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Abstract 

Cancer progression is associated with aberrant co- and post-transcriptional processing 

of RNA transcripts in both tumour and immune cells. This results in complex 

transcriptional profiles characterised by alternative splicing, 3’UTR and poly(A) tail length 

alterations, and chemical modifications. Despite advances, accurate profiling of 

transcript isoform usage and modifications remains challenging due to the limited read 

length offered by traditional RNA sequencing technologies. Here, we use long-read 

Nanopore direct RNA sequencing (DRS) and cDNA sequencing (PCS) to explore the 

transcriptomic profiles of clear cell renal cell carcinoma (ccRCC). Archival nephrectomy 

tumour samples from patients who experienced disease recurrence and controls were 

successfully analysed, demonstrating feasibility of the approach. Differential gene 

expression and transcript usage analysis identified changes in abundance and isoform 

usage associated with ccRCC recurrence. Gene expression-based cell-type 

deconvolution showed loss of tumour infiltrating immune cells, specifically CD8+ T cells 

in the recurrent tumours. Remarkably, using reference-guided transcriptome 

reconstruction methods, thousands of unannotated transcripts isoforms were identified, 

including isoforms of clinically important tumour immune checkpoints. DRS analysis of 

the ccRCC tumour cell line RCC4 revealed that some of these novel isoforms identified 

were indeed expressed in cancer cells and that exposure to inflammatory cytokines could 

lead to isoform switch. Notably, differential alterations in poly(A) tail length were also 

observed in novel and annotated transcripts in response to the exposure of cytokines. 

Finally, the role of mRNA N6-Methyladenosine (m6A) was explored in ccRCC tumour cell 

line via genetic perturbation of the m6A writer complex (METTL3 and WTAP) with 

CRISPR-Cas9 gene editing and siRNA-mediated transient depletion. Overall, our study 

demonstrates the feasibility of Nanopore long-read sequencing in tumour samples that 

uncovers cancer transcriptomes at single-transcript resolution and reveals the existence 

of multiple disease-associated alterations concurrently occurring in the mRNA of 

clinically relevant targets.  
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1.1  Co- & Post-transcriptional gene regulation 

Gene expression is a complex and dynamic process where genetic information is 

converted into functional products. This flow of information is described as the central 

dogma of molecular biology, where genetic information stored in DNA is transcribed to 

messenger RNA (mRNA) molecules and then translated into proteins (Crick, 1970). 

From the accessibility of chromatin to post-translational modifications of proteins, every 

step of gene expression is tightly regulated by multitudes of processes to produce the 

optimal levels of desired gene products in the eukaryotic cell. At the mRNA level, 

eukaryotes control gene expression via several co- and post-transcriptional RNA 

regulatory events, including mRNA capping, splicing, generation of alternative 3’ 

untranslated region (UTR) via alternative mRNA polyadenylation, control of mRNA 

polyadenylation (poly(A)) tail length, mRNA chemical modifications, and mRNA export. 

These regulatory events dictate the stability, subcellular localisation and translational 

efficiency of mRNA molecules, as well as the identity of the sequence identity of the final 

gene products (Corbett, 2018). This chapter will cover the roles of co- & post-

transcriptional mRNA regulatory events on gene expression and their relevance in 

cancer. 

 

1.1.1  mRNA splicing 

In eukaryotes, most genes are interweaved by protein-coding (exons) and non-coding 

regions (introns). Once a gene is transcribed from DNA into nascent precursor mRNA 

(pre-mRNA), intronic regions are removed, and exonic regions are ligated to form a 

single translatable mRNA molecule. The median number of exons and introns per human 

gene are 9 and 8 (with a median length of 131 and 1747 nt, respectively). Removal of 

introns and joining of consecutive exons is known as consecutive splicing. Alternatively, 

each mRNA molecule may include or exclude particular exons (Figure 1.1). This process 

is known as alternative splicing. Alternative splicing events are prevalent in human, 

where more than 95% of multi-exon genes undergo AS (Piovesan et al., 2019). This 
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ability to generate multiple gene products from a single gene dramatically expands the 

diversity of human transcriptome and proteome. As of September 2022, the Ensembl 

human reference genome assembly and gene annotation contain 44938 genes (19804 

protein-coding and 25134 non-protein coding genes) and 251296 transcripts 

(Cunningham et al., 2022).  

Splicing of nascent pre-mRNA is carried out by the spliceosome (Figure 1.2). The 

spliceosome is a macromolecular complex consisting of 5 small nuclear RNAs (snRNAs) 

and over 300 proteins currently associated with the complex. At the core of the complex, 

snRNAs interact with proteins to form small nuclear ribonucleoproteins (snRNPs) and 

recognises splice sites on pre-mRNAs (Chen and Moore, 2015). Firstly, the U1 snRNP 

complex binds to the 5’ splice site/donor site of the pre-mRNA (GU dinucleotide at the 5’ 

end of the intron sequence). U2 snRNP then binds to an intronic branch site, a short 

motif 18 – 40 nt upstream of the 3’ end of the intron (AG dinucleotide 3’ splice 

site/acceptor site). U4/U6.U5 tri-snRNP complex subsequently joins the two snRNP 

complexes. This is followed by the rearrangement of the protein complex, which activates 

the catalytic activities of the spliceosome. The 5’ splice site is next cleaved, forming an 

intron lariat-spliceosome structure with the complex covalently bound to the branch site. 

The 3’ splice site is then excised with the two exons ligated simultaneously. The cleaved 

intron-spliceosome complex finally disassembles and is released from the mRNA 

(Gehring and Roignant, 2021). During this process, a multiprotein complex, named the 

exon junction complex (EJC), is assembled at a conserved 24 nucleotides 5’ upstream 

position from the exon-exon junction. EJC serves as a binding platform for other proteins 

and influences various mRNA processing events, including splicing, m6A modification, 

nonsense-mediated decay and mRNA export. These complexes accompany from the 

nucleus, through the nuclear pore to the cytoplasm where they are displaced by the 

ribosomes (Schlautmann and Gehring, 2020).  
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Figure 1.1: Graphical representation of constitutive & alternative splicing 

patterns 

Transcribed pre-mRNA undergoes splicing to remove intronic sequences and ligate 

exonic sequences. When introns are removed and exons are joined consecutively in 

the order of which they have been coded, this is known as constitutive splicing. Most 

multi-exon genes in human undergo alternative splicing, leading to a variety of 

possible gene products, which can have different biological functions. Some of the 

most common alternative splicing events include exon skipping/inclusion, alternative 

5’ or 3’ splice sites usage, intron retention, and mutually exclusive exons. 
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The decision of whether an exon is included in the matured mRNA is jointly controlled 

by both cis- and trans- acting regulatory elements. Cis-acting regulatory elements refer 

to the pre-mRNA sequence features that can influence how pre-mRNA molecules are 

spliced. In addition to the highly conserved 5’ GU/ 3’ AG dinucleotides that mark exon-

intron boundaries, the sequence and structural context surrounding both 5’ and 3’ splice 

sites also directly impact the strength of interactions between snRNPs and nascent pre-

mRNA. The ‘strength’ of the splice sites determines the likelihood of the exons being 

included in the matured mRNA and thus influences if a gene is constitutively or 

alternatively spliced (Wachutka et al., 2019).  

Figure 1.2: Canonical spliceosome assembly 

Assembly of spliceosome begins with U1 snRNP recognising and binding to 5’ splice 

site on the pre-mRNA. U2 snRNP then binds to intronic branch site, with auxiliary 

factors U2AF1 binding to the 3’ splice site. U4/U6.U5 tri-snRNP rearranges the 

complex, leading to the release of U1 and U4 snRNP. The now activated spliceosome 

cleaves pre-mRNA at 5’ splice site first, which creates a branched ‘lariat’ intron 

attached to the spliceosome complex at the branch site. Finally, pre-mRNA is cleaved 

at 3’ splice site, with the exons ligated simultaneously. The spliced out intronic RNA 

is released alongside with U2, U5, and U6. 
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Other sequence motifs within exons and introns can also act as enhancers or silencers 

of the splice sites by acting as docking sites for RNA binding proteins (RBPs). The 

binding of these trans- acting RBPs can subsequently aid or disrupt the assembly of 

spliceosomes on the pre-mRNA. For example, the splicing factor serine and arginine-

rich splicing factor 1 (SRSF1) binds to exon enhancer sites, which facilitates the 

recruitment of U1 snRNP to the 5’ splice site and promotes the inclusion of the exon 

(Cho et al., 2011). Conversely, heterogenous nuclear ribonucleoprotein A1 (hnRNP A1) 

can bind to intronic silencer sites and inhibit U1 snRNP binding to 5’ splice sites. As the 

adjacent intronic/exonic RNA segments are forced to ‘loop out’, distant pre-mRNA splice 

sites can be brought close together. This leads to the exclusion of adjacent exons 

(Howard et al., 2018). The cooperative and competitive binding of splicing factors to pre-

mRNA represents a dynamic mechanism that regulates alternative splicing.  

Alternative splicing is heavily influenced by transcriptional regulation. Majority of splicing 

events in human occur co-transcriptionally. RNA sequencing of nascent RNA purified 

from human cell lines and tissue shows that between 70-85% of intron removal events 

occur concurrently with transcription (Neugebauer, 2019). As RNA polymerase II (RNAP 

II) begins transcribing DNA into pre-mRNA, spliceosome assembles concurrently. U1 

snRNP physically associates with RNAP II and captures pre-mRNA molecules at 5’splice 

sites at the RNAP II pre-mRNA exit site (S. Zhang et al., 2021). The tail-like carboxy-

terminal domain (CTD) of the RNAP II catalytic domain serves as a docking site for a 

wide range of splicing factors. Many interactions between CTD and splicing factors, 

including U2 snRNP, depend on the CTD's phosphorylation state (Hsin and Manley, 

2012). The phosphorylation state of CTD is also critical in regulating other mRNA 

processing steps such as 5’ capping, 3’ cleavage and polyadenylation (Gu et al., 2013; 

Davidson et al., 2014; Noe Gonzalez et al., 2018). Cyclin-dependent kinases (CDKs) 

and phosphatases dynamically modulate the phosphorylation state of RNAP II CTD as 

the transcription cycle progresses. Consequently, this changes the profile of splicing 

factors and resulting splicing patterns.  
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The speed of transcription elongation heavily influences splice site recognition and usage. 

A faster transcription rate reveals stronger splice sites more rapidly and ‘mask’ weaker 

splice sites. Conversely, a slower transcriptional rate may allow spliceosomes to 

assemble at weaker splice sites (Carrillo Oesterreich et al., 2016). Many factors, 

including the gene structural features and sequence identity, control the transcription 

elongation speed. It was found that the length of the first intron and the number of introns 

present in a gene positively correlate with gene transcription speed (Fukaya, Lim and 

Levine, 2017). In contrast, the number of exons in a gene negatively correlates with the 

speed of RNAP II (Jonkers et al., 2014). As DNA is unwound and transcription begins, 

DNA, RNA, or DNA: RNA hybrid secondary structures can form and act as ‘speed bumps’ 

to the RNAP II, leading to transcription pausing (Saba et al., 2019). For example, the 

formation of RNA hairpin structures on pre-mRNA splice sites abrogates the assembly 

of spliceosomes, leading to exon exclusion (Neil and Fairbrother, 2019). RNA secondary 

structures are also essential recognition features for RBP binding, including members of 

the serine and Arginine rich (SR) and hnRNP families of proteins. Transcription speed 

and pre-mRNA splicing are intricately co-regulated by DNA/RNA secondary structure 

formations and RBPs binding profile.  

Interestingly, the formation of functional spliceosome itself is also essential for gene 

transcription activities in eukaryotes. Upon transcription initiation, RNAP II pauses after 

20 – 80 bases downstream in a large proportion (30 – 80% depending on studies) of 

genes in eukaryotes (Day et al., 2016). Transcriptional activities can only be resumed 

upon recruitment of positive transcription elongation factor b (p-TEFb) to the promoter, 

which mediates phosphorylation of RNAP II CTD and other transcription factors (Lu et 

al., 2016). Recent studies have shown that functional U2 snRNP is required for p-TEFb 

recruitment and, therefore, for effective transcription elongation. Inhibition of U2 snRNP 

branch point recognition by small-molecule inhibitors reduces nascent RNA biosynthesis 

significantly in human. This shows that productive gene expression depends on 

functional splicing activities (Chathoth et al., 2014; Caizzi et al., 2021).  
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1.1.2  Aberrant alternative splicing and cancer 

Whilst alternative splice site usage generates diversity in mature mRNA transcripts and 

proteins, aberrant splice site usage can also lead to developmental defects and may 

have pathological consequences (Wang et al., 2015). Computational analysis of RNA 

sequencing data from The Cancer Genome Atlas (TCGA) across 32 cancer types 

reveals that tumour tissues display up to a 30% increase in alternative splicing events 

compared to matched normal tissues, with exon skipping and alternative 3’ splice sites 

representing 50%+ of all alternative splicing events (Kahles et al., 2018). Somatic 

alterations in splicing factors are over-represented across different cancer types. Many 

recurrent mutations of splicing factors have now been linked to tumorigenesis and cancer 

development (Seiler et al., 2018). For example, U2AF1 is a splicing factor responsible 

for U2 snRNP binding to the 3’ splice site’ AG dinucleotides (Figure 1.2). More than 10% 

of chronic myelomonocytic leukaemia (CMML) patients harbour mutations at the amino 

acids S34 or Q157, which causes abnormal alternative splicing and impaired 

haematopoiesis (Okeyo-Owuor et al., 2015). 

In addition to genetic mutations, splicing regulation in cancer is also influenced by the 

differential expression of splicing factors. For example, SRSF1 is highly expressed in 

many cancer types, including glioblastoma. SRSF1 binds to exons 23 and 24 of myosin 

1B (MYO1B) pre-mRNA, which enhances their inclusion in glioma tissues compared to 

normal tissues. This promotes glioma cell proliferation and a more aggressive tumour 

phenotype. Furthermore, SRSF1 expression and MYO1B exon inclusion events 

correlate significantly with glioblastoma patients' prognosis and outcomes (Zhou et al., 

2019). hnRNPA1 is also highly expressed in multiple cancer types, and its expression is 

controlled by the frequently over-expressed oncogenic transcription factor c-MYC (MYC 

proto-oncogene). In glioma, hnRNP levels are upregulated. hnRNPA1, hnRNPA2 and 

hnRNPI bind to exon 9 of pyruvate kinase PKM pre-mRNA. This pivots the expression 

of PKM towards the exon9-excluded PKM2 mRNA isoform, which promotes aerobic 

glycolysis and tumour cell proliferation (David et al., 2010). 
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Cell cycle and proliferation signal transduction pathways are often driven via kinase 

signalling. Hyperactivation of these pathways is also found to influence the 

phosphorylation state and activities of splicing factors. In cancer cells, the ribosomal 

protein S6 kinase 2 (S6K2) is often over-expressed and hyperactivated by the pro-

survival mitogen activated protein kinase/extracellular signal regulated kinase pathway 

(MAPK/ERK) and phosphatidylinositol-3-kinase (PI3K) /protein kinase B (AKT) 

/mechanistic target of rapamycin (mTOR) pathways (Pardo and Seckl, 2013). In 

colorectal cancer, hnRNPA1 is found to be highly phosphorylated by S6K2, which 

promotes its binding to PKM pre-mRNA exon9 and increases PKM2 isoform expression. 

Like glioma, PKM2 promotes metabolic reprogramming in colorectal cancer cells, and its 

expression levels predict patient prognosis (Sun et al., 2017). 

A recent integrated multi-omics study on clear cell renal cell carcinoma (ccRCC) patients 

(n = 601) reveals 16 ccRCC-specific splice variants (validated against 4365 non-RCC 

tumours and 71 paired adjacent kidney tissue), where many of their expression 

significantly correlates with ccRCC disease progression and outcome. One of the 

ccRCC-specific splice variants is an alternatively 5’ spliced EGFR transcript, where its 

expression levels in patients' tumour tissue are associated with worse disease outcomes 

(Chang et al., 2022). In ccRCC, high levels of EGFR expression have been linked with 

hyperactivation of AKT in ccRCC and poor patient prognosis (Q. Zhang et al., 2019). 

Surprisingly, high gene expression levels of the ccRCC-specific EGFR splice variant 

were associated with genome-wide DNA hypo-methylation. Whilst the mechanistic links 

between the splice variant and DNA methylation in ccRCC are yet to be determined, this 

demonstrates a potential relationship between the splice variant with genome-wide 

expression remodelling, resulting in tumour progression and poor disease outcomes. 
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1.1.3  Alternative cleavage and polyadenylation 

In addition to alternative splicing, eukaryotic cells can generate additional transcript 

isoforms with alternative 3’ UTRs, via a regulatory mechanism known as alternative 

cleavage and polyadenylation (APA). Most eukaryotic pre-mRNA molecules are cleaved 

and polyadenylated at the 3’ end by a multi-subunit processing complex known as 

cleavage and polyadenylation specificity factor (CPSF). CPSF complex recognises and 

binds to a hexanucleotide polyadenylation signal (PAS). This is facilitated by the 

recruitment of other multi-proteins complexes, including cleavage factor I (CFI), which 

binds to the consensus UGUA sequence upstream of PAS, and cleavage stimulation 

factor (CSTF) at downstream U / GU rich sequence. CPSF complex cleaves pre-mRNA 

at ~20 nucleotides downstream of PAS. It is now known that 70% of expressed genes 

exhibit APA (Neve et al., 2017).  

The most common human PAS sequence is AAUAAA, representing more than 47% of 

all PAS sites (Tian and Graber, 2012). Recent transcriptome-wide analysis reveals that 

more than 70% of all human protein-coding genes utilise multiple PAS, with an average 

of 2.5 PAS sites per gene (Djebali et al., 2012). The usage of alternative PAS generates 

multiple mRNA isoforms with variable 3’ ends, which are generated in 4 ways (Figure 

1.3). Alternative PAS usage can result from differential usage of 3’ terminal exon via 

alternative splicing (3’UTR APA). When APA occurs downstream of the stop coding at 

the 3’UTR, isoforms with different 3’UTR lengths are generated. Alternative PAS sites at 

introns and within exons have also been identified, resulting in changes in protein 

sequences (Elkon et al., 2013). mRNA 3’UTR play essential roles in mRNA stability, 

localisation, and translation. Multiple post-transcriptional gene expression regulation 

mechanisms, mediated by RBPs and micro RNA (miRNA), target mRNA 3’UTR 

specifically (Mayr, 2019). Intronic and premature exonic APA can also result in 

alternative 3’UTR sequences and changes in amino acid sequences. Like alternative 

splicing, APA represents a key gene regulation mechanism that enables the generation 

of multiple isoforms from a single gene. 
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Figure 1.3: Types of APA and mechanisms of differential 3’UTRs generation 

The CPSF complex utilises (PAS) to define the 3’ end of an mRNA molecule. The 

majority of human genes contain multiple PAS, which allows APA and generation of 

different transcript isoforms. AS can produce transcripts with differential 3’ terminal 

exons and PAS usage. Genes may also harbour multiple PAS in its 3’UTR, producing 

isoforms with identical coding sequence but different lengths of 3’UTR. Usage of 

cryptic PAS in the intronic and internal exonic regions can also generate transcript 

isoforms. Presence of a stop codon upstream of the alternative PAS can results in an 

alternative 3’UTR and the production of truncated proteins. 
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Like AS events, APA is also regulated by both cis- and trans- regulatory elements. In 

addition to the ‘canonical’ hexameric PAS sequence AAUAAA, 21 other PAS hexamers 

have been identified to support mRNA cleavage and polyadenylation in 87% of all known 

human transcripts (Gruber et al., 2016). Different PAS sequences display a varying 

degree of ‘strength’, which contribute to prioritising specific isoforms over others, as seen 

in PAS usage from in vivo RNA sequencing data and in vitro PAS constructs reporter 

assays (Bogard et al., 2019). Other RNA motifs, including the downstream U/GU rich 

sequence and upstream UGUA elements, also contribute to CPSF assembly and 

efficiencies. Analysis of RNA sequencing data using 3’ end enriched mRNA of different 

human tissues shows that PAS usage and strength vary between tissues (Lianoglou et 

al., 2013; Leung et al., 2018). The differences in sequence characteristics between 

proximal and distal PAS sites and the abundance and activation states of CPSF 

components between cell types contribute to this variation. For example, depletion in the 

UGUA-binding CPSF5 and CPSF6 expression results in global 3’UTR shortening, 

whereas reduced expression levels of G/GU-rich binding PCF11 lead to 3’UTR 

lengthening (Ogorodnikov et al., 2018). Global lengthening and shortening of 3’UTR 

have been observed in cells in response to cellular stress, differentiation, and pathogenic 

settings (Mayr and Bartel, 2009; Meng Chen et al., 2018; Zheng et al., 2018). This shows 

that APA is a dynamic gene expression regulatory mechanism, and cis-regulatory 

elements alone are insufficient to predict PAS usage. 

The rate of transcription elongation and APA events are closely linked. Only the 

transcribed proximal PAS on pre-mRNA are available for CPSF complex assembly 

during the time between transcription of proximal PAS and distal PAS. Hence, a high 

transcription elongation rate favours the usage of distal PAS and the production of full-

length mRNA transcripts, whereas slow transcript and transcription pausing promote the 

usage of proximal PAS and shorter isoforms (Goering et al., 2021). In addition to 

DNA/RNA structures formed during transcription, RNAP II speed is influenced by 

chromatin structure and DNA methylation status. CCCTC-binding factor (CTCF) is a 
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crucial transcription factor that regulates chromatin structure by generating chromatin 

loops with the cohesin complex (Pugacheva et al., 2020). CTCF binds to more than 

50000 GC-rich sites across the genome, and DNA methylation at these CpG sites inhibits 

CTCF binding (Wang et al., 2012). DNA-bound CTCF-cohesin complex induces RNAP 

II pausing. Moreover, chromatin loop formation mediated by the complex is also found 

to promote the usage of proximal PAS and the expression of short mRNA isoforms 

(Nanavaty et al., 2020). This provides a direct link between the DNA-methylation state 

and APA events.  

Transcription and APA can also be co-regulated by transcription factors. According to 

the ENCODE DNA functional elements repository, it is currently estimated that there are 

roughly 1 million enhancers in the human genome, which are short non-coding DNA 

sequences (average length of 423bp) that regulate gene expression(Abascal et al., 

2020). Enhancers contain transcription factor binding sites to help activate gene 

transcription in a cell-type-dependent manner (Mills et al., 2020). Interestingly, a recent 

study shows that activation and increased binding of the master transcription factor 

Nuclear factor kappa B (NF-kB) to PTEN enhancer (Penh) promotes the shortening of 

PTEN (Phosphatase and tensin Homolog deleted on Chromosome 10) mRNA 3’UTR. 

The change in 3’UTR length is lost when the PTEN enhancer is removed via the 

CRISPR-Cas9 system or when function NF-kB transcription factors are depleted (siRNA-

mediated knockdown of RELA, the gene that encodes NFkB p65 subunit). Using the 

enhancer-deleted cell line, as well as in vitro reporter system, the study confirms that the 

change in PTEN 3’UTR is due to changing preference of PAS, as there is no change in 

terms of mRNA production levels or differences in mRNA stability between isoforms 

(Kwon et al., 2022). With the high abundance of enhancers in the human genome, this 

study demonstrates a potentially critical cell and gene-specific APA regulatory 

mechanism.  
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1.1.4  Alternative 3’UTR and cancer 

Cancer transcriptomic studies have revealed that across different cancer types, more 

than 70% of mRNA transcripts exhibit 3’UTR shortening via APA (Xia et al., 2014). 

Enhanced usage of proximal PAS sites in the 3’UTR removes miRNA and RBP binding 

sites in mRNAs, which makes the mRNA insensitive to miRNA- and RBP-mediated 

mRNA stability and translation regulation. Although there is data that suggest global 

3’UTR shortening increases mRNA half-life in cancer tissues, its role on mRNA and 

protein gene expression levels appears to be more nuanced and gene-specific (Mayr 

and Bartel, 2009; Gruber et al., 2014). Nevertheless, in the cancer setting, perturbation 

in APA has now been shown to drive tumour progression by promoting the expression 

of oncogenes and repressing tumour suppressors expression (Park et al., 2018). 

Dysregulation of APA is mediated by aberrant expression of proteins that regulate CPA.  

For example, expression levels of the CPSF complex component CPSF5 are significantly 

down-regulated in various cancer types. In glioblastoma tumour cells, the shortening of 

mRNA 3’UTR caused by CPSF5 depletion results in enhanced protein expression of pro-

proliferative genes, such as glycogen synthase kinase three beta (GSK3b). Stable RNAi-

mediated CPSF5 gene knockout human glioblastoma tumours show increased growth 

in vivo when transplanted in mice, whereas CPSF5 overexpressed tumours exhibit 

reduced proliferation (Masamha et al., 2014). Suppressed CPSF5 expression levels are 

seen frequently across cancer types and significantly associate with poor patients 

outcome in glioblastoma, haepatocellular carcinoma and bladder cancer (Nourse et al., 

2020). Conversely in glioblastoma, siRNA-mediated depletion of PCF11 promotes 

3’UTR lengthening, whereas high level of PCF11 expression is significantly correlated 

with transcript shortening and poor prognosis (Ogorodnikov et al., 2018). 

Other CPA factors regulate 3’UTR lengths in a more gene-specific manner. RNA 

sequencing analysis of a siRNA-mediated gene depletion screen shows that suppressed 

expression of RNA splicing factors and all known CPA regulators (174 genes KD in total) 

affect APA. On average, KD of CPA and splicing factors results in differential PAS usage 
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in 130 genes. Moreover, KD of most factors causes both an increase and decrease in 

3’UTR lengths, and their targets are mainly mutually-exclusive (Ogorodnikov et al., 2018).  

CPSF complex components are also co-regulated, as demonstrated by a recent study 

on PCF11 and CPSF5. Melanoma antigen gene A11 (MAGE-A11) is an oncogene that 

functions as a substrate adapter for the E3 ubiquitin ligase HUWE1 (Yang, Huang, et al., 

2020). MAGE-A11 expression is generally restricted to cells from the testis and placenta, 

but high levels of expression are also found in different types of cancer. In MAGE-A11 

expressing cancer cells, MAGE-A11 facilitates HUWE1-mediated PCF11 ubiquitination 

and subsequent degradation. However, PCF11 ubiquitination also facilitates the 

dissociation of CPSF5 from the CPSF complex. Thus, in contrast to 3’ UTR lengthening 

seen in siRNA-mediated PCF11 degradation, ubiquitination/proteasome-mediated 

degradation of PCF11 results in the unexpected global shortening of 3’UTR. One of the 

oncogenes with shortened 3’UTR is cyclin D2 (CCND2), which plays a critical role in cell 

cycle regulation. With the loss of 3’UTR sequences, including the miR-191-5p binding 

site, the shortened CCND2 3’UTR upregulates CCND2 protein levels, consequently 

promoting cell proliferation in MAGE-A11 expressing human brain tumour cells (Yang, 

Li, et al., 2020).  

In summary, APA and 3’UTR length are regulated by both cis- and trans- regulators. 

Epigenetics, transcription, and expression levels of CPA regulation factors also control 

the selection of PAS sites. APA is widely dysregulated in tumour cells. With the many 

regulatory networks involved and the context-dependent nature of APA, much work is 

needed to understand its role in tumourigenesis and cancer development. 
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1.1.5  mRNA poly(A) tail 

Most eukaryotic mRNA molecules are polyadenylated at the 3’ end. These 

polyadenylated tracks, known as poly(A) tails, are a crucial determinant of the stability of 

mRNA molecules. After the mRNA molecule is cleaved by the CPSF complex at the 3’ 

cleavage site, typically around 20 nucleotides downstream of PAS, the poly(A) tail is 

synthesised by the poly(A) polymerase (PAP). Upon addition of 11 – 14 adenosines, the 

RBP poly(A) binding nuclear protein 1 (PABPN1) binds to the newly synthesised tail and 

promotes the rapid, processive synthesis of the growing poly(A) tail (Neve et al., 2017). 

Newly synthesised poly(A) tail length human is believed to be over ~200 nt long (Kühn 

et al., 2009). However, poly(A) tail length is also dynamically controlled by cytoplasmic 

polyadenylation and deadenylation. Recent works suggest that the median poly(A) 

length of all mRNA molecules in a human cell range between 60 – 100 nt (Chang et al., 

2014; Soneson et al., 2019). Curiously, poly(A) tails may also contain non-adenosine 

residues, albeit at a much lower frequency (~5% non-a residues appearing in ~15% of 

all mRNA molecules) (Y. Liu et al., 2019; Liu et al., 2021). 

Once an mRNA molecule is fully matured and exported from the nucleus to the cytoplasm, 

its poly(A) tail is typically bound and coated by poly(A) binding cytoplasmic protein 1 

(PABPC1). PABPC1 has an RNA binding footprint of ~30 nt, and binding between 

PABPC1 and poly(A) tail protects the mRNA molecule from deadenylation and 

degradation from 3’ exonucleases. This is exemplified by the 30 nt incremental lengths 

seen at human poly(A) tails in vivo (Nicholson-Shaw et al., 2022). In human, three major 

3’ exonucleases regulate the length of mRNA poly(A) tails: Pan2-Pan3 complex, CCR4-

NOT complex, and poly(A)-specific ribonuclease (PARN) (Wolf and Passmore, 2014; 

Collart, 2016). Other RBPs mediate associations of Pan2-Pan3 and CCR4-NOT 

complexes to mRNA molecules. For example, tristetraprolin (TTP) is an RBP that binds 

to AU-rich elements (AREs) at the 3’UTR and recruits the CCR4-NOT deadenylase 

complex (Fabian et al., 2013). This allows gene-specific (ARE-dependent) expression 

regulation in response to environmental cues, which is mediated by TTP expression 
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levels and the levels of competing AU-rich RNA binding proteins (AUBPs) (Shirai et al., 

2014). Other RBPs that recruit CCR4-NOT deadenylase complex include the mRNA m6A 

binding protein YTHDF2 (YTH N6-methyladenosine RNA binding protein 2), 

representing an RNA modification-specific degradation mechanism, which will be 

discussed later in the chapter. 

Regulation of poly(A) tail is closely related to mRNA translation. Mediated by PABPC1, 

the mRNA poly(A) tail can form a ‘close loop’ structure by interacting with the mRNA 5’ 

cap. This close loop structure brings multiple translation initiation complexes in close 

proximity, facilitating their catalytic activities and subsequent recruitment of ribosomal 

subunits (Passmore and Coller, 2022). Early studies stipulated that poly(A) tail length 

(thus the number of bound PABPC1 proteins) positively correlates with translation 

efficiency(Sallés et al., 1994; Sheets et al., 1995). However, recent work suggests that 

this only applies to the early stages of development since a single poly(A) tail-bound 

PABPC1 protein is adequate for translation initiation. After the early embryonic stage, 

the PABPC1 expression level is more than sufficient to coat all mRNA molecules’ poly(A) 

tails (Xiang and Bartel, 2021). Furthermore, poly (A) tail deadenylation rate, and thus the 

stability of mRNA molecule, depend on mRNA translation rate. A slow translation 

elongation rate is associated with a fast poly(A) tail deadenylation rate via the CCR4-

NOT complex (Buschauer et al., 2020). Determinants of translation rate include (but are 

not limited to) concentration and availability of sequence corresponding tRNAs, 

accessibility of coding sequences due to mRNA folding, and encoded amino acids side 

changes properties (Dana and Tuller, 2012). 

Interestingly, highly expressed and translated genes tend to have short poly(A) tails (30-

60 nt), which suggests that mRNAs with short poly(A) tails are not necessarily unstable 

(Lima et al., 2017). Currently, there are conflicting reports on the correlation (or lack of) 

between poly(A) tail length and mRNA stability (Rissland et al., 2017; Eisen et al., 2020). 

However, the poly(A) tail is now widely established an essential feature that regulates 

gene expression by linking translation and environmental cues to mRNA stability. 
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1.1.6  m6A mRNA modification 

Cellular RNAs can be chemically modified in a myriad of ways. To date, more than 170 

types of posttranscriptional modifications, including pseudouridine (Ψ), 5-methylcytosine 

(m5C) and N6-methyladenosine (m6A), have been identified. m6A methylation in mRNA 

is a reversible and highly dynamic process involving demethylase and methylation 

complexes.  Approximately 0.1 – 0.4% of mRNA adenosine and 25% of all mRNAs are 

estimated to be m6A modified, primarily at the consensus sequence 5’-DRACH-3’ 

(D=A/G/U, R=G/A, H=A/C/U) (Nachtergaele and He, 2017). m6A modification is highly 

dynamic and reversible by m6A methyltransferase protein complex (writers) and 

demethylases (erasers). Different classes of RNA-binding proteins (RBPs), known as 

‘readers’, can be specifically recruited to mRNAs with m6A (Figure 1.5). In human, m6As 

in mRNAs are mainly enriched near the 3’ untranslated region (UTR), long exons (< 

200nt) and near stop codons (Figure 1.4) (Dominissini et al., 2013). m6A is shown to play 

critical roles in mRNA splicing, stability, localisation and translation via regulation of RNA 

structure and RNA-RBPs interactions. (C. Zhang et al., 2019). 

Figure 1.4: Graphical representation of the metagene m6A distribution profile 

m6As are highly enriched at 3’UTR and exonic regions near the stop codon. Image 

adapted from Dominissini et al., 2013. 
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Figure 1.5: An overview of m6A writers, erasers and readers 

Deposition of m6A mainly occurs in the nucleus by a methyltransferase ‘writer’ 

complex, comprised of the core METTL3 (methyltransferase 3)-METTL14 (methyl 

transferase 14) heterodimeric complex, as well as other adaptor proteins such as 

Wilms’ tumour-associated protein (WTAP), RBM15, and KIAA1429. Interaction 

between m6A and m6A reader proteins exert a wide range of effects on the fate of 

m6A containing mRNAs, such as mRNA localisation, splicing, stability and translation. 

The m6A mark can also be removed by m6A eraser proteins FTO and ALKBH5. 
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1.1.6.1  m6A writers 

m6A modification is highly dynamic and reversible by m6A methyltransferase protein 

complex (writers) and demethylases (erasers). Different classes of RNA-binding proteins, 

known as ‘readers’, can be specifically recruited to mRNAs with m6A (Figures 1.5 and 

1.6). 

The core of the m6A writer complex consists of the METTL3-METTL14 heterodimeric 

complex. METTL3 and METTL14 are highly conserved in mammals and share 43% 

amino acid sequence identity in human. While METTL3 and METTL14 contain a 

methyltransferase domain (MTD), only METTL3 has a binding site for S-

adenosylmethionine (SAM), the methyl group donor for methylation of adenosine of 

mRNA. METTL3 also harbours two tandem Cys-Cys-Cys-His (CCCH) zinc finger 

domains adjacent to the MTD, thus allowing mRNA binding (Wang et al., 2016). 

METTL14 plays an allosteric role in supporting METTL3 enzymatic activity through 

structural stabilisation of the complex and RNA substrate recognition via its Arginine-

Glycine repeats (RGG) at its C terminal terminus (Schöller et al., 2018). With METTL3 

containing a nuclear localisation sequence (NLS) at its N-terminal, the METTL3-

METTL14 complex is predominantly found in the nucleus where it forms the m6A writer 

complex with other ‘adaptor’ proteins such as WTAP (Wilms’ Tumour 1 Associating 

Protein), RBM15 and KIAA1429. Interestingly, METTL3 is also found in the cytoplasm 

without forming heterodimers with METTL14 in human cancer cells and promotes 

translation initiation of selective mRNAs by recruiting eIF3 to the translation initiation 

complex independent of its methyltransferase activities (Lin et al., 2016). This 

demonstrates an alternative role of METTL3 in gene expression regulation beyond the 

catalytic activity of m6A modifications. 

Several adaptor proteins of the m6A methyltransferase complex are indispensable in 

regulating its activities. WTAP is a highly expressed splicing factor initially identified as 

the protein binding partner of Wilms’ Tumour 1 (WT-1) oncoprotein. Deletion of WTAP in 

mice is embryonically lethal, and it was shown to facilitate G2/M cell cycle transition in 
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endothelial cells through stabilising cyclin A2 mRNA (Horiuchi et al., 2006). WTAP 

associates with METTL3-METTL14 heterodimer, specifically the N-terminal part of 

METTL3, and is essential for the complex to localise in nuclear speckles (Liu et al., 2014). 

Like METTL3, WTAP binds to the consensus m6A RRACH motif in mRNAs. Depletion of 

WTAP by siRNA in HEK293-T and HeLa cells results in significantly lower levels of 

mRNA m6A that are comparable to cells with either METTL3 or METTL14 knockdown 

(~50%), highlighting its importance in regulating mRNA m6A methylation (Ping et al., 

2014).  

WTAP also serve as a structural link between METTL3-METTL14 heterodimer and other 

adaptor proteins by forming direct interactions with RBM15 (and its paralogue RBM15B), 

KIAA1429 and ZC3H13, each of which when depleted, affects levels of m6A in mRNAs 

(Schwartz et al., 2014; Lence et al., 2016; Knuckles et al., 2018). RBM15/RBM15B binds 

to mRNAs preferentially near their m6A sites and facilitates both m6A formation and 

specific recognition of the long non-coding RNA X-inactive specific transcript (XIST) 

(Patil et al., 2016). VIRMA, the Drosophila homologue of KIAA1429, is essential for m6A 

deposition in 3’ UTR and near stop codon specifically but with no effects on m6A 

enrichment in long exons (Yue et al., 2018). ZC3H13 also contributes to the specific 

enrichment of m6A to 3’ UTR and controls the nuclear localisation of WTAP (Wen et al., 

2018).  
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Figure 1.6: Schematic representation of the m6A writer complex 

METTL3 (Purple) is the sole catalytic subunit of the m6A methyltransferase complex. 

Its zinc finger domains (CCCH x2) recognises mRNA molecules and 

methyltransferase domain (MTD) catalyses methyl group transfer from S-

adenosylmethionine (SAM) to target adenosine, which yields S-

adenosylhomocysteine (SAH). METTL14 (Yellow) acts as a RNA binding scaffold for 

the complex with a C-terminal Arginine-Glycine repeats (RGG) domain. WTAP 

associates with the heterodimer and is required for its localisation to nuclear speckles 

where pre-mRNA and splicing factors are enriched.  
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1.1.6.2  m6A erasers 

m6A modifications in mRNAs can be removed by m6A demethylases, or ‘erasers’. FTO 

(Fat mass and obesity associated protein) and ALKBH5 (Alkb family member 5) are 

proteins from the AlkB family of alpha-ketoglutarate-dependent hydroxylase (of 9 human 

homologues) that have been identified to have RNA m6A demethylation activity. The 

discovery of FTO’s ability to catalyse oxidative demethylation of m6A in RNA coined the 

term ‘epitranscriptome’ (Jia et al., 2011). FTO knockout mice show lean body mass and 

m6A enrichment at the 5’UTR in mRNAs (Hess et al., 2013). However, the m6A antibody 

(Synaptic System) used in this study was found to cross-react with m6Am (N6, 2’ -O-

dimethyladenosine), a prevalent modification located near the mRNA 5’ cap structure 

that contributes to mRNA stability. Notably, recent studies have also shown that FTO 

has a 100-fold higher catalytic activity for m6Am compared to m6A and acts as an m1A 

(N1 –methyladenosine) demethylase for tRNAs (Mauer and Jaffrey, 2018). FTO can be 

localised in the cytoplasm and the nucleus, with widely different distribution patterns 

between cell types that may confer on its substrate specificity (Wei et al., 2018). The 

precise role of FTO on m6A and mRNAs is still under debate. Contrary to FTO, ALKBH5 

is predominantly located in the nucleus with only m6A, not m6Am demethylase activity. 

Knockdown and knockout of ALKBH5 results in a subtle, approximately 10 – 20% 

increase in mRNA m6A levels (Zheng et al., 2013). Knock out of ALKBH5 in male mice 

causes infertility, and it was reported that ALKBH5-mediated removal of m6A is essential 

for correct splicing in mRNAs with longer 3’UTR(Tang et al., 2017). 
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1.1.6.3  m6A readers 

m6A modification has been shown to play a regulatory role in many parts of mRNA 

metabolism, ranging from mRNA stability, folding, splicing, export, translation and 

decay(C. Zhang et al., 2019). The main method by which m6A can contribute to such 

diverse functions is by recruiting RBPs that specifically bind to m6A, also named m6A 

readers. The most well-characterised m6A binding domain is the YTH domain (YT521-B 

homology).  

YTHDF1, YTHDF2 and YTHDF3 are structurally similar cytoplasmic paralogues in 

human but differentially expressed across tissues and cell types. Early studies suggest 

that each paralogue exerts distinct effects on different subsets of methylated transcripts. 

YTHDF1 promotes m6A-modified mRNAs translation by directly recruiting translation 

initiation factor eIF3 and bridges eIF4G, which links poly-A binding protein and the cap-

binding eIF4E to form a circularised closed-loop mRNA structure (Xiao Wang et al., 

2015).  YTHDF2 facilitates mRNA degradation with m6A via direct recruitment of the 

CCR4-NOT deadenylase complex, and YTHDF3 enhances both roles (Shi et al., 2017). 

A recent interactomics study shows that the three YTHDF paralogues have highly similar 

protein binding partners and mRNA targets (Zaccara and Jaffrey, 2020). Although 

knockout of single paralogues has resulted in specific phenotypes, such as YTHDF1 KO 

mice showing synaptic defects and oocyte maturation arrest in YTHDF2 KO mice, each 

of these knock-out paralogues is also expressed at a much higher level than the other 

two paralogues in their respective tissues/cell-lines (Lasman et al., 2020). In cell lines 

where all three YTHDF proteins are expressed at similar levels, the combined activity of 

the three paralogues results in the degradation of m6A-modified mRNAs, which can only 

be ablated when all three proteins are depleted by siRNA.  

Aside from the three YTHDF paralogues, YTHDC1 and YTHDC2 are the other m6A 

readers containing the YTH domain. In contrast to the DFs proteins, YTHDC1 is 

exclusively localised in the nucleus. Loss of YTHDC1 in mouse oocytes causes 

alternative splicing defects, resulting in maturation arrest. YTHDC1 can also facilitate the 
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export of m6A methylated mRNA transcripts from the nucleus by interacting with SRSF3 

and the TREX mRNA export complex (Patil et al., 2016; Roundtree et al., 2017) (Patil, 

Chen, B. F. Pickering, et al., 2016; Roundtree et al., 2017; Lesbirel et al., 2018). YTHDC2 

is a perinuclear RNA helicase that positively regulates the translation of mRNAs with 

m6A modifications by resolving its secondary structures (Hsu et al., 2017). The 

mechanism by which YTHDC2 increases translational efficiencies of m6A-modified 

mRNA transcripts and whether it works cooperatively with other m6A readers/METTL3 

to promote translation remains unclear. 

Another critical role of m6A in mRNAs is promoting mRNA stability through binding 

IGF2BP (insulin-like growth factor-2 mRNA binding protein) proteins. In mammals, there 

are 3 IGF2BP paralogues (IGF2BP1, 2 and 3) that directly recognise and bind to m6A 

via their K-homology (KH) domains (Huang et al., 2018). Moreover, IGF2BP proteins 

recruit HuR, an RBP that promotes target mRNA stability by competing for AU-rich 

elements (ARE) occupancy in the 3’ UTR against mRNA destabilisers and microRNAs. 

Lastly, m6A can also infuence RBP binding affinity by remodelling local RNA structure. 

One of such examples is hnRNP C. hnRNP C binds to Malat1 in a m6A dependent 

manner. m6A methylation at the A2577 site exposes an U-tract with 5 contiguous uridines 

at the hairpin-stem opposing the m6A site, where hnRNP C has a strong-affinity for. 

Combining CLIP (Crosslinking immunoprecipitation) and transcriptome wide m6A 

mapping analysis, it was found that KD of METTL3 and METTL14 significantly reduced 

hnRNP C binding to more than 2,500 RNA targets (Liu et al., 2015).  

Whilst readers recognise RNA in an m6A dependent manner, different classes of readers 

share few RNA targets. For example, IGF2BPs and YTHDF2 share only ~1% of their 

binding partners (Huang et al., 2018). This suggests that the subsets of m6A methylated 

mRNA transcripts are predetermined to be regulated by different m6A readers based on 

their sequences and structures. Altogether, the m6A writers, erasers and readers present 

a complex multi-layered regulatory network that affects numerous aspects of mRNA 

processing and metabolism, with profound physiological effects if dysregulated. 
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1.1.7  m6A RNA modifications and cancer  

Emerging evidence suggests that m6A writers, erasers, and readers can play oncogenic 

or tumour-suppressive roles in cancer, with their aberrant expressions tightly associated 

with tumour progression (Lin et al., 2016; Chen et al., 2019; Wu et al., 2019). For example, 

in human and mouse Acute Myeloid Leukaemia (AML) cells, METTL3 and METTL14 

mRNA and protein levels are expressed at a higher level than normal Haematopoietic 

Stem and Progenitor Cells (HSPCs). Elevated mRNA m6A levels of important oncogenes 

such as c-MYC, PTEN and BCL2 (B-cell lymphoma 2) result in their higher translational 

efficiency and overexpression in AML cells and proved essential for AML cell proliferation 

and differentiation (Barbieri et al., 2017). YTHDF2 is also highly expressed in human 

AML clinical samples at the protein level. Deletion of YTHDF2 from mouse leukaemic 

stem cells (LSCs) and human AML cells reduce their engraftment and propagation 

capacities, and transcriptomic analysis of YTHDF2 knockout mouse LSCs shows that 

YTHDF2 proteins specifically target and degrade a subset of mRNA associated with 

leukaemogenesis (Paris et al., 2019). Intriguingly, the m6A eraser ALKBH5 is also found 

to be aberrantly overexpressed in AML patients compared to normal HSCs, and it is 

associated with poor prognosis in AML patients. Deletion of ALKBH5 in murine AML 

shows that it is selectively required for AML development and propagation. Combining 

transcriptomics and RIP-seq (RNA immunoprecipitation) analysis, depletion of ALKBH5 

(via gene KO and KD) results in enhanced mRNA transcript stability and heightened 

expression of AXL and TACC5, both of which have been shown to promote 

leukaemogenesis (J. Wang et al., 2020; Shen et al., 2020). The examples mentioned 

above show that although abnormal expression levels of various m6A-associated genes 

contribute to tumourigenesis, their expression levels may not tilt towards increased or 

decreased global mRNA m6A levels. Instead, in tumour cells, m6A writers, readers and 

erasers likely target subsets of oncogenic/tumour-repressive gene transcripts 

cooperatively to promote its growth and proliferation. 
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1.1.8  mRNA export and cancer 

After transcription in the nucleus, mRNA molecules need to be exported to the cytoplasm 

to be translated. This process is highly regulated and plays a critical role in gene 

expression regulation. Moreover, mRNA export is functionally coupled to other RNA 

processing steps to avoid generation of aberrant proteins (Wickramasinghe and Laskey, 

2015). In human, RBPs involved in mRNA capping, splicing, m6A modification, 

polyadenylation and cleavage bind to pre-mRNA molecules co-transcriptionally to form 

messenger ribonucleoprotein (mRNP) complexes. mRNPs are recognised by 

transcription-export complex (TREX) through multivalent interactions between EJCs and 

the TREX subunit Aly/REF export factor (ALYREF) (Pacheco-Fiallos et al., 2023). The 

TREX-bound mRNPs recruits the heterodimeric mRNA export factors Nuclear RNA 

export factor 1 (NXF1) and NTF2-related export protein 1 (NXT1). This facilitates the 

binding of mRNP to the nuclear pore complex and subsequent export of matured mRNA 

in the 5’ – 3’ direction to the cytoplasm (Pühringer et al., 2020).  

Aberrant RNA export has been linked to many forms of cancer. ALYREF expression was 

found to be significantly upregulated in many cancer types. In haepatocellular carcinoma 

patients, high ALYREF expression significantly correlates with worse prognosis and 

disease outcomes (Xue et al. 2021). TREX is also linked to cancer progression through 

its role in maintaining genome stability. During transcription, nascent RNA can bind to 

the template DNA strand, leaving the opposing nontemplate DNA single-stranded. These 

three-stranded structures are known as R-loops. The single stranded DNA exposed by 

R-loop formation is susceptible to DNA damage. Persistent R-loop generation is now 

recognised as a major source of genome instability, a hallmark of cancer(Wells et al. 

2019), In human, the THO subcomplex of TREX recruits DNA-RNA helicases DDX5 and 

DDX17 to resolve R loops. Depletion of TREX increases genome instability and R-loops 

accumulation (Polenkowski et al. 2023). This demonstrates the intimate interplay 

between genome stability, transcription and RNA processing pathways, which has 

proufound implications on cancer development. 



28 
 

1.2  Renal cell carcinoma 

This thesis will focus on kidney cancer, one of the leading contributors to the global 

disease burden, accounting for approximately 2% of all newly diagnosed cancer cases 

and cancer death worldwide in 2020 (Sung et al., 2021). The most common form of 

kidney cancer is renal cell carcinoma (RCC), constituting 80 – 95% of all primary renal 

neoplasms, with the remaining cases coming from transitional cell cancer (TCC) of the 

renal pelvis (Escudier et al., 2019). RCC originates from kidney tubular epithelial cells, 

representing a phenotypically and genetically diverse group of malignancies. RCCs are 

traditionally classified into different subtypes based on their distinct morphological 

characteristics, including ccRCC, papillary renal cell carcinoma (pRCC), and 

chromophobe renal cell carcinoma (chRCC), of which ccRCC is the most frequent type 

accounting for ~75% of all diagnosed RCC cases respectively (Kovacs et al., 1997). 

While recent advances in cancer genomics and molecular biomarkers discovery have 

led to reclassifications of tumours by the World Health Organisation, these RCC 

subtypes have overall displayed distinct genetic alterations and molecular profiles (Moch 

et al., 2022). 

 

1.2.1  VHL loss as an oncogenic driver in ccRCC 

The key genetic hallmarks of ccRCC, also known as KIRC (kidney renal clear cell 

carcinoma), are deletion of the short arm of chromosome 3 (3p) and loss of tumour 

suppressor gene von Hippel-Lindau (VHL) via either inactivating point mutations or 

deletion (Jonasch et al., 2020). Genomic data from TCGA shows that 91% of ccRCC 

samples contain an arm-level loss of chromosome 3p. Other common arm-level somatic 

copy number alterations include the deletion of chromosome 14q (45% of all sequenced 

samples) and chromosome 5q gain (67% of all sequenced samples) (Creighton et al., 

2013). Loss of chromosome 3p results in deletion and loss of heterozygosity (LOH) of 

multiple tumour suppressive genes, such as VHL (3p25), PBRM1 (Polybromo 1), SETD2 

(SET domain containing 2), BAP1 (BRCA1 associated protein 1). Intriguingly, they are 
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also the most significantly mutated genes in various study cohorts, with somatic 

mutations in ~85%, ~40%, ~15% and ~15% of sequenced ccRCC patients’ samples, 

respectively. Combined genomic-transcriptomic-proteomic approach has subsequently 

shown that these gene inactivation events result in down regulations of mRNA and 

protein expression (Clark et al., 2019). Taken together, the loss of the 3p arm, 

subsequent inactivation and biallelic loss of VHL represent the signature ccRCC initiation 

events (Mitchell et al., 2018).  

Prior to the discovery of the connection between the VHL gene and ccRCC, the VHL 

gene was first discovered in the 1990s, when the autosomal hereditary Von Hippel-

Lindau disease was found to be caused by inheritance of germline mutation (deletion, 

truncation, or missense mutation) in the gene (Gossage et al., 2014). VHL disease VHL 

encodes pVHL, the substrate recognition component of an E3-ubiquitin ligase (VCB-CR 

complex consists of Elongin C, Elongin B, Cullin-2 and Rbx1). Under normoxia conditions, 

the alpha subunits of Hypoxia Inducible Factor (HIF-α, including HIF1α and HIF2α) are 

hydroxylated by prolyl hydroxylases (PHDs) (Ivan et al., 2001). The VCB-CR complex 

targets the hydroxylated forms of HIF-α proteins specifically for proteasomal degradation 

via polyubiquitination (Salceda and Caro, 1997). In hypoxic conditions, hydroxylation 

reactions of HIF-α proteins by PHDs are inhibited due to the lack of oxygen, allowing 

HIFα to form a stable heterodimer with HIF-1β (Figure 1.7). The heterodimeric 

transcription factors then translocate to the nucleus and bind to the promoters of 

thousands of target genes containing hypoxia response elements (HRE) to activate their 

transcription, many of which are strongly oncogenic. Loss of VHL in ccRCC prevents 

targeting of HIF-α for proteasomal degradation, which leads to constitutively active HIF 

signalling and hypoxic response pathway (Schödel et al., 2016).  
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Figure 1.7: VHL/HIF hypoxic response pathway and ccRCC 

Cellular hypoxic response is transcriptionally regulated by HIF, which is a heterodimer 

consists of constitutively expressed HIF-1β and HIF-α (including HIF1A, HIF2A and 

HIF3A). Under normal physiological oxygen levels, HIF-α proteins are hydroxylated 

by PHDs and recognised by pVHL of the VCB-CR E3-ubiquitin ligase complex for 

proteasomal degradation. Under hypoxic condition, PHDs are no longer able to 

hydroxylates HIF-α due to the lack of oxygen, allowing the formation of HIF 

heterodimers and induce transcription of genes containing promoters with HRE 

sequence where HIF binds. In ccRCC, frequent loss of VHL leads to accumulation of 

HIF-α, leading to hyperactive HIF signalling and hypoxic response pathway. 
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1.2.2  Metabolic rewiring in ccRCC 

Pseudo-hypoxic state driven by a constitutively active HIF signalling pathway directly 

affects other metabolic and signalling pathways, with far-reaching effects on ccRCC 

progression and aggressiveness. HIFα proteins (HIF1α and HIF2α) are known to 

regulate the expression of thousands of genes, including a coordinated up-regulation in 

genes encoding glucose transporters (GLUT) and practically all enzymes in the glycolytic 

pathway (Downes et al., 2018). Moreover, HIFs activate the expression of pyruvate 

dehydrogenase kinase 1 (PDK1), which inhibits the activities of mitochondrial pyruvate 

dehydrogenase via phosphorylation. Consequently, usage of the tricarboxylic acid (TCA) 

cycle and oxidative phosphorylation in HIF-activated cells are suppressed (Papandreou 

et al., 2006). The rewiring of ATP production from primarily utilising mitochondrial 

oxidative phosphorylation to cytoplasmic aerobic glycolysis, also known as the Warburg 

effect, has long been observed and regarded as a hallmark of cancer (Warburg et al., 

1927). Many cancer types have since been shown to maintain high levels of oxidative 

phosphorylation as the primary source of ATP production, nevertheless, and even 

significantly enhanced in the case of non-small cell lung cancer and glioblastoma (Maher 

et al., 2012). Recent in vivo work by Courtney et al. studying ccRCC patients infused 

with [13C]glucose reveals a high level of lactate labelling (stemmed from aerobic 

glycolysis), and less than 5% of labelled carbon enters the TCA cycle in ccRCC tumours 

(Courtney et al., 2018). This confirms that ccRCC tumours are metabolically reliant on 

the Warburg effect. 

The defining morphological characteristic of ccRCC is the cytoplasmic accumulation of 

glycogen and lipid droplets. In addition to the reduced mitochondrial content due to 

metabolic rewiring, the cytoplasm of ccRCC tumour cells appears ‘clear’ in histological 

images (Nilsson et al., 2020). Like the enhanced glycolytic pathway usage, increased 

glycogen and lipid droplet synthesis levels are also the consequence of the constitutively 

active HIF signalling pathway. Analysis of TCGA KIRC RNA transcriptomic data indicates 

that various glycogen synthases (PGM1, GYS1, GBE1) are overexpressed in ccRCC 
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tumours, although their role in ccRCC tumorigenesis and progression appears to be 

limited (Xie et al., 2021). In contrast, activation of the HIF pathway suppresses 

expression levels of CPT1A (Carnitine palmitoyltransferase 1A), which is essential for 

transporting cytoplasmic fatty acid into the mitochondria to go through beta-oxidation. 

The retained fatty acids in the cytoplasm are subsequently converted into lipid droplets 

as energy storage, and ablated CPT1A expression is essential for ccRCC tumour 

formation in vivo (Du et al., 2017). The constitutively active HIF pathway in ccRCC 

tumour cells rewires different metabolic pathways, which is essential for ccRCC 

tumorigenesis and progression. 

1.2.3  Dysregulated signalling pathways in ccRCC 

To sustain unlimited proliferation, tumour cells must both activate proliferative signalling, 

as well as deactivate the intrinsic negative feedback loop that prevents uncontrolled 

growth to sustain unlimited proliferation (Hanahan and Weinberg, 2011). One of the most 

dysregulated pathways in cancer is the PI3K/AKT/mTOR signalling axis. A graphical 

illustration of the interplay between PI3K/AKT/mTOR and hypoxic reponse pathways in 

ccRCC can be found at Figure 1.8. 

PI3K/AKT/mTOR pathway is highly activated in various cancer types, including ccRCC. 

Whilst many tumours activate this via genetic mutations or chromosomal alterations on 

genes in this pathway, it is thought that PI3K/AKT/mTOR pathway activation in ccRCC 

is contributed mainly by the highly activated HIF pathway (Guo et al., 2015). Firstly, HIF 

drives the transcription of various growth factors (VEGFs, IGFs, EGFs, and PDGFs), 

which promote the activation of the PI3K/AKT/mTOR pathway (Masoud and Li, 2015). In 

addition to activating PI3K/AKT/mTOR pathway, overexpression of VEGF also plays an 

essential role in promoting ccRCC angiogenesis by promoting vascular endothelial cell 

proliferation, migration, and vascular permeability (Pal et al., 2019). Recent studies have 

also expanded VEGF’s role in ccRCC progression by promoting cancer stem cell survival 

and proliferation and inhibiting immune cell infiltration (Clark et al., 2019; Wang et al., 

2021). Moreover, mRNA and protein expression of many RTKs (such as VEGFR, 
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PDGFR, and EGFR) are also HIF target genes and their expressions are up-regulated 

in ccRCC tumours (Behbahani et al., 2011). Finally, RTK activation can also drive other 

cell growth pathways, such as the MAPK/ERK pathway. Together, RTKs at ccRCC 

tumours are more activated (represented by their phosphorylation state) compared to 

corresponding adjacent normal kidney tissue (Q. Zhang et al., 2019). This positive 

feedback loop further enhances the activation of PI3K/AKT/mTOR and the HIF pathway 

where HIF1α translation is induced by activated mTORC1. 

Downstream of RTK activation, various parts of the PI3K/AKT/mTOR pathway are 

frequently altered in cancer at the genetic, gene expression or post-translational 

modification level. Whilst direct genetic alteration events on the PI3K/AKT/mTOR 

pathway are relatively infrequent compared to the near-universal loss of chromosome 3p 

arm and VHL loss, they are consistently pro-activation, either by direct 

amplification/activation mutation of genes in the pathway or deactivating the negative 

feedback regulators. Genomic analysis on tumour samples from 25 cancer types in 

TCGA suggests that on average, 50% of tumours show gene mutation or/and copy 

number alterations of the PI3K/AKT pathway. In comparison, amongst the 500+ ccRCC 

tumours surveyed by TCGA, 27.7% of samples harbour gene mutation/copy number 

alterations in at least 1 PI3K/AKT pathways components (Guo et al., 2015). The genes 

found with genetic alterations include mTOR mutations (~6%) and PTEN gene 

deletions/mutations (~5%). In addition, a point mutation at RheB tyrosine 35 to 

asparagine (Y35N) was also shown to be sufficient to increase mTORC1 signalling and 

induce oncogenic transformation in normal cells (Heard et al., 2018). Interestingly, along 

with VHL, gene inactivation of PBRM1, BAP1 and SETD2 at chromosome 3p have also 

been shown to individually contribute to the activation of the PI3K/AKT/mTOR pathway 

(Peña-Llopis et al., 2012; Terzo et al., 2019; Tang et al., 2022). 

Negative regulators of the PI3K/AKT/mTOR pathways are often downregulated/disabled 

in cancer. Multiple studies have suggested that 30-40% of ccRCC tumours display a loss 

of PTEN protein expression, as measured by immunohistochemical analysis (IHC) and 
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fluorescent in situ hybridisation (FISH) (de Campos et al., 2013; Millis et al., 2016). 

Decreased PTEN expression also significantly correlates with increased activated 

(phosphorylated) AKT levels in ccRCC tumour samples (H. Wang et al., 2015). Like HIFα 

proteins, AKT is hydroxylated by prolyl hydroxylase (prolyl hydroxylases two specifically) 

under normoxia. VHL protein binds specifically to hydroxylated AKT and inhibits its 

kinase activity. Under hypoxia, or in ccRCC tumour cells, VHL proteins are depleted, 

which allows AKT to activate downstream targets and promote cell survival and 

proliferation (Guo et al., 2016). This represents a non-HIF-dependent role of VHL loss in 

activating the PI3K/AKT/mTOR pathway. Finally, protein expression of the TSC subunits 

TSC1 and TSC2 are found to be suppressed in ccRCC tumour samples compared to 

corresponding normal kidney tissue, thus allowing accumulation of RheB-GTP and high 

levels of mTORC1 activation (Damjanovic et al., 2016). In summary, the 

characteristically up-regulated PI3K/AKT/mTOR pathway in ccRCC results from VHL 

loss, multiple genome alterations, aberrant regulation of gene expression, and post-

translational modifications. 
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Figure 1.8: PI3K/AKT/mTOR pathway and ccRCC 

PI3K/AKT/mTOR pathway is activated by the binding of growth factors (such as 

VEGF, IGFs, EGFs and PDGFs) to RTKs, resulting in RTK dimerisation and 

autophosphorylation. Phosphorylated RTK interacts with the p85 regulatory subunit 

of PI3K, which activates the p110 catalytic PI3K subunit. Activated PI3K complex 

phosphorylates PIP2 to PIP3, allowing recruitment of PDK1 and AKT. 

Phosphorylation of AKT by PDK1 and mTORC2 activates its kinase activity, allowing 

AKT to phosphorylate numerous downstream substrates including mTORC1, and 

promote cell survival and proliferation. The constitutively active HIF pathway in 

ccRCC upregulates the expression of growth factors, which in turn activates the 

PI3K/AKT/mTOR pathway. Multiple RTKs are found to be up-regulated and highly 

phosphorylated in ccRCC tumours. Genetic alterations on both positive (p110, 

mTOR) and negative regulators (PTEN) of the pathway are also found in ccRCC 

tumours, which further enhance PI3K/AKT/mTOR pathway activation. Expression 

levels of negative regulators of the pathways, such as PTEN, VHL and TSCs, are 

also suppressed in ccRCC tumours. 
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1.2.4  ccRCC microenvironment 

Tumour tissue is a hugely complex and dynamic environment where different 

subpopulations of cells with distinct phenotypes and genotypes co-exist (Figure 1.9). The 

tumour microenvironment (TME) consists of tumour cells and non-malignant stromal 

fibroblasts, vasculature, infiltrating immune cells, and extracellular matrix (ECM). 

Interactions between malignant cells and non-malignant components of the TME play 

crucial roles in tumour progression and cancer treatment outcomes (Anderson and 

Simon, 2020). 

  

Figure 1.9: Tumour microenvironment (TME) 

TME is a complex environment containing tumour cells, stromal cells (vascular 

endothelial cells, cancer associated fibroblasts), immune cells (CD8+ T cells, CD4+ T 

cells, regulatory T cells, natural killer (NK) cells, macrophages, dendritic cells (DCs), 

neutrophils and B cells), and non-cellular components such as the extracellular matrix 

(ECM). Each component may play tumour-inhibitory/tumour-promoting roles. To 

support tumour growth and survival, tumour cells manipulate the TME by expression 

and secretion of growth factors and immunomodulatory molecules (e.g. cytokines and 

chemokines), metabolic rewiring and ECM alterations. 
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1.2.4.1 TME: Immune cell populations 

Immune cells form an integral part of the TME. Amongst different cancer types, ccRCC 

tumours present one of the highest median percentages of tumour-infiltrating immune 

cells at approximately 30% of all cells in the TME, as determined by both flow cytometry, 

bulk- and single-cell transcriptomic analysis (Aran et al., 2015; Hu et al., 2020). 

Depending on the tumour type and the TME context, different tumour-infiltrating immune 

cells can play both pro- and anti-tumour roles and act as fundamental determinants of 

tumour development and treatment outcome (Giraldo et al., 2019). Different immune 

cells have been identified in ccRCC TME, including T cells, macrophages, NK cells, DCs, 

neutrophils, B cells, granulocytes and plasma cells. The two main immune cell 

populations are T cells (~50%) and macrophages (~30%) (Su et al., 2021). Curiously, 

unlike most solid tumours, high levels of tumour-infiltrating immune cells in ccRCC, 

including the generally considered anti-tumour CD8+ T cells, significantly correlates with 

worse prognosis and disease outcomes (Fridman et al., 2017). 
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1.2.4.2 TME: CD4+ and CD8+ T cells 

T cell-mediated immunity is regarded as the primary immune response against cancer 

in human. Amongst the T cell populations, the major constituents in TME are the CD8+ 

and CD4+ T cells. CD8+ T cells, or cytotoxic T lymphocytes (CTLs), represent the key 

anti-tumour immune response by recognising and direct killing malignant cells. This is 

primarily achieved by three methods: secretion of the cytokines interferon-gamma (IFNγ) 

and tumour necrosis factor (TNF), delivery of perforin and granzyme containing cytotoxic 

granules to malignant cells, and ligation of its FasL (Fas Ligand) with Fas receptor on 

target cells (Raskov et al., 2021). CD4+ T cells are known as T helper cells (Th) for their 

critical roles in helping other effector immune cells to activate. Different subsets of 

effector CD4+ T cells secrete specific cytokines in response to the environment to 

orchestrate the appropriate adaptive immune response. CD4+ T cells can also play a key 

role in suppressing the hyperactive immune response, primarily achieved by expressing 

and releasing effector cytokines, such as IL-10 (Interleukin 10). In tumour immunity, 

CD4+ T cells help CD8+ T cells by secreting IL-2, a cytokine essential for CD8+ T cell 

differentiation and effector functions. Like CD8+ T cells, CD4+ T cells can also exert anti-

tumour activities by releasing IFNγ and TNF(Tay et al., 2021). 

T cells' early progenitors originate from haemopoietic stem cells in the bone marrow. The 

progenitors first migrate to the thymus, where they undergo various maturation stages, 

resulting in lineage commitment where each cell commits to differentiate into either a 

CD4+ or CD8+ T cell (as classified by expression of CD4 or CD8 protein). T cell receptors 

(TCR) also undergo rearrangement to generate a diverse antigen-binding repertoire 

(Kumar et al., 2018). The now mature naïve T cells subsequently migrate to the 

secondary lymphoid organs (such as lymph nodes and spleen) or tertiary lymphoid 

structures (TLS), frequently organised adjacent to tumours (Sautès-Fridman et al., 2019).  

Naïve T cells are activated via a 3-signal system (Figure 1.10). Signal 1 comes from the 

presentation of antigen peptide on the major hiscapability complex (MHC) class I / II 

molecules of professional antigen presentation cells (such as DCs in the secondary 
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lymphoid/TLS) or antigen-presenting cells (APC, such as tumour cells), to the TCR on 

CD8+ and CD4+ T lymphocytes respectively. HLA-antigen-TCR binding is aided by 

CD4/CD8 molecules, which act as coreceptors of the TCR complex. CD4/CD8 are 

essential for amplifying TCR-signalling and productive T cell activation (Mørch et al., 

2020).   

Signal 2 represent the engagement between APCs and T cells' co-stimulatory signal 

molecules. For example, binding between T cell CD28 receptors with CD80/CD86 from 

APC promotes activation of TCR signalling and subsequent T cell activation. Conversely, 

T cells also express co-inhibitory receptors (also known as immune checkpoints), such 

as Protein cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 

(CTLA4). T cell activation is restrained upon ligand engagement between these co-

inhibitory receptors and their ligands. Expression levels of these co-inhibitory receptors 

are up-regulated in T cells immediately after TCR engagement. The immune system 

uses this mechanism to prevent hyperactivation of the immune response. The integration 

and overall balance of co-stimulatory and co-inhibitory signals dictate the extent of T 

cells’ effector functions (Waldman et al., 2020).   

Signal 3 involves binding between APC-produced cytokines and their respective 

cytokines receptors on T cells. This signal dictates the differentiation phenotype of T cells, 

which is essential for a productive T cell mediated immune response. Interleukin 12 (IL-

12) and Interferon alpha/beta (IFNα/β) are essential for CD8+ T cells' clonal expansion 

and effector cytotoxic functions. For CD4+ T cells, exposure to specific cytokines and 

specific transcription factors helps drive their differentiation into different effector 

subsets(Kalia and Sarkar, 2018; Ruterbusch et al., 2020). Precise integration of all 

signals is required for an appropriate and effective T cell-mediated immune response. 
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Figure 1.10: T cell activation: 3 signals activation model 

Activation of effector T cells is orchestrated by 3 signals. Signal 1 comes from 

recognition and binding between TCR and antigen peptide bound MHC (also called 

human leukocyte antigen (HLA) in human). Engagement between CD80/86 and 

CD28 provides co-stimulatory signal 2. Cytokines (such as IL-12 and IFNα/β) provide 

signal 3, which influence T cell activation, clonal expansion, and effector cell 

differentiation. 



41 
 

1.2.4.3 Tumour evasion from T cell mediated immunity 

Tumour cells target all parts of the T cell activation pathway to facilitate cancer 

progression and immune evasion. Cytotoxic CD8+ T cells and CD4+ T cells recognise 

malignant cells by the tumour-specific or tumour-associated antigen peptides presented 

on MHC class I/II, respectively. A common immune evasion strategy employed by 

tumour cells is by down-regulating the expression of antigen presentation pathway 

members. Across different clinical cohorts, protein expression of MHC class I molecules 

(measured by IHC) is suppressed in 30% of ccRCC patients’ tumour samples 

(Dhatchinamoorthy et al., 2021). Protein expression of TAP (Transporter associated with 

antigen processing), the endoplasmic reticulum (ER) transporter protein responsible for 

loading antigen peptide into ER, is also found to be down-regulated (by IHC) in ccRCC 

tumour samples compared to normal tissue (Seliger et al., 2003). The loss of antigen 

presentation pathway in ccRCC is driven by the hyperactivated and overexpressed HIF 

pathway, particularly HIF-2A. Analysis of the TCGA KIRC dataset shows that mRNA 

levels of MHC class I (HLA-A, HLA-B) and MHC class II (HLA-DMB, HLA-DQB2) 

negatively correlate with HIF2A mRNA expression (Weinstein et al., 2013). A combined 

proteo-transcriptomic study further confirmed that in the mouse ccRCC model, 

VHL/HIF2A deletion results in enhanced expression of MHC molecules and antigen 

presentation pathway members (Hoefflin et al., 2020). 

Tumour infiltrating T cells are frequently found with impaired anti-tumour effector 

functions. Many of these T cells enter a state of anergy and fail to create an immune 

response against tumour cells due to sub-optimal stimulation. This is actively promoted 

by tumour cells and the TME (Barnet et al., 2018). For example, Programmed death 

ligand-1 (PD-L1) is a suppressor of T cells that is frequently amplified and overexpressed 

in many tumours  (Escors et al., 2018). Engagement between PD-L1 and immune check 

point PD-1 on T cells disrupts TCR signal transduction and inhibits functional T cell 

activation (Mizuno et al., 2019). Expression levels of PD-L1 in many types of solid 

tumours, including ccRCC, have been shown to correlate with unfavourable prognosis 
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(Wang et al., 2017; Ueda et al., 2018; M. H. Kim et al., 2021). The significance of the 

PD1/PD-L1 axis has been well-demonstrated experimentally. For example, cytotoxic 

CD8+ T cells are found to specifically kill MC38 colorectal carcinoma cells with PD-L1 

knocked-out genetically, but not in the PD-L1 expressing wild-type cells (Juneja et al., 

2017).  

Another form of the dysfunctional state of T cells is known as T cell exhaustion. In the 

TME, T cells are constantly exposed to tumour antigens. Persistent antigen exposure 

and activation lead to up-regulation in the expression of inhibitory receptors such as PD-

1, CTLA4, T cell immunoreceptor with Ig and ITIM domains (TIGIT), T cell 

immunoglobulin and mucin domain containing-3 (TIM3) and lymphocyte-activation gene 

3 (LAG-3). Exhausted T cells (Tex) also display reduced cytotoxicity and impaired 

cytokines expression, including IFNγ, TNF and IL-2 (Wherry and Kurachi, 2015).  

In an immunosuppressive TME, tumour cells and stromal and immune cells can secrete 

cytokines and other soluble factors that induce T cell dysfunction. For example, in ccRCC, 

tumour cells often express high levels of transforming growth factor beta (TGF-β) 

(Boguslawska et al., 2019). TGF-β mediates suppression of T cell mediated anti-tumour 

immunity in a multitude of ways. Firstly, TGF-β inhibits the differentiation of naïve T cells 

into CTLs and Th cells (Oh and Li, 2013). TGF-β can also dampen anti-tumour immunity 

by up-regulating PD-1 and CTLA-4 whilst suppressing granzyme and IFNγ expression in 

CTLs (Bao et al., 2021). Finally, TGF-β promotes the differentiation of regulatory T cells 

(Treg), as well as the polarisation of non-activated macrophages into a pro-tumour, M2 

tumour-associated macrophage (TAM) phenotype (Zhang et al., 2016; Liu et al., 2018). 

Along with tumour cells, Treg and M2 TAM are the other significant sources of 

immunosuppressive cytokines (such as TGF-β, IL-10, and IL35) and consequently 

contribute to promoting dysfunctional T cell phenotypes in the TME (Xia et al., 2019).  
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Recent studies have revealed that instead of a distinct, terminally exhausted T cell 

population, T cell exhaustion is better represented as a gradient of dysfunctional states 

(Zheng et al., 2021; Budimir et al., 2022). Recent research has discovered that a subset 

of Tex populations (progenitor exhausted T cells) can reverse its suppressed effector 

functions when the immunosuppressive pathways (i.e. PD-1/PD-L1 interaction) are 

blocked (McCaw et al., 2019; Tabana et al., 2021). Crucially, progenitor Tex is a long-

lived and highly proliferative cell population (Im et al., 2016). Reversal of T cell 

exhaustion is now a major focus of immunotherapy research. 

Figure 1.11: Tumour evasion from T cell immunity 

Tumour cells evade from T cell mediated anti-tumour immunity in a myriad of ways. 

Firstly, tumour cells often down regulate expression of antigen presentation pathway 

members to avoid detection. Tumour cells are also found to up-regulate expression 

levels of co-inhibitory molecules (such as PD-L1). Persistent activations and 

exposure to immunosuppressive cytokines (secreted by tumour cells and 

immunosuppressive immune cell types) also contribute to dysfunctional T cell effector 

functions.  
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1.2.4.4 TME: stromal cells 

During tumourigenesis and subsequent stages of tumour progression, tumour cells 

secrete a wide range of factors (such as growth factors, cytokines, and chemokines) to 

recruit and transform stromal cells from the resident or nearby tissues. The predominant 

component of the stromal cells is cancer associated fibroblast (CAF). Fibroblasts are 

best known for supporting wound healing via chemotaxis-facilitated migration towards 

the wound area, followed by activation (Foster et al., 2018). Gene expression and 

secretion of many key chemo-attractant molecules (such as PDGF and TGF-β) are 

aberrantly up-regulated in different cancer types, including ccRCC (W. Wang et al., 2015; 

Zhan et al., 2020). Recent single-cell transcriptomic studies have revealed CAFs as a 

highly heterogeneous cell population with multiple subtypes displaying distinct 

phenotypes (Richards et al., 2016; Costa et al., 2018; Elyada et al., 2019). However, 

there is currently a lack of reliable biomarkers to distinguish CAF populations across 

cancer types. Whilst both tumour-promoting and tumour-suppressing populations have 

been identified. Thus far, the consensus has been that most CAFs facilitate tumour 

progression directly by promoting tumour cell growth or indirectly by remodelling the 

extracellular matrix and creating an immunosuppressive TME (Mao et al., 2021).  

Activation of CAFs has been experimentally validated to promote tumour progression in 

numerous ways. Firstly, activated CAFs are a significant contributor to soluble growth 

factor secretion in TME. Secretion of VEGF by CAF promotes tumour growth. Moreover, 

together with the high levels of VEGF expression from malignant ccRCC cells, they 

contribute to the typically high tumour vascularity (often described as a rich, fishnet-like 

vascular structure architecture) (T. Liu et al., 2019). TGF-β secretion by CAF promotes 

activation of the TGF-β/SMAD pathway in tumour cells, which results in elevated 

expression of epithelial-mesenchymal transition (EMT) related genes with a more 

aggressive phenotype (Yu et al., 2013; Zhuang et al., 2015). Recent studies have also 

shown that CAF-derived exosomes (CDE) promote tumour progression by delivering 

proteins and non-coding RNAs (ncRNA) to neighbouring tumour cells. This results in the 
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augmentation of tumour cells’ metabolic pathways (from oxidative phosphorylation to 

glycolysis), increased tumour cell motility (activating Notch signalling pathway by 

delivering the metalloprotease ADAM10), and increased tumour proliferation (by 

delivering Sonic Hedge Hog (SHH) protein) (Shimoda et al., 2014; Zhao et al., 2016; G. 

Zhao et al., 2020). Finally, CAFs contribute to creating an immunosuppressive TME by 

secreting immunomodulatory factors (such as TGF-β and IL-10) and remodelling the 

tumour ECM (Cohen et al., 2017; Monteran and Erez, 2019). 

 

1.2.4.5 TME & extra-cellular matrix 

The extracellular matrix is the critical non-cell constituent of the TME. ECM consists of a 

network of crosslinked fibrous proteins and proteoglycans. In cancer, tumour cells and 

CAFs remodel ECM to promote proliferation, suppress anti-tumour immunity and induce 

angiogenesis (Pickup et al., 2014). For example, ccRCC tumour cells induce the 

expression of an ECM protein Perostin from the stromal CAFs in vivo (Bakhtyar et al., 

2013). Periostin forms an integral part of ECM in ccRCC tumours and is highly 

upregulated in ccRCC tumours compared to adjacent normal tissues (Bond et al., 2021). 

Periostin promotes cell proliferation by activating ccRCC tumour cell surface integrin-

linked kinase (ILK), thereby triggering downstream AKT/mTOR signalling cascade(Jia et 

al., 2021). Periostin is also shown to promote EMT and metastasis of tumour cells 

through integrin-binding mediated pathways (Morra and Moch, 2011). Chitinase 3-like 1 

(Chi3L1) is another ECM component with pro-tumour effects. Secreted by tumour cells, 

CAFs, and immune cells, Chi3L1 expression is a marker of poor prognosis, including in 

ccRCC(Libreros et al., 2013). Secretion of Chi3L1 favours recruitment of pro-tumour M2 

TAM but inhibits infiltration of anti-tumour CTLs (Cohen et al., 2017). Moreover, Chi3L1 

expression has been shown to promote tumour progression by activating multiple 

signalling pathways in tumour cells, such as AKT and TGF-β (Qiu et al., 2018;T. Zhao et 

al., 2020). 
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1.2.5  ccRCC treatment 

Although ccRCC is one of the most common types of cancer with distinct genetic, 

metabolic and IHC markers, there is currently no public screening implemented across 

the globe. Most ccRCC cases are discovered incidentally from magnetic resonance 

imaging (MRI) or computerised tomography (CT) scan (Escudier et al., 2019). After 

confirming the diagnosis using IHC analysis on biopsy samples, the first-line treatment 

for localised ccRCC is typically performed by surgical kidney removal (nephrectomy). 

Depending on the clinical stage of the cancer, partial nephrectomy or radical 

nephrectomy (removal of the whole kidney) is performed to completely remove ccRCC 

tumour tissue (Atkins and Tannir, 2018). Nephrectomy is currently the most effective 

method to treat localised ccRCC tumours. Across different studies, the 5-year overall 

survival rate for early-stage ccRCC patients post-nephrectomy is higher than 80% 

(Janssen et al., 2018).  However, 20 to 50% of post-nephrectomy ccRCC patients 

experience disease relapse within five years after the surgery (Capogrosso et al., 2016). 

Recurrent ccRCC is associated with extremely poor disease outcomes, with less than 

30% of patients surviving two years after diagnosis (S. H. Kim et al., 2021).  

Whilst early-stage ccRCC can often be treated by nephrectomy alone, and metastasised 

ccRCC requires systemic treatment. Metastasised ccRCC is highly aggressive. Patients 

with untreated metastases RCC had a poor 5-year survival rate of 2.7 – 9% (Négrier et 

al., 2002). ccRCC is insensitive to both radiation and chemotherapy strategies. Until the 

mid-2000s, the only option to treat advanced ccRCC was by administering human IFN-

α and IL-2 cytokines to induce anti-tumour immunity. However, the objective response 

rate (ORR) to cytokine therapy was poor at ~10% across trials (Ritchie et al., 1999; 

Atzpodien et al., 2002). In addition, the high dosage of IFN-α and IL-2 needed for 

enhanced immune response can also cause severe adverse events in up to 50% of 

patients (Huang and Hsieh, 2020). With the poor treatment outcome from cytokines 

treatment, there was an urgent need for better and more targeted therapeutic 

approaches for metastatic ccRCC. 
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The first targeted therapeutic approach utilises anti-angiogenic tyrosine kinase inhibitors 

(TKIs). Since its first introduction in 2005, eight different TKIs have been approved by 

the U.S. food and drug administration (FDA). Sunitinib, an inhibitor of VEGF and PDGF 

receptors, was found to improve metastatic ccRCC patients’ ORR and median overall 

survival from 10% & 14 months to 30% and 30 months when compared to the cytokines 

treatment approach (Schmid and Gore, 2016). In vitro studies have shown that Sunitinib 

inhibits tumour cell growth via the inactivation of AKT/mTOR pathways downstream from 

RTKs (Hudes, 2009). However, in vivo studies have suggested that under 

pharmacologically relevant concentration, the tumour-suppressing ability can be 

primarily attributed to the suppression of endothelial cell proliferation in the TME (Huang 

et al., 2010). This demonstrates the clinical importance of non-malignant cells in the TME. 

Sunitinib is now used as a first-line treatment for metastatic ccRCC worldwide and in the 

UK (Fontes-Sousa et al., 2022).  

Following the success of TKIs, the arrival of immune checkpoint inhibitor (ICI) therapy in 

the last decade has also fundamentally changed how metastasised ccRCC patients are 

treated. Tumour infiltrating T cells' effector functions are tightly regulated by co-inhibitory 

receptor signalling pathways. Human monoclonal antibodies against PD-1 and CTLA4 

block the co-inhibitory receptor-ligand interactions, thereby boosting the anti-tumour 

immunity by tumour infiltrating T cells (Robert, 2020). FDA has approved various ICI, 

including nivolumab (anti-PD-1 antibody) and ipilimumab (anti-CTLA4 antibody), as the 

first-line treatment for metastatic ccRCC (Sheng and Ornstein, 2020). Combinatorial 

treatment of nivolumab and ipilimumab was found to outperform sunitinib monotherapy 

(ORR 42% vs 27%) (Hammers et al., 2017). Multiple ongoing clinical trials used 

combinations of ICIs, TKIs, and ICI + TKI, which have shown varying degrees of efficacy, 

with ORR ranging from 30 - 60% (Rassy et al., 2020). Whilst this is a dramatic 

improvement from cytokine treatments, no reliable biomarkers can predict metastasised 

ccRCC responsiveness to ICI or TKI treatments. 
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Figure 1.12: Mechanisms of action of Immune checkpoint inhibitor (ICI) and 

tyrosine kinase inhibitor (TKI) therapy against metastatic ccRCC 

ICIs such as Nivolumab and Ipillimumab are synthetic monoclonal antibodies that 

targets Tumour infiltrating T cells co-inhibitors receptors (PD-1 & CTLA-4 

respectively) and block their interactions with co-inhibitory ligands expressed on 

tumour cells. Successful ICI treatment promotes patients’ T cells activation and 

improve anti-tumour immune response. TKIs are small molecules that inhibit kinase 

activities of RTKs, such as PDGFRs and VEGFRs. By blocking RTK and downstream 

signalling pathways, successful TKI therapy can suppress cell growth from both 

tumour cells and endothelial cells in the TME, which leads to tumour regression.  
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1.3  RNA sequencing technologies  

1.3.1  Next-generation sequencing 

Since the late 2000s, various high-throughput RNA sequencing platforms (RNA-seq) 

have been developed and enable global gene expression profiling (Wang et al., 2009). 

The application of RNA-seq has provided invaluable insights into RNA biology and a 

greater understanding of disease development and treatments. With the advancement 

of RNA-seq technologies, it is now possible to investigate gene expression with single-

molecule resolution at the single-cell level.  

The vast majority of published transcriptomic studies use next-generation sequencing 

(NGS) technologies, particularly the Illumina sequencing platform (Stark et al., 2019). 

The general workflow of Illumina sequencing begins with the generation of 

complementary DNA (cDNA) libraries, which involves RNA extraction, mRNA 

enrichment (by oligo(dT) capture or depletion of ribosomal RNA), RNA fragmentation (to 

under 200 nt), reverse transcription and polymerase chain reaction (PCR) amplification 

(Figure 1.13). cDNA libraries are subsequently loaded onto a flow cell on an Illumina 

sequencer. Within the flow cell, cDNA fragments are clustered, further amplified and 

sequenced by a process called sequencing by synthesis. This is achieved by 

incorporating fluorescent-tagged nucleotides into the growing DNA strands 

complementary to cDNA molecules, which allows base-to-base signal detection 

(Goodwin et al., 2016). Illumina sequencing platform allows high-throughput and cost-

effective transcriptome-wide gene expression profiling. However, Illumina RNA 

sequencing technologies have several technical limitations, the notable being the short 

length of cDNA molecules compared to the average length of mRNAs (Shi et al., 2021).  
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Figure 1.13: Illumina short-read cDNA library construction workflow 

Illumina cDNA library generation begins with the extraction of RNA, followed by 

enrichment of mRNA via either oligo-d(T) pulldown, or depletion of ribosomal RNA 

(rRNA). RNA molecules are fragmented chemically or enzymatically, and reverse 

transcribed into cDNAs. cDNA molecules are then amplified via PCR amplification. 

Each step of the cDNA library construction may introduce biases (red boxes), and 

mitigation strategies (green) are needed to provide the true representation of the 

transcriptome.  
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1.3.2  Nanopore long-read RNA sequencing 

To overcome the technological challenges faced by Illumina RNAseq technologies, there 

are currently two major alternative RNAseq platforms: Oxford Nanopore Technologies 

(ONT) and Pacific Biosciences (PacBio), each allowing full-length sequencing of native 

RNA molecules. ONT and PacBio have also developed full-length cDNA library 

preparation and sequencing pipelines (ONT PCR-cDNAseq and Iso-seq, respectively). 

ONT developed a sequencing method that directly detects strand-specific, full-length 

RNA molecules (Direct RNA Seq, or DRS) or cDNA molecules without PCR amplification 

(Cartolano et al., 2016; Garalde et al., 2018; Grünberger et al., 2022). 

Nanopore sequencing depends on membrane-embedded pore-forming proteins 

(nanopores) and their associated helicase motor proteins. ONT sequencing devices use 

sequencing flow cells, which contain arrays of nanopores inserted into a polymer 

membrane connected to a current sensor chip. A constant voltage is applied to the flow 

cells and their nanopore arrays during the sequencing. When the motor protein recruits 

and facilitates DNA or RNA molecules to pass through the protein pore, the DNA/RNA 

molecule disrupts the current. The amplitude of the current disruption and the dwell time 

of the molecule were found to be characteristic of specific nucleotides. Detection of the 

current disruptions by the sensor chip is computationally analysed concurrently, which 

allows accurate single-molecule cDNA and RNA sequencing in real-time (Figure 1.14) 

(Garalde et al., 2018). ONT also developed a cDNA-based sequencing method that 

allows the generation of long reads at higher levels of throughput, using a lower amount 

of input RNA than DRS (Figure 1.15). 

Long-read sequencing provides several key advantages over short-read cDNA 

sequencing. Firstly, the lack of a PCR amplification step from ONT DRS eliminates 

inherent amplification biases. In addition, Illumina sequencing requires fragmentation of 

input RNA (or cDNA after RT, depending on the library construction protocol). The latest 

Illumina RNAseq flow cell (NovaSeq 6000) allows a maximum read length of 150 bp, 

with the recommended read length standing at 75 bp long (Corchete et al., 2020). Most 
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human transcriptomic studies using the Illumina platform aim to generate tens to 

hundreds of million reads per sample, which provide sufficient sequencing depth and 

coverage for most expressed genes in human (Sheng et al., 2017). However, the length 

of Illumina reads is far shorter than the average length of mRNA transcripts found in 

human (~2,100 nt) (Lopes et al., 2021). Thus, whilst short-reads sequencing can reveal 

gene-level differential expression between samples, their reads cannot span multiple 

exons and provide isoform-level information. In contrast, the median read lengths 

generated by ONT DRS typically reach 1000nt, where many of these reads capture 

mRNA transcripts from end to end (Gleeson et al., 2022). This allows researchers to 

accurately display complex multi-exonic architecture and dissect transcript isoform 

expression dynamics without relying on computational isoform modelling for Illumina 

sequencing. 

Another significant advantage of using long-read sequencing technologies over Illumina 

is its ability to discover novel transcripts. RNAseq gene and isoform expression analysis 

relies on mapping generated sequence reads to a reference genome or transcriptome. 

In human and other frequently studied model organisms, reference 

genome/transcriptomes are assembled using high-throughput short-read sequencing 

data and curated by databases such as Ensembl, RefSeq, and Gencode (O’Leary et al., 

2016; Frankish et al., 2021; Cunningham et al., 2022). Recent long-read sequencing 

studies by both ONT DRS and PacBio Iso-seq reveal that the human transcriptome is 

more heterogenous than previously thought, with 30-50% of identified mRNA transcripts 

being novel and previously unannotated from reference databases (Soneson et al., 2019; 

Workman et al., 2019; Leung et al., 2021).  

Finally, ONT DRS allows concurrent profiling of poly(A) tail lengths and chemical 

modifications on mRNA molecules. Methods to detect co/post-transcriptional regulatory 

events in mRNA molecules are outlined and described in the following parts of the 

chapter. 
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Figure 1.14: ONT direct RNA sequencing (DRS) technology  

ONT DRS utilises Poly (A)+ mRNA as input. RNA molecules are first ligated with 

Poly(T) reverse transcription (RT) adaptor primers, which contain an adaptor 

sequence at its 5’ end. Following the ligation, second strand cDNA synthesis is 

performed and sequencing adaptors (RMX), consist of motor proteins and tether 

proteins, are ligated to the RNA: DNA duplex (at the 3’ end of RNA and 5’ end of 

cDNA adaptor sequence). Motor protein facilitates unwinding of the duplex and feeds 

the RNA strand through the nanopore at 90 nucleotides per second. Tether protein 

keeps cDNA strand away from the pore whilst the motor helicase unwinds the duplex. 

The pore is embedded on a membrane where electric potential is applied. Different 

physio-chemical properties of the nucleotides in the pore results in distinctive 

changes in current signals signatures (also known as squiggles), which can then be 

used to infer their identities (Green: leader sequence, Red: adaptor sequence, Grey: 

poly(A) sequence, Blue: mRNA body). 



54 
 

 

 

Figure 1.15: ONT PCR-cDNAseq cDNA library generation (PCS111) 

poly(A)+ mRNA molecules are enriched by poly(T) reverse transcription (RT) adaptor 

primers. The adaptors are digested, followed by ligation of unique molecular identifier 

(UMI) and template switching primers. UMI allows elimination of PCR duplicates and 

reduce amplification biases. Reverse transcription of mRNA molecules to cDNA is 

carried out by template switching reverse transcriptase (Maxima H minus) to reduce 

RT artefacts. cDNA primers (cPRM) are subsequently ligated and facilitates PCR 

amplification (between 12 – 14 cycles). cDNA duplexes are finally ligated with 

sequencing adaptors (RMXs) containing motor proteins and tether proteins. cDNA 

duplexes are unwind by motor protein and thread through nanopore in the sequencer. 

One strand of cDNA is sequenced at a time. Reads are reorientated, with UMI and 

other primer sequences removed after the sequencing run. 
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1.3.3  Detection of alternative splicing and polyadenylation 

events by RNAseq  

Alternative splicing and alternative polyadenylation events contribute to generating 

multiple transcript isoforms from a single gene. RNAseq analysis is now the gold 

standard for detecting differential alternative splicing and alternative polyadenylation 

events between biological conditions. Nevertheless, accurate detection of these events 

by RNAseq continues to be a challenging bioinformatic problem.  

After sequencing runs, the generated reads are typically processed (i.e. removal of any 

primer sequences and sequence orientation) and aligned to the reference genome or 

reference transcriptome. Alignment to the reference genome provides gene-level 

quantification, whilst reference transcriptome alignment allows isoform-level mapping, 

which can be aggregated subsequently for gene-level expression quantification (Conesa 

et al., 2016). Different transcript isoforms display structural variations (exon 

inclusion/exclusion, 3’UTR lengths), and isoform-specific features permit reads to be 

uniquely mapped. However, most sequencing reads, especially from the Illumina 

RNAseq platform, only span a short fragment of the isoforms, with the sequence location 

potentially shared by multiple variants. Moreover, library preparation steps can introduce 

biases and impact sequence coverage, creating a false picture of alternative splicing and 

alternative polyadenylation events (Buen Abad Najar et al., 2020). The most used 

transcript abundance quantifiers, such as Salmon, automatically correct expression 

levels from sequence and library preparation biases (Patro et al., 2017a). Nevertheless, 

using long sequencing reads spanning multiple exons remains the most effective way to 

provide accurate isoform identification. 

Many bioinformatic tools have been developed to identify differential isoform usage 

specifically. For example, DRIMseq is a statistical framework that detects differential 

isoform usage between biological conditions. In principle, DRIMseq normalises the sum 

of all isoforms within a sample to 1 and detects if the proportion of each isoform changes 

significantly between experimental conditions (Robinson and Nowicka, 2016). 
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Alternatively, DEXseq compares the usage of individual exon within a gene and report 

potential alternative splicing events independent of isoform assignments (Anders et al., 

2012). Both methods are recently integrated into a single pipeline with Salmon and 

provide p values for differential isoform usage (Love et al., 2018).  

DEXseq and DRIMseq rely on the sequence information provided by the reference 

transcriptome. An alternative approach is therefore needed to discover novel, 

unannotated isoforms generated by alternative splicing and polyadenylation. This is 

represented by the Cufflinks pipeline, which relies on de novo reconstruction of the 

transcriptome using sequencing reads generated from experiments (Trapnell et al., 

2012). By overlaying reads onto the genome and producing an overlap graph, transcript 

isoforms are inferred and constructed from the minimum number of ‘paths’ required to 

cover all read fragments. Cufflinks assembly can be both guided and unguided by the 

reference transcriptome. Subsequent mapping of reads and expression analysis can 

provide information on potential alternative splicing and polyadenylation events between 

samples. However, the number of novel isoforms using Illumina reads can vary greatly 

depending on the often arbitrarily chosen stringency and confidence threshold used for 

Cufflinks assembly. This creates questions regarding the confidence in Cufflinks’ 

performance and if the reconstructed isoforms can be realistically validated (Angelini et 

al., 2014). Compared to Illumina reads, ONT and PacBio long sequencing reads allow a 

better quality of transcriptome reconstruction. There are now computational methods 

available (For example, SQANTI2, FLAME, FLAIR) that integrate long-read sequencing 

with global maps of transcription start sites (TSS) and polyadenylation sites to identify 

novel transcript isoforms(Tang et al., 2020; Holmqvist et al., 2021; Leung et al., 2021). 

These methods have proved to be transformative in novel isoforms characterisation, and 

their application will provide a far more comprehensive view of alternative splicing and 

polyadenylation events in the human transcriptome. 
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1.3.4   Measurement of poly(A) tail length by RNAseq 

Poly(A) tail plays a crucial role in mRNA stability, and its length is dynamically controlled 

throughout the lifetime of an mRNA molecule. Before the development of RNAseq 

technologies, there were limited ways to determine poly(A) tail lengths. mRNA molecules 

are treated with and without oligo(dT), followed by RNase H degradation. The 

hybridisation of oligo(dT) shields mRNA polyA tails from RNase H. Thus, differences in 

mobility between degraded and non-degraded poly(A) tailed mRNA assessed by 

northern blotting provide an estimation of the length of poly(A) tails (Murray and 

Schoenberg, 2008). 

Since the mid-2010s, several Illumina RNAseq-based methods, such as TAIL-seq, have 

been developed to assess global mRNA poly(A) tail lengths. TAIL-seq uses ribodepleted 

RNA as input. After ligation of a 3’ biotinylated DNA adapter sequence, the RNA 

molecules are partially degraded by Rnase T1, which cleaves after G residues. Intact 

poly(A) tails fragments are enriched by streptavidin beads pull-down, followed by ligation 

of a 5’ adapter to provide sequence template for reverse transcription. The poly(A) tails 

are reverse transcribed, amplified by PCR and sequenced using Illumina RNAseq 

platforms (Chang et al., 2014). However, Illumina sequencing struggles with the accurate 

detection of homopolymers, such as the poly(A) tail. Instead, Chang et al. modified the 

Illumina sequencer’s processing software to extract and analyse raw images of 

fluorescent-tagged nucleotide incorporation. Using a trained hidden Markov model, the 

strength of fluorescent signals is used to infer the poly(A) tail lengths. These methods 

are hugely expensive and technically challenging. 

Finally, ONT DRS can provide poly(A) tail length estimation. By reanalysing the raw 

current data and the dwell time of mRNA transcripts, the length of each transcript's poly(A) 

tail can be estimated using nanopolish and tailfindR (Krause et al., 2019; Workman et 

al., 2019). These methods are computationally demanding but offer a unique opportunity 

to integrate information on poly(A) tail, transcript isoform, and RNA modifications at a 

single mRNA molecule level. 
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1.3.5  Detection of mRNA m6A modification 

1.3.5.1 Antibody-based enrichment of modified RNAs 

Currently, the most widely used techniques for studying RNA modifications are based on 

methylated RNA-immunoprecipitation (MeRIP), which uses RNA modification targeting 

antibodies. In 2012, separate groups described methods (MeRIP-Seq or m6A-seq) using 

anti-m6A antibody to immunoprecipitate ~200bp long m6A enriched mRNA fragment, 

followed by Illumina sequencing to produce a transcriptome-wide mapping of m6A in 

human and mouse (Dominissini et al., 2012; Meyer et al., 2012). These studies were the 

first transcriptome-wide studies of m6A and have revolutionised the study of 

epitranscriptome. Variations of MeRIP-seq, such as miCLIP-seq, have also been 

developed to map m6A at single nucleotide resolution. However, due to the lower RNA 

input requirement (miCLIP studies routinely use 5-20 μg poly(a)+ RNA whereas the 

current MeRIP-seq protocol can detect m6A peaks well with 2 μg total RNA) and 

complicated workflow, to date, MeRIP-seq is still the most used method to map m6A.  

MeRIP-seq studies typically use either poly (A) enrichment or rRNA-depleted RNA as 

input (Figure 1.16). Alternatively, total RNA can be used, followed by ribosomal cDNA 

removal using probes specific to rRNA post reverse transcription and cDNA amplification 

(SMARTer Stranded Total RNA-Seq Kit, Takara). RNA samples are first fragmented 

chemically to a size distribution centred at approximately 200nt, followed by 

immunoprecipitation incubation with anti-m6A antibodies, washes and elution (Zeng et 

al., 2018). Eluted m6A antibody-bound RNA and a paired input control sample of 

fragmented mRNA pre-immunoprecipitation are subsequently used to synthesise cDNA 

libraries and sequenced, typically via Illumina next-generation technology. Detection of 

m6A methylation peaks is calibrated with paired input control to take account of transcript 

abundance. Various peak-callers, including MACS2, exomePEAK, MeTPEAK and 

MoAIMS (Zhang et al., 2008; Cui et al., 2016, 2018; Zhang and Hamada, 2020) have 

been used to identify m6A peaks from MeRIP-seq data, although with divergent results 

in terms of the number and locations of statistically-confident unique m6A peaks. Initially 
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developed for ChIP-seq analysis, MACS2 is currently the most commonly used m6A 

MeRIP peak caller.  

MeRIP-seq has expanded the understanding of m6A in transcriptome substantially. 

However, there are several limitations. MeRIP-seq performances rely largely on the 

specificity of the antibody used. It has recently been shown that SySy m6A antibodies 

cross-react with m6Am, a prevalent modification in 30 – 40% of mRNA (Mauer and 

Jaffrey, 2018). The resolution of m6A MeRIP-seq is also limited to the fragmentation size. 

This aspect can be improved by filtering results with the DRACH motif, m6A prediction 

tools, and previously published datasets. 

 

 

 

Figure 1.16: Graphical representation of MeRIP-seq workflow  

For transcriptomic MeRIP-seq studies, total RNA is typically subjected to Poly-A+ 

selection, followed by chemical fragmentation to about 200bp long fragments. Paired 

input control for each MeRIP reaction is kept before immunoprecipitation with anti-

m6A antibodies. cDNA libraries are generated using input control and IP eluate, 

followed by Illuimina next generation sequencing. m6A peaks are identified based on 

MeRIP samples read frequencies with respect to transcript expression levels from 

paired input control. 
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Shortly after the development of MeRIP-seq, protocol was adapted to allow the detection 

of m6A in the transcriptome at single nucleotide resolution, namely miCLIP-seq (Figure 

1.17) (Linder et al., 2015). For miCLIP-seq, anti-m6A antibodies are crosslinked to RNA 

molecules using UV254. Purification steps follow this via protein A/G binding, SDS-PAGE 

and membrane transfer. Finally, proteinase K digest releases RNA fragments from the 

bound antibody-protein A/G complex. The peptide fragments on the eluted RNA 

molecules induce either C->T mutations or truncations during reverse transcription. 

Interestingly, Linder et al. documented different mutation and truncation signatures 

(position) as well as strength (% conversion of mutation and truncation) for different 

commercially available antibodies (Figure 1.17).  

miCLIP dramatically improves the resolution of m6A site identification and is now 

regarded as the gold standard for m6A site curation and identification. However, since 

miCLIP is still an antibody enrichment-based method, some drawbacks and limitations 

persist. Firstly problems concerning antibody specificity (i.e. SySy with m6Am) can still 

lead to false positive m6A signals. A study by Zeng et al. compared m6A peaks using 

three different antibodies (SySy, NEB and Millipore) and found that only 60% of peaks 

overlap for all three antibodies (Zeng et al., 2018). Comparing results with MeRIPseq, 

miCLIP-seq consistently reports a lower number of modified mRNAs (3500 vs 7000 

modified sites) (Anreiter et al., 2021). However, without an unbiased method that 

quantitatively identifies m6A modifications across the transcriptome, it is currently 

unclear if this disparity comes from a high false-positive rate from MeRIP-seq or a high 

false-negative/lack of sensitivity from the miCLIP-seq. Finally, whilst both MeRIP-seq 

and miCLIP-seq may be helpful to compare the number of peaks identified within 

samples in the same experiment (hence reflects m6A methylation rate), neither provide 

precise information on m6A stoichiometries (i.e. the percentage of m6A methylated 

transcript), which is vital for understanding how and to what extent mRNA m6A 

modification regulates gene and protein expression.  
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Figure 1.17: Graphical representation of miCLIP-seq workflow  

miCLIP-seq begins with poly-A selection of total RNA, followed by chemical 

fragmentation to 30-130bp long fragments and incubation with anti-m6A antibodies. 

Anti-m6A antibodies are crossed linked to RNA using UB254 and the complex is 

recovered via protein A/G purification, SDS PAGE and membrane transfer. RNA 

fragments are released from membrane by proteinase K digestion, and the fragments 

are subsequently converted into cDNA library for Illumina next generation 

sequencing. The peptide fragments that remain on eluted RNA after proteinase K 

treatment results in C-> T transition or truncation at/at the vicinity to the m6A antibody 

binding site. The site and ‘strength’ of C-> T transition and truncation signals differ 

between different commercially available antibodies (figure extracted from Linder et 

al 2015). 
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1.3.5.2  ONT DRS m6A detection 

ONT DRS represents a novel, antibody-free method to detect chemical modifications in 

RNA. The first published DRS study shows that ONT DRS is sensitive enough to detect 

differential current signatures between in vitro synthesised FireFly Luciferase RNA 

transcripts, where the adenosines nucleotides are either m6A modified or unmodified 

(Garalde et al., 2018). In reality, ONT base-calling relies on a trained hidden Markov 

model to characterise a sliding window of 5 nucleotides, also known as a k-mer. Average 

current levels for k-mers, with or without m6A modifications, were calculated and showed 

disparities near the modification sites (Figure 1.18A). A subsequent study also detected 

changes in signal signatures between modified and unmodified mRNA transcripts in the 

human poly(A) transcriptome (Figure 1.18B) (Workman et al., 2019). This electric current 

disruption near modified RNA is now recognised as one of the contributors to the high 

base calling error rate in DRS (Li et al., 2017).  

Tremendous efforts have been made to explore different ways to identify and quantify 

m6A and other RNA modifications using ONT DRS technology, but it remains technically 

challenging. The latest ONT base caller Guppy does not support base-calling of modified 

RNA nucleotides. Another ONT base caller TOMBO succeeded in base-calling the DNA 

modification 5mC but failed to do so with any RNA modifications, reportedly discarding 

up to 50% of reads when applied to ONT DRS data (H. Liu et al., 2019). Different 

research groups have also proposed methods to take advantage of the fact that 

nucleotides harbouring RNA modifications have a higher sequencing error rate than 

unmodified bases. ELIGOS calculates the percentage differences between native RNA 

and unmodified RNA by comparing paired DRS and cDNA sequencing with the same 

input (Jenjaroenpun et al., 2021). Using the DRACH motif to narrow down potential m6A 

sites, they were able to identify previously validated m6A sites in yeast rRNA sequences. 

However, this approach cannot truly distinguish distinct types of RNA modifications. 

Reverse transcription is also known to generate mutations at chemically modified bases, 
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making accurate modification detection difficult when DRS & PCR-cDNA sequencing 

results are compared (Helm and Motorin, 2017).  

Other DRS m6A detection approaches compare base-calling error rates between 

samples of interest with baseline non-methylated control samples. These negative 

controls are either in vitro RNA transcripts or RNA extracted from m6A methyltransferase 

knockout/ knockdown samples (H. Liu et al., 2019; Parker et al., 2020; Price et al., 2020). 

However, depletion of METTL3 and other m6A writer complex components does not 

result in 100% depletion of RNA m6A modification, which may result in high levels of 

false-negative m6A calling. Conversely, in vitro RNA transcripts negates all other 

chemical modifications in physiological mRNAs, which may create false positive m6A 

base-calling.  

An alternative approach to detect m6A is by building a base calling model using raw 

current data. Nanocompore is an analysis pipeline which allows modification calling, 

using comparative signal signatures between samples of interest and controls with low 

m6A content (i.e. METTL3 knock-out samples or in vitro transcribed sequence) (Leger et 

al., 2021). Xpore compares k-mers signatures from samples with the expected signal of 

unmodified k-mers from an in vitro transcribed human RNA DRS dataset containing all 

possible k-mers (with an average of 58000 reads per k-mer) (Pratanwanich et al., 2021). 

It was found that the distribution of the k-mer current signal changes from unimodal to 

bimodal distributions when it contains a proportion m6A modification. Therefore, the 

signal peaks from biological samples closest to the in vitro transcribed reference k-mer 

can be assigned as unmodified, with the second peak further away assigned as the 

modified peak (Figure 1.18C). Whilst these analysis pipelines still require m6A-depleted 

datasets for validation purposes, they enable quantification of modifications in an 

antibody-free, unbiased manner that complements current m6A research. 
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Figure 1.18: m6A detection using ONT DRS technology 

A) Geralde et al. identified current signal disruption at the vicinity of m6A modified 

nucleotide using synthetic in vitro transcribed RNA fragments. (Figure extracted from 

Geralde et al. 2018)  B) The first study using ONT DRS on human transcriptome 

conducted by Workman et al. reveals change in raw current peak distribution at a 

validated putative m6A modified site on EEF2 mRNA compare to in vitro transcribed 

RNA copy. Dotted line represent mean current amplitude for GGACU 5-mer in ONT 

model. (Figure extracted from Workman et al. 2019) C) Graphical representation of 

modification calling using Xpore. Current signals of 3 samples (Red, yellow and 

green) are plotted against mean current value from ONT model. The shift from 

unimodal to bimodal distribution allows quantification of modifications using 

probablistic model (Adapted from Pratanwanich et al. 2020). 
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1.4 Thesis aims and hypothesis 

This work aims to explore the transcriptomic landscape of ccRCC and investigate the 

existence and co-dependency of multiple co-/post-transcriptional regulatory events using 

long-read Nanopore sequencing technologies. In addition, this thesis aims to explore the 

roles of tumour-infiltrating T cell derived cytokines in regulating the expression, isoform 

usages and post-transcriptional modification of key cancer immune gene transcripts. 

The key hypotheses of this study are: 

i) ccRCC transcriptome is shaped by tumour-infiltrating T cells and their secreted pro-

inflammatory cytokines. 

ii) Long-read sequencing represents a novel technology that enables high-resolution 

characterisation of the ccRCC transcriptomes and the co-/post-transcriptional regulatory 

events that shape them. 

The main aims of this study are as follows: 

i) To explore ccRCC transcriptome by long-read sequencing (DRS & PCS) using archival 

nephrectomy tissues from non-recurrent/recurrent ccRCC patients (Chapter 3 & 4). 

ii) To identify key differential expression genes and transcript isoforms between tumours 

from non-recurrent/recurrent ccRCC patients (Chapter 4). 

iii) To compare the immune landscapes between non-recurrent/recurrent ccRCC 

tumours via RNAseq immune cell-type deconvolution analysis (Chapter 4). 

iv) To investigate the roles of pro-inflammatory cytokines (IFNγ & TNF) in shaping the 

transcriptome of ccRCC tumour cells using DRS (Chapter 5). 

v) To characterise roles of m6A in transcriptomic regulation in ccRCC tumour cells by 

applying DRS analysis on CRISPR-Cas9 mediated KO of m6A writer WTAP (Chapter 5). 
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Chapter 2  

Materials and Methods 
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2.1 ccRCC nephrectomy samples and ethics 

In this study, 12 ccRCC tumour nephrectomy specimens from 6 non-recurrent and 6 

recurrent patients were reviewed and selected by Leeds multidisciplinary research tissue 

bank covered by regional ethics committee approval for the biobank (Yorkshire & The 

Humber – Leeds East Research Ethics Committee, reference 15/YH/0080). Following 

surgical removal, tissue samples were washed in phosphate-buffered saline (PBS) 

(Gibco), blotted on a tissue before being enveloped in aluminium foil and snap frozen in 

liquid nitrogen. Samples were weighed before being split into approximately 30 mg tissue 

blocks with sterile scalpels. Once weighed and divided into smaller tissue blocks, 

samples were immediately used for RNA extraction without further freeze-thawed cycles. 

Details of each nephrectomy sample and patient data are outlined in the table below 

(Table 2.1). 

Kidney 
Number 

Age Sex Date of 
operation 

Leibovich 
score 

Tumour 
grade 

Cancer 
stage 

Relapsed 

135 48 M 11/6/2001 4 3 II Yes 

171 62 M 20/6/2002 5 3 III Yes 

243 56 M 17/12/2004 5 3 III Yes 

254 55 F 9/6/2005 5 3 III Yes 

260 65 M 11/8/2005 5 3 III Yes 

329 51 M 22/1/2008 4 2 II Yes 

273 53 M 8/12/2005 5 3 III No 

314 59 M 21/6/2007 3 3 I No 

318 65 F 26/7/2007 5 3 III No 

320 45 M 13/9/2007 4 3 II No 

382 73 M 4/2/2010 3 3 I No 

395 39 M 24/6/2010 5 3 III No 

Table 2.1 ccRCC nephrectomy tissue samples clinical information 

2.2 Human cell lines 

HEK293-T and RCC4 cells were obtained from the American Type Culture Collection 

(ATCC). RCC4-Cas9-GFP and RCC4-WTAP KO clonal cell lines were generated using 

RCC4 cells, with methods outlined in 2.5 and 2.6. Cell culture maintenance methods are 

detailed in 2.4.  
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2.3 Reagents, antibodies, primers, guide RNAs and siRNAs 

Reagents used in the thesis are shown on Table 2.2. Antibodies used in this thesis are 

shown on Table 2.3. Sequences of guide RNAs and qRT-PCR primers are shown on 

Table 2.4 and 2.5. siRNAs used in this thesis are shown on Table 2.6 

Name Supplier Catalogue Number 
Dulbecco’s Modified Eagle’s Medium (DMEM) Gibco 21969-035 

Foetal bovine serum (FBS) Gibco A5256701 

L-Glutamine Gibco 25030 

Penicillin/Streptomycin Gibco 15140 

Trypsin-EDTA Gibco 12605-010 

Phosphate buffered saline (PBS) Gibco 14190-144 

Dimethyl sulfoxide (DMSO) Sigma D8418 

1M Tris-HCl Lonza 51237 

96-well plate Corning 3595 

96-well plate (V-shaped) Corning 3894 

24-well plate Corning 3526 

6-well plate Corning 3516 

10cm2 cell culture dish Corning CLS430167 

T25 flask Corning 430639 

T75 flask Corning 430641 

2 mL Cryo- vials Corning 430488 

PCR tubes Biologix 60-0088 

1.5mL microcentrifuge tube Starlab E1415-1510 

2.0mL microcentrifuge tube Starlab E1420-2010 

1.5 mL DNA LoBind tube Eppendorf 0030108051 

OptiMEM reduced serum medium Gibco 11058-021 

Fugene 6 Transfection reagent Promega E2691 

Lipofectamine 3000 Invitrogen L3000001 

TransIT-siQUEST transfection reagent Mirus MIR2114 

Qiazol Qiagen 79306 

Chloroform Sigma 32211 

Ethanol VWR 20821 

EZ-10 RNA spin columns NBS Biologicals SD5008 

RWT Buffer Qiagen 1038708 

RPE Buffer Qiagen 1018013 

RNase-Free DNase I (with RDD) Qiagen 79254 

Nuclease-free water Cytiva SH30538/03 

Nuclease-free water Invitrogen AM9932 

Triton X-100 Sigma T8787 

Sodium Chloride (NaCl) Sigma S9888 

Sodium Deoxycholate Sigma 89904 

Sodium Dodecyl Sulfate Sigma 71636 

Protease inhibitor cocktail Sigma P8340 

Phosphatase inhibitor cocktail (2) Sigma P5746 

Phosphatase inhibitor cocktail (3) Sigma P0044 

Pierce BCA protein assay kit Thermo Scientific 23225 

Glycerol Sigma G5516 
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β-mercaptoethanol Sigma M3148 

Bromophenol blue Sigma B5525 

Tween-20 Sigma P1379 

Sodium Azide (10%) Severn biotech 40-2010-01 

PVDF membrane Millipore IPVH00010 

Amersham Hybond-N+ membrane GE RPN2020B 

Stratalinker 2400 Stratagene - 

Methanol Sigma 322415 

Tris/Glycine transfer buffer National diagnostic EC880 

Extra thick Western blot paper Biorad 703967 

Bovine serum albumin Sigma A3059 

Amersham ECL reagents GE RPN2109 

Zombie Aqua Viability Kit BioLegend 423101 

Tungsten Carbide Beads (3 mm) Qiagen 69997 

Random hexamers Promega C118A 

dNTP Thermo Scientific R0191 

5x First strand buffer Invitrogen Y02321 

Dithiothreitol (DTT) Invitrogen Y00147 

RNase OUT Invitrogen 10000840 

SuperScript II Reverse Transcriptase Invitrogen 18064-014 

MicroAmp Fast Optical 96 well plate Applied Biosystem 4346906 

MicroAmp Optical adhesive film Applied Biosystem 4311971 

Fast SYBR Green master mix Applied Biosystem 4385612 

Bioanalyzer RNA Nano kit Agilent 5067 

Qubit RNA HS assay kit Invitrogen Q32852 

Qubit dsDNA HS assay kit Invitrogen Q32851 

Dynabeads Oligo(dT)25 Invitrogen 61002 

Direct RNA sequencing kit ONT SQK-RNA002 

SuperScript III Reverse transcriptase Invitrogen 18080093 

NEBNext Quick Ligation buffer NEB B6058 

T4 DNA Ligase NEB M0202 

RNAClean XP beads Beckman Coulter A66514 

PCR-cDNA sequencing kit ONT SQK-PCS111 

AMPure XP beads Beckman Coulter A63882 

Lambda Exonuclease NEB M0262L 

LongAmp Hot Start Taq master mix NEB M0533S 

Maxima H Minus Reverse transcriptase Thermo Scientific EP0751 

Uracil-specific excision reagent (USER) NEB M5505 

Exonuclease I NEB M0293 

PromethION Flow cells (R9.4.1) ONT FLO-PRO002 

RNA Fragmentation kit Invitrogen AM8740 

Sodium acetate (pH 5.2) Sigma S7899 

Glycogen (RNA grade) Thermo Scientific R0551 

Dynabeads Protein A magnetic beads Invitrogen 10002D 

Bromophenol Blue Sigma B5525 

Human recombinant IFN γ Peprotech 300-02 

Human recombinant TNF Peprotech 300-01 

Table 2.2: List of reagents, reagent suppliers and catalogue numbers 
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Name Species Class/Isotype Supplier 
Clone/ 

Catalogue 
Number 

Dilution 

Normal rabbit IgG Rabbit Polyclonal IgG Merck 12370 - 

m6A Rabbit Polyclonal IgG 
Sigma-
Aldrich 

ABE572 - 

WTAP Mouse Monoclonal IgG1 Proteintech 60188 1:1000 

Cas9 Mouse Monoclonal IgG2b 
Cell 

Signalling 
7A9-3A3 1:1000 

CA9 Rabbit Polyclonal IgG Proteintech 11071 1:1000 

NDUFA4L2 Rabbit Polyclonal IgG Proteintech 16480 1:1000 

PD-L1 Rabbit Monoclonal IgG 
Cell 

Signaling 
E1L3N 1:1000 

GAPDH Mouse Monoclonal IgG2b Proteintech 60004 1:5000 

Anti-mouse 
immunoglobulin-HRP 

Goat IgG Dako P0447 1:5000 

Anti-rabbit 
immunoglobulin-HRP 

Goat IgG Dako P0448 1:5000 

PD-L1 (PE-conjugated) Mouse Monoclonal IgG2b Biolegend 29E.2A3 1:100 

PE isotype control Mouse Monoclonal IgG2b Biolegend MPC-11 1:100 

 

Table 2.3: List of antibodies 

 

 

Target sequence Exon 
Genomic 

Location (hg38) 
PAM 

Catalogue 
Number 

GCATATGTACAAGCTTTGGA 4 Chr6:159742104-126 GGG CM-017323-01 

CTTGGGAAGAGGTTCTTCGT 2 Chr6:159736270-292 TGG CM-017323-02 

CGAAGAACCTCTTCCCAAGA 2 Chr6:159736274-296 AGG CM-017323-03 

TAGGCACTGGGCTGTCACTA 2 Chr14:21503822-844 CGG CM-005170-01 

CTGAAGTGCAGCTTGCGACA 4 Chr14:21501728-750 GGG CM-005170-02 

TCATCTGTCAGGGTCCCATA 6 Chr14:21500564-586 GGG CM-005170-03 

 

Table 2.4: List of guide RNAs sequences against WTAP 
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Primer names Target Primer sequence (5’ – 3’) 
WTAP_for WTAP TTCCCAAGAAGGTTCGATTG 

WTAP_rev WTAP TGCAGACTCCTGCTGTTGTT 

PDL1_set2_for PD-L1 (membrane) GGATTACGTCTCCTCCAAATGTG 

PDL1_set2_rev PD-L1 (membrane) CATCTTATTATGCCTTGGTGTAGCA 

PDL1_common_for PD-L1 (membrane) TACAGCTGAATTGGTCATCCCA 

PDL1_membrane_rev PD-L1 (membrane) TCAGTGCTACACCAAGGCAT 

PDL1_soluble_rev PD-L1 (soluble) AGGCAGACATCATGCTAGGTG 

PDL1_novel_soluble_for PD-L1 (novel soluble) CAGTGATTGTTGAATAAATGAATGAA 

PDL1_novel_soluble_rev PD-L1 (novel soluble) TATTAAGTAACAATATGGTTTGGATGA 

NDUFA4L2_for NDUFA4L2 TTCTACCGGCAGATCAAAAGACA 

NDUFA4L2_rev NDUFA4L2 GGGCGAGTCGCAGCAA 

BNIP3_for BNIP3 TCAGCATGAGGAACACGAGCGT 

BNIP3_rev BNIP3 GAGGTTGTCAGACGCCTTCCAA 

GAPDH_for GAPDH GGAGTCAACGGATTTGGTCGTA 

GAPDH_rev GAPDH GGCAACAATATCCACTTTACAGT 

SETD7_MeRIP_3UTR_for SETD7 (m6A site) GGGGTTCAGAGACCTGGAAT 

SETD7_MeRIP_3UTR_rev SETD7 (m6A site) GCATGGTGAGAGGATGTGAC 

SETD7_MeRIP_exon4_6_for SETD7 (m6A site) GAATTGCGTCATTTAAAGCCTAGTT 

SETD7_MeRIP_exon4_6_rev SETD7 (m6A site) GTTTCATCCTACCACTCCCAATTAAT 

PDL1_MeRIP_exon4_for PD-L1 (m6A site) TATGGTGGTGCCGACTACAA 

PDL1_MeRIP_exon4_rev PD-L1 (m6A site) TGCTTGTCCAGATGACTTCG 

PDL1_MeRIP_3UTR_for PD-L1 (m6A site) GTGGCATCCAAGATACAAACTCA 

PDL1_MeRIP_3UTR_rev PD-L1 (m6A site) ATTTTCAGTGCTTGGGCCTT 

PDL1_MeRIP_exon1_3_for PD-L1 (m6A site) GCAGGGCATTCCAGAAAGATG 

PDL1_MeRIP_exon1_3_rev PD-L1 (m6A site) ATATAGGTCCTTGGGAACCGTG 

 

Table 2.5: List of qRT-PCR primers 

 

 

Table 2.6: List of siRNAs  

  

Name Catalog ID 
ON-TARGETplus Human METTL3 siRNA SMARTPool L-005170-02-0005 

ON-TARGETplus Human WTAP siRNA SMARTPool L-017323-00-0005 

ON-TARGETplus Non-targeting Pool D-001810-10-05 
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2.4 Cell culture methods 

2.4.1 Cell culture maintenance 

All cell lines (HEK-293T, RCC4, RCC4-Cas9-GFP and RCC4-WTAP-KO cell lines) used 

in this study were maintained at 37oC in a humidified atmosphere of 5% CO2 and grown 

in complete Dulbecco’s Modified Eagle’s Medium (DMEM). Complete DMEM media was 

prepared by using DMEM (Gibco), supplemented with 10% foetal bovine serum (FCS) 

(Cytiva HyClone), 1% 200 mM L-Glutamine (Gibco) and 1% penicillin/streptomycin 

(Gibco).  

2.4.2 Cell culture passaging 

All cells were sub-cultured once they reached 80-90% confluence. Cells were washed 

once with sterile PBS (Gibco) and detached with Trypsin-EDTA (Gibco) at the 37oC 

incubator for 5 minutes. Once all adherent cells were confirmed to be detached, three 

volumes of pre-warmed (37OC water bath) complete DMEM media were added to 

inactivate trypsin. Cells were centrifuged at 259 x g for 5 minutes. Cell pellets were 

resuspended in pre-warmed complete DMEM and seeded into new flasks at 1:10 

concentration. 

2.4.3 Cryopreservation and thawing of cells 

Cryopreservation of cell lines was performed when cell populations reached 80 - 90% 

confluency in either T25 or T75 flasks. Cells were washed, detached, and pelleted 

following the procedure outlined in 2.4.2. Cells were resuspended in 1mL of freezing 

media, consisting of 90% foetal bovine serum (FBS) (Gibco) and 10% dimethyl sulfoxide 

(DMSO) (Sigma), and transferred to 2mL cryo-vials. Cryo-vials were incubated at -80oC 

for 24 hours before transferring to liquid nitrogen for permanent storage.  

From liquid nitrogen storage, cells in cryo-vials were rapidly thawed in a 37oC water bath 

for 1 minute and resuspended in 9 mL of pre-warmed complete DMEM media. Next, cells 

were  centrifuged to pellet at 259 x g for 5 minutes, resuspended in pre-warmed complete 

DMEM and seeded in either T25 or T75 tissue culture flasks. 
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2.5 Generation of RCC4-Cas9-GFP cell line 

The RCC4-Cas9-GFP cell line was generated by transducing RCC4 cells with 

lentiviruses containing an eGFP-tagged Cas9 expression construct, followed by 

fluorescence-activated cell sorting (FACS). This cell line expresses the Cas9 protein 

constitutively. Firstly for the production of the lentivirus, 2 x 106 HEK293-T cells were 

seeded in a 10 cm2 culture dish and incubated overnight before co-transfection of pLenti-

Cas9-GFP (Addgene #86145), lentiviral packaging plasmid pCMVΔ8.91 (Brennan et al., 

2018), and pCMB-VSV-G envelope plasmid (Addgene #14888). For each 10cm2 of 

HEK293-T cells, 2 µg of pLenti-Cas9-GFP, 1.5 µg of pCMVΔ8.91 and 1.5 µg of pCMB-

VSV-G plasmids (5 µg of DNA in total) were mixed with 15 uL of Fugene 6 (Promega) 

and made up to 100 uL with OptiMEM reduced serum medium (Gibco). The transfection 

mix was incubated at room temperature for 30 minutes. The cell culture media for 

HEK293-T cells in the 10 cm2 dish was replaced with 8 mL of optiMEM. After the 

incubation, the 100 uL of transfection mix was added to the HEK293T cells dropwise 

across the plate. OptiMEM in the 10cm2 dish was replaced with 10 mL of pre-warmed 

complete DMEM. Cell supernatant containing lentiviruses was collected 48 hours post-

transfection and filtered through a 0.45 µm syringe filtered. 1 mL of filtered lentiviral 

medium was applied to a single well of RCC4 cells in a 24-well plate, where 20000 cells 

were seeded 18 hours before transduction. Unused aliquots of filtered supernatant 

containing lentiviruses were stored at -80 oC. 48 hours after lentiviral transduction, GFP-

positive RCC4 cells were isolated using MoFlo Astrios EQ cell sorter (Beckman Coulter). 

The purity of GFP positive population was validated by flow cytometry (BD Fortessa X-

20) and analysed using FlowJo software (Tree Star). The expression of Cas9 protein in 

the GFP-positive cells was further confirmed via Western blotting. RCC4-Cas9-GFP cells 

were expanded and frozen down for later use. 
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2.6 Generation of RCC4-WTAP-KO clonal cell lines 

After generating an RCC4 cell line that expresses Cas9 protein constitutively, gene 

knock-out (KO) cell lines can be achieved by transfection of gene-specific guide RNAs. 

A pool of 3x synthetic guide RNAs targeting the m6A writer WTAP (Dharmacon) was 

selected and resuspended in 10mM Tris buffer to make a 10 µM guide RNA stock 

solution. 20000 RCC4-Cas9-GFP cells per well at a 24-well plate were seeded 18 hours 

before transfection. One hour before transfection, cell media were replaced with fresh 

complete DMEM media. The transfection mix was prepared by mixing 1 µL of the 10 µM 

guide RNA stock, 1 µL of 10 µM transactivating CRISPR RNA (tracrRNA) (U-002005, 

Dharmacon), and 3 µL of 10mM Tris buffer with 20 µL OptiMEM for each well. In a 

separate microcentrifuge tube, 1 µL of Lipofectamine 3000 (Invitrogen) was diluted in 24 

µL of OptiMEM for each well and mixed by vortexing for 2-3 seconds. The 25 µL 

transfection mix was mixed gently with Lipofectamine-OptiMEM and incubated at room 

temperature for 10 minutes. 50 µL of guide RNA-Lipofectamine transfection mix was 

subsequently added to the RCC4 cells dropwise. Transfected cells were incubated at the 

37oC incubator. 

After reaching 80 - 90% confluency, transfected cells were detached (using the method 

outlined in 2.4.2), and 2000 cells were used per 96-well plate for limiting dilution to 

generate monoclonal populations. 2 x 96 well plates were seeded for each transfected 

well in 24-well plate. To verify gene editing efficiencies, the remaining unused transfected 

cells from the 24-well plate were centrifuged and washed with PBS (Gibco) before being 

lysed for western blotting. Each well was replenished with fresh complete DMEM media 

every 4-5 days to maintain optimum cell growth conditions. After 2 weeks, wells with 

single-cell clonal expansion in the 96-well plates were trypsinised and seeded in a 24-

well plate for further expansion. Once the wells reached 80-90% confluency, half of the 

cells were used to seed a single well at a 6-well plate, whilst another half of the cell 

population was lysed for gene KO validation via western blotting. Confirmed KO clonal 

lines were expanded and frozen down. 
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2.7 Cytokines treatment 

Cell lines were treated with pro-inflammatory cytokines IFN-γ (peprotech) and TNF 

(peprotech). For the sequencing experiment in chapter 5, 1 x 106 RCC4 Cas9 GFP or 

WTAP-KO-2H1 cells were seeded in 15 mL of complete DMEM in T 75 flasks. 24 hours 

after seeding, media were changed into complete DMEM, with or without the addition of 

IFN-γ (1000U/mL) and TNF (25 ng/mL). Cells were harvested 24 hours later for RNA 

extraction. 3 flasks of T75s were used for each replicate for the sequencing experiment. 

2.8 RNA interference 

RNA interference targeting METTL3, WTAP and non-targeting control (NTC) were 

purchased from Dharmacon in a pool of 4 siRNAs (SMARTpool) (Table 2.6). RCC4 cells 

were seeded at 50,000 cells per well in 12 well plates one day before siRNA transfection 

(50 nM per well). For each well, the transfection mixture was prepared with 4 µL of siRNA 

(50 nM) and 2 µL of siQUEST transfection reagent (Mirus Bio) with OptiMem (Gibco) to 

make up to 160 µL in total. The transfection mix was incubated at room temperature for 

20 minutes before adding dropwise to cells. After 6 hours, cell media were changed to 

fresh media. Then, 30 hours post-transfection, cell media were changed again with 

complete DMEM containing with or without the addition of IFN-γ (1000U/mL) and TNF 

(25ng/mL) for an additional 24 hours before being harvested. 

2.9 Cell lysis and Western blotting 

Cells were first washed with ice-cold PBS (Gibco) and lysed in RIPA buffer (150mM NaCl, 

1% Triton X-100, 0.5% Sodium Deoxycholate, 0.1% Sodium dodecyl sulfate (SDS) in 

50mM Tris buffer pH 7.4) containing protease and phosphatase inhibitors mixture (P8340, 

P5746, P0044, Sigma) on ice for 10 minutes. Next, cell lysates were collected and 

centrifuged at 10000g for 15 minutes at 4oC. Cell lysate samples were stored at -20oC.  

Protein concentration for each sample was measured with a Pierce BCA assay kit 

(Thermo Scientific). Cell lysates were defrosted on ice and centrifuged at 10000g for 15 

minutes at 4oC. Lysates were diluted with PBS (Gibco) at a 1:5 ratio and loaded on a 96-
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well plate along with the BSA protein concentration standard. Each well was mixed well 

with BCA assay working reagent, and the 96-well plate was incubated at 37oC for 30 

minutes for colour development. The 96-well plate was read on a VersaMax microplate 

reader (Molecular Devices) at 562nm absorbance. Cell lysate concentrations were 

determined using a standard curve generated by BSA protein standards. An equal 

amount of proteins (10 or 20 µg) were loaded for each lane on an SDS-PAGE 

(polyacrylamide gel electrophoresis) gel.  

Cell lysates were diluted in PBS (Gibco), mixed well with loading buffer (4x, 250 mM Tris-

HCl (Lonza), 40% glycerol (Sigma), 8% SDS (Sigma), 5% β-mercaptoethanol (Sigma) 

and 0.05% bromophenol blue (Sigma) and denatured at 95oC for 10 minutes on a heating 

block. Samples were then loaded onto a 10% SDS-PAGE gel, electroporated and 

resolved using a Bio-Rad PowerPac at 120V for 90 minutes. Next, the SDS-PAGE gel 

was placed between blotting papers (Bio-Rad) with a methanol-activated PVDF 

membrane (Millipore). Electro-transfer of proteins from SDS-PAGE gel to PVDF 

membrane was carried out at 0.2A with a maximum voltage of 25V for 90 minutes using 

a semi-dry Trans-Blot SD (Bio-Rad). 

Once proteins from cell lysates were transferred to PVDF membranes, membranes were 

blocked in blocking buffer (TBS with 1% BSA (Sigma) and 0.1% Tween-20 (Sigma)) for 

1 hour at room temperature on a tube-roller. Membranes were then incubated with 

primary antibodies diluted in blocking buffer overnight at 4oC on a tube roller. After 

washing membranes 3 times for 5 minutes with TBS-T (TBS with 0.1% Tween-20 

(Sigma)), membranes were incubated with HRP-conjugated secondary antibodies 

diluted in blocking buffer for 1 hour at room temperature on a tube-roller. Membranes 

were washed 3 times for 5 minutes with TBS-T and incubated with Amersham ECL (GE) 

at room temperature for 1 minute before visualisation via ChemiDoc (Bio-Rad). 

Quantification of protein bands from western blotting was performed using ImageJ 

(National institutes of health) by normalising protein targets with GAPDH loading control. 

The antibodies and concentrations used in this thesis are listed in table 2.3. 
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2.10 Flow cytometry 

Cells were first trypsinised, washed with ice-cold PBS (Gibco) twice and transferred to a 

v-shaped 96-well plate. Cells were then stained with the live/dead marker Zombie Aqua 

(BioLegend) at 1:1000 in 100µL of PBS for 10 minutes on ice and in the dark before 

staining with either PE-conjugated anti-PD-L1 antibodies (1:100, Biolegend) or PE-

conjugated mouse IgG2b isotype control antibodies (1:100, Biolegend) in FACS buffer 

(PBS with 0.5% BSA (Sigma) and 0.05% Sodium Azide (Severn Biotech)) for 20 minutes 

on ice in the dark. After incubation, cells were washed three times with FACS buffer 

before resuspension in 100 µL of FACS buffer for data acquisition. Data acquisition was 

performed on Cytoflex LX (Beckman Coulter) and analysed using FCSexpress (De Novo) 

and CytExpert (Beckman Coulter). 

2.11 m6A dot blot 

Total RNA samples were denatured at 95oC for 3 minutes before spotted onto an 

Amersham Hybond-N+ membrane (GE) at 2µL per dot. The loaded membrane was then 

UV-crosslinked to the membrane using a Stratalinker (Stratagene) on auto-crosslink 

setting for 4 times. Membrane was blocked in TBS-T (TBS with 0.1% Tween-20 (Sigma)) 

with 1% of BSA (Sigma) at room temperature for 1 hour, followed by overnight incubation 

with anti-m6A antibody (1:1000, Abcam) at 4oC. Membrane was washed 3 times for 5 

minutes with TBS-T, then incubated with HRP-conjugated secondary antibodes (Dako 

P0448) for 1 hour at room temperature. Membrane was washed 3 times for 5 minutes 

with TBS-T and incubated with Amersham ECL (GE) at room temperature for 1 minute 

before visualisation via ChemiDoc (Bio-Rad). The intensity of dot blot signal was 

quantified using ImageJ (National institutes of health). 
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2.12  RNA isolation from ccRCC nephrectomy samples 

To extract total RNA from ccRCC nephrectomy samples, tissues were first weighed and 

divided into ~30 mg sections before RNA extraction. This was performed to avoid 

exceeding the maximum binding capacity of the EZ-10 RNA-binding spin columns. 

Tissue sections were transferred to 2 mL nuclease-free microcentrifuge tubes (Starlab) 

with 700 µL Qiazol (Qiagen) and a stainless steel bead (3 mm diameter) (Qiagen) added 

for each sample. Tubes were placed in TissueLyser (Qiagen) for 2 minutes at 50 Hz to 

disrupt tissues and repeated until tissues were homogenised. Samples were centrifuged 

at 10000x g at 4oC for 5 minutes, and Qiazol solutions were transferred to new 1.5 mL 

Nuclease-free microcentrifuge tubes (Starlab). 140 µL of chloroform was added per 

sample and mixed vigorously for 15 seconds. Phenol-chloroform mixtures were 

incubated at room temperature for 3 minutes before spinning at 12000x g at 4oC for 15 

minutes to separate RNA (in the aqueous phase) from DNA, lipids and proteins at the 

interphase and lower organic phase. For each sample, the upper aqueous phase was 

transferred to a nuclease-free microcentrifuge tube, where 525 µL of 100% ethanol was 

added and mixed well. Next, samples were transferred into EZ10 RNA spin columns 

(NBS Biologicals) 700 µL at a time and centrifuged at 8000x g for 15s. Samples on the 

columns were washed with 350 µL RWT Buffer (Qiagen). For each column, 80 µL of 

RNase-free DNase I (in RDD buffer) (Qiagen) was added to the membrane directly and 

incubated for 15 minutes at room temperature. Spin columns were washed with 350 µL 

RWT Buffer, followed by 500 µL of RPE buffer (Qiagen). Spin columns were then placed 

on a new nuclease-free 1.5 mL microcentrifuge tube and centrifuged at 10000x g for 1 

minute to remove all residual wash buffers. Finally, the columns were transferred on 

another nuclease-free 1.5 mL microcentrifuge tube, and 30 µL of nuclease-free water 

(Cytiva) per spin column was added to the membrane directly. After 1 minute of 

incubation at room temperature, RNA molecules were eluted by centrifugation at 10000x 

g for 1 minute at room temperature. Eluted RNA samples were stored at -80 oC. 
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2.12 RNA isolation from cell lines 

To extract total RNA from cell lines, cells were first washed with ice-cold PBS (Gibco), 

followed by lysis with 700 µL Qiazol (Qiagen). After incubation at room temperature for 

5 minutes, samples were transferred from wells/flasks to a 1.5 mL Nuclease-free 

microcentrifuge tube by pipetting. From here onward, RNA from cell lines was extracted 

using the same protocol outlined in 2.9. For other RNA used for other qRT-PCR 

(quantitative reverse transcription PCR) assays, DNase I treatment was not performed. 

Columns were directly washed with 700 µL of RWT, followed by the 500 µL RPE wash. 

For samples that were used for RNAseq or MeRIP-qRT-PCR assays, samples were 

treated with DNase I, as outlined in 2.9. All samples were eluted in 30 µL of nuclease-

free water and stored at -80oC. 

2.13 RNA concentration and quality assessment 

 RNA concentrations were evaluated by using NanoDrop ND 2000 (Thermo Scientific), 

Qubit 3 Fluorometer with Qubit RNA HS assay kit (Invitrogen), and 2100 Bioanalyzer 

with Bioanalyzer RNA Nano kit (Agilent). RNA quality was assessed by Nanodrop and 

Bioanalyzer. For NanoDrop, the quality of RNA samples was estimated using A260/230 

(between 2.0-2.2) and A260/280 (~2.0 for pure RNA). Bioanalyzer generates 

electropherograms which provide an RNA integrity number (RIN) value, where 10 

represents intact RNA molecules, and 1 represents completely degraded RNA in the 

sample. Other information on the samples that Bioanalyzer generated includes the ratio 

between ribosomal RNA (rRNA) and mRNA and RNA size distribution profiles. 
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2.14 cDNA synthesis  

RNA molecules were reverse transcribed to cDNAs using random hexamers and 

SuperScript II reverse transcriptase (Invitrogen). For each sample, 1 µL of RNA (with a 

concentration higher than 10 ng/µL) was mixed with 1 µL of random hexamers (50 ng/µL), 

1 µL of dNTP (10 mM) and 10.5 µL of nuclease-free water in a nuclease-free PCR tube 

(Biologix). PCR tubes were centrifuged briefly before incubating at 65 oC for 5 minutes 

in a SimpliAmp thermocycler (Applied Biosystems). Samples were then cooled to 4oC on 

the thermocycler. 4 µL of first strand buffer (Invitrogen), 2 µL of 10 µM DTT (Invitrogen), 

1 µL of RNaseOUT RNase inhibitor (Invitrogen), and 0.5 µL of SuperScript II reverse 

transcriptase (200 U/µL) were added to each sample. Next, PCR tubes were returned to 

the thermocycler and further incubated at 25oC for 10 minutes, 50oC for 50 minutes and 

85oC for 5 minutes. After the reverse transcription reaction, samples (20 µL each) were 

transferred to nuclease-free 1.5 mL microcentrifuge tubes and stored at -20oC.  

2.15 qRT-PCR 

To determine mRNA expression levels in samples, qRT-PCR assays were performed 

using SYBR Green master mix (Applied Biosystem) and transcript-specific primers listed 

in table 2.5. For each reaction, 10 µL of 2x Fast SYBR Green master mix was added with 

7.8 µL of nuclease-free water and 0.6 µL of forward-primers and reverse-primers (10 µM) 

in a MicroAmp Fast Optical 96 well plate (Applied Biosystem). 1 µL of reverse-transcribed 

cDNA was then added to each well containing the master mix. Optical 96 well plates 

were sealed with MicroAmp optical adhesive films (Applied Biosystem) and centrifuged 

at 1000x g for 60 seconds. qRT-PCR assays were performed on a StepOnePlus Real-

Time PCR system (Applied Biosystem) for 40 amplification cycles.  All primer sets used 

in the thesis were validated to produce specific PCR-product via melt-curve analysis, 

with an efficiency between 80 – 120%. Primer efficiencies were determined by analysing 

the standard curve generated by serial dilutions of cDNA.GAPDH was used as a loading 

control, and relative gene expression was calculated by the comparative Ct (cycle 

threshold) method. 
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2.16 m6A MeRIP-qRT-PCR 

m6A MeRIP-qRT-PCR assay was performed to compare levels of m6A at a specific site 

of a transcript between samples. For each sample, a near-confluent flask of T75 was 

harvested with RNA extracted using the protocol outlined in 2.9. After RNA extraction, 

RNA concentration from each sample was determined by Nanodrop. Next, each sample 

was diluted to 500 ng/µL and subdivided into 9 µL aliquots. 2 µL of 10x fragmentation 

buffer (Invitrogen) was added to each aliquot. Samples were incubated at 70oC for 10 

minutes on a heating block. At the end of the incubation period, 2 µL of EDTA-based 

stopping solution was added to terminate the fragmentation reactions. Samples were 

centrifuged briefly, with 2 µL of sodium acetate (3M), 5 µL of nuclease-free water, and 1 

µL of glycogen (Thermo Scientific) added to each sample. 75 µL of ice-cold 100% ethanol 

was added to each tube, and samples were incubated at -20oC overnight. After 

incubation, samples were centrifuged at 10000x g for 15 minutes at 4oC. The precipitated 

RNA pellets were washed with 70% ethanol, kept at -20oC and air-dried. Finally, all RNA 

pellets originating from the same sample were dissolved in 21 µL of nuclease-free water 

(Cytiva), where 1 µL of the sample was used for Bioanalyzer RNA concentration and 

quality checks. Fragmented RNAs should have a size profile of 100-200nt. Fragmented 

RNA samples were diluted to 40 ng/µL, with 5 µL saved as input control for cDNA 

synthesis and later qRT-PCR assays.  

To perform MeRIP, 30 µL of Dynabead protein A magnetic beads (Invitrogen) per 

reaction were first blocked in 1% BSA TBS-T at 4oC for 2 hours. Beads were washed 

twice with IP buffer (250 mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.1% Triton-X 100 (Sigma)), 

and resuspended in 500 µL of IP buffer with 1 µg anti m6A antibodies (Millipore) or control 

normal rabbit IgG (Millipore). Antibodies and magnetic beads were conjugated for 6 

hours at 4 oC and mixed using an end-over-end rotor. Next, beads were washed twice 

with IP buffer. For each reaction, beads were resuspended with 50 µL of fragmented 

RNA sample (previously diluted to 40 ng/µL, 2 µg in total for each reaction), 5 µL of 

RNaseOUT (Invitrogen), 345 µL of nuclease-free water and 100 µL 5x IP buffer (750 mM 
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NaCl, 50 mM Tris-HCl (pH 7.4), 0.5% Triton-X 100). Samples were placed on an end-

over-end rotator and mixed overnight at 4oC. 

After the RNA-binding step, beads were washed twice for 10 minutes on a rotator at 4oC 

using 1 mL of IP buffer per sample. Next, samples were washed twice for 10 minutes 

using 1 mL of low-salt wash buffer (50 mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.1% Triton-

X 100), and finally twice with 1 mL of high-salt wash buffer (500 mM NaCl, 10 mM Tris-

HCl (pH 7.4), 0.1% Triton-X 100) on an end-over-end rotator at 4oC.  

After m6A-RNA-immunoprecipitation, antibodies-bound-RNA molecules were eluted 

using 700 µL of Qiazol. After adding Qiazol, samples were placed on an end-over-end 

tube mixer at room temperature for 5 minutes. Then, Qiazol samples were separated 

from the magnetic beads using a magnet and transferred to new nuclease-free tubes. 

Next, RNA extraction was performed using the protocol detailed in 2.12 and eluted in 30 

µL nuclease-free water. cDNA synthesis (detailed in 2.14) was performed using both 

fragmented RNA input (1 µL, 40ng / µL) and pulled-down RNA (6 µL, representing 20% 

of all pulled-down RNA). qRT-PCR assays were performed using m6A site-specific 

primers. m6A methylated transcripts were quantified by comparing Ct values of m6A-

immunoprecipitated samples with standard curves generated via titration of 

corresponding input RNA samples.  
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2.17 poly(A)+ mRNA enrichment using magnetic beads immobilised 

oligo d(T)25 

Poly(A)+ mRNA molecules can be isolated from total RNA by affinity purification using 

magnetic beads coupled with oligo-(dT)25. Firstly, 75 µg of total RNA extracted from 

samples was diluted to 100 µL nuclease-free water (Cytiva). Samples were placed on a 

65oC heating block for 2 minutes to disrupt secondary RNA structures and then placed 

on ice. For each sample, 200 µL of oligo-(dT)25 conjugated magnetic beads (Invitrogen) 

were washed once with 100 µL of binding buffer (20 mM Tris-HCl (pH 7.5), 1 M LiCl, 2 

mM EDTA), and resuspended in 100 µL binding buffer in a 1.5 mL microcentrifuge tube. 

RNA samples were transferred to tubes containing conjugated beads and mixed 

thoroughly by tube rotator for 5 minutes at room temperature. After mRNA-binding, tubes 

were placed on a magnet to remove the supernatant. Beads were washed twice with 

wash buffer (10 mM Tris-HCl (pH 7.5), 150 mM LiCl, 2 mM EDTA). Finally, poly(A)+ 

mRNAs were eluted from beads with 11 µL nuclease-free water. Samples were heated 

to 65 oC for 2 minutes, and eluates were transferred to new nuclease-free 

microcentrifuge tubes. Poly(A)+ mRNA samples were stored at -80oC before sequencing 

library preparations.  
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2.18 Direct RNAseq sequencing library preparation (RNA002) 

Sequencing libraries used for DRS were generated using the SQK-RNA002 sequencing 

kit, and an outline of the protocol can be found in figure 1.14. For each sequencing library, 

either 500 ng of cell line extracted, poly(A) enriched mRNA or 2 µg of total RNA from 

ccRCC nephrectomy were used as input. Firstly, the volume of RNA samples was 

adjusted to 9.5 µL with nuclease-free water (Invitrogen) in a PCR tube and mixed with 3 

µL NEBNext quick ligation reaction buffer (NEB), 1 µL of RT adapter (RTA), and 1.5 µL 

T4 DNA Ligase (NEB). Samples were incubated for 10 minutes at room temperature for 

RTAs to ligate with the 3’ end of RNA molecules. Next, 9 µL of nuclease-free water, 2 µL 

of 10 mM dNTPs (Thermo Scientifics), 8 µL of 5x first-strand buffer (Invitrogen) and 4 µL 

of 0.1M DTT were added to each sample, followed by the addition of 2 µL of SuperScript 

III reverse transcriptase (Invitrogen). Samples were mixed thoroughly, and PCR tubes 

were incubated in a thermal cycler (Bio-Rad) at 50oC for 50 minutes, then 70oC for 10 

minutes, and finally down to 4oC. 

After second-strand cDNA synthesis, samples were transferred to fresh DNA LoBind 

tubes. 72 µL of resuspended Agencourt RNAClean XP beads (Beckman Coulter) were 

added to the samples and mixed on a hula mixer (Thermo Fisher Scientific) for 5 minutes 

at room temperature. Samples were briefly centrifuged and pelleted on a magnet. 

Supernatants were removed, and magnetic beads were washed with 150 µL of 70% 

ethanol. After removing all residual 70% ethanol, beads were resuspended in 20 µL of 

nuclease-free water and incubated for 5 minutes at room temperature. Beads were 

pelleted on a magnet, and eluates were transferred to fresh 1.5 mL DNA LoBind tubes.  

Next, 8 µL of NEBNext quick ligation reaction buffer, 6 µL of RNA Adapter (RMX), 3 µL 

of nuclease-free water and 3 µL of T4 DNA ligase were added to each sample and mixed 

thoroughly by pipetting. Samples were incubated at room temperature for 10 minutes. 

After ligation of RMX, 16 µL of RNAClean XP beads were added to each sample and 

mixed for 5 minutes using a hula mixer at room temperature. Samples were then briefly 

centrifuged and pelleted on a magnet. Beads were washed with 150 µL of wash buffer 
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(WSB) twice and resuspended in 41 µL of Elution buffer, followed by 10 minutes of 

incubation at room temperature. 1 µL of the eluate was used to assess the yield of the 

library prep using the Qubit fluorometer DNA HS assay (Invitrogen). The remaining 40 

µL of eluates were used as DRS input and loaded into PromethION flow cells (method 

detailed in 2.20). 
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2.19 PCR-cDNAseq sequencing library preparation (PCS-111) 

Sequencing libraries used for PCR-cDNAseq in this thesis were generated using SQK-

PCS-111 kit with 200ng of ccRCC nephrectomy extracted total RNA as input (Figure 

1.15). RNA samples were first thawed on ice, with 200 ng of total RNA adjusted to 10 µL 

in volume with nuclease-free water (Invitrogen). RNA samples were then mixed well with 

1 µL of cDNA reverse transcription adapter (cRTA) (ONT) and 1 µL of annealing buffer 

(AB) (ONT) per reaction in a 0.2 mL PCR tube. Samples were incubated in a thermal 

cycler (Bio-Rad) at 60 oC for 5 minutes, then cooled for 10 minutes at room temperature. 

Next, 3.6 µL of NEBNext quick ligation reaction buffer (NEB), 1.4 µL of T4 DNA ligase (2 

x 106U /mL) (NEB) and 1 µL RNaseOUT (Invitrogen) were added to each PCR tube and 

incubated for 10 minutes at room temperature. After cRTAs ligation, 1 µL of Lambda 

Exonuclease (NEB) and 1 µL of Uracil-specific excision reagent (USER) were added to 

each PCR tube. Samples were incubated at 37oC for 15 minutes at a thermocycler (Bio-

Rad) to remove nucleotides on the doubled-stranded overhangs.  

After incubation, samples were transferred to DNA LoBind tubes (Eppendorf), and 36 µL 

of RNAClean XP beads (Beckman Coulter) were added per sample. Samples were 

incubated on a hula mixer (Thermo Fisher Scientific) for 5 minutes. Samples were briefly 

centrifuged and pelleted on a magnet. Supernatants were removed, and magnetic beads 

were washed with 100 µLof short fragment buffer (SFB) (ONT) twice. After removing all 

residual buffer and air-dried for 30 seconds, magnetic beads were resuspended in 12 µL 

of nuclease-free water for elution at room temperature for 10 minutes. Eluates were 

transferred to fresh 0.2 mL PCR tubes.  

For each PCR tube, 1 µL of RT primer (RTP) (ONT) and 1 µL of 10 mM dNTPs (Thermo 

Scientific) were added. Samples were incubated at room temperature for 15 minutes. 

Next, 4.5 µL of Maxima H Minus 5x RT Buffer (Thermo Scientific), 1 µL of RNaseOUT 

(Invitrogen), and 2 µL of Strand switching primer II (SSPII) were added to each sample. 

PCR tubes were first incubated at 42 oC for 2 minutes in a thermal cycler. 1 µL of Maxima 

H Minus Reverse Transcriptase (Thermo Scientific) was added to each sample, and PCR 
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tubes were returned to the thermocycler again and further incubated at 42oC for 90 

minutes, 85oC for 5 minutes and then cooled to 4oC. 

After reverse transcription, reverse-transcribed samples were divided into 4x PCR tubes 

with 5 µL each. In each tube, 1.5 µL cDNA primer (cPRM) (ONT), 18.5 µL nuclease-free 

water and 25 µL of 2x LongAmp Hot Start Taq master mix (NEB) were added and mixed 

thoroughly by pipetting. PCR tubes were placed at a thermocycler and amplified with the 

following conditions: denaturation at 95oC for 30 seconds, followed by 14 cycles of 

denaturation at 95oC for 15 seconds, annealing at 62oC for 15 seconds, extension at 

65oC for 6 minutes, a final extension step at 65oC for 6 minutes and finally cooled to 4oC. 

Following PCR amplification, each tube was mixed with 1 µL of Exonuclease I (NEB) and 

digested at 37oC for 15 minutes, followed by an inactivation step at 80oC for 15 minutes 

in a thermal cycler. All 4 PCR reactions were then pooled into a fresh 1.5 DNA LoBind 

tube (Eppendorf), and 160 µL of AMPure XP beads (Beckman Coulter) were added to 

each tube. Samples were incubated on a Hula mixer for 5 minutes at room temperature 

and pelleted on a magnet. Beads were washed twice with 500 µL 70% ethanol, pelleted 

by a magnet and airdried for 30 seconds. 12 µL of elution buffer (EB) (ONT) was added 

to each sample and incubated for 10 minutes at room temperature. Eluates were 

separated from beads using a magnet and transferred to fresh 1.5 mL DNA LoBind tubes. 

Using the Qubit fluorometer DNA HS assay (Invitrogen), 1 µL from each sample was 

used to check the yield of cDNA amplification. 20 ng of amplified cDNA per sample was 

used for the next steps and adjusted to 11 µL using EB, with the rest of the cDNA stored 

at -80oC. Finally, 1 µL of Rapid Adapter T (RAP T) was added to each sample and 

samples were incubated at room temperature for 5 minutes. cDNA libraries were now 

able to be loaded on PromethION flow cells (method detailed in 2.20). 
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2.20 ONT PromethION flow cell loading and sequencing 

PromethION flow cells (R9.4.1) were used in all sequencing experiments in this thesis. 

Before sequencing runs, flow cells were inserted in the PromethION sequencer, and the 

number of available pores was checked. All sequencing runs were performed using 

PromethION flow cells with at least 5000 available pores before the start of the run. 

 Following hardware checks, flow cells were primed with the priming mix (1170 µL of 

Flush buffer (FB) and 30 µL of Flush tether (FLT)). For each PromethION flow cell, 500 

µL of priming mix was first flushed into the inlet port. After 5 minutes of incubation, 

another 500 µL of priming mix was added. Next, the 40 µL RNA libraries (DRS or PCS) 

prepared in 2.18 / 2.19 were mixed with 35 µL of nuclease-free water (Invitrogen) and 

75 µL of RNA Running Buffer (RRB) and loaded into the flow cell by pipetting drop-wise 

through the inlet port. Sequencing runs were then started and lasted for 72h each. 
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2.20 Mapping of sequencing data 

Sequencing reads generated from Direct RNAseq, and PCR-cDNAseq with a minimum 

read quality score of 7 were used for mapping and downstream analysis. For Direct 

RNAseq, FASTA files generated from sequencing runs were concatenated using 

catfishq (version 1.3.0) and aligned using an index built by either human genome 

(Ensembl release 105, Genome assembly version: GRCh38) or transcriptome (Ensembl 

release 105 cDNA reference) using minimap2 (version 2.22), with recommended 

parameters for DRS data (-ax splice –uf –k14: spliced mapping mode, forward transcript 

strand only, kmer size of 14, minimum mapping score of 10) (Li, 2018). Aligned reads 

were sorted, merged and indexed to BAM files with samtools (version 1.13) (Li et al., 

2009).  

For PCR-cDNAseq, FASTA files were first concatenated using catfishq (version 1.3.0). 

Reads were first processed by pychopper (version 2.5.0). Pychopper re-orientates reads, 

filters for reads with 5’ and 3’ sequencing adapters for full-length reads and finally trims 

off sequencing adapters sequences. Poly(A) tails from reads were identified and trimmed 

from reads by cutadapt (version 4.1) (Martin, 2011). Processed reads were subsequently 

aligned to the genome/transcriptome using an index built by either the human genome 

(Ensembl release 105, Genome assembly version: GRCh38) or transcriptome (Ensembl 

release 105 cDNA reference) using minimap2 (version 2.22), with recommended 

parameters (-ax splice –uf –k14: spliced mapping mode, forward transcript strand only, 

kmer size of 14, minimum mapping score of 10). Aligned reads were sorted, merged and 

indexed to BAM files with samtools (version 1.13). Mapping Data quality and statistics of 

DRS and PCS data were analysed and visualised using Nanoplot (De Coster et al., 2018). 

Analysis by BamSlam was used to provide statistics on reference transcriptome-mapped 

read lengths and coverage of annotated transcripts (Gleeson et al., 2022). 
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2.21 Differential gene expression 

FeatureCounts performed gene expression counts of genome-aligned DRS sequencing 

data (Liao et al., 2014). Transcript counts of transcriptome-aligned DRS data were 

quantified with Salmon (version 1.5.2) with the error model and length correction disabled 

(--noErrorModel, -noLengthCorrection) using human reference transcriptome (Ensembl 

release 105, cDNA reference) (Patro et al., 2017b). Count matrices were imported to R 

with tximport (version 1.22, R-version 4.2.1), followed by normalisation and identification 

of differentially expressed genes (padj value < 0.1 and log2Fold change > 2) using 

DESeq2 (version 3.15, R-version 4.2.1) (Love et al., 2014; Soneson et al., 2016). P 

values were adjusted by the Benjamini-Hochberg Method.  

For expression levels of novel transcripts, read counts were generated using samtools 

view command (version 1.13) for the specified genomic region, as noted in the figure. 

Read counts were scaled to reads per million with the number of aligned reads per 

sample, using mapping statistics generated by Nanoplot (Section 2.19). 

 

2.22 Gene set enrichment analysis (GSEA) of RNA-seq data 

Gene set enrichment analysis of transcriptomic data was performed using clusterProfiler 

(v4.4.4, R-version 4.2.1) (Wu et al., 2021). Gene ontology (GO) biological process (BP), 

cellular component (CC), molecular function (MF) and Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) databases were used for functional enrichment analysis of 

differentially expressed genes from RNA-seq. Parameters used for GO and KEGG 

enrichment were as follows: Permutations (nPerm): 10000, Minimum gene set size 

(minGSSize): 5, Maximum gene set size (maxGSSize) = 500, Minimum p-value 

(pvalueCutoff) = 0.05, Organism (Orgdb) = org.Hs.eg.db, pAdjustMethod = Benjamini-

Hochberg (BH). Graphs were plotted using ggplot2 (v3.3.6, R-version 4.2.1).  
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2.23 Estimation of stromal and tumour-infiltrating immune cell 

population abundance by ESTIMATE and xCell 

Tumour purity, stromal and tumour-infiltrating immune cell population abundance was 

estimated using two gene signature-based algorithms: ESTIMATE (v1.0.13, R-version 

4.2.1) and xCell (v1.1.0, R-version 4.2.1). ESTIMATE produces stromal and immune 

scores based on expression levels of 130 stromal/immune gene signatures (Yoshihara 

et al., 2013). xCell uses 489 gene signatures to infer 64 immune and stromal cell types 

and produce an overall immune and stromal score based on gene expression levels 

(Aran et al., 2017). These scores represent the presence and abundance of stromal cells 

and tumour-infiltrating immune cell populations in tumour samples. Entrez gene IDs for 

DRS/PCS mapped genes, and corresponding genome mapped DESeq2 normalised 

expression for PCS data of ccRCC nephrectomy samples were used as input for 

ESTIMATE. Entrez gene IDs for mapped genes were retrieved using biomaRt (v4.2, R-

version 4.2.1). Genome-mapped DESeq2 normalised expression for PCS data of ccRCC 

tumour samples was used as input for xCell. 

 

2.24 Tumour-infiltrating immune cell type deconvolution using 

CIBERSORTx and EPIC 

DRS and PCS data from ccRCC nephrectomy samples were computationally 

deconvoluted using CIBERSORTx and EPIC (Racle et al., 2017; Newman et al., 2019). 

Using these algorithms, the abundance of tumour-infiltrating immune cells was estimated 

for each ccRCC tumour sample. 

For CIBERSORTx, files containing gene IDs and DESeq2 normalised expression for 

genome-reference mapped PCS/DRS data were uploaded to the CIBERSORTx online 

analysis platform (cibersortx.standford.edu). Using the LM22 gene signature matrix (547 

genes), CIBERSORTx was used to impute 22 different immune cell types. CIBERSORTx 
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analysis was performed using absolute mode, with batch correction and quantile 

normalisation options disabled and permutations set at 1000.  

For EPIC, files containing gene IDs and DESeq2 normalised expression for genome-

reference mapped PCS/DRS data were uploaded to the EPIC online analysis platform 

(epic.gfellerlab.org). The EPIC Tumour infiltrating cells gene signature matrix (98 genes) 

was used to deconvolute seven different immune cell types. Both CIBERSORTx and 

EPIC produce a p-score for confidence in the deconvolution of each cell type. Only cell 

types with p < 0.1 across all 12 tumour samples were discussed in this thesis. 

 

2.25 Differential transcript usage using reference transcriptome-

mapped data 

Differential transcript usage (DTU) analysis of DRS and PCS data was performed using 

the R library rnaseqDTU (version 3.14, R-version 4.2.1) (Love et al., 2018). Normalised, 

scaled transcript-per-million (scaledTPM) from Salmon quantification output files were 

imported using tximport (version 1.22, R-version 4.2.1), followed by transcript-to-gene 

mapping of human reference transcriptome (Ensembl release 105, cDNA reference) 

using the R library GenomicFeatures (Lawrence et al., 2013). Transcripts were filtered 

using a minimum transcript expression of 3 (scaled TPM) across all samples, 5% of total 

gene expression in at least half of the samples, and removal of transcripts where only 

one isoform was identified. Genes with differential transcript usage between cell lines 

and treatment conditions were identified using either DRIMSeq or DEXSeq, followed by 

stageR statistical package where genes with padj value < 0.1 were considered significant 

(Anders et al., 2012; Robinson and Nowicka, 2016; Van den Berge et al., 2017). 
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2.26 Transcriptome assembly by StringTie2 

To explore potential novel transcripts from ccRCC transcriptomic data, StringTie2 was 

used to generate de novo assembled transcriptomes from DRS/PCS data, which were 

then compared with reference gene annotation to define novel isoforms. Using genome-

aligned (Ensembl release 105 human genome reference) DRS/PCS data (.bam files), 

transcripts were assembled by StringTie2 using long-reads processing mode (-L) without 

using reference gene annotation files to guide the assembly. Transcriptome assemblies 

from all tumour samples were merged using the --merge option, and the generated 

transcript annotation files (.gtf) from merged assemblies were compared to Ensembl 

reference GRCh 38 gene annotation (with -r option) using GffCompare (v0.12.6) (Pertea 

and Pertea, 2020).  

GffCompare provides transcript classification codes for each assembled transcript from 

the StringTie2 assemblies. The transcript classification codes indicate the relationship 

between assembled transcript in question and the closest related transcript from the 

reference gene annotation. The transcript classification codes can be broadly 

categorised into three groups: known transcripts (=, c), novel transcripts (j, k, m, n, o, i, 

x, y, u), and potential artefacts (p, e, s, r) (Gleeson et al., 2022). Classification codes and 

what they represent are listed below in Figure 2.1. StringTie2 assembled transcript 

annotation files were converted to .bed files for visualisation on the integrative genomics 

viewer (IGV). 
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Figure 2.1: GffCompare transcript classification code 

GffCompare provides a class code for assembled annotation transcripts compared to 

the most-related reference transcript annotation. Figure adapted from Pertea et al. 

2020. 
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2.27 Transcriptome assembly and novel isoforms discovery by 

FLAIR 

FLAIR is another transcriptome-assembly method used in this study to discover novel 

isoforms (Tang et al., 2020). Genome-aligned (Ensembl release 105 human genome 

reference) DRS/PCS data (.bam files) were inputted. Misaligned splice sites from 

mapped transcripts were first corrected using the ‘flair correct’ command. Next, high-

confidence isoforms were defined from corrected transcripts using the ‘flair collapse’ 

command, with the long-read optimised option selected (--trust_ends). In addition, 

human CAGE-seq data from the FANTOM5 consortium was used to define the 5’ start 

sites and to filter out truncated isoforms that are erroneously marked as novel isoforms 

(Noguchi et al., 2017). Corrected transcripts must be within the 100 nt range from the 

closest annotated transcription start sites, as annotated by the CAGE-seq data. The ‘--

stringent’ option was specified to ensure corrected transcripts used for flair collapse span 

at least 80% of any annotated reference transcript and have at least 25 nt overlaps with 

the first and last exon. Generated transcript annotation files (.gtf) from flair-collapse were 

compared to Ensembl reference gene annotation (with -r option) using GffCompare 

(v0.12.6). Finally, flair-generated transcript annotation files were converted to .bed files 

for visualisation on the IGV. 
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2.28 Estimation of poly(A) tail length by nanopolish 

Estimation of poly(A) tail lengths of Direct RNAseq reads was performed by nanopolish 

(v0.14.0). Firstly, raw sequence reads (FASTQ) were indexed (nanopolish index) with 

ONT raw data files (FAST5) and the sequencing summary file so that each read could 

be directly linked with the electric signals used to base-call the sequence using a unique 

read id. Next, the length of the poly(A) tail from each read was estimated (nanopolish 

polya). Poly(A) tail length estimations were associated with transcripts using information 

from reference transcriptome aligned bam files, where the Ensembl transcript ID and 

read id for each uniquely mapped read (primary alignment) was extracted using samtools 

view -F (version 1.13). For novel transcripts where Ensembl transcript ID is unavailable, 

read IDs aligned to the novel transcript-specific region were extracted from reference 

genome mapped files using samtools view (version 1.13). Reads with poly(A) tail length 

estimations were then associated with the reference gene IDs and RNA biotypes using 

bedtools (v2.28) and biomaRt (v4.2, R-version 4.2.1). Lengths of poly(A) tail are plotted 

using R ggplot2 (v3.3.6, R-version 4.2.1) and GraphPad Prism 9.  

 

2.29 Analysis of publicly available datasets 

Clinical, genomic, and transcriptomic data of 510 ccRCC patients from the TCGA KIRC 

dataset were obtained from cbioportal (Weinstein et al., 2013). Genomic data was used 

for gene copy number variations (CNV) identification and correlations between CNV and 

the overall survival of ccRCC patients. Transcriptomic data was used for gene 

expression analysis and correlations between high and low target gene expression 

(based on median expression level) and overall survival of patients. Kaplan-Meier plots 

were generated for survival analysis using GraphPad Prism 9. 

 

 

 



97 
 

2.30 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 9 or RStudio. Two-tailed 

unpaired T-tests with Welch's correction were used to compare gene or transcript 

expression levels between experimental groups, with p < 0.05 considered statistically 

significant.  R2 (coefficient of determination) was used to calculate the goodness of fit 

between datasets, and P values were generated from F-test, with p < 0.05 considered 

statistically significant. Differential gene expression analysis by DESeq2 implements the 

Wald test, followed by false discovery rate correction by the Benjamini-Hochberg Method. 

Genes with padj < 0.05 are considered to be significantly differentially expressed. 

Differential transcript usage analysis by Drimseq and DEXseq performs likelihood ratio 

statistics based on the Dirichlet-multinomial and general linear models, followed by false 

discovery rate correction by the Benjamini-Hochberg Method. padj values were given for 

both genes and transcripts. Genes are considered to have statistically significant 

differential transcript usage when padj values at both gene and transcript levels are less 

than 0.1. Comparisons of poly(A) tail length were analysed by nested two-tailed nested 

T test which accounts for intra-dataset (sequencing run) variance, before comparing the 

conditions. P < 0.05 was considered statistically significant. Differences in patients' 

overall survival were assessed using a log-rank (Mantel-Cox) test, where p < 0.05 was 

considered statistically significant. 
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3.1 Introduction 

RNA sequencing using next-generation sequencing technologies has revolutionised 

cancer research, allowing in-depth, high-resolution global assessment of the tumour 

transcriptome on an unprecedented scale. Illumina-based RNAseq technologies have 

enabled the identification of gene signatures that predict cancer prognosis and treatment 

outcomes. These biomarkers are crucial in developing strategies for patient stratification 

and targeted cancer therapy (Büttner et al., 2022). Advancements in single-cell RNA 

sequencing technologies (scRNAseq) and bulk-RNAseq cell-type deconvolution 

methods have allowed quantitative characterisation of intra-tumoural heterogeneity and 

the tumour microenvironment, which is now widely recognised to have profound 

implications for disease progression and clinical outcome (Dagogo-Jack and Shaw, 

2018). With short-read-based methods, aberrant regulation in splicing, alternative 

polyadenylation and mRNA chemical modification have all been reported to play critical 

roles in cancer development (Chen et al., 2019; Y. Zhang et al., 2021; Yuan et al., 2021). 

Whilst short-read sequencing is now ubiquitously used, long-read sequencing methods 

offer promising opportunities to further advance and integrate transcriptome-wide gene 

expression, splicing and epitranscriptomic profiling at the single mRNA molecule level. 

The field of long-read RNA sequencing is currently in rapid development. Yet, at the time 

of writing, only a limited number of published works have utilised long-read RNAseq 

technologies using clinical tumour samples. Using RNAseq on clinical tumour samples, 

especially archival samples, poses several technical challenges. One of the significant 

challenges is RNA degradation. Archival tumour samples are commonly preserved as 

either fresh-frozen tissues (snap-frozen in liquid nitrogen) or formalin-fixed paraffin-

embedded (FFPE) tissues. Fresh frozen tissues are considered more suitable for 

RNAseq experiments than FFPE tissues since chemical fixation by FFPE tissue 

preparation and their routine storage at room temperature lead to RNA degradation(Liu 

et al., 2022). Typically, RINs (RNA Integrity Numbers) from fresh frozen tumours RNA 

range between 6.0 – 8.0, whereas RINs from RNA extracted from FFPE tissues are often 
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lower than 2.0 (Kap et al., 2014; Lalmahomed et al., 2017; Marczyk et al., 2019). 

Recently it has been shown that FFPE samples can be used for transcriptomic analysis 

using Illumina technologies, which allows the integration between gene expression 

profiles with spatial information via tissue section staining (Gracia Villacampa et al., 

2021). However, it was also reported that a large proportion of RNA from FFPE samples 

failed to be captured by poly(A) tail enrichment due to the highly degraded or absence 

of poly(A) tail (Pennock et al., 2019). The first step of both ONT DRS and PCS libraries 

requires ligating sequencing adaptor primers with poly-d(T) overhang to capture mRNAs. 

Thus highly degraded mRNA samples may not be suitable input for ONT sequencing 

libraries preparation. All assessed tumour samples in this study were snap-frozen in 

liquid nitrogen. No work has been published to demonstrate the relationships between 

sequencing output levels (number of reads), average sequencing read lengths, and RNA 

quality (by RIN score) using ONT DRS or PCS.  

Another major challenge of RNA sequencing of archival tumour samples is the limited 

yield of extracted RNA. For Illumina-based sequencing libraries and ONT PCR-cDNAseq 

(PCS111), the low input of RNA per sample is manageable since libraries are PCR-

amplified. ONT PCR cDNAseq (PCS111) library requires 4 ng of poly(A) enriched RNA 

or 200ng of total RNA with 14 amplification cycles. In comparison, without PCR 

amplification, direct RNAseq requires a much higher amount of input RNA. Previous 

studies have typically used 50 – 500 ng of poly(A) enriched RNA as input for library 

preparation (Jain et al., 2022). With only 1 – 5 % of total cellular RNA being 

polyadenylated mRNA, up to 5 – 50 µg of total RNA per sample would be needed if 

published protocols are followed. This amount of RNA is almost always unachievable 

from tumour samples. An alternative input quantity is thus needed. 

At the time of writing, a published studies have applied long-read Nanopore RNA 

sequencing technologies on clinical tumour samples. Oka et al. used ONT cDNA 

sequencing technologies and identified aberrant splicing isoforms from 22 non-small cell 

lung cancer (NSCLC) cell lines, seven clinical lung cancer samples and seven 
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corresponding non-cancer controls. Full-length cDNA libraries were first generated from 

the clinical samples, and 1.5 µg of cDNA was used as input for sequencing library 

generation (LSK308). Sequencing libraries were subsequently sequenced using the 

MinION sequencer and R9 MinION flow cells. On average, 2.69 million reads were 

generated for each clinical lung tumour and control samples, and 448 novel transcript 

isoforms were identified from the tumours. The authors subsequently analysed the 

Illumina sequencing data from TCGA and genotype-tissue expression (GTEx) database 

and validated the expression of several novel isoforms. This study demonstrates the 

feasibility of using nanopore technologies to capture novel transcripts. However, it is 

important to note that the LSK308 library kit used in this study is optimised for the 

sequencing of genomic DNA. Unlike the DRS and PCS library preparation kits, the 

genomic DNA kit is designed to enrich long DNA fragments, which would present 

significant selection biases towards long transcripts. This length selection bias will likely 

interfere with any differential gene expression analysis. Moreover, after filtering for reads 

quality (read quality < 20), the average number of reads per sample dropped from 2.69 

million raw reads to 520,000, which may not provide sufficient depth to characterise the 

diversity of transcript isoforms in tumour samples (Oka et al., 2021).  

After the generation of raw sequencing reads, reads must align to reference genome or 

transcriptome before quantification for gene expression analysis. For ONT long-read 

sequencing results, the aligner minimap2 is universally recommended and used in all 

published studies due to its option to align long, relatively high error ‘noisy’ reads to the 

reference genome/transcriptome (Li, 2018). Comparing matched sequencing results of 

HEK293 and HAP1 cell lines using ONT direct RNA seq (RNA001) and direct cDNAseq 

(DCS108), Soneson et al. concluded that a maximum number of identified genes can be 

obtained by mapping via minimap2, followed by gene-level quantification (Soneson et 

al., 2019). However, this study provided no direct comparisons between the number of 

uniquely identified genes and their RNA biotypes after aligning to reference genome or 

reference transcriptome, nor did it compare sequencing results between DRS and PCS. 
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There are significant gaps in knowledge concerning the use of ONT long-read 

sequencing on clinical samples, as well as a lack of characterisation studies on the 

similarities and differences between DRS and PCS results. 

 

3.2 Chapter aims 

The overarching aim of this chapter is to assess the feasibility of using ONT long-

read sequencing technologies (DRS and PCS) to profile archival tumour samples. 

Other aims of this chapter include: 

i)  Examination of relationships between RNA quality, the number of DRS/PCS 

generated sequencing reads, and the length of sequencing reads 

ii) Characterisation of RNA biotypes of the reference genome and reference 

transcriptome aligned DRS & PCS reads from tumour samples 

iii) Assessment of gene expression levels of different RNA biotypes in DRS and PCS 

of tumour samples 

iv) Correlations and comparisons of gene expression profiles between the reference 

genome and reference transcriptome aligned DRS & PCS of tumour samples. 
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3.3 Results 

3.3.1 Yield and quality of RNA extracted from ccRCC tumours 

Total RNA was successfully isolated from the 12 ccRCC tumour samples. Summary data 

of the tumour samples, RNA quantities and qualities can be found in table 3.1. 

 

 

 

 

No. ccRCC 
Sample 
Number 

Weight 
(g) 

Number  
of 
extractions 

RIN 
scores 

Nanodrop Bioanalyzer Qubit RNA 
HS 

RNA conc. (ng/μL) 

1 135 0.0119 1 7.4 460 520 276 

2 171 0.0783 3 

8.5 555 570 306 

8.7 750 685 391 

7.9 742 690 399 

3 243 0.0312 1 7.2 487 540 336 

4 254 0.1076 3 

7.6 617 585 371 

7.7 590 560 332 

6.5 480 435 308 

5 260 0.0416 1 8.2 694 810 339 

6 273 0.0852 3 

8.5 739 905 540 

8.2 924 975 800 

6.7 815 930 670 

7 314 0.034 1 8.3 328 445 322 

8 318 0.0394 1 8.6 641 545 388 

9 320 0.0399 1 7.4 654 765 437 

10 329 0.0969 3 

8.0 527 665 350 

- 398 402 332 

6.6 336 375 280 

11 382 0.059 2 
8.1 438 505 331 

8.1 565 635 373 

12 395 0.1059 3 

8.5 1059 1050 530 

8.4 409 615 340 

8.2 554 660 446 

Table 3.1: ccRCC tumour sample sizes, RNA concentrations and integrity 

ccRCC sample number, tumour sizes, RNA integrity numbers (RIN), and RNA 

concentrations as determined by Nanodrop, Bioanalyzer RNA Nano, and Qubit RNA 

HS assays. Samples labelled in red were used for transcriptome-profiling. 
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RNA concentrations from each extraction (n = 23 tumour pieces from 12 tumours) were 

determined by Nanodrop, Bioanalyzer and Qubit RNA HS assay, with median 

concentrations of 565 ng/µL (range: 328 – 1059 ng/ µL), 615 ng/µL (range: 378 – 1050 

ng/ µL) and 350 ng/µL (range: 276 – 540 ng/ µL), measured by respective methods. The 

elution volume used for all extractions is 30 µL. Published protocols have used RNA 

concentration from both Bioanalyzer and Qubit. Correlative analysis was thus performed 

here to assess the suitability of the quantification methods. Whilst there are high levels 

of variation in the measured RNA concentration levels, subsequent correlation analysis 

demonstrates significant correlations between the quantification methods. RNA 

concentration levels of the extracted ccRCC tumour RNA samples measured by Qubit 

RNA HS assay were strongly correlated with Nanodrop (R2 = 0.5844 and p = <0.0001) 

and Bioanalyzer (R2 = 0.6711 and p = <0.0001) (Figure 3.1A and B). A high degree of 

concordance was also found between RNA concentrations measured by Nanodrop and 

Bioanalyzer (R2 = 0.8218 and p = <0.0001) (Figure 3.1C).  

Next, the relationship between tumour weight and yield of extracted total RNA was 

examined by producing scatter plots for correlation analysis. Strong evidence of 

correlation was found between the weight of tumours and the extracted RNA yield 

(combined yield from all extractions for each tumour block) as determined by Qubit RNA 

HS (R2 = 0.6291 and p = 0.0012), Bioanalyzer (R2 = 0.6803 and p = 0.0010) and 

Nanodrop (R2 = 0.7099 and p = <0.0006) (Figure 3.1D - F).  

The RIN score for each RNA sample was determined by Bioanalyzer. RIN scores for the 

tumour samples ranged between 6.7 and 8.7, with a median RIN score of 8.1. RNA 

sample with the highest RIN score (and highest RNA concentration by Qubit RNA HS 

where there is a tie) for each tumour sample was used for Nanopore RNA sequencing. 

Sequenced RNA samples are highlighted in red in table 3.1. The Bioanalyzer gel image 

showing the size distribution of RNA fragments from the sequenced samples is displayed 

in Figure 3.2. 
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Figure 3.1: Assessment of RNA concentration and yield from ccRCC samples 

Extracted total RNA (n = 23) from ccRCC samples (n = 12) were quantified using 

Nanodrop, Bioanalyzer (RNA Nano) and Qubit (RNA HS). Scatter plots showing 

correlation between RNA concentrations determined by A) Nanodrop & Qubit, B) 

Bioanalyzer & Qubit, and C) Bioanalyzer and Nanodrop. Scatter plots showing 

correlations between ccRCC nephrectomy sample weights and total RNA yield 

measured by D) Qubit, E) Bioanalyzer and F) Nanodrop. Throughout, diagonal lines 

represent the line of best fit. R
2
 values were computed to measure goodness-of-fit, 

and P values generated from F-test, with p< 0.05 considered statistically significant.  
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Figure 3.2: ccRCC tumour RNA analysis by Agilent 2100 bioanalyzer 

Analysis of extracted total RNA from ccRCC nephrectomy samples on an Agilent 

2100 bioanalyzer using the RNA 6000 Nano kit. Bioanalyzer gel image of the 

extracted RNA samples is shown, with visible 28S and 18S rRNA bands. Ratio of 

28S:18S bands were used to assess integrity of RNA samples (where 10 represent 

intact RNAs and 1 represent completely degraded RNAs). RIN scores indicated 

below sample numbers.  

Nucleotides 

(nt) 

4000 

2000 

1000 

500 
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25 
Tumour 

sample no. 

Ladder 

RIN scores  

135 171 243 254 260 273 314 318 320 329 382 395 

7.4 8.5 7.2 7.6 8.2 8.5 8.3 8.6 7.4 8.0 8.1 8.5 
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3.3.2 Evaluation of sequencing output from DRS and PCS of ccRCC 

tumour samples 

ccRCC tumour samples were sequenced on a PromethION sequencer using 

PromethION flow cells (R9.4.1), using DRS and PCS libraries prepared from 2 µg and 

200 ng of total RNA, respectively. The workflow for the sequencing experiment is outlined 

in Figure 3.3. After 72 hours of sequencing, DRS generated 1.9 – 4.7 million sequencing 

reads per tumour sample that passed sequence quality control (read quality Q score 

above 7), with a median of 3.2 million passed reads per sample (Figure 3.4A). PCS 

generated 43.9 – 72.8 million sequencing reads per tumour sample with Q above 7, with 

a median of 56.6 million passed reads per tumour sample (Figure 3.4B). 

To understand the relationship between the quantity of generated sequencing reads and 

the quality of RNA samples used for sequencing library preparation, scatter plots 

between the number of DRS- and PCS-generated passed reads, as well as the RIN 

scores of RNA samples, were generated. A borderline non-significant negative 

correlation between the number of DRS- and PCS-generated passed reads was 

observed (R2 = 0.3016 and p = 0.0644) (Figure 3.4C). No correlation was found between 

the number of DRS-generated passed reads and the corresponding RNA sample RIN 

score (R2 = 0.0089 and p = 0.7708) (Figure 3.4D). In contrast, a strong negative 

correlation was observed between the number of PCS-generated passed reads and the 

corresponding RNA sample RIN score (R2 = 0.5172 and p = 0.0084) (Figure 3.4E). 
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  Figure 3.3: Summary of clinical samples DRS and PCS workflow 

RNA was extracted from Fresh frozen archival ccRCC tumour samples, followed by 

quality assessment by Agilent bioanalyzer assay. 2 µg and 200 ng of total RNA were 

used per sample to prepare DRS and PCS library respectively. Libraries were loaded 

in PromethION R9 flow cells, and each sequencing run lasted 72 hours. Reads were 

base called concurrently by Guppy, where Q score > 7 were kept as passed reads. 

Reads were subsequently mapped to either reference genome or transcriptome via 

minimap2, using nanopore sequencing specific setting. Gene expression levels were 

determined by featurecounts and Salmon, followed by differential gene expression 

analysis by DESeq2, and differential transcript usage analysis performed by 

DRIMseq and DEXseq. 
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Figure 3.4: Summary of DRS and PCS reads generated from ccRCC samples 

A) Bar graphs showing the number of passed reads (Q score > 7) generated by direct 

RNAseq (RNA002). B) Bar graphs showing the number of passed reads (Q score > 

7) generated by direct RNAseq (RNA002) PCR-cDNaseq (PCS111) for each ccRCC 

nephrectomy samples (n = 12) using PromethION flow cells (R 9.4.1). C) Correlation 

between number of PCS reads and DRS reads, D) Correlation between number of 

DRS reads and sample RIN scores E) Correlation between number of PCS reads and 

sample RIN scores. For C-E diagonal lines represent the line of best fit. R
2 

values 

were computed to measure goodness-of-fit, and P values generated from F-test, with 

p< 0.05 considered statistically significant. 
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3.3.3 Evaluation of read lengths from DRS & PCS of ccRCC tumours 

The read length distributions of passed reads generated by DRS and PCS were analysed 

and visualised by Nanoplot. Violin plots showing Log10 transformed raw read lengths 

from DRS (Figure 3.5A) and PCS (Figure 3.5B) were plotted, with corresponding RNA 

sample RIN score, mean read quality Q score, and the mean and median read length for 

each sample indicated below the graphs.  Q score (or Phred-scaled quality score) is 

calculated by Q = -10log10P, where P denotes the probability of base-calling error. Thus, 

a Q score of 10 represents 90% base-calling accuracy. Mean Q scores for DRS reads 

ranged between 9.9 and 10.7 (median: 10.45). Mean and median DRS passed-reads 

read length ranged between 287 – 515nt and 248 – 447nt, with median lengths of 420nt 

and 365.5nt, respectively. Mean Q scores for PCS reads ranged between 10.1 and 12.7 

(median: 12.05). Mean and median PCS passed-reads read length ranged between 564 

– 959nt and 410 – 794nt, with median lengths of 754nt and 657nt, respectively. 

To evaluate similarities and differences between DRS- and PCS-generated reads, a 

scatter plot between the mean length of DRS- and PCS-generated reads from each 

tumour sample was produced, with no significant correlation found (R2 = 0.0431 and P = 

0.5175) (Figure 3.6A). Furthermore, no significant correlations were observed between 

mean read Q scores and RNA sample RIN scores for either DRS (R2 = 0.0457 and P = 

0.5045) or PCS (R2 =0.0356 and P = 0.5568) (Figure 3.6B).  

Next, relationships between DRS and PCS read lengths and corresponding sample Q 

scores and RIN scores were assessed. Whilst there was no significant degree of 

concordance observed between mean lengths of DRS reads and corresponding RNA 

sample RIN scores (R2 = 0.0782 and P = 0.3788) (Figure 3.6C), a strong positive 

correlation was found between mean lengths of PCS reads and corresponding RNA 

sample RIN scores (R2 = 0.6651 and P = 0.0012) (Figure 3.6D). Finally, a significant 

correlation was observed between mean DRS read lengths read Q scores (R2 = 0.6234 

and P = 0.0023) (Figure 3.6E). However, no significant correlation was found between 

mean PCS read lengths and Q scores (R2 = 0.2208 and P = 0.1232) (Figure 3.6F). 
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Figure 3.5: Distribution of raw read lengths from DRS and PCS of ccRCC 

tumours 

A) Violin plot showing Log10 transformed raw read lengths from Direct RNAseq. RIN 

score, mean read Q score (Read basecall quality score) and mean read length for 

each sequencing dataset are listed in the tables below violin graphs. 

B) As in A but for PCR-cDNAseq sequencing data. 

A 

B 

382 447 466 248 305 363 339 368 315 446 379 300 Median length (nt) 

453 774 552 442 633 746 719 794 410 741 589 681 Median length (nt) 
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Figure 3.6: Relationships between PCS and DRS read lengths, Q scores and 

RIN scores 

A) Correlation between mean PCS and DRS read lengths, B) correlation between 

mean PCS and DRS read basecall quality scores (Q scores) and sample RIN scores, 

C) correlation between mean DRS read lengths and sample RIN scores, D) 

correlation between mean PCS read lengths and sample RIN scores, E) correlation 

between mean DRS read lengths and mean read Q scores, F) correlation between 

mean PCS read lengths and mean read Q scores. Throughout, diagonal lines 

represent the line of best fit. R2 values were computed tomeasure goodness-of-fit, 

and P values generated from F-test, with p< 0.05 considered statistically significant. 

A B 

C D 

E F 



113 
 

3.3.4 Statistics of the reference genome and transcriptome aligned 

ccRCC tumour DRS and PCS reads  

After processing and filtering raw reads, DRS and PCS reads were aligned to either 

reference genome (Ensembl release 105, Genome assembly version: GRCh38) or 

reference transcriptome (Ensembl release 105, cDNA reference) by the sequence 

mapping and aligner minimap2. The read length distributions of genome-aligned reads 

from DRS and PCS of ccRCC tumours were analysed and visualised by Nanoplot. Violin 

plots showing Log10 transformed genome-aligned read lengths from DRS (Figure 3.7A) 

and PCS (Figure 3.7B) were plotted, with mean and median read lengths for each 

sample indicated below the graphs. Mean and median reference genome-aligned DRS 

read lengths ranged between 342 – 595nt and 301 – 507nt, with median lengths of 466nt 

and 404.5nt, respectively. Mean and median reference genome-aligned PCS read 

lengths ranged between 482 – 779nt and 372 – 621nt, with median lengths of 613nt and 

507.5nt, respectively. 

Reference transcriptome-aligned reads were analysed by bamslam, which provided 

summary alignment statistics for each DRS and PCS sample (Tables 3.2 and 3.3). The 

median length of reference transcriptome-aligned reads ranged between 258 – 470nt 

(median: 387nt) for DRS and 446 – 616nt (median: 517nt) for PCS. Median read 

mapping accuracy (base identity) for DRS was ~90%, and ~95% for PCS, except 382 at 

91.97%. Between 2.7 – 18% of the reference transcriptome aligned DRS reads and 21.0 

– 37.1% PCS reads represent full-length transcript (95%+ coverage of the length of 

aligned reference transcript). The median transcript coverage per aligned DRS read 

ranged between 20.9 – 40.6% and 41.7 – 77.4 % for each aligned PCS read. Data here 

shows that despite RNA degradation in the samples, Nanopore long-read RNAseq can 

still detect full length transcripts and provide high levels of transcript coverage. 
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Figure 3.7: Distribution of reference genome aligned read lengths from DRS and 

PCS of ccRCC tumours 

A) Violin plots showing Log10 transformed reference genome aligned (Ensembl 

release 105, Genome assembly version: GRCh38) read lengths for Direct RNAseq. 

Mean and median read lengths for each sequencing dataset are listed in the tables 

below violin graphs. 

B) As in A, but for PCR-cDNAseq. 

A 

B 
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Table 3.2: Read alignment statistics from Direct RNAseq of ccRCC tumours 

Statistics related to alignment of Direct RNAseq generated reads to the reference 

transcriptome (Ensembl release 105, cDNA reference), including median lengths of 

read-alignment, median accuracy of reads, percentage of reads which represent full-

length transcripts (covering at least 95% of annotated transcript where the read was 

aligned), and median coverage of annotated transcript per mapped read. 

Table 3.3: Read alignment statistics from PCR-cDNAseq of ccRCC tumours 

Statistics related to alignment of PCR-cDNAseq generated reads to the reference 

transcriptome (Ensembl release 105, cDNA reference), including median lengths of 

read-alignment, median accuracy of reads, percentage of reads which represent full-

length transcripts (covering at least 95% of annotated transcript where the read was 

aligned), and median coverage of annotated transcript per mapped read. 
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3.3.5 Relationship between DRS and PCS read alignment lengths and 

transcript coverage 

To evaluate the relationship between reference transcriptome alignment by DRS and 

PCS-generated reads, a scatter plot between median DRS and PCS reference 

transcriptome aligned read lengths from each tumour sample was plotted, with no 

significant correlation found (R2 = 0.0614 and P = 0.4375) (Figure 3.8A). 

Next, correlations between DRS and PCS reference transcriptome aligned read lengths 

and percentage of transcript coverage were assessed. Firstly, proportions of reads that 

represent full-length transcript (95%+ coverage of the length of aligned reference 

transcript) were found to positively correlate with both the median DRS aligned read 

lengths (R2 = 0.8409 and P < 0.0001) and median PCS aligned read lengths (R2 = 0.8381 

and P < 0.0001) (Figure 3.8B – C). Furthermore, the median transcript coverage per 

aligned read was also found to be strongly correlated with both the median aligned read 

lengths of DRS (R2 = 0.6818 and P = 0.0009) and PCS (R2 = 0.8323 and P < 0.0001) 

(Figure 3.8 D – E).  
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Figure 3.8: Correlations between read alignment lengths and coverage 

A) Correlation between median PCS and DRS read alignment lengths, B) correlation 

between median DRS read alignment lengths and percentage of reads which 

represent full-length transcripts (covering at least 95% of annotated transcript), C) 

correlation between median PCS read alignment lengths and percentage of reads 

which represent full-length transcripts (covering at least 95% of annotated transcript), 

D) correlation between median DRS read alignment lengths and median coverage of 

annotated transcript per mapped read, E) correlation between median PCS read 

alignment lengths and median coverage of annotated transcript per mapped read. 

Throughout, diagonal lines represent the line of best fit. R
2
 values were computed to 

measure goodness-of-fit, and P values generated from F-test, with p< 0.05 

considered statistically significant. 
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3.3.6 Composition of RNA Biotypes from reference genome aligned 

DRS and PCS of ccRCC tumour 

Tumour tissues are comprised of numerous cell types with highly varied transcriptome 

profiles. To evaluate the ability of long-read sequencing to capture transcriptomic 

diversity using RNA extracted from snap frozen tissue samples, bioinformatic analysis 

on the RNA biotypes (Ensembl) of DRS- and PCS-identified unique genes from ccRCC 

tumours was performed.  

Firstly, pie charts depicting the proportions of RNA biotypes of genes discovered by 

reference genome (Ensembl release 105, GRCh38) aligned DRS reads from each 

ccRCC tumour sample were produced (Figure 3.9A). Tumour samples exhibited similar 

composition of RNA biotypes, and the average RNA biotype proportion of identified 

unique genes across the 12 tumour tissues is displayed in Figure 3.9B. The majority of 

identified genes are classified as protein-coding (78.57%), followed by lncRNA (15.39%), 

processed pseudogenes (3.11%) and transcribed unprocessed pseudogenes (1.25%). 

The total number of unique genes identified per sample ranged from 15,854 to 19,371, 

with a median of 18,057. 

Next, pie charts were generated to illustrate the RNA biotype profile of genes discovered 

by reference genome-aligned PCS reads from each ccRCC tumour sample and the 

average profile between tumours (Figure 3.10A - B). Similar to DRS, RNA biotype 

profiles are highly similar between tumours. However, compared to DRS, reference 

genome-aligned PCS reads discovered a higher number of non-protein-coding genes. 

On average, 60.25% of identified genes are protein-coding, followed by lncRNA 

(25.35%), processed pseudogenes (6.64%), transcribed unprocessed pseudogenes 

(1.61%), and unprocessed pseudogenes (1.04%) (Figure 3.10B). The numbers of unique 

genes identified per tumour sample were also higher by PCS, ranging between 25207 

and 27071, with a median of 26203 genes (Figure 3.10C). 
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Figure 3.9: RNA biotype composition of ccRCC tumours by DRS aligned to the 

human reference genome 

A) Pie charts depicting the proportions of gene biotypes of reference genome 

(Ensembl release 105, GRCh38) aligned DRS reads from each ccRCC tumour 

sample. B) Pie chart depicting the average proportions of gene biotypes of reference 

genome mapped DRS reads from all ccRCC tumour sample. C) Bar graphs showing 

the number of unique genes identified from reference genome aligned DRS of ccRCC 

tumours.  
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Figure 3.10: RNA biotype composition of ccRCC tumours by PCS aligned to the 

human reference genome 

A) Pie charts depicting the proportions of gene biotypes of reference genome 

(Ensembl release 105, GRCh38) aligned PCS reads from each ccRCC tumour 

sample. B) Pie charts depicting the average proportions of gene biotypes of reference 

genome aligned PCS reads from all ccRCC tumour sample. C) Bar graphs showing 

the number of unique genes identified from reference genome aligned PCS of ccRCC 

tumours.  
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3.3.7 Composition of RNA Biotypes from reference transcriptome 

aligned DRS and PCS of ccRCC tumour 

Following the assessment of reference genome-aligned DRS and PCS, the biotype 

profiles of reference transcriptome-aligned DRS and PCS of ccRCC tumours were 

explored. Reference transcriptome includes more than 200,000 curated transcripts 

compiled from transcriptional evidence from cDNA expression libraries, expressed 

sequence tags and RNAseq data (Aken et al., 2016). Recent advancement in 

bioinformatics tools has enabled the quantification of transcript isoform-level expression 

by aligning reads against the reference transcriptome. To understand the composition of 

mapped transcripts, pie charts depicting the proportions of RNA biotypes of genes 

mapped by reference transcriptome (Ensembl release 105, cDNA reference) aligned 

DRS reads from each ccRCC tumour sample and the average profile were produced 

(Figure 3.11A - B). Like genome-aligned DRS, tumour samples exhibited similar 

composition of RNA biotypes (Figure 3.11A). However, since the reference cDNA is 

devoid of non-coding RNA, the majority of identified genes are protein-coding (94.63% 

on average), followed by transcribed unprocessed pseudogenes (1.99% on average) 

and processed pseudogenes (1.53% on average) (Figure 3.11B). The number of unique 

genes identified per sample ranged between 9,165 and 13,194 (Figure 3.11C). 

For PCS, Pie charts depicting the proportions of RNA biotypes of genes discovered by 

reference transcriptome (Ensembl release 105, cDNA reference) aligned reads from 

each ccRCC tumour and the average biotype profile are displayed in Figure 3.12A – B. 

Whilst more non-protein-coding genes were discovered by PCS compared to DRS, the 

proportions are substantially smaller than reference genome aligned PCS or DRS. On 

average, 86.93% of identified genes are classified as protein-coding, 6.20% are 

processed pseudogenes, 2.84% are transcribed unprocessed pseudogenes, 1.38% are 

unprocessed pseudogenes, and 1.11% are transcribed processed pseudogenes (Figure 

3.12B). The number of unique genes identified per tumour sample was also higher by 

PCS, ranging between 18,151 and 29,289, with a median of 18,677 genes (Figure 3.12C). 
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Figure 3.11: RNA biotype composition of ccRCC tumours by DRS aligned to the 

human reference transcriptome 

A) Pie charts depicting the proportions of gene biotypes of reference transcriptome 

(Ensembl release 105, cDNA reference) aligned DRS reads from each ccRCC tumour 

sample. B) Pie chart depicting the average proportions of gene biotypes of reference 

genome aligned DRS reads from all ccRCC tumour sample. C) Bar graphs showing 

the number of unique genes identified from reference transcriptome aligned DRS of 

ccRCC tumours.  
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Figure 3.12: RNA biotype composition of ccRCC tumours by PCS aligned to the 

human reference transcriptome 

A) Pie charts depicting the proportions of gene biotypes of reference transcriptome 

(Ensembl release 105, cDNA reference) aligned PCS reads from each ccRCC tumour 

sample. B) Pie chart depicting the average proportions of gene biotypes of reference 

genome aligned PCS reads for all ccRCC tumour samples. C) Bar graphs showing 

the number of unique genes identified from reference transcriptome aligned PCS of 

ccRCC tumours.  
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3.3.8 Abundance of RNA biotypes in ccRCC tumours 

Next, bioinformatics analysis was conducted to investigate the breakdowns of DRS- and 

PCS-identified RNA biotypes in ccRCC tumours by gene expression levels. Expression 

levels of identified genes from both reference genome and transcriptome-aligned 

DRS/PCS were normalised to the library size and expressed as reads per million 

mapped reads (RPM). RPM was used instead of reads per kilobase of transcript per 

million reads mapped (RPKM). RPKM is helpful for gene expression normalisation for 

short-read RNAseq since generated reads usually fail to span a substantial part of a 

transcript. Hence, transcript length must be considered to compare gene expression 

between genes and samples fairly. However, in the long-read RNAseq protocols used in 

this study, reads always span from poly(A) tail, from 3’ to 5’. Thus, each read from DRS 

and PCS represents one mRNA molecule, and gene length normalisation is unsuitable 

for estimating gene expression. 

Pie charts depicting the averaged proportions of RNA biotypes of the reference genome 

and transcriptome-aligned DRS and PCS reads by expression levels (RPM) were 

constructed (Figure 3.13A – D). When aligned with the reference genome, most DRS 

and PCS reads were mapped to protein-coding genes (91.7% and 89.41%, respectively), 

followed by mitochondrial ribosomal RNA (mt-rRNA), at 4.66% for DRS and 5.35% for 

PCS. Only 1.10% and 1.71% of expressed genes from DRS and PCS reads were 

classified as lncRNA (Figure 3.13A, C). In contrast, more than 98% of reference 

transcriptome-aligned DRS and PCS reads were mapped to protein-coding genes. The 

next largest biotype group from both reference transcriptome-aligned DRS and PCS is 

ribosomal RNA pseudogene, constituting 0.36% and 0.88% of reads by expression 

levels, respectively (Figure 3.13B, D). 
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Figure 3.13: RNA biotype composition of ccRCC tumours by expression levels 

A) Pie chart depicting the average proportions of gene biotypes of reference genome 

(Ensembl release 105, GRCh38) mapped DRS reads by expression levels (scaling 

to library size, RPM) from ccRCC tumour sample. B) Pie chart depicting the average 

proportions of gene biotypes of reference transcriptome (Ensembl release 105, cDNA 

reference) mapped DRS reads by expression levels (scaling to library size, RPM) 

from ccRCC tumour sample. C) As in A, but for PCR-cDNAseq. D) As in B, but for 

PCR-cDNAseq. 
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3.3.9 Overlapping genes identified from reference genome aligned 

DRS and PCS of ccRCC tumours 

Combining all unique genes identified by reference genome-aligned DRS and PCS of 

the 12 ccRCC tumours, pie charts depicting the proportions of RNA biotypes for DRS 

and PCS were produced (Figure 3.14A – B). A total number of 26,457 genes were 

discovered by DRS, where 32.48% of genes are classified as protein coding, 28.81% 

are lncRNAs, and 16.5% are processed pseudogenes. In comparison, PCS identified 

39115 unique genes, with 45.47% being protein-coding genes, 29.48% being lncRNAs, 

and 12.34% being processed pseudogenes. Surprisingly, 3.10% and 3.05% of DRS 

genes and 1.32% and 1.15% of PCS genes are small nuclear RNAs (snRNAs) and 

microRNAs (miRNAs), which are not usually polyadenylated when matured. 

Next, the extent of overlap between reference genome-aligned DRS- and PCS-identified 

genes from ccRCC tumours was determined. Of the 26,457 unique genes identified by 

DRS, 25,692 genes were also found by PCS (Figure 3.14C). 765 genes were identified 

only by DRS, and 13423 genes were identified exclusively by PCS, as shown in the Venn 

diagram in Figure 3.14C. The majority of the genes commonly identified by both 

reference genome-aligned DRS and PCS are protein-coding (63.08%), followed by 

lncRNA (24.21%) and processed pseudogenes (6.36%) (Figure 3.14E). Of the 765 

genes that DRS exclusively identified, 67.59% are lncRNA, and 16.54% are processed 

pseudogenes (Figure 3.14D). Of the 13,423 genes PCS exclusively found, 39.60% are 

lncRNA, 23.83% are processed pseudogenes, and 11.67% are protein-coding genes 

(Figure 3.14F). Finally, to understand if genes were mapped exclusively by DRS/PCS 

due to sequencing depth, violin plots of gene expression level profiles of DRS-exclusive, 

commonly found, and PCS-exclusive genes were produced (Figure 3.14G – I). Genes 

that were only found by either reference genome-aligned DRS or PCS are substantially 

lower expressed than genes that both DRS and PCS identified. The median RPM of 

DRS-exclusive and PCS-exclusive genes are 0.071 and 0.011, respectively, compared 

to 3.104 by DRS and 3.068 by PCS for commonly-identified genes. 
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Figure 3.14: Differences and common genes identified in ccRCC tumours by 

reference genome mapped reads from DRS and PCS 

A) Pie chart depicting the proportions of gene biotypes of all reference genome 

(Ensembl release 105, GRCh38) mapped DRS reads from all ccRCC tumour sample. 

B) As in A but for PCS reads. C) Venn diagram showing the overlap between 

reference genome mapped DRS and PCS identified genes. D) Pie chart depicting the 

proportions of RNA biotypes of genes detected by reference genome-mapped DRS 

reads exclusively. E) As in D, but for genes identified by both DRS and PCS. F) As in 

D, but for genes detected by genome-mapped PCS reads exclusively. G) Violin plot 

depicting the distribution of gene expression levels (Log
10

 RPM) of genes detected 

by reference genome-mapped DRS reads exclusively. H) As in G, but for genes 

identified by both DRS and PCS. I) As in G, but for genes detected by reference 

genome-mapped PCS reads exclusively. 
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3.3.10 Overlapping genes identified from reference transcriptome 

aligned DRS and PCS of ccRCC tumours 

Next, to evaluate the similarities and differences between the two sequencing methods, 

unique genes identified by reference transcriptome-aligned DRS and PCS of the 12 

ccRCC tumours were profiled. Pie charts depicting the proportions of RNA biotypes for 

DRS and PCS-identified genes were generated (Figure 3.15A – B). 17,960 genes were 

discovered by reference transcriptome aligned DRS of ccRCC tumours, where 88.36% 

are protein-coding genes, and 5.57% are processed pseudogenes. Only 0.01% of all 

DRS-identified genes were classified as lncRNA. PCS identified 26,070 unique genes 

from ccRCC tumour samples, where 73.90% of identified genes are protein-coding 

genes, 15.21% are processed pseudogenes, and 2.54% are lncRNA. Of the 17,960 

genes identified by reference transcriptome-aligned DRS, 17,551 were also identified in 

PCS. 409 genes were identified exclusively by DRS, and 13,423 genes were found only 

by PCS (Figure 3.15C). 

Most of the genes identified by both reference transcriptome-aligned DRS and PCS are 

protein-coding (89.96%), with 5.11% of commonly found genes classified as processed 

pseudogenes (Figure 3.15E). In contrast, for genes that DRS exclusively identified, 

47.25% are classified as processed pseudogenes, and 35.32% are protein-coding genes 

(Figure 3.15D). For genes that only PCS found, 40.81% are protein-coding genes, 

36.04% are classified as processed pseudogenes, and 7.42% are lncRNAs.  

Similar to what was observed in reference genome-aligned DRS and PCS, genes that 

were only identified by either reference transcriptome-aligned DRS or PCS are markedly 

lower expressed than genes identified by both methods. Violin plots of gene expression 

level profiles of DRS-exclusive, commonly found, and PCS-exclusive genes were 

generated (Figure 3.15G – I). The median RPM of DRS-exclusive and PCS-exclusive 

genes are 0.155 and 0.020, respectively, compared to 2.602 by DRS and 3.507 by PCS 

for commonly-identified genes. 
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3.3.11 Overlapping genes identified by DRS and PCS in ccRCC 

tumour samples 

Taking all four sets of genes that were identified by DRS and PCS, aligned to either 

reference genome or transcriptome, a Venn diagram was created to identify overlapping 

genes (Figure 3.16A). 15,811 unique genes were found.  Amongst the 15811 unique 

genes, 92.24% are identified as protein-coding genes, 3.85% are processed 

pseudogenes, 0.57% are unprocessed pseudogenes, 0.82% are transcribed processed 

pseudogenes, and 1.21% are transcribed unprocessed pseudogenes (Figure 3.16B). 

 

  

Figure 3.15: Differences and common genes identified in ccRCC tumours by 

reference transcriptome mapped reads from DRS and PCS 

A) Pie chart depicting the proportions of gene biotypes of all reference genome 

(Ensembl release 105, cDNA reference) mapped DRS reads from all ccRCC tumour 

sample. B) As in A but for PCS reads. C) Venn diagram showing the overlap between 

reference transcriptome mapped DRS and PCS identified genes. D) Pie chart 

depicting the proportions of RNA biotypes of genes detected by reference genome-

mapped DRS reads exclusively. E) As in D, but for genes identified by both DRS and 

PCS. F) As in D, but for genes detected by reference transcriptome-mapped PCS 

reads exclusively. G) Violin plot depicting the distribution of gene expression levels 

(Log10 Reads per million (RPM)) of genes detected by reference transcriptome-

mapped DRS reads exclusively. H) As in G, but for genes identified by both DRS and 

PCS. I) as in G, but for genes detected by reference transcriptome-mapped PCS 

reads exclusively. 



133 
 

  

DRS 

Genome 

PCS 

Genome 

DRS 

Transcriptome 

PCS 

Transcriptome 

Figure 3.16: Common genes identified by DRS and PCS in ccRCC tumours  

A) Venn diagram showing the overlaps between reference genome and 

transcriptome aligned DRS and PCS identified genes. B) Pie chart depicting the 

proportions of gene biotypes of overlapping genes from both reference genome and 

transcriptome aligned DRS and PCS (n = 15811). 
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3.3.12 Characterisation of gene expression levels per RNA 

biotype in ccRCC tumours  

After identifying RNA biotypes in the ccRCC tumours, the distributions of gene 

expression levels for each biotype were analysed. Violin plots were generated to show 

the distribution of gene expression levels (Log10 RPM) of detected genes by biotypes for 

genome-aligned DRS and PCS (Figure 3.17A – B), as well as transcriptome-aligned 

DRS and PCS (Figure 3.18A – B). 

The highest expressing biotype for reference genome-aligned DRS and PCS is mt-rRNA 

(n = 2), with mean RPM at 23,285 and 26,741, respectively. Compared to mt-rRNA, the 

expression of rRNA (n = 8) is at a much lower level, with median RPM at 0.9711 for DRS 

and 0.07121 for PCS. The second most highly expressed biotype is protein-coding genes, 

with median RPM at 14.76 for DRS and 10.80 for PCS. Although lncRNA is the second 

largest group of uniquely identified genes behind protein-coding genes in reference 

genome aligned DRS and PCS of ccRCC tumours, the median RPM for lncRNA are 

0.2082 and 0.3466 for DRS and PCS, respectively (Figure 3.17A – B).  

For reference transcriptome-aligned DRS and PCS, mt-rRNAs are not found in the 

sequencing data. Instead, the highest expressing biotype is protein coding, with a 

median RPM of 3.448 for DRS and 2.496 for PCS. Previous analysis has shown that the 

rRNA pseudogenes are the second-highest expressed group of genes in reference 

transcriptome aligned DRS and PCS (Figure 3.12B, D). Whilst most of the rRNA 

pseudogenes expressed at a low level (median for DRS: 0.1892, median for PCS: 

0.01623), the distributions are skewed. The RPM of the highest expressing rRNA 

pseudogene in reference transcriptome-aligned DRS and PCS are 2619 and 8388. 

Lastly, although processed pseudogenes represent the second largest number of unique 

genes in reference transcriptome-aligned DRS and PCS, they are typically very lowly 

expressed, with the DRS median RPM at 0.1230 and PCS median RPM at 0.01636 

(Figure 3.18A – B).  
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Figure 3.17: Expression levels of genes identified in ccRCC tumours by 

reference genome aligned reads by biotypes  

A) Violin plot depicting the distribution of gene expression levels (Log
10

 Reads per 

million (RPM)) of genes detected by reference genome aligned DRS reads (Ensembl 

release 105, GRCh38) by biotypes. B) As in A, but for PCS. 
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Figure 3.18: Expression levels of genes identified in ccRCC tumours by 

reference transcriptome aligned reads by biotypes  

A) Violin plot depicting the distribution of gene expression levels (Log
10

 Reads per 

million (RPM)) of genes detected by transcriptome aligned DRS reads (Ensembl 

release 105, cDNA reference) by biotypes. B) As in A, but for PCS. 
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3.3.13 Correlations of gene expression per biotype between DRS 

and PCS of ccRCC tumour samples   

To test the comparability of gene expression levels between DRS- and PCS-generated 

data, expression levels of genes that both DRS and PCS identified from different 

biotypes were compared. For both reference genome-aligned data (Figure 3.19A – F) 

and reference transcriptome-aligned data (Figure 3.20A – F), scatter plots between PCS 

and DRS expression levels (Log10
 transformed RPM) of commonly found protein-coding 

genes, lncRNA, processed pseudogenes, unprocessed pseudogenes, transcribed 

processed pseudogenes and transcribed unprocessed pseudogenes were generated.  

For reference genome-aligned data, expression levels of commonly identified genes 

show a high degree of concordance. For example, the strongest correlation can be found 

between DRS and PCS expression levels for protein-coding genes (n = 16203, R2 = 

0.9230 and P = <0.0001), whilst a relatively weak correlation can be observed amongst 

lower expressed biotypes, albeit still statistically significant, such as processed 

pseudogenes (n = 1633, R2 = 0.6837 and P = <0.0001) and unprocessed pseudogenes 

(n = 213, R2 = 0.5831, P = <0.0001) (Figure 3.19A -  F).  

For reference transcriptome-aligned data, expression levels of DRS and PCS data 

exhibit a lower degree of concordance than reference genome-aligned data. Significant, 

positive correlations can be found between DRS and PCS expression levels of protein-

coding genes (R2 = 0.7787, P = <0.0001), processed pseudogenes (R2 = 0.3367, P = 

<0.0001), unprocessed pseudogenes (R2 = 0.5615, P = <0.0001), and transcribed 

processed pseudogenes (R2 = 0.6152, P = <0.0001). However, no significant 

correlations were observed for the expression levels of lncRNA (R2 = 0.1962, P = 0.4551) 

and transcribed unprocessed pseudogenes (R2 = 0.0098, P = 0.1113) (Figure 3.20A – 

F).    
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Figure 3.19: Correlations of gene biotype expression levels between reference 

genome aligned DRS and PCS of ccRCC tumour samples 

Correlation between gene expression levels (Log
10

 Reads per million (RPM)) of A) 

protein coding genes, B) lncRNA, C) processed pseudogenes, D) unprocessed 

pseudogenes, E) transcribed processed pseudogenes, F) transcribed unprocessed 

pseudogenes detected by genome aligned (Ensembl release 105, GRCh38) DRS 

and PCS of ccRCC tumour samples. Throughout, diagonal lines represent the line of 

best fit. R
2
 values were computed to measure goodness-of-fit, and P values 

generated from F-test, with p< 0.05 considered statistically significant. 
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Figure 3.20: Correlations of gene biotype expression levels between reference 

transcriptome aligned DRS and PCS of ccRCC tumour samples 

Correlation between gene expression levels (Log
10

 Reads per million (RPM)) of A) 

protein coding genes, B) lncRNA, C) processed pseudogenes, D) unprocessed 

pseudogenes, E) transcribed processed pseudogenes, F) transcribed unprocessed 

pseudogenes detected by transcriptome aligned (Ensembl release 105, cDNA 

reference) DRS and PCS of ccRCC tumour samples. Throughout, diagonal lines 

represent the line of best fit. R
2
 values were computed to measure goodness-of-fit, 

and P values generated from F-test, with p< 0.05 considered statistically significant. 
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3.3.14 Characterisation of gene expression levels between DRS 

and PCS of ccRCC tumour samples 

Comparisons of expression levels (Log10RPM) of all commonly identified genes between 

DRS and PCS show strong and statistically significant correlations for both reference 

genome-aligned genes (R2 = 0.8966 and P = <0.0001) and reference transcriptome-

aligned genes (R2 = 0.7570 and P = <0.0001) (Figure 3.21A, 3.22A). However, many 

genes still show disparities in expression levels between DRS and PCS. Differences 

between gene expression levels measured by DRS and PCS (log10RPMPCS – 

log10RPMDRS) via reference genome or transcriptome alignment were plotted as violin 

graphs and shown in Figures 3.21B and 3.22B, respectively. Expression levels between 

DRS and PCS showed higher similarities when mapped to the reference genome, with 

the 75% and 25% quartile at 0.15 and -0.25, compared to 0.36 and -0.30 for reference 

transcriptome-aligned data. Summary descriptive statistics are outlined below the violin 

graphs.   

To evaluate the profile of genes that show higher expression levels (or enriched) by 

either DRS or PCS, genes with more than 10-fold differences in expression levels were 

identified (|Δlog10RPM| >1). For reference genome-aligned data, 409 genes were found 

to express ten times more in DRS than PCS (log10RPMPCS – log10RPMDRS < -1), where 

51.34% of DRS enriched genes are classified as processed pseudogenes, 17.60% as 

lncRNA and 12.96% as protein-coding genes (Figure 3.21C). 306 genes were enriched 

in PCS, with 46.25% of identified genes classified as lncRNA and 21.50% as protein-

coding genes (Figure 3.21D). For reference transcriptome-aligned data, 461 genes were 

enriched by DRS, of which 30.37% are classified as protein coding, 31.02% are 

processed pseudogenes, and 29.28% are transcribed unprocessed pseudogenes 

(Figure 3.22C). 621 genes were enriched by PCS, where 95.15% of identified genes are 

protein-coding genes (Figure 3.22D).  
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Figure 3.21: Biases in gene expression level between reference genome 

mapped DRS and PCS of ccRCC tumour samples 

A) Correlation between gene expression levels (Log
10

 Reads per million (RPM)) of all 

genes detected by both reference genome mapped reads (Ensembl release 105, 

GRCh38) from DRS and PCS. Diagonal line represents the line of best fit. R
2
 value 

was computed to measure goodness-of-fit, and P value generated from F-test, with 

p< 0.05 considered statistically significant. B) Violin plot depicting the distribution of 

expression level differences (ΔLog
10

RPM) between DRS and PCS, with descriptive 

statistics outlined below graph. C) Pie chart showing the proportions of biotypes of 

DRS enriched genes, where gene expression is 10 times higher than PCS 

(ΔLog
10

RPM (PCS – DRS) < -1). D) As in C, but for PCS enriched genes. 



142 
 

 

  

Δ
L

o
g

10
R

P
M

(P
C

S
 -

 D
R

S
)

Enriched in DRS : 461 genes
(ΔLog10RPM < -1)

30.37%  Protein Coding
0.22%  lncRNA
31.02%  Processed Pseudogene
2.39%  Unprocessed Pseudogene
2.60%  Transcribed Processed Pseudogene
29.28%  Transcribed Unprocessed Pseudogene
4.12%  Other

Enriched in PRS : 621 genes
(ΔLog10RPM > 1)

95.15%  Protein Coding

1.77%  Processed Pseudogene
0.48%  Unprocessed Pseudogene
0.81%  Transcribed Processed Pseudogene
0.16%  Transcribed Unprocessed Pseudogene
1.61%  Other

0.00%  lncRNA

A B 

C D 

-2 0 2 4 6
-4

-2

0

2

4

6

Reference transcriptome aligned
identified genes by both DRS & PCS

(17551 genes)

Log10 RPM
PCR-cDNAseq

L
o

g
10

R
P

M
D

ir
e

ct
 R

N
A

s
e

q

R2 = 0.7570
p   = <0.0001

Figure 3.22: Biases in gene expression level between reference transcriptome 

mapped DRS and PCS of ccRCC tumour samples 

A) Correlation between gene expression levels (Log
10

 Reads per million (RPM)) of all 

genes detected by both reference transcriptome mapped reads (Ensembl release 

105, cDNA reference) from DRS & PCS. Diagonal line represents the line of best fit. 

R
2
 value was computed to measure goodness-of-fit, and P value generated from F-

test, with p< 0.05 considered statistically significant. B) Violin plot depicting the 

distribution of expression level differences (ΔLog
10

RPM) between DRS and PCS, with 

descriptive statistics outlined below graph. C) Pie chart showing the proportions of 

biotypes of DRS enriched genes, where gene expression is 10 times higher than PCS 

(ΔLog
10

RPM (PCS – DRS) < -1). D) As in C, but for PCS enriched genes. 
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3.3.15   Characterisation of DRS and PCS expression enriched genes 

To understand the potential reason for enrichment, Venn diagrams were first created to 

identify overlapping DRS and PCS enriched genes (|Δlog10RPM| >1) between the 

reference genome and transcriptome alignment data (Figure 3.23 A – B). 820 unique 

DRS-enriched genes were discovered, with 50 genes enriched in both reference genome 

and transcriptome-aligned data (Figure 3.23A). In addition, 916 PCS genes were also 

identified, with 15 overlapping genes enriched in both reference genome and 

transcriptome-aligned data (Figure 3.23B). 

GC content bias is one of the main factors which can introduce bias in PCR amplification 

during sequencing library preparation. To assess if GC content explains the enrichment 

in DRS (failure in amplification by PCR) or PCS (enhanced amplification by PCR), violin 

plots were generated to display the distribution of GC content (%) of DRS-enriched 

genes (n = 820), PCS enriched genes (n = 916), as well as all commonly mapped genes 

(n = 15811) between DRS and PCS (Figure 3.22C). GC contents are significantly higher 

in both DRS-enriched genes (47.08%) and PCS-enriched genes (46.89%) compared to 

commonly mapped genes (45.09%). However, no significant differences were found 

between the GC contents of DRS-enriched genes and PCS-enriched genes. 

3.3.16 Correlations of gene expression between reference 

genome or transcriptome aligned DRS & PCS 

Finally, to evaluate the correlations of gene expression levels between reference 

genome or transcriptome aligned DRS & PCS, scatter plots between reference genome-

aligned and reference transcriptome aligned DRS and PCS expression data (Log10
 

transformed RPM) for all identified genes and protein-coding genes were generated 

(Figure 3.24A - D). Strong and statistically significant positive correlations were found in 

both DRS (R2 = 0.4454 and P = <0.0001 for all genes, R2 = 0.3775 and P = <0.0001 for 

protein-coding genes) and PCS (R2 = 0.5223 and P = <0.0001 for all genes, R2 = 0.4742 

and P = <0.0001 for protein-coding genes).  
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Figure 3.23: Characterisation of DRS/PCS enriched genes 

A) Venn diagram showing the overlaps of DRS enriched (10 folds higher than PCS, 

ΔLog
10

RPM (PCS – DRS) < -1) genes between reference genome and transcriptome 

alignment methods. B) As in A, but for PCS enriched genes. C) Violin plots showing 

distribution of GC content (%) of DRS/PCS enriched genes, as well as all commonly 

mapped genes (n = 15811) between DRS and PCS using both genome and 

transcriptome alignment methods. Descriptive statistics of GC contents for each gene 

sets were outlined next to violin plots. Statistical analysis was performed in C using a 

non-parametric Kruskal-Wallis one-way ANOVA test. Asterisks indicate statistical 

significance levels (**** = p < 0.0001, ns = not significant). 
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Figure 3.24: Correlations of gene expression levels between reference genome 

or transcriptome aligned DRS & PCS of ccRCC tumours 

Correlation between gene expression levels (Log
10

 Reads per million (RPM)) of A) all 

genes and B) protein coding genes detected by genome-mapped (Ensembl release 

105, GRCh38) or transcriptome-mapped (Ensembl release 105, cDNA reference) 

reads from DRS of ccRCC tumour samples. C) As in A, and D) as in B but for PCS 

of ccRCC tumour samples. Throughout, diagonal lines represent the line of best fit. 

R
2
 values were computed to measure goodness-of-fit, and P values generated from 

F-test, with p< 0.05 considered statistically significant. 
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3.4 Discussion 

This chapter comprehensively assessed the application of ONT long-read sequencing 

technologies (DRS and PCS) on archival tumour samples. Results in this chapter provide 

proof-of-concept data demonstrating the feasibility of the long-read sequencing 

approach for transcriptome profiling of archival tumour samples. To the best of our 

knowledge, this is the first work that described the usage of the ONT long-read RNA 

sequencing library on fresh frozen tumour specimens, as well as the first ccRCC 

transcriptome profiling study using the long-read RNA sequencing approach. 

Firstly, RNA was successfully extracted from all archival tumour samples, with RNA yield 

(9.8 – 74.3 µg) sufficient for DRS and PCS library preparation. Although RNA from 

samples was found to be partially degraded, this is consistent with other studies using 

archival fresh frozen tumour tissues where RIN typically range between 6.0 – 8.0 

(Lalmahomed et al., 2017; Bossel Ben-Moshe et al., 2018). Our results show significant 

correlations between the RNA concentrations recorded by the 3 RNA quantification 

methods (Nanodrop, Bioanalyzer and Qubit), but the RNA concentrations differ 

substantially. The three approaches utilise fundamentally different methods to estimate 

RNA concentration. Nanodrop is a UV spectrometer that calculates RNA concentration 

by the intensity of absorbance peak at 260 nm (by the RNA heterocyclic rings) 

(Desjardins and Conklin, 2010). Bioanalyzer (Agilent 2100) performs rapid 

electrophoresis on microfluidic chips and determines RNA concentration by assessing 

the distribution and intensity of RNA fragments in samples against the RNA reference 

control ladder (Davies et al., 2016). Qubit measures RNA concentration by utilising RNA 

binding dyes, which emit fluorescence only when bound (Li et al., 2015). Previous work 

has suggested that the presence of 260nm absorbing contaminants and degraded free 

nucleic acid bases contribute to inaccurate and inflated RNA concentration 

measurements by the UV-spectrometer-based Nanodrop (Garcia-Elias et al., 2017). The 

presence of short RNA fragments in degraded RNA samples has also been attributed to 

overestimated RNA concentration using a bioanalyzer (Becker et al., 2010). In addition, 
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reliable concentration measurements by bioanalyzer depend entirely on the consistency 

of RNA reference control loading on each microfluidic chip. Previous research has shown 

that RNA concentration measured by Qubit exhibit a higher accuracy and reproducibility 

level than Bioanalyzer (Davies et al., 2016). Here, results show higher levels of RNA 

concentration measurement by Nanodrop and Bioanalyzer compared to Qubit. Thus, to 

ensure adequate input was used for library generation, RNA concentrations measured 

by Qubit were used in this study.  

Compared to the ng – pg range of total RNA input requirement for Illumina RNAseq 

library preparation, previous works using ONT DRS have typically used 50 – 500 ng of 

poly(A) enriched RNA, which is hugely demanding for clinical samples (Jain et al., 2022). 

Here, we reasoned that since the first step of DRS and PCS library generation involves 

binding an adapter primer containing a poly-d(T) sequence, a prior step for the 

enrichment of poly(A) RNA molecules should not be necessary. Indeed, a recent work 

published in July 2022 has demonstrated that poly(A) selection is not only unnecessary 

for DRS input, but it can also introduce a potential bias towards mRNAs with longer 

poly(A) tails (Viscardi and Arribere, 2022). Using prepared sequencing libraries, DRS 

and PCS successfully sequenced archival ccRCC tumours, with a median of 3.2 and 

56.6 million passed reads (Q > 7), respectively. Interestingly, whilst there is no significant 

correlation between the number of DRS-generated reads and sample RIN score, the 

number of generated PCS reads strongly correlates with the RIN score. A likely reason 

for this significant correlation is that the number of cDNA molecules in the PCS library 

was not the limiting factor in the number of reads generated. Instead, it was the speed 

at which reads were passed through pores. Therefore, the shorter the cDNAs, the higher 

number of reads that could be generated. This result also indicates that a lower number 

of PCR amplification cycles can be used in the PCS library generation protocol. It is long 

recognised that PCR amplification can introduce sequencing bias in RNA sequencing 

experiments, and one of the most effective ways to reduce bias is by minimising the 

number of PCR cycles (Aird et al., 2011). Comparing the 200ng total RNA input with 14 
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amplification cycles recommended by ONT PCS library generation protocol, Illumina 

sequencing libraries, such as Takara SMARTseq v4, can now utilise input as low as 10pg 

(single cell equivalent yield) with 17-18 PCR amplification cycles (Sarantopoulou et al., 

2019). Results here show the potential of lowering both the input RNA levels and the 

number of amplification cycles used in the current PCS library protocol. 

Next, the read-length and alignment-length profiles of DRS and PCS of tumour samples 

were evaluated. On average, raw reads generated by PCS were longer than DRS reads. 

The difference in length is partially influenced by the fact that raw reads from PCS have 

additional ligated reverse transcription, PCR amplification primer and unique molecular 

identifier (UMI) sequences compared to DRS reads. Once aligned to the reference 

genome, the difference between PCS and DRS read lengths reduced. Data from 

reference-transcriptome aligned reads show that PCS provides a higher percentage of 

transcripts that represent full-length transcripts. Overall, PCS generate reads that are 

longer than DRS. 

To our surprise, no significant correlations were found between DRS and PCS read 

lengths for each tumour sample (Figure 3.6A). Whilst strong concordance was observed 

between RIN score and PCS read lengths, no significant correlation was found between 

RIN score and DRS read lengths (Figure 3.6). This lack of correlation suggests that 

additional factors impacted the selection of RNA molecules sequenced using the 

constructed DRS libraries. Recent work has examined whether ONT DRS sequence 

shorter RNA molecules preferentially. Using in vitro transcribed spike-in RNA controls 

with various lengths (from 150 – 2500 nt), the study concluded no length-based selection 

bias (Ibrahim et al., 2021). Other DRS experiments conducted in this thesis (Chapters 5) 

utilise non-degraded poly(A) enriched RNA (RIN = 10). No comparisons can thus be 

drawn between the experiments. To the best of our knowledge, no study has explored 

the effects of RNA degradation on DRS and PCS read lengths. It would be highly 

valuable to characterise this relationship systematically so that the broader research 
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community can make informed decisions on using long-read or short-read sequencing 

for partially degraded RNA from clinical samples.  

The longer PCS reads can be attributed to two main reasons: firstly, PCS library 

generation uses strand switching method with Maxima H Minus reverse transcriptase, 

which adds three additional protruding cytosines (CCC) at the 3’ end of the reverse 

transcribed cDNAs (5’ end of the mRNA molecules), allowing a template switching oligo 

(TSO) with three riboguanosines to anchor. It has been shown that reverse transcriptase 

exhibits higher strand switching efficiency for 5’ m7G capped mRNA than uncapped 

RNAs (Wulf et al., 2019). This enrichment enhances the proportion of full-length capped 

mRNAs in PCS compared to DRS. Secondly, the translocation speed through the 

nanopore is significantly slower for RNA molecules (~70 bases/s) than DNA (~450 

bases/s). The slower speed increases the probability of read stalling and pore blocking, 

resulting in more truncated short reads in DRS compared to PCS (Ibrahim et al., 2021). 

Overall, DRS and PCS from clinical ccRCC tumour samples produce longer reads than 

traditional sequencing methods.  

The second step of transcriptomic analysis is mapping reads against the reference 

genome or transcriptome. The decision to select alignment against a reference genome 

or transcriptome depends on multiple factors. Reference databases such as Ensembl 

provide curated reference genomes and reference cDNA for transcriptome mapping 

(Cunningham et al., 2022). The most challenging aspect of reference alignment is 

deciding the identity of reads mapped to multiple genes and transcripts, also known as 

multi-mapped reads (Deschamps-Francoeur et al., 2020). For reference genome 

alignment, differentiating parent genes and processed pseudogenes, which are 

intronless mRNAs that are reverse transcribed into the genome, has proved difficult for 

aligners (Raplee et al., 2019). For reference transcriptome alignment, reads can align to 

multiple genes that share a similar identity and potentially multiple transcript isoforms 

that share exon structures. The read-mapping rate also tends to be lower than reference 

genome alignment, since reads from unannotated transcripts have no sequence to map 
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to (Conesa et al., 2016). Characterisation on the quantity and biotype profile of identified 

genes from the reference genome and reference transcriptome aligned DRS and PCS 

read forms the next focus of the chapter. 

PCS identified a higher number of unique genes when compared to DRS, which is 

expected since PCS generated nearly 20 times more reads than DRS. When aligned to 

the reference genome, the median number of genes identified by PCS and DRS is higher 

than when reads were aligned to the reference transcriptome. This discrepancy can be 

attributed to the lack of annotated non-coding genes in the reference transcriptome, as 

reflected in the biotype profiles for reference genome and reference transcriptome 

mapped samples (Figure 3.14 – 15). Regarding the proportion of mapped reads per 

biotype in tumour samples, in both reference genome and transcriptome-mapped 

DRS/PCS data, the vast majority of reads (89-98% of all reads) are mapped to protein-

coding genes. However, combining all unique genes identified across the tumour 

samples, in reference genome-aligned DRS and PCS, 32.48% and 45.47% of genes are 

classified as protein coding, and 28.81% and 29.48% of genes are lncRNAs. Other 

biotypes were also discovered, with over 20% and 15% of all unique genes found from 

reference genome-aligned DRS and PCS being pseudogenes. These findings  

demonstrate the diversity of genes being expressed in the ccRCC transcriptome and the 

varieties of transcripts that long-read sequencing technologies can profile. 

Looking at the genes that were identified by both reference genome and reference 

transcriptome aligned DRS and PCS, although most genes were either identified by both 

DRS and PCS or exclusively by PCS, there is a significant number of genes that were 

only found via DRS. This is despite the considerably higher number of reads acquired 

through PCS and the greater sequencing depth. Subsequent gene expression analysis 

shows that the expression levels of the DRS-exclusive and PCS-exclusive genes are 

significantly lower than the genes identified by both DRS and PCS. Many of these genes, 

especially PCS-exclusive genes, may be absent from the other dataset due to the lack 

of coverage and depth. It is also possible that many of the DRS-exclusive genes do not 
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amplify well by PCR, hence excluded from the PCS data. Conversely, PCS-exclusive 

genes may represent a subset of preferentially amplified genes. The inclusion of UMI in 

the PCS111 library allows the correction of amplification bias after sequencing, and the 

pre-mapping read QC module pychopper (v2.7.2, Oct 2022) has recently been updated 

to pass UMI information to the later mapping step. It will be of great interest to 

characterise genes that are heavily influenced by PCR amplification bias.  

Analysis of the gene expression levels across RNA biotypes reveals that despite the lack 

of poly(A) RNA enrichment or ribodepletion, rRNAs are only detected at a low level when 

aligned to the reference genome and undetectable when aligned to reference 

transcriptome in both PCS and DRS (Figure 3.17 – 18). The lack of rRNA mapping further 

suggests that poly(A) enrichment before library preparation is not a requirement for ONT 

long-read sequencing. As expected, protein-coding genes are expressed at a higher 

level than lncRNA and pseudogenes, which was reflected previously. The highest 

expressed biotype in both reference genome-aligned DRS and PCS data is 

mitochondrial rRNA, which is polyadenylated once matured (Chang and Tong, 2012). 

However, regarding the total number of aligned reads, mt-rRNA only represents 4.66% 

and 5.35 % of reference genome-aligned DRS and PCS reads (Figure 3.13). Commercial 

ribodepletion kits are designed to target both cytoplasmic and mitochondrial rRNAs 

(Herbert et al., 2018). Benchmarking experiments comparing biotype composition and 

gene expression levels between ONT sequencing libraries generated from poly(A) 

enriched RNA, ribodepleted RNA and total RNA will be useful for the research 

community. One of the main benefits of using ribodepletion over poly(A) enrichment is 

the ability to isolate non-poly(A) transcripts, including numerous functional protein-coding 

and non-coding RNAs (Zhao et al., 2014). The design and sequence of the poly-d(T) 

primer from ONT library preparation will have to be amended to capture this diverse 

population of transcripts. 

Though gene expression levels strongly correlate between DRS and PCS, hundreds of 

genes with various biotypes exhibit at least 10-fold differences in gene expression levels 
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between the two methods (Figure 3.21 – 22). Similar to the genes that DRS and PCS 

exclusively mapped, these ‘enriched’ genes may be influenced by variability linked to low 

expression levels. Venn diagram shows that only small subsets of genes are ‘enriched’ 

by either DRS or PCS when both reference genome and reference transcriptome aligned 

data were overlapped. The lack of overlapping genes suggests that at least in part, the 

observed variations may be attributed to the alignment method used or gene expression 

level estimation by featurecount or Salmon. Indeed, whilst gene expression levels 

between the reference genome and reference transcriptome aligned DRS and PCS are 

significantly correlated, the correlations are far from perfect (R2 = 0.4454 for DRS, R2 = 

0.5523 for PCS) (Figure 3.24). Intriguingly, the median GC content of DRS and PCS-

enriched genes were significantly higher than the average GC content of all DRS/PCS 

detected genes (Figure 3.23). It is known that both high GC content (<55%) and low GC 

content (>40%) in RNA fragments cause inefficient PCR amplification (Benjamini and 

Speed, 2012). This analysis assessed the GC content of the whole mapped parent gene 

due to difficulties tracing the specific isoform and the length of read fragments. However, 

it would be interesting to assess if these transcripts share similar characteristics with the 

DRS- and PCS-exclusively mapped genes and whether UMI corrections can drastically 

reduce the gene-expression discrepancies between DRS and PCS. 
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3.5 Evaluation of key objectives 

 Feasibility of using ONT LRS to profile archival tumour samples 

Clinical tumour samples can be sequenced using DRS and PCS. Semi-degraded 

RNA samples (RIN > 7) can still result in reads that represent full-length transcript 

isoforms. The ability of using total RNA instead of poly(A)+ RNA can substantially 

reduce the amount of input RNA needed for DRS/PCS library preparation. In addition, 

this will lower the cost related to RNA sample processing, as well as prevent RNA 

degradation during poly(A)+ RNA isolation. 

 Comparisons of sequencing reads and output between ONT DRS & PCS 

PCS provided more than 10x depth and on average 100nt+ longer reads compared 

to DRS. Therefore, with the current technologies, PCS is the better choice for 

studying gene expression, isoform usage and identification of novel transcripts. 

However, DRS can preserve RNA-modification signals and poly-A tail length 

estimation using nanopolish, allowing more opportunities to study the relationships 

between gene expression and co-/post-transcriptional mRNA regulations. 

 Assessment of different RNA biotypes’ gene expression levels in DRS & PCS 

Both DRS and PCS captured a diverse profile of RNA biotypes from ccRCC tumours. 

Strikingly, despite using total RNA as input, ribosomal RNA was largely depleted from 

DRS/PCS output. For the vast majority of mapped genes, expression levels were 

highly concordant between DRS and PCS data. Nevertheless, more than 1,000 

genes were found to be enriched by 10-folds by either method. Additional work is 

needed to understand the discrepencies in gene expression levels.  
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3.6 Summary 

This chapter examined the feasibility of using ONT DRS and PCS on archival tumour 

samples. Tumours were comprehensively sequenced, with substantially longer reads 

than traditional NGS methods. Genes from a wide variety of RNA biotypes were identified, 

and the differences in biotype profiles of genes identified by DRS and PCS and by 

reference genome and reference transcriptome alignment were demonstrated. 

Expression levels were highly correlated between DRS and PCS and the alignment 

methods. However, subsets of genes have also been found to be exclusively identified 

by either DRS or PCS. Hundreds of genes were also found to show high variance in 

gene expression levels estimated by both sequencing methods. 

  



155 
 

 

 

 

 

 

Chapter 4  

Comprehensive analysis of ccRCC tumours 

using long-read sequencing technologies 
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4.1 Introduction 

The use of whole genome sequencing and transcriptome sequencing has transformed 

the fundamental understanding of ccRCC over the past decade. ccRCC is now known 

to exhibit many distinct characteristics, including the near-universal loss of chromosome 

3p arm and VHL, dysregulated PI3K/AKT/mTOR signalling pathway and metabolic 

rewiring (Qi et al., 2021). With the introduction of TKI and ICI therapy, precision medicine 

has become a promising therapeutic approach that can revolutionalise ccRCC treatment. 

However, several key challenges remain that prevent the stratification of optimal 

systemic therapy for ccRCC patients (Signoretti et al., 2018). 

Localised, early-stage ccRCC is currently highly treatable via nephrectomy, with more 

than 80% of patients surviving five years post-surgery. However, more than 20% of 

patients experience local or distant recurrent post-nephrectomy (Janssen et al., 2018). 

In addition, once metastasised, ccRCC patient prognosis is extremely poor, with a 5-year 

survival rate under 10% (Padala et al., 2020). A recent retrospective ccRCC study has 

shown that amongst patients who developed recurrent ccRCC (286 out of 1265 ccRCC 

patients, 22.6%), 54.2% (n = 155) were defined as incurable, with only 33.4 % of 

recurrent ccRCC patients surviving longer than 24 months after diagnosis (Dabestani et 

al., 2019). Therefore, reliable predictive and prognostic biomarkers for ccRCC 

recurrence and metastasis are urgently needed. 

Leibovich score is the most widely used clinical predictive model for ccRCC recurrence 

risk after nephrectomy in the UK (Vasudev et al., 2020). The score is calculated based 

on TNM (tumour size, lymph node status, metastasis) classification, Fuhrman grade (size 

and morphology of tumour cell nucleus), and histologic tumour necrosis (Leibovich et al., 

2003). In addition, a multi-genes signature-based RT-PCR assay has also been 

developed and validated to assess the risk of post-surgery ccRCC recurrence (Rini et 

al., 2015). Both methods are robust and reliable, with follow-up screening protocols being 

adopted. However, no benefits have been found in early systemic treatment compared 

to delayed treatment. Moreover, no prediction model has been developed to stratify front-
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line systemic therapy for recurrent and non-recurrent ccRCC (Escudier et al., 2019). 

Thus, a deeper understanding of the underlying biology of ccRCC disease recurrence is 

needed to improve current treatment strategies. 

Gene expression-based recurrent risk assay reveals differences between recurrent and 

non-recurrent ccRCC tumours. Rini et al. published a 16-gene RT-PCR-based 

recurrence prediction model with 11 cancer biomarkers and five reference genes. The 

biomarkers can be broadly separated into four categories: vascular, cell growth, immune 

response and inflammation. Suppressed angiogenic dependency and immune response, 

high levels of cell division and inflammation are characteristics of aggressive recurrent 

tumours (Rini et al., 2015). Interestingly, ccRCC tumours have one of the most 

heterogeneous cell populations within the TME amongst all cancer types. Analysis of 

TCGA data showed that on average ccRCC tumours have the third lowest tumour purity 

(64.6%, n = 542), behind lung adenocarcinoma and lung squamous cell carcinoma (Aran 

et al., 2015). 

The rapid development of single-cell RNAseq and computational cell-type deconvolution 

method from bulk-RNAseq have played a crucial role in characterising the immune 

landscape in ccRCC TME. It is now widely recognised that ccRCC disease progression 

treatment outcomes are strongly linked with the profile of tumour infiltrating immune cells. 

In most solid cancer types, such as non-small cell lung cancer (NSCLC) and breast 

cancer and melanoma, high levels of CD8+ T cell infiltration correlate with favourable 

overall survival and better immune checkpoint inhibitor treatment outcome (Li et al., 2019; 

F. Li et al., 2021). For ccRCC, CD8+ T cell infiltration does not confer improved 

immunotherapy treatment outcomes. In addition, high CD8+ T cell infiltration levels 

correlate with worse overall patient survival (Giraldo et al., 2017; Braun et al., 2020). 

Recent studies using single-cell RNAseq have discovered that ccRCC tumour infiltrating 

CD8+ T cells exhibit hugely diverse transcriptomic profiles. However, in advanced ccRCC 

tumours, most infiltrating CD8+ T cells are dysfunctional and display an exhausted 

phenotype (marked by upregulation of the immune checkpoints) (Hu et al., 2020; Braun 



158 
 

et al., 2021). This was an exciting finding since various reports have shown T cell 

exhaustion as a heterogenous and potentially reversible state that can be specifically 

targeted as a therapeutic approach (Budimir et al., 2022). Overall, tumour-infiltrating 

immune cells play critical roles in ccRCC disease progression. Using a transcriptomic 

approach, a better understanding of the ccRCC immune landscapes could potentially 

identify predictive biomarkers for immunotherapy efficacy and better ccRCC treatment 

stratification. 

Aside from differential gene expression analysis, the composition of expressed transcript 

isoforms (or differential transcript usage (DTU)) can also be analysed using 

transcriptome data. Differential splicing events and alternative polyadenylation (APA) are 

two main contributors to DTU. Dysregulated splicing events are oncogenic drivers that 

can promote cancer progression (Y. Zhang et al., 2021). For example, abnormal splicing 

and DTU of the metabolic enzyme PKM play a critical role in tumour growth in multiple 

cancer types, including ccRCC. In ccRCC, polypyrimidine tract-binding protein 1 (PTBP1) 

mediates the isoform switch towards the expression of the pro-oncogenic transcript 

isoform PKM2 (Jiang et al., 2017). High PKM2 expression in ccRCC is linked to 

unfavourable overall survival, whereas expression of the other PKM transcript isoforms 

ENST00000389093 and ENST00000568883 significantly correlate with better survival 

outcomes (X. Li et al., 2021).  

APA is another critical regulatory mechanism that diversifies mRNA isoforms. Multiple 

studies have reported global shortening of 3’UTRs via APA in cancer cells compared to 

normal cells (Mayr and Bartel, 2009; Zingone et al., 2021). 3’UTR shortening allows 

proto-oncogenes to escape from miRNA- and RBP-mediated gene expression regulation, 

activating oncogenic pathways (Yuan et al., 2021).  

With longer reads and the possibility to cover the entire transcript with a single read, 

long-read sequencing provides an opportunity to study transcript structure accurately. In 

addition to studying splicing pattern changes of known transcripts, previous studies using 

long-read sequencing methods have discovered tens of thousands of novel isoforms, 
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representing a wealth of opportunities to explore previously uncharacterised splicing 

events(Workman et al., 2019; Tang et al., 2020). With each read profiled from the poly(A) 

tail towards the 5’ end, and every read representing one mRNA molecule, DRS and PCS 

can provide the clear poly(A) site for every transcript. However, no study has explored 

differential splicing and APA between recurrent and non-recurrent ccRCC using long-

read sequencing methods.  

ONT DRS also enables the characterisation of poly(A) tail lengths with nanopolish and 

tailfindR (Krause et al., 2019; Workman et al., 2019). Poly(A) tail plays a crucial role in 

mRNA stability. In human cells, the lengths of poly(A) tails vary widely, with the median 

poly(A) length ranging between 50 – 100 nucleotides, depending on the type of poly(A) 

tail profiling method used (Chang et al., 2014). Using data generated from DRS of human 

chronic myelogenous leukaemia cell line HAP1, Soneson et al. demonstrated that 

nanopolish and tailfindR results show high levels of concordance, with a similar profile 

of poly(A) length compared to results from TAILseq and PALseq(Soneson et al., 2019). 

Interestingly, transcripts from different RNA biotypes displayed differential poly(A) tail 

profiles. Moreover, whilst poly(A) tail length profiles have been profiled globally using 

yeast, tumour cell lines, animal oocytes/embryos and mouse tissues, transcriptome-wide 

poly(A) tail length profile has not been studied using human tumour tissues. 
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4.2 Chapter aims 

The chapter aims to comprehensively characterise the transcriptomes of ccRCC 

tumours and identify disease recurrence-associated signatures, using data 

generated from DRS and PCS of archival samples. The specific aims of this chapter 

include the following: 

i) Using unsupervised methods (PCA and hierarchical clustering) to explore and 

characterise gene expression patterns in relation to ccRCC disease recurrence 

status and other clinical features 

ii) Identify ccRCC recurrence-associated differential expressed genes 

iii) Identify genes which display differential transcript usage in recurrent and non-

recurrent ccRCC tumours 

iv) Discover novel transcript isoforms using transcriptome assembly methods 

v) Profile global poly(A) tail lengths of mRNA transcripts from ccRCC tumours 

vi) Characterise activated and suppressed pathways and processes in recurrent 

ccRCC tumours 

vii) Profile tumour immune infiltrate landscapes in recurrent and non-recurrent 

ccRCC tumours  
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4.3 Results 

4.3.1 Evaluation of ccRCC tumour transcriptomes by PCA 

After the alignment of DRS and PCS reads to reference genome and transcriptome via 

minimap2, gene expression levels were first quantified by featurecounts and Salmon, 

respectively, followed by library size normalisation and differential gene expression 

analysis. Reference genome-aligned data represent expression profiles that include 

protein-coding genes, pseudogenes and polyadenylated non-coding RNAs, whilst 

reference transcriptome-mapped data represent expression profiles that primarily 

consist of protein-coding genes and pseudogenes. Principal component analysis (PCA) 

was performed to assess the global gene expression patterns of ccRCC tumour samples. 

PCA is a commonly used data dimensionality reduction technique in transcriptomic 

analysis, which provides information on data variability and helps identify clusters of 

samples that share similar expression profiles (Conesa et al., 2016).  

For reference-genome aligned DRS of ccRCC tumours, the first principal component 

(PC1, x-axis) explains 28% of data variation, and the second principal component (PC2, 

y-axis) explains 16% of data variations (Figure 4.1A). For reference-genome aligned 

PCS, PC1 (x-axis) explains 26% of data variation, and PC2 (y-axis) explains 18% of data 

variations (Figure 4.1B). Scatter plots of PCA results showed no visually distinguishable 

clusters that correlate with patients and clinical information (ccRCC recurrence status, 

gender and cancer stage) in either DRS or PCS data (Figure 4.1A – F). 

PCA of reference-transcriptome aligned DRS and PCS data display similar levels of 

variance explained by the first two principal components. For DRS, PC1 (x-axis) explains 

22% of data variation and PC2 (y-axis) explains 15% of data variations (Figure 4.2A). 

For PCS, PC1 (x-axis) explains 21% of data variation, and PC2 (y-axis) explains 14% of 

data variations (Figure 4.2B). Like reference genome-aligned data, when including 

reference transcriptome-aligned data, scatter plots of PCA results did not show sample 

clusters that correlate with ccRCC recurrence status, patient gender and cancer stages 

in either DRS or PCS data (Figure 4.2A – F). 
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Figure 4.1: PCA analysis of ccRCC tumour transcriptome profiles using 

reference genome aligned DRS and PCS 

Principal component analysis (PCA) on ccRCC tumours gene expression data 

illustrating variations between samples (dots, n = 12). DESeq2 generated plots using 

reference genome (Ensembl release 105, GRCh38) aligned  A) DRS and B) PCS 

data showing PCA of recurrent vs non-recurrent ccRCC groups; C) DRS and D) PCS 

data showing PCA of male vs female tumour samples; E) DRS and F) PCS data 

showing PCA of stage I, stage II and stage III cancer samples. 

A B 

C D 

E F 

Direct RNAseq PCR-cDNAseq 
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Figure 4.2: PCA analysis of ccRCC tumour transcriptome profiles using 

reference transcriptome aligned DRS and PCS 

Principal component analysis (PCA) on ccRCC tumours gene expression data 

illustrating variations between samples (dots, n = 12). DESeq2 generated plots using 

reference transcriptome (Ensembl release 105, cDNA reference) aligned  A) DRS 

and B) PCS data showing PCA of recurrent vs non-recurrent ccRCC groups; C) DRS 

and D) PCS data showing PCA of male vs female tumour samples; E) DRS and F) 

PCS data showing PCA of stage I, II and III cancer samples. 

A B 

C 

Direct RNAseq PCR-cDNAseq 

E F 

D 
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4.3.2   Unsupervised hierarchical clustering of ccRCC tumour 

expression profiles 

Next, to evaluate if ccRCC tumour expression profiles could be grouped by their clinical 

features, unsupervised hierarchical clustering analysis was performed, and 

dendrograms were constructed to identify sample clusters based on spearman rank 

correlations of gene expression levels. Here, samples with the highest degree of 

similarities in gene expression profile were grouped and sequentially merged with other 

clusters. Finally, reference genome-aligned and transcriptome-aligned data were 

analysed to assess if the inclusion of non-coding RNAs affects the clustering of tumour 

samples. 

The hierarchical clustering analysis showed that gene expression profiles cluster 

differently between DRS and PCS data. For example, in reference genome aligned DRS 

data, the sample with the highest degree of similarity in gene expression with tumour 

135 is 171, followed by 395, 254, 314 and 260 (Figure 4.3A). In reference genome 

aligned PCS, tumour 135 is clustered with 395, followed by 320 and 243, and finally, 382 

and 254 (Figure 4.3 B). In contrast, gene expression profiles clustered similarly when 

reference genome-aligned and reference transcriptome-aligned dendrograms were 

compared. All six initial sample clusters for PCS are paired identically between the 

reference genome and reference transcriptome-aligned data. Furthermore, the most 

significant clusters of 6 tumours are again matched for reference genome and reference 

transcriptome mapped PCS data (Figure 4.3B, 4.4B). 

Analogous to observations from PCA scatter plots, hierarchical clustering did not result 

in segregated clusters of tumour samples that match with ccRCC recurrence status, 

patient gender, cancer stage, Fuhrman grade and Leibovich score for either reference 

genome or reference transcriptome aligned DRS and PCS data (Figure 4.3 – 4.4).  
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Figure 4.3: Hierarchical clustering of ccRCC transcriptome profile by reference 

genome mapped DRS and PCS 

A) Dendrogram for hierarchical clustering of reference genome mapped ccRCC 

tumour DRS transcriptomes based on spearman rank correlations of gene expression 

levels. Patient information and clinical ccRCC features are listed below dendrogram.  

B) As in A, but for PCS.   

Sample No. 

Sample No. 

A 

B 
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Figure 4.4: Hierarchical clustering of ccRCC transcriptome profiles by 

reference transcriptome mapped DRS and PCS 

A) Dendrogram for hierarchical clustering of reference transcriptome mapped ccRCC 

tumour DRS transcriptomes based on spearman rank correlations of gene expression 

levels. Patient information and clinical ccRCC features are listed below dendrogram.   

B) As in A, but for PCS.   

Sample No. 

A 

B 

Sample No. 
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4.3.3 Identification of differential expressed genes associated with 

ccRCC recurrence 

Next, DRS and PCS-generated gene expression profiles were analysed using DESeq2 

to identify differentially expressed genes between recurrent and non-recurrent ccRCC 

tumours (Love et al., 2014). Genes with log2FoldChange ≤ -2 or ≥ 2 and padj ≤ 0.1 are 

considered significant. Results of differential gene expression analysis between 

recurrent and non-recurrent ccRCC tumours were plotted as volcano plots in Figure 4.5. 

The top fifteen differentially expressed genes (ranked by padj values) in DRS and PCS 

(by reference genome and transcriptome alignment methods) are listed in Tables 4.1 

and 4.2, respectively. Overall, both DRS and PCS identified DEGs. However, PCS 

identified a higher number of DEGs compared to DRS. Reference genome alignment 

also resulted in more DEGs than reference transcriptome alignment.  

68 and 219 significant DEGs were discovered for reference genome aligned DRS and 

PCS, respectively, including 24/111 upregulated and 44/108 downregulated genes. For 

DRS, the top 3 differentially expressed genes in recurrent ccRCC tumours (by padj values) 

are SORCS3 (Sortilin related VPS10 domain containing receptor 3, Log2FC: 5.9758, padj 

= 2.32 x 10-8), TIGIT (T cell immunoreceptor with Ig and ITIM domains, Log2FC: -2.6793, 

padj = 5.25 x 10-4) and NKG7 (Natural killer cell granule protein 7). For reference genome-

aligned PCS, the top 3 differentially expressed genes are lncRNAs that are not yet well-

characterised: ENSG00000229740 (novel transcript, Log2FC = 22.7129, padj = 5.73 x 10-

10), ENSG00000248515 (novel transcript, Log2FC = 22.6095, padj = 5.73 x 10-10) and 

ENSG00000276241 (novel transcript, Log2FC = -4.8518, padj = 1.05 x 10-8). 

Reference transcriptome-aligned DRS and PCS identified 34 and 126 significant DEGs, 

including 10/57 upregulated and 24/69 downregulated genes. For reference 

transcriptome aligned DRS, the top 3 differentially expressed genes in recurrent ccRCC 

tumours (by padj values) are SORCS3 (Log2FC = 6.2563, padj = 4.89 x 10-8), NKG7 

(Log2FC = -2.7936, padj = 4.21 x 10-4) and GZMK (Granzyme K, Log2FC =  -3.0141, padj = 

7.38 x 10-4). For PCS, the top 3 differentially expressed genes are MUC17 (Mucin 17, 
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Log2FC = 24.1211, padj = 1.59 x 10-11), CD8B (CD8 antigen beta polypeptide, Log2FC = 

-3.5878, padj = 1.66 x 10-4) and FAM83F (Family with sequence similarity 83 member F, 

Log2FC = -5.5527, padj = 3.65 x 10-4). Comprehensive lists of all identified significant 

DEGs by DRS and PCS, aligned with reference genome and reference transcriptome, 

can be found in Appendix Tables 7.1 – 4.  
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Figure 4.5: DGEs between recurrent and non-recurrent ccRCC tumours 

Volcano plots showing differentially expressed genes between recurrent and non-

recurrent ccRCC tumours (n = 6 per group) profiled by A) DRS by reference genome 

alignment, B) PCS by reference genome alignment, C) DRS by reference 

transcriptome alignment and D) PCS by reference transcriptome alignment. Dotted 

lines indicate significance threshold (padj ≤ 0.1, |log2FoldChange| > 2). Significantly 

upregulated genes are in red and downregulated genes are in blue. Names of top 4 

most significantly up/down regulated annotated genes (by padj) are shown. 
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Table 4.1: Top 15 differentially expressed genes between recurrent and non-

recurrent ccRCC tumours by DRS 

A) List of top 15 differentially expressed genes (by padj values) between recurrent and 

non-recurrent ccRCC tumours profiled by reference genome mapped DRS. B) As in 

A but for reference transcriptome mapped DRS. 

A 

B 
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Table 4.2: Top 15 differentially expressed genes between recurrent and non-

recurrent ccRCC tumours by PCS 

A) List of top 15 differentially expressed genes (by padj values) between recurrent and 

non-recurrent ccRCC tumours profiled by reference genome mapped PCS. B) As in 

A but for reference transcriptome mapped PCS. 

A 

B 
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4.3.5 Characterisation of differential expressed genes associated 

with ccRCC recurrent status 

To understand the data similarity of DEG analysis from DRS/PCS and reference 

genome/transcriptome, Venn digrams were constructed for the overlaps between 

recurrent vs non-recurrent ccRCC DEGs identified by DRS and PCS via reference 

genome and reference transcriptome alignment. Of the 68 DEGs identified by reference 

genome aligned DRS, 57 genes were also differentially expressed in PCS (Figure 4.6A). 

For the 34 DEGs identified by reference transcriptome-mapped DRS, 24 genes were 

also found to be differentially expressed in PCS (Figure 4.6B). A high level of overlaps 

was also found between DEGs discovered by reference genome or reference 

transcriptome alignment. For DRS, of the 34 DEGs found in reference transcriptome-

mapped data, 27 were also identified as DEGs in reference genome-mapped data 

(Figure 4.6C). 

Similarly, for PCS, of the 126 DEGs found in reference transcriptome-mapped data, 71 

genes were found to be differentially expressed in reference genome-mapped data 

(Figure 4.6D). PCS identified 274 DEGs between recurrent and non-current ccRCC 

tumour samples, and DRS identified 75 DEGs. Of the 75 DRS-identified DEGs, 61 were 

also identified in PCS (Figure 4.6E). Reference genome alignment from DRS and PCS 

identified 230 DEGs, and reference transcriptome alignment from DRS and PCS 

identified 136 DEGs. 78 DEGs were determined by both alignment methods (Figure 

4.6F). Overall, 21 DEGs were found in both reference genome and transcriptome-aligned 

DRS and PCS data (Figure 4.6G). 

  



172 
 

  

71 55 

PCS-cDNAseq 

Genome Transcriptome Genome Transcriptome 

41 27 7 

Direct RNAseq 

Reference 
Genome mapping 

DRS PCS 

11 57 162 10 24 102 

DRS PCS 

Total no. of DEGs: 288 
Common DEGs  : 21 

DRS 

Genome 

PCS 

Genome 

DRS 

Transcriptome 

PCS 

Transcriptome 

148 

A B 

C D 

G 

Reference 
Transcriptome mapping 

E F 

DRS PCS 

213 61 14 

Genome Transcriptome 

152 78 58 



173 
 

 

 

 

 

 

 

 

 

Previously, mapping data illustrated that PCS identified a substantially higher number of 

mapped genes (39115 genes) compared to DRS (26457 genes) (Figure 3.14A - B). In 

addition, reference genome mapping resulted in more uniquely mapped genes than the 

reference transcriptome (Figure 3.15A). Also, both reference genome and transcriptome-

aligned DRS and PCS data contain genes uniquely mapped by each method (Figure 

3.16A). Therefore, to assess if the discrepancies in DEG numbers identified were due to 

the ability to detect the genes, stacked bar graphs were generated to show the number 

of DEGs mapped by both and solely by each method. The results showed that all 75 

DEGs identified by DRS and 264 out of 274 identified by PCS (via both reference 

genome and transcriptome alignment) were mapped by both DRS & PCS (Figure 4.7A). 

In contrast, of the 230/196 DEGs identified by reference genome or transcriptome-

mapped DRS and PCS, only 154/136 DEGs were mapped by both methods. Finally, 

biotypes of identified DEGs were assessed. The results indicate that most DEGs 

identified by reference genome and transcriptome-mapped DRS and PCS are protein-

coding genes. Whilst reference genome aligned PCS identified 64 differentially 

expressed lncRNAs, only six lncRNAs were identified in reference genome aligned DRS 

(Figure 4.7C). Of the 76 DEGs that were exclusively mapped via reference genome 

mapping, 65 genes are lncRNAs. In contrast, of the 60 exclusively reference 

transcriptome-mapped DEGs, 51 genes are protein-coding (Figure 4.7D), demonstrating 

their differential potential in identifying DEGs.  

Figure 4.6: Common disease recurrence associated DEGs identified by DRS 

and PCS of ccRCC tumours 

A) Venn diagram showing overlaps of DEGs (padj ≤ 0.1,|log2FoldChange|>2) identified 

by reference genome aligned DRS and PCS. B) as in A, but aligned with reference 

transcriptome. C) Venn diagram showing overlaps of DEGs identified by reference 

genome or transcriptome aligned DRS. D) as in C, but for PCS. E) Venn diagram 

showing overlaps of all DEGs identified by DRS and PCS. F) Venn diagram showing 

overlaps of all DEGs identified by reference genome and reference transcription 

aligned DRS and PCS. G) Venn diagram showing overlaps of DEGs identified by both 

reference genome and transcriptome aligned DRS and PCS.  
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Figure 4.7: Biotype characterisation of DEGs between recurrent and non-

recurrent ccRCC identified by DRS and PCS 

A) Stacked bar graph showing number of DEGs identified by PCS and DRS, and the 

proportion of genes are present in both DRS and PCS (blue) or present only in PCS 

data (purple) B) Stacked bar graph showing proportion of DEGs identified by either 

reference genome or reference transcriptome mapping of DRS and PCS data. 

Proportion of DEGs present in both reference genome and transcriptome mapped 

DRS/PCS data is in blue, DEGs that are only present in reference genome mapped 

DRS/PCS data is in purple, and DEGs that are only present in reference 

transcriptome mapped DRS/PCS data in in pink. C) Stacked bar graph showing 

number of DEGs identified by reference genome/reference transcriptome aligned 

DRS and PCS and biotypes distribution. D) Stacked bar graph showing number of 

DEGs that are present only when DRS and PCS data aligned to reference 

genome/reference transcriptome, and the distribution of their biotypes. 
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4.3.6 Concordant gene expression patterns of ccRCC recurrence 

associated DEGs between alignment and sequencing methods 

Following analysis of the relationship between gene mapping and identification of DEGs, 

the gene expression patterns of identified DEGs were evaluated. Both the effects of 

reference genome vs transcriptome alignment and between DRS and PCS were 

analysed. Firstly, for the reference alignments, of the 75 DEGs between non-recurrent 

and recurrent ccRCC tumours that DRS identified, 57 were identified by both reference 

genome and reference transcriptome alignment (Figure 4.8A). For PCS, of the 274 DEGs, 

182 genes were identified by both reference genome and reference transcriptome 

mapping (Figure 4.8B).  

The Log2FoldChange in DEGs gene expression levels from reference genome-aligned 

significantly correlated with reference transcriptome-aligned DRS data, as analysed by 

DESeq2 (R2 = 0.8819, p < 0.0001) (Figure 4.8C). Likewise, a high degree of concordance 

can be found between Log2FoldChange in DEGs from reference genome-aligned and 

reference transcriptome-aligned PCS data (R2 = 0.8286, p < 0.0001) (Figure 4.8D). 

Although several genes showed substantial levels of Log2FoldChange by one reference 

alignment method yet close to zero for another, most DEGs exhibit the same 

directionality in their Log2FoldChange in gene expression. Only one outlier, the ribosomal 

pseudogene RPL7P60, was found to be downregulated in recurrent ccRCC when 

aligned with reference transcriptome but upregulated when aligned with reference 

genome in PCS data (Figure 4.8D).  

  



176 
 

  
D

R
S

 (
G

e
n

o
m

e 
m

ap
p

in
g

)
L

o
g

2
F

o
ld

C
h

an
g

e

Figure 4.8: Evaluation of DEGs expression levels profiled by reference genome 

and reference transcriptome alignment 

A) Venn diagram showing overlaps of DEGs (padj ≤ 0.1,|log2FoldChange|>2) that can 

be found by reference genome and reference transcriptome aligned DRS. B) Ss in A, 

but for PCS. C) Correlation between log2FoldChange of commonly found DEGs 

(recurrent vs non recurrent ccRCC) from reference genome mapped- and reference 

transcriptome mapped- DRS. Top 4 up regulated and downregulated genes by 

averaged Log2FoldChange are indicated. D) Correlation between log2FoldChange of 

commonly found DEGs (recurrent vs non recurrent ccRCC) from reference genome 

mapped- and reference transcriptome mapped- PCS. Top 4 up regulated and 

downregulated genes by averaged Log2FoldChange are indicated. Throughout, 

diagonal lines represent the line of best fit. R
2
 values were computed to measure 

goodness-of-fit, and P values generated from F-test, with p ≤ 0.05 considered 

statistically significant. 
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Next, the effects of differential sequencing methods (DRS and PCS) on DEGs’ 

expression patterns were evaluated. Strikingly, for the DEGs that were identified by 

either reference genome or reference transcriptome mapping, the majority of genes were 

detected by both DRS and PCS. Of the 230 DEGs identified by reference genome 

mapping, 223 were detected by both DRS and PCS (Figure 4.9A). For the 137 DEGs 

identified via reference transcriptome alignment, 132 were detected by both DRS and 

PCS (Figure 4.9B).  

Log2FoldChange in DEGs gene expression levels are highly concordant between PCS 

and DRS. Strong correlations of DEGs Log2FoldChange between reference genome 

aligned DRS and PCS (R2 = 0.8710, p = < 0.0001) and between reference transcriptome-

aligned DRS and PCS (R2 = 0.7196, p = < 0.0001) (Figure 4.9C – D). Interestingly, in 

contrast to the correlation dot plots between reference genome vs transcript alignment, 

here more genes spread towards x = 0 (Log2FoldChange for DRS) for both upregulated 

DEGs (red) and downregulated DEGs (blue). This suggests that many of these DEGs 

are only shown to be differentially expressed in PCS, not DRS. Amongst all the DEGs 

identified by both PCS and DRS, all genes except for two exhibited the same 

directionality of Log2FoldChange. For reference genome aligned data, the mitochondrial 

tRNA MT-TS1 was found to be differentially downregulated in recurrent ccRCC tumours 

by DRS but not by PCS (Figure 4.9C). For reference transcriptome aligned data, the 

chemokine CCL5 was identified to be downregulated in recurrent ccRCC tumours by 

DRS (log2FoldChange = 0.537, padj = 0.863), and not by PCS (Log2FoldChange = -2.684, 

padj = 0.0112) (Figure 4.9D).   
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Figure 4.9: Characterisation of DEGs expression levels profiled by DRS and 

PCS 

A) Venn diagram showing overlaps of DEGs (padj ≤ 0.1,|log2FoldChange|>2) that can 

be found by reference genome mapped PCS and DRS. B) As in A, but PCS and DRS 

were aligned to reference transcriptome. C) Correlation between log2FoldChange of 

commonly found DEGs (recurrent vs non recurrent ccRCC) from reference genome 

aligned DRS and PCS. Top 4 up regulated and downregulated genes by averaged 

Log2FoldChange are indicated. D) Correlation between log2FoldChange of commonly 

found DEGs (recurrent vs non recurrent ccRCC) from reference transcriptome 

mapped PCS and DRS. Top 4 up regulated and downregulated genes by averaged 

Log2FoldChange are indicated. Throughout, diagonal lines represent the line of best 

fit. R
2
 values were computed to measure goodness-of-fit, and p values generated 

from F-test, with p ≤ 0.05 considered statistically significant. 
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4.3.7  GSEA GO BP analysis reveals suppression of adaptive 

immune response-related pathways in recurrent ccRCC tumours 

Gene set enrichment analysis (GSEA) by clusterprofiler (v4.0) was conducted to 

systematically evaluate differences in biological processes and pathways between 

recurrent and non-recurrent ccRCC tumours (Wu et al., 2021). Genes were ranked using 

log2Foldchange values of DESeq2 normalised gene expression from all detected genes 

from the ccRCC tumours (n = 12), profiled by reference transcriptome aligned DRS and 

PCS. GSEA using the gene ontology (GO) biological processes (BP) database reveals 

that the top 10 most significantly enriched (by padj values) GO BP terms, both DRS and 

PCS are immune system related, with a high degree of overlapping genes between 

enriched gene sets as demonstrated by the linkages in the GO BP enrichment maps 

(Figure 4.10A, 4.11A). The overlapping terms between the top 10 enriched GO BP from 

DRS, and PCS include regulation of leukocyte differentiation, T cell differentiation, 

regulation of T cell activation and T cell activation. The list of significantly enriched GO 

BP terms for DRS and PCS data can be found in Appendix tables 7.5 - 6, respectively. 

The top 10 enriched GO BP terms from the results of GSEA between recurrent and non-

recurrent ccRCC tumours are also shown in the dot plots in Figure 4.10B and 4.11B for 

DRS and PCS, respectively. Dot sizes in the dot plot signify the number of overlapping 

genes between differentially expressed genes and respective GO BP terms, and the x-

axis shows the proportion of represented genes from the GO BP term. Strikingly, all top 

10 enriched GO BP terms (by padj) from both DRS and PCS had negative normalised 

enrichment scores (NES), signifying that the gene sets were significantly suppressed in 

recurrent ccRCC tumours compared to non-recurrent counterparts (Appendix table 7.6). 

The same trend was also shown by GSEA enrichment plots for the top 5 enriched GO 

BP terms (by padj) in DRS and PCS data, where represented genes were concentrated 

towards the lower end of the ranked gene list (Figure 4.10C, 4.11C). Overall, GSEA 

reveals significant suppression of adaptive immune response-related pathways in 

recurrent ccRCC tumours compared to non-recurrent tumours.  



180 
 

  

Figure 4.10: Gene Ontology Biological Process (GO:BP) GSEA for ccRCC 

recurrence associated differential gene expression profiled by DRS 

A) GO:BP enrichment map showing top 10 enriched terms associated ccRCC 

recurrence associated differential gene expression profiled by reference 

transcriptome mapped DRS. B) Dot plot showing top 10 enriched GO:BP terms, with 

dot size representing gene count per term and colour reflecting padj value. C) GSEA 

enrichment plot for the top 5 enriched GO:BP terms. The x-axis shows genes 

represented in each pathway, and the y-axis shows enrichment scores. 

A 

B 

C 
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  Figure 4.11: Gene Ontology Biological Process (GO:BP) GSEA for ccRCC 

recurrence associated differential gene expression profiled by PCS 

A) GO:BP enrichment map showing top 10 enriched terms associated ccRCC 

recurrence associated differential gene expression profiled by reference 

transcriptome mapped PCS. B) Dot plot showing top 10 enriched GO:BP terms, with 

dot size representing gene count per term and colour reflecting padj value. C) GSEA 

enrichment plot for the top 5 enriched GO:BP terms. The x-axis shows genes 

represented in each pathway, and the y-axis shows enrichment scores. 

A 

B 

C 
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4.3.8 GSEA GO MF and GO CC analysis show repression of antigen 

presentation pathways in recurrent ccRCC tumours 

Next, GSEA was performed with GO Molecular Function (MF) and Cellular 

Compartments (CC) terms to interrogate differentially expressed pathways from 

recurrent ccRCC tumours compared to non-recurrent controls. GSEA using the GO MF 

database illustrated that differentially expressed genes between recurrent and non-

recurrent ccRCC tumours are highly enriched with proteins involved in antigen 

presentation pathways for both DRS and PCS data. Amongst the top ten most enriched 

GO MF terms (by padj) from reference transcriptome-aligned DRS data, eight are related 

to MHC binding and antigen presentation pathways, including peptide antigen binding, 

immune receptor activity, antigen binding, MHC class II receptor activity, peptide binding, 

TAP binding, MHC protein complex binding and MHC class II protein complex binding 

(Figure 4.12A, Appendix table 7.7). GSEA GO MF also identified several significantly 

enriched and activated pathways, including extracellular matrix structure constituent and 

cadherin binding (Figure 4.12B). 

Similar results were observed when GSEA was conducted using the GO CC database, 

where the top 10 most enriched (by padj values) GO CC terms are all antigen presentation 

pathway related (Figure 4.13A, Appendix tables 7.9 – 10). Like findings from GO MF 

analysis, these enriched pathways were found to be significantly suppressed in the 

recurrent ccRCC tumours compared to non-recurrent tumours, as shown in the dot plots 

in Figure 4.12B and 4.13B, as well as GSEA enrichment plots in Figure 4.12C and 4.13C. 

GSEA GO MF and GO CC enrichment analysis demonstrated a potential differential 

antigenic landscape between recurrent and non-recurrent ccRCC tumours. The 

complete list of significantly enriched GO MF and GO CC terms for both DRS and PCS 

data can be found in Appendix tables 7.7 – 10.  
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Figure 4.12: Gene Ontology Molecular Function (GO:MF) GSEA for ccRCC 

recurrence associated differential gene expression 

A) GO:MF enrichment map showing top 10 enriched terms associated ccRCC 

recurrence associated differential gene expression profiled by reference 

transcriptome mapped DRS. B) Dot plot showing top 10 enriched GO:MF terms, with 

dot size representing gene count per term and colour refliecting padj value. C) GSEA 

enrichment plot for the top 4 enriched GO:MF terms. The x-axis shows genes 

represented in each pathway, and the y-axis shows enrichment scores. 

A 
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Figure 4.13: Gene Ontology Cellular Compartment (GO:CC) GSEA for ccRCC 

recurrence associated differential gene expression 

A) GO:CC enrichment map showing top 10 enriched terms associated ccRCC 

recurrence associated differential gene expression profiled by reference 

transcriptome mapped PCS. B) Dot plot showing top 10 enriched GO:CC terms, with 

dot size representing gene count per term and colour refliecting padj value. C) GSEA 

enrichment plot for the top 5 enriched GO:CC terms. The x-axis shows genes 

represented in each pathway, and the y-axis shows enrichment scores. 

A 

B 
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4.3.9 GSEA KEGG pathway enrichment analysis indicates differential 

lipid metabolism in recurrent ccRCC 

GSEA KEGG pathway analysis identified 9 and 26 significantly enriched pathways from 

the differentially expressed genes between recurrent and non-recurrent ccRCC tumours 

in reference transcriptome-aligned DRS and PCS, respectively. Similar to the results 

from previous GO BP, MF and CC analyses, many of the significantly enriched KEGG 

pathways are related to either Immune cell function (e.g. T cell receptor signalling 

pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation), or antigen processing 

and presentation related (Figure 4.14A). These pathways were significantly suppressed 

in the recurrent ccRCC tumours, as shown in the ridge plot in Figure 4.14B and from 

Appendix tables 7.11 and 12. Interestingly, the KEGG pathway ‘PD-L1 expression and 

PD-1 checkpoint pathway’ is also found to be significantly suppressed (NES = -1.994, 

padj = 6.21 x 10-3).  

The top enriched KEGG pathway activated in recurrent ccRCC tumours was ‘Fat 

digestion and absorption’. This pathway was significantly activated in both DRS and PCS 

data. Visualisation of pathway enrichment is shown in the ridge plot in Figure 4.14B. 

Amongst the core enriched genes, APOB (Apolipoprotein B) was previously identified as 

one of the most differentially upregulated genes in recurrent ccRCC tumours compared 

to non-recurrent tumours (Figure 4.5 C – D). Other differentially upregulated genes in the 

pathway include APOA4 (Apolipoprotein A4), PLPP2 (Phospholipid Phosphatase 2) and 

the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8.   
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Figure 4.14: KEGG pathways GSEA for ccRCC recurrence associated 

differential gene expression 

A) KEGG pathways enrichment map showing top 10 enriched pathways associated 

ccRCC recurrence associated differential gene expression profiled by reference 

transcriptome mapped PCS. B) Ridge plot of enriched KEGG pathways, with x axis 

showing enrichment distribution and ridge colour representing padj
 values. 

A 
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4.3.10 Hierarchical clustering identified a subset of non-

recurrent ccRCC with distinct T cell markers 

Next, to evaluate if suppression in T cell-associated immune pathways is a universal 

feature across all recurrent ccRCC tumours, hierarchical clustering of tumour samples 

was conducted using z-score normalised expression levels from genes in the GO BP 

gene set ‘T cell activation’ (n = 549). The clustering result demonstrated that samples 

did not separate into two groups based on their recurrent status. Notably, three non-

recurrent ccRCC tumours (273, 318, 320) displayed distinctive gene expression patterns 

compared to the rest of the tumour samples (Figure 4.15A). The other three non-

recurrent ccRCC tumours were clustered broadly with the six recurrent ccRCC tumours, 

with no clear characteristic gene expression patterns observed. 

To further evaluate the T cell characteristics of this sample group compared to other 

tumours, a 23-gene panel of CD8+ T cell exhaustion gene markers was selected based 

on existing literature (Wherry and Kurachi, 2015; Zheng et al., 2021). Intriguingly, 

hierarchical clustering using the CD8+ T cell exhaustion gene panel again resulted in the 

distinct clustering of the three non-recurrent ccRCC tumours (273, 318, 320) (Figure 

4.15B). These tumour samples were found to highly express T cell exhaustion markers, 

such as PDCD1, CTLA4, and LAG3, compared to the other tumours. Although GSEA 

GO MF and GO CC results demonstrated differential MHC expression profiles between 

non-recurrent and recurrent ccRCC, hierarchical clustering analysis using MHC 

signatures (GO:0042611) did not separate into clusters corresponding to recurrence 

status. Tumour samples 273, 318 and 320 also did not form a distinct group (Figure 4.16).   

Overall, hierarchical clustering results illustrated the heterogeneity in T cell immune 

activation status across ccRCC tumours, and a subset of non-recurrent ccRCC tumours 

display a distinct upregulated expression in CD8+ T cell exhaustion markers. It is 

important to note that since only 12 tumours were profiled, data here should be treated 

as preliminary findings. Additional validation cohorts will be needed to confirm findings 

here. 
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Figure 4.15: Hierarchical clustering analysis of T cell activation and exhaustion 

markers in ccRCC tumours  

A) Z-score hierarchical heatmap based on spearman rank correlations of gene 

expression levels of the Gene Ontology Biological Process (GO:BP) T cell activation 

(GO:0042110) genes (n = 549) in ccRCC tumour samples (n = 12), profiled by 

reference transcriptome mapped PCS. B) As in A, but for T cell exhaustion markers 

(n = 23).   
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Figure 4.16: Hierachical clustering analysis of MHC protein complex genes 

expression in ccRCC tumours 

Z-score hierarchical heatmap based on spearman rank correlations of gene 

expression levels of the Gene Ontology Cellular Compartment (GO:CC) MHC protein 

complex (GO:0042611) genes (n = 37) in ccRCC tumour samples (n = 12), profiled 

by reference transcriptome mapped PCS. 
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4.3.11 Recurrence of ccRCC is associated with lower tumour 

immune infiltration 

To explore the relationship between ccRCC recurrence and tumour immune infiltrate 

populations, the gene expression signature-based algorithm ESTIMATE (Estimation of 

Stromal and Immune cells in malignant tumour using expression data) was used to infer 

the abundance of immune cells and stromal cells in the TME (Yoshihara et al., 2013). 

No significant difference was observed between stromal scores of recurrent and non-

recurrent ccRCC tumours when DRS-generated gene expression data was used (Figure 

4.17A). Using PCS gene expression data, a borderline non-significant trend towards 

reduction in stromal score was found in recurrent ccRCC tumours compared to non-

recurrent samples (p = 0.619) (Figure 4.17B). ESTIMATE immune scores were 

significantly lower in recurrent ccRCC tumours compared to non-recurrent counterparts 

using PCS data (Figure 4.17D). DRS data displayed a borderline non-significant trend 

towards a decrease in immune score in recurrent ccRCC tumours (p = 0.0881) (Figure 

4.17C). A high degree of concordance was found between immune scores inferred by 

PCS or DRS expression data (R2 = 0.87, p = < 0.0001) (Figure 4.17I). ccRCC tumour 

purity levels (Combined stromal score and immune score results) were significantly lower 

in non-recurrent ccRCC tumours compared to recurrent ccRCC tumours when PCS gene 

expression data was analysed. In contrast, no significant difference was observed 

between recurrent and non-recurrent ccRCC tumours using DRS gene expression data. 

To further test the above findings, a second gene expression signature-based algorithm 

xCell was used to confirm the difference in the immune infiltrate abundance between 

recurrent and non-recurrent ccRCC tumours found by ESTIMATE. DRS and PCS data 

indicated a significantly lower immune score for recurrent ccRCC tumours than for non-

recurrent tumours (Figure 4.17G – H). Similar to the ESTIMATE immune scores, xCell 

immune scores generated from DRS and PCS were strongly correlated (R2 = 0.9714, p 

= < 0.0001) (Figure 4.17J).   
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  Figure 4.17: Estimation of stromal and immune cells in ccRCC tumours using 

DRS and PCS gene expression data 

A) Grouped dot plot showing estimated immune score of non-recurrent and recurrent 

ccRCC tumours by the ESTIMATE algorithm, using reference genome aligned DRS 

gene expression data. B) As in A, but with PCS. C) Grouped dot plot showing 

estimated stromal score of non-recurrent and recurrent ccRCC tumours by the 

ESTIMATE algorithm, using reference genome aligned DRS gene expression data. 

D) As in C, with PCS data used instead. E) Grouped dot plot showing estimated 

tumour purity of non-recurrent (blue) and recurrent (red) ccRCC tumours by the 

ESTIMATE algorithm, using reference genome aligned DRS gene expression data. 

F) As in E, but with PCS data. G) Grouped dot plot showing estimated immune score 

of non-recurrent (blue) and recurrent (red) ccRCC tumours by xCell algorithm, using 

reference genome aligned DRS gene expression data. H) As in G, with PCS data 

used instead. I) Correlation between ESTIMATE immune scores of non-recurrent 

(blue) and recurrent (red) ccRCC tumours, generated by DRS and PCS gene 

expression data. J) Correlation between xCell immune score of non-recurrent (blue) 

and recurrent (red) ccRCC tumours, generated by DRS and PCS gene data. For A – 

H, two-tailed unpaired T-tests with Welch’s correction were used, with p ≤ 0.05 

considered statistically significant. * ≤ 0.05, ** ≤ 0.01. P values of non-significant 

results are indicated in graphs. Centre line represents median for each group. For I – 

J, diagonal lines represent the line of best fit. R
2
 values were computed to measure 

goodness-of-fit, and P values generated from F-test, with p ≤ 0.05 considered 

statistically significant.  
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4.3.12 CD8+ T cell populations are depleted in recurrent ccRCC 

Having found that the quantity of tumour immune infiltrates was significantly lower in 

recurrent ccRCC tumours, the relationship between ccRCC recurrent status and immune 

cell-type profiles was next explored. To determine the relative proportions of different 

immune infiltrates, gene expression profiles (DRS and PCS) were analysed by the 

CIBERSORTx algorithm. Recurrent and non-recurrent ccRCC tumours showed 

substantial differences in immune infiltrate profiles. In non-recurrent ccRCC tumours, 

cytotoxic CD8+ T cells represented the largest proportion of immune infiltrates, followed 

by the immune suppressive M2 macrophages. On average, 41.4%/34.4% (DRS/PCS) of 

all immune infiltrates in non-recurrent ccRCC tumours were estimated to be CD8+ T cells. 

On average, M2 macrophages were estimated to represent 24.1%/27.4% (DRS/PCS) of 

immune infiltrates in non-recurrent ccRCC tumours (Figure 4.18 A – B).  

In recurrent ccRCC tumours, 17.8%/15.6% (DRS/PCS) of immune infiltrates on average 

were CD8+ T cells, a significantly lower proportion compared to non-recurrent ccRCC 

tumours (Figure 4.19 A – B). The cell type deconvolution tool EPIC found similar results, 

where a significant decrease in the proportion of CD8+ T cells in recurrent ccRCC 

tumours was observed with both DRS and PCS data (Figure 4.19 C – D). Estimated 

CD8+ T cell proportions from DRS and PCS are strongly correlated using CIBERSORTx 

and EPIC (Figure 4.19 E–F). Previously, hierarchical clustering results identified a cluster 

of non-recurrent tumours (318, 273, 320) showing a different expression profile of T cell 

activation markers and T cell exhaustion markers (Figure 4.15). PDCD1 (encodes for 

PD-1) and TOX (Thymocyte selection associated high mobility group box) are 

established exhaustion signatures, with their expression levels positively correlated with 

levels of CD8+ T cell exhaustion (Zheng et al., 2021). The expression levels of PDCD1 

and TOX (Normalised counts from reference genome mapped PCS) significantly 

correlated with the proportion of CD8+ T cell population in the tumours. Furthermore, 

tumours 318, 273 and 320, previously clustered using T cell exhaustion markers (Figure 

4.15), were shown with distinctly high proportion of CD8+ T cells (Figure 4.19 G – H).  
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Figure 4.18: Immune infiltration landscape in ccRCC tumours estimated with 

CIBERSORT 

A) Stacked bar chart showing averaged cell type composition of tumour infiltrating 

immune cells in non-recurrent and recurrent ccRCC tumour samples, analysed by 

CIBERSORT using reference transcriptome aligned DRS gene expression data. B) 

As in A, but with PCS gene expression data. 

Non-relapse Relapse
0.0

0.2

0.4

0.6

0.8

1.0

CIBERSORT
PCR-cDNAseq

ccRCC tumours

B cells naive

B cells memory

Plasma cells

T cells CD8

T cells CD4 naive

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

T cells gamma delta

NK cells resting

NK cells activated

Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells resting

Dendritic cells activated

Mast cells resting

Mast cells activated

Eosinophils

Neutrophils

Non-recurrent Recurrent

Non-relapse Relapse
0.0

0.2

0.4

0.6

0.8

1.0

CIBERSORT
Direct RNAseq

ccRCC tumours

Non-recurrent Recurrent

A 

B 



195 
 

   

Non-re
cu

rre
nt

Rec
urre

nt
0.0

0.2

0.4

0.6

0.8

CIBERSORT
PCR-cDNAseq
CD8+ T cells

✱

Non-re
cu

rre
nt

Rec
urre

nt

✱

Non-re
cu

rre
nt

Rec
urre

nt

✱✱

Non-re
cu

rre
nt

Rec
urre

nt

✱✱

A B C D 

E F 

T
O

X
N

o
rm

a
lis

e
d

 c
o

u
n

ts
P

C
R

-c
D

N
A

se
q

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

PDCD1 (PD-1)

CD8+ T cells
Immune fraction

CIBERSORTx

P
D

C
D

1
N

o
rm

al
is

ed
 c

o
u

n
ts

P
C

R
-c

D
N

A
se

q 273

318

320

R2 = 0.7258
p   = 0.0004

G H 

Im
m

u
n

e
 c

e
ll

s 
fr

ac
ti

o
n

D
ir

e
ct

 R
N

A
se

q

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

EPIC
CD8+ T cells

Total cell fraction
PCR-cDNAseq

R2 = 0.9714
  P  = <0.0001

273

318

320



196 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For other immune cell types, CIBERSORTx and EPIC presented conflicting results. For 

M2 macrophages, CIBERSORTx estimated an average proportion of 29.3/39.5% 

(DRS/PCS) immune infiltrates in recurrent ccRCC tumours (Figure 4.20 A – B). Like 

other Macrophage subtypes (M0, M1), the M2 macrophage proportions were not 

changed significantly. In contrast, EPIC estimated a significant decrease in the 

proportions of the macrophage population in recurrent tumours (Figure 4.20 C–D). 

CIBERSORTx estimated a substantial drop for activated NK cells using PCS, but only 5 

out of 12 samples could identify the cell type using DRS (Figure 4.20 E-F). Similarly, NK 

cells were only detected in 2 samples using EPIC (Figure 4.20 G-H). 

  

Figure 4.19 Depletion in CD8+ T cells in recurrent ccRCC tumours compared to 

non-recurrent CRCC tumours 

A) Grouped dot plot showing relative population of CD8+ T cells within immune 

infiltrates of non-recurrent (blue) and recurrent (red) ccRCC tumours estimated by 

CIBERSORT using reference genome aligned PCS data. B) As in A, but with DRS 

data. C) Grouped dot plot showing proportions of CD8+ T cells within immune 

infiltrates of non-recurrent and recurrent ccRCC tumours estimated by EPIC, using 

reference genome aligned PCS data. D) As in C, but with DRS. E) Correlation 

between CIBERSORT estimated CD8+ T cells fraction amongst immune infiltrates in 

non-recurrent (blue) and recurrent (red) ccRCC tumours, generated by DRS and PCS 

gene expression data. F) Correlation between EPIC estimated CD8+ T cells fraction 

amongst immune infiltrates in non-recurrent and recurrent ccRCC tumours, 

generated by DRS and PCS gene expression data. G) Correlation between 

normalised expressions of TOX from reference genome mapped PCS and 

proportions of CD8+ T cells within immune infiltrates of ccRCC tumours estimated by 

CIBERSORT. H) As in G, but for PDCD1. For A – D, two-tailed unpaired T-tests with 

Welch’s correction were used, with p ≤ 0.05 considered significant. * ≤ 0.05, ** ≤ 0.01. 

Centre line represents median for each group. For E – H, diagonal lines represent the 

line of best fit. R
2
 values were computed to measure goodness-of-fit, and P values 

generated from F-test, with p ≤ 0.05 considered statistically significant.  
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Figure 4.20: Estimation of Macrophage and NK cell fractions in immune 

infiltrates of ccRCC tumours by CIBERSORT and EPIC 

A) Grouped dot plot showing proportions of M2 Macrophages within immune 

infiltrates of non-recurrent (blue) and recurrent (red) ccRCC tumours, estimated by 

CIBERSORT using reference genome aligned PCS gene expression data. B) As in 

A, but with reference genome aligned DRS gene expression data.  

C) Grouped dot plot showing proportions of Macrophages within immune infiltrates of 

non-recurrent and recurrent ccRCC tumours, estimated by EPIC using PCS data. D) 

As in C, but with DRS data. E) Grouped dot plot showing proportions of activated NK 

cells within immune infiltrates of non-recurrent and recurrent ccRCC tumours, 

estimated by CIBERSORT using PCS data. F) As in E but with DRS. G) Grouped dot 

plot showing proportions of NK cells within immune infiltrates of non-recurrent and 

recurrent ccRCC tumours, estimated by EPIC using PCS data. H) As in G but with 

DRS gene expression data. Throughout, two-tailed unpaired T-tests with Welch’s 

correction were used, with p ≤ 0.05 considered statistically significant. * ≤ 0.05, ** ≤ 

0.01. P values of non-significant results are indicated in graphs. Centre line 

represents median for each group. 
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4.3.13 Identification of ccRCC recurrent associated differential 

transcript isoform usage events 

After identifying genes that undergo differential expression in recurrent ccRCC tumours, 

differential transcript usage analysis was carried out using a bioinformatic pipeline 

integrating DRIMseq and DEXseq (Love et al., 2018). Analysis results from PCS data 

identified six genes that displayed isoform switching in recurrent ccRCC tumours 

compared to non-recurrent tumours (Figure 4.21A). These genes include EFHC2 (EF-

hand domain containing 2), ABI1 (Abl interactor 1), NRP2 (Neuropilin 2), CMC1 (C-X9-

C motif containing 1), MIB2 (MIB E3 Ubiquitin protein ligase 1), and ST6GALNAC6 (ST6 

N-Acetylgalactosaminide alpha-2,6-Sialyltransferase 6). All six genes were identified by 

DRIMseq, amongst which three genes (CMC1, MIB2, ST6GALNAC6) were also 

identified by DEXseq (Figure 4.21B). CMC1 was used as an example to demonstrate 

detected DTU events in recurrent ccRCC tumours. 

CMC1 encodes for a mitochondrial protein which regulates the assembly of cytochrome 

c oxidase, or complex IV (Bourens and Barrientos, 2017). PCS gene expression data 

(reference transcriptome aligned) demonstrated that whilst not labelled as a significant 

DEG, expression levels of CMC1 are lower in recurrent ccRCC tumours compared to 

non-recurrent ccRCC (Log2FoldChange = -1.20, padj = 0.0743) (Figure 4.21C). Four 

CMC1 transcript isoforms were mapped in PCS data (Figure 4.21 E- F). In non-recurrent 

ccRCC tumours, average proportions for ENST00000423894, ENST00000466830, 

ENST00000468330 and ENST00000495428 were 0.140, 0.312, 0.206 and 0.342, 

respectively. In contrast, for recurrent ccRCC, the average proportions were 0.338, 0.553, 

0.0321 and 0.0765 (Figure 4.21D). The shift in transcript usage was shown visually by 

the IGV coverage tracks after reference genome alignment. Combined coverage tracks 

from PCS data demonstrate a proportional drop in coverage where the arrows are 

highlighted (Figure 4.21F), which correlates with the decreased expression of 

ENST00000468330 in recurrent ccRCC. The same observation was also found in DRS 

data, albeit with non-significant DRIMseq and DEXseq p values (padj = 1) (Figure 4.21G). 
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Focusing on ENST00000423894 and ENST00000466830, the two transcripts differ in 

their exon two inclusion/skipping and their 3’ ends, where ENST00000466830 has a 

substantially longer 3’ UTR (Figure 4.21E). Although both transcripts were mapped 

across the tumour samples, the coverage track shows that most reads adopt the short 

3’UTR structure of ENST00000423894 (or ENST00000495428). This indicates that the 

decision by minimap2 to assign reads between the isoforms lies in the coverage of exon 

2, despite the 3’UTR of ENST00000466830 being 5500nt long and exon 2 being 90nt in 

length.  

 

 

 

Figure 4.21: DTU analysis using ONT PCS identifies isoform switching events 

associated with ccRCC recurrence  

A) Bar graph showing the number of genes that display significant differential 

transcript usage (padj ≤ 0.1) between recurrent and non-recurrent ccRCC tumours, as 

analysed by DRIMseq and DEXseq using reference transcriptome aligned PCS data. 

B) Venn diagram showing the overlaps of DRIMseq and DEXseq identified genes that 

display DTU between recurrent and non-recurrent ccRCC tumours. C) Grouped dot 

plot showing PCS DESeq2 normalised CMC1 gene expression in non-recurrent 

(blue) and recurrent (red) ccRCC tumours. D) Stack bar graphs representing 

proportions of CMC1 isoforms in ccRCC tumours using PCS data. DRIMseq and 

DEXseq padj values for DTU of CMC1 are indicated in graph. E) Graphical 

representation of CMC1 transcripts Ensembl reference annotations (Ensembl release 

105, GRCh38) in Integrated genomics viewer (IGV). F) IGV visualisation of combined 

PCS reads coverage tracks for non-recurrent (blue) and recurrent (red) ccRCC 

tumours at CMC1 locus. Locations of exon exclusion events by recurrent ccRCC are 

highlighted by arrows. G) IGV visualisation of combined DRS reads coverage tracks 

for non-recurrent (blue) and recurrent (red) ccRCC tumours at CMC1 locus. For C, 

padj value was generated by Wald test followed by Benjamini-Hochberg correction. 

padj value was indicated in graph. Centre line represents median for each group. 
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Figure 4.22: DTU analysis revealed ccRCC reccurrence associated DTU of RBIS 

A) Grouped dot plot showing DRS DESeq2 normalised RBIS gene expression in non-

recurrent (blue) and recurrent (red) ccRCC tumours. B) Stack bar graphs 

representing proportions of RBIS isoforms in ccRCC tumours using DRS data. 

DRIMseq and DEXseq padj values for DTU of RBIS are indicated in graph. C) 

Graphical representation of RBIS transcripts Ensembl reference annotations 

(Ensembl release 105, GRCh38) in Integrated genomics viewer (IGV). D) IGV 

visualisation of combined DRS reads coverage tracks for non-recurrent (blue) and 

recurrent (red) ccRCC tumours at RBIS locus. Locations of exon exclusion events by 

recurrent ccRCC are highlighted by arrows. E) IGV visualisation of combined PCS 

reads coverage tracks for non-recurrent (blue) and recurrent (red) ccRCC tumours at 

RBIS locus. For A, padj value was generated by Wald test followed by Benjamini-

Hochberg correction by DESeq2. padj value was indicated in graph. Centre line 

represents median for each group. 
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For DRS, only one gene (RBIS, Ribosomal biogenesis factor) showed significant 

differential transcript usage by DRIMseq and DEXseq. RBIS showed no differential 

expression between recurrent and non-recurrent ccRCC tumour samples 

(Log2FoldChange = -0.2017, padj = 0.9896). On average, recurrent ccRCC express a 

higher level of ENST0000612977 at 27.1%, compared to non-recurrent ccRCC tumours 

at 7.953% (Figure 4.22B). The isoform switching event was visually assessed by DRS 

IGV coverage tracks (reference genome aligned), with the arrow indicating the unique 5’ 

region ENST00006162977 encodes for (Figure 4.22D). This DTU event was also visible 

in PCS. Reference genome-aligned PCS IGV coverage tracks showed higher coverage 

of the ENST00006162977 exclusive 5’ region for recurrent ccRCC tumour samples 

(Figure 4.22E).  

Finally, survival analysis using TCGA KIRC CMC1 and RBIS mRNA expression and 

patient data shows that high CMC1 and low RBIS expression in ccRCC tumours 

significantly correlate with better overall survival (Figure 4.23A – B). No transcript-level 

expression data was available to construct isoform-specific survival analysis. 
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Figure 4.23: Kaplan-Meier survival curves of high- and low- CMC1 and RBIS 

expression in TCGA KIRC cohort 

A) Kaplan-Meier survival curve of overall survival in TCGA KIRC cohort patients (n = 

510), with patients grouped by high- (red, n = 255) and low-CMC1 (blue, n = 255) 

expression groups based on median gene expression. B) As in A, but for RBIS.   

Throughout, p-values were calculated using log-rank (Mantel-Cox) test, with p ≤ 0.05 

considered statistically significant. 
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4.3.14 Reference-guided transcriptome assembly from read 

alignments identified novel isoforms from ccRCC tumours 

To systematically identify sequencing reads representing unannotated novel transcript 

isoforms, transcriptome assembly pipeline StringTie2 and FLAIR were performed using 

reference genome-aligned PCS data. In brief, read alignments were ‘collapsed’ after 

alignment to the reference genome into high-confidence isoforms that explain the 

alignments. Next, isoforms were collated and compared to reference gene annotation by 

gffcompare, which assigns a class code depending on their relationship with the closest 

matching reference isoform (Figure 2.1). Analysis of gffcompare results from StringTie2 

and FLAIR showed that thousands of mapped reads in PCS represent novel isoforms.  

For StringTie2, 32.19% (17160 isoforms) of assembled transcripts represent ‘known 

transcripts’, with matched intron/exon junctions with at least one reference transcript 

annotation. 64.62% (34450 isoforms) of assembled transcripts represent ‘novel 

transcripts’. Most novel transcripts have a gffcompare class code of ‘j’ (40.58% of all 

assembled transcripts). ‘j’ indicates a multi-exon transcript with at least one matched 

exon junction with the reference transcript annotation, thus likely to be a novel spliced 

variant. Another source of novel spliced variants were classed as ‘k’ (3.25% of all 

assembled transcripts), where the assembled transcript contains all elements of a 

reference transcript annotation but with additional sequence/exons compared to the 

reference. ‘m’ and ‘n’ are assembled transcripts with retained introns. They represent 

3.73% and 3.60% of all assembled transcripts. 7.41% of all StringTie2 assembled 

transcripts were classed as ‘o’, which share exonic structure with existing reference 

transcript annotation but not completely. ‘o’ represents another source of novel spliced 

variants or isoforms with alternative polyadenylation sites. The final major source of novel 

transcripts is ‘x’ (4.34% of all StringTie2 assembled PCS transcripts), where the 

transcript sequence overlaps with reference transcript annotation but on the opposite 

strand. ‘x’ represents a potential anti-sense transcript that is currently not in the reference 

transcript annotation (Table 4.3). 
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Figure 4.24: Novel transcripts identification by StringTie2 and FLAIR 

transcriptome assembly using ccRCC tumours PCS data 

A) Bar chart representing proportion of StringTie2 assembled transcripts from PCS 

of ccRCC tumours that represent ‘known transcripts’, ‘novel transcripts’ and ‘potential 

artefacts’, compared to Ensembl gene annotation (GRCh38, release version 105) 

using gffcompare. B) As in A, but for FLAIR assembled transcripts.  

Known: '=', ‘c’; Novel: ‘j’,’k’,’m’,’n’,’i’,’o’,’x’,’y’; Potential artefacts: ‘p’,’e’,’s’,’r’,’u’. 

A B 

Table 4.3: Classification of assembled transcript isoforms predicted by 

StringTie2 and FLAIR  

Statistics related to StringTie2 and FLAIR identified transcripts and corresponding 

transcript classification code compared to Ensembl gene annotation (GRCh38, 

release version 105) using gffcompare. 
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Compared with StringTie2 assembly, FLAIR transcriptome assembly with PCS data 

resulted in far higher numbers of known and novel transcripts. For FLAIR assembly, 

22.28% of all assembled transcripts (49687) are ‘known transcripts’. 74.36% of FLAIR 

assembled transcripts (161839) are novel transcripts. Similar to StringTie2, most novel 

transcripts have a class code of ‘j’ (112476, 50.4% of all assembled transcripts), 

representing potential splice variants. A higher number of retained introns transcripts 

(both ‘m’ and ‘n’, 7490 and 22162) were discovered in FLAIR assembly compared to 

StringTie2 (Table 4.3, Figure 4.26B – C). 

Whilst the number of ‘known transcripts’  identified by StringTie2 and FLAIR transcript 

assembly were dwarfed by the number of novel transcripts (Figure 4.24), the number of 

assembled ‘known transcripts’ were substantially lower than the number of uniquely 

mapped transcript isoforms when PCS data was aligned to the reference transcriptome. 

When reads generated from PCS of ccRCC tumours were aligned to the reference 

transcriptome, a total number of 26,070 unique genes were mapped (Figure 3.15B). At 

the transcript isoform levels, 124,741 unique transcript isoforms from the Ensembl 

reference annotation were mapped. In comparison, only 17160 and 49687 StringTie2 

and Flair ‘known transcripts’ were reconstructed (Figure 4.26A). Comparing the total 

number of unique transcripts, FLAIR identified a higher number of unique transcripts 

(222,977) than the total number of reference transcriptome-mapped transcripts. 

However, even when combined with novel transcripts, StringTie2 had a lower number of 

identified unique transcripts (53,222) than the total number of reference transcriptome-

mapped unique transcripts.  
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Figure 4.25: Characterisation of StringTie2 and FLAIR assembled transcripts  

A) Bar chart representing the number of unique transcripts mapped by minimap2 

using reference transcriptome (Ensembl release 105, cDNA reference), ‘Known’ 

StringTie2 assembled transcripts and ‘Known’ FLAIR transcripts from PCS of ccRCC 

tumours. B) Pie chart depicting the proportions of gffcompare classes of novel 

transcripts (compared to Ensembl gene annotation (GRCh38, release version 105)) 

from StringTie2 assembled ccRCC tumour transcriptomes (PCS). C) As in B, but for 

FLAIR. Known: '=', ‘c’; Novel: ‘j’,’k’,’m’,’n’,’i’,’o’,’x’,’y’. 

A 
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4.3.15 Characterisation of a novel CTLA4 isoform with an 

alternative 3’UTR structure 

With a large amount of potential novel transcripts in the sequencing data, a particular 

focus was put on immune checkpoints that play an essential role in modulating tumour 

immunity. CTLA4 is an immune checkpoint receptor expressed in T cells. Upon 

engagement with CD80/CD86 molecules at the surface of antigen-presenting cells, 

CTLA4 negatively regulates T cell activation (Kalbasi and Ribas, 2020). CTLA4 

transcripts were identified across the sequenced ccRCC tumours by DRS and PCS, as 

shown by the IGV reads coverage track (Figure 4.26A – B). Coverage tracks were next 

compared to the Ensembl gene annotation. The majority of CTLA4 locus-mapped 

transcripts matches the ‘full length’ CTLA4 transcript (ENST00000648405), indicated by 

the coverage of transcripts throughout the full-length 3’UTR structure (Figure 4.26A - C). 

FLAIR assembly identified three novel CTLA4 transcripts. The first novel FLAIR 

transcript resembles the ‘full length’ CTLA4 transcript but with a retained intron between 

exon 2 and 3. The second FLAIR transcript resembles the ‘full length’ CTLA4, with exon 

3 exclusion. Finally, the third novel FLAIR transcript has a short 3’UTR that matches the 

reference transcript ENST00000648406 (Figure 4.26D).  

Looking at the gene coverage tracks and the visual evidence from aligned reads, many 

CTLA4 locus-mapped transcripts were found with a short 3’UTR (chr2:203867771 - 

203872856) compared to the ‘full length’ CTLA4. Raw reads of both ‘full-length CTLA4’ 

(ENST00000648405) and the ‘short 3’UTR CTLA4’ transcripts can be seen in Figure 

4.26F. Focussing on the 3’UTR region, the ‘short 3’UTR’ reads were found to have a 3’ 

transcript end 100nt and 140nt away from the closest annotated transcripts (Figure 4.27B 

- D). The short 3’UTR FLAIR assembled transcript has adopted the 3’UTR structure of 

the reference annotation, which has a 3’ end that is 100nt 5’ upstream compared to the 

sequencing reads (Figure 4.27E). StringTie2 did not report any transcript isoforms with 

a short 3’UTR (Figure 4.26E, 4.27E).    
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Figure 4.26: Identification of novel CTLA4 isoform from ccRCC tumours  

A) IGV visualisation of combined DRS reads coverage track (Blue) for all sequenced 

ccRCC tumours in the region of the CTLA4 gene. B) IGV visualisation of of combined 

PCS reads coverage track (Red) for all sequenced ccRCC tumours in the region of 

the CTLA4 gene. C) Graphical representation of CTLA4 transcripts from Ensembl 

reference annotations (Ensembl release 105, GRCh38). D) Graphical representation 

of CTLA4 transcripts from FLAIR transcriptome assembly annotation. E) Graphical 

representation of CTLA4 transcripts from StringTie2 transcriptome assembly 

annotation. F) IGV visualisation of combined PCS raw read alignment tracks at 

CTLA4 locus. Reads were representing ‘full length’ CTLA4 transcripts 

(ENST00000648405) and ‘Short 3’UTR’ CTLA4 transcripts are grouped separately. 

DRS 

PCS 

Ensembl 

reference 

FLAIR 

annotation 

StringTie2 

annotation 

CTLA4 

ENSG00000163599 
5’ 3’ 

PCS raw 

reads 

Full length 

CTLA4 

Short 3’UTR 

CTLA4 

A 

B 

C 

D 

E 

F 



209 
 

  

DRS 

PCS 

Ensembl 

reference 

FLAIR 

reference 

StringTie2 

reference 

CTLA4-204 

(ENST00000648405) 
1,997 bp 

5’ 3’ 

100nt 140nt 

Figure 4.27: Long-read sequencing allows accurate annotation of novel CTLA4 

transcript isoforms at high-resolution  

A) Graphical representation of CTLA4 transcript (ENST00000648405) Ensembl 

reference gene annotation (GRCh38). B) IGV visualisation of combined DRS reads 

coverage track (Blue) for all sequenced ccRCC tumours in the region of 

ENST00000648405 3’ end (hg38 chr2:203867771:203873965). Black arrow 

indicates the 3’ end of CTLA4 ‘short 3’UTR’ transcripts. C) IGV visualisation of of 

combined PCS reads coverage track (Red) for all sequenced ccRCC tumours in the 

region of ENST00000648405 3’ end. D) Graphical representation of the 3’end region 

of CTLA4 transcripts from Ensembl reference gene annotations (GRCh38). E) 

Graphical representation of the 3’ ends of CTLA4 transcripts (orange) from FLAIR 

transcriptome assembly annotation. F) Graphical representation of the 3’ ends of 

CTLA4 transcripts (green) from StringTie2 transcriptome assembly annotation. 
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4.3.16 Identification and validation of a novel soluble PD-L1 

transcript isoform in ccRCC tumours 

PD-L1 is another crucial immune checkpoint that is critical in regulating tumour immunity. 

A soluble PD-L1 isoform (truncated with exon 5, 6, 7 absent) has recently been described 

in the literature (Figure 4.28F) (Ng et al., 2019). Expression of soluble PD-L1 is now 

associated with disease prognosis and immunotherapy treatment outcomes(Han et al., 

2021; Vajavaara et al., 2021). To characterise the soluble PD-L1 expression levels in the 

ccRCC tumours, reference genome aligned DRS and PCS IGV coverage tracks were 

visually inspected and compared with the Ensembl gene annotation, as well as using 

FLAIR and StringTie 2 assembled transcriptomes.  

The majority of PD-L1 transcripts aligned with an isoform (ENST0000381577) that 

encodes for membrane PD-L1 (Figure 4.28A – B). The transcript for soluble PD-L1 is not 

registered in the Ensembl gene annotation, but it has been described in the NCBI 

GenBank database (NM_001314029) (Figure 4.28F). Another transcript in the Ensembl 

gene annotation (ENST00000474218) partially overlaps with soluble PD-L1 transcript, 

and it has been used as a surrogate for mapping soluble PD-L1 (Ng et al., 2019) (Figure 

4.28F). FLAIR identified two novel transcripts resembling soluble PD-L1 transcript 

(where one of the transcripts displayed exon 2 skipping), whereas StringTie2 assembled 

a transcript corresponding to the ‘surrogate’ soluble PD-L1 transcript from the Ensembl 

gene annotation (ENST00000474218).  

Upon closer inspection of the raw reads, two different soluble PD-L1 isoforms with 

varying 3’UTR lengths were found (Figure 4.28G, 4.29D). The novel soluble PD-L1 

isoform has an extra 100nt of 3’UTR compared to the annotated soluble PD-L1 transcript 

isoform. Graphical representation of the exon4/3’UTR structures for the membrane, 

soluble and novel soluble PD-L1, can be found in Figure 4.29A. IGV coverage tracks and 

evidence from raw reads track showed that the novel soluble PD-L1 isoform could be 

seen by both DRS and PCS (4.29B – D). Comparing the assembled transcripts from 

FLAIR and StringTie2, the FLAIR soluble PD-L1 transcripts have a 3’UTR representing 
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the known soluble PD-L1 transcripts with a short 3’UTR (Figure 4.29F). In contrast, the 

StringTie2 assembled transcript represents the 3’UTR structure of the novel soluble PD-

L1 transcript (Figure 4.29G). However, the StringTie2 soluble transcript retained the 

‘surrogate’ soluble PD-L1 transcript structure, with exons 1, 2 and 3 missing/truncated 

(Figure 4.28E).  

Next, the expression levels of membrane PD-L1 and the soluble PD-L1 transcripts were 

profiled. The number of reads mapped to each isoform-specific region was registered for 

all tumour samples and subsequently normalised to the library size (expressed as TPM). 

The expression levels of membrane PD-L1 transcripts were significantly lower in the 

recurrent ccRCC tumours compared with non-recurrent tumours (Figure 4.29H). In 

contrast, neither short 3’UTR nor long 3’UTR soluble PD-L1 transcripts showed 

significant differences in expression levels between recurrent and non-recurrent ccRCC 

tumours (Figure 4.29I – J). qRT-PCR analysis was next performed using primer pairs 

specifically targeting membrane PD-L1 transcripts, soluble PD-L1 transcripts (both 

isoforms) and novel soluble PD-L1 transcripts. Whilst no significant differential 

expression of the PD-L1 transcripts was found between recurrent and non-recurrent 

ccRCC tumours, their expression in the ccRCC tumours was validated, including the 

novel soluble isoform (Figure 4.29L – M).  
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Figure 4.28: Long-read sequencing enable detection of soluble PD-L1 

expression in ccRCC tumours 

A) IGV visualisation of combined DRS reads coverage track (Blue) for all sequenced 

ccRCC tumours in the region of the PD-L1 gene. B) IGV visualisation of combined 

PCS reads coverage track (Red) for all sequenced ccRCC tumours in the region of 

the PD-L1 gene. C) Graphical representation of PD-L1 transcripts from Ensembl 

reference annotation (GRCh38) D) Graphical representation of PD-L1 transcripts 

(orange) from FLAIR transcriptome assembly annotation. E) Graphical representation 

of PD-L1 transcripts (green) from StringTie2 transcriptome assembly annotation. F) 

Graphical representation of PD-L1 transcript ENST00000381577 (membrane PD-L1) 

from Ensembl reference annotations and NM_001314029 (soluble PD-L1) from NCBI 

GenBank reference database. G) IGV visualisation of PCS coverage track and 

combined PCS raw read alignment tracks at PD-L1 locus. Reads representing 

Soluble PD-L1 and membrane PD-L1 transcripts (ENST00000381577) are grouped 

separately. 
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  Figure 4.29: Identification and validation of a novel soluble PD-L1 transcript 

expressed in ccRCC tumours 

A) Graphical representation of PD-L1 transcript isoforms structures near the exon 4 

region (hg38 chr9:5450542 – 5463350), with exonic and UTR regions for ‘membrane 

PD-L1’, ‘soluble PD-L1’ and ‘novel soluble PD-L1’ highlighted. B) IGV visualisation of 

combined DRS reads coverage track (Blue) for all sequenced ccRCC tumours at PD-

L1 locus between hg38 chr9:5450542 – 5463350. C) IGV visualisation of combined 

PCS reads coverage track (Red) for all sequenced ccRCC tumours at PD-L1 locus 

between hg38 chr9:5450542 – 5463350. D) IGV visualisation of combined PCS raw 

read alignment tracks at PD-L1 locus. Reads representing soluble PD-L1 

(NM_001314029) and novel soluble PD-L1 transcripts with elongated 3’UTRs are 

separately shown. E) Graphical representation of PD-L1 transcripts from Ensembl 

reference annotation (GRCh38) at PD-L1 locus between chr9:5450542 – 5463350. 

F) As in E, but for ccRCC PCS FLAIR transcriptome assembly annotation. G) As in 

F, but for StringTie2 transcriptome assembly annotation. H) Grouped dot plot showing 

PCS normalised membrane PD-L1 (defined by reads mapping to chr9:5,468,000 – 

5,470,600) transcript isoform expression (RPM) in non-recurrent (blue) and recurrent 

(red) ccRCC tumours. I) Grouped dot plot showing PCS normalised soluble PD-L1 

(defined by reads mapping to chr9:5,462,830 – 5,463,330 and not a membrane PD-

L1 transcript) transcript isoform expression (RPM) in non-recurrent (blue) and 

recurrent (red) ccRCC tumours. J) Grouped dot plot showing PCS normalised novel 

soluble PD-L1 (defined by reads mapping to chr9: 5,463,280 – 5,463,330 and not a 

membrane PD-L1 transcript) transcript isoform expression (RPM) in non-recurrent 

and recurrent ccRCC tumours. K) Membrane PD-L1 mRNA levels measured by qRT-

PCR in non-recurrent and recurrent ccRCC tumours (n = 12), relative to average 

membrane PD-L1 mRNA levels in non-recurrent ccRCC tumours. Membrane PD-L1 

mRNA levels were normalised to GAPDH. L) As in K, but for soluble PD-L1 transcripts 

(all soluble isoforms), M) as in L, but for novel soluble PD-L1 transcripts (Long 

3’UTR). For H – M, two-tailed unpaired T-tests with Welch’s correction were used, 

with p ≤ 0.05 considered significant. P values of non-significant results are indicated 

in graphs. Centre line represents median for each group. 
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4.3.17 Long-read RNA sequencing allows accurate inference of 

IDO1 isoforms  

IDO1 (Indoleamine 2,3-dioxygenase 1) is an immune checkpoint protein that modulates 

immune response through the catabolism of tryptophan in the tumour environment. IDO1 

is overexpressed in tumour cells across many cancer types, including ccRCC (Lucarelli 

et al., 2019). Here, most IDO1 transcripts profiled by DRS and PCS of ccRCC tumours 

were mapped to the protein-coding ENST00000253237 (IDO1-202). However, coverage 

tracks from sequencing data revealed that the 3’UTR of most of the expressed IDO1 

transcripts matches that of ENST0000253513 (IDO-201), which was annotated as a 

nonsense-mediated decay (NMD) transcript due to exon 5 skipping and the presence of 

a premature stop codon (Figure 4.30A-C). FLAIR identified a novel transcript (highlighted 

with an asterisk) which has the 3’UTR structure of the NMD transcript but without exon 

5 skipping (Figure 4.30D). StringTie2 did not report any assembled transcripts with the 

short 3’UTR structure of the NMD transcript (Figure 4.30E).  

Looking at the reference genome aligned reads from PCS of ccRCC tumours, both exon5 

included, and exon skipped IDO1 transcripts exhibited the two 3’UTR structures (Figure 

4.30F). This result highlighted the ability of long-read RNA sequencing to distinguish 

reads between different transcript isoforms. Moreover, it also demonstrated the potential 

of misattribution in the reference gene annotation, which can significantly impact any 

bioinformatics-based study.  
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  Figure 4.30: Short 3’UTR is not a hallmark for exon 5 skipping events for IDO1  

A) Graphical representation of the protein coding IDO1 transcript 

(ENST00000253237, IDO1-202) and nonsense mediated decay IDO1 transcript 

(ENST00000253513, IDO1-201) from Ensembl reference gene annotations 

(GRCh38). Exon numbers are indicated above IDO1-202. B) IGV visualisation of 

combined DRS reads coverage track (Blue) for all sequenced ccRCC tumours in the 

region of the IDO1 gene. C) IGV visualisation of of combined PCS reads coverage 

track (Red) for all sequenced ccRCC tumours in the region of the IDO1 gene. D) 

Graphical representation of IDO1 transcripts (orange) from FLAIR transcriptome 

assembly annotation. Asterisk highlights novel non-NMD IDO1 transcript with short 

3’UTR E) Graphical representation of IDO1 transcripts (green) from StringTie2 

transcriptome assembly annotation. F) IGV visualisation of combined PCS raw read 

alignment tracks at IDO1 locus. Reads representing transcripts with exon 5 inclusion 

and exon 5 eskpping are separately shown. G) Graphical representation of the 3’end 

region of IDO1 transcripts (ENST00000253237 and ENST00000253513) from 

Ensembl reference gene annotations (GRCh38). H) IGV visualisation of combined 

DRS reads coverage track for all sequenced ccRCC tumours in the region of 

ENST00000253237 and ENST00000253513 3’ end (hg38 chr8 39913891: 

39928790). I) IGV visualisation of combined PCS reads coverage track for all 

sequenced ccRCC tumours in the region of the 3’ end of ENST00000253237 and 

ENST00000253513 (chr8 39913891: 39928790). 
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4.3.18 Identification of a novel CD24 transcript from ccRCC 

tumours 

CD24 is an anti-phagocytic immune checkpoint protein that shields tumour cells from 

macrophages when over-expressed (Barkal et al., 2019). CD24 was expressed in all 

ccRCC tumours by DRS and PCS, where most transcripts displayed a 3’UTR structure 

that matches ENST00000619133 and ENST00000606017 (Figure 4.31A – C). Curiously, 

both DRS and PCS coverage tracks and raw reads tracks showed the presence of CD24 

transcripts with a shorter 3’UTR compared to ENST00000619133 and 

ENST00000606017 (Figure 4.31B-C, F).  

FLAIR assembled transcripts from PCS data showed several novel transcripts with the 

short 3’UTR (Figure 4.31D). However, the 5’ ends of these novel transcripts were not 

represented at notable levels in the transcriptomic mapping data, as shown in the 

coverage tracks (Figure 4.31B – C). StringTie2 assembled transcripts were adopted from 

the reference annotations of ENST00000606017 and ENST00000619869 and overall 

showed no novel transcripts (Figure 4.31E). 

Next, focussing on the 3’ end of the short CD24 3’UTR, reference-genome aligned reads 

showed that the short 3’UTR ends at chr6:106971300, which is 60 nt away from the next 

closest Ensembl annotated reference transcript (ENST00000620405, 

ENST00000610952). The assembled transcripts from FLAIR and StringTie2 with short 

3’UTRs displayed the same 3’end positions as ENST00000619869, which were 

approximately 60nt 5’ upstream from the aligned reads’ 3’end (Figure 4.31I-J). In 

summary, a novel CD24 transcript with a previously unannotated 3’UTR structure has 

been discovered from ccRCC tumours using DRS and PCS. Transcriptome assembly 

methods provided a list of novel transcripts but failed to recapitulate the exact transcript 

structures shown from mapped reads. 
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Chapter 2  

  

Figure 4.31: Long-read sequencing identifies a novel CD24 transcript isoform 

expressed in ccRCC tumours 

A) Graphical representation of CD24 transcripts from Ensembl reference annotation 

(GRCh38). B) IGV visualisation of combined DRS reads coverage track (Blue) for all 

sequenced ccRCC tumours in the region of the CD24 gene. C) IGV visualisation of 

combined PCS reads coverage track (Red) for all sequenced ccRCC tumours in the 

region of the CD24 gene. D) Graphical representation of CD24 transcripts (orange) 

from FLAIR transcriptome assembly annotation. E) Graphical representation of CD24 

transcripts (green) from StringTie2 transcriptome assembly annotation. F) IGV 

visualisation of combined PCS raw read alignment track for all sequenced ccRCC 

tumours at CD24 locus. Reads representing CD24 transcripts with ‘long 3’UTR’ (hg38 

chr6:106969831 – 106971834) and ‘short 3’UTR (chr6: 106971300 - 106971834). G) 

Graphical representation of CD24 transcripts from Ensembl reference annotation 

(GRCh38) at CD24 locus between chr6:106971000 - 106971750.  H) IGV 

visualisation PCS reads coverage track in the region of chr6:106971000 – 

106971750. I) Graphical representation of CD24 transcripts (orange) from FLAIR 

transcriptome assembly annotation in the region of chr6:106971000 - 106971750. J) 

Graphical representation of CD24 transcripts from StringTie2 transcriptome assembly 

annotation in the region of chr6:106971000 - 106971750. 
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4.3.19 Estimation of poly(A) tail lengths from DRS of ccRCC 

tumours by nanopolish 

Modulation in mRNA polyadenylation is a dynamic process that plays a crucial role in 

mRNA stability (Passmore and Coller, 2022). Using current signals from DRS, 

nanopolish was used to characterise poly(A) tail profile in ccRCC tumours (Workman et 

al., 2019). The mean poly(A) tail lengths across the ccRCC tumours ranged between 

80.5 to 105.2 nt, with an average of 91.1 nt. The median poly(A) tail lengths ranged 

between 56.7 nt and 88.7 nt, with an average of 72.2 nt (Figure 4.32 A).  

Seeing that there were variations in the global profiles of poly(A) tail across the tumour 

samples, the impact of RNA sample degradation was investigated. Significant 

correlations were found between tumour sample RIN numbers and the mean poly(A) tail 

lengths (R2 = 0.5859, p = 0.0037) and also between RIN numbers and median poly(A) 

tail lengths (R2 = 0.6104, p = 0.0027) (Figure 4.32B - C). These results suggest that RNA 

degradation substantially impacts estimated poly(A) tail lengths. 

Next, the global poly(A) tail profiles between recurrent and non-recurrent ccRCC tumours 

were compared. Analysis suggested no significant differences in the median mRNA 

poly(A) tail lengths between non-recurrent and recurrent ccRCC tumours (p = 0.8970) 

(Figure 4.32D). 

Finally, poly(A) tail lengths of transcripts from different RNA biotypes were examined. 

Median poly(A) tail lengths of protein-coding genes’ transcripts (64.45nt, n = 6,881,791) 

were found to be substantially shorter than lncRNA (128.46nt, n = 9,948), processed 

pseudogenes (117.02nt, n = 2,361), as well as transcribed unprocessed pseudogenes 

(102.93nt, n = 814). The poly(A) tail lengths of rRNA pseudogene transcripts were found 

to be the shortest amongst the biotypes that were investigated, with a median length of 

11.50 nt (n = 39) (Figure 4.33). 
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Figure 4.32: Poly(A) tail length profiling in ccRCC tumours by nanopolish 

A) Violin plots showing poly(A) tail lengths of transcripts from ccRCC tumours, 

estimated by nanopolish using DRS data. Dot within violin represents median. Mean 

and median poly(A) tail lengths are indicated below graph. B) Correlation between 

mean poly(A) tail lengths from each tumour sample and corresponding RIN score. C) 

Correlation between median poly(A) tail lengths from each tumour sample and 

corresponding RIN score. D) Grouped dot plot showing median poly(A) tail lengths of 

transcripts from non-recurrent and recurrent ccRCC tumours. For B – C, diagonal 

lines represent the line of best fit. R2 values were computed tomeasure goodness-of-

fit, and P values generated from F-test, with p ≤ 0.05 considered significant. For D, 

two-tailed unpaired T-tests with Welch’s correction were used, with p ≤ 0.05 

considered significant. P values of non-significant results are indicated in graphs. 

Centre line represents median for each group. 
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Biotype Min. 
1st 
Quartile. 

Median Mean 
3rd  
Quartile 

Max 

Protein coding 0.00 46.68 64.45 85.45 108.52 918.70 

lncRNA 1.59 70.91 128.46 152.52 224.15 619.46 

Processed pseudogene 2.27 60.46 117.02 140.81 210.30 573.12 

Unprocessed pseudogene 3.56 48.59 73.17 117.36 166.25 531.92 

Transcribed 
processed pseudogene 

1.02 48.00 68.27 86.21 102.52 544.73 

Transcribed  
unprocessed pseudogene 

3.61 63.03 102.93 128.67 168.19 477.54 

rRNA pseudogene 1.88 5.41 11.50 45.83 37.56 328.17 

Figure 4.33: Poly(A) tail length profiles per biotype in ccRCC tumours 

Boxplots showing poly(A) tail lengths of transcripts of different biotypes from ccRCC 

tumours, estimated by nanopolish using DRS data. For each box, boxed area 

represent lower and upper quartile, with black line showing the median. Extended 

whiskers show the highest and lowest values within 1.5 times of respective 

interquartile ranges. Summary statistics are displayed in table below graph. 
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4.3.20 Differential poly(A) tail lengths found between different 

immune checkpoint transcript isoforms 

Focussing on tumour immune checkpoints, the poly(A) tail lengths of IDO1, CD24 and 

PD-L1 isoforms were characterised and compared. For IDO1, transcript isoforms with 

‘long 3’UTR’ (3’UTR ending at chr8: 39928790) and ‘short 3’UTR’ (3’UTR ending at chr8: 

39928444) were compared. Poly(A) tail lengths of transcripts with ‘short 3’UTR’ (n = 389, 

mean = 118.2nt) were significantly longer compared to transcripts with ‘long 3’UTR’ (n = 

184, mean = 100.1nt) (Figure 4.34A). IDO1 transcripts’ poly(A) tail lengths were 

significantly longer in recurrent ccRCC tumours (n = 252, mean = 102.6nt) compared to 

non-recurrent tumours (n = 319, mean = 120.6nt) (Figure 4.34B). The IDO1 transcripts 

with short 3’UTR drove this difference. IDO1 transcripts with long 3’UTR showed no 

significant differences between non-recurrent and recurrent ccRCC tumours (Figure 

4.34C). For IDO1 transcripts with short 3’UTR, the analysis revealed significantly longer 

poly(A) tail lengths in recurrent ccRCC tumours (n = 167, mean = 128.1nt) compared to 

non-recurrent tumours (n = 222, mean = 107.7nt) (Figure 4.34D). 

Across all 12 ccRCC tumours, poly(A) tail lengths of long 3’UTR CD24 transcripts (3’UTR 

ending at chr6:106975465, n = 13562, mean = 102.9nt) were significantly longer than 

the novel short 3’UTR CD24 transcripts (3’UTR ending at chr6: 106971300 - 106971834, 

n = 2601, mean = 88.22nt) (Figure 4.34E). No statistically significant differences in CD24 

mRNA poly(A) length were found between non-recurrent and recurrent ccRCC tumours 

(Figure 4.34F – H). 

Finally, for PD-L1 (CD274) transcripts, a borderline non-significant trend (p = 0.0565) 

was observed between poly(A) lengths of transcripts that encode for membrane PD-L1 

and soluble PD-L1 (Both short and long 3’UTR) (Figure 4.34I). Poly(A) tails of membrane 

PD-L1 transcripts (n = 36) have a mean length of 152.9nt and a median length of 142.4nt, 

whereas mean and median poly(A) tail lengths of soluble PD-L1 transcripts (n = 9) are 

98.5nt and 89.3nt respectively.  
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  Figure 4.34: Tumour immune checkpoint isoforms display differential poly(A) 

tail lengths  

A) Violin plot showing nanopolish estimated poly(A) tail lengths of IDO1 transcripts 

with ‘long 3’UTRs’ (Final exon and 3’UTR = chr8: 39927830 - 39928790) and ‘short 

3’UTRs’ (Final exon and 3’UTR = chr8: 39927830- 39928444) from DRS data of all 

12 ccRCC tumours. B) Violin plot showing poly(A) tail lengths of all IDO1 transcripts 

between non-recurrent and recurrent ccRCC tumours. C) Violin plot showing poly(A) 

tail lengths of IDO1 transcripts with long 3’UTR from non-recurrent and recurrent 

ccRCC tumours. D) Violin plot showing poly(A) tail lengths of IDO1 transcripts with 

short 3’UTR from non-recurrent and recurrent ccRCC tumours. E) Violin plot showing 

nanopolish estimated poly(A) tail lengths of CD24 transcripts with ‘long 3’UTRs’ (Final 

exon and 3’UTR = chr6: 106969831 – 106971834) and ‘short 3’UTRs’ (Final exon 

and 3’UTR = chr6: 106971300 - 106971834) from DRS data of all 12 ccRCC tumours. 

F) Violin plot showing poly(A) tail lengths of all CD24 transcripts between non-

recurrent and recurrent ccRCC tumours. G) Violin plot showing poly(A) tail lengths of 

CD24 transcripts with long 3’UTR from non-recurrent and recurrent ccRCC tumours. 

H) Violin plot showing poly(A) tail lengths of CD24 transcripts with short 3’UTR from 

non-recurrent and recurrent ccRCC tumours. I) Grouped dot plot showing poly(A) tail 

lengths of CD274 (PD-L1) transcripts encode for membrane PD-L1 and soluble PD-

L1, from DRS data of all 12 ccRCC tumours. Blue dots represent transcripts coming 

from non-recurrent ccRCC tumours, and red dots for recurrent ccRCC tumours. 

Throughout, two-tailed nested t-tests were used, with p ≤ 0.05 considered significant. 

* ≤ 0.05, ** ≤ 0.01. P values of non-significant results are indicated in graphs. 
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4.4 Discussion 

This chapter characterised the transcriptomic profiles of ccRCC tumours sequenced by 

PCS and DRS. Results in this chapter provide insights into the gene expression profiles 

of recurrent and non-recurrent ccRCC tumours. Global gene expression profiles of the 

12 tumours were assessed using the unsupervised methods: PCA and hierarchical 

clustering (Chapter 4.3.1 – 4.3.2). Unfortunately, neither method could identify tumour 

clusters correlating with patients and clinical information due to the low number of 

analysed samples per group. PCA is a commonly used method that reduces the 

dimensions of transcriptomic data and identifies ‘principal components (PC) that can 

explain the variances between datasets (Son et al., 2018). The low percentages of 

variance explained by the top PCs (Figure 4.1) demonstrate the high dimensionality 

nature of tumour transcript expression profiles and the complex nature of the tumour 

transcriptomes. 

The inability in linking clinical and patient information by PCA can be explained by two 

factors: the number of samples and the size of the phenotype-associated effect. Firstly 

the number of samples sequenced by this study (n =12) is comparatively low compared 

to data generated by microarray, single-cell sequencing and large-scale bar-coded short-

read RNAseq experiments. PCA has been extensively used to identify outliers from a 

few transcriptomic profiles, which can be attributed to library preparation, sequencing or 

bioinformatics analysis errors (Conesa et al., 2016). However, if the size of the 

phenotype-associated effect is small, a more significant number of samples and a higher 

number of PCs are needed to identify clusters confidently. For example, using microarray 

data from 208 human B-cell lymphoma samples, Lenz et al. showed that the majority of 

sex-related information (118 male and 90 female) were contained between PCs 20 to 33, 

despite dramatic changes in the expression levels of chromosome Y genes and XIST 

(Lenz et al., 2016). 

Similar to results from PCA, hierarchical clustering did not result in any precise match 

between clinical information and tumour samples (Chapter 4.3.2). The agglomerative 
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clustering method that was used clusters samples with the most similar gene expression 

profiles (based on Spearman correlations here) and subsequently merged with the next 

most similar group of profiles. Here, whilst clustering patterns were different between 

PCS and DRS, samples were clustered similarly between the reference genome and 

reference transcriptome-aligned data (Figure 4.3 – 4.4). This result supported previous 

data that showed highly correlated gene expression levels between the reference 

genome and reference transcriptome-aligned DRS and PCS data (Figure 3.21, 3.22).  

Though global transcriptome profile characterisation by PCA and hierarchical clustering 

did not identify obvious distinctions between recurrent and non-recurrent ccRCC tumours, 

differential gene expression analysis identified hundreds of DEGs associated with 

ccRCC recurrence. Combining results from both reference genome and reference 

transcriptome aligned data, DRS and PCS identified 75 and 274 significantly DEGs, 

respectively (Figure 4.6). Strikingly, many of the significantly downregulated genes such 

as CD8B (T cell surface glycoprotein CD8 beta chain), NKG7 (Natural Killer Cell Granule 

7), GZMK (granzyme K), TRAC (T cell receptor alpha constant) are known to be highly 

or exclusively expressed by immune cells. Together with subsequent GSEA and immune 

deconvolution results, sequencing data agree with recent studies which showed reduced 

tumour immune infiltration as a hallmark of recurrent ccRCC tumours (Ghatalia et al., 

2019; Peng et al., 2022). 

Among the 21 significant DEGs in recurrent ccRCC identified by DRS and PCS, seven 

genes were significantly upregulated via both reference genome and reference 

transcriptome alignment (Figure 4.6G). Furthermore, supporting the aggressive 

phenotype that is displayed by recurrent ccRCC, 3 out of the six upregulated genes, 

namely CCL20 (C-C motif chemokine ligand 20), KLF15 (Kruppel like factor 15), and 

SCD5 (stearoyl-CoA desaturase 5) have been demonstrated to associate with poor 

prognosis (Tian et al., 2019).  

CCL20 is a chemokine secreted by various cells, including macrophages, B cells, 

neutrophils, natural killer cells, TH17 cells, and endothelial cells(Lee et al., 2013). CCL20 
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exclusively binds to CCR6 (C-C chemokine receptor 6). CCR6 is expressed in immune 

cells (CD8+ T cells, TH17, Tregs, B cells) and also aberrantly upregulated in tumour cells 

in various cancers, including ccRCC(Kadomoto, Izumi and Mizokami, 2020). An in vitro 

co-culture study using ccRCC cell lines and human macrophages showed that 

macrophages promote tumour cell migration and invasion by releasing CCL20, which 

activates AKT upon CCR6 binding (Kadomoto, Izumi, Hiratsuka, et al., 2020). In addition, 

using flow cytometry and immunohistochemical staining, CCL20 expression was 

previously shown to recruit immunosuppressive Tregs to ccRCC tumour tissue, with Treg 

infiltration associated with poorer patient prognosis (Oldham et al., 2012). This was not 

observed in cell-type deconvolution analysis of the tumours. Further gene expression 

characterisation with a validation cohort of recurrent and non-recurrent ccRCC tumours 

will be helpful in establishing these disease recurrence-associated signatures.   

Most DEGs were detected in both DRS and PCS, with highly correlated log2FoldChange 

observed between DRS and PCS. This suggests that the differences in the number of 

significant DEGs are due to read depth, where the higher number of mapped reads in 

PCS provided higher statistical power for differential expression analysis by DESeq2. In 

contrast, when the lists of DEGs identified by reference genome and reference 

transcriptome alignment were compared, a substantial number of genes were identified 

solely by one method and not the other. For reference genome-aligned data, most of the 

exclusive DEGs were lncRNAs, which was expected since the reference transcriptome 

has few registered ncRNAs for mapping. It is also important to note that although most 

of the differentially expressed lncRNAs were found in both reference genome aligned 

DRS and PCS, they were only registered as significantly differentially expressed using 

PCS. This highlights the importance of having high sequencing depth to identify 

significant DEGs.  

Most of the 60 reference transcriptome alignment exclusive DEGs are protein-coding 

genes, including CCL4 (Chemokine ligand 4), CCL5 (Chemokine ligand 5), HLA-DPB1 

(Major histocompatibility complex class II, DP Beta 1), TRBC1 (T cell receptor beta 
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constant 1) and TRBC2 (T cell receptor beta constant 2) (Figure 4.7D). Only one protein-

coding DEG was exclusively mapped by reference genome alignment: PDCD1 

(ENSG00000188389), which encodes for the immune checkpoint protein PD-1. Using 

reference genome alignment, PDCD1 was found to be a highly significant DEG between 

recurrent and non-recurrent ccRCC tumours with a high averaged RPM across tumours. 

Many of these DEGs are critical immune genes, and failure to identify these genes would 

present a loss of valuable information on the tumour immune landscape. The usage of a 

reference genome or reference transcriptome for transcriptomic analysis directly impacts 

the number of mapped genes and gene expression levels (Srivastava et al., 2020). Read 

alignment tools, including minimap2, typically generate a mapping quality score for each 

read based on how closely the read aligns with the reference (Li, 2018). It would be 

interesting to investigate if the reads mapped to reference transcriptome-exclusive DEGs 

failed to map to the reference genome or mapped to genes that closely resemble the 

DEGs. These results demonstrate the importance of using multiple reference alignment 

methods to analyse RNAseq data.  

In agreement with existing literature, GSEA showed significantly suppressed immune 

cell and antigen presentation pathways in recurrent ccRCC tumours. The suppression in 

immune cell pathways was further supported by the results from tumour immune infiltrate 

deconvolution algorithms, where lower levels of tumour infiltrating immune cells were 

found in recurrent ccRCC tumours. Reduced antigen presentation in recurrent ccRCC 

contributes to immune surveillance evasion and the loss of tumour-infiltrating immune 

cells in the TME (de Charette et al., 2016). Gene expression of antigen presentation 

machinery, including MHC class I molecules, correlates with better ccRCC patient 

prognosis (Matsushita et al., 2016; Sekar et al., 2016). Transcriptional activity of MHC 

class I genes is mainly regulated in three ways: i) Binding of NF-kB to the gene  Enhancer 

A region, ii) Engagement of Interferon regulatory factor 1 (IRF1)  to the Interferon 

stimulated response element (ISRE), and iii) occupancy of the IRF1-responsive 

transcription factor NLRC5 (NLR Family CARD Domain Containing 5) at the promoter 
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(René et al., 2016). Gene expression levels of IFNG, IRF1 and NLRC5 in PCS data were 

all found to downregulated in recurrent ccRCC tumours compared to non-recurrent 

counterparts. The reduced mRNA levels of IFNG reflected the altered tumour immune 

landscape in recurrent ccRCC tumours, which may have contributed to the suppressed 

antigen presentation pathways. The loss of antigen presentation pathways can also be 

the results of the dysregulated HIF pathway in ccRCC tumours. Activation of the HIF 

pathway in ccRCC suppresses the expression levels of MHC class I molecules and other 

antigen presentation proteins (TAP1, TAP2, LMP7) and contributes to reduced 

recognition and killing from CD8+ T cells (Sethumadhavan et al., 2017). The degree of 

HIF activation was previously shown to correlate with ccRCC recurrence and poorer 

prognosis (Schödel et al., 2016). Although GSEA and DGE analysis showed no 

significant changes in the activation or suppression of the HIF pathway, HIF activity is 

also highly regulated by post-translational modifications (Albanese et al., 2021). 

Therefore, an integrated multi-omics approach is needed to comprehensively 

characterise the causal relationship between tumour cell molecular phenotypes and TME 

immune landscapes in ccRCC. 

Fat metabolism is another highly dysregulated pathway impacted by the hyperactivated 

HIF pathway in ccRCC. Here, GSEA of KEGG pathways revealed significantly 

upregulated Fat digestion and absorption pathways in recurrent ccRCC tumours (Figure 

4.14B). One of the most highly upregulated genes in recurrent ccRCC tumours was 

APOB. Apolipoprotein B (ApoB) is a major protein component of lipoproteins and 

facilitates lipid transportation (Ren et al., 2019). A study has shown that ApoB is highly 

accumulated in ccRCC, and the level of ApoB protein positively correlates with ccRCC 

disease progression. However, the source of APOB expression in ccRCC tumours is 

currently unknown: neither ccRCC cell lines (RCC4, 786-O) nor ccRCC patients-derived 

ccRCC cells were found to express APOB (Velagapudi et al., 2018). In ccRCC, APOB 

gene expression level was shown to confer with a worse treatment response to the TKI 

sunitinib but a better response to the PD-1 inhibitor Nivolumab (Puzanov, 2022). 
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Investigation into the potential role of ApoB in regulating ccRCC tumour immunity and 

identifying the cell origin of APOB expression in ccRCC via single-cell experiments may 

improve ccRCC therapy stratification. 

The use of computational methods to estimate tumour purity and infer cell-type 

proportions using bulk RNAseq has advanced our understanding of the TME 

substantially. In agreement with the literature, tumour purity calculated by ESTIMATE 

showed low levels of tumour purity across the ccRCC tumour. In addition, ESTIMATE 

and xCell showed significantly lower levels of tumour immune infiltrates in recurrent 

ccRCC tumours compared to non-recurrent ccRCC tumours. Interestingly, whilst DRS 

and PCS immune scores showed a significant correlation, the raw immune score values 

from PCS were consistently higher than DRS. ESTIMATE generates a stromal score and 

an immune score by performing single-sample GSEA based on the gene expression 

levels of 141 gene signatures each. Tumour purity is inferred by combining the two 

scores (ESTIMATE Score) against a validated regression model for purity using TCGA 

data (Yoshihara et al., 2013). Since library-scaled, normalised gene expression data was 

used as input, estimated tumour purity levels, stromal scores and immune scores should 

be comparable between sequencing runs and experiments regardless of the sequencing 

depth. However, read-depth can have an impact on the detection of gene signatures. 

Recommended guideline on minimum read-depth for genome sequencing methods has 

previously been published (Jennings et al., 2017). However, consensus on RNAseq and 

long-read sequencing remain unclear. In silico study on the impact of read-depth (for 

both short- and long-read) on tumour purity estimation would be helpful for future 

sequencing experimental design. 

In addition to the depletion of tumour infiltrating immune cell population, the composition 

of immune cell types was also altered in recurrent ccRCC tumours. In line with a recently 

published single-cell sequencing study, recurrent ccRCC tumours showed a significant 

reduction in CD8+ T cells compared to non-recurrent tumours, as shown by both 

CIBERSORTx and EPIC (Figure 4.19) (Peng et al., 2022). Both CIBERSORT and EPIC 
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were developed for Illumina gene expression data. Benchmarking studies using DRS 

and PCS will be immensely useful for estimating the depth required for detecting different 

tumour infiltrating immune cells accurately. A recent study using single-cell short-read 

sequencing on the 10x platform with bar-coded long-read PCR-cDNAseq showed 

differential isoform usage between B cells, T cells and monocytes (Volden and Vollmers, 

2022). Identifying cell-type-specific transcript isoform represents a promising strategy for 

cell-type deconvolution. 

The difference in the CD8+ T cell population between the tumours was primarily driven 

by three non-recurrent tumours (278, 318, 320) that showed distinctly high proportions 

of CD8+ T cells (Figure 4.19E – F). These tumours also exhibited high levels of immune 

scores via ESTIMATE and xCell (Figure 4.17I, J). CD8+ T cell exhaustion markers were 

highly elevated in the three non-recurrent ccRCC tumours (Figure 4.15B). Expression 

levels of exhaustion markers TOX and PDCD1 (PD-1) were also highly upregulated in 

the three tumours (Figure 4.19I-J). Since the expression of exhaustion markers was not 

scaled to the population of CD8+ T cells, it is unclear if there are more or less exhausted 

CD8+ T cells in the three non-recurrent ccRCC tumours proportionally. However, these 

results indicate the presence of CD8+ T cells showing exhausted phenotypes. Results 

here also showed that the other three non-recurrent ccRCC tumours have similar levels 

of tumour infiltrating immune cells (including CD8+ T cells), expression patterns of CD8+ 

exhaustion markers and MHC proteins with the non-recurrent ccRCC tumours.  

T cell exhaustion is the result of chronic antigen presentation. At the mRNA expression 

level, MHC proteins were not specifically upregulated in 278,318 and 320, nor did they 

form a distinct cluster of MHC expression pattern (Figure 4.16). Persistent TCR activation 

promotes nuclear localisation of the nuclear factor of activated T cells (NFAT) and 

promotes the transcription of TOX (Seo et al., 2019). siRNA-mediated knockdown of 

TOX in CD8+ T cells results in the depletion of immune checkpoint proteins such as PD-

1, whereas overexpression of TOX enhances PD-1 expression(Kim et al., 2020). 

Remarkably, CD8+ T cells with conditional deletion of TOX can still generate functional 
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effector T cells but not exhausted T cells(Khan et al., 2019). Therefore, inhibition of TOX 

by small molecules is a promising therapeutic approach to revive exhausted CD8+ T cells 

where intense efforts are currently being made (Agrawal et al., 2019; Radaeva et al., 

2021). Combinatorial TOX inhibitors and anti-PD1 therapy in tumours with high levels of 

TOXhi PD1hi CD8+ T cells, such as the three non-recurrent ccRCC tumours, may 

represent a viable therapeutic approach. 

Deconvolution of other immune cell types in the ccRCC tumours presented mixed results. 

CIBERSORT analysis showed that M2 macrophages were the predominant type in the 

ccRCC tumours using DRS and PCS data (Figure 4.18A – B). Data from EPIC suggested 

a significant decrease in the proportion of macrophages in recurrent ccRCC tumours, 

whereas CIBERSORT showed no significant changes between the tumours (Figure 

4.20A – D). Using PCS data, CIBERSORT showed a significant suppression in activated 

NK cells in recurrent ccRCC tumours. However, neither CIBERSORT using DRS data 

nor EPIC (PCS and DRS) could detect NK cells sufficiently for meaningful comparisons 

(Figure 4.20E - H). These results show the current limitation in cell-type deconvolution 

methods, where validation by flow cytometry and immunohistochemistry may be required.  

Next, DRIMseq and DEXseq analysis identified seven genes that showed differential 

transcript usage between recurrent and non-recurrent ccRCC tumours. CMC1 was 

shown to express four transcripts in ccRCC tumours and displayed recurrence-

associated DTU. CMC1 protein plays a crucial role in the biogenesis of mitochondrial 

complex IV, which is critical for ATP synthesis via oxidative phosphorylation (Bourens 

and Barrientos, 2017). CMC1 was not significantly differentially expressed between 

recurrent and non-recurrent tumours, albeit a borderline non-significant decrease trend 

was observed in recurrent ccRCC tumours. Decreased complex IV assembly may 

indicate the metabolic shift from mitochondrial oxidative phosphorylation to cytoplasmic 

aerobic glycolysis. Low CMC1 expression in ccRCC patients significantly correlates with 

worse patient prognosis (Figure 4.23A - B). Data showed that in non-recurrent ccRCC 

tumours, significantly higher levels and proportions of ENST00000468330 and 
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ENST00000495428 were expressed compared to recurrent ccRCC tumours, where 

ENST00000423894 and ENST00000466830 were the predominant isoforms of CMC1. 

All four transcripts display different coding sequences and express unique proteins when 

translated, which may confer differential functional properties. It is also important to note 

that the DTU of CMC1 may result from the differential levels and cell types of infiltrating 

cells in ccRCC tumours. 

Through closer inspection into ENST00000423894 and ENST00000466830, it was clear 

that minimap2 prioritise exon structure as the definitive ‘trait’ of a transcript over 3’UTR 

structures. For short transcripts like CMC1, most reads span the entirety of the transcript, 

so there was no need to ‘split ties’ to assign the closest resembling reference transcript. 

However, for longer transcripts, such as CD24, where many reads do not represent the 

full-length transcript, reads often match with multiple reference transcripts, and aligners 

may rely on read coverage percentage for transcript assignment probabilistically.  

One of the recurrent findings of long-read RNA sequencing experiments is the high 

number of novel transcripts compared to the reference gene annotation. Using nanopore 

PCR-cDNA sequencing of human tissue samples, a recent study showed that 77% of 

mapped transcripts (93,718) were characterised as novel transcripts by FLAIR (Glinos 

et al., 2022). Here, akin to the findings from the study, 65% and 74% of StringTie2 and 

FLAIR assembled transcripts from PCS of ccRCC tumours were identified as novel 

transcripts (Figure 4.24, Table 4.3). Only PCS data was analysed here using FLAIR and 

StringTie2 due to the higher sequencing depth, longer reads and higher read accuracies 

compared to DRS data. Nevertheless, it will be of interest to systematically identify and 

characterise novel transcripts from ccRCC tumour DRS data. 

FLAIR is a reference-guided transcriptome assembler that first aligned reads to the 

reference genome using minimap2, followed by splice junctions correction by reference 

gene annotation, and finally, identification of high-confident transcripts. The largest group 

of novel transcripts found here was classified as ‘j’ under the gffcompare class code. This 

represents ‘multi-exon isoforms with at least one splice junction match’, which can also 
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be interpreted as a novel splice variant that shares at least part of an existing annotated 

transcript’s exon/intron structure. Unfortunately, whilst nanopore sequencing long reads 

can span the complete length of many transcript isoforms, it also inherently shows a 3’ 

bias due to RNA degradation, read stalling and pore blocking (Soneson et al., 2019). 

This presents a potential danger in overestimating the number of novel splice variants 

from assembled transcriptome data by FLAIR and StringTie2. 

FLAIR analysis uses human CAGE-seq data from the FANTOM5 consortium as a guide 

to define potential 5’ start sites globally to mitigate the over-estimation problem. CAGE 

(cap analysis gene expression) is a method that allows mapping of the 5’ ends of capped 

RNA via cap biotinylation and streptavidin-based pulldown (Takahashi et al., 2012). 

However, although most translated eukaryotic mRNAs (90%) have 5’ caps, uncapped 

transcripts can also be translated via internal ribosome entry sites (Shatsky et al., 2018). 

Interestingly, a recent study has shown that through APA at proximal polyadenylation 

sites, the downstream uncapped mRNA transcripts extending to the distal 

polyadenylation site can be translated into functional proteins (Malka et al., 2022). Thus, 

using CAGE-seq 5’ annotation as a filter may discard valuable information. 

StringTie2 employs a different route to define high-confident isoforms. StringTie2 

assembles sequencing reads into super-reads by extending sequencing reads in both 

directions with overlapping reads and their unique coverage. Subsequently, splice 

graphs are constructed based on the read coverage levels within each super-read. With 

guidance from reference gene annotation, StringTie2 identifies transcript structures that 

best explain the maximum read coverage within each super-read until all reads have 

been assigned (Kovaka et al., 2019). Compared to FLAIR, StringTie2 identified a 

substantially lower number of transcripts from PCS of ccRCC tumours (Table 4.3).  

Focusing on immune checkpoints that play crucial roles in tumour immunity, novel 

transcript isoforms of CTLA4, PD-L1, IDO1 and CD24 were discovered by FLAIR and 

StringTie2. In particular, the identified novel transcripts display differential 3’UTR 

structure compared to existing reference gene annotation. 3’UTR is vital in regulating 
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mRNA stability, localisation, and translation. An (AT)n microsatellite polymorphism in the 

CTLA4 gene, located in the 3’UTR region of the full-length CTLA4 transcript 

(ENST00000648405), has been shown as a genetic marker for the susceptibility of type 

1 diabetes (De Jong et al., 2016). The length of (AT)n repeat inversely correlates with 

CTLA4 transcript stability and protein expression levels (Malquori et al., 2008). 

Truncation in the 3’UTR of membrane PD-L1 mRNA (ENST00000381577) is a 

widespread structural variation across cancer types. A landmark study has shown that 

the shortening of 3’UTR in PD-L1 transcripts leads to enhanced stability and elevated 

PD-L1 protein expression in vivo (Kataoka et al., 2016). These studies demonstrate the 

importance of establishing the biological roles that these novel 3’UTRs may play in 

regulating the expression of immune checkpoints. 

Both FLAIR and StringTie2 in novel isoform identification were able to identify the 

presence of novel isoforms in the inspected immune checkpoints. For IDO1, short 3’UTR 

was previously annotated as a feature exclusive to an exon 5 skipping NMD transcript 

(Figure 4.30A). However, long reads from DRS and PCS showed that mRNAs with both 

long and short 3’UTR could display exon 5 skipping events (Figure 4.30F). The transcript 

isoforms were accurately identified by FLAIR (Figure 4.30D). Accurate reference gene 

annotation is crucial for transcriptomic analysis. For Illumina data, with the current 

reference gene annotation, all reads that span the final 100nt of IDO1 3’UTR would be 

aligned to the protein-coding full-length IDO1 transcript (ENST00000253237). Many of 

these mRNA transcripts might represent NMD transcripts which would not result in IDO1 

protein expression. This finding demonstrated the power of long-read sequencing and 

transcript assembly to detect novel transcripts and infer isoform identity accurately.  

In some cases, FLAIR and StringTie2 were found to ‘overcorrect the assembled 

transcripts to the adjacent annotated splice junctions. For CTLA4, FLAIR correctly 

identified a novel isoform with the exon structure of CTLA4 but with a shorter 3’UTR, as 

supported by evidence from raw reads. However, FLAIR adopted the 3’UTR end of the 

short CTLA4 for the novel isoform, with the 3’UTR end 100nt 5’ upstream of where raw 
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reads mapping ends (Figure 4.27). Similarly, in PD-L1, a novel isoform was identified to 

encode for soluble PD-L1 protein but with a longer 3’UTR than the current annotation. 

StringTie2 was able to identify the 3’ end of the novel soluble PD-L1 transcript. However, 

the exon structure of the novel transcript was adopted from ENST00000474218, which 

was unsubstantiated by raw reads evidence. As a method, StringTie2 is designed to 

prioritise using the minimum number of assembled transcripts to explain the maximum 

number of reads. This design feature was reflected in all immune checkpoints examined 

here, where StringTie2 assembled transcripts tend to adopt the maximum 3’UTR lengths 

to capture all reads. These results suggest that FLAIR and StringTie2 can indicate the 

existence of novel transcripts, but accurate annotation still requires mannual inspection 

of raw reads and reference genome alignments. Instead of using reference genome-

guided assemblers, de novo transcriptome assembly is a viable option to avoid 

overcorrections from reference gene annotation. However, unlike FLAIR and StringTie2, 

which were optimised to permit transcript reconstruction using long reads with relatively 

high error rates, established de novo assemblers such as Trinity, Oases and rnaSPAdes 

were developed based on low-error short reads from Illumina sequencing (Schulz et al., 

2012; Haas et al., 2013; Bushmanova et al., 2019). Currently, one solution for using a 

de novo transcriptome assembler on long-read sequencing data is by sequencing RNA 

with both DRS and Illumina sequencing to ‘correct’ the high error rates in DRS reads (Fu 

et al., 2018). No benchmarking report has been published to examine the performance 

of de novo assemblers on PCS data, where reads have a lower error rate than DRS. A 

systematic comparison of the performance between reference-guided assemblies 

demonstrated here with reference-free transcriptome assembly tools using DRS and 

PCS data would be highly valuable to the broader research community. 

Next, using nanopolish on DRS data, global poly(A) tail profiles from ccRCC tumours 

were produced. This is the first global poly(A) tail profiling of archival tumour samples. 

Here, the poly(A) tails were found to be highly variable within each tumour sample, but 

the global profiles (median lengths: 56.7 – 88.7 nt) from the tumour samples were 
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consistent with published TAILseq, PAIseq and DRS nanopolish analysis (Chang et al., 

2014; Workman et al., 2019; Eisen et al., 2020). The intra- and inter-sample variabilities 

present a technical challenge in comparing poly(A) tail lengths between samples. Nested 

T-tests were used where possible to account for the intra-sample variations (Krzywinski 

et al., 2014). However, no published method was found to normalise the impact of RNA 

degradation on global poly(A) tail length. A benchmarking study to correlate RNA sample 

RIN number with poly(A) tail profile across different profiling methods would be extremely 

valuable. 

The poly(A) tail profiles of recurrent and non-recurrent tumours showed no significant 

difference. Interestingly, nanopolish results showed that protein-coding genes have, on 

average shorter poly(A) tails than lncRNA and most pseudogenes (Figure 4.33). A 

previous poly(A) tail profiling study using DRS and nanopolish showed no significant 

differences in the length of poly(A) tail lengths between protein-coding genes, lncRNA 

and pseudogenes in the human HAP1 cell line (Soneson et al., 2019). Here, instead of 

a homogenous cell population, ccRCC tumours represent a complex mix of cells which 

may display differential poly(A) tail profile.  

Recent studies have also shown that global poly(A) tail lengths can vary dramatically 

depending on environmental cues. A study found that upon lipopolysaccharides (LPS) 

exposure, activation of human macrophages (THP-1 cell line) induced rapid cytoplasmic 

re-adenylation and poly(A) tail lengthening in 1,500 genes within one hour (Kwak et al., 

2022). With the complex, heterogeneous composition of cytokines, chemokines and 

growth factors in the TME, mRNA poly(A) tail lengths in ccRCC tumours are likely to be 

regulated in a dynamic and cell-type dependent manner. 

For the immune checkpoints IDO1, CD24 and PD-L1, different transcript isoforms of the 

same gene had significantly different poly(A) tail lengths (Figure 4.34). Poly(A) tail length 

was found to negatively correlates with gene expression levels (Lima et al., 2017). Poly(A) 

tail lengths also did not correlate with the rate of transcription or mRNA stability (Tudek 

et al., 2021). Recent works have demonstrated that mRNAs with the same poly(A) tail 
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length but from different genes can exhibit different decay rates up to 1000 folds 

(Subtelny et al., 2014; Eisen et al., 2020). Other mRNA features, like mRNA 5’ cap and 

cis-elements (such as cytoplasmic polyadenylation element (CPE)), may act 

synergistically as contributing factors to determine mRNA stability. Though the precise 

biological role of differential poly(A) tail lengths is yet to be determined, data here showed 

interesting co-dependencies between splicing and poly(A) tail length regulation in 

immune checkpoint transcripts.  

4.5 Evaluation of key objectives 

 Characterisation of ccRCC tumour gene expression profiles using 

unsupervised methods 

PCA and hierarchical clustering methods were unable to cluster ccRCC tumours 

based on patients’ clinical characteristics. This may be due to the limited number of 

samples and the size of the phenotype-associated effect on gene expression.  

 Identification of ccRCC recurrence-associated differentially expressed genes 

and differential transcript usage events 

DRS and PCS data identified dozens of significant DEGs and DTU events between 

recurrent and non-recurrent ccRCC tumours. Large number of significant DEGs were 

identified to be immune cell related genes.  

 Detection of activated and suppressed pathways in recurrent ccRCC tumours 

GSEA revealed suppression of adaptive immune response and antigen presentation 

pathways and activated lipid metabolism pathways in recurrent ccRCC tumours. 

These pathways are highly linked to ccRCC aggressiveness and patient outcome.  

 Comparisons of tumour microenvironment between recurrent and non-

recurrent ccRCC tumours 

Cell type deconvolution analysis showed a significant reduction in the number of 

tumour infiltrating immune cells as well as the proportion of CD8+ T cells in recurrent 

ccRCC tumours. A sub-group of non-recurrent ccRCC tumours was identified to have 

an elevated level of CD8+ T cells with high expression levels of exhaustion markers.  
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 Identification of novel transcript isoforms in ccRCC tumours 

Using StingTie2 and FLAIR, 65 - 74% of assembled transcripts from ccRCC tumours 

were classified as novel transcripts. Both methods discovered novel transcript 

isoforms for clinically important immune checkpoints (such as PD-L1). However, 

accurate annotation still requires confirmation by visual inspection of the read-

alignment tracks. 

 Estimation of mRNA poly(A) tail lengths in ccRCC tumours 

mRNA poly(A) tail lengths from tumour DRS data were measured by nanopolish, with 

similar profiles to published works. Several immune checkpoint genes were found to 

display differential poly(A) tail lengths depending on transcript isoform, suggesting 

co-dependencies between splicing and poly(A) tail regulation.   

4.6 Conclusion 

This chapter systematically characterised the transcriptome profiles of ccRCC archival 

tumours. Using data from DRS and PCS of archival samples, ccRCC recurrence-

associated differentially expressed genes and differential transcript usage were identified. 

GSEA revealed that recurrent ccRCC tumours showed suppressed immune cell 

pathways, decreased gene expression in antigen presentation pathways, and 

augmented fat metabolism. Cell-type deconvolution analysis showed significant 

decreases in both tumour-infiltrating immune cells and the proportion of CD8+ T cells in 

recurrent ccRCC tumours. A subgroup of non-recurrent ccRCC tumours showed 

significantly high levels of CD8+ T cells and high expression levels of exhausted CD8+ T 

cell markers, such as TOX and PDCD1 (PD-1). Tens of thousands of novel transcripts 

were discovered using reference-guided transcriptome assemblers, including transcripts 

from the immune checkpoint genes CTLA4, PD-L1, IDO1 and CD24. Global transcript 

poly(A) tail profiles of the ccRCC tumours were characterised, and different isoforms of 

the same immune checkpoint genes were found to display differential poly(A) tail lengths. 

Results here demonstrated the ability of ONT LRS technologies in providing in-depth 

characterisation of transcriptomic profiles from archival tumour samples. 
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5.1 Introduction 

Since the recent technological breakthroughs in transcriptome-wide m6A detection 

methods, m6A mRNA modification has been recognised as an essential layer of the post-

transcriptional gene expression regulatory network (Chapter 1.1.6). For mRNA 

molecules, m6A is deposited through the m6A writer complex, comprised of multiple 

subunits such as METTL3, METTL14 and WTAP. mRNA m6A can also be dynamically 

removed by the erasers: ALKBH5 and FTO. Furthermore, by recruiting RBPs with a 

specific affinity towards m6A-modified transcripts, known as the m6A readers, the 

modification has been shown to exert regulatory effects on mRNA splicing, stability, 

localisation, and translation (Murakami and Jaffrey, 2022). 

Dysregulation in m6A regulation is associated with tumourigenesis and tumour 

progression in ccRCC. Transcriptomic data analyses from the TCGA KIRC and other 

independent cohorts showed that almost all m6A regulators were significantly 

differentially expressed in ccRCC tumours compared to adjacent normal tissues (Chen 

et al., 2021). A recent study showed that the protein expression levels of m6A writer 

METTL14 by IHC were significantly suppressed in ccRCC tumours compared to paired 

adjacent normal tissues. Consequently, the global m6A levels of ccRCC tumours were 

also significantly decreased. Reduced METTL14 protein expression was associated with 

poorer ccRCC prognosis (Shen et al., 2022). 

In contrast, protein expression levels of the m6A eraser FTO by IHC were significantly 

upregulated in ccRCC tumours compared to normal adjacent tissues. Furthermore, 

inhibition of FTO via CRISPR-Cas9-mediated gene deletion and siRNA-mediated gene 

silencing in VHL-deficient ccRCC cell lines significantly reduced proliferation and colony 

formation (Xiao et al., 2020). With the increasing number of studies attributing both 

oncogenic and tumour-suppressive roles to m6A regulators, their biological functions are 

now widely recognised as cell-type and tumour-type dependent (Gao et al., 2021). 

However, the role of m6A in regulating ccRCC gene expression is still poorly understood. 
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One of the defining features of ccRCC is the characteristically complex TME. Within the 

TME, ccRCC tumour cells constantly interact with various types of immune and stromal 

cells and soluble factors like cytokines. As the critical mediators of inter-cellular 

communication within the TME, the immunomodulatory cytokines are responsible for 

orchestrating immune responses in the TME, with far-reaching impact on the gene 

expression profiles of both immune and tumour cells (Kartikasari et al., 2021).  

IFNγ and TNF are two of the major cytokines found in the TME. IFNγ is primarily secreted 

by activated CD4+ Th1 cells, CD8+ T cells and NK cells, whereas TNF is mainly secreted 

by activated macrophages and, to a lesser degree NK cells and T cells (Castro et al., 

2018; Laha et al., 2021). IFNγ activates the JAK (Janus kinase)/STAT1 (Signal 

transducer and activator of transcription 1) pathway in cancer cells upon binding to 

interferon-gamma receptors on the cell surface. Exposure to a high IFNγ dosage triggers 

apoptosis in cancer cells by activating the downstream JAK-STAT1-dependent caspase 

activities. (Owen et al., 2019). The binding of TNF with the cell surface receptor TNFR1 

on tumour cells activates the downstream apoptotic pathway through TNFR1-associated 

death domain protein and caspase 8, leading to cell death (Josephs et al., 2018).  

In addition to their cytotoxic effects, IFNγ and TNF can play an anti-tumour role by 

modifying the tumour immune cell population. As a positive feedback mechanism, IFNγ 

promotes the differentiation of naïve CD4+ T cells into Th1 cells, amplifying the release 

of IFNγ (Castro et al., 2018). Exposure to IFNγ has also been shown to enhance cytotoxic 

T cells' cytotoxicity and cell-killing ability (Bhat et al., 2017). Both IFNγ and TNF polarise 

the differentiation of macrophages towards the anti-tumour M1 state, which also serves 

as a significant source of TNF secretion (Laha et al., 2021).   

IFNγ and TNF can also enhance the gene expression of MHC molecules and other 

components of the antigen presentation pathway, such as TAP (Transporter associated 

with antigen processing). Upregulation of the antigen presentation pathway in tumour 

cells results in enhanced T cell recognition and killing (S. Zhang et al., 2019). However, 

IFNγ and TNF can also exert pro-tumour effects. IFNγ and TNF synergistically induce 
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expression of the immune checkpoints PD-L1 and IDO1, negatively impacting tumour 

immune response(Robinson et al., 2003; Li et al., 2018). IDO1 is a cytosolic enzyme 

which catalyses the conversion of tryptophan to kynurenine. IDO1-mediated depletion of 

tryptophan in the TME inhibits proliferation and the effector functions of tumour-infiltrating 

immune cells. In addition, the downstream kynurenine metabolites induce the 

differentiation of the immunosuppressive regulatory T cells (Hornyák et al., 2018). The 

IFNγ and TNF-induced expression of PD-L1 and IDO1 represent a negative feedback 

regulation in preventing excessive inflammation. However, it also promotes immune 

escape, leading to tumour progression.  

Aside from regulating immune gene expression in tumour cells, combinatorial treatment 

of IFNγ and TNF was also found to promote tumourigenesis. Long-term IFNγ and TNF 

treatment upregulates the expression of c-Fos and c-Myc in mesenchymal stem cells, 

resulting in an increased rate of malignant transformation (Wang et al., 2013). For tumour 

cells, exposure to low IFNγ dosage by NSCLC tumour cells leads to activation of PI3K-

Akt and Notch1 pathways, resulting in enhanced tumour stemness and proliferative 

abilities (Song et al., 2019). Similarly, in breast cancer, TNF treatment can promote 

tumour cell proliferation and stem-cell-like phenotype via activation of the NF-kB pathway, 

contributing to tumorigenesis and tumour progression (Liu et al., 2020). It is currently 

unclear if, and in what context, IFNγ and TNF may play synergistic roles in promoting 

tumour growth. 

Overall, the effects of IFNγ and TNF on tumour progression are complex and involve 

both direct and indirect mechanisms. Further research is needed to fully understand the 

role of IFNγ and TNF in regulating ccRCC tumour progression. Although the interaction 

between tumour cells with IFNγ and TNF has tremendous effects on tumour immunity, 

the role of m6A in modulating cytokines-induced gene expression changes, particularly 

in ccRCC tumour cells, is yet to be elucidated.  
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5.2 Chapter aims 

The main aims of this chapter are to understand the role of cytokines (IFNγ and TNF) 

and mRNA m6A modifications in regulating ccRCC gene expression. The specific 

aims of this chapter are as follows: 

i) Analysis of the potential role of m6A on ccRCC gene expression using publicly available 

genomic data, including somatic mutation and copy number variations analysis. 

ii) Generation of CRISPR-Cas9-mediated m6A writers KO ccRCC cell lines 

iii) Characterising the gene expression profiles of parental cell line and m6A writer-KO 

cell lines, both at basal, unstimulated cells and IFNγ and TNF stimulated cells. 

iv) Profile activated and suppressed pathways associated with m6A writer-KO and IFNγ 

+ TNF combinatorial treatment. 

v) Identify genes that display differential transcript usage after IFNγ and TNF treatment 

vi) Characterise the effects of m6A on mRNA and protein expression of PD-L1, using 

both CRISPR-Cas9-mediated gene deletion and siRNA-mediated gene silencing 

approaches. 
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5.3 Results 

5.3.1 Frequent genomic copy number variations of m6A regulators 

genes in ccRCC  

To understand the potential role of m6A in ccRCC tumours, the genetic alterations 

of key m6A regulators (writer, erasers and readers)  in ccRCC patients' tumour 

samples were surveyed using the TCGA KIRC cohort genomic data (Weinstein 

et al., 2013). KIRC somatic mutation rate and copy-number analysis results were 

extracted from cBioPortal. Copy number level for each gene in each sample was 

defined by one of the following five categories: i) deep deletion, which indicates 

possible homozygous gene deletion; ii) shallow deletion, which indicates potential 

heterozygous gene deletion; iii) diploid; iv) low-level gain, representing genes with 

few additional copies across the genome; and v) high-level amplification, which 

indicates a high number of extra gene copies focally (Cerami et al., 2012).  

In ccRCCs, the most frequently mutated genes are VHL and PBRM1, at 41.79% 

and 38.31% of all ccRCC tumours with somatic mutation data in the KIRC cohort 

(n = 402). In contrast, m6A regulators were found to be infrequently mutated. 

Amongst all of the m6A regulators that were surveyed, YTHDC2 was mutated at 

the highest frequencies in ccRCC tumours at 1.49% (Figure 5.1A). 

Copy number analysis demonstrated that most ccRCC tumours experience copy 

number variation (CNV) with VHL and PBRM1 (89.15% of all samples for both 

genes). Compared to the rate of somatic mutations, CNVs of m6A regulators were 

much more prevalent. METTL3 and WTAP were found with CNV In 42.21% and 

29.58% of ccRCC tumours with copy number data in the KIRC cohort (n = 507) 

(Figure 5.1B).  
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Next, the relationship between gene copy numbers and gene expression levels 

was evaluated. Statistically significant positive correlations were observed 

between the gene expression levels (Log2RSEM (RNA-Seq by Expectation-

Maximisation) normalised counts) and gene copy number (Log2CopyNumber) of 

METTL3 and WTAP in TCGA KIRC cohort ccRCC tumour samples (Figure 5.1C 

– D).  

Interestingly, for m6A writers, almost all CNVs were found to be shallow deletions 

in the ccRCC tumours (Figure 5.1E). On the other hand, for m6A erasers, CNVs 

of FTO were mostly low-level gain, whilst more CNVs of ALKBH5 were 

deleterious rather than gain (Figure 5.1F). Heterogeneous patterns were 

observed in the types of CNV in m6A reader genes. CNVs of the most highly 

altered m6A regulator, YTHDC2, were almost exclusively gain of gene copies. 

YTHDF1 and IGF2BP3 genes were also found with mostly low-level gains, 

whereas CNVs of YTHDF2 in ccRCC tumours were mostly shallow deletions 

(Figure 5.1G). Data here suggest that the gene copy number and gene 

expression of m6A regulators are frequently altered in ccRCC tumours. Moreover, 

CVN of the core components of m6A writers METTL3, METTL14 and WTAP were 

near-exclusively heterozygous gene deletions. 
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5.3.2 Copy number deletion of m6A writers negatively correlates with 

overall survival of ccRCC patients 

Next, survival analyses were conducted to understand the role of m6A writers, and in 

extension m6A, on ccRCC patients' prognosis. Firstly, m6A writers' CNV events, which 

were almost all deleterious in ccRCC tumours, were not found to be mutually exclusive. 

Only 42.32% of all ccRCC tumours in the KIRC cohort harboured no CNVs in any of the 

m6A writers. In addition, in many ccRCC patients, more than one writer was found with 

CNVs, with 6.54% (24 / 510) of tumours having CNVs in all three writers (Figure 5.2A). 

Survival analysis showed that the deletion of METTL3 significantly correlated with worse 

overall survival in ccRCC patients (p = 0.0011) (Figure 5.2B). A near-significant trend 

was identified between METTL14 deletion and worse overall survival (p = 0.0787) (Figure 

5.2C). For WTAP, no significant correlation was found (Figure 5.2D). Lastly, copy 

number losses of multiple m6A writers (METTL3 + METTL14, METTL3 + METTL14 + 

WTAP) in ccRCC patients were significantly associated with worse overall survival 

(Figure 5.2E – F). The results suggest a significant association between genetic 

alterations in m6A writer genes and poor prognosis. 

Figure 5.1: Genetic alterations of m
6
A regulators in ccRCC tumours 

A) Bar graph showing the frequency of somatic mutations in tumours samples from 

TCGA KIRC cohort (n = 402). B) Bar graph showing the frequency of copy number 

variations (CNV) in ccRCC tumour samples from TCGA KIRC cohort (n = 510). C) 

Correlation between METTL3 gene expression (Log
2
RSEM (RNA-Seq by 

Expectation-Maximisation) normalised counts) and gene copy number 

(Log
2
CopyNumber) in TCGA KIRC cohort ccRCC tumour samples (n = 510). D) As 

in C, but for WTAP. E) Stacked bar graph showing the frequency and types of CNV 

in m
6
A writer genes in ccRCC tumour samples from TCGA KIRC cohort (n = 510). F) 

As in E, but for m
6
A eraser genes. G) As in E, but for m

6
A readers genes. For C – D, 

Diagonal line represents the line of best fit. Spearman’s rank correlation coefficients 

were calculated to measure the strength and direction of the correlations. P values 

were generated from F-test, with p ≤ 0.05 considered statistically significant.  
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Figure 5.2: Copy number loss of m
6
A writers confer unfavourable survival 

outcomes in ccRCC 

A) Pie chart showing the types and distribution of m
6
A writers’ CNVs in ccRCC tumour 

samples from TCGA KIRC cohort (n = 510). Kaplan-Meier survival plots comparing 

overall survival time of TCGA KIRC cohort ccRCC patients with diploid, unaltered m
6
A 

writer genes (n = 210) and patients with copy number deletions in B) METTL3 

exclusively (n = 39), C) METTL14 exclusively (n=18), D) WTAP exclusively (n=53), 

E) both METTL3 and METTL14 (n=19), and F) METTL3, METTL14 and WTAP (n= 

24). Differences in survival rates were assessed using Log-rank (Mantel-Cox) test 

with p ≤ 0.05 considered statistically significant. 
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5.3.3 Generation of CRISPR-Cas9-mediated genetic knock out of m6A 

writers in the ccRCC cell line RCC4 

As an essential subunit of the m6A complex, depletion of METTL3 and WTAP via 

CRISPR-Cas9 mediated gene knockout and siRNA-mediate gene knockdown was 

previously shown to decrease mRNA m6A levels globally in mammalian cells (Ping et al., 

2014; Ge et al., 2021). Therefore, to understand the role of m6A in regulating the gene 

expression landscape of ccRCC tumour cells, the m6A writers METTL3 and WTAP were 

targeted for CRISPR-Cas9-mediated gene knockout, with the aim of further 

characterisation by DRS analysis.  

Firstly, RCC4 cells were stably transduced with lentiviruses containing an eGFP-tagged 

Cas9 expression construct. Then, successfully transduced, GFP-positive RCC4 cells 

were isolated by FACS using the MoFlo Astrios EQ cell sorter. The purity of the GFP-

positive population was confirmed by flow cytometry, where 96.5% of the cell population 

expressed GFP (Figure 5.3A – D). Finally, the expression of Cas9 protein in the RCC4 

Cas9 GFP cells was validated via western blotting (Figure 5.3E, G).  

Single-cell derived clonal METTL3-KO and WTAP-KO cell lines were isolated by 

transfection of guide RNAs followed by limiting dilution. Western blot analysis 

demonstrated the efficiency of guide RNAs, with decreased protein expression of 

METTL3 and WTAP in guide RNA transfected cells (48 hours post-transfection) 

compared to mock-transfected RCC4 Cas9 GFP cells (Figure 5.3E, 5.3G). Finally, gene 

KO in single-cell derived clonal METTL3 KO (Figure 5.3F) and WTAP KO (Figure 5.3H) 

cell lines were validated via western blot analysis. Isolated METTL3 KO lines were not 

viable after passaging. In contrast, WTAP KO lines were viable, with clone 2H1 (WTAP 

KO 2H1) expanded for subsequent DRS analysis. Finally, RNA m6A dot blot analysis 

demonstrated downregulated global RNA m6A levels in extracted total RNA from WTAP 

KO cell lines (2E6 and 2H1) compared to the parental RCC4 Cas9 GFP cells (Figure 

5.3I).  
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Figure 5.3: Generation of CRISPR-Cas9 mediated METTL3 and WTAP KO 

ccRCC clonal cell lines 

Flow cytometry dot plots of GFP expression (x-axis, B 530/30A) versus forward 

scatter-Height (y-axis, FSC-H) for A) RCC4 cells, B) RCC4 Cas9 GFP cells, and C) 

overlay of RCC4 cell population (blue) and RCC4 Cas9 GFP cell population (red). D) 

Representative flow cytometry histogram of GFP expression (x-axis, B 530/30A) 

across RCC4 (blue) and RCC4 Cas9 GFP cell population (red). E) Western blot 

analysis of Cas9 protein, METTL3 and GAPDH (loading control) in mock transfected 

and METTL3 crRNA-pool transfected RCC4 Cas9 GFP cells at 48 hours after 

transfection. F) Western blot analysis of METTL3 and GAPDH (loading control) in 

RCC4 Cas9 GFP and METTL3-KO clonal cell lines. G) Western blot analysis of Cas9 

protein, WTAP and GAPDH (loading control) in mock transfected and WTAP crRNA 

#1, #2 and #3 transfected RCC4 Cas9 GFP cells at 48 hours after transfection. H) 

Western blot analysis of WTAP and GAPDH (loading control) in RCC4-Cas9-GFP 

and WTAP KO clonal cell lines. I) RNA m6A dot blot analysis of RCC4-Cas9-GFP, 

WTAP KO 2E6 and WTAP KO 2H1 total RNA (100 ng and 50 ng). RNA m6A levels 

of WTAP KO cell lines were relative to RCC4 Cas9 GFP, quantified by densitometry 

analysis and averaged between 100ng and 50ng input RNA.  
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5.3.4 DRS of RCC4 Cas9 GFP and WTAP KO 2H1 cells 

Using DRS, the transcriptomic profiles of RCC4 Cas9 GFP and WTAP KO 2H1 under 

both untreated and 24 hours IFNγ + TNF treatment conditions (n = 3 for each cell line at 

each condition) were elucidated. After the treatment time point, total RNA was extracted, 

with RNA quality assessed by Agilent 2100 Bioanalyzer. Bioanalyzer results 

demonstrated that the extracted RNA was not degraded, with a RIN score of 10 across 

all samples. The Bioanalyzer gel image showing the size distribution of RNA fragments 

from the sequenced samples is displayed in Figure 5.6. Poly(A)+ RNA was isolated from 

total RNA using poly d(T) magnetic beads, with 500ng of poly(A)+ RNA used as input for 

DRS library generation (RNA002). The DRS libraries were sequenced on a PromethION 

sequencer using PromethION flow cells (R9.4.1). The DRS library generation protocol, 

sequencing parameters and analysis pipelines used here were the same as in previous 

DRS of ccRCC archival tumour samples. A summary workflow for the experimental setup 

and analysis pipeline is shown in Figure 5.5.  

After 72 hours of sequencing, DRS generated 2.2 – 6.4 million sequencing reads per 

sample that passed sequence quality control (read quality Q score above 7), with a 

median of 4.8 million passed reads per sequencing run (Figure 5.7A). Mean Q scores 

for DRS reads ranged between 11.0 and 12.0 (median: 11.3). Mean and median DRS 

passed-reads read length ranged between 1,149 – 1,313 nt and 928 – 1,036 nt, with 

median lengths of 1,245 nt and 997nt, respectively.   
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Figure 5.5: Summary workflow for DRS of RCC4 Cas9 GFP and WTAP KO 2H1 

Total RNA was extracted from untreated and IFNγ + TNF treated (24 hours) RCC4 

Cas9 GFP and WTAP KO 2H1 cells. Poly(A)
+
 RNAs were enriched by poly d(T) 

beads. 500 ng of poly(A)
+
 RNA were used per sample to prepare DRS library 

(RNA002). Libraries were loaded in PromethION R9 flow cells, and each sequencing 

run lasted 72 hours. Reads were base called concurrently by Guppy, where Q score 

> 7 were kept as passed reads. Reads were subsequently mapped to either 

reference genome or transcriptome via minimap2, using nanopore sequencing 

specific setting. Gene expression levels were determined by featurecounts and 

Salmon, followed by differential gene expression analysis by DESeq2, and 

differential transcript usage analysis performed by DRIMseq and DEXseq. 
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Figure 5.6: RCC4 Cas9 GFP and WTAP KO 2H1 RNA analysis by Agilent 2100 

bioanalyzer 

Analysis of extracted total RNA from RCC4 Cas9 GFP and WTAP KO 2H1 on an 

Agilent 2100 bioanalyzer using the RNA 6000 Nano kit. Bioanalyzer gel image of the 

extracted RNA samples is shown, with visible 28S and 18S rRNA bands. Ratio of 

28S:18S bands were used to assess integrity of RNA samples (where 10 represent 

intact RNAs and 1 represent completely degraded RNAs).  
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Figure 5.7: Summary of DRS reads generated from RCC4 Cas9 GFP and WTAP 

KO 2H1 

A) Bar graphs showing the number of passed reads (Q score > 7) generated by direct 

RNAseq (RNA002). B) Violin plot showing Log10 transformed raw read lengths. RIN 

score, mean read Q score, mean and median read length for each sequencing 

dataset are listed in the tables below violin graphs. 
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5.3.5 DRS of RCC4 Cas9 GFP and WTAP KO 2H1 produces long reads 

representing full-length transcripts 

DRS reads were aligned to the reference genome (Ensembl release 105, Genome 

assembly version: GRCh38) or reference transcriptome (Ensembl release 105, cDNA 

reference) by the sequence mapping and aligner minimap2. The read length distributions 

of reference genome-aligned reads from DRS of RCC4 Cas9 GFP and WTAP KO 2H1 

were analysed and visualised by Nanoplot. Violin plots showing Log10 transformed 

genome-aligned read lengths from DRS were plotted, with mean and median read 

lengths for each sample indicated below the graphs (Figure 5.8A). Mean and median 

reference genome-aligned DRS read lengths ranged between 1,080 – 1,296 nt and 942 

– 1,039 nt, with median lengths of 1,177 nt and 1,015 nt, respectively. 

Reference transcriptome-aligned reads were analysed by bamslam, which provided 

summary alignment statistics for each sample (Tables 5.1). The median length of 

reference transcriptome-aligned reads ranged between 869 – 938 nt (median: 908.5 nt). 

The median read mapping accuracy (base identity) for the samples was 90.56%. 

Between % of the reference transcriptome aligned reads represent full-length transcript 

(95%+ coverage of the length of aligned reference transcript), with the median transcript 

coverage per aligned read ranging between 35.16 – 47.79%. 

The relationship between read lengths and transcript coverage was next explored. The 

median raw read lengths were found to be significantly correlated with the median read 

alignment lengths (R2 = 0.8419, p = <0.0001) (Figure 5.9A). However, unlike results from 

PCS and DRS of archival tumour samples (Figure 3.8B – C), no significant correlation 

was found between the median alignment lengths and the percentage of full-length 

transcript reads (Figure 5.9B).
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Figure 5.8: Distribution of reference genome aligned read lengths from DRS of 

RCC4 Cas9 GFP and WTAP KO 2H1 

Violin plots showing Log
10

transformed reference genome aligned (Ensembl release 

105, GRCh38) read lengths from Direct RNAseq. Mean and median read lengths for 

each sequencing dataset are listed in the tables below violin graphs. 
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Table 5.1: Alignment statistics from DRS of RCC4 Cas9 GFP and WTAP KO 2H1 

Statistics related to alignment of Direct RNAseq generated reads to the reference 

transcriptome (Ensembl release 105, cDNA reference), including median lengths of 

read-alignment, median accuracy of reads, percentage of reads which represent full-

length transcripts (covering at least 95% of annotated transcript where the read was 

aligned). 
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5.3.6 Statistics of unique genes identified by reference genome and 

reference transcriptome aligned DRS data 

Next, the number of unique genes identified in the sequencing experiment was surveyed 

to assess the breadth of transcriptome coverage. For reference genome aligned data, 

the median number of unique genes identified per sample was 14,948, with 20,522 

unique genes identified across all samples (Figure 5.10A). For reference transcriptome-

aligned data, the median number of unique genes found per sample was 12,652, and 

16,244 unique genes were identified across all sequenced samples (Figure 5.10B). For 

both reference genome and reference transcriptome aligned data, the number of 

detected unique genes showed significant positive correlations with the number of 

passed reads (Q > 7) generated for each sample. Results here demonstrate the 

importance of generating a high number of reads to ensure comprehensive 

transcriptome coverage.   

Figure 5.9: Correlations between DRS read alignment lengths and coverage 

A) Correlation between median raw read lengths and median reference transcriptome 

alignment lengths. B) Correlation between median reference transcriptome alignment 

lengths and percentage of reads representing full-length transcripts (covering at least 

95% of annotated transcript). Throughout, diagonal lines represent the line of best fit. 

R
2
 values were computed to measure goodness of fit, and P values generated from 

F-test, with p < 0.05 considered significant. 
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Figure 5.10: Unique genes identified from reference genome and reference 

transcriptome aligned DRS of RCC4 Cas9 GFP and WTAP KO 2H1 

A) Bar graph demonstrating the number of unique genes identified from reference 

genome (Ensembl release 105, GRCh38) aligned DRS of RCC4 Cas9 GFP and 

WTAP KO 2H1. B) As in A, but for reference transcriptome aligned DRS. C) 

Correlation of the number of genes detected via reference genome alignment and the 

number of DRS passed reads (Q > 7) generated. D) As in C, but for reference 

transcriptome alignment. Throughout, diagonal lines represent the line of best fit. R
2
 

values were computed to measure goodness of fit, and P values generated from F-

test, with p < 0.05 considered significant. 
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5.3.7 Composition of RNA biotypes from DRS of RCC4 Cas9 GFP and 

WTAP KO 2H1 

To further evaluate the transcriptomic diversity captured in the sequencing experiment, 

the RNA biotypes of the reference genome (Ensembl release 105, GRCh38) and 

reference transcriptome (Ensembl release 105, cDNA reference) aligned transcripts 

were evaluated. For reference genome alignment data, the average RNA biotype 

proportion of identified unique genes across the 12 samples is displayed in Figure 5.11A. 

The majority of identified genes were classified as protein-coding (66.67%), followed by 

lncRNA (21.75%), processed pseudogenes (6.21%) and transcribed unprocessed 

pseudogenes (1.48%). For reference transcriptome alignment data, the average RNA 

biotype proportion of identified unique genes is displayed in Figure 5.11B. On average, 

90.41% of identified genes are protein-coding, followed by processed pseudogene 

(3.73%) and lncRNA (2.35%).  

Next, biotype composition by transcript abundance, pie charts depicting the averaged 

proportions of RNA biotypes of the reference genome and transcriptome-aligned data by 

expression levels (Reads per million (RPM)) across the 12 samples were constructed 

(Figure 5.11C – D). For reference genome aligned data, 93.71% of mapped reads were 

classified as protein coding, followed by 3.34% processed pseudogene, 1.43% mt-rRNA 

and 0.72% lncRNA. rRNA constituted a negligible proportion of mapped reads. In 

contrast, 99.65% of reads were mapped to protein-coding genes when aligned to 

reference transcriptome, with only 0.14% of aligned reads mapped to lncRNA. 

Similar to the gene expression levels profile of the RNA biotype described in chapter 

3.3.12, the highest expressing biotype for reference genome-aligned data on average 

across samples was mt-rRNA (n = 2, RPM: 10,752 and 3,577), followed by protein-

coding genes (n = 13702, median RPM: 11.07). mt-rRNA were not mapped in reference 

transcriptome-aligned data, where protein-coding genes showed the highest expression 

level across biotypes (n = 14686, median RPM: 6.358), followed by lncRNA (n = 381, 

median RPM: 0.4879).  
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Figure 5.11: RNA biotype composition of RCC4 Cas9 GFP and WTAP KO 2H1 

by DRS  

A) Pie chart depicting the average proportions of RNA biotypes of reference genome 

(Ensembl release 105, GRCh38) aligned DRS reads from RCC4 Cas9 GFP and 

WTAP KO 2H1. B) As in A but aligned to the reference transcriptome (Ensembl 

release 105, cDNA reference). C) Pie chart depicting the average proportions of gene 

biotypes of reference genome aligned DRS reads by expression levels (scaled to 

library size, reads per million (RPM)). D) As in C, but aligned to the reference 

transcriptome. 
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Figure 5.12: Expression levels of genes identified in RCC4 Cas9 GFP and WTAP 

KO 2H1 by biotypes 

A) Violin plot depicting the distribution of gene expression levels (Log
10

 Reads per 

million (RPM)) of genes detected by reference genome aligned (Ensembl release 

105, GRCh38) DRS by biotypes. B) As in A, but for reference transcriptome aligned 

DRS data.  
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5.3.8 Overlapping genes identified from the reference genome and 

reference transcriptome aligned DRS data 

Collating unique genes identified by reference genome alignment and reference 

transcriptome alignment, the extent of overlap was determined using a Venn diagram 

(Figure 5.13A). A total of 13,657 genes were identified by both reference genome 

alignment and reference transcriptome alignment. Reference genome alignment 

identified 6,895 genes that were not identified by reference transcriptome alignment, 

whereas reference transcriptome alignment found 2,587 genes that were not in reference 

genome-aligned data.  

The biotype composition of the reference genome exclusive, reference transcriptome 

exclusive and genes commonly mapped by both methods is demonstrated as a stacked 

bar chart in Figure 5.13B. Of the 13,657 genes identified by both methods, 95.5% 

(13,047) were classified as protein-coding, and 4.3% (591) were pseudogenes. Only 

three lncRNA were commonly found by both reference genome and reference 

transcriptome alignment. For reference genome-exclusive genes, 64.8% (4,467) were 

lncRNA, 19.4% (1,336) were pseudogenes, and 9.5% (656) were protein-coding genes. 

For reference transcriptome-exclusive genes, the majority were protein-coding genes at 

63.3% (1,639), followed by pseudogenes at 21.8% (563) and lncRNA at 14.6% (378). 

Focusing on genes identified by both alignments, a scatter plot between the reference 

genome and reference transcriptome-aligned gene expression data was generated 

(Figure 5.13C). Gene expression levels were highly correlated between the two methods 

(R2 = 0.6515, p < 0.0001). 
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    Figure 5.13: Differences and common genes identified in RCC4 Cas9 GFP and 

WTAP KO 2H1 via reference genome and reference transcriptome alignment 

A) Venn diagram showing the overlap between reference genome aligned and 

reference transcriptome aligned DRS identified genes from RCC4 Cas9 GFP and 

WTAP KO 2H1. B) Stacked bar chart showing the number and proportions of RNA 

biotypes of genes detected by reference genome exclusively, reference 

transcriptome exclusively, or detected by both. C) Correlation between gene 

expression levels (Log
10

 Reads per million (RPM)) of all genes detected by both 

reference genome alignment (Ensembl release 105, GRCh38) and reference 

transcriptome alignment (Ensembl release 105, cDNA reference) of DRS of RCC4 

Cas9 GFP and WTAP KO 2H1. Diagonal line represents the line of best fit. R
2
 value 

was computed to measure goodness-of-fit, and P value was generated from F-test, 

with p< 0.05 considered statistically significant. 
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5.3.9 Evaluation of RCC4 Cas9 GFP and WTAP KO 2H1 

transcriptomes by PCA and hierarchical clustering 

To understand the effects of WTAP-KO and IFNγ+TNF treatment on the transcriptome-

wide gene expression profiles, non-supervised PCA and hierarchical clustering analysis 

were conducted. For PCA of reference genome-aligned data, the first principal 

component (PC1, x-axis) explained 82% of data variation, and the second principal 

component (PC2, y-axis) explained 10% of data variation (Figure 5.14A, 5.14C). For 

PCA of reference transcriptome-aligned data, PC1 (x-axis) explained 69% of data 

variation, and PC2 (y-axis) explained 9% of data variation (Figure 5.14B, 5.14D). Four 

distinct clustering of samples were observed. PC1 (x-axis) was explained by IFNγ+TNF 

treatment-induced differential gene expression, whereas PC2 (y-axis) represented 

WTAP KO status-related gene expression variation. Overall, combining the two PCs 

explained 92% and 78% of gene expression variance in the reference genome and 

reference transcriptome-aligned data. 

Dendrograms of hierarchical clustering analysis were constructed based on Spearman 

rank correlation coefficients of gene expression levels between samples (Figure 5.14E 

– F). In agreement with PCA results, samples from the same cell line and the same 

treatment were clustered initially. Untreated and IFNγ + TNF treated samples clustered 

separately in most cases, except for 'RCC4 Cas9 GFP untreated 1' via reference 

transcriptome alignment (Figure 5.14F). Taken together, both PCA and hierarchical 

clustering results demonstrated the distinct gene expression profiles between RCC4 

Cas9 GFP and WTAP KO 2H1 cell lines, with and without IFNγ+TNF treatment. 
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5.3.10 Identification of DEGs between unstimulated and 

IFNγ+TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 

Gene expression profiles of untreated and IFNγ+TNF treated RCC4 Cas9 GFP and 

WTAP KO 2H1 were compared and analysed by DEseq2. Genes with log2FoldChange 

≤ -2 or ≥ 2 and padj ≤ 0.1 are considered significant DEGs. Results of differential gene 

expression analysis (Untreated vs IFNγ+TNF treated RCC4 CAS9 GFP, untreated vs 

IFNγ+TNF treated WTAP KO 2H1, untreated RCC4 Cas9 GFP vs WTAP KO 2H1, 

IFNγ+TNF treated RCC4 Cas9 GFP vs WTA KO 2H1) by reference genome alignment 

and reference transcriptome alignment were plotted as volcano plots in Figure 5.14 and 

5.15, respectively. The top fifteen differentially expressed genes (ranked by padj values) 

from the comparisons by reference genome alignment are listed in Tables 5.2 – 5.5. 

Comprehensive lists of DEGs can be found in Appendix tabled 7.15 – 22. 

Comparing gene expression levels of untreated versus IFNγ+TNF treated RCC4 Cas9 

GFP, 441 significant DEGs, including 308 upregulated and 131 downregulated genes 

were found using reference genome aligned data (Figure 5.14A). The top fifteen DEGs 

by padj values were all found to be upregulated in IFNγ+TNF treated cells, with the top 

three being WARS1 (tryptophanyl-tRNA synthetase 1,  Log2FoldChange = 4.9355, padj = 

9.46 x 10-114), SOD2 (superoxide dismutase 2, Log2FoldChange = 4.5742, padj = 8.25 x 

Figure 5.13: PCA and hierarchical clustering of RCC4 Cas9 GFP and WTAP KO 

2H1 transcriptome profiles 

Principal component analysis (PCA) on RCC4 Cas9 GFP and WTAP KO 2H1 gene 

expression data illustrating variations between samples (dots, n = 12). DESeq2 

generated plots using A) Reference genome and B) Reference transcriptome aligned 

data showing PCA of RCC4 Cas9 GFP vs WTAP KO 2H1 samples. C) Reference 

genome and D) Reference transcriptome aligned data showing PCA of untreated vs 

IFNγ and TNF treated samples. E) Dendrogram for hierarchical clustering of 

reference genome mapped RCC4 Cas9 GFP and WTAP KO 2H1 DRS 

transcriptomes based on spearman rank correlations of gene expression levels. F) 

As in E but for reference transcriptome aligned data. 
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10-99),  CCL2 (C-C motif chemokine ligand 2, Log2FoldChange = 9.6200, padj = 4.52 x 10-

90) (Table 5.2).  

For untreated versus IFNγ+TNF treated WTAP KO 2H1, 327 significant DEGs, including 

248 upregulated and 79 downregulated genes were found (Figure 5.14B). Like RCC4 

Cas9 GFP, the top fifteen DEGs by padj values also consisted entirely of upregulated 

genes. As shown by the spread of data points at the volcano plots, IFNγ+TNF induced a 

large number of upregulated genes in both cell lines. The top three most significantly 

upregulated genes (by padj values) were GBP1 (Guanylate binding protein 1, 

Log2FoldChange = 10.3937, padj = 7.66 x 10-131), ICAM1 (Intercellular adhesion molecule 

1, Log2FoldChange = 5.5519, padj = 3.13 x 10-115), and CCL2 (Log2FoldChange = 9.6430, 

padj = 6.76 x 10-111) (Table 5.3). 

Significant DEGs associated with WTAP KO were also identified. Comparing untreated 

RCC4 Cas9 GFP and WTAP KO 2H1, 48 DEGs (18 upregulated genes and 30 

downregulated genes) were found in reference genome alignment data (Figure 5.14C). 

The top 10 most significant DEGs were exclusively downregulated genes, with the top 

three being NDUFA4L2 (NDUFA4 mitochondrial complex associated like 2, 

Log2FoldChange = -9.4549, padj = 1.15 x 10-53), CA9 (Carbonic anhydrase 9, 

Log2FoldChange = -3.9148, padj = 8.32 x 10-35), and EGLN3 (egl-9 family hypoxia 

inducible factor 3, Log2FoldChange = -6.6649, padj = 1.24 x 10-18) (Table 5.4).  

For IFNγ+TNF treated RCC4 Cas9 GFP vs WTAP KO 2H1, 65 significant DEGs (32 

upregulated genes and 33 downregulated genes) were discovered in reference genome 

alignment data (Figure 5.14D). Similar to untreated comparisons, top DEGs were mostly 

downregulated genes. The top three most significant DEGs (by padj values) were 

NDUFA4L2 (Log2FoldChange = -9.4352, padj = 2.48 x 10-58), BNIP3 (BCL2 interacting 

protein 3, Log2FoldChange = -2.3804, padj = 2.80 x 10-50), and CA9 (Log2FoldChange = 

5.5873, padj = 1.16 x 10-49) (Table 5.5). Volcano plots from reference transcriptome 

aligned data were shown in Figure 5.15, with the similarities and differences between the 

DEG analyses from the two alignment methods discussed in the next section (5.3.11). 
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Figure 5.14: DEGs between untreated and IFNγ + TNF treated RCC4 Cas9 GFP 

and WTAP KO 2H1 by reference genome alignment 

Volcano plots showing differentially expressed genes between A) untreated and IFNγ 

+ TNF treated RCC4 Cas9 GFP, B) untreated and IFNγ + TNF treated WTAP KO 

2H1, C) untreated RCC4 Cas9 GFP vs WTAP KO 2H1 and D) IFNγ + TNF treated 

RCC4 Cas9 GFP vs WTAP KO 2H1 profiled by reference genome alignment. Dotted 

lines indicate significance threshold (p
adj

 ≤ 0.1, |log
2
FoldChange| > 2). Significantly 

upregulated genes are in red and downregulated genes are in blue. Names of top 4 

most significantly up/down regulated genes (by padj) are shown. 
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Figure 5.15: DEGs between untreated and IFNγ + TNF treated RCC4 Cas9 GFP 

and WTAP KO 2H1 by reference transcriptome alignment 

Volcano plots showing differentially expressed genes between A) untreated and IFNγ 

+ TNF treated RCC4 Cas9 GFP, B) untreated and IFNγ + TNF treated WTAP KO 

2H1, C) untreated RCC4 Cas9 GFP vs WTAP KO 2H1 and D) IFNγ + TNF treated 

RCC4 Cas9 GFP vs WTAP KO 2H1 profiled by reference transcriptome alignment. 

Dotted lines indicate significance threshold (p
adj

 ≤ 0.1, |log
2
FoldChange| > 2). 

Significantly upregulated genes are in red and downregulated genes are in blue. 

Names of top 4 most significantly up/down regulated genes (by padj) are shown. 
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Table 5.3 Top differentially expressed genes after IFNγ and TNF stimulation in 

WTAP KO 2H1 cells 

Top 15 differential expressed genes in IFNγ + TNF treated compared to untreated, in 

WTAP KO 2H1 cells as analysed by DESeq2, ranked by padj values.  

Table 5.2 Top differentially expressed genes after IFNγ and TNF stimulation in 

RCC4 Cas9 GFP cells 

Top 15 differential expressed genes in IFNγ + TNF treated compared to untreated, in 

RCC4 Cas9 GFP cells as analysed by DESeq2, ranked by padj values.  
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Table 5.4 Top differentially expressed genes between RCC4 Cas9 GFP and 

WTAP KO 2H1 cells without IFNγ+TNF stimulation 

Top 15 differential expressed genes between unstimulated RCC4 Cas9 GFP and 

WTAP KO 2H1 cells as analysed by DESeq2, ranked by padj values. 

Table 5.5 Top differentially expressed genes between RCC4 Cas9 GFP and 

WTAP KO 2H1 cells with IFNγ+TNF stimulation 

Top 15 differential expressed genes between unstimulated RCC4 Cas9 GFP and 

WTAP KO 2H1 cells as analysed by DESeq2, ranked by padj values. 
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5.3.11 Characterisation of DEGs between unstimulated and 

IFNγ+TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 

After identifying DEGs between unstimulated and IFNγ + TNF stimulated RCC4 Cas9 

GFP and WTAP KO 2H1, both reference genome and transcriptome-aligned data were 

collated. 496 and 367 unique genes were significantly differentially expressed after IFNγ 

+ TNF treatment in RCC4 Cas9 GFP and WTAP KO 2H1 (Figure 5.16A – B). 54 and 71 

unique genes were significantly differentially expressed between RCC4 Cas9 GFP and 

WTAP KO 2H1 under no treatment or IFNγ + TNF stimulation, respectively (Figure 5.16 

C – D). In addition, Venn diagrams showed between 37.0% (Unstimulated RCC4 Cas9 

GFP vs WTAP KO 2H1) to 54.2% (WTAP KO 2H1 untreated vs IFNγ + TNF treated) of 

DEGs were identified by both reference genome and reference transcriptome alignment 

for all DEG analysis. 

The differential expression levels (Log2FoldChange) of DEGs between alignment 

methods were further analysed. Scatter plots were plotted with Log2FoldChange values 

of DEGs detected in both reference genome mapping and reference transcript mapping 

(Figure 5.17). For untreated vs IFNγ + TNF treated RCC4 Cas9 GFP and WTAP KO 2H1, 

400/496 and 299/367 DEGs were detected in both reference genome and reference 

transcriptome aligned data. For untreated and IFNγ + TNF treated RCC4 Cas9 GFP vs 

WTAP KO 2H1, 40/54 and 54/71 DEGs were detected by both alignment methods. 

Expression patterns between the alignment methods showed high levels of concordance 

across all four comparisons. Whilst most genes exhibit similar expression trends 

between the methods (blue and red dots), several outliers were also identified (black 

dots). For example, with reference genome alignment, CTSO (Cathepsin O) was 

identified as significantly upregulated in both RCC4 Cas9 GFP (Log2FoldChange = 2.79, 

padj = 5.49 x 10-5) and WTAP KO 2H1 (Log2FoldChange = 2.43, padj = 2.17 x 10-2) upon 

IFNγ + TNF treatment. However, CTSO was not identified as a DEG when aligned to 

reference transcriptome in neither RCC4 Cas9 GFP (Log2FoldChange = -0.42, padj = 0.85) 

nor WTAP KO 2H1 (Log2FoldChange = -0.6744, padj = 0.99) (Figure 5.17 A – B).  
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Figure 5.16: Common DEGs identified by reference genome and reference 

transcriptome aligned DRS of RCC4 Cas9 GFP and WTAP KO 2H1 

A) Venn diagram showing overlaps of DEGs (p
adj

 ≤ 0.1,|log
2
FoldChange|>2) between 

unstimulated and IFNγ + TNF stimulated RCC4 Cas9 GFP by reference genome and 

reference transcriptome alignment. B) As in A, but for WTAP KO 2H1. C) Venn 

diagram showing overlaps of DEGs (p
adj

 ≤ 0.1,|log
2
FoldChange|>2) between 

unstimulated RCC4 Cas9 GFP and WTAP KO 2H1. D) As in C, but for IFNγ + TNF 

stimulated RCC4 Cas9 GFP and WTAP KO 2H1. Throughout, the total number of 

unique DEGs identified by either alignment methods are shown below the Venn 

diagrams. 
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Figure 5.17: Evaluation of DEGs expression levels profiled by reference 

genome and reference transcriptome alignment 

A) Correlation of Log
2
FoldChange of commonly found unstimulated vs IFNγ + TNF 

stimulated RCC4 Cas9 GFP DEGs (n = 400, p
adj

 ≤ 0.1, |log
2
FoldChange| > 2) between 

reference genome and reference transcriptome alignment. B) As in A, but for 

unstimulated vs IFNγ + TNF stimulated WTAP KO 2H1 DEGs (n = 299). C) As in A, 

but for unstimulated RCC4 Cas9 GFP vs WTAP KO 2H1 DEGs (n = 40). D) As in A, 

but for IFNγ + TNF stimulated RCC4 Cas9 GFP vs WTAP KO 2H1 DEGs (n = 54). 

Red dots signify significantly upregulated genes. Blue dots signify significantly 

downregulated genes. Black dots signify DEGs which showed opposing expression 

patterns between alignment methods. Throughout, diagonal lines represent the line 

of best fit. R
2
 values were computed to measure goodness-of-fit, and p values were 

generated from F-test, with p< 0.05 considered statistically significant. 
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5.3.12 Impact of WTAP KO on IFNγ+TNF stimulated DEGs 

Transcriptomic data here have shown that IFNγ + TNF stimulations induced dramatic 

changes in the transcriptomic profiles of both RCC4 Cas9 GFP and WTAP KO 2H1. To 

assess the impact of WTAP on IFNγ + TNF stimulation-induced differential gene 

expression, lists of DEGs from RCC4 Cas9 GFP untreated vs IFNγ + TNF treated, and 

WTAP KO 2H1 untreated vs IFNγ + TNF  were compared using a Venn diagram (Figure 

5.18A). Of the 496 DEGs from RCC4 Cas9 GFP and 367 DEGs from WTAP KO 2H1 

(combining both reference genome and transcriptome aligned DEGs, as shown in Figure 

5.16A – B), 305 genes were identified as DEGs in both cell lines. Amongst the 

overlapping genes, 237 genes were significantly upregulated, and 68 genes were 

significantly downregulated. 191 IFNγ + TNF stimulation-induced DEGs were identified 

exclusively in RCC4 Cas9 GFP, where 111 were upregulated and 80 were 

downregulated. 62 IFNγ + TNF stimulation-induced DEGs were found in WTAP KO 2H1 

exclusively, with 36 upregulated and 26 downregulated genes. 

Next, focusing on the cell type specific DEGs, scatter plots were constructed with 

Log2FoldChange values from RCC4 Cas9 GFP and WTAP KO 2H1 (Figure 5.18B – C). 

Although the plotted DEGs were only identified as differentially expressed in one of the 

two cell lines, their expression patterns were significantly correlated between the cell 

lines (RCC4 Cas9 GFP exclusive DEGs: R2 = 0.7900, p = <0.0001; WTAP KO 2H1 

exclusive DEGs: R2 = 0.8277, p = <0.0001). For the 191 RCC4 Cas9 GFP-exclusive 

DEGs, 22 genes showed at least a four-fold difference in gene expression levels  

(|log
2
FoldChange| > 2) between the two cell lines (Figure 5.18B). Of the 62 WTAP KO 

2H1 exclusive DEGs, 12 genes exhibited at least a four-fold difference in gene 

expression levels between the two cell lines (Figure 5.18C). Data presented here 

suggest that the effects of IFNγ+TNF stimulated on significant differential gene 

expression were consistent in both RCC4 Cas9 GFP and WTAP KO 2H1, with a low 

number of genes failing to up- or downregulated upon cytokine treatment of WTAP KO 

2H1 cells.  
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Figure 5.18: Differential IFNγ + TNF stimulation induced DEGs between RCC4 

Cas9 GFP and WTAP KO 2H1 

A) Venn diagram showing the numbers of IFNγ + TNF stimulation induced 

significantly upregulated and downregulated genes exclusively in RCC4 Cas9 GFP, 

exclusively in WTAP KO 2H1, and in both, using DEGs found from both reference 

genome and reference transcriptome alignment. B) Correlation of Log
2
FoldChange 

of unstimulated vs IFNγ + TNF stimulated RCC4 Cas9 GFP exclusive DEGs (p
adj

 ≤ 

0.1, |log
2
FoldChange| > 2), between RCC4 Cas9 GFP and WTAP KO 2H1. 

Log
2
FoldChange averaged from both reference genome and transcriptome alignment 

data. Blue dots represent genes with ΔLog
2
Foldchange (RCC4 Cas9 GFP – WTAP 

KO 2H1) < 2. Red dots represent genes with ΔLog
2
Foldchange (RCC4 Cas9 GFP – 

WTAP KO 2H1) > 2. C) As in B but for WTAP KO 2H1 exclusive DEGs. Throughout, 

diagonal lines represent the line of best fit. R
2
 values were computed to measure 

goodness-of-fit, and p values were generated from F-test, with p< 0.05 considered 

statistically significant.  
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5.3.13 Characterisation of WTAP KO-associated DEGs 

Previously, differential gene expression analyses have identified 54 and 71 DEGs 

between RCC4 Cas9 GFP and WTAP KO 2H1, with no treatment and under IFNγ + TNF 

treatment, respectively (Figure 5.16C – D). To find out the extent of WTAP KO-

associated differential gene expression patterns that were IFNγ + TNF stimulation 

dependent, a Venn diagram was generated using the lists of DEGs between RCC4 Cas9 

GFP and WTAP KO 2H1, with and without IFNγ + TNF stimulation. 34 DEGs were 

identified with and without IFNγ + TNF treatment, representing 61.1% and 47.8% of all 

unstimulated and IFNγ + TNF stimulated DEGs, respectively (Figure 5.19A).  

To obtain more information on the gene expression patterns of the treatment condition-

specific WTAP KO-associated DEGs, Scatter plots were constructed using the 

treatment-specific DEGs' Log2FoldChange values of RCC4 Cas9 GFP vs WTAP KO 

2H1, with and without IFNγ + TNF treatment (Figure 5.19B – C). Expression patterns 

were significantly correlated between untreated and IFNγ + TNF treated conditions, 

despite being highlighted as a DEG in only one of the conditions. Amongst the 57 

condition-specific RCC4 Cas9 GFP vs WTAP KO 2H1 DEGs, ten genes exhibited at 

least a four-fold difference in gene expression levels between the treatment conditions. 

In addition, results here showed that WTAP KO induced significant differential gene 

expression in 47 genes, regardless of IFNγ + TNF treatment. 
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   Figure 5.19: The majority of WTAP KO associated DEGs show similar 

expression trends with and without IFNγ + TNF exposure 

A) Venn diagram showing the numbers of significantly upregulated and 

downregulated genes between RCC4 Cas9 GFP and WTAP KO 2H1 exclusively 

under no treatment, exclusively under IFNγ + TNF, and in both conditions. DEGs 

found from both reference genome and reference transcriptome alignment were 

used. B) Correlation of Log
2
FoldChange of RCC4 Cas9 GFP vs WTAP KO 2H1 

untreated-exclusive DEGs (p
adj

 ≤ 0.1, |log
2
FoldChange| > 2), between untreated and 

IFNγ + TNF treated condition. Log
2
FoldChange averaged from both reference 

genome and transcriptome alignment data. Blue dots represent genes with 

ΔLog
2
Foldchange (RCC4 Cas9 GFP – WTAP KO 2H1) < 2. Red dots represent genes 

with ΔLog
2
Foldchange (RCC4 Cas9 GFP – WTAP KO 2H1) > 2. C) As in B but for 

IFNγ + TNF treated-exclusive DEGs. Throughout, diagonal lines represent the line of 

best fit. R
2
 values were computed to measure goodness-of-fit, and p values were 

generated from F-test, with p< 0.05 considered statistically significant.  
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5.3.14 GSEA GO MF analysis reveals similar IFNγ + TNF induced 

and suppressed pathways in RCC4 Cas9 GFP and WTAP KO 2H1 

Next, GSEA was conducted to assess the impact of IFNγ + TNF treatment on cellular 

pathways in RCC4 Cas9 GFP and WTAP KO 2H1 cells using clusterprofiler (v4.0). Here, 

log2Foldchange values of DESeq2 normalised gene expression from all detected genes 

across samples were used as input for GSEA. GSEA with the GO: MF database showed 

the molecular pathways activated and suppressed in both RCC4 Cas9 GFP and WTAP 

KO 2H1 after IFNγ + TNF treatment. In both cell lines, enrichment maps demonstrated 

that most of the top 10 GO: MF terms were related to chemokine/cytokine receptor 

activities or the antigen presentation binding pathway (Figure 5.20A, 5.21A). The top 5 

activated GO MF pathways in RCC4 Cas9 GFP by padj values were 'chemokine activity', 

'peptide antigen binding', 'chemokine receptor binding', 'antigen binding' and 'cytokine 

receptor binding' (Figure 5.20B - C). Four GO: MF terms also appeared on the top five 

activated pathways list in WTAP KO 2H1, as demonstrated by both the dot plot and 

GSEA enrichment plot (Figure 5.21B – C). 

GSEA GO MF analysis also revealed significantly suppressed pathways by IFNγ + TNF 

treatment. In RCC4 Cas9 GFP, the top 5 suppressed pathways were 'gated channel 

activity', 'ion channel activity', 'voltage-gated channel activity', 'voltage-gated ion channel 

activity' and 'potassium channel activity'. The downregulation in channel protein-related 

pathways was also observed in WTAP KO 2H1, where the top suppressed pathways 

were 'metal ion transmembrane transporter activity', 'voltage-gated anion channel 

activity', 'ion channel activity', and 'gated channel activity' (Figure 5.21B). Overall, GSEA 

GO: MF analysis showed similar profiles of activated and suppressed molecular 

pathways for RCC4 Cas9 GFP and WTAP KO 2H1 cells after IFNγ + TNF treatment. 

Comprehensive lists of significant GO: MF terms enriched in RCC4 Cas9 GFP and 

WTAP KO 2H1 upon IFNγ + TNF treatment can be found in Appendix tabled 7.23 and 

7.25, respectively.  
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Figure 5.20: Gene Ontology Molecular Function (GO:MF) GSEA for IFNγ + TNF 

stimulation induced pathway enrichment in RCC4 Cas9 GFP 

A) GO:MF enrichment map showing top 10 enriched terms associated IFNγ + TNF 

stimulation induced pathway enrichment in RCC4 Cas9 GFP. B) Dot plot showing top 

10 enriched GO:MF terms, with dot size representing gene count per term and colour 

reflecting p
adj

 value. C) GSEA enrichment plot for the top 5 enriched GO:MF terms. 

The x-axis shows genes represented in each pathway, and the y-axis shows 

enrichment scores. 

A 

B 

C 
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Figure 5.21: Gene Ontology Molecular Function (GO:MF) GSEA for IFNγ + TNF 

stimulation induced pathway enrichment in WTAP KO 2H1 

A) GO:MF enrichment map showing top 10 enriched terms associated IFNγ + TNF 

stimulation induced pathway enrichment in WTAP KO 2H1. B) Dot plot showing top 

10 enriched GO:MF terms, with dot size representing gene count per term and colour 

reflecting p
adj

 value. C) GSEA enrichment plot for the top 5 enriched GO:MF terms. 

The x-axis shows genes represented in each pathway, and the y-axis shows 

enrichment scores. 

A 

B 

C 
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5.3.15 GSEA Hall mark geneset analysis identified suppressed 

glycolysis and hypoxic pathways in WTAP KO 2H1 

To assess the molecular pathways that exhibited augmented expression with the KO of 

WTAP, Log2FoldChange values from untreated and IFNγ + TNF treated RCC4 Cas9 

GFP vs WTAP KO 2H1 were profiled by GSEA GO: BP and GO: MF databases 

(clusterprofiler v4.0). No significant GO term was identified. 

Next, the GSEA of hallmark genesets (extracted from the molecular signatures database 

(MSigDb)) was performed using fgsea (Korotkevich and Sukhov, 2016). For untreated 

RCC4 Cas9 GFP vs WTAP KO 2H1, two hallmark genesets, ' Hypoxia' and 'Glycolysis', 

were identified to be significantly suppressed in WTAP KO 2H1 (Figure 5.22A, 5.22C). 

Similarly, for IFNγ + TNF treated RCC4 Cas9 GFP vs WTAP KO 2H1, 'Hypoxia' and 

'Glycolysis' were the only hallmark gene sets that were significantly suppressed. (Figure 

5.22B, 5.22D). 

RCC4 is a VHL-defective ccRCC cell line with a constitutively active HIF pathway with 

high protein expression levels of HIF-1α (Ruf et al., 2016). In the context of cancer, HIF-

1α mediates transcription activation of multiple oncogenic pathways, such as the PI3K-

Akt-mTOR pathway (Masoud and Li, 2015). As a well-studied transcription factor, HIF-

1α target genes have been characterised and validated experimentally (Benita et al., 

2009). Here, Venn diagrams showed that amongst the DEGs from both untreated and 

IFNγ + TNF treated RCC4 Cas9 GFP vs WTAP KO 2H1, seven and nine DEGs, 

respectively, were also targets of HIF-1α (Figure 5.22E, F). Some of the overlapping 

genes include BNIP3, CA9 and EGLN3.   
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HIF1α targets Untreated DEGs HIF1α targets IFNγ + TNF DEGs 

Untreated IFNγ + TNF 
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Figure 5.22: WTAP KO 2H1 exhibit suppressed hypoxia & glycolysis pathways 

GSEA enrichment plots of the hall mark gene set ‘Hypoxia’ for differential gene 

expression between RCC4 Cas9 GFP and WTAP KO 2H1 when A) untreated and B) 

under IFNγ + TNF treatment. C) As in A and D) as in B, but for the hall mark gene 

set ‘Glycolysis.The x-axis shows genes represented in each pathway, and the y-axis 

shows enrichment scores. Normalised enrichment scores (NES) and p
adj

 values are 

indicated in each plot. E) Venn diagram showing overlaps of untreated RCC4 Cas9 

GFP vs WTAP KO 2H1 DEGs and HIF1 target genes (n = 500, Benita et al. 2009). F) 

As in E but for IFNγ + TNF treated RCC4 CAs9 GFP vs WTAP KO 2H1 DEGs. 

NES: -2.194 
padj = 3.14 x 10-11  

NES: -2.015 
padj = 1.19 x 10-6  

NES: -2.024 
padj = 2.06 x 10-7  

NES: -1.905 
padj = 7.50 x 10-6  
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5.3.16 Validation of DRS identified DEGs between RCC4 Cas9 

GFP and WTAP KO 2H1 

To confirm DRS gene expression results, mRNA and protein levels of significant DEGs 

from RCC4 Cas9 GFP and WTAP KO clonal cell lines (2E6, 2H1 and 3A1) were 

assessed. Transcript levels of NDUFA4L2 and BNIP3 were measured using qRT-PCR. 

Previously, NDUFA4L2 (and BNIP3 were identified as two of the most significantly 

downregulated genes in both untreated and IFNγ + TNF treated RCC4 Cas9 GFP vs 

WTAP KO 2H1 (Tables 5.4 – 5.5). Using qRT-PCR, both NDUFA4L2 and BNIP3 mRNA 

levels were found to be significantly suppressed in WTAP KO 2E6 and WTAP KO 2H1, 

under both untreated and IFNγ + TNF treated conditions (Figure 5.23A – D). These 

results validated gene expression analysis from DRS. However, in contrast to the other 

two WTAP KO clonal cell lines, mRNA expression levels of NDUFA4L2 in WTAP KO 

3A1 were found to be significantly upregulated compared to RCC4 Cas9 GFP in both 

untreated and IFNγ + TNF treated conditions (Figure 5.23A – B). Moreover, no significant 

suppression of BNIP3 mRNA levels was observed (Figure 5.23C – D). 

Next, protein expression levels of CA9 and NDUFA4L2 were examined using western 

blotting analysis. Like NDUFA4L2, CA9 was one of the most highly suppressed genes 

identified using DRS (Tables 5.4 – 5.5). Similar to the observations from qRT-PCR 

experiments, western blotting analysis revealed downregulation in protein expression of 

CA9 and NDUFA4L2 in WTAP KO 2E6 and WTAP KO 2H1 cell lines compared to RCC4 

Cas9 GFP. However, no suppression in CA9 and NDUFA4L2 expression was found in 

the WTAP KO 3A1 cell line (Figure 5.23E). Although both qRT-PCR and western blotting 

analysis validated the DRS gene expression analysis between RCC4 Cas9 GFP and 

WTAP KO 2H1, the inconsistencies in validation experiments across WTAP KO cell lines 

indicated potential off-target effects from the gene editing process.  
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Figure 5.23: Validation of RNAseq results via qRT-PCR and western blotting 

A) NDUFA4L2 mRNA levels measured by qRT-PCR in untreated RCC4 Cas9 GFP, 

WTAP KO 2E6, 2H1, 3A1, and RCC4 cell lines, relative to averaged NDUFA4L2 

mRNA levels in RCC4 Cas9 GFP. NDUFA4L2 mRNA levels were normalised to 

GAPDH. B) As in A, but for IFNγ + TNF treated (24 hours) cells. C) BNIP3 mRNA 

levels measured by qRT-PCR in untreated RCC4 Cas9 GFP, WTAP KO 2E6, 2H1, 

3A1, and RCC4 cell lines (n = 3), relative to averaged BNIP3 mRNA levels in RCC4 

Cas9 GFP. BNIP3 mRNA levels were normalised GAPDH. D) As in C, but for IFNγ + 

TNF treated (24 hours) cells. E) Western blot analysis of CA9, NDUFA4L2, WTAP 

and GAPDH (loading control) in untreated and in IFNγ and TNFα stimulated (24 

hours) RCC4 Cas9 GFP, WTAP KO 2E6, WTAP KO 2H1 and WTAP KO 3A1 cell 

lines (n = 1). For A – D, one-way ANOVA tests were performed, with p ≤ 0.05 

considered statistically significant. Asterisks indicate statistical significance levels 

(**** = p < 0.0001, *** = p < 0.001, ** = p < 0.01, ns = p > 0.05, not significant). 
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5.3.17 Orthogonal validation of WTAP gene knockout associated 

DEGs by siRNA-mediated knockdown of m6A writers 

Having observed inconsistent effects of WTAP gene knockout in the clonal KO cell lines, 

siRNA-mediated gene silencing was used to validate the impact of m6A writers on the 

gene expression of DRS-identified WTAP KO-associated DEGs. siRNAs (pool of four) 

against WTAP, METTL3 and non-targeting control (NTC) were transfected into RCC4 

cells, with and without subsequent 24 hours IFNγ + TNF treatment (30 hours post-

transfection).  

Transfection of siRNAs against WTAP (siWTAP) and METTL3 (siMETTL3) resulted in 

depletion of their respective mRNA levels in RCC4 cells, compared to siNTC transfected 

cells in both unstimulated and IFNγ + TNF stimulated cells (n = 2, Figure 5.23A – B, 

5.23E – F). Depletion of WTAP mRNA expression levels in RCC4 cells did not result in 

changes in the METTL3 mRNA levels (n = 2, Figure 5.23C – D). Similarly, no 

compensatory effect on WTAP expression was observed in siMETTL3 transfected RCC4 

cells (n = 2, Figure 5.23G – H).  

In both siWTAP and siMETTL3 transfected RCC4 cells, NDUFA4L2 mRNA levels were 

not found to be significantly suppressed in both untreated and IFNγ + TNF treated 

conditions, compared to siNTC transfected controls (Figure 5.24I – J). Similarly, neither 

the transfection of siWTAP nor siMETTL3 resulted in changes in BNIP3 mRNA levels, 

compared to siNTC transfected controls (Figure 5.24M – P). Results here did not support 

the effects shown in DRS results, where KO of WTAP significantly suppressed 

NDUFA4L2 and BNIP3 mRNA levels.  
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Figure 5.23: Orthogonal validation of WTAP gene knockout associated 

differential gene expression via siRNA-mediated knockdown of m
6
A writers  

A) WTAP mRNA levels measured by qRT-PCR in unstimulated siNTC (non-targeting 

control) and siWTAP transfected RCC4 cells, relative to averaged WTAP mRNA 

levels in siNTC transfected RCC4 cells from 2 independent experiments. B) As in A, 

but for IFNγ + TNF treated cells. C) METTL3 mRNA levels measured by qRT-PCR in 

unstimulated siNTC and siWTAP transfected RCC4 cells, relative to averaged 

METTL3 mRNA levels in siNTC transfected RCC4 cells from 2 independent 

experiments. D) As in C, but for IFNγ + TNF treated cells. E) METTL3 mRNA levels 

measured by qRT-PCR in unstimulated siNTC and siMETTL3 transfected RCC4 

cells, relative to averaged METTL3 mRNA levels in siNTC transfected RCC4 cells 

from 2 independent experiments. F) As in E, but for IFNγ + TNF treated cells. G) 

WTAP mRNA levels measured by qRT-PCR in unstimulated siNTC and siMETTL3 

transfected RCC4 cells, relative to averaged METTL3 mRNA levels in siNTC 

transfected RCC4 cells from 2 independent experiments. H) As in G but for IFNγ + 

TNF treated cells. I) NDUFA4L2 mRNA levels measured by qRT-PCR in untreated 

siNTC and siWTAP transfected cells, relative to averaged NDUFA4L2 mRNA levels 

in siNTC transfected RCC4 cells from 2 independent experiments. J) As in I, but for 

IFNγ + TNF treated cells. K) As in I, and L) as in J, but with siNTC and siMETTL3 

transfected RCC4 cells.  M) BNIP3 mRNA levels measured by qRT-PCR in untreated 

siNTC and siWTAP transfected cells, relative to averaged BNIP3 mRNA levels in 

siNTC transfected RCC4 cells from 2 independent experiments. N) As in M, but for 

IFNγ + TNF treated cells. O) As in M, and P) as in N, but with siNTC and siMETTL3 

transfected RCC4 cells. Throughout, mRNA levels were normalised to GAPDH. 

Centre lines represent mean for each group. Error bars represent standard deviation. 
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5.3.18 Identification of DTU events between unstimulated and 

IFNγ+TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 

The effects of IFNγ + TNF treatment and WTAP-KO in ccRCC tumour cells were further 

assessed through differential transcript usage analysis using DRIMseq and DEXseq 

(Love et al., 2018). Comparing stimulated and IFNγ + TNF stimulated RCC4 Cas9 GFP, 

DRIMseq identified 50 genes that underwent DTU, whereas DEXseq found 53 genes 

which displayed DTU (Figure 5.25A). For WTAP KO 2H1, comparing stimulated and 

IFNγ + TNF stimulated cells, DRIMseq found seven genes which displayed DTU, and 

DEXseq identified 43 genes which showed DTU (Figure 5.25B). 61 and 45 unique genes 

were found to display DTU in RCC4 Cas9 GFP and WTAP KO 2H1, respectively, after 

IFNγ + TNF treatment. Among the DTUs identified, 13 genes overlap between the two 

cell lines (Figure 5.25 C).  

DTU events were also identified between RCC4 Cas9 GFP and WTAP KO 2H1. In 

unstimulated RCC4 Cas9 GFP vs WTAP KO 2H1, 69 genes showed significant DTU. 

Under IFNγ + TNF treatment, 32 genes were found to display DTU. Seven genes were 

found to display DTU regardless of IFNγ + TNF treatment condition (Figure 5.25D). 

Comprehensive lists of DTU genes between unstimulated and IFNγ + TNF stimulated 

RCC4 Cas9 GFP, unstimulated and IFNγ + TNF stimulated WTAP KO 2H1, and between 

the cell lines at both conditions can be found in the Appendix Tables 7.26 – 29. 
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Figure 5.25: Characterisation of IFNγ + TNF induced DTU events in RCC4 Cas9 

GFP and WTAP KO 2H1 cells 

A) Venn diagram showing the overlap between DRIMseq and DEXseq identified 

genes that displayed significant DTU between untreated and IFNγ + TNF treated 

RCC4 Cas9 GFP cells. B) As in A, but for WTAP KO 2H1 cells. C) Venn diagram 

showing the overlap between IFNγ + TNF treatment induced-DTU genes identified in 

RCC4 Cas9 GFP and WTAP KO 2H1. D) Venn diagram showing the overlap of 

significant DTU genes between unstimulated and IFNγ + TNF stimulated RCC4 Cas9 

GFP vs WTAP KO 2H1. 
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5.3.19 CD24 displays DTU in RCC4 Cas9 GFP and WTAP KO 2H1 

after IFNγ and TNF stimulation 

CD24 was one of the genes which displayed DTU in both RCC4 Cas9 GFP and WTAP 

KO 2H1 when stimulated with IFNγ + TNF (Figure 5.26J). Two transcripts were mapped 

in RCC4 Cas9 GFP: ENST00000619133 and ENST00000606017. Both transcripts 

share the same coding sequence, with ENST00000619133 having an extended 5'UTR 

sequence (Figure 5.26A). IGV coverage tracks of RCC4 Cas9 GFP and WTAP KO 2H1 

in both unstimulated and IFNγ+TNF stimulated conditions confirmed coverage of the 

extended 5'UTR, and upon visual inspection, increased representations of the extended 

5'UTR were observed in both RCC4 Cas9 GFP and WTAP KO 2H1 (Figure 5.26B – C). 

Moreover, CD24 transcripts with the characteristically short 3'UTR previously seen in the 

ccRCC tumours (by both DRS and PCS, Figure 4.31B – C) were also found here, as 

highlighted by the arrow (Figure 5.26C). 

At the gene level, nonsignificant downregulation trends in CD24 expression levels were 

observed between unstimulated and IFNγ + TNF stimulated RCC4 Cas9 GFP, with both 

reference transcriptome alignments (median TPM: 925.7 vs 187.5) and reference 

genome alignments (median TPM: 2711 vs 467.9) (Figure 5.26D – E). Reference 

transcriptome data suggested that the decrease in CD24 levels upon IFNγ + TNF 

treatment was primarily driven by the reduction in the ENST00000606017 (short 5'UTR 

transcript) (median TPM: 819.4 vs 105.2), whereas ENST0000619133 (long 5'UTR 

transcript) only experienced a modest reduction (median TPM: 106.3 vs 82.3) (Figure 

5.26F – G). From the reference transcriptome aligned data, the proportion of the long 

5'UTR transcript in RCC4 Cas9 GFP increased from an average of 14.86% in 

unstimulated samples to 42.15% in IFNγ + TNF treated cells (Figure 5.26J). Both 

DRIMseq (padj = 0.0043) and DEXseq (padj = 0.053) identified the differential transcript 

usage of CD24 after IFNγ + TNF treatment in RCC4 Cas9 GFP. In WTAP KO 2H1 cells, 

DTU of CD24 upon IFNγ + TNF treatment was recognised by DEXseq (padj = 0.0027) but 

not DRIMseq (padj = 0.754).  
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Similar trends in the increased proportion of the long 5'UTR CD24 transcript after IFNγ 

+ TNF stimulation in RCC4 Cas9 GFP and WTAP were found using reference genome 

alignment, as shown by the coverage tracks in Figure 5.26B – C. Since reference 

genome alignment only provides gene-level counts, the levels of short 5'UTR 

(ENST00000606017) and long 5'UTR (ENST0000061913) CD24 transcripts were 

calculated based on CD24 reads with overlaps with the extended 5'UTR sequence. No 

distinction between 3'UTR structures was taken into account here. After IFNγ + TNF 

treatment, an 82% decrease in levels of short 5'UTR transcript (median TPM: 398.8 vs 

73.2) was identified, whereas long 5'UTR transcript (ENST0000061913) expression 

levels reduced by 54% on average (median TPM: 19.72 vs 9.08) (Figure 5.26H – I). 

However, the transcripts' proportions at unstimulated and IFNγ + TNF stimulated 

conditions were vastly different here compared to reference transcriptome-aligned data. 

At unstimulated conditions, reference genome alignment showed that 95.28% of CD24 

transcripts were short 5'UTR isoforms on average. Only 4.72% of the transcripts 

displayed the extended 5'UTR. After IFNγ + TNF stimulation, on average, 89.8% of CD24 

transcripts in RCC4 Cas9 GFP represented the short 5'UTR CD24 isoforms, whereas 

10.2% of the CD24 were the long 5'UTR isoforms (Figure 5.26K). Data here showed that 

although the DTU trend remained, the proportions of CD24 transcripts assigned to 

specific isoforms via reference transcriptome alignment were not reciprocated from 

reference genome-aligned data.  
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  Figure 5.26: IFNγ and TNF exposure induces DTU of CD24 in RCC4 Cas9 GFP 

and WTAP KO 2H1 cells 

A) Graphical representation of CD24 transcripts ENST00000619133 and 

ENST00000606017 from Ensembl reference annotation (GRCh38). B) IGV 

visualisation of combined unstimulated (blue) and IFNγ + TNF treated (red) RCC4 

Cas9 GFP reads coverage track in the region of the CD24 gene. C) As in B, but for 

WTAP KO 2H1. Black arrow indicates previously identified novel 3’UTR. D) Grouped 

dot plot showing reference transcriptome aligned DESeq2 normalised CD24 

expression in untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. E) as 

in D but with reference genome aligned data. F) Grouped dot plot showing reference 

transcriptome aligned expression (transcripts per million (TPM)) of ENST0000619133 

(CD24 long 5’UTR) in untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 

GFP. G) Grouped dot plot showing reference transcriptome aligned expression (TPM) 

of ENST0000606017 (CD24 short 5’UTR). H) Grouped dot plot showing reference 

genome aligned expression (TPM) of CD24 long 5’UTR transcript (defined by reads 

that aligned to 6:106,975,150 – 106,975,250) in untreated (blue) and IFNγ + TNF 

treated (red) RCC4 Cas9 GFP. I) Grouped dot plot showing reference genome 

aligned expression (TPM) of CD24 short 5’UTR transcript (defined by reads that 

aligned to 6:106,974,600 – 106,974,700 and not a CD24 long 5’ UTR transcript) in 

untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. J) Stacked bar 

graphs representing proportions of CD24 isoforms in reference transcriptome 

mapped, untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells. DRIMseq and 

DEXseq p
adj

 values for DTU of CD24 are indicated in graph, with p ≤ 0.1 considered 

significant. K) Stacked bar graphs representing proportions of CD24 isoforms in 

reference genome mapped, untreated and IFNγ + TNF treated RCC4 Cas9 GFP 

cells. CD24 long 5’UTR transcripts were defined by reads that aligned to 

6:106,975,150 – 106,975,250. CD24 short 5’UTR transcripts were defined by reads 

that aligned to 6:106,974,600 – 106,974,700 and not a CD24 long 5’ UTR transcript. 

For D – I, two-tailed unpaired T-tests with Welch’s correction were used, with p ≤ 0.05 

considered significant. P values of non-significant results are indicated in graphs. 

Centre line represents median for each group. 
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5.3.20 IFNγ and TNF stimulation preferentially upregulates 

membrane PD-L1 transcripts 

Aside from CD24, IFNγ and TNF stimulation also induced DTU in the isoforms of the 

immune checkpoint PD-L1 (CD274). In RCC4 Cas9 GFP and WTAP KO 2H1, PD-L1 

transcripts were mapped to either ENST00000381577, which encodes for membrane 

PD-L1 protein, or ENST00000474218, the surrogate soluble PD-L1 transcript with 3'UTR 

that overlaps with soluble PD-L1 (Figure 5.27A). Since the Ensembl reference 

transcriptome lacks the  Reference genome-aligned IGV coverage tracks of RCC4 Cas9 

GFP samples showed an increased representation of exon 5, 6, 7 and 3'UTR coverage 

to exon 4 in IFNγ and TNF-stimulated samples compared to unstimulated samples 

(Figure 5.27B). The increased coverage and change in proportions indicated increased 

levels of membrane PD-L1 transcripts compared to soluble PD-L1 transcripts (which 

lacks exon 5, 6, 7 and the 3'UTR of the membrane PD-L1 isoform transcripts). 

Both reference genome and transcriptome-aligned data showed that IFNγ and TNF 

stimulation induced significant upregulations of PD-L1 gene expression levels in RCC4 

Cas9 GFP (Figure 5.27C, 5.27 F). In reference transcriptome aligned data, membrane 

PD-L1 transcripts showed a 10-fold increase in expression (median TPM: 6.227 vs 72.80) 

in RCC4 Cas9 GFP after IFNγ and TNF stimulation (Figure 5.27D). In contrast, surrogate 

soluble PD-L1 transcript displayed a comparatively modest increase in expression levels 

(median TPM: 24.29 vs 35.70) (Figure 5.27E). The difference in the magnitude of 

expression induction between the two transcripts translated into differential transcript 

proportions at unstimulated and IFNγ and TNF-stimulated RCC4 Cas9 GFP. At 

unstimulated RCC4 Cas9 GFP, soluble PD-L1 transcripts outnumbered membrane PD-

L1 transcripts, with an approximate averaged ratio of 6:4 (Figure 5.27I). After 24 hours 

of IFNγ and TNF stimulation, the ratio reverts to 4:6 on average, with most PD-L1 

transcripts encoding for membrane PD-L1.  

A similar trend was observed in reference genome alignment data. Here, membrane PD-

L1 transcripts were defined as transcripts containing sequence overlapping PD-L1 exon 
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7 and 3'UTR (chr9: 5,468,000 – 5,470,600). Soluble PD-L1 transcripts were defined as 

transcripts with sequence overlapping the soluble PD-L1 transcript exclusive 3'UTR 

(chr9: 5,462,830 – 5,463,330). With reference genome-aligned data, both membrane 

PD-L1 and soluble PD-L1 transcripts were significantly upregulated in RCC4 Cas9 GFP 

after IFNγ and TNF stimulation (Figure 5.27G – H). Membrane PD-L1 transcripts 

exhibited a nine-fold increase in expression levels after IFNγ + TNF stimulation (median 

TPM: 8.41 vs 77.22), whereas 'soluble PD-L1' transcripts showed an approximately two-

fold increase in expression (median TPM: 17.85 vs 39.51). Here, reference genome-

aligned data also showed that soluble PD-L1 transcripts were the dominantly expressed 

transcripts in RCC4 Cas9 GFP with no cytokines exposure, with an approximate ratio of 

3:7 between membrane PD-L1 and soluble PD-L1 transcripts. After IFNγ and TNF 

stimulation, the ratio between membrane PD-L1 and soluble PD-L1 transcripts changed 

to approximately 6:4 (Figure 5.27H).  

A time-course experiment was conducted with RCC4 cells either stimulated by IFNγ and 

TNF or unstimulated to validate this finding (n = 3 independent experiments). Using 

primers which specifically target membrane PD-L1 and soluble PD-L1 transcripts, qRT-

PCR showed that IFNγ and TNF stimulation induced high levels of fold-induction of 

membrane PD-L1 mRNAs than soluble PD-L1 mRNAs at all time points, compared to 

unstimulated controls. The differences in expression induction were observed as early 

as 2 hours post-IFNγ and TNF stimulation (hpt), where membrane PD-L1 mRNA in 

stimulated cells showed a 3.8-fold increase in expression, whereas soluble PD-L1mRNA 

showed a 2.5-fold increase compared to unstimulated controls. By 24 hpt, membrane 

PD-L1 mRNA showed a 5.8-fold increase in expression levels compared to unstimulated 

cells, compared to the 2.7-fold increase in soluble PD-L1 mRNAs. Data here 

demonstrated that IFNγ and TNF stimulation in RCC4 Cas9 GFP preferentially 

upregulated the expression of membrane PD-L1 transcripts 
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  Figure 5.27: IFNγ and TNF treatment specifically upregulates membrane PD-L1 

transcripts 

A) Graphical representation of PD-L1 (CD274) transcript isoforms that encode for 

membrane PD-L1 (ENST00000381577), soluble PD-L1 (NM_001314029), and the 

surrogate Ensembl reference transcript for soluble PD-L1 (ENST00000474218). B) 

IGV visualisation of combined unstimulated (blue) and IFNγ + TNF treated (red) 

RCC4 Cas9 GFP reads coverage track in the region of the PD-L1 gene. C) Grouped 

dot plot showing reference transcriptome aligned DESeq2 normalised PD-L1 

expression in untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. D) 

Grouped dot plot showing reference transcriptome aligned expression (transcripts per 

million (TPM)) of surrogate soluble PD-L1 transcript (ENST00000474218) in 

untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. E) As in D, but for 

membrane PD-L1 (ENST00000381577). F) As in C but fore reference genome 

aligned gene expression of PD-L1. G) Grouped dot plot showing reference genome 

aligned expression (TPM) of soluble PD-L1 transcripts (defined by reads mapping to 

chr9: 5,462,830 – 5,463,330 and not a membrane PD-L1 transcript) in untreated 

(blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. H) As in G, but for membrane 

PD-L1 transcripts (defined by reads mapping to chr9: 5,468,000 – 5,470,600). I) 

Stacked bar graphs representing proportions of PD-L1 isoforms in reference 

transcriptome mapped, untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells. 

DRIMseq and DEXseq p
adj

 values for DTU of PD-L1 are indicated in graph, with p ≤ 

0.1 considered significant. J) Stacked bar graphs representing proportions of PD-L1 

isoforms in reference genome-aligned, untreated and IFNγ + TNF treated RCC4 Cas9 

GFP cells. PD-L1 transcripts that encodes for membrane PD-L1 were defined by 

reads mapping to chr9: 5,468,000 – 5,470,600. Soluble PD-L1 transcripts were 

defined by reads mapping to chr9: 5,462,830 – 5,463,330 and not a membrane PD-

L1 transcript. For C – H, two-tailed unpaired T-tests with Welch’s correction were 

used, with p ≤ 0.05 considered significant. P values of non-significant results are 

indicated in graphs. Centre line represents the median for each group. 
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5.3.21 Novel soluble PD-L1 transcripts are expressed in ccRCC 

tumour cells 

Previously, using both DRS and PCS of ccRCC archival tumours, a novel PD-L1 isoform 

was discovered to encode soluble PD-L1 with an extended 3'UTR compared to the 

reference annotation (see Chapter 4, Figure 4.29). Here, IGV coverage tracks for PCS 

of ccRCC tumours, as well as RCC4 Cas9 GFP and WTAP KO 2H1, demonstrated the 

expression of novel isoform in both unstimulated and IFNγ and TNF stimulated 

conditions (Figure 5.29 B – D). This indicated that the novel soluble PD-L1 transcript 

described in Chapter 4 is indeed expressed in ccRCC tumour cells. 

 

 

 

Figure 5.28: qRT-PCR validation of membrane PD-L1 specific induction by IFNγ 

and TNF in RCC4 

A) Bar graph demonstrating median membrane PD-L1 mRNA levels measured by 

qRT-PCR in IFNγ and TNF treated (red) RCC4 cells at 0, 2, 8, 24, 48 hours post 

treatment (hpt), relative to averaged membrane PD-L1 mRNA levels in untreated 

(blue) RCC4 cells at respective treatment time point. Membrane PD-L1 expression 

were normalised to GAPDH expression. B) As in A, but for soluble PD-L1 mRNA 

levels. Two-tailed unpaired T-tests with Welch’s correction were used, with p ≤ 0.05 

considered significant. Asterisks indicate statistical significance levels (** = p < 0.01). 
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Figure 5.29: Identification of novel soluble PD-L1 mRNAs in RCC4 Cas9 GFP 

and WTAP KO 2H1 

A) Graphical representation of PD-L1 transcript isoforms structures near the exon 4 

region (hg38 chr9: 5,450,542 – 5,463,350) from Ensembl reference annotation 

(GRCh38).  B) IGV visualisation of combined PCS reads coverage track (Red) for all 

sequenced ccRCC tumours at PD-L1 locus between hg38 chr9: 5,450,542 – 

5,463,350. C) IGV visualisation of combined unstimulated (blue) and IFNγ + TNF 

treated (red) RCC4 Cas9 GFP reads coverage track in the region of chr9: 5,450,542 

– 5,463,350. D) As in C, but for WTAP KO 2H1. Exon 4 splice junction for membrane 

PD-L1 transcripts and the extended 3’UTR for novel soluble PD-L1 transcripts are 

indicated below the reads coverage tracks.  
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5.3.22 IFNγ and TNF treatment induces global mRNA poly(A) tail 

lengthening in RCC4 Cas9 GFP cells  

After DGE and DTU analyses, the poly(A) tail profiles of unstimulated and IFNγ + TNF 

treated RCC4 Cas9 GFP cells were analysed using nanopolish. Both mean and median 

mRNA poly(A) tail lengths were lower in untreated compared to IFNγ + TNF treated 

RCC4 Cas9 GFP cells (Figure 5.30A). Combining all transcripts from both conditions, 

mRNA molecules from IFNγ + TNF treated RCC4 Cas9 GFP cells displayed significantly 

longer poly(A) tail lengths than mRNAs from untreated cells (Mean length: 93.5 nt vs 

84.5 nt; Median length: 84.6 nt vs 74.6 nt) (Figure 5.30B).  

Next, the expression levels of known nuclear and cytoplasmic poly(A) deadenylases and 

polymerases were surveyed. No poly(A) deadenylases or polymerases were previously 

highlighted as a significantly differentially expressed gene (p
adj

 ≤ 0.1, |log
2
FoldChange| 

> 2). Amongst the poly(A) polymerases, the expression levels of the cytoplasmic poly(A) 

polymerase TENT5A (Terminal Nucleotidyltransferase 5A) were upregulated in IFNγ + 

TNF treated RCC4 Cas9 GFP cells (log2FoldChange = 1.49, padj = 0.0886) (Figure 

5.30C). However, the poly(A) deadenylase subunit CNOT6L (CCR4-NOT Transcription 

Complex Subunit 6 Like) was also found to be upregulated in IFNγ + TNF treated RCC4 

Cas9 GFP cells (log2FoldChange = 1.84, padj = 0.0709) (Figure 5.30D).  
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unstimulated IFNγ + TNF 

A B 

Figure 5.30: Global poly(A) tail length profiling in untreated and IFNγ + TNF 

treated RCC4 Cas9 GFP cells 

A) Violin plots showing poly(A) tail lengths of transcripts from untreated and IFNγ + 

TNF treated RCC4 Cas9 GFP cells, estimated by nanopolish using DRS data. Dot 

within violin represents median. B) Violin plots showing the combined poly(A) tail 

length profiles of untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells. Horizontal 

dotted lines represent inter-quartile range (25%, 50%, 75%). C) Grouped dot plot 

showing reference genome aligned DESeq2 normalised TENT5A expression in 

untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. D) Grouped dot plot 

showing reference transcriptome aligned DESeq2 normalised CNOT6L expression in 

untreated (blue) and IFNγ + TNF treated (red) RCC4 Cas9 GFP. For B, nested two-

tailed nested t-test was used, with p ≤ 0.05 considered significant. **** ≤ 0.0001. For 

C – D, padj values were generated by DESeq2 using Wald tests followed by Benjamini-

Hochberg corrections. The centre lines represent the median for each group. 
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5.3.23 Differential poly(A) tail length regulation by IFNγ and TNF 

in PD-L1 and CD24 transcript isoforms 

Focussing on the immune checkpoints, the poly(A) tail length profiles of PD-L1 and CD24 

isoforms in untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells were analysed. 

The poly(A) tails of PD-L1 transcripts (including both membrane and soluble PD-L1 

isoforms) were significantly longer in IFNγ + TNF treated RCC4 Cas9 GFP cells (median: 

120.7 vs 99.9 nt) (Figure 5.31A). Individually, membrane PD-L1 transcripts showed 

nonsignificant increasing trends in poly(A) tail lengths in IFNγ + TNF treated RCC4 Cas9 

GFP cells compared to mRNAs from untreated cells (median: 127.5 vs 108.2 nt) (Figure 

5.31B). For soluble PD-L1 transcripts, the poly(A) tails were significantly longer in IFNγ 

+ TNF treated RCC4 Cas9 GFP cells than untreated cells (median: 112.3 vs 93.1 nt) 

(Figure 5.31C).  

Comparing the two PD-L1 isoforms in both untreated and IFNγ + TNF treated RCC4 

Cas9 GFP cells, the poly(A) tail lengths of soluble PD-L1 transcripts were observed to 

be significantly shorter compared to membrane PD-L1 transcripts (median: 126.8 vs 

108.7 nt) (Figure 5.31D). Furthermore, when analysed separately at either untreated or 

IFNγ + TNF treated conditions, the median poly(A) tail lengths of soluble PD-L1 

transcripts were both lower than membrane PD-L1 transcripts (93.1 vs 108.2nt & 112.3 

vs 127.5nt for unstimulated and IFNγ + TNF treated, respectively), albeit not statistically 

significant (Figure 5.31E – F). 

For CD24, both long 3'UTR and short 3'UTR transcripts together and individually, no 

differences in their poly(A) tail lengths were observed between untreated and IFNγ + 

TNF treated RCC4 Cas9 GFP (Figure 5.31G – I). Furthermore, when untreated, the 

poly(A) tail lengths of the long 3'UTR and short 3'UTR CD24 isoform were not 

significantly different (median: 102.2 & 99.6 nt) (Figure 5.31K). However, when treated 

with IFNγ + TNF, the poly(A) tails of long 3'UTR CD24 transcripts were significantly 

longer than the short 3'UTR transcripts (median: 100.8 vs 88.92) (Figure 5.31L), which 

was previously seen in ccRCC archival tumour samples (Figure 4.34E). 
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  Figure 5.31: Differential PD-L1 and CD24 transcript isoform poly(A) tail length 

profiles in untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells 

A) Violin plots showing poly(A) tail length profiles of all PD-L1 (CD274) transcripts 

from untreated and IFNγ + TNF treated RCC4 Cas9 GFP cells, estimated by 

nanopolish using DRS data. B) As in A, but for membrane PD-L1 transcripts. C) As 

in A, but for soluble PD-L1 transcripts. D) Violin plots showing poly(A) tail length 

profiles of membrane PD-L1 and soluble PD-L1 transcripts in both untreated and IFNγ 

+ TNF treated RCC4 Cas9 GFP cells. E) As in D, but only with PD-L1 transcripts from 

untreated RCC4 Cas9 GFP cells. F) As in D, but only with PD-L1 transcripts from 

IFNγ + TNF treated RCC4 Cas9 GFP cells. G) Violin plots showing poly(A) tail length 

profiles of all CD24 transcripts from untreated and IFNγ + TNF treated RCC4 Cas9 

GFP cells. H) As in G, but for CD24 long 3’UTR transcripts. I) as in G, but for CD24 

short 3’UTR transcripts. J) Violin plots showing poly(A) tail length profiles of CD24 

long 3’UTR and short 3’UTR transcripts in both untreated and IFNγ + TNF treated 

RCC4 Cas9 GFP cells. K) As in J, but only in CD24 transcripts from untreated RCC4 

Cas9 GFP cells. L) As in J, but only in CD24 transcripts from IFNγ + TNF treated 

RCC4 Cas9 GFP cells. Throughout, horizontal dotted lines represent inter-quartile 

range (25%, 50%, 75%). Nested two-tailed nested t-tests were used, with p ≤ 0.05 

considered significant. * ≤ 0.05, **** ≤ 0.0001. P values of non-significant results are 

indicated in graphs. 
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5.3.24 WTAP KO resulted in decreased mRNA m6A modification 

in PD-L1 transcripts 

Previously using dot blot analysis, preliminary data showed that global RNA m6A levels 

were suppressed in WTAP KO 2E6 and 2H1 cells compared to RCC4 Cas9 GFP cells 

(Figure 5.3I). To see if the m6A levels of PD-L1 were specifically downregulated in the 

WTAP KO cells, the m6A sites of PD-L1, as well as SETD7 transcripts (previously 

validated to contain WTAP-dependent m6A sites by Schwartz et al.), were profiled using 

the m6A miCLIP database m6A atlas (Schwartz et al., 2014; Tang et al., 2021).  

m6A atlas compiled miCLIP databases from 27 different human miCLIP experiments, 

with a collection of nearly 180,000 unique m6A sites. In PD-L1, two high-confidence m6A 

were identified, one at exon 4 (chr9:5462895) and one at the 3'UTR adjacent to the stop 

codon (chr9:5467980) (Figure 5.32A). For SETD7, 18 m6A sites at the 3'UTR and 1 m6A 

site at the exon 3 were previously recorded using miCLIP (Figure 5.32B).   

MeRIP-qRTPCR is a commonly used m6A quantification method which uses anti-m6A 

antibodies to pull down fragmented mRNA containing m6A, followed by qRT-PCR (Zeng 

et al., 2018). m6A site-specific primer sets (red) and negative control primer sets (blue) 

were designed for PD-L1 and SETD7 (Figure 5.32A – B). Amplicon lengths ranged 

between 100 – 200nt, and both negative primers were at least 350 nucleotides away 

from the closest reported m6A site. The primer sets' amplification efficiencies (between 

90 – 110%) and amplification product specificities (single amplification product as 

confirmed by melt curve analysis) were validated before use. 

RNA fragmentation was optimised to produce an accurate assay for m6A detection using 

qRT-PCR. Here, total RNA was incubated with Ambion RNA Fragmentation Buffer 

(Thermo Fisher) for  0, 1, 2, 5, 10, and 15 minutes at 70oC. Fragmentation samples were 

assessed using Agilent 2100 Bioanalyzer (Figure 5.32C – D). A fragmentation length of 

10 minutes was chosen to provide RNA fragment profiles that were both large enough 
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for PCR amplification and short enough such that m6A negative primers would not be 

able to amplify from immunoprecipitated fragments.  

MeRIP was performed on RNA purified from IFNγ and TNF-stimulated RCC4 Cas9 GFP 

and the WTAP KO clonal cell lines (2E6, 2H1, 3A1), followed by qRT-PCR. Transcripts' 

m6A percentages were calculated by comparing Ct values of m6A-immunoprecipitated 

samples with standard curves generated via titration of corresponding input RNA. 

MeRIP-qRT-PCR results (n = 2 independent experiments) showed that the rates of m6A 

methylation in PD-L1 and the positive control SETD7 were substantially higher in RCC4 

Cas9 GFP compared to WTAP KO 2E6, 2H1 and 3A1 (Figure 5.33A, C). PD-L1 negative 

control primers resulted in broadly lower m6A % compared to the m6A-specific primers 

(Figure 5.33B). SETD7 negative control primers did not return detectable signals from 

m6A immunoprecipitated samples (Figure 5.33D). Previously, GAPDH was reported as 

a viable negative control in MeRIP-qRT-PCR assays (Zeng et al., 2018). Here, low levels 

of GAPDH m6A modification were found across all four cell lines. Overall, the results 

showed suppressed mRNA m6A modification levels in the WTAP KO cell lines compared 

to parental RCC4 Cas9 GFP cells. 
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Figure 5.32: m
6
A-site specific primers design for MeRIP-qRT-PCR experiments 

A) Graphical representation of PD-L1 transcript (ENST00000381577, membrane PD-

L1) structure, with published miCLIP studies identified m
6
A sites from m

6
A Atlas 

highlighted above. Coverage of m
6
A site specific qPCR primers amplicon (red bar) 

and negative control amplicon (blue bar) are shown below transcript. B) As in A, but 

for SETD7 transcript (ENST00000274031). C) Bioanalyzer gel image for the 

chemically fragmented RNA products, with the corresponding length of fragmentation 

listed above graph.  D) Electropherograms showing the RNA fragment size profiles 

of RNA samples after incubation at 70oC in RNA fragmentation buffer for 0, 1, 3, 5, 

10 and 15 minutes. FU represents height threshold. 
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Figure 5.33: 3’UTR of PD-L1 mRNA contains m
6
A modifications 

MeRIP-qRT-PCR from total RNA extracted from RCC4 Cas9 GFP, WTAP KO 2E6, 

2H1 and 3A1 cell lines (n = 2) using primers targeting A) PD-L1 (CD274) 3’UTR m
6
A 

site, B) PD-L1 (CD274) exon 1 – 3 (negative control), C) SETD7 3’UTR m
6
A sites, D) 

SETD7 exon 4 – 6 (negative control), and E) GAPDH (negative control). m6A % levels 

were calculated by comparing Ct values of immunoprecipitated samples with a 

standard curve generated by titrating corresponding input samples. Throughout, 

centre horizontal lines represent mean values. Error bars represent standard 

deviation. 
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5.3.25 WTAP KO suppresses membrane PD-L1 protein 

expression levels 

Next, the role of WTAP and m6A modification on the expression levels of membrane PD-

L1 was examined. Based on DRS gene expression data, the mRNA levels of PD-L1 and 

ENST00000381577 (membrane PD-L1 mRNA) were not significantly differentially 

expressed between RCC4 Cas9 GFP and WTAP KO 2H1, both untreated and after 24 

hours IFNγ + TNF treatment. Using primers which specifically target membrane PD-L1 

transcripts (exon 6 – 7), qRT-PCR showed no significant differences in expression levels 

between RCC4 Cas9 GFP and all three WTAP KO clonal cell lines (2E6, 2H1 and 3A1), 

at both untreated and IFNγ + TNF treated conditions (Figure 5.34A).  

Protein expression levels of PD-L1 were examined using western blotting and flow 

cytometry analysis. For western blot, the anti-PD-L1 antibody E1L3N (cell signaling 

technology) binds specifically to the cytoplasmic domain of PD-L1 (encoded in exon 6 – 

7), which is absent in the soluble PD-L1 proteins (Lawson et al., 2020). Preliminary 

western blot analysis showed that at both untreated and IFNγ + TNF treated conditions, 

WTAP KO clonal cell lines expressed substantially lower levels of membrane PD-L1 

proteins compared to the parental RCC4 cas9 GFP cell line. In addition, METTL3 did not 

show compensatory protein expression in the WTAP KO cell lines (Figure 5.34B). 

For flow cytometry expression analysis, cell surface expression of PD-L1 was probed by 

the PE-conjugated (phycoerythrin) antibody clone 29E.2A3, which recognises the 

extracellular domains of PD-L1 (Haile et al., 2013). PE fluorescent signal and antibody 

staining specificity were demonstrated in Figure 5.34C by comparing with unstained and 

isotype-control antibody-stained samples. Results here showed that cell surface 

expression levels of PD-L1 in RCC4 Cas9 GFP and WTAP KO 2H1 are IFNγ 

concentration-dependent (Figure 5.34D). Surface PD-L1 expression levels peaked at 

1000U/mL for both cell lines, which was the IFNγ concentration used throughout this 

study. Across all IFNγ concentrations, PD-L1 cell surface protein expression was 

significantly lower in WTAP KO 2H1 cells than in RCC4 Cas9 GFP. Consistent with 
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previous western blot analysis results, flow cytometry data showed that cell surface PD-

L1 was expressed at significantly lower levels in all three WTAP KO clones, compared 

to parental RCC4 Cas9 GFP cell line in both untreated and IFNγ + TNF treated conditions 

(Figure 5.34E – F). Finally, time-course experiments were conducted with IFNγ + TNF 

treated and untreated control RCC4 Cas9 GFP and WTAP KO 2H1, where cell surface 

PD-L1 expression levels were assessed by flow cytometry at 8, 24, 48 and 72 hours 

post-treatment. Data showed that cell surface PD-L1 expression levels were lower in 

WTAP KO 2H1 than RCC4 Cas9 GFP at all time points in both untreated and IFNγ + 

TNF treated conditions (Figure 5.34G). Data here demonstrated that CRISPR-Cas9-

mediated KO of WTAP resulted in suppressed PD-L1 protein expression whilst having 

no impact on the mRNA levels.   
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Figure 5.34: Characterisation of membrane PD-L1 mRNA and protein 

expression levels in RCC4 Cas9 GFP and WTAP KO clonal cell lines 

A) CD274 (membrane PD-L1) mRNA levels measured by qRT-PCR in untreated and 

IFNγ + TNF treated (24 hours) RCC4 Cas9 GFP, WTAP KO 2E6, 2H1, 3A1 cell lines, 

relative to averaged PD-L1 mRNA levels in untreated RCC4 Cas9 GFP. PD-L1 mRNA 

levels were normalised to GAPDH. B) Western blot analysis of PD-L1, WTAP, 

METTL3 and GAPDH (loading control) in untreated and in IFNγ and TNFα stimulated 

(24 hours) RCC4 Cas9 GFP, WTAP KO 2E6, WTAP KO 2H1 and WTAP KO 3A1 cell 

lines (n = 1). PD-L1 expression levels were quantified relative to GAPDH levels using 

densitometry analysis. C) Representative flow cytometry analysis of IFNγ + TNF 

treated (24 hours) RCC4 Cas9 GFP cells stained for PD-L1 (with PE-conjugated anti-

PD-L1 antibody), compared to unstained (black) and PE-conjugated isotype control 

(red). D) Flow cytometry analysis of the expression of cell surface PD-L1 (median 

fluorescence intensity (MFI), Y585-PE-A) in RCC4 Cas9 GFP (blue) and WTAP KO 

2H1 (red) stimulated with increasing amount of IFNγ and without IFNγ for 24 hours (n 

= 3) . E) Flow cytometry analysis of the expression of cell surface PD-L1 (MFI, Y585-

PE-A) in unstimulated RCC4 Cas9 GFP, WTAP KO 2E6, 2H1 and 3A1 cells (n = 9) 

F) as in E, but for IFNγ + TNF treated (24 hours) cells. G) Time course experiment 

showing kinetics of cell surface PD-L1 expression (MFI, Y585-PE-A) after 8, 24, 48, 

and 72 hours of IFNγ and TNFα stimulation using flow cytometry analysis (n = 2). For 

A, E and F, non-parametric Kruskal-Wallis one-way ANOVA tests were performed, 

with p ≤ 0.05 considered statistically significant. Asterisks indicate statistical 

significance levels (**** = p < 0.0001, *** = p < 0.001, * = p < 0.05). p values of 

nonsignificant results are indicated in graphs. Centre line represents median for each 

group. 
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5.3.26 Characterisation of the effects of siRNA-mediated m6A 

writers depletion on PD-L1 expression in RCC4 cells 

Effects of WTAP and mRNA m6A depletion on the protein expression of PD-L1 were 

further investigated using the transient siRNA-mediated gene depletion approach. Flow 

cytometry analysis showed that in both untreated and IFNγ + TNF treated (24 hours) 

conditions, cell surface PD-L1 expression levels were significantly suppressed in 

siMETTL3 transfected RCC4 cells compared to siNTC controls (n = 6) (Figure 5.35A – 

B). Conversely, no expression changes were observed in siWTAP transfected cells 

compared to siNTC controls for both untreated and IFNγ + TNF treated conditions.  

Next, using western blot and densitometry analysis, membrane PD-L1 expression was 

quantified relative to GAPDH expression levels in four independent experiments. Under 

the untreated condition, no significant differences in membrane PD-L1 expression were 

observed in siWTAP and siMETTL3 individually transfected RCC4 cells compared to 

siNTC control cells (Figure 5.35C – D). When both siMETTL3 and siWTAP were 

simultaneously knocked down when untreated, a significant reduction in membrane PD-

L1 was observed compared to siNTC transfected cells (Figure 5.35E). In IFNγ + TNF 

treated cells, siMETTL3 transfected cells displayed a nonsignificant downregulation 

trend in cell surface PD-L1 expression compared to siNTC transfected cells (padj = 0.09, 

median expression level compared to siNTC: 71.5%). No statistically significant 

differences were found between all m6A writers' knockdowns and siNTC control RCC4 

cells with IFNγ + TNF treatment (Figure 5.35F). 
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  Figure 5.35: Effects of siRNA-mediated m6A writers depletion on PD-L1 

expression in RCC4 cells 

A) Flow cytometry analysis of the expression of cell surface PD-L1 (median 

fluorescence intensity (MFI), Y585-PE-A) in siNTC, siWTAP and siMETTL3 

transfected (54 hours), untreated RCC4 cells (n = 6). B) Flow cytometry analysis of 

the expression of cell surface PD-L1 (median fluorescence intensity (MFI), Y585-PE-

A) in siNTC, siWTAP and siMETTL3 transfected (54 hours), IFNγ and TNF stimulated 

(24 hours) RCC4 cells (n = 6). C) Representative western blot analysis of PD-L1, 

WTAP, METTL3 and GAPDH (loading control) in untreated RCC4 cells, transfected 

with siNTC, siWTAP, siMETTL3, and siWTAP + siMETTL3 (54 hours). PD-L1 

expression levels were quantified relative to GAPDH levels using densitometry 

analysis. D) As in C, but for IFNγ and TNF stimulated (24 hours) RCC4 cells. E) Bar 

chart showing western blot densitometry analysis of membrane PD-L1 protein 

expression in untreated sNTC, siWTAP, siMETTL3, and siWTAP + siMETTL3 (54 

hours) transfected RCC4 cells, relative to siNTC membrane PD-L1 expression levels 

(n = 4). F) As in E, but for IFNγ and TNF stimulated (24 hours) RCC4 cells. 

For A, B, E and F, non-parametric Kruskal-Wallis one-way ANOVA tests were 

performed, with p ≤ 0.05 considered statistically significant. Asterisks indicate 

statistical significance levels (**** = p < 0.0001, *** = p < 0.001, * = p < 0.05). Error 

bars represent standard diviations. For A – B, centre lines represent median for 

each group. For E – F, bars represent mean for each group. 
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5.4 Discussion 

5.4.1 Role of m6A in ccRCC tumour cells 

One of the main aims of this chapter was to explore the role of mRNA m6A in ccRCC 

tumour cells. Firstly, TCGA KIRC genomics data analysis demonstrated that CNVs of 

m6A regulators are widespread in ccRCC tumours. Interestingly, data here showed that 

CNVs of all three m6A writers (METTL3, METTL14 and WTAP) in ccRCC were near-

universally deleterious, whilst CNVs of the m6A eraser FTO were primarily identified as 

'low-level gain' (gene duplications). With the gene expression levels highly correlated 

with their CNV status, the trend from the data here agree with a previous study which 

showed suppressed global m6A levels of ccRCC tumours compared to normal tissue 

(Shen et al., 2022). Survival analysis also showed that gene deletion of METTL3 alone 

and in combination with other m6A writers correlated with worse overall survival of ccRCC 

patients. The data above suggest a potential involvement of aberrations in m6A 

regulation in ccRCC progression. 

There are several limitations to the genomic CNV analysis presented. Firstly, previous 

work has demonstrated that the prevalence of CNV significantly correlates with the 

ccRCC tumour stage (Correa et al., 2020). Therefore, it is unclear if the CNVs m6A 

regulators were 'drivers' or 'passenger' alterations due to the enhanced genome 

instability in later staged ccRCC. The heterogeneous nature of ccRCC TME also 

presents challenges in attributing CNVs to tumour cells. There are limited bioinformatics 

tools which adjust CNV frequencies by tumour purity, but ultimately single cell genome 

sequencing is required for accurate attribution of CNVs for each cell type in clinical 

tumour samples (Mahdipour-Shirayeh et al., 2022) 

Similar difficulties arise from tumour bulk-RNAseq data analysis, where observed 

changes in gene expression cannot be easily attributed to a specific cell type within the 

tumour. To directly ascribe the role of m6A on gene expression profiles of ccRCC tumour 

cells, CRISPR-Cas9-mediated gene deletion of m6A writers was conducted in the VHL-

null RCC4 cells. CRISPR-Cas9 system has been used to generate m6A writers (METTL3, 
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METTL14, WTAP) KO cancer cell line, including in HEK293T and A549 cells (L. Wang 

et al., 2020; Ge et al., 2021). However, no ccRCC cancer cell line with m6A writer genes 

deleted via the CRISPR-Cas9 system has been reported at the time of writing. Several 

WTAP KO clonal RCC4 cell lines were isolated, with KO validated using western blot. In 

contrast, the inability to generate viable METTL3 KO clones suggests that the METTL3 

gene may be essential for RCC4 survival. 

Previous studies have indicated that the deletion of WTAP or METTL3 genes leads to 

early embryonic lethality in mice (Fukusumi et al., 2008; Geula et al., 2015). However, 

several viable METTL3 CRISPR-Cas9 KO mouse embryonic stem cell lines (mESC) 

have been described, with global m6A levels ranging between 0 – 40% (Poh et al., 2022). 

Using DepMap, a database which compiles identified essential genes from published 

genome-wide CRISPR-Cas9 and RNAi gene depletion screens, a recent study has 

shown that METTL3 and WTAP are required for survival in 801 and 836 out of the 1,054 

profiled cell lines (Pacini et al., 2021). Amongst the viable cancer cell lines, the impact of 

METTL3 KO on their proliferation capacities also varied. For example, depletion of 

METTL3 via CRISPR-Cas9-mediated gene deletion in the human haepatocellular 

carcinoma Huh7 cells was found to increase the transcript stability of the tumour 

suppressor SOCS2, leading to suppression in cell proliferation (Mengnuo Chen et al., 

2018). In contrast, METTL3 KO by CRISPR-Cas9-mediated editing in the murine 

colorectal cancer cell line CT26 and melanoma cell line B16 showed no growth defects, 

both in vitro and in vivo (syngeneic model by subcutaneous injection) (L. Wang et al., 

2020). Overall, the gene essentiality of METTL3 and WTAP on cell viability and fitness 

is context-dependent.  

Transcriptomic analysis showed that KO of WTAP in RCC4 Cas9 GFP cells did not 

significantly change the cellular response to IFNγ + TNF treatment. However, dozens of 

significantly differentially expressed genes between the two cell lines were identified, 

many of which are associated with the hypoxic response and glycolytic pathways. 

Strikingly, some of the top DEGs, such as NDUFA4L2, BNIP3, CA9 and EGLN3, are 



327 
 

known to be classic gene markers for ccRCC with their expression levels correlating with 

tumour progression and poorer prognosis(Macher-Goeppinger et al., 2017; Apanovich 

et al., 2021). The mRNA and protein expression levels of these DEGs were validated by 

qRT-PCR and western blotting in WTAP KO 2E6 and 2H1 cells but not in WTAP KO 3A1 

cells. Subsequent orthogonal validation by siRNA-mediated gene silencing of WTAP and 

METTL3 did not recapitulate findings from WTAP KO 2H1 cells. Thus, further work is 

needed to establish the role of m6A writers and m6A on the gene expression of ccRCC 

tumour cells. 

Several factors may have contributed to the differential phenotypes between the KO 

clones. Firstly, given the importance of mRNA m6A modifications on gene expression 

regulation and the fact that WTAP is essential in the majority of human cell lines that 

were screened by transcriptome-wide CRISPR-Cas9 deletion assay, the selected WTAP 

KO clones may have been viable due to compensatory responses. The function of the 

depleted gene in a gene regulatory network can be compensated by enhanced 

expression of other genes within the same network. For example, in human melanoma 

cell line A375, deletion of the β-Actin gene (ACTB) induces the expression of the other 

actin isoform γ-Actin (ACTG1), and vice versa (Malek et al., 2020). Here, although WTAP 

KO did not result in enhanced METTL3 protein expression and no m6A regulators were 

shown to be differentially expressed from DRS data, the pro-survival role in RCC4 cells 

may be compensated by other genes involved in cell proliferation pathways. Hyperactive 

hypoxic response and glycolytic pathways are crucial for sustaining ccRCC tumour cell 

growth (Semenza, 2007). The significant suppression of these pathways and the 

selection of WTAP KO 2E6 and 2H1 clones indicates a potential interplay between 

WTAP and the ccRCC proliferative pathways. Alternatively, activation of other 

compensatory pro-survival pathways may have allowed WTAP KO 3A1 to remain 

proliferative with activated hypoxic and glycolytic pathways. Further characterisation of 

the transcriptomic profiles from the other WTAP KO clones may provide valuable 

information on the potential compensatory responses. 
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In addition to compensatory responses, the phenotypic variations observed can also 

originate from differential, unforeseen off-target effects between clones. For example, a 

genome-wide sequencing study has revealed that, on average, 45% of the resulting 

Cas9 cleavage sites across the genome were not predicted as either target sites or 

potential off-target sites (Höijer et al., 2020). In addition, although on-target 

CRISPR/Cas9 gene editing typically causes short genomic deletion (under 50bp), 

unexpected megabase-scale genome deletions and interchromosomal genomic 

rearrangement events have also been recently observed (Kosicki et al., 2018; Cullot et 

al., 2019). Here, WTAP was edited with the transfection of a pool of three different guide 

RNAs. It is possible that different off-target effects were propagated in different WTAP 

KO lines. Therefore, detailed genomic characterisation of the WTAP KO clones and 

RCC4 Cas9 GFP cells will be crucial to assess any off-target gene editing or genomic 

aberrations that could have contributed to the differential phenotypes.  

The interclonal variability observed could have also been introduced by the inherent 

heterogeneity between RCC4 Cas9 GFP cells. In this experiment, RCC4 Cas9 GFP cells 

were first isolated by FACS, and the non-clonal pool was transfected with guide RNAs, 

followed by single-cell cloning for the KO clones. A recent study has compared the gene 

expression profiles of unedited monoclonal cells from a parental mouse kidney epithelial 

cell line (mIMCD-3) and demonstrated high levels of gene expression variability (783 

significantly differentially expressed genes, |Log2FoldChange| > 1, padj < 0.01) between 

clones. The differential expression profiles were shown to persist after guide RNA 

transfection and downstream single-cell subcloning. However, the variability in gene 

expression levels between KO clones was significantly reduced by single-cell sorting 

before the transfection of guide RNAs (Westermann et al., 2022). Therefore, 

characterising multiple sets of WTAP KO clones generated from different clonal RCC4 

Cas9 GFP could provide data with lower noise and fewer false-positive gene targets. 

CRISPR-Cas9 gene knockout and siRNA-mediated gene silencing are two of the most 

well-used methods for studying loss-of-function phenotypes in cells. However, there are 
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essential differences between the methods, which may contribute to the differential 

phenotypes observed between the KO and KD experiments. Firstly, the CRISPR-Cas9 

knockout approach represents a complete and permanent loss of gene function. In 

contrast, siRNA-mediated gene silencing represents a transient, partial loss of gene 

function (Zimmer et al., 2019). Nevertheless, it is possible that the partial WTAP and 

METTL3 knockdown still resulted in fully functional m6A writer complexes in RCC4 cells, 

therefore retaining their biological roles. In addition, the time between guide RNA 

transfection and transcriptomic characterisation for WTAP KO 2H1 could have allowed 

compensation to occur, whereas the acute nature of the siRNA approach may not permit 

RCC4 cells to do so. Therefore, another approach to validate the effects of WTAP KO is 

by overexpressing the gene in the KO clones and characterising if the rescue of WTAP 

would reverse the differential gene expression. 

Although WTAP KO 2E6, 2H1 and 3A1 cells did not exhibit the same transcriptomic 

changes, the MeRIP-qRT-PCR assay showed a universal depletion of m6A levels in 

SETD7 and soluble PD-L1 mRNA molecules. Preliminary data also showed decreased 

levels of m6A globally in WTAP KO 2E6 and 2H1 cells. The decreased m6A levels in 

membrane PD-L1 transcripts were of particular interest since the protein expression 

levels of membrane PD-L1 were also significantly suppressed, whilst mRNA expression 

levels were unchanged between WTAP KO clones and RCC4 Cas9 GFP. KD of m6A 

writers showed modest effects on membrane PD-L1 protein expression. However, it is 

unclear to what extent KD of m6A writers depletes m6A levels in the transfected RCC4 

cells. It is also important to note that in addition to transcriptional regulation by the 

hypoxic response, growth factors and cytokines, PD-L1 expression is highly regulated 

post-transcriptionally by miRNAs and post-translationally via protein phosphorylation, 

ubiquitination and glycosylation (Figure 5.36). Further work is needed to assess if the 

reduction in membrane PD-L1 protein expression in WTAP KO lines were m6A 

dependent. 
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Interestingly, the m6A site here sits exclusively at the membrane PD-L1 transcript and is 

not shared by soluble PD-L1 transcript. Thus, this may represent a membrane PD-L1 

isoform exclusive post-transcriptional regulation. Therefore, it will be beneficial to 

interrogate the m6A levels of the membrane PD-L1 transcripts from existing DRS results 

of RCC4 Cas9 GFP and WTAP KO 2H1, as well as between untreated and IFNγ + TNF 

treated cells using published m6A detection algorithms such as Nanocompore and xPore 

(Leger et al., 2021; Pratanwanich et al., 2021). Finally, integrating transcriptome-wide 

m6A mapping with other bioinformatic analyses (DGE, DTU, poly(A) profiling) will provide 

novel insights into the co-regulation of gene expression by multiple post-transcriptional 

modifications. 

  

 

 

 

  

Figure 5.36: PD-L1 expression regulation 

PD-L1 expression in regulated at the transcriptional, post-transcriptional and post-

translational levels. Interactions between receptors (such as MET, EGFR, IFNGR, 

IL6R, TNFR, and TLR) and their respective extra cellular ligands trigger cascades of 

signaling activities. Activation of these pathways activate transcription factors such 

as IRF1, STAT1, STAT3 and NFkB, resulting in PD-L1 transcription. Expression of 

PD-L1 is also tightly regulated post-transcriptionally by microRNAs, either directly by 

targeting the transcript or indirectly by inhibiting upstream signaling pathways. After 

translation, post-translational modification can also regulate PD-L1 protein stability 

and translocation. Phosphorylation and polyubiquitination of the protein results in 

proteasomal and lysosomal degradation. Glycosylation stabilises PD-L1 proteins, 

allowing efficient translocation of the protein to the plasma membrane. 
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5.4.2 Role of IFNγ + TNF in ccRCC tumour cells 

Transcriptomic analysis showed dramatic changes when RCC4 Cas9 GFP and WTAP 

KO 2H1 cells were treated with IFNγ + TNF. PCA showed that 82% of the variations in 

gene expression could be explained by the cytokine treatment alone, and hundreds of 

differentially expressed genes were identified. In agreement with the literature, GSEA 

results showed significantly upregulated antigen presentation pathways in both RCC4 

Cas9 GFP and WTAP KO 2H1 cells after IFNγ + TNF treatment. Expression regulation 

of antigen presentation pathway components by cytokines represents a key mechanism 

to orchestrate an anti-tumour response. Exposure to IFNγ and TNF induces the 

expression of MHC class I molecules transcriptionally, facilitating enhanced antigen 

presentation by the tumour cells. This results in increased antigen recognition by CD8+ 

T cells and activation of their effector functions and promotes anti-tumour immunity 

(Figure 5.33) (Wieczorek et al., 2017). 

 

Figure 5.37: IFNγ and TNF induce the expression of MHC Class I molecules  

In human, MHC class I molecules consist of two main domains: the heavy α chain 

encoded by HLA-A, HLA-B and HLA-C, and the beta-2 microglobulin (B2M) light 

chain. For the HLAs, their constitutive expressions are mainly driven by the 

transcription factor TAF1 (TATA box binding protein associated factor 1). Their 

promoter regions contain an enhancer A where NFkB binding facilitates both 

constitutive and TNF induced expression. IFNγ can also induce expression via 

upregulation of IRF1 and NLRC5 (NOD-like receptor family CARD domain containing 

5), the key transcriptional regulator for MHC class I. NLRC5 does not bind to the 

promoter region directly but rather via an enhanceosome protein complex consist of 

various transcription factors (Regulatory factor X (RFX), cAMP response element 

binding protein (CREB) and nuclear transcription factor Y (NFY)).  
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Inhibition of MHC class I molecules expression is a commonly evolved immune evasion 

strategy by the tumour cell. Here, ccRCC tumour cells were not seen to display an 

impaired antigen presentation pathway. With the high levels of tumour immune infiltration 

seen in the ccRCC tumours from the previous chapter, transcriptomic data here suggest 

that ccRCC tumour cells may have to rely on alternative pathways to evade tumour 

immunity. In both RCC4 Cas9 GFP and WTAP KO 2H1 cells, IFNγ and TNF treatment 

increased the expression of co-inhibitory immune checkpoints IDO1 and PD-L1. IFNγ + 

TNF-induced IDO1 and PD-L1 expression were previously described in the literature in 

other cancer cell types (Robinson et al., 2003; Li et al., 2018). However, DRS results 

also showed that immune checkpoint genes, such as CD24 and PD-L1, may display DTU 

before and after IFNγ and TNF treatment.  

Transcription factors downstream of IFNγ and TNF activation pathways were indicated 

to induce alternative splicing and alternative poly(A) site usage in tumour immune genes. 

For example, the binding of TNF-inducible NFkB to the enhancer sequence of PTEN 

promotes alternative poly(A) site usage and the shortening of PTEN mRNA 3'UTR (Kwon 

et al., 2022). In addition, IRF1, an IFNγ induced transcription factor, was also shown to 

regulate alternative splicing of the immune checkpoint CEACAM1 in a hnRNP L- and 

hnRNP A1-dependent manner (Dery et al., 2014).  

Transcript isoform usage is also influenced by differential isoform stability. Both cis- and 

trans-regulatory factors contribute to transcript stability. For cis-regulatory elements, 

codon optimality, secondary structures in the 5' and 3' UTRs, microRNA- and RBP-

binding sites have all been implicated in dictating the stability of mRNA molecules 

(Cheng et al., 2017). In addition, the expression levels of trans-factors (miRNAs and 

RBPs) can vary widely depending on cell type and in response to external stress or 

stimuli (Van Nostrand et al., 2020; Zarnack et al., 2020; Keller et al., 2022). IFNγ and 

TNF may influence multiple regulatory pathways, resulting in differential transcript usage 

in genes that regulate tumour immunity. 
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For PD-L1, it was previously shown that IFNγ differentially and independently regulates 

the transcription of soluble PD-L1 and membrane PD-L1 isoforms. For example, in the 

human B lymphocyte cell line Ramos, IFNγ specifically induced the expression of the 

soluble PD-L1 transcripts. In contrast, only the membrane PD-L1 transcripts were 

upregulated in the human leukaemia monocytic cell line THP-1 after IFNγ treatment (Ng 

et al., 2019). Here, the soluble PD-L1 transcripts were found to be the primary transcript 

isoform at untreated RCC4 Cas9 GFP and WTAP KO 2H1. Once treated with IFNγ and 

TNF, membrane PD-L1 transcripts were upregulated to a higher level than soluble PD-

L1 transcripts, becoming the predominant isoform. Results here correlated with the 

transcriptomic results from previous archival tumour samples where high levels of 

membrane PD-L1 transcripts were found, in conjunction with high levels of immune 

infiltrates that can express IFNγ and TNF. Future experiments with additional cytokines 

which induce PD-L1 expression in tumour cells (such as IL-6, IFNα), both alone and in 

combinations, would be informative for modelling and predicting the expression patterns 

of membrane and soluble PD-L1. 

The 3'UTR of the membrane PD-L1 transcript is a crucial determinant of its stability. 

Within the 3'UTR, various miRNAs, including miR-155 and miR-34a, have been shown 

to negatively regulate its transcript expression levels (Xi Wang et al., 2015; Yee et al., 

2017). In addition, there are multiple AU-rich elements in the 3'UTR where TTP could 

bind and promote its degradation (Coelho et al., 2017). Lastly, as the MeRIP-qRT-PCR 

experiment has shown, membrane PD-L1 transcripts harbour m6A modification at the 

3'UTR. With alternative 3'UTRs, soluble PD-L1 transcripts are likely to be regulated 

differently than membrane PD-L1 transcripts. Further characterisation and comparisons 

between the soluble PD-L1 3'UTRs and membrane PD-L1 3'UTR will be valuable for 

understanding how the isoforms are differentially regulated. 

Identifying soluble PD-L1 expression in ccRCC tumour cells, both with and without 

exposure to IFNγ and TNF, has important implications. As the ligand for PD-1, tumour 

cell PD-L1 expression is the most established predictive biomarker for PD-1/PD-L1 
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blockade treatment. However, for many cancer types, including in ccRCC, PD-L1 

expression does not correlate with better treatment outcomes (Ueda et al., 2018). 

Currently, tumour PD-L1 expression is usually assessed by immunohistochemistry 

staining. However, most of the antibodies used for these PD-L1 expression assays were 

found to bind to the cytoplasmic domain of PD-L1, which is absent in the soluble isoforms 

(Lawson et al., 2020). It is possible that many of the 'PD-L1 negative' tumours expressed 

high levels of soluble PD-L1 proteins instead of the membrane PD-L1 isoform. Indeed, 

DRS and PCS data of archival ccRCC tumour samples did show the expression of 

soluble PD-L1 transcripts. Together, the results demonstrated that long-read RNA 

sequencing analysis could complement IHC assays for tumour biomarkers. 

In addition to differential gene expression and differential transcript usage, treatment of 

IFNγ + TNF also resulted in global mRNA poly(A) tail lengthening. A previous study 

showed that upon heat shock, mRNA poly(A) tails of upregulated genes from yeast were 

elongated, whereas mRNAs from downregulating genes displayed significantly shorter 

poly(A) tails (Tudek et al., 2021). Here, volcano plots showed that more genes were 

upregulated than downregulated upon IFNγ and TNF treatment. A similar trend was also 

observed for the immune checkpoints, where the poly(A) tail of upregulated PD-L1 

transcripts was significantly elongated. In contrast, CD24 expression levels were, on 

average, downregulated after IFNγ and TNF treatment, and there was no change in 

CD24 mRNA poly(A) tail lengths. Although current literature suggests that the length of 

the poly(A) tail does not correlate with transcript stability, the length profiles may indicate 

the transcription rate and gene expression dynamics.  

Previously in the archival ccRCC tumour samples, CD24 transcripts with long 3'UTR 

were found to have longer poly(A) tails than transcripts with short 3'UTR (Figure 4.34). 

Interestingly, for RCC4 Cas9 GFP, the discrepancies in poly(A) tail lengths only 

appeared when cells were treated with IFNγ and TNF but not when untreated. This 

shows that the differential poly(A) profiles between transcripts could be cytokine-

dependent.  
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The poly(A) tail length is controlled by poly(A) polymerases and deadenylases. After 

IFNγ + TNF treatment, the expression of the cytoplasmic poly(A) polymerase Tent5a was 

found to be upregulated in RCC4 Cas9 GFP cells. A recent pre-print showed that the 

gene expression levels of Tent5a, along with other immune response-related genes, 

were upregulated at the tissue of the SARS-CoV-2 mRNA vaccine (Moderna mRNA-

1273) injection site. Further characterisation by DRS analysis revealed that TENT5A is 

responsible for lengthening the poly(A) tails from the upregulated transcripts and re-

adenylates mRNA-1273 transcripts in the macrophages. Notably, gene knockout of 

Tent5a in mRNA-1273 injected mice showed significantly lower levels of SARS-CoV-2 

Spike antigen (encoded by mRNA-1273) and spike-specific antibody response 

(Krawczyk et al., 2022). The study focused on the effects on immune cells, but the 

increased Tent5a expression may be cytokine-dependent. It is also important to note 

that increased expression levels of the deadenylase CNOT6L were also found in RCC4 

Cas9 GFP cells treated with IFNγ + TNF. Thus, potential feedback mechanisms may be 

at play in regulating the poly(A) tail lengths after cytokine stimulation. Further 

investigation is needed to understand how cytokines regulate the tumour immune 

transcriptome by modulating poly(A) tail metabolism.  
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5.4.3 Performance of DRS 

The transcriptomic profiles of RCC4 Cas9 GFP and WTAP-KO 2H1 cells, with and 

without IFNγ + TNF treatments, were profiled using DRS. The average DRS reads here 

were longer than those obtained from archival tumour samples. This disparity in read 

lengths resulted from sequencing high-quality, non-degraded RNA, which produced long 

sequencing reads. Like previous sequencing experiments, a higher number of reads 

significantly correlated with the number of unique genes identified, showing the 

significance of sequencing throughput to encapsulate a wide range of transcripts within 

each sample. However, although a higher number of sequencing reads were generated, 

a significantly lower number of unique genes were identified in the cell lines compared 

to the tumour samples, which could reflect the cell-type heterogeneity in ccRCC tumours.  

Similar to the results from the previous chapter, reference genome alignment resulted in 

a wider variety of RNA biotypes being detected than reference transcriptome alignment. 

Reference genome alignment exclusive genes were mainly lncRNAs, whereas reference 

transcriptome alignment exclusive genes were primarily protein-coding genes. Overall, 

gene expression levels provided by reference genome and reference transcriptome 

alignment data were highly correlated. However, the thousands of genes that were 

exclusively mapped using reference alignment methods here and in previous 

sequencing experiments showed the importance of analysing transcriptomic data with 

multiple read-mapping pipelines. 

Focussing on the performance of differential transcript usage analysis, both DRIMseq 

and DEXseq identified DTU events between the cell lines and between untreated and 

IFNγ + TNF treatments. Using reference transcriptome-aligned data, DTU analysis 

revealed that IFNγ + TNF treatment specifically induced membrane PD-L1 transcripts, 

which was also seen from reference genome-aligned data and subsequently validated 

using qRT-PCR. Both DRIMseq and DEXseq identified DTU in CD24 after IFNγ + TNF 

treatment. Upon IFNγ + TNF treatment, the long 5'UTR CD24 isoform showed an 

increased proportion of total CD24 transcripts compared to the drop in short 5'UTR CD24 
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isoforms. Although DTU can also be seen from reference genome-aligned coverage data, 

it was apparent that reference transcriptome-aligned data assigned an over-estimated 

proportion of 5'UTR CD24 isoforms across the samples.  

The DTU analysis (DRIMseq and DEXseq) relies on transcript assignment of raw 

sequencing reads by minimap2, followed by quantification by Salmon. Minimap2 is 

currently the most frequently used read-aligner for long-read RNAseq experiments, with 

a previous benchmarking study showing the strategy used here (minimap2 alignment 

followed by Salmon quantification) being the most effective method in assigning reads 

to transcripts (Soneson et al., 2019). Various long-read sequencing optimised aligners 

(QAlign, desalt, uLTRA) with suggested improvement in alignment accuracies compared 

to minimap2 have since been published (B. Liu et al., 2019; Joshi et al., 2021; Sahlin 

and Mäkinen, 2021). Independent benchmarking studies on the performance of 

sequence aligners will be beneficial for designing DRS data analytic pipeline. Results 

here also show the importance of using multiple reference mapping methods to validate 

results. 

Finally, transcriptome assembly methods (StringTie2 and FLARE) can profile novel 

transcript isoforms in the ccRCC tumour cells. The tumour cell origin of novel transcripts 

can be deduced by comparing the results with previous transcriptome assemblies from 

the archival nephrectomy samples. It will also be helpful to investigate whether the quality 

and accuracy of read mapping would improve using transcriptome assemblies rather 

than reference transcriptome.  
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5.5 Evaluation of key objectives 

 Generation of CRISPR-Cas9-mediated m6A writers KO ccRCC cell lines 

WTAP KO clonal RCC4 cell lines were isolated and validated with significantly lower 

global m6A levels compared to controls. However, m6A methyltransferase METTL3 

KO clones were not viable after passaging, suggesting potential key roles of m6A in 

regulating the growth and survival of ccRCC tumour cells. 

 Evaluate the role of m6A on ccRCC gene expression profiles 

Sequencing results showed significant suppression in hypoxic response and 

glycolytic pathways in the WTAP KO cells compared to parental control cells. This 

was validated and replicated in 2 of 3 KO clones that were tested. KD of m6A writers 

via siRNA did not reproduce suppression in key hypoxic/glycolytic gene expression. 

Detailed genomic characterisation and comparisons between WTAP KO clones and 

the parental cells are needed to evaluate the role of m6A and WTAP in ccRCC. 

 Characterise the effects of IFNγ & TNF on mRNA transcripts in ccRCC cells 

The exposure of IFNγ and TNF induces profound differential gene expression and 

differential transcript isoform usage across the transcriptome, including immune 

checkpoints, in ccRCC tumour cells. IFNγ and TNF treatment also induces global 

poly(A) tail lengthening. Notably, poly(A) tail of different immune checkpoint isoforms 

from the same gene displayed differential responses towards the cytokines 

treatment. Future work linking mRNA transcripts’ poly(A) tail length and 

transcriptional dynamics will be of great interest. 

 Role of inflammatory cytokines and m6A on the expression of the immune 

checkpoint PD-L1 in ccRCC 

IFNγ and TNF induce PD-L1 mRNA and protein expression with a bias towards the 

membrane isoform. KO of WTAP suppressses membrane PD-L1 protein expression 

but not at mRNA levels. siRNA-mediated KD of m6A writers displayed nonsignificant 

downregulation of membrane PD-L1 protein expression. This suggests m6A may 

have a moderate impact on facilitating membrane PD-L1 mRNA translation.  
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5.6 Summary 

This chapter examined the role of mRNA m6A modification and cytokines (IFNγ and TNF) 

in regulating ccRCC gene expression. Genomics data analysis showed that m6A writer 

genes are frequently deleted in ccRCC tumours. Deletion of METTL3 only and in a 

combination of METTL14 and WTAP in ccRCC patients correlates with worse overall 

survival. Clonal WTAP KO lines were generated via CRISPR-Cas9-mediate gene 

deletion in a Cas9-expressing RCC4 cell line (RCC4 Cas9 GFP). DRS analysis identified 

suppressed hypoxic response and glycolytic pathways in the WTAP KO 2H1 clone 

compared to unedited control cells. However, WTAP KO-related DEG was only validated 

in 2 out of 3 WTAP KO clones. siRNA-mediated gene depletion of WTAP and METTL3 

also did not reproduce the differential gene expression observed from DRS data. Whilst 

MeRIP-qRT-PCR assay showed suppression in m6A levels of membrane PD-L1 

transcripts and decreased membrane PD-L1 protein expression levels in WTAP KO 

clones, subsequent siRNA-mediated gene depletion of WTAP and METTL3 showed 

modest differences compared to non-targeting controls. Further work is needed to 

characterise the role of m6A and WTAP in ccRCC. 

Exposure to IFNγ and TNF induced profound changes in the gene expression profile of 

RCC4 Cas9 GFP cells, including upregulation in the antigen presentation pathway. DTU 

analysis identified isoform-switching events after IFNγ and TNF treatment, including the 

immune checkpoints CD24 and PD-L1. RCC4 Cas9 GFP predominantly expresses 

soluble PD-L1 isoforms at basal state, and IFNγ and TNF preferentially upregulate 

membrane PD-L1 expression. Finally, IFNγ and TNF treatment caused global poly(A) 

tail lengthening in RCC4 Cas9 GFP cells. mRNAs of different PD-L1 and CD24 isoforms 

displayed different poly(A) tail profiles and responses to IFNγ and TNF treatment. Overall, 

exposure to IFNγ and TNF remodelled the gene expression, transcript isoform profiles 

and mRNA poly(A) tail lengths in ccRCC tumour cells. Integration of mRNA m6A analysis 

from DRS data in the future will provide further details on the co-regulation of gene 

expression by multiple co- and post-transcriptional regulatory events. 
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Chapter 6  

Discussion 
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6.1 Summary 

This study set out to explore the transcriptomic landscape of ccRCC and investigate how 

it is regulated by co- / post-transcriptome regulatory events using long-read sequencing 

technologies. In addition, this study aimed to explore the roles of tumour-infiltrating T 

cells and cytokines in augmenting the expression, isoform usages and post-

transcriptional modification of key cancer immune gene transcripts. To address these 

aims, archival nephrectomy tissues from ccRCC patients and in vitro ccRCC tumour cell 

lines were sequenced using ONT Direct RNAseq and PCR-cDNAseq. In addition to 

bioinformatics analysis, the ccRCC gene expression profile and post-transcriptional 

regulatory events were further characterised using MeRIP-qRT-PCR, western blot and 

flow cytometry analysis. Here, the list of primary aims and main findings from this study 

are presented: 

Aim i) To explore ccRCC transcriptome by long-read sequencing using archival 

nephrectomy tissues from non-recurrent/recurrent ccRCC patients. 

Main findings: 

 ccRCC tumours were successfully sequenced using ONT DRS and PCS 

 DRS and PCS libraries can be prepared using total RNA instead of poly(A)+ RNA 

 DRS and PCS detected a high number of transcripts from a wide variety of RNA 

biotypes  

 A large proportion of the identified transcripts represent novel isoforms 

 Novel isoforms of immune checkpoints (CTLA4, CD24, PD-L1 and IDO1) were found 

 Gene expression levels were highly correlated between DRS and PCS and between 

the reference genome and reference transcriptome alignment data 

 The choice of using reference genome or reference transcriptome alignment 

influenced the ability to identify different subsets of transcripts 
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Aim ii) To identify key differential expression genes and transcript isoforms between 

tumours from non-recurrent/recurrent ccRCC patients. 

Main findings: 

 ccRCC recurrence-associated differentially expressed genes were identified using 

DRS and PCS 

 GSEA revealed that recurrent ccRCC tumours showed suppressed immune cell 

activation and antigen presentation pathways 

 ccRCC recurrence-associated differential transcript usage events were identified 

using DRIMseq and DEXseq 

 

 

Aim iii) To compare the immune landscapes between non-recurrent/recurrent ccRCC 

tumours via RNAseq immune cell-type deconvolution analysis. 

Main findings: 

 Significantly lower levels of tumour-infiltrating immune cells were found in recurrent 

ccRCC tumours compared to non-recurrent tumours 

 The proportions of CD8+ T cells were suppressed in recurrent ccRCC tumours 

compared to non-recurrent tumours 

 A subgroup of non-recurrent ccRCC tumours showed significantly high levels of CD8+ 

T cells and high expression levels of exhausted CD8+ T cell markers 
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Aim iv) To investigate the roles of pro-inflammatory cytokines (IFNγ & TNF) in shaping 

the transcriptome of ccRCC tumour cells using DRS 

Main findings: 

 IFNγ + TNF stimulation of ccRCC tumour cells (RCC4 Cas9 GFP and WTAP KO 

2H1) induced hundreds of significantly differentially expressed genes 

 GSEA revealed that upregulated antigen presentation pathways are upregulated by 

IFNγ + TNF stimulation 

 IFNγ + TNF treatment in ccRCC tumour cells resulted in differential transcript usage 

on dozens of genes, including the immune checkpoints PD-L1 and CD24 

 IFNγ + TNF stimulation specifically induced membrane PD-L1 transcripts compared 

to soluble PD-L1 transcripts 

 IFNγ + TNF treatment causes global poly(A) tail lengthening in RCC4 Cas9 GFP cells 

 The poly(A) tail profiles of different PD-L1 and CD24 isoforms showed different 

responses to IFNγ + TNF 

 

Aim v) To characterise roles of m6A in transcriptomic regulation in ccRCC tumour cells 

by applying DRS analysis on CRISPR-Cas9 mediated KO of m6A writer WTAP 

Main findings: 

 RCC4 Cas9 GFP and WTAP KO 2H1 cells showed similar DEGs after treatment from 

IFNγ + TNF  

 WTAP KO 2H1 cells showed suppressed hypoxic response and glycolytic pathways 

compared to unedited RCC4 Cas9 GFP cells 

 WTAP KO-related DEGs were only validated in 2 out of 3 WTAP KO clones surveyed 

 siRNA-mediated gene depletion of WTAP and METTL3 did not reproduce DRS gene 

expression data from WTAP KO 2H1 
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6.2 Reflection on the application of long-read RNAseq to cancer 

biology and RNA research 

The recent arrival of long-read RNA sequencing technologies has addressed many 

inherent technical limitations of the short-read sequencing platform, allowing researchers 

to study the transcriptome at the single molecule level. Results from this study have 

showcased many advantages of utilising long-read RNAseq. The ability to characterise 

full-length transcripts provided increased confidence in both isoform assignments and 

novel isoform discovery. Moreover, examining native RNA molecules by DRS allows a 

unique opportunity to integrate information on gene expression, transcript isoform usage 

and poly(A) tail. Another advantage of the nanopore sequencing approach is the ability 

to re-evaluate current signal data. With continuous improvements in base-calling models 

and RNA modification detection algorithms, long-read sequencing technologies have 

great potential to provide novel biological insights. 

Whilst there are many benefits of using long-read RNA sequencing, improvement in the 

following areas may further facilitate the use of the technology in the broader research 

community. Firstly, the current DRS and PCS library preparation utilise an adaptor primer 

with a poly(T) overhang to capture poly(A)+ RNA from the input. Thus, non-

polyadenylated transcripts such as histone mRNAs, various lncRNAs (Neat1 and Malat1), 

and circular RNAs are not represented in the sequencing results (Yang et al., 2011). 

Recent studies have applied polymerases in vitro to add polyinosine or polyuridine tracks 

at the 3’ end of RNA transcripts, followed by RNA capture using customised adaptors 

(Drexler et al., 2021; Zhang et al., 2022). Implementing these methods may allow a 

broader range of transcripts that can be characterised using the long read-sequencing 

approach. 

Since DRS and PCS libraries are typically prepared with 3’ end poly(A) tail capturing, 

transcript coverage is universally 3’ end enriched. This is contributed by both RNA 

degradation and potential mid-sequencing interruption, leading to incomplete RNA reads. 

In addition, DRS and PCS cannot resolve final nucleotides at the 5’ end of the molecule 
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(Mulroney et al., 2022). Thus, it is not possible for DRS and PCS to differentiate between 

degraded RNA, interrupted RNA sequencing, or if the 5’ end represents the true end of 

the sequenced RNA molecule at present. To mitigate this issue, recent studies have 

coupled 5’ cap capturing method with poly(A) tail purification for full-length transcripts 

enrichment (Jiang et al., 2019; Ugolini et al., 2022). Whilst these methods successfully 

retrieve full-length RNA molecules, the input requirements (1.5 – 6µg of poly(A) enriched 

RNA before 5’ cap capture) used in these studies may not be feasible for clinical tumour 

samples. The sequencing output of the 5’cap-capture DRS experiments (270,000 – 

1,500,000 raw reads) was also relatively low, compared to the DRS performed here in 

this study. Intriguingly, a recent paper has shown that 5’ uncapped, polyadenylated 

transcripts produced by post-transcriptional mRNA cleavage (by RNA endonucleases) 

can be stable within cancer cells and translated in a cap-independent manner. 

Furthermore, the translated products were presented by MHC class I molecules in the 

tumour cells, which can potentially impact the tumour immune response (Malka et al., 

2022). Further development is needed to improve RNA capture methods to ensure the 

maximum varieties of RNA molecules are represented in long read RNA sequencing 

experiments.  

Finally, this study has demonstrated the power of using cell-type deconvolution methods 

to investigate tumour heterogeneity. Deconvolution algorithms, such as CIBERSORTx, 

rely on cell-type specific expression matrices to infer cell-type proportion(Newman et al., 

2019). With the development of single-cell RNAseq and spatial transcriptomics using 

long-read RNAseq technologies, the expression of cell-type specific isoform markers is 

increasingly recognised (Boileau et al., 2022; Volden and Vollmers, 2022). Therefore, 

the performance of bulk-RNAseq deconvolution methods is likely to be significantly 

improved using isoform-level expression data. Moreover, the unprecedented resolution 

brought by these methods will provide valuable insights into the complex cross-talk within 

the TME. 
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6.3 Future work 

i) Mapping m6A in ccRCC nephrectomy samples and RCC4 cell line using m6Anet  

Since the introduction of DRS in 2018, it has been seen as a promising technology for 

mRNA m6A detection. Several bioinformatics tools have since been published, but the 

accuracy and sensitivity of these tools rely on the availability of m6A-null control samples 

(such as METTL3 knockout cell lines or in vitro transcribed RNA). Moreover, the 

accuracy and resolution of these tools are insufficient for determining the m6A site 

stoichiometry (m6A vs unmodified A %). Due to the lack of 100% m6A-free control 

(WTAP-KO cells presented a 30% drop in global m6A levels), this analysis were not 

performed for the DRS data here. A recently published m6A base-calling algorithm, 

m6Anet, can detect mRNA m6A levels at the single RNA molecule and single nucleotide 

resolution (Hendra et al. 2022). Importantly, unlike other DRS m6A base-calling 

algorithms, m6Anet does not require an m6A negative training set. This provides an 

excellent opportunity to explore the m6A landscape in both ccRCC nephrectomy samples 

and in RCC4 Cas9 GFP / WTAP KO 2H1 cell lines using existing DRS data. 

For the nephrectomy samples, m6anet would enable comparisons of global mRNA m6A 

modification patterns between recurrent and non-recurrent ccRCC tumours. Previous 

research showed that global mRNA m6A levels of ccRCC tumours are significantly higher 

than adjacent normal tissues (Chen et al. 2019). Moreover, increased global mRNA m6A 

levels have been linked with enhanced tumour cell growth and proliferation (Cho et al. 

2021). Although m6A regulators were not found to be differentially expressed, it will be 

interesting to see if there are any differences in global mRNA m6A levels between 

recurrent and non-recurrent ccRCC tumours. m6Anet analysis will also allow 

investigation into the links between m6A modification rate and isoform expression levels. 

For RCC4 Cas9 GFP/ WTAP KO 2H1, m6A profiling can provide a direct link between 

levels of m6A and gene expression, which will help in distinguishing the impact of WTAP 

KO with potential off-target effects. Overall, this analysis will provide a much deeper 

understanding of post-transcriptional gene regulation in ccRCC. 
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ii) Characterisation of novel isoforms in ccRCC nephrectomy and RCC4 cells 

Using transcriptome assembly methods (Stringtie2 and FLAIR), this study has 

discovered tens of thousands of novel transcript isoforms that were not annotated in the 

Ensembl reference database. The existence of novel soluble PD-L1 isoform was 

validated using qPCR, but the origin and functionalities of these novel isoforms remain 

unclear.  

To identify the potential tumour cell origin of these novel transcripts, the transcriptome 

assembly generated from the ccRCC tumours can be used to map the RCC4 DRS data. 

Comparing the expression of these novel transcripts between untreated and IFNγ and 

TNF treated RCC4 cells can also shed light on the number of the novel transcripts that 

may only be induced with the presence of immune cells. Differential expression analysis 

of the novel transcripts should also be carried out in the ccRCC tumours. This may 

identify potential novel biomarkers for ccRCC recurrence.  

For the potential functionalities of the novel transcripts, their coding potential can be 

determined via bioinformatics tools (such as CPC2) based on their intrinsic sequence 

features (Kang et al. 2017). Further characterisation of potential protein domains can be 

executed using protein databases, for example, InterPro (Paysan-Lafosse et al. 2023). 

Reanalysis of publicly available proteomics data with the addition of these potential novel 

isoforms to the reference proteome can validate the existence of these proteins. For the 

predicted non-coding RNAs, several computational models that have been published to 

predict their functions based on their sequence composition, genomic locations and gene 

co-expression data (Chen et al. 2019). Altogether, these methods can provide clues to 

the potential roles of the novel transcripts, which can be further validated by wet-lab 

methods such as siRNA-mediated gene KD, CRISPR-Cas9-meadiated gene KO and 

gene over expression assays. 
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iii) Validation of sequencing results using additional cohorts of ccRCC patients 

Using long-read sequencing technologies, this exploratory study has uncovered 

differentially expressed genes and important discrepancies in tumour infiltrating immune 

cell populations between recurrent and non-recurrent ccRCC tumours. With the small 

sample size (n = 12), further validatory cohorts, preferably from different centres, will be 

needed to substantiate the findings. Top differentially expressed genes, especially 

immune cell related genes, can be validated using qPCR assays. Using primers targeting 

CD8+ T cell specific genes (such as CD8B) can also help validate the sequencing results 

which showed a significant decrease in CD8+ T cells in recurrent ccRCC tumours. Overall, 

the usage of a validatory cohort will greatly strengthen the evidence of the results 

presented here, as well as the reliability of using long-read sequencing on tumour 

samples. 

iv) Usage of long-read sequencing optimised bioinformatics tools 

Many of the bioinformatics used in this study, including the gene expression 

quantification tools featurecounts and Salmon, were initially designed for analysing 

short-read RNA sequencing data. As a rapidly developing field, there is an increasing 

number of bioinformatics tools that are being developed specifically for long-read RNA 

sequencing with reported improvement in performance. Recently, a transcript expression 

quantifier NanoCount has been developed specifically for long read RNA sequencing 

data. Benchmarking experiments using known spike-in RNA controls showed a 

significant improvement in transcript quantification accuracy by NanoCount compared to 

other tools, including salmon (Gleeson et al., 2022). An improved quantification accuracy 

will also benefit downstream differential transcript usage analysis. For novel isoform 

discovery, reference-free transcriptome assembly tools (RATTLE and RNA-Bloom2) 

specifically designed for long read sequencing data have recently been released (de la 

Rubia et al., 2022; Nip et al., 2022). Using reference-free transcriptome assemblers may 

avoid the over-correction problem previously observed using the reference-guided 

FLAIR and StringTie2. 
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6.4 Concluding remarks 

The advent of long-read RNA sequencing technologies has provided the means to study 

tumour transcriptomes at an unprecedented resolution. This study shows the feasibility 

of using ONT DRS and PCS to characterise archival ccRCC tumour samples. 

Bioinformatics analysis shows that the tumour immune infiltration populations, 

particularly CD8+ T cells, are significantly suppressed in recurrent ccRCC tumours. Using 

transcriptome assembly methods, thousands of novel isoforms, including immune 

checkpoints, are found in ccRCC tumours. DRS showed that the exposure of the 

cytokines IFNγ and TNF remodels the transcriptomic profiles of ccRCC tumour cells in 

vitro and causes differential transcript usage of the immune checkpoint genes CD24 and 

PD-L1. Finally, IFNγ and TNF treatment causes global lengthening of mRNA poly(A) tails, 

but different isoforms of the same gene can display differential responses. This study 

demonstrates the ability of long-read RNA sequencing to integrate gene expression data 

with multiple mRNA regulatory events at a single molecule resolution. Future 

improvements and wider implementation of the technology will contribute to unravelling 

the complexity of the cancer transcriptome. 
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Table 7.1 DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned DRS 



352 
 

 

Table 7.1 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned DRS 
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Table 7.2 DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference transcriptome aligned DRS  
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Table 7.3 DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 



355 
 

 

Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.3 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference genome aligned PCS 
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Table 7.4 DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference transcriptome aligned PCS 
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Table 7.4 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference transcriptome aligned PCS 



363 
 

 

Table 7.4 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference transcriptome aligned PCS 
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Table 7.4 (cont.) DEGs between recurrent and non-recurrent ccRCC tumours profiled by reference transcriptome aligned PCS 
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Table 7.5 Top 50 GO BP terms (by padj) between non-recurrent and recurrent ccRCC profiled by DRS 
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Table 7.6 Top 50 GO BP terms (by padj) between non-recurrent and recurrent ccRCC profiled by PCS 
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Table 7.7 GO MF terms (by padj) between non-recurrent and recurrent ccRCC profiled by DRS 
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Table 7.8 GO MF terms (by padj) between non-recurrent and recurrent ccRCC profiled by PCS 
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Table 7.9 GO CC terms (by padj) between non-recurrent and recurrent ccRCC profiled by DRS 
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Table 7.10 GO CC terms (by padj) between non-recurrent and recurrent ccRCC profiled by PCS 

 

Table 7.11 GSEA of KEGG pathways between non-recurrent and recurrent ccRCC profiled by DRS 
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Table 7.12 GSEA of KEGG pathways between non-recurrent and recurrent ccRCC profiled by PCS 
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Table 7.13 DTU genes between recurrent and non-recurrent ccRCC tumours by DRIMseq and DEXseq profiled by DRS  

 

 

  

Table 7.14 DTU genes between recurrent and non-recurrent ccRCC tumours by DRIMseq and DEXseq profiled by PCS  

 

 

 

 

 

 



373 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.15 Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated RCC4 Cas9 GFP by reference genome aligned DRS 
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Table 7.15 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated RCC4 Cas9 GFP by reference genome aligned DRS 



375 
 

 

 

Table 7.15 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated RCC4 Cas9 GFP by reference genome aligned DRS 
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Table 7.16 Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated RCC4 Cas9 GFP by reference transcriptome aligned DRS 
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Table 7.16 (cont.)Top 100 DEGs (by padj) between untreated and IFNγ+TNF treated RCC4 Cas9 GFP by reference transcriptome aligned DRS 



378 
 

 

Table 7.16 (cont.)Top 100 DEGs (by padj) between untreated and IFNγ+TNF treated RCC4 Cas9 GFP by reference transcriptome aligned DRS 
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Table 7.17 Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated WTAP KO 2H1 by reference genome aligned DRS 
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Table 7.17 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ+TNF treated WTAP KO 2H1 by reference genome aligned DRS 



381 
 

 

Table 7.17 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ+TNF treated WTAP KO 2H1 by reference genome aligned DRS 
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Table 7.18 Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated WTAP KO 2H1 by reference transcriptome aligned DRS 
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Table 7.18 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated WTAP KO 2H1 by reference transcriptome aligned DRS 
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Table 7.18 (cont.) Top 100 DEGs (by padj) between untreated and IFNγ + TNF treated WTAP KO 2H1 by reference transcriptome aligned DRS 
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Table 7.19 DEGs between unstimulated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference genome alignment 
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Table 7.19 (cont.) DEGs between unstimulated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference genome alignment 
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Table 7.20 DEGs between unstimulated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference transcriptome alignment 
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Table 7.21 DEGs between IFNγ+TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference genome alignment 
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Table 7.21 (cont.) DEGs between IFNγ+TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference genome alignment 
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Table 7.22 DEGs between IFNγ + TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference transcriptome alignment 



391 
 

 

Table 7.22 (cont.) DEGs between IFNγ + TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 profiled by reference transcriptome alignment 
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Table 7.23 Top 50 GO BP terms (by padj) between unstimulated and IFNγ + TNF treated RCC4 Cas9 GFP 
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Table 7.24 Top 50 GO MF terms (by padj) between unstimulated and IFNγ + TNF treated RCC4 Cas9 GFP 
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Table 7.25 Top 50 GO BP terms (by padj) between unstimulated and IFNγ + TNF treated WTAP KO 2H1 
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Table 7.26 Top GO MF terms (by padj) between unstimulated and IFNγ+TNF treated WTAP KO 2H1 
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Table 7.27 DTU genes between unstimulated and IFNγ+TNF treated RCC4 Cas9 GFP by DRIMseq and DEXseq 
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Table 7.27 (cont.) DTU genes between unstimulated and IFNγ+TNF treated RCC4 Cas9 GFP by DRIMseq and DEXseq 
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Table 7.28 DTU genes between unstimulated and IFNγ+TNF treated WTAP KO 2H1 by DRIMseq and DEXseq 
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Table 7.28 (cont.) DTU genes between unstimulated and IFNγ+TNF treated WTAP KO 2H1 by DRIMseq and DEXseq 
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Table 7.29 DTU genes between unstimulated RCC4 Cas9 GFP and WTAP KO 2H1 by DRIMseq and DEXseq 
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Table 7.29 (cont.) DTU genes between unstimulated RCC4 Cas9 GFP and WTAP KO 2H1 by DRIMseq and DEXseq 
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Table 7.30 DTU genes between IFNγ + TNF treated RCC4 Cas9 GFP and WTAP KO 2H1 by DRIMseq and DEXseq 
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List of abbreviations 

4E-BP eIF4E binding protein 

AKT 

ALYREF 

Protein kinase B 

Aly/REF export factor 

APA Alternative cleavage and polyadenylation 

APC Antigen presenting cell 

ApoB Apolipoprotein B 

ARE AU-rich elements 

ATP Adenosine triphosphate 

AUBP AU-rich element binding protein 

BAP1 BRCA1 associated protein 1 

BCL2 B cell lymphoma 2 

CAF Cancer associated fibroblast 

CAGE Cap analysis gene expression 

Cas9 CRISPR-associated protein 9 

ccRCC Clear cell renal cell carcinoma 

CCL Chemokine ligand 5 

CDE CAF-derived-exosomes 

CDK Cyclin dependent kinase 

cDNA Complementary DNA 

CFI Cleavage factor I 

chRCC Chromophobe renal cell carcinoma 

CMML Chronic myelomonocytic leukaemia 

c-MYC MYC proto-oncogene 

CNV Copy number variations 

CPE Cytoplasmic polyadenylation element 
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CPSF Cleavage and polyadenylation specificity factor 

CPT1A Carnitine palmitoyltransferase 1A 

CRISPR clustered regularly interspaced short palindromic repeats 

CSTF Cleavage stimulation factor 

CT Computerised tomography scan 

CTCF CCCTC-binding factor 

CTD Carboxy terminal domain 

CTLA4 Cytotoxic T-lymphocyte-associated protein 4 

CTLs Cytotoxic T lymphocytes 

DC Dendritic cell 

DEG Differentially expressed genes 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleoside triphosphate 

DRS Direct RNAseq 

DTT Dithiothreitol 

DTU Differential transcript usage 

ECM Extracellular matrix 

EGF Endothelial growth factor 

ERK Extracellular signal regulated kinase 

FACS Fluorescence-activated cell sorting 

FBS Foetal bovine serum 

FDA U.S. food and drug administration 

FFPE Formalin-fixed paraffin-embedded 

GAP GTPase activating protein 

GFP Green fluorescent protein 

GTEx Genotype-tissue expression 



405 
 

GLUT1 Glucose transporter 1 

GO Gene ontology 

GO BP Gene ontology biological processes 

GO CC Gene ontology cellular component 

GO MF Gene ontology molecular function 

GSEA Gene set enrichment analysis 

HIF Hypoxia inducible Factor 

HLA Human leukocyte antigen 

hnRNPA1 Heterogenous nuclear ribonucleoprotein A1 

HRE Hypoxia response elements 

ICI Immune checkpoint inhibitor 

IDO1 Indoleamine 2,3-dioxygenase 

IFNγ Interferon gamma 

IGF Insulin-like growth factor 

IGV Integrated genomics viewer 

IHC Immunohistochemical analysis 

IL-10 Interleukin 10 

ILK Integrin-linked kinase 

IRF1 Interferon regulatory factor 1 

ISRE Interferon stimulated response element 

JAK Janus kinase 

KEGG Kyoto encyclopedia of genes and genome 

KIRC Kidney renal clear cell carcinoma 

LAG-3 Lymphocyte-activation gene 3 

LDHA Lactate dehydrogenase A 

LOH Loss of heterozygosity 
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MAPK Mitogen activated protein kinase 

MCT1 Monocarboxylate transporter 1 

METTL3 Methyltransferase 3 

METTL14 Methyltransferase 14 

MHC Major histocabability complex 

MRI Magnetic resonance imaging 

mRNA Messenger RNA 

mRNP 

mTOR 

messenger ribonucleoprotein 

Mechanistic target of rapamycin 

mTORC1 mTOR complex 1 

mTORC2 mTOR complex 2 

ncRNA non-coding RNA 

NGS Next generation sequencing 

NLRC5 NLR family CARD domain containing 5 

NMD Nonsense-mediated decay 

NSCLC Non-small cell lung cancer 

ONT Oxford Nanopore Technologies 

ORR Objective response rate 

PABPC1 Poly(A) binding cytoplasmic protein 1 

PABPN1 Poly(A) binding nuclear protein 1 

PacBio Pacific Biosciences 

PAP Poly(A) polymerase 

PARN Poly(A)-specific ribonuclease 

PAS Polyadenylation signal 

PBRM1 Polybromo 1 

PBS Phosphate-buffered saline 
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PCA Principal component analysis 

PCR Polymerase chain reaction 

PCS PCR-cDNAseq 

PD-1 Protein cell death protein 1 

PDGF platelet derived growth factor 

PDK1 Phosphoinositide 3-kinase-1 

PD-L1 Program death ligand 1 

PH Pleckstrin-homology 

PHD Prolyl hydroxylase 

PI3K Phosphatidylinositol-3-kinase 

PIP2 Phosphatidylinositol-4,5-biphosphate 

PIP3 Phosphatidylinositol-3,4,5-trisphosphate 

poly(A) Polyadenylation 

pRCC Papillary renal cell carcinoma 

pre-mRNA Precursor mRNA 

p-TEFb Positive transcription elongation factors b 

qRT-PCR quantitative reverse transcription PCR 

RBP RNA binding protein 

RCC Renal cell carcinoma 

RIN RNA Integrity Numbers 

RNA Ribonucleic acid 

RNAP II  RNA polymerase II 

rRNA Ribosomal RNA 

RT Reverse transcription 

RTK Receptor tyrosine kinase 

S6K1 p70S6 kinase 1 
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scRNAseq Single-cell RNAseq 

Ser Serine 

SETD2 SET domain containing 2 

SHH Sonic hedgehog 

siRNA Small interfering RNA 

snRNA Small nuclear RNA 

snRNP Small nuclear ribonucleoprotein 

SR Serine and arginine rich 

SREBP Sterol responsive element binding protein 

SRSF1 Serine and arginine rich splicing factor 1 

STAT1 Signal transducer and activator of transcription 1 

TAM Tumoure-associated macrophages 

TAP Transporter associated with antigen processing 

TCA  Tricarboxylic acid 

TCC Transitional cell cancer 

TCGA The cancer genome atlas 

TCGA The cancer genome atlas 

TCR T cell receptor 

TGF-β Transforming growth factor beta 

Th T helper cells 

Thr Threonine 

TIGIT T cell immunoreceptor with Ig and ITIM domains 

TIM-3 T cell immunoglobulin and mucin domain containing-3 

TKI Tyrosine kinase inhibitors 

TLS Tertiary lymphoid structures 

TME Tumour microenvironment 
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TNF Tumour necrosis factor 

TOX Thymocyte selection associated high mobility group box 

tracrRNA transactivating CRISPR RNA 

Treg Regulatory T cells 

TTP Tristetraprolin 

U2AF1 U2 small nuclear RNA auxiliary factor 1 

UTR Untranslated region 

VEGF Vascular endothelial growth factor 

VHL von Hippel-Lindau 

WTAP Wilms tumor 1 associated proteins 

YTHDF YTH N6-methyladenosine RNA binding protein 
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