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ABSTRACT 

The first stage in creating data-driven soft computing models is to derive information 

from data, towards developing the structure of computational models. An effective way 

to extract information from data is through granular computing (GrC), which is inspired 

by the way human naturally groups similar objects together. Using GrC and Fuzzy Sets 

in modelling engineering systems, one can describe systems in a very transparent and 

interpretable way. GrC has been applied in the literature, however, there are still issues 

with data uncertainty and its impact on the interpretability of Fuzzy Logic systems. The 

consideration for data uncertainty is very important for real applications, where data 

usually comes from measurements/sensing, with inherent noise and uncertainty. Hence, 

this thesis aims to investigate methods to address uncertainty in GrC, methods to 

address variable importance in GrC, methods to address granular overlapping in GrC, 

and methods to evaluate the resulting impact on the interpretability. 

A new data-driven modelling framework based on GrC, Fuzzy Logic, and 

uncertainty measure is proposed, in which the uncertainty (in this thesis captured via 

conflict) between information granules is modelled using Shannon entropy. The issue 

of interpretability due to overlapping is addressed with a new iterative data granulation 

mechanism that controls the amount of granule overlapping using R-value, a metric that 

represents the ratio of overlapping areas among categories in a data cluster. In order to 

characterise the importance of data features, Weighted GrC (W-GrC), a new iterative 

data granulation technique with evolving feature weighting is proposed. The feature 

weights are determined based on the current information granules (within-granule 

variances) and adaptively change in each iteration. Since W-GrC is studied in both 

Type-1 and Type-2 systems, a new interpretability index for Type-2 Fuzzy Logic 

systems  is proposed based on Nauck’s index, taking into account both upper and lower 

membership functions. 

A thorough set of simulations based on UCI datasets are conducted to demonstrate 

the effectiveness of each of the frameworks proposed in this thesis. The simulation 

results demonstrate the potential of all proposed frameworks in improving the 

predictive accuracy while maintaining good level of interpretability.  
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CHAPTER 1 

 
 

INTRODUCTION 
 

Discovering connections between data sets and organising data together can be 

accomplished with the help of data clustering methods. Fuzzy C-means and the 

Mountain approach are examples of clustering strategies that have been applied to help 

in the design of fuzzy systems [1].  The major drawback of such techniques is that the 

quality of the partitions depends on the priori parameters such as the number and 

location of the initial cluster centres [2]. Granular Computing (GrC), which is motivated 

by the human perception in grouping similar features, provides a straightforward 

method of extracting information from data sets. 

GrC allows for the grouping of data based on similarity features and furthermore 

keep in the data space information and data properties. In GrC, the most important 

concept is the definition of the compatibility measure, which can be purely geometrical 

(size of granules, volume of granules), density driven (ratio of cardinality versus 

granule volume), similarity driven (data overlap), proximity or function based [1]. 

Instead of being generated by an algorithm, the information granules develop from the 

original data. GrC's transparency and the additional information gathered during the 

grouping process make this methodology perfect for integrating with Fuzzy Logic 

systems. The scope in GrC is the development of information granules – objects that 

provide a way of organising information about the data and the existing relationships 

[3]. 

Fuzzy Logic (FL) rule-based models can be created in one of two ways: by 

employing expert knowledge or by applying data mining techniques [4].  However, the 

first approach is limited due to the availability and consistency among the experts. 

Therefore, data mining techniques can be utilised to discover the knowledge 

(relationships and structure) from data. This information can be used to establish the 
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Fuzzy Logic parameters in data-driven FL modelling that is effective in identifying a 

wide range of complex nonlinear systems [5].  

In this thesis, FL models are developed based on a granular computing algorithm 

suggested by Pedrycz and Bargiela [6], known as granular clustering or iterative data 

granulation. This algorithm is comparable to the idea of agglomerative hierarchical 

clustering that starts with treating each data point as an individual cluster, or granule, 

and merges the most similar clusters up until a predetermined termination condition is 

met [7]. The most significant difference between these two algorithms is that in iterative 

data granulation, the compatibility measure is used as the merging criteria. The 

compatibility measure is a function that comprises the distance between information 

granules and the information density of the obtained granule [8]. 

 

1.1 PROBLEM STATEMENT 

High quality information granules may lead to the formation of representative FL rule-

bases that capture the behaviour of real systems. However, in reality, data or 

information is always uncertain as the result of information deficiency, i.e. incomplete, 

imprecise, vague or contradictory. Imprecise measurement of data also may contribute 

to the problem of data uncertainty. In the presence of outliers for example, information 

granules cannot capture accurately the underlying data. This will inhibit the 

interpretability of an FL rule base, and causes inaccurate representation of the system. 

As a consequence, the information granules formed using the iterative data granulation 

may be affected, hence leading to the formation of inaccurate and inconsistent FL rule-

bases. Therefore, it is necessary to take into account the data uncertainty during the data 

granulation process. This can be achieved by quantifying the uncertainty using the 

concept of information theory, and utilising this information in a new compatibility 

measure to guide the data granulation process. 

In the conventional iterative data granulation, all features or input variables are 

treated as equally important [9]; the weight for each feature is the same without 

considering their degree of relevance or importance. However, this approach is not 

necessarily ideal, since there are always variables that are more significant or relevant 

to a particular task than the others. Ideally, the more important features are assigned 

with higher weighting than the less important features. In the literature, most of the 
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works regarding iterative data granulation [10], [11] use equal weights for all features, 

while some other works attempted to assign fixed predetermined weights for the 

granulation process [12]. Due to its iterative-hierarchical nature, this approach might 

not be the best since the information provided by the granules in each iteration is 

changing according to the current parameters of granules (i.e. cardinality, variance, 

distance). 

Another issue in the iterative data granulation is the class overlapping which can 

be a source of uncertainty. Most conventional clustering algorithms aim at forming a 

number of disjoint clusters, or granules where an object belongs to only one granule 

[13]. Traditional clustering algorithms such as k-means may function effectively 

especially when the group boundaries are distinct and the data is free of outliers. 

However, most real-world data sets have overlapping information, therefore some data 

objects or patterns might be a part of multiple granules [14]. Due to numerous issues 

that need that the granules be inclusive, for example overlapping information that exists 

in the real world data sets [14] and incorrect representation of the underlying data 

structure [15], there is a need to work with overlapping granules. So far, the 

compatibility criteria of the iterative data granulation do not incorporate any parameter 

that is able to control the amount of the overlapping among the granules.   

The motivation to enhance the development of information granules is to form high 

quality FL rule-bases. One of the reasons for using Fuzzy Logic systems (FLSs) is the 

application of linguistic variables and rules that are interpretable by humans [16]. 

Interpretability represents the systems’ ability to describe the real system in a 

comprehensible way [17]. Unlike accuracy, whose calculation is straightforward, the 

computation of interpretability is highly subjective and challenging. This is due to 

different knowledge and experience of each individual in interpreting a Fuzzy Logic 

system [18], hindering the interpretability to be assessed in a standard numerical way. 

In type-1 Fuzzy Logic systems (T1-FLSs), most of the works related to interpretability 

use various types of interpretability indices, such as number of rules, total rule length, 

average rule length, Nauck’s index and fuzzy index [18], [19]. However, interpretability 

studies in type-2 Fuzzy Logic systems (T2-FLSs) are scarce. This is due to higher 

complexity in the T2-FLSs, especially because it involves two separated membership 

functions in the Fuzzy Logic sets, namely upper and lower membership functions; 
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hence there is a need to formulate appropriate numerical measures to capture 

interpretability in T2-FLS. 

The scope of this thesis is to research human-centric intelligent computational 

frameworks and systems, such as information granulation, fuzzy sets theory and Fuzzy 

Logic systems, artificial neural networks and interpretability measures for Fuzzy Logic 

systems. 

1.2 RESEARCH AIMS AND OBJECTIVES 

Since iterative data granulation is relatively new computing technique, there are still 

research gaps that can be explored on the development of new computational 

frameworks in particular in dealing with uncertainties and class overlapping during the 

granulation process and its possible combination with FL. Moreover, up to date this 

algorithm has not been reported yet to incorporate evolving feature weighting 

technique, an embedded method that allows the more important features to have higher 

influence in the data granulation than the less important features, for a given iteration. 

This research is not limited to the Type-1 Fuzzy Logic systems, therefore the enhanced 

information granules are utilised towards building higher order FL systems – e.g. Type-

2). Since the interpretability is the motivation of using FL rule base system, this thesis 

explores the quantification of interpretability for Type-2 Fuzzy Logic systems.  

The aims of this research work are to investigate methods to address uncertainty in 

GrC, methods to address variable importance in GrC, methods to address granular 

overlapping in GrC, and methods to evaluate the resulting impact on the interpretability. 

In order to accomplish these aims, this PhD research work focuses on the following 

objectives: 

1. To identify and develop mathematical methods for quantifying uncertainty 

accumulation in the granulation process and use this information to enhance the 

iterative data granulation towards the building the Fuzzy Logic rule-based 

systems. 

 

2. To investigate and introduce a new computational framework for capturing the 

importance of features during iterative data granulation and analyse the 

effectiveness of the new framework in the development of Type-1 Fuzzy Logic 
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systems (T1-FLSs) models while also assessing the impact on rule base 

interpretability. 

 

3. To develop the new compatibility measure in the iterative data granulation that 

includes an additional parameter to control the amount of overlapping among 

the information granules. 

 

4. To extend the feature weighted (Objective 2) computational framework to 

Radial Basis Function Neural Network (RBFNN) and General Type-2 Radial 

Basis Function Neural Network (GT2-RBFNN) systems. 

 

5. To investigate and develop new interpretability measures for Type-2 FLSs and 

use this to study the impact of feature weighting (as in Objectives 2 and 4) in 

terms of the systems’ interpretability. 

 

1.3 CONTRIBUTIONS 

The main contributions of this thesis are: 

1. A method to quantify uncertainty during the iterative data granulation process 

is introduced. Shannon entropy, an important parameter within the information 

theory framework is used to numerically quantify the uncertainty, and this 

information is utilised in guiding the merging of the information granules with 

the aim to minimise the uncertainty during data granulation. A new 

compatibility measure incorporating the amount of uncertainty is developed, 

and the enhanced information granules are used to build Fuzzy Logic rule-

based systems. This contribution is based on Chapter 3 of this thesis and the 

outcome of this work has been presented and subsequently published in the 7th 

International Conference on Soft Computing & Machine Intelligence (ISCMI). 

 

2. A new GrC algorithm called weighted GrC (W-GrC) is introduced to assign 

and update the feature weight based on the feature importance. The main idea 

of W-GrC is to compute and update the feature weights according to the 

within-granule variances in each iteration, meaning that the feature-weighting 
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technique is embedded in the data granulation process. The new and enhanced 

information granules are used to build Type-1 Fuzzy Logic systems (T1-FLSs) 

rule-bases. The impact of W-GrC is investigated in terms of the system’s 

predictive accuracy and interpretability, in which the interpretability is 

measured using Nauck’s index. This contribution is based on Chapter 4 of this 

thesis and the outcome of this work has been presented and published in 20th 

UK Workshop on Computational Intelligence, and has been awarded with the 

Best Student’s paper (2021). 

 

3. The issue of class overlapping in data granulation is addressed. Specifically, a 

new iterative data granulation algorithm is introduced, by integrating a 

parameter called R-value to model the overlapping among the information 

granules in the compatibility measure. The aim is to allow an instance to 

belong to more than one granule, rather than only one granule as in the 

conventional disjoint types of granulation. The effectiveness of overlapped 

GrC is studied in the classification tasks within the T1-FLSs framework. 

4. A new measure for interpretability in type-2 Fuzzy Logic systems (T2-FLSs) 

is introduced based on the Nauck’s index. Since the study of Fuzzy Logic 

systems’ interpretability in the literature is limited to mainly T1-FLSs, a new 

index is developed, taking into account both membership functions in T2-FLSs 

(upper and lower membership functions). To validate, the W-GrC developed 

in (2) is extended to Radial Basis Function Neural Network (RBFNN) and 

General Type-2 Radial Basis Function Neural Network (GT2-RBFNN) 

models. The impact on the interpretability is quantified using the proposed 

interpretability measure. This contribution is shown in Chapter 6 of this thesis 

and the outcome of this work has been published in Expert Systems journal. 

 

1.3.1 PUBLICATIONS 

Journal Papers  

 M. Z. Muda, A. R. Solis, and G. Panoutsos, “An Evolving Feature Weighting 

Framework for Radial Basis Function Neural Network Models,” Expert 

Systems, e13201, pp. 1-14, 2022, doi:  https://doi.org/10.1111/exsy.13201. 
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Conferences 

 M. Z. Muda and G. Panoutsos, “An Evolving Feature Weighting Framework 

for Granular Fuzzy Logic Models,” In: Jansen, T., Jensen, R., Mac Parthaláin, 

N., Lin, CM. (eds) Advances in Computational Intelligence Systems. UKCI 

2021. Advances in Intelligent Systems and Computing, vol. 1409. Springer, 

Cham, pp. 3-14, 2021, https://doi.org/10.1007/978-3-030-87094-2_1. 

 

 M. Z. Muda and G. Panoutsos, "An Entropy-Based Uncertainty Measure for 

Developing Granular Models," 2020 7th International Conference on Soft 

Computing & Machine Intelligence (ISCMI), pp. 73-77, 2020, doi: 

10.1109/ISCMI51676.2020.9311589. 

 

 

1.4 THESIS OUTLINE 

This thesis is organised as follows: 

Chapter 2 provides a literature review on the current research in granular Fuzzy 

Logic systems and human-centric computational intelligence systems. It starts with 

covering the review of Fuzzy Logic systems and neuro-fuzzy modelling, for both Type-

1 and Type-2 systems. Next, highlights are given to the current research trend in the 

interpretability of Fuzzy Logic systems, covering various types of interpretability 

measures. Finally, the concept of granular computing and the development of 

information granules is described.  

In chapter 3, the uncertainty occurring by the iterative data granulation process is 

quantified via the use of information theory. Here, the iterative data granulation 

algorithm, which is the focus in this thesis is described in detail, where the computation 

of the compatibility measure is detailed. As a comparison, other clustering algorithms 

are also presented in this chapter. Highlight is also given to the Granular computing 

based Fuzzy Logic modelling framework that is applicable in other chapters (Chapter 

4-6). This refers to the translation of information granules obtained from GrC to Fuzzy 

Logic rule-bases. Finally, the effectiveness of integrating the uncertainty measure in the 

iterative data granulation is demonstrated in Type-1 Fuzzy Logic systems. 
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Chapter 4 presents a new GrC algorithm called weighted GrC (W-GrC) that 

assigns and updates the feature weight based on the feature importance. The difference 

between feature selection and feature weighting is described, as well as the computation 

of feature weights based on within-granule variances (in each iteration). The feature 

weights are allowed to evolve as the granulation process progresses according to the 

inbuilt feature-weighting mechanism. The information granules obtained from W-GrC 

are translated into Type-1 Fuzzy Logic systems (T1-FLS) rule-bases and the new 

framework is validated using classification problems (data from UCI machine learning 

repository). 

Chapter 5 tackles the issue of class overlapping in data granulation. A parameter 

known as R-value is used to model the overlapping between granules, the calculation 

of this parameter is shown. R-value is integrated into the compatibility function and 

provides a way to control the amount of overlapping among the granules. This method 

permits an object to belong to one or more granules rather than just one. The new GrC 

with overlapping measure is demonstrated by using datasets from UCI Machine 

Learning Repository. 

Chapter 6 focuses on the interpretability measure in Type-2 Fuzzy Logic systems. 

The weighted GrC in Chapter 4 is demonstrated in Radial Basis Function Neural 

Network (RBFNN) and General Type-2 Radial Basis Function Neural Network (GT2-

RBFNN). A new approach in measuring the interpretability based on Nauck’s index is 

proposed, and the computation is exemplified in detail. The NI is assessed for both W-

GrC and conventional GrC in type-1 and type-2 models, and the impact on the 

interpretability is investigated. 

Chapter 7 - Conclusions and Future Works conclude all contributions from all 

chapters and provide recommendations for future works. 
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CHAPTER 2 
 
A BACKGROUND TO GRANULAR COMPUTING 
AND FUZZY LOGIC MODELLING 
 

This chapter provides a literature review on the current research in granular computing 

and Fuzzy Logic systems within the context of human-centric computational 

intelligence systems. The focus of this chapter is on Fuzzy Logic systems, Neuro-fuzzy 

modelling, granular computing and on the interpretability of Fuzzy Logic systems.  

2.1 FUZZY LOGIC SYSTEMS 

Identifying a precise model representation of a system is not always practical, or 

feasible, when dealing with real-world problems, especially for complex systems. Due 

to the large number of interacting parameters, which humans might not be able 

to interpret at once, it can be difficult to gain a thorough description or understanding 

of the system's behaviour [20]. Fuzzy Logic (FL) rule-based systems based on Fuzzy 

Logic sets and Fuzzy Logic theory provide a potent yet succinct approach for 

representing complex systems [21]. 

Fuzzy Logic systems (FLS) are a very useful tool in building human-centric models 

[21]. FLS’s strong capacity to model/represent complex systems and provide system 

transparency is largely attributable to its use of IF-THEN statements, which are 

straightforward language principles that can be understood in obtaining an output value 

[22], [23]. Considering FLS as models has other advantages too, for example for their 

ability in handling any non-linear problems [24] as well as model’s interpretability due 

to the linguistic nature of FLS [21]. 
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2.2.1 FUZZY LOGIC SETS 

A Fuzzy Logic set is a mathematical object in which membership is continuous [25]. 

Despite being crisp (as in classical set theory), it has a membership function which 

ascribes a component to a membership grade. In classical set theory, the membership 

of one element is either 1 or 0, or simply means that it belongs to that set, or does not.  

For example, given a set 𝐴, the membership function for each 𝑥 ∈ 𝑋 is either:  

                                                  𝜇஺(𝑥) = 1 or  𝜇஺(𝑥) = 0                                   (2.1) 

where 𝑋 is a collection of objects denoted generically by 𝑥 [25]. 

In contrast, fuzzy set theory allows for a gradual evaluation of an element's 

membership in a set. This is stated using a membership function with a value in the real 

unit range [0, 1] [26]. According to Zadeh [27], a Fuzzy Logic set 𝐴 in 𝑋 is a set of 

ordered pairs:  

                 𝐴 = {൫𝑥, 𝜇஺(𝑥)൯: 𝑥 ∈ 𝑋}                                            (2.2) 

where 𝜇஺(𝑥) is the membership function that maps 𝑋 to a real number in the interval 

[0,1]. 

The purpose of the membership function (MF) is to establish the relationship 

between each input and the degree of membership used to assess usability [28]. In 

addition to mapping the MF, it is also necessary to determine the shape of the MF. 

Commonly used shapes include triangular, trapezoidal, Gaussian [26] and bell shape 

[22] as shown in Figure 2.1. The membership functions for each shape can be expressed 

as [22], [29] ,[30], [31]: 

 Gaussian MF 

     𝑓(𝑥; 𝑐, 𝜎) = 𝑒
ష(ೣష೎)మ

మ഑మ              (2.3) 

 

 Triangular MF 

         𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ 𝑎 
௫ି௔

௕ି௔
, 𝑎 ≤ 𝑥 ≤ 𝑏

௖ି௫

௖ି௕
 , 𝑏 ≤ 𝑥 ≤ 𝑐  

0, 𝑥 ≥ 𝑐

                                       (2.4) 
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 Trapezoidal MF 

 𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ 𝑎 
௫ି௔

௕ି௔
, 𝑎 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐
ௗି௫

ௗି௖
 , 𝑐 ≤ 𝑥 ≤ 𝑑  

0, 𝑥 ≥ 𝑑

             (2.5) 

 

 Generalised Bell MF 

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =
ଵ

ଵାቚ
ೣష೎

ೌ
ቚ
మ್             (2.6) 

 

 

(a) Gaussian MF 
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(b) Triangular MF 

 

           (c) Trapezoidal MF 
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(d) Bell MF 

Figure 2.1: Shapes for Membership Functions (MFs) 

 

2.2.2 FUZZY LOGIC SYSTEMS 

The general configuration of FL model consists of five main components, which are 

Fuzzy Logic rule base, fuzzy inference engine, database, fuzzifier and defuzzifier [4] 

as shown in Figure 2.2. The fuzzifier converts the numerical inputs into degrees of 

membership to the Fuzzy Logic sets of the input variables [32]. In this stage, 

membership functions are used to represent Fuzzy Logic sets graphically [33]. This 

process of converting crisp input into linguistic variable uses the MFs stored in the 

database and is called fuzzification. 

The inference engine then utilises the fuzzy measurements to evaluate the control 

rules kept in the fuzzy rule base [34]. The rule base represents a set of IF-THEN rules 

that have been identified during the information granulation level. The database 

contains all of the values for the parameters of the rule-based model [4]. Inference 

engine is where the combination of rules occurs [35] while the final step, 
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defuzzification occurs in the defuzzifier. Here, the fuzzy output is transformed back to 

crisp value.  

 

 

 

 

 

 

 

Figure 2.2: The general configuration of Fuzzy Logic model 

 

A Mamdani-type Fuzzy Logic system rule has the following form [36], [22]: 

𝑅௜  ∶ IF  𝑥ଵ is 𝐹ଵ
௜   and .  .  . IF  𝑥௠ is 𝐹௠

௜   THEN 𝑦 is 𝐺௜                          (2.7) 

where 𝑅௜ denotes the 𝑖-th rule, 𝑖 = 1,2, … , 𝑁, and 𝑁 is the total number of rules. 𝐹௠
௜  and 

𝐺௜are Fuzzy Logic sets in the input space, 𝑥ଵ, … , 𝑥௠ is the FL system’s input and 𝑦 is 

the output. In contrast, the consequent propositions of Takagi-Sugeno FL models [37], 

are functions of the antecedent propositions rather than FL propositions [4]: 

                                       𝑅௜  ∶ IF  𝑥ଵ is 𝐹ଵ
௜  and .  .  . IF  𝑥௠ is 𝐹௠

௜   THEN 𝑦 is 𝑓௜(𝑥)         (2.8) 

2.2.3 NEURO-FUZZY SYSTEMS  

Combining two or more artificial intelligence techniques is known as hybridisation 

[24]. A number of hybridisation techniques have been applied to combine with FL 

systems, for example with neural network (known as neuro-fuzzy) [38], Hybrid GT2-

Support Vector Machine (GT2-SVM) [39] and Hybrid Fuzzy Genetic Algorithm [40]. 

Researchers are increasingly turning to neuro-fuzzy systems in an effort to address 

challenges such as the elicitation of FLS from data, or the lack of transparency of neural 

networks. Even though a neural network can be a very powerful tool for forecasting 

[41], however, it is often treated as a black box, lacking transparency [42]. This 

limitations led to the formation of neuro-fuzzy systems [42]. Moreover, these two 

algorithms are similar in terms of their uncomplicated algorithmic procedure (instead 

Fuzzifier 
Inference 

engine 
Defuzzifier 

Rule base 

Database 

System 

input 

System 

output 
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of a complex mathematical analysis) and tunable parameters, that allows the 

hybridisation process [43]. 

In neuro-fuzzy systems, the models are developed in two steps: identification of 

FL rules and tuning of rules [44]. First, the FL rules are extracted from numerical data, 

and then the neural network adjusts the membership functions through the learning 

process [41]. Therefore, the resulting neuro-fuzzy system has the advantages of the 

two; learn like neural networks, and express knowledge similar to that of humans using 

FL systems' capacity for deriving linguistic rules, hence improving the transparency of 

the whole system [45]. 

2.3 TYPE-2 FUZZY LOGIC SETS AND SYSTEMS  

Fuzzy Logic provides a framework to model the uncertainty prevalent in the majority 

of real world problems [46]. In reality, information could be imprecise, contradictory, 

or consist of ambiguity (information that can be interpreted in many ways), therefore 

leads to uncertainty. These various degrees of uncertainty have a significant impact on 

the decision-making process. More details about the types of uncertainty are described 

in Chapter 3. 

Considering the current study of fuzzy sets (FSs), the idea of determining the true 

meaning of uncertainty in linguistic variables has led to the developed three primary FS 

representations - type-1 fuzzy sets (T1-FSs), interval type-2 fuzzy sets (IT2-FSs), and 

general type-2 fuzzy sets (GT2-FSs) [46] , as well as other higher order (Type-n) [47]. 

As the most basic type of linguistic variable representation in this situation, T1-FSs can 

only specify a limited level of imprecision or ambiguity [46]. 

However, in more complicated circumstances, it can be very challenging to 

determine the exact numerical value of an entity's membership or to provide a specific 

membership value for any ambiguous entity.  As a result, membership functions in T1-

FSs may also experience uncertainty due to improperly formed fuzzy rules [48].  

Type-2 fuzzy sets (T2-FSs) offer extra design degrees of freedom, which can be 

very helpful in the presence of lots of uncertainties [49]. Unlike T1-FSs that have a 

crisp degree of membership, the degree of membership in T2-FSs is fuzzy, which is 

very helpful when the exact value of MF is hard to obtain [50]. Thus, the resulting type-

2 Fuzzy Logic Systems (T2-FLS) have the potential to achieve higher performance than 
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their type-1 counterpart [50], especially when dealing with noisy data and different 

word meaning [51]. This trait of FS has attracted many researchers to use T2-FLS, for 

example the works presented in [52], [53], [54] and [10]. 

2.3.1 GENERAL TYPE-2 FUZZY LOGIC SETS 

Due to their ability to outperform their T1 counterparts in terms of system performance, 

Type-2 FLS have received the majority of attention, however, the focus within the last 

two decades is mainly on interval type-2 (IT2) FLS [55], [56]. General type-2 fuzzy 

sets (GT2-FSs) on the other hand, give a way to describe larger levels of uncertainty 

due to the additional degrees of freedom that its third dimension offers [46].  

Instead of using interval FSs (as in IT2-FLSs) [55], GT2-FLSs employ T1-FSs as 

their secondary MFs. In other words, the secondary membership function of a GT2-FS 

is itself a type-1 fuzzy set [56]. Therefore, one may expect that the structure and design 

of GT2-FLSs is more complex compared to their T1 and IT2 counterparts with more 

parameters to be tuned. However, the output of a GT2-FLS can be easily determined 

with the presence of new representations [56] namely z-slices [57], alpha-planes [58] 

and alpha-cuts [59]. The secondary membership functions for Type-1, Interval Type-2 

and General Type-2 (in 2-D) are shown in Figure 2.3. 

 

 

 

 

 

  

 

 

(a)                                                                                  

                                 (a)                                                                    (b) 
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(c) 

Figure 2.3: Secondary membership functions for Type-1, Interval Type-2 and 

General Type-2 (reproduced from [57]) 

 

In Figure 2.3 (a), there is only one value in the secondary MF domain for T1-FS. 

Therefore, 𝑎 is certainly the membership degree for the particular 𝑥 value, indicating 

that there is not uncertainty related to the primary MF [57]. Whereas in IT2-FS (in 

Figure 2.3 (b)), the uncertainty in determining the secondary MF is at the peak; with a 

secondary membership of 1 being assigned to each point in the primary MF interval of 

[a,b]. The uncertainty in GT2-FSs illustrated in Figure 2.3(c), can be modelled to any 

degree between T1 and IT2-FSs, for instance, by a triangular secondary MF. As a result, 

GT2-FSs can accurately represent the uncertainty in the third dimension, from almost 

minimal uncertainty to maximum [60]. 

The bivariate membership function 𝜇஺෨(𝑥, 𝑢) ⊆ [0, 1] defines the GT2-FS (denoted 

as 𝐴ሚ) , with the primary variable is  𝑥 ∈  𝑋 .Thus 𝐴ሚ  is defined as: 

                                   𝐴ሚ = {(𝑥, 𝑢),  𝜇஺෨  (𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈  𝐽௫  ⊆ [0,1] }                (2.9) 

in which 0 ≤  𝜇஺෨  (𝑥, 𝑢)| ≤ 1. 

An 𝛼-plane is characterised by 𝐴ሚఈ, is the union of the primary MFs of 𝐴ሚ with 

𝛼 (0 ≤  𝛼 ≤  1): 

                                        𝐴ሚఈ = {(𝑥, 𝑢),  𝜇஺෨  (𝑥, 𝑢) ≥ 𝛼|𝑥 ∈ 𝑋, 𝑢 ∈ [0,1] }                 (2.10) 
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𝝁𝑨෩(𝒙, 𝒖)

General 

Type-2 
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Figure 2.4 shows the illustration of GT2-FS with trapezoid T1-FSs and respective 

𝛼-plane. Note that by raising an 𝛼-cut to level 𝛼 one obtains an 𝛼-plane, and footprint 

of uncertainty 𝐹𝑂𝑈 ൫𝐴ሚ൯ = 𝐴ሚ଴ [61]. Footprint of uncertainty (𝐹𝑂𝑈) is the 2-D support 

of  𝜇஺෨  (𝑥, 𝑢), which is bounded by lower and upper MFs (or 𝐿𝑀𝐹 (𝐴ሚ) and 𝑈𝑀𝐹 (𝐴ሚ), 

denoted as 𝜇஺෨(𝑥)  and 𝜇̅஺෨(𝑥), respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Illustration of a GT2-FS with 𝛼-plane. (Reproduced from [55]) 
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2.3.2 GENERAL TYPE-2 FUZZY LOGIC SYSTEM 

The main components for a type-2 FLS are fuzzifier, rule base, inference engine, type 

reducer, and defuzzifier [57] as shown in Figure 2.5. In a type-2 FLS, the inputs and 

outputs of the FLS are represented with type-2 Fuzzy Logic sets. It has similar a 

structure as the type-1 FLS, where the knowledge is characterised by IF-THEN 

linguistic rules [22]. 

 

 

 

 

 

 

Figure 2.5: The configuration of T2-FLS 

 

The description of each type-2 FLS’ components are as follows [57]: 

 Fuzzifier: To process within the FLS, the fuzzifier converts crisp inputs into 

general type-2 Fuzzy Logic sets  

 Rule-base: The rules are similar as the IF-THEN form (as in T1-FLS), but the 

antecedents and consequents are of type-2 Fuzzy Logic sets. 

 Database: The database contains all of the values for the parameters of the rule-

based model. 

 Inference engine: The computational technique used to determine the rules' 

firing strength for a specific fuzzified input pattern. 

 Type reducer:  converts the output type-reduced sets (T1-FSs) from the 

inference engine, which produces T2-FSs as output. 

 Defuzzifier: produces a defuzzified crisp number from the type reducer’s 

output. 
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2.4 INTERPRETABILITY OF FUZZY LOGIC SYSTEMS 

The concept of interpretability has become more visible and has begun to gain 

prominence in light of recent advancements in explainable artificial intelligence (XAI) 

[62]. FL rule-based systems are useful for extracting knowledge from data [63] and 

formalise the behaviour of a real system in a human understandable way [64]. In reality, 

an FLS's interpretability depends on how well its fundamental parts—namely, its rule 

base and its antecedent and consequent Fuzzy Logic sets—are understood [65]. The 

interpretability feature of FLS is the key reason to use FLSs in decision making [66], 

which provides insight into why and how certain results are produced [65].  

Even though there is no standard measure to assess interpretability, most 

researchers would agree on defining the interpretable system as having minimum 

number of rules and input variables and easily understood rule premises [67]. Unlike 

accuracy, where the definition is straightforward, the definition of interpretability is 

rather challenging. Therefore, Gacto et al. [67] proposed a taxonomy that is based on 

the complexity and semantic interpretability, being measured at both rule base and 

fuzzy partition level. Complexity-based interpretability measures aim to make 

the model less complex, and the common indices include number of rules, variables 

and labels per rule. Semantics-based interpretability methods focus on maintaining the 

semantics connected to the MFs. They strive to maintain semantic integrity by placing 

restrictions on the MFs or methods that take into account factors like distinguishability 

and coverage. 

The combination of complexity – semantic measures and rule base – fuzzy partition 

components prompts analysis of four distinct quadrants:  

1. Complexity at the rule base (RB) level (Q1) 

2. Complexity at the fuzzy partition level (Q2) 

3. Semantics at the RB level (Q3), and 

4.  Semantics at the fuzzy partition level (Q4). 

 

Table 2.1 shows the double axis taxonomy to analyse the interpretability of FL rule-

based systems. 
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Table 2.1: Double axis taxonomy to analyse the interpretability of FL rule-

based systems. 

 Rule base level Fuzzy partition level 

Complexity-based 

interpretability 

Q1 

Number of rules 

Number of conditions 

Q2 

Number of membership 

functions 

Number of features 

Semantic-based 

interpretability 

Q3 

Consistency of rules 

Rules co-firing 

Rules relevance 

Q4 

Coverage 

Normalisation 

Distinguishability 

 

Q1. Complexity at the rule base level 

The most commonly used measures in this quadrant are the number of rules and number 

of conditions. The basic principle is that, the rules should be easier to understand if 

there are fewer of them and they are shorter in length [68]. The FL rules of a fuzzy 

inference system have the following syntax: if (input fuzzy condition) then (output 

fuzzy assignment). The rule's antecedent is the input condition, and the rule's 

consequent is the assignment of the output [69]. According to [67], the maximum 

number of circumstances in an antecedent to a rule is 7 + 2 different conditions, which 

corresponds to the maximum number of conceptual entities that an individual can 

manage. 

Recent works that aims at reducing the complexity at the rule base level are 

reviewed here. Hao et al. [70] proposed an approach for extracting reduced rules based 

on bias random forest (BRF) and fuzzy support vector machine (SVM). To solve the 

issues of similar, repetitious, and ineffective conditions and rules brought on by the 

autonomous learning of each tree in the ensemble method, they developed a reduction 

approach based on error rate and coverage rate. In [71], a rule-reduced algorithm was 

suggested. Rules are streamlined by the fuzzy basis functions’ sparse encoding. The 

least angle regression approach is suggested for choosing the most significant rules. 
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Q2. Complexity at the fuzzy partition level (Q2) 

The most common measures in this quadrant are number of features and number of 

membership functions. Most of the works in this quadrant are related to feature 

selection and feature reduction. For example Hein et al. [72] provided fuzzy genetic 

programming (GP) reinforcement learning (FGPRL), a fuzzy GP method that can 

choose the pertinent state features, estimate the size of the necessary fuzzy rule set, and 

instantly change all the controller settings. With regard to a specific degree of 

performance, this GP method can automatically choose the most significant features as 

well as the most compact fuzzy rule representations. 

In another work, Casteillo et al. [63] introduced a method for generating 

interpretable fuzzy partitions with the best granularity, known as DC*. The method is 

implemented in two steps: identifying the multidimensional clusters, and further cluster 

the one-dimensional projections along each dimension at the same time. In 2019, Hajek 

[73] developed a unique fuzzy system that combines a feature selection and rule 

extraction element to produce an interpretable system in terms of rule complexity and 

granularity.  A genetic feature selection is employed to exclude unimportant qualities 

before conducting a comparison study of cutting-edge FRBS like Fuzzy Unordered 

Rule Induction Algorithm (FURIA) and evolutionary FL rule-based systems. Another 

work in this area includes the introduction of Fuzzy Feature Rank, a novel feature 

reduction approach presented in [66].  

Q3. Semantics at the rule base level 

The important interpretability measures under Quadrant 3 are listed below: 

1. Co-firing rules 

Co-firing rules are the consequent of having many Fuzzy Logic sets overlap with each 

other [74]. Guo et al. [75] demonstrated the high level of interpretability by reducing 

the co-firing rules that lead to many redundant rules. As a solution, they proposed 

Takagi-Sukeno-Kang (TSK) FL model that integrates bagging and dropout 

algorithms.  The enhanced dropout technique avoids the issue of rules co-firing and 

only keeps nodes with high activation, enhancing the quality of created rules. 
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2. Consistency 

Consistency [17] is defined as having each combination of antecedents with only one 

possible consequent label. Souza et al. [76] considered the interpretability when 

proposing an evolving fuzzy neural network for regression problems. To measure the 

interpretability, they examined the consistency in a rule base, where there is not 

overlapping in their antecedents and consequents, or having similar consequents in the 

case of overlapping. Here, the consistency is measured by determining the similarity of 

rule antecedents and consequents.  

With the same objective to have consistent rules, Gegov et al. [77] suggested a 

technique for FL systems to simplify the rule base. The approach is based on 

aggregation of inconsistent rules, or rules with inconsistent input and output linguistic 

values, given identical permutations of input linguistic values. By substituting each set 

of incompatible rules with a single equivalent rule, the simplification eliminates 

redundancy in the FL rule base. Some other recent works regarding the consistency in 

FL rules can be seen in [78] and [79]. 

3. Relevance 

Relevance is a criterion for FL rules interpretability, being measured by examining the 

data covered by the antecedent and consequent, and very useful as a rule reduction 

technique [80]. Rey et al. [80] addressed the FRBS Accuracy- Interpretability trade-off 

through a multi-objective evolutionary-based rule selection, choosing the most suitable 

and important rules based on the metrics of accuracy, interpretability and relevance. 

This approach has demonstrated that, for both scatter and linguistic FRBSs, rule 

relevance plays a significant role in the Accuracy-Interpretability trade-off.  

In another work, Dutu et al. [81] implemented the Selection-Reduction (SR) 

method that comprises two phases. First, the most relevant rule is selected from each 

input space, and second, the irrelevant rule is pruned in the reduction phase. Other than 

rule reduction purpose, the rule relevance is also used to rank the quality of the rules, 

as presented in [82].  
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Q4.  Semantics at the fuzzy partition level 

In this quadrant, the interpretability is viewed at the fuzzy partition level. The 

interpretability measures in this quadrant involve the properties of the membership 

functions (MFs), for example the issue of overlapping (related to distinguishability) and 

the universe covered by the MFs (known as coverage). Hence the most significant 

measures defined in this framework are: 

1. Normalisation 

In this criterion, there should be at least one data point in the universe of discourse 

having maximum degree of membership of one. 

2. Distinguishability 

A system with a lot of highly overlapping Fuzzy Logic sets that hinder the system’s 

interpretability is not uncommon [83]. Many works have been conducted to deal with 

highly overlapping MFs in order to promote the distinguishability among the MFs. For 

example, Ali et al. [84] introduced a novel method named laser simulator inference 

system to solve the problem of high overlapping among linguistic variables. In this 

research, the inference of linguistic variable values within a specific range are used to 

calculate the high overlapping.  

With the same objective to minimise the MFs overlapping, Fuchs et al. [83] 

combined two methods, namely Jaccard similarity and graph theory within a framework 

known as Graph-Based Simplification (GRABS) to detect the highly overlapped MFs. 

This allows the similar Fuzzy Logic sets to be eliminated from the rules. Similarly, 

another research by Shanmugapriya et al. [85] also attempted to find an optimal 

combination of Fuzzy Logic sets. In this work, they proposed Similarity Estimator 

(SimE), in which the area of overlap represents the similarity between Fuzzy Logic sets.  

3. Coverage 

Coverage, or completeness [67] is achieved when the entire universe of discourse for 

any input variable is fully covered by the MFs [86]. Among recent works within this 

quadrant include [87], in which Megherbi et al. incorporated the aspect of coverage in 

fuzzy partition when proposing a Fuzzy Logic controller based on an overlap encoding 

strategy. The main idea in this work is to define the MFs as overlapped functions instead 

of separate functions.  
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 In another research, Lloret-Climent et al. [88] used the important parameters in FL 

systems such as membership functions, inclusion, union and support to develop a 

systemic approach to complex systems.  As a result, the idea of coverage and 

invariability between sets of variables will automatically emerge as a result of the direct 

and indirect interactions between variables, which will serve as the foundation for 

getting fuzzy and/or non-fuzzy connections. 

One of the most popular interpretability index that incorporates the aspect of 

coverage is Nauck’s index (NI). NI is a numerical index introduced by Nauck [89] to 

measure the interpretability of FL rule-based classifiers [90]. NI close to one indicates 

high interpretability of the FLS, while NI close to zero indicates low interpretability 

[90]. Nauck’s index is computed as the product of three components [19]: 

 Complexity of FLSs, which is measured as the number MFs of output variables 

divided by the number of input variables. 

 Coverage degree of fuzzy partitions. For this component, the complete coverage 

is achieved when membership degrees for each element of the domain adds up 

to 1 for a small number of Fuzzy Logic sets [91]. 

 Partition index, which is calculated as the inverse of the number of MFs minus 

one for each input variable [19]. The purpose of this component is to penalise 

the partitions with high granularity [89]. 

 

With the increase of interest in FLSs interpretability, there is significant work in 

the literature that utilises NI as an interpretability measure. Examples of work using NI 

within the type-1 FLS framework are [92], [18] and [91]. NI also has been demonstrated 

to be a good indicator of interpretability for special types of FLS, namely hierarchical 

fuzzy systems (HFSs) as presented in [16], [90], [93]. 

In type-2 FLS framework, a number of researchers have been using NI in 

measuring the system’s interpretability. In [94], Shukla et al. assess the interpretability 

using NI after adjusting the parameters of interval type-2 MFs based on genetic 

algorithm tuning approach. They demonstrated the capability of interval type-2 FLS in 

modelling uncertainty and achieving good interpretability. In [52] Chandra et al. 

presented an experimental analysis to address the interpretability quantification (with 

NI) and accuracy measurement both type-1 and interval type-2 implementation. In 
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contrast with [94], they demonstrated the capability of type-2 FLS to improve the 

accuracy of the prediction, but with sacrifice in terms of its interpretability. 

Interestingly, both works presented a single numerical value of NI, even though an 

interval type-2 set is described by its upper membership function (UMF) and lower 

membership function (LMF). 

2.5 GRANULAR COMPUTING 

The main focus in Granular Computing (GrC) is the development and processing of  

information granules – formal objects that provide a way of organising information 

about the data and underlying relationships [3]. GrC as a concept represents the human 

capacity to perceive the real world under multiple levels of granularity [95]. As a novel 

multi-disciplinary paradigm that is a crucial component of artificial intelligence, GrC 

has gained a lot of attention recently. This is due to its capability in providing different 

levels of knowledge, thus having a major impact on the development and use of 

intelligent systems, such as classification tasks [95]. Therefore, in the big data era, GrC 

plays a critical role due to its nature of manipulation, understanding and analysis of the 

data. 

Information granules have been viewed as the basic building blocks that 

characterise vast amounts of numerical data in an efficient and abstract manner [96]. 

According to Merriam–Webster’s Dictionary, granule is defined as “a small particle; 

especially, one of numerous particles forming a larger unit”. In GrC, the term "granule" 

refers to any subsets, classes, objects, clusters, and constituents of a universe, which is 

very similar to the definition given above. 

Information granules are essential concepts in human cognitive and decision-

making processes [3] [97]. They are defined as collections of objects, typically 

originating at the numeric level, that are arranged together due to their similarity, 

functional adjacency, and indistinguishability or alike [3], [97]. GrC includes the 

features of representing, developing, processing, and exchanging information granules 

[3]. 

Several implementations of information granules have been established, including 

fuzzy sets, rough sets [98], [99], probabilistic sets [100], interval analysis and data 

clustering [101]. One prominent way to obtain information granules is through 

clustering approaches, such as DBSCAN, Fuzzy c-means (FCM) and k-means 
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clustering. In fact, clustering methods, which technically involve creating a partition of 

the input data, are one of the most well-known examples of ways to produce 

information granules [98]. 

Multiple computational techniques that draw inspiration from nature are combined 

under the data-driven paradigm in the research area known as computational 

intelligence (CI) [98]. CI is a science that excerpts system structures from big data and 

identifies models or patterns [102]. According to The Institute of Electrical and 

Electronics Engineers (IEEE), computational intelligence is defined as “the theory, 

design, application, and development of biologically and linguistically motivated 

computational paradigms emphasising neural networks, connectionist systems, genetic 

algorithms, evolutionary programming, FL systems, and hybrid intelligent systems in 

which these paradigms are contained”[103]. It has been recognised that these CI 

techniques have the capability to process inaccurate information and provide good 

solutions while ensuring robustness and computational tractability [104]. 

Today, it is well-established that information granules development and CI 

systems may be integrated within the same framework [98]. As the name implies, 

granular models are modelling structures that are developed at the level of information 

granules [105]. Granular neural networks, for instance, provide an intriguing example 

[98]. For example, Ghiasi et al. [106] applied a hybrid algorithm of GrC and artificial 

neural network (ANN) named as GRC-ANN to estimate the longitudinal dispersion 

coefficient (LDC). In [107], an interval type-2 (IT2) fuzzy granular neural network 

dynamic ensemble approach is proposed to handle the uncertainties included in the 

definition of granular data streams. Other works related to granular neural networks can 

be seen in [108], [109], and [110].  

Another application of information granules can be seen in fuzzy inference 

systems. In GrC, a granule can be thought of as each rule that makes up a rule-based 

system [111]. FL rule-based systems are commonly encountered examples of granular 

models [105]. For instance, Yeom at al. [112] presented the optimised FL-based 

granular model on the foundation of a hierarchical structure and the best possible 

information granule allocation. They also proposed Gustafson Kessel (GK) clustering 

to form the information granules that maintain the coverage among the granules.  
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In [113], Shan et al. applied fuzzy c-means clustering to develop an interval 

granular FL model. The key idea in this research is to build an FL model at the level of 

information granules around the input-error data. Other than fuzzy c-means clustering 

[114], [115], other clustering algorithms have been applied to build granular fuzzy 

models, such as k-means [116], hierarchical clustering [117], [21], DBSCAN [118], 

[119] and iterative data granulation [120], [121] and [51].  

2.6 SUMMARY 

This chapter provides literature review on the theoretical concepts of Fuzzy Logic 

systems, comprising the concept of Fuzzy Logic sets and general configuration of 

Fuzzy Logic systems, both in Type-1 and Type-2 models. Focus is given to the main 

feature of Fuzzy Logic systems, which is interpretability. In this chapter, the 

interpretability of Fuzzy Logic systems is categorised in four different quadrants, which 

is based on the complexity and semantic interpretability, being measured at both rule 

base and fuzzy partition level. In addition, the fundamentals of granular computing and 

formation of information granules are presented since they are the focus in this thesis. 

In the next chapter, the formation of information granules using iterative data 

granulation is presented. The main contribution is to rigorously quantify the uncertainty 

during the granulation process and use the information to enhance the iterative data 

granulation. The enhanced information granules then are used to build Fuzzy Logic 

rule-based systems.  The important concept in information theory, entropy is leveraged 

to quantify the uncertainty, hence assists in constructing higher quality information 

granules. 
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CHAPTER 3 

 
 

QUANTIFYING AND UTILISING INFORMATION 
UNCERTAINTY IN GRANULAR COMPUTING 
 

This chapter considers the quantification of uncertainty during the iterative data 

granulation process. It is proposed here that uncertainty is measured using Shannon 

entropy, a key constituent of information theory.  The main idea is to promote the 

merging of information granules that have minimum uncertainty to avoid having 

granules with high disorder in the data distribution. Therefore, the uncertainty is 

proposed to be included in the compatibility measure to produce higher quality 

information granules. The impact of this proposal in the modelling of systems, via 

Fuzzy Logic rule-bases is considered. The final information granules are used to build 

Fuzzy Logic rule-based systems, and the proposed framework is tested with datasets 

from UCI Machine Learning Repository, particularly in classification problems. 

This chapter aims to create a new framework for iterative data granulation, using 

Granular Computing, via the use of information theory. The underlying research aims 

are to a) rigorously quantify uncertainty accumulation in the granulation process, b) the 

use of this information to enhance the iterative data granulation and c) to use the 

uncertainty quantification in building higher order FL rule-based systems. There is 

strong link between information granules and FL rule base, hence by having low 

uncertainty granules will improve the interpretability of FL rule base.  

3.1 INTRODUCTION 

When the physical relationships are difficult to understand, a Fuzzy Logic model is 

appropriate for addressing a non-linear problem [4]. FL models are models whose 

architecture is based on Fuzzy Logic set structures (Fuzzy Logic sets, Fuzzy Logic 
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relations, and Fuzzy Logic set operators) [122]. Identifying relationships between the 

inputs and outputs of a system can be utilised to create a rule-base for the system [22]. 

The importance of rule-based techniques can be explained by the fact that human 

experts frequently prefer to express their knowledge in terms of IF–THEN rules, which 

connect the values of a set of input variables with output variables [123]. FL rules are 

a powerful tool for capturing and, perhaps more significantly, interpreting the behaviour 

of input/output data [124]. 

There are two advantages of FL. The first one is its capability to define complex 

systems in compact formats. This enables FL to be universal approximators that can 

realise nonlinear mappings [21]. The second advantage is intuitive interpretability due 

to its analogue nature. In comparison to "black-box" models like neural networks, 

interpretability derives from language interpretation, which is near to human thinking. 

It appears to be a distinctive trait and major advantage [123]. However, this approach 

is limited because it requires a lot expertise [4]. An expert may not always be able to 

articulate his or her knowledge directly, and in certain cases, an expert may not even 

exist for particular systems and case studies [124]. 

To overcome this issue, knowledge can be discovered from data to determine the 

FL parameters [4]. Tasks that create and learn FL rules from numeric data are working 

with various approaches, and one of them is clustering. Some other examples include 

heuristic methods, neuro-fuzzy algorithms, data mining, and genetic algorithms [125]. 

A number of clustering approaches have been applied to build FL rule base, such as 

fuzzy c-means [126], hierarchical clustering [127], mountain method [128] and recently 

iterative data granulation [129], [130], [9].  

Essentially, the formalism linguistic variables and FL rules can be formed by using 

data granulation [131]. Data clustering is the process of grouping data points that are 

comparable in some way into clusters. Projecting data clusters onto the dimension of 

the inputs yields input membership functions [125]. Hierarchical clustering is one of 

the methods that is most frequently used. The strategy of hierarchical clustering is to 

build clusters based on hierarchy, and these strategies fall into another two main 

categories, which are agglomerative and divisive [132]. The former is more widely used 

compared to the latter [133].  
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In 2002, Pedrycz et al. introduced a granular computing (GrC) algorithm [6] that 

has similarity with the concept of agglomerative hierarchical clustering [134]. 

However, these algorithms differ from one another significantly. In the GrC algorithm 

proposed, the original data and the information granules are closely related. This is due 

to the fact that each granule comprises of sub-granules [9], all linked directly to the 

underlying data. Besides, the compatibility metric provided in GrC is a crucial tool that 

can be utilised as direction to end the clustering process [135]. Throughout the iterative 

granulation process, the decrease of compatibility measure can be visualised, signifying 

the increasing dissimilarity between granules towards the end of granulation process. 

The fundamental concept in GrC is the information granulation [4]. The goal of 

data granulation is to extract information from raw data [129]. It is accomplished 

through data organisation [6], and results in compressed information granules [129]. 

Granulation is the process of arranging comparable elements into granules to create 

coarse-grained worldviews [136]. Information granule is a collection of objects that are 

drawn together by some constraints [137], such as similarity, indistinguishability, and 

functionality [136], [138]. In the granulated universe, elements within a granule are 

considered as a whole rather than individually. 

FL models can be established utilising data mining techniques and specialist 

knowledge, hence leads to the most significant feature of GrC - to discover and excerpt 

information. GrC imitates the way of human thinking when grouping similar objects or 

instances [129]. The linguistic FL rules can be created using the information gathered 

from the GrC, in the form of information granules, to create a structured modelling 

framework [100]. GrC can be used to transparently create an FL model [9]. The 

definition of transparent here refers to the relationship between data and information 

granules in the process of knowledge discovery and the application of this knowledge 

to create the linguistic rule-base that is useful in deriving a particular prediction. 

However, real-world data is frequently associated with uncertainty [139]. 

Merriam-Webster dictionary defines uncertainty as the state of being uncertain; and 

Klir [140] defined uncertainty as the result of lack of information, such as incomplete, 

vague or inconsistent. Systems can frequently handle flawless or perfect data, but the 

data encountered are always uncertain [139]. Data is always characterised by 

uncertainty due to imprecise measurement [129]. This increases interest for emerging 
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knowledge discovery methods that are capable to deal with this challenge. These 

uncertainties may affect the formation of information granules. Low quality granules 

will demolish its distinguishability and hence result in inaccurate FL rule base. 

In several domains, such as machine learning, pattern recognition, image 

processing, medical, and data mining, uncertainty quantification is critical [137]. This 

is something that several academics have looked into. For example, Liang [141]   

presented the concepts of information entropy and information granulation-based 

uncertainty measures to measure the underlying semantic capacity of an incomplete 

information system. Based on entropy and information granulation, Zhang et al. [142] 

proposed an improved method for causality inference. In this method, the estimation 

of entropy is enhanced utilising a new framework that employed information 

granulation as a crucial step. In an incomplete information system, Qian et al. [143] 

introduced combination entropy CE(A) and combination granulation CG(A), in which 

the gain function has intuitionistic knowledge content characteristic, i.e., the total 

number of pairs of elements that can be distinguished from each other on the universe. 

In another research, Zhang [144] suggested a new feature selection algorithm based on 

fuzzy information granules and approximate conditional entropy, and demonstrated the 

accuracy of the approach utilising the entropy. 

The concept of uncertainty can be integrated into GrC by integrating uncertainty 

management as an additional attribute [145]. From the perspective of information 

granules, Sanchez et al. [145] defined uncertainty as dispersion in a sample of data. 

Low data dispersion indicates low uncertainty, because all the data points are close to 

each other in a compact manner, which will produce small standard deviation. There 

are several efforts to quantify uncertainty to guide the process of iterative granulation. 

For example, in [130] the authors used a neutrosophic logic concept to measure the 

hesitation caused by indistinguishability. The measure of hesitation is calculated by 

using neutrosophic index and this results in a final Granular Computing-Neural Fuzzy 

(GrC-NF) inference system with a rule-base. However, this method only tackles the 

problem of fuzziness and neglects the uncertainty due to the randomness of the data. In 

another research, Baraka et al. [129] proposed an uncertainty measure by using a 

combination of Shannon entropy and belief theory during the iterative granulation 

process space. They tackled the problem of conflict between information granules due 

to similar process conditions with different outcomes.  
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The novel aspect of this chapter is that information theory is employed as an aiding 

metric during the iterative data granulation process in order to create FL rule-bases. 

Information entropy is used as a proxy to uncertainty during the granulation process, 

hence constructing higher quality information granules. Comparing the outcome to 

the original GrC modelling framework, the improvement in terms of the 

predictive performance of the proposed algorithm is demonstrated. 

3.2 GRANULATION OF DATA 

Before delving into the specifics of the granulation technique, it is useful to review the 

fundamental principle, which lies on the current clustering algorithms. Clustering, 

regarded as the most essential question in unsupervised learning, deals with the split of 

data structures in unknown areas and serves as the foundation for further learning [146]. 

Saxena et al. [147] categorised the clustering approaches into hierarchical, partitional, 

density based, grid and model based.  

Hierarchical clustering (HC) aims at creating a hierarchy of clusters [148]. There 

are two methods in HC, agglomerative and divisive. Divisive, also known as a top-

down technique, generates a series of clustering schemes with increasing numbers of 

clusters at each step [149]. Each measure's clustering is derived from the previous one 

by breaking a cluster into two. In agglomerative hierarchical clustering, every object is 

considered a cluster at the beginning of the clustering process. Object, in this case, 

refers to the row of an array [150]. These objects are then will be merged based on 

distance to form larger clusters until the termination condition is achieved. In each 

iteration the distance between pair of objects are calculated, resulting in distance matrix 

of all pairs of objects. The merging process is normally done on the clusters that have 

minimum distance. One of the advantages of HC is that it does not require the users to 

specify the number of clusters at the initial stage [151]. This is what differ hierarchical 

clustering from the partition-based clustering. Moreover, no input parameters are 

required. However, it is subtle to outliers [147]. It is also not possible to change the 

cluster for an instance once it has been assigned to one cluster, in the case of 

misclassification [151]. 

In partition-based clustering, data are allocated to 𝑘-clusters by optimising some 

criterion function, where 𝑘 represents the number of clusters. Examples of algorithm 

within this category are k-means and k-medoid. The main strategy for k-means is to 
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initialise 𝑘 clusters of data and update the centre of cluster by iterative computation 

[147]. While k-means choose the centre of data point as the centre of cluster, k-medoid 

includes the data point to represent the cluster [146]. This partition-based clustering is 

famous due to its simplicity and scalability, but it needs the number of clusters to be 

pre-set [151]. In many situations it is not easy to predict the right number of clusters. 

DBSCAN and OPTICS are among the examples of algorithm under density-based 

clustering [146]. In this approach, the data that is located in the high-density region is 

considered belong to the same cluster [146]. Two important parameters that need to be 

observed are radius and number of points in a neighbourhood [146]. In the situation 

where the density of data space is not even, it is difficult to get high quality clusters. 

Another limitation is the effect of curse of dimensionality that dissuades its ability to 

work with high dimensional dataset [151]. 

Grid-based clustering converts the original data space into a grid structure with a 

fixed size of clusters, and then execute clustering on the grid rather than the database 

directly [151]. However, it has difficulty in locating clusters embedded in a low 

dimensional subspace of a high dimensional dataset [151]. On the other hand, model-

based clustering chooses a specific model for each cluster and finds the best fit for that 

model. There are two categories of model-based clustering algorithms: those that 

employ statistical learning techniques and those that employ neural network learning 

techniques [151]. Even though they are successfully implemented for vector 

quantisation, the parameters still need to be estimated. 

3.2.1 Iterative data granulation 

Despite the fact that Zadeh introduced the term 'granule' into the area of FL theory, 

named as information granulation in [152], the term ‘Granular Computing’ was 

introduced by  Zadeh [153], [154] and Lin [155]. Granular Computing is a framework 

that mimics human cognitive in grouping objects [156].  It mirrors human’s perception 

and cultural tendency when they group similar objects together and try to reason with 

granulated data [9]. Information granules that consist of relevant knowledge 

representations of the data space are the outcome of information granulation. 

The clustering technique presented in [6], which arranges data results in the shape 

of hyper boxes, serves as the foundation for information granulation in this study. The 

goal of that methodology is to gather data through a data organisation process in the 
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granules form, which are then appressed based on certain commonalities [157]. It is 

aimed at achieving an abstraction level by condensing the original data into granules. 

The following iterative method carries out the core concept of the granulation 

approach suggested in [6]: 

1. Searching for the two information granules that are the most compatible (with 

highest compatibility measure) and merging them. The new information granule 

now consists of both original information granules, and hence reducing the size of 

the data set.  

2. Repeating step (1) until an acceptable level of granulation has been achieved. 

The compatibility requirement between any two information granules can be 

established based on their similarity, distinguishability, or compactness.  Figure 3.1 

shows the merging process of two information granules A and B, and describes how 

the compatibility between these two granules is measured, hence determines which 

pairs of granules to be merged.  

 

 

 

 

 

 

 

 

 

                                                                    Dimension 1 (𝒙𝟏) 

Figure 3.1 The merging of two information granules 

In this research the term 𝑚𝑎𝑥஺௜ and 𝑚𝑖𝑛஺௜ represent the maximum and minimum 

value of feature 𝑖 in granule 𝐴, and 𝑚𝑎𝑥஻௜ and 𝑚𝑖𝑛஻௜ represent the maximum and 

minimum value of feature 𝑖 in granule 𝐵.  In  this 2-dimension example, the x-axis 
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represents feature 1 and the y-axis represents feature 2. The expression of compatibility 

𝐶𝑜𝑚𝑝𝑎𝑡 (𝐴, 𝐵) includes two components, which are  

i) distance between 𝐴 and 𝐵 (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻) and  

ii) size of the newly formed granule.  

The distance is defined as: 

                         𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ஺,஻ = (‖𝑚𝑖𝑛஻ − 𝑚𝑖𝑛஺‖ + ‖𝑚𝑎𝑥஻ − 𝑚𝑎𝑥஺‖)/2           (3.1) 

which is an average of the two distances. ‖. ‖ denotes the 𝐿௣ distance, with 𝑝 > 1 (𝑝 =

1 yields Hamming distance, and 𝑝 = 2 uses Euclidean distance). 

The merging of granule A and B produces the new information granule C, whose 

granularity is represented by the volume 𝑉(𝐶): 

𝑉(𝐶) =  ∏ 𝑙𝑒𝑛𝑔𝑡ℎ௩(𝐶)ௗ
௩                                     (3.2) 

Where 

𝑙𝑒𝑛𝑔𝑡ℎ௩(𝐶) = max  (𝑚𝑎𝑥஻௩, 𝑚𝑎𝑥஺௩) − min (𝑚𝑖𝑛஻௩, 𝑚𝑖𝑛஺௩)           (3.3) 

Therefore, the compatibility is defined in the form: 

𝐶𝑜𝑚𝑝𝑎𝑡 (𝐴, 𝐵) = 1 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ஺,஻. 𝑒ିఈ (஼)                       (3.4) 

The following is the reasoning for the compatibility measure in this version. In 

clustering, two granules are merged when they are closest to the maximum 

compatibility, 𝐶𝑜𝑚𝑝𝑎𝑡 (𝐴, 𝐵) = 1. The compatibility measure is not only based on the 

nearest information granules, but also considers the compactness of the new 

information granule. Compactness here means that the size of the resulting granule in 

all dimensions should be the same; hence, the formation of the new granule resembles 

the shape of a hypercube. The exponential is used for the normalisation purpose, which 

ensures that all values remain within the unit interval. For example, in the case of a 

point, the compactness factor is 𝑒ି଴ = 1, and after several merging process, this value 

goes down due to the increase of volume. Obviously, the role of the compactness factor 

here is to ensure the formation of dense granules. The parameter 𝛼 provides the balance 

requirement between the distance and compactness.  
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In another research, Panoutsos and Mahfouf [9] extended the concept of the 

compatibility measure by replacing the volume of granules with multidimensional 

density, which is defined as the ratio between cardinality and the multidimensional 

length. Besides, the feature weight 𝑤௩ is also introduced, giving more opportunity to 

assign higher weight for more relevant input feature. Therefore, the compatibility 

measure used in this chapter is given as: 

𝐶𝑜𝑚𝑝𝑎𝑡(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ −  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻. exp (−𝛼 ×  𝑅)           (3.5) 

in which 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑅 =
஼ಲ,ಳ/஼௔௥ௗ௜௡௔௟௜௧௬ಾಲ೉

௅ಲ,ಳ/ ௅௘௡௚௧ ಾಲ೉
                                 (3.6) 

Here, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ is the maximum possible distance in the dataset, given by the sum 

of maximum distance in every dimension: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ = ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒௩ )ௗ
௡ୀଵ              (3.7) 

and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ represents the distance between granule A and B, given by: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ =
∑ ௪ೡ

೏
ೡసభ (஽భି ஽మ)

ୢ
             (3.8) 

Where 

𝐷ଵ = max (𝑚𝑎𝑥஺௩, 𝑚𝑎𝑥஻௩)             (3.9) 

𝐷ଶ = min (𝑚𝑖𝑛஺௩, 𝑚𝑖𝑛஻௩)                      (3.10) 

 

       With 𝑤௩ is the  weight for feature 𝑣, 𝑑 is the number of input features; 𝛼 balances 

the requirement  between distance and density; 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦ெ஺௑ represents the 

maximum number of objects in the data space; 𝐿𝑒𝑛𝑔𝑡ℎெ஺௑ is the maximum maximum 

possible length of a granule in the data set; 𝐶஺,஻ is the sum of cardinality of A and B;  

and 𝐿஺,஻is the multi-dimensional  length of the new granule, given by: 

𝐿஺,஻ = ∑ (𝑚𝑎𝑥௑௩ − 𝑚𝑖𝑛௑௩)ௗ
௩ୀଵ            (3.11) 

To exemplify, the calculation of compatibility of two granules to be merged, named 

as 𝐶𝑜𝑚𝑝𝑎𝑡(𝐴, 𝐵) is shown here. For simplicity, two-dimensional data is used. All 

features are treated with same importance, hence the 𝑤௩ for all features is 1. Figure 3.2 
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illustrates how two granules A and B are merged in a normalised data space. It shows 

some important dimension that need to be accounted. The cardinality of granule A, B, 

C and D are 6, 7, 6 and 5, respectively.  Example of compatibility metrics is shown in 

Table 3.1. According to Table 3.1, granules 4 and 5 have a compatibility score of 4.7, 

making them the two most compatible; as a result, these two granules will be combined. 

Table 3.1: Compatibility metrics 

 G1 G2 G3 G4 G5 

G1 0 4.41 4.48 4.2 4.15 

G2 0 0 4.6 4.57 4.6 

G3 0 0 0 4.61 4.53 

G4 0 0 0 0 4.7 

G5 0 0 0 0 0 

 

 

                                  Dimension 1 (𝒙𝟏) 

Figure 3.2: Merging granules A and B 
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Example of calculation of compatibility metrics (based on Figure 3.2): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ = ෍(1 ) = 2

ௗ

௡ୀଵ

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ =
max(0.6, 0.8) − min(0.3,0.45)

2

+  
max(0.75, 0.65) − min(0.55,0.35)

2
= 0.45 

𝐶஺,஻ = 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஺ +  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஻ =  6 + 8 = 14 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠 

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦ெ஺௑

= 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஺ +  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஻ + 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஼ +  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦஽  

    = 6 + 8 + 6 + 5 = 25 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑠  

𝐿஺,஻ = (0.8 − 0.3) + (0.75 − 0.35) = 0.9 

Given that 𝛼 = 0.3, 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑅 =
ଵସ/ଶହ

଴.ଽ/ ଶ
  = 1.244 

𝐶஺,஻ = 2 − 0.45 × exp(−0.3 ×  1.244) = 1.69 

A compatibility metric is constructed after one iteration. Each possible merging's 

compatibility index is included in this metric. Accordingly, the pair that has the largest 

compatibility index will be merged. The compatibility index also functions as 

a monitoring tool in the entire granulation process that can be used as the stopping 

criterion (hence, determines the number of final granules). 

Figure 3.3 shows how the compatibility measure declines throughout the iterative 

granulation process, based on a synthetic dataset with 400 instances and 2 dimensions. 

The decrement indicates that the granules merged at the end of granulation process is 

not as compatible as the pairs at the beginning of the granulation and provides stopping 

threshold for the process. The maximum compatibility here is 2, which is equal to the 

number of dimension (normalised).  
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Figure 3.3: Maximum compatibility index 

 

Every object or instance is treated as a granule in the initial iteration, therefore the 

maximum and minimum limits are identical. The result is the development of hyper 

box-shaped information granules. Data points are always be included around the edges 

of the hyper boxes since the compatibility index takes the maximum and minimum 

points into account when merging two granules (hence promotes the transparency 

between the original data and the formed information granules). 

Figure 3.4 shows a granulation process of a synthetic dataset. The 400 instances 

are compressed to 70 granules, and finally to five final granules. Since all four inputs 

are clustered along with the output in order to observe the connection between them, 

this method can be regarded as supervised learning. 
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5 granules

 

Figure 3.4: Data granulation process 

3.3 USING INFORMATION GRANULES TO BUILD A FUZZY LOGIC 
MODEL 

This section describes how the initial Fuzzy Logic rule base is constructed by using the 

information granules. The example shown here is based on Iris data, which consists of 

4 input variables (sepal length, sepal width, petal length and petal width), 1 output 

variable and 150 instances. The output variable is Iris class: Setosa, Versicolor and 

Virginica. Five granules are used in this experiment and being translated to FL rule 

based in the following form:  

𝑅௜: 𝐼𝐹 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒௝ 𝑖𝑠 𝐴௝𝑎𝑛𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒௝  𝑖𝑠 𝐵௝ 𝑇𝐻𝐸𝑁 … 

… 𝐼𝑀𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁                                       (3.12) 

Figure 3.5 shows how five sets of membership functions (MFs) are derived from 

five information granules.  All four dimensions are shown in Figure 3.5 (a) and (b). The 

centre of Gaussian MFs (𝑐௜௝) and sigma (𝜎௜௝) are represented by the median and the 

standard deviation of the data in a granule, respectively. An information granule and 
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an FL linguistic rule are related to one another on a one-to-one basis, means that one 

granule represents one FL rule. The standard deviation 𝑆 is defined as: 

𝑆 =  ට
ଵ

ேିଵ
∑ |𝐴௜ − 𝜇|ଶே

௜ୀଵ            (3.13) 

where N is the number of data in a granule, A is the random variable vector and 𝜇 is the 

mean of 𝐴, defined as: 

𝜇 =
ଵ

ே
∑ 𝐴௜

ே
௜ୀଵ                        (3.14) 

Equation 3.15 shows the created linguistic FL rules. This is example on how one 

can interpret the rules by examining the relationship between inputs and output. In more 

complex application, for example manufacturing, a non-expert can easily understand 

how changes in variables or inputs affect the output. This exercise proves the 

interpretability of the elicited FL rule base. Moreover, it also proves the capability of 

GrC in extracting knowledge in a transparent manner. The Granular computing based 

FL modelling framework is shown in Figure 3.6. 

 

Example of FL rule base is as follow: 

Rule 1: IF Sepal length is LOW 

. . . and Sepal width is HIGH 

. . . and Petal length is LOW 

. . . and Petal width is LOW 

THEN the species is SETOSA 

       . . .                                              (3.15) 
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(c) 

Figure 3.5: (a) Five information granules observed from Dimension 1 and 2 (Sepal 

length and Sepal width) (b) Five information granules observed from Dimension 3 

and 4 (Petal length and Petal width) (c) Tranformation from information granules to 

Fuzzy Logic membership functions 
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           Figure 3.6: Granular computing based Fuzzy Logic modelling framework 
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3.4 UNCERTAINTY MEASURE IN ITERATIVE DATA GRANULATION 

The iterative data granulation presented before is used as a mechanism to execute data 

mining and to extract meaningful information. It is the very critical step in building data 

driven soft-computing models, since the initial structure of the models is determined by 

the final information granules formed at the end of the granulation process. Even though 

information is the subject of interest in GrC, it is closely related with the concept of 

uncertainty [158]. In the iterative data granulation, uncertainty could happen due to 

various reasons, for example, when one of the information granules is an outlier, or 

when pairs having similar compatibility index during the merging process. For 

example, there is a considerable likelihood of the fusion of two different granules when 

there are outliers present. This is so because the geometrical distance is typically 

utilised as a measure of similarity in most clustering algorithms [159].  

Low-quality information granules will make the granular framework harder to 

recognise and make the FL rule base more difficult to interpret, which will result in an 

incorrect representation of the system under study. As a consequence, the FL rules that 

are being created will be inconsistent and conflicting [160]. Therefore, it is critical to 

tackle the problem of uncertainty during iterative data granulation, as it may affect the 

quality of the knowledge gained in the form of information granules, and results in low 

quality FL rule base. 

Klir and Yuan [158] identified three types of uncertainty established in five 

different theories - classical set theory, fuzzy set theory, probability theory, possibility 

theory, and evidence theory. The first uncertainty type, fuzziness is defined as the lack 

of sharpness of relevant distinctions. Fuzziness, also known as fuzzy entropy, are used 

to assess the degree of imperfection (or disorder) in a given case. In order to establish 

global measurements of the indefiniteness described by Fuzzy Logic sets, such 

measures characterise the sharpness of the membership functions [161]. The second 

one is discord, also known as randomness, conflict, confusion or strife [162], [163], 

which refers to disagreement in selecting between numerous alternatives. Non-

specificity, on the other hand occurs when two or more alternatives are left unspecified. 

It is related to cases where the information is concentrated on sets with cardinality larger 

than one [162]. Figure 3.7 shows the three basic types of uncertainty. 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Three basic types of uncertainty (reproduced from [34]) 

Probability theory has always been considered as a fundamental tool to handle 

uncertainty in machine learning, including clustering [164]. Heavily using probability 

theory, is information theory (IT) as one of the disciplines that concerns quantifying 

uncertainty [165]. One of the most important concepts in IT is entropy. 

3.4.1 Information theory as a mathematical tool to measure uncertainty 

Information theory (IT) is one of the theories that concerns quantifying uncertainty. 

Shannon entropy is expressed as:  

𝐻(𝑋) =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔ଶ𝑝(𝑥)௫ఢ௑              (3.16) 

where 𝑝(𝑥) is the probabilities of occurrence of an event 𝑥 and 𝑋 is a random variable. 

In IT, the dimension or feature is referred to as a random variable. 

Conditional entropy, on the other hand, describes amount of uncertainty of one 

random variable, when given information about another random variable: 

Disagreement in choosing among several 
alternatives 

 Dissonance 
 Conflict 

Two or more alternatives 

are left unspecified 

One to many relationships 
Lack of definite or sharp 

distinctions 

 Vagueness 
 unclearness 

UNCERTAINTY 

AMBIGUITY FUZZINESS 

NONSPECIFICITY 

DISCORD 
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𝐻(𝑋|𝑌) =  − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔ଶ𝑝(𝑥|𝑦)௫∈௑,௬∈௒           (3.17) 

where p(x | y) is defined as the probability of x given the condition of y.  

Another important element in IT is mutual information, or information gain. It 

quantifies the reduction in uncertainty, when given knowledge of another random 

variable: 

  𝐼(𝑋: 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)     (3.18) 

Information theory has been widely applied in many areas such as clustering, 

uncertainty measure, fault diagnosis and condition monitoring. For example, Yin et al. 

[166] applied Shannon entropy to quantity the uncertainty of the weighted networks 

and proposed three basic heuristics for game model namely kin selection, resource 

selection and reciprocity selection in the networks.   Jiang et al. [167]  proposed a model 

based on Shannon entropy and probabilistic neural network to quantify the 

characteristics of vibration signal of rotating machinery. In another research, Liansheng 

Liu et al. [168] proposed a framework for condition monitoring of an aeroplane engine 

using the concept of entropy, in which the sensor selection approach applied Shannon 

entropy in measuring the uncertainty of information in a data series.  

Information theory also has been applied in several types of clustering techniques 

to tackle the issue of uncertainty. Bobek et al. [169] modified  the information gain split 

criterion in Decision Tree to consider the uncertainty of data and proposed to redefine 

the probability in the entropy equation to search for optimal split criterion. Gullo et al. 

[170] proposed U-AHC, a new approach for agglomerative hierarchical clustering by 

introducing new linkage criterion for cluster merging. This research focused on data 

consists of uncertainty in the attribute level and uses pdfs to model the uncertainty. 

Before that, Aghagolzadeh et al. [171] also applied IT in hierarchical clustering. They 

used mutual information as the measure to discover the boundaries between clusters. 

Using K-medoid algorithm as the platform, Jiang et al. [159] used Kullback-Leibler 

divergence (KL-divergence), or relative entropy, to capture the difference between two 

distributions, where uncertain objects were treated as random variables with certain 

distributions. Chau et al. [172] introduced the popular UK-means clustering algorithm, 

that incorporates the pdfs of uncertain data in the k-means clustering.  
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3.4.2 A new framework for iterative data granulation to reduce the uncertainty 

As shown before, the selection of pairs of granules to be merged are done using the 

compatibility measure. Nevertheless, there is a risk of uncertainty occurring throughout 

the granulation process [129]. The newly created granule, for instance, cannot 

accurately represent the actual data space in the presence of an outlier. Additionally, 

there is a tendency to have excessive overlapping. This will generate highly 

unpredictable information granules and, as a result, producing indistinguishable FL 

rule-bases. 

In this chapter, iterative data granulation is improved to address this problem 

while taking the uncertainty measure into account. Shannon entropy, which is 

expressed in equation (3.11), describes the amount of uncertainty in a random variable. 

Entropy is always used to describe the disorder or unpredictable nature of a dataset. 

[173]. Therefore, entropy in the proposed GrC compatibility metric, thereby 

characterises the granules' resistance to merging. Therefore, the goal of the suggested 

approach is to arrange the instances in a way that minimises uncertainty. 

Entropy is a term used to describe the degree of uncertainty in a random variable. 

However, this does not apply to a random vector. Let 𝑋௜ be the random variable, and 

𝑋 =  [𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … 𝑋ௗ] represents the random vector. Based on the chain rule described 

in [174], the entropy of a random vector 𝐻(𝑋) is expressed as: 

              𝐻(𝑋) = 𝐻(𝑋ଵ, 𝑋ଶ, … 𝑋ௗ) =  ∑ 𝐻(𝑋௩|𝑋௩ିଵ, … 𝑋ଵ)ௗ
௩ୀଵ                   (3.19) 

Let say we have two random variables 𝑋ଵ and 𝑋ଶ, therefore the entropy of the 

random vector 𝑋 = [𝑋ଵ, 𝑋ଶ] is given by: 

                                                    𝐻(𝑋) = 𝐻(𝑋ଵ, 𝑋ଶ) = 𝐻(𝑋ଵ) + 𝐻(𝑋ଶ|𝑋ଵ)                     (3.20) 

Geometrical distance used in equation (3.5) is vulnerable to outliers [175]. The entropy 

offers extra information in order to distinguish between uncertain entities with various 

distributions. The scenario in Figure 3.8 demonstrates the entropy of Granules 1 and 2 

in the case of a merging of objects (b1, c2). In this scenario, a two-dimensional data set 

is employed. It is possible that the instance (b1, c2) will merge with Granule 1 or 

Granule 2. Despite the fact it shares components (b1 and c2) with both Granules, it is 

more likely to combine with Granule 2 since its entropy is less than that of Granule 1. 

The granular computing – entropy based FL modelling framework shown in Figure 3.9. 
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The entropy 𝐻, and the weight 𝑤 are therefore included in the equation for the 

proposed compatibility measure: 

𝐶(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ − (𝑤𝐻 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻. exp (−𝛼 ×  𝑅))        (3.21) 

The GrC with entropy measure is then tested with Iris data. The performance 

between GrC with entropy is compared with GrC without entropy measure. The 

maximum compatibility of GrC with the entropy measure varies in each iteration, as 

shown in Figure 3.10. Due to the more competitive merging (since entropy prevents the 

uncertain objects to be merged), the compatibility measure with uncertainty is lower 

than the original compatibility.  In order to generate granule with the least amount of 

uncertainty, the iterative granulation process starts to be careful in selecting the best 

pair to be merged. Figure 3.11 shows the amount of maximum entropy involved in each 

iteration. It illustrates the low uncertainty at the beginning of granulation, but the 

amount of uncertainty towards the end is increasing significantly.  

H(X) = 0.918 

Granule 2 

Granule 1 

a1 a2 

a1 b2 

a1 c2 

 

 

b1 b2 

b1 b2 

 

 

b1 c2 

 
b1 c2 

 

b1 c2 

 

H(X) = 2 

Figure 3.8:  Entropy in granules 
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Figure 3.9: Granular computing – entropy based Fuzzy Logic modelling framework 
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Figure 3.10: Comparison between compatibility index of GrC and GrC with 

uncertainty measure 

 

Figure 3.11: Maximum entropy 
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As shown in Figure 3.11, the entropy increases dramatically after certain number 

of iterations. This is due to the high ‘disorder’ of the data in the newly formed granules, 

indicating the urge to stop the granulation process. The entropy at the beginning of 

granulation is low due to the merging of similar objects (low disorder), but became 

larger towards the end of granulation due to higher disorder in the data that are projected 

to be merged.  

3.5 CASE STUDY AND SIMULATION RESULTS 

In this section, the comparative study between conventional GrC-FLS and the enhanced 

GrC-FLS with entropy measure are presented.  The dataset used for the presentation 

here is Iris dataset, a well-established dataset obtained from UCI Machine Learning 

Repository.  It consists of 150 instances, with 4 input variables (sepal length, sepal 

width, petal length and petal width) and 1 output (Iris class) – Setosa, Versicolour and 

Virginica. Next, the experiment is extended to another two datasets, which are Wine 

and Glass. Table 3.2 describes the characteristics of these three datasets.  

Table 3.2: Characteristics of data sets: Iris, Wine, and Glass. 

Dataset Number of 

instances 

Number of 

attributes 

Number 

of classes 

Iris 150 4 3 

Wine 178 13 3 

Glass 214 9 6 

 

The proportion used to partition the datasets into training and testing data is 

80:20. To ensure that all variables have the same domain, all variables are normalised 

to [0,1]. Each method is tested in ten trials, and its predictive performance is assessed 

by calculating the classification accuracy and the root mean square error (RMSE). The 

accuracy is measured using the proportion of correctly classified observations over all 

predictions, whereas the 𝑅𝑀𝑆𝐸 stands for the model error, expressed as: 

𝑅𝑀𝑆𝐸 =  ට
ଵ

௡
∑ 𝑒௜

ଶ௡
௜ୀଵ             (3.22) 

where 𝑒௜ represents the 𝑖th observation error and 𝑛 is the number of observations.  
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In GrC with entropy, probability mass functions are employed to express the 

probability of a random variable. A method called Histograms is used, which are used 

widely as non-parametric density estimators to visualise data and to gain summary 

quantities, such as the entropy, of the underlying density [176]. The number of bins 

selected for all input variables is 5, as suggested by [176]. Iris, wine, and glass all have 

weights of 0.2, 0.1, and 0.3, respectively.  Due to the disproportion between the six 

classes in the glass dataset, the data has to be pre-processed using a bootstrapping 

technique. 

Table 3.3 shows that, on average, the GrC with entropy measure performs better 

than the traditional GrC, and other clustering algorithms, k-means, and Fuzzy c-means. 

RMSE represents the root mean square error, SD stands for standard deviation and acc. 

stands for accuracy. In the case of Iris data, GrC with entropy scores the highest 

accuracy of 96.33%, with the closest is Fuzzy c-means with 96%. It also achieves the 

lowest RMSE of 0.0957. The same pattern occurred in Wine dataset, where GrC with 

entropy obtains the highest accuracy of 95.33%, while Fuzzy c-means scored 95%. 

However, Fuzzy c-means performs better in terms of RMSE, with 0.088 as compared 

to 0.0964 in GrC with entropy.  

For Glass dataset, the best accuracy is also achieved by the GrC with entropy with 

72.09%, followed by the conventional GrC with 69.77%. K-means and Fuzzy c-means 

score 67.44% and 65.17%, respectively. RMSE for GrC with entropy is also acceptable, 

at 0.2065. All the results are benchmarked with other related works, for example 

97.33% (Iris) and 95% (Wine) in [177], [178] and 75.45% (Glass) in [178]. 

The GrC with entropy is demonstrated to perform better than the standard GrC and 

other clustering algorithms. This is due to the fact that penalising the uncertainty in the 

merging process avoid having uncertain information granules (hence promotes higher 

quality information granules). As the result, FL rule-bases formed are more 

distinguishable and provide better predictions as demonstrated in the experiments.  
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Table 3.3: Predictive performance of GrC, GrC with entropy, k-means and  

Fuzzy c-means 

Dataset Iris Wine Glass 
 

RMSE Accuracy 
(%) 

RMSE Accuracy 
(%) 

RMSE Accuracy 
(%) 

GrC 0.1354 91 0.1233 91.33 0.1968 69.77 

GrC with 
entropy 
measure 

0.0957 96.33 0.0964 95.33 0.2065 72.09 

K-means 0.1032 94.33 0.1055 92.67 0.2293 67.44 

Fuzzy c-
means 

0.1257 96 0.088 95 0.2173 65.17 

 

3.6 SUMMARY 

This chapter presents a methodology for data capture and modelling that is based on 

information theory and granular computing. To quantify the uncertainty throughout 

data granulation, the element of information theory is used. Entropy is demonstrated to 

be a promising tool to detect uncertainties when there are anomalies present. In order 

to generate high-quality information granules, the entropy expresses the reluctance of 

two granules that are about to be combined. It may therefore direct the granulation 

process to combine the granules with the least amount of uncertainty. 

The major goal of this approach is to prevent the formation of highly disordered 

granules. This keeps the granules from having outliers that would influence their 

capacity to be distinguished from one another, hence improving the interpretability of 

FL rule-bases. The framework is evaluated using three datasets from the UCI Machine 

Learning Repository within the classification problems: Iris, Wine, and Glass, where 

substantial improvements in prediction accuracy and error reduction are evident. 

The presented approach yields the minimum RMSE for Iris and the maximum 

accuracy across all datasets. This is because low uncertainty granules are produced as 

a result of penalising the uncertainty during the iterative data granulation. The results 



57 
 

are also compared with other relevant works in the literature, and the benchmark 

confirms its competitiveness.  

Main results and methodology from this work is included in paper titled “An 

Entropy-Based Uncertainty Measure for Developing Granular Models”. It was 

presented and published in 2020 7th International Conference on Soft Computing & 

Machine Intelligence (ISCMI) in Stockholm, Sweden. In addition, the outcomes of this 

chapter were presented in 2021 ACSE PGR Research Symposium in The University of 

Sheffield.  

In this chapter, all input variables are treated as equally important, i.e. 𝑤௩ = 1 and 

the modelling structure is based on the Type-1 Fuzzy Logic system. In other words, the 

feature weight of each input variable is neglected throughout the granulation process, 

even though in reality they have different importance, or weightage. Therefore, in the 

next chapter, a new iterative data granulation is proposed, where the input variable 

weight  𝑤௩ be assigned based on their importance. Moreover, unlike other feature 

weighting works that predetermine the feature weight (having constant weight 

throughout the granulation process), the feature weighting in the next chapter allows 

the weight to be evolved according to the current formation of information granules. 

This is achieved by embedding the feature-weighting framework in the iterative data 

granulation. 
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CHAPTER 4 

 
 

AN EVOLVING FEATURE WEIGHTING 
FRAMEWORK FOR GRANULAR MODELS 
 

This chapter presents a new GrC algorithm called weighted GrC (W-GrC) that assigns 

and updates the feature weight based on the feature importance, iteratively and not a 

priori. Instead of predetermining the feature weight at the beginning of the granulation 

process, W-GrC updates the feature weights in each iteration according to the 

information obtained from current information granules, more specifically the within-

granule variances. The embedded feature-weighting algorithm allows the feature 

weights to evolve throughout the granulation process. Rather than predetermining the 

feature weights in advance, W-GrC is designed such that it utilises the new information 

obtained from information granules in each iteration. It is hypothesised here that 

features may have different importance (as far as grouping goes) throughout the 

iterative granulation process. The new and enhanced information granules are used to 

build Type-1 Fuzzy Logic systems (T1-FLS) rule-bases and the new framework is 

validated using popular datasets: Iris, Wine, and Glass from UCI machine learning 

repository. Nauck’s index is used to measure any impact on the interpretability of FLS 

in both W-GrC and conventional GrC cases; no significant deterioration of 

interpretability is observed. Results demonstrate the potential of W-GrC to increase the 

system’s accuracy while maintaining good interpretability. 

4.1 INTRODUCTION  

The framework of iterative data granulation can be combined with Fuzzy Logic 

information granulation theory, by means of clustering algorithms [179]. Data is 

grouped or clustered using such computational frameworks to make it simpler to 
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comprehend and less complex. The requirement for information simplification, 

summarisation, and information clarity serve as the driving forces behind this effort 

[180]. 

Iterative data granulation aims to intuitively (human-like behaviour) integrate 

information, for example, the two most compatible granules, until the information has 

been sufficiently compacted. For the possible newly produced granules, compatibility 

in this thesis is assessed using distance and density measurements. 

The majority of studies on iterative data granulation assign identical weight to each 

input attribute. However, this approach is not ideal, especially when dealing with data 

with a high number of attributes, or features [181]; such features may have different 

weight (importance) as the granulation progresses. In an attempt to organise data 

collectively, one would naturally exclude features that are less important to the task. It 

is hypothesised here that features may have different importance (as far as grouping 

goes) throughout the iterative granulation process. Hence a framework that assigns no 

weights (importance) to the features, or assigns constant weights a prior may not 

perform well. 

Feature weighting in clustering algorithms is not a new concept. In clustering, 

Huang et al. [181] proposed the weighted k-means (W-k-means) that shows better 

performance than the conventional k-means. The feature weighting concept is also 

applied in hierarchical clustering [182], where Amorim introduced improved version 

of Ward, called Wardp that allows a feature to have different weight throughout the 

clusters.  

Although the idea of feature weighting in iterative data granulation has been 

discussed elsewhere [9], the majority of studies on this technique, including [130] and 

[129] employ constant weight for each feature. There are not many studies on feature 

weighting for GrC; one such study is a Fast Correlation-Based Filter in [12] that used 

symmetrical uncertainty to identify the most important features in welding process. 

However, in this pre-processing stage (which serves as a filter mechanism), the feature 

weights are predetermined and their values remain unchanged over the course of the 

granulation process. 

A new GrC algorithm is presented in this chapter that allocates and updates the 

feature weights according to the significance of the input variables. Using this method, 
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for a specific iteration, the more significant features are allowed to have a larger 

influence on the data granulation compared to the less significant ones. Additionally, 

the feature weighting in this work is included or embedded into the data granulation 

process itself rather than assigning the weight during the pre-processing phase. This 

makes it possible to adjust the feature weights in accordance with the information 

granules that have been created. 

Hence, the main objective of this chapter is to study and analyse the use of W-GrC 

to Type-1 Fuzzy Logic systems (T1-FLS) as well as to examine for the first time how 

it may affect the interpretability of the rule-bases. UCI datasets such as Iris, Wine, and 

Glass are used to evaluate the new mechanism.  Results show that the new 

computational framework can improve the classifier's predictive performance results 

by systematically choosing the feature weight parameter. Additionally, the impact on 

the interpretability of the developed models is examined in this study (using Nauck's 

index), and it is demonstrated that W-GrC maintains a good compromise between 

interpretability and accuracy. The problem here is that a dataset with many variables 

could become too challenging for a particular algorithm to handle. The hypothesis space 

is smaller and, hence, easier for a particular algorithm to narrow down to the optimal 

hypothesis, in the case of dataset with fewer features [183]. 

4.2 FEATURE SELECTION AND WEIGHTING 

One of the most popular techniques for reducing noisy (i.e. redundant) features is 

dimensionality reduction. There are two most common dimensionality reduction 

strategies, which are feature extraction and feature selection. Both approaches are 

capable of increasing learning performance by reducing computing complexity, 

improving generalisability, and reducing storage requirements [184]. The curse of 

dimensionality is a term commonly associated with the problems in analysing high-

dimensional data [183]. 

By integrating features, feature extraction methods seek to minimise the 

dimensionality of data sets, where the new built features are the blend of the original 

ones [185], as being applied in various approaches such as Principle Component 

Analysis (PCA), Linear Discriminant Analysis (LDA) and Canonical Correlation 

Analysis (CCA) [186]. These new features are related to the original features, but not 

the same; they are converted versions [183] and the task to alter and combine the 
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original features is rather complicated. Therefore, the transformed features obtained by 

feature extraction techniques have no physical meaning, which poses a problem for 

further analysis of new features [184]. 

In contrast, the feature selection method does not change the feature itself and 

retains its original meaning to the user [185], and hence provides better readability and 

interpretability as compared to feature extraction [186]. Feature selection is 

implemented by an empirical search algorithm that attempts to attain the most suitable 

feature subset [184]. Next, the difference between feature selection and another 

approach known as feature weighting is described; a method that is perceived of as a 

generalisation of feature selection. 

4.2.1 FEATURE SELECTION 

Filter and wrapper methods are the two main categories of feature selection methods 

[187]. The filter approach isolates feature selection from classifier learning, ensuring 

that there is no interaction between the two algorithms' bias. They choose the 

characteristics that are most significant in terms of a well-known metric from the whole 

features set derived from the training samples. These attributes, along with the training 

samples, are then fed into the learning process to create the learning model [184]. The 

most representative algorithms of the filter model are Relief, Fisher score, and 

Information Gain based approaches [186]. Filters are scalable; therefore, they are best 

for problems with many variables. Their main drawback is that they choose important 

features without considering their impact on the learning algorithm in use [184]. 

Wrapper approach is a prominent feature selection technique for obtaining the 

optimal feature subset by optimising a measure corresponding to the feature 

subset. However, the measure to be optimised in filter-based feature selection 

approaches is not directly linked to the classifier learning algorithm. Wrappers may get 

better results, but they take substantially longer to compute than filters [188]. To 

determine the quality of selected features, the wrapper model uses the predictive 

accuracy of a predetermined learning algorithm [186]. In the case of clustering, a 

wrapper method would embed the feature selection algorithm within the clustering 

algorithm, unlike wrapper that evaluates each feature subset relevancy until the most 

relevant subset is obtained [183]. 
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4.2.2 FEATURE WEIGHTING  

Feature weighting is regarded as a generalisation of feature selection [186], where each 

feature is multiplied by a weight value according to its ability to identify pattern classes 

[189]. Unlike feature selection, that assigns a binary weight of 0 or 1 (1 indicates that 

the feature is selected for the classification, vice versa), feature weighting assigns a 

value in the interval [0, 1] to determine the importance of a particular feature. Larger 

value of feature weight 𝑤௩ indicates that the feature is more relevant and influential in 

identifying the pattern classes. Filter feature weighting techniques for 

example, compute feature weights with reference to the label classes (in 

supervised case) or intrinsic qualities of the data (unsupervised) depending on the 

learning methodology used [190]. Wrapper approaches, on the other hand, use feedback 

from a particular machine learning algorithm to approximate feature weights in a black-

box iterative style [190]. 

When calculating the output, it has always been considered that all of the features 

are equally essential. However, if some features have a greater scale than others, the 

results can be skewed, compromising the entire algorithm's performance and accuracy 

[190]. There is no reason why all the features should be treated as equally important. 

Therefore, in feature weighting, features are no longer selected, but weighted.  

Recent literature indicates that a variety of feature weighting methods have been 

presented with the goal of determining the degree of importance of each feature in 

deriving the output pattern [190]. Xiaoli et al. [191] proposed LASSO-Based Feature 

weighting selection method for Microarray Data, with application in biomedical data.  

They calculated the data's feature-feature inter-correlation and feature-label correlation 

using Pearson's linear correlation. Zhou et al. [192] introduced a new feature selection 

approach known as Feature Selection Based on Weighted Conditional Mutual 

Information (WCFR) that employed standard deviation to adapt the significance 

between relevancy and redundancy. They demonstrated  the effectiveness of WCFR in 

enhancing the quality of feature subset. 

In another research, W-k-means, a modified version of k-means algorithm that can 

compute the weights of input variables automatically, was presented by Huang et 

al.[181], in which a new weight for each variable is assigned based on the variance of 

the within cluster distances of the current partition. Similar approach was implemented 
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in hierarchical clustering by [182], who introduced a new hierarchical clustering 

algorithm called Wardp that has the ability to produce feature weights  with the use of 

the Lp norm. 

Using the literature, it is found that Information Theory and Statistical approaches 

are the two main methods for developing feature weighting algorithms. However, it is 

important to note that the probability distribution of input variables is required to be 

known in most of the information-based feature weighting. Since determining the 

probability distribution can be challenging, discretisation techniques are usually 

applied, with the disadvantage of information loss. Via statistical-based feature 

weighting, on the other hand, one can calculate the relationship between the features 

and the label 𝑦 via means of statistical measures [190].  As a result, the statistical tests 

used in these approaches must be carefully chosen. 

4.3 EVOLVING FEATURE WEIGHTING GRC 

The focus of this chapter is to overcome the difficulty that GrC may have in grouping 

data with irrelevant or noisy attributes. The overall idea is to integrate feature weighting 

in the GrC's compatibility measure, to build a clustering framework in which there is 

homogeneity within clusters, but heterogeneity between clusters. In this work, the 

feature weighting algorithm is embedded in the iterative data granulation, in which the 

feature weights evolve (rather than constant) throughout the granulation process. 

The Weighted K-Means algorithm (referred to as WK-Means) introduced in [181], 

which is a slight modification of the K-Means criteria algorithm that applies weights to 

the variables, served as the inspiration for the research in this chapter. The proposed 

approach is comparable to the feature selection wrapper approach, in which the feature 

weights are assigned to a collection of patterns during the clustering stage. The WK-

Means algorithm aims at minimising the following object function: 

                                  𝑊(𝑆, 𝐶, 𝑤) =  ∑ ∑ ∑ 𝑤௩
ఉ

𝑑(𝑦௜௩, 𝑐௞௩)௩∈௏௜∈ௌೖ

௄
௞ୀଵ              (4.1) 

The equation above is minimised by an iterative method, optimising (4.1) for 𝑆, 𝐶, 

and 𝑤, where 𝑆 = {𝑆ଵ, 𝑆ଶ, … , 𝑆௞, … , 𝑆௄}, 𝑐௞ ∈ 𝐶 is the centroid for each granule 𝑘, 𝑦௜ is 

an object in dataset 𝑌, 𝑣 is the input feature (or variable), 𝑑 is the distance or 

dissimilarity measure between instance 𝑖 and centroid of cluster 𝑘 on the 𝑣𝑡ℎ feature, 
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and 𝛽 is the feature weighting parameter that balances the degree of effect between the 

weight 𝑤 and its contribution to the distance. 

The parameter β in the criterion (4.1) defines the degree at which weights will have 

an influence on their contribution to the distance. The WK-Means algorithm uses an 

iterative optimisation approach aligns with the original K-Means, and as a result, it is 

influenced by some of its advantages, for example its ability to reach convergence in a 

finite number of iterations [183]. 

The feature weight 𝑤௩ adaptively changes during the clustering. Subject to 𝛽 > 1, 

there are two options for the update of 𝑤௩, with S and C fixed:    

                                                𝑤௩ = ൞

0, 𝑖𝑓 𝐷௩ = 0
ଵ

∑ ቈ
ವೡ
ವೕ

቉

భ
ഁషభ

೓
ೕసభ

, 𝑖𝑓 𝐷௩ ≠ 0                       (4.2) 

where ℎ is the number of features where 𝐷௩ ≠ 0. 

In research regarding GrC, the parameter 𝑤௩ (feature weight) in equation (3.8) has 

a fixed value and usually predetermined. This means that, the weights used for all 

features are constant from the beginning until the end of granulation. However, this is 

undesirable especially when dealing with noisy features. It is believed that the current 

information granules do provide some information regarding the relevance of the 

features during the granulation process. Therefore, in this chapter, equation (4.2) is used 

to define and iteratively update the weight for each feature 𝑣. 

Based on equation (4.2), nonzero weight is only assigned to a feature where 𝐷௩ ≠

0. 𝐷௩ = 0 indicates that the 𝑣𝑡ℎ feature consists of a single value in each granule and 

therefore, zero weight is assigned to that feature. For example, in the case of supervised 

learning (where the granulation is done together with the output class), it is very likely 

that the output class in a particular granule is the same, causing the class variance to be 

zero.  Hence, zero weight for the output class signifies that it does not influence the 

merging and the granulation itself. In this research, 𝐷௩ is set as the sum of within 

granule variance: 

                                               𝐷௩ = ∑
ଵ

ேିଵ
∑ |𝑦௜௩ − 𝑐௞௩|ଶே

௜ୀଵ
௄
௞ୀଵ                                             (4.3)  

where 𝑁 is the cardinality in the granule 𝑘. 
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As shown in equation (4.2), this equation is not applicable in two undesirable 

situations: 

(i) When 𝐷௝ = 0 for a 𝑗 ∈ 𝑉 

In this situation, there is an undesirable division by zero. To mitigate this 

problem, [181] suggested replacing the zero value with another constant, for 

example the average dispersion of all features. 

 

(ii) When 𝛽 = 1 

This would again cause the division by zero. In this research,  𝛽 > 1 is 

consistently used. Note that when 𝛽 > 1, the larger 𝐷௩, the smaller 𝑤௩. Hence, 

the impact of the variable 𝑥௩ with large 𝐷௩ is reduced. This selection aligns with 

the objective of the algorithm to assign less weight for the variables with higher 

within-granule variance. 

Equation (3.8) is repeated here to show how the distance between two granules A 

and B will now be influenced by the feature weight 𝑤௩. This weighted distance will 

then be used in the computation of the compatibility measure to determine the next 

merging process. It is important to note that the weights are not constant, instead they 

evolve throughout the iterative granulation process, depending on the current granules 

variance as per in (4.3). This is what distinguish W-GrC from GrC; in conventional 

GrC the value of 𝑤௩ is 1 for all input variables.  

                                                   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ =
∑ ௪ೡ

೏
ೡసభ (஽భି ஽మ)

ୢ
                        (3.8) 

Algorithm 4.1 shows how the feature weighting algorithm is embedded in the GrC. 

In the first iteration, all input features are assumed to have equal weight; i.e. 𝑤௩ = 1 for 

𝑣 𝜖 𝑑. However, it is important to note that this is only applicable in the first iteration. 

As stated before, the feature weight parameter β is set to be larger than 1 i.e. 𝛽 > 1. 

The other conventional GrC setting, for example distance and density weight 𝛼 and the 

number of iterations (or the number of final granules) remains as it is. 

All features will only be treated equally during the first merging phase, after which 

the algorithm will adjust the feature weights when calculating distance (and hence the 

compatibility measure). The granules are updated and all objects in the information 

granules are tracked after each merging procedure. This is a crucial step in the W-GrC, 
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since we have to track the within-granule variance during each iteration. The feature 

weight for each feature are then modified and used in the subsequent iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.1: Weighted GrC (W-GrC) 

The underlying idea is that input variables with lower within-granule variance 

should be given higher weights; conversely, input variables with large granule variance 

should be penalised in the compatibility index. Large sigma (width) MFs would result 

from high variance. Therefore, using this evolving weight, features that promote the 

formation of low variance granules are promoted in any specified iteration, and such 

features are viewed here as being more significant for the evolvement of the granulation 

process towards the establishment of FL rule-bases for classification tasks. This is one 

way to distinguish good variables from noisy variables. Figure 4.1 shows the computing 

framework for weighted GrC models.  

 

 

1. Initial setting 

For the first iteration, all features are assigned with feature weight of 1. 

Feature weight parameter, 𝛽 is selected (i.e. 𝛽 > 1). The rest follows the 

conventional GrC settings. 

 

2. Merging of granules 

Only the first merging process is based on the conventional GrC (granules 

distances with equal weights), while the rest of iterations will adapt the 

new evolving feature weights 𝑤௩ in computing the compatibility measure 

and selection of pair of granules to be merged. 

 

3. Granule update 

Update the cardinality, maximum and minimum limit of the new 

information granule, and keep track the instances in each granule. 

 

4. Weight update 

Update the feature weights based on (4.2). Repeat step (2-4). 
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Figure 4.1: Computing framework for weighted GrC models 
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4.4 SIMULATIONS AND EMPIRICAL RESULTS 

Focusing on the classification problems, simulations are run on the following three 

datasets: Iris, Wine, and Glass (UCI Machine Learning Repository). Every feature is 

resized to the range [0,1]. The data involved are split: 80% for the training and 20% for 

the testing. The feature weighting parameter's range is set to 2 to 10 (since 𝛽 = 1 is 

considered undesirable situation).  The average of 10 trials is used to obtain the root 

mean square error (RMSE) and the percentage of prediction accuracy. 

The Iris data comprises 4 input variables and 150 instances. The investigation is 

then expanded to datasets with larger dimensionality and scalability, such as Wine (13 

input variables, 178 instances) and Glass (9 input variables, 214 instances). To regulate 

the number of objects for each class, the bootstrapping approach is used with Glass 

data. As a result, there are 371 instances instead of just 214. For reasons of comparison, 

five granules were chosen for Iris and Wine, whereas 30 granules were chosen for Glass 

based on prior study [120]. 

 

4.4.1 EVOLVING FEATURE WEIGHTING SIMULATIONS 

Figure 4.2 provides an illustration of how the feature weights adaptively change during 

the course of the iterative granulation process based on Iris dataset. All Iris' input 

variables are shown here: sepal length, sepal width, petal length and petal width.   The 

feature weights are seen to be steady after the second iteration (out of 115 iterations); 

this is the reason why the weights are plotted starting from this point. This is because 

only singleton granules (i.e., those with 𝐷௩ = 0) are involved in the merging process 

from the start, whereas the feature weights are determined based on the within-granule 

variances.  
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(c) 

 

(d) 

Figure 4.2: Feature weights throughout the granulation for (a) sepal length (b) sepal 

width (c) petal length (d) petal width 
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As indicated in Table 4.1, the feature weight average is calculated and analysed 

with other metrics like mutual information and feature importance score. Mutual 

information yields details about the relationship between two random variables and 

are usually approximated with reference to each variable and the specified class labels 

[193]. It quantifies the decrease of uncertainty in one variable when information about 

another variable is given, and the mutual information between two variables X and Y 

is given by: 

𝐼 (𝑌; 𝑋) =  ∑ ∫ 𝑝(𝑦, 𝑥) log
௣(௬,௫)

௉(௬)௣(௫)
𝑑𝑥

௫௬                            (4.4) 

Equation (4.4) also can be expressed in terms of entropy and conditional entropy, as 

described by: 

𝐼 (𝑌; 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) where the 𝐻(𝑌) is the Shannon entropy that measure the 

uncertainty in a discrete random variable Y, given by: 

                   𝐻(𝑌) =  − ∑ 𝑃(𝑦) log(𝑃(𝑦))௬                         (4.5) 

And 𝐻(𝑌|𝑋) is the conditional entropy, that represents the remaining uncertainty when 

𝑋 is known, described as: 

                              𝐻(𝑌|𝑋) =  − ∫ 𝑝(𝑦, 𝑥)൫∑ 𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)௬ ൯𝑑𝑥                          (4.6) 

The feature importance score ranks the features using a chi-square (𝜒ଶ) test [194]. 

The feature importance score is the negative log of chi-square tests’ p-value [195]. This 

means, the lower the p-value, the higher the importance of the selected feature [194]. 

When the dependent variable is assessed at a nominal level, the chi-square statistic 

provides a non-parametric tool for analysing group differences [196]. Figure 4.3 shows 

the predictor or feature importance score for all input variables in Iris data. 
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Figure 4.3: Predictor importance score for all input variables in Iris data 

This finding suggests that the feature weight ranking is consistent with the other 

two measures (mutual information and feature importance score); supporting the theory 

that this suggested approach effectively captures the feature relevance. Petal width is 

the attribute that all three of these measurements regard as being most significant, 

followed by petal length, sepal length, and sepal width. 

 

 

 

 

 

 

 

 

P
re

d
ic

to
r 

im
po

rt
an

ce
 s

co
re



73 
 

Table 4.1: Comparison of average feature weight in W-GrC with the feature 

importance score and mutual information (Iris data) 

Average weight 

(W-GrC) 

Feature 

importance 

score 

Mutual information 

Sepal length 0.2721 41.7358 0.6415 

Sepal width 0.2062 19.1551 0.3935 

Petal length 0.3072 97.8866 1.2663 

Petal width 0.3623 101.1028 1.3245 

 

4.4.2 RESULTS 

The performance of W-GrC with various values of 𝛽 is presented in Table 4.4. The 

results for the standard GrC, sometimes referred to as the GrC without feature 

weighting, are shown in the row labelled "no feature weighting." It is seen that the 

suggested W-GrC outperforms the standard GrC in terms of RMSE and 

predictive accuracy with appropriate choice of 𝛽. The parameter 𝛽 should be regarded 

as a hypermeter in this context, which is specified in each circumstance. 

For the Iris data, improvement in the performance is achieved at 𝛽 ∈ 

{3,4,5,6,7,8,10}. With 96.33% of correct predictions as opposed to 94% in the standard 

GrC (an improvement of 2.3%), the maximum accuracy is attained when 𝛽 = 3 and 

𝛽 = 6. In terms of RMSE, all trials score better than the conventional GrC, except for 

when 𝛽 = 2. This proves the capability of W-GrC, even though the number of 

dimensions is small (only 4 input variables in Iris). Next, the robustness of W-GrC is 

tested with larger datasets (13 and 10 input variables in Wine and Glass, respectively). 

It is clear that the training performance of W-GrC (in Iris) with appropriate input 

variables weight produces better result than the standard GrC in terms of the predictive 

accuracy. Moreover, the final rule-bases developed with W-GrC and T1-FLS show 

good distinguishability as in Figure 4.5 (as compared with the final rule-bases 

developed with GrC and T1-FLS in Figure 4.4), particularly for the input variables petal 



74 
 

length and petal width. Interestingly, these two input variables are shown to be the most 

important variables with the highest average weight. Note that there are some fuzzy sets 

that can be merged, however in this case, the merging process is set to stop at 5 granules 

(hence 5 fuzzy sets). 

 

Figure 4.4: The final rule-base of T1-FLS model constructed with GrC 
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Figure 4.5: The final rule-base of T1-FLS model constructed with W-GrC 

Improvement is recorded in the experiment using Wine at a range of 𝛽 from 3 to 6. 

Accuracy levels above 90% are observed in every experiment. The best accuracy is 

obtained when 𝛽 = 5  with 95.67% while the conventional GrC scored 92.3%. The 

improvement in RMSE also is accomplished in the same range of 𝛽  (from 3 to 6). The 

trend in Wine is different with the previous dataset (Iris), where the RMSE is improved 

in most trials. However, it is interesting to observe that most of the good performance 

started from the value of 𝛽 = 3. Table 4.2 shows the average feature weight for Wine 

dataset. 
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Table 4.2: Average feature weight for Wine dataset 

Input variables Average feature weight 

Flavanoids 0.0893 

Color intensity 0.0824 

OD280/OD315 of diluted wines 0.0823 

Hue 0.0821 

Proanthocyanins 0.0802 

Alcalinity of ash 0.0798 

Proline 0.0792 

Ash 0.0786 

Alcohol 0.0786 

Total phenols 0.0781 

Magnesium 0.0762 

Nonflavanoid phenols 0.0676 

Malic acid 0.0643 

 

We can see that greater values of 𝛽 (𝛽 ≥ 3) are preferred to provide superior results 

in the experiment with the Glass dataset. The highest accuracy of 71.86%, compared to 

standard GrC's 62.79%, is obtained at 𝛽 = 5. Only 32.33% accuracy is achieved when 

using low value of 𝛽 (i.e. 𝛽 = 2), before the algorithm becomes more stable starting 

from   𝛽 = 3.   However, in general, the result for RMSE in the conventional GrC is 

still better than W-GrC, except for when 𝛽 = 7 (0.2020 in the conventional GrC and 

0.1980 in W-GrC). Table 4.3 shows the average feature weight for Glass dataset. 
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Table 4.3: Average feature weight for Glass dataset 

Input variables Average feature weight 

Barium 0.1696 

Potassium 0.1377 

Calcium 0.1372 

Refractive index 0.1188 

Iron 0.1001 

Magnesium 0.0936 

Sodium 0.0930 

Silicon 0.0922 

Aluminium 0.0831 

 

Table 4.4 shows the average root mean square error (RMSE) and percentage of 

prediction accuracy performance of W-GrC with various β values for all datasets under 

study. The measures were obtained using ten-fold cross-validation. Overall, W-GrC 

performs better than the standard GrC, according to Table 4.4. When an adequate value 

of 𝛽 is chosen, it provides the best accuracy for all datasets. This is due to the fact that 

during the iterative granulation process, variables that are more crucial for a particular 

instance are given higher weights when generating the information granules. However, 

it should be highlighted that choosing 𝛽 carefully is essential for achieving superior 

classification accuracy. As a result, it is recommended that (𝛽 ≥ 3) be chosen as the 

proper value of for this specific case studies (based on the three datasets used). 

Results were compared to other studies such as [197] with 96.67% in Iris, [198] 

with 97.14% in Wine and [199] with 71.66% in Glass. This shows that the performance 

of W-GrC is comparable with other research works in the literature. Note that there is 

not any parameters optimisation involved in this experiment.  
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Table 4.4:  Average RMSE and % accuracy performance of W-GrC with various 𝛽 

values, testing (unseen) data, 10 runs per 𝛽 value. 

 Iris Wine Glass 

 RMSE Accuracy 

(%) 

RMSE Accuracy 

(%) 

RMSE Accuracy 

(%) 

No feature 

weighting 

0.1415 94 0.1173 92.3 0.2020 62.79 

𝛽 = 2.0 0.1551 90.67 0.1238 91 0.3365 32.33 

𝛽 = 3.0 0.1205 96.33 0.1082 94 0.2235 63.02 

𝛽 = 4.0 0.1302 94.67 0.1123 92.67 0.2164 69.30 

𝛽 = 5.0 0.1253 94.33 0.1033 95.67 0.2144 71.86 

𝛽 = 6.0 0.1251 96.33 0.1067 93 0.2165 66.98 

𝛽 = 7.0 0.1285 95.67 0.1230 92 0.1980 66.51 

𝛽 = 8.0 0.1189 96 0.1342 90.33 0.2219 66.05 

𝛽 = 9.0 0.1346 93.67 0.1186 91.67 0.2105 68.14 

𝛽 = 10.0 0.1273 95 0.1212 91.33 0.2224 65.81 

 

4.5 INTERPRETABILITY INDEX 

Interpretability and accuracy are frequently incompatible goals when building Fuzzy 

Logic systems (FLS); one might be improved by forgoing the other, a scenario known 

as an interpretability-accuracy trade-off. For instance, Mamdani-based FLS offers 

improved interpretability, whereas TSK-based FLS provides improved prediction 

accuracy [22]. In the context of FLS, interpretability is the feature of a model that 

enables humans to comprehend a system's behaviour by scrutinising its rule base. In 

this work, it is determined whether the improved predictive performance has an impact 

on the models' interpretability by utilising the models that were created using values of 

𝛽 that performs the best in terms of accuracy (according to the results in Table 4.4). 

Utilising Nauck's index (NI), the effect of feature weighting on the interpretability 

index is examined. Nauck [89] established the Nauck's index, a numerical measure, to 

evaluate the interpretability of FL rule-based classification systems. It comprises three 

important elements: complexity of FLS (𝑐𝑜𝑚𝑝), average normalised coverage of fuzzy 

partition (𝑐𝑜𝑣) and average normalised partition index (𝑝𝑎𝑟𝑡), and is expressed as: 
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    𝑁𝑎𝑢𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑚𝑝 × 𝑐𝑜𝑣 × 𝑝𝑎𝑟𝑡              (4.7) 

The interpretability index for the new W-GrC and the standard GrC are compared 

in Table 4.5. It has been proven that W-GrC can produce greater accuracy without 

statistically significant degradation in the model's interpretability. Less than 2% for the 

Iris data, and even less for the Wine and Glass case studies, are the impacts on the 

interpretability index. Due to the large number of rules, it should be noted that Glass's 

NI is comparatively small (due to 30 rules as opposed to 5 rules in Iris and Wine). 

Table 4.5: Comparison of the interpretability index 

 Nauck’s index 

 W-GrC GrC 

Iris 0.3076 0.3129 

Wine 0.0929 0.0928 

Glass 7.02 × 10ିସ 7.07 × 10ିସ 

 

4.6 SUMMARY 

In this chapter, a new iterative data granulation technique with evolving feature 

weighting is introduced in order to define the significance of input variables and utilise 

such weights to guide the information granulation process. Based on the total within-

granule variances from the generated granules at each given iteration, the weight for 

each feature is calculated. The significance of each feature is assessed in order to 

determine which features are crucial for the calculation of the granules' compatibility 

measure. 

The relevance of features that resulted from averaging feature weights across the 

data granulation process is shown to be consistent when compared to other approaches 

like the chi-square test and mutual information; agreement in the feature ranking is 

confirmed.  This agreement between the measure of weight based on the within-granule 

variances and the other methods give confidence to embed the evolving feature 

technique in the iterative data granulation.  

The proposed W-GrC algorithm outperformed the conventional GrC algorithm in 

simulation results (UCI classification tasks) in terms of classification accuracy. The 

more complicated dataset, such as the Glass case study, showed more 
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significant improvement. The outcomes of the experiment demonstrated the capability 

of the proposed GrC-Fuzzy modelling framework to handle data of different complexity 

(features ranging from 4 to 13). Although the study's findings were encouraging, further 

research might examine case studies with a wider range of complexity and compare the 

effectiveness of the W-GrC approach to other clustering approaches. 

Additionally, this chapter covers the preliminary research on the Fuzzy Logic 

Systems' interpretability. NI is used to evaluate the interpretability of the generated 

models, and despite the increased percentage accuracy in the classification tasks, there 

is no discernible decline in the interpretability. However, the interpretability studies in 

this chapter is limited to only Type-1 FLSs. The study of interpretability in Type-2 

FLSs is covered in chapter 6. In Chapter 6, the W-GrC is extended to Radial Basis 

Function Neural Networks (Type-1 and Type-2), with more complex datasets such as 

Breast Cancer (683 instances, 9 input variables) and Cardiotocography (2126 instances, 

21 input variables). 

Main results and methodology from this work is included in paper entitled “An 

evolving feature weighting framework for granular Fuzzy Logic models”. It was 

presented and published in UKCI 2021: 20th UK Workshop on Computational 

Intelligence in Aberystwyth, Wales, UK, where the authors received the Best Student 

Paper Award. 

In the next chapter, focus is given to tackle another problem in data granulation, 

known as class overlapping. Rather than operating in a hard clustering approach, the 

iterative data granulation is aimed at allowing an instance to belong to one or more 

granules rather than just one. The challenge is to model the overlapping between 

granules and to propose a new compatibility equation that takes into account the class 

overlapping.   
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CHAPTER 5 
 
 

ADDRESSING CLASS OVERLAP IN GRANULAR 
COMPUTING 
 

This chapter addresses another issue in data granulation – class overlapping. 

Conventionally, clustering algorithms aim at producing a number of disjoint clusters, 

or granules that meet some required criteria. In disjoint clustering, an element or 

instance is only allowed to belong to one cluster. However, most of real-world data sets 

contain overlapping information, meaning that certain data objects or patterns may 

belong to many clusters. For example, a person may belong to more than one group, or 

organisation. Therefore, the aim of this chapter is to allow an instance to belong to more 

than one granule, with the assistance of a new parameter known as R-value. R-value is 

defined as the ratio of overlapping areas among categories in a data cluster. It is used 

to model the overlapping between granules, and this information is integrated into the 

new compatibility criterion.  Consequently, the new compatibility measure provides 

additional parameter control for the amount of overlapping among the granules. The 

new GrC with overlapping measure is demonstrated by using datasets from UCI 

Machine Learning Repository. 

5.1 INTRODUCTION  

Clustering involves organising a group of things into classes, with related objects 

belonging to the same cluster and dissimilar objects belonging to different clusters 

[200]. A single cluster is assigned to each item in the majority of clustering algorithms, 

which use hard clustering approaches. On the other hand, fuzzy clustering algorithms 

provide a structure where each object contributes to the definition of each cluster [200]. 
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There are various classification schemes for clustering algorithms, and one of them is 

based on the types of produced clusters [201]: 

i) Disjoint, where an element only ever belongs to one cluster. 

ii) Fuzzy, when one element is included in all clusters but only to a certain extent. 

iii) Overlapping, when a component may be a part of multiple clusters. 

 

Most clustering techniques create exclusive clusters, which means that each sample 

can only be a member of one cluster [13]. When group boundaries are distinct and the 

data is devoid of outliers, traditional techniques like the k-means algorithm may be 

successful in appropriately dividing points into groups in many practical data models 

[15]. The majority of real-world data sets, however, contain overlapping information, 

meaning that certain data objects or patterns may belong to many clusters [14]. 

The necessity to work in overlapping clustering is due to the many problems that 

require the groups to be non-exclusive [201]. This problem naturally arises because 

many real-world applications require that each observation be assigned to one or more 

clusters. This issue has been the subject of numerous studies using the overlapping 

clustering technique [14]. Recent approaches that have been suggested to address this 

issue are theoretical rather than heuristic in nature, and thus incorporate overlaps in 

their optimal criteria [202]. Overlapping clusters can occur for a number of reasons: the 

data may be noisy, the features may not fully capture the information required to 

distinguish the clusters, or the overlap may be a natural result of the processes that 

generate the data [203]. 

In Granular Computing (GrC), the development of a new information granule 

results in a lack of distinguishability due to the fact that the overlapping is not taken 

into account in the compatibility measure [130]. However, the work related to 

overlapping in GrC is limited. Solis [130] developed the neutrosophic approach to add 

a dimension that allows the compatibility criterion to evaluate the fuzzy entropy 

(uncertainty) produced during granulation in order to estimate the overlapping 

behaviour. With the help of this approach, the compatibility search is persuaded to stop 

looking for prospective granules that could lead to granular overlapping, which would 

reduce model transparency and compromise the rules' consistency. This method, 
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however, only aims to attenuate the overlapping behaviour, even though it is recognised 

that some overlapping is necessary in building FL models. 

Therefore, in this chapter, GrC takes into account the overlapping measure (R-

Value) to model the  overlapping between the granules, and a novel compatibility 

equation that model the overlapping during granulation is proposed. In this setting, the 

proposed approach can be viewed as a compromise between hard and fuzzy-clustering 

methods. This method permits an object to belong to one or more granules rather than 

just one, leading to the intersection of final granules. Hence, the objectives of this 

chapter are: 

 To study the feasibility of using R-value in quantifying the overlapping between 

the information granules during the iterative data granulation. 

 To propose a new compatibility measure with overlapping measure to enhance 

the iterative data granulation.  

 

5.2 OVERLAPPING CLUSTERING 

Overlapping clustering technique has been studied in many research works [14]. The 

overlapping k-means algorithm (OKM), which is an extension of the k-means algorithm 

to produce overlapping clusters, is one of the most used overlapping clustering 

algorithms [204]. The K-means objective function is modified by the OKM algorithm 

to take the potential of overlapping clusters into account [205]. In OKM, the condition 

of 𝜋௜ ∩ 𝜋௝ = ∅ is removed from the objective function, where 𝜋 = {𝜋௜, … 𝜋௞} 

represents the set of 𝑘 clusters. The OKM method relaxed the k-means objective 

function to permit overlapping clusters [13]. More specifically, eliminating the 

constraint 𝜋௜ ∩ 𝜋௝ = ∅ allowed the algorithm to have overlapping clusters. OKM 

algorithm was extended in various ways, including kernel-overlapping k-means 

(KOKM ϕ) [206] and parametrised OKM methods [207].  

Recent works on k-means with overlapping can be found in [14] where the 

algorithm called ‘Enhanced overlapping clustering algorithm for data analysis 

(eHMCOKE) applied median absolute deviation (MAD) in identifying outliers in 

datasets and added parameters such as radius of clusters and distance between clusters. 

These steps enables it to be more effective regarding the overlapping clustering. 
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However, all these methods are really just extensions of k-means that are very sensitive 

to initialisation process, where the outcome is subject to the randomly selected initial 

cluster centroids [13]. 

In hierarchical clustering, Gama et al. [208] introduced a novel method to obtain 

hierarchical and overlapping clusters from network data. The proposed 

method permitted nodes to be a member of more than one group and produced a tiered 

collection of groupings of the node set depending on the desired level of resolution or 

similarity. In another research, Jeantet et al.  [209] suggested a new approach based on 

a density requirement that permits clusters to overlap until a high cluster attraction is 

attained. A directed acyclic graph was used to depict the resulting hierarchical structure, 

known as a quasi-dendrogram, which combined the accuracy of a less arbitrary 

clustering with the benefits of hierarchies. 

5.3 OVERLAPPING GRC 

5.3.1 R-value 

In this chapter, R-value introduced in [210] is used to numerically measure the 

overlapping among the granules. R-value is a measure that can capture the amount of 

category overlap in a dataset and can be considered as the ratio of samples in the 

overlapping area [211]. The potential of this measure has attracted many researchers to 

use R-value in their research works especially when dealing with overlapping for 

example in [212], [213], and [203]. 

R-value between the two categories 𝐶௜ and 𝐶௝ is represented by 𝑅൫𝐶௜ , 𝐶௝൯ and it 

signifies the ratio of instances of 𝐶௜ and 𝐶௝ which are positioned in the overlapping area 

of 𝐶௜ and 𝐶௝. R-value utilises normalised values, meaning that R-value ranges between 

0 and 1. The overlapping measure in this chapter is given as: 

                                     𝑅(𝐶௜, 𝐶௝) =
ଵ

|஼೔หା|஼ೕห
[𝑟൫𝐶௜, 𝐶௝൯ + 𝑟(𝐶௝ , 𝐶௜)]                      (5.1) 

Where 

                                    𝑟൫𝐶௜, 𝐶௝൯ =  ∑ 𝜆(|𝑘𝑁𝑁(𝑝௜௠, 𝐶௝)| − 𝜃)
|஼೔|
௠ୀଵ                                (5.2) 

 

Where 𝜆(𝑥) = 1 𝑖𝑓 𝑥 > 0, 𝑒𝑙𝑠𝑒 𝜆(𝑥) = 0, 𝑝௜௠ is the 𝑚-th instance of category  𝐶௜, 

𝑘𝑁𝑁(𝑝௜௠) is the set of K-nearest neighbour instances for an instance 𝑝௜௠, 
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𝑘𝑁𝑁൫𝑝௜௠, 𝑐௝൯ is the set of instances in 𝑘𝑁𝑁(𝑝௜௠) that belong to the different category 

𝑐௝, can be defined as: 

                                𝑘𝑁𝑁൫𝑝௜௠𝐶௜௝൯ = {𝑥|𝑥 ∈ 𝑘𝑁𝑁(𝑝௜௠) ∧ 𝑥 ∈ 𝐶௝}                         (5.3) 

and 𝑘 is the number of nearest neighbour instances for a given instance. The parameter 

𝜃 is the threshold value on the number of different class neighbours for considering an 

instance as belonging to an overlap region [203] within the range [0, 𝑘/2]. The 𝑘𝑁𝑁 

function is implemented by using a function called  𝑘𝑛𝑛𝑠𝑒𝑎𝑟𝑐ℎ in Matlab R2020a, 

which by default, find 𝑘-nearest neighbours using input data by using Euclidean 

distance [214], such that: 

𝑑(𝑥, 𝑦) =  ඥ∑ (𝑥௜ − 𝑦௜)ଶ
௜     (5.4) 

In this section, a synthetic dataset is used to exemplify the calculation of R-value. 

The synthetic data consists of two input variables, Var 1 and Var 2 and one output 

Class. There are 20 instances, which are equally divided into 2 categories or classes. 

Figure 5.1 shows the k-nearest neighbour for two points with 𝑘 =  3 and 𝜃 = 1. The 

synthetic dataset used here is shown in Table 5.1. 

Table 5.1: Synthetic dataset 

Var 1     Var 2     Class 

   3.5000    3.9000    1.0000 

    3.4000    3.7000    1.0000 

    3.3000    2.9000    1.0000 

    3.4000    3.0000    1.0000 

    3.5000    2.9000    1.0000 

    3.5000    3.0000    1.0000 

    2.8000    4.0000    1.0000 

    3.3000    3.9000    1.0000 

    3.6000    3.9000    1.0000 

    3.8000    4.1000    1.0000 

    2.9000    3.6000    2.0000 

    3.3000    3.4000    2.0000 

    3.6000    3.8000    2.0000 
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Figure 5.1: K-nearest neighbour for two points 

 

From this synthetic dataset, with 𝐾 =  3 and 𝜃 = 1, we found that (from equations 5.2 

and 5.3): 

𝑘𝑁𝑁൫𝑝௜ଵ, 𝐶௝൯ = 0 

𝜆(ห𝑘𝑁𝑁൫𝑝௜ଵ, 𝐶௝൯ห − 𝜃) = 0 

This indicates that the element 𝑝௜ଵ does not overlap with the category  𝐶௝. All three 

nearest neighbours for 𝑝௜ଵ are within the same category. However, these values will 

    3.5000    4.1000    2.0000 

    3.9000    3.7000    2.0000 

    3.5000    4.5000    2.0000 

    4.3000    5.1000    2.0000 

    4.6000    4.4000    2.0000 

    4.1000    4.4000    2.0000 

    4.0000    4.8000    2.0000 

𝑘𝑁𝑁(𝑝௜ଵ) 

𝐶௝  

𝐶௜  

𝑘𝑁𝑁(𝑝௜ଶ) 

𝑝௜ଵ 

𝑝௜ଶ 
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change if we increase the value of parameter 𝑘. Note that the fourth closest instance 

from 𝑝௜ଵ is from a different category.  

From Figure 5.1, it is obvious that the instance  𝑝௜ଶ is located in the overlapping 

area between 𝐶௜ and 𝐶௝, therefore: 

𝑘𝑁𝑁൫𝑝௜ଶ, 𝐶௝൯ = 2 

𝜆(ห𝑘𝑁𝑁൫𝑝௜ଶ, 𝐶௝൯ห − 𝜃) = 1 

Where 𝜆 = 1 shows that the element 𝑝௜ଶ does overlap with the category  𝐶௝. From this 

figure, 2 out of 3 nearest neighbours for 𝑝௜ଶ are of different categories. Note that the 

value of λ will be zero, for example if we change the parameter θ to 2. Repeating these 

steps for all instances in both categories, the R-value (overlapping measure) for the two 

granules (computed via Matlab) is: 

𝑅൫𝐶௜, 𝐶௝൯ = 0.45 

A high R-value indicates high overlapping among the granules. To demonstrate 

this, different datasets are used to see how R-value changes with regards to the 

overlapping area among the granules. This is shown in Figure 5.2, where datasets with 

less overlapping (compared to Figure 5.1) is used in the iterative data granulation. The 

synthetic datasets here are designed to have (a) less overlapping and (b) no overlapping 

at all. 

With R-value, the overlapping in Figure 5.2 (a) and (b) is 0.3 and 0.0667 

respectively, which is less than the overlapping measured in Figure 5.1. Note that even 

though there is no physical overlapping between granules in Figure 5.2 (b), the R-value 

is not exactly zero. This is due to the closeness of these two granules and the selection 

of 𝜃 = 1, meaning that only one instance is allowed to belong to other category; more 

than this will be considered as overlapping. 𝑅൫𝐶௜, 𝐶௝൯ is expected to be zero if the 

distance between these two granules are increased.  
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(a) 

 

(b) 

Figure 5.2: Granules overlapping with (a)  𝑅൫𝐶௜, 𝐶௝൯ = 0.3 and (b) 𝑅൫𝐶௜ , 𝐶௝൯ = 0.0667 
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Next, the R-value is examined with another dataset that consists of only one 

category. In Figure 5.3, it is observed that the value of 𝑅൫𝐶௜ , 𝐶௝൯ for both dataset is 1. 

This indicates that the interest to measure the degree of overlapping is for data with 

different categories. In data granulation perspective, the maximum value of R-value for 

granules with similar categories means that it will not affect the compatibility criterion, 

rather it provides additional parameters to model or to ‘control’ the amount of 

overlapping among the granules (particularly of different categories).  

 

 

(𝑎)    𝑅൫𝐶௜, 𝐶௝൯ =1                                                    
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(𝑏)    𝑅൫𝐶௜, 𝐶௝൯ =1 

 

 Figure 5.3: Overlapping of two granules with the same categories 

 

5.3.2 A new overlapping measure during the iterative data granulation 

In Chapter 3, the use of the compatibility measure in determining the granules to be 

merged is shown. The compatibility criterion (Equation 3.5) however, does not consider 

the overlapping measure, and may cause the lack of distinguishability among the 

granules [130]. Therefore, a novel compatibility criterion that measure the amount of 

overlapping during granulation is proposed in this chapter.  

In this proposed algorithm, the overlapping is not only allowed to occur, but also 

can be controlled by means of two parameters, 𝑘 and 𝜃. 𝑘 is the number of nearest 

neighbour instances for a given instance, and  𝜃 sets the maximum number of instances 

allowed to belong in class neighbours. For consistency, in this research the values of 𝑘 

and 𝜃 are set to be 5 and 1, respectively. 

A modification of the compatibility equation is proposed, taking into account the 

overlapping among the granules. If two granules consist of the same categories, the R-

value is always 1, showing that they are favourable to be merged. In the case of two 

different granules with different categories, the merging of two granules with low 
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overlapping (R-value) is penalised. Low overlapping indicates that the categories are 

well separated and well distinguished, hence should not be merged. In an extreme 

condition where there is a need to merge 2 granules with different categories (as in 

Figure 5.1 and 5.2(a)), the merging in Figure 5.1 is considered more favorable than in 

Figure 5.2(a). 

The Equation 3.5 is revisited here to show the conventional compatibility measure 

in GrC: 

                    𝐶 (𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ −  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻. exp (−𝛼 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦))           (3.5) 

 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ is the maximum possible distance in the dataset, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻ 

represents the distance between granule A and B and 𝛼 is the density factor. However, 

the density is not the topic of research in this chapter, and it remains as it is (as in 

Equation 3.6). The interest in this chapter is overlapping measures during the data 

granulation. Hence, the proposed compatibility measure includes the overlapping 

measure, or R-value, in the compatibly equation as follows:  

            𝐶(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ெ஺௑ −  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒஺,஻. exp (−𝛼 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦  ×  𝑅 − 𝑣𝑎𝑙𝑢𝑒))    (5.5) 

 

The inclusion of R-value in Equation (5.4) promotes the degree of overlapping 

during the iterative data granulation. With this, GrC is allowed to have overlapping 

among the granules, and the amount of overlapping can be controlled with parameters 

𝐾 and 𝜃. However, the impact of R-value in this equation is still constrained by the 

density factor 𝛼. Therefore, in the experiment, five different values of 𝛼 are used 

ranging from 0.2 to 1. Figure 5.4 shows the framework for overlapping GrC based FL 

modelling. The third and fourth steps (in shaded boxes) are what differ the overlapping 

GrC with the conventional GrC, where the overlapping between granules is computed 

and hence influences the merging during iterative data granulation. 
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Figure 5.4: Overlapping GrC based Fuzzy Logic modelling framework 
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5.4 CASE STUDY AND SIMULATION RESULTS 

The improvement demonstrated by the GrC with overlapping measures is presented in 

this section.  The datasets - Iris, Wine and Glass from UCI Machine Learning 

Repository are used to validate the performance of the proposed system. The data is 

split: 80% for the training and 20% for the testing, and the results are taken from 10 

trials in each experiment.  

Using Matlab R2020a, the function 𝑘𝑛𝑛𝑠𝑒𝑎𝑟𝑐ℎ finds the 𝑘-nearest neighbour for 

instance.  The values of 𝑘 and 𝜃 are 5 and 1, respectively and are fixed throughout the 

experiment for consistency. In the experiment, the value of density factor 𝛼 ranged from 

0.2 to 1.0, with an increment of 0.2. The results for Iris, Wine and Glass are presented 

in Table 5.2 to Table 5.4. 

Table 5.2 shows the experiment result for Iris (with 4 input variables, 150 

instances) in terms of accuracy and RMSE. From out of five simulations (with different 

values of 𝛼), three simulations of GrC with overlapping measure show better 

performance in terms of the classification accuracy (i.e. when 𝛼 = {0.2, 0.4,0.8}). The 

same pattern is also observed in the comparison of RMSE for GrC with overlapping 

measure and GrC without overlapping measure.  

The improvement achieved by the proposed method can be seen more clearly in 

the Wine dataset (with 13 input variables, 178 instances), where the accuracy of the 

GrC with overlapping measure consistently outperforms the conventional GrC, as 

shown in Table 5.3. The highest accuracy is accomplished when 𝛼 = 0.6, where the 

GrC with overlapping measure scores 96.67%. It is also observed that the conventional 

GrC can only sustain low values of 𝛼 (𝛼 ≤ 6) to have good result (i.e. accuracy ≥

90%). In the case of higher 𝛼 (0.8 and 1.0), the performance of conventional GrC drops 

to 76.67% and 52.67%, respectively, while overlapping GrC scores 96% and 95.33% . 

This also demonstrates the robustness of the overlapping GrC in building FL models.  

Table 5.4 presents the performance of overlapping GrC in Glass dataset (with 9 

input variables, 214 instances). GrC with overlapping measures consistently 

outperforms the conventional GrC in the Glass dataset. The highest performance is 

achieved at 𝛼 = 0.4 with 71.16% accuracy. The conventional GrC achieves satisfactory 

results (above 60%) for all values of 𝛼 except when 𝛼 = 1.0.  From the results, we can 
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see that even for more complicated datasets (e.g. Glass) GrC with overlapping measure 

still can produce good result even though high values of 𝛼 were used. 

All the results are benchmarked with other related works, for example 97.33% (Iris) 

and 95% (Wine) in [177], [178], and 75.45% (Glass) in [178]. 

Table 5.2: Experiment result for Iris in terms of accuracy and RMSE. 

 With overlapping 

measure 

Without overlapping 

measure 

 RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

𝛼 = 0.2 0.1164 97.14 2.3 0.1261 96.67 3.00 

𝛼 = 0.4 0.1170 97.62 2.52 0.1298 95.71 2.52 

𝛼 = 0.6 0.1227 96.67 3.33 0.1224 97.14 2.30 

𝛼 = 0.8 0.1178 97.62 3.17 0.1325 96.19 1.26 

𝛼 = 1.0 0.1421 93.33 3.85 0.1249 97.62 3.17 

 

Table 5.3: Experiment result for Wine in terms of accuracy and RMSE. 

 With overlapping 

measure 

Without overlapping 

measure 

 RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

𝛼 = 0.2 0.1134 94.67 2.98 0.092 93.33 4.08 

𝛼 = 0.4 0.1251 92.67 4.35 0.1386 91.33 4.47 

𝛼 = 0.6 0.0846 96.67 2.36 0.1272 92.00 3.80 

𝛼 = 0.8 0.0945 96.00 4.35 0.2416 76.67 9.13 

𝛼 = 1.0 0.1037 95.33 2.98 0.3082 52.67 29.48 
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Table 5.4: Experiment result for Glass in terms of accuracy and RMSE. 

 With overlapping 

measure 

Without overlapping 

measure 

 RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

RMSE Accuracy 

(%) 

Standard 

deviation 

(%) 

𝛼 = 0.2 0.2252 66.05 5.35 0.2285 65.58 4.47 

𝛼 = 0.4 0.1974 71.16 2.08 0.1995 66.05 4.53 

𝛼 = 0.6 0.2142 70.23 5.04 0.2166 65.11 4.65 

𝛼 = 0.8 0.2185 68.37 6.28 0.1630 67.91 5.55 

𝛼 = 1.0 0.2239 63.26 6.24 0.2326 59.53 9.95 

 

5.5 SUMMARY 

In this chapter, a new GrC algorithm with the overlapping measure is proposed. A 

parameter known as R-value is used to model the overlapping between the granules, 

and being included in the compatibility equation to allow the granules to overlap during 

the iterative data granulation.  This technique results in the intersection of the final 

granules by allowing an object to belong to one or more granules rather than simply 

one. 

The relevance of using R-value to measure the granules overlapping is also 

demonstrated in this chapter by using synthetic dataset. It is shown that the interest to 

measure the degree of overlapping is for data with different categories, in which the 

proposed compatibility measure provides additional parameters to model or to ‘control’ 

the amount of overlapping among the granules.  

The proposed overlapping GrC algorithm is validated by using three datasets from 

UCI Machine Learning Repository - Iris, Wine and Glass. The proposed algorithm 

shows a better performance in Iris, and the improvement is more obvious in more 

complicated datasets (Wine and Glass).  From the results, the classification accuracy 

recorded by the GrC with overlapping measure outperforms the conventional GrC even 

though with higher density factor  𝛼 (𝛼 ≥ 6). This also indicated that the overlapping 

GrC is robust and has potential in developing an FL rule base.   



96 
 

So far, the proposed algorithms related to GrC (Chapter 3 to 5) have been 

demonstrated to work effectively with Type-1 Fuzzy Logic Systems (T1-FLSs). In the 

next chapter, the weighted GrC (presented in Chapter 4) is extended to Type-2 Radial 

Basis Function Neural Network (RBFNN) that is functionally equivalent to Type-2 

FLSs. The initial study of interpretability in Type-1 FLS has been presented in Chapter 

4; hence the interpretability in Type-2 FLS is the focus of the next chapter. Moreover, 

all works presented in previous chapters (including this chapter) only make use of the 

initial parameters obtained from the final information granules. In other words, 

parameters optimisation is not included in training the FL membership functions 

parameters. Therefore, the optimisation of MFs parameters is included to maximise the 

predictive performance of the GrC- Neurofuzzy structure.  
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CHAPTER 6 

 
 

INTERPRETABILITY INDICES FOR TYPE-2 
FUZZY LOGIC SYSTEMS 
 

This chapter presents the extension of weighted granular computing (W-GrC) into 

Radial Basis Function Neural Network (RBFNN) and General Type-2 Radial Basis 

Function Neural Network (GT2-RBFNN). The focus in this chapter is the resulting 

interpretability in Type-2 Fuzzy Logic systems. Nauck’s index (NI) is identified as one 

the main interpretability measures in the literature; however, most of the applications 

are in the Type-1 Fuzzy Logic systems. Therefore, in this chapter a new interpretability 

measure based on NI is proposed and described in detail. The NI is assessed for both 

W-GrC and conventional GrC in type-1 and type-2 Fuzzy Logic models, and the impact 

on the interpretability of models elicited using GrC is investigated. Results from 

classification experiments showed that W-GrC has the potential to improve the 

predictive accuracy performance while maintaining a good rule-base interpretability. 

6.1 INTRODUCTION  

One of the motivations for using Fuzzy Logic systems (FLSs) is the implementation of 

linguistic variables and FL rules that can be easily understood by humans [16]. In 

general, there are two conflicting criteria in building an FL model: predictive accuracy 

and interpretability [215]. While accuracy indicates the closeness between the real and 

the model system [215], interpretability refers to the system’s capability to describe the 

behaviour of the real system in an understandable way [17]. In practice, the 

interpretability measure of an FLS is always dependent on how its rule base, antecedent 

and consequent are being understood [65]. 
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However, the task of quantifying interpretability is highly subjective and 

challenging because it depends on many parameters such as the individual experience, 

knowledge and preference [94]. From the literature, most researchers agree on using 

some complexity-based indices to represent interpretability, such as number of rules 

(NOR), total rule length (TRL) and average rule length (ARL) [94]. However, 

according to Gacto et al. [67] the interpretability measure is not only limited to 

complexity-based indices, but also includes semantic-based interpretability; both are 

observed from rule base and partition level. Examples of complexity-based 

interpretability index are NOR and number of conditions (rule base level) and number 

of MFs and features (partition level). For the semantic-based interpretability, the 

popular indices are rules relevance and consistency (rule base level), coverage and 

distinguishability (partition level). 

Nauck’s index (NI) [89] is one of the most popular indexes used to measure the 

interpretability of FLSs [90], [91], [216]. Comprising three main constituents – 

complexity, partition and coverage, one advantage of using NI is it covers most of the 

taxonomy of FLSs’ interpretability described above (complexity-based interpretability 

in rule base level and partition level and semantic-based interpretability in partition 

level). This completeness of NI offers a thorough evaluation on the interpretability of 

an FLS. 

Even though the interpretability has been studied widely in Type-1 FLSs [19], [86], 

[87] , the same cannot be said for the Type-2 FLSs. Investigations of interpretability in 

Type-2 FLSs are scarce; some works focused on minimising the number of rule-bases 

and rule length as appear in [217] [11], [218]. Implementations of NI in Type-2 FLSs 

can be seen in some research works for example in [94], [219], [220]. However, all 

these works only presented a single numerical value of NI, even though a type-2 Fuzzy 

Logic set is described by two separated membership functions; its upper membership 

function (UMF) and lower membership function (LMF).  

The GrC algorithm has been the subject of numerous studies in the construction of 

data-driven FL models. Recent GrC studies concentrated on the use of GrC to Type-2 

FL systems as presented in [121] where the iterative data granulation was used to 

estimate the FL rule parameters in the GT2-RBFNN models. The GT2-RBFNN model 

was developed by using the concept of α-planes, and General Type-2 fuzzy sets were 
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employed in both antecedent and consequent. In another research [221], Baraka et al. 

presented long-term learning structure that applied the concepts of GrC to excerpt 

knowledge from original data in the form of interval-valued sets. Other works related 

to the implementation of GrC into Type-2 Fuzzy Logic systems can be seen in [13] and 

[14]. The concept of feature weight in GrC has not yet been attempted to be integrated 

into the Type-2 Fuzzy Logic systems framework. 

The main contributions of this chapter are two-fold; the first is to extend the work 

in Chapter 4, weighted GrC (W-GrC) into Radial Basis Function Neural Network 

(RBFNN) and General Type-2 RBFNN. Here, the information granules formed from 

the W-GrC provide the initial parameters for the hidden layer of both Type-1 and Type-

2 models. The RBF-NF system's initial structure is optimised using back-error 

propagation (BEP) to boost the predictive performance. The second contribution is to 

propose a new interpretability measure in Type-2 Fuzzy Logic systems. Nauck’s index 

is utilised to describe the interpretability of Type-2 FLSs, taking into account - for the 

first time - both UMF and LMF. 

Therefore, the main objectives of this chapter are: 

 To implement the weighted GrC into Radial Basis Function Neural Network 

(RBFNN) and General Type-2 Radial Basis Function Neural Network (GT2-

RBFNN). 

 To propose a new interpretability measure in Type-2 Fuzzy Logic systems 

based on Nauck’s index. 

 To assess the impact of weighted GrC on the FL rule-bases as compared to the 

conventional GrC, in terms of the interpretability. 

 

6.2 INTERPRETABILITY INDEX FOR FUZZY LOGIC SYSTEMS 

Interpretability and accuracy are frequently incompatible goals when building Fuzzy 

Logic systems (FLS); one might be improved by forgoing the other, a scenario known 

as an interpretability-accuracy trade-off. In the context of FLS, interpretability is the 

quality of a model that enables humans to comprehend a system's behaviour by 

carefully examining its rule base. 
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One of the most popular interpretability indices is Nauck’s index [19]. Nauck 

created the Nauck's index (NI), a numerical index, to evaluate the interpretability of FL 

rule-based classification systems [19], [89]. It is calculated by multiplying three 

interpretability constituents: complexity of FLS (𝑐𝑜𝑚𝑝), average normalised partition 

index (𝑝𝑎𝑟𝑡) and average normalised coverage of fuzzy partition (𝑐𝑜𝑣) given by:  

                𝑁𝑎𝑢𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑚𝑝 × 𝑝𝑎𝑟𝑡  × 𝑐𝑜𝑣                               (6.1) 

The first constituent, complexity is given as: 

   𝑐𝑜𝑚𝑝 = 𝑔 / ∑ 𝑣௜
௡
௜ୀଵ               (6.2) 

Where 𝑔 is the number of classes, 𝑛 is the number of rules, and 𝑣 is the number of input 

variables used in the 𝑖-th rule. This component measures the level of complexity of 

FLSs. The equation implies that  the 𝑐𝑜𝑚𝑝 will only be 1 if the classifier consists of 

only one rule per class, and with only one variable used in each rule. For example, two 

classifiers with 3 and 5 rules may have the same degree of complexity, if the rules are 

using only one input variable.  Note that the number of partitions (or rules) is not being 

penalised here (in this component).  

As an example, in Iris with 4 input variables, 3 output classes, and assuming a 

classifier consists of 5 rules (granules) (with all 4 input variables are used in each rule), 

the 𝑐𝑜𝑚𝑝 can be computed as: 

                                                           𝑐𝑜𝑚𝑝 =
ଷ 

ହ×ସ
= 0.15              (6.3) 

However, the equation (6.1) does not imply that the interpretability index is directly 

proportional to the complexity of FLSs. Therefore, the term 𝑐𝑜𝑚𝑝 is suggested to be 

changed to 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦, since it is inversely proportional to the number of the number 

of input variables used. 

The second component, average normalised partition index (𝑝𝑎𝑟𝑡) is given as: 

𝑝𝑎𝑟𝑡തതതതതത =  
∑ ௣௔௥௧ೕ

೘
ೕసభ

௠
                          (6.4) 

Where  𝑝𝑎𝑟𝑡௝ =  
ଵ

௣ೕିଵ
, in which 𝑝௝ is the number of membership functions in the𝑗-th 

input variable. This component (𝑝𝑎𝑟𝑡തതതതതത) is used to penalise partitions with a high 

granularity. The maximum 𝑝𝑎𝑟𝑡௝ (i.e. 𝑝𝑎𝑟𝑡௝ = 1) is achieved when only two 
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membership functions (or granules) are used. Variables with 𝑝௝ < 2 is not considered 

in measuring the interpretability index [89].  

For example, if a variable 𝑥௝ consists of 5 membership functions, the value for 

𝑝𝑎𝑟𝑡௝ for that particular variable is given by: 

                                                    𝑝𝑎𝑟𝑡௝ =
ଵ 

ହିଵ
= 0.25                                                    (6.5) 

The value 𝑝𝑎𝑟𝑡തതതതതത then is taken as the average of  𝑝𝑎𝑟𝑡௝ for all input variables.  

The component 𝑐𝑜𝑣 stands for coverage degree of the fuzzy partition [19]. A 

complete coverage means that the membership degrees add up to 1 for each element of 

the domain [89]. If 𝑋௝  is the domain of 𝑗-th input variable partitioned by 𝑝௝ MFs 

൛𝜇௝
(ଵ), … , 𝜇௝

(௣ೕ)ൟ then the average normalised coverage of fuzzy partition (𝑐𝑜𝑣) is: 

𝑐𝑜𝑣തതതതത =  
∑ ௖௢௩ೕ

೘
ೕసభ

௠
               (6.6) 

Where 

             𝑐𝑜𝑣௝ =  
∫ ௛෡ೕ(௫)ௗ௫

೉ೕ

ேೕ
                                                        (6.7) 

with 𝑁௝ = ∫ 𝑑𝑥
௑ೕ

 for continuous domains.                

ℎ෠௝(𝑥) =  ൝
ℎ௝(𝑥)                        𝑖𝑓  0 < ℎ௝(𝑥) < 1

௣ೕି௛ೕ(௫)

௣ೕିଵ
                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (6.8) 

                                       ℎ௝(𝑥) =  ∑ 𝜇௝
(௞)௣ೕ

௞ୀଵ (𝑥)              (6.9) 

where ℎ௝(𝑥) is the sum of membership degrees for the 𝑗-th input variable. 

To exemplify the calculation of the coverage, a set of synthetic membership 

functions for an input variable (𝑥) with 𝑝௝ = 3 is shown in Figure 6.1.  It consists of 

three Gaussian membership functions associated with the input variable labelled as 

LOW, MEDIUM and HIGH. The standard deviations are set to be constant (𝜎 = 0.2) 

and centres are located at 𝑋ଵ = {0, 0.5, 1}. 

Two points of interest are studied here, which are 𝑥ଵ = 0.2 and 𝑥ଵ = 0.6. Based on 

equation (6.8), the sum of membership degrees at 𝑥ଵ = 0.2 and 𝑥ଵ = 0.6 (ℎଵ(0.2) and 
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ℎଵ(0.6)) are 0.9312 and 1.0178, respectively. For each element of the domain, the sum 

of membership degrees is expected to be 1 in order to have complete coverage. With 

reference to equation (6.8), in the first case, the ℎ෠௝(𝑥) will remain the same, i.e. ℎ෠௝(𝑥) =

ℎ௝(𝑥). However, since the  ℎ௝(𝑥) in the second case is more than one, the value of ℎ෠௝(𝑥) 

is calculated as: 

ℎ෠௝(𝑥) =
3 − 1.0178

3 − 1
 

                            = 0.9911           (6.10) 

Once ℎ෠௝(𝑥) is obtained for all values of 𝑋, the integral of ℎ෠௝(𝑥) 𝑑𝑥 can be computed 

as the area under the graph. In the case where the data is rescaled to the interval of [0,1], 

the 𝑁௜ in this chapter is consistently 1 (area of the domain), as illustrated in Figure 6.1.  

 

Figure 6.1: Membership functions for an input variable  
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6.3 RADIAL BASIS FUNCTION NEURAL NETWORK 

6.3.1 TYPE-1 RBFNN 

Radial basis function neural network (RBFNN), with a good function approximation 

ability, is a useful tool for modelling nonlinear processes [222]. Radial basis function 

(RBF) networks and Fuzzy Logic inference systems essentially exhibit the same 

functional behaviour [223], [224]. Figure 6.2 shows the schematic diagram of an 

RBFNN with 𝑛 receptive units.  The RBF computed by the 𝑖-th receptive units is 

maximum when the input vector is near the centres of that unit [224]. Gaussian function 

is commonly used as the radial basis function in RBF network [225]. 

RBF network consists of three layers, as shown in Figure 6.2: 

1)  Input layer - The input layer is the layer to which the inputs apply, and can contain 

many predictor variables, each of which is linked to a separate independent neuron 

[226]. The outputs of the input layer are connected directly to the non-linear 

processing units (neurons) in the hidden layer [227]. 

2) RBF layer – The RBF layer neurons provide a numerical value by applying their 

applied inputs to the radial basis function. These sums are transferred to the output 

layer after being multiplied by linear weights [227]. The number of clusters 

determines the number of nodes in the RBF layer. In this chapter, the centre of each 

neuron of RBF layer is obtained from the weighted GrC (W-GrC) algorithm.  

3) Output layer - The output layer comprises of a weighted sum of outputs obtained 

from the RBF layer [228]. Each neuron is associated with weights (𝑧ଵ, 𝑧ଶ,, . . ., 𝑧௣). 

The RBF layer neuron's output value is multiplied by its weight before being 

transferred to the summation layer, which adds up the weighted values and displays 

the sum as the network's output [226].  
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Figure 6.2: RBFNN structure 

There are 𝑛 linguistic rules of the form: 

𝑅௜: If 𝑥ଵis 𝐴௜.ଵ AND 𝑥ଶ is 𝐴௜.ଶ, AND,…AND  𝑥௠ is 𝐴௜.௠ THEN 𝑦 is 𝑦௜, where 𝐴௜,௝ is a 

Fuzzy Logic set for 𝑖-th rule and 𝑗-th input variable. The membership value of the input 

𝑖 in 𝑗-th rule is defined by Gaussian membership functions: 

                                                        𝜇௜௝(𝑥௝) = exp ቆ
ି൫௫ೕି௖೔ೕ൯

మ

ଶఙ೔ೕ
మ

ቇ                      (6.11) 

The fuzzification process that takes place in the first layer computes the degree of 

membership of the inputs for each corresponding fuzzy sets 𝐴௜,௝. In the second layer, 

the output of the 𝑘-th is then the firing strength 𝑢௞of rule 𝑘 given by: 

𝑢௞ =  𝜇௞,ଵ(𝑥ଵ)𝜇௞,ଶ(𝑥ଶ)… 𝜇௞,௠(𝑥௠),       𝑘 = 1, … , 𝑛            6.12) 

And can be written as: 

𝑢௞ = ∏ 𝜇௞,௝
௠
௝ୀଵ 𝑥௝            (6.13) 

The rule firing strength is regarded as how closely the current input state complies 

with each rule in the rule base, with 1 representing perfect compliance [229]. Finally, 

the output 𝑦, which is a crisp value, is calculated as: 

     𝑦 =
∑ ௨೔௭೔

೙
೔సభ

∑ ௨೔
೙
೔సభ

            (6.14) 

𝑥ଵ 

𝑥ଶ 

𝑥௠ 

𝑚ଵ 

𝑚ଶ 

𝑚௡ 

𝑧ଵ 

𝑧ଶ 

𝑧௣ 

𝑦 

Input Layer RBF Layer Output Layer 
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The MFs parameters 𝑐௜௝ and 𝜎௜௝ (acquired from GrC) are optimised by using the 

back-error-propagation (BEP) algorithm. The BEP has been proven to be effective in 

the system optimisation [130]. 

 

6.3.2 GENERAL TYPE-2 RBFNN 

T2-FLS and T1-FLS have similarity in terms of their linguistic IF…THEN  rules. In 

T2-FLSs, the premise and consequent are of type-2 fuzzy sets (T2-FS). The main 

difference is that the membership function in T2-FS is a fuzzy set, instead of a crisp 

number as in T1-FS [51]. When compared to the T1-FS, the Footprint of Uncertainty 

(FOU) that the T2-FS encompasses gives the T2-FS more degree of freedom, which 

leads to better modelling of uncertainty [60]. 

GT2-FS characterised by 𝐴ሚ is a bivariate membership function 𝜇஺෨(𝑥, 𝑢) ⊆ [0, 1] 

where the primary variable is 𝑥 ∈  𝑋. The secondary variable is characterised by 𝑢 ∈

 𝐽𝑥 ⊆ [0, 1] as shown in Figure 6.3. Therefore, 𝐴ሚ  is defined as: 

                                    𝐴ሚ = {(𝑥, 𝑢),  𝜇஺෨  (𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈  𝐽௫  ⊆ [0,1] }              (6.15) 

An 𝛼-plane is characterised by 𝐴ሚఈ, is the union of the primary MFs of 𝐴ሚ with 𝛼 (0 ≤

 𝛼 ≤  1): 

                                       𝐴ሚఈ = {(𝑥, 𝑢),  𝜇஺෨  (𝑥, 𝑢) ≥ 𝛼|𝑥 ∈ 𝑋, 𝑢 ∈ [0,1] }                     (6.16) 
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Figure 6.3:  α−planes (reproduced from [3]). 

 

Each receptive unit in a Type-1 RBFNN reflects a Fuzzy Logic rule: 

𝑅௜  ∶ IF  𝑥ଵ is 𝐹ଵ
௜  and .  .  . IF  𝑥௩  is 𝐹௩

௜  and .  .  . 

                               IF  𝑥௠ is 𝐹௠
௜   THEN 𝑦 is 𝐺௜;   𝑖 = 1,   .  .  .  , 𝑁                              (6.17) 

The rule is represented by the GT2-FLS and is as follows: 

𝑅෨௔
௜  ∶ IF  𝑥ଵ is 𝐹෨ଵ

௜  and .  .  . IF  𝑥௩  is 𝐹෨௩
௜  and .  .  . 

                            IF  𝑥௠ is 𝐹෨௠
௜   THEN 𝑦 is 𝑔෤௜(𝑥⃗௣);   𝑖 = 1,   .  .  .  , 𝑁                             (6.18) 

where 𝑥ଵ, … , 𝑥௩ are the input vectors, 𝐹෨ଵ
௜ , … 𝐹෨௩

௜   are the T2-FS, and 𝑖, … , 𝑁  is  the  

number  of rules.  

Figure 6.4 shows the diagram for General Type-2 RBFNN (GT2-RBFNN). The 

data are loaded into the GT2-RBFNN as a vector represented by 𝑥⃗௣ = [𝑥ଵ, … , 𝑥௡] with 

unknown uncertain standard deviation 𝜎௜  =  [𝜎௜
ଵ, 𝜎௜

ଶ]. Prior to getting the defuzzified 
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output by averaging the reduced set [𝑦௟
ఈೞ൫𝑥⃗௣൯, 𝑦௥

ఈೞ(𝑥⃗௣)] the firing interval 𝐹௜
ఈೞ is utilised 

to identify the reduced set.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: General Type-2 RBFNN 

 

The horizontal slice in the General Type-2 RBFNN layer is defined by 𝑆 firing 

strengths consisting a set of the lower and upper firing strengths: 

 

𝐹௜
ఈೞ = ቂ𝑓௜

ఈೞ൫𝑥⃗௣൯, 𝑓̅
௜
ఈೞ൫𝑥⃗௣൯ ቃ                   (6.19) 

 

Where the lower and upper firing strength is given by equation (6.20) and (6.21), 

respectively: 

      𝑓௜
ఈೞ൫𝑥⃗௣൯ = 𝑒𝑥𝑝 ቈ− ∑ ൬

௫ೕି௖ೕ
೔

ఙ೔
మ ൰

ଶ
௠
௝ୀଵ ቉

ఈೞ

                     (6.20) 

 

      𝑓̅
௜
ఈೞ൫𝑥⃗௣൯ = 𝑒𝑥𝑝 ቈ− ∑ ൬

௫ೕି௖ೕ
೔

ఙ೔
భ ൰

ଶ
௠
௝ୀଵ ቉

ఈೞ

               (6.21) 
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Next, the type reduction is implemented to convert the output of the FL inference 

engine into type-1 fuzzy sets [230]. This step is necessary before obtaining a crisp 

output through the defuzzification process. In the type reducer layer, the firing strengths 

are used to calculate the reduced set for 𝛼௦ level [𝑦௟
ఈೞ൫𝑥⃗௣൯, 𝑦௥

ఈೞ(𝑥⃗௣)] as in equation 

(6.22) and (6.23). 

  

    𝑦௟
ఈೞ =

∑ ௪೗,ഀೞ
೔ ௙̅೔

ഀೞା∑ ௪೗,ഀೞ
೔ ௙೔

ഀೞಿ
ಽഀೞశభ

ಽഀೞ
೔సభ

∑ ௙̅
೔
ഀೞಽഀೞ

೔సభ
ା∑ ௙

೔
ഀೞಿ

ಽഀೞశభ

           (6.22) 

 

    𝑦௥
ఈೞ =

∑ ௪ೝ,ഀೞ
೔ ௙̅೔

ഀೞା∑ ௪ೃ,ഀೞ
೔ ௙೔

ഀೞಿ
ೃഀೞశభ

ೃഀೞ
೔సభ

∑ ௙̅
೔
ഀೞೃഀೞ

೔సభ
ା∑ ௙

೔
ഀೞಿ

ೃഀೞశభ

           (6.23) 

 

where 𝐿ఈೞ
 and 𝑅ఈೞ

 are the switch points [231]. 

Finally, defuzzification is carried out by the defuzzification layer, which 

aggregates all horizontal slices. Once 𝑦௟
ఈೞ and 𝑦௥

ఈೞ have been determined by using the 

Enhanced Karnik-Mendel (EKM) [231] type-reduction approach, the type-reduced set 

can be defuzzified to determine the system's output values (crisp) [11]. The Average of 

End-Points Defuzzification (AEPD) is employed in this situation [232]: 

  𝑦௣൫𝑥⃗௣൯ =  ∑ 𝛼௦ൣ൫𝑦௟
ఈೞ൫𝑥⃗௣൯ + 𝑦௥

ఈೞ൫𝑥⃗௣൯/2൯൧ௌ
௦ୀଵ / ∑ 𝛼௦

ௌ
௦ୀଵ          (6.24) 

 

Numerous techniques based on computational intelligence (CI) or gradient descent 

(GD) theory can be utilised to optimise model structures. The back-error-propagation 

(BEP) algorithm is perhaps the most used technique for this modelling structure's GD-

based optimisation [9]. The BEP is a gradient-based method that operates in the 

weighted space of an MSE cost function. Therefore in this chapter, the common 

parameters 𝑐௝
௜ and [𝜎௜

ଵ, 𝜎௜
ଶ] of the antecedent GT2 membership functions, and the 

weighting factors [𝑤௟,ఈೞ

௜ , 𝑤௥,ఈೞ
௜ ] at each 𝛼-level of a GT2-RBFNN, are optimised by using 

the BEP algorithm.  
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6.4 NAUCK INDEX IN TYPE-2 FUZZY LOGIC SYSTEMS 

The computation of the interpretability index (Nauck Index) for Type-2 Fuzzy Logic 

systems is presented here. As described in Section 6.2, the NI consists of three 

constituents: complexity (𝑐𝑜𝑚𝑝), average partition normalised index (𝑝𝑎𝑟𝑡തതതതതത) and 

average normalised coverage of fuzzy partition (𝑐𝑜𝑣തതതതത). From equation (6.2), the 

component 𝑐𝑜𝑚𝑝 only depends on the number of classes, the number of rules, and the 

number of input variables. Therefore, the calculation of component 𝑐𝑜𝑚𝑝 in Type-2 

Fuzzy Logic systems are similar with the Type-1 Fuzzy Logic systems, where the same 

value of this component is used to obtain the Nauck’s index for both upper membership 

functions (UMF) and lower membership functions (LMF).  

Similarly, this situation is also applicable for the second component, 𝑝𝑎𝑟𝑡തതതതതത which 

only consists of the number of membership functions (or granules, or rules) and the 

number of input variables. Hence, the calculation of the partition index is also the same 

with the Type-1 systems. 

The focus of this subsection is therefore to show the computation of the component 

coverage of fuzzy partition (𝑐𝑜𝑣തതതതത). It is proposed to have two values of interpretability 

index, for both UMF and LMF.  The computation of coverage index is done on the 2-

D domain of 𝐴ሚ, which is called the footprint of uncertainty (FOU) of  𝐴ሚ or the 𝛼 =  0 

plane[233], [234] (as in Interval type-2 Fuzzy sets) such that: 

       𝐹𝑂𝑈(𝐴ሚ) =  𝐴ሚ଴            (6.25) 

Table 6.1 shows an example of corresponding interval membership degree (or 

interval value fuzzy sets (IVFS)), LMF and UMF for each domain value 𝑋௝. By 

definition any IVFS is characterised by their LMF and UMF [234] i.e.: 

                                               𝐴መ(𝑥) = (𝜇̅஺෨(𝑥), 𝜇஺෨(𝑥))                                                   (6.26) 

Table 6.1 is based on the membership functions shown in the Figure 6.5, with 𝑥ଵ 

corresponds to 𝑥 = 0.1, 𝑥ଶ corresponds to 𝑥 = 0.2 and 𝑥ଵ଴ corresponds to 𝑥 = 1.  

For the 𝑖-th fuzzy set 𝐴ሚ௜
௝  in the input variable 𝑋௝, a Gaussian membership function 

(MF) with a fixed mean 𝑐௝
௜ and an uncertain width that takes on values in [𝜎௜

ଵ, 𝜎௜
ଶ] is 

used [235]  (see Figure  6.5). 
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Table 6.1: Corresponding interval membership degree, LMF and UMF for 

each domain value 𝑋௝ 

𝑥௜ 𝐴መ(𝑥) 𝜇஺෨(𝑥) 𝜇̅஺෨(𝑥) 

𝑥ଵ [0.03,0.135] 0.03 0.135 

𝑥ଶ [0.135,0.32] 0.135 0.32 

𝑥ଷ [0.41, 0.61] 0.41 0.61 

𝑥ସ [0.8, 0.88] 0.8 0.88 

𝑥ହ [1,1] 1 1 

𝑥଺ [0.8, 0.88] 0.8 0.88 

𝑥଻ [0.41, 0.61] 0.41 0.61 

𝑥଼ [0.135, 

0.32] 

0.135 0.32 

𝑥ଽ [0.03, 

0.135] 

0.03 0.135 

𝑥ଵ଴ [0, 0.04] 0 0.04 

 

Figure 6.5: Interval type-2 fuzzy set with an uncertain width 
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To have two values for the Nauck’s index (LMF and UMF), the value of ℎ௝(𝑥) (the 

sum of membership degrees for the 𝑗-th input variable) can be calculated by using both 

upper and lower membership functions. Therefore, the ℎ௝(𝑥) for the LMF can be 

described as: 

ℎ௝(𝑥) =  ∑ 𝜇஺෨ೖ
ೕ

௣ೕ

௞ୀଵ (𝑥)            (6.27) 

and ℎ௝(𝑥) for the UMF is given by: 

ℎఫ
ഥ (𝑥) =  ∑ 𝜇̅஺෨ೖ

ೕ

௣ೕ

௞ୀଵ (𝑥)            (6.28) 

in which 𝑝௝ is the number of membership functions in the 𝑗-th input variable, 𝜇஺෨ is the 

lower membership functions and 𝜇̅஺෨ is the upper membership function.  

To demonstrate the calculation of the coverage, a set of synthetic membership 

functions for an input variable (𝑥) with three membership functions  is shown in Figure 

6.6 and 6.7.  The standard deviations for the LMF and UMF [𝜎௜
ଵ, 𝜎௜

ଶ] are set to be 0.15 

and 0.2, respectively, with fixed centres at 𝑥 = {0, 0.5, 1}. Taking 𝑥 = 0.2 and 𝑥 =

0.6 as example, and the new equations (6.27) and (6.28), based on Matlab R2020a the 

value for coverage parameters are tabulated in Table 6.2. 

Table 6.2: Coverage parameters for Type-2 Fuzzy Logic systems for both 

LMF and UMF 

 𝑥

= 0.2 

𝑥

= 0.6 

ℎ௝(𝑥) 0.5464 0.8293 

ℎఫ
ഥ (𝑥) 0.9315 1.0178 

 

Next, the rest of calculation is similar with the Nauck’s index in Type-1 FL 

systems, i.e. equation (6.6) and (6.7). As we can see in Table 6.2, the value of ℎ෠௝(𝑥) is 

equal to all ℎ௝(𝑥) and ℎఫ
ഥ (𝑥), except ℎఫ

ഥ (𝑥) when 𝑥 = 0.6. In this case (where ℎఫ
ഥ (𝑥) >

1) , it will activate the selection of ℎ෠௝(𝑥) as: 

                                ℎ෠௝(𝑥) =  
௣ೕି௛ണതതത(௫)

௣ೕିଵ
                                  (6.29) 
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 which is based on equation (6.6). Repeating these steps for all domain values, the 

coverage for LMF and UMF for variable 𝑥 are 0.7512 and 0.9617, respectively.  

 

 

Figure 6.6: Type-2 membership functions 
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Figure 6.7: Value of membership degrees used in the computation of coverage 

parameters 

6.5 EXPERIMENTAL RESULT 

The weighted GrC (W-GrC) algorithm elaborated in Chapter 4 is repeated here with 

other classifiers: RBFNN and GT2-RBFNN. The analysis presented in this section 

covers both the system’s accuracy and interpretability (with Nauck’s index). The 

proposed method is validated using five classification datasets that vary in terms of size 

and dimensionality – Iris, Wine, Breast Cancer, Heart and Cardiotocography. 

The feature weighting parameter is set to  𝛽 ≥ 1 (ranging from 2 to 10) in 

accordance with the recommendations in [181] in order to study how changing the value 

of 𝛽 might affect the model's prediction performance. 10 trials are performed for each 

value of 𝛽 with five information granules (or rules) being produced, except for 

Cardiotocography with 3 trials considering the size of the dataset (large number of 

instances). The system's interpretability (minimum number of rules) and capability to 

attain good accuracy are all taken into consideration while choosing the five 

information granules, and for consistency, the number of granules is the same across 
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all datasets. All feature weights start out at one (equal weighting) and are anticipated to 

change adaptively as the granulation process progresses. The objective of the 

simulation is to demonstrate the impact of W-GrC as compared to the standard GrC in 

terms of model accuracy and interpretability. 

6.5.1 System’s predictive accuracy 

W-GrC's performance with various values of 𝛽 in RBFNN and GT2-RBFNN is 

summarised in Tables 6.3 to 6.8. The results are compared to the standard GrC, which 

is referred to 'GrC' in the tables.  RBFNN improves its classification accuracy for the 

Iris data at β ∈ {2,5,6,8,9,10} with the maximum accuracy being 98.33%. Accordingly, 

W-GrC with GT2-RBFNN surpasses the standard GrC at β ∈ {2,3,4,5,7,9,10}, with a 

maximum accuracy of 98%, which happens at β = 2 and  β = 10. 

The significance of W-GrC can be seen in RBFNN at β ∈ {2,4,10} in the Wine 

dataset (13 input features compared to 4 in Iris). Remarkably, the majority of values of 

in GT2-RBFNN produces accuracy that is greater than that of the standard GrC. It 

should be observed, nonetheless, that the standard GrC performs somewhat worse in 

GT2-RBFNN than in RBFNN. 

It was clear from the Breast Cancer dataset that greater values of 𝛽  (β ≥ 6) 

are necessary for RBFNN to produce successful results. The accuracy is maximum 

when β = 7 with 98.16% and while standard GrC scored 97.43%. With the exception 

of when β = 2, the W-GrC outperforms the original GrC for GT2-RBFNN, following 

a nearly identical pattern in Wine. 

In Heart, RBFNN performs more consistently than GT2-RBFNN, where W-GrC 

consistently outperforms the standard GrC in terms of accuracy, with the exception of 

the case where β = 2. In contrast, W-GrC with GT2-RBFNN achieves the greater 

accuracy at β ∈ {3,4,5,7,8}. 

In the Cardiotocography dataset, which is the largest dataset in this study (with 

2126 instances and 21 input features), GT2-RBFNN outperforms its counterpart 

RBFNN. GT2-RBFNN and RBFNN record the maximum predictive accuracies of 

88.92% and 87.76%, respectively. In GT2-RBFNN, good impact can be observed for 

all values of 𝛽 except when 𝛽 = 2. The pattern in RBFNN is different, where better 

results are achieved at 𝛽 ∈ {2,3,5,7,8,10}. 
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We can infer from the results that W-GrC performs better than the standard GrC. 

However, to attain higher predictive performance, careful selection of 𝛽 (which is a 

hyperparameter for the algorithm) is essential. When a suitable parameter is selected, 

W-GrC is demonstrated to achieve the best classification accuracies. This is because, 

when information granules are formed, the more significant input features are given 

larger weights in each iteration. 

Benchmarking this chapter's findings against those of similar works 

demonstrated that they are comparable to those of other researchers' models, notably 

those utilising neural networks and support vector machines (SVM). For the Iris data, 

neural network research [236] and [237] produced accuracies of 98.04% and 97.66%, 

respectively. These studies also reported accuracy rates of 96.72% and 98.66% for the 

Wine. The Radial Basis Function Network (RBFN) model created in [238] 

obtained 96.77% for the Breast Cancer dataset, whereas [239] achieved 98.51%. 

Although the results from the Heart are not as good as those from other datasets 

(87.46% in RBFNN and 84% in GT2-RBFNN), they are nonetheless on par with other 

works, such as [240] with accuracy levels of 86.25% and [241] with accuracy levels of 

83%. For the Cardiotocography case study, the benchmarked accuracies are 84.2% 

[242], 86.38% [243] and 83.12% [244]. 

Finally, the results are benchmarked against Support Vector Machine 

(SVM), another widely used technique in machine learning. Iris results achieved in 

[245] and [246] for instance, recorded the accuracies of 96% and 98%, whereas Wine 

results presented in [246] and [247] were 98.73% and 100%, respectively. Breast 

Cancer and Heart case studies also showed comparable performances, as presented 

in  [248] (Breast Cancer – 98.07%), [239] (Breast Cancer – 97.14%), [249] (Heart – 

82.9%) and [250] (Heart – 86.89%). Finally, the performance with Cardiotocography 

is also benchmarked, such as 74.92% in [244], 86.59% in [251] and 84.38% in [243]. 
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Table 6.3: Performance of W-GrC in Type-1 RBFNN with different 𝛽 values 

(Iris and Wine) 

 Iris Wine 

 RMSE Acc. (%) Standard 

deviation 

(%) 

RMSE Acc. (%) Standard 

deviation 

(%) 

GrC 0.0763 97.67 2.74 0.0866 98.67 1.72 

𝛽 = 2.0 0.0777 98.33 2.36 0.0726 99 1.61 

𝛽 = 3.0 0.0909 96 3.06 0.0904 98.33 2.36 

𝛽 = 4.0 0.0859 96.33 3.67 0.0714 99.33 1.41 

𝛽 = 5.0 0.0732 98 2.33 0.0797 98.67 1.76 

𝛽 = 6.0 0.0783 98.33 1.76 0.0868 97.33 5.84 

𝛽 = 7.0 0.0735 97.67 1.61 0.0881 98.33 2.36 

𝛽 = 8.0 0.0765 98 1.72 0.0854 98.33 3.6 

𝛽 = 9.0 0.0785 98.33 1.76 0.0807 98.33 4.22 

𝛽 = 10.0 0.0761 98 1.72 0.0768 99.67 1.05 
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Table 6.4: Performance of W-GrC in Type-1 RBFNN with different β values 

(Breast Cancer and Heart) 

 Breast Cancer Heart 

 RMSE Acc. 

(%) 

Standard 

deviation 

(%) 

RMSE Acc. 

(%) 

Standard 

deviation  

(%) 

GrC 0.1486 97.43 1.05 0.3339 84.75 4.99 

𝛽 = 2.0 0.1676 96.91 1.95 0.3479 84.41 3.46 

𝛽 = 3.0 0.1506 97.35 1.84 0.3336 86.95 2.89 

𝛽 = 4.0 0.1628 96.84 1.04 0.3383 86.44 2.65 

𝛽 = 5.0 0.151 97.35 1.11 0.3306 85.42 2.42 

𝛽 = 6.0 0.154 97.5 1.11 0.3273 87.46 4.39 

𝛽 = 7.0 0.1302 98.16 1.16 0.3263 85.08 4.51 

𝛽 = 8.0 0.1473 97.5 1.35 0.3198 86.27 3.04 

𝛽 = 9.0 0.1352 97.94 1.19 0.3233 85.42 3.12 

𝛽 = 10.0 0.1599 97.72 1.07 0.3338 85.08 4.21 
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Table 6.5: Performance of W-GrC in Type-1 RBFNN with different β values 

(Cardiotocography) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6: Performance of W-GrC in General Type-2 RBFNN with different β 

values (Iris and Wine) 

 Iris Wine 

 RMSE Acc. 

(%) 

Standard 

deviation 

(%) 

RMSE Acc. 

(%) 

Standard 

deviation  

(%) 

GrC 0.1179 96.33 2.92 0.0971 96.33 3.67 

𝛽 = 2.0 0.1101 98 1.72 0.1062 97 1.89 

𝛽 = 3.0 0.1131 97.67 2.74 0.1033 97.33 2.11 

 Cardiotocography 

 RMSE Acc. 

(%) 

Standard 

deviation (%) 

GrC 0.1773 84.63 2.54 

𝛽 = 2.0 0.1505 86.12 2.58 

𝛽 = 3.0 0.1757 86.2 2.59 

𝛽 = 4.0 0.1796 83.69 2.51 

𝛽 = 5.0 0.1609 87.76 2.63 

𝛽 = 6.0 0.178 84.39 2.53 

𝛽 = 7.0 0.1733 85.49 2.56 

𝛽 = 8.0 0.175 85.25 2.56 

𝛽 = 9.0 0.1897 82.2 2.47 

𝛽 = 10.0 0.1678 84.94 2.54 
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𝛽 = 4.0 0.1183 96.67 2.72 0.0867 97.67 2.25 

𝛽 = 5.0 0.1078 97.67 2.25 0.095 96.33 2.46 

𝛽 = 6.0 0.1139 96.33 2.46 0.0853 97.67 2.74 

𝛽 = 7.0 0.1094 97.33 2.63 0.088 99 1.61 

𝛽 = 8.0 0.1122 95.33 2.81 0.0968 97.33 2.11 

𝛽 = 9.0 0.1158 97.33 2.11 0.0933 98.67 1.72 

𝛽 = 10.0 0.1101 98 1.72 0.1051 96.33 3.67 

 

Table 6.7: Performance of W-GrC in General Type-2 RBFNN with different β 

values (Breast Cancer and Heart) 

 Breast Cancer Heart 

 RMSE Acc. 

(%) 

Standard 

deviation 

(%) 

RMSE Acc. (%) Standard 

deviation  

(%) 

GrC 0.1741 96.25 2.12 0.3059 81.69 4.06 

𝛽 = 2.0 0.1824 96.18 1.58 0.3063 81 5.99 

𝛽 = 3.0 0.1663 96.76 1.44 0.3072 83 3.78 

𝛽 = 4.0 0.1451 97.21 1.3 0.31 84 2.65 

𝛽 = 5.0 0.1685 96.76 1.21 0.3034 83 3.73 

𝛽 = 6.0 0.1662 96.62 1.56 0.2997 80 2.75 

𝛽 = 7.0 0.1574 97.35 1.39 0.305 81.86 4.66 

𝛽 = 8.0 0.1608 96.91 1.69 0.3031 81.86 5.06 

𝛽 = 9.0 0.1502 97.65 0.67 0.3009 81.69 5.23 

𝛽 = 10.0 0.1654 96.47 1.83 0.31 80.68 4.67 
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Table 6.8: Performance of W-GrC in General Type-2 RBFNN with different β 

values (Cardiotocography) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

6.5.2 Interpretability index 

In this work, interpretability and accuracy of the develop systems are given 

consideration in building the FL models. As presented in the previous section, the 

proposed W-GrC is shown to improve the RBFNN and GT2-RBFNN models’ 

predictive performance. In this section, the impact on models’ interpretability is 

considered.  

Table 6.9 shows the Nauck’s index  for the W-GrC and the original GrC in both 

RBFNN and GT2-RBFNN.  The NI for a dataset with W-GrC is taken as the average 

of all trials (𝛽 = 2.0 to 𝛽 = 10.0) as in Section 6.5. It is shown that in both models 

(RBFNN and GT2-RBFNN), Improved predictive accuracy can be achieved with W-

GrC without significantly sacrificing the model's interpretability. In all experiments, 

 Cardiotocography 

 RMSE Acc. (%) Standard 

deviation (%) 

GrC 0.1584 87.36 2.62 

𝛽 = 2.0 0.1661 86.52 2.59 

𝛽 = 3.0 0.1648 87.77 2.63 

𝛽 = 4.0 0.1545 87.98 2.67 

𝛽 = 5.0 0.1544 88.92 2.63 

𝛽 = 6.0 0.159 87.51 2.65 

𝛽 = 7.0 0.1561 88.45 2.65 

𝛽 = 8.0 0.1585 88.35 2.66 

𝛽 = 9.0 0.1584 88.56 2.63 

𝛽 = 10.0 0.148 87.67 2.62 
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the impact on Nauck's index was less than 10%, indicating minimum impact of W-GrC 

in the interpretability of FL models.  

The interpretability in Type-1 RBFNN is consistently higher than its counterpart 

General Type-2 RBFNN. According to [252], one of the properties which potentially  

decrease the overall interpretability of T2 systems is due to the lack of agreed 

mechanism to derive the footprint of uncertainty (FOU). However, by offering a 

method for creating the footprint of uncertainty's borders that maintains shape 

coherency throughout the creation of type-2 sets, this can be prevented. 

The measured NI is compared with other research that use similar datasets. 

However, in the literature, the comparison is still limited due to the use of different 

datasets for example Abalone [253], Thyroid type-2 [254], and Liver Disorder [255] . 

In [92], using 15 linguistic variables, the NI for Iris with Adaptive Dynamic 

Clustering Neuro-Fuzzy (ADCNF), Enhanced Neuro-Fuzzy (E23NF) and Transparent 

Neuro-Fuzzy ranged between 0.036 to 0.053, Breast Cancer (0.0067 to 0.072) and Heart 

(0.0027 to 0.0653).  In [256], the NI for Wine with 49 total rule length (TRL) is 0.00153. 

This benchmark shows that the measured NI in this chapter are comparable with other 

related works in literature, hence concluding that the increase in performance 

(predictive accuracy) did not result in any significant interpretability loss. 

Table 6.9: Comparison of the interpretability index 

 RBFNN General Type-2 RBFNN 

W-GrC GrC W-GrC GrC 

UMF LMF UMF LMF 

Iris 0.0252 0.0239 0.0081 0.0132 0.0083 0.0135 

Wine 0.0061 0.0065 0.0027 0.0045 0.0027 0.0044 

Breast Cancer 0.0065 0.0067 0.0049 0.0052 0.0054 0.0055 

Heart 0.0044 0.0044 0.0017 0.0019 0.0018 0.002 

Cardiotocography 0.004 0.0039 0.0022 0.0025 0.0025 0.0029 
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6.6  SUMMARY 

In this chapter, the interpretability measure known as Nauck’s index (NI) is extended 

for the first time to Type-2 Fuzzy Logic systems. This is achieved via the computation 

of lower membership function (LMF) and upper membership functions (UMF). The 

weighted GrC (W-GrC) is also extended to neuro-fuzzy modelling structures based on 

Radial Basis Function (RBF). The relevance of the input features is represented by the 

feature weighting algorithm and these weights have an impact on the granulation as it 

develops. Based on data from the UCI machine learning repository, the effectiveness 

of W-GrC is shown in type-1 and type-2 FLSs, where both system's accuracy and 

interpretability are presented and analysed. 

In both Type-1 and Type-2 RBFNN models, the experimental results show that W-

GrC performs better against the conventional GrC in terms of the predictive 

performance when a suitable hyperparameter is chosen. This due to assigning the right 

weightage for the input variables according to their importance. Interestingly, the 

feature weights evolve throughout the iterative data granulation process, meaning that 

the weights are not predetermined or treated as constant value. Instead, it takes into 

account the current information granules, specifically the within-granule variances in 

assigning the new adaptive weights for each iteration. 

Besides, the proposed interpretability index based on NI is successfully 

implemented on the Type-2 FL systems. The computation of NI for Type-2 FL systems 

is shown in detail, taking into account both upper membership function and lower 

membership function. The assessment of interpretability for the W-GrC shows that 

there is no major impact on the rulebase interpretability, indicating the potential of W-

GrC in achieving high predictive accuracy while maintaining the system’s 

interpretability. 

Main results and methodology from this work is included in paper entitled “An 

evolving feature weighting framework for radial basis function neural network 

models”. It was published in Expert Systems journal in November 2022. The results 

presented this journal was mainly on the performance of W-GrC in RBFNN and GT2-

RBFNN classifiers.  
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For the future, this work can be extended to another quadrant of interpretability – 

semantics at the fuzzy partition. The Nauck’s index used in this work covers another 

three quadrants of interpretability, which are complexity at the rule base level, 

complexity at the fuzzy partition level and semantics at the fuzzy partition level (based 

on the three components in the Nauck’s index). Therefore, criteria in semantics at the 

rule-base level such as consistency, relevance and co-firing rules has the potential to be 

investigated and to be used as an index in measuring the interpretability of T2-FLS. 
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CHAPTER 7 
 

CONCLUSIONS AND FUTURE RESEARCH 
 

This chapter provides the conclusions of this thesis and gives recommendations for 

future research. 

7.1 CONCLUSIONS 

One of the advantages of using FL modelling is its capability in representing the 

knowledge in the form of if-then rules that imitates the human way of thinking. This 

can be achieved by using the idea of granular computing (GrC), for example using the 

iterative data granulation in extracting the information from the data, and using this 

information in building the FL rule-bases. The aims of this research work are to 

investigate methods to address uncertainty in GrC, methods to address variable 

importance in GrC, methods to address granular overlapping in GrC, and methods to 

evaluate the resulting impact on the interpretability. Several new computational 

frameworks are developed in this thesis to address a number of challenges in system 

interpretability, i.e. uncertainty, feature weighting and overlapping. 

The issue of interpretability due to the data uncertainty is tackled with the aid of 

information theory.  Shannon entropy is used to quantify the uncertainty during data 

granulation (as a conflict) between information granules due to similar process 

conditions with different outcomes. The entropy expresses the reluctance of two 

granules that are about to be combined. It therefore directs the granulation process to 

combine the granules with the least amount of uncertainty, hence yielding better 

representation of the systems through FL rule-bases. The GrC with entropy is 

demonstrated to perform better than the standard GrC and other clustering algorithms, 

obtaining the highest accuracies in Iris, Wine and Glass. Penalising the uncertainty in 
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the merging process promotes higher quality information granules, and therefore, FL 

rule-bases formed are more distinguishable and provide better predictions. 

In an attempt to organise data collectively, one would naturally exclude, or assign 

less weights for the features that are less important to the task. In this thesis, a new 

iterative data granulation technique with evolving feature weighting, named as 

weighted GrC (W-GrC) is introduced in order to describe the significance of input 

features and utilise these weights to guide the information granulation process. Rather 

than assigning weight at the beginning of the granulation process and using constant 

weights throughout the iterations, the feature weights are calculated with reference to 

the variances in the current information granules and adaptively change in each 

iteration. With this embedded feature-weighting technique, the iterative data 

granulation is allowed to prioritise the more relevant input variables to have more 

influence in the merging process. Within Type-1 FLS framework, W-GrC is tested with 

datasets with various dimensionality or number of input variables (Iris – 4, Wine – 13 

and Glass – 10), and the results show that W-GrC outperforms the standard GrC in 

terms of RMSE and predictive accuracy with appropriate choice of β. Furthermore, the 

final rule-bases developed with W-GrC show good distinguishability as compared with 

the final rule-bases developed with the conventional GrC. Improved predictive 

accuracies are also observed when W-GrC is applied in Type-1 and Type-2 RBFNN, 

in which the experiments are expanded to Breast Cancer, Heart and Cardiotocography 

datasets.  While it has been demonstrated that W-GrC can produce greater accuracy, no 

significant degradation in the model's interpretability is observed (using Nauck’s 

index), with impact less than 10% for all datasets.  

Models’ transparency and rules consistency may be affected due to the presence of 

granular overlapping. Therefore, a new iterative data granulation algorithm is 

developed to control the amount of overlapping among the granules. The new 

compatibility function incorporated the R-value, a metric that represents the ratio of 

overlapping areas among categories in a data cluster. By enabling an object to belong 

to one or more granules rather than just one, this strategy leads to the overlapping of 

the final granules. This enables the new GrC algorithm to control the degree of 

overlapping in the information granules, and provides capability in dealing with 

datasets with high overlapping. It is demonstrated that GrC with overlap measure 

performs better in Iris, and the benefit is more pronounced in more challenging datasets 
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(Wine and Glass). According to the findings, although having a greater density factor, 

the GrC with overlapping measure surpasses the traditional GrC in terms of 

classification accuracy. This demonstrates the strength of the overlapping GrC and its 

potential for creating FL rule-bases. This method convinces the compatibility search to 

limit the degree of granular overlapping, which would lessen model transparency and 

jeopardise the consistency of the rules. 

Most of the applications of Nauck’s index as the interpretability measure are within 

the Type-1 Fuzzy Logic systems. Therefore, a new formulation for interpretability 

index in Type-2 Fuzzy Logic systems is developed for the first time based on the 

Nauck’s index. This is achieved via the computation of lower membership function 

(LMF) and upper membership functions (UMF). The proposed interpretability index 

based on Nauck’s Index is successfully implemented on the Type-1 and Type-2 FL 

systems in which the weighted GrC (W-GrC) is extended to neuro-fuzzy modelling 

structures based on Radial Basis Function (RBF).  The effectiveness of W-GrC is 

demonstrated in type-1 and type-2 FLSs using data from the UCI machine learning 

repository (Iris, Wine, Heart, Breast Cancer and Cardiotocography) where both the 

system's accuracy and interpretability are demonstrated and analysed. Indicating the 

possibility of W-GrC to achieve high predictive accuracy, the examination of 

interpretability for the W-GrC reveals that there is no significant impact on the rule-

base interpretability. 

7.2 RESEARCH LIMITATIONS AND FUTURE RESEARCH 

Despite the promising new results and knowledge gained from the proposed 

frameworks in this thesis, further study is needed to create a transparent 

and interpretable method based on Fuzzy Logic and RBFNN that strikes a fair balance 

between accuracy and generalisation. Quantification of uncertainty is one way to 

achieve this, in which Information Theory is applied to numerically quantify the 

uncertainty that occurs during the data granulation level (captured via conflict). The 

computation of uncertainty in this thesis, however, makes use of histogram method to 

determine the probability, and hence the Shannon entropy. The size of the bins used to 

categorise the data may have an impact on the histogram's structure and patterns. The 

computation of Shannon entropy could be challenging since it involves the unknown 

probability density function. To tackle this, kernel density estimator could be a 
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prominent way to provide the approximation on the probability density.  Besides, the 

study of uncertainty quantification can be extended to other types of uncertainty, such 

as nonspecificity and fuzziness. 

One direction for future work in the W-GrC would be to combine the feature 

weighting technique with a feature selection /pruning algorithm. This would suggest a 

two-step approach so that the most relevant input features are selected first, and the 

weights are then readjusted accordingly. Even though maintaining the whole input 

features may have some advantages (i.e. preserving the information), this approach 

could impact the system’s interpretability due to the high number of features. Rather 

than maintaining the whole input features (as demonstrated in this thesis), the input 

features can be reduced via a feature selection process. Therefore, this combination will 

promote higher simplicity (hence interpretability) of the system due to the feature 

reduction task. 

Granular overlapping can have an impact on a model's transparency and rule 

consistency. In this research, the R-value is easily computed because the labels are 

known and available. However, it would not be straightforward in the case of 

unsupervised learning, where the data labels are unknown. In this case, one might have 

some partial knowledge of the clustering, like in the setting of semi-supervised 

clustering, which could be used to extend the presented framework in this thesis. 

 The interpretability studies in this chapter covered three quadrants of 

interpretability - Complexity at the rule base level, Complexity at the fuzzy partition 

level and Semantics at the fuzzy partition level. For future work, another quadrant of 

interpretability Semantics at the rule base level can be included, which covers criteria 

such as consistency, relevance and co-firing rules.  
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