
Distributed Time-Predictable Memory

Interconnect for Multi-Core Architectures

Haitong Wang

Doctor of Philosophy

University of York

Computer Science

September 2019

Abstract

Multi-core architectures are increasingly adopted in emerging real-time appli-

cations where execution time is required to be bounded in the worst case (i.e.,

time predictability) and low. Memory access latency is the main part forming

the overall execution time. A promising approach towards time predictability

is to employ distributed memory interconnects, either locally arbitrated inter-

connects or globally arbitrated interconnects, with arbitration schemes, and

the pipelined tree-based structure can break the critical path of multiplexing

into short steps with small logic size. It scales to a large number of processors

that high clock frequency can be synthesised. This research explores timing

behaviour of multi-core architectures with shared distributed memory inter-

connects and improves distributed time-predictable memory interconnects for

multi-core architectures. The contributions are mainly threefold. First, the

generic analytical flow is proposed for time-predictable behaviour of memory

accesses across multi-core architectures with locally arbitrated interconnects.

It guarantees time predictability and safely bound the worst case without ex-

act memory access profiles. Second, the root queue modification with the root

queue management is proposed for multi-core architectures with locally arbi-

trated interconnects that variation of memory access latency is reduced and

timing behaviour analysis is facilitated. Third, Meshed Bluetree is proposed

as the distributed time-predictable multi-memory interconnect, enabling mul-

tiple processors to simultaneously access multiple memory modules.

i

Acknowledgements

I would like to give my sincere gratitude to my supervisor Prof. Neil C.

Audsley for his guidance, patience and encouragement through my journey.

I would also like to express special thanks to my research colleagues for their

help and support.

ii

Declaration

I declare that this thesis is a presentation of original work and I am the sole

author. This work has not previously been presented for a degree or other

qualification at this university or elsewhere. All sources are acknowledged

as references. The content of some of the chapters in this thesis has already

been published within the following publications.

• H. Wang, N. C. Audsley and W. Chang. Addressing Resource Con-

tention and Timing Predictability for Multi-Core Architectures with

Shared Memory Interconnects. IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), Sydney, Australia, 2020,

pp. 70-81. [1]

• H. Wang, N. C. Audsley, X. S. Hu and W. Chang. Meshed Bluetree:

Time-Predictable Multimemory Interconnect for Multicore Architec-

tures. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 39, no. 11, pp. 3787-3798, Nov. 2020. [2]

iii

Contents

1 Introduction 1

1.1 Research Questions . 6

1.2 Thesis Structure . 8

2 Literature Review 11

2.1 Real-Time System . 11

2.2 Memory . 14

2.2.1 Cache . 19

2.2.2 Prefetch . 24

2.2.3 Scratchpad Memory 29

2.2.4 Summary . 34

2.3 Shared Memory Multi-Core Architecture 35

2.3.1 Memory Arbitration 37

2.3.2 Distributed Memory Interconnect 40

2.3.3 Critical Resource Contention 49

2.3.4 Summary . 55

2.4 Summary and Discussion . 56

3 Multi-Core Architectures with Shared Distributed Memory

Interconnects 59

3.1 Basic Architecture . 60

3.2 Problem Analysis . 64

3.2.1 Time Predictability . 64

3.2.2 Varying Memory Access Latency 65

iv

3.2.3 Increasing Memory Access latency 68

3.3 Research Hypothesis . 70

4 Analysing Timing Behaviour of Multi-Core Architectures

with Shared Distributed Memory Interconnects 71

4.1 Time Predictability of Multi-Core Architectures with Shared

Distributed Memory Interconnects 72

4.1.1 Bluetree-based Architecture 73

4.1.2 Timing Behaviour Analysis 76

4.1.3 Worst-Case Analysis 79

4.2 Timing Behaviour of Multi-Core Architectures with Shared

Distributed Memory Interconnects 87

4.2.1 Locally Arbitrated Architecture and Globally Arbitrated

Architecture . 89

4.3 Summary and Discussion . 104

5 Reducing Variation of Memory Access Latency across Multi-

Core Architectures with Shared Distributed Memory Inter-

connects 106

5.1 Problem Analysis . 107

5.2 Root Queue Modification . 111

5.2.1 Timing Behaviour Analysis 113

5.2.2 Root Queue Management 116

5.3 Evaluation: Hardware Simulations 119

5.4 Evaluation: FPGA Experiments 124

5.4.1 Memory Access Latency with Unbalanced Path Work-

loads . 125

5.4.2 Memory Access Latency with Balanced Path Workloads 128

5.4.3 Memory Access Latency with Increasing Request Inter-

vals . 131

v

5.5 Summary and Discussion . 134

6 Meshed Bluetree: Distributed Time-Predictable Multi-Memory

Interconnect for Multi-Core Architectures 136

6.1 Problem Analysis . 137

6.2 Meshed Bluetree . 139

6.2.1 Timing Behaviour Analysis 146

6.3 Evaluation: Hardware Consumption 154

6.4 Evaluation: Synthetic Memory Workloads 155

6.4.1 Memory Access Latency with Multiple Homogeneous

Memory Modules . 156

6.4.2 Memory Access Latency with Mixed Memory Modules 158

6.5 Evaluation: Benchmarks . 160

6.6 Summary and Discussion . 167

7 Concluding Remarks 170

7.1 Research Summary . 170

7.2 Main Contributions . 173

7.3 Future Work . 174

Reference 174

Appendix 190

A Request Interval . 191

A.1 Varying Request Interval [1, 64] 191

A.2 Varying Request Interval [1, 256] 193

vi

List of Figures

1.1 Network-on-Chip Architecture 2

1.2 Performance Gap Memory and Processor 3

2.1 Task Execution Time . 13

2.2 DRAM Organisation . 15

2.3 Memory Hierarchy . 18

2.4 Cache Hierarchy . 21

2.5 Markov Prediction Table . 27

2.6 Global History Buffer . 28

2.7 Scratchpad Memory Address Configuration 29

2.8 Memory Configuration with Scratchpad Memory Management

Unit . 33

2.9 Bus-based Multi-Core Architecture 35

2.10 AXI Interconnect . 36

2.11 Shared Memory Network-on-Chip Architetcure 37

2.12 MoT . 41

2.13 Arbitration Tree . 43

2.14 Bluetree . 45

2.15 TDM Tree . 46

2.16 GAMT . 48

2.17 Memory Centric Scheduling 50

3.1 8-Client Basic Architecture . 60

4.1 Bluetree Multiplexer . 74

vii

4.2 Bluetree Communication Packet Format 75

4.3 Blocking Behaviour of Bluetree Multiplexer 77

4.4 Worst-Case Memory Access Latency across Bluetree-based Ar-

chitecture . 84

4.5 Memory Access Latency across 8-Client Bluetree-based Archi-

tecture . 92

4.6 Memory Access Latency across 8-Client TDM Tree-based Ar-

chitecture . 93

4.7 Memory Access Latency with Balanced Path Workloads across

8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture . 96

4.8 Boxplot of Memory Access Latency with Balanced Path Work-

loads across 8-Client Bluetree-based Architecture and 8-client

TDM Tree-based Architecture 97

4.9 Memory Access Latency with Increasing Request Intervals across

8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture . 98

4.10 Boxplot of Memory Access Latency with Increasing Request

Intervals across 8-Client Bluetree-based Architecture and 8-

client TDM Tree-based Architecture 99

4.11 Memory Access Latency with Unbalanced Path Workloads across

8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture . 100

4.12 Boxplot of Memory Access Latency with Unbalanced Path

Workloads across 8-Client Bluetree-based Architecture and 8-

client TDM Tree-based Architecture 101

4.13 Memory Access Latency with Varying Request Intervals across

8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture . 102

viii

4.14 Boxplot of Memory Access Latency with Varying Request In-

tervals across 8-Client Bluetree-based Architecture and 8-client

TDM Tree-based Architecture 103

5.1 Processor Operation vs. Memory Operation 107

5.2 Bluetree-based Architecture with Root Queue Modification . . 111

5.3 Root Queue Management with Hardware Design 117

5.4 Memory Access Latency with Increasing Root Queue Size . . . 121

5.5 Memory Access Latency with Increased Root Queue Size . . . 122

5.6 Memory Access Latency with Varying Workloads 126

5.7 Boxplot of Memory Access Latency with Varying Workloads . 127

5.8 Memory Access Latency with Balanced Path Workloads . . . 129

5.9 Boxplot of Memory Access Latency with Balanced Path Work-

loads . 130

5.10 Memory Access Latency with Increasing Request Intervals . . 131

5.11 Boxplot of Memory Access Latency with Increasing Request

Intervals . 132

6.1 8×4 Meshed Bluetree . 141

6.2 Bluetree Router . 142

6.3 Meshed Bluetree Communication Packet Format 145

6.4 Worst-Case Memory Access Latency across Meshed Bluetree

Architecture . 151

6.5 Hardware Consumption: Bluetree Multiplexer 153

6.6 Hardware Consumption: Bluetree Router 153

6.7 Hardware Consumption: Bluetree Wire 153

6.8 Execution Time with Multiple Homogeneous Memory Modules 156

6.9 Average Memory Access Latency with Multiple Homogeneous

Memory Modules . 157

6.10 Execution Time with Mixed Memory Modules 158

ix

6.11 Average Memory Access Latency with Mixed Memory Modules 159

6.12 Boxplot of Execution Time in 8×1 Meshed Bluetree Architec-

ture with Single DRAM Module 161

6.13 Boxplot of Execution Time in 8×2 Meshed Bluetree Architec-

ture with Instruction DRAM Module and Data DRAM Module 162

6.14 Boxplot of Execution Time in 8×2 Meshed Bluetree Architec-

ture with Dual DRAM Modules 163

6.15 Average Execution Time in Meshed Bluetree Architectures . . 164

6.16 Interquartile Range of Execution Time in Meshed Bluetree Ar-

chitectures . 165

x

List of Tables

2.1 Summary of Methods to Alleviate Critical Resource Contention 57

3.1 Summary of Distributed Memory Interconnects 63

4.1 Maximum Blocking Number in 8-Client Bluetree-based Archi-

tecture . 83

4.2 Increasing Outstanding Requests for 8-Client Architectures . . 91

4.3 Balanced Outstanding Requests for 8-Client Architectures . . 95

6.1 Hardware Consumption at RTL Level 154

xi

List of Symbols

Symbol Description

µi a client with index i

Nµ number of client

Bj a distributed memory interconnect with index j

NB number of distributed memory interconnect

Nβ depth of distributed memory interconnect

βk a stage of distributed memory interconnect with

index k

Dj a shared root memory module with index j

ND number of shared root memory module

t(Dj) latency of shared root memory module Dj

Pi memory access path for client µi

P(i,j) memory access path from client µi to shared root

memory module Dj (in multi-memory architecture)

P (βk) local priority of a memory access path at stage βk

α Bluetree blocking factor

ω a memory access

t(ω) latency of memory access ω

tRQ(ω) request path latency of memory access ω

tRS(ω) response path latency of memory access ω

xii

tBC(ω) best-case latency of memory access ω

tBCRQ(ω) best-case request path latency of memory access ω

tBCRS (ω) best-case response path latency of memory access ω

tWC(ω) worst-case latency of memory access ω

tWC
RQ (ω) worst-case request path latency of memory access ω

tWC
RS (ω) worst-case response path latency of memory access

ω

NWC
RQ (ω) maximum blocking number in request path of

memory access ω

NWC
RQ (βk) maximum blocking number iterative up to stage βk

NWC
α (βk) maximum arbiter blocking number at stage βk

τ a sequence of memory requests

NWC
RQ (τ) maximum blocking number in request path of

sequence τ

Nµ
RQ(µi) outstanding request number from client µi

Nµ
RQ(Dj) outstanding request number to shared root

memory Dj

T µRQ(µi) request interval from client µi

Q root queue size

QS minimum size of the root queue for queued service

R a router network

NR depth of router network

Nmux number of Bluetree multiplexer

Nrouter number of Bluetree router

Nwire number of Bluetree wire

xiii

List of Acronyms

Acronym Description

NoC Network-on-Chip

TDM Time Division Multiplexing

BCET Best-Case Execution Time

WCET Worst-Case Execution Time

HRT Hard Real-Time

FRT Firm Real-Time

SRT Soft Real-Time

RAM Random Access Memory

SRAM Static Random Access Memory

DRAM Dynamic Random Access Memory

DDR DRAM Double Data Rate synchronous DRAM

FIFO First-In-First-Out

LRU Least Recently Used

MRU Most Recently Used

SPM Scratchpad Memory

AHB Advanced High-Performance Bus

AXI Advanced eXtensible Interface

MoT Mesh-of-Tree

GAMT Globally Arbitrated Memory Tree

xiv

RQ Request Path

RS Response Path

MUX Multiplexer

DEMUX Demultiplexer

L Low Priority

H High Priority

RTL Register-Transfer Level

LUT Look-Up Table

xv

Chapter 1

Introduction

Recently, Moore’s law [3][4] is still relevant, while Dennard Scaling [5] has

broken down. Moore’s law states that the number of transistors per unit

area doubles for each technology generation. Dennard Scaling states that

the power density stays roughly constant as transistors get smaller, and thus

the power consumption stays in proportion with area. Combined Moore’s

law with Dennard Scaling, computing performance per watt doubles about

every two years. However, the breakdown of Dennard Scaling limits the im-

provement of the computing performance by increasing the processor clock

frequency directly. Instead, the current trend is to scale the number of pro-

cessing cores to achieve high performance.

The conventional method tends to employ multiple processing cores within

a single chip. This promotes the multi-core architecture where the multi-

ple processing cores are constructed and interconnected with a shared bus.

Compared with the coupling of multiple single core processors, the multi-core

processor executes threads concurrently, providing higher performance with

less power consumption. However, this introduces the bus contention issue.

1

Figure 1.1. Network-on-Chip Architecture

The communications between the processing cores, or between the process-

ing core and the memory module or the peripheral such as I/O peripheral,

must be delivered through the shared bus, leading to contention delays. This

becomes the bottleneck as the number of processing cores increases. In this

case, the multi-core architecture is not scalable.

An alternative method is network-on-chip (NoC) [6][7]. It employs a packet

switching communication network to connect the separate processing cores.

As shown in Figure 1.1, each processing core connects through a router to the

network. Then the communication packets can be delivered across the net-

work with the routing traffic. In this way, NoC allows easy data sharing that

a processing core can communicate with its target directly. This promotes

the many-core architecture. Compared with the multi-core architecture, NoC

provides faster communications with less bus contention. This potentially im-

proves the performance and reduces the power consumption. However, the

NoC design burden lies on the router architecture and the communication

mechanism [8][9]. It also involves research on topology and layered protocols.

While the processor performance keeps improving, the memory performance

remains the system bottleneck. High memory latency leads to expensive pro-

2

Figure 1.2. Performance Gap between Memory and Processor [10]

cessor stalls, and this directly degrades the overall system performance. The

memory wall [11] is introduced to indicate that the performance of the sys-

tem is decided by the memory speed but no longer by the processor speed.

Figure 1.2 shows the processor speed against the memory speed over time.

The vertical axis is the logarithmic scale to record the performance gap be-

tween the processor and the memory, and the memory performance baseline

is 64KB DRAM in 1980. As shown in the graph, the speed of the processor

after 1990 can improve more than 60% every year, while the memory can only

improve about 7% [10]. The performance gap between the memory and the

processor is still widening with a rapid rate.

With the aim to alleviate the memory latency issue, several solutions have

been explored, such as the multi-threading. With enough support from both

the processor architecture and the OS, the multi-threading allows the switch-

ing from a thread to another concurrent thread instead of just waiting. This

avoids the processor stalls caused by the memory latency. However, this re-

quires large amounts of resources and introduces overheads. By contrast,

the architectural solution is the memory hierarchy design, and the processor

may still easily lose performance within the memory hierarchy. Further im-

3

provement methods mainly rely on the cache to better exploit the locality.

Prefetch methods can also be employed with the aim to prepare next data

or instructions for the processor ahead of time. As for embedded systems,

scratchpad memory is introduced as as alternative for cache. It exploits the

application behaviour and manages the memory using explicit instructions.

With a growing number of applications being integrated into modern em-

bedded systems, it places a heavy request on memory subsystem, especially

within the multi-core and many-core architecture such as GPU application [12].

As the number of processors to access a single memory module increases,

memory access latency inevitably increases. Besides that, multi-core archi-

tectures are also increasingly adopted in the emerging real-time applications,

such as autonomous vehicles and robotics, where the memory access latency

is required to be bounded both in the worst case (i.e., time predictability)

and low. With the trend of integrating more applications or employing more

processors, the potential contention over memory accesses gets more severe

within such architectures. This harms time predictability which is highly

undesirable for real-time applications.

Distributed Time-Predictable Memory Interconnect

With the aim to achieve time predictability (or simply predict the timing

behaviour of memory accesses), multi-core and many-core architectures typi-

cally utilise an arbitration scheme to provide timing guarantees. The poten-

tial memory arbitration schemes include time division multiplexing (TDM)

scheme, round-robin scheme and priority-based schemes (e.g., static-priority

arbitration). The conventional centralised implementation of an arbitration

scheme is to deploy a single arbiter, allowing arbitration decisions to be made

at the central location. However, as the number of processors grows, the logic

4

size of the arbiter hardware increases, which limits the maximum synthesis-

able clock frequency.

A promising approach recently investigated is to employ distributed memory

interconnects that the tree-based structure with pipelined stages can break

the critical path of the multiplexing into multiple shorter steps with smaller

logic size. Although this introduces additional delays in terms of clock cycles,

the latency across such interconnect is actually reduced that much higher syn-

thesisable clock frequency is allowed on the distributed hardware. It scales to

a large number of processors. The critical path of the distributed interconnect

remains constant as it is duplicatedly constructed with the growing number

of processors. In addition, pipelining is also supported.

The distributed memory interconnects can be classified as the locally ar-

bitrated interconnect and the globally arbitrated interconnect. The locally

arbitrated interconnect is simply constructed upon a distributed binary arbi-

tration tree which multiplexes the memory requests from processors to the

shared root memory module through the distributed data paths. By com-

parison, based on a distributed binary arbitration tree, the globally arbitrated

interconnect integrates the global scheduling to the distributed data paths.

In general, the locally arbitrated interconnect allows the average-case latency

to be much lower than the worst case, however making time predictability

challenging. By contrast, the globally arbitrated interconnect essentially limits

the average-case behaviour to be similar to the worst case, facilitating the

timing behaviour analysis. However, the processor utilisation within such

architecture is potentially reduced, degrading the overall system performance.

Besides that, the globally arbitrated interconnect requires complex scheduling

as well as strict coordination, potentially suffering synchronisation issue. The

detailed analysis is shown in following research.

5

1.1 Research Questions

The focus of this research is to explore the timing behaviour of the multi-

core architectures with shared distributed memory interconnects and improve

the distributed time-predictable memory interconnect for multi-core architec-

tures.

As multi-core architectures are increasingly being adopted for real-time appli-

cations, the execution time of such application is required to be both bounded

in the worst case and low. However, the multi-core architecture is typically de-

signed for good average-case performance, and the resource contention within

such architecture is inevitable. It potentially causes contention over memory

accesses across the multi-core architecture, and this complicates the analysis

of memory access latency which is the main part forming the overall program

execution time. With the deployment of distributed memory interconnect,

the analysis of memory access behaviour across the multi-core architecture

further complicates that such architecture appears to be more sensitive to the

resource contention due to the introduction of the tree-based structure.

It is to be noted that this research focuses on the memory accesses issued by

processors to access the shared memory within the multi-core architecture.

In this case, memory access latency is the latency of memory request issued

to access the shared memory across the multi-core architecture, including the

time consumed across the memory access path, the time consumed for the

response of the shared memory, and the time consumed due to the resource

contention within the shared memory multi-core architecture.

Based on the above analysis, the following research questions are related and

formed. First, it is crucial to guarantee time predictability in multi-core ar-

6

chitectures for real-time applications. In this research, time predictability

requires to statically analyse the timing behaviour of memory accesses across

the multi-core architecture and bound the worst-case memory access latency

within such architecture. Achieving time predictability within the multi-core

architecture is challenging that software components or tasks can contend for

the shared hardware resources, such as memory modules, with varying status.

Such contention gets more severe with the deployment of distributed memory

interconnect due to the tree-based structure. This complicates timing be-

haviour analysis and harms time predictability, leading to the first research

question Q1 which is summarised as follows.

Q1: Can analytical method predict timing behaviour of memory accesses and

bound the worst-case memory access latency in multi-core architectures with

shared distributed memory interconnects?

Second, the multi-core architecture inevitably leads to contention over mem-

ory accesses. Within the multi-core architectures with shared distributed

memory interconnects, the contention to the shared hardware resources, es-

pecially the contention to the overlapped data paths across the tree-based in-

terconnect, causes resource sharing issue that memory requests are not fairly

served. This potentially causes substantial varying memory access latency.

Wide variation of memory access latency leads to wide fluctuation of the over-

all system performance that the processor can stall with the varying memory

response time. In this case, conservative system design has to be consid-

ered with pessimistic timing assumptions. This leads to the second research

question Q2 which is summarised as follows.

Q2: Can multi-core architectures with shared distributed memory intercon-

nects be modified at the hardware level to reduce variation of memory access

latency?

7

Third, with the trend of integrating more applications or employing more pro-

cessors into a system, memory workloads within the multi-core architecture

potentially keeps increasing, and the contention over memory accesses aggra-

vates. This increases memory access latency, and high memory access latency

degrades the overall system performance. Within the multi-core architecture

with the distributed memory interconnect, the architectural bottleneck is ei-

ther the shared memory resource or the shared tree-based interconnect which

connects multiple data paths however overlapped at the tree root. This leads

to the third research question Q3 which is summarised as follows.

Q3: Can multi-core architectures with shared distributed memory intercon-

nects be improved by architectural enhancement for increasing memory work-

loads?

This research attempts to explore a relevant topic in hardware-software inte-

gration. It addresses resource contention and time predictability across the

multi-core architectures with shared distributed memory interconnects, con-

tributing towards real-time multi-core systems. It is to be noted that the

timing behaviour analysis of memory accesses involves the integration of the

shared root memory module into the multi-core architecture. The efficiency of

such memory resource directly impacts memory access latency which can be

harmed by either varying response time or high response time of this shared

memory module. In this case, improvement on independent memory module

or memory subsystem is equally necessary.

1.2 Thesis Structure

The reminder of the thesis is structured as follows.

8

Chapter 2 presents the literature review related to this research. First, it

provides the background knowledge and basic concepts of real-time systems.

Second, memory or memory subsystem is reviewed with the focus on time

predictability and memory latency, including cache, prefetch and scratchpad

memory. Third, the shared memory multi-core architecture is reviewed, in-

cluding memory arbitration schemes and distributed memory interconnects.

It also includes a review of state-of-the-art methods to alleviate resource con-

tention within the shared memory multi-core architecture.

Chapter 3 presents the basic architecture and analyses the given research

questions. Afterwards, the research hypothesis is summarised based on the

problem analysis.

Chapter 4 analyses timing behaviour of the multi-core architectures with

shared distributed memory interconnects. First, it proposes the generic an-

alytical flow to predict the timing behaviour of memory accesses by fully

exploring the architectural features and statically bound the worst-case mem-

ory access latency. This aims to solve the research question Q1. Second, it

continues to explore and analyse timing behaviour of the locally arbitrated

interconnect and the globally arbitrated interconnect.

Chapter 5 aims to solve the research question Q2. It analyses varying mem-

ory access latency across the multi-core architectures with shared distributed

memory interconnects and proposes an architectural enhancement to reduce

variation of memory access latency. Experimental results from hardware sim-

ulations and FPGA implementations evaluate the effectiveness of the pro-

posed work.

Chapter 6 aims to solve the research question Q3. It analyses resource con-

tention over the multi-core architectures with increasing memory workloads

9

and proposes an architectural extension of the tree-based interconnect to

enhance the multi-core architecture. Experimental results from FPGA im-

plementations with synthetic memory workloads and real-world benchmarks

evaluate the effectiveness of the proposed work.

Chapter 7 draws the concluding remarks and proposes the future work.

10

Chapter 2

Literature Review

This chapter presents literature review related to this research. Section 2.1

provides background knowledge and basic concepts of real-time systems, in-

cluding time predictability and worst-case execution time (WCET). Sec-

tion 2.2 reviews memory and memory subsystem with the focus on time

predictability and memory latency. The potential improvement methods

are also reviewed, including cache, prefetch and scratchpad memory. Sec-

tion 2.3 presents the review of shared memory multi-core architectures. It

includes time-predictable memory interconnects and critical resource con-

tention within multi-core architectures. Afterwards, Section 2.4 summarises

and discusses these contents based on the given research questions.

2.1 Real-Time System

Real-time systems must guarantee the system response within specified time

constraints thus to provide accuracy and reliability. The term deadline defines

11

the time that the system must produce response results. Real-time systems

can be classified by the consequence of missing the deadline [13] as hard (HRT)

where deadline miss with late delivered system response causes disastrous

consequences, firm (FRT) where deadline can be occasionally missed but

there is no benefits with the late delivered system response, and soft (SRT)

where deadline can be occasionally missed and the system response can be

late delivered.

Applications with HRT requirements, such as the flight control system, must

guarantee no deadline misses. By contrast, applications with FRT or SRT

requirements can have an upper limit on the number of deadline misses. For

example, radio applications (in terms of software) with HRT requirements

have to guarantee no deadline misses to prevent significant quality degrada-

tion. By contrast, video decoding applications with SRT requirements can

tolerate occasional deadline misses. There will be the modest reduction of

video quality with deadline misses as the consequence. In addition, applica-

tions can have both HRT requirements and SRT requirements [13].

As the nature of real-time systems, it is crucial to guarantee time-predictable

behaviour. It is to determine the range of time that a task executes for and

thus prove that a task can meet the time constraints. The common method

is to predict the worst-case execution time (WCET) of the task. Figure 2.1

shows task execution times. The shortest execution time is the best-case exe-

cution time (BCET), and the longest is WCET. As for the applications with

hard real-time requirements, WCET has to be equal to or less than the dead-

line. WCET analysis actually bounds the limit of execution times, and the

related analysis is both application-dependent and hardware-dependent [14].

WCET can be determined by static analysis. In general, it is to analyse the

target model to determine the critical execution path and apply timing factor

12

Figure 2.1. Task Execution Time [15]

to the path flow [16]. However, with complicated system architecture, the

accurate timing model can be difficult to predict precisely due to the limited

predictability of the critical components, such as cache and DDR DRAM. This

can also be aggravated by varying state of the system. Therefore, the upper

bound on the WCET has to be determined as estimated worst case execution

time [16]. In this case, the static analysis leads to pessimistic results.

An alternative is to determine WCET by dynamic time analysis. It is to mea-

sure the end-to-end execution times from a number of executions [15]. This

actually determines the minimal observed execution time and maximal ob-

served execution time with test case. As shown in Figure 2.1, measurements

potentially overestimate BCET and underestimate WCET. Even though the

measurement-based method is not that safe for the HRT systems, it is com-

monly applied in most industry scenarios. The potential measurement can

be either to test with the worst-case initial state (determined from execution

flow), or to exhaustively test all possible system states.

Based on WCET, task execution is also influenced by the interference or the

blocking effects in the system. For example, the execution of the task can be

13

blocked by other tasks due to the shared resources. This contributes to the

worst-case response time, and the worst-case response time of the task has

to be guaranteed less than the deadline. Further system design or analysis

requires effective scheduling algorithm, such as fixed priority scheduling [17],

to order the usage of systematic resources and guarantee the time constraints.

2.2 Memory

Within a system, memory or memory subsystem is to temporarily store the

instructions and data that are currently being used or likely to be used by the

processor. The hardware module random access memory (RAM) can be both

read and written to support the varying instructions and data. The contents

in the RAM module can be maintained as long as the power is supplied.

It is commonly employed to compose the memory subsystem. RAMs are

differentiated by the mechanisms in maintaining their contents. The dynamic

RAM (DRAM) uses a single MOS transistor and capacitor to store a single

bit data. It has to regularly refresh its content, or the charge leak may lead to

the loss of the data. By contrast, the static RAM (SRAM) uses a single flip-

flop to store a single bit data. As the SRAM does not have to be refreshed,

its access time is close to its cycle time.

Compared with DRAM, SRAM is much faster. However, SRAM is much

more expensive than DRAM in terms of the required number of transistors

to store data. For example, SRAM with the flip-flop circuit which requires 6

transistors to store a single bit data, while DRAM requires only 1. In this case,

a single DRAM module can have much more capacity than a single SRAM

module with the same number of transistors. Due to the trade-off between

the performance the economical considerations, DRAM is constructed as the

14

Figure 2.2. DRAM Organisation [18]

primary memory. Modern systems employ the double data rate synchronous

DRAM (DDR DRAM) technology. DDR DRAM performs memory access in

lower cycle time and provides a higher data transfer rate. For example, DDR3-

800E can support 10ns cycle time and 800 megabytes per second transfer rate,

with the capacity up to 16 gigabytes.

Figure 2.2 show the modern DRAM organisation. DRAM stores data in a

number of banks. Each bank contains a memory array of rows with columns.

To access DRAM, the requested bank is first activated. Then the requested

row will be selected and loaded into the row buffer which only stores the most

recently accessed row. After that, the read or the write can be operated to the

columns in the row buffer. Finally, the row in the buffer will be stored back

to the memory array. In addition, all the banks will be refreshed regularly to

maintain the stored data by the pre-charge.

Due to the latency required to select a row and to pre-charge the row, the

internal controller is designed to leave the selected row open for next ac-

15

cesses [19]. This benefits the performance for the task to access sequential

data, however it harms the time predictability. The access time to the pri-

mary memory depends on the previous access. It is variable that the same

row access requires much less time than the access to a different row. Be-

sides that, the bus turnaround between memory read operation and memory

write operation increases the latency. It also requires additional delays if the

internal controller issues the pre-charge at the time.

With the analysis above, considering the interference between tasks, DRAM

module provides the varying access latency that fluctuates with memory ac-

cess patterns. This unpredictable timing seriously impacts real-time systems.

It is possible to bound the latency of every single memory access with the

pessimistic worst-case assumptions. However, this definitely leads to very

pessimistic timing results. The efficiency of memory subsystem drops, and

execution time increases.

Time-Predictable Memory Access

Chang et al. [20] explores latency variation of DRAM with memory operations

caused by access patterns. It also proposes Flexible-LatencY DRAM with the

mechanism to balance latency variation across DRAM banks. This also re-

duces DRAM access latency which suffered from related memory operations.

Alternatively, Hassan et al. [21] proposes Reduced Latency DRAM. This type

DRAM employs the SRAM-like non-multiplexed address mode instead of the

row and column selection. Besides that, the pre-charge is handled by the au-

tomatic hardware mechanism rather than the internal controller. Compared

with the conventional DRAM, Reduced Latency DRAM provides much lower

access latency [22]. It also facilitates the design of time-predictable memory

controller.

16

On the other hand, Akesson et al. [23] develops predictable memory access

pattern. It defines the memory accesses into read group, write group, and

refresh group. The read or write group only contains the read or write burst

to the corresponding banks in sequence. Then the memory groups can be

scheduled in pipelined manner referring to the memory operations. Besides

that, an amount of additional delay is also imposed between accesses to the

same bank. This eliminates the interference among memory accesses, and

guarantees a maximum latency bound. Based on this idea, Akesson et al. [23]

also develops the predictable memory controller Predator.

Similarly, Paolieri et al. [24] proposes the design of analysable memory con-

troller. It exhaustively analyses the upper bound of each task. Then this

controller schedules HRT task considering the worst-case interference and

non-HRT task with low priority to eliminate the interference. It actually allo-

cates memory accesses with enough bandwidth to guarantee the time bound.

In addition, Goossens et al. [25] develops memory controller to schedule con-

current memory requests by exploiting memory bank parallelism to reduce

conflicts. Based on TDM scheme, the bandwidth is shared according to task

criticality level at the cost of non-critical task performance.

Memory Latency

Memory latency becomes the major bottleneck in system performance. It

potentially leads to expensive processor stalls, and this effect has been aggra-

vated by modern digital products, especially those computationally intensive

applications with increasing demand to access high bandwidth data.

To reduce the memory write latency is not a fundamental problem. Methods

such as write buffer can be employed to reduce the latency. The processor

17

Figure 2.3. Memory Hierarchy

writes the data with address into the buffer. Then the memory write process

is completed from the perspective of the processor. It can continue execution

with no stalls. By contrast, to reduce the memory read latency is the real

challenge. The processor has to wait for the requested data ready before

continuing any execution.

The potential solution is multi-threading. With enough support from proces-

sor architecture and OS, multi-threading allows the processor switching from

a thread to another concurrent thread instead of just waiting. This avoids

the expensive processor stalls caused by the memory latency. However, multi-

threading requires a large amount of resources and introduces overheads. It

may not suit embedded systems.

Alternatively, the design of memory hierarchy is employed to maximise the

overall system performance at an acceptable cost. Figure 2.3 shows the gen-

eral memory hierarchy, with fast, small and expensive cache module at the

top, and slow and large primary memory at the bottom. However, the pro-

cessor still easily loses performance within the memory hierarchy. Further

improvement mainly relies on the cache methods to better exploit the local-

ity. In addition, the prefetch methods can also be employed to prepare next

data or instructions for processor ahead of time. As for embedded systems,

scratchpad memory is introduced as as alternative for cache. The intuition is

18

to exploit the application behaviour and manage the memory using explicit

instructions.

2.2.1 Cache

Cache is constructed using the fast and expansive SRAM in small size. It

stores the copies of likely to be used contents from the primary memory,

delivering data and instructions to the processor with much faster access

time.

Programs follow principle of locality either temporally or spatially. The tem-

poral locality is that if a data location is accessed, it tends to be accessed

again very soon. The spatial locality is that if a data location is accessed,

its nearby locations tend to be accessed in the near feature. Therefore, the

processor tends to access data and instructions from cache more frequently

than from the primary memory. This bridges the performance gap between

the primary memory and the processor.

The cache operation is controlled by its automatic hardware mechanism. It

stores data in a number of blocks or lines. A single cache block can be divided

into the valid bit, the tag field and the data field. The valid bit, with the

value either 0 or 1, explicitly indicates whether the data is valid or not. The

tag field is used to identify the current data. The data field stores a single

word or more.

To read data from cache, the processor requests the data with address. The

address (physical address) consists of the tag field, the index field and the

offset field. The index field is used to locate a specific block from the cache.

The tag field is used to be compared with the cache block tag field. If there

19

is a match with the valid flag, the located cache block is desired. Then the

word can be selected from the cache block field using the address offset field.

Cache organisation can be classified according to the schemes in placing cache

blocks. If a cache block can only be placed at an exact location, the cache

is direct-mapped. If a cache block can be placed at any location, the cache

is fully-associative. Otherwise, the cache is set-associative, and the cache

block can be placed at a set number of locations. For example, two-way set-

associative cache provides two locations to place a single cache block. This

also introduces the degree of associativity. The direct-mapped cache is one-

way set-associative, and the fully-associative cache is n-way set-associative

where n is the total number of its cache blocks.

To write data to cache, the processor supplies the data with address. Then

the cache checks for the matching cache block with valid bit 0. It stores the

data into this cache block and sets valid bit to 1. However, if the cache block

is occupied with the valid flag, the situation differs. As for direct-mapped

cache, there is no choice but to discard the original data in the block and

replace with the new data.

By contrast, there are several replacement policies for fully-associative and

set-associative cache when there is no spare block in the cache or in the set.

For example, the random policy randomly discards a cache block thus to

store the new data. The first-in-first-out (FIFO) policy is to loop through

possible cache blocks, and the data stored earliest will be discarded first. An

alternative is the least recently used (LRU) policy. It tracks relative order

that cache blocks are accessed. The block which has not been accessed for

the longest time will be discarded first. In addition, there are also the bit

pseudo LRU policy with an additional most recently used (MRU) bit for each

cache block, and the tree-based pseudo LRU policy with binary decision [26].

20

Figure 2.4. Cache Hierarchy

In general, processor issues requests to cache. If desired data is in the cache,

it provides good runtime efficiency. If not, cache miss occurs. The processor

has to wait for the data transfer delays from primary memory to cache as miss

penalty. The miss rate expresses the ratio of cache accesses results in a miss.

With high cache miss rate, memory subsystem performance degrades. The

compulsory miss occurs in cold starting with an empty cache. The capacity

miss occurs when cache is not large enough to store all useful data. The

conflict miss occurs in direct-mapped cache or set-associative cache when a

useful cache block is discarded but later desired. With the analysis above,

both cache organisations and cache replacement polices impact the memory

performance [27]. Further improvement is to optimise cache utilisation by

better exploiting the principle of locality.

Cache Optimisation

The architectural optimisation is to comprehensively combine the above as-

pects. It is to employ multiple levels of caches to structure the cache hierarchy,

21

such as Intel i7 processor with 3 levels as shown in Figure 2.4. For example,

the first level employs separate direct-mapped caches in parallel. Although

there can be conflict misses due to the lack of associativity, direct-mapped

cache provides fastest access as it requires merely the time to access SRAM

module. By contrast, a next level is with higher associativity. It is slower and

larger to void misses, considering miss penalty between on-chip and off-chip.

The cache coherence can be tracked by the snooping or the directory-based

scheme.

Alternatively, compiler can improve the performance of the application pro-

gram by well exploiting the memory hierarchy features with no hardware

modifications. It is the most effective method to minimise cache misses and

develop data reuse possibility [28]. For example, loop transformation can

optimise the data access thus to improve the temporal locality. Then the

iteration executions within a loop nest will be optimised but not affecting

the execution results. It also provides good data parallelism. The potential

methods include loop permutation to exchange the execution order of inner

loops in a loop nest, loop fusion to merge separate loops, and loop fission to

reversely split a single loop. In addition, loop tiling [16] is to split a loop to

iterate over several smaller tiles of data with the array size to fit cache. It

significantly improves data efficiency that the data can be more repeatedly

reused rather than repeatedly reloaded.

On the other hand, data transformation optimises data layout thus to improve

the spatial locality. It actually reorganises data to better fit into cache to

reduce conflict misses. For example, inter array padding [29] is to insert

unused pads between arrays thus to separate the base addresses, and the

pad size is dependent on the array size. This can void cross interference. In

addition, data copying [30] is to copy non-contiguous data into consecutive

locations. Although it requires necessary processor overheads, data copying

22

can avoid self interference. This can improve blocked algorithm and guarantee

data reuse in tiles. Panda et al. [31] addresses dynamic memory allocation

with the integration of memory architecture and processor register. It models

memory access and optimises data organisation.

Although cache improves the average-case performance for general purpose

applications, it provides unpredictable access time. The execution time even

varies for multiple runs of the same program. WCET does not benefit from

the employment of cache due to the pessimistic worst-case assumptions. The

potential solution is cache partitioning. It divides the cache in partitions, and

then assigns specific partitions to tasks exclusively. This reduces interference

between tasks. For example, Liedtke et al. [32] reduces cache contention with

OS support. It utilises page colouring to partition set-associative cache among

applications, and each application is reserved with a partition of cache.

Alternatively, contention locking is to flag specific contents as locked to pre-

vent these contents from being replaced. For example, Aparicio et al. [33]

develops instruction locking based on integer linear programming. It analy-

ses a single task and interference among tasks to dynamically load and lock

the most relevant cache blocks. Arnaud et al. [34] divides a task into par-

titions. It exclusively assigns and locks each task partition to a cache par-

tition. Similarly, Vera et al. [35] develops a complier framework for data

cache. It eliminates inter-task interference with cache partitioning and en-

sures predictable intra-task interference with cache locking. This alleviates

cache unpredictability and reduces the worst-case memory access time.

In addition, embedded systems also employ SRAM module directly for special

purposes, such as FIFO array. This introduces software-managed cache. It is

to disable the automatic hardware caching mechanism and explicitly manage

the cache operation by software. For example, Hallnor et al. [36] develops in-

23

direct index cache. With the aim to avoid tag search, it uses the pointer with

a simple hash table to locate cache block. This allows the the fully-associative

memory structure to be managed by software with less time. Miller et al. [37]

develops a software system that allows SRAM module to be automatically

managed as cache. Even though the software managed cache requires addi-

tional complexity with overheads, it guarantees time predictability that the

memory access is with no cache miss.

2.2.2 Prefetch

Prefetch is to prepare next data or instructions ready before they are re-

quested by processor thus to hide long memory latency. Software prefetch is

supported by the compiler to appropriately insert explicit instructions at run-

time. This requires the application program knowledge. A similar prefetch

method is to pre-execute a piece of specific program thus to support the pri-

mary program. Obviously, it is difficult to apply for general applications. By

contrast, hardware prefetch is to observe and predict future data or instruc-

tions, and then fetch the corresponding blocks sufficiently far ahead of the

execution. It requires extra memory module, such as buffers, to store the

prefetched blocks without polluting cache contents.

If the prefetched block matches the memory request, it significantly reduces

the memory access latency. This can benefit BCET. However, the prefetched

blocks can be useless, or sometimes the prefetched contents can fail to be

ready in time. In this case, prefetch provides unpredictable behaviour. WCET

does not benefit from the employment of prefetch due to the pessimistic worst

case assumptions. Besides that, prefetch has to overlap with the demand

memory operation. As a speculative execution utilising spare memory band-

width, it is necessary to keep the demand memory access with no stalls. If

24

prefetch interferes with memory execution, it instead degrades the memory

performance. The following section presents potential prefetch schemes.

Locality-based Prefetch

The simplest prefetch scheme is tagged prefetch [38]. It is to prefetch the

next block when the current block is accessed. By contrast, Jouppi et al. [39]

proposes stream prefetch. It is to prefetch the next consecutive blocks if

the current blocks are accessed in sequence. For example, if blocks with

addresses n− 2, n− 1 and n are accessed, the blocks with address n+ 1 and

n + 2 will be prefetched. If a prefetched block is accessed, a new one will

be prefetched. Stream prefetch performs well for instruction. It is ideal for

program which follows purely sequential access pattern. However, programs

trend to access multiple data arrays rather than only a single data array even

in a single process. These interleaved data arrays interference with steam

prefetch, polluting prefetch buffer contents. Palacharla et al. [40] develops

multiple stream prefetch buffers in parallel. It allows interleaved data arrays

to be prefetched concurrently for programs with regular access patterns.

Based on this, Fu et al. [41] proposes stride prefetch. It is to prefetch the

next consecutive blocks with an arbitrary stride. The stride is the number

of successive array elements, and it can be detected by a branch prediction

table and a lookahead program counter [42]. The table tracks the access pat-

tern which is dynamically updated by the branch prediction relying on the

processor state and branch history. The counter increments the lookahead

amount for the consecutive data array, and sets to 1 for instruction. Prefetch

addresses are then decided by adding the lookahead mount to the last ad-

dresses. Alternatively, the stride can be decided using block addresses [43].

A reference prediction table is employed to record last accessed addresses.

25

Then the stride will be decided by calculating the distance between the ad-

dresses. When a single blocked is loaded, the first future block address will

be decided as n+ d where n is the current block address and d is the stride.

Pointer-based Prefetch

The steam prefetch and the stride prefetch rely on good data locality, and the

performance is limited to blocks with closeby addresses. However, it is difficult

to deal with data on irregular accesses, such as large jumps in addresses. Such

data access pattern is to follow pointers in a linked data structure. It is a

common way to build a large data structure, such as database. Nodes in

the data structure are linked together through pointers. A pointer at a node

points to another node, and the new address is decided by calculations on the

current node address. In this way, a linked data structure can be considered

as a chain of nodes which are dependent of each other.

A prefetch scheme is to straightforward utilise the natural pointers which

already exist at nodes [44]. It is to identify the data structure and discover

the way to traverse the data structure by the complier. Then the prefetch in-

structions will be inserted where the node addresses are available and prefetch

all possible future nodes. From the perspective of the compiler, it is actually

to prefetch the elements to be executed at the start of an iteration. In ad-

dition, Roth et al. [45] employs additional artificial pointers at nodes to link

non-successive nodes. For example, root jumping is to deploy root pointers

between the roots of different data structures which benefits iterations.

Similarly, content-directed prefetch [46] discovers potential pointers by hard-

ware and fetches all possible future blocks. The basic logic is that the address

of a block with the pointer will possibly be used to calculate the addresses

26

Figure 2.5. Markov Prediction Table [47]

of future blocks which are pointed to. These future addresses are definitely

within the range of the same data structure and share the common base

addresses. The effectiveness of content-directed prefetch is affected by the

prediction accuracy, and the compiler can help to decide the most beneficial

blocks at runtime.

History-based Prefetch

As for more irregular accesses with no particular pattern, the prefetch scheme

is to utilise the access history. For example, Joseph et al. [47] employs Markov

prediction. It utilises miss history to obtain correlations between addresses,

provides possible future addresses and prioritises these blocks. Figure 2.5

shows the correlation table that two temporally successive miss addresses can

be paired with each other. The first address of a pair is the parent, and

the latter is the child. As a parent address may have any number of child

addresses, the parent is considered as the key to select the child afterwards.

When a particular address is accessed, its correlative addresses are decided

by checking the history with the table. Then the blocks will be prefetched

in sequential queue according to their weight. Markov prediction performs

well for programs with repeated irregular accesses, but the prediction is only

made with limited history of current parent addresses.

27

Figure 2.6. Global History Buffer [48]

By contrast, Nesbit et al. [48] develops global history buffer to improve the

accuracy of the correlation. Rather than storing fixed amount of history

for each address, global history buffer only stores the history for the most

recent miss addresses. As shown in Figure 2.6, history addresses are stored

indirectly. The index table is accessed by a key, and it indexes global history

buffer through a hash map. The buffer is to store the most recent miss

addresses. The link pointer is also employed to link each buffer block with

the same key from the index table. In this way, these related addresses are

chained. The key can be selected as a piece of related information which is

useful in these links, such as a miss address or the program counter. This

allows better predictions with more complete knowledge of the addresses.

In addition, Srinath et al. [49] proposes feedback-directed prefetch to dynami-

cally utilise the access history. It monitors the last prefetch performance thus

to adjust the current prefetch execution. For example, it can tack whether

the prefetched blocks are useful. If the ratio of the useful blocks to the to-

tal blocks is high, the number of blocks to prefetch for a next time can be

increased. If low, the number can be reduced or even stops with an unac-

ceptably high number of useless blocks. The feedback-directed method can

support any prefetch scheme above. It contributes to hybrid prefetch scheme.

For example, stride prefetch can be improved to adjust its prediction region

28

Figure 2.7. Scratchpad Memory Address Configuration [51]

at runtime. If necessary, it can predict addresses at n + 2d, n + 3d or even

n+ 4d ahead of program execution rather than just n+ d.

2.2.3 Scratchpad Memory

Scratchpad Memory (SPM) is introduced to embedded systems as a design

alternative for cache [50]. It is small high speed on-chip SRAM operated by

software. Similar to L1 cache, SPM resides on-chip locally to the processor.

It is to temporarily store data or instructions for processor with fast access.

Compared with cache, SPM only contains data field, with no tag field or the

tag comparator to acknowledge hit or miss. SPM operation is in full control

by software.

Figure 2.7 shows the common address configuration of the memory architec-

ture with SPM. The on-chip SPM occupies a distinct part of memory address

space, with the rest occupied by the off-chip primary memory. Data or in-

structions can only be transferred to or off SPM with explicit instructions.

DMA-based data transfer can also be employed to avoid processor involve-

ment [52]. To access SPM, the desired block is selected directly with no

29

check or comparison. This guarantees a single clock cycle access with no

miss, providing predictable memory access latency. Compared with unpre-

dictable cache, SPM is more popular for real-time embedded systems. The

contents in SPM have to be managed effectively which requires the analysis

of the application program and the support from the compiler. The following

section presents potential SPM allocation schemes.

Scratchpad Memory Allocation Scheme

In general, data and instructions can be statically partitioned between the

on-chip SPM and the off-chip primary memory. As for the program data,

the most frequently accessed data blocks can be allocated to SPM [53]. It

relies on the compiler to recognise the access frequency of the data in the

application and partition these data blocks with the consideration of SPM

size. Then less accessed data blocks can be allocated to the primary memory.

This increases data reuse possibility in SPM. However, there may be conflicts

between data blocks. The data partitioning with access frequency actually

changes the entire data layout. It can cause the non-conflicting data blocks

to conflict with each other, even leading to unpredictable results.

By contrast, Panda et al. [54] allocates the most conflicting data to SPM.

Rather than only partitions of data, it analyses entire arrays. Large arrays

which fail to fit SPM size will be allocated to primary memory, and the re-

maining arrays will be allocated to SPM as many as possible with conflict

factor. The conflict factor is based on both the array access frequency and

the possibility to conflict with other arrays. SPM allocation priority will also

be assigned to the array with higher conflict factor and smaller size. This in-

troduces a comprehensive analysis of data features affecting partitioning [55],

such as variables or constants and life time of variables.

30

Suhendra et al. [56] improves WCET through SPM allocation. It discovers

the worst-case path and analyses the access frequency of the relative ele-

ments along the path. Then the most frequently accessed elements will be

allocated to SPM thus to reduce WCET. However, it changes the entire data

layout, potentially changing the worst-case path. The method can also be

improved to measure the maximum potential WCET reduction of an element

over all possible execution paths thus to provide global WCET optimisation

of element allocation.

Instructions can also be allocated with similar static scheme. For example,

Steinke et al. [53] partitions and allocates instructions according to the ex-

ecution frequency. It relies on the compiler to decompose a function into

basic blocks. Then the most frequently executed basic blocks, rather than

the complete function, will be identified and allocated to SPM. However, it

may require additional jump instructions for the basic blocks in the on-chip

SPM to jump to the basic blocks in the off-chip primary memory. This intro-

duces overheads, especially for a large number of basic blocks with relatively

small size. Therefore, allocation priority will be assigned to the consecutive

basic blocks with no additional modifications.

The static SPM allocation schemes above improves the program execution

efficiency. The performance bottleneck seems to be the SPM size. With

too small size, SPM can only store very limited amounts of the beneficial

contents, which may not even achieve the locality benefits of a cache. Besides

that, the static management potentially under-utilises SPM that the contents

are allocated only once and remain constant at runtime. This fails to satisfy

the varying memory requests of dynamic program behaviours, especially those

applications with multiple compute intensive regions. Alternatively, dynamic

SPM allocation scheme performs dynamic data transfers between on-chip

SPM and off-chip primary memory to respond to dynamic memory requests.

31

Kandemir et al. [57] dynamically transfers data tiles at runtime with inserted

instructions. It relies on the compiler to first recognise the memory data lay-

out and discover the data access patterns. Then the data will be partitioned

into small tiles. An ideal data tile is supposed to have high access frequency

and with the appropriate size to fit SPM. From the perspective of the com-

piler, this scheme combines both data transformation and loop transformation

to optimise application programs. It is actually to dynamically partition the

available memory space between the competing arrays in each loop thus to

increase data reuse and reduce data transfer. However, the performance relies

on good overall data regularity and regular access patterns, such as scientific

applications with large loop nests.

Chen et al. [58] improves data tile transfer for programs with irregular access

patterns. In addition to access frequency of array elements, the compiler also

analyses the runtime costs of each transfer and the access benefits of each data

tile using SPM. Only the most beneficial transfers with relatively low costs

will be selected with related control instructions inserted with the knowledge

above. If the benefit of a data tile access using SPM is unacceptably low, it

may even be accessed directly from the primary memory to avoid unnecessary

transfers.

The dynamic SPM allocation is also applicable to instructions. For example,

Verma et al. [59] selects and dynamically transfers the most frequently exe-

cuted program parts for SPM. Steinke et al. [60] limits the potential program

parts only to loops where a set of instructions continually repeat. Udayaku-

maran et al. [61] improves to further analyse the costs and the benefits of

all potential program parts. Besides that, it also partitions the program into

regions by using the most beneficial program points. A potential program

points can be the locations where the program has a significant change in

locality behaviour, such as at the start of a loop nest or even at the start

32

Figure 2.8. Memory Configuration with Scratchpad Memory Management

Unit [63]

of a inner loop. This comprehensive analysis guarantees maximum benefits

utilising SPM.

Scratchpad Memory Manager

SPM allocation introduces a significant challenge to develop memory-aware

explicit management, and the design burden lies on the compiler. Alterna-

tively, Egger et al. [62] develops dedicated SPM manager on hardware which

exploits MMU to monitor the logical addresses thus to dynamically control

the page transfers for SPM contents. It requires hardware modification to

SPM module. The address comparator is combined to decide whether the

request can be an access to SPM or not. Based on the compiler knowledge,

SPM operation is managed by SPMM at runtime, rather than by the control

instructions inserted by the compiler. In this way, SPM manager actually

manages SPM module as a global resource.

Similarly, Whitham et al. [64] develops hardware SPM management unit.

Figure 2.8 shows memory configuration with SPM management unit which

employs a table to track logical addresses of blocks in SPM. A request accesses

SPM if the desired address is within the range of addresses in the table. If a

new block is transferred to SPM, the table will be updated for future accesses.

33

It also remains the block logical address constant to the processor, and only

the block physical address may be changed through the transfer to or off

SPM. This makes access independent of all others for data accesses.

In addition, Whitham et al. [65][66] develops trace SPM to support proces-

sor. The trace SPM stores explicitly traces or microcode from post-compiler

stage. It is then deployed as a part of processor pipeline to directly control

without decoding process. This explores instruction parallelism at the mi-

crocode level and statically schedules the frequently executed code blocks to

reduce execution time.

2.2.4 Summary

This section reviews the memory subsystem. The primary memory is con-

strued with DRAM providing varying access latency that fluctuates with

memory access pattern. The performance gap between the processor and the

primary memory is the bottleneck of overall system. The potential solutions

to reduce memory latency includes cache, prefetch and SPM.

Cache is construed with SRAM. It exploits the locality benefiting the average-

case performance, but WCET does not benefit from the deployment of cache.

The optimisation includes to either improve data efficiency or alleviate cache

unpredictability to reduce the pessimistic worst case. By contrast, prefetch is

based on speculation. It benefits the BCET, but prefetch is unpredictable due

to the pessimistic worst-case assumption. Beside that, SPM is constructed

with SRAM only storing desired data or instructions with explicit instruc-

tions. It requires the accurate program behaviour analysis to develop efficient

memory aware management. Although it lacks the generality, SPM is more

applied in real-time embedded systems with tight worst-case bound. Ap-

34

Figure 2.9. Bus-based Multi-Core Architecture

plying HRT constraints requires feasible memory architecture with efficient

management scheme for time predictability.

2.3 Shared Memory Multi-Core Architecture

The multi-core architecture is increasingly adopted in modern design. Fig-

ure 2.9 shows the conventional bus-based multi-core architecture. It employs

a shared bus to connect a number of processors and the shared memory mod-

ule. The communications between the processors, or between the processors

and the memory module must be delivered through the shared bus, such as

AHB (Advanced High-Performance Bus) in SoC design [67]. Once a single

access occurs, the bus is blocked, which leads to severe contention.

Alternatively, the crossbar design can be deployed to replace the shared bus.

For example, Figure 2.10 shows AXI (Advanced eXtensible Interface) inter-

connect [68]. The design utilises a set of switch boxes, employing dedicated

links to connect multiple masters (processors) and multiple slaves (memory

modules). This allows multiple those accesses between different master-slave

pairs to occur simultaneously. The crossbar interconnect alleviates the con-

tention issue. However, it requires additional hardware resource, and the

centralised design limits the maximum synthesisable clock frequency. In this

35

Figure 2.10. AXI Interconnect [68]

case, the multi-core architecture is not scalable with the increasing number

of processors.

A promising architecture is network-on-chip (NoC) [6][7]. As shown in Figure

1.1, NoC architecture employs a packet switching communication network.

Each processor is connected through a router to the communication network.

Then communication packets can be delivered across the network with the

routing traffic. In this way, the NoC allows easy data sharing that a processor

can communicate with its target directly, and the processor potentially ac-

cesses its target with less contention compared with the bus-based multi-core

architecture. This promotes many-core architecture.

The design burden of of NoC lies on the router architecture and the com-

munication mechanism [8][9]. For example, Hermes [69] provides the best-

effort communication packet delivery across the router network between pro-

cessors, however it does not provide performance guarantees. By contrast,

Ætheral [70] employs TDM scheme in circuit switching across the router net-

work. It can provide the guaranteed service routing that a packet can be

delivered within the fixed timing period.

36

Figure 2.11. Shared Memory Network-on-Chip Architetcure

NoC design also involves the research on the layered protocols and the topol-

ogy. For example, Figure 1.1 and Figure 2.11 both show the basic NoC

architecture based on Manhattan mesh. As for memory or memory subsys-

tem within the NoC architecture, it employs local memory modules to each

processor for fast accesses. The shared memory modules are commonly con-

nected to the edge of the router network as shown in Figure 2.11. In this

case, such accesses to memory can be operated in a similar to the requests to

I/O peripherals.

2.3.1 Memory Arbitration

In the general case, the multi-core or many-core architectures above have

more processors than memory modules. This potentially causes contention

over memory accesses, which will get more severe with the trend of integrating

more processors into the system. The contention to the shared resource leads

to interference among applications and harms real-time tasks where time pre-

dictability is necessary. With the aim to achieve time predictability (or sim-

ply predict the behaviour of memory accesses), the multi-core and many-core

architectures typically utilise an arbitration scheme to provide timing guar-

37

antees within the architecture. The potential memory arbitration schemes

include time division multiplexing (TDM) scheme, round-robin scheme and

priority-based scheme.

Time Division Multiplexing and Round-Robin

Time division multiplexing (TDM) scheme statically pre-determines a peri-

odical cycle with a number of time slots where a time slot is a time interval

that a single memory access can be served. Each processing core is then as-

signed with a corresponding time slot in the cycle. In this way, the arbitration

periodically iterates over the cycle and checks the eligible sates. With strict

TDM scheme, the arbitration takes the same time for each slot regardless

of whether there is any memory request from the corresponding processing

core. This isolates every single memory request, allowing easy timing anal-

ysis. However, the shared resource can be idle even with pending requests,

potentially wasting bandwidth.

Based on the periodical cycle, round-robin scheme allows better utilisation of

the available bandwidth. The arbitration skips any empty slot, and immedi-

ately moves to the next eligible one with a pending memory access. Besides

that, round-robin scheme serves memory requests at any time, rather than

TDM scheme only at the slot boundary. This promotes the work-conserving

manner that the shared resource is never idle with pending memory requests.

In this case, considering the potential empty time slots that memory requests

can be stacked with no service, memory accesses with strict TDM scheme

can suffer additional interference without work conservation. By contrast,

round-robin scheme is widely used in practical applications even with in-

creased complexity in timing analysis. It can also be extended to guarantee

the processor with the minimum service for a number of memory requests,

38

such as weighted round-robin arbitration scheme [71]and deficit round-robin

arbitration scheme [72].

Priority-based Arbitration

Priority-based arbitration scheme allows memory requests with higher prior-

ity to be served before others. The basic scheme is static-priority arbitration

by which fixed priorities are statically assigned to processors with no changes

at runtime. However, the system can be flooded by memory requests with

higher priority, while low priority requests are stacked lack of memory service.

This potentially leads to starvation. By contrast, dynamic-priority arbitra-

tion allows most critical memory requests to be served first. This relies on

effective analysis to accurately recognise the program behaviour.

Static-priority arbitration scheme can be extended to provide service to a

number of memory requests before others. This promotes frame-based static-

priority arbitration, which makes the trade-off between the frame size and

the latency. Based on this idea, Akesson et al. [73] proposes credit-controlled

static-priority arbitration scheme. It employs rate control with static prior-

ity. In this case, the available bandwidth will be regulated and allocated to

the processors according to the application behaviour. With the aim to bet-

ter utilise the available bandwidth, credit-controlled static-priority allows the

successive memory requests from a specific processor to be in transfer with

the rate control. Besides that, it can be applied in mixed-criticality systems.

Similarly, Shah et al. [74] develops priority-based budget scheduling scheme.

The above static-priority arbitration scheme with rate control relies on effec-

tive analysis to accurately recognise the program behaviour and only benefit

specific applications.

39

2.3.2 Distributed Memory Interconnect

The conventional centralised implementation of an arbitration scheme is to

employ a single arbiter, allowing the related arbitration decisions to be made

at the central location. However, this requires the design of single-clock-cycle

data path, and such design suffers the long-wire issue [75][76]. However, as the

number of processors grows, the logic size of the arbiter hardware increases,

which limits the maximum synthesisable clock frequency.

A promising approach recently investigated is to employ distributed memory

interconnects that the tree-based structure with pipelined stages can break

the critical path of the multiplexing into multiple shorter steps with smaller

logic size. Although this introduces additional delays in terms of clock cycles,

the latency across the interconnect is actually reduced, as much higher syn-

thesisable clock frequency is allowed on the distributed hardware. It scales to

a large number of processors. The critical path of the distributed interconnect

remains constant as it is dedicatedly constructed with the growing number of

processors. In addition, pipelining is also supported.

In general, the distributed memory interconnects can be classified as the lo-

cally arbitrated interconnect and the globally arbitrated interconnect. The

locally arbitrated interconnect is simply constructed upon a distributed bi-

nary arbitration tree which multiplexes the memory requests from processors

to the shared root memory module through the distributed data path. By

contrast, based on a distributed binary arbitration tree, the globally arbitrated

interconnect integrates the global scheduling to the distributed data paths.

The following section reviews state-of-art research on the design of memory

interconnects.

40

Figure 2.12. Mesh-of-Trees [77]

Mesh-of-Trees

Figure 2.12 shows the design of Mesh-of-Trees (MoT) interconnect [77] which

can relay memory requests from multiple clients PCs to multiple memory

modules MMs. Based on the mesh-of-trees topology [78][79], MoT is con-

structed by the coupling of a routing tree and an arbitration tree. The routing

tree provides independent routing paths for multiple memory requests from

different clients PCs. The arbitration tree multiplexes these memory requests

and further routes these memory requests to the corresponding memory mod-

ules MMs. As the memory address range can be partitioned across these

multiple memory modules MMs, accesses to different memory modules MMs

can be processed concurrently. The memory response transfers back to the

corresponding clients PCs through the same network with a reverse process.

A similar design can be found in the research [80].

41

In addition, MoT can be developed to support the communications between

multiple processors and multi-bank L1 memory [81]. It can allow memory

requests to transfer through the network within a single clock cycle. If a

memory request is stalled by the arbitration tree due to the contention to a

specific memory module MM, this request will be quarantined and allowed

to relay in the next clock cycle. In this way, MoT is actually deployed as

a set of switches coordinated by a global control signal and operates as the

circuit-switched round-robin manner with centralised control, enabling simple

timing analysis.

MoT potentially increases system bandwidth by spreading memory addresses

over multiple MMs, and the single-clock-cycle design obviously provides low

latency in terms of clock cycles. However, the single-clock-cycle data path

inevitably requires the long-wire design [82]. This increases the wire delay.

With the expanding system configuration (i.e., the number of PCs and MMs),

the logic size of the centralised design increases logarithmically, which severely

limits the maximum synthesisable clock frequency. Besides that, MoT only

provides fair memory accesses with relatively balanced workload patterns on

PCs. If the memory workloads are unbalanced, there can be many interfering

requests stalled due to the contention to the shared MMs. This actually

blocks MoT paths, leading to varying memory access latency.

Arbitration Tree

In contrast to the conventional centralised design above, distributed memory

interconnects are also emerging in multi-core and many-core architectures,

including the locally arbitrated interconnects and the globally arbitrated inter-

connects. Among locally arbitrated distributed memory interconnects, single

arbitration tree [83] can be developed and constructed with globally syn-

42

Figure 2.13. Arbitration Tree [83]

chronised timestamps as shown in Figure 2.13. It multiplexes the memory

requests from the clients MB to the shared memory module.

The arbitration node is known as the step in this design, and each step only

operates the arbitration of the two local inputs. When a memory request

is relayed to the arbitration tree, an individual timestamp is generated and

attached to the request by the globally synchronised component t. Then the

local step will only allow the request with the lower timestamp to relay. In

this way, the local arbiter at each distributed multiplexing stage applies the

first-come-first-served scheme. As the memory requests can be stalled by any

subsequent step, the local buffer b is employed just after each step. This

also avoids the long-wire design and increases the maximum synthesisable

clock frequency. The memory response can transfer back to the correspond-

ing clients through a similar tree path that operates the demultiplexing but

without the timestamp arbitration.

This design utilises binary arbitration tree to construct the distributed mem-

ory interconnect. The pipelined stages break the long wire and allows a

higher synthesisable clock frequency to support architectural scalability that

43

the hardware consumption scales linear to the increasing number of clients.

However, the application of this design is very limited, and the interconnect is

only feasible to very few platforms. Initially, this arbitration tree is dedicat-

edly designed for the Microblaze-based system which employs AXI bus [84],

thus with small numbers of outstanding memory requests. In this way, the lo-

cal first-come-first-served scheme can only provide time predictability to such

fixed memory access pattern. In AXI single-mode data transfer, there will

be only 1 outstanding memory request from a single Microblaze [85]; while

in AXI burst mode, the successive burst beats from a single Microblaze will

share the same timestamp. Only with these assumptions, there will be very

limited interfering requests in the tree network, and the worst-case latency

of a request is the wait for the transfer of all the requests with the lower

timestamps.

Bluetree

Bluetree [86][87] is initially developed for NoC architecture. It is the exter-

nal memory tree attached to the NoC architecture, which provides a second

network exclusive for the accesses to the shared memory module. This sepa-

rates the memory traffic from the processor router network and thus prevents

memory access from interfering with communication between processors.

As shown in Figure 2.14, Bluetree is constructed by a set of pipelined stages

of 2-to-1 multiplexers, connecting the clients µ at the tree leaves to the shared

memory module D at the tree root. When a client issues a memory request,

this request will be multiplexed and relayed to the shared memory across the

distributed tree network. Then the memory response returns to the corre-

sponding client across the bi-directional interconnect. Arbitration occurs to

each Bluetree multiplexer in the memory request path to decide which request

44

Figure 2.14. Bluetree

from either the local client direction to be relayed to the memory direction,

potentially to the next Bluetree multiplexer stages. The Bluetree multiplexer

actually employs independent local arbitration scheme to allow the flow of

successive memory requests from a local direction. On the other hand, the

memory response path is non-blocking (in any Bluetree multiplexer). The

Bluetree multiplexer simply decides the route direction of the memory re-

sponse. In addition, a buffer is designed in each Bluetree multiplexer to

break the critical data path of memory accesses.

The locally arbitrated Bluetree interconnect does not require full synchroni-

sation, and the Bluetree-based memory architecture allows multiple memory

requests to be transferred through the tree network simultaneously. This

potentially allows high service bandwidth, which supports multiple memory

requests to be relayed in the tree interconnect. However, the contention

across the Bluetree memory request path requires complicated analysis on

the time-predictable behaviour. Besides that, the local arbitration scheme

requires extra logic size to each arbiter at the distributed pipelined stage,

which potentially limits the maximum clock frequency in turn.

45

Figure 2.15. TDM Tree [88]

TDM Tree

Compared with the locally arbitrated design, the globally arbitrated distributed

memory interconnect integrates the global scheduling to the distributed data

paths. Among globally arbitrated interconnects, TDM Tree [88] is built upon

the integration of global TDM scheduling components with a distributed tree-

based multiplexing network as shown in Figure 2.15.

With TDM Tree interconnect, multiple clients (processor core) are connected

through the network interface NI, the distributed tree network and the mem-

ory interface MI to the shared memory module. NIs coordinate to perform

46

the global TDM scheduling scheme, and memory requests can also be stalled

at the corresponding local NIs. When a TDM time slot arrives, a memory

request from a specific processor is allowed to relay to the tree network. With

the global scheduling interval, there is no contention to the shared resources,

neither the data paths nor the root memory module. This guarantees no

interference exists between memory accesses. The scheduling interval can be

decided by the timing behaviour of both the shared memory module and the

tree network. As for memory response, the processor core tag can be used to

determine the demultiplexing path.

Due to the TDM policy, there is no interfering request in the tree network at

a time. In this way, there is no design of arbitration or flow control in the

tree network, and it is only deployed with pipelined multiplexing stages for

high synthesisable clock frequency. However, the deployment of TDM Tree

requires strict synchronisations and complex schedules. The global scheduling

interval also limits the potential service bandwidth. Besides that, TDM Tree

does not support work conservation. The tree network and the shared memory

module can be idle even with many memory requests stalling at local NIs.

This potentially leads to a considerable waste of available bandwidth.

Globally Arbitrated Memory Tree

Based on the global scheduling interval, Globally Arbitrated Memory Tree

(GAMT) [89][90] extends the distributed multiplexing tree with priority-

based rate control schemes, aiming to better utilise the available bandwidth

with flexibility. In addition to global TDM scheduling, GAMT also supports

frame-based static priority and credit-controlled static priority. The selec-

tion of arbitration scheme affects the time-predictable behaviour of memory

accesses.

47

Figure 2.16. GAMT [89]

As shown in Figure 2.16, the accounting component makes the scheduling

decision based on the selected arbitration scheme. The accounting logic is

to track the eligibility of a client to receive service using a global scheduling

interval. Then the priority assignment component is to assign the unique pri-

ority to the request according to the accounting logic. The priority resolution

component is actually the distributed tree network of pipelined multiplexer

stages, and it guarantees the service to the request with the highest priority.

In this way, the arbitration is implemented by both the global scheduling

and the local distributed multiplexing. Once the request reaches the memory

controller as shown in the figure, the feedback is generated to update the

eligibility status of the corresponding client with the accounting logic. If two

scheduled requests arrive at a multiplexer stage simultaneously, the request

with the higher priority will be allowed to relay, leaving the other request to

be rescheduled at the next scheduling interval.

GAMT applies the coordination of local distributed arbiters with the global

scheduling interval. It can allow successive memory requests from a specific

processor to relay to the tree network with an arriving time slot. This poten-

tially provides sufficient flexibility for mixed-criticality systems with diverse

48

bandwidth and latency requirements. However, the deployment of GAMT

requires strict coordination and complex schedules, potentially suffering the

synchronisation issue. GAMT can only benefit specific applications, as it

is generally hard to model the memory requests on hardware, unlike task

scheduling in operating systems. Besides that, GAMT also introduces high

logic overhead. Both the accounting component and the priority resolution

component in the GAMT require large logic size to check the request priority.

This inevitably limits the maximum clock frequency.

2.3.3 Critical Resource Contention

In the general case, multi-core and many-core architectures are typically

designed towards average-case performance, with inevitable interference be-

tween software components or tasks within the system. The consequent con-

tention to the shared hardware resources can block the flow of memory re-

quests or communication packets. It can also block any subsequent flow, even

causing the resource sharing issue. The architectural bottleneck of the multi-

core system is the shared memory module, and the contention over memory

accesses aggravates with an increasing number of applications integrated or

processors employed, potentially leading to high and varying memory access

latency.

The intuition to alleviate such contention is to deploy an effective root mem-

ory subsystem as presented in Section 2.2. For example, the appropriate

memory hierarchy can be employed instead of a single shared module to re-

duce the average-case memory latency. An alternative method is to better

utilise local memory modules at the processors by exploiting the locality of

the applications. Following this idea, Dasari et al. [91] analyses memory con-

tention within the multi-core architecture with cache partitioning for precise

49

Figure 2.17. Memory Centric Scheduling

timing bounds. In addition, SPM can be employed with explicit instructions,

which facilitates timing behaviour analysis and verification within the multi-

core architecture. For example, Kelter et al. [92][93] analyses the multi-core

architecture with local instruction SPM and data SPM. It bounds the mem-

ory access latency considering the dependency that the current access latency

impacts subsequent accesses.

Based on a time-predictable hardware platform, the design of real-time system

tends to further employ additional partition schemes to achieve temporal

isolation. For example, phased execution model can be employed to refactor

code into memory phases and execution phases. The memory phase is to store

data into local cache or SPM, and the execution phase is for the processor

execution only with accesses to local cache or SPM. During the operation,

the memory phases between different processors can interference with each

other. This causes processor stalls due to the resource contention. Therefore,

memory centric scheduling can be utilised to reschedule memory phases and

execution phases as shown in Figure 2.17 where M is denoted for memory

phase and E for execution phase. This effectively avoids the interference of

memory phases between processors.

Following the above idea, PREM [94] is proposed to further improve time

predictability. It decomposes tasks to execution phases and memory phases,

allowing system bandwidth reservation to each phase. It also reserves enough

50

budget for the sections of code that cannot be explicitly refactored into mem-

ory phases and computation phases. A similar method is periodic memory

regulation, such as MemGuard [95]. It reserves memory bandwidth for each

core to void inter-core memory access interference.

By contrast, the tree-based architecture appears more sensitive to the con-

tention to the critical resource — the overlapped data path is also shared

as well as the root memory module, especially the multi-core architecture

with the locally arbitrated interconnect. It allows multiple memory requests

in transfer simultaneously, leading to contention over either the shared root

memory module or the overlapped data paths across the tree-based intercon-

nect. Once the root memory is occupied, the entire request flow is blocked.

This complicates the timing behaviour analysis of memory accesses across

such architecture.

Garside et al. [96] analyses the worst-case memory access latency across the

locally arbitrated Bluetree-based architecture regardless of memory workloads.

It explores the latency of a memory request over the blocking that this mem-

ory request experiences across the given request path. Afterwards, the worst-

case blocking condition is proposed that all multiplexers are blocked along the

request paths to the memory module. In this case, all multiplexers harm the

request flow within this architecture. Results of the worst-case blocking are

from simulations employing the above condition. The timing behaviour analy-

sis of multi-core applications employing Bluetree is based on this method [87].

However, this worst-case analysis only considers limited blocking. For exam-

ple, a buffer is also included within a Bluetree multiplexer to break the critical

data path of memory accesses according to the distributed design. If all these

buffers across the request path are occupied, potentially by interfering mem-

ory requests, this condition will harm the flow of memory requests as well,

leading to additional blocking compared with the above analysis. It is possible

51

that Bluetree in the above research is designed with a different architectural

choice.

Compared with the locally arbitrated design, the multi-core architecture with

globally arbitrated interconnect can provide contention-free request paths,

avoiding memory access interference. The relevant timing analysis is rela-

tively simple and the worst case potentially reflects the global scheduling

cycle. For example, GAMT [89][90] employs additional rate control schemes

based on the reserved time slots for clients. It guarantees each client shar-

ing the root memory resource a minimum reserved rate or bandwidth after a

maximum latency [90].

In addition to the above research, the impact of the critical resource con-

tention has been widely studied on multi-core and many-core architectures,

especially in NoC application. The contention to the shared router blocks the

flow of communication packets, leading to high and varying latency across the

processor router network. The term hot spot [97][98] or hot module [99] is

introduced to describe the components which are with limited bandwidth

and in high demand by other components in a system. The following section

reviews state-of-art methods to alleviate such critical resource contention.

Resource Reserving

An improvement method to alleviate critical resource contention is to reg-

ulate the accesses to such hot module based on resource reserving. For

example, Walter et al. [99] proposes wormhole switching with credit-based

control scheme to regulate the accesses to a single hot module in the NoC

architecture. Each source in the NoC architecture owns a quota that limits

the number of packets it can send towards the hot module. When a source

52

quota is exhausted, it can only resume transmission after being granted an

additional credit. The hot module is designed with an allocation controller

that receives credit request from a source and sends credit reply back. This

aims to distribute the limited bandwidth of the hot module almost equally

among sources in the system to achieve resource fairness. Similarly, Hansson

et al. [100] proposes channel tree where time slots are reserved for multi-

ple communication channels to achieve contention-free routing in the NoC

architecture. This potentially provides isolation among applications.

On the other hand, Shi et al. [101] analyses wormhole switching with priority-

based control scheme for NoC communications. It proposes an off-line schedu-

lability analysis and provides the upper bound of packet latency across this

architecture, based on delays caused by direct interference from higher pri-

ority traffic flows and indirect interference from other higher priority traffic

flows, aiming to achieve time predictability of real-time communication in the

NoC architecture.

Investing Additional Hardware Resource

An alternative method to alleviate critical resource contention is to invest ad-

ditional hardware resource. For example, virtual channel with flow control are

commonly employed to enhance the shared router in NoC applications. This

can alleviate the router contention from multiple communication flows across

the NoC architecture and provide flexibility in channel utilisation. Kavald-

jiev et al. [102] proposes virtual channel router with simplified dynamic ar-

bitration, aiming to reduce the size of the virtual channel design. Based on

this research, Kavaldjiev et al. [103] analyses NoC applications with virtual

channel that the traffic guarantee can be provided based on virtual channel

allocation. On the other hand, Mello et al.[104] analyses and evaluates the

53

effectiveness of virtual channel on reducing latency of communication packets

over NoC dimensioning. It also discusses that virtual channel can reduce la-

tency variation of communication packets, potentially contributing to insure

quality of service of the NoC architecture.

As for the shared memory multi-core architecture with tree-based intercon-

nects, Audsley et al. [105] proposes that multiple memory modules or multiple

memory banks can be independently employed at the root of the distributed

interconnect. Each memory module or memory bank is potentially designed

for each criticality level to support mixed-criticality systems. This provides

diverse memory features and potentially increases memory bandwidth. This

research also analyses time predictability of the proposed memory architec-

ture. However, it leaves the design burden to the shared root memory con-

troller, and such centralised design at the tree root impacts the maximum

clock frequency of the synthesised hardware.

Message Combining

A different method to alleviate critical resource contention is message combin-

ing. For example, Pfister et al. [97] introduces the term hot spot and analyses

the contention across multi-stage interconnection networks, especially those

networks with shared memory resource. It proposes that pairwise memory re-

quests directed at an identical memory location can be combined at a switch

node into a single memory request. Afterwards, when the memory reply to the

combined memory request reaches a switch node where it was combined, mul-

tiple memory replies are decombined for multiple individual requests. Based

on this research, Lee et al. [106] demonstrates the limitations of the above

pairwise combining as network size increases and proposes k-way combining

where up to k messages can be combined at switche nodes.

54

As for the shared memory multi-core architecture with tree-based intercon-

nects, this method can be modified that memory requests simultaneously

arriving at an arbiter can be combined. This aims to reduce the number

of memory requests thus to reduce contention over overlapped data paths.

Then memory response is decombined to multiple individual ones along the

response path. However, this design leaves the burden to the shared root

memory module with increased data width. Besides that, it requires an in-

creasing logic size for arbiters at each pipelined stage. This harms the synthe-

sisable clock frequency with an expanding system i.e., an increasing number

of processors.

2.3.4 Summary

This section reviews the shared memory multi-core architectures. The mem-

ory arbitration is employed to provide the time-predictable memory access

behaviour within multi-core architeucres, including TDM, round-robin and

priority-based schemes. TDM isolates memory accesses, and round-robin

can provide work-conserving manner. By comparison, round-robin has been

widely used despite with complicated timing behaviour analysis. In addition,

priority-based schemes relies on effective program analysis to benefit specific

applications.

The conventional centralised implementation of the arbitration scheme leads

to limited maximum synthesisable clock frequency with the increasing number

of processors. By contrast, the distributed implementation constructs the

tree-based memory interconnect with a number of pipelined stages to break

the critical path of the multiplexing into multiple smaller steps with smaller

logic size. It allows much higher clock frequency, scaling to a large number

of processors. The locally arbitrated interconnect is simply constructed upon

55

a distributed binary arbitration tree which multiplexes the memory requests

from processors to the shared root memory module through the distributed

data path. Based on this architecture, the globally arbitrated interconnect

further integrates the global scheduling to these distributed data paths.

Besides that, this section also includes a review of state-of-the-art methods

to alleviate critical resource contention within multi-core and many-core ar-

chitectures.

2.4 Summary and Discussion

This chapter presents the literature review related to this research, and basics

of real-time systems is reviewed in Section 2.1.

Section 2.2 reviews memory or memory subsystem with potential improve-

ment methods on guaranteeing time predictability and reducing memory la-

tency. This contributes to an effective shared memory module or shared

memory subsystem for the multi-core architecture that the response time of

the shared root memory can be bounded with the worst case and low. In ad-

dition, such memory can be further improved for increasing workloads with

the reviewed methods. However, the integration of the root memory into the

multi-core architecture complicates the timing behaviour analysis of memory

accesses across such architecture.

Section 2.3 reviews the shared memory multi-core architectures, potentially

with shared distributed memory interconnects, and the focus is resource con-

tention. Such architectures can provide the time-predictable hardware plat-

form, and the review also includes potential methods to alleviate critical

resource contention. Table 2.1 summaries these methods including resource

56

T
ab

le
2.

1.
S
u
m

m
ar

y
of

M
et

h
o
d
s

to
A

ll
ev

ia
te

C
ri

ti
ca

l
R

es
ou

rc
e

C
on

te
n
ti

on

M
e
th

o
d

E
x
a
m

p
le

A
rc

h
it

e
ct

u
re

R
e
se

a
rc

h
F
o
cu

s

re
so

u
rc

e
re

se
rv

in
g

W
al

te
r

et
al

.
[9

9]
N

oC
cr

ed
it

-b
as

ed
w

or
m

h
ol

e
sw

it
ch

in
g

H
an

ss
on

et
al

.
[1

00
]

N
oC

re
se

rv
in

g
ti

m
e

sl
ot

s
fo

r
m

u
lt

ip
le

ch
an

n
el

s

S
h
i

et
al

.
[1

01
]

N
oC

la
te

n
cy

b
ou

n
d

of
p
ri

or
it

y
-b

as
ed

w
or

m
h
ol

e

sw
it

ch
in

g

in
ve

st
in

g
re

so
u
rc

e

K
av

al
d
ji

ev
et

al
.

[1
02

]
N

oC
re

d
u
ci

n
g

si
ze

of
v
ir

tu
al

ch
an

n
el

d
es

ig
n

K
av

al
d
ji

ev
et

al
.

[1
03

]
N

oC
p
ro

v
id

in
g

tr
affi

c
gu

ar
an

te
e

b
as

ed
on

v
ir

tu
al

ch
an

n
el

al
lo

ca
ti

on

M
el

lo
et

al
.[
10

4]
N

oC
re

d
u
ci

n
g

la
te

n
cy

w
it

h
v
ir

tu
al

ch
an

n
el

ov
er

N
oC

d
im

en
si

on
in

g

A
u
d
sl

ey
et

al
.

[1
05

]
tr

ee
-b

as
ed

in
te

rc
on

n
ec

t

m
u
lt

ip
le

m
em

or
y

at
in

te
rc

on
n
ec

t
ro

ot

m
es

sa
ge

co
m

b
in

in
g

P
fi
st

er
et

al
.

[9
7]

m
u
lt

i-
st

ag
e

in
te

rc
on

n
ec

t

p
ai

rw
is

e
co

m
b
in

in
g

of
m

em
or

y
re

q
u
es

ts
at

sw
it

ch
n
o
d
es

L
ee

et
al

.
[1

06
]

m
u
lt

i-
st

ag
e

in
te

rc
on

n
ec

t

k
-w

ay
co

m
b
in

in
g

of
m

em
or

y
re

q
u
es

ts
at

sw
it

ch
n
o
d
es

57

reserving, investing additional hardware resources and message combing, with

examples and references. This table also compares these methods in terms of

corresponding architectures and brief descriptions of research focus. It is to be

noted that only the research by Shi et al. [101] and Audsley et al. [105] involve

time predictability on either the NoC architecture or the tree-based intercon-

nect. As the examples of these methods are initially designed for different

architectures with different assumptions, the effectiveness of these methods

on alleviating critical resource contention across the multi-core architectures

with shared distributed memory interconnects requires further analysis in the

following research.

58

Chapter 3

Multi-Core Architectures with

Shared Distributed Memory

Interconnects

Based on the literature review, this chapter continues to analyse the given

research questions. The reminder of this chapter is structured as follows. Sec-

tion 3.1 analyses the basic multi-core architecture with the shared distributed

memory interconnect, including a comparison of the locally arbitrated inter-

connect and the globally arbitrated interconnect. Section 3.2 presents problem

analysis over the multi-core architectures with shared distributed memory in-

terconnects and suggests potential improvement methods. Afterwards, Sec-

tion 3.3 summarises the research hypothesis.

59

µ0 µ1 µ2 µ3 µ5 µ6 µ7µ4

D

P1

Figure 3.1. 8-Client Basic Architecture

3.1 Basic Architecture

This research focuses on the multi-core architecture with shared distributed

memory interconnect. An example of the basic architecture that 8 clients

share 1 memory module is shown in Figure 3.1. It consists of 8 clients, the

interconnect, and the shared memory module. A client can be a single pro-

cessing core or a multi-core processor, and denoted by µi where i is the client

index. Each client has a memory access path Pi, with P1 for the client µ1 as

highlighted in the figure. The interconnect B employs multiple stages of 2-to-

1 multiplexers to construct the tree network, connecting clients at the leaves

to the shared memory module D at the tree root. Across this bi-directional

network, memory requests issued by the clients are multiplexed and relayed

to the shared memory, and memory responses return to the corresponding

clients. As the number of clients grows, the tree network scales with more

multiplexer stages, which increases the interconnect depth Nβ. For example,

Nβ is equal to 3 in this figure.

60

In general, multi-core systems are typically designed for average-case perfor-

mances, with inevitable interference from the software components or tasks.

The consequent contention to the shared hardware resources, especially the

shared memory resource, can cause blocking within the system, potentially

leading to varying and high memory access latency. As shown in Figure 3.1,

both the root memory module and the overlapped data paths are shared

by all clients. The entire architecture can be affected by any blocking in the

overlapped path, especially with blocking closer to the tree root (i.e., the root

multiplexer stage β0 or the shared memory module D). When there is a mem-

ory request occupying the memory module, many others stall, just waiting

along the shared paths. These pending requests block the entire interconnect

and also block subsequent requests.

Locally Arbitrated Interconnect and Globally Arbitrated Intercon-

nect

The distributed memory interconnects can be classified as the locally ar-

bitrated interconnect and the globally arbitrated interconnect. The locally

arbitrated interconnect, such as Bluetree [86][87], allows multiple memory

requests in transfer simultaneously, however potentially leading to varying

blocking behaviour within the architecture. This makes the timing behaviour

analysis of memory accesses complicated and challenging, and memory access

latency can vary severely that the average case can be much lower than the

worst case.

By contrast, the globally arbitrated interconnect aims to provide the contention-

free data paths for memory accesses. It integrates the global scheduling

scheme with the distributed multiplexing stages and budgets a processor

with limited memory bandwidth towards temporal isolation. This poten-

61

tially limits the average-case behaviour to be or to be similar to the worst

case, facilitating the timing behaviour analysis of memory accesses.

However, the globally arbitrated design fails to alleviate memory workloads.

Instead, restrictive reservations reduces the processor utilisation within such

architecture, resulting in relatively high average latency. It potentially slows

down or even stalls a processor, consequently degrading the overall system

performance. For example, TDM Tree [88] strictly shapes memory accesses

to the shared resource and thus eliminates contention. In this case, pending

memory requests can stall even with an empty interconnect and an idle mem-

ory module, wasting available bandwidth. Similarly, GAMT [89][90] employs

additional rate control schemes based on the reserved time slots. It only

benefits specific applications with successive memory requests.

Besides that, the globally arbitrated design requires global clock synchronisa-

tion for complex scheduling as well as strict coordination, potentially suffering

synchronisation issue. Memory requests can be distributed in time, and they

must wait for the strict scheduling interval. If a memory request misses its

reserved time slot, it has to wait for a next eligible cycle. In this case, memory

access latency increases with proportional to the global cycle.

Table 3.1 summaries the locally arbitrated interconnect and the globally arbi-

trated interconnect, with examples and references. This table also compares

the locally arbitrated interconnect and the globally arbitrated interconnect in

terms of brief descriptions on memory access latency and time predictabil-

ity, which is the research focus. Both interconnects can provide the time-

predictable hardware platform, and time predictability of the locally arbitrated

interconnect is more complicated and challenging. The locally arbitrated de-

sign can lead to severely varying memory access latency. By contrast, the

globally arbitrated design is with high average memory access latency.

62

T
ab

le
3.

1.
S
u
m

m
ar

y
of

D
is

tr
ib

u
te

d
M

em
or

y
In

te
rc

on
n
ec

ts

In
te

rc
o
n
n
e
ct

E
x
a
m

p
le

M
e
m

o
ry

A
cc

e
ss

L
a
te

n
cy

T
im

e
P

re
d
ic

ta
b
il

it
y

lo
ca

ll
y

ar
bi

tr
at

ed
A

rb
it

ra
ti

on
T

re
e

[8
3]

m
em

or
y

ac
ce

ss
la

te
n
cy

va
ri

es
ye

s,
b
u
t

co
m

p
li
ca

te
d

B
lu

et
re

e
[8

6]
[8

7]

gl
ob

al
ly

ar
bi

tr
at

ed
T

D
M

T
re

e
[8

8]
h
ig

h
av

er
ag

e
m

em
or

y
ac

ce
ss

la
te

n
cy

ye
s

G
A

M
T

[8
9]

[9
0]

63

In the following research, the locally arbitrated architecture is defined as the

multi-core architecture with the locally arbitrated interconnect, and the glob-

ally arbitrated architecture is the multi-core architecture with the globally

arbitrated interconnect. According to the previous analysis, the locally ar-

bitrated architecture can be deployed for any application however leading

to varying blocking behaviour within such architecture. By contrast, the

deployment of the globally arbitrated architecture relies on the analysis of

accurate application behaviour that the memory access pattern, such as the

dependency of successive memory accesses, impacts the applicability and the

effectiveness of the globally arbitrated architecture.

3.2 Problem Analysis

Based on the above analysis, this section continues to analyse resource con-

tention and time predictability across the locally arbitrated architecture and

the globally arbitrated architecture.

3.2.1 Time Predictability

In this research, time predictability requires to statically analyse the timing

behaviour of memory accesses across the multi-core architectures and bound

the worst-case memory access latency within such architecture. The locally

arbitrated architecture can allow multiple memory requests in transfer, poten-

tially leading to varying blocking behaviour and thus complicates the timing

behaviour analysis. By contrast, the globally arbitrated architecture aims to

achieve contention-free data paths based on the global scheduling interval,

provided that the strict synchronisation can be guaranteed. In this case, the

64

worst case can be bounded reflecting its global cycle. By comparison, time

predictability of the locally arbitrated architecture is more challenging, and

guaranteeing time predictability of the locally arbitrated architecture is the

research focus.

In practice, there is often uncertainty with memory access profiles, such as

uncertainty on the number of memory requests and memory issuing time in-

stants. In such cases, exact timing analysis is not valid. Bluetree, as an exam-

ple of the locally arbitrated interconnect, has been deployed in multi-core ap-

plications [87]. The relevant timing behaviour analysis of the Bluetree-based

architecture only considers very limited blocking effect due to the architec-

tural choice [96][87], and the worst-case analysis employs a simulation-based

method [96].

Instead, this research proposes the generic analytical flow to predict the mem-

ory access behaviour by fully exploring the architectural features of the locally

arbitrated design and statically bound the worst-case memory access latency

across the locally arbitrated architecture. The details are shown in Chapter 4

which aims to solve the research question Q1. In addition, Chapter 4 con-

tinues to explore and analyse the timing behaviour of the locally arbitrated

architecture and the globally arbitrated architecture, with experiments for

demonstration.

3.2.2 Varying Memory Access Latency

The multi-core architecture inevitably causes contention over memory ac-

cesses, potentially leading to substantial varying memory access latency. Wide

variation of memory access impacts the system performance and also affects

the system design choice as the memory access latency is the main part form-

65

ing the overall execution time. The multi-core architecture with the shared

distributed memory interconnect appears to be more sensitive to the resource

contention due to the tree-based structure that the overlapped data paths are

also shared by all clients as well as the root memory module.

The locally arbitrated architecture allows multiple memory requests in trans-

fer simultaneously and thus leads to varying memory access latency due to

varying blocking behaviour within such architecture. By contrast, the glob-

ally arbitrated architecture budgets processors based on the global scheduling

interval. This aims towards contention-free data paths, potentially limiting

the average case to be similar to the worst case. However, memory requests

can be more distributed in time. In practice, varying memory workloads

may not perfectly satisfy the global scheduling interval, and this potentially

leads to substantial varying memory access latency. Based on this analysis,

both locally arbitrated and globally arbitrated architectures potentially suffer

variation of memory access latency. By comparison, the globally arbitrated

architecture is more suitable for specific applications according to the previ-

ous analysis. Therefore, the research focus is to reduce variation of memory

access latency across the locally arbitrated architecture.

Although the deployment of the locally arbitrated architecture does not re-

quire to model memory requests in applications, it potentially suffers severe

varying memory access latency due to the varying blocking behaviour. This

is caused by the contention to the critical resource, especially the contention

to the overlapped data paths which complicates blocking behaviour analy-

sis. Due to the architectural feature of the tree-based structure, any blocking

closer to the tree root blocks the entire interconnect. Requests can be blocked

waiting in paths, which also blocks subsequent requests. Besides that, with

blocking along the interconnect, new issued requests can overtake and get

ahead of pending requests due to local arbitration at distributed stages. In

66

this case, the sequence of pending requests is broken, and requests are not

fairly served. This leads to additional blocking to a portion of pending re-

quests which suffer higher latency than the average case as a consequence.

This also complicates timing behaivour analysis which requires to derive de-

tailed status of memory flows and local arbiters at every pipelined stage. In

turn, it can lead to conservative system design with enough safety margin to

guarantee memory response.

The methods to alleviate critical resource contention has been widely studied

on multi-core architectures. A method is to regulate the accesses to critical

resource based on resource reserving. However, it relies on effective program

analysis to benefit specific applications. This analysis is similar to that of

the globally arbitrated architecture, and the applicability and the effectiveness

very much depend on memory access patterns. A different method is message

combining which can potentially combine memory requests thus to reduce the

contention to the overlapped data paths within the tree-based interconnect.

However, this significantly increases the data width to either the shared root

memory controller or the pipelined arbiter stages especially the stages closer

to the tree root. It actually tends to move the workloads and leave the burden

to the centralised location, i.e., the interconnect root, where the increasing

logic size with an expanding system severely harms the synthesisable clock

frequency.

Instead, an alternative method is to invest additional hardware resources,

such as employing virtual channel with flow control to alleviate the router

contention from multiple communication flows in NoC applications. Follow-

ing this idea, this research proposes the root queue modification with the

root queue management to smooth resource sharing and reduce variation of

memory access latency across the locally arbitrated architecture. In general,

it is to employ and utilise an additional hardware queue with queue manage-

67

ment between the root of the locally arbitrated interconnect and the shared

memory module. The details are shown in Chapter 5 which aims to solve the

research question Q2.

3.2.3 Increasing Memory Access latency

Memory workloads within the multi-core architectures potentially keeps in-

creasing with the trend of either integrating more applications or employing

more processors, and the contention over memory accesses aggravates. The

locally arbitrated architecture allows multiple memory requests in transfer si-

multaneously that the contention over either the shared root memory module

or the overlapped data paths increases with increasing memory workloads.

This leads to increasing memory access latency. By contrast, the globally ar-

bitrated architecture avoids contention over memory accesses based on global

scheduling interval. However, it does not alleviate memory workloads. For

example, with the increasing number of processors, memory access latency

increases as well as the global scheduling cycle. In this case, both the locally

arbitrated architecture and the globally arbitrated architecture suffer critical

resource contention, potentially leading to increasing memory access latency

with increasing memory workloads.

The methods to alleviate critical resource contention has been widely studied

on multi-core architectures. The intuition is to deploy more effective root

memory subsystem or local memory modules to processors. The effectiveness

of such method essentially relies on the analysis of accurate application be-

haviour thus to exploit data efficiency as well as to predict the memory access

behaviour to bound the worst case. A method is to regulate the accesses to

critical resource based on resource reserving. The design of real-time sys-

tems also tends to achieve temporal isolation. Similar to the analysis of the

68

globally arbitrated architecture, it aims to provide contention-free behaviour

without alleviating memory workloads. A different method is message com-

bining which can potentially combine memory requests to reduce resource

contention over the overlapped data paths within the tree-based architec-

tures. However, it fails to alleviate workloads to the shared root memory

module.

Instead, an alternative method is to invest additional hardware resources,

such as employing virtual channel to alleviate the router contention from

multiple communication flows in NoC applications. As for the tree-based

structure, Audsley et al. [105] proposes that multiple memory modules or

memory banks can be independently employed at the root of the locally ar-

bitrated Bluetree-based architecture (potentially through a shared memory

controller), aiming to provide diverse memory features to support mixed-

criticality systems. This potentially increases memory bandwidth. However,

it moves the design burden to the shared memory controller, and the shared

tree root remains the architectural bottleneck of the locally arbitrated inter-

connect.

Following the idea of multiple root memory modules being engaged, this re-

search proposes an architectural enhancement that the tree-based distributed

memory interconnect can be extended to a multi-memory interconnect based

on the mesh-of-trees topology [78][79]. In this way, the new distributed multi-

memory interconnect allows multiple processors to simultaneously access mul-

tiple memory modules with time-predictable behaviour. This potentially alle-

viates the contention to a single shared memory module as well as the shared

distributed memory interconnect thus to reduce memory access latency in the

average case. The details are shown in Chapter 6 which aims to solve the

research question Q3.

69

3.3 Research Hypothesis

Based on the above problem analysis, the hypothesis of this research is sum-

marised as follows.

Distributed memory interconnect for multi-core architectures can be improved

by architectural enhancement on hardware that the root queue modification

with the root queue management reduces variation of memory access latency

and the mesh-of-trees extension enables multiple processors to simultaneously

access multiple memory modules, whilst guaranteeing the time-predictable be-

haviour.

The reminder of this research continues to address resource contention and

time predictability across the multi-core architectures with shared distributed

memory interconnects. This aims to improve the shared memory multi-core

architecture with guaranteed time-predictable behaviour, reduced variation

of memory access latency and enhanced architectural features for increasing

memory workloads, contributing towards real-time multi-core systems.

70

Chapter 4

Analysing Timing Behaviour of

Multi-Core Architectures with

Shared Distributed Memory

Interconnects

Based on the analysis in previous chapters, this chapter continues to analyse

the timing behaviour of the multi-core architectures with shared distributed

memory interconnects. The reminder of this chapter is structured as follows.

Section 4.1 analyses the resource contention and the blocking effect across the

data paths within the locally arbitrated architecture and proposes the generic

analytical flow to predict the memory access behaviour and statically bound

the worst-case memory access latency. This section aims to solve the research

question Q1: Can analytical method predict timing behaviour of memory ac-

cesses and bound the worst-case memory access latency in multi-core archi-

tectures with shared distributed memory interconnects? Section 4.2 further

71

explores and analyses the locally arbitrated architecture and the globally ar-

bitrated architecture, with experiments to demonstrate the timing behaviour

of both architectures. Afterwards, Section 4.3 summarises this chapter and

presents discussion.

4.1 Time Predictability of Multi-Core Archi-

tectures with Shared Distributed Mem-

ory Interconnects

In general, the multi-core architectures are typically designed for good average-

case performance that software components or tasks can contend for the

shared hardware resources. Within such systems, memory accesses over the

distributed tree-based interconnect can cause contention to both the over-

lapped data paths and the shared root memory module. The challenge is to

achieve time predictability which requires to statically analyse the timing be-

haviour of memory accesses across the multi-core architecture and bound the

worst-case memory access latency within such architecture. This is particu-

larly important for real-time applications and will be solved in this section.

The locally arbitrated architecture allows multiple memory requests in trans-

fer leading to varying blocking behaviour and thus complicates the timing

behaviour analysis. By contrast, the globally arbitrated architecture aims to

achieve contention-free data paths based on the global scheduling interval,

provided that the strict synchronisation can be guaranteed. In this case, the

worst case can be bounded reflecting its global cycle. By comparison, time

predictability of the locally arbitrated architecture is more challenging, and

72

guaranteeing time predictability of the locally arbitrated architecture is the

research focus.

Compared with another locally arbitrated Arbitration Tree [83], the design

of Bluetree is more feasible which has been deployed in multi-core appli-

cations [87]. The relevant timing behaviour analysis of the Bluetree-based

architecture only considers very limited blocking effect due to the architec-

tural choice [96][87], and the worst-case analysis employs a simulation-based

method [96]. Instead, this research proposes the generic analytical flow to pre-

dict the memory access behaviour by fully exploring the architectural features

of the locally arbitrated design and statically bound the worst-case memory

access latency across the locally arbitrated architecture. The locally arbitrated

Bluetree is shown as an example in this research.

4.1.1 Bluetree-based Architecture

The Bluetree-based architecture follows Figure 3.1 where the Bluetree inter-

connect B employs multiple stages of Bluetree multiplexers to connect clients

µi at tree leaves to the shared memory module D at the tree root. Figure 4.1

shows the design of the Bluetree multiplexer with requests coming from two

client directions.

Arbitration occurs in the request path (RQ) to decide which direction of

request to be relayed to the memory direction, and potentially next Bluetree

multiplexers. The blocking factor α of the internal arbiter is defined such that

every α requests from Client Direction 0 can be blocked by at most a single

request from Client Direction 1 where Client Direction 0 can be considered

as the local high-priority path, and Client Direction 1 is the local low-priority

path. Starvation can be prevented by allowing a request from the low-priority

73

Arbiter

Memory Direction

Client Direction 0

RQ

RSRQ

RS RQRS

Client Direction 1

DEMUX

Figure 4.1. Bluetree Multiplexer

path to be relayed for every α requests from the high-priority path. If there

is no request from Client Direction 0, the arbiter imposes no blocking on

Client Direction 1 with outstanding requests. The implementation of the

local arbiter requires an internal blocking counter. When the blocking factor

is set as α = 1, Bluetree can be considered as the distributed binary tree

with local round-robin scheme, providing relatively fair access to the shared

memory for all clients.

On the other hand, the response path (RS) is non-blocking. The internal

demultiplexer simply decides the route direction of the memory response as

shown in Figure 4.1. In addition, a buffer is implemented along each direction

as a common pipeline design practice. The Bluetree multiplexer interface is

designed to operate in the client-server manner, which allows each local Blue-

tree multiplexer to function independently, without requiring the operating

state knowledge of any other Bluetree multiplexer nearby. The Bluetree in-

terconnect does not require full clock synchronisation.

74

CMD CPU_ID ADDR DATA

Figure 4.2. Bluetree Communication Packet Format

The communication packet format across the Bluetree-based architecture is

shown in Figure 4.2, including the command field CMD (i.e., the memory

command type such as memory read or memory write), the client identifier

field CPU ID, the address field ADDR, and the 32-bit data field DATA.

In a memory request packet, CMD ‘0’ indicates a read request, and CMD ‘1’

indicates a write request. In a memory response packet, CMD ‘0’ indicates a

read response, and CMD ‘1’ indicates a write acknowledgement. CPU ID is

required for the packet transfer across the interconnect, and it is used for each

distributed multiplexing stage to track or decide the route. When a client

issues a request, the corresponding CPU ID is encoded by the local arbiter at

each Bluetree multiplexer to track the route: left shift by 1 bit with ‘0’ for the

local high-priority path, or left shift 1 bit with ‘1’ for the local low-priority

path. CPU ID is also used by the demultiplexer along the response path to

decide the route back to the corresponding client, decoded by the right shift

operation at each local stage. Within a Bluetree-based architecture, 8-bit

client identifier field can support a maximum Bluetree depth Nβ = 8.

In the above design, the total bit-width of a memory packet also decides the

width of the data bus as well as the Bluetree multiplexers. It is to be noted

that this design is reconfigurable and allows flexible extension. For example,

a priority field can be employed in the route information for the priority-

based arbitration scheme. An extra interface is needed for the conversion

of the packet format (e.g., converting the packet format between the Blue-

tree interconnect and the AXI bus). In addition, the design of the Bluetree

interconnect is independent of memory addressing scheme.

75

4.1.2 Timing Behaviour Analysis

The locally arbitrated Bluetree-based architecture is initially designed to pro-

vide good average-case performance and guarantee the worst-case memory

access latency. In general, the latency t of memory access ω consists of three

parts as follows: the request path latency tRQ, the root memory latency t(D),

and the response path latency tRS.

t(ω) = tRQ(ω) + t(D) + tRS(ω) (4.1)

When there is no contention to the memory access ω, i.e., in the best case, it

takes 1 clock cycle to cross each pipelined stage, along both the request path

and the response path. Therefore, the best-case request path latency tBCRQ(ω)

equals to Nβ. According to the Bluetree multiplexer design, the response

path is non-blocking. Then the best-case overall latency tBC of the memory

access ω can be calculated as follows.

tBC(ω) = tBCRQ(ω) + t(D) + tRS(ω)

= 2×Nβ + t(D)
(4.2)

The best-case memory access latency tBC(ω) gives the minimum latency that

a memory access experiences across the locally arbitrated architecture. It is

based on the assumption of no contention, i.e., every pipelined stage is always

in the idle status, ready to accept the request and the response without any

delay. When there is resource contention to either the data path or the shared

root memory, the request may be blocked, which leads to increasing request

path latency tRQ(ω), and consequently increasing total latency t(ω).

The analysis of blocking effect starts from a single Bluetree multiplexer. Fig-

ure 4.3 shows the blocking behaviour of a single Bluetree multiplexer with

76

Client Direction 0

Blocking Counter

Bluetree Buffer

Client Direction 1

ω0 ω1 ω2 ω3

ωA ωB

0

S0

1 2 3 0 1 0

S1 S2 S3 S4

ω0 ω1 ω2 ω3ωA ωB

Figure 4.3. Blocking Behaviour of Bluetree Multiplexer

the local arbitration scheme. With the blocking factor α, every α requests

from the high-priority path Client Direction 0 can be blocked by at most a

single request from the low-priority path Client Direction 1, and every single

request from the low-priority path can be blocked by up to α requests from

the high-priority path.

As shown in the graph, there are four successive memory requests ω0, ω1, ω2

and ω3 from Client Direction 0, and two successive requests ωA and ωB from

Client Direction 1. ω0 and ωA arrive to the Bluetree multiplexer simultane-

ously, and the only Bluetree buffer stores these requests in sequence according

to the local arbitration scheme. The blocking factor α is set as α = 3, and

the value of the local blocking counter also changes with the data transfer

which can be split into stages as follows.

S0 The Bluetree buffer is empty and ready to accept a next memory request.

The value of the blocking counter is 0.

S1 As Client Direction 0 is the high-priority path, ω0 is allowed to cross. By

contrast, ωA from the low-priority Client Direction 1 is blocked. This also

blocks ωB. Simultaneously, the blocking counter increments. The similar be-

77

haviour repeats for next requests ω1 and ω2 from Client Direction 0, blocking

the transfer of ωA and ωB from Client Direction 1.

S2 When the value of blocking counter reaches its maximum limit α that

α = 3, ωA from the low-priority Client Direction 1 is finally allowed to cross to

the Bluetree buffer, with ω3 from the high-priority Client Direction 0 blocked.

Simultaneously, blocking counter resets.

S3 The request transfers as S1 process: ω3 from Client Direction 0 crosses

to the Bluetree buffer, and ωB from Client Direction 1 is blocked, with the

blocking counter incrementing.

S4 As there is no request from Client Direction 0, ωB crosses. Once a request

from the low-priority path crosses, the blocking counter is reset, regardless of

the current value.

Blocking within the entire Bluetree-based architecture can be classified as

inter-path blocking and intra-path blocking. The inter-path blocking occurs

when a request crosses an arbiter stage and gets blocked by the other local

path. Therefore, the inter-path blocking is affected by the local arbitration

scheme. On the other hand, the intra-path blocking occurs when a request is

blocked by any other request or response ahead of it, from either the same

client or the other clients. Besides that, the interaction between the inter-path

blocking and intra-path blocking needs to be considered. For example, when a

request ω3 experiences inter-path blocking from ωA as shown in Figure 4.3, ωA

overtakes and gets ahead of ω3, which potentially leads to additional intra-

path blocking in the overlapped request path.

Based on the above blocking analysis, the memory access across this locally

arbitrated architecture exhibits predictable behaviour. If exact memory ac-

78

cess profiles are known, the detailed status of the memory flow and the local

arbiter at every pipelined stage can be derived that the accurate timing can

be computed. However, it is to be noted that such exact analysis becomes

more complicated as the Bluetree depth Nβ increases. First, a larger number

of pipelined buffers along the data path potentially leads to more intra-path

blocking. Second, the inter-path blocking can increase with the number of ar-

biters. Third, there is interference between pipelined stages. As the nature of

tree-based architectures, if there is any blocking in the stage close to the root,

the entire network will be affected. For example, if the Bluetree root stage is

blocked, the request flow within this Bluetree-based architecture stalls. Sim-

ilarly, with more inter-path blocking closer to the Bluetree leaf stage, there

will be more consequent intra-path blocking in the overlapped paths.

4.1.3 Worst-Case Analysis

In practice, there is often uncertainty with the memory access profiles, such

as uncertainty on the number of memory requests and the memory issuing

time instants. In such case, the exact timing analysis is not valid. A similar

consideration has been adopted in [96]. However, the relevant worst-case

analysis only considers very limited blocking effect and employs a simulation-

based method. Instead, the reminder of this section proposes the worst-case

analysis by fully exploring the architectural features of the locally arbitrated

design (however with pessimistic results). This analysis can also be extended

to other configurations than the Bluetree-based architecture.

Based on the analysis that inter-path blocking and intra-path blocking blocking

only occur along the Bluetree request path, the worst-case assumption is

proposed that the Bluetree request path gets flooded by interfering requests

— (i) all pipelined buffers across the data path are occupied, and (ii) the

79

local arbiter always harms the request flow. Therefore, the calculation on the

worst-case latency tWC of the memory access ω can be reformed as follows

where tWC
RQ is the worst-case request path latency. It is to be noted that the

root memory latency t(D) is considered as a fixed constant to simplify further

analysis, which potentially represents the worst-case latency of a memory

module such as DDR DRAM.

tWC(ω) = tWC
RQ (ω) + t(D) + tRS(ω) (4.3)

Each blocking that the request ω experiences in the request path induces an

amount of path latency proportional to the root memory latency t(D) within

the Bluetree-based architecture. Essentially, the request flow stalls until the

memory is idle again to accept the next request. This latency caused by

waiting for the root memory masks the path latency across the pipelined

stages. Therefore, the maximum blocking number denoted as NWC
RQ (ω), which

the request ω experiences across the request path, can be used to calculate

the worst-case request path latency tWC
RQ (ω) as follows.

tWC
RQ (ω) = NWC

RQ (ω)× t(D) (4.4)

In this way, the calculation of the worst-case latency tWC of the memory

access ω across the architecture with the Bluetree depth Nβ can be reformed

from (4.3) as follows.

tWC(ω) = tWC
RQ + t(D) + tRS(ω)

= NWC
RQ × t(D) + t(D) +Nβ

= (NWC
RQ + 1)× t(D) +Nβ

(4.5)

The term priority path is introduced here to analyse the maximum blocking

number, involving both the inter-path blocking and the intra-path blocking.

80

Similar to [96], priority path in this reasearch is used to track the local priority

at each Bluetree stage βk across the request path where k is the stage index.

Referring to the interconnect in Figure 3.1, priority path P1 for the client µ1

can be P1 = {L,H,H}, for example, where L is for the local low-priority

and H for the local high-priority. Therefore, the path P1 within the Bluetree

interconnect is across the local low-priority path at the Bluetree stage β2, the

local high-priority path at β1, and the local high-priority path at the Bluetree

root stage β0, eventually to the memory module D1. The related local priority

can be expressed as P1(β2) = L, P1(β1) = H, and P1(β0) = H.

By tracking the local priority, the calculation of the maximum blocking num-

ber NWC
RQ (ω) across the corresponding Bluetree request path is iterative, based

on the calculation of the maximum blocking number at each Bluetree stage

βk. Intuitively, the blocking number at any given Bluetree stage βk is de-

pendent on (i) the amount of blocking that has occurred at previous stages

along the request path, and (ii) the amount of blocking that can occur at the

current stage, which is dependent on the local blocking factor α. Following

this idea, NWC
RQ (βk) is defined as the iterative blocking up to and including the

Bluetree stage βk, and the maximum arbiter blocking number NWC
α (βk) is to

represent the blocking at the Bluetree stage βk only. The iterative calculation

can be expressed as follows where +1 indicates that the local Bluetree buffer

is also occupied.

NWC
RQ (βk) = NWC

RQ (βk+1) +NWC
α (βk) + 1 (4.6)

The maximum arbiter blocking number NWC
α (βk) is locally decided by the

blocking factor α at the corresponding Bluetree stage βk. With the local

arbitration scheme discussed earlier, every α requests from the local high-

priority path can be blocked by at most a single request from the local low-

priority path, and every single request from the local low-priority path can

81

be blocked by up to α requests from the local high-priority path. Given

the iterative blocking NWC
RQ (βk+1), N

WC
α (βk) can be calculated with the local

priority Pi(βk) where +1 is to include the request ω and determine the total

amount of requests to cross the local arbiter at this Bluetree stage.

NWC
α (βk) =

 d (N
WC
RQ (βk+1)+1)

α
e H

(NWC
RQ (βk+1) + 1)× α L

(4.7)

For example, if there are NWC
RQ (βk+1) + 1 requests at the local high-priority

path of a Bluetree stage (the number of requests accumulated across the

stages plus the request itself), the maximum blocking from the low-priority

path is this number divided by α and then applied a ceiling function.

To summarise the above analysis, the maximum blocking number up to and

including any given Bluetree stage βk can be computed with (4.6) and (4.7).

The maximum blocking number that the request ω experiences across the re-

quest path NWC
RQ (ω) can be calculated iteratively, starting from the Bluetree

leaf stage to the Bluetree root stage β0 within the interconnect. Finally, the

maximum blocking number in the request path NWC
RQ (ω) equals to the max-

imum blocking number accumulated to the root stage NWC
RQ (β0) as follows.

Afterwards, the worst-case latency tWC(ω) can be calculated with (4.5).

NWC
RQ (ω) = NWC

RQ (β0) (4.8)

As examples applying the above method, Table 4.1 shows the maximum block-

ing number for 8-client Bluetree-based architectures respectively. The row is

for Bluetree local blocking factor α, and each local arbiter is set with the

same value in the entire interconnect. The column is for the Bluetree path

Pi. The table content shows the maximum blocking number NWC
RQ for each

request path. With NWC
RQ given, the worst-case latency can be calculated us-

ing (4.5). For example, assuming the root memory latency t(D) = 20 in clock

82

Table 4.1. Maximum Blocking Number in 8-Client Bluetree-based Architec-

ture

P0 P1 P2 P3 P4 P5 P6 P7

α = 1 30 30 30 30 30 30 30 30

α = 2 17 23 28 41 32 44 53 80

α = 3 14 24 32 58 38 66 90 170

cycles, the worst-case memory access latency across any path in the 8-client

Bluetree-based architecture with the blocking factor α = 1 can be calculated

as tWC(ω) = (NWC
RQ + 1)× t(D) +Nβ = (30 + 1)× 20 + 3 = 623.

As shown in Table 4.1, with increasing Bluetree blocking factor α, the maxi-

mum blocking number in the request path NWC
RQ (ω) decreases with more lo-

cal high-priority tracks. With blocking factor α = 1, the maximum blocking

number NWC
RQ remains the same value for different request paths. Accord-

ing to the design of Bluetree local arbitration, the Bluetree interconnect can

be considered as distributed tree stages with local round-robin scheme when

α = 1. It provides fair accesses to the shared memory for all clients.

Analytical Results and Measured Results

This section compares the analytical worst-case memory access latency and

the measured worst-case memory access latency across the 8-client Bluetree-

based architecture, with blocking factor α = 1, 2 and 3 where each local

arbiter is set with the same value in the entire interconnect. The root memory

latency is assumed as a constant t(D) = 20 in clock cycles. In this case, the

analytical results are calculated with maximum blocking number in Table 4.1

following the above example.

83

623 623 623 623 623 623 623 623603 603 603 603 603 603 603 603

0

200

400

600

800

P₀ P₁ P₂ P₃ P₄ P₅ P₆ P₇

W
or

st
-C

as
e

M
em

or
y

A
cc

es
s

La
te

nc
y

(C
LK

)
(a) Blocking Factor α = 1

Analytical Measured

363
483 583

843
663

903
1083

1623

323
443

563
803

643
883

1063

1603

0

500

1000

1500

2000

P₀ P₁ P₂ P₃ P₄ P₅ P₆ P₇

W
or

st
-C

as
e

M
em

or
y

A
cc

es
s

La
te

nc
y

(C
LK

)

(b) Blocking Factor α = 2
Analytical Measured

303 503 663
1183

783

1343
1823

3423

263
483 643

1143
763

1323
1803

3403

0

1000

2000

3000

4000

P₀ P₁ P₂ P₃ P₄ P₅ P₆ P₇

W
or

st
-C

as
e

M
em

or
y

A
cc

es
s

La
te

nc
y

(C
LK

)

(c) Blocking Factor α = 3
Analytical Measured

Figure 4.4. Worst-Case Memory Access Latency across Bluetree-based Ar-

chitecture

The measured results are from hardware simulations. Traffic generators are

employed as clients, and each traffic generator keeps pushing memory re-

quests into its memory access path. In this case, the system can be flooded

with memory requests (potentially pending), aiming towards that each mem-

84

ory request experiences its maximum blocking. The root memory module

is implemented using Bluespec BRAM package [107] with extra delays as a

constant t(D) = 20 in clock cycles. The system is implemented using Blue-

spec System Verilog [107][108], with simulations running on BlueSim simu-

lator [107][108]. This simulation measures memory access latency across the

8-client Bluetree-based architecture that the latency of each memory access

is measured.

In this measurement, it is observed that memory access latency gradually

increases with the proceeding of the simulation until remaining at a constant

value. This maximum measured constant is selected as the measured worst-

case memory access latency across the relevant memory access path. Fig-

ure 4.4 shows the comparison of analytical worst-case results and measured

worst-case results with bar chart. The horizontal axis is for memory access

path Pi, and the vertical axis is for the worst-case results in clock cycles. It is

observed that the measured results are smaller than the analytical results in

each memory access path. Referring to Figure 4.4 (a), the worst-case memory

access latency is identical with blocking factor α = 1 in each memory access

path, both analytical and measured results. In addition, difference between

an analytical result and a measured result slightly varies in Bluetree-based

architectures with blocking factor α = 2 and 3.

Discussion

This proposed method defines the generic analytical flow to predict the mem-

ory access behaviour across the locally arbitrated architecture and statically

bound the worst-case memory access latency. It can be extended to other

architectural configurations than the Bluetree design, which requires modifi-

cation to the analysis of the local arbitration scheme. This worst-case analysis

85

can produce pessimistic bounds as the results, which potentially leads to con-

servative system design and resource dimensioning, as the memory access

latency is the main part forming the overall program execution time.

It is to be noted that this proposed method focuses on the timing behaviour of

single memory request. If a sequence of memory requests is studied as a whole,

this method may overestimate the overall latency of this sequence, which

potentially leads to a higher maximum arbiter blocking number NWC
α (βk)

at any distributed stage. In this case, instead of a single request ω, the

sequence of requests are assumed as τ = {ω1, ω2, ω3, ...} as a whole. The

maximum blocking number that this sequence experiences across the request

path NWC
RQ (τ) can be calculated iteratively using with (4.6) and (4.7), starting

from the Bluetree leaf stage with a start value τ . Such modification actually

calculates the maximum blocking number of the last request in the sequence,

and the rest of requests in this sequence is considered as the intra-path blocking

to the last request at the Bluetree leaf stage. This aims to avoid duplicate

accumulation of inter-path blocking to memory requests in the sequence.

In summary, the locally arbitrated distributed memory interconnect shows

time-predictable behaviour. If the exact memory access profiles can be pro-

vided, the accurate memory access latency in such architecture can be deter-

mined with no pessimism as discussed in the previous analysis, based on the

detailed status of the memory flow and the local arbiter at every pipelined

stage. With uncertainty on memory access profiles which is often the case in

reality, the worst-case analysis proposed in this section has to be employed

for real-time applications even with pessimistic results. The worst-case bound

provided can also be tightened in the future work, e.g., by restricting the de-

mand from processors with limit, and the discussion on the tightness also

requires sufficiently representative memory workloads to be fair.

86

4.2 Timing Behaviour of Multi-Core Archi-

tectures with Shared Distributed Mem-

ory Interconnects

Distributed time-predictable memory interconnects are designed for multi-

core architectures to support real-time applications. The above worst-case

analysis actually shows the behaviour when the locally arbitrated Bluetree

architecture is flooded by memory requests, thus with pessimistic results.

This section further explores and analyses the timing behaviour of the lo-

cally arbitrated architecture and the globally arbitrated architecture in more

general cases, with experiments to demonstrate the timing behaviour of both

architectures.

Memory Workloads

Due to architectural features of multi-core architectures with shared dis-

tributed memory interconnects, multiple memory requests have to share the

overlapped interconnect as well as the root memory module. Taking the lo-

cally arbitrated architecture as an example, simultaneous memory requests

in transfer cause contention, and thus memory access latency is increased.

With increasing memory workloads, more available system bandwidth is con-

sumed. If the requested bandwidth keeps increasing, the system will saturate

at some point, without delivering any additional bandwidth. In this case, any

further memory request will only have to wait for the service of the system.

This saturation phenomenon commonly occurs with shared resource [109]. As

shown in Section 4.1, the saturation point of the locally arbitrated Bluetree-

based architecture is determined by the static worst-case analysis. It clearly

87

bounds the maximum request number in a specific Bluetree path. However,

memory workloads of the relevant worst-case assumption is independent of

the response time that a client just keeps pushing requests into the system

regardless of memory response.

First, the number of memory requests issued to the system is limited, ei-

ther by the characteristics of the application software, or by the architecture

of a processor (i.e., maximum number of outstanding memory requests be-

fore the processor stalls). Second, the workload pattern is dependent on the

memory response. With such workload pattern, blocking still occurs due to

the contention to the shared resource, and memory access latency increases.

However, a client has to slow down the release of memory requests, waiting

for memory response. The increase of memory access latency stops in turn.

This dependency actually reflects the process of practical applications. For

example, a processor has to receive data from memory before any related op-

eration. The characteristics of the above workload pattern can be represented

as follows.

Nµ
RQ(µi) is outstanding request number from a client with index i. A client

can issue memory requests successively until this limit. Then the client stalls,

waiting for memory response. Only when there is any memory response re-

turned to this client, another new memory request can be issued. In addition,

outstanding request number to the shared memory Nµ
RQ(D) is the sum of

Nµ
RQ(µi) in the entire interconnect.

T µRQ(µi) is request interval between two successive memory requests. A client

issues successive requests with intervals, normally in clock cycles. It reflects

necessary processor execution time or the time across the data path in prac-

tical applications. In addition, variation of request interval is also introduced

that memory requests are more distributed in time. By contrast, when the

88

request interval is fixed as 1 T µRQ(µi) = 1, memory requests will be issued into

the system more intensively.

Workload pattern Nµ
RQ(µi) and T µRQ(µi) describes memory workloads with

limited outstanding requests and dependent on memory response time. With

either an increased Nµ
RQ(µi) or a decreased T µRQ(µi), memory workloads from

client µi to relevant memory access path increase.

4.2.1 Locally Arbitrated Architecture and Globally Ar-

bitrated Architecture

Based on the previous analysis, the locally arbitrated architecture allows mul-

tiple memory requests in transfer leading to varying blocking behaviour. The

generic analytical flow to predict the memory access behaviour across the

locally arbitrated architecture is proposed in Section 4.1, and the Bluetree de-

sign is shown as an example. In general, the locally arbitrated architecture can

allow average-case timing behaviour to be much lower than the worst case.

By contrast, the globally arbitrated architecture provides the contention-free

data paths based on the global scheduling interval, provided that the strict

synchronisation can be guaranteed. This limits the average-case memory ac-

cess latency to be similar to the worst case, facilitating the timing behaviour

analysis.

The reminder of this section continues to explore the timing behaviour of

locally arbitrated architectures and globally arbitrated architectures with ex-

periments. The root memory latency is assumed as a constant t(D) = 20 in

clock cycles. Taking the design of Bluetree and TDM Tree as examples, both

8-client architectures are running with the same clock frequency. According

89

to the proposed analytical method, different Bluetree blocking factor leads

to different blocking behaviour of Bluetree multiplexer at a local distributed

stage. This allows Bluetree blocking factor to be set with a specific value at

a specific stage across a specific data path to benefit specific memory work-

loads. In this section, Bluetree blocking factor is set as α = 1, and each

local arbiter is set with the same value in the entire Bluetree interconnect.

This can provide relatively fair accesses for all clients regardless of memory

workloads. By comparison, the global scheduling interval of TDM Tree is set

as 160 in clock cycles that 8 clients share the root memory with t(D) = 20

in this architecture. (It is to be noted that the global scheduling interval

is roughly decided for observations only.) In addition, traffic generators are

employed as clients with synthetic memory workloads which follow the above

workload pattern Nµ
RQ(µi) and T µRQ(µi).

Multiple experiments with varying memory workloads has been conducted,

and different groups of memory workloads lead to different experimental re-

sults. In this section, 5 groups are selected to demonstrate and compare the

difference of timing behaviour across the locally arbitrated Bluetree-based ar-

chitecture and the globally arbitrated TDM Tree-based architecture. These

include workload conditions such as balanced or unbalanced path workloads

and varying or increasing request intervals.

Hardware Simulations: Increasing Memory Workloads

The initial experiment is conducted by hardware simulations with relatively

simple workload patterns. Each traffic generator issues 36 memory requests

totally. Request interval is fixed as 1 T µRQ(µi) = 1, and outstanding request

number Nµ
RQ(µi) varies as shown in Table 4.2. The column is for client µi,

and the row is for 3 groups of outstanding request number. For example,

90

Table 4.2. Increasing Outstanding Requests for 8-Client Architectures

µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7

group a 0 0 0 2 1 0 0 0

group b 1 0 1 2 2 0 0 1

group c 2 1 1 3 3 1 1 1

outstanding request number Nµ
RQ(µ1) = 0 is that client µ1 is with no memory

workloads. In this way, the table content shows increasing memory workloads

from group a to group c with increasing outstanding request number for

clients. In addition, each client is with different outstanding request number

Nµ
RQ(µi) in each group, leading to unbalanced path workloads.

In this experiment, the root memory module is designed using Bluespec

BRAM package [107] with extra delays as a constant t(D) = 20 in clock

cycles. Both the 8-client Bluetree-based system and the 8-client TDM Tree-

based system are implemented using Bluespec System Verilog [107][108], with

simulations running on BlueSim simulator [107][108]. This experiment mea-

sures memory access latency across both 8-client architectures that the la-

tency of each memory access is measured. In addition, memory request re-

lease time of each memory access is also measured. The measured results are

shown in Figure 4.5 and Figure 4.6 with scatter plot. The horizontal axis is

for memory request release time in clock cycles, and the vertical axis is for

memory access latency in clock cycles.

Figure 4.5 (a) shows memory access latency across the 8-client Bluetree-based

architecture with only memory requests in path P3 and path P4. At the start

period of the simulation, outstanding request number to the shared memory is

Nµ
RQ(D) = 3, and thus memory access latency increases to approximately 60

very quickly referring to the figure. With different outstanding request num-

91

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Outstanding Requests group a
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) Outstanding Requests group b
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Outstanding Requests group c
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.5. Memory Access Latency across 8-Client Bluetree-based Architec-

ture

ber Nµ
RQ(µ3) = 2 and Nµ

RQ(µ4) = 1 but with the same total request number,

simulations in different paths complete at different time instants. For exam-

ple, the simulation in path P3 with Nµ
RQ(µ3) = 2 completes at approximately

1000. Afterwards, with the decreasing of outstanding request number to the

shared memory Nµ
RQ(D) = 1, memory access latency across path P4 reduces

92

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Outstanding Requests group a
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) Outstanding Requests group b
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Outstanding Requests group c
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.6. Memory Access Latency across 8-Client TDM Tree-based Archi-

tecture

to approximately 20 until the end of the simulation. Figure 4.5 (b) shows

memory access latency with increased memory workloads. The distribution

of scatters shows similar trend as that in Figure 4.5 (a). By contrast, with

increased outstanding request number, the highest measured memory access

latency increases to approximately 150.

93

Figure 4.5 (c) shows memory access latency across the Bluetree-based archi-

tecture with further increased memory workloads. Memory access latency

increases sharply in a very short period of time from the start period of the

simulation, with intensively issued memory requests into the system. Essen-

tially, as the memory workload pattern is dependent on the response time,

the release of memory requests drops that the increase of memory access la-

tency stops in turn. Memory access latency in each path tends to reach the

corresponding maximum limit. With fixed request interval as T µRQ(µi) = 1,

regular values of memory access latency can be observed. For example, mem-

ory access latency in path P4 and path P5 is approximately 280 or 240. As the

locally arbitrated Bluetree allows varying blocking behaviour, the inter-path

interference also affects paths nearby. Referring to the above example, mem-

ory access path P5 with only 1 outstanding request Nµ
RQ(µ5) = 1 is severely

affected by path P4 with Nµ
RQ(µ4) = 3, and thus memory access latency in

path P5 varies, either 280 or 240.

Figure 4.6 shows memory access latency across the 8-client TDM Tree archi-

tecture. Compared with Figure 4.5 (a), Figure 4.6 (a) shows that the globally

arbitrated TDM Tree does not support work conservation. With only mem-

ory requests in path P3 and path P4, the interconnect or the memory module

can be idle. However, the strict TDM scheme only allows 1 memory request

to be relayed to the empty data path at a time. In this case, the measured

memory access latency in path P4 is approximately 160 which reflects the

global cycle. As a result, the simulation finally completes at approximately

5500. Figure 4.6 (b) shows similar scatter distribution with increased mem-

ory workloads, and the highest measured memory access latency increases

in Figure 4.6 (c) with further increased memory workloads. Compared with

Figure 4.5 (c), memory access latency in Figure 4.6 (c) is identical in either

in path P4 or path P5 with different path outstanding request number.

94

Table 4.3. Balanced Outstanding Requests for 8-Client Architectures

µi µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7

Nµ
RQ(µi) 2 2 2 2 2 2 2 2

FPGA Experiments: Balanced Path Workloads

This experiment is conducted on FPGA implementations with synthetic mem-

ory workloads. Each traffic generator issues 100 memory requests totally fol-

lowing workload pattern Nµ
RQ(µi) and T µRQ(µi). Outstanding request number

is set as Nµ
RQ(µi) = 2 as shown in Table 4.3, thus balanced path memory

workloads, and request interval varies with randomly generated values be-

tween 1 to 64 as T µRQ(µi) ∈ [1, 64]. The values used as request intervals are

shown in Appendix A.1. This aims to provide varying memory workloads

closer to practical applications. The root memory module is designed using

FPGA BRAM [110] with extra delays as a constant t(D) = 20 in clock cycles.

Both the 8-client Bluetree-based system and the 8-client TDM Tree-based

system are synthesised using Xilinx Vivado [111][112] and implemented on

Zedboard [113] with 100MHz of clock frequency. This experiment measures

memory access latency across both 8-client architectures that the latency of

each memory access is measured. In addition, memory request release time

of each memory access is also measured.

Figure 4.7 shows scatter plot of memory access latency with memory request

release time in this measurement. The horizontal axis is for memory request

release time in clock cycles, and the vertical axis is for memory access latency

in clock cycles. Compared with Figure 4.7 (a) and Figure 4.7 (b), the distri-

bution of scatters shows similar trend. It is also observed in Figure 4.7 (a)

that memory access latency drops in the end period of the experiment.

95

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) TDM Tree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Bluetree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.7. Memory Access Latency with Balanced Path Workloads across

8-Client Bluetree-based Architecture and 8-client TDM Tree-based Architec-

ture

Figure 4.8 shows boxplot of memory access latency in this measurement. The

horizontal axis is for memory access path, and the vertical axis is for memory

access latency in clock cycles. Following the above analysis, the distributions

show similar trend in Figure 4.8 (a) and Figure 4.8 (b), although in each

memory access path, the interquartile range in Figure 4.8 (a) is slightly larger

than that in Figure 4.8 (b). It is also observed that there are more outliners in

Figure 4.8 (a) than that in Figure 4.8 (b). This reflects the reduced memory

access latency in the end period of the experiment in Figure 4.7 (a). With such

decreasing of outstanding request number, memory access latency reduces

across the Bluetree-based architecture. By comparison, TDM Tree limits the

average case to be similar to the worst case.

96

Figure 4.8. Boxplot of Memory Access Latency with Balanced Path Work-

loads across 8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture

FPGA Experiments: Increasing Request Intervals

This experiment is conducted using the similar setup of the above experiment.

Based on balanced outstanding requests Nµ
RQ(µi) = 2 as shown in Table 4.3,

the variation of request interval increases as T µRQ(µi) ∈ [1, 256]. The values

used for request intervals are randomly generated as shown in Appendix A.2.

Figure 4.9 shows scatter plot of memory access latency with memory request

release time in this measurement. Compared with Figure 4.7 (a) of the above

measurement, scatters are more distributed in Figure 4.9 (a). Compared with

Figure 4.7 (b), much more distributed scatters can be observed in Figure 4.9

97

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Bluetree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) TDM Tree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.9. Memory Access Latency with Increasing Request Intervals across

8-Client Bluetree-based Architecture and 8-client TDM Tree-based Architec-

ture

(b), although the highest measured memory access latency almost remains

the same.

Figure 4.10 shows boxplot of memory access latency in this measurement.

Compared with Figure 4.8, median and mean are both reduced in Figure 4.10

that the increased request interval reduces memory workloads. However,

both the interquartile range and the difference between the maximum line

and the minimum line significantly increases in Figure 4.10. Variation of

memory access latency becomes more severe in this experiment. Compared

with Figure 4.10 (a), the interquartile range is much larger in Figure 4.10

(b). In this case, the TDM Tree-based system suffers more severe variation

98

Figure 4.10. Boxplot of Memory Access Latency with Increasing Request

Intervals across 8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture

of memory access latency than the Bluetree-based system. Memory requests

are more distributed in time that request interval varies as T µRQ(µi) ∈ [1, 256].

It does not satisfy the global cycle of TDM Tree which is 160.

FPGA Experiments: Unbalanced Path Workloads

Based on the above setup, this experiment is conducted using unbalanced

path workloads and varying request intervals. Outstanding request number

Nµ
RQ(µi) is set as group c in Table 4.2, and request interval varies as T µRQ(µi) ∈

[1, 64] with randomly generated values in Appendix A.1. Figure 4.11 shows

99

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Bluetree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) TDM Tree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.11. Memory Access Latency with Unbalanced Path Workloads across

8-Client Bluetree-based Architecture and 8-client TDM Tree-based Architec-

ture

scatter plot of memory access latency with memory request release time in this

measurement. Referring to the figure, scatters in Figure 4.11 (a) distributes

with similar trend in Figure 4.5 (c), and scatters in Figure 4.11 (b) distributes

with similar trend in Figure 4.6 (c).

Figure 4.12 shows boxplot of memory access latency. Compared with Fig-

ure 4.12 (b), in each memory access path, although median and mean are

lower, either the interquartile range or the difference between the maximum

line and the minimum line is much larger in Figure 4.12 (a), especially in

path P1 and path P2. Based on the previous analysis, Bluetree allows varying

blocking behaviour, and the inter-path interference also affects paths nearby.

100

Figure 4.12. Boxplot of Memory Access Latency with Unbalanced Path Work-

loads across 8-Client Bluetree-based Architecture and 8-client TDM Tree-

based Architecture

In this experiment, the Bluetree-based system suffers severe variation of mem-

ory access latency.

FPGA Experiments: Varying Request Intervals

Based on the above unbalanced outstanding request number Nµ
RQ(µi), vari-

ation of request interval increases in this experiment as T µRQ(µi) ∈ [1, 256]

from Appendix A.2. Figure 4.13 shows scatter plot of memory access latency.

Compared with Figure 4.11 (a) of the above measurement, the highest mea-

sured memory access latency is much lower in Figure 4.13 (a) that memory

101

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) TDM Tree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Bluetree
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 4.13. Memory Access Latency with Varying Request Intervals across

8-Client Bluetree-based Architecture and 8-client TDM Tree-based Architec-

ture

workloads decrease in this experiment due to the increased request interval.

Compared with Figure 4.11 (b), scatters are much more distributed in Fig-

ure 4.13 (b).

Figure 4.14 shows boxplot of memory access latency in this measurement.

Compared with Figure 4.14 (a), in each memory access path, both the in-

terquartile range and the difference between the maximum line and the min-

imum line are much larger in Figure 4.14 (b), as well as much higher median

and mean. In this case, varying request interval T µRQ(µi) ∈ [1, 256] does not

satisfy the global cycle of TDM Tree. As a result, the TDM Tree-based sys-

tem suffers more severe variation of memory access latency than the Bluetree-

102

Figure 4.14. Boxplot of Memory Access Latency with Varying Request Inter-

vals across 8-Client Bluetree-based Architecture and 8-client TDM Tree-based

Architecture

based system, especially in path P3 and path P4 with increased outstanding

request number.

Discussion

This section explores and analyses timing behaviour of locally arbitrated and

globally arbitrated architectures with experiments, and Bluetree and TDM

Tree are taken as examples. The locally arbitrated architecture allows vary-

ing blocking behaviour, and it potentially suffers variation of memory access

latency that the average-case timing behaviour is much lower than the worst

103

case. Taking figures of Bluetree experimental results as examples, the up-

per scale limit of the vertical axis (600 in clock cycles) is approximately set

according to the analytical worst-case memory access latency (623 in clock

cycles which is statically bounded with the proposed analytical method in

Section 4.1), and memory access latency varies below this extreme limit.

By contrast, the globally arbitrated architecture potentially limits the average

case to be similar to the worst case. However, varying memory workloads may

not satisfy the global scheduling interval, thus leading to substantial varying

memory access latency. Based on the previous analysis, the deployment of

the globally arbitrated architecture can rely on effective analysis of accurate

application behaviour thus to benefit specific applications. For example, ad-

ditional rate control schemes can be employed based on the reserved time

slots to benefit a sequence of successive memory requests (i.e., GAMT).

4.3 Summary and Discussion

This chapter analyses the timing behaviour of the locally arbitrated architec-

ture and the globally arbitrated architecture. Section 4.1 analyses the resource

contention and the blocking effect across the data paths within locally arbi-

trated architectures and proposes the generic analytical flow to predict the

memory access behaviour and statically bound the worst-case memory access

latency when there is uncertainty on memory access profile. This contributes

to solve the research question Q1. In addition, Section 4.2 explores the tim-

ing behaviour of the locally arbitrated architecture and the globally arbitrated

architecture using experiments with synthetic memory workloads.

The main contribution presented in this chapter is summarised as follows.

104

The generic analytical flow is proposed for time-predictable behaviour of mem-

ory accesses across multi-core architectures with locally arbitrated intercon-

nects. Without exact memory access profiles, this static analysis can guaran-

tee the safe worst-case bound for real-time applications applying calculations.

It is to be noted that the worst-case memory access latency is bounded when

there is uncertainty on memory access profile, thus with pessimistic results.

The bound provided can also be tightened in the future work, e.g., by re-

stricting the demand from processors with limit, and the discussion on the

tightness also requires sufficiently representative memory workload patterns

to be fair.

105

Chapter 5

Reducing Variation of Memory

Access Latency across

Multi-Core Architectures with

Shared Distributed Memory

Interconnects

This chapter proposes the root queue modification with the root queue man-

agement to reduce variation of memory access latency across the locally arbi-

trated architecture. It employs and utilises an additional hardware queue with

queue management between the distributed interconnect root and the shared

memory module. This aims to solve the research question Q2: Can multi-core

architectures with shared distributed memory interconnects be modified at the

hardware level to reduce variation of memory access latency?

106

Memory
Operation

Processor
Operation

Execution Time

Slack Slack

Figure 5.1. Processor Operation vs. Memory Operation

The reminder of this chapter is structured as follows. Section 5.1 analyses

variation of memory access latency within the locally arbitrated architecture

and the globally arbitrated architecture. Section 5.2 proposes the root queue

modification and explains its operation with analysis on the time-predictable

behaviour of memory accesses. Section 5.3 evaluates the effectiveness of the

root queue modification on reducing variation of memory access latency with

hardware simulations, and Section 5.4 continues to evaluate the effectiveness

of this architectural modification with FPGA experiments. Afterwards, Sec-

tion 5.5 summarises this chapter and presents discussion.

5.1 Problem Analysis

The multi-core architecture is typically designed for good average-case per-

formance, and the resource contention within such architecture is inevitable.

This potentially causes contention over memory accesses due to resource shar-

ing issue, and such contention can lead to substantial varying memory access

latency. Wide variation of memory access latency leads to wide fluctuation

of the overall system performance as memory access latency is the main part

forming the overall execution time. Figure 5.1 shows an example that the

107

processor stalls with varying slack time, depending on the varying memory

response time. In this case, variation of memory access latency directly im-

pacts the processor utilisation and the dependent processes. In addition, the

variation of memory access latency can also lead to very pessimistic worst-

case assumptions in the timing analysis — where the maximum contention

has to be assumed for most, if not all, memory accesses — thus with large

safety margins.

The multi-core architecture with the shared distributed memory interconnect

appears to be more sensitive to the resource contention due to the tree-based

structure that the overlapped data paths are also shared by all clients as well

as the root memory module. The locally arbitrated architecture allows mul-

tiple memory requests in transfer simultaneously and thus leads to varying

memory access latency due to varying blocking behaviour within such archi-

tecture. By contrast, the globally arbitrated architecture budgets processors

based on the global scheduling interval. This aims towards contention-free

data paths, potentially limiting the average case to be similar to the worst

case. However, memory requests can be more distributed in time, and varying

memory workloads may not perfectly satisfy the global scheduling interval,

thus leading to substantial varying memory access latency.

Based on the above analysis, both the locally arbitrated architecture and the

globally arbitrated architecture potentially suffer variation of memory access

latency, which can also be illustrated with experimental results in Section 4.2.

By comparison, the globally arbitrated architecture is more suitable for specific

applications. Therefore, the reminder of this research focuses on to reduce

variation of memory access latency across the locally arbitrated architecture.

The locally arbitrated Bluetree-based architecture is taken as an example in

the following research.

108

Although the deployment of the Blurteee-based architecture does not require

to model memory requests in applications, it potentially suffers varying block-

ing behaviour caused by the contention to critical resource, especially the con-

tention to the overlapped data paths. The interaction between the inter-path

blocking and intra-path blocking complicates the analysis of the varying block-

ing behaviour. First, due to the architectural feature of tree-based structure,

any blocking closer to the tree root blocks the entire interconnect. Many

requests are blocked waiting in the shared data paths, which also blocks sub-

sequent requests. Second, with blocking along the interconnect paths, new

issued requests can overtake and get ahead of pending requests due to the

local arbitration at distributed stages. In this case, the sequence of the pend-

ing requests is broken which leads to additional blocking, and the system

resource is not fairly shared. Third, due to the design of the local arbitration,

Bluetree shows varying blocking behaviour at distributed stages. Even with

α = 1 which provides relatively fair resource sharing, the blocking behaviour

still varies. In addition, varying memory workloads aggravates the varying

blocking behaviour within the architecture.

The varying blocking behaviour across the Bluetree-based architecture causes

resource sharing issue that pending requests are not fairly served. This leads

to varying memory access latency. First, if the sequence of pending requests

is broken, the system resource is not fairly shared. This causes additional

blocking to these pending requests, which aggravates the variation of mem-

ory access latency in turn. The inter-path interference also affects paths

nearby. As a result, a portion of memory requests inevitably suffer much

higher latency than the average case at runtime. Second, it complicates the

timing behaviour analysis which requires to derive the detailed status of the

memory flow and the local arbiter at every pipelined stage with exact memory

access profiles. However, such analysis becomes much more complicated with

an expanding system configuration (i.e., an increasing number of clients) as

109

discussed in Section 4.1. This potentially leads to conservative system design

with enough safety margin to guarantee the memory response. If a client suf-

fers variation of memory access latency with uncertainty on memory access

profile, it has to refer to the worst-case assumption to determine memory

access latency, thus with pessimistic results.

The methods to alleviate critical resource contention has been widely stud-

ied on multi-core architectures. A method is to regulate accesses to critical

resource based on resource reserving. However, it relies on effective program

analysis to benefit specific applications. This analysis is similar to that of the

globally arbitrated architecture, and the applicability and the effectiveness

very much depend on memory access patterns. A different method is mes-

sage combining which can potentially combine memory requests and reduce

the contention to the overlapped data paths within the tree-based intercon-

nect. However, this significantly increases data width to either the shared

root memory controller or the pipelined arbiter stages especially the stages

closer to the tree root. It actually tends to move the workloads and leave

the burden to the centralised location, i.e., interconnect root, where the in-

creasing logic size with an expanding system severely harms the maximum

synthesisable clock frequency.

Instead, an alternative method is to invest additional hardware resources to

enhance the multi-core architecture, such as employing virtual channel with

flow control to alleviate the router contention from multiple communication

flows in NoC applications. Following this idea, this research proposes the root

queue modification with the root queue management to enhance the locally ar-

bitrated Bluetree-based architecture. It is to employ and utilise an additional

hardware queue with queue management between the Bluetree interconnect

root and the shared memory module to smooth resource sharing and reduce

variation of memory access latency across the Bluetree-based architecture.

110

µ0 µ1 µ2 µ3 µ5 µ6 µ7µ4

D

Queue

Figure 5.2. Bluetree-based Architecture with Root Queue Modification

5.2 Root Queue Modification

This section enhances the locally arbitrated architecture and modifies the

Bluetree design with an additional hardware queue. As shown in Figure 5.2,

the queue is employed to connect the root of the Bluetree interconnect and

the shared memory module. As request paths overlap to the root of the

tree-based interconnect, every single request will be relayed into the shared

hardware queue. The root queue buffers all the requests that arrive at the

Bluetree root.

The design of the root queue is based on bypass FIFO buffer. If the queue is

empty, a request can be relayed to the root memory module directly without

any additional delay. If the queue is not empty, it temporarily stores the

requests that arrive but can not be immediately processed by the root memory

module. The FIFO buffer also treats the queued requests equally, and the

111

first-arrived request will be relayed to the memory module first. In this

way, it remains the arrival sequence of memory requests from the Bluetree

interconnect, alleviating the contention over the overlapped data paths.

With the introduction of the root queue at the Bluetree root, the pending

memory requests are relayed across the FIFO buffers in sequence, instead of

blocking each other. It alleviates the inter-path interference. This architec-

tural modification actually introduces additional resources to influence the

timing behaviour. With sufficient root queue size, all the outstanding mem-

ory requests can be stored in the buffers, rather than blocking the overlapped

interconnect. In this way, there is no contention to the shared request paths.

The root memory responses to these requests in FIFO sequence, and new ar-

rival requests have to wait in queue behind. This can be defined as the queued

service which smooths the resource sharing and thus reduces the variation of

memory access latency across this locally arbitrated architecture.

The premise of queued service is that the size of the root queue is sufficiently

large enough to store all outstanding requests in the system. Due to the ar-

chitectural features, the locally arbitrated Bluetree interconnect also provides

buffers as well as the root queue. The amount of the total queued buffers in

this architecture is analysed as follows.

• The root memory provides 1 buffer - a request occupying the memory

module can be considered as stored locally.

• The employed root queue provides Q buffers (size).

• The Bluetree root multiplexer provides 1 pipelined buffer.

• Either the Bluetree multiplexer adjacent to the root stage provides 1

buffer. If buffers from both Bluetree multiplexers are considered, there

112

may be path contention. With the aim to guarantee the queued service,

only a single buffer can be considered as applicable.

Based on the above analysis, the total size of the buffers at the Bluetree

root is Q+ 3. On the other hand, as for practical applications, the number of

memory requests issued to a system is limited, and the memory access pattern

is dependent on memory response. This potentially follows the workload

pattern Nµ
RQ(µi) and T µRQ(µi). In this case, outstanding request number to

the shared memory Nµ
RQ(D) is assumed as the sum of Nµ

RQ(µi) in the entire

Bluetree interconnect. With these above assumptions, the minimum size of

the root queue QS for the queued service is QS = Nµ
RQ(D) − 3. The queued

service requirement can be summarised as follows.

Q ≥ QS where QS = Nµ
RQ(D)− 3 (5.1)

When the queued service requirement is satisfied, the system stores the out-

standing memory requests into the root buffers in sequence. The queue mod-

ification effectively smooths the sharing of the critical interconnect paths

within the multi-core architecture. Besides that, this method requires no

modification to software operations.

5.2.1 Timing Behaviour Analysis

The timing behaviour analysis of memory accesses across the modified lo-

cally arbitrated architecture follows the generic analytical flow in Section 4.1.

The employment of the root queue introduces additional blocking within this

architecture, and memory requests stalled in the root queue only leads to

intra-path blocking. With blocking at the tree root, the entire interconnect

stalls, blocking the flow of memory requests in each path. However, this does

113

not complicate the blocking behaviour within the shared distributed inter-

connect, and the maximum increase of memory access latency is proportional

to the root memory latency t(D).

Memory request ω in priority path gives ω ∈ Pi. The maximum blocking

number up to and including any given Bluetree stage βk can be computed

with (4.6) and (4.7). The maximum blocking number that the request ω

experiences across the request path NWC
RQ (ω) can be calculated iteratively,

starting from the Bluetree leaf stage to the Bluetree root stage β0 within the

interconnect. With the root queue size Q, the maximum blocking number in

the request path NWC
RQ (ω) can be determined with the sum calculation that

the iterative process result accumulated to the root stage NWC
RQ (β0) plus Q

as follows. For example referring to Table 4.1, as for the 8-client Bluetree

architecture with the root queue size Q = 8, the maximum blocking number

in the worst case is NWC
RQ = 27 + 8 = 35 with the local blocking factor α = 1.

NWC
RQ (ω) = NWC

RQ (β0) +Q (5.2)

Afterwards, the worst-case memory access latency tWC(ω) can be calculated

with (4.5). With this worst-case assumption, memory requests suffer pes-

simistic blocking, thus no variation.

As for practical applications, the number of memory requests issued to a

system is limited. Outstanding request number Nµ
RQ(µi) can be determined

by workload pattern from clients such as exact memory access profiles. This

relies on effective analysis on accurate behaviour of application software. In-

stead, outstanding request number Nµ
RQ(µi) can be determined by the archi-

tecture of a processor, i.e., maximum number of outstanding memory requests

before the processor stalls. For example, a processor can be designed employ-

ing AXI protocol, which allows only a single outstanding request between

114

the master-slave pair. An alternative method is to utilise traffic shaping to

limit the number of outstanding memory requests and thus determine out-

standing request number Nµ
RQ(µi). Afterwards, outstanding request number

to shared memory Nµ
RQ(D) can be determined with the sum calculation in

this architecture. The increasing of Nµ
RQ(D) complicates the timing analysis

in the original locally arbitrated Bluetree-based architecture, and it requires

to derive the detailed status of the memory flow and the local arbiter at ev-

ery pipelined stage with exact memory access profiles. By contrast, with the

root queue modification, the value of Nµ
RQ(D) can be used to determine the

minimum size QS with (5.1) thus to satisfy the queued service requirement.

When the queued service requirement is satisfied, this architecture stores the

outstanding memory requests into the root buffers, waiting for the service of

the shared memory module in FIFO sequence. In this case, the root queue

modification smooths the resource sharing and thus reduces variation of mem-

ory access latency. Besides that, the root queue modification also facilitates

timing analysis for real-time applications. The queued service allows memory

requests to experience the same maximum queued delay, and the pending

period due to the root memory latency t(D) can mask the data path latency

across the pipelined buffers. Therefore, the worst-case memory access latency

of ω across this architecture can be bounded as follows.

tWC(ω) ≤ Nµ
RQ(D)× t(D) (5.3)

It is to be noted that if traffic shaping is employed to determine outstand-

ing request number Nµ
RQ(µi), the bound provided by the above analysis only

guarantees the worst-case memory access latency between the traffic shap-

ing components across the interconnect and the shared root memory module,

instead of the end-to-end latency from clients. This requires additional anal-

115

ysis to determine the time consumed between clients and the traffic shaping

components in such design.

In addition, request interval T µRQ(µi) also affects memory workloads. With

a very small request interval such as T µRQ(µi) = 1, memory requests will be

issued arriving to the interconnect root more intensively. This actually quickly

fills the shared root queue. If request interval T µRQ(µi) remains identical,

memory access latency will be identical. By contrast, the varying request

interval T µRQ(µi) leads to varying memory access latency. Considering the

memory workload pattern which is dependent on the response time, the new

issued requests arrive at the root queue distributed in time. In this case, such

memory requests suffer varying queued delays.

To sum up, with sufficient root queue size to satisfy the queued service re-

quirement in (5.1), memory access latency across this architecture only varies

with varying memory workloads, but no longer due to the resource sharing

issue. In this case, memory access latency can be bounded applying (5.3).

However, memory access latency can still vary with either the decreasing

of outstanding request number Nµ
RQ(D) or the increasing of request interval

Nµ
RQ(µi). If memory workloads change dramatically, these pending memory

requests can suffer widely varying queued delays at the root of the intercon-

nect (potentially in the root queue). Accordingly, memory access latency

varies widely.

5.2.2 Root Queue Management

A potential improvement method to further reduce variation of memory ac-

cess latency or even keep memory access latency identical is to utilise dummy

packets at root of the locally arbitrated interconnect. Dummy packet is gen-

116

D

R
oo

t Q
ue

ue

R
eq

ue
st

 D
ire

ct
io

n
D

em
an

d
Pa

ck
et

D
um

m
y

Pa
ck

et

R
es

po
ns

e
D

ire
ct

io
n

M
U

X
Pe

nd
in

g
C

he
ck

Figure 5.3. Root Queue Management with Hardware Design

117

erated locally without any information from clients. It is used to fill in the

root queue until the queue is full. When a dummy packet is relayed out of

the root queue, it stalls consuming a time period which equals to the root

memory latency t(D).

The root queue management is then deployed to both dummy packets and

demand packets which are memory requests. First, when demand packets

arrive at the root queue, they have to be allowed into the queue first rather

than any dummy packet. Second, when there is any demand packet arriving

but pending out of the root queue, the first dummy packet in the FIFO

queue has to be discarded. This aims to guarantee that all demand packets

experience same queued delays and do not suffer any additional delay due to

dummy packets.

Figure 5.3 shows an example of the hardware design of this root queue man-

agement. Dummy packets are generated locally at the root of the interconnect

and used to fill in the root queue. In this case, before demand packets arrive,

such as no memory requests issued by clients during the cold starting of the

system, the hardware queue is already full with dummy packets. Dummy

packets essentially consume time period t(D) however with no memory re-

sponse. When demand packets arrive at the root queue, the 2-to-1 multiplexer

simply employs the static priority-based arbitration scheme, always allowing

the demand packet to have the higher priority and get relayed into the queue

first. Besides that, the pending check process is used to guarantee there is no

demand packet waiting out of a full root queue. If any, the queue discards

the first dummy packet in the FIFO sequence. This hardware root queue

management can allow demand requests with similar queued delays, and the

relevant delays vary within a period which equals to the root memory latency

t(D).

118

The root queue modification can eliminate the resource sharing issue within

the locally arbitrated architecture, and thus memory access latency varies

with varying memory workloads. Based on this, the root queue management

further reduces variation of memory access latency that memory access la-

tency only varies within a single root memory time — no longer varies with

memory workloads. With further reduced variation of memory access latency,

the average-case memory access latency is closer to the worst-case memory

access latency across this modified architecture. In this case, the root queue

management leads to increased average memory access latency, which poten-

tially increases the overall program execution time, especially harming those

applications with not intensive root memory accesses.

The above hardware design illustrates an example of the root queue manage-

ment. It is more applicable to the hardware platform with fixed architectural

feature, such as a system employing AXI protocol with fixed outstanding

request number. Besides that, this design requires additional hardware re-

source including buffers and deployment of the root management. As the

queue management keeps checking and filling processes, this design also in-

creases power consumption at runtime. An alternative design can rely on the

aid of compiler with explicit instruction on the root queue management or

the effective application behaviour analysis for flexibility in utilisation of the

root queue, which remains the future work.

5.3 Evaluation: Hardware Simulations

This section evaluates the effectiveness of the root queue modification on

reducing variation of memory access latency across the locally arbitrated

Bluetree-based architecture by hardware simulations. Multiple experiments

119

with varying experimental parameters has been conducted, and 1 group is

selected in this section to evaluate memory access latency across 8-client

Bluetree-based architectures with increasing root queue size.

Traffic generators are employed as clients with synthetic memory workloads

which follow the workload pattern Nµ
RQ(µi) and T µRQ(µi). Each traffic gen-

erator issues 36 memory requests totally. Request interval is fixed as 1

T µRQ(µi) = 1 for a relatively simple workload pattern, and outstanding re-

quest number Nµ
RQ(µi) varies as group c in Table 4.2. In this case, the anal-

ysis of experimental results partially follows that of Figure 4.5 (c). Bluetree

blocking factor is set as α = 1, and each local arbiter is set with the same

value in the entire Bluetree interconnect to provide relatively fair accesses

for all clients. The root queue is designed using bypass FIFO in Bluespec

SpecialFIFOs package [107], and the root queue is reconfigurable with the

root queue size Q. In this architecture, the queued service requirement is

QS = Nµ
RQ(D) − 3 = 13 − 3 = 10, referring to the sum of the outstanding

request number Nµ
RQ(µi). In addition, Q = 0 indicates no root queue modi-

fication. The root memory module is designed using Bluespec BRAM pack-

age [107] with extra delays as a constant t(D) = 20 in clock cycles. Bluetree-

based systems are implemented using Bluespec System Verilog [107][108],

with simulations running on BlueSim simulator [107][108].

The experimental parameter is the root queue size Q which increases from

0, 5, 10, 15 to 20. This experiment measures memory access latency across

the modified 8-client Bluetree-based architectures that the latency of each

memory access is measured. In addition, memory request release time of

each memory access is also measured. The measured results are shown in

Figure 5.4 and Figure 5.5 with scatter plot. The horizontal axis is for memory

request release time in clock cycles, and the vertical axis is for memory access

latency in clock cycles.

120

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) No Root Queue Q = 0
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) Root Queue Size Q = 5
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Root Queue Size Q = 10
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 5.4. Memory Access Latency with Increasing Root Queue Size

Figure 5.4 (a) demonstrates same measured results as in Figure 4.5 (c). Mem-

ory access latency increases sharply in a very short period of time from the

start period of the simulation, with intensively issued memory requests into

the system. Essentially, as workload pattern is dependent on response time,

the release of memory requests drops that the increase of memory access la-

tency stops in turn. Memory access latency in each path tends to reach the

121

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) Root Queue Size Q = 20
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) Root Queue Size Q = 15
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 5.5. Memory Access Latency with Increased Root Queue Size

corresponding maximum limit. With fixed request interval, regular values of

memory access latency can be observed. As Bluetree allows varying blocking

behaviour, varying memory access latency can be observed. For example,

memory access latency in path P4 and path P5 varies, approximately either

280 or 240. Besides that, the inter-path interference also affects paths nearby.

For example, path P2 with Nµ
RQ(µ2) = 1 is severely affected by path P3 with

Nµ
RQ(µ3) = 3, and thus it suffers high memory access latency at approxi-

mately 325 due to additional blocking. With the decreasing of outstanding

requests Nµ
RQ(D) in the end period of the simulation, the contention to the

shared resource reduces and memory access latency reduces.

Figure 5.4 (b) shows memory access latency across modified Bluetree-based

architecture with root queue size Q = 5. Compared with Figure 5.4 (a),

122

memory access latency tends to coincide to be identical (as with fixed request

interval) in Figure 5.4 (b). With the root queue, some pending requests can

be stored in the shared FIFO buffer instead of blocking in the overlapped

data paths. In this way, the root memory is able to response to these pend-

ing requests in sequence. This smooths resource sharing, and thus variation

of memory access latency is reduced. However, in this measurement, the root

queue modification benefits some memory access paths that memory access

latency in paths with high memory workloads reduces. For example, memory

access latency in path P4 with Nµ
RQ(µ4) = 3 no longer varies between 280 and

240, instead remaining at approximately 240. By contrast, memory access la-

tency in paths with relatively lower workloads increases due to the smoothing

effects. For example, memory access latency in path P7 with Nµ
RQ(µ7) = 1

increases from 200 to 240. Besides that, root queue size Q = 5 is not enough

to buffer all the outstanding requests in this architecture. As shown in the

figure, memory access latency in either path P2 or path P3 still suffers high

memory access latency due to the resource sharing issue.

When the root queue is reconfigured with Q = 10, the queued service require-

ment is satisfied that the resource sharing issue is eliminated where Q ≥ QS

and QS = Nµ
RQ(D)−3 = 13−3 = 10 in this architecture. Figure 5.4 (c) shows

the measured results. The root queue is fully filled quickly from the start pe-

riod of the simulation, and then memory access latency remains identical (due

to fixed request interval). Afterwards, the worst-case memory access latency

can be bounded as tWC(ω) ≤ Nµ
RQ(D)× t(D) = 13× 20 = 260, and the high-

est measured value is 259. It drops significantly compared with Figure 5.4 (a)

(where the highest observed memory access latency is approximately 325). In

the end period of the simulation, memory access latency reduces with the de-

creasing of outstanding request Nµ
RQ(D). In this case, memory access latency

across the Bluetree-based architecture with root queue modification varies

with varying workloads, but not due to the resource sharing issue.

123

Figure 5.5 shows memory access latency with further increased root queue

size Q = 15 and Q = 20. Both Figure 5.5 (a) and Figure 5.5 (b) show the

same results as Figure 5.4 (c). In this case, the root queue modification with

a larger root queue size (larger than the queued service requirement) has no

effect to the timing behaviour.

5.4 Evaluation: FPGA Experiments

This section continues to evaluate the effectiveness of the root queue mod-

ification on reducing variation of memory access latency across the locally

arbitrated Bluetree-based architecture by FPGA experiments. Multiple ex-

periments with varying experimental parameters has been conducted, and 3

groups are selected in this section following experimental setup in previous

chapters. These experiments evaluate memory access latency across 8-client

Bluetree-based architectures with no root queue modified, with sufficient root

queue modification that queued service requirement is satisfied, and with root

queue management, by varying memory workloads.

Traffic generators are employed as clients with synthetic memory workloads

which follow the workload pattern Nµ
RQ(µi) and T µRQ(µi). Each traffic gen-

erator issues 100 memory requests totally. Bluetree blocking factor is set as

α = 1, and each local arbiter is set with the same value in the entire Bluetree

interconnect to provide relatively fair accesses for all clients. The root queue

is designed using bypass FIFO in Bluespec SpecialFIFOs package [107] with

reconfigurable root queue size Q. The root memory module is designed using

FPGA BRAM [110] with extra delays as a constant t(D) = 20 in clock cy-

cles. Bluetree-based systems are synthesised using Xilinx Vivado [111][112]

and implemented on Zedboard [113] with 100MHz of clock frequency.

124

In the following experiments, synthetic memory workloads vary with either

varying outstanding request Nµ
RQ(µi) or varying request interval T µRQ(µi).

These experiments measure memory access latency across Bluetree-based ar-

chitectures that the latency of each memory access is measured. In addition,

memory request release time of each memory access is also measured.

5.4.1 Memory Access Latency with Unbalanced Path

Workloads

Following experimental setup of hardware simulations, the initial FPGA ex-

periment is conducted with unbalanced path workloads. Outstanding request

number Nµ
RQ(µi) varies as group c in Table 4.2, and request interval T µRQ(µi)

varies as T µRQ(µi) ∈ [1, 64] with randomly generated values in Appendix A.1.

Figure 5.6 shows scatter plot of memory access latency with memory request

release time in this measurement. The horizontal axis is for memory request

release time in clock cycles, and the vertical axis is for memory access latency

in clock cycles. Figure 5.6 (a) with no root queue shows the same results as

Figure 4.11 (a). Compared with Figure 5.6 (a), scatters in Figure 5.6 (b) tends

to coincide. This follows similar trend from Figure 5.4 (a) to Figure 5.4 (c)

in the measurement of hardware simulations. However, with varying request

interval, memory access latency varies in this measurement. In addition, the

highest measured memory access latency reduces to 258 in Figure 5.6 (b)

where the worst-case memory access latency is bounded as 260 with sufficient

root queue size (referring to the analysis of hardware simulations). However,

with the variation of outstanding request to shared memory Nµ
RQ(D), memory

access latency still varies in Figure 5.6 (b), such as the reduction of memory

access latency in the end period. By comparison, scatters in Figure 5.6 (c)

125

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) No Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) With Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Root Queue Management
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 5.6. Memory Access Latency with Varying Workloads

almost coincide from the start to the end in this measurement. However, a

much longer horizontal axis can be observed that the execution time of this

experiment is much longer than others.

Figure 5.7 shows boxplot of memory access latency in this measurement. Sim-

ilar to the analysis of hardware simulations, the root queue modification tends

126

Figure 5.7. Boxplot of Memory Access Latency with Varying Workloads

to benefit memory access paths with relatively higher memory workloads. For

example, compared with the measured results of no root queue and with root

queue, median and mean in Figure 5.7 (d) for path P3 with Nµ
RQ(µ3) = 3

drops, and the difference between the maximum line and the minimum line is

127

noticeably reduced in in Figure 5.7 (e) for path P4 with Nµ
RQ(µ4) = 3. How-

ever, either the interquartile range or the difference between the maximum

line and the minimum line remains or even increases in some memory access

paths, such as in Figure 5.7 (f) for path P5 and in in Figure 5.7 (h) for path

P7, even with only 1 outstanding request. With the variation of outstanding

request to shared memory Nµ
RQ(D), the root queue is not fully filled and thus

memory requests suffer varying queued delays. In this case, only with the root

queue modification, memory access latency still varies with varying memory

workloads. By comparison, the root queue management guarantees similar

queued delays. Referring to the figure, at the expense of higher median and

mean, both the interquartile range and the difference between the maximum

line and the minimum line are significantly reduced, in each memory access

path.

5.4.2 Memory Access Latency with Balanced Path Work-

loads

This experiment is conducted with balanced path workloads. Outstanding

request number is fixed as Nµ
RQ(µi) = 2 as shown in Table 4.3, and request

interval varies as T µRQ(µi) ∈ [1, 64] with randomly generated values in Ap-

pendix A.1. Figure 5.8 shows scatter plot of memory access latency with

memory request release time in this measurement. The horizontal axis is for

memory request release time in clock cycles, and the vertical axis is for mem-

ory access latency in clock cycles. Compared with scatter plot of Figure 5.8

(a), Figure 5.8 (b) and Figure 5.8 (c), scatters of memory access latency

with memory request release time least distributed in Figure 5.8 (c). It is

also observed similar horizontal axises, thus similar execution time of these

experiments.

128

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) No Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) With Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Root Queue Management
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 5.8. Memory Access Latency with Balanced Path Workloads

Figure 5.9 shows boxplot of memory access latency in this measurement.

Compared with the measured results of no root queue, both the interquartile

range and the difference between the maximum line and the minimum line are

noticeably reduced with root queue in each memory access path, and median

and mead almost remains the same values. By comparison, the interquartile

range and the difference between the maximum line and the minimum line

129

Figure 5.9. Boxplot of Memory Access Latency with Balanced Path Work-

loads

is further reduced with root queue management in each memory access path,

with slightly increased median and mean referring to the figure. In addition,

no outliners are observed with root queue management.

130

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(a) No Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(b) With Root Queue
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000M
em

or
y

A
cc

es
s L

at
en

cy
 (C

LK
)

Memory Request Release Time (CLK)

(c) Root Queue Management
P₀
P₁
P₂
P₃
P₄
P₅
P₆
P₇

Figure 5.10. Memory Access Latency with Increasing Request Intervals

5.4.3 Memory Access Latency with Increasing Request

Intervals

Based on similar setup of the above experiment, the variation of request

interval increases as T µRQ(µi) ∈ [1, 256] in this experiment, with randomly

131

Figure 5.11. Boxplot of Memory Access Latency with Increasing Request

Intervals

generated values in Appendix A.2. Figure 5.10 shows scatter plot of memory

access latency with memory request release time in this measurement. The

horizontal axis is for memory request release time in clock cycles, and the

132

vertical axis is for memory access latency in clock cycles. Compared with

Figure 5.10 (a) and Figure 5.10 (b), scatters less distributed, and the highest

measured memory access latency noticeably drops. By comparison, scatters

tend to coincide in Figure 5.8 (c). However, a longer horizontal axis can be

observed referring to the figure, and thus the execution time of this experiment

is much longer than others.

Figure 4.14 shows boxplot of memory access latency in this measurement.

By comparison, the root queue management reduces variation of memory

access latency to the minimum, with both the smallest interquartile range

and the smallest difference between the maximum line and the minimum line

in each memory access path. With widely varying request intervals T µRQ(µi) ∈

[1, 256], memory requests are not intensively issued to this system. Referring

to the measured results of the original Bluetree-based architecture with no

root queue, both median and mean are reduced to half of those in the above

experiment with request interval T µRQ(µi) ∈ [1, 64]. The similar reduction

trend can also be observed in measurements with root queue modification.

The modified Bluetree system is actually not sufficiently loaded with request

interval T µRQ(µi) ∈ [1, 256], and thus the root queue is not fully filled. In this

case, memory requests suffer varying queued delays. By contrast, the root

queue management guarantees a full root queue, thus almost the same queued

delays. As shown in the figure, either the interquartile range or the difference

between the maximum line and the minimum line is approximately 20, and

this time period equals to the root memory latency t(D). In this experiment,

the worst-case memory access latency in the queued service can be bounded

as tWC(ω) ≤ Nµ
RQ(D)×t(D) = 16×20 = 320. Compared with the root queue

modification, the root queue management keeps memory access latency much

closer to the worst-case bound in the queued service.

133

5.5 Summary and Discussion

This chapter proposes the root queue modification with the root queue man-

agement to the locally arbitrated architecture by employing and utilising an

additional hardware queue with queue management between the shared dis-

tributed interconnect root and the shared memory module. With sufficient

root queue size, the queued service eliminates the resource sharing issue within

the locally arbitrated architecture that memory access latency only varies with

varying memory workloads. This root queue modification also facilitates the

timing behaviour analysis that the worst-case memory access latency can be

bounded applying calculations instead of deriving with exact memory ac-

cess profiles. Besides that, the root queue management is further proposed

by utilising dummy packets to reduce variation of memory access latency.

This guarantees that memory requests experience the same queued delays.

Based on the root queue modification, the root queue management keeps the

average-case memory access latency closer to the worst case in the queued

service.

Experiments with hardware simulations and FPGA implementations demon-

strate the effectiveness of the proposed work on reducing the variation of mem-

ory access latency. Experimental results from hardware simulations demon-

strate more noticeable effectiveness with the increasing of the root queue size.

The root queue modification reduces variation of memory access latency and

also reduces the highest measured memory access latency. Experimental re-

sults from FPGA implementations demonstrate that memory access latency

only varies due to varying memory workloads with the root queue modifi-

cation, but no longer due to resource sharing issue. By comparison, the

root queue management further reduces variation of memory access latency

134

to minimum that memory access latency can only vary with varying root

memory latency, regardless of memory workloads.

In summary, the root queue modification with the the root queue manage-

ment effectively reduces variation of memory access latency across the locally

arbitrated architecture and facilitates the timing behaviour analysis. This

contributes to solve the research question Q2.

The main contribution presented in this chapter is summarised as follows.

The root queue modification with the root queue management is proposed for

multi-core architectures with locally arbitrated interconnects that variation of

memory access latency is effectively reduced and the timing behaviour analysis

is also facilitated, contributing towards real-time multi-core systems.

It is to be noted that this research implements the root queue management

in hardware design as an example. An alternative design can rely on the aid

of compiler with explicit instruction on the root queue management or the

effective application behaviour analysis for flexibility in utilisation of the root

queue.

135

Chapter 6

Meshed Bluetree: Distributed

Time-Predictable

Multi-Memory Interconnect for

Multi-Core Architectures

This chapter proposes a novel distributed multi-memory interconnect, Meshed

Bluetree, for multi-core architectures. It is the extension of the tree-based dis-

tributed memory interconnect employing mesh-of-trees topology. The Meshed

Bluetree architecture is constructed by the coupling of a router network and

multiple locally arbitrated Bluetree-based architectures in parallel, allowing

multiple processors to simultaneously access multiple memory modules with

time-predictable behaviour. This aims to solve the research question Q3:

Can multi-core architectures with shared distributed memory interconnects be

improved by architectural enhancement for increasing memory workloads?

136

The reminder of this chapter is structured as follows. Section 6.1 analyses

resource contention over the locally arbitrated architecture and the globally

arbitrated architecture with increasing memory workloads. Section 6.2 pro-

poses the design of Meshed Bluetree and explain the operation with analysis

on the time-predictable behaviour of memory accesses. Section 6.3 evaluates

the hardware consumption of Meshed Bluetree. Section 6.4 evaluates memory

access latency across the Meshed Bluetree architecture with FPGA experi-

ments using synthetic memory workloads. Section 6.5 evaluates the overall

system performance of the Meshed Bluetree architecture with FPGA experi-

ments using real-world benchmarks. Afterwards, Section 6.6 summarises this

chapter and presents discussion.

6.1 Problem Analysis

In the emerging real-time application scenarios, such as autonomous vehicles

and robotics, there is a stringent requirement on the execution time of applica-

tion being both bounded in the worst case (thus time predictability) and low.

To deal with complex functionality and achieve high performance, multi-core

architectures are widely deployed where multiple processors share a single

memory module. With the trend of either integrating more applications or

employing more processors into the shared memory multi-core architecture,

the contention over memory accesses potentially aggravates.

The multi-core architectures with shared distributed memory interconnects

are able to provide the time-predictable behaviour over memory accesses. Be-

sides that, the distributed pipelined stages can allow high synthesisable clock

frequency, scaling to a large number of processors. The locally arbitrated ar-

chitecture allows multiple memory requests in transfer simultaneously that

137

the contention over either the shared root memory module or the overlapped

data paths increases with increasing memory workloads. This leads to increas-

ing memory access latency. By contrast, the globally arbitrated architecture

avoids contention over memory accesses based on global scheduling interval.

However, it does not alleviate memory workloads. For example, with the in-

creasing number of processors, memory access latency increases as well as the

global scheduling cycle. In this case, both the locally arbitrated architecture

and the globally arbitrated architecture potentially suffer increasing memory

access latency with increasing workloads.

The methods to alleviate critical resource contention has also been widely

studied on multi-core architectures. Intuitively, more effective root memory

subsystem or local memory modules at processors can be deployed to allevi-

ate the contention over memory accesses. The effectiveness of such methods

essentially relies on the analysis of accurate application behaviour thus to

exploit data efficiency as well as to predict the memory access behaviour to

bound the worst case. A method is to regulate accesses to critical resource

based on resource reserving. The design of real-time system also tends to

achieve temporal isolation. Similar to the analysis of the globally arbitrated

architecture, it aims to provide contention-free behaviour without alleviat-

ing memory workloads. A different method is message combining which can

potentially combine memory requests to reduce the contention over the over-

lapped data paths within the tree-based interconnect. However, it fails to

alleviate workloads to the shared root memory module.

Instead, an alternative method is to invest additional hardware resources,

such as employing virtual channel to alleviate the router contention from

multiple communication flows in NoC applications. As for the tree-based

structure, Audsley et al. [105] proposes that multiple memory modules or

memory banks can be independently employed at the root of the locally ar-

138

bitrated Bluetree-based architecture (potentially through a shared memory

controller), aiming to provide diverse memory features to support mixed-

criticality systems. This potentially increases memory bandwidth. However,

it moves the design burden to the shared memory controller, and the shared

tree root remains the architectural bottleneck of the locally arbitrated inter-

connect.

Following the idea of multiple root memory modules being engaged, this re-

search proposes an architectural enhancement that the tree-based distributed

memory interconnect can be extended to a multi-memory interconnect based

on the mesh-of-trees topology [78][79]. In this way, the new distributed multi-

memory interconnect allows multiple processors to simultaneously access mul-

tiple memory modules. This potentially alleviates the contention to a single

shared memory module as well as the shared distributed memory intercon-

nect. It aims towards time-predictable behaviour (i.e., with the analytical

memory access latency and bounded worst case), memory access latency re-

duction in the average case, as well as scalability for multi-core architectures.

The locally arbitrated Bluetree-based architecture is employed as an exam-

ple which does not require to model memory requests in applications. This

design can be extended to other configurations than the Bluetree design.

6.2 Meshed Bluetree

This section proposes the design of Meshed Bluetree, the distributed multi-

memory interconnect for multi-core architectures. The topology of this design

is based on mesh-of-trees (MoT) [78][79]. In the research [77], MoT is devel-

oped with single-clock-cycle data paths, using a set of switches coordinated by

a global control signal to establish a complete memory access path dedicated

139

for a specific processor at a time. This MoT operates in the circuit-switched

round-robin manner with centralised control, allowing data transfer between

processors and memory modules within a single clock cycle and enabling

relatively simple timing analysis. However, with an expanding system config-

uration (i.e., the number of processors and memory modules), the logic size

of this centralised design increases logarithmically, which severely limits the

maximum synthesisable clock frequency.

By contrast, the design of Meshed Bluetree employs distributed data paths

with local arbitration. Although additional clock cycles are introduced, it

allows much higher synthesisable clock frequency, scaling to a large system.

The Meshed Bluetree architecture is proposed to alleviate the resource con-

tention within the conventional locally arbitrated architecture, enabling multi-

ple processors to share multiple memory modules. This aims to achieve good

and scalable average-case performance, whilst providing time-predictable be-

haviour.

Figure 6.1 illustrates the architecture of Meshed Bluetree, which is con-

structed by the coupling of a distributed router network (the upper half)

and multiple Bluetree-based architectures in parallel (the lower half). In this

particular example, the Meshed Bluetree architecture employs 8 clients shar-

ing 4 independent memory modules. Each client µi has a memory access path

P(i,j) to connect to the memory module Dj where i is the client index and j

is the memory module index. For example, the path P(1,1) for the client µ1 to

connect to the memory module D1 is highlighted in the figure. The memory

modules can be paralleled memory banks within a single DRAM module as

analysed in [105]. The design can also be extended with paralleled scratchpad

memory (SPM), cache, or mixed types of memory components. The Meshed

Bluetree architecture allows sufficient design flexibility to support multi-core

applications.

140

D
0

D
1

D
2

D
3

µ 2
µ 3

µ 4
µ 7

µ 5
µ 6

µ 0
µ 1

R
ou

te
r N

et
w

or
k

R

P (
1,

1)

Figure 6.1. 8×4 Meshed Bluetree

141

Arbiter

Client Direction

Bluetree Direction 1

RS

RQ RS

RQRS RQ

Bluetree Direction 0

DEMUX

Figure 6.2. Bluetree Router

When a client µi issues a memory request, the router network R first decides

the routing path and relays the request to a specific Bluetree-based architec-

ture. Then the corresponding Bluetree interconnect Bj further multiplexes

and relays this request to the destination memory module Dj. It is to be

noted that the same subscript j indicates a one-to-one relationship between

a Bluetree interconnect and a memory module. The memory response re-

turns across the bi-directional meshed interconnect in a reverse process. As

the memory address range can be partitioned across these paralleled mem-

ory modules, the simultaneous accesses to different memory modules can be

processed concurrently. This potentially reduces the contention over a single

memory module as well as a single shared memory interconnect and thus

reduces memory access latency.

The router network R is constructed with multiple stages of Bluetree routers.

With the number of memory modules ND growing, the router network R

scales with more pipelined router stages, which increases the router depth

NR in the tree-based architecture. In Figure 6.1, NR is equal to 2. The de-

142

sign of the Bluetree router is shown in Figure 6.2. The local request path

(named RQ as before) of Bluetree router is non-blocking, and the internal de-

multiplexer decides the route direction of memory requests. Pipelined buffers

and client-server interfaces are also implemented, similar to the design of

Bluetree multiplexer.

Arbitration occurs in the local response path (named RS as before) to de-

cide which Bluetree direction of memory response to be relayed to the client

direction, and potentially to next Bluetree routers. An applicable local ar-

bitration scheme can be round-robin, which provides locally fair access for

both Bluetree directions. It is also feasible to employ static-priority arbitra-

tion at the local router stage, always allowing the memory response from a

single direction to have higher priority and get relayed first. The consecutive

responses along a specific path have time intervals in between, related to the

responding speed of the memory modules. Therefore, a memory response

will not be blocked at a single router stage for long, even with a lower prior-

ity. The exact amount of blocking along the response path depends on the

number of responses ahead in transfer. This Meshed Bluetree architecture

allows memory modules with different response time, potentially supporting

mixed-criticality applications.

The term system cardinality is introduced to describe the configuration of the

Meshed Bluetree architecture. It is expressed as the product of the number of

clients Nµ and the number of memory modules ND. For example, the system

cardinality of the Meshed Bluetree in Figure 6.1 is 8× 4. With an increasing

system cardinality, the Meshed Bluetree scales with either higher router depth

NR or higher Bluetree depth Nβ, indicating larger hardware consumption.

The number of components required to construct the Meshed Bluetree in-

terconnect is analysed as follows, including Bluetree multiplexers, Bluetree

143

routers and Bluetree wires. For a single Bluetree memory architecture within

Figure 6.1, the number of Bluetree multiplexers Nmux increases with the num-

ber of clients Nµ, considering the tree topology. For the Meshed Bluetree ar-

chitecture, the total number of Bluetree multiplexers Nmux also increases with

the number of memory modules ND as follows. Taking Figure 6.1 as an ex-

ample, the number of Bluetree multiplexers Nmux is equal to (8−1)×4 = 28.

Nmux = (Nµ − 1)×ND (6.1)

Similarly, the number of Bluetree routers Nrouter required to construct the

tree-based router network increases with both the number of memory modules

ND and the number of clients Nµ as follows. Taking Figure 6.1 as an example,

the number of Bluetree routers Nrouter is equal to (4− 1)× 8 = 24.

Nrouter = (ND − 1)×Nµ (6.2)

Bluetree wire refers to the data bus for the communication between any two

Bluetree components within the interconnect, i.e., clients, memory modules,

Bluetree multiplexers and Bluetree routers. The number of Bluetree wires

Nwire is calculated as follows. For each Bluetree multiplexer, there is a Blue-

tree wire (pointing towards the memory direction), thus (Nµ − 1) × ND in

the architecture. For each Bluetree router, there is a Bluetree wire (pointing

towards the client direction), thus (ND − 1) × Nµ in the architecture. Then

the rest ND ×Nµ Bluetree wires connect Bluetree multiplexers and Bluetree

routers. Taking Figure 6.1 as an example, the number of Bluetree wires Nwire

is equal to (8− 1)× 4 + (4× 2− 1)× 8 = 84.

Nwire = (Nµ − 1)×ND + (ND × 2− 1)×Nµ (6.3)

The width of the data bus within the Meshed Bluetree interconnect depends

on the communication packet format as shown in Figure 6.3. Developed from

144

CMD CPU_IDADDR DATA MEM_ID

Memory Access Information Route Information

Figure 6.3. Meshed Bluetree Communication Packet Format

the Bluetree communication packet format, Figure 6.3 includes the memory

access information and the route information in general. The memory access

information is generated or received by the client or the root memory, for

example, including the 1-bit command field CMD (i.e., the memory command

type such as memory read or memory write), the 32-bit address field ADDR

and the 32-bit data field DATA. In the memory request packet, CMD ‘0’

indicates a read request, and CMD ‘1’ indicates a write request. In the

memory response packet, CMD ‘0’ indicates a read response, and CMD ‘1’

indicates a write acknowledgement.

The route information is required for the packet transfer across the intercon-

nect, and it is used for for each distributed multiplexing stage to track or

decide the route. The route information can include the 8-bit client identifier

field CPU ID and the 8-bit memory identifier field MEM ID as an example.

In this case, it can support a maximum Bluetree depth Nβ = 8 and a maxi-

mum router depth NR = 8. When a client issues a request, the corresponding

CPU ID is encoded by the local arbiter at each Bluetree multiplexer to track

the route: left shift by 1 bit with ‘0’ for the local high-priority path, or left

shift 1 bit with ‘1’ for the local low-priority path. CPU ID is also used by

the demultiplexer along the response path to decide the route back to the

corresponding client, decoded by the right shift operation at each local stage.

Similarly, MEM ID is required by Bluetree routers.

In the above example, the total bit-width of a packet is 81, which is also the

width of the data bus as well as the Bluetree multiplexers and the Bluetree

145

routers. It is to be noted that this design is reconfigurable and allows flexible

extension, such as additional bits for the priority field of a priority-based

arbitration in the route information. An extra interface is needed for the

conversion of the packet format, for example, converting the packet format

between the Meshed Bluetree interconnect and the AXI bus. In addition, this

design is independent of memory addressing schemes.

In general, a single memory access across the Meshed Bluetree architecture

experiences higher latency, due to the longer pipelined data path with the

router network. However, simultaneous memory accesses can be processed

by the paralleled memory modules concurrently, which effectively alleviates

the contention over a shared memory module. In this way, latency of in-

tensive memory accesses can be reduced, and thus the overall system per-

formance is improved. Besides that, the Meshed Bluetree architecture sup-

ports memory isolation, potentially simplifying software or OS development

for multi-core systems. This architecture also provides sufficient flexibility for

mixed-criticality systems with diverse memory bandwidth or memory latency

requirements.

6.2.1 Timing Behaviour Analysis

The timing behaviour analysis of memory accesses across the Meshed Blue-

tree architecture follows the generic analytical flow in Section 4.1 which is

proposed for the locally arbitrated architecture. The reminder of this section

focuses on the bound of the worst-case latency which is particularly important

for the real-time applications. In general, the calculation on the worst-case

latency tWC of the memory access ω consists of the worst-case request path

latency tWC
RQ (ω), the root memory latency t(Dj), and the worst-case response

path latency tWC
RS (ω) as follows. It is to be noted that inter-path blocking

146

and intra-path blocking potentially occur along both the request path and the

response path in the Meshed Bluetree architecture.

tWC(ω) = tWC
RQ (ω) + t(Dj) + tWC

RS (ω). (6.4)

For the request path, the employment of the router network R introduces

intra-path blocking to the memory request ω before Bluetree stages. With

the router depth NR, the maximum blocking number in the router request

path is equal to NR, under the assumption that all the buffers are occupied

at every pipelined stage. This blocking within the router network aggravate

the inter-path blocking in the overlapped Bluetree request paths, which gets

more severe closer to the root memory modules.

In this case, the maximum blocking number along the full request path

NWC
RQ (ω) can be statically determined applying calculations, and the worst-

case assumption remains that the system is flooded by memory requests.

Path P(i,j) gives priority path in a Bluetree-based architecture. The maxi-

mum blocking number that the request ω experiences across the request path

NWC
RQ (ω) can be calculated iteratively, starting with the value NR from the

router network R to the Bluetree root stage β0 within the interconnect Bj.

Finally, the maximum blocking number in the request path NWC
RQ (ω) equals

to the maximum blocking number accumulated to the root stage NWC
RQ (β0).

With the increasing Bluetree local blocking factor α, the maximum blocking

number in the request path NWC
RQ (ω) decreases with more local high-priority

tracks. Afterwards, the worst-case request path latency tWC(ω) can be cal-

culated with (4.4). According to the Bluetree arbitration design, when the

blocking factor is set as α = 1, the Bluetree interconnect provides relatively

fair accesses for all requests regardless of the client index.

147

The analysis for blocking in the response path is different from that for the

request path in the locally arbitrated architecture. According to the design

of the Meshed Bluetree architecture, the consecutive memory responses are

separated by certain time intervals, depending on the responding speed of

the memory modules. Therefore, a response path will not be flooded by

interfering responses. The maximum blocking that the memory access ω

experiences in the response path is much less than that in the request path.

In general, the response path is non-blocking within a Bluetree interconnect

Bj, and the memory response can experience blocking in the router network

R. The blocking analysis within the router network varies, depending on

whether the root memory modules have homogeneous latency.

If all the paralleled memory modules have the identical root memory latency

t(Dj), there will be no blocking within the router network R. The memory

requests from the same client are always issued successively. Therefore, there

is only a single response arriving at each arbitration stage at a time, thus

no inter-path blocking. If the root memory latency t(Dj) varies on different

memory modules over the paralleled Bluetree-based architectures, the inter-

path blocking occurs in the router network R. A response only stalls in each

pipelined stage for at most 1 clock cycle due to a single contending response

from the other local path. Referring to the previous analysis, Bluetree router

can locally employ either the round-robin arbitration scheme or the static-

priority arbitration scheme. The worst case occurs when each local arbiter

along the response path always harms the response flow, and the maximum

blocking number under both schemes can be statically bounded applying

calculations.

With the round-robin scheme at each router stage, a response can be blocked

by at most a single response from the other local path. Considering the re-

sponse intervals from the memory modules and the basic pipelined data path

148

latency (crossing routers and multiplexers without blocking), such inter-path

blocking will not lead to any intra-path blocking of the responses behind.

Therefore, the maximum blocking number in the response path is determined

by the router depth NR as NWC
RS (ω) = NR. The worst-case response path la-

tency tWC
RS (ω) can be calculated as the sum of the basic pipelined path latency

(through the router network and the Bluetree interconnect) plus blocking as

follows.

tWC
RS (ω) = Nβ +NR +NWC

RS (ω)

= Nβ +NR +NR

= Nβ + 2×NR

(6.5)

The local static-priority arbitration can lead to more inter-path blocking.

With static priority at each router stage, the internal arbiter will always

allow memory responses from a local path with higher priority to block the

other local path. Following the architectural characteristics, the memory re-

sponses in a specific path are separated with intervals, and a single memory

response experiences the basic pipelined data path latency. Therefore, a sin-

gle response will not be stalled at a local router stage for long. The inter-path

blocking does not cause any intra-path blocking to memory responses behind

in the same path, as clients accept responses immediately, unlike memory

modules which take t(Dj) to respond to requests.

When a response ω crosses the leaf stage of the router network, there will be

only a single interfering response from the other local path considering the

memory responding intervals. Then the response ω experiences more inter-

path blocking at the subsequent router stages closer to the client. The max-

imum blocking number in the response path can be bounded as NWC
RS (ω) =

ND, with the assumption that the response flow is always interfered. In this

case, the worst-case response path latency tWC
RS (ω) can be calculated as fol-

149

lows.

tWC
RS (ω) = Nβ +NR +ND (6.6)

Taking the static-priority arbitration in Bluetree router as an example, the

worst-case latency tWC of the memory access ω can be computed from the

worst-case latency across the request path tWC
RQ (ω) and the response path

tWC
RS (ω). The overall calculation can be reformed based on the above analysis

as follows.

tWC(ω) = tWC
RQ (ω) + t(Dj) + tWC

RS (ω)

= NWC
RQ (β0)× t(Dj) + t(Dj) + tWC

RS (ω)

= (NWC
RQ (β0) + 1)× t(Dj) +NB +NR +ND.

(6.7)

Analytical Results and Measured Results

This section compares the analytical worst-case memory access latency and

the measured worst-case memory access latency across the Meshed Bluetree

architecture under system cardinality 8×1, 8×2 and 8×4. Bluetree blocking

factor is set as α = 1, and each local arbiter is set with the same value in the

entire Bluetree interconnect. Bluetree router is set with round-robin scheme.

The latency of the paralleled memory modules are assumed as a constant 20

in clock cycles. In this case, the analytical results are calculated following the

above analysis that there is no blocking within the router network.

The measured results are from hardware simulations. Traffic generators are

employed as clients, and each traffic generator keeps pushing memory requests

into its memory access path. In this case, the system can be flooded with

memory requests (potentially pending), aiming towards that each memory

request experiences its maximum blocking. The root memory modules are

implemented using Bluespec BRAM package [107] with extra delays as a

150

623

784

945

603

764

925

0

200

400

600

800

1000

1200

8×1 8×2 8×4

W
or

st
-C

as
e

M
em

or
y

A
cc

es
s

La
te

nc
y

(C
LK

)
Meshed Bluetree Architecture

Analytical Measured

Figure 6.4. Worst-Case Memory Access Latency across Meshed Bluetree Ar-

chitecture

constant 20 in clock cycles. The system is implemented using Bluespec System

Verilog [107][108], with simulations running on BlueSim simulator [107][108].

This simulation measures memory access latency across the Meshed Bluetree

architecture that the latency of each memory access is measured.

Similar to the analysis of Figure 4.4, the measured memory access latency

gradually increases until at a constant value. Then the maximum measured

constant is selected as the measured worst-case memory access latency across

the relevant memory access path. In addition, the worst-case memory access

latency is identical with blocking factor α = 1 in each memory access path,

both analytical and measured results. In this case, Figure 6.4 shows the

comparison of analytical worst-case memory access latency and measured

worst-case memory access latency over system cardinality with bar chart.

The horizontal axis is for system cardinality 8× 1, 8× 2 and 8× 4, and the

vertical axis is for the worst-case results in clock cycles. It is observed that

the measured results are smaller than the analytical results. It is to be noted

that the 8× 1 Meshed Bluetree architecture is the same as the conventional

8-client Bluetree-based architecture.

151

Discussion

Following the generic analytical flow to safely bound the worst case of the

locally arbitrated architecture, the worst-case analysis inevitably produces

pessimistic results across the Meshed Bluetree architecture. This can lead to

conservative system design and resource dimensioning, as the memory access

latency is the main part forming the overall program execution time. If the

exact memory access profiles can be provided, the accurate memory access

latency with no pessimism can be determined based on the detailed status

of the memory flow and the local arbiter at every pipelined stage. With

uncertainty on memory access profiles which is often the case in reality, the

worst-case analysis reported in this section must be deployed for real-time

applications even with pessimistic results.

The worst-case bound provided can also be tightened, e.g., by restricting

the demand from processors with limit, and the discussion on the tightness

also requires sufficiently representative memory workloads to be fair. As for

practical applications, the number of memory requests issued to a system is

limited and the memory access pattern is dependent on memory response.

This potentially follows the workload pattern Nµ
RQ(µi) and T µRQ(µi). In this

case, the root queue modification with the root queue management can be

appropriately employed to facilitate timing behaviour analysis of memory

accesses across such architecture, which remains the future work.

In summary, compared with the conventional Bluetree-based architecture,

the Meshed Bluetree architecture allows simultaneous memory accesses to

be processed by the paralleled memory modules concurrently. It provides

good average-case performance and guarantees the worst-case memory access

latency which is particularly important for real-time applications.

152

1

2

4

8

16

0

1000

2000

3000

4 8 16 32 64 128

3 7 15 31 63 127

6 14 30 62 126 254
12 28 60 124 252

50824 56 120 248
504

1016
48 112 240

496

1008

2032

M
em

or
y

M
od

ul
es

Clients

Figure 6.5. Hardware Consumption: Bluetree Multiplexer

1

2

4

8

16

0

1000

2000

3000

4 8 16 32 64 128

0 0 0 0 0 0

4 8 16 32 64 128

12 24 48 96 192 384
28 56 112 224

448
89660 120 240

480
960

1920

M
em

or
y

M
od

ul
es

Clients

Figure 6.6. Hardware Consumption: Bluetree Router

1

2

4

8

16

0

2500

5000

7500

4 8 16 32 64 128

7 15 31 63 127 255

18 38 78 158 318 638
40 84 172 348 700

140484 176 360 728
1464

2936
172 360 736

1488

2992

6000

M
em

or
y

M
od

ul
es

Clients

Figure 6.7. Hardware Consumption: Bluetree Wire

153

Table 6.1. Hardware Consumption at RTL Level

Component LUT Register BRAM

Bluetree Multiplexer 105 269 0

Bluetree Router 88 251 0

6.3 Evaluation: Hardware Consumption

This section evaluates the hardware consumption of the Meshed Bluetree

architecture. The numbers of components required to construct the Meshed

Bluetree interconnect, including Bluetree multiplexers, Bluetree routers and

Bluetree wires, are reported in Figure 6.5, Figure 6.6 and Figure 6.7, with

the system cardinality increasing from 4 × 1 to 128 × 16. These results are

calculated using (6.1), (6.2) and (6.3), which covers the entire interconnect.

As shown in these figures, the numbers of components are proportional to the

number of clients and memory modules, respectively.

The hardware consumption of Bluetree multiplexer and Bluetree router at

the register-transfer level (RTL) is reported in Table 6.1, in terms of look-

up tables (LUTs), registers, and BRAMs, which are the basic logic units on

FPGA. Gate-level consumption, which depends on the fabrication technol-

ogy, can be evaluated in the future work that more detailed information such

as the width and length of wires, as well as the exact amount of area, is avail-

able. The design employs Bluetree multiplexers with the local blocking factor

α = 1 and the static priority-based arbitration within Bluetree routers. The

entire Meshed Bluetree architecture is implemented using Bluespec System

Verilog [107][108] and synthesised with Xilinx Vivado [111][112].

As shown in Table 6.1, a single Bluetree router consumes slightly fewer re-

sources than a Bluetree multiplexer, and the relevant difference is mainly on

154

the design of internal arbiter. The BRAM consumption is 0 with the selected

arbitration schemes. It is to be noted that this resource consumption is ob-

tained from Vivado synthesis report, and the resource consumption can be

much lower after optimisation. Based on Figure 6.5, Figure 6.6, Figure 6.7

and Table 6.1, the hardware consumption of the Meshed Bluetree interconnect

increases linearly over the system cardinality.

6.4 Evaluation: Synthetic Memory Workloads

This section evaluates memory access latency across Meshed Bluetree archi-

tectures by FPGA experiments with synthetic memory workloads. Multiple

experiments with varying experimental parameters has been conducted, and 2

groups are selected in this section to evaluate the timing behaviour of mem-

ory accesses across the Meshed Bluetree architecture under various system

configurations.

In the following experiments, traffic generators are employed as clients with

synthetic memory workloads which follow the workload pattern Nµ
RQ(µi) and

T µRQ(µi). Each traffic generator issues 100 memory requests totally. Out-

standing request number is fixed as 2 Nµ
RQ(µi) = 2 as shown in Table 4.3,

and request interval varies as T µRQ(µi) ∈ [1, 64] with randomly generated val-

ues in Appendix A.1. Bluetree blocking factor is set as α = 1, and each

local arbiter is set with the same value in the entire Bluetree interconnect

to provide relatively fair accesses for all clients. Bluetree router is set with

round-robin scheme. The Meshed Bluetree systems are synthesised using Xil-

inx Vivado [111][112] and implemented on Virtex-7 FPGA VC709 [114] with

100MHz of clock frequency.

155

16021

8242

5249

0

5000

10000

15000

20000

Ex
ec

ut
io

n
Ti

m
e

(C
LK

)

System Cardinality

8×1
8×2
8×4

Figure 6.8. Execution Time with Multiple Homogeneous Memory Modules

The following experiments measure the execution time of each experiment

which reflects the overall system performance. In addition, each experiment

also measures memory access latency across the Meshed Bluetree architecture

that the latency of each memory access is measured.

6.4.1 Memory Access Latency with Multiple Homoge-

neous Memory Modules

This experiment evaluates memory access latency across 8-client Meshed

Bluetree architecture with multiple homogeneous memory modules, under

system cardinality 8× 1, 8× 2, and 8× 4. The memory modules are imple-

mented based on FPGA BRAM [110] with additional 20 clock cycles. The

memory accesses are randomly partitioned among these paralleled memory

modules following the uniform distribution.

Figure 6.8 shows the execution time of experiments over system cardinality

with bar chart. The horizontal axis is for system cardinality 8×1, 8×2 and 8×

4, and the vertical axis is for the execution time in clock cycles. It is observed

156

283

125

62
0

100

200

300

400

Av
er

ag
e

M
em

or
y

A
cc

es
s L

at
en

cy

(C
LK

)

System Cardinality

8×1
8×2
8×4

Figure 6.9. Average Memory Access Latency with Multiple Homogeneous

Memory Modules

that the measured execution time is roughly reduced by half as the number of

memory modules doubles. The reduction of the execution time is not exactly

by half, instead slightly less than, because memory accesses experience longer

data path latency across the Meshed Bluetree interconnect, according to the

timing behaviour analysis. Although a portion of data path latency can be

masked by the waiting for the root memory module, the latency of a single

memory access increases. Besides that, following a randomised process, the

memory accesses are not evenly partitioned to the paralleled architecture,

neither the target memory modules nor the memory request issuing time

instants. In this case, the contention over a heavier shared memory module

increases the relevant memory access latency.

Latency of each memory access in this measurement is also analysed. Fig-

ure 6.9 shows the average memory access latency with the highest measured

memory access latency over system cardinality. The horizontal axis is for sys-

tem cardinality 8×1, 8×2 and 8×4, and the vertical axis is for average memory

access latency with the whisker for the highest measured memory access la-

tency, both in clock cycles. Although the blocking due to the shared resources

still occurs, the simultaneous memory requests are partitioned into multiple

157

23247

18346

11779

0

5000

10000

15000

20000

25000

Ex
ec

ut
io

n
Ti

m
e

(C
LK

)

BRAM Accesses

10%
30%
50%

Figure 6.10. Execution Time with Mixed Memory Modules

memory modules in parallel through the Meshed Bluetree interconnect (al-

though not evenly partitioned). This effectively alleviates the contention to a

single memory module and thus reduces the average memory access latency

as well as the highest measured memory access latency referring to the figure.

It is also observed that the highest measured memory latency is 319, 246 and

117 in 8× 1, 8× 2 and 8× 4 systems respectively. The results are much lower

the analytical results which statically bounds the worst case without exact

memory access profiles. It is to be noted that the Meshed Bluetree architec-

ture is designed towards memory access latency reduction in the average case,

whilst with analytical time-predictable behaviour and safe worst-case bound.

6.4.2 Memory Access Latency with Mixed Memory Mod-

ules

This experiment evaluates memory access latency across 8-client Meshed

Bluetree architectures with mixed memory modules under system cardinality

of 8 × 2, directly employing an FPGA BRAM module [110] and a VC709

DDR3 DRAM module [115]. In this experiment, the percentage of memory

158

418

327

190

0

100

200

300

400

500

600

Av
er

ag
e

M
em

or
y

A
cc

es
s L

at
en

cy

(C
LK

)

BRAM Accesses

10%
30%
50%

Figure 6.11. Average Memory Access Latency with Mixed Memory Modules

accesses to BRAM varies from 10%, 30%, to 50%, as the faster memory mod-

ule tends to be in smaller size and with smaller memory address range. It is

to be noted that memory write is not research focus, as write buffers are de-

ployed in DRAM modules to expedite memory writes. By contrast, synthetic

memory workloads focus on memory reads. In this case, traffic generator is-

sues memory read requests with randomly generated memory addresses and

thus leads to considerable DRAM latency on memory reads.

Figure 6.10 shows the execution time of experiments over the percentage of

BRAM accesses with bar chart. The horizontal axis is for the increasing

percentage of BRAM accesses 10%, 30% to 50%, and the vertical axis is

for execution time in clock cycles. It is observed that the execution time

is reduced with the increasing percentage of BRAM accesses. When this

percentage increases from 10% to 30%, the execution time is reduced by

approximately 20% due to the much faster response from the BRAM module.

When the percentage further increases from 30% to 50%, the execution time

drops even faster by approximately 40%. In this case, if the architecture scales

with faster memory modules in parallel, the overall system performance can

have more noticeable improvement.

159

Figure 6.11 shows the average memory access latency with the highest mea-

sured memory access latency over the percentage of BRAM accesses. It is

observed that the average memory access latency is reasonably reduced with

more accesses to the faster BRAM module. However, the highest measured

memory access latency remains almost unchanged referring to the whiskers.

As the memory accesses are randomly partitioned between the BRAM module

and the DRAM module, the traffic generator can quickly issue next memory

requests to the DRAM module after receiving the very fast response from the

BRAM module. In this case, the contention to the shared slow DRAM mod-

ule is not alleviated, and thus the highest measured memory access latency

is not reduced.

6.5 Evaluation: Benchmarks

This section evaluates the overall system performance of Meshed Bluetree ar-

chitectures under various system configurations with Mälardalen benchmark

suite [116]. The experiments are based on 8-Microblaze [85] FPGA system

running 8 calculation-intensive benchmarks of different functionality. Each

Microblaze executes a benchmark as cnt, compress, cover, expint, fdct, insert-

sort, jfdctint and qsort-exam. It is to be noted that there is no local memory

deployed, which makes the root memory modules with intensive memory

workloads. Bluetree blocking factor is set as α = 1, and each local arbiter is

set with the same value in the entire interconnect to provide relatively fair

accesses for each Microblaze. Bluetree router is set with round-robin scheme.

This experiment configures systems as 8×1 with a single DRAM module and

8× 2 with 2 DRAM modules, employing VC709 DDR3 DRAM module [115]

(and there are totally 2 DRAM modules on VC709). The 8×1 system with a

160

Figure 6.12. Boxplot of Execution Time in 8×1 Meshed Bluetree Architecture

with Single DRAM Module

single DRAM module is denoted as Single DRAM for short. In this system,

8 Microblazes share a single DRAM module. The 8× 2 system where mem-

ory accesses are partitioned as separate instruction DRAM accesses and data

161

Figure 6.13. Boxplot of Execution Time in 8×2 Meshed Bluetree Architecture

with Instruction DRAM Module and Data DRAM Module

DRAM accesses is denoted as Mixed DRAM. This system essentially employs

a separate instruction DRAM module and a separate data DRAM module.

The other 8×2 system where memory accesses are evenly partitioned to these

162

Figure 6.14. Boxplot of Execution Time in 8×2 Meshed Bluetree Architecture

with Dual DRAM Modules

2 DRAM modules is denoted as Dual DRAM. In this system, every 4 Microb-

lazes share a single DRAM module. It is to be noted that memory accesses

issued by Microblazes include both memory reads and memory writes from

163

13494543 13270771

6748059

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)
(a) cnt

Single DRAM
Mixed DRAM
Dual DRAM

8831967 8405689

4416493

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(b) compress

Single DRAM
Mixed DRAM
Dual DRAM

1589914 1533703

795049

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(c) cover

Single DRAM
Mixed DRAM
Dual DRAM

7480035 7447397

3740455

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(d) expint

Single DRAM
Mixed DRAM
Dual DRAM

7341730 7204848

3670443

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(e) fdct

Single DRAM
Mixed DRAM
Dual DRAM

874108
788470

437000

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(f) insertsort

Single DRAM
Mixed DRAM
Dual DRAM

9636683 9472449

4817783

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(g) jfdctint

Single DRAM
Mixed DRAM
Dual DRAM

4598305 4544464

2298886

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(C
LK

)

(h) qsort-exam

Single DRAM
Mixed DRAM
Dual DRAM

Figure 6.15. Average Execution Time in Meshed Bluetree Architectures

benchmarks in this experiment. These 3 Meshed Bluetree systems are syn-

thesised using Xilinx Vivado [111][112] and implemented on Virtex-7 FPGA

VC709 [114] with 100MHz of clock frequency. This experiment measures ex-

ecution time of benchmarks over 100 repeated runs that the execution time

of each run is measured.

164

791

4630

812In
te

rq
ua

rti
le

 R
an

ge
(a) cnt

Single DRAM
Mixed DRAM
Dual DRAM

68

1200

69In
te

rq
ua

rti
le

 R
an

ge

(b) compress

Single DRAM
Mixed DRAM
Dual DRAM

409

3040

388In
te

rq
ua

rti
le

 R
an

ge

(c) cover

Single DRAM
Mixed DRAM
Dual DRAM

355

2160

353In
te

rq
ua

rti
le

 R
an

ge

(d) expint

Single DRAM
Mixed DRAM
Dual DRAM

241187 240960

120461

In
te

rq
ua

rti
le

 R
an

ge

(e) fdct

Single DRAM
Mixed DRAM
Dual DRAM

216

1730

43

In
te

rq
ua

rti
le

 R
an

ge

(f) insertsort

Single DRAM
Mixed DRAM
Dual DRAM

188

2040

22

In
te

rq
ua

rti
le

 R
an

ge

(g) jfdctint

Single DRAM
Mixed DRAM
Dual DRAM

799

4880

151

In
te

rq
ua

rti
le

 R
an

ge

(h) qsort-exam

Single DRAM
Mixed DRAM
Dual DRAM

Figure 6.16. Interquartile Range of Execution Time in Meshed Bluetree Ar-

chitectures

Figure 6.12, Figure 6.13 and Figure 6.14 show boxplot of execution time in

this measurement. Each benchmark is plot separately, and the vertical axis

is for execution time in clock cycles. It is to be noted that the scale of each

vertical axis varies. In addition, the average execution time over system con-

165

figuration in this measurement is shown in Figure 6.15 with bar chart. The

horizontal axis is for system configuration Single DRAM, Mixed DRAM and

Dual DRAM, and the vertical axis is for the average execution time in clock

cycles. Similarly, the interquartile range of execution time over system con-

figuration in this measurement is shown in Figure 6.16 with bar chart. The

horizontal axis is for system configuration Single DRAM, Mixed DRAM and

Dual DRAM, and the vertical axis is for the interquartile range of execu-

tion time. Figure 6.15 and Figure 6.16 better compares the overall system

performance of these Meshed Bluetree architectures over various system con-

figurations within the same scale of vertical axis.

Compared with Single DRAM and Mixed DRAM, the average execution time

slightly reduces for each benchmark. By contrast, the interquartile range of

execution time dramatically increases, which partially reflects variation of

execution time. Even though instruction accesses and data accesses are par-

titioned in Mixed DRAM, the number of outstanding memory requests to

access a single memory module remains that all 8 Microblazes can simulta-

neously access a single DRAM module at a time. This leads to high memory

access latency. On the other hand, when a single memory module is under

high pressure, the other memory module is less accessed, due to the limited

number of outstanding memory requests from these Microblazes. This leads

to much lower memory access latency. In this case, wide variation of memory

access latency leads to wide fluctuation of execution time, as memory access

is the main part forming the overall benchmark execution. Following similar

reduction trend of average execution time, the highest measured execution

time is slightly reduced from Single DRAM to Mixed DRAM, for each bench-

mark, according to the accurate measured results. The system configuration

Mixed DRAM fails to effectively alleviate the contention to a single shared

memory.

166

By comparison, Dual DRAM has the lowest average execution time among

these system configurations. Compared with Single DRAM and Dual DRAM,

the average execution time is reduced roughly by half. As memory accesses

are evenly partitioned to the paralleled memory modules for all benchmarks,

the number of outstanding memory requests to access a single memory mod-

ule is reduced to half, thus memory access latency dropping. In this case,

execution time is reduced significantly. It is also observed that the interquar-

tile range of execution time noticeably reduces for some benchmarks such

as Figure 6.16 (g) jfdctint and Figure 6.16 (h) qsort-exam. However, the

interquartile range of execution time remains almost unchanged for some

benchmarks such as Figure 6.16 (a) cnt and Figure 6.16 (b) compress. This

very much depends on behaviour of benchmarks. For example, due to the

intrinsic variability of benchmark fdct, even the base memory address of ar-

rays is unknown (which depends on function parameters). As a consequence,

wide variation of execution time can be observed for benchmark fdct un-

der each system configuration, referring to those large interquartile ranges in

Figure 6.16 (e).

6.6 Summary and Discussion

This chapter proposes the Meshed Bluetree interconnect as the distributed

time-predictable multi-memory interconnect for multi-core architectures. Con-

structed by the coupling of a router network and multiple locally arbitrated

Bluetree-based architectures, the Meshed Bluetree architecture allows multi-

ple processors to simultaneously access multiple memory modules with time-

predictable behaviour. In general, a single memory access across the Meshed

Bluetree architecture experiences higher latency due to the longer pipelined

data path. However, simultaneous memory accesses can be processed by

167

the parallel memory modules concurrently, which effectively alleviates the

contention over a single shared memory module as well as a single shared

distributed memory interconnect. In this case, latency of intensive memory

accesses can be reduced.

The hardware consumption to construct the Meshed Bluetree interconnect is

reported, which increases linearly over the system cardinality. Experiments

with FPGA implementations demonstrate the effectiveness of the proposed

work. Experimental results from FPGA implementations with synthetic

memory workloads demonstrate that with increasing number of paralleled

memory modules employed, the average memory access latency is reduced

with the same scale. Experimental results from FPGA implementations with

Mälardalen benchmarks demonstrate that the Meshed Bluetree architecture

can alleviate the contention to a single shared memory module. This reduces

memory access latency and thus reduces overall execution time.

In summary, the Meshed Bluetree architecture allows multiple processors to

simultaneously access multiple memory modules with time-predictable be-

haviour. It alleviates the contention to a single shared memory module as

well as a single shared distributed memory interconnect. This effectively re-

duces memory access latency in the average case, contributing to solve the

research question Q3.

The main contribution presented in this chapter is summarised as follows.

Meshed Bluetree is proposed as the distributed time-predictable multi-memory

interconnect. Constructed by the coupling of a router network and multiple

locally arbitrated Bluetree-based architectures in parallel, the Meshed Blue-

tree architecture allows multiple processors to simultaneously access multiple

memory modules with time-predictable behaviour.

168

It to be noted that this architecture can be extended to other configurations

than the locally arbitrated Bluetree design. Further improvement involves to

investigate hardware-software co-design strategies for multi-core architectures

with multi-memory interconnects.

169

Chapter 7

Concluding Remarks

This research explores timing behaviour of the multi-core architectures with

shared distributed memory interconnects and improves the distributed time-

predictable memory interconnect for multi-core architectures. This chapter

draws the concluding remarks, and the reminder of this chapter is structured

as follows. Section 7.1 summarises the proposed work in this research based

on the given research questions. Section 7.2 revisits the main contributions

which are summarised at the end of each chapter. Section 7.3 proposes the

future work.

7.1 Research Summary

Chapter 4 analyses the timing behaviour of the multi-core architectures with

shared distributed memory interconnects. First, Chapter 4 addresses the re-

source contention and the blocking effect across the data paths within shared

memory multi-core architectures and proposes the generic analytical flow to

170

predict the memory access behaviour across the locally arbitrated architecture

and statically bound the worst-case memory access latency when there is un-

certainty on memory access profile. This contributes to solve the research

question Q1: Can analytical method predict timing behaviour of memory ac-

cesses and bound the worst-case memory access latency in multi-core archi-

tectures with shared distributed memory interconnects? With the proposed

analytical method, time predictability of the locally arbitrated architecture

can be guaranteed. By contrast, the timing behaviour analysis of the glob-

ally arbitrated architecture reflects its global scheduling cycle. In addition,

Chapter 4 also explores and analyses the timing behaviour of the locally ar-

bitrated architecture and the globally arbitrated architecture by experiments

with synthetic memory workloads.

Chapter 5 addresses the variation of memory access latency within the multi-

core architectures with shared distributed memory interconnects. It proposes

the root queue modification with the root queue management to the locally ar-

bitrated architecture by employing and utilising an additional hardware queue

between the distributed interconnect root and the shared memory module.

With sufficient root queue size, the root queue modification smooths resource

sharing across the locally arbitrated architecture and thus memory access la-

tency only varies with varying memory workloads. Besides that, the root

queue modification also facilitates the timing behaviour analysis that the

worst-case memory access latency can be bounded applying calculations in-

stead of deriving with exact memory access profiles. Based on the root queue

modification, the root queue management is further proposed by utilising

dummy packets to reduce variation of memory access latency. Experimental

results from hardware simulations and FPGA implementations demonstrate

the effectiveness of the proposed work. This contributes to solve the research

question Q2: Can multi-core architectures with shared distributed memory

interconnects be modified at the hardware level to reduce variation of memory

171

access latency? Applying the root queue modification with the root queue

management, variation of memory access latency across the locally arbitrated

architecture is effectively reduced. By contrast, the deployment of the globally

arbitrated architecture can rely on effective analysis of accurate application

behaviour to benefit specific applications.

Chapter 6 addresses the aggravated resource contention over the multi-core

architectures with shared distributed memory interconnects due to increasing

memory workloads. Based on the mesh-of-trees topology, it proposes Meshed

Bluetree as the multi-memory interconnect for multi-core architectures. Con-

structed by the coupling of a router network and multiple Bluetree-based

architectures in parallel, the Meshed Bluetree architecture allows multiple

processors to simultaneously access multiple memory modules with time-

predictable behaviour. This effectively reduces the contention to a single

shared memory module as well as a single shared distributed memory inter-

connect. Experimental results from FPGA implementations with synthetic

memory workloads and real-world benchmarks demonstrate the effectiveness

of the proposed work. This contributes to solve the research question Q3: Can

multi-core architectures with shared distributed memory interconnects be im-

proved by architectural enhancement for increasing memory workloads? With

the proposed distributed multi-memory interconnect, multiple processors can

simultaneously access multiple memory modules with time-predictable be-

haviour. This potentially alleviates resource contention due to increasing

memory workloads and thus reduces memory access latency in the average

case. The locally arbitrated Bluetree and the Meshed Bluetree architecture

are taken as examples, and this design can be extended to other configurations

than the Bluetree-based architecture.

Based on the above analysis, the work presented in this thesis demonstrates

the research hypothesis which is revisited as follows.

172

Distributed memory interconnect for multi-core architectures can be improved

by architectural enhancement on hardware that the root queue modification

with the root queue management reduces variation of memory access latency

and the mesh-of-trees extension enables multiple processors to simultaneously

access multiple memory modules, whilst guaranteeing the time-predictable be-

haviour.

7.2 Main Contributions

The summarised main contributions are revisited as follows.

• The generic analytical flow is proposed for time-predictable behaviour of

memory accesses across multi-core architectures with locally arbitrated

interconnects. Without exact memory access profiles, this static anal-

ysis can guarantee the safe worst-case bound for real-time applications

applying calculations.

• The root queue modification with the root queue management is pro-

posed for multi-core architectures with locally arbitrated interconnects

that variation of memory access latency is effectively reduced and the

timing behaviour analysis is also facilitated, contributing towards real-

time multi-core systems.

• Meshed Bluetree is proposed as the distributed time-predictable multi-

memory interconnect. Constructed by the coupling of a router network

and multiple locally arbitrated Bluetree-based architectures in parallel,

the Meshed Bluetree architecture allows multiple processors to simul-

taneously access multiple memory modules with time-predictable be-

haviour.

173

7.3 Future Work

The future work related to this research is proposed as follows.

A potential research is to investigate hardware-software integration or co-

design strategies for multi-core architectures, such as investigating strategies

that divide and map tasks to the paralleled memory modules in the Meshed

Bluetree architecture or similar architectures. This potentially further im-

proves the overall system performance, including execution time, power con-

sumption, as well as reliability. In addition, more benchmarks, e.g., with

more intensive demands or of mixed types, can also be adopted to evaluate

the proposed design, and finer analysis can also be conducted on representa-

tive memory workload patterns.

Another potential research is to address the scalability of the shared dis-

tributed memory interconnect for multi-core architectures. With an expand-

ing system configuration, i.e., an increasing number of processors, the con-

tention over memory accesses keeps getting aggravated. Meshed Bluetree is

proposed as an improvement method however with longer data path, thus

higher memory access latency, and the responding speed of memory modules

at the interconnect roots still limits the overall system performance. Further

enhancement is to deploy memory modules at the distributed stages (poten-

tially within the locally arbitrated design). This can raise research issues such

as most beneficial memory types, appropriate memory size, as well as efficient

memory management scheme especially for scratchpad memory (SPM).

174

Reference

[1] H. Wang, N. C. Audsley, and W. Chang. Addressing resource contention

and timing predictability for multi-core architectures with shared mem-

ory interconnects. In 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 70–81, 2020.

[2] H. Wang, N. C. Audsley, X. S. Hu, and W. Chang. Meshed blue-

tree: Time-predictable multimemory interconnect for multicore archi-

tectures. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 39(11):3787–3798, 2020.

[3] G. E. Moore. Cramming more components onto integrated circuits.

Proceedings of the IEEE, 86(1):82–85, Jan 1998.

[4] G. E. Moore. Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114

ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, Sep. 2006.

[5] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and

Hon-Sum Philip Wong. Device scaling limits of si mosfets and their ap-

plication dependencies. Proceedings of the IEEE, 89(3):259–288, March

2001.

175

[6] W. J. Dally and B. Towles. Route packets, not wires: on-chip inter-

connection networks. In Proceedings of the 38th Design Automation

Conference (IEEE Cat. No.01CH37232), pages 684–689, June 2001.

[7] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.

Computer, 35(1):70–78, Jan 2002.

[8] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and

practices of network-on-chip. ACM Comput. Surv., 38(1), June 2006.

[9] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and Radu Mar-

culescu. On-chip communication architecture exploration: A quantita-

tive evaluation of point-to-point, bus, and network-on-chip approaches.

ACM Trans. Des. Autom. Electron. Syst., 12(3):23:1–23:20, May 2008.

[10] John L. Hennessy and David A. Patterson. Computer Architecture,

Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 5th edition, 2011.

[11] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Impli-

cations of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24,

March 1995.

[12] J. Nickolls and W. J. Dally. The gpu computing era. IEEE Micro,

30(2):56–69, March 2010.

[13] Alan Burns and Andy Wellings. Real-Time Systems and Programming

Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-

Wesley Educational Publishers Inc, USA, 4th edition, 2009.

[14] Peter Puschner and Alan Burns. Guest editorial: A review of worst-case

execution-timeanalysis. Real-Time Syst., 18(2/3):115–128, May 2000.

[15] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-

sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Fer-

176

dinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle

Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-

case execution-time problem—overview of methods and survey of

tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[16] Peter Marwedel. Embedded System Design: Embedded Systems Foun-

dations of Cyber-Physical Systems. Springer Publishing Company, In-

corporated, 2nd edition, 2010.

[17] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-

priority scheduling of periodic, real-time tasks. Performance evaluation,

2(4):237–250, 1982.

[18] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.

Memory access scheduling. In Proceedings of 27th International Sympo-

sium on Computer Architecture (IEEE Cat. No.RS00201), pages 128–

138, June 2000.

[19] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2007.

[20] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose,

Kevin Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira

Khan, and Onur Mutlu. Understanding latency variation in modern

dram chips: Experimental characterization, analysis, and optimization.

In Proceedings of the 2016 ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Science, SIGMET-

RICS ’16, pages 323–336, New York, NY, USA, 2016. ACM.

[21] M. Hassan. On the off-chip memory latency of real-time systems: Is

ddr dram really the best option? In 2018 IEEE Real-Time Systems

Symposium (RTSS), pages 495–505, Dec 2018.

177

[22] Micron. RLDRAM 3.

[23] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable

sdram memory controller. In 2007 5th IEEE/ACM/IFIP Interna-

tional Conference on Hardware/Software Codesign and System Synthe-

sis (CODES+ISSS), pages 251–256, Sep. 2007.

[24] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero. An analyzable

memory controller for hard real-time cmps. IEEE Embedded Systems

Letters, 1(4):86–90, Dec 2009.

[25] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfigurable

real-time sdram controller for mixed time-criticality systems. In 2013

International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), pages 1–10, Sep. 2013.

[26] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Per-

formance evaluation of cache replacement policies for the spec cpu2000

benchmark suite. In Proceedings of the 42Nd Annual Southeast Regional

Conference, ACM-SE 42, pages 267–272, New York, NY, USA, 2004.

ACM.

[27] A. Milenkovic, M. Milenkovic, and N. Barnes. A performance evalua-

tion of memory hierarchy in embedded systems. In Proceedings of the

35th Southeastern Symposium on System Theory, 2003., pages 427–431,

March 2003.

[28] Markus Kowarschik and Christian Weiß. An overview of cache optimiza-

tion techniques and cache-aware numerical algorithms. In Algorithms

for Memory Hierarchies, pages 213–232. Springer, 2003.

[29] Gabriel Rivera and Chau-Wen Tseng. Data transformations for elimi-

nating conflict misses. In Proceedings of the ACM SIGPLAN 1998 Con-

178

ference on Programming Language Design and Implementation, PLDI

’98, pages 38–49, New York, NY, USA, 1998. ACM.

[30] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The cache

performance and optimizations of blocked algorithms. ACM SIGOPS

Operating Systems Review, 25(Special Issue):63–74, April 1991.

[31] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,

C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg. Data and mem-

ory optimization techniques for embedded systems. ACM Trans. Des.

Autom. Electron. Syst., 6(2):149–206, April 2001.

[32] J. Liedtke, H. Hartig, and M. Hohmuth. Os-controlled cache pre-

dictability for real-time systems. In Proceedings Third IEEE Real-Time

Technology and Applications Symposium, pages 213–224, June 1997.

[33] Luis C. Aparicio, Juan Segarra, Clemente Rodŕıguez, and Vı́ctor Viñals.

Improving the wcet computation in the presence of a lockable instruc-

tion cache in multitasking real-time systems. J. Syst. Archit., 57(7):695–

706, August 2011.

[34] Alexis Arnaud and Isabelle Puaut. Dynamic instruction cache locking

in hard real-time systems. In In RTNS, 2006.

[35] Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking for

tight timing calculations. ACM Trans. Embed. Comput. Syst., 7(1):4:1–

4:38, December 2007.

[36] E. G. Hallnor and S. K. Reinhardt. A fully associative software-

managed cache design. In Proceedings of 27th International Symposium

on Computer Architecture (IEEE Cat. No.RS00201), pages 107–116,

June 2000.

179

[37] Jason E. Miller and Anant Agarwal. Software-based instruction caching

for embedded processors. In Proceedings of the 12th International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems, ASPLOS XII, pages 293–302, New York, NY, USA,

2006. ACM.

[38] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530,

September 1982.

[39] Norman P. Jouppi. Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch buffers. In

Proceedings of the 17th Annual International Symposium on Computer

Architecture, ISCA ’90, pages 364–373, New York, NY, USA, 1990.

ACM.

[40] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a sec-

ondary cache replacement. In Proceedings of the 21st Annual Interna-

tional Symposium on Computer Architecture, ISCA ’94, pages 24–33,

Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[41] John W. C. Fu and Janak H. Patel. Data prefetching in multiprocessor

vector cache memories. In Proceedings of the 18th Annual International

Symposium on Computer Architecture, ISCA ’91, pages 54–63, New

York, NY, USA, 1991. ACM.

[42] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading

scheme to reduce data access penalty. In Proceedings of the 1991

ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pages

176–186, New York, NY, USA, 1991. ACM.

[43] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride directed

prefetching in scalar processors. In Proceedings of the 25th Annual

180

International Symposium on Microarchitecture, MICRO 25, pages 102–

110, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[44] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for

recursive data structures. In Proceedings of the Seventh International

Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS VII, pages 222–233, New York, NY, USA,

1996. ACM.

[45] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching

for linked data structures. In Proceedings of the 26th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’99, pages 111–121,

Washington, DC, USA, 1999. IEEE Computer Society.

[46] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless,

content-directed data prefetching mechanism. In Proceedings of the

10th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS X, pages 279–290,

New York, NY, USA, 2002. ACM.

[47] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors.

In Proceedings of the 24th Annual International Symposium on Com-

puter Architecture, ISCA ’97, pages 252–263, New York, NY, USA,

1997. ACM.

[48] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a

global history buffer. In Proceedings of the 10th International Sympo-

sium on High Performance Computer Architecture, HPCA ’04, pages

96–, Washington, DC, USA, 2004. IEEE Computer Society.

[49] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feed-

back directed prefetching: Improving the performance and bandwidth-

efficiency of hardware prefetchers. In Proceedings of the 2007 IEEE 13th

181

International Symposium on High Performance Computer Architecture,

HPCA ’07, pages 63–74, Washington, DC, USA, 2007. IEEE Computer

Society.

[50] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrish-

nan, and Peter Marwedel. Scratchpad memory: design alternative for

cache on-chip memory in embedded systems. In Proceedings of the tenth

international symposium on Hardware/software codesign, pages 73–78.

ACM, 2002.

[51] Preeti Ranjan Panda, Nikil Dutt, and Alexandru Nicolau. Memory

Issues in Embedded Systems-on-Chip: Optimizations and Exploration.

Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[52] Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky

Catthoor, and Jose M Mendias. An integrated hardware/software ap-

proach for run-time scratchpad management. In Proceedings of the 41st

annual Design Automation Conference, pages 238–243. ACM, 2004.

[53] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. As-

signing program and data objects to scratchpad for energy reduction.

In Design, Automation and Test in Europe Conference and Exhibition,

2002. Proceedings, pages 409–415. IEEE, 2002.

[54] Preeti Ranjan Panda, Nikil D Dutt, and Alexandru Nicolau. On-chip vs.

off-chip memory: the data partitioning problem in embedded processor-

based systems. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 5(3):682–704, 2000.

[55] Preeti Ranjan Panda, Nikil D Dutt, and Alexandru Nicolau. Efficient

utilization of scratch-pad memory in embedded processor applications.

In Proceedings of the 1997 European conference on Design and Test,

page 7. IEEE Computer Society, 1997.

182

[56] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen.

Wcet centric data allocation to scratchpad memory. In Real-Time Sys-

tems Symposium, 2005. RTSS 2005. 26th IEEE International, pages

10–pp. IEEE, 2005.

[57] Mahmut Kandemir, J Ramanujam, J Irwin, Narayanan Vijaykrishnan,

Ismail Kadayif, and Amisha Parikh. Dynamic management of scratch-

pad memory space. In Proceedings of the 38th annual Design Automa-

tion Conference, pages 690–695. ACM, 2001.

[58] Guilin Chen, Ozcan Ozturk, M Kandemir, and M Karakoy. Dynamic

scratch-pad memory management for irregular array access patterns.

In Proceedings of the conference on Design, automation and test in

Europe: Proceedings, pages 931–936. European Design and Automation

Association, 2006.

[59] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay

of scratchpad memory for energy minimization. In Proceedings of the

2nd IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, pages 104–109. ACM, 2004.

[60] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar,

Mahesh Balakrishnan, and Peter Marwedel. Reducing energy consump-

tion by dynamic copying of instructions onto onchip memory. In Sys-

tem Synthesis, 2002. 15th International Symposium on, pages 213–218.

IEEE, 2002.

[61] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dy-

namic allocation for scratch-pad memory using compile-time deci-

sions. ACM Transactions on Embedded Computing Systems (TECS),

5(2):472–511, 2006.

183

[62] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratchpad memory

management for portable systems with a memory management unit.

In Proceedings of the 6th ACM & IEEE International conference on

Embedded software, pages 321–330. ACM, 2006.

[63] Jack Whitham and Neil Audsley. Implementing time-predictable load

and store operations. In Proceedings of the seventh ACM international

conference on Embedded software, pages 265–274. ACM, 2009.

[64] Jack Whitham and Neil Audsley. The scratchpad memory management

unit for microblaze: Implementation, testing, and case study. University

of York, Tech. Rep. YCS-2009-439, 2009.

[65] J. Whitham and N. Audsley. Mcgrep–a predictable architecture for

embedded real-time systems. In 2006 27th IEEE International Real-

Time Systems Symposium (RTSS’06), pages 13–24, Dec 2006.

[66] J. Whitham and N. Audsley. Using trace scratchpads to reduce execu-

tion times in predictable real-time architectures. In 2008 IEEE Real-

Time and Embedded Technology and Applications Symposium, pages

305–316, April 2008.

[67] ARM. AMBA 5 AHB Protocol Specification, 2015.

[68] Xilinx. AXI Interconnect.

[69] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Lu-

ciano Ost. Hermes: An infrastructure for low area overhead packet-

switching networks on chip. Integr. VLSI J., 38(1):69–93, October 2004.

[70] Kees Goossens, John Dielissen, and Andrei Radulescu. Æthereal net-

work on chip: Concepts, architectures, and implementations. IEEE

Des. Test, 22(5):414–421, September 2005.

184

[71] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-

robin cell multiplexing in a general-purpose atm switch chip. IEEE

Journal on Selected Areas in Communications, 9(8):1265–1279, Oct

1991.

[72] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit

round-robin. IEEE/ACM Transactions on Networking, 4(3):375–385,

June 1996.

[73] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time

scheduling using credit-controlled static-priority arbitration. In 2008

14th IEEE International Conference on Embedded and Real-Time Com-

puting Systems and Applications, pages 3–14, Aug 2008.

[74] H. Shah, A. Raabe, and A. Knoll. Bounding wcet of applications using

sdram with priority based budget scheduling in mpsocs. In 2012 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 665–

670, March 2012.

[75] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate

versus ipc: the end of the road for conventional microarchitectures. In

Proceedings of 27th International Symposium on Computer Architecture

(IEEE Cat. No.RS00201), pages 248–259, June 2000.

[76] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings

of the IEEE, 89(4):490–504, April 2001.

[77] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini. A fully-synthesizable

single-cycle interconnection network for shared-l1 processor clusters. In

2011 Design, Automation Test in Europe, pages 1–6, March 2011.

[78] F. Thomson Leighton. Introduction to Parallel Algorithms and Archi-

tectures: Array, Trees, Hypercubes. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1991.

185

[79] A. DeHon and R. Rubin. Design of fpga interconnect for multilevel met-

allization. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 12(10):1038–1050, 2004.

[80] A. O. Balkan, G. Qu, and U. Vishkin. A mesh-of-trees interconnection

network for single-chip parallel processing. In IEEE 17th International

Conference on Application-specific Systems, Architectures and Proces-

sors (ASAP’06), pages 73–80, Sep. 2006.

[81] Igor Loi, Davide Rossi, Germain Haugou, Michael Gautschi, and Luca

Benini. Exploring multi-banked shared-l1 program cache on ultra-low

power, tightly coupled processor clusters. In Proceedings of the 12th

ACM International Conference on Computing Frontiers, CF ’15, pages

64:1–64:8, New York, NY, USA, 2015. ACM.

[82] A. O. Balkan, G. Qu, and U. Vishkin. Mesh-of-trees and alternative

interconnection networks for single-chip parallelism. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 17(10):1419–1432, Oct

2009.

[83] J. H. Rutgers, M. J. G. Bekooij, and G. J. M. Smit. Evaluation of a

connectionless noc for a real-time distributed shared memory many-core

system. In 2012 15th Euromicro Conference on Digital System Design,

pages 727–730, Sep. 2012.

[84] ARM. AMBA AXI and ACE Protocol Specification.

[85] Xilinx. MicroBlaze Processor Reference Guide.

[86] Gary Plumbridge, Jack Whitham, and Neil Audsley. Blueshell: A

platform for rapid prototyping of multiprocessor nocs and accelerators.

SIGARCH Comput. Archit. News, 41(5):107–117, June 2014.

186

[87] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raf-

faele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott

Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexander

Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch,

Wolfgang Puffitsch, Peter Puschner, and Alessandro Tocchi. T-crest:

Time-predictable multi-core architecture for embedded systems. Jour-

nal of Systems Architecture, 61, 04 2015.

[88] Martin Schoeberl, David Vh Chong, Wolfgang Puffitsch, and Jens

Sparsø. A Time-Predictable Memory Network-on-Chip. In 14th Inter-

national Workshop on Worst-Case Execution Time Analysis, volume 39

of OpenAccess Series in Informatics (OASIcs), pages 53–62, Dagstuhl,

Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[89] M. Dev Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens.

A generic, scalable and globally arbitrated memory tree for shared dram

access in real-time systems. In 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), pages 193–198, March 2015.

[90] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens.

A globally arbitrated memory tree for mixed-time-criticality systems.

IEEE Transactions on Computers, 66(2):212–225, Feb 2017.

[91] Dakshina Dasari, Vincent Nelis, and Benny Akesson. A framework for

memory contention analysis in multi-core platforms. Real-Time Syst.,

52(3):272–322, May 2016.

[92] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-

hury. Bus-aware multicore wcet analysis through tdma offset bounds.

In 2011 23rd Euromicro Conference on Real-Time Systems, pages 3–12,

July 2011.

187

[93] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay,

and Abhik Roychoudhury. Static analysis of multi-core tdma resource

arbitration delays. Real-Time Syst., 50(2):185–229, March 2014.

[94] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and

R. Kegley. A predictable execution model for cots-based embedded

systems. In 2011 17th IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 269–279, April 2011.

[95] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:

Memory bandwidth reservation system for efficient performance isola-

tion in multi-core platforms. In 2013 IEEE 19th Real-Time and Em-

bedded Technology and Applications Symposium (RTAS), pages 55–64,

April 2013.

[96] Jamie Garside and Neil C. Audsley. Wcet preserving hardware prefetch

for many-core real-time systems. In Proceedings of the 22Nd Inter-

national Conference on Real-Time Networks and Systems, RTNS ’14,

pages 193:193–193:202, New York, NY, USA, 2014. ACM.

[97] G. F. Pfister and V. A. Norton. Hot spot contention and combining in

multistage interconnection networks. IEEE Transactions on Comput-

ers, C-34(10):943–948, Oct 1985.

[98] Akbar Sharifi, Emre Kultursay, Mahmut Kandemir, and Chita R. Das.

Addressing end-to-end memory access latency in noc-based multicores.

In Proceedings of the 2012 45th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO-45, pages 294–304, Washington,

DC, USA, 2012. IEEE Computer Society.

[99] I. Walter, I. Cidon, R. Ginosar, and A. Kolodny. Access regulation to

hot-modules in wormhole nocs. In First International Symposium on

Networks-on-Chip (NOCS’07), pages 137–148, May 2007.

188

[100] A. Hansson, M. Coenen, and K. Goossens. Channel trees: Reduc-

ing latency by sharing time slots in time-multiplexed networks on

chip. In 2007 5th IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis (CODES+ISSS), pages

149–154, Sep. 2007.

[101] Z. Shi and A. Burns. Real-time communication analysis for on-chip

networks with wormhole switching. In Second ACM/IEEE Interna-

tional Symposium on Networks-on-Chip (nocs 2008), pages 161–170,

April 2008.

[102] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A virtual channel

router for on-chip networks. In IEEE International SOC Conference,

2004. Proceedings., pages 289–293, Sep. 2004.

[103] N. Kavaldjiev, G.J.M. Smit, P.G. Jansen, and P.T. Wolkotte. A vir-

tual channel network-on-chip for gt and be traffic. In IEEE Computer

Society Annual Symposium on Emerging VLSI Technologies and Archi-

tectures (ISVLSI’06), pages 6 pp.–, 2006.

[104] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual channels in

networks on chip: Implementation and evaluation on hermes noc. In

2005 18th Symposium on Integrated Circuits and Systems Design, pages

178–183, Sep. 2005.

[105] Neil Audsley. Memory architecturesfor noc-based real-time mixed crit-

icality systems. Proc. WMC, RTSS, pages 37–42, 2013.

[106] G.G. Lee, C.P. Kruskal, and D.J. Kuck. On the effectiveness of combin-

ing in resolving hot spot contention. Journal of Parallel and Distributed

Computing, 20(2):136–144, 1994.

[107] Bluespec. Bluespec System Verilog Reference Guide.

189

[108] Bluespec. https://bluespec.com/.

[109] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Com-

puter Architecture: A Hardware/Software Approach. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1998.

[110] Xilinx. 7 Series FPGAs Memory Resources.

[111] Vivado Design Suite. https://www.xilinx.com/products/

design-tools/vivado.html.

[112] Xilinx. https://www.xilinx.com.

[113] ZedBoard. http://www.zedboard.org/product/zedboard.

[114] Xilinx Virtex-7 FPGA VC709. https://www.xilinx.com/products/

boards-and-kits/dk-v7-vc709-g.html.

[115] Xilinx. 7 Series FPGAs Memory Interface Solutions.

[116] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper.

The Mälardalen WCET benchmarks – past, present and future. In

Björn Lisper, editor, WCET2010, pages 137–147, Brussels, Belgium,

July 2010. OCG.

190

https://bluespec.com/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com
http://www.zedboard.org/product/zedboard
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

Appendix A

Request Interval

FPGA experiments are conducted with synthetic memory workload. The

path request interval TRQ(Pi) varies between two successive memory requests

which employs the randomly generated values as follows.

A.1 Varying Request Interval [1, 64]

TRQ(P0) = [17, 15, 28, 14, 39, 16, 53, 63, 50, 19, 25, 43, 51, 53, 38, 49, 25,

25, 29, 30, 51, 43, 55, 42, 47, 58, 15, 59, 9, 46, 52, 24, 22, 64, 58, 31, 14, 19,

2, 3, 49, 30, 22, 53, 28, 64, 30, 13, 28, 24, 18, 29, 46, 17, 4, 23, 40, 26, 12, 64,

60, 45, 4, 61, 56, 23, 13, 16, 8, 54, 26, 8, 29, 29, 62, 15, 4, 52, 29, 50, 63, 31,

48, 57, 5, 42, 39, 18, 17, 29, 23, 23, 61, 14, 12, 36, 41, 17, 18, 40];

TRQ(P1) = [9, 51, 14, 20, 50, 9, 6, 22, 12, 42, 45, 11, 49, 24, 7, 14, 6, 51, 44,

42, 20, 47, 47, 17, 46, 13, 32, 1, 46, 17, 16, 59, 56, 5, 39, 41, 26, 37, 54, 55,

57, 28, 11, 3, 38, 46, 14, 7, 13, 40, 51, 2, 7, 10, 49, 56, 24, 42, 7, 35, 32, 29,

191

10, 19, 14, 45, 54, 30, 48, 13, 11, 46, 1, 44, 14, 57, 3, 41, 12, 46, 47, 22, 34,

10, 28, 61, 14, 5, 39, 43, 64, 1, 43, 57, 35, 40, 24, 12, 57, 27];

TRQ(P2) = [41, 7, 31, 3, 57, 4, 19, 18, 61, 2, 30, 28, 15, 63, 60, 9, 64, 28, 49,

4, 50, 28, 36, 32, 21, 25, 57, 64, 54, 11, 44, 23, 62, 13, 43, 52, 54, 9, 61, 40,

21, 15, 19, 27, 20, 23, 4, 25, 28, 39, 41, 43, 25, 63, 8, 32, 26, 51, 2, 18, 36, 15,

21, 30, 26, 6, 10, 37, 51, 30, 30, 47, 26, 23, 35, 63, 24, 19, 38, 22, 36, 6, 46,

28, 11, 16, 59, 57, 31, 63, 34, 24, 41, 8, 14, 3, 50, 58, 29, 45];

TRQ(P3) = [58, 63, 50, 47, 28, 50, 19, 44, 28, 18, 43, 62, 2, 28, 2, 8, 33, 5, 20,

34, 29, 20, 54, 31, 32, 27, 64, 25, 29, 22, 20, 35, 22, 58, 8, 51, 60, 10, 56, 29,

57, 38, 50, 63, 54, 7, 15, 50, 11, 7, 37, 15, 30, 62, 39, 50, 60, 37, 8, 40, 17, 35,

6, 23, 64, 57, 11, 62, 34, 29, 56, 11, 21, 19, 1, 53, 63, 54, 48, 33, 42, 41, 48,

64, 25, 15, 43, 7, 5, 21, 25, 56, 12, 27, 25, 16, 10, 43, 34, 11];

TRQ(P4) = [29, 48, 59, 43, 41, 28, 18, 34, 1, 2, 1, 44, 47, 37, 47, 12, 28, 6, 64,

55, 55, 6, 51, 15, 47, 48, 54, 30, 43, 41, 47, 56, 1, 15, 22, 47, 16, 29, 64, 10,

53, 59, 62, 54, 15, 36, 63, 10, 39, 33, 2, 29, 1, 18, 57, 49, 39, 48, 22, 23, 26,

55, 28, 13, 26, 43, 4, 6, 64, 36, 11, 5, 19, 5, 33, 5, 41, 39, 25, 6, 10, 8, 38, 41,

42, 44, 29, 8, 15, 41, 58, 64, 15, 6, 49, 6, 7, 7, 60, 39];

TRQ(P5) = [30, 8, 16, 25, 54, 50, 52, 35, 55, 14, 22, 3, 48, 11, 19, 37, 45, 39,

39, 40, 29, 47, 31, 27, 63, 56, 47, 30, 43, 12, 57, 64, 36, 53, 36, 43, 46, 16, 17,

27, 21, 6, 53, 46, 27, 3, 11, 6, 61, 33, 3, 62, 52, 64, 40, 61, 45, 13, 48, 39, 45,

19, 31, 9, 36, 44, 61, 60, 37, 42, 25, 35, 57, 6, 57, 10, 59, 24, 53, 22, 45, 11,

63, 18, 44, 29, 34, 13, 37, 17, 22, 39, 10, 1, 51, 52, 46, 25, 56, 58];

TRQ(P6) = [3, 56, 16, 14, 64, 46, 18, 28, 32, 43, 62, 37, 1, 57, 4, 60, 48, 30,

15, 46, 40, 9, 41, 39, 4, 6, 44, 17, 40, 39, 13, 8, 15, 21, 62, 26, 16, 23, 12, 17,

58, 35, 8, 20, 23, 64, 26, 32, 50, 15, 23, 21, 19, 42, 17, 33, 9, 8, 57, 50, 19, 41,

192

49, 61, 32, 39, 13, 18, 8, 64, 41, 10, 19, 30, 41, 48, 7, 21, 30, 30, 25, 64, 59,

20, 42, 48, 29, 36, 54, 5, 43, 31, 30, 42, 25, 28, 64, 51, 24, 61];

TRQ(P7) = [56, 14, 48, 32, 31, 49, 34, 47, 48, 61, 22, 17, 13, 1, 53, 47, 57, 61,

6, 47, 12, 35, 23, 35, 53, 7, 35, 47, 38, 26, 7, 9, 45, 8, 11, 21, 22, 39, 48, 32,

26, 52, 20, 46, 18, 57, 62, 33, 33, 49, 55, 8, 22, 46, 33, 13, 44, 22, 56, 39, 57,

3, 13, 32, 41, 13, 30, 37, 43, 4, 21, 53, 64, 63, 38, 49, 60, 57, 58, 51, 1, 49, 50,

28, 50, 1, 59, 60, 44, 46, 28, 49, 34, 20, 4, 63, 51, 54, 59, 4].

A.2 Varying Request Interval [1, 256]

TRQ(P0) = [52, 91, 195, 84, 219, 216, 125, 188, 109, 245, 238, 94, 221, 219,

252, 120, 209, 125, 3, 122, 107, 227, 132, 64, 148, 110, 196, 207, 238, 37, 102,

44, 79, 157, 17, 245, 245, 115, 251, 176, 131, 197, 35, 1, 167, 187, 85, 191, 44,

169, 145, 106, 100, 42, 17, 30, 8, 113, 87, 88, 242, 165, 146, 83, 101, 178, 27,

36, 192, 20, 138, 16, 79, 189, 84, 49, 65, 118, 132, 34, 182, 91, 47, 218, 100,

26, 130, 109, 157, 243, 67, 238, 212, 22, 188, 76, 244, 63, 63, 37];

TRQ(P1) = [152, 179, 3, 58, 78, 206, 55, 3, 244, 141, 108, 81, 150, 211, 95,

168, 34, 63, 199, 210, 58, 17, 237, 167, 224, 67, 194, 253, 58, 171, 97, 189, 33,

104, 156, 40, 75, 54, 161, 106, 193, 24, 165, 71, 75, 42, 5, 159, 1, 206, 119,

148, 55, 128, 43, 142, 153, 198, 181, 23, 164, 111, 35, 18, 76, 52, 244, 47, 187,

77, 178, 93, 59, 236, 170, 197, 154, 243, 149, 146, 160, 202, 164, 206, 196, 102,

112, 199, 211, 155, 198, 75, 216, 247, 23, 142, 200, 105, 249, 53];

TRQ(P2) = [183, 198, 23, 163, 68, 130, 179, 2, 231, 94, 152, 241, 115, 79, 145,

191, 236, 61, 2, 187, 105, 247, 10, 155, 199, 187, 41, 77, 108, 199, 209, 39,

209, 12, 227, 7, 2, 66, 163, 200, 120, 171, 67, 44, 154, 31, 150, 14, 231, 51, 46,

140, 196, 221, 83, 46, 218, 178, 69, 150, 59, 254, 215, 217, 167, 212, 147, 44,

193

94, 62, 187, 219, 237, 94, 158, 48, 108, 170, 94, 195, 189, 49, 190, 173, 248,

256, 180, 254, 92, 31, 89, 253, 181, 105, 91, 61, 206, 130, 86, 214];

TRQ(P3) = [220, 240, 53, 196, 19, 54, 194, 93, 55, 242, 78, 130, 185, 133,

244, 123, 73, 237, 67, 96, 193, 56, 179, 245, 112, 243, 23, 196, 30, 165, 191,

51, 242, 200, 77, 41, 180, 237, 235, 4, 211, 129, 191, 55, 201, 210, 15, 8, 99,

165, 168, 212, 16, 109, 52, 153, 162, 151, 21, 30, 98, 107, 226, 32, 248, 169,

147, 74, 222, 219, 186, 251, 27, 188, 118, 82, 18, 136, 84, 142, 166, 81, 109,

14, 154, 251, 157, 84, 72, 40, 102, 71, 156, 132, 7, 64, 181, 178, 41, 158];

TRQ(P4) = [16, 113, 12, 161, 247, 10, 147, 252, 195, 125, 219, 136, 256, 75,

240, 5, 68, 13, 53, 5, 232, 133, 243, 51, 155, 229, 207, 1, 75, 136, 59, 23, 168,

157, 125, 91, 99, 86, 64, 58, 233, 188, 163, 240, 59, 88, 22, 245, 98, 8, 247,

134, 135, 134, 85, 178, 176, 252, 78, 242, 233, 20, 105, 58, 98, 229, 114, 80,

27, 60, 130, 100, 189, 21, 98, 75, 250, 202, 83, 58, 151, 32, 127, 156, 209, 117,

178, 162, 81, 76, 93, 113, 100, 153, 110, 244, 199, 77, 75, 67];

TRQ(P5) = [21, 15, 98, 157, 14, 110, 181, 247, 196, 39, 213, 47, 65, 111, 194,

178, 42, 28, 132, 90, 250, 89, 207, 228, 232, 155, 220, 85, 171, 179, 150, 84,

142, 187, 89, 49, 89, 146, 226, 32, 239, 69, 158, 221, 103, 253, 24, 115, 208,

35, 167, 163, 145, 64, 190, 197, 233, 7, 247, 101, 255, 240, 117, 18, 154, 104,

120, 107, 165, 179, 47, 10, 36, 12, 17, 177, 116, 128, 123, 212, 172, 127, 199,

6, 117, 53, 103, 55, 4, 86, 130, 238, 250, 135, 247, 214, 124, 122, 143, 195];

TRQ(P6) = [139, 60, 140, 171, 133, 36, 37, 66, 88, 220, 56, 98, 130, 215, 146,

146, 21, 153, 46, 72, 152, 119, 199, 26, 39, 61, 231, 203, 239, 118, 124, 131,

48, 49, 167, 229, 52, 189, 236, 102, 109, 71, 89, 18, 242, 14, 184, 77, 49, 202,

180, 227, 90, 149, 208, 163, 211, 243, 120, 33, 246, 244, 158, 226, 100, 179,

192, 18, 255, 124, 174, 184, 247, 178, 184, 42, 44, 18, 66, 227, 183, 186, 60,

103, 169, 180, 247, 213, 208, 139, 153, 148, 97, 2, 41, 183, 220, 226, 32, 80];

194

TRQ(P7) = [105, 230, 233, 169, 229, 17, 217, 161, 31, 161, 62, 159, 172, 213,

139, 182, 231, 24, 18, 119, 239, 131, 222, 95, 143, 213, 19, 85, 49, 121, 233,

21, 108, 163, 120, 80, 23, 245, 53, 205, 181, 24, 17, 225, 212, 27, 189, 135, 1,

39, 175, 142, 215, 167, 159, 195, 137, 56, 166, 251, 232, 43, 34, 99, 74, 81, 47,

228, 4, 191, 7, 100, 146, 36, 248, 8, 216, 7, 243, 81, 121, 255, 115, 250, 162,

254, 62, 227, 45, 50, 236, 240, 99, 147, 188, 151, 45, 65, 110, 172].

195

	Introduction
	Research Questions
	Thesis Structure

	Literature Review
	Real-Time System
	Memory
	Cache
	Prefetch
	Scratchpad Memory
	Summary

	Shared Memory Multi-Core Architecture
	Memory Arbitration
	Distributed Memory Interconnect
	Critical Resource Contention
	Summary

	Summary and Discussion

	Multi-Core Architectures with Shared Distributed Memory Interconnects
	Basic Architecture
	Problem Analysis
	Time Predictability
	Varying Memory Access Latency
	Increasing Memory Access latency

	Research Hypothesis

	Analysing Timing Behaviour of Multi-Core Architectures with Shared Distributed Memory Interconnects
	Time Predictability of Multi-Core Architectures with Shared Distributed Memory Interconnects
	Bluetree-based Architecture
	Timing Behaviour Analysis
	Worst-Case Analysis

	Timing Behaviour of Multi-Core Architectures with Shared Distributed Memory Interconnects
	Locally Arbitrated Architecture and Globally Arbitrated Architecture

	Summary and Discussion

	Reducing Variation of Memory Access Latency across Multi-Core Architectures with Shared Distributed Memory Interconnects
	Problem Analysis
	Root Queue Modification
	Timing Behaviour Analysis
	Root Queue Management

	Evaluation: Hardware Simulations
	Evaluation: FPGA Experiments
	Memory Access Latency with Unbalanced Path Workloads
	Memory Access Latency with Balanced Path Workloads
	Memory Access Latency with Increasing Request Intervals

	Summary and Discussion

	Meshed Bluetree: Distributed Time-Predictable Multi-Memory Interconnect for Multi-Core Architectures
	Problem Analysis
	Meshed Bluetree
	Timing Behaviour Analysis

	Evaluation: Hardware Consumption
	Evaluation: Synthetic Memory Workloads
	Memory Access Latency with Multiple Homogeneous Memory Modules
	Memory Access Latency with Mixed Memory Modules

	Evaluation: Benchmarks
	Summary and Discussion

	Concluding Remarks
	Research Summary
	Main Contributions
	Future Work

	Reference
	Appendix
	Request Interval
	Varying Request Interval [1, 64]
	Varying Request Interval [1, 256]

