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Abstract

The mathematical models of this Thesis represent T cell population

dynamics in homeostasis and during infection. In particular, T cell

cross-reactivity is studied with a bipartite recognition network encoding

the epitope recognition profiles of T cell receptors. The behaviour of

extinction events is studied using stochastic models. Stochastic and

deterministic techniques are used to study the late time behaviour of

the system. Statistical methods are used to study immune responses

in the context of influenza A virus infection in mice, providing insight

into the effects of immunological history and cross-reactivity. Finally,

network theoretical tools are used to study the dynamics of cross-

reactive immune responses under different hypotheses for the structure

of the bipartite recognition network.
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Chapter 1

Introduction

Mathematical modelling in biology can be used as a quantitative tool to generate

and test hypotheses of biological systems at all scales. That is, mathematical

models are a versatile tool that can be used to study microscopic behaviours,

such as cell signalling (Shinar et al., 2007; Wilmes et al., 2021), as well as

macroscopic ones, e.g., population dynamics, be it single-cell (Feliciangeli et al.,

2022; Zarnitsyna et al., 2016) or multi-cellular organisms (Amador & Gómez-

Corral, 2020; Baroyan et al., 1971; Rvachev, 1968). Models can be broadly

classified as being stochastic or deterministic. Deterministic models are those

which do not consider random, or stochastic, effects in the system, while stochastic

models, as their name suggests, are able to capture these random fluctuations.

Deterministic models are frequently described by systems of ordinary differen-

tial equations, and they have been used in the context of population growth since,

at least, as far back as the 18th century, with Thomas Malthus’ proposition that

population growth is proportional to the size of the population (Malthus, 1986).

While this initial proposition was not made in the context of mathematical mod-

elling, it is an early description of what would later be known as an exponential

growth model (Brauer et al., 2012, Chapter 1). Not long after, however, more com-

plex models for single populations with a carrying capacity were mathematically

described and used to model population dynamics; namely the logistic growth

model (Verhulst, 1838, 1845), and its multiple variations that where subsequently

proposed (Buis, 1991; Kostitzin, 1940; Turner Jr et al., 1969, 1976). Interest

for mathematical modelling was not limited to single populations however, and

1



1. INTRODUCTION

thus multi-dimensional models were developed to study the dynamics of multiple

populations. Some examples include predator-prey population models (Lotka,

1925; Volterra, 1926), and epidemiological compartment models (Allen, 1994).

Stochastic models, on the other hand, are defined by random variables over a

given state space, where each individual random variable describes the evolution of

a population over time (Allen, 2010). This type of model can be used to describe

direct competition between populations (Iglehart, 1964), as well as competition

between populations for a shared survival resource (Stirk et al., 2008, 2010). A com-

mon method to study stochastic models, is to simulate them using an exact stochas-

tic simulation algorithm, such as the one proposed by Gillespie (1977). In general,

biological systems exhibit some degree of stochasticity in their dynamics, which can

be caused by intrinsic factors, randomness within the system, or extrinsic factors,

randomness in other systems that interact with the system of interest (Tsimring,

2014). This stochastic dynamics has been observed at all scales, ranging from the

microscopic scale, such as gene expression (Fraser & Kaern, 2009; Kaern et al.,

2005), to the macroscopic scale, such as cell-to-cell interactions (Simpson et al.,

2009) or cell population dynamics (Kussell & Leibler, 2005; Patra & Klumpp, 2013).

Altogether, this can be interpreted as stochastic modelling being a more

appropriate approach (over deterministic modelling) in the context of biological

systems. However, the analysis of stochastic models is limited by the scale and

complexity of the system of interest; that is, as the complexity of the system or

the number of possible states increase, the model becomes more computationally

expensive to analyse (Fadai et al., 2019; Fahse et al., 1998; Simoni et al., 2020).

On the other hand, deterministic models are very versatile due to the extensive

existing literature on ordinary differential equation analysis (Bock, 1983; Deuflhard,

1985; Gratie et al., 2013), but they do not consider random fluctuations that occur

in the system of interest, which can be of great importance (Hahl & Kremling,

2016). These limitations on both types of model can be considered, in a sense,

complementary. Stochastic modelling allows for the study of noisy dynamics on

a relatively small state space, while deterministic modelling allows for the study

of larger populations by neglecting the random fluctuations that are part of the

dynamics of the system (Hahl & Kremling, 2016).

2



1.1 Objectives of this Thesis

1.1 Objectives of this Thesis

In Chapter 2 the immune cells that will be the focus of this Thesis, T cells,

are introduced. Their population dynamics has been widely studied but is not

yet fully understood (Doherty & Christensen, 2000; Henrickson & von Andrian,

2007). Different types, or phenotypes, of T cells are known to exist (Apetoh et al.,

2015; Farrant et al., 1994; Newell et al., 2012), and each of them plays a different

role during and immune response (Murphy & Weaver, 2016, Chapter 11). In

Section 2.2 it is explained how T cells of a given phenotype can differentiate

to a different phenotype when certain conditions are met, and which of these

phenotypes will be considered for the models presented here. In the context of

T cell immunology, there is a phenomenon known as cross-reactivity, in which

multiple different T cells can recognise several epitopes (small protein fragments

derived from an invading pathogen or from cells belonging to the host organism),

and there is an overlap of recognition between T cells (Elong Ngono & Shresta,

2019; Mateus et al., 2021; Moris et al., 2011; Webster & Askonas, 1980). The

aim of this Thesis is to present a mathematical model, and methods to study the

phenomenon of cross-reactivity in the context of multiple infections occurring over

time. In Chapter 3 the mathematical and statistical methods used throughout

this Thesis are introduced.

For naive phenotype T cells; that is, cells that have not taken part in an

immune response before, stochastic models have been proposed to describe their

population dynamics (Stirk et al., 2008, 2010). However, these models only

consider at most two populations of cells competing for survival stimulus. Thus,

the effect of multiple populations of naive T cells competing for survival stimulus

has not been studied in as much detail. In Chapter 4, a generalised version of

the model proposed by Stirk et al. (2010) for η ≥ 3 different T cell populations is

presented, and stochastically analysed to study the effects of new populations of

T cells being introduced to the system. Using this model, the time to extinction

of the populations is calculated, together with the distribution of population sizes

for surviving populations when an extinction event takes place. More than this,

the distribution of the number of divisions is also calculated in order to gain

better understanding of the proliferation of naive cells before they become extinct.

3



1. INTRODUCTION

Using the method described in Section 4.2.3, a deterministic approximation of the

stochastic model is found, and used to describe the long term behaviour of the

populations before extinction. Then, the long term dynamics of the stochastic

and deterministic models are compared.

During an infection, three phenotypes are usually considered to be of the

greatest importance: naive, effector, and memory cells (Ahmed & Gray, 1996;

Bevan & Fink, 2001; Doherty & Christensen, 2000). When an immune response is

initiated, there is a perturbation of the populations of T cells involved in it, in the

form of differentiation into the effector phenotype, followed by a rapid expansion of

cells of this phenotype (Appay & Rowland-Jones, 2004; Wherry & Ahmed, 2004).

This process has implication on future immunity to infections, since following the

triggering of an immune response, immunological memory is generated (Gil et al.,

2015; Lanfermeijer et al., 2020; Yang et al., 2022). This is, therefore, important

in the context of cross-reactivity, as it has been observed that infection with a

given variant of influenza A virus can grant immunity to other variants (Duan

et al., 2015; Hillaire et al., 2013; McMichael et al., 1983; Sridhar et al., 2013).

In Chapter 5, an extension of the model defined in Chapter 4 is presented to

include the three phenotypes previously mentioned, as well as initiation of the

immune response due to the presence of foreign peptides. Given the size of the

effector population during infection, which is orders of magnitude greater than

naive cells (Lanzavecchia & Sallusto, 2001), a deterministic approximation of the

model is found. Using the methods described in Hong et al. (2020), parameter

identifiability analysis is performed on the deterministic model to determine

whether it can be parametrised with novel experimental data provided by Jessica

Gaevert, and Paul Thomas from the Paul Thomas laboratory in the Immunology

department at St. Jude Children’s Research Hospital. This data is then analysed

using the statistical methods presented in Section 3.3, in order to elucidate the

importance the order of infection has in the generation of memory to influenza A

viruses.

The analysis performed in Chapter 5 is highly specific to the pathogen and

variants being considered, requiring knowledge of the specific epitopes that elicit

cross-reactive immune responses. However, this is information that is not generally

known for all pathogens. For this reason, in Chapter 6 a general approach to
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1.1 Objectives of this Thesis

study mathematically generated hypotheses, in the form of randomly generated

cross-reactivity strategies, is proposed. Three different random generation models

are presented, and using the stochastic model defined in Chapter 5, stochastic

realisations are used to study and compare the immune responses associated with

the different hypotheses. The hypotheses considered are framed in the context

of focussed and unfocussed cross-reactivity proposed by Mason (1998), and the

results suggest that both types of cross-reactivity lead to T cell responses that

are biologically plausible.
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Chapter 2

Immunological background

In this Chapter a general background of the immunological concepts discussed

throughout this Thesis is provided. The immune system is a complex network

of different types of cells and molecules which work together to protect the body

from infections caused by pathogens, such as viruses or bacteria (Murphy &

Weaver, 2016, Chapter 1). Immune responses to infection can be split into two

categories: innate responses, which provide non-specific protection by targeting

invariant sections of commonly encountered pathogens (Murphy & Weaver, 2016,

Chapter 2), and adaptive responses, which provide protection by the selection

and expansion of specific immune cells that can recognise molecules associated

with a given pathogen (Murphy & Weaver, 2016, Chapter 3). These molecules

are commonly referred to as antigens. An important distinctive feature between

these two types of immune responses is that adaptive immunity has the capability

of generating long lasting immunity, therefore providing protection against future

infections by the same pathogen (Lauvau & Soudja, 2015).

Within the adaptive immune system there are two cell populations of particular

importance, they are called T and B lymphocytes (or T and B cells for short),

and they are characterised by the presentation of the T or B cell receptor on the

surface, respectively (Casola et al., 2004; Varma, 2008). B cells generate immunity

by producing antibodies (Cumbers et al., 2002; Tonegawa, 1983). These antibodies

can then be used to combat pathogens by binding to their antigen and preventing

them from entering and infecting healthy cells (neutralisation) (Casadevall &

Pirofski, 2004; Chan et al., 2009), or by marking them to be cleared from the
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2. IMMUNOLOGICAL BACKGROUND

body by macrophages (opsonisation) (Owens III & Peppas, 2006; Trotter et al.,

1986; Ziemssen & Ziemssen, 2005).

T cells can be categorised in two distinct types of cells: those which present the

CD4 co-receptor on their surface, and those which present the CD8 co-receptor.

These two types of T cells are respectively called CD4+ and CD8+ cells. CD4+

are referred to as T helper cells, since they are involved in the activation of B cells,

CD8+ T cells, and other immune cells during infection (Qi et al., 2014a; Weaver

et al., 2007; Zhu & Paul, 2008). On the other hand, CD8+ cells are called cytotoxic

T cells given their function of inducing the death of infected cells (Andersen et al.,

2006; Chisari et al., 1997). In the context of infection, both CD8+, and CD4+ cells

mount an immune response when they become activated by the recognition of an

antigen they are able to recognise being presented in a major histocompatibility

complex (MHC) of class I and II, respectively (Maryanski et al., 1997; Rock et al.,

2016). The antigen being presented by MHC molecules is a short protein, called a

peptide or epitope, produced by the infecting pathogen (Mantegazza et al., 2013).

The specific epitopes a T cell is able to recognise are called its cognate epitopes.

Since a general aim of this Thesis is to model T cell immunity, the remainder of

this chapter will focus on T cell immunology.

2.1 The T cell receptor

As alluded to previously, T cells are identified by the T cell receptor (TCR)

presented in their surface, which allows them to recognise peptides presented in

MHC molecules by antigen presenting cells (APCs). The collection of all the

different TCRs presented by T cells in an individual is called its T cell repertoire.

For humans, the size of the repertoire is estimated to be approximately 4× 106–

108 distinct TCRs (Arstila et al., 1999; Nikolich-Žugich et al., 2004; Qi et al.,

2014b; Robins et al., 2009). Each T cell presents copies of only one specific TCR

on its surface (Varma, 2008), which is able to recognise a variety of different

epitopes (Lang et al., 2002; Mason, 1998; Selin et al., 1994; Sewell, 2012; van den

Berg et al., 2011; Yin & Mariuzza, 2009). All T cells that present the same

TCR on their surface are said to constitute a T cell clonotype. Structurally, each

TCR consists of paired α and β chains, which together with the CD4 and CD8
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2.1 The T cell receptor

co-receptors are responsible for the recognition of presented epitopes (Reiser et al.,

2003). However, the TCR by itself is not able to signal the nucleus of the cell

once it encounters a cognate epitope, and therefore it depends on CD3 molecules

(composed of ε, γ, δ, and ζ chains), which can transfer the signals received by the

TCR to the cell nucleus (Kuhns et al., 2006). This interaction between a TCR

and a peptide being presented in MHC is shown in Figure 2.1.

Figure 2.1: Interaction between a TCR, and a peptide being presented in an

MHC molecule by an antigen presenting cell, adapted from Gaud et al. (2018).

The α, and β chains, together with the CD4 or CD8 co-receptor are responsible

for the recognition of the peptide being presented. While the ε, γ, δ, and ζ chains

of the CD3 molecule are responsible for signalling the cell nucleus if a cognate

epitope is encountered.

The α and β chains of the T cell receptor derive their great diversity from

the V(D)J recombination process (Alt et al., 1992; Schatz & Ji, 2011; Schatz &

Swanson, 2011). During this process, through a complex set of genetic mecha-

nisms (Lieber, 2010; Lieber & Wilson, 2010; Verkaik et al., 2002), one of each V, D,

and J genes is chosen and combined to generate the DNA sequence that produces

a cell’s TCR (Alt et al., 1992; Thompson, 1995). For the β chain, specifically

in humans, there are 48 possible choices of V genes, 2 possible D genes, and 13

9



2. IMMUNOLOGICAL BACKGROUND

possible J genes (Murugan et al., 2012; Schatz & Swanson, 2011). It was shown

by Murugan et al. (2012) that the functional β chains that can be generated

from these genes have an entropy of about 47 bits; that is, about 247 possible β

chains can be generated from these genes. Without accounting for recombination

events that result in the same β chain being generated, a phenomenon called

convergent recombination, the entropy rises to 52 bits, which can be separated into

contributions from gene choice, nucleotide insertion events, and nucleotide deletion

events as follows: 9 bits come from the choice of gene, 30 bits from insertion

events, and 13 bits from deletion events. This decomposition is summarised in

Figure 2.2. This means that most of the diversity of the TCR repertoire comes

from insertion and deletion events, and only a small portion of it is due to the

variety of V, D, and J genes.

Figure 2.2: Decomposition of the entropy of human TCR β chains by contribution

of gene choice, nucleotide insertion events, and nucleotide deletion events, taken

from Murugan et al. (2012). The entropy of functional β chains (47 bits) is

smaller than the entropy of possible DNA recombination events (52 bits) due to

convergence of different events to the same chain. Gene choice represents 9 bits of

the total entropy, and deletion events represent 13 bits. The majority of the TCR

diversity comes from insertion events, with a contribution of 30 bits. The last row

of the diagram further divides the entropy into gene choice, insertion events, and

deletion events for V, D, and J genes separately.

T cells start their development in the bone marrow, similarly to B cells (Murphy

& Weaver, 2016, Chapter 8). However, they migrate to the thymus where they

begin the process of generating a TCR, and committing to a CD4 or a CD8

co-receptor (Murphy & Weaver, 2016, Chapter 8). Once a functional TCR β chain

is generated, T cells undergo two important processes in the thymus to ensure

that the α chain that is generated will result in a functional TCR that is also not
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2.2 T cell mediated immune responses

self-reactive; that is, it will not become activated when peptides derived from host

cells are encountered. In other words, processes that ensure T cells will be able to

initiate immune responses when they encounter their cognate epitope, but not

when they recognise a peptide which has been derived from a healthy cell, called a

self-peptide. Positive selection is the process by which cells with a non-functional

TCR are removed from the pool of developing T cells (Anderson & Takahama,

2012; Starr et al., 2003). At this stage of development T cells are programmed

to die naturally by apoptosis if they do not receive the stimulus provided by

TCR-epitope interactions. Thus, only T cells with a functional TCR will be able

to receive survival stimulus from thymic epithelial cells, while cells without a

functional TCR will be deprived of this stimulus and die by apoptosis (Alam

et al., 1996; Anderson & Takahama, 2012). Furthermore, after positive selection,

T cells which present both the CD4 and CD8 co-receptors mature into single

positive T cells, which present only CD4 or CD8 (Palmer, 2003; Starr et al., 2003).

This choice of co-receptor is caused by secondary signalling via cytokines (Luckey

et al., 2014; Park et al., 2010; Singer et al., 2008). In order to prevent T cells

from being self-reactive, and cause autoimmune disease, the process of negative

selection identifies cells that show high affinity to self-peptides presented in the

context of MHC and causes them to die by apoptosis (Palmer, 2003).

2.2 T cell mediated immune responses

T cells that have undergone positive and negative selection exit the thymus into

the periphery, and remain in a naive in-activated state until they come into contact

with a cognate epitope that causes them to initiate an immune response (Goronzy

et al., 2015; Sprent & Surh, 2011; Weinreich & Hogquist, 2008). These naive cells

circulate through the lymphatic system and can reside in secondary lymphoid

organs (Mackay et al., 1990; Surh & Sprent, 2008; Takada & Jameson, 2009). In

homeostatic conditions, that is to say, when there is no infection, the repertoire of

naive T cells is maintained by the homeostatic proliferation stimulus provided by

self-peptides presented in the context of MHC (Boyman et al., 2012; Rudd et al.,

2011; Sprent & Surh, 2011; Surh & Sprent, 2005).
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During an infection, professional APCs present peptides derived from the

infecting pathogen bound to MHC molecules, which together with other co-

stimulatory molecules activate naive T cells specific to the given peptide, causing

them to differentiate into the effector phenotype, and gain cytotoxic capabilities in

the case of CD8+ cells (Yewdell & Hill, 2002). Once activated and differentiated,

effector phenotype cells begin dividing and migrating to the site of infection,

where they are able to recognise infected cells by the epitopes they present in

their MHCs (Mondino et al., 1996). Once an effector T cell encounters an infected

cell, it induces it to undergo apoptosis, therefore killing the infected cell, and

preventing it from infecting other cells (Murphy & Weaver, 2016, Chapter 9).

After this differentiation from the naive to the effector phenotype, and the

proliferation of effector cells that follows (called expansion of the clonotype), once

the infection is cleared from the system (in the case of acute and not chronic

infection) the population of effector cells begins to decline, since they are dependent

on constant peptide stimulation to proliferate (Huppa et al., 2003). However,

not all effector cells die after the infection is cleared. A fraction of the effector

cells present after the infection is cleared goes on to differentiate into the memory

phenotype (Kaech & Cui, 2012). The process of memory generation is not yet

fully understood, but it has been observed that between 5–10% of the effector

population present when the infection is cleared differentiates into the memory

phenotype (Ahmed & Gray, 1996). A general representation of this expansion

into effector cells and contraction back to memory cells is shown in Figure 2.3.

T cells of the memory phenotype are long lived (Demkowicz Jr et al., 1996;

Okhrimenko et al., 2014), and homeostatically maintained by a different type

of signalling provided by cytokines (Harty & Badovinac, 2008). This allows

the memory compartment to be maintained long after the infection has been

cleared independently of TCR-peptide interactions, therefore providing immunity

to future infections by the same pathogen. Furthermore, memory cells do not

require co-stimulation in order to become activated and differentiate to the effector

compartment (Rosenblum et al., 2016; Yewdell & Hill, 2002), allowing for an

immune response to be initiated more quickly during subsequent infections with

the same pathogen. Figure 2.4 shows a visual representation of the differentiation

pathway discussed so far, where naive cells differentiate into effector cells, which
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2.2 T cell mediated immune responses

Figure 2.3: Example of the behaviour of different T cell phenotypes during

the course of an infection, taken from Kaech & Cui (2012). When a naive cell

encounters its cognate epitope it differentiates into the effector phenotype, and

gains cytotoxic capabilities (if it is CD8+) in order to fight the infection. After

the infection is cleared from the body the population of effector cells declines, and

a small portion of the remaining cells differentiates into the memory phenotype.

Colours represent different T cell clonotypes, showing the diversity of T cells that

become activated during infection.

in turn differentiate into memory cells. Memory cells can then differentiate back

into effector cells if their cognate epitope is encountered again. Note that there

exist more T cell phenotypes that are not considered in the models presented

in this Thesis, for example, regulatory T cells (Vignali et al., 2008), or central

memory T cells (Pepper & Jenkins, 2011).

As previously mentioned, each TCR is able to recognise more than a single

epitope in the context of MHC presentation. This can be evidenced by the fact

that the total number of T cells in the human body (about 1012) is outnumbered

by the total number of possible epitopes of length 11 that can be presented by

MHC (about 6× 1012), but the immune system is still able to provide protection

against the majority of pathogens encountered throughout life (Mason, 1998).

This phenomenon, where TCRs are able to recognise more than a single epitope, is

called cross-reactivity. While it is not yet fully understood, T cell cross-reactivity

plays an important role in pre-existing immunity and vaccination, as it has been

observed, for example, that previous infections with influenza A virus can provide

protection against other strains of the virus in subsequent infections (Duan et al.,

2015; Gras et al., 2010; Sewell, 2012).

On a population level, it has been observed that in some cases immune

responses from different individuals to the same pathogen are dominated by
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2. IMMUNOLOGICAL BACKGROUND

Figure 2.4: Differentiation pathway of T cells during infection, taken from Rosen-

blum et al. (2016). Naive cells can differentiate into effector cells once their cognate

epitope is encountered. Then, once infection is cleared a fraction of effector cells

differentiate into memory cells, which are homeostatically maintained in order to

provide future immunity to re-infection with the same pathogen. Note that there

are more T cell phenotypes which are not considered in the models proposed in

this Thesis.

T cells presenting identical TCRs (Venturi et al., 2008). This type of immune

response, where multiple individuals have the same dominant TCR, is called a

public T cell response (Li et al., 2012; Venturi et al., 2008). However, not all

infections elicit this type of immune response. In many cases each individual

immune response is dominated by a distinct TCR, which is not shared with other

individuals (Cibotti et al., 1994; Kim et al., 2005). This type of response is called

a private T cell response. The mechanisms that cause these distinct types of

immune responses to arise are not yet fully understood, but several hypotheses

exist on the biological reason why public T cell responses are observed. Some

hypotheses hinge on the structure of the peptide (Miles et al., 2005; Stewart-Jones

et al., 2003; Tynan et al., 2005) or the TCR itself (Kjer-Nielsen et al., 2003; Tynan

et al., 2007), suggesting that it is the 3D structure of the TCR-peptide interaction

which causes this behaviour. Another hypothesis is that public TCRs exist because

there are TCRs that are generated more frequently than others, causing them to
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2.2 T cell mediated immune responses

be more prevalent in the general population, and therefore causing public immune

responses to be observed (Venturi et al., 2006). This hypothesis is based on the

previously mentioned phenomenon of convergent recombination, where different

recombination events result in the same TCR being generated.
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Chapter 3

Mathematical background

This Chapter introduces the mathematical and statistical methods to be used

throughout this Thesis. In Section 3.1 the theory of stochastic processes is pre-

sented, followed in Section 3.2 by the theory of ordinary differential equations used

to study deterministic models. Section 3.3 introduces the statistical techniques to

be used on cell population data. Finally, in Section 3.4 the concepts from network

theory used to define the models are presented.

3.1 Stochastic processes

In this Section the type of stochastic model used in Chapters 4, 5, and 6 is

introduced, as well as some methods used to study stochastic models. The

definitions provided are based on those found in Allen (2010), and Pinsky &

Karlin (2010).

3.1.1 Continuous-time Markov chains

In order to define the specific type of stochastic process that will be considered in

Chapters 4, 5, and 6, first a stochastic process must be formally defined.

Definition 1. A stochastic process is a collection

X = {X(t) : t ∈ T}
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3. MATHEMATICAL BACKGROUND

of random variables, where T is an index set, and X(t) is a random variable

defined over a state space S.

Remark. Note that a stochastic process can also be a collection of random vectors

X = {X(t) := (X1(t), . . . , Xη(t)) : t ∈ T} ,

with η ∈ N.

In the stochastic processes considered in this Thesis, the index set T will

be used to represent time, thus the processes will track how a random variable

or vector behaves over time. If the index set consists of discrete values, e.g.,

T = {0, 1, 2, 3, . . .} = N0, then the process is said to be a discrete-time stochastic

process. On the other hand, if the index set takes continuous values, e.g., T =

[0,+∞), the process is said to be a continuous-time stochastic process.

Definition 2. A continuous-time stochastic process X = {X(t) : t ∈ [0,+∞)} is

said to be a continuous-time Markov chain (CTMC) if it is defined over a discrete

state space S, and it satisfies the Markov property. That is, for any sequence of

real numbers 0 ≤ t0 < t1 < · · · < tn < tn+1, the following is true

P {X(tn+1) = nn+1|X(t0) = n0,X(t1) = n1, . . . ,X(tn) = nn}
= P {X(tn+1) = nn+1|X(tn) = nn} ,

for any ni ∈ S.

3.1.2 Transition probabilities

For a given CTMC X = {X(t) : t ∈ [0,+∞)}, every random variable X(t) has an

associated probability distribution {pn(t) : n ∈ S}, where these probabilities are

given by

pn(t) = P {X(t) = n} .

Transition probabilities provide a relation between the state of the stochastic

process at different timepoints, and they are defined as follows:

Definition 3. The transition probability from state n at time s, to state m at

time t is defined as

pnm(s, t) = P {X(t) = m|X(s) = n} ,
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3.1 Stochastic processes

with s < t. If the transition probabilities depend only on the length of the interval,

t− s; that is

pnm(s, t) = P {X(t) = m|X(s) = n}
= P {X(t− s) = m|X(0) = n}
= pnm(0, t− s)
= pnm(t− s),

the CTMC is said to be stationary or time-homogenous.

The transition probabilities can be represented naturally as a matrix, P(t),

called the transition probability matrix. This is a square matrix whose order is

given by the cardinality of S, denoted by |S|, where the entry in the n-th row and

m-th column is the transition probability pnm(t). It is easy to see that each row

of P(t) adds up to one, since for any state n the process must either travel to

another state m ∈ S, or remain in n.

3.1.3 Infinitesimal generator matrix

The transition probabilities, pnm(t), can be used to derive transition rates qnm

between states. Assuming that the transition probabilities pnm(t) are continuous

and differentiable for t ≥ 0, and satisfy

pnm(0) = 0,n ̸= m, pnn(0) = 1,

then the transition rates are defined as

qnm =


lim

∆t→0+

pnm(∆t)− pnm(0)

∆t
= lim

∆t→0+

pnm(∆t)

∆t
for n ̸= m,

lim
∆t→0+

pnn(∆t)− pnn(0)

∆t
= lim

∆t→0+

pnn(∆t)− 1

∆t
for n = m.

Since every row of the transition probability matrix adds up to one, it can be

shown that

qnn = −
∑

m∈S\{n}

qnm.

Similarly to the transition probabilities, the transition rates can be represented

as a matrix Q, called the infinitesimal generator matrix. The entry in the n-th

row and m-th column is the transition rate qnm. From the previous equation it is

easy to see that each row of Q adds up to zero.
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3.1.4 Kolmogorov differential equations

The forward and backward Kolmogorov differential equations describe the rate

of change of the transition probabilities pnm(t). In matrix form, the forward

Kolmogorov equation is given by

dP(t)

dt
= QP(t), P(0) = I,

where I is the identity matrix. The backward Kolmogorov differential equation

can be expressed in matrix form as

dP(t)

dt
= P(t)Q, P(0) = I.

3.1.5 Linear noise approximation

The solution to the forward Kolmogorov equation is given by

P(t) = P(0) exp(Qt),

with the matrix exponential function defined as (Moler & Van Loan, 1978, 2003)

exp(Qt) =
+∞∑
k=0

(Qt)k

k!
.

This solution describes the probability of being in each state of the state space S at

time t. However, this solution is usually computationally intractable to calculate

due to the size of the state space, since a large state space would require the

computation of large (or even infinite in the case on an infinite state space) matrix

exponentials. Therefore, approximations to the solution of the master equation

have been developed. The linear noise approximation, developed by van Kampen

(2007), is one such method to approximate the solution of the forward Kolmogorov

equation chiefly used when considering chemical reactions (Bortolussi et al., 2016;

Cardelli et al., 2016).

This approximation assumes that the reactions are occurring within a fixed

volume Ω (Elf & Ehrenberg, 2003). It provides a second order approximation of

the forward Kolmogorov equation, by considering a large volume expansion around

the steady state of its solution, and finding differential equations that describe
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the first and second order moments of the random noise around the solution (van

Kampen, 2007). The method consists of calculating the Taylor expansion of the

forward Kolmogorov equation in terms of Ω−1/2. The terms of first-order in this

expansion result in the deterministic equations describing the concentrations of

the populations in the system. While the terms of second order result in a linear

Fokker-Planck equation describing the fluctuations around the steady state of the

deterministic approximation (van Kampen, 2007, Chapter 8).

3.1.6 Stochastic simulation algorithms

As previously mentioned, finding the solution to the forward Kolmogorov equation

is usually not computationally tractable. Therefore, numerical realisations of the

stochastic model are usually employed in order to verify other analytical results

for the stochastic process in question. An exact algorithm to simulate a Markov

process was developed by Gillespie (1977).

For a given CTMC, X, described by a series of possible reactions which depend

on the current state x, Ri(x), with 1 ≤ i ≤M , where ri(x)∆t is the probability

that reaction Ri(x) will occur within the time interval (t,∆t), taking the CTMC

from state x0 at time t to state xi at time t+ ∆t, the exact stochastic simulation

algorithm is executed as follows: First the total rate at which any reaction occurs,

r(x) =
∑M

i=1 ri(x), is calculated. Then, a random number sampled uniformly

from [0, 1] is used to determine which of the reactions will occur, and a second

random number sampled uniformly from [0, 1] is used to determine the time

elapsed until this reaction takes place through inverse transform sampling. Finally,

the state and time of the system get updated, and the algorithm is continued

until the desired maximum time is reached. An outline of this algorithm is shown

in Algorithm 3.1.

3.2 Ordinary differential equations

In this section the basic notions of deterministic modelling with ordinary differential

equations (ODEs) are introduced for the models presented in Chapters 4, 5,

and 6. As discussed in Chapter 1, deterministic models can be interpreted as
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Algorithm 3.1: Outline of the exact stochastic simulation algorithm

developed by Gillespie (1977).

Input: tmax ← maximum time of the simulation,

x0 ← initial state of the simulation.

t← 0 – Current time is set to 0;

x← x0 – Current state is set to x0;

while t ≤ tmax do

r(x) =
M∑
i=1

ri(x);

Sample u1, u2 ∼ U(0, 1);

Rk ← reaction k such that
k−1∑
i=1

ri(x)

r(x)
< u1 ≤

k∑
i=1

ri(x)

r(x)
;

x← xk – Current state is updated to reflect reaction Rk taking place;

t = t− log u2
r(x)

;

end

approximations of stochastic models where random fluctuations are ignored (Hahl

& Kremling, 2016), and thus they will be used when the stochastic processes

under consideration become computationally intractable to study. The definitions

provided here are based on those found in Allen (2007).

Differential equations are classified by their order, where a differential equation

of order n is of the form

f

(
x,
dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn
, t

)
= 0.

In the models presented in this Thesis, the functions x(t) will be used to represent

the expected number of cells of a given T cell population at time t, and first order

ODEs will be considered to describe the rate of change of those populations of

cells over time. In other words, a first order ODE will describe the dynamics of

the T cell population over time. In a first order equation, such as

c1(t)
dx

dt
+ c0(t)x = g(t),
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3.2 Ordinary differential equations

if the coefficients c0(t) and c1(t) are constant, or a function of only t and not x or
dx
dt

, then the equation is said to be linear. If the function g(t) is identically zero,

then the equation is said to be homogeneus.

In most use cases, instead of a single ODE, a system of ODEs is considered, in

this way (for the purposes of this Thesis) the population of more that a single T cell

clonotype can be tracked simultaneously over time. This approach with a system

of ODEs also allows for the modelling of interaction between populations, such as

competition for a shared resource. For a given set of initial conditions, it is possible

in some cases to obtain an analytic solution of the system of ODEs (Murphy, 2011).

However, in the case of more complex systems of equations, an analytical solution

is not always possible. In those cases numerical methods can be used to evolve the

system over time from an initial condition by using numerical integration (Griffiths

& Higham, 2010; Kang & Cheek, 1972).

3.2.1 Steady states

An important solution for a system of ODEs is the constant solution, x∗, which

satisfies

f(x∗) = 0,

and is called a steady state of the system. This type of solution is of interest in

the context of modelling since it represents the state in which the rate of change

of all populations being modelled is exactly 0, meaning that the populations are

no longer changing. In general, a system of ODEs can have multiple steady states.

However, when considering biological quantities, such as a cellular population,

steady states that are not biologically relevant, such as those with negative values,

are not taken into account.

3.2.2 Stability analysis

The steady states of an ODE system can be categorised according to their stability

as locally stable, asymptotically stable, or unstable, depending on the behaviour of

the solutions around them. In layman’s terms, a steady state x∗ is locally stable if

the solution to the system with initial conditions close to the steady state remains
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close the steady state as t→ +∞, or it is asymptotically stable if it is both locally

stable, and solutions with initial conditions close to the steady state approach it

as t→ +∞. Formally stability is defined as follows:

Definition 4. A steady state x∗ of a system of ODEs, f , is locally stable if for

every ε > 0, there exists δ > 0 such that for every solution x(t) with initial

condition x(t0) = x0, the following is true

∥x0 − x∗∥ < δ ⇒ ∥x(t)− x∗∥ < ε,

for all t ≥ t0. Furthermore, if the following condition is satisfied

∥x0 − x∗∥ < δ ⇒ lim
t→+∞

∥x(t)− x∗∥ = 0,

then the steady state is said to be asymptotically stable. If neither of these

conditions is met the steady state is said to be unstable.

3.2.3 Identifiability analysis

Structural identifiability is a method by which it can be verified whether, given

a set of data, unique parameter values can be found for a deterministic model

that represents the dynamics of the data. The formal definition of structural

identifiability presented here is based on that found in Chis et al. (2011). In this

definition a system of ODEs, ẋ, together with a vector of experimentally observed

quantities, y, are considered to depend on the state of the system x, and an

unknown-parameter vector p. This system is denoted by
∑

(p) in order to make

explicit its dependance on the parameter vector.

Definition 5. Given a biological system described by

∑
(p) =


ẋ = f(x,p) +

nu∑
j=1

gj(x,p)uj,

y = h(x,p), x(t0) = x0(p),

where x = (x1, . . . , xnx) ∈M ⊂ Rnx is the state of the system, with M a subset

of Rnx which contains the initial state, u = (u1, . . . , unu) ∈ Rnu an input control

vector, and y = (y1, . . . , yny) is the vector of experimentally observed quantities.
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3.3 Statistical analysis

The vector of unknown parameters p = (p1, . . . , pnp) ∈ P is assumed to belong

to an open connected subset of Rnp . The entries f ,h,g1, . . . ,gnu are analytic

functions of their arguments.

Then, a parameter pi, i = 1, . . . , np is:

• structurally globally (uniquely) identifiable if for almost any p∗ ∈ P,∑
(p) =

∑
(p∗)⇒ pi = p∗i ,

• structurally locally identifiable if for almost any p∗ ∈ P, there exists a

neighbourhood V(p∗) such that

p ∈ V(p∗) and
∑

(p) =
∑

(p∗)⇒ pi = p∗i ,

• structurally non-identifiable if for almost any p∗ ∈ P, there exists no neigh-

bourhood V(p∗) such that

p ∈ V(p∗) and
∑

(p) =
∑

(p∗)⇒ pi = p∗i .

In order to computationally assess the structural identifiability of a model, the

SIAN structural identifiability toolbox (Hong et al., 2019), which is based on the

methods described in Hong et al. (2020), can be used to test for identifiability of

parameters given a data set.

3.3 Statistical analysis

In this section, the statistical tests used in Chapter 5 to analise the T cell

population data are introduced. The definitions presented here are based on those

found in De Sá (2007), Montgomery (2017), and Abdi & Williams (2010).

3.3.1 Analysis of variance

Analysis of variance (ANOVA) is a statistical method, which tests, given k

independent samples, whether the null hypothesis that the means of all groups

are equal, i.e., µ1 = µ2 = · · · = µk, against the alternative hypothesis that the

means of at least one pair of samples are not equal, i.e., µi ≠ µj, for some pair
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i, j. When there is only one categorical grouping level the test is called one-way

ANOVA. In this case the variable being tested is called the dependent variable,

while the variable with the groupings of sample is called the independent variable.

The general idea of the method is to decompose the total variance of the data

into variance within, and between groups.

Consider a sample of size n, split into k groups of sizes n1, n2, . . . , nk, and with

sample means x1, x2, . . . , xk. Any value in the total sample can be denoted by xij ,

where i = 1, . . . , k indexes the groups within the sample, and j = 1, . . . , ni indexes

the value within the group it belongs to. Then, the total variance is related to

the total sum of squares of deviations, SS, from the total sample mean, µ, by

SS =
k∑

i=1

ni∑
j=1

(xij − µ)2.

Now, adding and subtracting xi to the deviations xij −µ, the following expression

can be found

SS =
k∑

i=1

ni∑
j=1

(xij − xi)2 +
k∑

i=1

ni∑
j=1

(xi − µ)2 + 2
k∑

i=1

ni∑
j=1

(xij − xi)(xi − µ),

where the last term is equal to zero, and thus

SS =
k∑

i=1

ni∑
j=1

(xij − xi)2 +
k∑

i=1

ni∑
j=1

(xi − µ)2,

where the first term of the equation is the within-group sum of squares (SSW ),

and the second term is the between-group sum of squares (SSB). Then, the total

sum of squares can be written as

SS = SSW + SSB.

Now, each sum of squares can be written in terms of variances as

(n− 1)σ2 = (n− k)σ2
W + (k − 1)σ2

B,

where σ2 is the total variance, σ2
W is the within-group variance, and σ2

B is the

between-group variance. The total variance has n−1 degrees of freedom, while the
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within-group and between-group variances have n−k, and k−1 degrees of freedom

respectively. If the null hypothesis is false, that is at least one pair of means is

not equal, then the variation between means would be large in comparison to the

variation within means. The within-group variance can be written as

σ2
W =

SSW

n− k ,

and the between-group variance is given by

σ2
B =

SSB

k − 1
.

Then, if the null hypothesis is true, the ratio σ2
B/σ

2
W is expected to be close to

one, while if the null hypothesis is false this ratio would be expected to be larger

than one. This ratio is what is used to define the test statistic, by comparing it

with the F distribution to test the validity of the null hypothesis, H0. First, note

that the sum of squares of k independent random variables, with standard normal

distribution, follows the chi-squared distribution, χ2(k). Then, the F distribution

can be defined as the ratio of two independent χ2 random variables as follows: if

two independent random variables X1, and X2 are χ2 distributed with d1, and d2

degrees of freedom, respectively, then the random variable

X1/d1
X2/d2

,

follows and F (d1, d2) distribution. Then the test statistic for ANOVA is

F ∗ =
σ2
B

σ2
W

∼ F (k − 1, n− k),

this means that if the test statistic F ∗ takes a value greater than one the null

hypothesis is rejected, since this implies that the between group variance is greater

than the within group variance, and thus there is a significant difference, and at

least one pair of means is not equal.

3.3.2 Tukey’s honest significant difference test

Once the ANOVA test is performed, if the null hypothesis is rejected it is not

known exactly which of the groups have means significantly different to each other.
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Tukey’s honest significant difference (HSD) is the smallest amount by which the

means must differ between two groups for them to be significantly different. This

test uses a studentised range statistic

q =
xmax − xmin√

σ2
W/n

,

where xmin and xmax are the smallest and largest, respectively, of the sample

means of k samples of size n from the same distribution. Then, Tukey’s test

statistic is defined as

Tα = qα(a, f)

√
σ2
W

n
,

for a significance level α, where a is the number of observations in each group, n is

the total number of observations, and f are the degrees of freedom associated with

σ2
W . The value of qα(a, f) can be obtained from a studentised range distribution

table. Then, taking two means xi, and xj of groups i, and j, respectively, Tukey’s

HSD test states that if the following condition is satisfied

|xi − xj| ≥ Tα,

then there is a significant difference between the two means at the level α. This

test is used on each pair of groups when the ANOVA results in a rejection of the

null hypothesis.

3.4 Network theory

In Chapters 4, 5, and 6 a network is used to define a recognition profiles of peptides

and TCRs. In this section, the basic concepts of network theory used throughout

this Thesis are introduced. The definitions presented here are based on those

found in Bollobás (2002), Diestel (2006), and Newman (2018).

Definition 6. A graph or network is a pair G = (E, V ) of sets, such that

E ⊆ V × V . That is, the elements of E are pairs of elements from V .

The set V is called the vertex set, and its elements are called the vertices, nodes,

or points of the graph, while the set E is called the edge set, and its elements

are called the edges, or lines of the graph. The usual way to picture a graph is
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3.4 Network theory

to draw a dot for each element in the vertex set, and join two dots with a line

if the corresponding edge is in the edge set. For example, the graph defined by

V = {1, 2, 3, 4, 5, 6}, and E = {{1, 2} , {1, 5} , {2, 5} , {3, 4} , {5, 6}} is shown in

Figure 3.1. In order to make the notation less cumbersome, an edge {x, y} is

usually denoted by xy.

1

2

34

5

6

Figure 3.1: Graph defined by the vertex set V = {1, 2, 3, 4, 5, 6}, and the edge

set E = {{1, 2} , {1, 5} , {2, 5} , {3, 4} , {5, 6}}.

A vertex v ∈ V is said to be incident with an edge e ∈ E, if v ∈ e. The two

vertices in an edge are called its ends, and the edge is said to join its ends. Two

vertices are adjacent, or neighbours, if they are ends of the same edge; that is,

there is an edge that connects them. Two edges, on the other hand, are adjacent

if the have an end in common. A graph in which all vertices are pairwise adjacent

is called a complete graph, and it is denoted by Kn, where n is the number of

vertices in the graph, n = |V |.

Definition 7. For a given vertex v, the set of all edges in E for which v is an

end, is denoted by E(v). The degree of a vertex v is defined as d(v) = |E(v)|. If

the degree of a vertex is equal to zero, the vertex is said to be isolated.

Definition 8. A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk} ,

where the xi are all distinct nodes. The vertices x0 and xk are linked by P , and

are called its ends, while the vertices x1, x2, . . . , xk−1 are called the inner vertices

of P . The length of a path is the number of edges that comprise it, and a path of

length k is denoted by P k.
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Since a path P can be defined by the ordered sequence of its vertices, it is usually

referred to as P = x0x1 . . . xk. Furthermore, given two paths P = x0x1 . . . xk,

and P ′ = x′0x
′
1 . . . x

′
ℓ, such that xk = x′0, then the union of the paths, P ∪ P ′, is

denoted by P + P ′ = x0x1 . . . xkx
′
1 . . . x

′
ℓ.

Definition 9. If P = x0 . . . xk−1 is a path, and k ≥ 3, then the graph C =

P + xk−1x0 is called a cycle or a closed path.

In the case of a cycle, the number of vertices is equal to the number of edges,

thus the length, or size, of a cycle is the number of edges, or vertices, that comprise

it. An example of a cycle of length 3, C3, which is equivalent to a closed path of

length 2, P 2, is shown in Figure 3.2.

12

3

Figure 3.2: A closed path of length 2, P 2, or equivalently a cycle of size 3, C3.

Definition 10. For a graph G = (E, V ), the distance between two nodes x, y ∈ V ,

dG(x, y), is defined as the length of the shortest path between x and y. If there

exist no paths between x and y, the distance is defined to be dG(x, y) := +∞.

The greatest distance between two vertices in G is called the diameter of G.

Definition 11. Given a graph G with n vertices of degrees d1 ≤ · · · ≤ dn, then

the n-tuple (d1, . . . , dn) is called the degree sequence of G.

Definition 12. Let k ≥ 2 be an integer. A graph G = (E, V ) is called a k-partite

graph if V admits a partition into k disjoint sets, such that every edge in E has

its ends in different sets, or equivalently, no edge in E has both edges in the same

subset.

It can be shown that an equivalent condition for a graph to be bipartite; that

is, 2-partite, is that it contains no cycles of odd length (Diestel, 2006, Chapter 1).
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Chapter 4

Multi-variate model of T cell

clonotype competition and

homeostasis

An adult human has approximately 4× 1011 T cells (Alberts et al., 2002; Jenkins

et al., 2009), each of them expressing about 3 × 104 identical T cell receptors

(TCRs) on its surface (Varma, 2008). These receptors recognise self-peptides

bound to major histocompatibility complexes (MHCs), which as bound complexes

are called self-pMHCs. The interaction between TCRs and self-pMHCs signals

a T cell to synthesise proteins important for survival and proliferation (Ferreira

et al., 2000; Kawabe et al., 2021; Kieper & Jameson, 1999; Seddon & Zamoyska,

2002). Human naive T cell repertoires are estimated to consist of approximately

4 × 106–108 different TCR families (Arstila et al., 1999; Nikolich-Žugich et al.,

2004; Qi et al., 2014b; Robins et al., 2009). This diversity implies that each TCR

must be present on more than a single T cell. These sub-populations of T cells

sharing the same TCR molecular structure are called T cell clonotypes. Previous

deterministic models of T cell populations dynamics during infection, such as

that proposed by De Boer & Perelson (1994), have shown that the principle of

competitive exclusion applies to T cell populations; that is, two different clonotypes

cannot inhabit the same stimulus niche, as one will always out-compete the other

and cause it to become extinct.
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If a single naive T cell clonotype is considered, such that it experiences relatively

little competition for self-pMHCs with other clonotypes, then its population

dynamics can be modelled as a uni-variate birth and death process as was done

by Stirk et al. (2008). Thus, for these TCR clonotypes self-pMHC stimulation

promotes their homeostatic establishment in the periphery; that is, once they exit

the thymus (Boyman et al., 2012; Rudd et al., 2011; Sprent & Surh, 2011; Surh &

Sprent, 2005). The mathematical model of Stirk et al. also shows that clonotypes

are susceptible to extinction events. This suggests that there must be an overlap

in the sets of self-pMHCs that stimulate different T cell clonotypes. Otherwise

the natural extinction of a clonotype would decrease the coverage of the T cell

repertoire over the space of foreign peptides, which is known to be maintained

even in the presence of such extinction events (Correia-Neves et al., 2001; Naylor

et al., 2005). A similar mathematical model can be used for two clonotypes

which compete for self-pMHC survival stimuli. In this case, a bi-variate Markov

competition process can be defined as in (Stirk et al., 2010). This bi-variate model

can be used to show that extinction is certain for both clones for sufficiently

late times, i.e., after a transient time one clonotype will become extinct and the

remaining one can be described by the uni-variate model (Stirk et al., 2008). This

is a closer representation of the competition for survival stimuli experienced by

the naive T cell repertoire. However, the highly oligoclonal nature of immune

responses (MacDonald et al., 1993) and the occurrence of similar TCRs (Wynn

et al., 2008) serve as evidence that the self-pMHC recognition profile overlap will

typically extend to more than two clonotypes.

In this chapter, a generalisation of the model presented in Stirk et al. (2010) is

proposed in order to characterise the competition of η different T cell clonotypes

(η ≥ 3) with non-negligible self-pMHC recognition profile overlap. This means

that the number of peptides shared by the clonotypes under consideration is large

enough that their competition cannot be modelled as a single clonotype (Stirk

et al., 2008), nor as multiple competitions between two different clonotypes (Stirk

et al., 2010). It is assumed that naive T cells of a given clonotype exit the thymus at

roughly the same time (Lythe et al., 2016). After this point they are not generated

again by the thymus, given the potential diversity of recombination (Murugan

et al., 2012; Zarnitsyna et al., 2013). Thus, the population dynamics of a given
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naive clonotype in the periphery depends on its homeostatic birth and death

rates, and its extinction is possible. In addition, in this model extinction of

any clonotype is certain for sufficiently late times, and thus, some time after its

thymic output into the periphery, there will be one fewer clonotype competing for

homeostatic proliferation stimuli. Mathematically, this decrease in the number of

competing clonotypes will continue until two remain, and finally until only one

remains, taking us back to the models described in Stirk et al. (2008, 2010).

The main interest in this chapter is the study of perturbations of homeostati-

cally established clonotypes in the periphery, specifically by the introduction of a

new clonotype that competes with them. The dynamics of competition before the

extinction of the first clonotype is studied, as well as the population distribution

after the first extinction event. This is of special importance if the first extinction

event corresponds to the clonotype that most recently arrived in the periphery, as

it informs us on how its introduction perturbs already homeostatically established

clonotypes at both short (before extinction), and long (after extinction) timescales.

In Section 4.1, the competition model which describes the population of η

different naive T cell clonotypes is introduced, as well as the recognition network

of self-pMHCs used to calculate their homeostatic proliferation (birth) rates. Two

special cases of competition with clonotypes in the periphery are also described in

this section. Section 4.2 focuses on the quasi-stationary probability distribution

(QSD), which is approximated stochastically with two different processes, one

where extinction is not possible, and another where each clonotype has one

immortal cell (N̊asell, 1991, 2001), and deterministically using the linear noise

approximation (Elf & Ehrenberg, 2003; van Kampen, 2007). In Section 4.3 it

is proven that for sufficiently late (but finite) times, all clonotypes will become

extinct. Also, the stochastic descriptors used to study the behaviour of the

competition around these extinction events are defined. Finally, in Section 4.4

the approximations of the QSD together with the stochastic descriptors defined

in Section 4.3 are used to study the perturbation exerted on two established

clonotypes by a new clonotype entering the periphery. For this, four different

competition scenarios for the three clonotypes, and three different values for the

homeostatic proliferation stimuli available are considered. Furthermore, the effects
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of the new clonotype being in both special cases discussed in Section 4.1 are also

studied.

4.1 Stochastic model of multiple naive T cell

clonotype competition for self-pMHC stimuli

Consider the following two sets: the set C , of η different clonotypes with a

significant overlap in the self-pMHCs they recognise, and Q, the set of all self-

pMHCs which can stimulate clonotypes in C . The number of T cells belonging

to each of the η clonotypes at time t is described by a continuous-time multi-

variate Markov process, X = {(X1(t), . . . , Xη(t)) : t ≥ 0}, over the state space

S = {(n1, . . . , nη) : ni ≥ 0,∀i} = Nη
0, where Xi(t) represents the number of cells of

clonotype i at time t (for 1 ≤ i ≤ η), and X(t) = (X1(t), . . . , Xη(t)) is the random

vector describing the population of all clonotypes being modelled at time t.

Now, consider the following assumption of the model: all cells of a particular

clonotype exit the thymus at roughly the same time. However, different clonotypes

can exit the thymus at different times. Since the main interest of this chapter is

to model the competition dynamics of all clonotypes in C , the initial time t = 0 in

the process X is such that all clonotypes in C are already present in the periphery.

The birth rate of a clonotype is defined so that it accounts for the competition

between clonotypes for shared self-pMHC stimuli. To this end a bipartite recog-

nition network is considered (see Figure 4.1). In a bipartite recognition network

each clonotype (green circle) is able to receive stimuli from a set of self-pMHCs

(blue circles), and this ability is represented by an edge between the clonotype

and the self-pMHC. The set of all peripheral naive T cell clonotypes is partitioned

as follows: clonotypes in the periphery are in C , if they are explicitly modelled,

or in M, if they are not explicitly modelled. Note that this definition implies

C ∩M = ∅. Each clonotype i ∈ C has an associated set of self-pMHCs that

stimulate it, denoted by Qi (see Figure 4.1).

All self-pMHCs are assumed to provide the same rate of homeostatic prolif-

eration stimulus, γ (Stirk et al., 2008, 2010), which is considered to be constant

in time (van den Berg et al., 2001). Then, the total homeostatic proliferation
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self-pMHCs (Q)

T cell clonotypes

explicitly modelled (C )

T cell clonotypes

in the periphery (M)

q
iQi

C q

...

...

Figure 4.1: Bipartite recognition network of TCR-self-pMHC recognition. Each

blue circle represents a self-pMHC and each green circle a T cell clonotype. A

clonotype is explicitly modelled if it is in C , or part of the periphery (and not

explicitly modelled) if it is in M. This implies C ∩M = ∅. An edge between a blue

and a green circle represents the ability of that T cell clonotype to receive stimulus

from the self-pMHC. For a given self-pMHC, q ∈ Q, the set of clonotypes it can

stimulate in C is C q, and for a given clonotype, i ∈ C , the set of self-pMHCs that

can stimulate it is Qi.

stimulus each naive T cell of clonotype i receives, if the system of η clonotypes is

in state n = (n1, . . . , nη) ∈ S, can be written as follows

Λ(i)(n) =
∑
q∈Qi

γ

hq
, (4.1)

where hq is the total number of naive T cells in the periphery (C ∪M) that are

stimulated by self-pMHC q (see Figure 4.1). Now, using this stimulus rate, the

birth rate of clonotype i in state n ∈ S is defined as the transition rate from state

n to state n(+i) := (n1, . . . , ni−1, ni + 1, ni+1, . . . , nη), and it is given by

λ(i)n = niΛ
(i)(n). (4.2)

Similarly, the transition rate from state n ∈ S to state n(−i) := (ni, . . . , ni−1, ni −
1, ni+1, . . . , nη) is the death rate of clonotype i, and it is given by

µ(i)
n = µi ni. (4.3)
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If ni = 0 for any clonotype i, with 1 ≤ i ≤ η, its birth and death rates will both be

zero, in agreement with the assumption that thymic production cannot reproduce

already extinct clonotypes. Thus, the set of states with at least one entry equal

to zero, A = {(n1, . . . , nη) ∈ S : ni = 0 for any i}, with 1 ≤ i ≤ η, is an absorbing

set, and the state (0, . . . , 0) is an absorbing state representing the extinction of

all η clonotypes (Allen, 2010; Howard M & Karlin, 1998).

Consider two states, n = (n1, . . . , nη) and m = (m1, . . . ,mη) in S. The

transition probability from n to m in a small time interval, ∆t, is defined as

pnm(∆t) = P (X(t+ ∆t) = m | X(t) = n) ,

and in the limit ∆t→ 0+, this transition probability satisfies

pnm(∆t) =


λ
(i)
n ∆t+ o(∆t), if m = n(+i),

µ
(i)
n ∆t+ o(∆t), if m = n(−i),

1−∑η
i=1(λ

(i)
n + µ

(i)
n )∆t+ o(∆t), if m = n,

o(∆t), otherwise.

The clonotypes in C are explicitly modelled by the process X, yet as mentioned

before, there are other clonotypes in the naive T cell repertoire which can also

receive stimuli from self-pMHCs in Q, but which do not overlap significantly

with the clonotypes in C , namely those in M. These clonotypes are contributing

to the competition for stimuli as a “sink”, in the sense that they are taking a

portion of the stimuli, but their population dynamics is not explicitly modelled.

The cardinality of M will be denoted by M ; that is, |M| := M . Now, define C q

as the set of clonotypes in C which can receive stimuli from self-pMHC q ∈ Q,

this allows for the separation of hq into the number of cells in C q which receive

stimuli from self-pMHC q, and the number of cells in M which receive stimuli

from self-pMHC q. Since cells in M are not explicitly modelled, their populations

are assumed to be in homeostatic steady state (Stirk et al., 2008), and thus, have

a constant size (see Eq. (4.12)).

4.1.1 Approximation of the transition rates

First, Eq. (4.1) will be re-written making use of the following definition: hiq is the

number of cells that are not of clonotype i and receive stimuli from self-pMHC q;
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that is, hiq := hq − ni. Then, Eq. (4.1) becomes

Λ(i)(n) =
∑
q∈Qi

γ

ni + hiq
. (4.4)

By writing the birth rate in this manner it is easy to see that it depends not

only on clonotype i, but on all other clonotypes which compete for stimuli from

self-pMHCs in Qi.

For a fixed clonotype i, define Ci to be the set of all clonotypes in C except

for i, Ci := C \ {i}. Now, consider the subsets Iij of the power set, P(Ci), which

consist of all elements with cardinality j; that is, Iij contains all the possible

subsets of C with j elements which do not contain clonotype i. Define Ikij as

the k-th element of Iij under the lexicographical order. Note that |Iij| =
(
η−1
j

)
,

therefore k can only take the values k = 1, 2, . . . ,
(
η−1
j

)
. As an illustrative example

consider the set C of clonotypes presented in Figure 4.1, with labels i− 2, i− 1,

i, i+ 1, i+ 2 from top to bottom. Then, for j = 3, the sets in Ii,3 are

Ii,3 =
{
I1i,3, I

2
i,3, I

3
i,3, I

4
i,3

}
=
{
{i− 2, i− 1, i+ 1} , {i− 2, i− 1, i+ 2} ,

{i− 2, i+ 1, i+ 2} , {i− 1, i+ 1, i+ 2}
}
.

(4.5)

The sets described in this example are shown in Figure 4.2.

These sets allow for the partition of Qi, the set of self-pMHCs that stimulate

clonotype i, into sets, Qk
ij , of self-pMHCs that stimulate precisely clonotype i and

those in Ikij. These Qk
ij sets are defined as follows

Qk
ij = Qi︸︷︷︸

stimulates
clonotype i

∩
(⋂
l∈Ikij

Ql

)
︸ ︷︷ ︸
stimulates all

clonotypes in Ikij

∩
(⋂
l∈Ikij

Ql

)
︸ ︷︷ ︸

does not stimulate
any other clonotypes

, (4.6)

where Ikij is the complement of Ikij in Ci and Qi is the complement of Qi in Q.

By construction the sets Qk
ij are disjoint and their union is Qi; that is

Qi =

η−1⊔
j=0

(η−1
j )⊔

k=1

Qk
ij, (4.7)
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i

(a) I1i,3

i

(b) I2i,3

i

(c) I3i,3

i

(d) I4i,3

Figure 4.2: Example of the Ikij sets for η = 5 and i = 3. For a given clonotype

i, the elements of Ii,3 are ordered sets of three clonotypes in C different to

i. These elements are named Ikij, where k denotes their position in Ii,3 under

the lexicographical order of their elements. The complement of these sets in

Ci = C \ {i} is denoted by Iki,3. In this illustrative example the set C consists

of the clonotypes i − 2, i − 1, i, i + 1, and i + 2, wich are shown in increasing

order from top to bottom. Figures (a), (b), (c), and (d) show to the sets defined

in Eq. (4.5) in blue, and their complement Ci in red.

where
⊔

denotes the disjoint union of sets. With this partition, Eq. (4.4) can

be re-written as the sum of stimuli from self-pMHCs that are shared with j =

0, 1, . . . , η − 1 other clonotypes. This allows for a better understanding of the

competition for self-pMHCs between the η different clonotypes from Eq. (4.4),

by separating the competition into several competitions with different subsets of

clonotypes. The resulting equation for the stimulus received by a cell of clonotype

i is

Λ(i)(n) = γ

η−1∑
j=0

(η−1
j )∑

k=1

∑
q∈Qk

ij

Λk
ijq(n), (4.8)

where Λk
ijq(n) is the fraction of stimulus provided to clonotype i by a self-pMHC

q that it shares only with clonotypes in Ikij, which is given by

Λk
ijq(n) =

1

ni +
∑
l∈Ikij

nl + hkijq
,
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with hkijq defined as the number of cells not in C that receive stimulus from

q ∈ Qk
ij; that is, hkijq := hq − ni −

∑
l∈Ikij

nl. The product of Λk
ijq(n) and γ is

the homeostatic proliferation stimulus provided to clonotype i by self-pMHC q,

which also stimulates all clonotypes in Ikij. Now, the Qk
ij sets can be subdivided

further by considering the number of clonotypes not in C that can receive stimulus

from q ∈ Qk
ij. Let Qk

ijr with r = 0, 1, . . . ,M denote the set of self-pMHCs that

stimulate clonotype i, the clonotypes in Ikij, and r other clonotypes in M. With

these sets Eq. (4.8) can be written as

Λ(i)(n) = γ

η−1∑
j=0

(η−1
j )∑

k=1

M∑
r=0

∑
q∈Qk

ijr

Λk
ijq(n). (4.9)

To simplify Eq. (4.9), and for practical purposes, a mean field approximation will

be used, as discussed in Stirk et al. (2008). First, define the following quantities,

mean and variance of hkijq over the set of q ∈ Qk
ijr:

Ek
ijr

[
hkijq
]

:=
1

|Qk
ijr|

∑
ℓ∈Qk

ijr

nk
ijℓ, (4.10a)

Vk
ijr

[
hkijq
]

:=
1

|Qk
ijr|

∑
ℓ∈Qk

ijr

(
nk
ijℓ − Ek

ijr

[
hkijq
])2

, (4.10b)

respectively. Then, making use of Eq. (4.10a), Eq. (4.10b), the Taylor series of

Λk
ijq(n) as a function of hkijq, and the properties of the expected value (Bain &

Engelhardt, 2000, Chapter 2), the sum of Λk
ijq(n) can be re-written as follows

∑
q∈Qk

ijr

Λk
ijq(n) =|Qk

ijr|

 1

ni +
∑
l∈Ikij

nl + Ek
ijr

[
hkijq
]

+
Vk

ijr

[
hkijq
](

ni +
∑
l∈Ikij

nl + Ek
ijr

[
hkijq
])3 + · · ·

 .

(4.11)

The first assumption of the mean field approximation is that the first term

in Eq. (4.11) dominates the sum. This assumption stems from the fact that in
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carrying out this approximation, Vk
ijr

[
hkijq
]

is considered to be small. Since it

appears as a factor of the second and subsequent terms, they are considered to be

small as well. The second assumption is that given r, the mean number of cells

per clonotype in M competing with i and all clonotypes in Ikij for stimuli from

self-pMHC q ∈ Qk
ijr is the same as the average clonotype size; that is

Ek
ijr

[
hkijq
]

= r⟨n⟩, (4.12)

where ⟨n⟩ is the average clonotype size in M (Stirk et al., 2008). From Eq. (4.12)

and the assumptions from the mean field approximation, Eq. (4.11) is approximated

as ∑
q∈Qk

ijr

Λk
ijq(n) ≈ |Qk

ijr|
ni +

∑
l∈Ikij

nl + r⟨n⟩ . (4.13)

The next step is to find an expression for |Qk
ijr|, but in order to do so, an

expression for |Qk
ij| needs to be found first. Let pkij denote the probability that

a randomly chosen self-pMHC in Qi will provide stimuli to all clonotypes in Ikij.

This probability can be defined in terms of the cardinality of the Qk
ij sets as

follows

pkij =
|Qk

ij|
|Qi|

,

and from Eq. (4.7) it follows that

η−1∑
j=0

(η−1
j )∑

k=1

pkij = 1.

Now, consider the probability p·|ijk that a clonotype in M is stimulated by a

self-pMHC in Qk
ij . That is, any clonotype chosen at random from M is stimulated

by a self-pMHC in Qk
ij, with probability p·|ijk. It is clear that the number of

self-pMHCs in Qk
ijr follows a binomial distribution, Binomial(M, p·|ijk), since it

is the sum of M independent Bernoulli experiments, each with probability p·|ijk.

Thus, the cardinality of Qk
ijr is given by

|Qk
ijr| = |Qk

ij|
(
M

r

)(
p·|ijk

)r(
1− p·|ijk

)M−r

.
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Under the assumption that the number of modelled clonotypes is small compared

to the total number of clonotypes, i.e., η ≪M , the Poisson approximation can

be used by introducing the parameter νkij = Mp·|ijk, so that

|Qk
ijr| ≈ pkij|Qi|

(
νkij
)r
e−νkij

r!
. (4.14)

The parameter νkij is called the mean niche overlap for self-pMHCs that stimulate

clonotype i and all clonotypes in Ikij (Stirk et al., 2008). Let φi = γ|Qi|, then, using

Eq. (4.13), and Eq. (4.14) the following approximation of Eq. (4.9) is obtained

Λ(i)(n) ≈ γ

η−1∑
j=0

(η−1
j )∑

k=1

M∑
r=0

pkij|Qi|
(
νkij
)r
e−νkij

r!

1

ni +
∑
l∈Ikij

nl + r⟨n⟩

= φi

η−1∑
j=0

(η−1
j )∑

k=1

pkije
−νkij

M∑
r=0

(
νkij
)r

r!

1

ni +
∑
l∈Ikij

nl + r⟨n⟩ .

(4.15)

Using this result, the birth rate of clonotype i, defined in Eq. (4.2), can be

approximated as follows

λ(i)n = niΛ
(i)(n) ≈ φini

η−1∑
j=0

(η−1
j )∑

k=1

pkije
−νkij

M∑
r=0

(
νkij
)r

r!

1

ni +
∑
l∈Ikij

nl + r⟨n⟩ . (4.16)

Also, note that from the definition of φi it follows that

γ|Qk
ij| = γpkij|Qi| = pkijφi.

Then, for any pair of clonotypes i, i′ in C and a pair of sets Ikij, I
k′

i′j, such that

Ikij ∪ {i} = Ik
′

i′j ∪ {i′}, the following relation holds

φip
k
ij = φi′p

k′

i′j. (4.17)

This constraint comes naturally from the fact that, while the sizes of Qi and Qi′ can

be different, the stimuli provided by Qk
ij and Qk′

i′j is the same if Ikij∪{i} = Ik
′

i′j∪{i′}.
Furthermore, for any pair of clonotypes i, i′ in C , and a pair of sets Ikij, I

k′

i′j, such
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that Ikij ∪ {i} = Ik
′

i′j ∪ {i′}, the following constraint for their mean niche overlap

parameters holds

νkij = νk
′

i′j. (4.18)

This is because the mean niche overlap is a characteristic of self-pMHCs and not

of clonotypes, and therefore its value depends only on the sets Qk
ij and Qk′

i′j, and

not on the specific clonotypes i and i′.

The birth and death rates of the process X, which have been defined in Eq. (4.3)

and Eq. (4.16), respectively, can be simplified for two limiting cases. The first one

is that in which νkij ≪ 1 for all νkij. This is called the “hard niche” case, which is

characterised by little competition with clonotypes in M. In this case Eq. (4.16)

simplifies to

λ(i)n ≈ φini

η−1∑
j=0

(η−1
j )∑

k=1

pkij
ni +

∑
l∈Ikij

nl

. (4.19)

The second case, when νkij ≫ 1 for all νkij, is called the “soft niche” case, where

there is greater competition with clonotypes in M. In this case, Eq. (4.16) is

approximated by

λ(i)n ≈ φini

η−1∑
j=0

(η−1
j )∑

k=1

pkij
ni +

∑
l∈Ikij

nl + νkij⟨n⟩
. (4.20)

4.2 Quasi-stationary probability distribution

This section focuses on the study of the behaviour of η competing clonotypes

before the first extinction event occurs. In order to do so, the quasi-stationary

probability distribution (QSD) is used, which describes the late time behaviour

of the process conditioned on non-extinction (Guillemin & Sericola, 2007; N̊asell,

1991; van Doorn & Scheinhardt, 1997).
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4.2.1 Direct calculation of the quasi-stationary probability

distribution

To derive a closed-form expression for the QSD, first consider the probability pn(t)

that at time t the competition process X is in state n, given that it started in

state n0, i.e.,

pn(t) = P (X(t) = n | X(0) = n0) ,

and note that these probabilities satisfy the Kolmogorov differential equations (Kol-

mogoroff, 1931)

dpn(t)

dt
=

η∑
i=1

λ
(i)

n(−i)pn(−i)(t) +

η∑
i=1

µ
(i)

n(+i)pn(+i)(t)−
η∑

i=1

(
λ(i)n + µ(i)

n

)
pn(t). (4.21)

Define A to be the absorbing set {(n1, . . . , nη) : ni = 0 for any i}, and denote by

pA(t) the probability that at time t the process is not in A. Now, define the

probability that the process is in state n ∈ S \A at time t given that absorption

into A has not occurred yet, as follows

gn(t) := P (X(t) = n | X(t) /∈ A) =
pn(t)

pA(t)
. (4.22)

From the definition of gn(t) in Eq. (4.22) the following system of differential

equations can be derived

dgn(t)

dt
=

d

dt

pn(t)

pA(t)

=
1

pA(t)

dpn(t)

dt
− gn(t)

pA(t)

dpA(t)

dt
.

(4.23)

Then, given that the pn(t) probabilities follow the Kolmogorov equations, see

Eq. (4.21), the first term of Eq. (4.23) is re-written as follows

1

pA(t)

dpn(t)

dt
=

η∑
i=1

λ
(i)

n(−i)gn(−i)(t) +

η∑
i=1

µ
(i)

n(+i)gn(+i)(t)

−
η∑

i=1

(
λ(i)n + µ(i)

n

)
gn(t).

(4.24)
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In order to solve the second term of Eq. (4.23), the law of total probabil-

ity (Howard M & Karlin, 1998, Chapter 1) is used first to rewrite pA(t) as

pA(t) = 1−
∑
n∈A

pn(t). (4.25)

However, since the competition process under consideration is conditioned on

non-extinction, the boundary is the set of states where only one clonotype has

become extinct. Thus, when calculating
dp

A
(t)

dt
the only relevant transitions are

those to states in which only one clonotype has become extinct. Then, Ai is

defined as the set of states where only clonotype i has gone extinct; that is, for

1 ≤ i ≤ η

Ai := {n ∈ S : ni = 0, nk > 0 ∀k ̸= i with 1 ≤ k ≤ η} . (4.26)

For the sake of computing pA(t), one can consider that states in Ai are absorbing

for all 1 ≤ i ≤ η, and then rewrite Eq. (4.25) as

pA(t) = 1−
η∑

i=1

∑
n∈Ai

pn(t). (4.27)

Taking the derivative of Eq. (4.27) with respect to t results in

dpA(t)

dt
= −

η∑
i=1

∑
n∈Ai

µ
(i)

n(+i)pn(+i)(t). (4.28)

Now, making use of Eq. (4.22) and Eq. (4.28), the second term of Eq. (4.23)

can be written as

gn(t)

pA(t)

dpA(t)

dt
= −gn(t)

η∑
i=1

∑
m∈Ai

µ
(i)

m(+i)gm(+i)(t). (4.29)

Note that the only death events considered are those of clonotypes of size one.

Then, by Eq. (4.3), Eq. (4.29) can be further simplified to obtain

gn(t)

pA(t)

dpA(t)

dt
= −gn(t)

η∑
i=1

∑
m∈Ai

µigm(+i)(t). (4.30)
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Finally, substituting Eq. (4.24) and Eq. (4.30) in Eq. (4.23) the following differen-

tial equation is obtained

dgn(t)

dt
=

η∑
i=1

λ
(i)

n(−i)gn(−i)(t) +

η∑
i=1

µ
(i)

n(+i)gn(+i)(t)

−
η∑

i=1

(
λ(i)n + µ(i)

n

)
gn(t) + gn(t)

η∑
i=1

∑
m∈Ai

µigm(+i)(t).

The limiting conditional distribution (LCD) of the process is the limit as

t → +∞ of gn(t) (Darroch & Seneta, 1967). If this limit exists, the resulting

probability distribution is a QSD of the process, which in the case of a process with

finite state space is unique and therefore equal to the LCD (Darroch & Seneta,

1967). Now, if there exists a probability distribution g̃ such that
∑

n∈S\A g̃n = 1,

that also satisfies

0 =

η∑
i=1

λ
(i)

n(−i) g̃n(−i) +

η∑
i=1

µ
(i)

n(+i) g̃n(+i)

−
η∑

i=1

(
λ(i)n + µ(i)

n

)
g̃n + g̃n

η∑
i=1

∑
m∈Ai

µig̃m(+i) ,

(4.31)

then, it is a QSD of the process. Finding an analytical solution of Eq. (4.31) is in

general not possible, and thus, the QSD will be numerically approximated. Two

useful approximations are discussed in Section 4.2.2 (N̊asell, 1991, 2001).

4.2.2 Approximation of the quasi-stationary distribution:

two auxiliary processes

The two auxiliary competition processes presented in N̊asell (2001) will be used

to approximate the QSD in this section. In the first approximation the multi-

variate Markov process X(1) =
{(
X

(1)
1 (t), . . . , X

(1)
η (t)

)
: t ≥ 0

}
is considered,

where X
(1)
i (t) is the number of cells of clonotype i at time t. The birth rate of

clonotype i in state n = (n1, n2, . . . , nη), λ
1,(i)
n , is given by Eq. (4.16), and its

death rate by

µ1,(i)
n =

{
µini if ni > 1,

0 if ni = 1.
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Thus, the state space of X(1) is the set of states where no extinction has occurred

A0 := S \A = {n ∈ S : ni > 0 for all 1 ≤ i ≤ η} . (4.32)

The second auxiliary process considered is X(2) =
{(
X

(2)
1 (t), . . . , X

(2)
η (t)

)
: t ≥ 0

}
,

where the birth rates, λ
2,(i)
n , are the same as those for X and X(1), and each

clonotype is considered to have an immortal cell; that is, the death rates are given

by

µ2,(i)
n = µi(ni − 1),

and the state space of X(2) is also A0, as defined in Eq. (4.32).

In order to approximate the QSD for the system of interest, the stationary

probability distribution of the two auxiliary processes will be calculated follow-

ing (N̊asell, 1991, 2001). To this end, an order on the set of non-absorbing states,

A0, must be defined. First, separate A0 into levels of constant total cells

L0(k) =

{
(n1, . . . , nη) :

η∑
i=1

ni = k and ni > 0 for all i

}
,

for k = η, η + 1, η + 2, . . .. These levels can be ordered as follows

L0(η) ≺ L0(η + 1) ≺ L0(η + 2) ≺ L0(η + 3) ≺ · · · ,

and the states in each level can be ordered using the colexicographical order,

sometimes called reverse lexicographical order (Cameron, 1994). Note that the

levels start at L0(η), since any state with fewer than η cells in total does not

belong to A0 by definition. Using a combinatorial argument (Feller, 1957), it can

be seen that the cardinality of L0(k) is given by

L0
k := |L0(k)| =

(
k − 1

η − 1

)
. (4.33)

Now, in order to truncate the state space, the plane
∑η

i=1 ni = N is introduced

as a reflecting boundary on the complete state space S. This means that only states

which have at most N cells in total are considered. In practice, this truncation

value N can be chosen so that the probability of exceeding a total number N of
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cells in the population is negligible (see Section 4.3). Then, the number of states

in A0 is

|A0| =
N∑
i=η

L0
i =

N∑
i=η

(
i− 1

η − 1

)
=

(
N

η

)
,

and the position of state n = (n1, n2, . . . , nη) in level L0(k) is given by

posk(n, η) =
1

k − η

[
η∑

i=1

(ni − 1)(k − η + 1)i−1

+

η∑
i=3

(ni − 1)(1− (k − η + 1)i−1)

]

+

η∑
i=3

[(
k − 1−∑η

j=i+1 nj

i− 1

)
−
(
k −∑η

j=i nj

i− 1

)]
,

(4.34)

for k > η ≥ 3. Since there is only one state in L0(η), n = (1, . . . , 1), posη(n, η) is

defined to be 1 for n ∈ L0(η). Then, from Eq. (4.33) and Eq. (4.34), the position

in A0 of a state n ∈ L0(k) is given by

posA0(n, η) = posk(n, η) +
k−1∑
ℓ=η

L0
ℓ .

From any state n ∈ L0(k) the process can only move to states in the adjacent

levels L0(k− 1) and L0(k+ 1). This means that the infinitesimal generator matrix

of process X(j), Q(j) for j = 1, 2, is of quasi-birth-and-death type (Gómez-Corral

& López-Garćıa, 2018; Kulkarni, 2017), and can be written as

Q(j) =



A
(j)
η,η A

(j)
η,η+1 0 · · · 0

A
(j)
η+1,η A

(j)
η+1,η+1 A

(j)
η+1,η+2 · · · 0

0 A
(j)
η+2,η+1 A

(j)
η+2,η+2 · · · 0

...
...

...
. . .

...

0 0 0 · · · A
(j)
N−1,N

0 0 0 · · · A
(j)
N,N


, (4.35)

where 0 are zero matrices of the appropriate sizes, and the A
(j)
k,k′ sub-matrices are

defined as follows: First, let ni
k denote the state in L0(k) such that posk(ni

k, η) = i.

Then, define the sub-matrices as
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• for η + 1 ≤ k ≤ N

(
A

(j)
k,k−1

)
ip

=

{
µ
j,(ℓ)

ni
k

if np
k−1 = n

i(−ℓ)
k ,

0 otherwise.

• for η ≤ k ≤ N − 1

(
A

(j)
k,k+1

)
ip

=

{
λ
j,(ℓ)

ni
k

if np
k+1 = n

i(+ℓ)
k ,

0 otherwise.

• for η ≤ k ≤ N

(
A

(j)
k,k

)
ip

=

−
(

η∑
ℓ=1

λ
j,(ℓ)

ni
k

+ µ
j,(ℓ)

ni
k

)
if i = p,

0 otherwise.

As previously mentioned, to approximate the QSD of the competition process

the stationary distribution of the auxiliary processes will be calculated. The

stationary distribution of a process with infinitesimal generator matrix Q(j) is

defined as a vector π(j) = (π
(j)
η , . . . ,π

(j)
N ) such that

π(j)Q(j) = 0, (4.36a)

π(j)e = 1, (4.36b)

where each π
(j)
i is the vector of stationary probabilities for each state in L(i).

From Eq. (4.36a) and Eq. (4.36b) the following relations for the π
(j)
i are obtained

π(j)
η A(j)

η,η + π
(j)
η+1A

(j)
η+1,η = 0

π(j)
η A

(j)
η,η+1 + π

(j)
η+1A

(j)
η+1,η+1 + π

(j)
η+2A

(j)
η+2,η+1 = 0

π
(j)
η+1A

(j)
η+1,η+2 + π

(j)
η+2A

(j)
η+2,η+2 + π

(j)
η+3A

(j)
η+3,η+2 = 0

...

π
(j)
N−2A

(j)
N−2,N−1 + π

(j)
N−1A

(j)
N−1,N−1 + π

(j)
N A

(j)
N,N−1 = 0

π
(j)
N−1A

(j)
N−1,N + π

(j)
N A

(j)
N,N = 0

N∑
i=η

Ti−2∑
j=1

π
(j)
i,j = 1.

(4.37)
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By re-writing the penultimate equation in Eq. (4.37) one obtains

π
(j)
N = −π(j)

N−1A
(j)
N−1,N

(
A

(j)
N,N

)−1

. (4.38)

Now, let A
(j)
N,N = H

(j)
N , then Eq. (4.38) becomes

π
(j)
N = −π(j)

N−1A
(j)
N−1,N

(
H

(j)
N

)−1

. (4.39)

Replacing Eq. (4.39) in the preceding relation results in

0 =π
(j)
N−2A

(j)
N−2,N−1 + π

(j)
N−1A

(j)
N−1,N−1 − π

(j)
N−1A

(j)
N−1,N

(
H

(j)
N

)−1

A
(j)
N,N−1

0 =π
(j)
N−2A

(j)
N−2,N−1 + π

(j)
N−1 (A

(j)
N−1,N−1 −A

(j)
N−1,N

(
H

(j)
N

)−1

A
(j)
N,N−1)︸ ︷︷ ︸

H
(j)
N−1

,

then

π
(j)
N−1 = −π(j)

N−2A
(j)
N−2,N−1

(
H

(j)
N−1

)−1

. (4.40)

Continuing this recursive calculation results in the following expression for the

H
(j)
k matrices

H
(j)
k = A

(j)
k,k −A

(j)
k,k+1

(
H

(j)
k+1

)−1

A
(j)
k+1,k, (4.41)

and for the stationary probability vectors the following recursive expression is

obtained

π
(j)
k = −π(j)

k−1A
(j)
k−1,k

(
H

(j)
k

)−1

. (4.42)

Since the system of equations in Eq. (4.37) has N − η + 2 equations and

N − η + 1 unknowns, it is over-determined when they are all considered, thus the

first equation of the system will be ignored. This means that the only expression

where π
(j)
η appears in is

π
(j)
η+1 = −π(j)

η A
(j)
η,η+1

(
H

(j)
η+1

)−1

, (4.43)

and it can be set to an arbitrary value. Since L0
η = 1 this value is a scalar, which

is chosen to be π
(j)∗
η = 1. Then, Eq. (4.41) and Eq. (4.42) can be used to find
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π
(j)∗
i values, which are correct relative to each other. Finally, Eq. (4.36b) is used

to normalise the π
(j)∗
i , to find the values of π

(j)
i as follows

π
(j)
i =

π
(j)∗
i

N∑
i=η

Li∑
j=1

π
(j)∗
i,j

. (4.44)

This method for calculating the stationary distribution of a Markov process is

called the linear level-reduction algorithm (Gaver et al., 1984), an outline of which

is given in Algorithm 4.1. This algorithm was implemented in code presented in

Appendix A.1.1, which will be used in Section 4.5.

Algorithm 4.1: Linear level-reduction algorithm to calculate the sta-

tionary probability distribution of the approximating process X(j).

H
(j)
N = A

(j)
N,N ;

for k = N − 1, N − 2, . . . , η do

H
(j)
k = A

(j)
k,k −A

(j)
k,k+1

(
H

(j)
k+1

)−1

A
(j)
k+1,k

end

π
(j)∗
η = 1;

for k = η + 1, . . . , N do

π
(j)∗
k = −π(j)∗

k−1A
(j)
k−1,k

(
H

(j)
k

)−1

end
for k = η, . . . , N do

π
(j)
k =

π
(j)∗
k

N∑
i=η

Li∑
j=1

π
(j)∗
i,j

end

4.2.3 Linear noise approximation

Van Kampen’s linear noise approximation (van Kampen, 2007) allows for the

approximation of a discrete stochastic model with a continuous deterministic one

in the form of a mean plus fluctuations. This, in turn, allows for the approximation

of the QSD of the stochastic model by studying the steady state behaviour of the

deterministic approximation (Elf & Ehrenberg, 2003). To begin the calculation

of the approximation, the step operators Si and S−i are defined, such that on a
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generic function f they act as follows

Sif(n) = f(n(+i)), (4.45a)

S−if(n) = f(n(−i)). (4.45b)

Then, using these operators the Kolmogorov equation of the competition process,

Eq. (4.21), can be re-written as

dpn(t)

dt
=

η∑
i=1

(S−i − 1)
[
λ(i)n pn(t)

]
+ (Si − 1)

[
µ(i)
n pn(t)

]
. (4.46)

Now, the variables xi(t) and ξi(t) are defined as follows

Xi(t) = Ωxi(t) + Ω1/2ξi(t), (4.47)

where the parameter Ω represents the size of the system, the fluctuations ξi(t) are

of order Ω1/2, and Ωxi(t) = E [Xi(t)]. From Eq. (4.47) it is easy to see that the

probability density pn(t) needs to be re-written to study the system in terms of

the variables xi(t) and ξi(t). Thus, the density Π(ξ; t), with ξ = (ξ1, . . . , ξη), is

considered. This density satisfies (van Kampen, 2007)

∂Π

∂t
− Ω1/2

η∑
i=1

dxi
dt

∂Π

∂ξi
=

η∑
i=1

(
−Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂

2

∂ξ2i

)
λ(i)n Π

+

(
Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂

2

∂ξ2i

)
µ(i)
n Π.

(4.48)

Define xkij = xi +
∑

ℓ∈Ikj
xℓ and ξkij = ξi +

∑
ℓ∈Ikj

ξℓ, and substitute Eq. (4.47) in

Eq. (4.19) and Eq. (4.3) to obtain the following expressions for the birth and

death rates of the approximating process

λ(i)n = Ωφ̃i

(
xi + Ω−1/2ξi

) η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij + Ω−1/2ξkij

= Ωφ̃i

(
xi + Ω−1/2ξi

) η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij

1

1 + Ω−1/2
ξkij
xk
ij

, (4.49a)

µ(i)
n = µi

(
Ωxi + Ω1/2ξi

)
, (4.49b)
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where φi = Ωφ̃i. Then, the Kolmogorov equation Eq. (4.48) becomes

∂Π

∂t
− Ω1/2

η∑
i=1

dxi
dt

∂Π

∂ξi
=

η∑
i=1

(
−Ω1/2 ∂

∂ξi
+

1

2
Ω0 ∂

2

∂ξ2i

)
φ̃i

(
xi + Ω−1/2ξi

)

×

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
− Ω−1/2

η−1∑
j=0

(η−1
j )∑

k=1

pkijξ
k
ij(

xkij
)2
Π

+

(
Ω1/2 ∂

∂ξi
+

1

2
Ω0 ∂

2

∂ξ2i

)
µi

(
xi + Ω−1/2ξi

)
Π.

(4.50)

Now, collecting the terms of order Ω1/2 from Eq. (4.50) results in the following

deterministic approximation of the competition process (Elf & Ehrenberg, 2003)

dxi
dt

= φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
− µixi, (4.51)

and collecting the terms of order Ω0 yields a Fokker-Planck equation that describes

the fluctuations around the steady state of Eq. (4.51)

∂Π

∂t
= −

∑
i,j

Aij
∂ξjΠ

∂ξi
+

1

2

∑
i,j

Bij
∂2Π

∂ξi∂ξj
, (4.52)

where

−
∑
i,j

Aij
∂ξjΠ

∂ξi
=

η∑
i=1

µi − φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij

 ∂ξiΠ

∂ξi

+ φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij(
xkij
)2 ∂ξkijΠ∂ξi

,

(4.53a)

1

2

∑
i,j

Bij
∂2Π

∂ξi∂ξj
=

1

2

η∑
i=1

µixi + φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij

 ∂2Π
∂ξ2i

. (4.53b)
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It is easy to see from Eq. (4.53a) that

Aii = φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
− φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij(
xkij
)2 − µi

= φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
− xi

η−1∑
j=0

(η−1
j )∑

k=1

pkij(
xkij
)2
− µi

= φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij(x
k
ij − xi)

(xkij)
2

− µi, (4.54a)

Aij = −φ̃ixi

η−2∑
ℓ=0

(η−2
ℓ )∑

k=1

pk{i,j}ℓ(
xk{i,j}ℓ

)2 . (4.54b)

Similarly, from Eq. (4.53b) it is clear that

Bii = µixi + φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
, (4.55a)

Bij = 0. (4.55b)

When evaluated at the steady state of Eq. (4.51), Eq. (4.52) becomes a linear

multi-variate Fokker-Planck equation whose solution is a multi-variate Gaussian

distribution, and is therefore fully determined by its first and second moments.

Multiplying Eq. (4.52) by ξi and integrating results in the following equations

describing the first moments of the distribution (van Kampen, 2007)

d

dt
⟨ξi⟩ =

η∑
m=1

Aim⟨ξm⟩

=

φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij(x
k
ij − xi)

(xkij)
2

− µi

 ⟨ξi⟩
− φ̃ixi

∑
ℓ ̸=i

η−2∑
j=0

(η−2
j )∑

k=1

pk{i,ℓ}j(
xk{i,ℓ}j

)2 ⟨ξℓ⟩,
(4.56)

where ⟨·⟩ denotes E [·]. Similarly, multiplying by ξiξℓ one obtains the following
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differential equations for the second moments of the distribution (van Kampen,

2007), if i = ℓ

d

dt
⟨ξ2i ⟩ = 2

η∑
m=1

Aim⟨ξiξm⟩+Bii

= 2

φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij(x
k
ij − xi)

(xkij)
2

− µi

 ⟨ξ2i ⟩
− 2φ̃ixi

∑
ℓ̸=i

η−2∑
j=0

(η−2
j )∑

k=1

pk{i,ℓ}j(
xk{i,ℓ}j

)2 ⟨ξiξℓ⟩
+ µixi + φ̃ixi

η−1∑
j=0

(η−1
j )∑

k=1

pkij
xkij
,

(4.57)

and if i ̸= ℓ

d

dt
⟨ξiξℓ⟩ =

η∑
m=1

Aim⟨ξmξℓ⟩+

η∑
m=1

Aℓm⟨ξiξm⟩+Biℓ

=

φ̃i

η−1∑
j=0

(η−1
j )∑

k=1

pkij(x
k
ij − xi)

(xkij)
2

− µi

 ⟨ξ2i ⟩
+

φ̃ℓ

η−1∑
j=0

(η−1
j )∑

k=1

pkℓj(x
k
ℓj − xℓ)

(xkℓj)
2

− µℓ

 ⟨ξ2ℓ ⟩
− φ̃ixi

∑
m ̸=i

η−2∑
j=0

(η−2
j )∑

k=1

pk{i,m}j(
xk{i,m}j

)2 ⟨ξmξℓ⟩
− φ̃ℓxℓ

∑
m̸=i

η−2∑
j=0

(η−2
j )∑

k=1

pk{ℓ,m}j(
xk{ℓ,m}j

)2 ⟨ξiξm⟩.

(4.58)

In order to study the steady states of this approximation, and their stability, the

code presented in Appendix A.1.2 will be used in Section 4.5. Other features of

the linear noise approximation described by Equations (4.56), (4.57), and (4.58)

are not considered in this Thesis, however, they are presented here in order to

facilitate future research of this model.

54



4.3 Study of clonal extinction

4.3 Study of clonal extinction

In this section, the behaviour of the competition process X and its extinction

events is studied with the use of stochastic descriptors and first step arguments.

Some of these descriptors are calculated for the competition process with an

infinite state space (Sections 4.3.1 and 4.3.2). In Sections 4.3.3 and 4.3.4 a finite

(i.e., truncated) state space is considered to make numerical calculations possible.

4.3.1 Total extinction in finite time

Using the method described in Iglehart (1964), it can be shown that the competi-

tion process reaches the absorbing state, (0, . . . , 0), with certainty. To prove this,

first the complete state space S is partitioned into levels defined by

L(k) =

{
(n1, . . . , nη) ∈ S :

η∑
i=1

ni = k

}
,

for k = 0, 1, 2, . . ., so that S =
⋃+∞

k=0 L(k). Now, define

λ′k = max
n∈L(k)

{
η∑

i=1

λ(i)n

}
, µ′

k = min
n∈L(k)

{
η∑

i=1

µ(i)
n

}
, (4.59)

for k ≥ 1, and since L(0) = {(0, . . . , 0)}, then λ′0 = µ′
0 = 0. Equipped with these

rates, a uni-variate birth and death process can be defined on the state space

S′ = {L(k) : k = 0, 1, 2, . . .}, which considers each level L(k) as a single state, with

birth rates λ′k and death rates µ′
k (see Figure 4.3). From the definition of these

rates, this uni-variate birth and death process moves towards L(0) at a slower

rate than the original process (Iglehart, 1964).

Reference (Iglehart, 1964, Theorem 3) states that a sufficient condition for

absorption at L(0) to be certain is that the sum

+∞∑
k=1

1

λ′kσk
, (4.60)

where σk =
λ′
1λ

′
2...λ

′
k−1

µ′
2µ

′
3...µ

′
k

for k ≥ 2 and σ1 = 1, is divergent. First, note that λ
(i)
n is
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L(0) L(1) L(2) · · · L(k) · · ·
µ′
1

λ′1

µ′
2

λ′2

µ′
3

λ′k−1

µ′
k

λ′k

µ′
k+1

Figure 4.3: Uni-variate bounding competition process of the multi-variate

competition process defined on the state space S′ = {L(k) : k = 0, 1, 2, . . .} with

the rates defined in Eq. (4.59).

bounded by

λ(i)n = φini

η−1∑
j=0

(η−1
j )∑

k=1

pkije
−νkij

M∑
r=0

(
νkij
)r

r!

1

ni +
∑
l∈Ikij

nl + r⟨n⟩

≤ φini

η−1∑
j=0

(η−1
j )∑

k=1

pkije
−νkij

+∞∑
r=0

(
νkij
)r

r!

1

ni

= φini

η−1∑
j=0

(η−1
j )∑

k=1

pkij
1

ni

= φi,

(4.61)

so that

λ′k = max
n∈L(k)

{
η∑

i=1

λ(i)n

}
≤

η∑
i=1

φi, (4.62)

and

µ′
k = min

n∈L(k)

{
η∑

i=1

µ(i)
n

}
= min

n∈L(k)

{
η∑

i=1

µini

}
= kµ∗, (4.63)

where µ∗ = mini=1,2,...,η {µi}. Then, from Eq. (4.62) and Eq. (4.63) the following

inequality is obtained

+∞∑
k=1

1

λ′kσk
≥

+∞∑
k=1

k! (µ∗)k−1(
η∑

i=1

φi

)k
=

+∞∑
k=1

ak, (4.64)

and the ratio
ak+1

ak
=

(k + 1)µ∗

η∑
i=1

φi

→ +∞
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as k increases. Thus, by the ratio test this series diverges, which by Eq. (4.64)

implies Eq. (4.60) also diverges. Therefore, by (Iglehart, 1964, Theorem 3)

extinction of all clonotypes in competition process X is certain at sufficiently late

times.

Having shown that extinction is certain for the process, the time to extinction

is the next step in the analysis. Consider the state n = (n1, . . . , nη) ∈ S and

let τn be the mean time to extinction of all clonotypes, if the initial state is n.

Equivalently, τn is the mean time to reach the absorbing state from state n. Using

the uni-variate process shown in Figure 4.3 and (Iglehart, 1964, Theorem 4), it

can be shown that τn is finite for all n that have at least one non-zero entry if

+∞∑
k=1

σk < +∞,

where the σi are the same as before.

Using Eq. (4.62) and Eq. (4.63) the following inequality is obtained

+∞∑
k=1

σk ≤
+∞∑
k=1

(
η∑

i=1

φi

)k

k! (µ∗)k−1
=

+∞∑
k=1

bk,

then the ratio

bk+1

bk
=

η∑
i=1

φi

(k + 1)µ∗ → 0,

as k increases, and the series converges by the ratio test. Thus, by (Iglehart,

1964, Theorem 4) the mean time to extinction of all clonotypes from any non-zero

initial state is finite. Using the expression for the mean time to extinction of a

uni-variate process (Howard M & Karlin, 1998), an upper bound on the mean time

to extinction for states in each level, τ ′m, can be found; that is, for all n ∈ L(m)

the following relation holds τn ≤ τ ′m, and the value of τ ′m is given by

τ ′m =
+∞∑
i=1

1

λ′iρi
+

m−1∑
j=1

ρj

+∞∑
k=j+1

1

λ′kρk
,

with ρ1 = 1, and ρk =
∏k

i=0
µ′
i

λ′
i

for k ≥ 2. This expression provides an upper

bound for the mean time until total extinction that depends on the total number

of cells of all clonotypes.
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4.3.2 Mean time to first extinction event

In this section, the mean time to the first extinction event is calculated using a

first step argument. Let X(t) and Wj be random variables describing the state

of the system at time t and the waiting time from the j − 1-th event to the j-th

event, respectively. Denote by Tn the random variable that describes the time to

the first extinction event, starting from state n ∈ A0; that is

Tn = inf {t ≥ 0 : Xi(t) = 0 for some i | X(0) = n} .

Then, by the law of total probability the mean time to extinction starting in state

n, E [Tn], can be written as

τ̂n := E [Tn] = E [W1] +
∑
m∈S

E [Tm|X(0) = n,X(W1) = m] pnm, (4.65)

where pnm is the transition probability from n to m in the embedded Markov

process (Allen, 2010); that is, pnm can be written as

pnm =


λ
(i)
n

∆n
, if m = n(+i),

µ
(i)
n

∆n
, if m = n(−i),

0, otherwise,

(4.66)

where ∆n =
∑η

i=1

(
λ
(i)
n + µ

(i)
n

)
.

Now, from Eq. (4.65) the following set of difference equations can be obtained

τ̂n =
1

∆n

+

η∑
i=1

λ
(i)
n

∆n

τ̂n(+i) +

η∑
i=1

µ
(i)
n

∆n

τ̂n(−i) . (4.67)

Thus, the mean time to extinction from state n is defined in terms of the mean

time to extinction from its adjacent states. This set of equations also has the

boundary condition that τ̂n = 0 if ni = 0 for any 1 ≤ i ≤ η. Eq. (4.67) can be

re-written as

−1 = −∆nτ̂n +

η∑
i=1

λ(i)n τ̂n(+i) +

η∑
i=1

µ(i)
n τ̂n(−i) , (4.68)

from which it is easy to see that this system of equations can be represented as

a matrix equation of the form Mτ = 1, which is solved numerically for τ in

Section 4.5, using the code presented in Appendix A.2 which exploiting the fact

that the matrix of coefficients M is sparse.
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4.3.3 Clonal size distribution at the first extinction event

The focus of this section is computing the probability of each clonotype to be the

first one becoming extinct. Following a similar approach to that in Gómez-Corral

& López-Garćıa (2012a,b), the infinite state space S is truncated. In particular,

only states which have at most Nε cells in total are considered; that is, a reflecting

plane
∑η

i=1 ni = Nε is introduced, and Nε is defined as the minimum value such

that
Nε∑
k=η

P (X(t) ∈ L(k) : ∀t ≥ 0) ≥ 1− ε, (4.69)

is satisfied; that is, Nε is the level of the QSD for which
⋃Nε

k=η L(k) captures

at least 1 − ε of the mass of the probability distribution. To compute Nε, a

similar approach to that presented in Gómez-Corral & López-Garćıa (2012a,b)

is used. Since three different approximations of the QSD have been introduced

(see Sections 4.2.2 and 4.2.3), Nε will be chosen to be the maximum between the

values that satisfy Eq. (4.69) for all of the approximations.

Consider the subsets A1 =
⋃η

i=1 Ai and A0, as defined in Eq. (4.26) and

Eq. (4.32) respectively, and define the indicator function 1A0(n) as follows

1A0(n) =

{
1, if n ∈ A0,

0, if n ∈ A1.

Then, consider a modified competition process, X̆ =
{(
X̆1(t), . . . , X̆η(t)

)
: t ≥ 0

}
,

on the state space A0 ∪A1, with birth and death rates given by

λ̆(i)n =1A0(n) · λ(i)n ,

µ̆(i)
n =1A0(n) · µ(i)

n ;

that is, this process behaves exactly as the original competition process X until

a clonotype becomes extinct, at which point the process X̆ comes to an end.

Let the random vector X̆(t) =
(
X̆1(t), . . . , X̆η(t)

)
describe the population of all

clonotypes being modelled at time t. First, a position function for states in Ai

needs to be defined. To this end, the absorbing states are initially ordered as

follows

A1 ≺ A2 ≺ · · · ≺ Aη−1 ≺ Aη. (4.70)
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Note that these sets can be bijectively projected onto a space of dimension η − 1

by removing the i-th element (which is the population of the clonotype that has

become extinct). The projected state will be denoted by n̂ and the projected

set by Âi. Given that Âi has the same structure as A0, it can be separated into

ordered levels as follows

L1(η − 1) ≺ L1(η) ≺ L1(η + 1) ≺ · · · ≺ L1(Nε − 1).

The last level that can be considered is Nε − 1, since for a state to reach L1(Nε)

there must have been an extinction event from a state in L0(Nε + 1), which is not

part of the state space for the process with the reflecting boundary. The number

of states in level k, L1
k, is given by

L1
k = |L1(k)| =

(
k − 1

η − 2

)
,

and the total number of states in Âi under the reflecting boundary is

|Âi| =
Nε−1∑
ℓ=η−1

L1
ℓ =

Nε−1∑
ℓ=η−1

(
ℓ− 1

η − 2

)
=

(
Nε − 1

η − 1

)
. (4.71)

Then, the position in Âi of a state n̂ ∈ L1(k) is given by

posÂi
(n̂, η − 1) = posk(n̂, η − 1) +

k−1∑
i=η−1

L1
i ,

and by reversing the projection of Ai onto Âi the following expression is obtained

posAi
(n, η) = posÂi

(n̂, η − 1). (4.72)

Then, from Eq. (4.70), Eq. (4.71), and Eq. (4.72) the position of state n ∈ L1(k) ⊂
Ai in A1 can be written as

posA1(n, η) = posAi
(n, η) + (i− 1)|Âi|.

Now, the general position function can be defined as follows

posA0∪A1(n, η) =

{
posA0(n, η) if n ∈ A0,

posA1(n, η) +
(
N
η

)
if n ∈ A1.

(4.73)
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Let Y = {Y(s) : s = 0, 1, 2, . . .} denote the embedded Markov process of X̆.

Then, using the order of states as defined in Eq. (4.73), the transition matrix of Y

is given by

P̆ =

[
P R
0 I

]
,

where P is a |A0| × |A0| matrix whose entries are the transition probabilities

of states within A0, R is a |A0| × |A1| matrix whose entries are the transition

probabilities from a state in A0 to a state in A1, 0 is the |A1| × |A0| zero matrix,

and I is the identity matrix of size |A1|.
Let U(s) be the |A0| × |A1| matrix of probabilities to reach every absorbing

state in A0 from all states in A1 after at most s steps, where a step is defined as

a birth or death event for any clonotype. That is, for a pair of states n ∈ A0 and

m ∈ A1 the entry in row posA0(n) and column posA1(m) of U(s) is given by

U
(s)
pos

A0 (n),posA1 (m) = P {Y(s) = m | Y(0) = n} .

Then, U(s) can be written as follows

U(s) =

(
s−1∑
k=0

Pk

)
R.

Making use of the fundamental matrix W = (I−P)−1 associated to P (Howard M

& Karlin, 1998), it is easy to see that

U = lim
s→+∞

U(s) = WR,

and thus, the matrix of probabilities to reach each absorbing state in A1 given

any initial state in A0, U, can be found by calculating

U = (I−P)−1R. (4.74)

Note that the matrix U has a block structure and can be written as U =[
U1 U2 · · · Uη

]
, where Ui is the matrix of absorption probabilities from A0

to Ai. That is, the entry in row ℓ and column j of Ui, (Ui)ℓ,j, is given by(
Ui
)
ℓ,j

= lim
s→+∞

P {Y(s) = m | Y(0) = n} ,
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where posA0(n) = ℓ and posA1(m) = j, for 1 ≤ ℓ ≤ |A0| and 1 ≤ j ≤ |A1|. Thus,

each row of U adds up to 1 and represents the distribution of clonal sizes at the

time of the first extinction event, with the initial state whose position is given

by the row number. Furthermore, given the block structure of U, each row of

Ui contains the probabilities of clonal sizes for the surviving clonotypes when

clonotype i is the first to become extinct.

Due to the computational cost, however, the matrix I−P will not be directly

inverted, but instead a linear level-reduction algorithm will be used on the matrix

equation

(I−P)U = R.

The matrix I−P is of quasi-birth-and-death type and can be written as

I−P =



Iη −Bη,η+1 · · · 0
−Bη+1,η Iη+1 · · · 0

0 −Bη+2,η+1 · · · 0
...

...
. . .

...
0 0 · · · −BNε−1,Nε

0 0 · · · INε


, (4.75)

where Ik is the identity matrix of order L0
k × L0

k, 0 are zero matrices of the

appropriate sizes, and the Bk,k′ sub-matrices are defined as follows: Let ni
k denote

the state in L0(k) such that posk(ni
k, η) = i, then

• for η + 1 ≤ k ≤ Nε

(Bk,k−1)ij = pni
kn

j
k−1
, (4.76)

• for η ≤ k ≤ Nε − 1

(Bk,k+1)ij = pni
kn

i
k+1
, (4.77)

where pni
kn

j
k−1

and pni
kn

i
k+1

are the transition probabilities given by Eq. (4.66).

The matrix R has the form R =
[
R1 R2 · · · Rη

]
, where Ri is the matrix

of transition probabilities from A0 to Ai. The Ri matrices are diagonal by blocks

and can be written as

Ri =


Ri

η,η−1 0 0 · · · 0
0 Ri

η+1,η 0 · · · 0
0 0 Ri

η+2,η+1 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ri
Nε,Nε−1

 .
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The Ri
k,k−1 sub-matrices are defined as follows: First, let nℓ

k to denote the state

in L0(k) such that posk(nℓ
k, η) = ℓ, and mℓ

i,k denote the state in L1(k) ⊂ Ai, such

that posk(m̂ℓ
i,k, η− 1) = ℓ. Then, for η ≤ k ≤ Nε, the entries of the matrix Ri

k,k−1

are given by

(Ri
k,k−1)ab = pna

km
b
i,k−1

, (4.78)

where pna
km

b
i,k−1

is the transition probability given by Eq. (4.66). The structure

of U allows for the use of a linear level-reduction algorithm to solve Eq. (4.74)

one Ui block at a time. An outline of the algorithm is given in Algorithm 4.2. In

this way, and making use of the structure of U, the probability of clonotype i

being the first to become extinct starting in state n0 ∈ A0, denoted by Ui
n0

, can

be calculated as follows

Ui
n0

=

|Ai|∑
j=1

(
Ui
)
pos

A0 (n0),j
, (4.79)

where (Ui)ℓ,j denotes the entry of the matrix Ui in the ℓ-th row and j-th column.

Algorithm 4.2: Linear level-reduction algorithm to calculate the distri-

bution of clonal sizes at the time of the first extinction event, U.

HNε = IL0
Nε

;

for k = Nε − 1, Nε − 2, . . . , η do
Hk = IL0

k
−Bk,k+1H

−1
k+1Bk+1,k

end
for i = 1, 2, . . . , η do

for j = η − 1, η, . . . , Nε − 1 do
Ki

Nε,j
= Ri

Nε,j
;

for k = Nε − 1, Nε − 2, . . . , η do
Ki

k,j = Bk,k+1H
−1
k+1K

i
k+1,j + Ri

k,j

end
Ui

η,j = H−1
η Ki

η,j;

for k = η + 1, η + 2, . . . , Nε do
Ui

k,j = H−1
k (Ki

k,j + Bk,k−1U
i
k−1,j)

end

end

end
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4.3.4 Number of divisions before extinction of a clonotype

In this section another stochastic descriptor of the competition process is studied:

the number of divisions of a naive T cell clonotype before its extinction. To

calculate this random variable a truncated state space similar to that defined

in Section 4.3.3 is considered. This descriptor serves as an indicator of how

much proliferation takes place before the extinction of a T cell clonal family.

Given a fiducial (fixed but arbitrary) initial state, n ∈ A0, let D
(s)
i,d (n) denote the

probability that clonotype i divided d times in at most s steps before becoming

extinct if it had an initial size of n; that is,

D
(s)
i,d (n) = P

(
clone i divided d times in at most
s steps before becoming extinct

∣∣∣∣ X(0) = n

)
. (4.80)

Since a cell of clonotype i can divide after the extinction of other clonotypes, the

complete state space, S, is considered with a reflecting boundary at
∑η

i=1 ni = Nε.

To order the elements of S, note that an element n ∈ S can be bijectively mapped

to A0 by adding e = (1, . . . , 1) to n. Then, the position of state n in the k-th

level of S, is given by

posS,k(n, η) = posk+η(n + e, η).

Furthermore, this bijection also allows for the use of the levels defined in A0

(see Eq. (4.34)). Now, consider D
(s)
i,d as the vector built from entries D

(s)
i,d (n),

for each n ∈ S. Making use of the level structure it can be divided into sub-

vectors corresponding to the probabilities for states in each level of S, i.e., D
(s)
i,d =[

D
(s)
i,d,0,D

(s)
i,d,1, . . . ,D

(s)
i,d,Nε

]⊤
, where D

(s)
i,d,k is the vector of probabilities for n ∈ L(k).

Given that the subject of this stochastic descriptor is the probability of clone

i dividing, the usual transition matrix is not used, but instead it is separated

into the vector of probabilities for division in clonotype i, and the sub-stochastic

matrix P(i) of all transition probabilities except those for division in clonotype i;
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that is,

P(i) =



0 0 0 0 · · · 0

C
(i)
1,0 0 C

(i)
1,2 0 · · · 0

0 C
(i)
2,1 0 C

(i)
2,3 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · C
(i)
Nε−1,Nε

0 0 0 0 · · · 0


, (4.81)

where 0 are zero matrices of the appropriate sizes. To define the C
(i)
k,k′ sub-matrices,

let nℓ
k denote the state in L(k) such that posS,k(nℓ

k, η) = ℓ, then the Ck,k′ matrices

are defined as

• for 1 ≤ k ≤ Nε

(
C

(i)
k,k−1

)
ℓj

=

{
pnℓ

kn
j
k−1

if
(
nℓ
k

)
i
> 0,

0 otherwise.
(4.82)

• for 1 ≤ k ≤ Nε − 1

(
C

(i)
k,k+1

)
ℓj

=

{
pnℓ

kn
j
k+1

if
(
nℓ
k

)
i
> 0 and

(
nℓ
k

)
i

=
(
nj
k+1

)
i
,

0 otherwise.
(4.83)

Note that since the probability being calculated is the probability of division

before extinction of clonotype i, all transition probabilities for a state in which

clonotype i is already extinct are zero.

The distribution is calculated recursively on the number of divisions before

extinction. Thus, first the vector d
(i)
0 is defined as the vector containing the

probability that in zero steps clonotype i will become extinct; that is,

(
d
(i)
0

)
posS,k(n,η)

=

{
1, if ni = 0,

0, otherwise.

Then, the probability that clone i will not divide before becoming extinct in s or

fewer steps is given by

D
(s)
i,0 =

(
s∑

j=0

(
P(i)

)j)
d
(i)
0 .
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Making use of the fundamental matrix associated to P(i), W(i) =
(
I−P(i)

)−1
,

the following expression for Di,0 is found

Di,0 = lim
t→+∞

D
(s)
i,0 = W(i)d

(i)
0 ,

which leads to (
I−P(i)

)
Di,0 = d

(i)
0 . (4.84)

Then, Eq. (4.84) allows for the probability of extinction of clonotype i after 0

divisions, Di,0, to be solved for:

Di,0 =
(
I−P(i)

)−1
d
(i)
0 . (4.85)

For ℓ > 0 divisions, define the vector containing the probability of clonotype i

becoming extinct after ℓ divisions given that it has divided once, as follows(
d
(i)
ℓ

)
posS,k(n,η)

= pnn(+i)Di,ℓ−1

(
n(+i)

)
. (4.86)

Then, the vector of probabilities of clonotype i becoming extinct after ℓ divisions,

Di,ℓ, satisfies the recursive equation

Di,ℓ =
(
I−P(i)

)−1
d
(i)
ℓ . (4.87)

Finally, with the use of an adapted version of Algorithm 4.2, Eq. (4.85) and

Eq. (4.87) can be solved recursively until the number of divisions reaches ℓn,δ;

that is,
ℓn,δ∑
d=0

Di,d(n) ≥ 1− δ,

with n the initial state under consideration. The values Di,d(n) for d = 1, 2, . . . , ℓn,δ

describe the probability distribution for the number of divisions of clonotype i

before its extinction.

4.4 Numerical results in the case η = 3

In this section the multi-variate competition process (see Section 4.1), and the

stochastic descriptors defined (see Sections 4.2 and 4.3) are used to study the
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dynamics of two clonotypes homeostatically established in the periphery, which

compete for self-pMHC stimuli with a third, and new, clonotype that has just

exited the thymus. Thus, the two clonotypes homeostatically established will be

in a state defined by the mean of their two-dimensional QSD (and in the absence

of the newly arrived clonotype). In this case, there are only two pkij probabilities

for each clonotype. The probability pi,0 that a self-pMHC is recognised only

by clonotype i, and the probability pi,1 that a self-pMHC is recognised by both

clonotypes. Thus, by Eq. (4.17), only one probability value needs to be chosen to

determine all others. The numerical results shown here were obtained using the

code presented in Appendix A.

The new clonotype will be denoted as clonotype 1, and the established ones

as clonotype 2 and clonotype 3, respectively. All three clonotypes are considered

to have the same total homeostatic stimulus (Lythe et al., 2016); that is, φ1 =

φ2 = φ3 = 10 divisions · year−1, and before the introduction of clonotype 1 the

self-pMHCs in Q2∩Q3 are hypothesised to be in the soft niche, and the remaining

self-pMHCs in the hard niche. The per cell death rate of T cells has been

estimated from experimental data (Borghans et al., 2018), and is considered to be

µ1 = µ2 = µ3 = 1 year−1. Figure 4.4a shows the competition scenario described

for the two established clonotypes, where the size of each Qi circle represents the

magnitude of φi, and the colour of each section represents the magnitude of νkij,

with a darker colour indicating a greater value. In this competition scenario the

values of p2,1 and ν2,1 were chosen to be 1/3 and 1, respectively.

Making use of the method described in Section 4.3.2, the mean time to

extinction was calculated for all initial states with at most 102 total cells. For

the choice of φi, and µi, the times were found to range between 80 and 125 years

(see Table 4.2). Given these long extinction times, in a biological timescale, it is

appropriate to approximate the QSD of this competition process. In Figure 4.4b

the marginal distribution for clonotype 2 is plotted. Only the distribution for one

of the established clonotypes is shown, since the competition between them is

symmetric, and thus clonotypes 2 and 3 are identical before the introduction of

clonotype 1. From this figure it can be observed that for the competition scenario

considered, with most of the self-pMHCs in the hard niche, the approximation X(1)

better describes the behaviour of the system (see Gillespie simulations). However,
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Q2 Q3

(a)
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n2

0.00
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0.20
Marginal distribution of n2

X(1)

Gillespie

Shifted X(2)

X(2)

(b)

Figure 4.4: Competition scenario for two established clonotypes and marginal

distribution of the QSD. (a) Competition scenario considered for the two estab-

lished clonotypes, where they compete for 1/3 of their homeostatic proliferation

stimulus. The shaded region represents the subset of self-pMHCs considered to

be in the soft niche, with a mean niche overlap value ν2,1 = ν3,1 = 1. (b) Marginal

distribution of the QSD for clonotype 2, approximated using the processes X(1)

and X(2) defined in Section 4.2.2 and the code presented in Appendix A.1.1.

note that shifting X(2) by one cell; that is, removing the immortal cell from each

state, results again in a good approximation. This is to be expected for these

small population sizes and taking into account the hypothesis of an immortal cell

in this process.

Once clonotype 1 enters the periphery four different competition scenarios

across a spectrum of symmetries are considered. These scenarios range from

full symmetry to complete asymmetry. In the first scenario, Figure 4.5a, all

clonotypes compete symmetrically; that is, all one-on-one competitions have

the same probability. For the second scenario, Figure 4.5b, there is symmetric

competition between clonotype 1 and clonotypes 2 and 3, but these competitions

are greater than the competition between clonotypes 2 and 3, leaving the new

clonotype at a disadvantage. The third scenario, Figure 4.5c, has clonotype 1

competing more for homeostatic stimuli with clonotype 3 and less with clonotype 2,

giving clonotype 2 an advantage. Finally, the last scenario, Figure 4.5d, represents
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the case of extreme asymmetry in which clonotypes 1 and 3 compete completely

for stimuli. In all scenarios, self-pMHCs recognised by more than one clonotype

are considered to be in the soft niche, with the value of the mean niche overlap

increasing as the number of clonotypes increases. For the self-pMHCs recognised

by clonotype 1, both hard and soft niches are studied.

Q1

Q2 Q3

(a) Symmetric competition.

Q1

Q2 Q3

(b) Symmetric competition between clono-

type 1 and clonotypes 2 and 3, but greater

than the competition between clonotypes

2 and 3.

Q1

Q2 Q3

(c) Clonotype 1 has lower competition

with clonotype 2, and greater competition

with clonotype 3.

Q1

Q2 Q3

(d) Clonotype 1 competes completely with

clonotype 3.

Figure 4.5: Competition scenarios when a new clonotype is introduced in a

bi-variate system. Shaded areas represent sets of self-pMHCs that are in the soft

niche, with a darker shade meaning a lager value of the mean niche overlap (νkij).

Cross-hatched areas represent sections where both the soft and hard niche cases

are considered.
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The diagrams in Figure 4.5 were used as a guide to choose the probabilities

shown in Table 4.1. Since the competition being considered is that between three

different clonotypes (η = 3), the following set of relations for the pkij probabilities

are obtained from Eq. (4.17)

φ1p
1
1,2 = φ2p

1
2,2 = φ3p

1
3,2, φ1p

1
1,1 = φ2p

1
2,1,

φ1p
2
1,1 = φ3p

1
3,1, φ2p

2
2,1 = φ3p

2
3,1,

(4.88)

which allows for all the probabilities to be determined using only the four values

given in Table 4.1. In the case of a single clonotype with no direct competitors

(η = 1), the mean time to extinction for mean niche overlap values greater than 10 is

minimal (Stirk et al., 2008). Therefore, the values chosen for the mean niche overlap

in the competition scenarios were: 1 for self-pMHCs recognised by two clonotypes,

and 10 for self-pMHCs recognised by three clonotypes. Since clonotypes 2 and 3 are

considered to be homeostatically established in the periphery, their initial state will

be the mean of the QSD for the competition between them rounded to the nearest

integer, which with the chosen parameters is the state (8, 8) (see Figure 4.4b).

Using the parameter values in Table 4.1, and the method defined in Sec-

tion 4.3.2, the mean time until the first extinction event, τ̂n, was calculated for all

starting states in the state space consisting of states with at most 102 total cells.

The expected value and standard deviation of τ̂n over all states in A0, EA0 [τ̂n]

and
√

VA0 [τ̂n] respectively, can be found in Table 4.2. From this table it is easy

to see that the introduction of clonotype 1 drastically reduces the mean time until

the first extinction event occurs in the competition process. Even in competition

scenario (a) in the hard niche case, which has the highest value of EA0 [τ̂n] of all

the scenarios considered, the mean time until the first extinction is reduced to less

than a fifth of its value before the introduction of the new clonotype. This strong

perturbation of the time to extinction events indicates that the introduction of a

new clonotype in the periphery has the potential to greatly disturb the dynamics

of the competition process. This perturbation is further studied in the following

sections using the other stochastic descriptors defined in Section 4.3.
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(a) (b) (c) (d)

p11,1 2/9 1/3 1/9 0

p21,1 2/9 1/3 5/9 2/3

p11,2 1/9 1/9 1/9 1/3

p22,1 2/9 2/9 2/9 0

ν1i,0 0 clonotypes

νki,1 1 clonotype (Stirk et al., 2008)

ν1i,2 10 clonotypes (Stirk et al., 2008)

ν11,0 0, 1 clonotypes

φi 1, 10, 102 divisions · year−1 (Lythe et al., 2016)

µi 1 year−1 (Borghans et al., 2018)

⟨n⟩ 10 cells

Table 4.1: Parameters for the competition scenarios shown in Figure 4.5. In this

case (η = 3), the model has 11 parameters. For ν11,0, the mean niche overlap of

self-pMHCs recognised only by clonotype 1, two values are given since the hard

and soft niche cases are considered. The pkij are the probabilities of clonotypes in

Ikij competing for self-pMHC stimulus with clonotype i. Only four probabilities

are required to determine all others using Eq. (4.88). The mean niche overlap,

νkij, is the number of clonotypes, other than the three explicitly modelled, that

recognise the self-pMHCs in Qk
ij. φi is the total homeostatic stimulus available

to clonotype i, and µi is its per-cell death rate. ⟨n⟩ is the mean number of cells

belonging to clonotypes not explicitly modelled.

4.4.1 Clonal distributions at the first extinction event

Using the method described in Section 4.3.3 the distribution of clonal sizes at the

time of the first extinction event was calculated for the four different scenarios,

considering the new clonotype in the hard and soft niche. Figure 4.6 shows the

distribution of clonal sizes with initial state, n0 = (4, 8, 8), as well as the probability

for each clonotype to be the first becoming extinct, Ui
n0

. A triangle represents

the initial state considered, n0 = (4, 8, 8), and a diamond represents the mean of

the resulting distribution of clonal sizes at the time of the first extinction event.

71



4. MULTI-VARIATE MODEL OF T CELL CLONOTYPE
COMPETITION AND HOMEOSTASIS

(a)

(b)

(c)

(d)

1
5

10
15

n
2

U1

n
1

U2

n
1

U3

U1
n0

U2
n0

U3
n0

1 5 10 15
n3

1
5

10
15

n
2

1 5 10 15
n3

n
1

1 5 10 15
n2

n
1

0.0 0.5 1.0

U1
n0

U2
n0

U3
n0

1
5

10
15

n
2

U1
n

1
U2

n
1

U3

U1
n0

U2
n0

U3
n0

1 5 10 15
n3

1
5

10
15

n
2

1 5 10 15
n3

n
1

1 5 10 15
n2

n
1

0.0 0.5 1.0

U1
n0

U2
n0

U3
n0

1
5

10
15

n
2

U1

n
1

U2

n
1

U3

U1
n0

U2
n0

U3
n0

1 5 10 15
n3

1
5

10
15

n
2

1 5 10 15
n3

n
1

1 5 10 15
n2

n
1

0.0 0.5 1.0

U1
n0

U2
n0

U3
n0

1
5

10
15

n
2

U1

n
1

U2

n
1

U3

U1
n0

U2
n0

U3
n0

1 5 10 15
n3

1
5

10
15

n
2

1 5 10 15
n3

n
1

1 5 10 15
n2

n
1

0.0 0.5 1.0

U1
n0

U2
n0

U3
n0

0.00 0.01 0.02 0.03
Probability (hard niche case)

0.00 0.05 0.10
Probability (soft niche case)

Figure 4.6: Distributions of clonal sizes at the time of the first extinction event. Each

column, Ui for i = 1, 2, 3, represents the extinction of clonotype i in the hard and soft

niche cases (clonotype 1), green and blue, respectively, with initial state n0 = (4, 8, 8),

and φi = 10 divisions · year−1 using the method described in Section 4.3.3 and the code

in Appendix A.3. The fourth column shows the probability for each clonotype to be

the first becoming extinct, Ui
n0
. A triangle represents the initial state and a diamond

indicates the mean of the resulting distribution.
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Two clonotype competition (η = 2)

EA0 [τ̂n] (years)
√

VA0 [τ̂n] (years)

122.65 5.69

Three clonotype competition (η = 3)

Scenario Niche (ν11,0) EA0 [τ̂n] (years)
√

VA0 [τ̂n] (years)

(a)
Hard 17.35 1.81

Soft 4.94 1.25

(b)
Hard 7.59 1.21

Soft 4.42 1.13

(c)
Hard 5.55 1.16

Soft 3.96 1.04

(d)
Hard 3.89 1.11

Soft 3.01 0.85

Table 4.2: Average and standard deviation (rounded to two decimal places) of the

mean time to the first extinction event for the competition between two clonotypes

(see Figure 4.4a). Four competition scenarios for three clonotypes were considered

(see Figure 4.5), using the parameter values in Table 4.1. Numerical results

obtained using the method defined in Section 4.3.2, and the code in Appendix A.2.

These results indicate that the probability of the new clonotype (clonotype 1)

being the first to become extinct drastically increases when comparing the hard

and soft niche cases in all the scenarios, except scenario (d). This shows that

if the clonotype introduced is in the soft niche, this increases its probability of

extinction, putting it at a large disadvantage against the other two homeostatically

established clonotypes. In scenario (d) however, it is observed that not only does

the probability of extinction of clonotype 1 change, but both U1
n0

and U3
n0

see a

marginal increase. This different behaviour can be explained given that for (d) not

only a new clonotype is being introduced in the system, but clonotype 3 changes

from hard to soft niche, since this is a quality of the set of self-pMHCs and not of

the clonotype itself. This implies that, while in scenario (d) clonotype 1 sees no

significant change in its extinction probability between the hard and soft niche
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cases, if it exits the thymus with more clonotypes that will also compete with it;

that is, if there is a change to the niche case of other clonotypes, this will reduce

their advantage in the competition for proliferation stimulus.

By comparing the probabilities of extinction for clonotype 1 in the four different

scenarios, it is easy to see that in the hard niche case the most favourable scenario

for its survival is scenario (a), of symmetric competition. This is the scenario in

which it has less competition with the other two clonotypes overall. On the other

hand, when considering the soft niche case, it is observed that the most favourable

scenario is scenario (d), in which the new clonotype competes completely for

stimuli with an established clonotype. One likely explanation of this seemingly

counter-intuitive behaviour is that, in scenario (d) not only is clonotype 1 exerting

pressure on the established clonotype but other clonotypes not explicitly modelled

are doing so too, implying that the competitive pressure from clonotypes in M is

shared between clonotypes 1 and 3.

Focusing on the cases when clonotype 1 is not the first to become extinct, it

can be seen that in scenario (a) the expected population sizes have rebounded

into an established state in which both surviving clonotypes have fewer cells than

the mean of the QSD of two competing clonotypes. As a result the new clonotype

expanded, while the established one contracted. In the soft niche, the size of the

new clonotype does not bounce back to a homeostatic state, but instead both

surviving clonotypes see a reduction in their cell number. In scenario (b) for the

hard niche case, a move to a homeostatic state is observed again. However, there

is little change in the size of the new clonotype, and a decrease in the size of the

established clonotype to match the population of the surviving one. In the soft

niche for this scenario a similar behaviour is observed, coupled with a reduction

in the population size of clonotype 1.

In scenario (c) there is a break from the symmetry observed between U2 and U3

in the previous scenarios, since the competition considered is no longer symmetric.

If clonotype 2 is the first to become extinct, the population of clonotype 3 (which

has a greater competition with clonotype 1) is expected to decrease until it matches

that of clonotype 1. On the other hand, if clonotype 3 becomes extinct first there is

very little change in the population of clonotype 2 (which has a lower competition

with clonotype 1), and only a minor change in the size of clonotype 1.
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4.4 Numerical results in the case η = 3

Lastly, in scenario (d) an interesting change in the shape of the clonal size

distribution is observed when clonotype 2 becomes extinct first. Since clonotypes

1 and 3 directly compete for all proliferation stimuli, they behave as a single

population. Thus, the distribution is no longer centred around a point, but around

a line where the sum of both populations is constant. However given the uneven

initial state, the distribution has more density on the end that has clonotype 3

surviving with more cells than clonotype 1. If clonotype 3 is the first to become

extinct, as observed before, the population of the larger surviving clonotype

decreases to match that of the new clonotype. In the soft niche there is an

interesting behaviour when clonotype 2 is the first to become extinct. Since both

remaining clonotypes are in the soft niche, the distribution has most of its density

accumulated around the state (1, 1), implying that even if these two clonotypes

survive they can very easily become extinct due to their small population sizes.

Now, focusing on the U1 distributions, it can be seen that even when the new

clonotype is the first to become extinct, it has a negative effect on the populations

of the established clonotypes, reducing their average sizes in all cases. To better

understand the effect the new clonotype has on the homeostatically established

clonotypes, the probability for each clonotype to become extinct as a function

of the initial number of cells in the new clonotype is calculated and plotted in

Figure 4.7.

The first thing to note is that when comparing the hard and soft niche cases

(for clonotype 1) in each scenario, the probability of clonotype 1 becoming extinct

first is always higher in the soft niche than in the hard niche case. For clonotypes 2

and 3 the opposite behaviour is observed, with these clonotypes being more likely

to become extinct first in the hard niche case. The only exception to this (by a

minimal margin) is clonotype 3 in scenario (d), since in this case clonotype 3 has

the added disadvantage of being in the soft niche, which increases its probability of

becoming extinct. Another property observed is that the probability of extinction

very quickly becomes saturated. That is, it shows little sensitivity to changes in

the number of initial cells in the new clonotype after a certain low threshold. The

threshold level depends on the competition scenario considered.

The largest difference between hard and soft niche cases is seen in scenario (a)

for clonotype 1, where the probability of clonotype 1 being the first to become
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Figure 4.7: Probability of extinction for each clonotype, Ui
n0

, in the four scenarios

with hard and soft niche cases (for clonotype 1) as a function of the initial number

of cells in clonotype 1 for φi = 10 divisions · year−1, calculated using the method

described in Section 4.3.3 and the code in Appendix A.3. The initial number of

cells of the other two clonotypes is the mean of the QSD of their two-dimensional

competition process, namely (n2, n3) = (8, 8).

extinct is almost halved when comparing the soft to the hard niche. This is due to

the fact that in this case the value of p11,1 is highest, meaning that the proportion

of self-pMHCs shared with clonotypes 2 and 3 is the lowest. Thus, a change in

the mean niche overlap has a very strong effect on clonotype 1, since it changes

from a scenario of low competition to one of complete competition. This is the

same reason why there is such little change in scenario (d), since clonotype 1 is

already competing for all of its proliferation stimulus and a change in the mean

niche overlap has a much weaker effect.

From this figure it can be determined that in the hard niche case there are

different optimal competition scenarios for the survival of the new clonotype. For

initial numbers of cells fewer than six, the lowest probability of extinction is given

by the symmetric competition described in scenario (a). For values between 6

and 30 the optimal competition is the asymmetrical competition of scenario (b).

Finally, for values above 30 complete competition with an established clonotype

gives clonotype 1 the lowest probability of becoming extinct first. Interestingly,
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4.4 Numerical results in the case η = 3

this behaviour is not observed in the soft niche case, where there is only one

optimal competition scenario for all possible initial numbers of cells, namely

complete competition with another clonotype (scenario (d)).

So far only the effects of different competition scenarios have been studied.

However, the effect of increasing and decreasing the total amount of stimulus

available, φ, by an order of magnitude was also considered. The distribution of

clonal sizes at the time of the first extinction event for the initial state n0 = (4, 8, 8)

with φi = 1 divisions · year−1 is plotted in Figure 4.8. The first thing to note

from this figure is that there is minimal change on the Ui
n0

probabilities, not only

between scenarios but also between the hard and soft niche cases, suggesting that

in low stimulus conditions the effects of the competition scenario and niche are

greatly reduced. Even more so, the means of the Ui are also seen to be consistent

across all scenarios and niche cases, further supporting the hypothesis that with

low stimulus the effects of the scenario and niche are minimal.

In Figure 4.9 the probabilities of extinction, Ui
n0

, have been plotted as

functions of the initial number of cells in clonotype 1, n1, for the cases when

φi = 1, 102 divisions · year−1. For φi = 1 divisions · year−1, due to the scarcity

of stimulus, there is little effect from the competition scenario, but in the hard

niche the probabilities of extinction for clonotype 1 are smaller than in the soft

niche, and the opposite for the established clonotypes. The strongest effect on

the extinction probabilities in this case comes from the initial number of cells.

However, in contrast to Figure 4.7 the probabilities do not become saturated as

quickly, meaning that in this case each cell of clonotype 1 has a weaker effect on

the sizes of the established clonotypes.

For φi = 102 divisions · year−1 the opposite behaviour is observed, where the

probabilities become saturated so quickly that they appear as almost completely

horizontal lines, with the notable exception of scenario (d). The first thing to

note is that for clonotype 2 all the probabilities are minimal except for scenario

(a) in the hard niche case. In this case, given the overabundance of stimulus, the

competition between clonotypes has no effect and all clonotypes are equally likely

to be the first to become extinct. In scenario (b), for both hard and soft niche

cases, the increased competition causes the extinction probability to accumulate

on clonotype 1. The asymmetric competition of scenario (c) accumulates most
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Figure 4.8: Distributions of clonal sizes at the time of the first extinction event

for the initial state n0 = (4, 8, 8), and φi = 1 divisions · year−1 calculated using

the method described in Section 4.3.3 and the code in Appendix A.3. The fourth

column shows the probability for each clonotype to be the first becoming extinct,

Ui
n0

. A triangle represents the initial state and a diamond indicates the mean of

the resulting distribution.
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Figure 4.9: Probability of extinction for each clonotype in the four scenarios

for the hard and soft niche cases (for clonotype 1) as a function of the initial

number of cells in clonotype 1 for φi = 1, 102 divisions · year−1 (top and bottom

row, respectively). The probabilities were calculated using the method described

in Section 4.3.3 and the code in Appendix A.3. The initial number of cells in the

other two clonotypes is the same as in Figure 4.7, namely (n2, n3) = (8, 8).

of the probability of extinction on clonotype 1 and 3 in the soft and hard niche

cases, respectively. Finally, in scenario (d) the behaviour is similar to that of

φi = 1, 10 divisions · year−1, where the probabilities of clonotypes 1 and 3 are

coupled and the difference between hard and soft niche is minimal. This behaviour

stems from the fact that there is complete competition for stimulus, and regardless

of its abundance, the competitive exclusion principle (Hardin, 1960) states that one

population must become extinct. With every other aspect of the populations being
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equal, this means that initial conditions completely determine which clonotype is

most likely to become extinct.

4.4.2 Number of divisions before extinction of a clonotype

Now, the probability distribution of the number of divisions before extinction

of each clonotype, Di, is calculated making use of the method described in

Section 4.3.4. Figure 4.10 shows these distributions for the four scenarios in the

hard and soft niche cases (for clonotype 1) for the initial state n0 = (4, 8, 8).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro

b
ab

ili
ty

(a) (b)

D1

D2

D3

0 10 20 30

Number of divisions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro

b
ab

ili
ty

(c)

0 10 20 30

Number of divisions

(d)

(A) Probability distribution of the number

of divisions before extinction in the hard

niche case (for clonotype 1).

0.00

0.05

0.10

0.15

0.20

0.25

0.30
P

ro
b

ab
ili

ty
(a) (b)

D1

D2

D3

0 10 20 30

Number of divisions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro

b
ab

ili
ty

(c)

0 10 20 30

Number of divisions

(d)

(B) Probability distribution of the number

of divisions before extinction in the soft

niche case (for clonotype 1).

Figure 4.10: Probability distribution of the number of divisions before extinction

for the initial state n0 = (4, 8, 8), and φi = 10 divisions · year−1 calculated using

the method described in Section 4.3.4 and the code in Appendix A.4. (A) shows

the distributions when clonotype 1 is in the hard niche case and (B) in the soft

niche case.

For scenarios (a) and (b), in both the hard and soft niche cases (for clonotype

1), the division distributions for clonotypes 2 and 3 are very similar, since they are

not only competing in the same way but have the same initial number of cells. In
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scenario (c), the distribution for clonotype 3 is shifted to the right when compared

to clonotype 2, due to the increase in competition for clonotype 3, but again there

is no notable difference between the hard and soft niche cases. There is a break in

these similarities between the hard and soft niche cases in scenario (d). Here, the

distribution of divisions of clonotype 3 is narrower and centred around smaller

values in the soft niche case when compared to the hard niche case. This is due

to the fact that the new clonotype being in the soft niche changes all self-pMHCs

recognised by clonotype 3 from the hard to the soft niche, greatly reducing its

probability of dividing a greater number of times before becoming extinct.

Focusing on the new clonotype (clonotype 1), it can be seen that regardless

of the niche considered in scenarios (a) and (b), the median of the number of

divisions is lower than the other modelled clonotypes, with this difference being

greater in the soft niche case. In scenario (a), this behaviour is caused by the

smaller population size of the new clonotype (since every other aspect of the

competition is symmetric). The behaviour is amplified in scenario (b) given the

increased competition experienced by the new clonotype. In scenario (c), in the

hard niche case the distribution of divisions of the new clonotype is very similar to

that of clonotype 3. This is caused by the change in the distribution for clonotype

3 due to its increased competition. However, this similarity is undone in the soft

niche case where the distribution for the new clonotype is narrower and has a

smaller median. This agrees with the previous observation in Figure 4.7: the niche

in which the new clonotype is has a greater impact on its fate than its competition

scenario. Finally, in scenario (d) in the hard niche case the distribution already

has a low median and is rather narrow. This behaviour is stronger in the soft niche

case. In the hard niche case, scenario (d) has the lowest median and the most

narrow distribution for the new clonotype overall, followed by the distributions

of scenarios (b), (c), and (a) in that order. This agrees with the probabilities of

extinction for the initial state n = (4, 8, 8) in Figure 4.7, where it can be seen that

these probabilities decrease in the same order. In the soft niche case there is a

direct relation between the probabilities of extinction and distribution of divisions

for scenarios (a), (b), and (c), but not for scenario (d). This can be explained

by the fact that the probabilities of extinction are changing due to an increased
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chance of clonotype 3 becoming extinct, and not a direct change to the extinction

of the new clonotype.
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Figure 4.11: Probability distribution of the number of divisions before extinction

for the initial state n0 = (4, 8, 8) in the soft niche case calculated using the

method described in Section 4.3.4 and the code in Appendix A.4. (A) shows the

distributions for φi = 1 divisions · year−1 and (B) for φi = 102 divisions · year−1.

In Figure 4.11 the distribution of divisions in the soft niche case for the

initial state n0 = (4, 8, 8) is plotted for φi = 1 divisions · year−1 (Figure 4.11A),

and for φi = 102 divisions · year−1 (Figure 4.11B). Note that in the case φi =

1 divisions·year−1 the distributions remain mostly unchanged between all scenarios,

in agreement with what was observed about the Ui
n0

probabilities in Figure 4.8.

Then, these distributions corroborate the hypothesis that in low stimulus conditions

the effects of the competition scenario and the niche are greatly diminished, and it

is the initial conditions that have the strongest effect on proliferative capacity, and

the probability of extinction of a clonotype. For the case φi = 102 divisions ·year−1

a different behaviour is observed, where the effects of the competition scenario are

markedly present, but the support of the distribution is much larger than that for
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the other values of φi, with some distributions having non-negligible values for

over 250 divisions before extinction. However, the difference between clonotypes

is much stronger, reflecting the quick saturation of the extinction probabilities

observed in Figure 4.9.

Altogether, then, by comparing these distributions to that for φi = 10 divisions·
year−1 (Figure 4.10B) it is easy to see that the choice of φi is critical for the

competition model. Since very low values will produce models in which there is

little to no proliferation and the competitive dynamics is not captured, while larger

values generate models that do not properly describe the effects of competition,

due to the fact that excess stimulus naturally changes the effects of competition.

4.5 Discussion

Maintaining the diversity of the T cell repertoire is essential for the immune system

to mount a strong and effective immune response (Kedzierska et al., 2006; Nikolich-

Žugich et al., 2004; Qi et al., 2014b; Yager et al., 2008). Promoting survival of

significantly different clonotypes maximises this diversity by allowing TCRs with

similar self-pMHC recognition profiles to become extinct. However, it has been

observed that several clonotypes often overlap on their recognition profile (e.g.,

Duan et al., 2015) as a compromise between TCR diversity and coverage over

the space of foreign antigens. This motivates the multi-variate representation

developed in this chapter, which extends and generalises that presented in Stirk

et al. (2010) to three or more clonotypes.

It was shown that the proliferation of competing clonotypes decreases as the

overlap in their recognition profiles increases. That is, the effects of competitive

exclusion can be seen as the distribution of the number of divisions moves to the

left when there is an increase in the competition for self-pMHCs. Furthermore, it

was proved that extinction of all clonotypes is certain, and the mean time to this

absorption event is bounded by a value that depends on the total number of cells

of all clonotypes. A feature of the proposed competition process, prior to the first

extinction event, is that the system is driven to a state where all clones have low

numbers of cells, with the specific number of cells depending on their recognition

overlap. This agrees with the biological understanding that in a homeostatic state
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each clonotype consists of only a few cells, with the exact number varying from

clonotype to clonotype (Casrouge et al., 2000; Lythe et al., 2016).

The multi-variate competition model presented here shows that the introduc-

tion of a new clonotype to the periphery perturbs the homeostatically established

clonotypes. This is observed in the decreased mean number of cells after the

first extinction event when compared to the initial state of the process. Even

in the scenario with the least competition for stimulus (scenario (a)) there is a

perturbation of the established clonotypes. More than this, the probability of

extinction as a function of the initial number of cells in the new clonotype very

quickly becomes saturated (see Figure 4.7).

From the distribution of divisions before extinction (see Figure 4.10), it can be

concluded that in the soft niche case the new clonotype is expected to experience

very little proliferation before becoming extinct. Even in scenario (a), where

competition with other modelled clonotypes is the lowest, the distribution of

divisions is very narrow and centred around a value less that five. This major

change outlines an important feature of the soft niche: even when considering a

mean niche overlap of only ten clonotypes the probability of extinction is greatly

increased and the distribution of divisions is made narrower and its mode moves

to the left. This major change in behaviour between the hard and soft niche cases

can be interpreted in two ways: (i) for the soft niche assumption to be correct in

the naive T cell repertoire, the mean niche overlap value must be a small number

of clonotypes. Otherwise, as observed in the case φi = 102 divisions · year−1

(see Figure 4.9), a new clonotype entering the periphery would have a very low

probability of becoming established, and the naive T cell repertoire would become

mostly static; or (ii) if the mean niche overlap is not small then cells in the

soft niche must have a very fast turnover, and make up for most of the thymic

output to counteract this low probability of proliferation and establishment. These

two interpretations are made under the assumption that the thymic output is

mostly homogeneous; that is, most of the cells exiting the thymus are either

on the hard or soft niche. By relaxing this assumption and considering a more

heterogeneous thymic output, the naive T cell repertoire can be thought of as

being divided into two major compartments: one compartment comprised of

clonotypes in the hard niche, which is deeply established (with low extinction
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probabilities) and is expected to remain mostly constant through life, and another

compartment of clonotypes in the soft niche, which is constantly changing and is

more dynamic through life (as clonotypes appear from the thymus and become

extinct due to clonal competition). This type of heterogeneity would allow for the

maintenance of a T cell repertoire that has the capability of constantly producing

new clonotypes (in the soft niche), while maintaining other clonotypes (in the

hard niche) throughout life.

So far only the possible effects of a distribution of soft and hard niche clonotypes

exiting the thymus have been discussed, with the assumption that thymic output

is constant throughout the ageing process (Goronzy et al., 2007; Qi et al., 2014b;

Zhang et al., 2021). However, given the known changes in thymic output through

life, such as thymic involution (Aspinall & Andrew, 2000; Lynch et al., 2009),

and other age-related changes (Srinivasan et al., 2021), it is plausible that the

composition of thymic emigrants (in terms of hard and soft niche, or clonal

size) changes as well during the lifespan of a host. Therefore, if instead of a

constant mixture of hard and soft niche clonotypes, a mixture that evolves from

mostly hard niche clonotypes during foetal stages to mostly soft niche clonotypes

during adulthood is considered, then the model predicts the early establishment

of clonotypes that exited the thymus early in life, and then a declining supply of

mostly short-lived clonotypes later in life. This decline in the production of soft

niche clonotypes could be justified by the fact that during the initial development of

the T cell repertoire, fewer clonotypes are expected to be present in the periphery,

and therefore smaller values of the mean niche overlap νkij. Furthermore, this

behaviour is compatible with the analysis by Gaimann et al. (2020), in which T cell

clonotype sizes were found to follow a power-law distribution, where clonotypes

generated during the early foetal stages (characterised by no nucleotide insertions

during V(D)J recombination (Park et al., 2020)) were found to be the most

enriched in the periphery.

As shown in Figures 4.6 and 4.8, the methods to calculate the distribution

of clonal sizes at the time of the first extinction event defined in Section 4.3.3

permit a very detailed study of the competition process at the time of the first

extinction, by providing not only the probabilities of each clonotype being the

first to become extinct but also the distribution of population sizes conditioned
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Figure 4.12: Distributions of clonal sizes at the time of the first extinction event

for the initial state n0 = (4, 8, 8), and φi = 102 divisions · year−1 calculated using

the method described in Section 4.3.3 and the code in Appendix A.3. The fourth

column shows the probability for each clonotype to be the first becoming extinct,

Ui
n0

. A triangle represents the initial state and a diamond indicates the mean of

the resulting distribution.
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on the extinction of each clonotype. The method to calculate the distribution of

divisions before extinction defined in Section 4.3.4 provides better understanding

of proliferation of clonotypes in the competition process before extinction events.

Finally, the approximations for the QSD defined in Section 4.2 provide the tools

for the study of the system conditioned on non-extinction, which allows for the

study of perturbations of already established clonotypes as discussed in Section 4.5.

And all these methods are based on the same matrix analytic analysis of first step

arguments.

However, a strong limitation of these matrix analytic methods is the com-

putational cost of the linear level-reduction algorithm. While it is far less com-

putationally expensive than directly solving a system of equations, such as that

presented in Eq. (4.31), or than directly inverting the matrices in Equations (4.74)

and (4.85), the size of the sub-matrices used in the level-reduction algorithm

grows at such a rate that it becomes a limiting factor of the computation. See for

example Figure 4.12, here the distribution of clonal sizes has been calculated for

the competition scenarios defined in Section 4.5 with φi = 102 divisions · year−1.

While the values of Ui
n0

can be obtained with the linear level-reduction algorithm,

the Ui distributions accumulate most of their mass at the reflecting plane that

truncates the state space. However, due to the computational cost of solving the

matrix equation for the next level, it is not possible at the time to consider a

larger state space.

This limitation applies to all the methods that rely on linear level-reduction

algorithms to solve matrix equations. In the case of the QSD, however, a different

approximation which does not rely on matrix analytic methods was introduced in

Section 4.2.3. This linear noise approximation provides an approximation of the

stochastic competition process in the form of a deterministic limit plus noise (van

Kampen, 2007). In order to compare the methods defined in Section 4.2.2, and

Section 4.2.3 the Hellinger distance between the distributions (Oosterhoff &

van Zwet, 2012) was calculated using the code presented in Appendix A.1.3,

and the results presented in Table 4.3. First, note that the two approximating

processes result in distributions that are relatively different to one another, with a

Hellinger distance of 0.293 on their most similar scenario. This is not unexpected

however, since both approximating processes consider different modifications of

87



4. MULTI-VARIATE MODEL OF T CELL CLONOTYPE
COMPETITION AND HOMEOSTASIS

Hellinger distance between approximations of the QSD

Competition

scenario
X(1) – X(2) LNA – X(1) LNA – X(2)

Hard niche

(a) 0.2755 0.0836 0.2604

(b) 0.3109 0.1025 0.2551

(c) 0.3129 0.133 0.2332

(d) 0.2973 0.1387 0.2258

Soft niche

(a) 0.293 0.3076 0.2118

(b) 0.3025 0.3069 0.2052

(c) 0.3121 0.3272 0.1741

(d) 0.7071 0.7071 0.1685

Table 4.3: Comparison of the linear noise approximation and the approximating

processes X(1) and X(2) using using the Hellinger distance. The competition

scenarios and parameters chosen in Section 4.4 were used (see Table 4.1), and

the Hellinger distance was calculated with the code presented in Appendix A.1.3.

In the hard niche case the linear noise approximation is more similar to the X(1)

process than the X(2) for all competition scenarios. On the other hand, in the soft

niche case the reverse is observed, where the linear noise approximation is closer

to the X(2) process under the Hellinger distance.

the population dynamics, one introducing an immortal individual and the other

removing the absorbing state (see Section 4.2.2).

From these results, it is easy to see that in the hard niche case the linear noise

approximation results in a distribution very similar to the X(1) approximating

process. Thinking about the basis of this approximating process it should not

be unexpected that the linear noise approximation will resemble it, since the

modification of this model is the removal of the absorbing states. This change to

the state space forces the model to wander stochastically around its QSD, which is

qualitatively similar to the way a deterministic process behaves. Interestingly, this
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similarity is lost in the soft niche case, where the distance to both approximating

processes is large (there is a decrease with respect to X(2) but the distances still

remain high), suggesting that the stochastic nature of the approximating processes

is most important in the soft niche case, which as seen in Section 4.4 is the case

with higher probabilities of extinction and the lower mean times to extinction.

In general, the estimation of the QSD using the auxiliary process X(1) approx-

imates the distribution from below (resulting in a lower bound for the QSD),

while process X(2) approximates it from above (resulting in an upper bound for

the QSD). The linear noise approximation in general estimates the mean of the

QSD between these two processes, and is computationally less expensive than the

matrix analytic methods necessary for these approximations. However, given the

fact that the noise obtained from the linear noise approximation is Gaussian (Elf

& Ehrenberg, 2003; van Kampen, 2007), depending on the type of results expected

(an approximation of the mean or a more accurate approximation of the distribu-

tion) the auxiliary process approximation might be the ideal option, regardless of

the computational cost.
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Chapter 5

Perturbation of the distribution of

T cell clonotypes by viral infection

In the previous chapter the dynamics of naive T cell populations was studied,

specifically in the context of a new clonotype entering the periphery and competing

with already established clonotypes. However, even greater perturbations of the

balance observed during homeostasis come from the expansion of T cell populations

during infection (Busch & Pamer, 1999; Butz & Bevan, 1998; Lawrence et al., 2005),

which can have long lasting effects on individual immunity to future infections (Gil

et al., 2015; Lanfermeijer et al., 2020; Yang et al., 2022). In particular, this chapter

will focus on heterologous cross-reactive influenza A virus (IAV) infections. That

is to say, a history of two influenza infections of distinct sub-types, which elicit

cross-reactive immune responses and confer some measure of immunity to strains

that have not been encountered by an individual before (Duan et al., 2015; Hillaire

et al., 2013; McMichael et al., 1983; Sridhar et al., 2013).

In this context it is not well known specifically how the history of infection

impacts future exposures to IAV. A mathematical model has been proposed to

better understand the age distribution of cases, and severity of future pandemics

based on cross-reactive immunity acquired during childhood (Gostic et al., 2016).

However, this model only interprets already known population level information

of antibody cross-reactivity, but not how cross-reactive T cell responses behave

on a cellular level. A better understanding of this dynamics would prove useful in

vaccine development to target specifically the desired cross-reactive responses that
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would confer immunity to a wider variety of pathogens, which have been observed

but have not been replicated (Elong Ngono & Shresta, 2019; Mateus et al., 2021;

Moris et al., 2011; Webster & Askonas, 1980).

The bipartite recognition network introduced in Chapter 4 provides a good

platform to introduce viral infection into the model. While the initial definition ex-

plicitly considers only self-pMHCs used for homeostatic maintenance, the network

encodes only TCR-epitope interactions, meaning that it can easily be extended to

include virus derived peptides (VDPs) and simulate an infection. These VDPs

can be arbitrarily separated into subsets, used to represent different qualities of

the epitopes. Since the main focus of this chapter is cross-reactivity in the context

of heterologous infection, the subsets are used to represent the specific peptides

presented in the context of MHC during different infections. However, this is

not the only possible interpretation that these sets can be given. For example,

if multiple infections are not the desired focus of study the sets can be used to

represent different levels of affinity, avidity, or immunogenicity.

The aim of this chapter is to propose a mathematical model to study the effects

and dynamics of cross-reactive immune responses. To this end, in collaboration

with the Paul Thomas laboratory at St. Jude Children’s Research Hospital,

data from heterologous influenza infection experiments on mice, carried out and

designed by Jessica Gaevert, was studied in order to better understand the nature

of the cross-reactive responses being observed.

To develop a stochastic model for heterologous viral infection, first, the bi-

partite recognition network is generalised to a k-partite recognition network in

Section 5.1.1. In Section 5.1.2 the naive, effector, and memory T cell phenotypes

are introduced as cellular compartments in the model, as well as the differentiation

pathway that will connect them to each other during homeostasis and infection.

In Section 5.1.3 the stochastic model is formally defined, and an important result

on the nature of the competition process is presented, namely the certainty of

extinction of the T cell population for sufficiently late times for primary infections,

but not in all cases of challenge infections. Due to the large population sizes

observed during infection, the van Kampen Large N expansion (van Kampen, 2007)

is used to find a deterministic limit of the stochastic process in Section 5.2. The

experimental data provided by the Paul Thomas laboratory at St. Jude Children’s
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hospital is presented, and summarised in Section 5.3.1, and the limitations of the

deterministic model are discussed in Section 5.3.2. Finally, the expansion and

contraction behaviour of the T cell populations in the data are analysed, and the

results presented in Section 5.4.

5.1 Stochastic model with viral infection

In this section the stochastic model presented in Chapter 4 is extended to include

viral infection and the cellular dynamics associated with it. To do this, first

virus derived peptides (VDPs) are introduced as an extension of the bipartite

recognition network (van Stipdonk et al., 2001). Then, the extended recognition

network is used to define a stochastic process that models the populations of naive,

effector, and memory cells during homeostasis and acute infection.

5.1.1 k-partite network of TCR-peptide recognition for

infection

In Chapter 4 a bipartite network was used to represent the recognition of self-

pMHCs by T cells, and a stochastic model was defined to describe naive T cells in

homeostasis. In order to extend this model to include the presentation of VDPs,

first the bipartite recognition network must be extended to a k-partite network of

T cell clonotypes and k − 1 different types of peptides. An example of a k-partite

network with T cell clonotype nodes, self-pMHC nodes, and three different sets of

VDPs is shown in Figure 5.1.

In general the network can be extended to have as many parts as desired, and

they can be used to represent different types of peptides. For example, if the aim is

to study the affinity of peptides, be it self-peptides or virus derived peptides, they

can be classified into being high or low affinity. Since the aim of this chapter is to

study the dynamics of cross-reactivity in the context of heterologous infections, the

recognition network considered will consist of T cell clonotypes, self-pMHCs, and

VDPs divided into those presented during a first infection, and those presented

during a second infection. However, given that for some infections conserved

epitope presentation across variants is a common occurrence, in particular for
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Figure 5.1: Example of a 5-partite recognition network. The 5 types of nodes in

the network are: T cell clonotypes nodes (C ), self-pMHCs (Q), and three sets

of different VDPs (V , W , and Z ). An edge between a clonotype node and a

peptide node represents the ability of that clonotype to receive stimulus from that

peptide. For each clonotype i, there are sets Qi, Vi, Wi, and Zi of peptides of

each type it can recognise. For every peptide q there is set C q of clonotypes that

can recognise it.

influenza A viruses (Eickhoff et al., 2019; Ekiert et al., 2009; Tan et al., 2011),

the sets of VDPs presented during infection do not need to be disjoint.

5.1.2 T cell phenotypes and differentiation pathway

To model the dynamics of T cell expansion during infection, and contraction back

into homeostatic levels, it is not enough to include VDPs in the model (Kaech

& Cui, 2012). The three most functionally relevant T cell phenotypes, namely

naive, effector, and memory T cells must be considered (Ahmed & Gray, 1996;

Bevan & Fink, 2001; Doherty & Christensen, 2000). Naive T cells are already

modelled using the stochastic process defined in Chapter 4, therefore only effector

and memory cells need to be added to the model.
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To include the three different T cell phenotypes, the stochastic model will

consist of three compartments (naive, effector, and memory) for each clonotype.

Since these compartments are related to each other by a biological differentiation

process, a differentiation pathway is also necessary to be able to model transitions

between the compartments. While the differentiation process is not yet fully

understood, some hypotheses have been already proposed for the mechanisms

with which T cells differentiate from one compartment to another (Kaech & Cui,

2012).

Based on the hypotheses presented by Kaech & Cui (2012), the differentiation

pathway shown in Figure 5.2 is considered for the stochastic competition process.

In this differentiation pathway, N, E, and M represent the naive, effector, and

memory compartments, respectively. Red arrows represent the death events

for all three compartments (occurring with rates µN , µE, and µM), black arrows

represent homeostatic proliferation events for the naive and memory compartments

(with rates λN , and λM , respectively), blue arrows represent VDP mediated

differentiation events (with rates αN , and αM) and division events (with rate

λE). Finally, the purple wavy arrow represents the differentiation event from the

effector to the memory compartment (occurring with rate ψE). This last arrow is

different from the others, since in the model this differentiation event only occurs

after the clearance of the infection.

Now, since transitions between compartments represent differentiation into a

new phenotype, the available sources of stimuli for each compartment must also be

specified. As discussed in Chapter 4, naive cells receive homeostatic proliferation

stimuli from self-pMHCs, and to differentiate into the effector compartment

they must receive stimuli from VDPs they are able to recognise (Croft et al.,

2019; Luciani et al., 2013; van Stipdonk et al., 2001). Effector cells, on the

other hand, require constant VDP stimulation to divide and cannot receive

survival stimulus from self-pMHCs (Huppa et al., 2003). The exact mechanism

for differentiation from effector to memory phenotype is not yet fully understood.

It has been hypothesised that memory is generated by selecting for cells that

have not been overly stimulated by the foreign peptides, and thus, have not

terminally differentiated into effector cells (Badovinac et al., 2005; Joshi et al.,

2007; Sarkar et al., 2008), or by simple asymmetric division of naive cells (Chang
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Figure 5.2: Differentiation pathway for T cell phenotypes during an immune

response to a viral infection. The compartments considered are naive (N), effector

(E), and memory (M). Cells in N are homeostatically maintained with rate λN ,

die with rate µN , and differentiate into the E with rate αN . Cells in E divide with

rate λE, die with rate µE, and differentiate into M with rate ψE only once the

infection has been cleared (this condition is represented by a wavy line). Finally,

cells in M are homeostatically maintained with rate λM , die with rate µM , and

differentiate back into E with rate αM .

et al., 2007). However, it is known that only between 5–10% of the effector

population present at the time the infection is cleared from the system goes

on to differentiate to the memory phenotype (Ahmed & Gray, 1996). Finally,

memory cells are independently maintained from naive cells during homeostasis

via cytokine signalling (Harty & Badovinac, 2008), and they can become activated

and differentiate back into the effector compartment via VDP stimulation (Lauvau

& Soudja, 2015). These restrictions on pMHC stimulation are summarised in

Figure 5.3 for a recognition network comprised of self-pMHCs, and two different

infections.

5.1.3 Stochastic competition process for T cell clonotypes

during infection

To model the dynamics of η T cell clonotypes during homeostasis and infection,

the following continuous-time Markov process is used

X = {(X1(t), . . . , Xη(t), Y1(t), . . . , Yη(t), Z1(t), . . . , Zη(t)) : t ≥ 0} , (5.1)
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Qi

C q

Vi
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v

q
i

First infection

VDPs (V )

Second infection

VDPs (W )

Self pMHCs (Q) T cell clonotypes (C )

Effector and Memory cells

Naive cells

Figure 5.3: Available sources of pMHC stimulus for each T cell phenotype in a

recognition network with two infections. Naive cells are able to receive stimulus

from both self-pMHCs for homeostatic maintenance, and VDPs for differentiation

into effector phenotype. Effector cells can only receive stimulus from VDPs in

order to proliferate during an infection, and naturally die out once the infection

is cleared. Finally, memory cells can only receive stimulus from VDPs in order

to differentiate back to the effector compartment, since they are homeostatically

maintained by cytokine signalling (Harty & Badovinac, 2008), and therefore are

not modelled to receive stimulus from self-pMHCs.

where, for every clonotype 1 ≤ i ≤ η, Xi(t) represents the number of naive cells

at time t, Yi(t) the number of effector cells at time t, Zi(t) the number of memory

cells at time t, and the random vector

X(t) = (X1(t), . . . , Xη(t), Y1(t), . . . , Yη(t), Z1(t), . . . , Zη(t)) (5.2)

describes the populations of all naive, effector, and memory T cells at time t.

Since the number of cells present at time t can only be a positive integer or 0, the

state space of this Markov process is

S = {(n1, . . . , nη, e1, . . . , eη,m1, . . . ,mη) : ni, ei,mi ≥ 0,∀i} = N3η
0 . (5.3)
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To define the birth, death, and differentiation rates of the different phenotypes,

the following four sets must be considered: the set C of η different clonotypes,

each with three compartments called naive, effector, and memory, the set Q of

all self-pMHCs that the naive populations in C can receive stimulus from, and

two sets V , and W of virus derived peptides (VDPs) which are presented during

two subsequent infections and the clonotypes in C are able to recognise. Since

the homeostatic proliferation rate of naive cells is not affected by the dynamics of

infection, given that the naive phenotype is the only one able to receive homeostatic

proliferation stimulus from self-pMHCs, the birth rate of naive cells, λ
(i)
N (n), is the

same as in Chapter 4, and therefore it is given by Eq. (4.20). Similarly, the death

rate of naive cells, µ
(i)
N (n), also remains unchanged, and it is given by Eq. (4.3).

The death rates of effector and memory cells are assumed to be linear, similarly

to that of naive cells. That is, when the competition process is in state n =

(n1, . . . , nη, e1, . . . , eη,m1, . . . ,mη), the death rates of effector and memory cells

for clonotype i are given, respectively, by

µ
(i)
E (n) = µEi ei, (5.4)

µ
(i)
M (n) = µMi mi, (5.5)

where µEi, and µMi are the per-cell death rates for effector and memory T cells of

clonotype i. Since homeostatic division of memory cells is mediated by cytokine

signalling, which is independent of TCR specificity (Surh & Sprent, 2008; Tan

et al., 2002), the birth rate of memory T cells is also assumed to be linear. That

is, for clonotype i the birth rate of memory cells is given by

λ
(i)
M (n) = λMi mi. (5.6)

The last remaining transition rate that does not depend on TCR-VDP interac-

tions is the differentiation rate from effector to memory. As previously discussed,

this rate is such that after the infection has been cleared only a fraction βi of

the remaining effector cells of clonotype i differentiate into the memory pheno-

type (Ahmed & Gray, 1996; Kaech & Cui, 2012). Furthermore, since proliferation

of effector cells is dependent on VDP interactions, once the infection has been

cleared the only possible events for effector cells are death, or differentiation into
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memory. Therefore, the per-cell differentiation rate for clonotype i from effector

to memory is ψEi such that

ψEi

ψEi + µEi

:= βi. (5.7)

Then, the differentiation rate for clonotype i from effector to memory is given by

ψ
(i)
E (n) = ψEi ei =

βi
1− βi

µEi ei. (5.8)

Since differentiation of naive and memory cells into the effector phenotype, and

proliferation of the effector population all depend on TCR-VDP interactions, it is

useful to first define the per-cell rate provided by a VDP v ∈ V to all T cells that

are able to recognise it. Note that the expression of the per-cell stimulus rate is

analogous for both infections, V and W , thus, only one needs to be considered to

find said expression. Since all phenotypes are able to receive stimuli from VDPs,

the per-cell stimulus rate from VDP v can be written as

δv(n) =
γv

nv + ev +mv

, (5.9)

where γv is the constant rate of stimulus for VDP v, nv is the total number of

naive cells that can recognise v, ev the total number of effector cells that can

recognise v, and mv is the total number of memory cells that can recognise v.

That is, defining C v to be the set of clonotypes that can recognise v, then

nv =
∑
i∈C v

ni, (5.10)

ev =
∑
i∈C v

ei, (5.11)

mv =
∑
i∈C v

mi. (5.12)

Given that every clonotype will interact differently with each VDP, a dimensionless

parameter, κv(i) ∈ [0, 1], is introduced to represent the avidity of clonotype i to

VDP v. That is, the strength of the response generated when v is recognised by

i (La Gruta et al., 2004; van den Boorn et al., 2006). Then, the total per-cell

stimulus rate from all available VDPs in V to clonotype i is given by

δ
(i)
V (n) =

∑
v∈Vi

κv(i)δv(n). (5.13)
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Using this expression for the per-cell stimulus available, the differentiation rates

from naive and memory to effector are given by

α
(i)
N (n) = αN ni δ

(i)
V (n), (5.14)

α
(i)
M (n) = αM mi δ

(i)
V (n), (5.15)

where αN and αM are dimensionless constants, which encode the differences

between signalling pathways for naive and memory T cells (Adachi & Davis, 2011;

Farber, 2009). Similarly, the birth rate of effector cells is given by

λ
(i)
E (n) = λE ei δ

(i)
V (n), (5.16)

where λE is a dimensionless constant encoding the difference of the effector T cell

signalling pathway (Gerriets & Rathmell, 2012).

Consider two states in the state space S, n as defined before, and ñ =

(ñ1, . . . , ñη, ẽ1, . . . , ẽη, m̃1, . . . , m̃η). Then the infinitesimal transition probability

from state n to ñ is defined as

pnñ(∆t) = P


Xi(t+ ∆t) = ñi,

Yi(t+ ∆t) = ẽi,

Zi(t+ ∆t) = m̃i

∣∣∣∣∣∣∣∣
Xi(t) = ni,

Yi(t) = ei,

Zi(t) = mi

for i = 1, 2, . . . , η

 , (5.17)

which, as ∆t→ 0, satisfies

pnñ(∆t) =



λ
(i)
N (n)∆t+ o(∆t) ñi = ni + 1

λ
(i)
E (n)∆t+ o(∆t) ẽi = ei + 1

λ
(i)
M (n)∆t+ o(∆t) m̃i = mi + 1

µ
(i)
N (n)∆t+ o(∆t) ñi = ni − 1

µ
(i)
E (n)∆t+ o(∆t) ẽi = ei − 1

µ
(i)
M (n)∆t+ o(∆t) m̃i = mi − 1

α
(i)
N (n)∆t+ o(∆t) ñi = ni − 1, ẽi = ei + 1

α
(i)
M (n)∆t+ o(∆t) m̃i = mi − 1, ẽi = ei + 1

ψ
(i)
E (n)∆t+ o(∆t) ẽi = ei − 1, m̃i = mi + 1

1−∑η
i=1(λ

(i)
N (n) + λ

(i)
E (n) + λ

(i)
M (n))∆t

−∑η
i=1(µ

(i)
N (n) + µ

(i)
E (n) + µ

(i)
M (n))∆t

−∑η
i=1(α

(i)
N (n) + α

(i)
M (n) + ψ

(i)
E (n))∆t

n = ñ

o(∆t) otherwise
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5.1.4 Certainty of extinction

Using the method described in Iglehart (1964), similarly to Section 4.3.1, it can be

shown that the competition process will reach the state (0, . . . , 0) with probability

1. For this, first the state space S must be partitioned into levels, L(k), defined as

follows

L(k) =

{
(n1, . . . , nη, e1, . . . , eη,m1, . . . ,mη) ∈ S :

η∑
i=1

ni + ei +mi = k

}
,

for k = 0, 1, . . ., so that S =
⋃+∞

k=0 L(k). Now, by defining the following birth and

death rates

λ′k = max
n∈L(k)

{
η∑

i=1

λ
(i)
N (n) + λ

(i)
E (n) + λ

(i)
M (n)

}
,

µ′
k = min

n∈L(k)

{
η∑

i=1

µ
(i)
N (n) + µ

(i)
E (n) + µ

(i)
M (n)

}
,

(5.18)

a uni-variate birth and death process can be defined on the state space S′ =

{L(k) : k = 0, 1, 2, . . .}. Where each level is considered to be a macro-state, and

transitions occur between adjacent states. Given that the birth rate of this process

is the maximum of the total birth rates, and the death rate is the minimum of the

total death rates, it is easy to see that the uni-variate process moves towards the

absorbing state (0, . . . , 0) at a slower rate than the original competition process.

Therefore, if this process reaches the absorbing state in finite time, so will the

original competition process.

According to Reference (Iglehart, 1964, Theorem 3), a sufficient condition for

absorption at L(0) to be certain is that the sum

+∞∑
k=1

1

λ′kσk
, (5.19)

where σk =
λ′
1λ

′
2...λ

′
k−1

µ′
2µ

′
3...µ

′
k

for k ≥ 2 and σ1 = 1, is divergent. Note that the division

rate of effector cells, λ
(i)
E (n), is bounded by

λ
(i)
E (n) = λE

∑
v∈Vi

ei κv(i)

nv + ev +mv

γv

≤ λE
∑
v∈Vi

γv
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≤ λE |Vi|max
v∈Vi

{γv}

≤ λE |V |max
v∈V
{γv} .

From this result, and the bound for λiN (n) found in Eq. (4.61), it can be seen that

λ′k = max
n∈L(k)

{
η∑

i=1

λ
(i)
N (n) + λ

(i)
E (n) + λ

(i)
M (n)

}
≤

η∑
i=1

φi + λE |V |max
v∈V
{γv}+ kλ∗M ,

where λ∗M = maxi=1,2,...,η {λMi}. It is also easy to see that

µ′
k = min

n∈L(k)

{
η∑

i=1

µ
(i)
N (n) + µ

(i)
E (n) + µ

(i)
M (n)

}
= kµ∗,

where µ∗ = mini=1,2,...,η {µNi, µEi, µMi}. Then, replacing these values in Eq. (5.19)

the following inequality is obtained

+∞∑
k=1

1

λ′kσk
≥

+∞∑
k=1

k!(µ∗)k−1(
η∑

i=1

φi + λE |V |max
v∈V
{γv}+ kλ∗M

)k
=

+∞∑
k=1

ak. (5.20)

Then, the divergence of Eq. (5.19) can be checked by considering the limit as

k → +∞ of following ratio

ak+1

ak
=

(k + 1)µ∗

η∑
i=1

φi + λE |V |max
v∈V
{γv}+ kλ∗M

. (5.21)

In the case where there are no cells of memory phenotype; that is, mi = 0 for

all i, and the term kλ∗M can be considered to be zero, this limit tends to +∞,

and therefore X reaches the absorbing state (0, . . . , 0) with probability 1. This

means that prior to the generation of memory, the extinction of naive and effector

phenotype cells is certain for sufficiently late times. In the case where there are

memory phenotype cells present, however, the limit tends to µ∗

λ∗
M

. This means that

once a population of memory cells is generated, according Theorem 3 of (Iglehart,

1964), extinction of every phenotype for all clonotypes is only certain if the smallest

per-cell death rate is greater that the largest per-cell birth rate of memory cells.
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5.2 Linear noise approximation of the competi-

tion process

Given the fact that during infection the populations of effector cells grow by

several orders of magnitude (Busch & Pamer, 1999), analysis of the stochastic

model becomes intractable due to the large state space that must be considered.

Instead, van Kampen’s large N expansion (van Kampen, 2007) is used in this

section to find a linear noise approximation of the stochastic process which can

then be used to study the dynamics of the populations. First, the following step

operators are defined

S±i
N f(n) = f(n1, . . . , ni−1, ni ± 1, ni+1, . . . , nη, e1, . . . , eη,m1, . . . ,mη), (5.22a)

S±i
E f(n) = f(n1, . . . , nη, e1, . . . , ei−1, ei ± 1, ei+1, . . . , eη,m1, . . . ,mη), (5.22b)

S±i
M f(n) = f(n1, . . . , nη, e1, . . . , eη,m1, . . . ,mi−1,mi ± 1,mi+1, . . . ,mη). (5.22c)

Using these step operators the Kolmogorov equation of the competition process

can be written as

dpn(t)

dt
=

η∑
i=1

(
S−i
N − 1

) [
λ
(i)
N (n)pn(t)

]
+
(
S+i
N − 1

) [
µ
(i)
N (n)pn(t)

]
+
(
S−i
E − 1

) [
λ
(i)
E (n)pn(t)

]
+
(
S+i
E − 1

) [
µ
(i)
E (n)pn(t)

]
+
(
S−i
M − 1

) [
λ
(i)
M (n)pn(t)

]
+
(
S+i
M − 1

) [
µ
(i)
M (n)pn(t)

]
+
(
S+i
N S−i

E − 1
) [
α
(i)
N (n)pn(t)

]
+
(
S−i
E − 1

) [
α
(i)
M (n)pn(t)

]
+
(
S+i
E S−i

M − 1
) [
ψ

(i)
E (n)pn(t)

]
.

(5.23)

Now, the variables xi(t), yi(t), zi(t), ξi(t), θi(t), and ζi(t) are defined as follows

Xi(t) = Ωxi(t) + Ω1/2ξi(t), (5.24a)

Yi(t) = Ωyi(t) + Ω1/2θi(t), (5.24b)

Zi(t) = Ωzi(t) + Ω1/2ζi(t), (5.24c)

where the parameter Ω represents the size of the system, and the fluctuations ξi(t),

θi(t), and ζi(t) are of order Ω1/2. By considering these variables the probability

density pn(t) becomes instead the density Π(ξ, θ, ζ; t); that is, pn(t) = Π(ξ, θ, ζ; t),

103



5. PERTURBATION OF THE DISTRIBUTION OF T CELL
CLONOTYPES BY VIRAL INFECTION

with ξ = (ξ1, . . . , ξη), θ = (θ1, . . . , θη), and ζ = (ζ1, . . . , ζη). Then, the Kolmogorov

equation of this probability density is

∂Π

∂t
− Ω1/2

η∑
i=1

dxi
dt

∂Π

∂ξi
+

dyi
dt

∂Π

∂θi
+

dzi
dt

∂Π

∂ζi

=

η∑
i=1

λ
(i)
N (n)

[
−Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂

2

∂ξ2i

]
Π + µ

(i)
N (n)

[
Ω−1/2 ∂

∂ξi
+

1

2
Ω−1 ∂

2

∂ξ2i

]
Π

+ λ
(i)
E (n)

[
−Ω−1/2 ∂

∂θi
+

1

2
Ω−1 ∂

2

∂θ2i

]
Π + µ

(i)
E (n)

[
Ω−1/2 ∂

∂θi
+

1

2
Ω−1 ∂

2

∂θ2i

]
Π

+ λ
(i)
M (n)

[
−Ω−1/2 ∂

∂ζi
+

1

2
Ω−1 ∂

2

∂ζ2i

]
Π + µ

(i)
M (n)

[
Ω−1/2 ∂

∂ζi
+

1

2
Ω−1 ∂

2

∂ζ2i

]
Π

+ α
(i)
N (n)

[
Ω−1/2

(
∂

∂ξi
− ∂

∂θi

)
+

1

2
Ω−1

(
∂

∂ξi
− ∂

∂θi

)2
]

Π

+ α
(i)
M (n)

[
−Ω−1/2 ∂

∂θi
+

1

2
Ω−1 ∂

2

∂θ2i

]
Π

+ ψ
(i)
E (n)

[
Ω−1/2

(
∂

∂θi
− ∂

∂ζi

)
+

1

2
Ω−1

(
∂

∂θi
− ∂

∂ζi

)2
]

Π.

(5.25)

To collect the terms of order Ω1/2 from Eq. (5.25) to obtain the deterministic

approximation, it is necessary to first find explicit expressions for the transi-

tion rates using the variables introduced in Eq. (5.24). Since the dynamics of

homeostatic proliferation of naive cells remains unchanged from that presented

in Chapter 4, the results of the previous van Kampen expansion can be used

again (see Eq. (4.49a)). Substituting the variables proposed in Eq. (5.24) in

Equations (4.3), (5.4), and (5.5) results in

µ
(i)
N (n) = µN

(
Ωxi + Ω1/2ξi

)
,

µ
(i)
E (n) = µE

(
Ωyi + Ω1/2θi

)
,

µ
(i)
M (n) = µM

(
Ωzi + Ω1/2ζi

)
.

Similarly, substituting for Eq. (5.24) in Equations (5.6), and (5.8) results in the

following expressions

λ
(i)
M (n) = λM

(
Ωzi + Ω1/2ζi

)
,

ψ
(i)
E (n) =

β

1− βµE

(
Ωyi + Ω1/2θi

)
.
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Finally, since α
(i)
N (n), α

(i)
M (n), and λ

(i)
E (n) all depend on δ

(i)
V (n), they can be written

as

α
(i)
N (n) = αN

(
Ωxi + Ω1/2ξi

)
δ
(i)
V (n),

λ
(i)
E (n) = λE

(
Ωyi + Ω1/2θi

)
δ
(i)
V (n),

α
(i)
M (n) = αM

(
Ωzi + Ω1/2ζi

)
δ
(i)
V (n).

Next, define xv =
∑

i∈C v xi, yv =
∑

i∈C v yi, and zv =
∑

i∈C v zi. Then, δ
(i)
V (n) is

given by

δ
(i)
V (n) =

∑
v∈Vi

γ̃v
xv + yv + zv

(
1− ξv + θv + ζv

xv + yv + zv
Ω−1/2

)
,

where γv = Ωγ̃v. Finally, replacing these results in Eq. (5.25), and collecting all

the terms of order Ω1/2 results in the following deterministic approximation of the

stochastic competition process

dxi
dt

= xi

φ̃i

η∑
j=0

(η−1
j )∑

k=1

pkij
xkij
− µN − αN

∑
v∈Vi

γ̃v
xv + yv + zv

 , (5.26)

dyi
dt

= (λE yi + αN xi + αM zi)
∑
v∈Vi

γ̃v
xv + yv + zv

−
(

1− β

1− β

)
µE yi, (5.27)

dzi
dt

= zi (λM − µM) +
β

1− βµE yi. (5.28)

In the following section, novel experimental data on cross-reactivity to influenza

A viruses will be presented, and used to try to parametrise this deterministic

approximation of the model.

5.3 Heterologous influenza A virus murine infec-

tion models

The data presented and analysed in this section is the result of murine experiments

of influenza A virus (IAV) infection performed by Jessica Gaevert at the Paul

Thomas laboratory in the Immunology department of St. Jude Children’s Research

Hospital. These experiments focus on the quantification of T cell cross-reactivity

to variants of IAV in the context of heterologous infection; that is, two infections

with different variants of the virus, in this case occurring sequentially.
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5.3.1 Description of the experiment

The experiments used a prime-challenge model, in which mice are first infected

with a variant of IAV (called a priming or primary infection), and once they

have cleared the infection they are infected again with any of the variants (called

a challenge infection). In the experiments three different variants of IAV are

considered, with the only difference between them being a single amino acid

change in the immunodominant NP366 epitope (see Table 5.1). This is done to

mimic genetic drift of influenza A viruses. H3N2 and H1N1 background IAVs

are used on the primary and challenge infections respectively, to be able to

examine the cross-reactive T cell responses during the challenge infection without

recalling a B cell response. This experimental design allows for the identification

of cross-reactive CD8+ T cells using tetramers with each NP366 epitope and

multi-parameter flow-cytometry. Given the three IAV variants there are 9 possible

permutations (with replacement) for the possible prime-challenge combinations,

all of which are considered in these experiments. The variant with an unchanged

NP366 epitope is called wild type (WT), and the two other derive their names

from their difference to the WT peptide. That is, the T8A variant replaces the T

amino acid in the 8th position with an A amino acid, and the N3A variant replaces

the N in the 3rd position with an A.

Influenza A virus variants

Name NP366 epitope

WT ASNENMETM

T8A ASNENMEAM

N3A ASAENMETM

Table 5.1: Influenza A virus variants, and their respective NP366 epitope, used in

the heterologous infection experiment. Red denotes the single amino acid change

when compared to the wild type (WT) variant, and the names of the variants are

derived from their difference with the WT peptide. The T8A variant replaces the

T amino acid in the 8th position with an A, and the N3A variant replaces the N

amino acid in the 3rd position with an A.

106



5.3 Heterologous influenza A virus murine infection models

For all the possible prime-challenge combinations the experiment was performed

as follows: on day 0, mice were intranasally infected with an H3N2 background

primary variant. On day 10, at the peak of the primary infection, lungs and spleen

were harvested from mice. On day 70, when the infection has been cleared and

immune memory has been generated, lungs and spleen were harvested. On day

80, mice are infected with an H1N1 background challenge variant. Finally, on day

90 lung and spleen are harvested from mice at the peak of the challenge infection.

This timeline is summarised in Figure 5.4. Since the data is only sampled during

harvesting timepoints, these names (primary, memory, and challenge) will be used

to refer to the timepoints in the data.

Days post

infection 0

H3N2 primary

infection

10

Primary

harvest

70

Memory

harvest

80

H1N1 challenge

infection

90

Challenge

harvest

Figure 5.4: Timeline of infection and harvesting for the prime-challenge ex-

periment of IAV in mice. Red arrows represent infection timepoints, and blue

arrows represent harvest timepoints. The primary infection makes used of an

H3N2 background virus, and the challenge infection uses an H1N1 background

virus to prevent a recall response of B cells.

For all timepoints, the analysis of the samples using flow-cytometry was

conducted in the same way. First, the samples are prepared by staining with

tetramers for live/dead, myeloid and B cells, CD8+ cells, circulating cells, and

the three NP366 epitopes (WT, T8A, N3A). Then, using a flow-cytometer the

stained samples were analysed and gated as follows: first, lymphocytes are gated

by forward and side scatter area (Figure 5.5a), and singlets (single cells that

are not attached to another cell) are gated by forward scatter width and side

scatter area (Figure 5.5b). Next, living cells are gated using a live/dead tetramer

(Figure 5.5c), and myeloid and B cells are excluded using the myeloid and B cell
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tetramer (Figure 5.5d). Finally, CD8+ cells are gated from the remaining cells

(Figure 5.5e), which are then separated into circulating and resident using the

CD45 marker (Figure 5.5f). After this, the WT, T8A, and N3A tetramers are

used to identify cells that can recognise the NP366 epitope (Figure 5.5g). These

epitope positive populations are then separated into cells that are positive for

only one of the tetramers (single positive cells), cells that can recognise two of the

tetramers (double positive cells), and cells that can recognise all tetramers (triple

positive cells). Cells that are unable to recognise any of the tetramers are called

triple negative cells.

It is important to note that when doing flow-cytometry experiments the

complete sample is not run through the flow-cytometer. A sub-sample of only 105

cells is taken and analysed with the flow-cytometer. From this sub-sample the

frequency of each population is calculated, which is then multiplied by the total

number of cells in the sample to approximate the number of cells in each of the

gates. Given that the site of infection for IAV is the lungs, lung resident cells will

be the main focus of the analysis of the data, since it is this population that is

most prevalent at the site of infection (Gebhardt et al., 2009; Jiang et al., 2012;

Masopust & Soerens, 2019; Topham et al., 1997).

Figure 5.6 is a summary of the frequencies of lung resident tetramer-positive

cells. Each circle of the Venn diagrams represents positivity to a given tetramer,

and its area is proportional to the frequency of that population. It is important to

note that the size of each circle only represents its frequency in comparison to the

other frequencies of the timepoint, since the areas are normalised to the largest

population in the timepoint. Another population of importance during infection

are spleen circulating cells, since these are cells that were present in the lymph

nodes and are migrating to the site of infection (Ely et al., 2006; Kohlmeier et al.,

2007). Figure 5.7 is a summary of the frequencies for spleen circulating epitope

positive cells.
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Note that given the nature of the data, it is not possible to identify individual

clonotypes, but instead clonotype families (defined by their tetramer-positivity).

Furthermore, since only positivity for three specific tetramers is measured, activa-

tion from presentation of other immunogenic epitopes (Staneková & Varečková,

2010), and generalised activation of non-specific cells (Bangs et al., 2006; Chap-

man et al., 2005) are not detected. Thus, a bipartite recognition network that

represents the epitope recognition profiles of the tetramer-positive cells presented

in the data must not only consider the WT, T8A, and N3A epitopes, but also an

extra pseudo-epitope representing the mean stimulus available to all clonotypes

from the presentation of other epitopes, and generalised activation. This bipartite

recognition network is shown in Figure 5.8

T cell clonotype

families
VDPs

WT

T8A

N3A

Generalised

activation

Single

positive

Double

positive

Triple

positive

Triple

negative

Figure 5.8: Bipartite recognition network for the experimental data. Clonotype

families are considered instead of clonotypes, and they are defined in terms of

their tetramer-positivity. In addition to the three epitopes that are experimen-

tally measured, a pseudo-epitope representing the mean stimulus available to all

clonotypes from the presentation of other epitopes, and generalised activation is

considered. This is represented by a square node, and grey dashed lines.
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5.3 Heterologous influenza A virus murine infection models

5.3.2 Structural identifiability of the deterministic model

In order to determine the viability of parametrising the model presented in

Section 5.2 with the data in Section 5.3.1, structural identifiability analysis was

performed (Hong et al., 2020). In particular, the SIAN structural identifiability

toolbox (Hong et al., 2019) was used to determine the identifiability of the

parameters in the deterministic model given the data. For this analysis two

different versions of the data were considered: first, the original data as described

in Section 5.3.1; that is, populations of T cells which are either single, double, or

triple positive. Second, the same data with the addition of a distinction between

the naive, effector, and memory phenotypes.

Focusing first on the original data, the results of identifiability analysis using

the SIAN structural identifiability toolbox (Hong et al., 2019) showed that the only

parameters that would be locally identifiable from the model with the data would

be: β, the fraction of effector cells that differentiate to the memory phenotype

after the infection is cleared, µE, the per-cell death rate of effector cells, and µN ,

the per-cell death rate of naive cells. Furthermore, using this data no parameters

were globally identifiable. When considering the data with the added distinction

of the phenotypes of cells, the same parameters that were locally identifiable with

the original data were now globally identifiable. However, no other parameters

were identifiable. These results are summarised in Table 5.2.

As discussed before, the original aim of this chapter was to use the experimental

data provided by the Paul Thomas laboratory to parametrise the model presented

in Section 5.2 and gain a better understanding of cross-reactivity, specifically by

using the concept of avidity. However, the results of the structural identifiability

analysis show that with the given data the parameter of greatest interest, κv(i) the

avidity of clonotype i for peptide v (see Eq. (5.13)), cannot be estimated. Thus,

instead of continuing with this parametrisation, statistical analysis of the data is

presented in Section 5.4 to better understand the behaviour of the cross-reactive

immune responses observed in the experiments.
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Identifiable parameters for the deterministic model

Distinction between

phenotypes

Globally identifiable

parameters

Locally identifiable

parameters

No – β, µN , µE

Yes β, µN , µE –

Table 5.2: Identifiable parameters of the model described in Section 5.2 with the

data described in Section 5.3.1. The SIAN structural identifiability toolbox (Hong

et al., 2019) was used to find the identifiable parameters in the case where the

phenotypes of naive, effector, and memory cells were separated in the data, as

well as the case in which they were not. In both cases the same parameters

are identifiable (β, µN , and µE), with the distinction that in the case with no

separation of the phenotypes the parameters are locally identifiable, while they

are globally identifiable in the other case.

5.4 Statistical analysis of the experimental data

Given the lack of identifiable parameters of interest, statistical analysis of the

data was performed, and the results of this analysis are presented in this section

(using the code presented in Appendix C). First, the populations of tetramer-

specific T cells (single, double, and triple positive) were studied to understand

how the populations of these cells are affected by the different prime-challenge

infections. Following this, the populations of T cells positive for a given IAV

tetramer (regardless of whether they were single, double, or triple positive) were

studied to search for effects that cross-reactivity between the three IAV variants

has on the total populations of tetramer-specific cells. Finally, by considering the

mean populations at the primary and challenge timepoints the contraction of IAV

specific T cells from primary to memory, and expansion from memory to challenge

were characterised by the rates of change of the populations between timepoints,

and the statistical properties of these slopes were studied.
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5.4 Statistical analysis of the experimental data

5.4.1 Analysis of tetramer-specific T cells

To understand the relationships between populations of IAV specific T cells that

are single positive, double positive, and triple positive, first the correlations

between these populations at the primary, memory, and challenge timepoints were

calculated between samples from mice with the same infection history. For this,

the Spearman rank correlation coefficient (Kendall, 1948), and the Bonferroni

adjustment to correct for multiple comparisons (Bland & Altman, 1995) were

used. Due to some populations being below the level of detection for all samples,

not all the correlation coefficients could be calculated for all timepoints. The

results presented here were obtained using the code described in Appendix C.2.

First, the correlations on lung resident cells from WT-primed mice were

considered (see the top panel in Figure 5.9). At the primary timepoint there

are no significant correlations between the populations; that is, no correlations

with a significance level better than 0.05 for the likelihood of the null hypothesis,

suggesting that during this infection the immune response is diverse and not

biased towards any epitope-specific cells in particular. Now, at the memory

timepoint there is a strong positive correlation between T8A single positive cells

and WT-N3A double positive cells. This suggests that following a WT primary

infection, due to the expansion of the double positive population, the repertoire

could be biased towards a cross-reactive response to a homologous or an N3A

challenge, and a specific response to a T8A challenge. This change in the way

the populations are correlated indicates that, for WT infections, contraction into

memory is likely to be the mechanism by which the immune repertoire is being

biased for future infections, since it is at the memory timepoint that significant

correlations between the populations are first observed.

At the challenge timepoint a different behaviour is observed for each of the pos-

sible challenge infections. For the homologous WT challenge there is a correlation

between triple negative cells and WT-T8A double positive cells, suggesting that

when the immune response grows (marked by a decrease in the frequency of triple

negative cells) it becomes more cross-reactive towards the T8A epitope. In the case

of the T8A heterologous challenge, an increased frequency of WT-T8A positive

cells results in an increased frequency of WT single positive cells, suggesting that
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Figure 5.9: Spearman rank correlation coefficients between epitope positive

and negative populations for lung resident and spleen circulating cells from mice

primed with WT virus. Asterisks indicate a significant correlation after applying

the Bonferroni adjustment (∗ → p < 0.05 and ∗∗ → p < 0.01).

part of the WT-specific response is being recalled from the primary infection.

The most significant correlations are found is in the N3A heterologous challenge,

where several of the populations are significantly correlated to each other. In

this case the correlations suggest that if the response is widely cross-reactive

with increased triple positive cells, it will have a decreased ability to target N3A

epitopes specifically, as evidenced by the negative correlations to N3A single

positive and T8A-N3A double positive cells.

In comparison to the lung resident cells, for spleen circulating cells of the same

mice there are fewer significant correlations in the data, see the bottom panel

in Figure 5.9. Notably, during both the WT and T8A challenges there are no

significant correlations between the cell populations. Meaning that during these

infections the bias caused by the primary infection is present only at the site of

infection and not in the spleen. In the case of the N3A challenge however, there is

a negative correlation between triple negative and triple positive cells. This implies

that as the response grows in size, as demonstrated by the decrease in the frequency
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of triple negative cells, the frequency of triple positive cells in the spleen increases.
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Figure 5.10: Spearman rank correlation coefficients between epitope positive

and negative populations for lung resident and spleen circulating cells from mice

primed with T8A virus. Asterisks indicate a significant correlation after applying

the Bonferroni adjustment (∗ → p < 0.05 and ∗∗ → p < 0.01).

Compared to WT-primed mice, data from T8A-primed mice showed very

few significant correlations (see Figure 5.10). For lung resident cells, only the

homologous challenge shows a correlation between T8A single positive cells and

WT-N3A double positive cells. This suggests that responses to homologous T8A

infection that are highly T8A-specific will have increased cross-reactivity with WT

and N3A through the WT-N3A double positive population. Spleen circulating cells

during a homologous challenge, on the other hand, show an increase in T8A single

positive cells and a decrease in WT-T8A double positive cells as the magnitude

of the response increases, showing a preference for epitope-specific cells outside

the site of infection. Further confirming this, there is also a negative correlation

between T8A and WT-T8A positive cells. Finally, in the N3A challenge there is

an increase of WT-T8A double positive cells as the magnitude of the response

increases, which is not seen in the lung resident cells, meaning that at the site of

infection the total magnitude of the response has no effect on the cross-reactivity
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with WT and T8A epitopes, while on the spleen the opposite is true.
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Figure 5.11: Spearman rank correlation coefficients between epitope positive

and negative populations for lung resident and spleen circulating cells from mice

primed with N3A virus. Asterisks indicate a significant correlation after applying

the Bonferroni adjustment (∗ → p < 0.05 and ∗∗ → p < 0.01).

Now, in the case of the N3A primary infection a starkly different behaviour is

observed (see Figure 5.11). For both the WT and T8A-primed mice note that the

primary timepoint showed no correlations, suggesting an immune response that is

not biased towards any specific epitope positive population. N3A-primed mice, on

the other hand, show a bias towards N3A-specific cells at the primary timepoint, as

evidenced by the negative correlation with the frequency of tetramer-negative cells.

More than this, WT-T8A, WT-N3A, and triple positive cells all are positively

correlated to the triple negative population, implying that as the magnitude of

the response increases, the frequency of WT double positive cells, and thus, its

cross-reactive capability, decreases. Comparing this to the WT primary infection,

it can be said that an N3A primary infection is biasing the immune response to

be specific for the N3A epitope from the primary timepoint, as opposed to the

memory timepoint. At the memory timepoint, the bias to N3A single positive

cells in the lungs is maintained (shown by the negative correlation with triple
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negative cells), while the spleen shows a positive correlation between cross-reactive

populations.

During the challenge infections there is again a difference between N3A-primed

mice, and WT and T8A-primed mice. During the WT challenge, the correlations

in the lungs show that as the magnitude of the response increases there is an

increase in the frequency of N3A single positive and triple positive cells, and a

decrease of both WT single positive and WT-N3A double positive cells. These

observations suggest that, after being primed with the N3A variant the immune

response to a WT challenge is still being pulled towards the N3A epitope, and

WT-specific populations are not being expanded in the same as in a WT-primed

N3A-challenged mouse. Interestingly, during the T8A challenge few correlations

between the populations are found to be significant. In the lungs only WT-T8A

double positive cells are negatively correlated to T8A-N3A, suggesting that the

response is mostly cross-reactive to the T8A and N3A variants, and not the

WT one. Finally, on the N3A challenge there is an increase in the frequency

of T8A single positive cells with the magnitude of the response. This suggests

that homologous N3A infections can generate cross-reactive responses even in the

absence of other variants.

Next, in order to better understand the relationship between the populations

of tetramer-positive cells, analysis of variance (ANOVA) (Manly & Alberto, 2016,

Chapter 4) was used to determine whether the difference between the mean of

the populations for tetramer-positive cells were significantly different, clustering

them by their priming infection for lung resident and spleen circulating cells.

When significant differences were found, Tukey’s HSD test was used to identify

which population means were different (Tukey, 1949). In Figures 5.12, and 5.13

the results of this analysis are shown. These results were obtained using the

code presented in Appendix C.3. In these figures each node represents each of

the possible epitope positive cells, and using Tukey’s HSD edges are added to

the network when two populations are found to be statistically different in their

means. When there is an edge between two populations, the one with a larger

node is the one with a greater mean. In all plots the triple negative population

has been removed. This is done because the majority of the T cell repertoire

will be negative for the IAV epitopes being studied during both infection and
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homeostasis, therefore all other populations will always be significantly different

in their mean to the triple negative population.

First, consider the lung resident cells, shown in Figure 5.12. By looking at

the primary infection timepoint it can be seen that for WT and T8A epitopes

there is only one population with a significant difference to others, other than the

triple negative population, namely the respective single positive population for

each epitope. In the case of the N3A epitope, no significant differences can be

identified, meaning that the immune response to a primary infection with this

variant is more cross-reactive than that of the other two, since the means of all

populations do not behave significantly differently.

At the memory time point, it is observed that WT single positive cells are still

significantly different to other populations in WT-primed mice, and interestingly

in T8A-primed mice, WT single positive are also significantly different to other

populations. However, since these are lung resident cells they do not represent

the entirety of the memory compartment, which might explain why there is not a

bias towards population of T8A single positive cells after a T8A infection.

Where the most interesting results are found is at the challenge timepoints.

In these timepoints, the effects and importance of the order of infection start

to become clear. The first thing to note, is that the challenge infections do not

behave symmetrically. This means that cross-reactivity is not symmetric, in the

sense that inverting the order of the primary and challenge infections generates

significantly different immune responses. Focussing first on the WT challenge,

it is observed that after homologous infection the response shows no significant

differences, meaning that this response showed no particular bias towards any of

the epitope positive populations. In contrast to this is the response of T8A-primed

mice, in which the WT-T8A double positive population is significantly different to

the others, showing that when primed with T8A, a challenge infection with WT

will retain some of its preference for the T8A epitope. Finally, for N3A-primed

mice the N3A single positive population remains significantly different, even after

being challenged with the WT variant.

In the T8A challenge timepoint there is no change in the response of WT-

primed mice; that is, there is no population that is significantly different to the

others. In T8A-primed mice there is an interesting change in the nature of the
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response. In this case there are two populations that are significantly different to

others, namely T8A and N3A single positive cells. That means that T8A-primed

mice maintain some specificity to T8A after experiencing a homologous challenge,

but they also generate a response to an epitope they have not encountered before.

Similarly to WT-primed mice, N3A-primed mice also show no change from memory

to the WT challenge infection, however in this case this means that the response

is still maintaining specificity to the original epitope instead of having a generally

even cross-reactive response. Finally, in the N3A challenge timepoint both WT and

T8A-primed mice showed no significant differences other than those of the triple

negative population, and the N3A-primed mice still maintain their N3A-specific

population over cross-reactive populations.

In Figure 5.13 results analogous to the ones discussed above for spleen cir-

culating cells are shown. Since this is not the site of infection the focus will

be mostly on the memory timepoint. However, some interesting results on the

other timepoints can be observed. First, when primed with the WT variant, the

difference of the WT single positive population is present in the spleen during the

priming infection, but not during challenge infections. Suggesting that after a

single infection the memory generated outside of the site of infection is mostly

specific to the WT epitope, but it becomes more cross-reactive after a challenge

infection, as evidenced by the lack of significant differences between the population

means. Second, during the priming timepoint both T8A and N3A variants present

no significant differences. This behaviour extends to the challenge timepoints for

N3A-primed mice, but not for those primed with the T8A variant. In this case

the populations show an increased frequency of WT-T8A cross-reactive cells in

the WT challenge, and the T8A and N3A-specific populations in the T8A and

N3A challenges, respectively.

In the memory timepoint, it can be seen that for WT-primed mice the difference

of WT single positive cells is maintained in the spleen, further suggesting that

the memory generated by this priming infection is biased towards WT single

positive cells. In the case of T8A-primed mice, on top of the difference of WT

single positive cells observed in the lungs, the T8A single positive population also

show a significant difference. This helps explain why there is still a bias to T8A

cross-reactive responses after heterologous infection but not a significant difference

122



5.4 Statistical analysis of the experimental data
S
p
le
en

ci
rc
u
la
ti
n
g
C
D
8+

ce
lls

Primaryinfection

WT

2
3

4 5

6
7

1

2
3

4 5

6
7

1
1

2
3

5

6
7

4

1

2
3

4 5

6
7

1

2
3

4 5

6
7

1
W

T

2
T

8A

3
N

3A

4
W

T
–T

8A

5
W

T
–N

3A

6
T

8A
–N

3A

7
T

P

T8A

1

2
3

4 5

6
7

3

4 5

6
7

1

2

1

2
3

5

6
7

4

1

3

4 5

6
72

1

2
4 5

6
7

3

N3A

1

2
3

4 5

6
7

1

2
3

4 5

6
7

1

2
3

4 5

6
7

1

2
3

4 5

6
7

1

2
3

4 5

6
7

P
ri

m
ar

y
M

em
or

y
W

T
ch

al
le

n
ge

T
8A

ch
al

le
n

ge
N

3A
ch

al
le

n
ge

T
im

ep
oi
nt

F
ig
u
re

5
.1
3
:

R
es

u
lt

s
of

A
N

O
V

A
an

d
T

u
k
ey

’s
H

S
D

on
sp

le
en

ci
rc

u
la

ti
n

g
C

D
8+

ce
ll

s
fo

r
al

l
ti

m
ep

oi
n
ts

an
d

al
l

p
ri

m
e-

ch
al

le
n

ge
co

m
b

in
at

io
n

s.
E

ac
h

ci
rc

le
re

p
re

se
n
ts

on
e

of
th

e
p

op
u

la
ti

on
s,

an
d

a
li

n
e

b
et

w
ee

n
tw

o
ci

rc
le

s
re

p
re

se
n
ts

a
si

gn
ifi

ca
n
t

d
iff

er
en

ce
b

et
w

ee
n

th
ei

r
m

ea
n

s.
T

h
e

si
ze

of
th

e
ci

rc
le

re
p

re
se

n
ts

w
h

ic
h

p
op

u
la

ti
on

is
la

rg
er

in
th

e

co
m

p
ar

is
on

.

123



5. PERTURBATION OF THE DISTRIBUTION OF T CELL
CLONOTYPES BY VIRAL INFECTION

of T8A-positive cells in the lungs, because this subset of the memory repertoire

is being maintained by circulating cells and not at the site of infection. Finally,

N3A-primed mice show no significant differences in the spleen during the memory

timepoint, suggesting that the memory repertoire that biases future responses is

maintained in the lungs and not in the spleen.

5.4.2 Analysis of epitope-specific T cells

Next, to further understand the effect of the order of infection the populations

were grouped by epitope positivity and compared between primary and challenge

infections. That is, all cells that are positive for one peptide in a given primary

infection are considered as a population, regardless of whether they are single,

double, or triple positive, and they are compared with the other primary infections.

ANOVA is used to determine whether the difference between the means of these

populations were significantly different based on their priming infection for lung

resident and spleen circulating cells. Note that, by definition double positive cells

will belong to two tetramer-positive populations, and triple positive cells to all

three, thus, some cells are being double or triple counted in this analysis. In

Figures 5.14, 5.15, and 5.16 the results of these analyses are shown. Similarly to

previous ANOVA results, each node represents a population, which in this case

is characterised by the primary infection. These results were obtained using the

code presented in Appendix C.4.

In Figure 5.14 the results of the analysis for WT-positive cells are presented. In

this case, there are overall no significant differences, except for spleen circulating

cells in the WT challenge timepoint. This lack of significant differences suggests

that WT-positive cells are present at the site of infection regardless of the primary

infection the mice are subject to. In the spleen, however, circulating cells in

the WT challenge timepoint for N3A-primed mice show increased numbers in

WT-positive cells when compared to the other priming infections. This leads

to the hypothesis that N3A-positive cells are more cross-reactive with the WT

variant than the T8A variant.

For T8A-positive cells, shown in Figure 5.15, a different behaviour is observed.

In this case, spleen circulating T8A cells are present in increased numbers in
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Figure 5.14: Results of ANOVA and Tukey’s HSD on WT-positive cells for

all timepoints and all prime-challenge combinations. Each circle represents one

of the primary infections, and a line between two circles represents a significant

difference between their means. The size of the circle represents which populations

is larger in the comparison.

T8A-primed mice when compared to WT-primed mice. This suggests that T8A-

specific cells less cross-reactive and more biased towards T8A-specific responses

than the others, a hypothesis which is further supported by the responses to

the T8A challenge infection. In this case, mice that were not primed with T8A

have decreased T8A-positive populations when compared to T8A-primed mice,

while the two other challenge infections show no statistically significant differences

between the primary infections.

Finally, the population of N3A-positive cells was analysed in the same way,

and the results are shown in Figure 5.16. At the site of infection, for both the

priming and memory timepoints, N3A-primed mice have larger populations of

N3A cells when compared to the other primary infections. In the spleen a different

behaviour is observed on the primary timepoint, in this case there is an increase on

WT-primed mice compared to T8A-primed mice, further suggesting that WT and

N3A are more cross-reactive between each other than with T8A. At the memory
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Figure 5.15: Results of ANOVA and Tukey’s HSD on T8A-positive cells for

all timepoints and all prime-challenge combinations. Each circle represents one

of the primary infections, and a line between two circles represents a significant

difference between their means. The size of the circle represents which populations

is larger in the comparison.

timepoint, for spleen circulating cells there is an increase in N3A-positive cells in

N3A-primed mice when compared to WT-primed mice, but there is no significant

difference between N3A and T8A-primed mice.

Focussing on the challenge timepoints, the cross-reactive behaviour of the N3A

variant can be better understood. When challenging with the WT variant it can

be seen that N3A-primed mice will have a stronger N3A response, meaning that

the immune response is being recalled even after infection with a different strain.

This pattern is lost on the T8A challenge, where T8A-primed mice have a larger

N3A-positive population when compared to WT-primed mice. This behaviour

further supports the previous suggestion that WT and N3A-positive cells are more

cross-reactive with the N3A and T8A variants, respectively, than with the T8A

variant. The biological reason for this is hypothesised to be that the T8A and N3A

peptides have drifted enough from each other that when there is a heterologous

infection, an immune response to it behaves closer to a primary infection than

126



5.4 Statistical analysis of the experimental data

N3A positive cells

L
u

n
g

re
si

d
en

t

WT

T8A

N3A

WT

T8A

N3A

WT

T8A

N3A

WT

N3A

T8A

WT

T8A

N3A

S
p

le
en

ci
rc

u
la

ti
n

g

T8A

WT

N3A

WT

T8A

N3A

WT

T8A

N3A

WT

T8A

N3A

WT

T8A

N3A

Primary Memory WT challenge T8A challenge N3A challenge

Timepoint

Figure 5.16: Results of ANOVA and Tukey’s HSD on N3A-positive cells for

all timepoints and all prime-challenge combinations. Each circle represents one

of the primary infections, and a line between two circles represents a significant

difference between their means. The size of the circle represents which populations

is larger in the comparison.

a challenge infection. Meaning that, little cross-reactive immunity is conferred

between the two variants in comparison to the WT variant.

5.4.3 Contraction after primary infection

So far only the populations of epitope-specific T cells at a given timepoint have

been considered, but given the data available the dynamics between timepoints

can also be studied. However, given that each data point is independent from the

others, due to the fact that they are taken from different mice, they cannot be

clustered by time. Therefore, instead of considering the contraction between a

specific sample in the primary timepoint and a sample in the memory timepoint,

the mean value of the population is calculated at the primary timepoint for every

variant, and the slope of contraction is calculated for the log values of each sample

in the memory timepoint. This results in a set of linear decay rates from the
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primary to the memory timepoint clustered by primary infection. An example

of the points used to calculate the decay rates is shown in Figure 5.17. Here,

the contraction of the total number of tetramer-positive cells is plotted for all

primary infections. It is important to note that due to the low copy numbers of

T cells in homeostasis (Jameson, 2002) some population frequencies will be below

the level of detection of flow-cytometry, and therefore will be represented as the

population not being present in the sample; that is, the population will have a

frequency of 0. With this in mind, in order to prevent biasing the results to a

faster contraction rate, any samples below the level of detection have not been

included in the analysis.
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Figure 5.17: Example of contraction from primary infection to memory of the

total population of lung resident epitope-specific cells. Each colour represents a

different sample. For every epitope specificity (single, double, and triple positive),

as well as the total number of cells of any specificity, the slopes of contraction are

calculated for all primary infections to be compared.

In order to compare the decay rates between primary infections, they are

clustered by primary infection and ANOVA is used together with Tukey’s HSD

test to identify significant differences. The results of this analysis (using the

code presented in Appendix C.5) for every tetramer positivity, as well as the

total immune response, are shown in Figure 5.18. To interpret these results, it is

important to keep in mind that what is being compared are the signed exponents

of the exponential decay from primary infection to memory. Therefore, when an
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exponent is greater this means that the population is contracting at a slower rate

than one with a smaller exponent.
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Figure 5.18: Results of ANOVA and Tukey’s HSD on decay rates for each epitope

positive population. Each node represents the slopes for a primary infection, and

a line between nodes represents a significant difference between the means of

the slopes. When an edge connects two nodes the larger node is the one that is

larger in the comparison. Note that in this context a larger node means that the

population is contracting at a slower rate.

From the results shown in Figure 5.18, it is easy to see that the dynamics of

contraction into memory is different between the site of infection and the spleen.

Not only are the populations of tetramer-specific cells behaving differently between

tissues, but when comparing the total population of epitope positive cells different

behaviours are observed. In the spleen, mice primed with the WT variant show a

slower contraction into memory than T8A-primed mice, while in the lungs there

are no significant differences observed in the decay rates. This suggests that

for primary infections, the decay of immune cells does not behave significantly

differently between the possible variants the mice were infected with. In terms of

conferred immunity at the memory timepoint, considering the same hypothesis on

generation of memory assumed in Section 5.1.2; that is, memory is generated from

the effector population after the infection is cleared, all variants generate memory

proportionally to the magnitude of the response, and the primary infection does

not inherently change the behaviour of the overall response.

129



5. PERTURBATION OF THE DISTRIBUTION OF T CELL
CLONOTYPES BY VIRAL INFECTION

Focussing now on the different epitope specificities, it is easy to see that at the

site of infection single positive cells for the epitope of the primary infection decay

at a faster rate than others. This seemingly contradictory behaviour is explained

by the fact that during the primary response it is the matching single positive

cells which make up the majority of single positive cells, thus, in order for the

population to contract back to the numbers measured at the memory timepoint

(which are within an order of magnitude form one another) it must decay at a faster

rate than the others. Comparing this to the results on the memory timepoint of

the ANOVA on epitope-specific cells (see Figure 5.12), the data suggests that after

this rapid contraction into memory both WT and N3A single positive cells are

given precedence in the memory compartment and maintained in larger numbers

than the other single positive cells. In the case of T8A single positive cells, not

only are cells decaying faster in T8A-primed mice, but also in WT-primed ones.

For double and triple positive cells no significant differences are found in lung

resident cells, suggesting that these populations either do not take an active part in

the primary challenge immune response, or they do and they all behave similarly.

Going back to the results of the epitope-specific ANOVA (see Figure 5.12), it can

be seen that during primary infections there is no significant difference that would

indicate an increase in the activation of double or triple positive populations. In

the case of spleen circulating cells, there is a significant difference for WT-T8A

double positive cells. The analysis indicates that this population of cells is decaying

at a faster rate on T8A-primed mice compared to WT-primed ones. Given that the

results presented in Figure 5.13 showed that there were no significant differences

between cell populations during the primary infection, this faster decay rate

suggests that the population of spleen circulation cells observed at the memory

timepoint does not come exclusively from spleen circulating precursors, otherwise

a difference in the population means would be observed.

5.4.4 Expansion during challenge infection

Studying the decay rates after the primary infection allows for the study of

contraction into memory, as discussed above. However, to understand the effect

of the primary infection on future challenge infections it is necessary to study
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the dynamics of expansion during the challenge infection. Similarly to the study

of decay rates, the slopes of expansion are calculated by considering the mean

value of each population at the challenge timepoint and the individual memory

values, and computing the slope of the log values for each prime-challenge infection

combination. An example of the data points used to calculate the expansion rates

of the total immune response is shown in Figure 5.19.
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Figure 5.19: Example of expansion from memory to challenge infection of the

total population of lung resident epitope-specific cells. Each colour represents a

different sample. For every epitope specificity (single, double, and triple positive),

as well as the total number of cells of any specificity, the slopes of expansion are

calculated for all prime-challenge infection pairs.

ANOVA and Tukey’s HSD test are used on the resulting set of expansion rates

to identify differences between the dynamics of each prime-challenge infection

pair. In this case the rates are clustered first by primary infection, and then
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by challenge infection, so that for each primary infection the dynamics of all its

following challenge infections can be compared. First, consider the population

of lung resident cells, since they are the population that drives the immune

response (Gebhardt et al., 2009; Jiang et al., 2012; Masopust & Soerens, 2019).

The results of the statistical analysis (using the code presented in Appendix C.5)

for this population of cells are shown in Figure 5.20. It is important to note

that, unlike the results presented in Section 5.4.3, here each node in the figure

represents a challenge infection, and an infection having a greater mean expansion

rate means that when infected with that variant the population expanded faster

than with other variants.

Focussing first on the total response, it is observed that the T8A variant

responds generally better to homologous infection, evidenced by the fact that when

primed and challenged with T8A the expansion rate is greater than when challenged

with other variants. This suggests that this variant has a propensity to generate

responses focussed on its own NP366 epitope. More than this, the expansion during

a WT challenge is significantly different to that of an N3A challenge, further

supporting the hypothesis that cross-reactivity is not a symmetric relationship,

as discussed previously in Section 5.4.2. Comparing the expansion rates allows for

an even greater understanding of this asymmetry, as it shows that not only is the

combination of infections a relevant factor, but their order matters as well. For the

T8A primary infection in particular, the analysis suggests that the total expansion

of the immune response is greater with a homologous challenge, followed by a WT

challenge, and finally an N3A challenge elicits the slowest expansion. In terms of

cross-reactivity this means that for the T8A variant, the WT and N3A variants can

be placed in a spectrum, with WT being more cross-reactive to T8A than N3A is.

In the case of WT-primed mice, the analysis shows that only the expansion

rate for the WT homologous challenge is significantly different to that of the N3A

challenge infection. Meanwhile, there is no significant difference found between the

T8A challenge and the other challenges. This means that, similarly to the T8A-

primed mice, the total response to a homologous infection will be stronger than an

N3A challenge infection, but no significant difference is found to the response to a

T8A challenge. Comparing these results to those of the T8A-primed mice, it can

be said that WT-primed mice are more widely cross-reactive, since they only show
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a significant difference between WT and N3A challenges. Finally, considering

the total response of N3A-primed mice no significant differences between the

expansion rates at the challenge timepoint are found. This is interesting, as it

suggests that regardless of the challenge infection these mice mounted similar

immune responses, at least in magnitude, if not in composition. This can be then

interpreted as the N3A variant being the most widely cross-reactive with the other

variants.

In order to better understand the composition of the immune responses being

generated by the different prime-challenge combinations, the different tetramer-

positive populations have to be considered. First, note that both triple positive,

and T8A-N3A double positive cells have no significant differences between their

expansion rates in any prime-challenge combination. This suggests that these two

types of cells are not taking an active part in the response, since if they were,

T8A-N3A double positive cells would be expected to have a greater expansion rate

in T8A or N3A challenge infections. This is further supported by the results of

Section 5.4.1, where it was shown that neither of these populations is significantly

greater in any of the challenge timepoints.

Now, consider first the population of WT single positive cells. It is observed

that they exhibit a similar behaviour for WT and T8A-primed mice, where a

WT challenge will cause a faster expansion of the populations, followed by a T8A

challenge, and finally an N3A challenge with the smallest of the expansion rates.

Only N3A-primed mice display a different behaviour, where there are no significant

differences between the challenge infections, which is consistent with what has

already been noted on the total immune response. For T8A single positive cells,

the results show that in general the population has a higher expansion rate when

the challenge is with the T8A variant, but the primary infection has an effect

on how the other challenges compare. On WT-primed mice it is only the T8A

challenge that shows an increased expansion rate, while a WT challenge shows

no significant differences. On T8A-primed mice both WT and T8A challenges

cause the population to expand at a faster rate than an N3A infection. Finally,

in N3A-primed mice it is T8A and N3A challenges which cause the population

of cells to expand faster. For N3A single positive cells only WT-primed mice
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show any significant differences, in this case with both T8A and N3A infections

resulting in a faster expansion rate for these cells.

As in previous analyses, the expansion rates of spleen circulating cells are also

considered. The results of the analysis of these cells are shown in Figure 5.21.

Similarly to lung circulating cells, when looking at the expansion rates of the total

response each primary infection behaves differently. In this case it is WT-primed

mice that show no significant differences between challenge infections, suggesting

that when primed with the WT variant, recall responses are mainly in the form

of lung resident cells, and there is less migration from the spleen to the site of

infection. For T8A-primed mice, there is an increase in the rate of expansion for

WT and T8A challenge infections, indicating that part of the immune response

is being recalled from the spleen and lymph nodes for WT and T8A infections,

but not for the N3A challenge, further supporting the hypothesis that these two

variants have drifted enough that during a challenge infection a portion of the

immune response is being generated for the first time at the site of infection, and

is not being recalled from memory.

5.5 Discussion

Cross-reactive immune responses in the context of heterologous infections are still

not yet fully understood (Duan et al., 2015; Elong Ngono & Shresta, 2019; Mateus

et al., 2021; Moris et al., 2011; Webster & Askonas, 1980). However, it is a topic of

great importance in the context of vaccine development (Elong Ngono & Shresta,

2019; Mateus et al., 2021; Tamura et al., 2005; Webster & Askonas, 1980), as

better understanding of the immunogenicity of cross-reactive responses can lead

to “universal” vaccines that confer immunity to several influenza sub-types (Jang

& Seong, 2019; Kumar et al., 2018; Paules et al., 2018; Zens et al., 2016).

The original aim of this chapter was to use a deterministic model, together

with experimental data, to study the effects of cross-reactivity. However, as

demonstrated in Section 5.3.2, the parametrisation of this model was not possible

with the available data, thus a different approach to the study of cross-reactivity

using the model presented in Section 5.1 will be presented in Chapter 6. Instead,

statistical analysis of novel experimental data provided by Jessica Gaevert at the
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Paul Thomas laboratory in the Immunology department of St. Jude Children’s

Research Hospital was performed. A hypothesis that was derived from this analysis

is the existence of selfish, and selfless epitopes. A selfish epitope is one that in

general biases the immune response to be specific to itself; that is, the population of

single positive cells specific to it has greater avidity that double and triple positive

populations. Thus, when an infection occurs, the immune response will be biased

towards single positive epitope-specific cells, and the cross-reactive capabilities will

be diminished. A selfless epitope, on the other hand, is one that generates broadly

cross-reactive responses which does not pull the response toward any specificity in

particular; that is, the populations of cells that can recognise it (single, double,

and triple positive), have similar avidity to the epitopes they can each recognise,

meaning that when there is an infection, the immune response will not be biased

towards single positive cells, and will have greater cross-reactive capabilities. This

was originally hypothesised when preliminary analysis of the data showed that the

N3A variant of the virus generated more broadly cross-reactive immune responses

when compared to the T8A variant. The working hypothesis at the time was that

a combination of the initial frequency of epitope-specific cells (initial conditions

of the deterministic model), and the avidity of each clonotypes to the different

variants (the κv(i) parameter) could explain this difference in the behaviours.

However, given the available data, structural identifiability analysis showed that

only three parameters already widely reported in the literature (Ahmed et al.,

2015; Macallan et al., 2003, 2019; Vrisekoop et al., 2008) could be identified. For

this reason, instead of parametrising the model with the data, statistical tools

were used to gain a better understanding of the behaviours being observed.

The initial study of correlations between the different epitope-specific cells

showed that the WT and T8A variants appeared to generate more cross-reactive

responses than the N3A variant, based on the fact that very few significant

correlations where found on the primary timepoint of these two infections. This

was interpreted to mean that the sub-populations of clonotypes were not being

coupled, and thus, the response was allowed to behave in a more stochastic

fashion between each mouse. On the other hand, N3A-primed mice displayed

several correlations, indicating that the responses were being guided towards

specific populations. For example, the negative correlation between T8A-N3A
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double positive cells and WT-T8A double positive cells on N3A-primed-T8A-

challenged mice suggested that after the challenge infection the response was

being pulled towards cross-reactivity with the WT or N3A variant, but not both.

Moreover, positive correlations with the triple negative population suggested that

the magnitude of the response was an indicator of its cross-reactive capabilities.

In order to corroborate these results ANOVA was used to find significant

differences between the means of each of the possible epitope positive populations,

both by epitope specificity (single, double, or triple positive) and by general

epitope recognition (WT, T8A, or N3A-positive). It was these results that started

to paint a clearer picture of the cross-reactive responses to the three virus variants.

The first thing that was noted was that during the primary infection both WT

and T8A-primed mice showed an increased population of their single positive

specific cells, while the N3A-primed mice showed no significant differences between

populations (see Figure 5.12). This contradicted what had been found with the

correlations, so these results were compared with the ANOVA of general epitope

positive cells. Here it was found that both WT and T8A-primed mice showed

no significant differences between epitope positive cells at the primary timepoint,

while N3A-primed mice had an significant increase in N3A-positive cells (see

Figure 5.16). This explains the earlier contradiction between the ANOVA and the

correlations, the N3A-primed show an increased number of single positive cells

in general, but they are increased across the board, and thus, when looking at

the individual populations the differences get lost in the random noise between

samples. The second behaviour observed was that during challenge infections,

the order had a noticeable effect on the composition of the response, as noted by

the asymmetry of the challenge timepoints in Figure 5.12. This means that, at

least in the particular case of influenza viruses, the order of infection is crucial in

determining the shape of the immune response for future infections.

Further than this, the dynamics of the immune responses was compared

between primary and challenge infections by considering an exponential decay

model from primary infection to memory, and an exponential growth model from

memory to challenge infection, and comparing the decay and growth of the data

using ANOVA. In the case of contraction into memory (see Figure 5.18), it was

found that while in general the decay of populations was not significantly different
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between variants, some sub-populations did show differences between variants.

At the site of infection these differences were only found in single positive cells,

which can be explained by the fact that between single positive populations it is

always the matching one to the infection which expands to a greater degree, and

thus, must contract at a different rate in order to reach homeostatic levels with

the other single positive populations.

When comparing the dynamics of expansion during the challenge infection it

was found that the total immune response showed different behaviours between

the primary infections. It was found that N3A-primed mice had no significant

differences between the expansion rates, indicating that the N3A variant is, of the

three studied, the one less likely to bias the repertoire towards a specific epitope

specificity. On the other hand, the T8A variant is shown to have a clear preference

towards T8A-positive responses, as evidenced by the increased expansion rate of

the total immune response. Altogether, while the deterministic model could not

be parametrised with the experimental data, statistical analysis showed that, in

the case of influenza viruses, cross-reactivity is not symmetric between variants.

Meaning that, the history of infection is a determining factor of the composition of

the immune response. Not only that, but also that the selfishness of epitopes can

be considered as a spectrum. Some epitopes will be selfish, when they generate

a cross-reactive immune response it will still biased towards recognition of the

primary infection’s epitope, e.g., the T8A variant, others can be selfless, generating

an immune response that is broadly cross-reactive and is not biased to recall

the original specificity, e.g., the N3A variant, or they can somewhere in-bewteen

selfish and selfless, where they generate a cross-reactive response, which is biased

to recall the specificity of the primary infection to a lesser extent than a purely

selfish epitope, e.g., the WT variant.
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Chapter 6

Random recognition networks of

viral peptides

In the context of heterologous infections, as defined in Section 5.3, T cell clonotypes

have the potential to be cross-reactive and mount an effective immune response

when presented with epitopes they have not encountered before (Duan et al.,

2015; Gaevert et al., 2021; Souquette & Thomas, 2018). However, the biological

mechanisms and cell population dynamics of these cross-reactive T cell immune

responses are not yet fully understood (Adams et al., 2016; Lang et al., 2002;

Mazza et al., 2007; Nelson et al., 2015; Yin & Mariuzza, 2009).

What is widely understood to be true, is that each TCR must have more than

one cognate epitope (Lang et al., 2002; Mason, 1998; Selin et al., 1994; Sewell, 2012;

van den Berg et al., 2011; Yin & Mariuzza, 2009); that is, TCR-pMHC interactions

do not follow a “lock and key” strategy, and each TCR has a set of multiple

epitopes which it is able to recognise. Given the current incomplete understanding

of TCR cross-reactivity, hypotheses have been made about why this phenomenon

arises (whether by chance or with some underlying logic), and how it affects the

dynamics of an immune response. One such hypothesis, proposed by Mason (1998),

is that cross-reactivity can be either focussed or unfocussed. In his hypothesis,

Mason defines focussed cross-reactivity as the case when T cell clonotypes that

recognise a given peptide are more likely to be cross-reactive with each other for

other peptides, and unfocussed when they are cross-reactive with other clonotypes

for random peptides instead. In other words if a k-partite recognition network,
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like the one defined in Chapter 5, is considered, unfocussed cross-reactivity would

be represented by a network in which the edges between TCR and VDP nodes

are completely random, and focussed cross-reactivity would be represented by a

network in which there is an underlying structure that defines the edges that are

present in the network. Network models have been considered in the past to model

TCR-peptide interactions (De Boer, 1988; Jerne, 1974a). These network models are

based on idiotypic interactions (De Boer, 1989; Jerne, 1974b, 1984); that is, random

interactions between both receptors and their cognate particle, and receptors to

other receptors, in order to consider self regulation of the population via cell-cell

interactions. Given the random construction of these networks, they can be

considered examples of the unfocussed hypothesis. An example of the focussed

hypothesis is the concept of shape space for TCR-epitope interactions (Perelson &

Oster, 1979), in which a multi-dimensional Euclidean vector space is considered

with each dimension representing an antigenic determinant parameter. Using this

space, neighbourhoods of epitope recognition for a given TCR are considered, and

cross-reactivity between clonotyes is determined by the location and size of their

recognition neighbourhoods.

The multi-variate competition process defined in Chapter 5, was proposed

as a model for the dynamics of heterologous infection in the context of a known

TCR-VDP recognition network. However, in order to study the focussed versus un-

focussed hypothesis a more general approach to the construction of the TCR-VDP

recognition network is required. That is, instead of considering a network represent-

ing the recognition profile of a specific pathogen as in Chapter 5, random networks

will be considered. Since the recognition network is nothing more than a bipartite

network in which the recognition profile of a T cell clonotype is encoded, random

network generation algorithms can be used to construct recognition networks with

different properties, such as having focussed or unfocussed cross-reactivity.

The main focus of this chapter is to explore the focussed and unfocussed

hypothesis by using random network generation algorithms to construct the TCR-

VDP recognition network. The networks generated will be small, consisting of a

limited number of clonotypes and peptides, η and ε respectively, in order to study

the effects that focussed and unfocussed cross-reactivity have on T cell mediated

immune responses. The clustering coefficient of the networks is calculated in order
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to compare the underlying community structure of the different types of networks

being considered. In particular, the clustering coefficient considered here will

measure the cliquishness of the networks; that is, the density of small connected

sub-networks of the recognition network.

In Section 6.1 the random network generation algorithms used to generate

small TCR-VDP recognition networks are introduced. Three network generation

algorithms are considered: one which can be used for both focussed and unfocussed

cross-reactivity, and two for focussed cross-reactivity only. Section 6.2 introduces

the clustering coefficient that will be used to measure the degree of betweenness

centrality of the random recognition networks (Newman, 2018, Chapter 7), and us-

ing the clustering coefficient proposed by Zhang et al. (2008), novel approximations

of this coefficient for the different types of networks considered are found. Finally,

in Section 6.3 the random networks are used together with the multi-variate

competition model defined in Chapter 5 to study the dynamics of cross-reactive

T cell immune responses. The analysis of the resulting dynamics suggests that all

the random network generation algorithms considered yield biologically plausible

immune responses, displaying immunodominance and distinct immune responses

to heterologous infection. Given that the networks used exhibit both focussed

and unfocussed cross-reactivity, this indicates that both hypotheses can lead to

biologically relevant TCR-VDP recognition networks.

6.1 Random generation of TCR-VDP recogni-

tion networks

As in previous chapters, the sets considered for the TCR-VDP recognition network

are: the set of T cell clonotypes being modelled (C ), and the sets of VDPs present

during a first and second infection (V and W , respectively), which need not be

disjoint since a peptide can be presented during more than one infection (Boon

et al., 1994; Eickhoff et al., 2019; Heiny et al., 2007; Tan et al., 2011; van der

Bruggen et al., 2002). Note that the names first and second are arbitrary here,

given that the focus of this chapter is the effects of focussed and unfocussed cross-

reactivity and not the specific order of the infections, their order is not relevant
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and the names are used to make clear that the infections occur at different times.

Since the main interest of this chapter is cross-reactivity in the context of infection,

the set of self-pMHCs which can stimulate the clonotypes in C (namely Q) will

not be considered when constructing the random recognition networks. A general

example of the types of networks that will be considered is shown in Figure 6.1.

First infection VDPs (V )

Second infection VDPs (W )

T cell clonotypes (C )

v

i Wi

Vi

C v

Figure 6.1: Bipartite recognition network of T cell clonotypes and VDPs for

heterologous infection. The set of T cell clonotypes is C , and the VDPs are

separated into the set of peptides presented during the first infection, V , and the

set of those presented during the second infection, W . Nodes belonging to C , i.e.,

clonotypes, are represented as green circles, and VDPs are represented as blue

circles if they belong to V , or red circles if they belong to W . As in Chapters 4

and 5, each peptide v ∈ V ∪W has a set C v of clonotypes that can recognise it,

and each clonotype i ∈ C has sets Vi and Wi of peptides, not necessarily disjoint,

they are able to recognise.

In the case of unfocussed cross-reactivity, the desired property is that the

bipartite recognition network is completely random; that is, every edge is added

to the network independently of other edges. In this case, the Erdős-Rényi

model for network generation will be introduced to define this type of recognition

network (Erdős & Rényi, 1959; Gilbert, 1959). However, a different model, called

the stochastic blockmodel, will also be discussed because of desirable properties

that it has for the generation of TCR-VDP recognition networks (Airoldi et al.,

2008; Holland et al., 1983; Wang & Wong, 1987). For focussed cross-reactivity two
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different random networks are considered: a configuration model in which a degree

sequence is used to define the degree of each clonotype node (Bollobás, 1980),

and a modified preferential attachment network based on the Barabási-Albert

model (Barabási & Albert, 1999).

6.1.1 Erdős-Rényi and stochastic blockmodel networks

In order to define the Erdős-Rényi network generation model, first for each VDP

v ∈ V ∪W , pv is defined to be the probability that a given TCR will be able to

recognise v. If the value of pv is the same for all v in V ∪W , then it is called an

Erdős-Rényi network, denoted by G(η, ε, pv), where η is the number of clonotypes,

and ε = |V ∪W | the number of peptides. However, this is a strong assumption

on the pv probabilities, since structural differences between peptides, single amino

acid changes, or structural differences between TCRs can have drastic effects on

TCR-pMHC binding (Borg et al., 2005; Gagnon et al., 2005; Gras et al., 2009;

Ishizuka et al., 2008). Therefore, a model closer to reality should consider some

degree of variability for the pv probabilities. This can be thought of as variable de-

generate specificity of the TCRs themselves; that is, the variability of the number of

epitopes each TCR can recognise (Joshi et al., 2001; Stewart-Jones et al., 2003), or

conversely some peptides being more likely to be recognised due to their 3D struc-

ture (Carson et al., 1997; Cole et al., 2010; Day et al., 2011; Turner et al., 2005).

Since the Erdős-Rényi model considers every VDP to be exactly equal in

terms of its recognition probability, it is unable to capture this variability of

TCR-peptide interactions. One model that allows for this variability is the

stochastic blockmodel (Holland et al., 1983; Wang & Wong, 1987). In this model

the set of VDPs is separated into M disjoint subsets Bℓ, called blocks, such

that V ∪W =
⋃M

ℓ=1Bℓ. Each of these blocks is assigned a recognition, or edge,

probability pℓ for ℓ = 1, . . . ,M , so that every VDP v ∈ Bℓ has recognition

probability pv = pℓ. That is, the network is defined by the number of blocks, M ,

and the probability vector

p = (p1, p2, . . . , pM). (6.1)

If the pℓ are all the same, then the resulting network is equivalent to one generated

by the Erdős-Rényi model. In any other case, the network will capture the
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possibility that some peptides will be more or less likely to be recognised, since it

is exactly the recognition probabilities that are being changed.

For the purposes of modelling TCR-VDP interactions, this model is an im-

provement over the Erdős-Rényi model. However, it still fails to capture variable

recognition probabilities based on differences between TCRs. In order to account

for this type of recognition variability a mixed membership stochastic blockmodel

is considered. This is a special case of the stochastic blockmodel, in which each

TCR has an associated mixed membership vector (Airoldi et al., 2008). Denote

by πi the mixed membership vector of clonotype i ∈ C ,

πi = (πi1, πi2, . . . , πiM), (6.2)

where 0 ≤ πiℓ ≤ 1 is the degree of membership of clonotype i to the block ℓ of

peptides; that is, the probability of clonotype i recognising a VDP of block ℓ is

given by πiℓpℓ. Note that membership to each of the blocks is considered to be

independent, and therefore the πiℓ do not need to add up to one. Then, it is easy

to see that the recognition probabilities of clonotype i under this model are given

by the Hadamard product of πi and p (Marcus & Khan, 1959)

πi ◦ p = (πi1p1, πi2p2, . . . , πiMpM), (6.3)

where the πiℓ represent the effects of TCR structure on peptide recognition, and

pℓ the effects of peptide structure. Figure 6.2 shows an illustrative example of a

network consisting of three clonotypes, and two blocks of VDPs. In this example

each clonotype has a different mixed membership vector. Clonotypes 1 and 3

can only recognise one of the blocks; that is, their mixed membership vectors

are π1 = (1, 0), and π3 = (0, 1), while clonotype 2 has a membership vector

π2 = (1, 1), and is able to recognise both blocks. While this example considers

only the extreme values 0 and 1 for πiℓ, these probabilities can take any value

between 0 and 1.

It is easy to see that this model is extremely versatile, allowing for the

generation of recognition networks that consider degenerate TCR specificity in

the form of mixed membership vectors, peptide recognition variability in the form

of blocks of peptide nodes, both, or neither. This makes it a perfect candidate for

an in depth study of cross-reactivity on large (repertoire wide) networks. However,
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1

2

3

VDPsT cell clonotypes

B1

B2

Figure 6.2: Example of a mixed membership stochastic blockmodel network. Two

blocks of VDPs are considered, B1 and B2 (shown here in blue and red), and three

clonotypes. Clonotypes 1 and 3 have mixed membership vectors π1 = (1, 0), and

π3 = (0, 1), meaning they can only recognise one of the blocks. Clonotype 2 has a

membership vector π2 = (1, 1), and can recognise both blocks. In this example

only the extreme values 0 and 1 are considered for πiℓ, but these probabilities can

take any value between 0 and 1.

since the focus here is on the effects of cross-reactivity in small scale and not large

scale networks, the analysis of this model on repertoire wide networks is beyond

the scope of this chapter. For this reason, in Section 6.3 only the extreme case

with one block, M = 1, and all clonotypes having membership vector π = (1),

which reduces the model to an Erdős-Rényi network, is considered. An outline of

the network generation algorithm for this model is given in Algorithm 6.1.

6.1.2 Configuration model networks

The first model considered for the focussed cross-reactivity hypothesis is the

configuration model (Bender & Canfield, 1978; Bollobás, 1980; Molloy & Reed,

1995). In this network generation model, instead of a recognition probability,

two sequences of integers KC = (k1, . . . , kη), and KP = (k′1, . . . , k
′
ε), such that∑η

i=1 ki =
∑ε

i=1 k
′
i, are considered. They are called the degree sequences, and
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Algorithm 6.1: Mixed membership stochastic blockmodel network gen-

eration algorithm for a network with η clonotypes.

Input: M ← number of peptide blocks,

p← vector of peptide block recognition probabilities,

πi ← mixed membership vectors for all clonotypes i ∈ C .

1 for i = 1, . . . , η do

2 foreach ℓ = 1, . . . ,M do

3 foreach v ∈ Bℓ do

4 Add the (i, v) edge to the network using Bernoulli trial with

success probability pℓπiℓ;

5 end

6 end

7 end

they describe the degree of every node of TCR and VDP type in the network,

respectively. Then, using these degree sequences, for each clonotype node i, a

sample of size ki is taken from the set of VDPs, V ∪W , to determine the VDPs

that i will be able to recognise, and therefore the edges that must be added to the

recognition network (Newman, 2018, Chapter 12). It is important to note that

once a VDP node v has been sampled k′v times, it must be removed from V ∪W

for future clonotypes, otherwise the degree sequence would be violated.

In general, when constructing a network using a degree sequence, it is necessary

that the sum of the degrees of all nodes in the network is even. However, since

the recognition network is bipartite, then it has in fact two degree sequences, one

for clonotype nodes (KC), and one for VDP nodes (KP ). More than this, their

sums must be equal for the generation process to be successful (since a difference

in the sums would imply there is an edge that starts on one of the sets but cannot

end on the other), therefore the sum of the degree sequence for the entire network

will always be even, regardless of the evenness of the sum of the degree sequences

for clonotype and epitope nodes separately. Thus, this condition on the degree

sequence can be forgone.

To simplify the analysis of this type of recognition network, the special case

were the degree sequence KC = (k1, . . . , kη) satisfies k1 = k2 = · · · = kη = K∗
C
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will be considered, where K∗
C denotes the degree of all clonotype nodes; that is,

the number of VDPs that every clonotype is able to recognise. An illustrative

example of a configuration network is shown in Figure 6.3. For this example four

clonotypes and six VDPs are considered. The degree of every clonotype node is

K∗
C = 3, and the sequence of VDP nodes is KP = (1, 2, 3, 3, 2, 1). Note that the

degree sequence of VDP nodes consists of different values, since the only condition

is that its sum equals that of the sequence of clonotype node degrees.

VDPsT cell clonotypes

Figure 6.3: Example of a configuration model network. 4 clonotypes, and 6

VDPs are considered. The degree of every clonotype node is K∗
C = 3, and the

degree sequence of the VDPs is KP = (1, 2, 3, 3, 2, 1). Note that in this example

the degree sequence of the VDPs consists of multiple different values, since the

only condition is that its sum must be the same as the sum of KC .

For a network with η clonotype nodes, and ε VDPs, only values of K∗
C that

satisfy
ε

η
< K∗

C < ε (6.4)

will be considered. Values of K∗
C such that ηK∗

C ≤ ε are not considered since

they can generate networks with no cross-reactivity, which are simply a collection

of η independent clonotypes which do not compete with each other for stimulus

provided by VDPs. The extreme case K∗
C = ε is also not considered, since every

clonotype having the same recognition profile (of all the VDPs in the network)
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can be interpreted as a model with a single clonotype instead of a competition

process of η clonotypes. An outline of the network generation algorithm for this

model, with general degree sequences KC and KP , is given in Algorithm 6.2.

Algorithm 6.2: Configuration model network generation algorithm for

a network with η clonotypes.

Input: KC ← degree sequence of clonotype nodes,

KP ← degree sequence of VDP nodes.

1 foreach ki ∈ KC do

2 Si ← sample of ki epitopes from V ∪W ;

3 repeat

4 S ′
i ← sample of ki − |Si| epitopes from V ∪W ;

5 Si = Si ∪ S ′
i;

6 foreach v ∈ Si do

7 if kv = min {KP} then
8 Si = Si \ {v};
9 V ∪W = V ∪W \ {v};

10 KP = KP \ {min {KP}}
11 end

12 end

13 until |Si| = ki;

14 foreach v ∈ Si do

15 Add the (i, v) edge to the network;

16 end

17 end

6.1.3 Preferential attachment networks

The final network generation model to be considered is the preferential attachment

model (Barabási & Albert, 1999; Price, 1976, 1965). This is a model of network

growth; that is, the network starts with a single clonotype node and all the VDPs

nodes, and once the edges for this node are added to the network the remaining

clonotype nodes are added one at a time.
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Networks constructed using this type of model exhibit preferential attach-

ment (Barabási & Albert, 1999; Metzig & Colijn, 2018), also called cumulative

advantage (Price, 1976; Simon, 1955; Udny Yule, 1925). This behaviour is some-

times described as a “rich-get-richer” or “first mover advantage” effect, and it is

caused by the resulting power law distribution of degrees of clonotype nodes. This

causes some nodes to be better connected and therefore dominate the dynamics

of the system associated to the network. In the case of the recognition network it

means that there will always be a subset of clonotypes that will recognise, and

therefore receive stimulus, from more VDPs than other clonotypes.

In the original preferential attachment model the probability of an edge being

added is proportional to the degree of the node (Barabási & Albert, 1999; Price,

1976). However, in the model proposed here for the recognition network the

probability is fixed for the initial sampling for VDPs, or equivalently edges, of

every clonotype; that is, for every clonotype the initial sampling for edges behaves

like the Erdős-Rényi model. After this, the set of VDPs each clonotype can

recognise, Vi ∪ Wi, is compared to that of other clonotypes in the network. If

a clonotype j is found such that (Vi ∪ Wi) ∩ (Vj ∪ Wj) ̸= ∅, then the VDPs in

(Vj ∪Wj) \ (Vi ∪Wi) are sampled again with an adjusted probability based on the

number of peptides shared after the initial sample.

In order to generate a network with η clonotypes Algorithm 6.3 is used. Initially,

the network is considered to have only nodes of VDP type. Then, clonotype

nodes are added to the network one at a time in the following way: first, for every

clonotype i added to the network an initial sample of VDPs is taken using the

Erdős-Rényi model, and the edges between those VDP nodes and clonotype i

are added to the network. For clonotypes added to the network after the first

one, their recognition profile is compared to that of the other clonotypes in the

network. If there is a non-empty intersection with an existing clonotype j, then the

cross-reactive recognition probability is calculated for VDPs in (Vj∪Wj)\(Vi∪Wi);

that is, VDPs recognised by j but not by i, as follows

p∗v(i, j) :=
|(Vi ∪Wi) ∩ (Vj ∪Wj)|

|Vi ∪Wi|
p∗pv, (6.5)

where 0 ≤ p∗ ≤ 1 is the base cross-reactivity constant of the network, which is used

to modulate the strength of preferential attachment observed. That is, if p∗ = 0,
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then p∗v(i, j) = 0 for all i, j, and v and the model becomes equivalent to the Erdős-

Rényi model. On the other hand, as p∗ → 1− the effects of preferential attachment

become more apparent, with the overlap for VDP recognition with other clonotypes

driving the preferential attachment behaviour. Finally, new edges are added to the

network using Bernoulli trials with success probabilities given by the cross-reactive

recognition probabilities, p∗v(i, j), for every v in (Vj ∪Wj) \ (Vi ∪Wi).

Algorithm 6.3: Preferential attachment network generation algorithm

for a network with η clonotypes.

Input: pv ← probability of a VDP being recognised by a TCR,

p∗ ← base cross-reactivity constant.

1 for i = 1, . . . , η do

2 Add edges for clonotype node i in the network using an Erdős-Rényi

model with probability pv;

3 if i = 1 then

4 Continue to i = 2;

5 end

6 foreach j = 1, . . . , i− 1 such that (Vi ∪Wi) ∩ (Vj ∪Wj) ̸= ∅ do
7 Sij ← (Vj ∪Wj) \ (Vi ∪Wi);

8 foreach v ∈ Sij do

9 p∗v(i, j)← |(Vi∪Wi)∩(Vj∪Wj)|
|Vi∪Wi| p∗pv;

10 Add the (i, v) edge to the network using a Bernoulli trial with

success probability p∗v(i, j);

11 end

12 end

13 end

An example of this cross-reactivity based preferential attachment of the network

is shown in Figure 6.4. In this example clonotype j is already in the network and i

is being added to the network. The initial sampling for VDPs that clonotype i can

recognise is {v1, v2}, which has a non-empty intersection with the VDPs clonotype

j can recognise. Then, using the probability of cross-reactive recognition p∗v3(i, j),

the edge (i, v3) is considered again for inclusion in the network.
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p∗v3(i, j)p∗v3(i, j)

i

j

v1

v2

v3

VDPsT cell clonotypes

...

...

...

Figure 6.4: Example of the cross-reactivity principle in the preferential attach-

ment model. Clonotype j is already part of the network, and clonotype i is

being added. The initial sampling of VDPs for clonotype i is {v1, v2}. Since the

intersection with VDPs recognised by j is not empty, the edge (i, v3), shown in

blue, is sampled for with success probability p∗v3(i, j).

6.2 Clustering coefficient of recognition networks

In this section the clustering coefficient for the random networks presented in

Section 6.1 will be calculated in order to measure, and compare, the community

structure of the networks. That is, the division of clonotype and VDP nodes into

groups within which network connections are dense, but between which there

are fewer connections (Newman & Girvan, 2004). In general, for any network

the local clustering coefficient of a given node i, C3(i), describes the average

probability that two nodes that are connected to i are also connected to each

other (Newman, 2018, Chapter 7). In its traditional definition, this coefficient

depends on the density of closed paths of length two, or cycles of size three

(see Figure 3.2), which is defined as the number of observed cycles of size three

divided by the number of total possible cycles of size three (Watts & Strogatz,

1998). However, cycles of size three are a structure that cannot occur in bipartite

networks (Robins & Alexander, 2004). Even more strongly, no cycles of odd size

can occur in bipartite networks (Diestel, 2006, Chapter 1). Therefore, a clustering

coefficient specific for bipartite networks needs to be considered in order to study

the community structure of the TCR-VDP recognition network (Anthonisse, 1971;

Freeman, 1977).
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The definition of the clustering coefficient for bipartite networks that will be

used, C4,uv(i), is the one proposed by Zhang et al. (2008), which is based on similar

principles to the original C3(i) coefficient defined by Watts & Strogatz (1998). This

definition of the clustering coefficient is suitable for bipartite networks because it

depends on the density of butterflies, also called squares, of the network, where

a butterfly is the shortest possible cycle that can be constructed in a bipartite

network, an example of which is shown in Figure 6.5. Note that, in contrast

to C3(i), this clustering coefficient depends not only on the clonotype node i,

but also two peptide nodes u, and v. That is, this local coefficient measures the

cliquishness of clonotype nodes of the network around clonotype node i and two

given peptide nodes u, and v.

i

u

v

Figure 6.5: Example of a butterfly, or square, in a bipartite network containing

i, u, and v. The clustering coefficient is defined in terms of this structure since it

is the shortest possible cycle on a bipartite network. Note that a butterfly must

always contain two nodes of each type.

In the case of the TCR-VDP recognition network, since the interest of this

chapter is TCR cross-reactivity, the clustering coefficient of clonotype nodes will

be considered over that of VDP nodes. This means that when calculating C4,uv(i),

the nodes u and v will be VDPs, and i will be a clonotype node. Then, for nodes

i ∈ C , and u, v ∈ V ∪W of the recognition network, the clustering coefficient is

defined as (Zhang et al., 2008)

C4,uv(i) :=
qiuv

ku + kv − 2− qiuv
, (6.6)

where qiuv is the number of butterflies that i, u, v are part of, and ku and

kv the degrees of u and v. Following the original idea of the C3 clustering
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coefficient (Watts & Strogatz, 1998), the global clustering coefficient of the network

is defined as the expected value of the local coefficient for all the nodes. That is,

the global clustering coefficient of clonotype nodes, denoted by C4, is given by

C4 := E
i∈C ,u,v∈V ∪W

[C4,uv(i)] . (6.7)

6.2.1 Mixed membership stochastic blockmodel

In order to approximate the global clustering coefficient of the stochastic block-

model, the first step is to find an expression for the expected degree of a VDP

node. From the definition of the network it is easy to see that the expected value

of the degree of a VDP in block ℓ, v ∈ Bℓ, is

⟨kv⟩ := E [kv] = pℓ
∑
i∈C

πiℓ, (6.8)

where pℓ is the recognition probability of the epitope block Bℓ, and πiℓ is the

degree of membership of clonotype i to this block.

Then, the local clustering coefficient for clonotype i, and two random VDPs u,

and v can be approximated by

Ĉ4,uv(i) :=
⟨qiuv⟩

⟨ku⟩+ ⟨kv⟩ − 2− ⟨qiuv⟩
, (6.9)

where the number of butterflies that contain i ∈ C , u ∈ Bℓ, and v ∈ Bm is approx-

imated, by considering the fact that a butterfly containing i, j ∈ C , u ∈ Bℓ, and

v ∈ Bm is present in the network with probability (πiℓpu) (πimpv) (πjℓpu) (πjmpv),

as follows

⟨qiuv⟩ := E [qiuv]

=
∑

j∈C \{i}

(πiℓpu) (πimpv) (πjℓpu) (πjmpv)

= (πiℓpu) (πimpv)
∑

j∈C \{i}

(πjℓpu) (πjmpv)

= (pupv)
2 πiℓπim

∑
j∈C \{i}

πjℓπjm. (6.10)

155



6. RANDOM RECOGNITION NETWORKS OF VIRAL PEPTIDES

Thus, replacing Eq. (6.10) in Eq. (6.9) the following expression for approximat-

ing the local clustering coefficient of a mixed membership stochastic blockmodel

can be found

Ĉ4,uv(i) =
(pupv)

2 (πiℓπim)
∑

j∈C \{i} πjℓπjm

⟨ku⟩+ ⟨kv⟩ − 2− (pupv)
2 (πiℓπim)

∑
j∈C \{i} πjℓπjm

. (6.11)

Then, the global clustering coefficient for a mixed membership stochastic block-

model network with η clonotypes, and ε = |V ∪W | VDPs is given by

C4 =
1

η
(
ε
2

)∑
i∈C

∑
u,v∈V ∪W

C4,uv(i). (6.12)

However, as mentioned in Section 6.1.1, only the extreme case that recovers

the Erdős-Rényi model will be considered. In this case there is only one block of

VDPs, M = 1, with recognition probability pv for all v ∈ B1 = V ∪W , and all

clonotypes have the membership vector π = (1). Then, assuming again that the

network consists of η clonotypes the degree of VDP v in Eq. (6.8) simplifies to

⟨kv⟩ = pvη. (6.13)

Now, replacing this in Eq. (6.11) and simplifying results in the local clustering

coefficient for the Erdős-Rényi model

Ĉ4,uv(i) =
(pv)

4(η − 1)

2pvη − 2− (pv)4(η − 1)
. (6.14)

Furthermore, since every clonotype and VDP behaves identically in this model, the

global clustering coefficient matches the local one exactly; that is, for the Erdős-

Rényi model the following equality is satisfied for any i ∈ C and u, v ∈ V ∪W

C4 = Ĉ4,uv(i). (6.15)

6.2.2 Configuration model

For the configuration model, the degree of the VDPs does not need to be ap-

proximated by its expected value, since the degree sequence is known, thus, the

exact degree of every clonotype and VDP is already known. However, in order to
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find the global clustering coefficient it is necessary to know the probability that a

clonotype will be able to recognise a peptide. It is easy to see that for a VDP v

of degree kv this probability is given by

pv =
kv
η
, (6.16)

where, as before, η is the number of clonotypes in the network.

Then, similarly to Eq. (6.10), for a clonotype i and two VDPs u, and v, the

expected number of butterflies is given by

⟨qiuv⟩ := E [qiuv] = (pupv)
2(η−1) =

kukv
η2
· kukv
η2
· (η−1) =

(kukv)
2 (η − 1)

η4
, (6.17)

since a butterfly containing i, j ∈ C , u, v ∈ V ∪W will be present in the network

with probability (pupv)
2. Now, replacing Eq. (6.17) in Eq. (6.6) the following

expression for the local clustering coefficient of the configuration model is obtained

Ĉ4,uv(i) =

(kukv)
2 (η − 1)

η4

ku + kv − 2− (kukv)
2 (η − 1)

η4

=

(kukv)
2 (η − 1)

η4

(ku + kv − 2) η4 − (kukv)
2 (η − 1)

η4

=
(kukv)

2 (η − 1)

(ku + kv − 2) η4 − (kukv)
2 (η − 1)

. (6.18)

Finally, using the expression for the local clustering coefficient, Eq. (6.18), it

is easy to see that the global clustering coefficient for the configuration model is

given by

C4 =
1(
ε
2

) ∑
u,v∈V ∪W

(kukv)
2 (η − 1)

(ku + kv − 2) η4 − (kukv)
2 (η − 1)

, (6.19)

where ε = |V ∪W |.
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6.2.3 Preferential attachment

Similarly to the other models, the first step is to find the expected value of the

degree of a VDP v. In this case, since the network is constructed by adding one

clonotype node at a time, it is helpful to consider how the degree of a VDP node

changes when a new clonotype node is added to the network. For this it is also

necessary to first understand how the probability of VDP recognition changes when

a new clonotype is added to the network. Another useful by-product of this network

generation algorithm is that the clonotype nodes can be naturally enumerated

using the order in which they are added to the network. This enumeration will

prove useful in this section for the calculation of the clustering coefficient.

Define p̃v(i) to be the probability that the i-th clonotype added to the network

will recognise VDP v. It is easy to see that in the case i = 1, the value of p̃v(i) is

the base probability of recognition of v, namely pv, since for a single clonotype the

preferential attachment algorithm behaves like the Erdős-Rényi model. For i > 1,

on the other hand, the value of p̃v(i) will be of the form pv + (1− pv)ρ, for some

probability ρ representing the fact that, after initially being unable to recognise v

with probability 1− pv, the preferential attachment algorithm will allow for the

edge (i, v) to be considered for the recognition network again with probability ρ.

In order to find an expression for ρ, first consider some initial values of p̃v(i):

In the case i = 2 there is only one other clonotype in the network. Thus, the

probability that v is recognised after the preferential attachment algorithm, given

that it was not recognised during the initial sampling, is (1− pv)p̃v(1)p∗v(2, 1) (see

Algorithm 6.3 lines: 8–11), and thus p̃v(2) is given by

p̃v(2) = pv + (1− pv)p̃v(1)p∗v(2, 1). (6.20)

Now, when the third clonotype is added to the network, i = 3, there are two

clonotypes in the network which provide two opportunities for the recognition prob-

ability of v. The first clonotype increases this probability by (1− pv)p̃v(1)p∗v(3, 1),

and the second one increases it by (1− pv)p̃v(2)p∗v(3, 2). Thus, the value of p̃v(3)

is given by

p̃v(3) = pv + (1− pv)
(
p̃v(1)p∗v(3, 1) + p̃v(2)p∗v(3, 2)

)
. (6.21)
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From Eq. (6.20) and Eq. (6.21), it is easy to see that given an initial value for

p̃v(1), a general recursive expression can be derived as follows

p̃v(1) = pv,

p̃v(i) = pv + (1− pv)
i−1∑
j=1

p̃v(j)p
∗
v(i, j) for i = 2, . . . , η.

(6.22)

Note, however, that this expression for the recognition probability depends

on p∗v(i, j), which requires knowledge of the exact Vi ∪Wi sets for the clonotypes

considered. For a general preferential attachment network, like the one considered

for the calculation of the clustering coefficient, these sets are not explicitly known.

For this reason, the expected value of p∗v(i, j) will be calculated.

It is easy to see that the possible values of the overlap between the recognition

profile of i and j,
|(Vi∪Wi)∩(Vj∪Wj)|

|Vi∪Wi| , follow a binomial distribution. Let ℓ = |(Vi ∪
Wi) ∩ (Vj ∪ Wj)|, and εi = |Vi ∪ Wi|. Then, the random variable describing

this fraction of VDP overlap, X =
{

ℓ
εi

}
, follows a binomial distribution with

probability pvp̃v(j), and εi trials; that is, X ∼ Binomial (pvp̃v(j), εi). Thus

E [X] =

εi∑
ℓ=1

(
εi
ℓ

)(
pvp̃v(j)

)ℓ(
1− pvp̃v(j)

)εi−ℓ ℓ

εi
, (6.23)

and from Eq. (6.5), given the fact that p∗, and pv are constant, it is clear that

⟨p∗v(i, j)⟩ := E [p∗v(i, j)] = E [X] p∗pv, (6.24)

which can be replaced in Eq. (6.22).

There are two important things to note about this approximation. First, this

approximation does not depend on clonotype i. This is due to the fact that when

clonotype i is added to the network, its initial recognition probability for a VDP

v before the preferential attachment algorithm is used is given by pv. Then, for

every clonotype i added after j, the value of ⟨p∗v(i, j)⟩ will be the same; that is,

⟨p∗v(i, j)⟩ = ⟨p∗v(k, j)⟩ for all i, k > j. Thus, ⟨p∗v(·, j)⟩ will be used to denote the

cross-reactivity probability for any clonotype i > j. Second, given that p̃v(i) and

⟨p∗v(i, j)⟩ are defined in terms of each other, and p̃v(i) is defined recursively, it may

appear that these approximations are ill-defined. However, upon closer inspection
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it can be seen that since the initial value p̃v(1) is known, the values of Eq. (6.22)

and Eq. (6.24) are indeed well-defined and can be found sequentially as follows

p̃v(1)→ ⟨p∗v(·, 1)⟩ → p̃v(2)→ ⟨p∗v(·, 2)⟩ → p̃v(3)→ ⟨p∗v(·, 3)⟩ → · · · . (6.25)

Now, for a given VDP v, let ⟨kv⟩η denote the expected value of the degree of

v on a network with η clonotypes. When the network has a single clonotype node;

that is, when η = 1, the expected value of kv is clearly ⟨kv⟩1 = pv. Then, once

a second clonotype is added to the network the expected value increases by the

probability that the new clonotype will recognise it, which is given by Eq. (6.22),

and the expected value of the degree becomes

⟨kv⟩2 = 2pv + (1− pv)p̃v(1)p∗v(2, 1) ≈ 2pv + (1− pv)p̃v(1)⟨p∗v(·, 1)⟩, (6.26)

where the first term counts the edges added to the network as a result of the initial

sampling, and the second term the number of edges added after the preferential

attachment algorithm is used. When a third clonotype is added to the network, it

is easy to see that similarly like with the second clonotype, using Eq. (6.22) the

expected degree of v becomes

⟨kv⟩3 = 3pv + (1− pv)p̃v(1)
(
p∗v(2, 1) + p∗v(3, 1)

)
+ (1− pv)p̃v(2)p∗v(3, 2)

≈ 3pv + (1− pv)
(
2p̃v(1)⟨p∗v(·, 1)⟩+ p̃v(2)⟨p∗v(·, 2)⟩

)
(6.27)

Comparing this to Eq. (6.26), it is easy to see a pattern emerge. The first

term comes from the fact that all clonotypes can initially recognise VDP v with

probability pv, and the second term is the increase in the degree due to the

preferential attachment algorithm comparing the recognition profiles of the second

and third clonotypes with the first, as well as the third clonotype with the second.

In general, when clonotype j = i+ 1 is added to the network it is checked for

cross-reactivity with all clonotypes up to i, and this increases expected value of kv

by
∑i

ℓ=1(1− pv)p̃v(ℓ)p∗v(j, ℓ). Then, for a recognition network with η clonotypes

the expected value of the degree of VDP v is given by

⟨kv⟩η = pvη + (1− pv)
η−1∑
i=1

p̃v(i)

η∑
j=i+1

p∗v(j, i)

≈ pvη + (1− pv)
η−1∑
i=1

(η − j)p̃v(i)⟨p∗v(·, i)⟩. (6.28)
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6.2 Clustering coefficient of recognition networks

Now, in order to calculate the clustering coefficient the number of butterflies

is required first. Similarly to Eq. (6.10), and using Eq. (6.22) the number of

expected butterflies can be written as

⟨qiuv⟩ = p̃u(i)p̃v(i)
∑

j∈C \{i}

p̃u(j)p̃v(j). (6.29)

Finally, substituting Eq. (6.29) into Eq. (6.6) the following expression for the

approximation of the local clustering coefficient is obtained

Ĉ4,uv(i) =
p̃u(i)p̃v(i)

∑
j∈C \{i} p̃u(j)p̃v(j)

⟨ku⟩η + ⟨kv⟩η − 2− p̃u(i)p̃v(i)
∑

j∈C \{i} p̃u(j)p̃v(j)
, (6.30)

which can be used to calculate the global clustering coefficient as follows

C4 =
1

η
(
ε
2

)∑
i∈C

∑
u,v∈V ∪W

p̃u(i)p̃v(i)
∑

j∈C \{i} p̃u(j)p̃v(j)

⟨ku⟩η + ⟨kv⟩η − 2− p̃u(i)p̃v(i)
∑

j∈C \{i} p̃u(j)p̃v(j)
. (6.31)

In the special case where the recognition probability of all VDPs is assumed to be

the same, the above equation simplifies to

C4 =
1

η

∑
i∈C

p̃v(i)
2
∑

j∈C \{i} p̃v(j)
2

2⟨kv⟩η − 2− p̃v(i)2
∑

j∈C \{i} p̃v(j)
2
, (6.32)

for any v ∈ V ∪W .

6.2.4 Comparison of the recognition network models

Using the results of Sections 6.2.1, 6.2.2, and 6.2.3 it is possible to compare

the network generation algorithms using their global clustering coefficient (see

Figure 6.6). Note that, while the mixed membership stochastic blockmodel will

not be considered in further sections, its clustering coefficient was still calculated

and compared to the other models here.

Figure 6.6 shows the clustering coefficient as a function of pv for the four types

of random networks studied in this chapter with η = 8, and |V ∪W | = 20. In this

Figure the preferential attachment model was assumed to have the same basic

recognition probability for all epitopes, the configuration model was considered to

have a constant degree sequence, and the stochastic blockmodel consists of two
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Figure 6.6: Global clustering coefficient, C4, of the random networks described

in Section 6.1 approximated using the method described in Section 6.2, with

η = 8, and |V ∪W | = 20. In general the preferential attachment model generates

networks with clustering coefficient greater than the other models, which is not

unexpected given the fact that it is the only model that allows for resampling of

edges. The Erdős-Rényi and configuration models show a similar behaviour, but

since for the configuration model approximates the probability by changing the

degree sequence it behaves less smoothly than the other models. The stochastic

blockmodel generates networks with the lowest clustering coefficient overall.

blocks of epitopes. It is important to note that in the case of the configuration

model the plot is not smooth because in order to calculate the clustering coefficient

pv has to be approximated using the closest integer solution of Eq. (6.16). This

means that when two values of pv are close enough to each other, the integer

solution of Eq. (6.16) is the same for both of them. Another important aspect

to note before continuing is the early peak of the stochastic blockmodel, due to

an underestimation of the number of butterflies present in the network. This

happens because, when considered as a function of ⟨qiuv⟩, Eq. (6.12) is convex,

and by Jensen’s inequality (McShane, 1937), it can be shown that this causes the
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6.2 Clustering coefficient of recognition networks

expected value of C4 to be underestimated.

Now, in order to compare the mixed membership and the Erdős-Rényi models,

consider the mixed membership model with all VDPs in a single block; that is, all

VDPs have the same recognition probability. In this case it is easy to see that the

Erdős-Rényi model will have a greater clustering coefficient than the mixed mem-

bership model, since (πivπiu)
∑

j∈C \{i} πjvπju is less than or equal to η − 1. This

difference between the models is to be expected, since the introduction of the mem-

bership vector decreases the number of edges added to the network in comparison

to an Erdős-Rényi model by limiting the number of clonotypes that can recognise

a VDP to only those with specific block membership values greater than zero,

and decreasing the probability of recognition for those with a membership value

strictly less than one, as evidenced in Figure 6.6. This lowers the local clustering

coefficient of the network, which in turn lowers its global clustering coefficient.

In general, when both the membership vector and multiple blocks are considered,

the clustering coefficient will be less than that of an Erdős-Rényi network. This

is because the effects of segregating the nodes using a membership vector greatly

limits their capacity to form cliques and generate highly clustered networks.

The Erdős-Rényi and the preferential attachment models are comparable in

terms of their clustering coefficients for low values of pv, however the preferential

attachment model has (unsurprisingly) a greater clustering coefficient as the value

of pv increases. This is easy to see by considering the case where p∗ = 0, recovering

the behaviour of an Erdős-Rényi network, and then gradually increasing the

value of p∗ (see Figure 6.7). To this end, note that if p∗ is 0, and pv is the same

for all v in a preferential attachment network, then an Erdős-Rényi network is

generated. By increasing the value of the cross-reactivity probability, the value of

⟨kv⟩ increases, as well as the number of butterflies, which causes an increase in the

clustering coefficient. This is expected since the second sampling for edges in the

network facilitates the creation of cliques which are measured by the clustering

coefficient.
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Figure 6.7: Global clustering coefficient, C4, of preferential attachment random

networks, Section 6.1.3, approximated using the method described in Section 6.2,

with η = 8, and |V ∪W | = 20, for different values of p∗. It is easy to see that

increasing the basic value of cross-reactivity causes an increase in the clustering

coefficient of the network.

Finally, the clustering coefficient of the configuration model is qualitatively

similar to the Erdős-Rényi and preferential attachment models if the degree

sequence of clonotype nodes is considered to be KC = (K∗
C , . . . , K

∗
C). However,

changing this degree sequence can have strong effects on the clustering coefficient.

For example, consider the degree sequence KC = (K∗
C , . . . , K

∗
C ,K

∗
C , K

∗
C , . . . , K

∗
C),

with K∗
C ≫ K∗

C . In this case most of the VDP nodes will be connected to the

clonotype node with degree K∗
C , and connections to other nodes will be less

frequent. This causes the local clustering coefficients of clonotypes that are

connected to this VDP node to drop greatly, since the number of total possible

butterflies increases, but the number butterflies present in the network drops due

to the fact that most edges are connected to a single node. A summary of the

approximations of the clustering coefficients is presented in Table 6.1.
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6.3 Dynamics of cross-reactive T cell responses

Using the multi-variate competition process defined in Chapter 5, and the code

presented in Appendix D, the Gillespie algorithm was used to simulate the

population dynamics of a finite set of clonotypes during homeostasis, and during

two perturbations due to heterologous viral infection (Gillespie, 1976, 1977). For

the purposes of illustration and exposition, a set of three different clonotypes

(i = 1, 2, 3) and a set of 18 pMHC complexes (nine for each of the viral challenges)

are considered. Thus, the bipartite network has three clonotype nodes and 18

VDP nodes.

The three different network generation algorithms, defined in Section 6.1, are

used to create the recognition networks using the code presented in Appendix D.1.

The code in Appendix D.2 uses the Gillespie algorithm to simulate the T cell

populations dynamics for a period of one year. Each infection is considered to

last one week, and a six month period between infections is assumed. At time

t = 0, each clonotype consists of five naive T cells. Thus, there are no memory or

effector cells of any TCR specificity to start with.

The left panel of Figure 6.8 shows the bipartite recognition network used

for the unfocussed cross-reactivity hypothesis generated using the Erdős-Rényi

model defined in Section 6.1.1. For this example the recognition probability of the

peptides was chosen to be pv = 8/18, resulting in a clustering coefficient C4 ≈ 0.132.

The middle and right panels show the mean of 104 stochastic simulations of a

heterologous infection. From this panel, it can be noted that during the response

to the initial viral challenge clonotype 2 expanded to a greater degree than the

other clonotypes, and therefore was the dominant clonotype of the response. The

behaviour of each separate phenotype of T cells for each clonotype is shown in

the plots on the right panel; that is, the dynamics of naive, effector and memory

populations of cells are plotted on the same timescale as the centre panel.

From the results of the stochastic realisations it can be seen that during the

initial challenge, the population of naive cells was not completely depleted while
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Figure 6.8: Average over 104 realisations of an immune response to two viral

challenges with an unfocussed recognition network and dynamics defined in

Chapter 5. The network was constructed using the Erdős-Rényi network generation

algorithm described in Section 6.1.1 with probability of recognition pv = 8/18

for all VDPs, and three clonotypes C1, C2, and C3. The clustering coefficient of

the network is C4 ≈ 0.132. Blue diamonds represent VDPs present during the

first viral challenge and red diamonds represent those present during the second

challenge. The grey bands represent the periods of infection. Note that not every

VDP was recognised by the clonotypes, since the samples were drawn randomly,

and there is always a probability 1 − pv of no recognition between a clonotype

and a VDP v. Figure generated using the code in Appendix D.

they were differentiating into effector cells, allowing the naive pool to recover to

homeostatic levels after the first infection was cleared. Focussing on the effector

cell compartment, it can be seen that during both infections it was indeed the

population of effector phenotype cells that expanded and subsequently contracted

once the infection is cleared, as expected from the definition of the multi-variate

competition process. Finally, note that memory cells were generated after the first

infection was cleared, and once the second infection ended, there was an increase

in the population of memory cells, which was then homeostatically maintained.

In Figure 6.9 the same set of plots presented in the previous figure are shown,

this time for the configuration model presented in Section 6.1.2, in order to show the

effects of the focussed cross-reactivity hypothesis. The degree sequence considered

was (8, 8, 8) for the clonotype nodes, and the degree sequence of VDP nodes was
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not specified. This degree sequence was chosen because the clustering coefficient

of the resulting network is C4 ≈ 0.131, which is similar to that of the network

in Figure 6.8. Finally, Figure 6.10 is another summary plot of the stochastic

simulations for a focussed network generated using the preferential attachment

model from Section 6.1.3. Similarly to the Erdős-Rényi model, the recognition

probability was chosen to be pv = 8/18. The cross-reactivity probability was

chosen to be p∗ = 1 in this case to be able to show the effects of preferential

attachment on a network this small. The clustering coefficient of the resulting

network is C4 ≈ 0.135. In both instances, a similar behaviour to that of the

unfocussed hypothesis was observed on the simulations. That is, T cell responses

that are dominated by a subset of the clonotypes, with the immunodominant

clonotypes not necessarily being the same for both infections.
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Figure 6.9: Average over 104 realisations of an immune response to two viral

challenges with a configuration model recognition network and dynamics defined in

Chapter 5. The network was constructed using the network generation algorithm

described in Section 6.1.2 with degree k = 8 for all clonotypes, and three clonotypes

C1, C2, and C3. The clustering coefficient of the network is C4 ≈ 0.131. Blue

diamonds represent VDPs present during the first viral challenge and red diamonds

represent those present during the second challenge. Note that not every VDP is

recognised by the clonotypes. Figure generated using the code in Appendix D.

From these preliminary and exploratory results, it can be seen that the three

different hypotheses of TCR-VDP recognition considered in this chapter can lead

to immune dynamics and clonal behaviour that are immunologically plausible
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Figure 6.10: Average over 104 realisations of an immune response to two viral

challenges with a preferential attachment recognition network and dynamics

defined in Chapter 5. The network was constructed using the network generation

algorithm described in Section 6.1.3 with probability of success p = 8/18, and

cross-reactivity probability p∗ = 1 for three clonotypes C1, C2, and C3. The

clustering coefficient of the network is C4 ≈ 0.135. Blue diamonds represent VDPs

present during the first viral challenge and red diamonds represent those present

during the second challenge. Note that not every VDP was recognised by the

clonotypes. Figure generated using the code in Appendix D.

and realistic. For instance, in a given response to a viral infection, there is an

immunodominant clonotype expanding to a greater degree than the rest of the

clonotypes, and thus, driving the dynamics of the immune response (Akram &

Inman, 2012; Yewdell & Bennink, 1999). This behaviour of immunodominance

was observed on all three of the random networks generated, suggesting that

either of the three network generation algorithms presented in Section 6.1 can

plausibly describe a TCR-VDP recognition network found in nature. While a

more in-depth study of the network models presented here was not possible due to

time limitations, the methods presented can be used as a tool to link the network

structure of TCR-VDP recognition networks with clonotype population dynamics.

This tool can then be used to comprehensively explore the impact of different

network types on immune response dynamics.
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6.4 Discussion

Given the importance of cross-reactive immune responses in the context of memory

generation and vaccination (Elong Ngono & Shresta, 2019; Mateus et al., 2021;

Moris et al., 2011; Webster & Askonas, 1980), it is essential to gain a better

understanding of the mechanisms, and underlying VDP recognition structure of

cross-reactive immune responses. In this chapter, based on current immunological

evidence (Bradley & Thomas, 2019; DeWitt III et al., 2018; Duan et al., 2015;

Gaevert et al., 2021; Kanduc, 2012; Souquette & Thomas, 2018), mathematically

generated hypotheses of the mechanisms by which cross-reactivity emerges, and

its underlying structure were proposed and studied from the point of view of a

TCR-VDP bipartite recognition network. Three such hypotheses were proposed:

an Erdős-Rényi model for unfocussed cross-reactivity, and a configuration model

and a preferential attachment model for focussed cross-reactivity. These cross-

reactive recognition networks were used to simulate an immune response to a

heterologous infection, and all of them generated immune responses that show

the qualitative traits of observed immune responses (Bevan, 2004; Selin et al.,

2006). Some of these traits are derived from the multi-variate competition process

used to model the population dynamics, such as the expansion from the naive

and memory compartments to the effector compartment during infection, and the

contraction into memory that follows, and others arise from the random recognition

network used to define the competition for stimulus, such as the immunodominant

hierarchies observed during the expansion to the effector compartment.

Network representations, like those described in this chapter, can be used to

define distances in the space of TCRs by defining a distance between TCR nodes

in the network. For example, a distance can be defined based on the number of

shared VDP nodes between clonotype nodes; that is, a distance measuring the

similarity of recognition profiles of TCRs. Conversely, a distance between peptides

based on which TCRs can recognise them can be also be defined (Hadfield et al.,

2018; Kitsak et al., 2017; Lambiotte & Ausloos, 2005; Robins & Alexander, 2004;

Schattgen et al., 2020). However, these definitions of distance rely on having

previous and precise knowledge of which peptides will be recognised by a given

TCR, since the recognition network needs to be constructed before the distance
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between nodes can be calculated. This is of course, not information that can be

known a priori for most TCRs and pMHCs. For this reason, previously defined

distances between TCRs are guided by structural information on their pMHC

binding properties. For example, TCRdist is based on the structure of the CDR1,

CDR2 and CDR3 loops (Dash et al., 2017; Mayer-Blackwell et al., 2020).

One method commonly used to define distances in bipartite networks is to

do a one mode projection, and use the definition of the distance between two

nodes in a network to define a distance between nodes of the same type on the

pre-image of this projected network (Battiston & Catanzaro, 2004; Blond et al.,

2005; Morris et al., 2005). That is, the network is projected onto one of the node

types, and a distance is defined on this resulting network (Dankelmann et al.,

1996; Gutman & Yeh, 1995; Li & Song, 2014). However, this type of projection

is prone to loss of information about the network structure (Tumminello et al.,

2011). More recently, advances have been made on projections with minimal loss

of structural and community information (Dianati, 2016; Saracco et al., 2017).

Using this type of information preserving projections may allow for the study of

distances, like TCRdist, from a network theoretical point of view as presented in

this chapter. Another possible avenue of research would be to study the structure

of the resulting family of bipartite networks generated by the pre-image of a one

mode projection. This type of analysis could ostensibly be done using biological

data to construct the mono-partite network used to calculate the pre-image.

The clustering coefficient was used to study the cliquishness of the networks

proposed in this chapter. This coefficient can be interpreted as a measure of how

connected to each other the nodes that are adjacent to a given node are (Newman,

2018, Chapter 7). Using this measure it was shown that both the focussed

and unfocussed cross-reactivity hypotheses generate networks with comparable

clustering coefficients. One other useful interpretation of this coefficient, is the

betweenness centrality of the network (Borgatti & Everett, 2000; Burt, 2012). The

betweenness centrality of a node measures how much “power” a node has over

the others based on how many paths pass through it (Anthonisse, 1971; Freeman,

1977). While the clustering coefficient is not directly related to betweenness

centrality, it was shown by Burt (2012) that they are strongly correlated, therefore

the study of one can be extended to the study of the other. One particular
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application of betweenness centrality is to find “structural holes” in a network,

which are the missing edges that give a node more “power”. An explicit example in

the context of TCR-VDP recognition networks would be a TCR whose recognition

profile includes VDPs which can only be recognised by said TCR. In this case,

if this clonotype were to be removed from the network, this would mean that

there are VDPs which cannot be recognised by any of the other clonotypes in the

network, negatively impacting immune responses to pathogens that present those

VDPs.

The definition of the clustering for bipartite networks used was the one proposed

by Zhang et al. (2008). This particular definition was chosen because, in it the

density of butterflies in the network considers only butterflies that are either

present in the network, or can be added to the network by the inclusion of new

edges. However, this is not the only possible definition of a clustering coefficient in

bipartite networks. A similar formulation is proposed by Lind et al. (2005), with

the key difference that it also considers butterflies created by the collapsing of two

nodes. In the case of the clustering coefficient of clonotype nodes, as considered

in Section 6.2, the two collapsed nodes are clonotype nodes. An example of this

type of butterfly is show in Figure 6.11. Using this definition of butterflies the

local clustering coefficient is given by

C4,uv(i) :=
qiuv

(ku − 1− qiuv)(kv − 1− qiuv) + qiuv
. (6.33)

This definition of the clustering coefficient allows for a different type of study, since

it considers collapsing two nodes of the same type. This can be interpreted as a

measure of the similarity between families of clonotypes that have some overlap

in their VDP recognition profile, since it considers both VDP recognition overlap

with single clonotypes, and also pairs of clonotypes, thus extending the clustering

from clonotype-to-clonotype to clonotype-to-clonotypes. This type of clustering

measure could then be used to compare families of clonotypes within a TCR-VDP

recognition network, and identify a community structure based on the interactions

of these families of clonotypes. Analysis of this type of clustering would be useful

in answering questions regarding the differences in immune responses between

individuals, such as the prevalence of public TCR responses to some diseases and
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infections (Elhanati et al., 2018; Kedzierska et al., 2006; Vujovic et al., 2020; Zhao

et al., 2016).

i

u

v

Figure 6.11: Example of a collapsed butterfly in a bipartite network containing i,

u, and v. By considering this type of butterfly to be valid in the network, the local

clustering coefficient can be used to measure the similarity between clonotypes

that share VDPs.

The mixed membership stochastic blockmodel was introduced in Section 6.1.1,

however, due to time limitations a full study of this type of networks was not

performed. The type of network this generation algorithm is able to produce is in

general very variable. As mentioned in Section 6.1.1, concepts such as variable

degenerate specificity of TCRs (Joshi et al., 2001; Stewart-Jones et al., 2003), or

increased likelihood of some peptides to be recognised due to their anchor residues

or overall structure (Carson et al., 1997; Cole et al., 2010; Day et al., 2011; Turner

et al., 2005) can be considered in this model, making it a very good candidate

for modelling TCR-VDP recognition networks. However, this immense versatility

makes it a difficult model to work with computationally and analytically, which is

why it was considered beyond the scope of this chapter. Another type of network

that was not considered in this chapter was convex bipartite networks (Yang,

2005). These are a special subset of bipartite networks that allow an enumeration

such that all the nodes connected to a given node are adjacent to each other in

the order given by the enumeration. It can be defined on the clonotype nodes, the

VDP nodes, or both. It is a desired quality to have when considering the idea of

defining a distance based on the recognition network, since, for example it can be
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interpreted as structural similarity between TCRs that have similar recognition

profiles, or conversely, structural or anchor residue similarity between peptides

that are recognised by similar TCRs.

174



Chapter 7

Concluding remarks

The importance of T cells as a part of the immune system is two-fold: first, they

are able to mount fast, in the scale of days (Murphy & Weaver, 2016, Chapter 9),

and highly specific immune responses that allow for the swift clearance of invading

pathogens, and second, they have the capability of generating immunological

memory to infections the host has encountered in the past, conferring immunity

to future encounters with the same pathogens. More than this, both the im-

mune response itself, and the memory that it generates are highly diverse, being

comprised of several different T cell clonotypes with different specificities. This

combination of memory generation, and cross-reactivity of T cell clonotypes for

different peptides makes it possible for T cells to generate immunity (however

partial) to pathogens that have never been encountered before. If completely

understood, this phenomenon could allow for the development of highly effective

vaccines which could confer long lasting cross-reactive immunity to several strains

of a given pathogen, for example influenza viruses, which are known to have highly

conserved epitopes that are great candidates for this type of vaccine. The models

presented in this Thesis were developed with the goal of expanding the current

understanding of T cell cross-reactivity, and providing novel mathematical insights

into the dynamics of T cell immune responses.

In this Thesis, a mathematical model was developed to study the population

dynamics of T cell clonotypes during homeostasis and infection, with a focus on

the phenomenon of cross-reactivity. In Chapter 4 a stochastic competition model

for homeostasis was proposed, as a generalisation of the work presented by Stirk
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et al. (2010) to more than two clonotypes. With this model, it was shown that

naive T cell clonotypes engaging in competition for survival stimulus will become

extinct with probability one. This highlights the importance of cross-reactivity,

not only as a tool to generate broad immunity after infection, but as a necessary

tool of the immune system to continue to provide protection against a wide variety

of pathogens, even when some clonotypes become extinct before ever finding

their cognate epitope. This model was developed so that even a thymic emigrant

with a low probability of establishing itself in the periphery, has the capacity to

perturb other clonotypes that it competes with for stimulus in order to study said

perturbations. First step analysis of the model showed that even when a new

clonotype is at a disadvantage compared to pre-established populations, it will

still have a measurable negative impact on their average populations in a long

timescale. One limitation of this model was the computational complexity of the

stochastic descriptors defined, which prevented the study of competitions between

a larger population of clonotypes.

In Chapter 5 the homeostatic model was extended to include the dynamics of

differentiation into other T cell phenotypes, in particular the effector and memory

phenotypes, to allow for the study of T cell dynamics during infection. However,

the computational complexity of the stochastic model, together with the larger

state space (due to the expansion of effector populations during infection), meant

the model could not be used effectively to study infection. For this reason the

linear noise approximation was used to find a deterministic approximation of this

extended competition model. Structural identifiability was used to determine

the viability of parametrising this deterministic model using novel data from

a heterologous influenza infection experiment provided by Jessica Gaevert and

Paul Thomas from St. Jude Children’s Research Hospital. The aim of this

parametrisation was to gain better understanding of the effects of affinity and

avidity in cross-reactive immune responses. However, the parameters of interest

could not be identified with the data available. Using statistical methods, the

data set was analysed and it was found that cross-reactivity does not behave

in a symmetrical manner. That is to say, developing cross-reactive immunity

from pathogen A to pathogen B, is not the same as developing immunity from

pathogen B to pathogen A. The analysis showed that some epitopes can generate
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selfish cross-reactivity, where the immune response is indeed cross-reactive to other

epitopes, but it displays a preference to recall cells specific to the original epitope.

On the other hand, analysis showed that some epitopes can generate selfless

cross-reactivity, where the memory generated by an initial infection will be more

broadly cross-reactive with other epitopes, and the response will not experience

a recall to epitope specific cells but instead to double or triple positive cells.

Finally, in Chapter 6 two different hypotheses on how cross-reactivity arises in

the immune system were studied using the stochastic model defined in Chapter 5

and network theory to generalise the bipartite recognition network that was used

in previous chapters to encode the cross-reactivity profiles of different TCRs. The

hypotheses studied were the ideas of focussed and unfocussed cross-reactivity

proposed by Mason (1998). Using random network generation algorithms, bipartite

recognition networks that displayed focussed and unfocussed cross-reactivity

were generated, and the clustering coefficient was used to compare the different

community structures that the different random networks had. On top of this,

using stochastic simulation the generated networks were shown to be able to

generate immune dynamics and clonal behaviour that are biologically viable and

could be observed in nature. The analysis of the community structure of these

networks was limited to the clustering coefficient proposed by Zhang et al. (2008),

but other definitions offer the possibility of gaining different insights into the

structure of bipartite cross-reactive networks. More than this, other types of

analysis like one-mode projections, or spectral graph theory may provide, again,

different new insights into this area of research.
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Appendix A

Code for the study of naive T cell

homeostasis

Code used to calculate the stochastic descriptors defined in Chapter 4. The

code presented here takes advantage of the quasi-birth-and-death structure of the

matrices (Gómez-Corral & López-Garćıa, 2018; Kulkarni, 2017) and uses a linear

level-reduction algorithm (Gaver et al., 1984). The full code has been published

and is available at https://doi.org/10.5281/zenodo.6342372 (Luque, 2022a).

A.1 QSD of the competition process

For the calculation of the QSD the N̊asell approximation (N̊asell, 1991, 2001), and

the linear noise approximation (Elf & Ehrenberg, 2003; van Kampen, 2007) are

considered, and compared using the Hellinger distance (Oosterhoff & van Zwet,

2012).

A.1.1 Stochastic approximation of the QSD

By taking advantage of the quasi-birth-and-death structure of the matrices, a

linear level-reduction algorithm is constructed (see Algorithm 4.1) to find the

QSD of the approximating processes X(1), and X(2). In order to solve the matrix

equations in Eq. (4.42), first the A
(j)
l,ℓ matrices must be calculated, which are then

used to find the H
(j)
k matrices using Eq. (4.41). The A

(j)
l,ℓ are calculated as follows
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� �
# Main diagonal matrices

for level_value in range(dimension , max_level_value + 1):

matrix = main_diagonal_matrices_approximation(

level_value ,

max_level_value ,

dimension ,

probability_values ,

mu_value ,

nu_value ,

stimulus_value ,

model_value ,

)

matrices [0]. append(matrix)

# Lower diagonal matrices

for level_value in range(

dimension + 1, max_level_value + 1

):

matrix = death_diagonal_matrices_approximation(

level_value , dimension , mu_value , model_value

)

matrices [1]. append(matrix)

# Upper diagonal matrices

for level_value in range(dimension , max_level_value):

matrix = birth_diagonal_matrices_approximation(

level_value , dimension , probability_values ,

nu_value , stimulus_value

)

matrices [2]. append(matrix)� �
where the _diagonal_matrices_approximation functions calculate the block

matrices using the birth and death rates of the approximating process, with the

model parameter indicating which approximating process is used (0→ X(1), and

1 → X(2)). Then, using Eq. (4.41), the inverses of the H
(j)
k are calculated as

follows� �
# Calculating the inverse of H_{N}^{(j)}

h_matrices = [inv(matrices [0][ -1])]
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# Calculating the remaining inverses of the H_{k}^{(j)} matrices

for level_value in range(len(matrices [0]) - 1):

gc.collect ()

matrix = matrices [0][ -( level_value + 2)]

matrix_term = matrices [2][-( level_value + 1)].dot(

h_matrices [-1].dot(matrices [1][-( level_value + 1)])

)

matrix -= matrix_term

matrix = np.linalg.inv(matrix.todense ())

h_matrices.append(csc_matrix(matrix))� �
Finally, using Eq. (4.44), the quasi-stationary distribution is calculated as follows� �
# Setting the initial value of the distribution to 1

distribution = [np.array ([1])]

for level_value in range(len(h_matrices) - 1):

value = (

distribution[level_value] * (-1) * matrices [2][

level_value ].dot(

h_matrices [-( level_value + 2)]

)

)

distribution.append(value.flatten ())

# Normalising the values of the distribution

subTotals = [level.sum() for level in distribution]

total = sum(subTotals)

for level_value in range(len(distribution)):

distribution[level_value] = distribution[level_value] / total� �
A.1.2 Deterministic approximation of the QSD

Using the results of the linear noise approximation, the QSD is approximated by

calculating the positive steady states of Eq. (4.51) using Mathematica as follows� �
dn1 = n1(phi1 *(( probabilities [[1 ,1]]/n1) + (probabilities

[[1 ,2]]/(n1 + n2)) + (probabilities [[1 ,3]]/(n1 + n3)) + (

probabilities [[1 ,4]]/(n1 + n2 + n3))) - mu);

dn2 = n2(phi2 *(( probabilities [[2 ,1]]/n2) + (probabilities

[[2 ,2]]/(n1 + n2)) + (probabilities [[2 ,3]]/(n2 + n3)) + (
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probabilities [[2 ,4]]/(n1 + n2 + n3))) - mu);

dn3 = n3(phi3 *(( probabilities [[3 ,1]]/n3) + (probabilities

[[3 ,2]]/(n1 + n3)) + (probabilities [[3 ,3]]/(n2 + n3)) + (

probabilities [[3 ,4]]/(n1 + n2 + n3))) - mu);

solution = Solve [{dn1==0, dn2==0, dn3==0}, {n1, n2, n3}];

If[Count[n1 >0&&n2 >0&&n3 >0/. solution , True] == 1,

populationResult = Extract[solution , Position[n1 >0&&n2 >0&&n3

>0/. solution , True ]]]� �
Then, the stability of the steady state is checked by calculating the Jacobian

matrix and checking that all its eigenvalues are negative.� �
M = D[{dn1s , dn2s , dn3s}, {{n1, n2, n3}}];

eigenvectors = Eigenvalues[M/. populationResult [[1]]];

AllTrue[eigenvectors , #<0&]� �
A.1.3 Hellinger distance between distributions

To calculate the Hellinger distance between two 3-dimensional discrete proba-

bility distributions, as defined in Oosterhoff & van Zwet (2012), the function

hellinger_distance is defined. This function takes two 3-dimensional distribu-

tions and calculates the distance between them as follows� �
shapes = (distributions [0]. shape[0], distributions [1]. shape [0])

max_index = np.argmax(shapes)

distance = 0

for i in range(shapes[max_index ]):

for j in range(shapes[max_index ]):

for k in range(shapes[max_index ]):

try:

distance += (

math.sqrt(distributions [0][i][j][k])

- math.sqrt(distributions [1][i][j][k])

) ** 2

except IndexError:

distance += math.fabs(

distributions[max_index ][i][j][k]

)

distance = (1 / math.sqrt (2)) * math.sqrt(distance)� �
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A.2 Mean time to extinction

The mean time to extinction is calculated by writing Eq. (4.68) in matrix form,

and solving the equation as follows� �
M = coefficient_matrix(

probability_values , max_level_value , mu_value , nu_value ,

stimulus_value

)

b = [-1] * int(comb(max_level_value , dimension))

Solution = spsolve(M, b)� �
where the coefficient_matrix function generates the coefficient matrix for

Eq. (4.68).

A.3 Distribution of clonal sizes at the first ex-

tinction event

To calculate the distribution of clonal sizes at the time of extinction, first the

Bj,k, and Ri
j,j+1 matrices must be calculated. The upper diagonal matrices

Bj,j+1 defined in Eq. (4.77), representing birth events, are calculated using the

birth_diagonal_matrices function as follows� �
for level_value in range(dimension , max_level_value):

b_matrices.append(

birth_diagonal_matrices(

level_value ,

dimension ,

probability_values ,

stimulus_value ,

mu_value ,

nu_value ,

)

)� �
The lower diagonal matrices Bj,j−1 defined in Eq. (4.76), representing death events,

are calculated using the death_diagonal_matrices function as follows
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� �
for level_value in range(dimension + 1, max_level_value + 1):

d_matrices.append(

death_diagonal_matrices(

level_value ,

max_level_value ,

dimension ,

probability_values ,

stimulus_value ,

mu_value ,

nu_value ,

)

)� �
Finally, the absorption matrices Ri

j,j+1 defined in Eq. (4.78), representing when

the competition process reaches an absorbing state, are calculated as follows� �
for clone_number in range(dimension):

for absorbing_level_value in range(dimension - 1,

max_level_value):

block_column = []

for level_value in range(dimension , max_level_value + 1):

if absorbing_level_value != level_value - 1:

block_column.append(

dok_matrix(

(

int(comb(

level_value - 1,

dimension - 1)

),

int(

comb(

absorbing_level_value - 1,

dimension - 2,

)

),

)

).tocsc ()

)

else:

block_column.append(

absorption_matrix(
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level_value ,

clone_number ,

max_level_value ,

dimension ,

mu_value ,

nu_value ,

probability_values ,

stimulus_value ,

)

)

a_matrices[clone_number ]. append(block_column)� �
Now, the H−1

j matrices used in Algorithm 4.2 are calculated recursively as

follows� �
h_matrices = [identity(d_matrices [-1]. shape [0], format="csc")]

for level_order in range(len(d_matrices)):

gc.collect ()

matrix = identity(

b_matrices [-( level_order + 1)].shape [0], format="csc"

) - b_matrices [-( level_order + 1)].dot(

h_matrices [-1].dot(d_matrices [-( level_order + 1)])

)

matrix = np.linalg.inv(matrix.todense ())

h_matrices.append(csc_matrix(matrix))� �
which are then used to calculate the Ki

j,k as follows� �
k_matrices = [a_matrices[clone_number ][ column_number ][ -1]]

for level_order in range(

len(a_matrices[clone_number ][ column_number ]) - 1

):

k_matrices.append(

b_matrices [-( level_order + 1)].dot(

h_matrices[level_order ].dot(k_matrices [-1])

)

+ a_matrices[clone_number ][ column_number ][-( level_order +

2)]

)� �
Finally, the distribution of clonal sizes at the time of extinction defined in

Eq. (4.74), U, is calculated as
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� �
distribution_column = [h_matrices [-1].dot(k_matrices [-1])]

for level_order in range(len(k_matrices) - 1):

matrix_term = (

d_matrices[level_order ].dot(distribution_column [-1])

+ k_matrices [-( level_order + 2)]

)

distribution_column.append(

h_matrices [-( level_order + 2)].dot(matrix_term)

)

distribution[clone_number ]. append(distribution_column)� �
A.4 Probability distribution of the number of

divisions before extinction

In order to calculate the probability distribution of the number of divisions before

extinction, first the C
(i)
j,k matrices must be calculated. The upper diagonal matrices

defined in Eq. (4.83), C
(i)
j,j+1, are calculated as follows� �

for level_value in range(max_level_value):

b_matrices.append(

birth_diagonal_matrices_division(

level_value ,

dividing_clone ,

dimension_value ,

probability_values ,

stimulus_value ,

mu_value ,

nu_value ,

)

)� �
and the lower diagonal matrices defined in Eq. (4.82), C

(i)
j,j−1 are calculated as

follows� �
for level_value in range(1, max_level_value + 1):

d_matrices.append(

death_diagonal_matrices_division(

level_value ,
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extinction

max_level_value ,

dividing_clone ,

dimension_value ,

probability_values ,

stimulus_value ,

mu_value ,

nu_value ,

)

)� �
and these matrices are used to find the H−1

j used in Algorithm 4.2 as follows� �
h_matrices = [identity(d_matrices [-1]. shape [0], format="csc")]

for level_order in range(len(d_matrices)):

gc.collect ()

matrix = identity(

b_matrices [-( level_order + 1)].shape [0], format="csc"

) - b_matrices [-( level_order + 1)].dot(

h_matrices [-1].dot(d_matrices [-( level_order + 1)])

)

matrix_inv = np.linalg.inv(matrix.todense ())

h_matrices.append(csc_matrix(matrix_inv))� �
Since the probability distribution of the number of divisions is found recursively,

the vector of division probabilities defined in Eq. (4.86), d
(i)
j , is calculated by� �

for current_level in range(max_level_value + 1):

d_vectors.append(

division_vector(

current_level ,

dividing_clone ,

current_division ,

max_level_value ,

dimension_value ,

probability_values ,

stimulus_value ,

mu_value ,

nu_value ,

previous_division ,

)

)� �
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where the parameter previous_division contains the vector of probabilities

calculated in the prior step.

Then, similarly to the code presented in Appendix A.3, the Ki
j,k matrices are

calculated� �
k_vectors = [d_vectors [-1]]

for level_order in range(len(b_matrices)):

vector = (

b_matrices [-( level_order + 1)].dot(

h_matrices[level_order ].dot(k_vectors [-1])

)

+ d_vectors[-( level_order + 2)]

)

k_vectors.append(vector)� �
which are then used to calculate the probability of dividing ℓ times before becoming

extinct defined in Eq. (4.87), Di,ℓ, as follows� �
if num_divisions != 0:

distribution.append(coo_matrix (([], ([], [])), [1, 1]).tocsc

())

else:

distribution.append(coo_matrix (([1], ([0], [0])), [1, 1]).

tocsc())

for level_order in range(max_level_value):

matrix_term = (

d_matrices[level_order ].dot(distribution [-1])

+ k_vectors[-( level_order + 2)]

)

distribution_value = h_matrices [-( level_order + 2)].dot(

matrix_term)

distribution.append(distribution_value)� �
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Appendix B

Tetramer specific population

numbers for lung circulating and

spleen resident cells

This Appendix contains the mean frequencies and mean absolute numbers of cells

for lung resident and spleen circulating samples of WT-primed, T8A-primed, and

N3A-primed mice from the experiments carried out by by Jessica Gaevert at the

Paul Thomas laboratory in the Immunology department of St. Jude Children’s

Research Hospital, which are described in Section 5.3.1.
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Appendix C

Code for the statistical analysis of

IAV infection data

Code used to read flow-cytometry results from the experiment described in

Section 5.3.1, and perform the statistical analysis described in Section 5.4.

Python codes are for the visualisation of the data in Section 5.3.1, and part

of the analysis in Section 5.4.1. R codes are used for the analysis in Sec-

tions 5.4.1, 5.4.2, 5.4.3, and 5.4.4. The full code has been published and is

available at https://doi.org/10.5281/zenodo.7463077 (Luque, 2022b)

C.1 Reading flow-cytometry results

The experimental data presented in Section 5.3.1 is stored in .csv files (one file per

primary infection and CD45 positivity combination), where each row represents a

sample taken from a mouse, and columns represent: the tissue the sample was

taken from, the timepoint at which it was taken, the total number of cells in the

sample, the frequency of each tetramer-positive population, and the total number

of cells of each tetramer-positive population. A function, header_clipping, is

used to clear trailing whitespace from the column names, and standardise the

names of all files.

Three classes are used to analyse the data read from the files: the Mouse

class, used to represent a sample taken from a mouse, the Timepoint class,

used to represent a collection of Mouse objects from a given timepoint, and the
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Experiment class, used to represent a collection of Timepoint objects for a given

primary infection and CD45 positivity.

The Mouse class requires the number of cells of each tetramer-specific popula-

tion in order to create an object, as summarised in Table C.1. The Timepoint

constructor creates an empty Timepoint object, and the class implements methods

to assign a name to an instance (Timepoint.change_name(name : str)), and

add Mouse objects to it (Timepoint.add_mice(mice : list[Mouse ])). Finally

the Experiment class constructor requires a name for the experiment (name), and

a tag consisting of the name of the primary infection (tag). This also implements a

method to add Timepoint objects to a dictionary (Experiment.add_timepoint

(timepoints : list[Timepoint], timepoint_names : list[str])), in or-

der to maintain a link between the timepoint names and their data.

Arguments of the Mouse class

Argument Type Description

wt int WT single positive cells

t8a int T8A single positive cells

n3a int N3A single positive cells

wt_t8a int WT-T8A double positive cells

wt_n3a int WT-N3A double positive cells

t8a_n3a int T8A-N3A double positive cells

triple_positive int Triple positive cells

triple_negative int Triple negative cells

Table C.1: Arguments required to initialise an object of the Mouse class.

In order to extract the data from the .csv files into Experiment objects, the

data_extraction function is used. This function takes the following parameters

in order to create the Experiment object: primary, the virus variant used in the

primary infection, tissue, the tissue the sample was taken from, headers, the

list of the names of the columns in the file, time_names, the list of the names for

the timepoints in the file, standard_names, a list of the desired names for the

timepoints, cd45, the CD45 positivity of the sample, and timepoints, the number
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of timepoints to be extracted from the file. These parameters are summarised in

Table C.2.

Arguments of the Mouse class

Argument Type Description

primary str Virus variant of the primary infection.

tissue str Tissue the sample was taken from.

headers list[str] List of columns names of the file.

time_names list[str] List of timepoint names in the file.

standard_names list[str] List of desired names for the timepoints.

cd45 str CD45 positivity of the sample.

timepoints int Number of timepoints to be extracted.

Table C.2: Parameters used to extract the data from the .csv files using the

data_extraction function.

C.2 Calculation of the Spearman rank correla-

tion

To generate the results presented in Section 5.4.1, the Experiment class defines a

method, correlation_heatmap , that calculates the Spearman rank correlation

between the tetramer-specific populations, and generates a heatmap marking

the correlations significant at the 0.05, and 0.01 levels. This function uses the

Timepoint.to_df () method to transform the data of all the Mouse objects

contained in the timepoint into a pandas.DataFrame. Then, the corr(method=

"spearman") method of the DataFrame is used to calculate the Spearman rank

correlation between each of the tetramer-specific populations of cells. When de-

termining the significance of the correlations, the correlation_heatmap method

uses the Bonferroni adjustment to correct for multiple comparisons (Bland &

Altman, 1995).
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C.3 Tetramer specific ANOVA

To cluster the data into the appropriate groups to perform the ANOVA of tetramer-

specific cells presented in Section 5.4.1, the Experiment.to_df () method is used

to generate a .csv file containing all the population numbers indexed by tetramer-

specificity. Then, the aov and TukeyHSD functions from the R programming

language are used to perform the ANOVA and Tukey’s HSD tests and save the

results to the ANOVA/Results/ directory, as follows� �
for (file_index in 1:4){

Data <- read.csv(

paste0("ANOVA/Data/Tetramers/",file_names[[file_index ]])

)

for (time_index in 1:5){

Timepoint <- stack(

Data[Data$Challenge == time_names[time_index],],

select=-Challenge

)

aovTimepoint <- aov(values ~ ind , Timepoint)

tukeyTimepoint <- TukeyHSD(

aovTimepoint , ordered=TRUE , conf.level =0.95

)

write.csv(

as.data.frame(tukeyTimepoint [1]),

paste0("ANOVA/Results/WT/Tukey -",

time_file_names[[time_index]],"-",

organ [[file_index]],"-",

cd45[[file_index]],"-F.csv"

)

)

}

}� �
C.4 Epitope specific ANOVA

To perform ANOVA on the epitope-specific cells presented in Section 5.4.2,

the positive_cells_df(experiments : list[Experiment], timepoint :
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str , tetramer : str , file_name : str) function is used. This function col-

lects all the populations of cells positive for tetramer from the experiments

in the list experiments, at timepoint, and generates a .csv file where these

populations are clustered by their primary infection. Then, using R, the ANOVA

and Tukey’s HSD tests are done on the epitope-specific data, and saved to the

ANOVA/Results/<tetramer >/ directory, as follows� �
for (tetramer in tetramers){

for (cd45 in cd45_list){

for (tissue in tissue_list){

for (timepoint in timepoint_list){

Data <- read.csv(

paste0("ANOVA/Data/Tetramers/", tetramer ,

timepoint , tissue , cd45 , ".csv")

)

aovData <- aov(Cells ~ Experiment , Data)

tukeyData <- TukeyHSD(

aovData , ordered=TRUE , conf.level =0.95

)

write.csv(

as.data.frame(tukeyData [1]),

paste0("ANOVA/Results/Tetramers/Tukey -",

tetramer , timepoint , tissue , cd45 , ".csv")

)

}

}

}

}� �
C.5 Contraction and expansion ANOVA

To analyse the decay and expansion slopes as shown in Sections 5.4.3, and 5.4.4,

they must be first calculated from the data, and clustered appropriately. To this

end, the functions decay_slopes_df , and expansion_slopes_df are used. The

former takes as parameters a list of Experiment objects for the different primary

infections, a list of int representing the time at which the primary and memory

samples are taken, a str for the tetramer-specific population being considered,
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and a file name to save the clustered data as a .csv file. Once the files are

generated for all tetramer-specific populations, and both tissues, the ANOVA and

Tukey’s HSD tests are done as follows� �
for (tissue in tissue_list){

for (cd45 in cd45_list){

for (tetramer in tetramer_positivity){

Data <- read.csv(

paste0("ANOVA/Data/Decay/",

tissue , cd45 , tetramer , ".csv")

)

if (length(unique(Data$Primary)) > 1){

aovData <- aov(Slope ~ Primary , Data)

tukeyData <- TukeyHSD(

aovData , ordered=TRUE , conf.level =0.95

)

write.csv(

as.data.frame(tukeyData [1]),

paste0("ANOVA/Results/Decay/Tukey -",

tissue , cd45 , tetramer , ".csv")

)

}

}

}

}� �
On the other hand, the expansion_slopes_df takes as parameters a single

Experiment object, instead of a list of object, as well as a list of str representing

the challenge infections considered. All the other parameters are the same as

those for decay_slopes_df. Now, once the data files have been generated, the

ANOVA and Tukey’s HSD test are performed as follows� �
for (tissue in tissue_list){

for (cd45 in cd45_list){

for (primary in infections){

for (tetramer in tetramer_positivity){

Data <- read.csv(

paste0("ANOVA/Data/Expansion/", tissue ,

cd45 , primary , tetramer , ".csv")

)

if (length(unique(Data$Challenge)) > 1){
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aovData <- aov(Slope ~ Challenge , Data)

tukeyData <- TukeyHSD(

aovData , ordered=TRUE , conf.level =0.95

)

write.csv(as.data.frame(tukeyData [1]),

paste0(

"ANOVA/Results/Expansion/Tukey -",

tissue , cd45 , primary , tetramer , ".csv"

)

)

}

}

}

}

}� �
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Appendix D

Code for the analysis of random

recognition networks

Python code used to generate random TCR-VDP recognition networks using the

models described in Chapter 6, and simulate heterologous immune responses using

the Gillespie algorithm (Gillespie, 1976, 1977) on the multi-variate competition

model defined in Chapter 5. The full code has been published and is available at

https://doi.org/10.5281/zenodo.5227343 (Luque, 2021).

D.1 Generation of random recognition networks

The network generation code is based on two main classes: a Peptide class used

to represent VDPs, and a Clonotype class to represent T cell clonotypes. To

create an object of Peptide type three arguments are required: probability,

the probability of the peptide being recognised, position, the number of the

peptide, and stimulus, the stimulus provided by the peptide. These arguments

are summarised in Table D.1. When the class is instanced two other attributes are

created: clonotypes, a list of Clonotype objects that can recognise the peptide,

and recognised, the number of clonotypes that can recognise the peptide.

Objects of the Clonotype class require 12 arguments to be created: position,

the number of the clonotype, num_cells, the initial number of cells of the clono-

type, naive_homeostatic_rate , the homeostatic proliferation rate of a single

naive cell, naive_competition_matrix , a matrix containing the self-pMHC
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Arguments of the Peptide class

Argument Type Description

probability float Probability of peptide being recognised.

position int Number of the peptide.

stimulus float Stimulus provided by the peptide.

Table D.1: Arguments required to initialise an object of the Peptide class.

competition probabilities, memory_homeostatic_rate , the birth rate of a single

memory cell, effector_division_constant , the constant of effector division,

naive_death_rate , the death rate of a single naive cell, effector_death_rate ,

the death rate of a single effector cell, memory_death_rate , the death rate of a sin-

gle memory cell, naive_differentiation_constant , the differentiation constant

from naive to effector, memory_differentiation_constant , the differentiation

constant from memory to effector, and effector_differentiation_rate , the

differentiation rate from effector to memory. These arguments are summarised

in Table D.2. This class creates 6 other attributes when instanced: effector,

the number of effector cells of the clonotype, effector_dividing, the number

of effector cells currently dividing, effector_division_times , the list of times

when dividing effector cells will finish dividing, memory, the number of memory

cells, peptides, a list of Peptide objects that the clonotype can recognise, and

recognised, the number of peptides the clonotype can recognise.

The main body of the code contains the parameters necessary for the network

to be generated and simulated, they must be edited in place to generate the desired

network. These parameters are: network, the type of network to be generated, 0

for an Erdős-Rényi network (see Section 6.1.1), 1 for a configuration model network

(see Section 6.1.2), and 2 for a preferential attachment network (see Section 6.1.3),

num_clonotypes , the number of clonotypes in the network, starting_cells , the

number of initial cells for every clonotype, num_peptides , the number of peptides

considered, peptide_degree, the degree of peptide nodes in the configuration

model, and peptide_probability , the probability of a peptide being recognised.

These parameters are summarised in Table D.3.
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Parameters to generate a recognition network

Parameter Type Description

network int

0→ Erdős-Rényi network,

1→ Configuration model,

2→ Preferential attachment.

num_clonotypes int Number of clonotype.s

starting_cells int Starting number of cells for every clonotype.

num_peptides int Number of peptides.

peptide_degree int Number of recognised peptides on the con-

figuration model network.

peptide_probability float Probability that a peptide will be recog-

nised by a clonotype. If None the proba-

bility is calculated as peptide_degree /

num_peptides.

Table D.3: Parameters used to generate a random recognition network using the

models described in Chapter 6.

When the code is executed a list of Peptide objects is created according to

the parameters set. Then, a for loop creates Clonotype objects one at a time,

adds them to the list of clonotypes in the network, and generates their recognition

profile according to the chosen network generation model as follows1:� �
peptides = [

Peptide(peptide_prob_value , i, peptide_stimulus_value) for i

in range(num_peptides)

]

initial_clones = []

for clone_index in range(num_clonotypes):

initial_clones.append(Clonotype (*args))

initial_clones [-1]. add_peptide(

1The arguments of the Clonotype constructor have been replaced with *args in order

to make the code easier to read.
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peptides , network , degree=peptide_degree , clone_list=

initial_clones

)� �
where the network parameter determines the network model the add_peptide

method will use.

When network is 0 a network is generated using the Erdős-Rényi model, see

Section 6.1.1. In this case a random number between 0 and 1 is generated for

each Peptide to determine whether it is recognised by the Clonotype based on

its probability_value :� �
for peptide in peptide_list:

if peptide.position not in self.peptides:

check_value = uniform (0.0, 1.0)

if check_value < peptide.probability:

self.peptides.append(peptide.position)

self.recognised += 1

peptide.add_clonotype(self)� �
If network is 1, the configuration model is used to generate the network, see

Section 6.1.2. For this model a sample of the desired size is taken from the list of

Peptide objects and added to the recognition profile as follows� �
peptide_sample = sample(list(range(len(peptide_list))), degree)

for peptide_index in peptide_sample:

self.peptides.append(peptide_index)

self.recognised += 1

peptide_list[peptide_index ]. add_clonotype(self)� �
Finally, if network is 2 the preferential attachment model is used, see Sec-

tion 6.1.3. In this model an initial sample of Peptide objects is taken using the

Erdős-Rényi model. Then, this recognition profile is compared with that of the

other Clonotype objects already in the network, and if there is cross-reactivity

the Peptide objects not already shared are stored in an extra_peptides list:� �
self.add_peptide(peptide_list , 0)

if len(clone_list) > 1:

extra_peptides = []

for peptide in self.peptides:

for clone in peptide_list[peptide ]. clonotypes:
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for peptide_index in clone_list[clone]. peptides:

if peptide_index not in self.peptides and

peptide_index not in extra_peptides:

extra_peptides.append(peptide_index)

self.add_peptide(peptide_list , 0, subset=extra_peptides)� �
Then, extra_peptides is used to sample again for Peptide objects:� �
for peptide_index in subset:

if peptide_index not in self.peptides:

check_value = uniform (0.0, 1.0)

if check_value < peptide_list[peptide_index ]. probability:

self.peptides.append(peptide_index)

self.recognised += 1

peptide_list[peptide_index ]. add_clonotype(self)� �
D.2 Stochastic simulation of heterologous infec-

tion

In order to do stochastic simulations using the random recognition network

generated in Appendix D.1, the first step is to create lists with copies of the

the initial conditions of the simulation. These values will be used as the initial

conditions of the stochastic simulation, and their changes are appended to the

lists.

realisation_states = [deepcopy ([clone.cells () for clone in

current_clones ])]

realisation_naive = [deepcopy ([clone.naive for clone in

current_clones ])]

realisation_effector = [deepcopy ([ clone.effector + clone.

effector_dividing for clone in current_clones ])]

realisation_memory = [deepcopy ([clone.memory for clone in

current_clones ])]

realisation_times = [0.0]

This allows for the desired number of realisations to be run with the same conditions

without any risk of changing the original values.

Then, a function named gillespie_step, which performs one step of the

Gillespie algorithm for the multi-variate competition process defined in Chapter 5,
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is defined in the code. This function takes the arguments clone_list, a list

of the clonotypes in the current state, time, the current time, division_time,

the time for an effector cell to divide, current_infection , the current stimulus

rate from the infection, time_limit, the maximum time for the simulation,

and peptide_list, the list of peptides presented during the infection. After

performing this Gillespie step the function returns the list of updated Clonotype

objects, and the updated time, if time_limit is not None and the updated time

would take the process over this time, then the function returns the unchanged

state and time_limit. These parameters and results are summarised in Table D.4

Parameters of the gillespie_step function

Parameter Type Description

clone_list list[Clonotype] List of clonotypes in the current

state.

time float Current time.

division_time float Time for an effector cell to divide.

current_infection float Current stimulus rate available

from infection.

time_limit float Maximum time simulated.

peptide_list list[Peptide] List of currently present peptides.

Results of the gillespie_step function

Type Description

list[Clonotype] List of clonotypes in the updated state.

float Updated time.

Table D.4: Parameters and results of the gillespie_step which perform one

step of the Gillespie algorithm for the model defined in Chapter 5.

Using this function, the simulation is computed one step at a time as follows1:� �
while current_time != challenge_end:

1The arguments of the gillespie_step function have been replaced with *args in

order to make the code easier to read
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current_clones , current_time = gillespie_step (*args)

realisation_states.append(deepcopy ([clone.cells () for clone

in current_clones ]))

realisation_naive.append(deepcopy ([clone.naive for clone in

current_clones ]))

realisation_effector.append(deepcopy ([ clone.effector + clone.

effector_dividing for clone in current_clones ]))

realisation_memory.append(deepcopy ([clone.memory for clone in

current_clones ]))

realisation_times.append(deepcopy(current_time))

if [clone.cells() for clone in current_clones] == [0 for _ in

current_clones ]:

break� �
First, the gillespie_step function is used to calculate the next state of the

process and the time when this state was reached. Then, the lists containing the

populations and times of the current realisation are updated with the results of

the gillespie_step function. If all the populations have become extinct the

simulation is stopped. Now, since the simulated scenario has periods of infection

and homeostasis, the simulation is split into sections defined by their end-time and

the peptides being presented during that section. Then, each section is simulated

as shown above, and between simulations the current state is checked for total

extinction:� �
if [clone.cells() for clone in current_clones] == [0 for _ in

current_clones ]:

states.append(deepcopy(realisation_states))

naive.append(deepcopy(realisation_naive))

effector.append(deepcopy(realisation_effector))

memory.append(deepcopy(realisation_memory))

times.append(deepcopy(realisation_times))

continue� �
If all populations have become extinct, all data from the current realisation is

stored, and the next realisation is run.
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D.3 Calculation of the clustering coefficient

Using the expressions for the clustering coefficient found in Section 6.2 (see

Table 6.1), a function clustering_coefficient is defined to calculate the coef-

ficients. This function takes the parameter network, which informs the function

which type of network generation model is being considered as shown in Table D.5,

and multiple keyword parameters depending on the type of network, which are

summarised in Table D.6. The function returns the clustering coefficient for a

network with the given parameters as a float, or −1 if an error occurs.

Description of the network parameter

Type Options

str

mmsb → Mixed membership stocahstic blockmodel,

er → Erdős-Rényi model,

c → Configuration model,

pa → Preferential attachment model.

Table D.5: Description of the network parameter, and its options for the

clustering_coefficient function.
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