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ABSTRACT

Bdellovibrio bacteriovorus (B. bacteriovorus) are a promising tool in the fight

against antimicrobial resistance. With a predatory lifestyle and a wide range of

prey, including antibiotic drug resistant pathogens, they are novel solution to the

growing issues presented by antimicrobial resistant bacteria. Despite the proven

importance of motility to B. bacteriovorus predation efficiency, their swimming

behaviour remained little understood. The key characteristics of their motility

including their re-orientation mechanisms were unknown.

This study has utilised digital inline holographic microscopy (DIHM), a novel

three-dimensional and high speed imaging technique, to shed new light on B.
bacteriovorus swimming behaviour. The cells were tracked in a range of conditions

including in bulk fluid, near to surfaces and in the presence of live prey cells. The

resulting trajectories were analysed to quantify the key motility characteristics,

patterns, and differences in behaviour dependent on condition changes.

I have shown, for the first time, that B. bacteriovorus have a complex bi-phasic

swimming style with run-reverse-flick re-orientations. Their motility behaviour

including swimming speeds, run lengths and re-orientation angles remains con-

sistent over a co-culturing window of 19-24 hours. However, it changes radically

near to surfaces showing a significant drop in swimming speed and no longer

performing a run reverse flick style re-orientation. Instead, its behaviour becomes

significantly more homogeneous in both run length distribution and re-orientation

angle. In contrast, in the presence of live prey cells B. bacteriovorus retain the

run reverse flick behaviour but increase their swimming speed. This is likely a

mechanism to increase predation efficiency in areas of high prey density. These

results represents the first in-depth three-dimensional study of B. bacteriovorus
motility.
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1
INTRODUCTION

1.1 Antimicrobial resistance

Antimicrobial resistance (AMR) is a significant and growing issue and so forms

the key motivation behind this research project. In particular, AMR of bacterial

pathogens is associated with high mortality rates which are predicted to increase

significantly in the coming years [1, 2]. Investment into new and novel solutions

to AMR is urgently needed if we are to avoid a global health care disaster [1–7].

Antimicrobial resistance refers to the ability of microorganisms, such as bac-

teria and fungi, to evolve immunity to antimicrobial agents, for example drugs

such as penicillin. This resistance is due to natural selection and adaptation, and

is a normal consequence of evolution [8, 9]. In simple terms, bacteria are able

to quickly and consistently adapt to varied pressures within their environment.

This ability is part of what makes them such pervasive and successful organisms.

The environmental pressures they encounter can include changes in temperature,

food sources, or the introduction of new or harmful chemicals such as antibiotic

drugs. Cells with traits that allow them to successfully adapt to these changes

are more likely to survive and reproduce. Therefore these traits get passed on

from one generation to the next [9]. In addition to direct genetic transfer from

parent to daughter cells, bacteria are able to perform horizontal gene transfer

[8]. This transfer can happen in one of four main ways: conjugation, transduction,

transformation or mutation [3]. These processes can be seen in more detail in

Fig. 1.1 All three processes result in the indirect gain (not from parent cells) of

small quantities of DNA [8]. Horizontal gene transfer makes bacterial popula-

1



1. INTRODUCTION

Figure 1.1: Diagram showing the five main targets for antibiotic treatments, the
four main mechanisms of bacterial resistance and the four key ways bacteria
acquire that resistance. Taken from [3].

tions particularly robust and is considered a more significant contributor to the

development of antibiotic resistance than direct gene transfer [3, 8, 10].

The information encoded by the horizontally gained DNA enable bacteria to

employ a variety of mechanisms to resist antibiotic treatments [3]. One of the

key distinctions between different antibiotic treatments is if they are bactericidal

or bacteriostatic. Bactericidal antibiotics kill the bacteria within the body. Bac-

teriostatic drugs do not kill them. Instead they stop the bacteria from growing,

relying on the immune system to remove the infection [11]. Different antibiotics

target different essential cell mechanisms in order to disrupt the bacterium’s

life cycle [12]. A range of antibiotic targets can be seen in Fig. 1.1. These targets

can be structural cell features such as membrane structure or cell wall synthesis.

They can also be biochemical pathway targets such as protein synthesis or RNA

polymerase [3]. Bacterial cells combat these treatments in a number of different

ways. This can include preventing the drug from entering the cell in the first

place, expelling the drug from the cell using efflux pumps, degrading or modifying

the drug once it is inside the cell or modifying the initial drug target molecule or

2



1. INTRODUCTION

system [3, 13].

Whilst acquisition of AMR is a natural process, human practices have signif-

icantly accelerated AMR rates over recent years. Two of the key human driven

contributors to AMR are; over-prescription of antibiotics in clinical settings and

extensive use of antibiotics in intensive farming [14]. Antibiotics revolutionised

medicine when they were discovered in the 1900’s [15]. They proved to be very

effective at combating previously untreatable conditions and continue to be a

cornerstone of modern medicine. This is reflected in the fact that antibiotic con-

sumption by daily defined doses increased 65% between the years 2000 and

2015[16]. Unfortunately the knock on effect of this greater antibiotic use is an

increase in AMR. The link between antibiotic consumption and resulting AMR

has been well studied, showing association across various healthcare settings in

numerous countries [16]. For a specific example; in one study of urban poor in the

USA, it was shown that people were significantly more likely to be colonised with

methicillin-resistant Straphylococcus aureus (MRSA) if they had used antibiotics

within the last year [17]. However, it is important to note that increases in AMR

cannot be simply attributed to greater medicinal antibiotic use alone. Studies have

found that a combination of factors in tandem exacerbate the problem, including

lower spending on public healthcare and higher rates of private healthcare [18].

In addition to medicinal overuse of antibiotics, industrial scale use of antibi-

otics in farming is having a serious, negative impact. Global demand for animal

protein as a food source is continuing to rise at unprecedented rates [19]. This

demand is driving an increase in the use of antibiotics for the health and produc-

tivity of livestock - approximately 80% of antibiotics in the USA are utilised in

farming, agriculture and aquaculture [20–22]. This is in turn causing an increase

in AMR pathogens in farm animals. Concerningly these pathogens are then able

to spread easily from the animals to interconnected environments including water

systems, soil and humans [23, 24].

These human practices, coupled with a lack of research into new antibiotics,

has caused a significant rise in problematic infections or ‘super-bugs’ that are

resistant to several widely used antibiotics [25]. Well known examples include

MRSA, Clostridium difficle (C. diff) and multi-drug-resistant Tuberculosis (MDR

TB). This poses significant risks both to global health care and the economy. A

recent study has shown that in 2019 1.27 million deaths were a direct result of

antimicrobial resistant bacterial infection [26]. In addition, it showed a further

3.68 million deaths were due to illness in which bacterial AMR contributed,

3



1. INTRODUCTION

Figure 1.2: Map showing the deaths attributable to AMR every year by 2050 (per
continent). Taken from [4].

making AMR one of the leading causes of death globally, in all age groups. A

previous review has estimated that by 2050 around 10 million people could die per

year due to AMR infections [7]. It is most likely that of these deaths an unequal

portion will occur in less affluent countries as can be seen in Fig. 1.2 [4, 27]. Apart

from the obvious health care disaster this poses, it is likely to have a significant,

negative impact on the global economy, including food supply.

In order to tackle AMR there will need to be a global and multifaceted ap-

proach. This includes actions such as tracking AMR infections, implementing

prevention and containment strategies and investment into new vaccines and

diagnostic testing methods [5, 27]. Perhaps most crucially, it will be necessary to

develop new and novel antimicrobial drugs and therapeutics [25]. One exciting

possible alternative to traditional antibiotics is the use of living antibiotics such

as predatory bacteria. A key candidate set of organisms for this is Bdellovibrio
bacteriovorus and like organisms (BALOs). Bdellovibrio bacteriovorus (B. bacte-
riovorus) has be shown to be effective at predating a wide range of pathogenic

bacteria including concerning multi-drug-resistant strains [28]. In addition, stud-

ies suggest that the nature of the predation cycle prevents pathogens from being

able to develop a genetically stable resistance to predation, making long term

resistance unlikely and giving this form of treatment a significant advantage over

traditional antibiotic drugs [29, 30].

4



1. INTRODUCTION

1.2 B. bacteriovorus

B. bacteriovorus was first discovered by Stolp and Petzold in 1962, whilst at-

tempting to isolate bacteriophages from soil [31]. Since then B. bacteriovorus and

like organisms (BALOs) have been found in a variety of environments includ-

ing freshwater, seawater and digestive tracts [32]. B. bacteriovorus is a type of

δ-proteobacterium (Gram negative). They are particularly small at approximately

0.8-1.2µm in length and 0.3-0.5µm wide [33] - considerably smaller than many of

their prey. They are primarily obligate endobiotic predators, meaning they are

reliant on prey for their life-cycle and predate by invading and replicating within

prey cells [34]. B. bacteriovorus uses this method to predate on a wide range of

Gram negative bacteria including common pathogens such as Salmonella and E.
coli as can be seen in Fig. 1.3.

Figure 1.3: Electron micrographs showing a) Attachment of B. bacteriovorus to a
prey cell of E. coli (where the larger cell is the prey), b) B. bacteriovorus replicating
inside a prey cell, where the large grey oblong is the predator containing smaller
rod-shaped B. bacteriovorus progeny. Taken from [35].

5



1. INTRODUCTION

1.2.1 Application of B. bacteriovorus as an antibiotic

Awareness of AMR has grown over recent years, leading to an expanding demand

for new and alternative antibiotic treatments. In particular, the idea of living an-

tibiotics has increased in popularity. Predatory bacteria, such as B. bacteriovorus,

are not the only players in this field, with the most notable alternative being

bacteriophages. Using bacteriophages as antibiotics is not a new idea - they have

been in use as a form of antibiotic since 1919 [36]. However, bacteriophages are

highly specific to a strain of bacteria, requiring either detailed knowledge of infec-

tion type before treatment or a ‘cocktail’ of related phages in use together [37, 38].

Another significant problem with phage therapy is that prey bacteria readily

evolve resistance to bacteriophages, similarly to evolving resistance to traditional

antibiotics as discussed in section 1.1 [36–38]. In contrast, B. bacteriovorus are

able to evolve alongside their prey with a heavy selection advantage going to

those predators which evolve advantages in overcoming prey bacteria defences.

An additional issue with phage therapy is its interaction with the human immune

system. Studies have shown that the use of bacteriophages will illicit a response

from the immune system. This response can vary depending on the phage in

question. However it’s general impact is to reduce the effectiveness of the phage

overtime and with repeated use [39, 40]. This immune response can also have

actively damaging impact including exacerbating existing illness such as collitis

[41]. There needs to be further study of this impact of bacteriophages to fully

understand the implications on use [39]. It may be possible that there are similar

issues caused by the therapeutic use of B.bacteriovorus. However, as of yet, these

type of problems have not been reported. Overall B. bacteriovorus has advantages

over phage therapy both in terms of broad application and prevention of long term

resistance.

B. bacteriovorus has become a model organism for the use of predatory bacteria

in infection treatments. Therefore, it is important to note that whilst the primary

motivation behind this research project is AMR in the setting of human healthcare,

B. bacteriovorus have been found to have a wide variety of potential applications

beyond this. This includes in environmental management, waste water treatment,

food production and agriculture, [42–46]. This broadens the scope of the impact of

this and similar research projects.

In focusing on B. bacteriovorus’s potential application in healthcare settings,

there are some key considerations, foremost: their ability to predate pathogens

and their safety of use within the human body, including interactions with the

6



1. INTRODUCTION

immune system. As discussed, B. bacteriovorus has been shown to be effective at

predating wide range of pathogenic bacteria. However, and crucially in the fight

against AMR, it has also been shown to be effective at doing this within biofilms of

antibiotic resistant bacteria [47, 48]. This includes biofilms formed of multi-drug

resistant bacterium [49]. Biofilms are complex structures of bacterial colonies

which show high resistance to antibiotics. They are known to help protect bacteria

from the human immune system, giving rise to infection persistence particularly

in medical settings [50]. Recent studies have shown that B. bacteriovorus can

act as key modulators of biofilm formation in nature altering the structure and

composition of films [51]. This ability to predate within and interact with biofilms

makes B. bacteriovorus very promising for a variety of medical applications, such

as minimising chronic infection on implanted medical devices.

In addition to biofilm formation, pathogenic bacteria use cell membrane modifi-

cations, including bacterial capsules, protect themselves from the human immune

system. Bacterial capsules are layers which enclose the whole bacterial cell, typi-

cally coating the cell in long molecules such as long chain sugars [52]. They help to

prevent detection and envelopment by immune cells in a variety of ways including

physically shielding cell surface antigens and mimicking human cell surfaces

[52, 53] These membrane modifications also enable them to evade bacteriophage

infection and as such could also pose a challenge to detection and invasion by

B.bacteriovorus [54, 55]. There have not been many studies to investigate the im-

pact of bacterial capsules on B.bacteriovorus predation yet. The studies that have

been conducted showed that B.bacteriovorus were still able to predate despite

the presence of a capsule, as can be seen in Fig. 1.4 [56]. However, other studies

have shown that some bacterial S-layers can impact predation [57]. Whilst more

studies need to be done into the impact of bacterial membrane modifications and

capsules on B.bacteriovorus predation, the results so far are promising.

Further to broad application to AMR bacterium, B.bacteriovorus have been

tested on a range of specific human disease relevant pathogens. This includes

showing their effective predation of bacteria from cystic fibrosis isolates [58] -

a debilitating and often terminal lung disease that is exacerbated by bacterial

infection - and predation of bacteria associated with periodontal (gum) disease.

It was found that although predation efficiency decreased with the complexity of

mix of bacterium from samples, they were able to predate two key dental infection

pathogens (Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomi-
tans) from ex vivo samples [59]. This is small snapshot of B. bacteriovorus potential

for treating human disease.
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Figure 1.4: Electron micrograph showing a thin section of a capsulated E.coli K29
cell (the larger cell) with an attached B.bacteriovorus which has penetrated the
capsule. Scale bar 200 nm. Taken from [56].

Beyond predating relevant pathogens in vitro lab settings studies have also

been done in vivo on animal models. This includes in zebra fish larvae where

B.bacteriovorus worked in tandem with the host immune system to get rid of

Shigella infection [60]. Similarly, they have been shown to be safe for use in mouse

models, including respiratory and intravenous inoculation, with the mouse body

clearing the B. bacteriovorus quickly and efficiently after predation [61]. They

have also been found to be non-toxic to rabbit ocular surfaces [62]. Further studies

will be needed in a variety of animal models to establish their safety of use, and

better understand the immune response to B.bacteriovorus treatment. However,

studies so far have had promising results. Perhaps even more excitingly to testing

in animal models, B. bacteriovorus have been tested on five different human cell

lines and were shown to be non-cytotoxic in all cases, i.e. they did not trigger

inflammation [63].

As the above examples demonstrate, the potential for application of

B. bacteriovorus in medical settings is clear. However, the use of B. bacteriovorus as

a treatment in human patients requires a deep understanding of their behaviour

including all stages of their complex life cycle and the mechanisms they use for

predation. There are still gaps in our understanding which require further study.

8



1. INTRODUCTION

1.2.2 B. bacteriovorus life cycle and predation mechanisms

Figure 1.5: Schematic diagram depicting the predatory lifecycle of B. bacteriovorus.
The key stages include: 1) Free swimming attack phase cells, 2) Attachment to
prey cell membrane, 3) Prey cell invasion and bdelloplast formation, 4) Prey
consumption and B. bacteriovorus growth, 5) Septation of daughter progeny cells,
6) Lysis of prey cell and release of progeny.

The basis to B. bacteriovorus’s application as an antibiotic is its fascinating

predatory life cycle, as can be seen in Figs. 1.5 and 1.6. All BALOs have a predatory

aspect to their life cycle. Some strains of B. bacteriovorus, such as Tiberius, can

alternate between slow axenic growth and predation. However, most are obligate

predators (including the HD100 strain used throughout this study) [32].

The B. bacteriovorus life cycle starts with free swimming attack phase cells.

These cells navigate through their environment until they encounter a prey cell.

When an attack phase B. bacteriovorus makes contact with a prey cell it attaches

itself to the outside of the cell surface, this is reversible initially - there is a short,

1-5 min recognition period during which B. bacteriovorus is able to distinguish

between living Gram negative prey cells and other elements in its environment

such as dead cells, Gram positive cells or debris [64]. If it detects a live prey cell

it will permanently attach to the outside of the prey membrane, if not, it will

detach and swim off to find viable prey [65] [64]. This attachment process takes

approximately 10-30 min [66].
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Figure 1.6: Helium-ion microscopy (HIM) images showing the B. bacteriovorus
life cycle, whilst predating E. coli. Images clearly show the attachment of B.
bacteriovorus to prey cells (10-30min), the formation and evolution of B. bacte-
riovorusplasts (1h) and the consumption and lysis of prey cells (2-3h). The plot
in the centre shows the predation process predicted by a numerical model (solid
lines) fitted to the cell count by counting cells in phase-contrast micrographs,
where the dashed line is the sum of intact and already lysed bdelloplasts in the
model. Taken from [66].

10



1. INTRODUCTION

Once attached to the cell surface B. bacteriovorus begins the process of pene-

trating into the prey cell membrane. It uses a secretion of hydrolytic enzymes to

create a small pore (around 200 nm diameter) in the prey cell membrane through

which it squeezes itself [35, 67]. The predator then locates itself between the prey

cell membrane layers within the periplasm. This process is remarkably fast taking

only 1-2 min [35]. Various studies have shown that B. bacteriovorus have type

IV pili which are essential to this process of prey cell attachment and invasion,

likely aiding in surface adhesion and potentially using twitching or ratcheting

mechanisms to help force the predator through the pore opening [65, 67, 68]. Once

within the periplasm layer the B. bacteriovorus neatly seals the pore behind it

using a form of LPS plug which is not yet well understood [35].

Once safely inside the prey cell periplasm B. bacteriovorus attaches itself to

the cytoplasmic membrane causing the cell to round, forming a spherical structure

known as a bdelloplast [69]. The bdelloplast becomes the home for the predator

as it uses a sequential, orchestrated arsenal of predatory hydrolytic enzymes

and nucleases to degrade the contents of the prey cell including DNA [70–72].

The degraded cell contents serves as a source of energy and nutrients which B.
bacteriovorus uses to grow filamentously [69].

After the prey cell has been fully consumed the predator septates into multi-

ple daughter progeny cells, typically between 4-6 cells per prey cell [73]. These

daughter progeny cells grow their own flagellum, exit the prey cell membrane

through discrete pores, leaving behind a ghost cell [73]. The daughter progeny

are initially shorter than mature attack phase cells, however they lengthen and

mature, and subsequently continue the predatory cycle [73] . As can be seen from

Fig. 1.6 the entire life cycle from attachment to prey lysis takes about 3 h.

Genetic studies of B. bacteriovorus, looking at the predation abilities of a

variety of mutants, have highlighted some key components to B. bacteriovorus
predation. Two of the most significant genes groups for predation efficiency are

for pilus and motility [74]. However, B. bacteriovorus free swimming motility

remains poorly understood. The basic characteristics of their swimming, such

as re-orientation mechanisms, are largely unknown and so any impact these

characteristics have on B. bacteriovorus ability to find prey cells within their

environment are also unknown. The focus of this project was to study B. bac-
teriovorus motility in previously unseen detail. The aim was to shed light on

their swimming characteristics, contributing to the overall understanding of their

predatory behaviour.
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1.3 Bacterial motility

There is a fascinating diversity in bacterial motility, including swimming, crawling

and swarming behaviours. These behaviours play an important role in the life

cycle of bacteria, such as aiding in biofilm formation, finding nutrients in their

environments and dispersal of progeny cells [75].

This section introduces the key concepts that underlie bacterial swimming

behaviour including Reynolds numbers, Brownian motion, bacterial flagella and

chemotaxis. It also outlines what we already know about B. bacteriovorus swim-

ming behaviour and the areas to be investigated.

1.3.1 Micro-scale swimming and Reynolds numbers

One of the most significant differences between swimming on the microscale of

bacteria compared to the macroscale of organisms such as fish is the relationship

between the inertial forces (necessary to accelerate masses) and the viscous forces

(the resistance of fluids to shear). This relationship can be described using a

dimensionless parameter called the Reynolds number (R), where:

R = LVζ
η

, (1.1)

where L is the linear size of the particle (in the case of a bacterium the length of

the cell), V is the velocity of the particle, ζ is the specific gravity of the fluid and η

is its viscosity [76].

Crucially, bacteria experience very low Reynolds numbers compared to those

at the macroscale. Macroscale organisms such as medium sized fish (for example

a dogfish) experience Reynolds numbers of R ≈ 105 whereas bacterium experience

R ≈ 10−5 [76–78]. In terms of the forces involved this shows that there is negligible

inertia meaning that bacteria cannot coast - i.e. when they stop actively propelling

themselves forward they almost immediately stop travelling in that direction [76].

This, amongst other effects, has important implications for bacterial swimming

strategies. For example, the symmetry of the flow around a bacterium makes that

flow effectively reversible. Therefore, in order to make ‘progress’ at low Reynolds

numbers bacteria must have an asymmetrical element to their swimming pattern

[79, 80].
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1.3.2 Brownian motion and diffusion

Brownian motion is named after the man who first observed the phenomenon - the

botanist, Robert Brown. In 1828 he spotted that when pollen grains are suspended

in water they move perpetually, appearing to dance around randomly [81]. At the

time this was a controversial discovery and it wasn’t until 1905, when Einstein

related Brownian motion to the kinetic energy of a particle (in turn helping to

confirm that matter consists of discrete particles), that the true significance of

this discovery began to be appreciated [76].

Brownian motion causes particles in an aqueous medium to move in the

motion of a random walk, i.e. there is an equal likelihood of them moving in any

given direction over a chosen time step. The key here is that this random walk

style Brownian motion causes diffusion. In turn, diffusion drives many biological

processes and has a significant impact on bacterial swimming behaviour.

There are two types of diffusion relevant to bacterial motion: translational

and rotational. Translational diffusion relates to the uniform movement in space

of a particle (non-rotational), with the coefficient of this giving a measure of

how quickly particles can disperse in a given medium. The translation diffusion

coefficient (Dt) is given by:

Dt = kBT
f

, (1.2)

where kB is the Boltzmann constant, T is the absolute temperature, f is the

frictional coefficient of the particle. The friction coefficient ( f ) of an object can be

found using equation1.3 below:

f = F⃗
v⃗

, (1.3)

where F⃗ is the force and v⃗ is the velocity of the particle.
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In the case of bacterial swimmers that exist in the regime of low Reynolds

numbers, the inertia of a particle is negligible, meaning that the viscous drag is by

far the most dominant force present and is approximately equal to the frictional

coefficient. From hydrodynamics we can use Stokes’ law to find this drag force

and so the friction coefficient:

F⃗D = 6πηα⃗v ≈ f v⃗, (1.4)

where η is the viscosity of the medium and α is the radius of the particle.

Combining equations 1.2 and 1.4 gives us an equation for the translational

diffusion coefficient of a particle known as the Stokes-Einstein equation which

can be applied in biologically relevant settings:

Dt = kBT
6πηα

. (1.5)

The rotational diffusion of a particle can be calculated in a similar manner to

the translational diffusion. However, instead of relating to the uniform movement

of a particle in space, it relates to the rotation of that particle in space about

a given axis. There is a slightly different frictional coefficient in this case [76],

resulting in, for a spherical particle of radius α, a rotational diffusion coefficient

(Dr) where:

Dr = kBT
8πηα3 . (1.6)

It is important to note that the equations above describe the motion of a spher-

ical object. A large number of bacteria are not spherical. Instead they are often

rod or rod-like - the B.bacteriovorus cells used in this study are comma shaped

and the E.coli prey cells are rod shaped. The diffusion and micro-hydrodynamics

of anisotropic objects such as rods is significantly more complex than that of

spheres. Their behaviour is dependent on variety of factors, including their shape

parameters and the viscoelasticity of their surroundings [82, 83]. In the case of

this study, the diffusion of spherical objects give a sufficient approximation of cell

movement to enable successful trajectory analysis.

14



1. INTRODUCTION

Both translational and rotational diffusion have a significant impact on the

strategy bacteria use to survive. Not all bacteria are motile, some passively use

diffusion to their advantage, others use active motility strategies to optimise their

life cycles. The combination of low Reynolds number and diffusion means that

there is little point to a bacterium searching its local environment for individual

useful molecules, it will gain as much by passively waiting to bump into them.

However, there is a point to finding an environment with higher concentrations of

useful molecules - increasing your likelihood of encountering them [79]. In the

case of B. bacteriovorus, where their source of nutrients may also have active

swimming abilities, the situation becomes very much more complex.

1.3.3 Bacterial motility mechanisms

There are an assortment of mechanisms involved in bacterial motility. The major-

ity of motile bacteria use some form of external appendage to enable movement,

these include pili and flagellum. The most studied and well understood form of

bacterial swimming is the planktonic state, where cells use one or more flagella to

power their motion. Fig. 1.7 shows some examples of bacterial flagella including

peritrichous (flagella all over the cell body), amphitrichous (one flagellum present

at each pole end of the cell) and monotrichous (one flagellum at one pole end of

the cell).

Figure 1.7: Diagram showing different types of bacterial flagellation. A Peritric-
hous: flagellum present all over the cell surface, for exaple E. coli. B Amphitric-
hous: two flagellum, one at each pole of the cell, for example Campylobater jejuni.
C Monotrichous: a single flagellar location at one pole of the cell, for example B.
bacteriovorus.
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Bacterial flagella are formed of a long (up to 15 µm), thin (≈ 20nm), semi-rigid

filament attached to the cell body via a flexible section known as a hook [84] . The

base of the hook is joined to a rotary motor which is embedded in the cell body

as can be seen in Fig. 1.8c. This rotary motor is often reversible and is typically

driven by the movement of protons or sodium ions - know as the proton or sodium

motive force [85–87].

Free swimming bacteria typically have a pattern of motion of a random walk -

with long straight sections, known as runs, punctuated by re-orientation events

(when the cells change direction). The style of re-orientation a bacterium performs

is mostly dependent on the type and number of flagella it has. This leads to is

a wide variety of swimming styles. Some bacterial cells, including E.coli and

Salmonella enterica serovar Typhimurium (S. Typhimurium) can switch their

flagella motor direction [88]. This motor switching causes the cell swimming

direction to change and is driven by a system of sensory and signalling proteins

within the cell [87]. This pattern is known as run and tumble swimming, and is

illustrated in Fig. 1.8 a and b.

One interesting example of bacterial swimming that also employs switching

direction of the flagellar motor is the ‘darting’ motion of Campylobater jejuni [89].

In this case, the bacterium are amphitrichously flagellated - have one flagellum at

each pole of the cell. These opposing flagellum rotate, resulting in one wrapping

around the cell body in the direction of travel. When they switch the rotor direction

this flagellum wrapping switches - one unwraps and the other wraps causing a

sharp change in direction [89].

An additional example of motor reversal driving a swimming pattern is the‘run-

reverse-flick’ behaviour of Vibrio alginolyticus [90, 91]. Similarly to B. bacteri-
ovorus, Vibrio alginolyticus are monotrichous, with their single flagellar located

on a pole end of the cell. When the cell switches the direction of the motor, it

reverses it’s path. This puts a force on the hook section of the flagellum, which

buckles and cause a secondary turn of approximately 90 °[90, 91].

In contrast to the above examples Rhodobacter sphaeroides can only rotate

their flagellar in one direction - they have a unidirectional rotary motor [92]. They

have one lateral flagellum which they intermittently stop rotating. This results

in a run-stop-run swimming style. When the flagellum is not rotating the cell

body will reorient in the environment due to Brownian motion. Interestingly, the

coiling of their relaxed flagellum may also contribute to their angular position

change [92].
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Figure 1.8: Series of diagrams illustrating E. coli swimming technique. a:
Schematic diagram illustrating the swimming of a peritrichously flagellated bac-
terium such as E. coli. b: Set of epifluorescence images showing the ‘run-to-tumble’
transition. In frame one, all flagella rotate counterclockwise (CCW), resulting
in the bundling of the flagellar filaments and therefore straight swimming. In
frame two, one motor has switched from CCW to clockwise (CW), and the bundle
is beginning to come apart. In frame three, the CW filament has transformed
from normal to semicoiled and all the filaments have unbundled, resulting in a
‘tumble’ which is an active reorientation event. c: Schemtic diagram showing the
architecture of the E. coli flagellar motor. Taken from [75]

Similarly to Rhodobacter sphaeroides, Sinorhizobium meliloti also have unidi-

rectional roatry motors [93]. However, they have a bundle of flagellum, similar

to E.coli. This results in them employing a different motility strategy to both

Rhodobacter sphaeroides and E.coli. Instead of stopping their flagella motors

or switching them, they asynchronously modulate their speed. This induces a

slowing down of their swimming, resulting in a smooth turn which reorients the

cell [93, 94].

In addition to these free swimming behaviours, a number of bacteria also

use surface based motility including swarming, gliding and twitching. Swarming

motility is a coordinated group movement across solid or semi-solid surfaces,

that is mediated by flagellar [95]. It involves cell to cell communication, and

often an increase in flagellar numbers, a change in cell shape and specific cell

surface secretions [95]. The biological implications of swarming are still not well

understood. However, it is known that swarming can increase antibiotic resistance
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and is often linked to pathogenicity [95]. Gliding and twitching behaviour are

also linked to pathogenicity, partly through their role in biofilm formation [96].

Twitching is mediated by the extension and retraction of pili on the cell surface, as

is some types of gliding motility. However the mechanisms of gliding are generally

less well characterised [97]. All three behaviours enable bacterial cells to spread

across surfaces, with benefits for the bacterial colony.

Despite the wide variety of bacterial motility styles the overall outcome is

similar - bacteria use motility to actively respond to their surroundings. This

includes transient features such as chemical gradients and other stimuli including

light. They are able to alter their behaviour to bias their motility based on such

stimuli. In the case of free swimming cells they change the length of their runs

(the frequency of their re-orientation events). For example E. coli will lengthen its

runs in response to a gradient of nutrients in a fluid, causing the cells to swim

up the gradient and populate the area of higher nutrient density [98, 99]. This

type of behaviour is called chemotaxis and is found in many different bacterial

species [100]. Bacteria can also show changes in motility in response to other

chemical signals including oxygen (aerotaxis) or non-chemical stimuli such as

light (phototaxis) [101].

In addition to active motility responses, bacterial cells can have their swim-

ming behaviour passively changed by physical obstacles in their environments.

In particular, it is known that bacterial cells have a tendency to congregate on or

become trapped by surfaces and defects, such as large particles in their surround-

ings [102–106]. E. coli have been most studied and have been shown to swim in

large circles on surfaces, repressing re-orientations and remaining in trajectories

parallel to the trapping surface [103, 104]. A number of studies including simula-

tions have been done to try to understand this surface trapping behaviour. Most

concluded that this is primarily due to the hydrodynamic interactions between

the bacterial cells and surfaces, including collisions with the surface, increased

viscosity near to surfaces and Brownian motion [104, 107–109]. Others have gone

on to suggest this surface trapping behaviour could be commandeered, using

modified surfaces, to direct bacterial swimming [110].
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1.3.4 Models of bacterial motility

Bacterial motility poses many biological questions which could benefit from mod-

elling of physical characteristics. As such, various aspects of bacterial motility

have been simulated and modelled; from bacterial behaviour at surfaces and

the mechanics of flagellum motion, to space searching or foraging strategies

[84, 107, 108, 111–116]. The later is of particular interest to this project. Similarly

to other predatory organisms, there is significant pressure for B.bacteriovorus to

optimise it’s searching strategy to find prey more quickly and therefore increase

it’s predation efficiency. Whilst, the system of B.bacteriovorus swimming with a

variety of motile prey is relatively complex, much research has been done into

general foraging and searching strategies. These studies may help to give some

insight into the underling physics governing B.bacteriovorus motility.

The basic premise of foraging theory is that organisms are aiming to max-

imise their intake of energy per unit time of searching [117]. In the case of

B.bacteriovorus, maximising their number of encounters with prey cells in a given

time. Organisms will achieve this by optimising the way they move through their

environment - their searching patterns. In general, these patterns of movement

are diffusive and can be described by a random walk. As briefly discussed in

section 1.3.3, a random walk consists of straight sections (runs) punctuated by

turning events where organisms will reorient randomly, with each run having a

different direction [80]. Trying to model and understand this searching behaviour

becomes more complicated when you consider that organisms have mechanisms

by which they sense and respond to their environment and forms of memory of

where they have been [118].

As discussed in section 1.3.2, diffusion mechanics are key to bacterial swim-

ming behaviour. Bacterial swimming trajectories are generally referred to as

anomalous diffusion or anomalous transport. Anomalous transport is a stochastic

phenomenon that has non-normal diffusive motion (not Brownian motion) ie.

the relationship between the mean squared displacement and time is non-linear

[119–121]. The motion of active swimmers such as bacteria is super-diffusive

anomalous transport - where the scaling exponent of mean squared displacement

is between 1 and 2 (see section 2.7.5.3 for a detailed description of mean squared

displacement).

A variety of different anomalous transport models have been investigated for

their properties and applications. For an extensive list of examples see reference

[121] The current leading model for foraging and searching behaviour in biological
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Figure 1.9: Example plots of a Lévy walk (left) and a Brownian walk (right). The
Brownian walk is comprised of many similar length runs. In contrast the Lévy
walk contains significantly greater range of run lengths which make a dominant
contribution to the overall length of the movement pattern. Taken from [118]

settings, including bacterial motility, is Lévy walk [118].

Lévy walks, also known as Lévy flights, are patterns which were initially

studied in a purely mathematical context [122]. It wasn’t until the 1980’s that

their potential application in biological settings was recognised by Schlesinger

and Klafter [123]. A Lévy walk is a random walk where the run times have a

power law distribution with a heavy tail as described in equation 1.7 below:

P(l)≈ l−m (1.7)

where 1< m < 3 [124]. This power law distribution results in trajectories formed

of clusters of many short runs interspersed with longer runs. This clustered

pattern is repeated across all scales leading to fractal patterns that do not have

a characteristic scale [118]. Fig. 1.9 shows examples of both a Brownian walk

(right) and a Lévy walk (left). It clearly demonstrates the impact of this power

law distribution - showing how the occasional longer run times make a significant

contribution to the nature of the trajectory [118].

Lévy walks have been shown to have searching advantages over normal

diffusive motility patterns due to their super-diffusive and scale free nature [125].

The pattern minimises the mean distance travelled before encountering a target

(for example a prey cell), thereby optimising search efficiency [124, 126]. Lévy

walk patterns of movement have been seen in a variety of macro-scale foraging and

predatory organisms including, sea birds, honeybees, fruit fly, spider monkeys, and
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jackals [126–130]. They have also been seen in microscopic organisms including

swimming and swarming bacteria and plankton [124, 131–134]. In the case of

swimming E.coli cells, the Lévy walk pattern has been shown to be a result

of random fluctuations in the E.coli chemotaxis pathway, which increase its

environmental searching efficiency [124, 131].

There has been some controversy around Lévy walks and their occurrence

in biology. Some have suggested that organisms have evolved to have Lévy walk

patterns to their motility because it is one of the most efficient ways to search an

environment [125, 135]. However, others have argued that Lévy walk can emerge

due to other innocuous process, and once achieved there is a selection pressure

against losing it due to its advantages in searching and foraging [136]. Further

research needs to be done to fully understand the true link between Lévy walks

and biological foraging.

In general, the modelling discussed above gives some interesting insight into

possible B.bacteriovorus environmental searching strategies. However, it is impor-

tant to note they are typically based on idealised or simplified systems. In reality,

if B.bacteriovorus is applied in the body, these systems become substantially more

complex, with many interacting factors that will impact on cell behaviour.

1.3.5 B. bacteriovorus motility

B. bacteriovorus is highly motile, with average swimming speeds of between 30-

60µms−1, however it has been reported to swim as fast as 160µms−1 [137]. Its

swimming is driven by rotation of a single, polar, membrane sheathed, flagellum

composed of 6 key flagellar filament proteins (flagellins) [71, 137, 138]. This

flagellum is approximately 28nm in thickness, and typically 3-4µm long [138, 139].

It has a complex dampened wave form morphology with an unusual tapered end

section [138, 140]. It has been shown that, whilst not necessary for predation if

applied directly to prey cells, B. bacteriovorus flagella are crucial to predation

efficiency in free swimming environments, suggesting they play an important role

in locating prey cells [137].
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Figure 1.10: Electron microscopy image of B. bacteriovorus showing the flagellum.
The bar represents 1 µm.Taken from [139].

There have been some interesting studies into B. bacteriovorus motility changes

dependent on environmental viscosity, giving mixed results. One study using

polyvinyl-pyrrolidone (PVP) showed that at high viscosities B. bacteriovorus swim-

ming speed was reduced by about 20%. This caused a slight delay in predation,

however, in total, similar amounts of predation were observed as in non-viscous

media [141]. Another study using polyethyl-ene glycol (PEG) solutions and dex-

tran found that the two different polymers (linear and branched respectively)

had distinctly different effects. At low (1%) PEG concentrations B. bacteriovorus
swimming speeds and predation rates significantly increased - the swimming

speeds by 31%. However, at higher concentrations of PEG (5%) swimming speeds

and predation were significantly negatively impacted with predation being com-

pletely stopped at the highest concentrations (10%) [142]. In contrast, the dextran

solutions showed a simple decay in swimming speed and predation rates with

viscosity increases [142]. The results from these studies are mixed, with the differ-

ent polymer rheologies likely playing a part in this, however, the standout result

is that swimming speeds are intrinsically linked to predation rates. In all cases,

as swimming speeds increased so did predation rates and as they decreased so

did predation rates. This very clearly demonstrates how essential motility is to

the B. bacteriovorus predatory life-cycle.

Given how essential motility is to predation, there has been significant and

ongoing debate as to how B. bacteriovorus find prey in their environment. This

includes if they are passive or active hunters, i.e. if they swim around and ran-

domly bump into prey cells, or if they use mechanisms to increase their chances

of encountering prey, or even actively hunt individual cells. It is known that B.
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bacteriovorus perform chemotaxis towards a variety of chemicals such as certain

amino acids, yeast extract and various other molecules including acetate [143–

145]. A study has also shown that methyl-accepting chemotaxis proteins (MCPs)

do play a role in predation: mutant cells without the genes encoding for MCPs

were less efficient predators [146]. In addition, a study of B. bacteriovorus moving

on surfaces has suggested that they use slow gliding motility to scout for sessile

prey on surfaces [147]. This evidence combined suggests that they do perform

some form of chemotaxis driven active hunting, i.e. similar to E. coli seeking out

high concentrations of nutrients, B. bacteriovorus seeks out high concentrations

of prey cells. The benefit of this kind of behaviour in low nutrient environments

would be significant [69]. However, a study of B. bacteriovorus chemotaxis to-

wards live prey cells demonstrated that they only performed chemotaxis towards

particularly high concentrations of other bacterial cells (whether prey or not),

and not to low concentrations, concluding that they don’t use chemical attrac-

tant to find prey [148]. A recent study agreed, showing that B. bacteriovorus do

not perform chemotaxis towards individual prey cells, suggesting instead that

they have a passive hunting method that capitalises on hydrodynamic effects

[108]. The data from the study indicates that hydrodynamic forces cause prey

and predator to co-localise onto surfaces and defects. This is turn increases the

prey density and reduces B.bacteriovorus search from three to two dimensions

[108]. The combined evidence suggests that both biochemical and hydrodynamic

interactions are important to B.bacteriovorus predation in bulk fluid and surface

environments.

It is clear that the flagellum and the resulting cell motility have a key role to

play in the predation success of B. bacteriovorus. However, the nature of this role

remains unclear. Many of the previous studies have focused on flagellum structure

and all motility studies of free swimming B. bacteriovorus cells have only consid-

ered movement in two dimensions at any given time. This has typically been in

the focal plane of the microscope without considering depth (z) information. The

complexity of B. bacteriovorus motility including the fundamental characteristics

of their swimming style are unknown. This project has aimed to reveal the funda-

mental characteristics of B. bacteriovorus motility by investigating its swimming

behaviour in three dimensions using digital inline holographic microscopy.
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METHODS: MICROSCOPY TECHNIQUES AND IMAGE

ANALYSIS

2.1 Introduction

The invention of microscopes has had an immeasurable impact upon science

and society. From the discovery of micro-organisms, to the understanding of

human physiology, microscopy continues to fuel and enable fascinating and useful

research.

One of the earliest known microscopes was made by Dutch glasses maker,

Zacharias Jannsenn (1580-1638) [149] . These early compound microscopes suf-

fered from many abberations mostly due to the quality of the glass used. Antonie

van Leeuwenhoek(1632-1723) bypassed some of these abberation issues by using

single lens microscopes made from glass lenses he ground and polished himself

[150]. The lens was of remarkable quality for the time and allowed him to observe

a wide range of subjects previously unseen by the human eye. His work included

observing plant and animal tissues such as feathers, scales and spermatozoa.

Perhaps one of his most significant discoveries was the observation of microscopic

organisms or as he called them "animalcules" [151].

Since then microscopy has developed significantly: from brightfield and dark-

field illumination to fluorescence, electron, and holographic microscopy, scientists

continue to push the boundaries of what is observable and therefore our knowledge

of the world around us.
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2.2 Brightfield illumination microscopy

Brightfield is one of the simplest forms of microscopy illumination. It was used

by most early microscopes and continues to be a staple feature in biological

and teaching laboratories. Brightfield techniques underlie a number of modern

microscopy methods including holography.

At its most basic a brightfield microscope consists of three key lenses: a

tube lens, an objective lens and an eyepiece lens. A bright light source shines

light through a sample specimen and onto the objective lens. The objective lens

magnifies the image of the sample, which then passes through the tube lens

focusing the magnified image at an intermediate focal plane. The eyepiece lens

allows the user to view this magnified image or, alternatively, the light can be

directed to a camera for recording.

Light source

Condenser lens

Specimen

Stage

Objective lens

Eyepiece lens

Eye

Figure 2.1: Schematic diagram showing the optical components and corresponding
light path for a simple brightfield microscopy set up.
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Typical modern laboratory set ups are as can be seen in Fig. 2.1, where the

sample is placed between the objective lens and a condenser lens. The condenser

lens changes the sample illumination from an approximately collimated beam to

a ray cone, focusing the light onto the sample. This increases resolution of the

microscope by allowing the objective to capture light rays from larger diffraction

angles. Essentially the condenser lens increases the effective aperture of the imag-

ing system (see section 2.3 for more detail on lens apertures and resolution) [152].

Using a condenser lens also enables precise control of the sample illumination

- it is possible to focus the illumination light on a chosen section of a sample

and to manipulate it to allow for alternative modes of imaging such as darkfield

illumination.

In brightfield light microscopy the contrast in the image comes from the

differences in optical density of the specimen and its surrounding medium ie.

how much the light the specimen absorbs or scatters. Coloured specimens are at

an advantage as the pigments give additional contrast. Unfortunately, a large

proportion of biological samples are transparent and colourless – bacteria being a

key example – which means brightfield microscopy may not be the best choice for

imaging them. Stains, such as Gram stain, can be used to improve the contrast

of the images. However, these stains can have a knock on physiological impact

on the cells being imaged [153]. Techniques such as darkfield, phase contrast

and fluorescence microscopy offer alternative imaging methods with improved

contrast.

2.3 Resolution in microscopy

One key characteristic of any microscope is its resolution - the minimum distance

between distinguishable objects in an image. The resolution of a microscope is

dependent upon a variety of things, including the quality of the components

within it. However, in light microscopy resolution is fundamentally limited by the

wavelength of the light source used.

As light passes through the objective lens of a microscope it is diffracted and

interferes with itself - particularly at the edges of the objective lens aperture. This

process causes point sources in the sample to become diffuse spots, in a manner

determined by the point spread function of the optics.

26



2. METHODS: MICROSCOPY TECHNIQUES AND IMAGE ANALYSIS

Figure 2.2: Mathematically generated point spread function images a) The Airy
disc of a point source emitter imaged using a spherical lens, including the central
spot and first ring, b) Two such Airy discs overlapping so they are not easily
distinguishable as separate point sources. Taken from [154].

The point spread functions in an image can be mathematically approximated

as Airy discs consisting of a central spot surrounded by concentric rings of de-

creasing intensity as can be seen in Fig. 2.2. The ability to distinguish between

two objects in an image is dependent on how much their Airy discs overlap [155].

The size of an Airy disc for any given object (and so how likely it is to overlap with

a neighbouring disc) is determined by the numerical aperture of the objective lens

and wavelength of the light source being used.

The numerical aperture, N A, of a lens is:

N A = nsin(θ), (2.1)

where n is the refractive index of the medium between the objective lens and the

sample (often air or oil) and θ is the aperture angle of the lens as can be seen in

Fig. 2.3. In order to maximise the resolution of a microscope the aperture angle of

the objective lens should be matched to the be aperture angle of the condenser

lens. The working aperture of a microscope is a result of the sum of the condenser

and objective lens aperture angles [152].
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Objective 
lens

Imaging 
light

θ

Figure 2.3: Schematic diagram of objective lens showing aperture angle (θ).

There are a number of ways to calculate the resolution of a microscope. Two

of the most commonly used are the Abbe criterion and the Rayleigh criterion

[152, 155]. Both combine the numerical aperture of the objective lens, with the

wavelength of the light source to give a measure of the resolution. The Abbe

criterion is based on finding the radius of the diffraction Airy disk in the image

plane and can be calculated using equation 2.2 below:

RA = o.5λ
N A

, (2.2)

where RA is the Abbe resolution, λ is the wavelength of the light and N A is the

numerical aperture of the objective lens [155].

The Rayleigh criterion can be calculated in a similar way, however, it defines

the minimum distance between two resolvable objects as being when the central

spots of the Airy discs do not overlap - i.e. the central spot of one disc may overlap

with the first minimum of the second disc [155].

RR = 0.61λ
N A

(2.3)

where RR is the Rayleigh resolution,
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2.4 Köhler illumination

Figure 2.4: Schematic diagram showing the two conjugate planes for Köhler
illumination [152].
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For the optimisation of brightfield microscopy the additional step of Köhler

illumination can be used. Köhler illumination is a method which helps to achieve

an even and bright sample illumination which in turn will maximise spatial

resolution and optimise image formation for use in a range of imaging modes

[156]. It is achieved by creating two sets of conjugate planes - one containing the

specimen image and the other an image of the lamp filament. This requires the

addition of a field stop and a collector lens - the set up can be seen in Fig. 2.4.

The two sets of conjugate planes are created by properly aligning and focusing

the microscope. The precise way to do this depends upon the make and set up

of the microscope in use. However, in general, the basic requirements of Köhler

illumination are fairly straightforward. The lamp housing has a collector lens

which is set up to simultaneously focus the light onto the front aperture of the

condenser lens whilst wholly filling that aperture with light. The condenser lens

is then adjusted so that each of the conjugate planes is focused in specific locations

along the optical path at the same time [155]. These locations can be seen in Fig.

2.4.

The key with these sets of conjugate planes is that they are both equal within

themselves and reciprocal between the two sets ie. images in the same set of

planes will all be in focus at once whilst the other set will all be out of focus

[155]. This means that when you are viewing the aperture planes you will see

only the lamp filament and when you are viewing the field planes you will see

only the sample. This also means that you can manipulate the imaging process by

adding additional components such as adjustable diaphragms which can change

the sample illumination [155].
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2.5 Darkfield illumination

Darkfield is an alternative to brightfield illumination which can offer improved

contrast without staining. Darkfield illumination is particularly well suited for

viewing transparent biological samples that have a refractive index close to

aqueous medium and therefore achieve low contrast in typical brightfield imaging.

This includes samples such as bacterium and cells in tissue culture [155].

Figure 2.5: Schematic diagram showing two possible configurations for darkfield
microscopy: a) Set up using a standard objective lens: b) Set up using a darkfield
objective lens with an internal iris diaphragm [152].

The optical components and light path for darkfield microscopy can be seen

in Fig. 2.5. A light stop is added to the path to obscure the central part of the

light beam - this leaves a hollow cylinder of light to enter the condenser lens. This

light is focused by the condenser onto the specimen, the hollow cylinder of light

becomes a hollow cone, resulting in only high angle light hitting the specimen.

For a darkfield set up the numerical aperture of the condenser lens must be

greater than that of objective lens [155]. This means that if no sample is present

on the microscope stage all the light from the cone will cross at the specimen

plane and will not enter the objective. This will result in a dark image. When

a sample is placed at the specimen plane the oblique rays will pass through it

and interact with the interfaces within it, such as bacterial cell membranes. This

scattered light results in features in the sample appearing as bright on a dark

background.
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The key advantage of using darkfield is that only the weakly scattered light is

visible - meaning objects that achieve low contrast in brightfield will be much more

visible in darkfield. However, this is also the main source of issues with darkfield

imaging - the quality of image can be significantly affected by contributions from

unwanted weakly scattering elements in the field of view such as dust or dirt on

the microscope slide. Thankfully this dust rarely moves and so for the purposes of

this project this was not an issue.

Throughout this project darkfield microscopy was used as a method to check

bacterial cultures had grown and were motile, as in Fig. 2.6. It also gave an

approximate qualitative measure of sample density when preparing samples for

holography.

Figure 2.6: Example frame from a darkfield video of a B. bacteriovorus co-culture
containing both B. bacteriovorus and E. coli prey cells. Where the larger spots in
the image are the E. coli cells. Taken with a 40x air objective. Scale bar showing
100µm.

32



2. METHODS: MICROSCOPY TECHNIQUES AND IMAGE ANALYSIS

2.6 Microscopy for cell tracking

The main focus of this research project is to study the swimming behaviour of

B. bacteriovorus. There are a wide variety of cell tracking microscopy and image

analysis techniques used to study cell motility. These include both two dimensional

(2D) and three dimensional (3D) methods.

Typically, 2D methods for cell tracking are easier to set up, and result in images

which are simpler and faster to analyse, than 3D equivalents. These techniques

are primarily based on taking a series of images or a video from which cell

coordinates can be found in each frame, later stitching these coordinates together

to find cell swimming trajectories (often using some form of computerisation or

tracking software). B. bacteriovorus motility has previously been studied using 2D

methods including behaviour in viscous fluids and on surfaces, see section 1.3.5

for details and examples [108, 137, 141–148]. For examples of 2D tracking of other

bacteria see: [89, 99, 157–159]. The main problem with these 2D methods is that

the microscopes used are optimised for high resolution over depth of view. This

means that cells can only be seen (and therefore tracked) whilst they are in the

focal plane of the microscope. In order to maximise time spent in the focal plane,

cells are often imaged in droplets, on surfaces, or confined to small chambers

and channels. Bacterial cells naturally inhabit 3D spaces and their behaviour

near to or on surfaces can be significantly different to that in bulk [102–106, 160].

In addition, even in free-swimming set ups, the limited focal plane makes it

difficult to take accurate measurements of key characteristics such as turning

angle [161]. This is due to only being able to measure a projection of the turning

angle on the focal plane (in x and y) meaning there is considerable ambiguity in

any results. Without taking these various factors into account meaningful and

interesting behaviour can be missed. In the case of B. bacteriovorus, we know
that both their free swimming behaviour in bulk liquids, and their behaviour at
surfaces are important factors in their life-cycle. In order to properly characterise
their motility behaviour, including size and distribution of turning angles, it was
most appropriate to use a 3D cell tracking method for this project.
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Figure 2.7: Original schematic diagram of Howard Berg’s bacterial tracking
microscope. Taken from [162].

The first method used to study bacterial swimming in 3D was developed by

Howard Berg in 1971 [162]. Berg’s microscope set up is shown in Fig. 2.7. It

used a motorised sample stage which could be translated in the three planes,

x-y-z, to maintain focus on a selected bacterial cell. The position of this stage was

automatically controlled using a combination of phase contrast imaging, optical

fibres and photomultipliers (PMTs). The optical fibres passed the phase contrast

image to three pairs of PMTs: x1, x2, y1, y2, z1 and z2. When a cell moved in the

positive x direction more light was transmitted by x1 than by x2 and the opposite

if it moved in the negative x direction. The same applied also applied in the y and

z dimensions. Finding the difference between the PMTs outputs, e.g. x1 − x2, gave

a signal which was proportional to the cells displacement. This signal was filtered

and amplified, and formed a feedback loop which was used to control the drive coils

for the stage position. This system had a tracking range of approximately 1 mm

in any direction and a position accuracy of around the diameter of a bacterial cell .

If the cell it was tracking swam out of range of the stage, it would automatically

refocus in it’s centre position and wait for another cell to swim into the field of

view [162]. Whilst this may appear a relatively simple concept overall, it was

revolutionary in it’s time. The results this microscope produced made a ground

breaking contribution to understanding bacterial motility behaviour.
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This method developed by Berg was initially used to study the swimming of E.
coli, showing, for the first time, run and tumble swimming patterns. It has since

been used to study other bacterial behaviour such as chemotaxis and swimming

at surfaces [98, 102]. The main downside to this method is that it only allows

the study of a single cell at a time, making it difficult to study population level

dynamics or cell interactions.

Since Berg’s initial discoveries, a number of different 3D cell tracking methods

for simultaneously studying multiple swimming cells have been developed. Some,

such as optimised dark-field 3D tracking, are only suitable for objects above

10µm in size - much larger than B. bacteriovorus [163]. Scanning-based methods

such as fast scanning electric-piezo microscopy have been developed and used to

study micro-swimming behaviour including spermatozoa. However, they are based

on taking a stack of images within a time window, in the case of electric-piezo

scanning giving a resulting video frequency of approximately 70Hz [164]. One of

this issues with this technique is that it takes a ‘rolling’ scan of the sample volume,

where the top z-slice will be taken at a different time to the bottom one, meaning

that it does not give a true snapshot of what is happening at each time point. This

technique can be effective for obtaining simultaneous swimming trajectories of

cells, but only if they are relatively large and slow swimming such as sea urchin

spermatozoa [164]. 2D studies of B. bacteriovorus have shown them to be fast

swimmers, swimming on average 30-60µms−1, meaning scanning methods are

unsuitable for this study.

Defocused 3D imaging techniques bypass some of these issues, allowing track-

ing of multiple small objects (diameter <10µm), simultaneously at relatively high

frequencies. These methods are based on using the relationship between the

diameter of the largest diffraction ring of an object and it’s distance from the focal

plane to give an estimate of z position [165]. This method of tracking has been ap-

plied to study a variety bacterial behaviour including the collective cell dynamics

of E. coli, Caulobacter crescentus swarming near surfaces and characterisation

of the swimming behaviour of Serratia marcescens [109, 161, 166]. Defocussed

techniques, have two main types - those using a fluorescent set up, or those using

darkfield or phase contrast methods. Fluorescent methods offer the greatest depth

of view, however they require the cells to be stained or tagged, which as already

discussed can have an impact on cell behaviour.
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An alternative method of 3D cell tracking, that can obtain similar results to

defocussed fluorescent set ups but does not require fluorescent cells, has been

developed using a standard phase contrast microscope [167]. This method com-

pares the diffraction patterns generated by cells to a reference library to give

an approximation of z position. It has been shown to be effective at tracking a

variety of bacterium and has been used to study the swimming and chemotactic

behaviour of V. alginolyticus and Caulobacter crescentus [167–169].

Digital holography methods, specifically digital inline holographic microscopy

(DIHM), can obtain results similar to above but without the need for a reference

library. The DIHM process involves taking a video of a sample, where each frame

is a hologram. These holograms are numerically re-focused in a way that enables

the z position of cells to be found (see section 2.7 for a full explanation). DIHM is

an excellent technique for cell tracking as it allows the imaging of large quantities

of cells in three dimensions at high spatial and temporal resolution (limited

only by the detector) [170]. DIHM does not require tagging or staining which

eliminates concerns about the physiological impact of these chemicals on cells

and their behaviour. It also allows for a large field of view and sample depth

of view, enabling observation of both population and individual cell behaviour.

In addition, it has a simple set up based on a standard laboratory microscope.

This set up is robust and can be used in remote locations, such as for marine

biology, and has potential applications in space exploration [171, 172]. DIHM

gives spatial resolution close to the diffraction limit and can enable the study of

both the morphology as well as the behaviour of cells [170].

The two main downsides to DIHM are that it can only image dilute samples

and that the image processing is computationally demanding. However, for most

applications these issues are not significant compared to the overall benefits

of using this technique. DIHM has previously been used to study a wide range

of micro-swimmers and their behaviours. This includes the study of algae and

bacteria from glaciers [171], E. coli, run and tumbles [173], trapping at surfaces

[103], and behaviour in shear flow [174], the chemotactic behaviour of Leishma-
nia parisites [175], and the chemotactic efficiency of Haloarchaea [176]. In the

future, DIHM image generation could be combined with advanced computational

techniques such as machine learning and neural networks. This could enable

much faster processing of images, potentially up to real time viewing. Overall,

DIHM is the most appropriate available technique for studying B. bacteriovorus
swimming behaviour.
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2.7 Digital inline holographic microscopy

Digital inline holographic microscopy (DIHM) is a microscopy technique that

works by utilising the wave nature of light and the resulting interference patterns

generated by light-sample interactions. DIHM was used extensively in this project

for the study of B. bacteriovorus motility and behaviour, see Fig. 2.8 for an outline

of the workflow used. Details of this process including both the automated and

manual aspects are in sections 2.7.4 - 2.7.7.2.

Figure 2.8: Workflow diagram showing the steps used for performing DIHM and
analysis during this project. Key shows which parts of the process were performed
manually or by bespoke software written in LabVIEW or MATLAB.
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2.7.1 Introduction to holography

Holography was first discovered by physicist Dennis Gabor in the 1940s with the

aim of improving the resolution of electron microscopy [177]. He went on to win

the Nobel Prize in physics in 1971 for this "invention and development of the

holographic method" [178]. The principles underlying his invention are widely

applicable and, combined with the invention of lasers by Theodore Maiman in 1960

and the development of improved imaging sensors and computing in the 1990s,

have been used in in a range of areas both within research and commercially

[179]. Applications of holography have been as varied as forgery prevention and

fabric development to bio-sensing technology and a wide array of applications in

microscopy including DIHM. [180–182].

Holography does not form an image in the same way as typical microscopy

or photography. Instead of simply recording the amplitude of light in a given

position it also captures a complete record of the phase [183]. This method relies

on the wave nature of light. Crucially, when two waves of the same amplitude and

wavelength interact their relative phase dictates if they interfere constructively

or destructively and therefore affects the resulting light, as illustrated in Fig. 2.9.

Figure 2.9: Diagram illustrating the interference of waves. Left: Constructive
interference resulting in a wave with the same wavelength and frequency but
double the amplitude of the original two waves. Right: Destructive interference
resulting in no remaining wave - due to the two original waves having equal
amplitude and wavelength but being half a wavelength out of phase.
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Laser
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Object

Screen
Figure 2.10: Schematic diagram of an inline holography set up where the solid
red lines represent the reference beam and the dashed red lines represent the
light scattered by the object. Figure adapted from [171].

It is important to note that the light source used is key to holography. The

light must be monochromatic (all the same wavelength) and coherent (light

waves in phase). In DIHM lasers or LEDs are used for illumination. LEDs have

the advantages of being easier to set up and needing fewer health and safety

considerations. However, lasers are significantly more coherent than LEDs. In

this context this means that using lasers allowing imaging over much greater

depth ranges - up to 5mm for lasers compared to only 200µm for LEDs [184].

In other applications, suc a measuring cell morphology the optical delimitation

gained from using LEDs can beneficial [185]. However, in this study lasers were

used to enable the longest possible cell trajectories to be captured.

There are a range of experimental set ups to choose from when producing

holograms. These include both inline and off-axis options, which can have a

variety of light beam positions, see [182] for examples. inline holography is the

choice with the simplest optical path, where the reference and scattered light

beams travel along nearly the same path. An example of inline holography can

be seen in Fig. 2.10 where the pinhole ensures the light is spatially coherent

(i.e. can be considered a point source of spherical wave fronts). The simplicity of

inline holography makes it more straightforward to set up and also less impacted

by vibrations than off-axis configurations. The main disadvantage of inline is
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that it requires a large portion of the original light beam to pass through the

sample meaning it is only suitable for imaging dilute, not dense, samples. It can

also suffer from the twin image problem. The twin image problem is a natural

by product of the hologram generation process. When an on-axis hologram is

reconstructed a pair of images are generated at equal distances on either side

of the object [186]. There will be the desired, real, image behind the object and

then the virtual image in front of the object. This virtual image is formed due to

the the conjugate object wavefront. Unfortunately, when either one of the images

is in focus so is the other. This can degrade the signal to noise ratio and so the

contrast of the desired image [186]. The DIHM technique used for this research

project had an inline set-up whereby a single-mode optical fibre is used instead of

a pin hole and the sample placed far enough away that the wave fronts are locally

planar in the microscope field of view. The twin image problem is mitigated in

this project by slightly defocusing the microscope before image collection.

Inline holography has two light paths to consider - the scattered beam (light

that has been scattered by objects in the sample being imaged) and the unscattered

or reference beam (the light that has passed straight through the sample without

interacting). When the scattered beam and the reference beam interact they

constructively and destructively interfere generating diffraction patterns. The

nature of these diffraction patterns is dependent on the size, shape and location of

the object that has scattered the light. The shape of the object will be represented

in its diffraction pattern - in the case of a point source or small spherical object the

diffraction pattern generated appears as a series of circular concentric rings as

can be seen in Fig. 2.11. For an extended object such as a long rod the diffraction

pattern will take this extended shape, and repeat in outlines from the central

shape. The larger the object the larger the diffraction pattern it will produce

(including the central shape becoming larger). The diffraction rings may become

more distinct as larger objects will typically scatter more light. For objects of

the same size and shape the further it is from the focal plane the larger the

diffraction pattern will become - the central shape will become larger and pattern

will become less defined (lower contrast). For DIHM these diffraction patterns

are magnified by an objective lens and captured digitally with a camera. The

recorded diffraction patterns constitute the digital hologram and contain all the

information needed to reproduce the 3D image.
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Figure 2.11: Left: Diagram demonstrating inline holography: A particle scatters a
portion of an initially collimated laser beam. The scattered beam, here represented
by 5 iso-amplitude surfaces, interferes with the unscattered portion of the beam
in the focal plane of the microscope objective, thereby forming an inline hologram.
Taken from [187]. Right: Diagram illustrating the hologram generated by multiple
particles in a sample volume [188]

There are two main methods for decoding digital holograms: numerical refocus-

ing and direct fitting [184]. Direct fitting methods based on Mie scattering theory

are very accurate, however they require a pre-known model of the scatterer which

significantly limits their application [189]. In addition, direct fitting methods are

very computationally expensive and therefore time consuming. Numerical refocus-

ing methods offer an alternative which can be applied to a wide range of weakly

scattering objects (such as bacterial cells) without prior knowledge of their scat-

tering properties [184]. This project utilises a fast and adaptable method called

the Rayleigh-Sommerfeld back propagation method which is further described in

section 2.7.5.2 below [189].

2.7.2 DIHM set up

One of the key advantages of DIHM is the simplicity and ease of set up. A standard

inverted laboratory microscope (Nikon Eclipse Ti) was used for all experiments in

this project. The condenser lens was removed and replaced with a laser fibre as

can be seen in Fig. 2.12 A and B. The laser fibre was placed in a bespoke holder

designed to fit the condenser lens apparatus and keep the source as stable as

possible see Fig. 2.12 D. The holder was positioned approximately 5cm from the

sample stage to give a planar illumination onto the sample.
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Figure 2.12: A) Schematic diagram of DIHM setup, B) Photograph of microscope
set up used for this project, C) Photograph of sample chamber used for holography,
and D) Close up photograph of laser holder and positioning.
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In this set up the laser diode is interchangeable. During this project a fibre

coupled laser diode of wavelength 642nm (red) was used. The laser was switched

on approximately 20 minutes before imaging to allow the temperature to stabilise.

This minimised fluctuations in light intensity which could impact cell localisation.

A 40x magnification, 0.75 numerical aperture, air objective was used throughout

the project as this gave the largest field of view whilst still be able to resolve the

cells being studied.

2.7.3 Sample preparation

All the imaging done for this project used handmade sample chambers. These

were made from microscopy slides, coverslips and optically neutral glue - glue

that dries to have the same refractive index as glass. As can be seen in Fig. 2.12

C, two coverslips are glued to the microscope slide at the desired chamber width.

A large coverslip is glued across the top to create the chamber - the chambers

were typically 50-80µl in volume and around 200µm in depth. This thin shape

helps to prevent fluid flow in the sample chamber which would impact on motility

results. The optical glue is set using a UV lamp for around 15 minutes this causes

it to cure and harden, after which the chambers can be used or stored for later.

Once filled the chamber can be sealed using petroleum jelly or nail polish. Unless

otherwise stated the sample chambers in this project were left open. This was due

to the cells being grown aerobically and therefore needing a supply of oxygen. It

also to minimised any impact on cell behaviour by chemicals in the sealant.

Sample preparation is generally relatively minimal for DIHM. Cells are typ-

ically washed into an imaging buffer and diluted to allow clear resolution of

individual cells. The imaging buffer used for this project did not contain nutrients

- it only contained calcium salts and a buffer to help maintain a stable pH of 7.6.

The protocol used for B. bacteriovorus varied depending on the experiment, a full

description can be found in section 2.8.

2.7.4 DIHM image recording

Once the sample was on the microscope a few short reference videos were col-

lected and a quick background correction performed to allow optimisation of the

microscope focus. This correction involves taking the median intensity value of

each pixel over time, to create a median intensity pixel map. Then each frame in

the reference video is divided by this map. This process is also used to minimise

background noise during image processing - see section 2.7.5.1. The focus was
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placed just outside of the sample chamber, generally just above. This meant that

all the cells were on one side of the focal plane resulting in simpler and quicker

video processing.

All videos were recorded using a Mikrotron EoSens CL MC-1362 monochrome

CMOS camera at a frame rate of 100Hz. Previous studies of Bdellovibrio bacte-
riovorus cells have shown them to be fast swimmers, therefore the higher the

frame rate used the more likely the full detail of re-orientation events would

be captured. An imaging window of 1024x1024 pixels was used which, when

using a 40x magnification, translates to a field of view of about 358x358µm2 (for

comparison Bdellovibrio bacteriovorus cells are 0.8-1.2µm in length). Using the

largest possible window size results in longer trajectory capture and therefore a

higher likelihood of imaging turning events and cell interactions. For the same

reason videos were recorded for typically around 20-30 seconds, videos any longer

than this would result in prohibitively large file sizes (greater than 2GB).

2.7.5 DIHM image analysis

The most time-consuming and complicated part of conducting DIHM is the image

analysis. There are a number of key stages to this image analysis, including

background filtering, cell location and track reconstruction. For this project this

was done using LabVIEW software developed by Laurence Wilson [184, 190].

Once the cell swimming trajectories are obtained they can be further analysed

to find key parameters such as swimming speeds, run times and re-orientation

angles. For this project this was performed by MATLAB software written by

Emma Brock. Additional analysis steps can be added for more complex cases, for

example; to allow for removal of cells trajectories at the sample chamber surfaces

and identification of cell types e.g. predator or prey (also done by MATLAB code

written by Emma Brock). The key parameters obtained enable understanding of

the motility and behaviours of cells such as predator-prey interactions.
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2.7.5.1 Background noise reduction

The first step to the image analysis process is background noise reduction. Back-

ground noise can come from a variety of sources including noise intrinsic to the

camera itself and any surface aberrations on the sample slide. The most impor-

tant source of camera noise in DIHM is photon shot noise, this results from the

natural variability of incident photon flux [170]. Camera noise sources can also

include read noise, from fluctuations in the signal amplification in the camera

sensor, and pattern noise, caused by slight discrepancies between individual pixel

sensitivities on the camera chip [191]. Noise on the sample slide may come from

dust, dirt or from stationary cells.

For each video collected, a median background image is generated by taking

the median value of each pixel across the total time of the video. Each frame

in the video is then divided by this, median background image. This process

minimises intensity contributions from small fluctuations in pixel values - effec-

tively smoothing the baseline background. This increases the signal to noise ratio

enabling larger moving features to be seen - such as swimming cells. An example

background reduced frame can be seen in Fig. 2.13.

Figure 2.13: Example of background noise reduction from a DIHM video of E.
coli cells. Left: Example frame from a raw DIHM hologram. Right: The same
frame with the background noise reduced and contrast enhanced - the diffraction
patterns from the cells can now be clearly seen. Scale bars represent 100µm.
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2.7.5.2 Cell localisation

In order to identify the position of cells in the video, each frame is treated sepa-

rately acting as it’s own complete hologram. The methods used in this project rely

on the Guoy phase shift and Rayleigh-Gans scattering theory, and so, can only be

applied to weakly scattering objects that satisfy these conditions:

|m−1| ≤ 1, kd|m−1| ≤ 1, (2.4)

and

m = np

nm
, (2.5)

where m is the relative refractive index (between np, the refractive index of

the particle and, nm the refractive index of the surrounding medium), λ is the

wavelength of the illumination light and k is the wavenumber (k = 2πnm/λ).

Bacterial cells typically have a refractive index very close to the medium they are

in so are well suited to this regime [189].

Each hologram generated in each frame of the video is numerically refocused

using the Rayleigh-Sommerfeld back propagation method which is explained

fully in [189] and [192]. In short, it is possible to use the Rayleigh-Sommerfeld

propagator j to find the electric field at a distance z′ from the plane of the

hologram:

j(x′, y′, z′)= 1
2π

∂

∂z′
exp(ikr′)

r′
, (2.6)

where

r′ =
√

(x′2 + y′2 + z′2) , (2.7)

and the prime shows that the coordinates do not sit in the ‘real’ physical volume

but rather within the mathematical reconstructed volume. The optical field can

then be reconstructed at any distance from the plane of the hologram using the

convolution below:

Es(x′, y′, z′)= E0(x, y,0)⊗ j(x′, y′z′). (2.8)
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Figure 2.14: Figure showing examples from a hologram generated by a single
spherical particle, including reconstruction. a) Vertical slice through the centre
of the image stack, note how the contrast switches from light above the to dark
below the particle position. b) Diffraction pattern produced by the particle at ap-
proximately 9 µm below the focal plane c) Vertical slice through the reconstructed
optical field generated from b). d) The intensity gradient stack generated from
b). e), f), and g) are the equivalent of b), c) and d) except the particle is located
approximately 9µm above the focal plane. All scale bars represent 2µm. Taken
from [189]

Effectively this method is generating a stack of images for each hologram

similar to what would be seen if the focal plane was scanned vertically (in the

z-direction) through the sample volume. The number and size of the vertical steps

can be set by the user, in the case of this project 140-150, 2µm steps were used per

hologram. The stack of images are then further analysed to find the position of

the cells in the volume. This is done by using a version of a Sobel filter to generate

an intensity gradient in the z direction [189]. Cells are found at point of highest

intensity gradient as can be seen in figure 2.14. This method is very effective at

locating cells in the z direction to a sub-pixel accuracy as long as the intensity

gradient varies slowly in comparison to the step size.

As well as locating the cells in the z direction, they are also located in the x
and y plane. This is done by projecting the maximum intensity of the intensity

gradient in each frame. This results in an image of a dark background with

bright spots - the spots are the cell locations. For each video an example frame

is taken and a user will manually set an intensity threshold over which a pixel

is considered to a cell or part of a cell. Any pixels below this threshold are then
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set to a zero value. A built in LabVIEW function (count objects) will identify the

remaining bright objects in the image, locate their central pixel and count them.

One of the quick checks used to establish the thresholds during this project, was

to estimate how many cells were in a a frame and check that the return number of

cell localisations was similar to this value (typically around 100). If this value was

much smaller or larger than expected it was a good indication that the threshold

parameters needed to be changed. The intensity threshold is manually set for

each video before full analysis.

The final result of the cell localisation processes is a text file for every frame

in each video that contains a list of cell coordinates in x, y and z. These cell

coordinates can be used to find swimming trajectories.

2.7.5.3 Trajectory reconstruction

The trajectory reconstruction works by looking through the cell coordinates in

consecutive frames within the video. For each cell coordinate it looks in the

following frame for the closest cell located within a user defined search sphere

radius. When there is no longer a cell within the search sphere the track is

ended. There are a number of additional functions including setting a minimum

trajectory length and a trajectory splitting procedure.

In the case of trajectory splitting (often caused by two cells bumping into each

other or closely crossing paths), the code will end the first trajectory at a split and

identify the following two trajectories separately. Trajectories that are less than

the minimum length will be automatically deleted - most often when cells are

located at the edges of the sample chamber and pass in or out of the field of view.

Finally the code classifies the trajectories as cells that are swimming or

diffusing using their mean squared displacement. Mean squared displacement, or

MSD, is a measure of the movement of an object from it’s starting position over

time. It can be used as way to estimate if an object or in this case a bacterial cell

is simply diffusing or if it is actively swimming through a medium.

The simplest way to think about this is as a comparison of the behaviour

between a diffusing and a swimming object. If we first consider a particle in a

starting position which we will call the origin. Considering a particle diffusing

in 1D measuring it’s position at regular intervals will result in a cluster of

positions close to the origin, decreasing in regularity as they move away from that

point. When plotting count against position this results in a Gaussian bell curve
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centred around the origin. The width of this curve is dependent on two things: the

diffusivity of the particle (ξ) and the time over which the positions were measured

(τ). We can say that for a diffusing particle the MSD ( 〈x2〉di f f ) is:

〈x2〉di f f = 2ξτ. (2.9)

In contrast the MSD of a swimming particle is very much dependent on it’s

velocity:

〈x2〉swim = v2τ2. (2.10)

In this project the MSD for the cell on each trajectory was found in each

dimension. The log of this MSD was plotted against τ to give a graph. From

equations 2.9 and 2.10 it is possible to see that the gradient of the graph for

a purely diffusing particle will be one and the gradient for a purely swimming

particle will be two. Therefore we can apply a threshold to the gradient of these

graphs to approximate which cells are swimming or not. Unfortunately, the reality

of very small bacterial cells swimming in liquid is that they will be affected by the

medium in which they swim resulting in a Brownian rotational motion component

to their swimming trajectories. This will have a knock on effect on their MSD.

Therefore the gradient threshold is lowered and an additional filter is applied.

This effectively thresholds the intercept of the log MSD graph. The intercept of

the graph is dependent on the speed of the particle - the higher the intercept the

faster the movement. Both the threshold criteria must be met in order for a cell

trajectory to be classified as swimming. Essentially this ensures that the mean

squared displacement after a certain amount of time is high enough to qualify

the cell as showing swimming behaviour.
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2.7.5.4 Noise reduction in trajectories

Once the trajectories have been identified and classified, a cubic spline smooth-

ing technique is used to smooth the trajectory data. This gives a curve which

highlights key features in the trajectory and minimises the impact of noise on

the results including cell properties such as swimming speed and re-orientation

pattern. An example spline smoothed trajectory can be seen in figure 2.15. The

noise reduction is achieved by minimising equation 2.11 below, in each dimension:

xs(t)= b
i−0∑
n−1

wi(yi − f (xi))2 + (1−b)
∫ xn−1

x0

γ(x)( f ′′(x))2)dx, (2.11)

where xs(t) is the cublic spline fit of the trajectory in x, b is the balance parameter,

wi is the ith element of weight, yi is the ith element of Y, xi is the ith element of X,

f ′′(x) is the second order derivative of the cubic spline function f(x) and γ(x) is the

piece-wise constant function:

γ(x)= γi, xi ≤ x < xi+1, f or i = 0,1, ...,n−2. (2.12)

The user can input a value of b, between 0-1. This value determines the

influence of each part of the equation. Therefore it determines what type of fit

is produced. The first half of the equation finds the magnitude of the sum of the

differences between the function fitted and the raw data points - otherwise known

as the residuals. If the value of b is high this part of the equation dominates. The

second part of the equation is related to the curvature of the fit. The function will

try to minimise the curvature (create a straighter line of fit). If the b value is low

this term will dominate. At the extremes; if b=0 then the cubic spline fit is simply

a linear fit and if b=1 then the raw un-smoothed data is returned. As a note: wi is

set to 1 for this work as this data is fairly consistently noisy. Equation 2.12 is also

applied in y and z to give the resulting smoothing seen in Fig. 2.15.
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For this project the balance parameter was chosen by applying a range of

values to a set of trajectories where re-orientation events had been manually

identified. These trajectories, at different levels of smoothing, were then analysed

to find the re-orientation events using the methods described in section 2.7.6.4.

Trajectories that were considered to be under-smoothed showed over identification

of reorientation events - noise was identified as reorientation. Trajectories that

were considered to be over-smoothed failed to have reorientation events identi-

fied as the angle change dropped below the threshold. A balance parameter of

0.9999 was chosen. This smoothed the trajectories as little as possible whilst still

enabling reorientation events to be identified. Please note this value was chosen

in combination with the minimum angle change threshold described in section

2.7.6.4.

Figure 2.15: Plot of a segment of an E. coli swimming trajectory where the blue
line is the raw data and the red is the spline smoothed version.
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2.7.6 Cell trajectory analysis

I have written bespoke code in MATLAB to analyse the cell trajectories obtained

from my holograms. Each cell swimming trajectory is individually analysed for

the key parameters including cell swimming speed, run timesand re-orientation

angles.

2.7.6.1 Trajectory interpolation

The first step of the trajectory analysis is to check and correct for any discontinu-

ities in the time values of the trajectories. These happen rarely and can result

from the trajectory reconstruction in section 2.7.5.3 (i.e. when cells are within

the designation distance and time search but not in consecutive time points).

Trajectories have their time data systematically checked to find any skips in the

time values. If a skip is identified the missing time steps are inputted and the

coordinate data is linearly interpolated to fill the missing points. The main reason

for doing this is to simplify and speed up the data analysis in the following steps.

2.7.6.2 Surface proximity sorting

An optional processing step, before swimming characteristics are found, is to sort

trajectories by their surface proximity. Plots are made of all the trajectories in a

video and the approximate z position of the top and bottom surfaces of the sample

chamber are noted. These are inputted into a MATLAB code which runs through

each trajectory and checks the z coordinates. If a trajectory passes with a specified

distance of a surface it is cut at that point. Any trajectory segments greater

than 0.5 seconds (50 time points) long are then saved as individual trajectories

characterised by whether they are in bulk or near surfaces. This time value

was chosen to give long enough that the trajectories could feasibly contain a

measurable reorientation event.

2.7.6.3 Swimming speeds

The next step in analysis is finding the swimming speeds. The mean swimming

speed is calculated by summing the magnitude of the vectors between consecutive

coordinates in a trajectory. This is divided by the total time for the track to give

the mean speed per trajectory, as can be seen in equations 2.13 - 2.15.

pi = (xi, yi, zi), (2.13)
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di = |pi−1 − pi| =
√

((xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2) , (2.14)

s =
∑n−1

i=1 di

tn − t1
, (2.15)

where p is the position of the cell at a given time, d is the distance between

consecutive positions, s is the mean speed of the trajectory, n is the number of

coordinates in the trajectory, and t is the time value at a given coordinate.

The maximum trajectory speeds are taken from the maximum instantaneous

velocity vector from each trajectory. The instantaneous velocity vectors are calcu-

lated as in equation 2.16 and 2.17 below:

T = 1
f

, (2.16)

vi = (xi+1 − xi, yi+1 − yi, zi+1 − zi)
T

, (2.17)

where T is the time between coordinates, f is the frequency at which the video

was recorded (typically around 100Hz) and v is the instantaneous velocity vector.

2.7.6.4 Run times and re-orientation angles

The re-orientation events and corresponding run times(time between each event)

are extracted from the data using a multi-step process. First the angle changes

between consecutive vectors in the trajectory are calculated using equations 2.18

and 2.19 below:

qi = pi+1 − pi = (xi+1 − xi, yi+1 − yi, zi+1 − zi), (2.18)

φi = cos−1
( qi · qi+1

|qi| · |qi+1|
)
, (2.19)

where q is the vector between consecutive points and φ is the angle change

between consecutive vectors.

A rolling mean angle value (taken over three values) is plotted against time

for each trajectory. Turning events are identified by finding the peaks in this
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graph that sit above a minimum threshold (in this study 10°), see figure 2.16

for an example. For this study the threshold value was chosen by comparing

different threshold values to each other, on a set of trajectories where the peaks

had been manually identified. It should be noted that this, like many of the

other parameters used in the analysis, was a balancing act between capturing

as many events as possible without falsely identifying noise as features. There

is therefore a chance that a small number of low angle peaks maybe be missed.

However, with large data sets the influence of this error becomes less significant.

In general, the timestamp of the peaks that are above the threshold is recorded

to give the position in time of the apex of the re-orientation events within the

trajectory. Peaks that are too close to the beginning or end of the trajectory to be

distinguished are discounted, as are any trajectories that only contain one peak.

The amount of time between each re-orientation event is calculated from the peak

positions. These times are recorded as the run times.

The last key parameter to be calculated is the turning angle of each re-

orientation event. The turning angle of each re-orientation event is found using

the same peak positions as for the run time calculations. These peak positions are

taken as the apex of turning events.

In order to find the reorientation angle associated with a reorientation event

a distance is chosen away from the apex of the turn (on both sides). Vectors

are then drawn between the apex of the turn and these points and the angle

between these two vectors is taken as the reorientation angle. This distance is

set by studying a variety of trajectories and approximating a distance along the

trajectory that will allow for angle calculation without being so far from the

apex that any proceeding/subsequent turns are accidentally included. The code

takes into account the average swimming speed of the trajectory and allocates a

number of points either side of the apex that corresponds to approximately the

chosen distance. It also checks that this is definitely less than the distance to

the adjoining re-orientations. If the number of points is too great then the code

automatically reduces this to be two points less than the distance to the closest

turns. Once these checks have been made, the code then finds the vectors between

these points and the apex of the turn. Finally it calculates the angle between

these two vectors and records this as the turning angle for that event.
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Figure 2.16: Figure illustrating re-orientation event identification in a Bdellovib-
rio bacteriovorus swimming trajectory. A) Three dimensional plot of the swimming
trajectory where the re-orientation events are labelled as identified (see C)), B)
The same trajectory as A) plotted in x and y to more clearly show the turning
events, C) A graph of the mean filtered consecutive angle changes between vec-
tors in the trajectory plotted against time, the dashed line shows the minimum
threshold for re-orientations events with the identified events labelled (please
note the time does not start at 0 and is taken from the original video recording).
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2.7.6.5 Imaging frame rate

In order to ensure that the imaging frame rate did not impact upon the measured

swimming characteristics, a set of exponential phase E.coli trajectories was down

sampled from the a frame rate of 100 Hz to 50, 25 and 12.5 Hz. This data set is

fully analysed and discussed in section 3.3.

Figure 2.17: Boxplot showing the measured swimming speeds of exponential
phase E.coli cells at different frame rates. The box shows the interquartile range
(IQR), with the centre line shows the median value and the orange star the mean.
Outliers are indicated by the blue x. The number of tracks analysed is 1364 in all
cases.

As can be clearly seen from Fig. 2.17, down sampling the data did not have a

significant impact upon the measured swimming speed, indicating that imaging

at 100 HZ was not causing an increase in measured speed. However, at lower

sampling rates the reorientation events were often not detected. The overall

number of detected turns decreasing from 13180 at 100 Hz to only 7962 at 12.5

Hz. This is most likely due to turning events occurring too quickly for the apex of

the turn to be captured and therefore the overall angle change dropping below

the detection threshold. This will give misleading run time and reorientation

angle values. As can been in Fig. 2.18, the average re-orientation angle dropped

significantly with sampling rate from 76°at 100 Hz to 52°at 12.5 Hz. This data

indicates that using a high frame rate is critical to capturing the full detail of

motility behaviour including reorientation events.
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Figure 2.18: Boxplot showing the measured reorientation of exponential phase
E.coli cells at different frame rates. The box shows the interquartile range (IQR),
with the centre line shows the median value and the orange star the mean.
Outliers are indicated by the blue x. The number of tracks analysed is 1364 in all
cases.

2.7.7 Tracking errors in DIHM

There are sources of error throughout the process of imaging and tracking with

DIHM. Some of these have been discussed in the sections above, including contri-

butions from the noise in the camera in section 2.7.5.4. In addition to camera noise,

there are other possible sources of error in the image capturing process. Firstly,

dirt or dust on the surface of sample chamber could be incorrectly identified as a

cell. However, these imperfections are generally removed by the background noise

suppression described in section 2.7.5.1. If not, as these objects do not move they

will be filtered by the LabVIEW code as non motile and so will not be recognised

in swimming trajectories. Secondly dust can occasionally pass through the air

between the laser optical fibre and the sample chamber. This will appear in the

video as a very large fast moving object. This happened rarely, and any videos

containing this were discarded before analysis. Also, any physical vibrations of the

optical elements would impact the hologram quality. Therefore the microscope was

placed on an air isolated optical bench. Lastly, flow in the sample chamber could

cause errors in the motility results. Specifically, flow in the sample chamber could

make cells appear to be swimming faster than they are. In order to reduce the
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likelihood of flow, samples were put onto the stage and the laser turned on for 10

mins before data was collected. This enabled any slight temperature changes due

to the laser to stabilise, minimising convection. In addition, the narrow chambers

with very small openings ( 200 nm high), minimise the chance of evaporation and

any resulting fluid flow.

As well as sources of error in the image capturing there are also sources of

error in the cell localisation. These can result from the z step size or intensity

threshold values being set incorrectly. The setting of these parameters is discussed

in section 2.7.5.2. In particular the intensity threshold used to find the x and

y position of cells is crucial. If this threshold is set too low it can enable any

remaining noise in the video to be identified as a cells. Even if set at appropriate

value this may happen occasionally however, caused by, for example stationary

dust. The impact of this is again mitigated by the stationary nature of this noise.

In terms of analysing the trajectories for characteristic values there are a set of

manually applied parameters that have to be balanced to enable the identification

of features. This includes the balance parameter from the spline smoothing

and the minimum angle threshold in the re-orientation detection. These two

work in tandem on ensure the main features can be picked out from trajectories.

The minimum amount of smoothing possible is used to enable accurate speed

measurements to be made. The speed consistency across down sampling seen in

Fig. 2.17 adds confidence that the measured speed value is accurate. In general it

can be hard to tell the difference between very low angle changes and noise in

a trajectory caused by Brownian motion. The addition of the rolling mean angle

value in the reorientation detection code (discussed in section 2.7.6.4), helps to

flatten the impact of noise that occurs on a shorter time scale than turning events.

However, it is still possible that a small number of lower angle turns could be

missed by the identification analysis.

As with any biological project, there is intrinsic variability within populations

of bacteria including those which might be at different stages of their growth

cycle. This can lead to variability in motility characteristics within a cell culture.

In order to minimise the impact of any outliers on the measured values of a

data set, it is important to image a large number of cells. In this project over

24,000 individual trajectories were captured and analysed. In addition, to this

at least three separate cell cultures were used to make up the data set for each

experiment. If there were any significant outlying results belonging to one culture

this may indicate some issues with growth such as an infection, and this data
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may be dismissed. During this project there were no outlying cultures.

As well as undertaking biological replicates, completing technical replicates

can increase confidence in results. During this project multiple imaging runs were

completed on different days. In addition, at least three videos were taken of every

sample. Similarly to imaging many cultures, strange images or outlying results

could be an indication of issues with the instrumentation. No outlying technical

replicates were identified during this project.

Ultimately there will always be an aspect of estimation in the motility charac-

teristics obtained from DIHM. This is mostly due to the nature of the analysis

process. However, during this project significant efforts were made to reduce the

impact of noise and choose the most appropriate parameters during analysis. This,

combined with the very large number of cells imaged, minimised the contribution

of error in results obtained here.

2.7.7.1 Histograms for population level data

Once the key motility characteristics have been calculated they are plotted and

studied to look for patterns that may tell us more about the swimming behaviour

of the cells. The MATLAB analysis code generates histograms including of the av-

erage swimming speeds per trajectory, run-lengths and plots of run-length against

turning angle etc. Unless otherwise stated the number of bins and their width was

determined using the Freedman-Dicanois rule (see appendix A). Histograms were

fitted using built in MATLAB distribution fitting functions (fitdist), including

kernel density fittings. In the case of the run times histograms the x axes were

clipped to not show bins with two or less runs, enabling better visualisation of

the main distributions. Further specifics of these plots can be found in the results

chapter.

2.7.7.2 Statistical significance testing

When looking for differences or changes in behaviour the mean and standard

error were considered first. However, statistical testing was also applied as there

were cases where the distributions of data were very similar and the differences

subtle and not immediately clear. This consisted of using the Kruskal-Wallis test.

This particular method was chosen as unlike other popular significance testing

methods such a the Mann-Whitney U-test it does not assume an underlying

Gaussian distribution to the data - the importance of which will become apparent

in the results chapter.
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2.8 Cell culturing procedure and sample
preparation

2.8.1 B. bacteriovorus culturing procedure and sample
preparation

Throughout this project B. bacteriovorus were cultured using a procedure based

on the published protocol by Carey Lambert [193], with a step by step guide,

including media recipes, in appendix B. E. coli HCB1, a highly motile strain used

by Howard Berg in classic studies of bacterial motility, was used throughout all

experiments as the prey bacterium [162]. E.coli strains have a variety of different

swimming abilities - this strain was chosen as it has well studied characteristics

and as a highly motile strain is an interesting challenge for the predatory cells.

The prey cells were grown using an E. coli glycerol stock stored at -80°C

to inoculate 20ml of YT media in a 125ml conical flask. They were incubated

overnight (approximately 16h) at 29°C and 150rpm shaking. The cells were then

removed from the incubator the following morning for use in experiments. Unless

otherwise stated, these are the prey cells referred to throughout this thesis. I

found that it was essential to B.bacteriovorus growth that newly cultured prey

cells were used every time. Therefore these were prepared fresh each day.

The process of culturing B. bacteriovorus started by making double layer,

overlay, YPSC agar plates. The bottom layer of the plate contained only YPSC

media and was thicker than the top layer (1% agar). The top layer of the agar

plates was much softer (0.6% agar) and contained live stationary phase E. coli
prey cells. This required the agar to be cooled to just above setting temperature

( 60°C) and the live prey cells added before pouring. This softer agar allowed

predation to occur. Frozen -80°C glycerol stocks of B. bacteriovorus were dotted

onto the centre of these plates. They were then incubated upright, at 29°C, for

one night, then upside down, also at 29°C, for 5-7days or until clearing of the top

layer was seen (this indicates predation). The amount of time for clearing and the

extent of clearing was quite variable, as can be see in Fig. 2.19. However, once it

appeared, plates could be used multiple times to create new liquid cultures. The

upmost care had to be take to maintain sterile technique.

Once the plate had shown clearing the next stage of culturing could be carried

out. This involved making a mini lysate of predating cells and prey in liquid. It

was prepared in a 15ml test tube. This contained 2ml of Calcium/HEPES buffer,
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(a) Plate A after 7 days. (b) Plate A after 21 days.

(c) Plate B after 7 days. (d) Plate B after 21 days.

Figure 2.19: Photographs of B. bacteriovorus overlay agar plates - 1% agar, YPSC
under-layer, and 0.6% agar, YPSC over-layer, impregnated with live E.coli prey
cells. B. bacteriovorus spotted on showing as a clearing of the top agar layer.

150µl of prey cells and cleared agar picked from the overlay plate. This mixture

was incubated at 29°C and 150rpm shaking for 1-2days until highly motile B.
bacteriovorus could be seen using darkfield microscopy.

Finally a main lysate was prepared for use in experiments. This contained

50ml of Calcium/HEPES buffer, 3ml of prey cells and 1ml of mini lysate, prepared

in a 250ml conical flask. This was incubated at 29°C with 200rpm shaking for 24h.

This main lysate was sub-cultured every 24h using fresh prey cells and replacing

the mini lysate inoculation with the previous main lysate (1ml each time). I found

that B.bacteriovorus was most successful when this feeding and sub-culturing

process was performed at strictly the same time every day, with fresh prey cells

that had also been grown in at a consistent time.
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All B. bacteriovorus cells were imaged between 18-24h of co-culture in the

Calcium/HEPES buffer they were grown in. This buffer has no nutrients - only

calcium salts and pH buffer (to maintain a pH of 7.6). Samples of 3ml were

removed from the main lysate for imaging. The 3ml samples were filtered using a

0.45µm syringe filter to remove any remaining prey cells and debris. The filtered

cells were initially imaged using a darkfield microscope to check cell activity

and density. Next they were diluted to an appropriate density for holography

using sterile Calcium/HEPES buffer - typically between 50-100 times dilution.

The diluted sample was pipetted into the sample chambers (made as specified in

section 2.7) ready for imaging.

2.8.2 E. coli culturing procedure and sample preparation

In order to more easily determine between predator and prey cells in mixed

sample experiments, the baseline motility characteristics of E. coli cells were

studied alone. This section describes the procedure used to prepare the cells for

these ‘prey only’ experiments.

In order to make a good comparison to the prey cells used in predation experi-

ments the E. coli HCB1 were grown in the same way as for the B.bacteriovorus
method - as specified in section 2.8.1. For the stationary phase prey cells, they

were then imaged immediately or stored in the fridge for short periods before imag-

ing at room temperature. For the exponential phase cells, 100µl of the overnight

culture was then taken and added to 10ml of YT. These cells were incubated at

29°C, 150rpm shaking for approximately 4h, or until an optical density (OD600)

of approximately 0.25 or greater was achieved.

In both the stationary and exponential phase cases, the cells were washed

before they were imaged - to remove any debris and reduce the background

scattering from the medium. This washing was performed by centrifuging 1ml

of cells for 3min at 800rpm, then removing the supernatant and re-suspending

them in Calcium/HEPES buffer. This process was repeated 3 times. The cells were

then diluted between 10-100 times with more Calcium/HEPES depending on the

original density and checked under darkfield to confirm an appropriate quantity

of motile cells. This cell suspension was then pipetted into a sample chamber for

imaging.
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RESULTS: B. bacteriovorus SWIMMING BEHAVIOUR

3.1 Introduction

This chapter presents the results for this research project including the charac-

teristics of prey E. coli swimming behaviour both in exponential and stationary

growth phases, the baseline motility characteristics of B. bacteriovorus alone and

some hypotheses about their behaviour and a comparison of B. bacteriovorus
swimming behaviour near surfaces to that in the bulk. Finally, a study of B.
bacteriovorus swimming behaviour in the presence of prey cells is presented in

which I look for evidence of prey hunting behaviour.

All trajectories analysed in this section are from cells which have been deter-

mined to be actively swimming (not dead or diffusing cells), using the methods

described in section 2.7.5.3.

3.2 E. coli prey motility

In order to more easily determine between predator and prey cells in future experi-

ments, the baseline motility characteristics of E. coli prey cells were studied alone.

Both exponential and stationary phase cells were studied as B. bacteriovorus
encounters a variety of prey conditions in its natural environments and whilst

in laboratory conditions they are typically fed with stationary phase cells, expo-

nential phase cells are generally faster swimming and more motile and therefore

present a more interesting predation challenge.
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3.2.1 E. coli example swimming trajectories

Figure 3.1: Example 3D swimming trajectories of exponential phase E. coli HCB1.
The colour indicates the speed along the trajectory, shown by the . The circle
indicates the start point of each trajectory and the diamond the end point.
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Figure 3.2: Example 3D swimming trajectories of stationary phase E. coli HCB1.
The colour indicates the speed along the trajectory, shown by the colour bar. The
circle indicates the start point of each trajectory and the diamond the end point.
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Figs. 3.1 and 3.2 show some examples of the E. coli swimming trajectories

gathered during this project. As can be seen in these figure the cells performed a

random walk with longer sections (runs) interspersed with changes of direction (re-

orientation events). The exponential phase cell trajectories, in Fig. 3.2 are typical

of E. coli cells, showing the run and tumble type behaviour first described by

Howard Berg and later studied extensively by various groups [98, 173, 194–197].

The stationary phase cell trajectories, in Fig. 3.1, show a lower persistence

than the exponential cells that may result from a decrease in swimming speed

and average run time. This and further differences or similarities in key char-

acteristics, including swimming speed, have been quantified and discussed in

sections 3.2.2-3.2.6 below.

3.2.2 E. coli swimming speeds

Fig. 3.3 shows histograms comparing the mean swimming speeds of exponential

phase (A/yellow) and stationary phase (B/red) E. coli cells. The exponential phase

cells swim at 18.0 µms−1 with a standard deviation of 6.9 µms−1 and standard

error of 0.2 µms−1. The distribution has a skew of 0.20 and a kurtosis of 2.52.

In comparison the stationary phase cells swim at 9.9 µms−1, with a standard

deviation of 3.5 µms−1 and a standard error of 0.2 µms−1. This distribution has a

skew of 0.011 and a kurtosis of 2.42. This indicates both distributions are fairly

symmetrical and have few outliers. Stationary phase cells show a drop in speed of

8.1 µms−1, to just over half the speed of the exponential cells. The Kruskal-Wallis

test gives these data sets a p value of 1.0×10−65 which confirms that the difference

between them is significant.
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Figure 3.3: Histograms showing the mean swimming speed for E. coli HCB1. A:
Exponential phase cells (yellow). B: Stationary phase cells (red). In both cases n
is the number of trajectories, m is the mean (also indicted by the solid red line), σ
is the standard deviation (also indicated by the dashed red lines) and SE is the
standard error.
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3.2.3 E. coli run times

Figure 3.4: Histograms showing the run times for E. coli HCB1. A: Exponential
phase cells (yellow). B: Stationary phase cells (red). In both cases n is the number
of trajectories, m is the mean, σ is the standard deviation and SE is the standard
error.

Fig. 3.4 shows histograms comparing the run times of exponential phase

(A/yellow) and stationary phase (B/red) E. coli cells. The exponential phase cells

have a mean run time of 0.377 s, with a standard deviation of 0.639 s and a

standard error of 0.006 s. The stationary phase cells have a mean run time of

0.238 s with a standard deviation 0.362 s and a standard 0.008 s. There is a

drop in the average run time of 0.139 s, showing that the stationary phase cells

re-orient more frequently as can be seen qualitatively in Fig. 3.2. The Kruskal-

Wallis test gives these data sets a p value of 2.2×10−38 which confirms that the

difference between them is significant.
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3.2.4 E. coli re-orientation angles

Figure 3.5: Histograms showing the re-orientation angles for E. coli HCB1. A:
Exponential phase cells (yellow). B: Stationary phase cells (red). In both cases n
is the number of trajectories, m is the mean and σ is the standard deviation.

Fig. 3.5 shows histograms comparing the re-orientation angles of exponential

phase (A/yellow) and stationary phase (B/red) E. coli cells. The exponential phase

cells have a mean re-orientation angle of 82.7 °, a standard deviation of 41.8 °, and

a standard error of 0.4 °. The stationary phase cells have a mean re-orientation

angle of 90.5 °, a standard deviation of 41.2 °, and a standard error of 0.9 °.

Interestingly, the stationary phase cells have a greater turning angle by 7.8 °. The

Kruskal-Wallis test gives these data sets a p value of 3.4×10−10 which confirms

that the difference between them is significant.
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3.2.5 E. coli trajectory characteristic patterns

Figure 3.6: Bi-variate histograms of E. coli re-orientation angles against run times.
A: Exponential phase cells. B: Stationary phase cells. The colour bar indicates the
frequency when 1 count = 1 re-orientation event.
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Figure 3.7: Bi-variate histograms of E. coli re-orientation angles before and after a
run. A: Exponential phase cells. B: Stationary phase cells. The colour bar indicates
the frequency when 1 count = 1 run.
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Fig.s 3.6 and 3.7 displays bi-variate histograms showing the relationship

between run times and re-orientation angles, and the pattern of re-orientation

angles found in E. coli cells. The two sets of histograms show similar patterns

that indicate a consistent swimming style.

Fig. 3.6A and B both show a single cluster of events with a shape that slopes

upwards towards the lower angle end of the plot. It appears that below approx-

imately 40 ° re-orientation angles are more likely to be associated with longer

runs than higher angle changes. This pattern can be seen in both the exponential

and stationary phase cells. These plots also have a similar covariance: A of -6.19

degree-seconds and B of -3.68 degree-seconds. This confirms that the cells behave

similarly in the exponential and stationary phase.

Both plots in Fig. 3.7 have a high frequency band moving from bottom left to

top right of the plot. The covariance values of 677 degree-degrees, for Fig. 3.7A,

and 591 degree-degrees, for Fig. 3.7B, show there is a positive correlation between

turning angles before and after a run. This indicates that each re-orientation

event is likely to be followed by another of similar angle change.

3.2.6 Discussion: E. coli motility characteristics

The data in sections 3.2.1-3.2.5 show the characteristic behaviour of E. coli cells

demonstrating the run and tumble style of swimming which has been previously

documented by Howard Berg and others [98, 103, 124, 173, 195]. This run and

tumble style swimming is consistent between both the exponential and stationary

phase cells, as indicated by the similarities of the shape and covariance of the

plots in Figs. 3.6 and 3.7. However, despite this consistent style there are clear

differences in all of the key characteristics.

The swimming speed of the exponential phase cells, 18.0±6.9 µms−1 (± indi-

cates standard deviation) is within the range of other studies of E. coli swimming

in three dimensions: approximately 10-26 µms−1 [98, 103, 124, 173, 198]. The

variations in these speeds is most likely a result of the natural physiological

variations between the strains of E. coli studied. These differences could be due

to environmental pressures driving factors such as changes in cell body size,

flagellum length and structure, biochemical machinery that determines their

swimming response to stimuli and other related biological functions.
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The exponential phase E. coli run times found in this study are shorter than

previous studies at 0.377±0.639 s compared to 0.86 ±1.18 s found by Berg and

Brown [98] and 0.93 ±1.32 s by Molaei et al [103]. The variation between the

different cell strains used may account for the shorter run times in this study. The

long tailed distribution seen in the run times appears very similar to that for wild

type E. coli cells found by Huo et al. [124]. They found that wild type cells had

a large variation in their run duration including few very long runs consistent

with a Lévy walk model of behaviour. As discussed in section 1.3.4, Lévy walk is

a pattern of behaviour which enables efficient searching of an environment for

sparsely located nutrients. It is possible that the wild type cells in this study also

utilise a Lévy walk to improve their nutrient locating efficiency. This distribution

is also what gives rise to the shape of the run length histogram, including the

peak in the data (and therefore the first histogram bin not having the greatest

frequency value).

The mean turn angle found for the exponential phase E. coli cells is 82.7±41.8°

making it greater than those found by both Berg and Brown at 68.0 ±36.0 ° and

Molaei et al. at 71.3 ±44.0 ° [98, 103]. As previously mentioned, this is most

likely due to variation between cell strains. A previous study by Kong et al. found

through modelling that, E.coli reorientation angle is dependent upon both the

number and the position of the flagella, both of which can vary with cell strain

[199]. They also found that reorientation is approximately linearly correlated

to the tumbling time of the cell. It is hard to say if there is a optimum turning

angle for E.coli swimming behaviour. Any optimum value would be dependent

on the the environmental conditions including the viscosity and homogeneity

of the medium through which the cells are moving. It would also be linked to

the run times of the cells. For instance if cells were to have a high average

reorientation angle combined with a low average run time this would result in

low persistence trajectories. In contrast a low average reorientation angle and

high average run length would result in high persistence trajectories. In reality

there is distribution in both which results in some intermediary persistence. In

the context of nutrient searching efficiency, most studies have focused on run

times rather than reorientation angles (see section 1.3.4 for details).

Stationary phase E. coli motility hasn’t been studied in this depth before.

This is perhaps because the fraction of motile cells drops substantially when

moving from exponential to stationary phase. The stationary phase E. coli cells

show a significant drop in the swimming speed compared to exponential phase

cells of approximately 8.1 µms−1. Considering the biological context of stationary
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phase cells this change is logical. The stationary phase of the bacterial life-cycle

is generally considered to be the stage at which cells have stopped growing but

still remain metabolically active [200]. It can be brought about by a number of

stressors in the cells environment such as changes in pH or temperature but is

most often associated with a lack of nutrients [201]. There are a variety of ways

that cells behave in stationary phase including entering forms of dormancy [202].

However, in all of these cases and when considering the significant proportion of

the cells energy budget which is taken up by the flagellar motor, it is logical that

swimming would be decreased to conserve energy for other essential mechanisms

within the cells. Indeed a previous study has shown a drop in both the number of

flagella and the amount of flagellum that is found in stationary phase cultures

compared to exponential phase, as well as drop in overall swimming speed [203].

The stationary phase E. coli cells also showed a significant change in mean

run time - dropping by approximately 0.139 s. In addition, they show a significant

increase in mean turning angle by 7.8 °. Both of these changes are interesting

and require further study to understand fully. However, it is known that the run

times of E. coli are mediated by the chemotaxis chemical pathway within the

cell whilst in the exponential phase of cell growth. It may be possible that when

moving into the stationary phase this pathway is disrupted in some way which

could impact both the run times and turning angles of the cell. Past studies have

show that cells lose flagella in the stationary phase, which would impact their

swimming significantly. In particular, cells may be in some type of intermediary

stage of flagellum shedding or re-absorption which would change their overall

motility characteristics. As previously mentioned, it is important to recognise

that different strains of E. coli and differences in culturing media and techniques

which contribute to the environment of the cells can have a non-negligible impact

on motility. This may account for some of differences between the results seen

here and in previous studies.

The E. coli prey cell behaviour described in this section can be considered

somewhat of a baseline - it serves as a useful comparison to the following sections

on B. bacteriovorus behaviour which as can be seen below shows a distinctly

different pattern of swimming. It has also been used to to enable bacteria type

identification from trajectory data as described in section 3.6.2.

74



3. RESULTS: B. BACTERIOVORUS SWIMMING BEHAVIOUR

3.3 B. bacteriovorus motility

3.3.1 B. bacteriovorus example trajectories

Figure 3.8: Three dimensional plot of B. bacteriovorus swimming trajectories
taken from a single video, showing a cross-section of the entire sample chamber.
Each coloured plot represents a single trajectory.

The plot in Fig. 3.8 contains 607 three dimensional B. bacteriovorus swimming

trajectories - this is approximately 3% of the total 20408 B. bacteriovorus swim-

ming trajectories imaged and analysed during this project (samples containing

only B. bacteriovorus).

Fig. 3.9 shows as series of plots of single B. bacteriovorus swimming trajec-

tories. Here the colour indicates the speed along the trajectory. As can be seen

in the example trajectories the cells swim in a random walk of long persistent

runs punctuated by re-orientation events. The plots show that the speed of the

cells varies along the trajectory, reducing most significantly around re-orientation

events.
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Figure 3.9: Example 3D swimming trajectories of B. bacteriovorus. The colour
indicates the speed along the trajectory, shown by the colour bar. The circle
indicates the start point of each trajectory and the diamond the end point
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3.3.2 B. bacteriovorus swimming speeds
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Figure 3.10: Histogram showing the distribution of mean swimming speeds of
B. bacteriovorus trajectories. The key includes some overview statistics : n is
the number of trajectories, m is the overall mean speed (also shown by the solid
red line), σ is the standard deviation (also shown by the dashed red lines), and
SE is the standard error. The histogram has been fitted with a kernel density
estimation curve.

Fig. 3.10 shows a histogram of the average swimming speeds of

B. bacteriovorus trajectories. Each value in the histogram represents the mean

instantaneous velocity vector of a trajectory with n being the number of trajecto-

ries. The overall mean swimming speed is 34.1 µms−1 with a standard deviation

of 7.8 µms−1 and a standard error of 0.05 µms−1. The histogram has been fitted

using a kernel density estimation (KDE), non-parametric model shown by the

red line. The distribution has a skew of -0.99 and a kurtosis of 4.4, this indicates

that the distribution has a heavy left handed skew and relatively few outliers. It

B.bacteriovorus is significantly more left skewed than the E.coli distributions in

Fig. 3.3. The breadth of the distribution reflects the intrinsic variation within the

population of cells, showing a long left handed tail towards slower speeds.
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3.3.3 B. bacteriovorus run times

Figure 3.11: Histogram showing the distribution of run times for B. bacteriovorus
swimming trajectories. Where n is the number of runs, m is the mean run time, σ
is the standard deviation and SE is the standard deviation. Note the x axis has
been clipped at 11 s to better display the distribution (excludes bins containing 2
or less runs).

The histogram in Fig. 3.11 shows the distribution of run times (amounts of

time between re-orientation events) for B. bacteriovorus. The histogram is taken

from analysis of 130706 runs which have an average length of 0.477 s, with a

standard deviation of 0.71 s and a standard error of 0.002 s. Qualitatively, the

distribution appears to be an approximation of a bi-exponential decay, suggests

there are possibly two subsets of runs occurring.
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3.3.4 B. bacteriovorus re-orientation angles
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Figure 3.12: Histogram showing the distribution of re-orientation angles for
B.bacteriovorus. Where n is the number of re-orientation events, p1 is the approx-
imate location of the lower angle peak and p2 is the approximate location of the
higher angle peak.

The histogram in Fig. 3.12 shows the distribution of re-orientation angles

for B. bacteriovorus. This is one of the more interesting characteristics studied

here as the complexity of the histogram most clearly suggests a complexity in the

swimming motion of B. bacteriovorus. The histogram has been fitted using a KDE

shown by the red line. There is a bimodal distribution with a broader, shallower

peak centred around approximately 102 ° and a narrower, taller peak centred

around approximately 165 °.
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3.3.5 B. bacteriovorus trajectory characteristic patterns

Figure 3.13: Bi-variate histograms of B. bacteriovorus swimming characteristics.
Top: Re-orientation angles vs. the proceeding run times. Bottom: Re-orientation
angles before vs. after a run. In both cases the colour indicates frequency as
denoted by the colour bars on the right of the plots.
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The top plot in Fig. 3.13 shows a bivariate histogram of re-orientation angles

against the log of previous run times for B. bacteriovorus, where colour indicates

frequency. The log of the run times was used to more easily visually distinguish

the pattern. There two clearly defined clusters, showing a relationship between

the two characteristics; with longer run duration being most likely to be followed

by sharper turns with larger turning angles. Shorter run duration is typically

followed by smaller turning angles. However, these have a much greater range

of possible angles. It also appears that there are a greater number of runs with

a short duration than a long duration. This plot has a covariance of 6.98 degree-

seconds. Compared to E.coli, which had an average covariance of -4.94 degree-

seconds, both have no significant correlation of turn angle to run length. However,

the patterns seen are quite different with E.coli only showing one cluster compared

to B.bacteriovorus showing two.

The bottom plot of Fig. 3.13 shows a bivariate histogram of re-orientation

angle before and after runs. There is an upside down L shaped cluster in the

top right hand corner of the plot. This shape of clustering suggests that there

is a pattern or order to the two subsets of turns. It shows that high-angle turns

can be followed by another high angle turn or by a lower-angle turn. However,

low-angle turns are much less likely to be followed by another low-angle turn. The

covariance of this plot is 17.5 degree-degrees. In contrast, the E.coli data showed

an average covariance of 634 degree-degrees. This shows that B.bacteriovorus has

a significantly different motility pattern to E.coli.

3.3.6 Discussion: B. bacteriovorus motility characteristics

The B. bacteriovorus motility characteristics presented here confirm previous

studies showing B. bacteriovorus to be a highly motile and fast swimming bacteria

relative to its size. The three dimensional nature of this study has illustrated

in new detail the complexity of their swimming behaviour discussed in detail

below. The swimming speed of B. bacteriovorus was found to be 34.1 ±7.8 µms−1

(where the ± indicates the standard deviation). This result is in line with most

speeds found for previous studies of a range of B. bacteriovorus strains; typically

approximately 30-60 µms−1, although one study has seen speeds of up to 160

µms−1 µms−1 [137, 137, 141, 142, 204]. Fig.3.10 shows that the speeds have a

relatively broad distribution with a long tail to the lower end - with a skew of -0.99.

Interestingly E.coli has a relatively symmetrical distribution with a slight right

handed skew of 0.20 and 0.011 for exponential and stationary phase cell respec-

tively. This will be partially due to natural variations within the B.bacteriovorus
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cell population but, in part, may also be due to the use of an a-synchronous culture

resulting in a mixture of cells at different stages of the attack phase being present.

Previous studies of B. bacteriovorus have shown that there is significant variation

in the size and shape of attack phase cells, with new progeny cells nearly doubling

in length between initial bdelloplast lysis and maturation [73]. Past studies of

E. coli have shown that longer cells swim significantly slower then shorter cells.

Cells approximately five times as long as wild type cells swam at approximately

half the speed [205]. It therefore stands to reason that B. bacteriovorus swimming

may be affected similarly. The reason for the slight right hand skewness of E.coli
is unclear. However, it may be due to different flagellation of the cells. E.coli has

a tuft of flagellum, whereas B.bacteriovorus only has one flagellum. Due to this

there is more possibility for variation in E.coli than B.bacteriovorus, including

difference in number and length of flagellum per cell. This could cause a broader

distribution of swimming speeds in E.coli, which may go some way to explaining

the differences in distribution shape.

The combined results of the run time and re-orientation angle characteristics

show a fascinating bi-phasic re-orientation style with a clear link between the

run times proceeding a turn and the resulting angle change. There is a pattern

of behaviour mostly clearly illustrated by the plots in Fig. 3.13 which show two

clear sub sets of re-orientation events and that a high angle turn can be followed

by another high angle turn or a lower angle turn, but a lower angle turn will

not be followed by a lower angle turn. I hypothesise from these results that B.
bacteriovorus are performing a relatively newly discovered type of swimming

pattern known as run-reverse-flick.

Figure 3.14: Schematic diagram of run-reverse-flick pattern of swimming. Where
the red arrow represents the run, the blue arrow the reversal and the reorientation
are labelled. Note that the cell body to flagella position is an approximation.
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Run-reverse-flick behaviour was first observed by Xie et al. in both Vibrio
alginolyticus and Pseudoalteromonas haloplanktis cells [206]. They demonstrated

that the cells had an interesting bi-modally distributed set of re-orientation

angles (remarkably similar to those seen in the B. bacteriovorus data in this

study). The key attributes of this swimming type are to have a high angle turn

(known as a reversal) followed by a lower angle turn (known as a flick) which

together randomly re-orientate the cell - acting as the functional equivalent of

a tumble in the more well known E. coli run and tumble type swimming. The

amount of time between a reversal and flick (of the same event) is variable but

is generally less than that between each overall reorientation. From this data

it is has not been possible to identify which turns are reversals and which are

flicks due to the breadth of the peaks in the reorientation angle distribution. This

means it is not possible to identify which runs are associated with each part of

the pattern. In the future, it may be possible to do this by visualising the cell

body and flagellum simultaneously. The run-reverse-flick pattern of behaviour is

illustrated in Fig.3.14 and examples of B. bacteriovorus displaying this behaviour

can be seen in Fig.3.15.

Due to wide variation seen in bacterial swimming patterns it is logical to pre-

sume that the run-reverse-flick pattern evolved due to it providing a competitive

edge to the cells using it. It may also be that it is simply the most efficient way

to swim for single polar flagellated cells. Xie et al. postulated that this motility

behaviour improves the fitness of the bacterium by making chemotaxis more effi-

cient in environments where the distribution of nutrients is spatially anisotropic.

Spatially anisotropic environments are environments where the properties vary

depending on direction. This can include situations where there is fluid flow such

as in marine habitats. Further study of this bacterial behaviour by the Xie group

confirmed this advantage, and showed that chemo-sensing and migration was

present in both the forward and backwards parts of the V. alginolyticus swimming

cycle. This made it particularly well suited to responding to transitory signals.

They therefore suggested that it would be likely that other species would be found

to perform similar behaviour especially in marine habitats [207]. Indeed, since

then, it has been shown that a number of different species including Shewenella
putrefaciens, Vibrio cholerae, Vibrio coralliilyticus, and mixed seawater popu-

lations of bacterium perform run-reverse-flick re-orientations [91, 112, 208]. I

believe that B. bacteriovorus can now be added to this group.
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Figure 3.15: Example plots of B. bacteriovorus re-orientation events showing a two
step turning mechanism consisting of a high angle reversal followed by a lower
angle flick. In all plots the triangle denotes the start of the trajectory segment
and the diamond the end. The colour indicates the swimming speed as shown by
the bar at the bottom of the figure.
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An in depth study of flicking behaviour by Kwangmin et al. suggested that

it was caused by a buckling instability in the hook section of bacterial flagellum

[91]. Their data showed that flick occurred exclusively when the cells where

swimming forwards (with the flagellum behind the cell body in the direction of

motion). Therefore they hypothesised that the compression forces put on the hook

during forward swimming causes it to buckle resulting in the rapid change of

direction known as a flick. They further supported this theory by showing that the

probability of flicks occurring was appreciably decreased with swimming speed.

The slower the cells swam, the less compression on the hook and therefore the

less likely a flick was to occur. A similar pattern was also seen by Grognot et al.

[208]. This combined with the wide distribution of swimming speed seen in B.
bacteriovorus may explain why there was a marked number of repeated reversals

in the data in Fig. 3.13.

However, there is some ambiguity to the theory presented by Kwangmin et al.

They suggest that flicks only occur during forward runs, which implies that it is

not possible to see consecutive turning events containing a flick ie. the pattern

would go run-reverse-flick, run reverse, run-reverse-flick, run reverse etc. This is

not the pattern seen in the B. bacteriovorus data. When individual trajectories

are studied it is not uncommon to see consecutive run-reverse-flick events. More

studies will need to be done to understand the mechanics of their motion.

The previously mentioned advantage run-reverse-flick gives cells for perform-

ing chemotaxis towards spatially anisotropic sources of nutrients that give off

transitory signals is acutely relevant to the problem of B. bacteriovorus sensing

and moving towards prey cells in their environment. This is especially so when

you consider the range of environments B. bacteriovorus has been found in and

the wide spectrum of motile prey cell types they successfully predate. As well

as allowing them to sense and find moving prey, run-reverse-flick could confer

them a significant advantage over cells with less efficient motility behaviour. This

would perhaps allow B. bacteriovorus to out run, or out manoeuvre, prey that may

be trying to escape or exist in a dense community of prey cells, e.g a biofilm.
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3.4 Temporal consistency of B. bacteriovorus
motility characteristics

For this section B. bacteriovorus was studied over a time series in an attempt to

understand if length of co-culturing time affects behaviour. The main lysate was

sampled once an hour every hour between 19-24 h of co-culturing time. This time

window was selected as it contained the most commonly used sampling windows

for previous B. bacteriovorus experiments, typically from 20-21 h, with additional

samples before and after. The samples were prepared as specified in section 2.8.1.
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3.4.1 B. bacteriovorus swimming speeds: time series

Figure 3.16: Plot showing the mean swimming speeds of B. bacteriovorus at a
series of co-culturing times (19-24 h). The box plots on the left of each time point
have a range of the 25-75 percentile with the central line indicating the median
value and the red dot the mean value. The right hand side of each time point is
a histogram of the data (bin width dictated by the lowest number of bins for all
data sets as worked out using the Freedman Diaconis rule). The overall mean
of all combined data is shown by the solid red horizontal line, with the dashed
red horizontal lines showing the standard deviation. The top x axis indicates the
number of trajectories in each data set.

The plot in Fig. 3.16 show a time series for the mean swimming speeds of

B. bacteriovorus between 19-24 h of co-culturing. The solid red horizontal line

represents the overall mean speed and the dashed lines the standard deviation.

At every time point the mean and median values (the red dots and centre line

of the box plots) are very close to the overall mean and well within the standard

deviation. There is no trend to the mean speed suggesting that B. bacteriovorus
swimming speed is stable and consistent over this time window of co-culturing.
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3.4.2 B. bacteriovorus run times: time series

Figure 3.17: Plot showing a comparison of the distribution of run times for B.
bacteriovorus over a time window of 19-24 h. The time is shown in the index. Each
point on the plot for each hour represents the top of the histogram bar for that
data set. The probability is found by dividing the sample number in each bin by
the total number of samples for that data set. Please note that this plot is clipped
at 9s on the x axis to more clearly show the key data.

The plot in Fig. 3.17 shows the comparison of the distribution of run times

over the time window of 19-24 h. Similarly to their mean swimming speed B.
bacteriovorus do not show any significant change or trend in run times over the

time of 19-24 h co-culturing.
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3.4.3 B. bacteriovorus re-orientation angles: time series

Figure 3.18: Plot showing comparison of B. bacteriovorus turning angles over
19-24 h of co-culturing. Each line represents one hour of the data set as shown in
the legend. Each point on each plot represents the top of the histogram bar for
that data. The probability is found by dividing the sample number in each bin by
the total number of samples for that data set.

Fig. 3.18 shows a comparison of the distribution of re-orientation angles for the

hours between 19-24 h of co-culturing. There is some variation in the distributions,

particularly in the high angle peak at around 160 ° with 22 h having the greatest

peak at this value. However there is very little variation in the lower angle peak

and no clear trend in the behaviour.

3.4.4 Discussion: B. bacteriovorus motility characteristics
temporal consistency

The results presented in this section show that B. bacteriovorus swimming be-

haviour is consistent within the co-culturing time window of 19-24 h. This result

makes sense from the perspective that this is a mixed life-cycle stage (asyn-

chronous) population with an excess prey cell resource. Throughout the chosen

time window there were sufficient prey cells for the population to remain viable

and therefore motility was maintained.
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In contrast, a previous study by Sathyamoorthy et al., studying synchronous

populations of starved B. bacteriovorus, found that both HD100 and 109J strains

showed a significant drop in the proportion of swimming cells over time as well as

variations in swimming speed [209]. HD100 showed an initial increase in swim-

ming speed up to approximately 2.5 h and then a steady decrease over time until

a total population arrest at approximately 8 h. It is an interesting observation in

the context of the results in section 3.2.2-3.2.6 as it shows parallels in behaviour

to stationary phase E. coli cells, that also reduce or arrest swimming when nu-

trients are lacking. Interestingly, the arrested B.bacteriovours cells re-activated

swimming behaviour when given live prey cells, prey cell culture supernatant

or certain amino acids. This re-activation happened in as quickly as 60 s [209].

This is clear evidence that B. bacteriovorus are able to detect live prey within

their environments and react to prey by modifying their behaviour. I would expect

that if I repeated my experiment (with the asynchronous culture) but continued

to sample the co-culture beyond 24h the fraction of motile cells would begin to

decrease as would the average swimming speed due to the prey source becoming

depleted from predation.

It is useful to know that swimming remains consistent whilst prey cells are

plentiful as it removes concerns about experiments needing to be performed

within very limited time windows. It also suggests that when applied in systems

beyond the lab B. bacteriovorus are likely to remain effective predators whilst

there remains an abundance of prey cells. This has relevance when thinking about

the application of B. bacteriovorus medically, as B. bacteriovorus should continue

being motile and therefore (hopefully) predating effectively until the prey source

(the source of infection) has been cleared (not considering the immune response of

the host).

3.5 B. bacteriovorus motility at surfaces

This section compares B. bacteriovorus swimming behaviour within 10 µm of

the top and bottom surfaces of the sample chamber compared to the bulk fluid

of the chamber. The trajectories were selected as explained in section 2.7.6.2.

As explained in section 1.3.5, previous studies have suggested predator-surface

and prey-surface interactions may be an essential component in B. bacteriovorus
locating prey in their environment [108, 147].
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3.5.1 B. bacteriovorus swimming speeds: surfaces vs. bulk

Figure 3.19: Histograms showing the mean swimming speeds of B. bacteriovorus
swimming trajectories in bulk liquid compared to within 10 µm of sample chamber
surfaces. In both cases, n is the number of trajectories, m is the overall mean
speed (also shown by solid red line), and σ is the standard deviation (also shown
by dashed red lines) and SE is the standard error. A: Bulk, B: Surfaces.

The plots in Fig. 3.19 show the mean speeds for B. bacteriovorus trajectories in

bulk fluid compared to trajectories within 10 µm of surfaces. The cells swimming

in bulk have a mean speed of 35.9 µms−1 with a standard deviation of 6.8 µms−1

and a standard error of 0.050 µms−1. In comparison the cells swimming near the

surfaces have a mean speed of 30.6 µms−1, a standard deviation of 11.0 µms−1

and a standard error of 0.16 µms−1. They show that there is a drop in mean speed

near to surfaces of approximately 5 µms−1. The Kruskal-Wallis test gives these

data sets a p value of 1.1×10−168 which confirms that the difference between them

is significant.
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3.5.2 B. bacteriovorus run times: surfaces vs. bulk

Figure 3.20: Histograms showing the run times of B. bacteriovorus swimming
trajectories in main bulk liquid compared to within 10 µm of sample chamber
surfaces. In both cases, where n is the number of trajectories, m is the overall
mean speed,and σ is the standard deviation. A: Bulk, B: Surfaces.

The plots in Fig. 3.20 show the run times for B. bacteriovorus swimming bulk

compared to next to surfaces. For cells swimming in bulk the mean run time is

0.61 s with a standard deviation of 0.74 s and a standard error of 0.0031 s. In

contrast the cells swimming within 10 of surfaces show a much shorter mean run

time of 0.21 s with a standard deviation of 0.30 s and a standard error of 0.0019 s.

This drop in mean run time of 0.4 s tells us that the cells are turning more often

when close to surfaces than in bulk. The Kruskal-Wallis test gives these data sets

a p value of 0 which confirms that the difference between them is significant.
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3.5.3 B. bacteriovorus re-orientation angles: surfaces vs.
bulk

Figure 3.21: Histograms showing the reorientation angles of B. bacteriovorus
swimming trajectories in main bulk liquid compared to within 10 µm of sample
chamber surfaces. In both cases, where n is the number of trajectories, m is the
overall mean speed and σ is the standard deviation.A: Bulk, B: Surfaces

The plots in Fig. 3.21 show the re-orientation angles of B. bacteriovorus swim-

ming in bulk compared to swimming near surfaces. Both histograms have been

fitted using a KDE shown by the red line. There is a significant change to the dis-

tribution of the re-orientation angles. The histogram goes from having a bi-modal

distribution, with peaks at 103 ° and 165 °, when the cells are swimming in bulk,

to a single-peaked distribution near to surfaces. This suggests a change from

run-reverse-flick style of swimming to a more homogeneous motility pattern. The

Kruskal-Wallis test gives these data sets a p value of 3.4×10−175 which confirms

that the difference between them is significant.
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3.5.4 B. bacteriovorus characteristic patterns: surfaces vs.
bulk

Figure 3.22: Histograms showing the reorientation angles of B. bacteriovorus
swimming trajectories against the proceeding run times in main bulk liquid
compared to within 10 µm of sample chamber surfaces. The colour indicates the
frequency as shown by the colour bars on the right hand side of each plot.A: Bulk,
B: Surfaces
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Figure 3.23: Bivariate histograms showing the reorientation angles before and
after each run from B. bacteriovorus swimming trajectories in main bulk liquid
compared to within 10 µm of sample chamber surfaces. The colour indicates the
frequency as shown by the colour bars on the right hand side of each plot. A: Bulk,
B: Surfaces
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The plots in Figs. 3.22 and 3.23 agree with and add to the picture of a change

in swimming style near surfaces. Fig. 3.22 clearly shows two clusters in A and

only one in B. The two clusters in Fig. 3.22A (in bulk) match those more generally

found in the B.bacteriovorus trajectories, where long runs are associated with high

angle turns and shorter runs associated with lower angle turns. This suggests a

run-reverse-flick style of swimming.

In contrast, in Fig. 3.22B, the cluster associated with long runs and high

angle turns is gone. This suggests that at surfaces B.bacteriovorus is no longer

performing run-reverse-flick. Fig. 3.23 also indicates a change of behaviour. Fig.

3.23A (in bulk) shows a pattern to the order of turning events that is not seen

in Fig. 3.23B (near surfaces). Near to surfaces the pattern is more similar to

E.coli motility, albeit with a higher average angle. The covariance of 3.23A is

-118 degree-degrees, compared to 140 for 3.23B.These plots and values show that

at surfaces B.bacteriovorus has homogeneous style of swimming where there is

no longer a complex pattern or order to the changes in direction. At surfaces

re-orientations are most likely to be followed and proceeded by events with a

similar turn angle.

3.5.5 Discussion: B. bacteriovorus surfaces vs. bulk motility
characteristics

The data in the sections 3.5.1-3.5.4 show a clear difference in motility behaviour

of B. bacteriovorus in bulk fluid to within 10 µm of surfaces. There was a drop in

swimming speed of approximately 5 µms−1 in addition to a change in the overall

motility pattern - moving away from a bi-phasic, run-reverse-flick, motility style

to a more homogeneous behaviour with a continuous distribution of re-orientation

angle changes. The drop in swimming speed seen in these B. bacteriovorus results

echoes some previous studies of both E. coli and Pseudomonas aeruginosa which

also saw drops in swimming speed at surfaces [102, 105]. Interestingly the results

shown here are in disagreement with a recent study which suggested that cells

swim significantly faster at surfaces and in high viscosity environments due to a

reduction in cell body wobbling [210].
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The overall behaviour changes may be due to a number of factors including

passive hydrodynamic interactions between the cells and the surfaces - coming

from collisions with and debris on the sample chamber surfaces. There may also

be changes in behaviour because of additional forces on the flagellum and cell

body. This are due to enhanced viscosity near surfaces, within approximately 5

cell body radii of the surface. These viscosity changes can be described by Faxens

law which is an alteration to Stokes’ Laws and describes the friction on a spherical

object in viscous fluid when it moves near to a surface [211]. For B.bacteriovorus
with a cell length of up to 1.2 µm this would be from around 6 µm of the surface

(within the 0- 10 µm studied here). It may also be possible for there to be active

interactions happening with the cells sensing the surfaces. B.bacteriovorus do

have pili on their surfaces which they use to sense, attach to and infiltrate prey

cells [65, 67, 68]. It is therefore possible that these pili could be used to sense

surfaces in general including those of a sample chamber. It is unclear from these

results if the observed motility changes at surfaces are a result of passive or active

behaviour.

Previously Jashnsaz et al. have suggested that B.bacteriovous use surface

accumulation of both prey cells and themselves as a way to enhance predation

efficiency [108]. This is an interesting theory however it does not take into account

the wide variety of environments B. bacteriovorus is found in, including bulk fluids

such as sea water. Although, it is worth noting that aggregation has been observed

in Gram-negative bacteria in sea water perhaps representing a form of surface

the cells may need to negotiate even in fluid environments [212]. Without further

study it is hard to say if the modified behaviour seen in my results would confer

any predation advantage, for example in terms of searching efficiency. However,

in the context of medical application where surfaces are abundant and biofilms

on surfaces are of significant interest these changes in behaviour are relevant.

Further work needs to be done to fully understood this surface motility behaviour

and it’s possible impacts on predation efficiency.
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3.6 B. bacteriovorus motility changes in the
presence of live prey cells

3.6.1 Mixed predator-prey sample preparation

The sample preparation for the mixed samples was simple. Both predator and

prey were prepared in exactly the same manner as for the previous experiments

where they were imaged separately. The two sample types (both in Ca/HEPES

buffer) were mixed gently in a plastic microcentrifuge tube and then diluted using

more Ca/HEPES buffer to a suitable density for holography. This mix was left

for 10min to allow the cells to begin to interact and then it was pipetted into a

sample chamber ready for imaging.

3.6.2 Mixed predator-prey image analysis method

In order to find the best ways of distinguishing between cell types a few different

methods were tried including looking at the intensity of cell locations in the holo-

grams and using the characteristic parameters as indicators. The latter proved to

be the most effective method. The Figs. in 3.24 and 3.25 show a comparison of the

mean speeds and turning angles of the mixed predator-prey samples compared to

the separate samples. The top two plots show both the mixed and separate data,

where the coloured histogram bars present the mixed predator-prey data, the

line plots with stars the prey alone and the line plots with circles the predators

alone. The bottom two plots show the residuals of the mixed data minus the E.
coli data in each case i.e. either exponential or stationary phase cells as indicated

by the labels. There is greater cross over between the exponential phase E. coli
cell behaviour and the B. bacteriovorus than the stationary phase E. coli. However,

in both cases there are thresholds above which a trajectory is more likely to be B.
bacteriovorus than E. coli. The residual plots in particular show clear threshold

values. In order to make comparison simpler, an approximate mean between the

two types of prey residual thresholds was taken to give an overall set of thresholds.

These values were applied to the mixed data sets to give an estimate of a cell type

for each trajectory - cells were counted as B. bacteriovorus if their mean speed

was above 20 µms−1 and they contained at least one turning angle above 110°.

The same filters were applied to the B. bacteriovorus data from section 3.3.2 to

allow a comparison between B. bacteriovorus behaviour with and without prey

and so look for any changes in motility characteristics that may be triggered by

the presence of live prey cells.
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Figure 3.24: Mixed B. bacteriovorus and E. coli mixed samples mean swimming
speeds comparison and residuals histograms. Left: (Cyan) B. bacteriovorus mixed
with exponential phase E. coli. Right: (Pink) B. bacteriovorus mixed with station-
ary phase E. coli.Top: Histogram bars are the mixed data, the line plots are a
plot of the histogram bar tops for E. coli alone (cross) and B. bacteriovorus alone
(circles). Bottom: Residual histograms consisting of the probability of the mixed
data minus the probability of the E. coli alone.
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Figure 3.25: Mixed B. bacteriovorus and E. coli mixed samples turning angles
comparison and residuals histograms. Left: (Cyan) B. bacteriovorus mixed with
exponential phase E. coli. Right: (Pink) B. bacteriovorus mixed with stationary
phase E. coli.Top: Histogram bars are the mixed data, the line plots are a plot of
the histogram bar tops for E. coli alone (cross) and B. bacteriovorus alone (circles).
Bottom: Residual histograms consisting of the probability of the mixed data minus
the probability of the E. coli alone.
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3.6.3 Mixed predator-prey swimming speeds

Figure 3.26: Histograms of B. bacteriovorus mean swimming speeds, alone and
mixed with prey. A: B. bacteriovorus alone. B: Mixed with exponential E. coli. C:
Mixed with stationary phase E. coli. In all cases n is the number of trajectories, m
is the mean value (also represented by the solid red lines), and σ is the standard
deviation (also represented by the dashed red lines) and SE is the standard error.
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3.6.4 Mixed predator-prey run times

Figure 3.27: Histograms of B. bacteriovorus run times, alone and mixed with
prey. A: B. bacteriovorus alone. B: Mixed with exponential E. coli. C: Mixed with
stationary phase E. coli. In all cases n is the number of trajectories, m is the mean
value, and σ is the standard deviation and SE is the standard error.
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3.6.5 Mixed predator-prey re-orientation angles

Figure 3.28: Histograms of B. bacteriovorus turning angles, alone and mixed with
prey. A: B. bacteriovorus alone. B: Mixed with exponential E. coli. C: Mixed with
stationary phase E. coli. In all cases n is the number of trajectories, p1 is the
first fitted peak and p2 is the second fitted peak (as determined using a Gaussian
mixed model approach where all values are approximate).
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The B. bacteriovorus alone has a mean swimming speed of 33.0 µms−1, with

a standard deviation of 5.4 µms−1and a standard error of 0.050 µms−1. The

exponential phase E. coli mix has a mean speed of 36.9 µms−1, with a standard

deviation of 5.7 µms−1 and a standard error of 0.25 µms−1. The stationary phase

E. coli mix has a mean speed of 36.3 µms−1, with a standard deviation of 6.5

µms−1 and a standard error of 0.16 µms−1. In both mixed samples the means

swimming speed increases by a small but significant amount of approximately 4

µms−1.

The B. bacteriovorus alone has an average run time of 0.53 s, with a standard

deviation of 0.74 s and a standard error of 0.0023 s. The exponential phase E. coli
mix has an average run time of 0.58 s, with a standard deviation of 0.69 s and a

standard error of 0.011 s. The stationary phase E. coli mix has an average run

time of 0.51 s, with a standard deviation of 0.61 s and a standard error of 0.0056

s. As the exponential phase mix shows an increase by 0.06 s and the stationary

phase mix a decrease by 0.2 s, these data sets suggest that B. bacteriovorus does

not change it’s run time distribution in the presence of live prey.

Similarly, the re-orientation angles of B. bacteriovorus do not appear to change

with the presence of live prey cells. The approximate peak positions of the flick

events are 105 °, 104 °, and 105 °, for the predator, mixed exponential and mixed

stationary data, respectively. The approximate peak positions of reverse events

are also very alike at 165 °, 162 °, 163 °, for the predator, mixed exponential and

mixed stationary data, respectively.
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3.6.6 Discussion: B. bacteriovorus changes in motility
characteristics in the presence of live prey cells

The data in sections 3.6.3-3.6.5 show that B. bacteriovorus cells do not change

swimming style in the presence of live prey. They continue to perform run-reverse-

flick with re-orientation events at similar rates to B. bacteriovorus alone. However,

they do increase their swimming speed.

The increase of swimming speed in the presence of prey cells is an interesting

result. It is logical that this could be a mechanism to aid in predation efficiency.

An increase in swimming speed in areas of high prey cell density will increase the

rate at which B. bacteriovorus collide with prey cells - their collision frequency.

In turn increasing overall predation rates. This behaviour would be a form of

active hunting that does not depend on tracking individual prey. Interestingly, it

is also a method that doesn’t rely on any prior knowledge of the prey cell type

and therefore would be effective on the wide range of prey cell strains (including

varied morphology and behaviours) that B. bacteriovorus are able to predate.

To better understand the impact of increasing swimming speed on searching

efficiency, the collision frequency of cells in a volume can be approximately calcu-

lated, using kinetic theory from physics. In order to do so, certain assumptions

must be made. Firstly, the cells are assumed to be small, hard and spherical

with a mass m. The cells only exert force on each other when they collide and

these collisions are elastic in nature. When collisions do occur their duration

is negligible and their are no forces of attraction between the cells. It also as-

sumed that between collisions cells move in a straight line. This calculation also

presumes that all the cells are moving with the same average velocity. For the pur-

pose of this approximation, the cells are considered to an equal mix of predatory

B.bacteriovorus and prey E.coli cells.

If a B.bacteriovorus cell is moving through an environment, it will collide with

another cell if it comes within a distance D. Where D is equal to the radius of the

B.bacteriovorus cell plus the radius of the E.coli cell. Approximating the radius of

B.bacteriovorus to be 0.5 µm and the radius of E.coli to be 1 µm, and assuming

an equal mix of predator and prey, D ≈ 1.5 . The path of a B.bacteriovorus cell

can then be thought of a cylinder of space. If a cell passes into this space then

a collision will occur. The B.bacteriovorus cell will move a distance Ω along this

cylinder in a time t, where Ω is equal to the cells velocity, 〈v〉, times t (〈v〉t).
Therefore, the B.bacteriovorus path will have a volume equal to πD2〈v〉t.
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In order to work out the likelihood of collisions, the density of the cells is

important. Considering all other cells to be stationary, if there is a number of cells

per unit volume of n then the number of cells within the B.bacteriovorus path

(and so the number of cell collisions in that path) will be nπD2〈v〉t.

The average distance a cell will travel without colliding with another cell is

known as the mean free path, λ. This can be found by dividing the distance the

cell travels down its path by the number of cell collisions in its path:

λ= 〈v〉t
nπD2〈v〉t =

1
nπD2 (3.1)

Taking into account that most of the cells will be swimming the mean free

path changes. The average relative velocity between cells can be defined as

vrelative =
p

2 〈v〉. Therefore the mean free path is:

λ= 1p
2 nπD2

(3.2)

Collision frequency of the cells, Z, is the velocity of the cells divided by their

mean free path:

Z = v
λ
= v

p
2 nπD2 (3.3)

For this approximation, the velocity of the cells can be taken as an average of

exponential phase E.coli and the B.bacteriovorus mixed with exponential phase

cells. This gives a velocity of 27.5 µms−1. There will be an average D of 1.5 µm.

The unit density can be approximated on the imaging set up as 5.5x1012 m−3 (from

around 150 cells per imaging volume of 250 µm3). This gives a collision frequency

of approximately 0.0026 s−1 - or approximately 1 collision every 6 minutes. It is

important to note that these samples were very dilute for the purposes of imaging.
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There are obviously a number of assumptions in this calculation that do not

reflect the full system complexity. This includes the fact the cells in a real system

will interact and do not swim in straight lines between collisions. However despite

this there are a number of key points demonstrated here. The collision frequency is

linked to the size and density of cells. Therefore navigating to an area of high prey

density is clearly a good way for predators to increase their predation efficiency.

Also, as collision frequency scales with speed, the faster a given B.bacteriovorus
cell swims the more likely it is to encounter a prey.

In addition to simply increasing collision frequency, it may be that there

are other, more complex, reasons to swim faster in the presence of prey. For

example, if prey bacteria have an ability to detect predators, or some form of

defence or resistance, as has been suggested in [213]. It is also possible that

prey use some kind of warning mechanism to communicate to other cells that

predators are present. In all of the above situations faster predators are more

likely to successfully attack. Therefore, implying swimming faster when prey

are abundant makes B. bacteriovorus more effective predators, than if they were

non-responsive.

However, an increase of speed alone does not explain previously observed

B. bacteriovorus directional chemotactic behaviour towards certain chemicals

and high densities of prey bacterium [108, 144–148]. A key limitation to this

experimental setup is that the predator and prey cells were approximately uni-

formly mixed and therefore any directional chemotactic behaviour can not be seen.

Future experiments (further discussed in section 4.2) using prey cells in a fixed,

known, location could be used to determine if the re-orientation rate biases their

random walk towards the prey cells - analogous to E. coli biased random walks.
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CONCLUSIONS

4.1 Results summary and conclusions

This chapter summarises the key results of this research project including the

key characteristics (swimming speeds, run times and re-orientation angles) of B.
bacteriovorus in various conditions, a brief discussion of these results and ideas

for future work.

4.1.1 Summary tables of key B. bacteriovorus motility
characteristics

B. bacteriovorus Swimming Speeds (µms−1)
Conditions Speed σ SE
Standard 34.07 7.82 0.05

Bulk 35.92 6.84 0.05
Surfaces 30.6 11.0 0.2

Thresholded as mix 32.96 5.38 0.05
Mixed w. exp. prey 36.9 5.7 0.3
Mixed w. stat. prey 36.3 6.5 0.2

Table 4.1: Table showing a summary of the mean swimming speed results of
B. bacteriovorus, including mean swimming speeds of B. bacteriovorus alone
including all swimming trajectories (standard), in bulk, at surfaces, standard
but with the same conditions applied as mixed with prey cells (thresholded as
mix), mixed with exponential phase prey cells (mixed w. exp. prey), and mixed
with stationary phase prey cells (mixed w. stat. prey). The standard deviation and
standard error of each value are given.
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B. bacteriovorus Run Times (s)
Conditions Run time σ SE
Standard 0.477 0.711 0.002

Bulk 0.612 0.740 0.003
Surfaces 0.208 0.303 0.002

Thresholded as mix 0.531 0.741 0.002
Mixed w. exp. prey 0.58 0.69 0.01
Mixed w. stat. prey 0.511 0.612 0.006

Table 4.2: Table showing a summary of the run time results of B. bacteriovorus,
including run times of B. bacteriovorus alone including all swimming trajectories
(standard), in bulk, at surfaces, standard but with the same conditions applied as
mixed with prey cells (thresholded as mix), mixed with exponential phase prey
cells (mixed w. exp. prey), and mixed with stationary phase prey cells (mixed w.
stat. prey). The standard deviation and standard error of each value are given.

B. bacteriovorus Turn Angles (°)
Conditions Turn angle P1 Turn angle P2
Standard 102 165

Bulk 103 165
Surfaces 114 -

Thresholded as mix 105 165
Mixed w. exp. prey 104 162
Mixed w. stat. prey 105 163

Table 4.3: Table showing a summary of the re-orientation (turn) angle results
of B. bacteriovorus, including turn angles of B. bacteriovorus alone including all
swimming trajectories (standard), in bulk, at surfaces, standard but with the
same conditions applied as mixed with prey cells (thresholded as mix), mixed
with exponential phase prey cells (mixed w. exp. prey), and mixed with stationary
phase prey cells (mixed w. stat. prey). P1 indicates the first peak in the turn angle
distribution and P2 the second (as determined using a Gaussian mixed model
approach where all values are approximate).
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4.1.2 Conclusions

This project has studied B. bacteriovorus motility behaviour in three dimensions

for the first time and in much greater detail than previous work. This has revealed

previously unknown B. bacteriovorus characteristics including run times and re-

orientation angles they perform whilst swimming. These characteristics, combined

with swimming speeds, indicate that B. bacteriovorus have an interesting and

complex swimming style which, whilst consistent over time, can be altered both

by proximity to surfaces and the presence of prey cells.

Before investigating B.bacteriovorus motility, prey E.coli cell motility was

studied. Both exponential and stationary phase E.coli show the characteristic

run and tumble swimming style previously found by Howard Berg and many

others [98, 103, 124, 173, 195]. The swimming speed results obtained for expo-

nential phase E.coli of 18.0±6.9 µms−1 is within the range of previous 3D studies

- approximately 10-26 µms−1 [98, 103, 124, 173, 198]. The run times and reori-

entation angles of the exponential phase cells are 0.377±0.639 s and 82.7±41.8 °

respectively. These differ slightly from existing values but within the given errors

[98, 103]. The differences could be due to a number of factors including the cell

strains used and variations in culturing techniques and media.

Stationary phase E.coli motility has not been studied at this level of detail

before. The key characteristics were quantified, finding the swimming speed to be

9.9±6.9 µms−1, the run time to be 0.238±0.639 s, and the reorientation angle to be

90.5±41.2 °. These characteristics differ significantly from the exponential phase

E.coli, with a decrease in both swimming speed and run time and an increase in

turning angle. This results in slower, less persistent swimming trajectories than

those of the exponential E.coli cells. A previous study by Amsler et al. has also

found a decrease in overall swimming speed in stationary phase cells [203]. There

are a number of possible reasons for this change in behaviour including stressors

within the cell, differences in flagellum number and size, as well as alterations in

the chemotaxis pathway [201–203].

Overall, the E.coli results showed the expected run and tumble motility mech-

anism, with characteristic values similar to those previously seen. These results

served as a useful comparison to the B.bacteriovorus motility and enabled the

identification of cell types in the mixed sample studies.
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The central goal of this project was to study the motility characteristics of

B.bacteriovorus in three dimensions, to aid in understanding of their life cycle

and predation mechanisms. This was achieved, giving new insights into their

behaviour in previously unseen detail. This study found that B.bacteriovorus have

a swimming speed of 34.1 ±7.8 µms−1. This value fits within the average range

found by previous studies of approximately 30-60 µms−1 [137, 141, 142, 204].

B.bacteriovorus run time was found to be 0.477±0.711 s and have an inter-

esting long tailed distribution, possibly in the manner of a Lévy walk. The

B.bacteriovorus reorientation angle distribution is particularly interesting with

two peaks at approximately 102 ° and 165 ° . When the run times are plotted

against the turn angles it becomes apparent that there is a relationship between

them. There are two clearly defined clusters; with longer run times being most

likely to be followed by higher reorientation angles. Shorter runs are typically

followed by smaller reorientation angles. However, these smaller angle changes

have a broader distribution. In addition, it is possible to see that there is pattern

to the order of these reorientation angles, with high angle turns most likely to

be followed by low angle turns. It is rare for a low angle turn to be followed by

another low angle turn.

From the characteristics and patterns in the results here, I hypothesise that

B. bacteriovorus have a run-reverse-flick style of swimming with a biphasic re-

orientation pattern consisting of consecutive high angle reversals and low angle

flicks. This pattern is maintained well over a time window of 18-24h, most likely

due to an excess supply of prey in vitro enabling continuous predation.

The motility behaviour of B.bacteriovorus was also studied near to surfaces. It

was found that when the cells are within 10µm of surfaces the run-reverse flick

pattern disappears. The cells swim slower at around 30.6±11.0 µms−1, a reduction

of 5 µms−1 compared to swimming in bulk fluids. They also re-orient more often

having a run time 0.21±0.30 s, which is a reduction 0.4 s compared to bulk. There

is also a significantly altered swimming pattern consisting of a wide continuous

distribution of reorientation angles. These reorientation angles do not have a

complex pattern - they are most likely to be followed by another of a similar value.

Past studies of other types of bacteria of both E. coli and Pseudomonas aeruginosa
have also found reductions in swimming speed and changes of cell behaviour

[102, 105]. These changes are most likely caused by hydrodynamic interactions of

the cell body and the flagellum with the surfaces [211].
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Lastly, the behaviour of B.bacteriovorus was studied when mixed with live

E.coli prey cells. It was found that the run-reverse-flick motility pattern was

preserved in this case and no significant changes were seen in turning angle or

run length (see tables 4.2 and 4.3). However, their swimming speed increased

when compared to B.bacteriovorus alone. B.bacteriovorus alone (with thresholds

as applied to mixed samples) had a swimming speed of 32.96±5.38 µms−1. In

comparison, when mixed with E.coli prey cells this increased to 36.9±5.7 µms−1

and 36.3±6.5 µms−1 (for exponential and stationary phase prey respectively). This

increase in swimming speed is likely a mechanism by which B.bacteriovorus boosts

its predation efficiency. Increasing swimming speed will increase the likelihood

to collide with prey cells present in the environment. Thereby, it increases the

chance of successful predation. This method does not rely on prior knowledge

of a prey cell type or active tracking of individual prey cells. It indicates that

B.bacteriovorus is able to sense and respond to areas of high prey density which

has previously been hinted at in past studies [108, 144–148].

The results obtained here add to existing knowledge of B. bacteriovorus motil-

ity, going some way to explain their complex swimming behaviour in fluid environ-

ments. I hope that this work can help to enhance overall understanding of how

B. bacteriovorus interact with their environment, including prey cells, and aid in

their future application industrially and/or medically.

4.2 Future work

There is a variety of future work that could be done to build upon the results

presented in this thesis, to confirm theories suggested here and to further deepen

our understanding of B. bacteriovorus motility behaviour.

Further studies will be needed in order to confirm the hypothesis that B. bacte-
riovorus has a run-reverse-flick style of re-orientation. These studies will need to

include imaging the flagellum whilst cells are swimming. Ideally, in order to track

their relative motion, both the flagellum and the cell body will need to be imaged

at the same time. One of the main limitations of the DIHM imaging technique

used in this project was that it only enabled the localisation of the cell body, not

the flagellum. In order to overcome this issue, other microscopy techniques such

as fluorescent staining and imaging could be used. Considering the size of the B.
bacteriovorus and the membrane-sheathed nature of its flagellum, this may be

challenging. However, a previous study has successfully used fluorescent staining

and tagging to visualise Vibrio alginolyticus flagella which have a similar single
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polar sheathed flagella [214]. It may be possible to use a similar technique to

stain B. bacteriovorus flagella which, in combination with a differently coloured

fluorescent cell strain, such as constitutively expressing mCherry cells, may allow

simultaneous and relative cell body to flagella imaging.

Considering the previously seen impact of swimming speed on the flicking

behaviour of bacterial cells, as well as the known impact of viscosity on B. bac-
teriovorus predation, it would be interesting to further study B. bacteriovorus
motility characteristics in medically relevant environmental conditions such as in

visco-elastic fluids. This is something that would be relatively straightforward to

do with the current DIHM set up. Different types of polymer could be added to

the imaging buffer and the cells imaged in the same manner as in this project.

More work needs to be done to understand if the changes of behaviour in

B. bacteriovorus at surfaces confers it any form of predatory advantage. This

work could include modelling of this behaviour, similar to that done by Jashnaz

et al., but this time taking into account the key characteristics such as the run

distributions and pattern of turning angles found by this study [108]. In addition,

experiments could be done to compare the predation rates of prey in bulk fluids

compared to prey on surfaces (non-motile or otherwise trapped). One of the most

time consuming, manual aspects, of the image analysis process for this project,

was manually identifying the sample chamber surface depths. As all the sample

chambers were made by hand their depth varied slightly between each one. This

meant that they all had to be checked during analysis. If a larger study of surface

interactions was going to be done using DIHM it would be preferable to change

this method. It may be possible to automate the surface identification using some

form of algorithm or machine learning software. Alternatively, commercial sample

chambers could be sourced, although these will have manufacturing tolerances

which may also need checking.

The increase in swimming speed in the presence of live prey cells seen in

this study, combined with the previous chemotaxis studies discussed in section

1.3.5 offer mixed evidence of active hunting by B. bacteriovorus. The DIHM

technique I have used here could be harnessed to do more in depth studies of

chemotaxis towards live prey. Firstly, initial studies could be done using known

chemo-attractants for B. bacteriovorus. This would enable the study of the B.
bacteriovorus chemotaxis mechanism in terms of changes in swimming charac-

teristics such as biasing of run times in the direction of desired nutrients, as has

been seen in other species such as E. coli. Experiments with live prey could then
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be performed, using non-motile prey on surfaces, or a range of prey cell types

trapped in agar plugs. I did begin experiments with live prey cells trapped within

agar plugs. However I found that B.bacteriovorus was attracted to the agar plugs

alone perhaps due to impurities. If these experiments were performed it would be

critical to find a neutral medium within which the prey cells could be suspended.

Comparisons could be made between baseline swimming characteristics, known

chemotaxis characteristics and any motility changes in the presence of live prey

cells. These studies combined would give a comprehensive understanding of B.
bacteriovorus hunting behaviour.

Beyond the further work in understanding B. bacteriovorus, it is interesting

to consider the implications of the technique used in section 3.6 to identify cell

types from motility characteristics. Whilst the criteria used in this study were rel-

atively simple, it is possible to suggest that if combined with advanced computing

techniques, such as machine learning, it could be applied to other more complex

samples containing more than two cells types. This technique has wide reaching

application possibilities including in medical diagnostics.
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THE FREEDMAN-DIACONIS RULE

The Freedman-Diaconis rule is a statistical technique developed by David Freed-

man and Persi Diaconis. It can be used for determining the optimum bin width for

histograms particularly for unusual distributions, such as those with long tails or

multiple peaks.

The rule approximately minimises the integral of the squared difference

between the relative frequency density (i.e. the histogram) and the density of the

theoretical probability distribution. In practical terms, it attempts to select the

bin width which most appropriately displays the data distribution.

The general equation for the rule is:

Binwidth = 2
IQR(x)

3pn
(A.1)

where IQR is the interquartile range, n is the number of samples in the data set

x [215].
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B
BDELLOVIBRIO BACTERIOVORUS CULTURING

PROTOCOL

Adapted from published procedure by Carey Lambert and Liz Sockett [193].

B.1 Introduction

This procedure outlines how to culture host dependent Bdellovibrio bacteriovorus
HD100 (B.bacteriovorus) including reviving them from frozen frozen stocks, onto

plates and into liquid media and general culturing. It also includes the instructions

for making the necessary media and plates.

B.2 Media preparation

B.2.1 Media needed:

1. YT media

2. CaCl2.2H2O (Calcium chloride dihydrate) stock solution

3. YPSC media

4. Calcium/HEPES free acid buffer
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B.2.2 Media descriptions:

• YT media is standard microbial growth medium. It is nutrient rich, and

contains peptides and amino acids in a low salt formulation. It is typically

used to grow E.coli cells.

• YPSC media is specialised microbial growth medium used for growing E.coli
cells for B. bacteriovorus predation. It is low nutrient but does contain

peptides and amino acids and is high in calcium salts.

• Calcium/HEPES free acid buffer is used for growing B.bacteriovorus cells.

This buffer is nutrient free. It is used to maintain the ion levels and therefore

the pH of the cell culture.

B.2.3 Media recipes:

YT media

• 5gL−1 sodium chloride

• 5gL−1 peptone

• 8gL−1 tryptone

Dissolve all ingredients in appropriate volume of water. Adjust to pH 7.5 using

2M NaOH. Autoclave to sterilise.

CaCl2.2H2O (Calcium chloride dihydrate) stock solution

• 25gL−1 CaCl2.2H2O

• MilliQ water

Dissolve CaCl2.2H2O in appropriate amount of water. Filter sterilise solution.

Store at room temperature. *Do not heat stock solution or any media once
CaCl2.2H20 has been added as it will precipitate.
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YPSC media

• 0.125gL−1 magnesium sulphate

• 0.25gL−1 sodium acetate

• 0.5gL−1 bacto peptone

• 0.5gL−1 yeast extract

• CaCl2.2H2O stock solution

Dissolve all ingredients except CaCl2.2H2O in appropriate volume of water.

Autoclave to sterilise. If using as liquid media add CaCl2.2H2O stock solution to

achieve 0.25gL−1.

Calcium/HEPES buffer

• 5.94gL−1 HEPES free acid

• 0.284gL−1 calcium chloride dihydrate

Dissolve all ingredients in appropriate volume of water. Adjust to pH 7.6 using

2M NaOH. Autoclave to sterilise.
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B.3 Culturing procedure

B.3.1 Reviving from frozen stocks

Equipment needed

• Autoclave

• Water bath set to 55°C

• Pipettes and tips

• Flow hood

• Test tubes

• Petri dishes

• Agar

NB. Prepare all media and buffers prior to starting culturing process.
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Day 1: Prepare an overnight culture of prey cells:

1. Inoculate 20ml of LB or YT media with frozen E.coli.

2. Incubate overnight at 37°C, 150rpm shaking.

Day 2: Make YPSC overlay plates:

1. Prepare media for plates: 1% (w/v) agar YPSC and 0.6% (w/v) agar

YPSC. Allow approximately 10ml of each concentration for each plate.

2. Add the appropriate amount of agar to the YPSC media, stir, autoclave

and place into the water bath.

3. Inside the flow hood, add CaCl2.2H2O stock solution to achieve 0.25gL−1

to the 1% (w/v) agar YPSC, pour into plates and allow to set.

4. The next stage need to be done as quickly as possible: to a test tube,

add 200µl of overnight prey cell culture, 10ml of 0.6% (w/v) agar YPSC

at 55°C and 100µl of CaCl2.2H2O stock solution. Pour straight on top

of the 1% (w/v) agar bottom layer. Repeat for every plate.

5. Leave plates for at least 5min undisturbed to allow the agar to set

smoothly.

6. Spot approximately 50µl of B.bacteriovorus frozen stocks onto the

centre of the YPSC overlay plate.

7. Seal the plates with parafilm and wrap with clingfilm to prevent drying

out over long incubation period.

8. Incubate plate upright (0.6% (w/v) agar layer facing upwards) at 29°C

overnight until a lawn of prey cells is observed.

Day 3: Incubate for predation:

1. Turn plate the upside down and incubate for another 1-5 days at 29°C

or until clearing of the prey lawn is observed - see appendix for example

photos.

Day 8: Prepare an overnight culture of prey cells:

1. Inoculate 20ml of LB or YT media with frozen E.coli.

2. Incubate overnight at 37°C, 150rpm shaking.

120



B. BDELLOVIBRIO BACTERIOVORUS CULTURING PROTOCOL

Day 9 (morning): Make mini lysate:

1. Place 2ml of Calcium/HEPES buffer and 150µl of overnight prey cul-

ture into a test tube.

2. Using a P1000 pipette set to 300µl, pick some of the cleared agar off

the top layer of the plates and add to the buffer-prey mix in the test

tube.

3. Incubate at 29°C, 150rpm for 1-2 days until you can see B.bacteriovorus
swimming under darkfield microscopy.

Day 9 (evening): Prepare an overnight culture of prey cells:

1. Inoculate 20ml of LB or YT media with frozen E.coli.

2. Incubate overnight at 37°C, 150rpm shaking.

Day 10: Make main prey lysate:

1. Add the below to a sterile 250ml conical flask:

a) 50ml sterile Calcium/HEPES buffer

b) 3ml of overnight prey cell culture

c) 1ml of mini lysate

2. Incubate overnight at 29°C with shaking at 200rpm for 24h.

Day 11: Check lysate for cells:

1. Check for B.bacteriovorus under darkfield microscope.

Note: YPSC overlay plates can be stored at room temperature for up
to 2 weeks, with the B.bacteriovorus remaining viable. This is better than
storing at 4°C.

121



B. BDELLOVIBRIO BACTERIOVORUS CULTURING PROTOCOL

B.3.2 Sub-culturing of B.bacteriovorus on E.coli prey
lysates

Day 1: Prepare an overnight culture of prey cells:

1. Inoculate 20ml of LB or YT media with frozen E.coli.

2. Incubate overnight at 37°C, 150rpm shaking.

Day 2: Make main prey lysate:

1. Add the below to a sterile 250ml conical flask:

a) 50ml sterile Calcium/HEPES buffer

b) 3ml of overnight prey cell culture

c) 1ml of prey lysate

2. Incubate overnight at 29°C with shaking at 200rpm for 24h.

Day 3: Check lysate for cells:

1. Check for B.bacteriovorus cells under darkfield microscope.
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