo].[fn_getLastDeliveredFractionFrom

SiteID_JPCB]

10 Automatically recorded and extracted

Anon_TreatmentIntent int Yes Intent of the first treatment

0 = Pallative

1 = Adjuvant

2 = Radical

-1 = Not available

[MosClinPatCPlan].[TX_Intent] 8 Potentially missing and prone to human error during data recording

Anon_RTsiteName nvarchar 255 Yes Site of radiotherapy [dbo].[MosClinSite].[Site_Name] 8 Prone to human error during data recording

Anon_PxEnergy float Yes Energy per fractions prescribed MosClinSite.dose
([MosClinSite].Dose_Ttl 

/100)/MosClinSite.fractions
9 Automatically recorded and extracted

Anon_PxFractionNumber int Yes Number of fractions prescribed MosClinSite.Fractions MosClinSite.Fractions 7 MANUALLY REVIEWED

Anon_PxPrimaryTumourDose float Yes Planned dose to tumour site [MosClinSite].Dose_Ttl /100 5 MANUALLY REVIEWED

Anon_PxInvNodesDose floar Yes Planned dose to inv nodes Manual Extraction 3
Unidentified source. Can be assumed from dose to primary tumour. 

Missing data

Anon_PxEleNodesDose float Yes Planned dose to ele nodes Manual Extraction 3
Unidentified source. Can be assumed from dose to primary tumour. 

Missing data

Anon_TxEnergy float Yes Energy delivered
fn_getEnergyDeliveredFromSiteI

D_jpcb(MosClinSite.SIT_ID)

fn_getEnergyDeliveredFromSiteID_jpcb(

MosClinSite.SIT_ID)
9 Automatically recorded and extracted

Anon_TxFractionNumber int Yes Number of fractions delivered

fn_getLastDeliveredFractionFro

mSiteID_jpcb(MosClinSite.SIT_I

D)

fn_getLastDeliveredFractionFromSiteID

_jpcb(MosClinSite.SIT_ID)
7 MANUALLY REVIEWED

Anon_TxPrimaryTumourDose float Yes Delivered dose to tumour site
fn_getDeliveredDoseFromSiteID_jpcb(M

osClinSite.SIT_ID)/100
5 MANUALLY REVIEWED

Anon_TxInvNodesDose float Yes Delivered dose to inv nodes Manual Extraction 3
Unidentified source. Can be assumed from dose to primary tumour. 

Missing data

Anon_TxEleNodesDose float Yes Delivered dose to ele nodes Manual Extraction 3
Unidentified source. Can be assumed from dose to primary tumour. 

Missing data

Anon_RTTechnique int Yes Radiotherapy technique received

0 = 3D-CRT

1 = IMRT

2 = VMAT

3 = Planned Pelvis 

4 = Parallel Opposed

5 = EBRT Planned 

6 = EBRT Sim Planned

-1 = Not available

MosClinSite.[Technique] 8 Prone to human error during data recording

Anon_RTbreakUnplanned int Yes
Did the patient have an unplanned radiotherapy 

break?

0 = No

1 = Yes

-1 = Not available

Manual Extraction 3
May be assumed from overall treatment time. Very difficult to confirm 

break was unplanned. Missing data

Anon_Boost int Yes

0 – No boost

1 – Simultaneous boost 

2 – Sequential boost

-1 = Not available

Manual Extraction 3
Missing data. Can be assumed from clinical protocol. If sequential 

boost, then patient must have more than 1 prescription

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score

Patient_INT_IDENT int No Foreign Key - DO NOT EXPOSE Auto Incrementing N/A N/A

Patient_ChemoStartDate date Yes Start date of chemotherapy treatment [dbo].[PPMLeedsChemoRegimens] 8 Depends on ChemoCare being up to date

Patient_ChemoCycleDate Datetime Yes [PPMLeedsChemoCycles] 8 Depends on PPM being up to date

Table 4. Chemotherapy data
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Field DataType Length NULL? Description Values Source Quality Score Justification for Quality Score

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Anon_DaysToChemoStart int Yes

fn_getTimeBetweenEvents_NoD

efault(Year,Patient_StartingDate, 

[dbo].[PPMLeedsChemoRegime

ns][ec_RegimenStartDate])

[dbo].[PPMLeedsChemoRegimens] 8 Depends on the chemotherapy start date

Anon_ChemoRegime nvarchar 255 Yes
[dbo].[PPMLeedsChemoRegimens][ec_

RegimenLabel]
9 MANUALLY REVIEWED

Anon_MissedChemo int Yes
Did the patient miss a chemotherapy 

appointment?

0 = No

1 = Yes

-1 = Not available

Manual Extraction ? 1
Very poor quality data: missed chemo for toxicity vs missed chemo 

error. Mising data

Anon_TotalChemoDose int Yes Chemotherapy dose delivered

Manual Extraction - Maybe from actual 

ChemoCare tables. Need to read data 

dictionary

N/A Unidentified source, missing data

Anon_TotalChemoCycles int Yes Number of chemotherapy cycles delivered
[PPMLeedsChemoCycles] + 

[dbo].[PPMLeedsChemoRegimens]
8 Depends on ChemoCare being up to date

Anon_CycleComplete int Yes As the cycle completed?

0 = No

1 = Yes

-1 = Not available

[dbo].[PPMLeedsChemoRegimens][ec_

ActionStatusLabel]
7 Depends on ChemoCare being up to date

Anon_DaysToChemoCycle int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_ChemoCycleDate)

[PPMLeedsChemoCycles] 8 Depends on PPM being up to date

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality Score

Patient_SurgeryDate date Yes Date of surgery Manual Extraction or PPM surgery table. 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality score

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Anon_DaysToSurgery int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_SurgeryDate)

Manual Extraction or PPM surgery table. 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Anon_SurgeryIntent int Yes Intent of surgical procedure

0 = First Definitive Treatment

1 = Subsequent Treatment

2 = Continuing Treatment 

(Excluded)

-1 = Not available

Manual Extraction or PPM surgery table. 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Anon_SurgeryType nvarchar Yes Description of surgery Manual Extraction or PPM surgery table. 4
Surgery data in PPM is not reliable. Surgeries outside LTHT are not 

captured

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality score

Patient_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Patient_AdmissionDate date Yes Date of  admission PPMLeedsAdmissions 8
Admission might not be related to anal cancer. Only admissions to 

LTHT captured.

Patient_DischargeDate date Yes Date of discharge after admission PPMLeedsAdmissions 8
Admission might not be related to anal cancer. Only admissions to 

LTHT captured.

Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality score

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Anon_DaysToAdmission int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_AdmissionDate)

PPMLeedsAdmissions 7
Admission might not be related to anal cancer. Only admissions to 

LTHT captured.

Anon_TotalDaysOfAdmission int Yes Number of days of admission

fn_getTimeBetweenEvents(Year,

Patient_Patient_AdmissionDate, 

Patient_DischargeDate)

PPMLeedsAdmissions 7 Depends on admission and discharge dates

Anon_ReasonsForAdmission nvarchar Yes Reason for admission PPMLeedsAdmissions 6
Admission might not be related to anal cancer. Only admissions to 

LTHT captured.

Table 6. Hospital admissions data

Table 5. Surgery data
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Field DataType Length NULL? Description Values Data Source Quality Score Justification for Quality score

Patient_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Patient_TrialDateColumnName nvarchar 255 Yes Patient_TrialDate_[TrialNumber]

Patient_TrialDate date Yes Date of the trial the patient participated in MosClinPATTrials.DtTm_Reg 10 Automatically extracted. No information on non-radiotherapy trials

Field DataType Length NULL? Description Values Source QualityScore Justification for quality score

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE N/A N/A

Anon_TrialColumnName nvarchar 255 Yes Anon_Trial_[TrialNumber]

Anon_TrialName nvarchar Yes Name of the trial the patient participated in MosClinTrial.Trial_id MosClinPatTrial.trl_id 10 Automatically extracted. No information on non-radiotherapy trials

Anon_TrialTypeColumnName nvarchar 255 Yes Anon_TrialType_[TrialNumber]

Anon_DaysToTrialColumnName nvarchar 255 Yes
Anon_DaysToTrial_[TrialNumber

]

Anon_DaysToTrial int Yes

fn_getTimeBetweenEvents(Year,

Patient_StartingDate, 

Patient_TrialDate)

MosClinPATTrials.DtTm_Reg 10 Automatically extracted

Anon_OutcomeTrialColumnName nvarchar 255 Yes
Anon_OutcomeTrial_[TrialNumb

er]

Anon_OutcomeTrial nvarchar Yes Outcome of the trial the patient participated in

1 = On Trial, On Treatment

2 = On Trial, On Treatment, Enter 

Next Phase of

Trial

3 = On Trial, In Follow Up

4 = Off Trial, Records Retained

MosClinPatTrials.Trial_sts 9 Automatically extracted. No information on non-radiotherapy trials

Field DataType Length NULL? Description Values
Patient_INT_IDENT int No Foreign Key - DO NOT EXPOSE

Anon_INT_IDENT int No Foreign Key - DO NOT EXPOSE

Anon_ID nchar 16 Yes Randomly unique genrated ID prefixed with ATOM

Anon_StudyID nchar 4 Yes Study ID ATOM

Table 7. Clinical trial data

Table 8. Link table
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