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Abstract

Energy management of distributed energy resources (DERs) is challenging due to the distributed

and uncertain nature of DERs. To optimally operate DERs and trade their energy as well as

energy flexibility for financial benefits, energy management for virtual power plants (VPPs) and

electric vehicle (EV) charging stations are investigated in this thesis. The research in this thesis

can be summarized into three parts. Part I provides a VPP operation strategy in the electricity

market environment. Part II proposes an EV charging station operation strategy considering

EV user incentives. Part III develops a coordinated VPP and EV charging station operation

framework based on the methods proposed in parts I and II.

(1) Economic VPP operation

In this part, an optimal VPP operation regime is proposed considering multiple electricity mar-

kets and multiple uncertainties. The proposed operation regime handles both the VPP market

bidding and unit dispatching problems. To deal with uncertainties, a hybrid stochastic mini-

max regret optimization model is proposed. To reduce the conservativeness of the formulated

optimization models, a self-adaptive algorithm is proposed.

(2) Economic EV charging station operation

In this part, an EV charging station operation strategy with an EV user incentive program

is proposed to improve the EV charging station economic benefit. To maximize the long-term

profit of the EV charging station, an optimal incentive price selection model is developed. In the

solution methodology, a problem linearization method is first proposed. Then, a distributed so-

lution methodology is developed based on the proposed adaptive alternating-direction-method-

of-multipliers algorithm.

(3) Economic VPP operation considering EV charging stations
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In this part, a multi-stakeholder VPP-charging station system is investigated. Firstly, a co-

ordinated operation framework is proposed for the VPP-charging station system to maximize

the total benefit of the system. Then, an improved EV user incentive program is proposed for

acquiring EV energy flexibility. At the cost allocation stage, a τ -value cost allocation method

is developed. To alleviate the computation burden in calculating the τ -values, a τ -values esti-

mation approach is proposed.

The effectiveness of the energy management methods proposed in this thesis is verified through

theoretical analysis and numerical simulations. Significant results suggest high potential for

practical application in certain scenarios.

Keywords: energy management, optimization, uncertainty, virtual power plants,

electric vehicles, charging stations
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Chapter 1

Introduction

1.1 Background

The growing concerns over climate change are accelerating the worldwide trend for decarboniza-

tion (Zhang et al. 2020). In 2021, the electricity sector emitted 13 gigatonnes of carbon dioxide,

accounting for over one-third of global energy-related carbon dioxide emissions (IEA 2022).

In power systems, distributed energy resources (DERs) are small-scale, clean installations of

electricity supply or demand resources such as small gas plants, solar arrays, small wind farms,

energy storage devices, and electric vehicles (EVs), as shown in Fig. 1.1.

As compared to traditional centralized power plants, DERs have the potential to significantly

reduce carbon emissions in the electricity sector by providing clean and renewable sources of

energy. The use of DERs also allows for greater flexibility and reliability in power systems,

as they can be located closer to where electricity is needed and can help to balance the grid

by reducing peak demand. Due to advances in technology and falling costs, DERs have been

gathering their momentum to be massively deployed in power systems in recent years, and this

growing trend is expected to continue in the future (Navigant 2019), as shown in Fig. 1.2.

DERs have the potential to provide a range of benefits. From the power system’s perspective,

DERs are the key components to achieve local supply of cleaner and more flexible energy, thus,

making the power system more sustainable and more reliable. For electricity consumers, DERs

can reduce the bills they pay for electricity, as well as improve the power quality.

Generally, DERs can be divided into dispatchable units and non-dispatchable units (Rahman

1
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Figure 1.1: Distributed energy resources in power systems

Figure 1.2: Global DER market forecast
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Chapter 1. Introduction 1.1. Background

Table 1.1: DER classifications

Classification Power range Typical installations

Micro DERs Less than 2kW and connected to
low voltage network

Rooftop solar photovoltaic (PV),
battery storage

Mini DERs Greater than 2kW and up to
30kW

Fuel cells, EVs

Small DERs Greater than 30kw but no more
than 1MW

small hydro, combined heat and
power system

Medium DERs Greater than 1MW but no more
than 5MW

Biomass, hydro, local wind generat-
ing units

Large DERs Greater than 5MW Co-generation, hydro, solar thermal

et al. 2015). For dispatchable DER like small thermal plants and energy storage devices, their

power output can be adjusted by the DER operators. For non-dispatchable DERs such as solar

arrays and small wind farms, their power output cannot be controlled by their operators because

their power output is subject to fluctuations due to weather conditions, time of day, and other

factors outside of the operator’s control.

According to their sizes, DERs can be classified as micro DERs, mini DERs, small DERs,

medium DERs, and large DERs (DER classification 2021), as summarized in Table 1.1.

Micro DERs refer to DERs with installed capacities less than 2kW, which normally refers to

rooftop solar panels and small battery storage devices. Mini DERs are DERs with installed

capacity ranging from 2 kW to 30 kW, fuel cells and EVs normally fall into this category.

Small DERs have capacities larger than 30kW but less than 1MW. Typical small DERs include

combined heat and power systems and small hydro plants. Medium DERs are DERs with

capacities larger than 1MW but less than 5MW. Biomass plants and local wind farms can

belong to this class. Finally, there are some DERs with installed capacities larger than 5MW,

such as co-generation plants and some hydro plants. These DERs are classified as large DERs.

Though individual EV power capacities are small, EVs are of particular interest thanks to their

accelerating growing trend in recent years. From 2013 to 2021, the estimated number of EVs in

use worldwide increased from 0.4 million to 16.4 million (Global electric car stock 2022), with

an annual growth rate of 59%, as shown in Fig. 1.3.

With the fast adoption of DERs in power systems, traditional centralized management methods
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Figure 1.3: Estimated global EVs in use from 2013 to 2021

can no longer satisfy the operation requirements due to the distributed, heterogeneous, and

uncertain nature of DERs (Stekli et al. 2022). Hence, more advanced energy management

methods await to be developed to effectively operate DERs and maximize their energy as well

as energy flexibility utilities.

1.2 Motivations and Objectives

1.2.1 Motivations

Despite the huge benefits DERs can bring to power systems and electricity consumers, the

management of DERs in bulk power systems remains to be a challenging problem due to their

small capacity, uncertainty, heterogeneity, and distributed nature (Zhang et al. 2018; Jia et al.

2020; Quint et al. 2019). For system operators, DERs are normally too small and too many

to be centrally dispatched. In electricity markets, constraints of small installed capacity and

uncertainty make the entrance (which historically has been on the order of 500kW to 1 MW

for power capacity (Stekli et al. 2022)) and operation of the power market difficult for DERs

(Ju et al. 2016a; Braslavsky, Wall, and Reedman 2015). To address the difficulties in managing

DERs, intermediary aggregating agents that can actively manage DERs and interact with bulk

power system operators become necessary.

Internally, the intermediary DER aggregating agents are expected to forecast and optimize the

operation of DERs. Externally, the intermediary DER aggregating agents should exchange the
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Figure 1.4: Generalized intermediary DER aggregating agent operating framework

aggregated DER energy as well as energy flexibility with bulk system operators or other DER

aggregating agents to maximize the DER utility. In this way, the intermediary DER aggre-

gating agents can bridge DERs with bulk system operators by presenting a single, aggregated

DER operating profile at the bulk system operator side. The general operating framework of

intermediary DER aggregating agents is shown in Fig. 1.4.

The advantages of introducing intermediary DER aggregating agents are multi-fold. From the

bulk system operator’s perspective, the benefits include reduced operating problem complexity,

reduced communication cost, increased visibility of system components, and increased control-

lability. For DERs, through the aggregation of intermediary DER aggregating agents, they

can more actively participate in the operation of bulk power systems. More proactive operation

means increased utilization of DER energy and energy flexibility, which can create more benefits

for DER owners.

However, the operation of intermediary DER aggregating agents also faces many challenges. For

example, uncertainties in stochastic DERs and external factors like electricity markets must be

addressed. The operating problem dimensionality can also be a problem if the aggregated DERs
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are too many and the number of operation decision variables is huge. In some cases, multiple

intermediary agents with different interests are simultaneously incorporated, which leads to

cooperative or non-cooperative game problems and increases the operating problem complexity.

This thesis is dedicated to proposing advanced energy management methods that can help

intermediary DER aggregating agents handle operating challenges, and the DER aggregating

agents investigated in this thesis include virtual power plants (VPPs) and EV charging stations.

The methods proposed in this thesis is focused on maximizing the financial benefits of VPPs and

EV charging stations by maximizing the utility of DER energy as well as energy flexibility. This

thesis maximizes the financial benefits of VPPs and EV charging stations by developing profit-

oriented energy management methods that allow VPPs and EV charging stations to maximize

the utility of DERs integrated into this framework.

1.2.2 Thesis Objectives

This thesis aims to aggregate DERs as single operating entities such as VPPs and EV charging

stations for improving the economic benefits of DERs. To realize this target, the objectives of

this thesis are listed as follows:

• Identifying the factors that can affect the economic performance of DERs.

• Proposing methods that can improve the economic benefits of DERs.

• Evaluating the effectiveness of the proposed methods through experimental demonstra-

tions.

• Demonstrating the potential of applying the proposed methods to practical scenarios.

1.3 Thesis Contribution Summary

This thesis is dedicated to developing energy management methods for VPPs considering the

operation of EV charging stations. To realize this target, the research works are divided into

three major parts. The first part develops an optimal operating regime for VPPs to optimally

operate renewable resources and thermal power plants in electricity markets under multiple

uncertainties. The second part aims to propose an efficient EV charging station operation

strategy considering using incentives in exchange for EV user cooperation. In the third part,

a cooperative operating framework is proposed to allow the VPP and EV charging stations
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to coordinately operate renewable resources, thermal power plants, and EVs. The technical

contributions of each part can be summarized as follows:

The original contributions of the first part include:

• An optimal VPP operation regime under multiple uncertainties is proposed, which consists

of a day-ahead price-dependent bidding strategy and a real-time dispatching model.

• A stochastic minimax-regret optimization model is proposed to help the VPP make opti-

mal day-ahead bidding decisions.

• A self-adaptive algorithm is proposed to control the conservativeness introduced by the

minimax nature of the minimax-regret-based dispatching model in the real-time stage.

The original contributions of the second part include:

• A hybrid incentive program is proposed to encourage EV users to sell their charging

flexibility to the charging station. The proposed hybrid incentive program combines the

advantages of both static and dynamic incentive programs, namely, it has the features of

simplicity, consistency, and controllability.

• An optimal incentive price selection model is developed to minimize the charging station’s

operating cost. The optimization results of the proposed model can serve as a reference

for policymakers who adopt the proposed hybrid incentive program.

• An alternating-direction-method-of-multipliers with adaptive penalties solution algorithm

is presented to efficiently solve the problem in a distributed manner for large EV fleets.

The original contributions of the third part include:

• A multi-stakeholder VPP-charging station system consisting of a DER-based VPP and

multiple charging stations is investigated based on the methods proposed in chapters 3

and 4. A cooperative operation framework is proposed to handle the interactive day-ahead

bidding and real-time balancing problems of the VPP-charging station system.

• An EV user incentive program is proposed. As compared to the methods proposed in

chapter 4, the proposed incentive program can achieve more EV user cost reduction,

higher EV energy flexibility utilization, and lower total system cost.

• An estimated τ -value cost allocation method is proposed to efficiently address the cost
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allocation problem of the VPP-charging station system.

With the efforts made in this thesis, it is expected that my work will help DERs to be effectively

integrated into existing power systems and promote more sustainable usage of electrical energy.

1.4 Preliminary Knowledge

This section provides some theoretical fundamentals for the optimization models and solution

algorithms applied in this thesis.

1.4.1 Stochastic Optimization

The scenario-based stochastic optimization approach is used to handle uncertain random vari-

ables described by using probability distributions (Luis and Morteza 2021). In the scenario-

based stochastic optimization approach, each scenario represents a plausible realization of the

uncertain factors and has an associated probability of occurrence. In the formulation of a

stochastic optimization problem, the optimal decision is made such that the expected objective

value is optimized over all the representative scenarios.

Let X be the domain of all feasible decisions and x be the decision variables. Let S be the set

of representative uncertainty scenarios and s be a specific representative uncertainty scenario.

Denote the probability for each scenario s as πs. Let C(x, s) be the cost function. Then, the

general stochastic optimization problem formulation can be written as:

min
x∈X

{∑
s∈S

πsC(x, s)

}
(1.1)

1.4.2 Minimax-Regret Optimization

The minimax-regret optimization approach is used to handle uncertain random variables de-

scribed by using uncertainty intervals. In the minimax-regret optimization approach, the un-

certainty interval defines all possible outcomes of the uncertain factors. The solution of a

minimax-regret optimization problem considers all the possible realizations of the uncertain

factors within the uncertainty interval. The objective of a minimax-regret optimization prob-

lem is to minimize the worst-case regret under all possible uncertainty outcomes, in which the
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regret is defined as the objective value difference between the optimal solution with perfect

uncertainty information and the solution obtained with incomplete uncertainty information.

Depending on the availability of uncertainty information in the decision-making process, minimax-

regret optimization problems can be classified into two groups. The first group is minimax-regret

optimization problems without recourse. In this group of problems, all the decisions should be

made before any uncertain information is available. Let U be the set of all possible outcomes of

uncertain factors and u be a specific uncertainty scenario within the uncertainty set. Denote xu

as the optimal solution for a specific uncertainty realization u. Then, the general formulation

of the minimax-regret optimization problem without recourse can be written as:

min
x∈X

{
max
u∈U
{C(x, u)− C(xu, u)}

}
(1.2)

Another group of minimax-regret problems is minimax-regret optimization problems with re-

course, which is also known as two-stage minimax-regret optimization problems (Jiang et al.

2013; Chen et al. 2014). In two-stage minimax-regret optimization problems, the second-stage

decision variables can be adjusted after some uncertainty information becomes available. De-

note Y as the domain of all feasible first-stage decisions and y be a specific first-stage decision

action. Let x be the adjustable second-stage decision variables with domain X. Let C1(y)

denote the cost function of the first stage. Let C2(y, x, u) denote the cost function of the second

stage. Denote yu and xu as the optimal first- and second-stage solutions under uncertainty

scenario u. The general formulation of a two-stage minimax-regret optimization problem can

be formulated as:

min
y∈Y

{
C1(y) + max

u∈U

{
min
x∈X

C2(y, x, u)− min
xu∈X,yu∈Y

[C1(y
u) + C2(y

u, xu, u)]

}}
(1.3)

1.4.3 Column-and-Constraint-Generation Algorithm

The column-and-constraint-generation (C&CG) solution algorithm is meant to solve convex

two-stage robust optimization problems (Zeng and Zhao 2013) with the following form:
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min
y∈Y

{
C1(y) + max

u∈U

{
min
x∈X

C2(y, x, u)

}}
(1.4)

s.t.

A1y ≥ d1 (1.5)

A2x+A3y +A4u ≥ d2 (1.6)

Where A1,A2,A3, and A4 are matrices and d1,d2 are vectors.

In the C&CG algorithm, the two-stage robust optimization problem is firstly decomposed into

a primary problem and a secondary problem by introducing an auxiliary variable ϑ. After

decomposition, the primary problem can be written as:

min
y∈Y

C1(y) + ϑ (1.7)

s.t.

A1y ≥ d1 (1.8)

ϑ ≥ C2(y, xv, u
∗
v−1) (1.9)
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A2xv +A3y +A4u
∗
v−1 ≥ d2 (1.10)

Where xv are new variables added in iteration v. u∗v−1 are the optimized uncertainty realizations

in the last iteration v − 1.

The secondary problem can be written as:

max
u∈U

{
min
x∈X

[C2(y, x, u)]

}
(1.11)

s.t.

A2x+A3y
∗
v +A4u ≥ d2 (1.12)

where y∗v is the optimal solution of the primary problem in iteration v.

After the decomposition, the C&CG algorithm solves the decomposed problems by using the

following steps:

(1) Set lower bound (LB) to LB = −∞, upper bound (UB) to UB = ∞. Iteration number

v = 0. Set the convergence threshold ε.

(2) Solve the primary problem with added new variables xv and new constraints (1.9), (1.10).

Derive the optimal solutions {y∗v , x∗v, ϑ∗}. Update the lower bound as max[LB,C1(y
∗
v) + ϑ∗]

(3) Solve the secondary problem with the latest optimal first-stage solution y∗v . Derive the

optimal secondary solutions x∗v and the worst-case uncertainty scenario u∗v. Update the upper

bound as min {UB,C1(y
∗
v) + C2(y

∗
v , x

∗
v, u

∗
v)}

(4) If UB−LB ≤ ε, return y∗v and terminate the process. Otherwise, update iteration v = v+1,

add new variables xv+1 and new constraints (1.9), (1.10) to the primary problem. Go back to

step (2).
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1.4.4 Alternating Direction Method of Multipliers Algorithm

The alternating-direction-method-of-multipliers (ADMM) algorithm solves optimization prob-

lems with separable objective functions.

Denote x1 and x2 as two sets of variables in an optimization problem. Let F1(x1) and F2(x2)

denote the separated objective functions of the optimization problem. Then, a separable opti-

mization problem with the following form can be solved by using the ADMM algorithm (Boyd

et al. 2011):

min
x1,x2

{F1(x1) + F2(x2)} (1.13)

s.t.

A5x1 +A6x2 = d3 (1.14)

Where A5 and A6 are matrices and d3 is a vector.

In the ADMM solution algorithm, the augmented Lagrangian of the original problem can be

written as:

Lρ(x1, x2, x3) = F1(x1) + F2(x2) + xT3 (A5x1 +A6x2 − d3) +
ρ

2
∥A5x1 +A6x2 − d3∥22 (1.15)

Where x3 are dual variables of the original optimization problem, ρ is the update step length,

which is also known as the penalty factor. By introducing the scaled dual variable x4, the

augmented Lagrangian can be rewritten as:

Lρ(x1, x2.x4) = F1(x1) + F2(x2) +
ρ

2
∥A5x1 +A6x2 − d3 + x4∥22 + Constant (1.16)
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with the scaled dual variable x4 =
x3
ρ .

Under the ADMM solution framework, the problem can be solved by using the following steps:

(1) Set iteration v = 1. Set the penalty factor ρ and convergence threshold ε.

(2) Solve argminF1(x1) +
ρ
2

∥∥A5x1 +A6x
v−1
2 − d3 + xv−1

4

∥∥2
2
with xv−1

2 and xv−1
4 . Derive the

optimal solution xv1. Where xv−1
2 and xv−1

4 are the optimal solutions obtained in iteration v−1.

(3) Solve argminF2(x2)+
ρ
2

∥∥A5x
v
1 +A6x2 − d3 + xv−1

4

∥∥2
2
with xv1 and x

v−1
4 to derive the optimal

solution xv2.

(4) Update the scaled dual variable xv4 = xv−1
4 +A5x

v
1 +A6x

v
2 − d3.

(5) If A5x
v
1 + A6x

v
2 − d3 ≤ ε, terminate the iteration and return {xv1, xv2}. Otherwise, go back

to step (2).

1.4.5 τ-Value Cost Allocation Model

The τ -value method is a cost allocation method in cooperative games. Denote a grand coalition

with |Z| members as Z. Let the characteristic function v : 2Z → R of this grand coalition be the

cost generated from any sub-coalition S ∈ Z with v(∅) = 0. Then, a cooperative game can be

defined as the ordered pair ⟨Z, v⟩, in which the real number v(S) represents the cost generated

from the members of S when they cooperate.

In this cooperative game ⟨Z, v⟩, for each player l ∈ Z in the sub-coalition S : {S ∈ Z, l ∈ S},

the marginal cost contribution Ml(S, v) of player l to the coalition S is:

Ml(S, v) = v(S)− v(S\{l}) (1.17)

where the last term represents the cost generated by the rest members of S without player l.

When the considered sub-coalition is the grand coalition Z, this marginal contribution of player

l is defined as its utopia cost Mu
l (Z, v):

Mu
l (Z, v) = v(Z)− v(Z\{l}) (1.18)
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The utopia cost represents the cost contribution of a considered player to the total cost of the

grand coalition. Namely, when a new player is added to the grand coalition, the utopia cost of

the added new player is the increment of the total grand coalition cost due to the addition of

this new player. The utopia cost Mu
l (Z, v) is the minimum cost player l should pay. Because if

player l wants to pay less, then it is more advantageous for other players in the grand coalition Z

to remove player l. Hence, the utopia costMu
l (Z, v) provides a lower bound of the cost allocated

to player l. Next, an upper bound of the cost allocated to player l is found by identifying the

maximum cost player l should pay.

The remainder R(S, l) of player l in a sub-coalition S is defined as the cost remanent for player

l in the coalition S if all other players h : {h ∈ S, h ̸= l} only pay their utopia costs:

R(S, l) = v(S)−
∑

h∈S\{l}

Mu
h (Z, v) (1.19)

Then, for each ∈ Z, the maximum right cost Mmrc
l (v) is defined as the minimum remainder

player l can have from all possible sub-coalitions that contain player l:

Mmrc
l (v) = min

S:l∈S
R(S, l) (1.20)

The maximum right cost of player l is the maximum cost player l needs to pay in the grand

coalition. Because if player l pays more than Mmrc
l (v), then the sub-coalition S with R(S, l) =

Mmrc
l (v) would form a more solid coalition by making all other players in S pay their utopia

costs. Hence, Mmrc
l (v) can serve as an upper bound of the cost allocated to the player l.

After obtaining the utopia costs and maximum right costs, the lower and upper bounds of costs

allocated to each player in the grand coalition can be determined. With the upper and lower

bounds, it is reasonable to find a compromise between the lower and upper bounds to be the

solution for the cost allocation problem. By using the lower and upper bounds of costs allocated

to players, the τ -values for each player l ∈ Z can be computed such that each player pays a

cost that lies between their lower- and upper-cost bounds:
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τl(v) = ϕMmrc
l (v) + (1− ϕ)Mu

l (Z, v) (1.21)

where the coefficient ϕ ∈ [0, 1] can be uniquely determined by satisfying the efficiency criterion:

∑
l∈Z

τl(v) = v(Z) (1.22)

In the cost allocation problem, the obtained τ -value τl(v) for player l is the cost allocated to

that player.

1.5 Thesis Structure

This thesis is meant to aggregate DERs through VPPs and EV charging stations for improving

the economic benefits of DERs. The research structure of this thesis is illustrated in Fig. 1.5.

The rest of this thesis is organized as follows:

Figure 1.5: Research structure illustration

Chapter 2 first reviews the most common intermediary DER aggregating agents in the literature
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by giving their definitions, analyzing their problem objectives, and presenting their operation

constraints. Then, as the focus of this thesis, the energy management methods for VPPs, EV

charging stations, and VPPs considering EVs will be reviewed.

Chapter 3 proposes an optimal VPP operation regime to optimally operate renewable energy

sources and thermal power plants in electricity markets considering multiple uncertainties.

Chapter 4 proposes an EV charging station operation strategy with an EV user incentive pro-

gram for encouraging EV user participation in EV charging station charging scheduling.

Based on the methods proposed in chapters 3 and 4, chapter 5 proposes a coordinated VPP and

EV charging stations operating framework to cooperatively operate renewable energy sources,

thermal power plants, and EVs in electricity markets under multiple uncertainties. Besides, the

conflicting interests between the VPP and EV charging stations are also addressed in chapter

5.

Chapter 6 concludes this thesis and provides some possible future extensions.
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Chapter 2

Literature Review

In the literature, there has been a wide range of pioneering works devoted to developing efficient

energy management methods for DER aggregating agents. For different types of intermediary

DER aggregating agents, the proposed energy management methods may be different in their

problem objectives and operating constraints. This section first introduces some common in-

termediary DER aggregating agents by providing their definitions, analyzing their problem

objectives, and presenting their operation constraints. Then, as the focus of this thesis, the

energy management methods for VPPs, EV charging stations, and VPPs considering EVs will

be reviewed.

2.1 DER Aggregating Agents in Power Systems

Intermediary DER aggregating agents are meant to help bulk system operators to manage

DERs more efficiently and visibly. To accommodate various operating conditions and purposes,

different DER aggregating agents should be carefully selected to achieve better management

performances.

In the literature, the most common DER aggregating agents include VPPs and microgrids. For

these aggregating agents, all kinds of DERs such as small-scale thermal power plants, renew-

able generation, demand response resources, and EVs can be integrated into their operation.

There are also some special DER aggregating agents like EV aggregators and EV charging sta-

tions. Normally, EV aggregators and EV charging stations can only collectively manage the

charging/discharging operation of EVs. In some special cases (Mouli, Bauer, and Zeman 2016;
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Fathabadi 2017; Singh et al. 2020; Shin, Choi, and Kim 2019; Sun 2021), the EV charging

stations may also be equipped with energy storage devices and solar arrays, which enable them

to operate a wider range of DERs other than EVs. These DER aggregating agents will be intro-

duced next by providing their definitions, discussing their problem objectives, and explaining

their operating constraints.

2.1.1 Virtual Power Plants

VPPs are cloud-based aggregating platforms of DERs (Bhuiyan et al. 2021). The cloud-based

feature makes it possible for the components of VPPs to be distributed in different geographical

locations without physical connections between them. The category for VPP is subdivided into

commercial VPPs and technical VPPs (Pourghaderi et al. 2018). Commercial VPPs are a por-

trayal of DERs that participates in electricity markets similar to traditional transmission power

plants. In commercial VPPs, network constraints are not modeled in the operating strategies

(Pourghaderi et al. 2021), and the focus is to earn as much profit as possible from electricity

markets by selling the DER energy and energy flexibility. Technical VPPs are responsible for

the network balance and clarity of DERs to the operators, which makes technical VPPs more

engaged in the system management of power system networks (Foroughi et al. 2021).

For VPPs, there are two major objectives in the operation problems, including developing exter-

nal bidding strategies in electricity markets and making internal energy management decisions

for the DERs under control (Naval and Yusta 2021). In the bidding problems, the aim is to

maximize the operating profit while reducing energy production forecast errors and economic

penalties due to the forecast errors. The constraints in the bidding problems include a series

of technical and temporal constraints for the generators, such as power output limits, ramp

limits, unit commitment status, reserve requirement, and energy balancing constraints (Camal,

Michiorri, and Kariniotakis 2018; Nezamabadi and Setayesh Nazar 2016; Karimyan et al. 2016).

In energy management problems, the aim is to optimize the scheduling of different generation

facilities, storage systems, and electricity demand to maximize the final VPP profit. The energy

management models are typically technical-economic dispatching problems that determine the

final power output of each dispatchable unit. In energy management problems, the VPP op-

eration is subject to energy balancing constraints and technical constraints, such as generator

availability, electricity exchange with the markets, and state-of-charge (SOC) of energy storage

devices.
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2.1.2 Microgrids

A microgrid is a concept that accommodates renewable and conventional energy resources on

a small scale while merging the integral parts of the power system to attain reliable operation

throughout the generation to load demand (Muhtadi et al. 2021). Specifically, all the compo-

nents of a microgrid should be constrained within a predefined geographical area and should be

physically connected (Nosratabadi, Hooshmand, and Gholipour 2017). Depending on the con-

nection states, microgrids can be classified as grid-connected microgrids that can interchange

energy with the utility grid, and islanded microgrids that can operate independently to maintain

their system stability (Ferruzzi et al. 2016). For some grid-connected microgrids, the connection

can be switched off to disconnect the microgrid from the main grid in case of main-grid failure

to maintain the stability of the microgrid. Based on the type of energy resources and consumers,

some works classify microgrids as AC or DC microgrids, where AC stands for alternating current

and DC stands for direct current.

In the microgrid operation, the objective function can be roughly classified into two categories,

including cost minimization problems and power quality maximization problems (Jirdehi et

al. 2020). In cost minimization problems, the objective is formulated as a cost function that

may involve various costs like energy procurement, generator fuel, maintenance, energy storage

device degradation, generator start-up, power curtailment, user comfort violation, and energy

not supplied (Nwulu and Xia 2017; Wang et al. 2017b; Aboli, Ramezani, and Falaghi 2019; Yuan

et al. 2022; Gazijahani and Salehi 2017; Wang et al. 2017a). In power quality maximization

problems, the objectives are mostly formulated to control the voltages (Olival, Madureira,

and Matos 2017; Merritt, Chakraborty, and Bajpai 2017; Chen, Hou, and Hui 2016) and

regulate the frequencies (Heidari, Seron, and Braslavsky 2017; Li et al. 2017; Khooban et

al. 2017). For microgrids, the operating constraints are more complicated than VPPs since

network security should be guaranteed. The electric power balancing constraints ensure that

the energy production is equal to the sum of demands and network losses. The generation

limits for generators include the maximum/minimum power output and the ramping limits.

The energy storage constraints such as the power of charging/discharging and terminal SOC. In

the grid-connected mode, the energy exchange with the main-grid is limited by the capacity of

the point-of-common-coupling. Considering the network security, voltage, frequency, bus angle,

and power line current should be involved in the problem formulations.
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2.1.3 EV Aggregators

An EV aggregator is a cloud-based platform that can aggregate EV fleets to optimize their

charging behavior and participate in electricity markets on behalf of the EV fleets. EV aggrega-

tors can remotely monitor and control the charging/discharging states of EV batteries (Zheng,

Wang, and Yang 2023). Hence, EV aggregators can utilize the EV energy flexibility to minimize

the total operating cost (Zheng, Wang, and Yang 2023; Aliasghari, Mohammadi-Ivatloo, and

Abapour 2020; Zheng et al. 2020; Cao et al. 2020; Wang et al. 2022c) or provide a series of grid

services (Wenzel et al. 2017) like frequency regulation (Wang et al. 2020; Ko, Han, and Sung

2016), voltage control (Hashemi, Shahabi, and Teimourzadeh-Baboli 2019; Xu et al. 2019) and

supporting renewable integration (Rezaei et al. 2020; Shamshirband, Salehi, and Gazijahani

2018).

In EV aggregator operating problems, the objective is normally formulated to maximize the

total benefit of the EV aggregator. The benefit terms can include a wide range of factors such

as energy market cost/revenue, ancillary service market revenue, EV user energy bill, incentives

paid to EV users for utilizing the EV charging/discharging energy flexibility, and penalty for

loss of commitment to the offered ancillary service capacity (Zheng, Wang, and Yang 2023;

Aliasghari, Mohammadi-Ivatloo, and Abapour 2020; Shamshirband, Salehi, and Gazijahani

2018). In EV aggregator operating problems, the constraints may include electricity market

capacity constraints, EV charging rate constraints, EV battery capacity constraints, reserve

margin constraints, power balancing constraints, and EV charging demand constraints.

2.1.4 EV Charging Stations

EV charging stations are an important type of physical charging infrastructure where EV users

go to recharge their EVs. Similar to EV aggregators, EV charging stations can also monitor and

manage the charging/discharging states of EVs to maximize their benefit or provide some grid

service (Wu and Sioshansi 2019; Wu et al. 2022). Based on the target customers, EV charging

stations can be classified as private charging stations, semi-public charging stations, and public

charging stations (Ministry 2021). Private EV charging station usage is limited to personal EV

or EV fleets owned by one entity, such as some bus charging stations. Semi-public charging

station usage is normally limited to a restricted set of EV users such as apartment residents and

university staff. Public charging stations are charging infrastructures that are open to all EV
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users. Depending on the system configurations, EV charging stations can be pure EV charging

stations, PV-EV charging stations (Mouli, Bauer, and Zeman 2016; Fathabadi 2017), and PV-

ESS-EV charging stations (Singh et al. 2020; Shin, Choi, and Kim 2019; Sun 2021), where ESS

stands for energy storage systems. Based on the charging modes, EV charging stations can also

be classified as AC, DC, and inductive EV charging stations (Rajendran et al. 2021).

The operating objectives of EV charging stations can involve operation cost minimization, power

loss minimization, optimal power flow, renewable integration, peak load shaving, and valley

load filling (Wu et al. 2022). The operating constraints in EV charging station management

problems normally include the EV charging rate limits, EV battery SOC limits, EV battery

capacity constraints, and EV charging demand limits. When energy storage is included, the

operation constraints should also include the energy storage device limits such as initial and

terminal SOC, charging/discharging rate, and energy capacity limits.

In this thesis, the primary focus is the operation of VPPs and EV charging stations, and the

goal is to develop energy management methods that optimally operate DERs through VPPs

and EV charging stations. Hence, the rest of this section specifically reviews the VPP operation

methods, the EV charging station management methods, and the VPP operation considering

EVs.

2.2 VPP Operation

VPPs can network DERs to forecast and optimize their operation, and trade the energy as well

as energy flexibility of DERs in electricity markets to generate profits. To achieve this goal,

VPPs need to interact with various electricity markets. During the interactions with electricity

markets, a major challenge of VPP operation is how to deal with the uncertainties that arise

from both DERs and electricity markets (Yu et al. 2019). This subsection first reviews different

electricity markets VPPs can participate in, then discuss the VPP uncertainty problem by

presenting the uncertainty models and corresponding optimization techniques.

2.2.1 Electricity Markets for VPPs

VPP can participate in multiple electricity markets to increase revenue sources and improve

profitability. However, participating in multiple markets can also bring more technical and

temporal constraints on the VPP operation problem, making the problem more complicated
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to coordinate between different markets. To develop better VPP operating strategies, it is

necessary to know about what the electricity markets are and understand how they work.

According to the time difference between the market-clearing and physical delivery of energy/en-

ergy flexibility, electricity markets can be classified as forward markets, day-ahead markets,

intraday markets, and real-time markets (Naval and Yusta 2021).

The forward market is designed for energy exchange over a specified period at a fixed price.

Participating in the forward market enables securing long-term prices and product quantities.

Hence, hedging the risk of dealing with more volatile spot market prices (Toubeau, De Grève,

and Vallée 2017). In the forward market, energy transactions can be made at times that are

several weeks to several years before the physical delivery happens. In (Toubeau, De Grève, and

Vallée 2017; Jafari and Foroud 2020), VPP operating models considering the forward market is

proposed to increase the VPP profitability.

The day-ahead market is meant to conduct electricity transactions between suppliers and con-

sumers for each hour of the following day. In the day-ahead market pool, each participant

submits their energy offers or demand bids, and the pool matches these offers and bids to form

energy transactions between market participants. In most VPP works, the revenue from the

energy day-ahead market is the major source of VPP income.

The intraday market trades energy at a time horizon that is closer than the day-ahead market.

In the intraday stage, there is more available information than in the day-ahead stage. Hence,

some unexpected energy deviations in the day-ahead stage can be settled in the intraday market.

As the penetration level of renewable generation increases, the stochasticity in generation makes

the intraday market more and more important. In (Nguyen, Le, and Wang 2018; Wozabal and

Rameseder 2020; Wei et al. 2018; Kong et al. 2019), the intraday market is included to make

up for day-ahead forecast errors and reduce the VPP operating cost.

As the last opportunity for balancing energy production and consumption, the real-time market

has the shortest time horizon between the market clearing and the physical delivery. Normally,

this time interval ranges between five to thirty minutes (Naval and Yusta 2021). In (Rahimiyan

and Baringo 2015; Kasaei, Gandomkar, and Nikoukar 2017; Shafiekhani et al. 2019; Zhou et al.

2020; Baringo and Baringo 2016), the VPP participates in the real-time market to settle its

energy deviations that cannot be economically covered by using its own DER energy flexibility.
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Electricity markets can also be classified by the type of products they trade. Energy markets

trade electricity energy, and ancillary service markets trade ancillary services that can help to

ensure the power quality, security, and reliability of the electricity generation and transmission

system.

By participating in energy markets, VPP earns profits by selling DER energy. Almost all VPP

operating frameworks consider energy markets in the operating problems. Some VPP works

involve ancillary service markets to diversify the VPP income sources. In ancillary service

markets, the DER energy flexibility can be traded to increase VPP profit. In (Camal, Michiorri,

and Kariniotakis 2018; Wang et al. 2017b; Liang and Guo 2016; Shayegan-Rad, Badri, and

Zangeneh 2017), reserve markets are considered in VPP operating problems to increase the

VPP income. In (Shayegan-Rad, Badri, and Zangeneh 2017; Tajeddini, Rahimi-Kian, and

Soroudi 2014; Wang, Riaz, and Mancarella 2020), the frequency-regulation market is involved

in the VPP operating model.

2.2.2 VPP Operation Uncertainties

Uncertainty problem is a major challenge in VPP research and applications. In VPP operation

problems, there are many uncertainty sources such as renewable power, market price, and load

demand (Yu et al. 2019). Uncertainties can have negative impacts such as increasing threats

to the safety and stability of system operation, reducing the estimation accuracy of variables

during the VPP operation and scheduling, and increasing the operation cost of the VPP. To

measure the influences of uncertainties in VPP operation, uncertainty models should be used to

describe the uncertainties. Then, to restrict the negative impacts of uncertainties, optimization

techniques should be developed based on the uncertainty description models to make optimal

operation decisions under uncertainties.

In the literature, the most popular descriptions for uncertainties in VPPs include the probability

distribution models and uncertainty interval models. In probability distribution models, the

random variables in the VPP operation are generally described by probability density functions

such as Normal distribution, uniform distribution, and Weibull distribution (Yu et al. 2019).

These probability density distributions can give information on how likely it is for uncertain

factors to take specific values. Hence, probability descriptions allow the VPP to decide what

actions to take for different uncertainty values with corresponding probabilities. Generally,
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probability descriptions allow VPPs to optimize the expected objective values. In uncertainty

interval models, the probability distributions of random variables are not required. Instead,

only the upper and lower bounds of uncertainties need to be determined. With all possible

uncertainty scenarios considered in the problem, uncertainty interval descriptions allow VPPs to

optimize the worst-case objective values, which usually tend to make the solutions conservative

(Wang et al. 2021b).

To handle uncertainties described by using probability distributions, the most common opti-

mization technique in the literature is the stochastic optimization approach. In the stochastic

optimization approach, uncertainties are represented by several scenarios with certain probabil-

ities (Zhou, Zhai, and Wu 2022; Koraki and Strunz 2017). In that case, stochastic optimization

problems aim to optimize the expected objective value under the generated uncertainty sce-

narios considering their probabilities. The stochastic optimization approach has been applied

to VPP operation problems in (Ju et al. 2016a; Nguyen, Le, and Wang 2018; Wozabal and

Rameseder 2020; Koraki and Strunz 2017; Abbasi et al. 2019; Rahimi, Ardakani, and Ardakani

2021; Baringo, Baringo, and Arroyo 2018a; Ju et al. 2019; Kardakos, Simoglou, and Bakirtzis

2015; Hadayeghparast, Farsangi, and Shayanfar 2019) to deal with uncertainties by optimizing

the expected objective values.

For uncertainties described with uncertainty intervals, the robust optimization approach is an

effective method to make operational decisions. In the robust optimization approach, solutions

that are insensitive to uncertain factor disturbances are found to guarantee the minimum per-

formance under all possible circumstances. To realize this target, the worst-case scenarios are

identified, and the optimal solutions are found to guarantee the VPP performance under the

worst-case scenarios. In (Rahimiyan and Baringo 2015; Baringo, Baringo, and Arroyo 2018a; Ju

et al. 2019; Jun, Jun, and Linpeng 2019; Liu, Xu, and Tomsovic 2015), the robust optimization

technique is used to handle uncertainties by ensuring the optimal VPP performance under the

worst-case scenarios.

Besides the robust optimization approach, the minimax-regret optimization approach is also

an effective optimization technique for handling distribution-free uncertain factors. In the

minimax-regret optimization approach, regret is defined as the objective value difference be-

tween the optimal solution with perfect uncertainty information and the solution obtained with

incomplete uncertainty information (Jiang et al. 2013; Fan et al. 2014). Similar to the robust
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optimization approach, the minimax-regret optimization approach also needs to identify the

worst-case uncertainty scenario and make optimal operational decisions against the worst-case

scenario. The difference is that the robust optimization approach directly optimizes the objec-

tive values, but the minimax-regret optimization approach minimizes the difference between the

objective values of the optimal solution with perfect information and the solution with partial

information. That is, the minimax-regret optimization approach always seeks to choose actions

that are closer to the optimal feasible solution. This mechanism of the minimax-regret opti-

mization approach makes it less conservative than the robust optimization approach. In (Jiang

et al. 2013; Fan et al. 2014), the minimax-regret optimization approach is applied to deal with

renewable uncertainties that are modeled using uncertainty intervals.

In the early stages of VPP research, the operating frameworks are relatively simple. Some early

VPP works only consider participation in the day-ahead energy market (Peik-Herfeh, Seifi, and

Sheikh-El-Eslami 2013; Peikherfeh, Seifi, and Sheikh-El-Eslami 2011; Giuntoli and Poli 2013;

Vasirani et al. 2013). Then, to bridge the information gap between the day-ahead forecast and

real-time operation, the intraday and real-time markets are introduced to enhance the VPP

performance (Rahimiyan and Baringo 2015; Kardakos, Simoglou, and Bakirtzis 2015; Pandžić

et al. 2013; Dabbagh and Sheikh-El-Eslami 2015). Further, to explore more possibilities for

generating income, the ancillary service markets are also involved in VPP operation (Camal,

Michiorri, and Kariniotakis 2018; Shayegan-Rad, Badri, and Zangeneh 2017; Baringo, Baringo,

and Arroyo 2018a; Dabbagh and Sheikh-El-Eslami 2015; Baringo, Baringo, and Arroyo 2018b).

For the uncertainty problem, some early VPP works choose not to include uncertainties in

the problem (Nezamabadi and Setayesh Nazar 2016; Mashhour and Moghaddas-Tafreshi 2010;

Mashhour and Moghaddas-Tafreshi 2010; You, Traeholt, and Poulsen 2009). Then, optimization

models that can only handle one type of uncertainty model such as probability distributions or

uncertainty intervals are applied in the VPP operation (Rahimiyan and Baringo 2015; Kardakos,

Simoglou, and Bakirtzis 2015; Hadayeghparast, Farsangi, and Shayanfar 2019; Zamani et al.

2016; Nosratabadi, Hooshmand, and Gholipour 2016; Shabanzadeh, Sheikh-El-Eslami, and

Haghifam 2015). To date, hybrid optimization models have been proposed for VPPs to handle

multiple uncertainties that are described by probability distributions and uncertainty intervals

(Baringo and Baringo 2016; Kong et al. 2020; Tan et al. 2020).
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2.3 EV Charging Station Operation

With the increasing stock of EVs, unscheduled EV charging load can degrade the power grid

performance and lead to collapses of the existing power grid (Fachrizal et al. 2020). Previous

research has shown that most EVs have energy flexibility available for performing load schedul-

ing to mitigate the pressure brought by increasing EV charging load (Heinisch et al. 2021;

Richardson 2013). Though it is not practical for power system operators to directly manage

the EV energy flexibility, aggregating agents can take over this task by acting as the intelligent

mediator between the power grid and EVs (Solanke et al. 2020).

As natural aggregators of EV charging load, EV charging stations are promising control agents

for managing EV energy flexibility (Wang et al. 2022a). In the literature, many energy manage-

ment methods have been proposed for EV charging stations. In the proposed energy manage-

ment methods, the main idea is to perform load shift and vehicle-to-grid (V2G) operations to

achieve a series of goals such as enhancing the system security, improving the financial benefit,

ensuring EV user charging satisfaction, and supporting renewable energy integration.

From the perspective of EV charging stations, the financial benefit is a primary focus of the

operation. In (You et al. 2015; Zhang and Li 2015b; Tan et al. 2017; Liu et al. 2018; Liu et al.

2019), cost minimization scheduling strategies are proposed for EV charging stations to control

the financial cost, which is normally the energy procurement cost.

To mitigate the pressure on the power system operation, a major application of EV charging

station scheduling is to provide grid services. These services can include load-flattening (Wang

et al. 2022b; Jovanovic and Bayram 2019; Hu et al. 2016), voltage control (Dong et al. 2018;

Singh, Jagota, and Singh 2018), frequency regulation (Divshali and Evens 2020) (Iqbal et al.

2020), and mitigating transformer degradation (Li et al. 2022; Zheng et al. 2021). By providing

these grid services, EV charging stations can help stabilize the grid operation to avoid or delay

heavy investment costs for strengthening the grid (Kong and Karagiannidis 2016; Nunes and

Brito 2017; Brinkel et al. 2020).

In some works, due to the mismatching between charging infrastructure and EV charging de-

mand, EV user waiting time becomes a major concern. In such cases, improving user satisfaction

is the focus of the EV charging station operating strategies. In (Zhang and Li 2015a; Wang and

Thompson 2018; Moghaddam et al. 2017), the limited EV charging station service capability is
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optimally scheduled to achieve as much EV user satisfaction as possible.

For PV-EV charging stations, a major operating target is to ensure the utilization of self-

equipped PV energy generation. In the operating strategies proposed for PV-EV charging

stations (Li et al. 2020; Rui et al. 2019; Torreglosa et al. 2016; Liu et al. 2015; Wang et al.

2021a), EV energy flexibility is used to cover the generation uncertainty of PV arrays to assist

the consumption of PV energy generation. Meanwhile, by using the energy generated from the

self-equipped PV arrays, the operating cost of the EV charging stations can be reduced due to

reduced energy bills.

Recently, multi-objective operating strategies that can simultaneously consider several factors

in EV charging scheduling operations become a hot research topic. The optimization models in

multi-objective operating strategies seek to find a compromise between a combination of multiple

objectives such as the financial cost and user satisfaction (Moghaddam et al. 2017), the grid

operation performance and user satisfaction (Luo et al. 2020), the PV energy consumption and

EV user satisfaction (Kouka et al. 2020), as well as the grid operation performance and financial

cost (Oliveira Farias et al. 2021).

Besides exploring different EV charging scheduling applications, another research field that has

attracted much attention in EV charging station scheduling research is developing incentive

programs for EV users in exchange for their EV energy flexibility. Due to limited EV battery

capacities and long recharging time, EV users normally prefer to recharge their EVs as quickly

as possible to mitigate their range anxieties (Chung et al. 2018). However, in EV charging

station scheduling problems, the common scheduling scenarios include delaying the charging

load through smart charging and injecting EV battery energy back into the grid through the

V2G operation (Solanke et al. 2020). Both smart charging and V2G can increase the time

needed to recharge EVs and reduce EV user satisfaction. Hence, incentives are necessary for

EV user cooperation. Otherwise, EV users will not be motivated to participate in the charging

station scheduling process.

Depending on the incentive signal update frequency, EV user incentive programs can be categori-

cally classified as static programs and dynamic programs. The incentive signal update frequency

of static incentive programs is relatively low, which keeps the incentive programs unchanged

over a relatively long period. The advantages of such programs are that they are consistent

and simple to implement, and EV users can easily use them as a reference for scheduling their
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charging plans.

Practices of static incentive programs include time-of-use pricing and critical peak pricing. In

(Su, Lie, and Zamora 2020), an optimal time-of-use tariff plan decision model is proposed to

shift the EV charging load from high-price hours to low-price hours. In (Dubey et al. 2015),

an optimal time-of-use tariff plan is proposed by evaluating various aspects of EV charging

behavior under the time-of-use tariff. In (Muñoz et al. 2016), several strategies including time-

of-use tariff are applied to EV charging load to mitigate the transformer burden imposed by

the high penetration level of EVs. In (Song, Shangguan, and Li 2021), a time-of-use charging

price program with a price reduction strategy is applied to reduce energy procurement costs and

distribute the benefits between EV users and charging infrastructure operators. In (Sheidaei

and Ahmarinejad 2020), both time-of-use and critical-peak-pricing mechanisms are applied to

the EVs to improve the VPP’s profitability. Similarly, both time-of-use and critical-peak-pricing

programs are used in (Sadati et al. 2019) to increase the profit of a distribution company. In

static incentive programs, consumers are allowed to sacrifice a certain degree of convenience

in return for reduced charging fees in a simple way. However, existing static programs cannot

provide EV charging stations with enough controllability to maximize their benefit from the

short-term market and system fluctuations.

Compared with static programs, dynamic programs update incentive signals more frequently in

response to short-term market and system information. The most popular dynamic programs

are dynamic pricing and transactive control programs. In (Zhao et al. 2017), a charging station

uses real-time energy and reserve price signals to incentivize EV users for altering their charging

schedules. In (Liu et al. 2021), dynamic price signals are used to encourage EV users to change

their charging plan or authorize the battery access right to the aggregator. In (Moghaddam

et al. 2019), a dynamic pricing model is proposed for multiple charging stations to coordinately

shift EV charging load from residential load peaks. A dynamic pricing framework for charging

stations is proposed in (Limmer and Rodemann 2019) to concurrently maximize the profit of

charging stations and reduce the peak load. In (Liu et al. 2018), the EV charging load is

managed by clearing a transactive market according to the day-ahead energy procurement and

real-time requests of EV users. The charging load in (Wu et al. 2018) is controlled through

a transactive market to which EV users need to submit their real-time charging requirements

and preference setting of demand response. A sensitivity-based real-time transactive control
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framework is proposed in (Hoque et al. 2021) to coordinate the EV charging behavior through

a local energy market.

Comparing dynamic and static incentive programs, dynamic programs can change the incentive

signals on a shorter time horizon, which enables more controllable charging scheduling actions

to handle short-term market and system fluctuations. Hence, dynamic incentive programs can

encourage more proactive participation of EV users in offering flexible services to the power

grid. Although dynamic programs are more controllable, they lack simplicity and consistency

compared to static programs. Besides, dynamic incentive programs assume that EV users can

actively respond to the price signals and alter their charging behavior responsively (Zhou et al.

2019), which is too optimistic as it takes effort and specific knowledge to complete these tasks.

Furthermore, to make optimal decisions to maximize the benefit, EV users have to be constantly

updated with the latest market information, which demands extra effort from EV users.

2.4 VPP Operation Considering EVs

In VPP operation, there are some renewable energy generators with stochastic power output.

The uncertainty in renewable generation can cause energy deviations between the forecast and

actual values. Such energy deviations can have negative impacts on VPP operation such as

increased operating costs. As energy consumers and providers, EVs can play a crucial role in

the operation and scheduling of VPPs by reducing such energy deviations (Yang and Zhang

2021). Hence, integrating EVs into VPP operation can provide a practical and economical

solution to improve VPP performance.

In the literature, there have been some pioneering studies that integrate EVs into VPPs for

operation scheduling and optimization in conjunction with other DERs like renewables and

thermal power plants. In (Kong et al. 2019; Ju et al. 2016b; Sheidaei and Ahmarinejad 2020;

Alahyari, Ehsan, and Mousavizadeh 2019; Sadeghi et al. 2021), EVs are scheduled with other

DERs in the VPP to coordinately maximize the VPP benefit.

When EVs are incorporated into VPPs, there are generally two control structures, including

direct control and hierarchical control structures (Yang and Zhang 2021). In the direct control

structure, the VPP can directly exchange information with EVs to schedule their charging/dis-

charging behavior (Shayegan-Rad, Badri, and Zangeneh 2017; Vasirani et al. 2013; Sadati et al.
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2019; Alahyari, Ehsan, and Mousavizadeh 2019; Sadeghi et al. 2021; Yang et al. 2020a). This

kind of control structure is feasible when the number of EVs under the VPP control is small.

However, if a large number of EVs are considered, the centralized control structure becomes

impractical due to expensive communication and computation costs. Besides, the ownerships

of VPP and EV charging facilities may be different, making it difficult for VPPs to directly

control the EV charging/discharging behavior.

To address large-scale EV fleet integration into VPPs, some researchers proposed a hierarchi-

cal control structure that introduces mediators to bridge VPPs and EVs. In the hierarchical

structure, the mediators are responsible for optimizing and controlling the charging/discharging

behavior of individual EVs. Under the aggregation of mediators, the VPP only needs to deal

with a single operating profile for each aggregating mediator. Hence, the VPP management

burden can be significantly reduced.

The hierarchical control structure has been applied in (Wang et al. 2022d; Fan et al. 2020), where

the considered EV aggregating mediators are EV charging stations. In (Wang et al. 2022d; Fan

et al. 2020), the VPP first optimizes the operation of DERs, then sends the optimized scheduling

signals to the EV charging stations. After receiving the scheduling signals, EV charging stations

dispatch the EV load to meet the VPP requirements. A drawback of the operation framework

proposed in these works is that the EV charging stations can only passively respond to VPP

price signals instead of proactively interacting with the VPP operator, which can weaken the

functionality of EVs as energy buffers.
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VPP Operation Strategy

In this thesis, VPP plays an important role in bridging DERs with electricity markets. To realize

efficient DER energy management in a VPP, this chapter presents a VPP operation framework

that deals with the VPP market bidding, energy scheduling, and unit dispatching problems.

Uncertainties from renewable energy resources and electricity markets are also involved in the

VPP operation problem formulations.

3.1 Chapter Introduction

Growing pressure on secured energy supply and environmental issues is now boosting the de-

velopment of DERs (Rahimi, Ardakani, and Ardakani 2021). In the past few decades, both the

bulk injection and penetration level of the DERs have been dramatically increased (Qiu et al.

2017). Moreover, many major energy consumption parties, such as China and the European

Union, have recently announced their carbon neutralization plans. In the foreseeable future,

the number of DERs will continue to grow to a great extent.

DERs normally feature small power capacities and inherent intermittency (Yang et al. 2020b).

From the perspective of the system operator, the massive integration of DERs into the power

system will cast great challenges on system operation security (Wang, Riaz, and Mancarella

2020). From individual DER points of view, they can hardly access the wholesale market and

benefit from the market competition. As a promising solution to the aforementioned occasion,

VPP can aggregate multiple DERs to become a single market participant with an integrated

operating profile (Kardakos, Simoglou, and Bakirtzis 2015). Through such VPP aggregation,
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the power fluctuations induced by DERs can be absorbed. Moreover, the aggregated DERs can

be admitted into the wholesale market for economic operation instead of “free-running”.

In electricity markets, joining multiple markets rather than only the day-ahead energy market

has become an efficient approach to improve the profitability of the market participants. In

(Ottesen, Tomasgard, and Fleten 2018), authors develop a multi-market bidding strategy for

demand side aggregators participating in a sequential of capacity reserve market, day-ahead, and

real-time flexibility markets. In (Fleten and Kristoffersen 2007), a bidding strategy is proposed

for a hydropower producer to participate in both the day-ahead and balancing markets in the

NORDPOOL system. In (Hedegaard, Pedersen, and Petersen 2017), a model predictive control

scheme is proposed to enable parallel participation of Denmark demand response providers in

both the day-ahead and intraday markets. In (Aasg̊ard et al. 2019), the authors review the

optimization models for hydropower producers bidding in multiple markets. It is concluded

that participating in multiple markets offers opportunities in the form of possibilities to trade

their way to profitable and flexible production schedules.

Owing to the fast-responding capability of the DERs, the VPP is of high potential to arbitrage

through the ancillary service markets (Sadeghi et al. 2021). In the literature, several attempts

have been engaged in VPP operation by considering the provision of reserve. At the early

stage, attempts to incorporate reserve provision in the VPP operation regime normally focus

on developing joint optimization models to maximize the VPP’s profit while neglecting the

uncertainties. In the works reported in (Mashhour and Moghaddas-Tafreshi 2010), authors

develop an optimization problem to maximize the profit from both selling the energy and proving

reserve under no uncertainty. In (Nezamabadi and Setayesh Nazar 2016), a more comprehensive

model that includes energy, reserve, and reactive power provision is developed to help the

VPP arbitrage in multiple markets without considering uncertainties. Later, the operating

strategies of VPPs with reserve become more complex by involving uncertainties in the decision-

making process. Whereas in this stage, these works normally concern only the day-ahead stage,

and the real-time stage is rarely included. In (Zamani et al. 2016), a modified scenario-based

method is proposed to optimize the VPP’s day-ahead energy and reserve scheduling decisions in

confronting renewable and market price uncertainties. The work in (Hadayeghparast, Farsangi,

and Shayanfar 2019) reports a stochastic optimization-based day-ahead scheduling strategy for

VPP with multiple uncertainties including renewable generation, market price, and electrical
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load. In the day-ahead self-scheduling model developed in (Baringo, Baringo, and Arroyo

2018a), scenarios and confidence bounds are used to jointly describe the uncertainties in price,

wind generation, and reserve calls.

To date, VPP works considering reserve provisions are becoming more mature. The gap between

the day-ahead stage forecast and the real-time stage information is handled by using multi-stage

models. In (Vahedipour-Dahraie et al. 2020), the authors propose a two-stage risk-constrained

stochastic optimization model for the VPP energy and reserve scheduling in both day-ahead and

real-time stages. In (Zhao et al. 2020), authors study a multi-energy VPP participating in the

day-ahead energy and reserve markets. In the intraday operation, adjustments are introduced

to the day-ahead baseline schedule with more accurate uncertainty information.

Indeed, researchers have progressed significantly in studying the VPP’s bidding and dispatching

with reserve. However, most of the existing works concern price-independent bidding strate-

gies in the operation of VPPs with reserve. That is, the energy exchange volume is initially

fixed regardless of the market-clearing results. Nevertheless, in some electricity markets (e.g.,

NORDPOOL, PJM, etc.), price-dependent offers can be more effective to reach economic out-

comes. In the literature, some preliminary attempts have been made for VPP by deploying the

price-dependent energy bidding strategy (Pourghaderi et al. 2018; Baringo and Baringo 2016).

As compared to price-independent offers, price-dependent offers are advantageous in reflecting

the suppliers’ aspiration to sell electricity at different price levels.

Based on the existing literature, this chapter aims to develop an optimal VPP operation regime

under several uncertainties. The proposed operation regime includes a novel price-dependent

bidding strategy and a real-time dispatching model. Towards this end, one should first resolve

the most challenging issue arising from the uncertainties of market price, renewable generation,

and calls for reserve deployment by the system operator. Currently, the stochastic optimization

approach (e.g., (Jafari and Foroud 2020; Hadayeghparast, Farsangi, and Shayanfar 2019; Ju

et al. 2016b)) is widely employed to handle uncertainties in the relevant works of VPP. How-

ever, in some cases, one can hardly obtain the precise probability distribution for uncertain

factors. Hence, the effectiveness is obviously limited by solely adopting stochastic optimization.

To tackle this issue, hybrid stochastic robust optimization models are proposed (e.g. (Baringo,

Baringo, and Arroyo 2018a; Jun, Jun, and Linpeng 2019; Liu, Xu, and Tomsovic 2015)), in

which the probability distribution is unnecessarily needed. However, considerable conserva-
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tiveness is inevitable due to the robust nature of these models. As an alternative to handling

uncertainties without accurate probability distributions, the minimax regret (MMR) approach

features distribution-free and less conservative. Thus, this method has also been duly deployed

in several power engineering applications (e.g., transmission expansion planning in (Chen et al.

2014), unit commitment problem in (Jiang et al. 2013), and thermal generator bidding problem

in (Fan et al. 2014), etc).

In the day-ahead bidding stage, it is assumed that the uncertainty intervals are used for modeling

renewable generation uncertainty and probability distributions for market price and reserve

deployment calls. Hence, on the one hand, confidence bounds are introduced to represent

the renewable generation, which serves as a prerequisite input of the MMR model. On the

other hand, the market price and uncertain calls for reserve deployment are described by using

scenarios complying with certain probability distributions, which enables the utilization of the

stochastic optimization model. In combining these two mechanisms, a novel hybrid stochastic

MMR model is proposed in this chapter to jointly resolve the aforementioned uncertainty issues.

In this chapter, risk-management tools are not considered in the proposed operation regime to

minimize the conservativeness of the obtained operating solutions.

To show the differences and contributions of our work, a summary of VPP operational works is

provided in Table 3.1, where four factors are involved for comparison, including price-dependent

bidding strategy in the day-ahead stage, real-time dispatch, reserve provision, and considering

multiple uncertainty models simultaneously.

At the power dispatching stage, to remain consistent with the MMR-based bidding model, a

similar mechanism is applied to the scheduling strategy to obtain the optimal VPP dispatch-

ing solutions. To control the conservativeness arising from the minimax nature of the MMR

approach, a self-adaptive algorithm is proposed to instantly adjust the uncertainty interval size

based on the revealed uncertainty information. The contributions of this chapter include:

• An optimal VPP operation regime under multiple uncertainties is proposed, which consists

of a day-ahead price-dependent bidding strategy and a real-time dispatching model.

• A novel stochastic MMR-based optimization model is proposed for the day-ahead optimal

bidding decision-making in VPP

• A self-adaptive algorithm is proposed to control the conservativeness introduced by the
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Table 3.1: VPP operation regime Summary

Reference Price-dependent
bidding

Real-time
dispatch

Reserve
provision

Multiple
uncertainty
models

(Shafiekhani et
al. 2019; Sheidaei
and Ahmarinejad
2020; Sadeghi
et al. 2021)

- - - -

(Pourghaderi
et al. 2018)

✓ - - -

(Dabbagh and
Sheikh-El-Eslami
2015)

- ✓ - -

(Nezamabadi and
Setayesh Nazar
2016; Mashhour
and Moghaddas-
Tafreshi 2010;
Baringo, Baringo,
and Arroyo
2018a; Zamani
et al. 2016; Zhao
et al. 2020)

- - ✓ -

(Hadayeghparast,
Farsangi, and
Shayanfar 2019;
Jun, Jun, and
Linpeng 2019;
Kong et al. 2020)

- - - ✓

(Vahedipour-
Dahraie et al.
2020)

- ✓ ✓ -

(Baringo and
Baringo 2016) ✓

- - ✓

The proposed
method

✓ ✓ ✓ ✓
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minimax nature of the MMR-based dispatching model in the real-time stage

The rest of this chapter is organized as follows. In Section 3.2, the studied model is discussed

in detail. Section 3.3 presents the formulations of the optimization problems. The proposed

solution methodology and the self-adaptive algorithm are presented in Section 3.4. Section 3.5

provides simulation results and discussions of the case studies. Section 3.6 concludes the work.

3.2 Problem and Model Description

This section first discusses what electricity markets that the VPP participates in, then provides

the VPP operation model under the considered electricity markets. Uncertainty models for

renewable generation and electricity markets will also be given in this section.

3.2.1 Electricity Market Structure

The day-ahead energy market considered in this chapter adopts a uniform pricing mechanism

and the market-clearing resolution is one hour, i.e., there are 24 clearing periods for each day.

For each hour, all the energy suppliers are expected to submit stepwise bidding curves indicating

the amount of energy they are willing to sell at different price levels. In normal practices, each

bidding curve comprises at most five steps (e.g., (Baringo and Baringo 2016) and (Peikherfeh,

Seifi, and Sheikh-El-Eslami 2011)). Hence, it is assumed that the energy market considered in

this chapter only accepts offers with at most five bidding steps. As reported in existing works

(e.g., (Kardakos, Simoglou, and Bakirtzis 2015) and (Pandžić et al. 2013)), the dual pricing

mechanism is applied for energy deviations at the ex-post settlement stage to encourage the

suppliers to provide the energy allocated during the bidding process. In this chapter, a similar

dual pricing scheme (as presented in (Kardakos, Simoglou, and Bakirtzis 2015)) is adopted

to settle the energy deviations based on market-clearing results. The settlement prices are

expressed as follows:

λ+t = ψ+ · λDA
t (3.1)

λ−t = ψ− · λDA
t (3.2)
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ψ+ ≥ 1 (3.3)

ψ− ≤ 1 (3.4)

where λDA
t is the day-ahead energy market-clearing price at time t; The balancing prices for

energy deficiency/surplus are given by λ+t / λ−t , respectively. Parameters ψ+ and ψ− are the

market penalty coefficients for energy deficiency and surplus deviations, respectively.

3.2.2 Virtual Power Plant Operational Model

VPPs are generally equipped with distributed thermal generators, renewable generators like

wind turbines and photovoltaic panels, as well as energy storage systems. A general configura-

tion for VPPs is shown in Fig. 3.1.

The VPP considered in this chapter participates in the forward reserve market and contracts

20% of its dispatchable generation capacity as the secondary reserve. The reserve considered in

this chapter is similar to the thirty-minute reserve (PJM thirty minute reserve 2019) in the PJM

market except that the resolution has been adjusted to one hour. The VPP receives revenue

for providing the potential reserve. Besides, once the reserve is called at a specific operating

time, the change in energy production will be settled at the day-ahead market-clearing price.

Inversely, failure to deliver the called reserve can result in energy deviations that will be settled

in the balancing stage at penalty prices.

In this study, the VPP operation is divided into two stages (i.e., the day-ahead bidding stage

and the real-time dispatching stage). At the day-ahead bidding stage, the VPP is faced with

multiple uncertainties relating to energy market price, wind energy generation, and calls for

reserve deployment by the system operator. At the real-time dispatching stage, the market

has been cleared and the system operator has informed the VPP of the called reserve volume.

Operation uncertainty is all induced by wind power generation at this stage.
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Figure 3.1: Configuration of a general VPP

3.2.3 Uncertainty Modeling

In this chapter, representative scenarios are used to model the wholesale energy market price

and call for reserve deployments. As inspired by (Vahedipour-Dahraie et al. 2020), a similar

scenario generation method is utilized in our study. Since all the bidding decisions are made

in the day-ahead stage, it is assumed that the probability distribution functions of reserve calls

remain unchanged during the next day. Specifically, five typical scenarios are generated for the

market price and the reserve deployment uncertainties, respectively. The values of the generated

scenarios are ordered as very high, high, medium, low, and very low, which can capture the

main features of the price and reserve uncertainty distributions as well as cover most of the

possible scenarios in our situation.

To represent the uncertainty induced by wind power generation, confidence bounds are adopted

to measure the output range. In our model, the confidence bounds are characterized by a

forecasting value fvr and an uncertainty coefficient σ, which indicates the size of the uncertainty

intervals. For given fvr and σ, the real wind power generation rvr is assumed to reside between
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the bounds expressed as:

[
(1− σ) fvrt ,min

{
(1 + σ) fvrt , P

r,ic
}]

(3.5)

where P r,ic is the installed capacity of the wind generator.

At the bidding stage, a constant empirical forecasting accuracy σDA is considered for all the

decision periods because no uncertainty information is revealed in this stage. At the dispatching

stage, to reduce the conservativeness stemming from the minimax nature of the dispatching

model, the confidence bounds are adjusted by the proposed self-adaptive algorithm based on

the uncertainty realizations. The intuition behind the self-adaptive algorithm is that the forecast

accuracy of renewable generations is temporally related (Ma et al. 2017; Tastu et al. 2011).

3.3 Problem Formulation

Further to section 3.2, this section presents detailed formulations for VPP day-ahead bidding

and real-time dispatching problems, respectively.

3.3.1 Day-Ahead Bidding Model

At the day-ahead bidding stage, the bidding problems of different hours are solved individually.

Because three different uncertain factors are considered in this chapter, a three-level model is

proposed to investigate the uncertainties at different scales. Firstly, the regret model is adopted

where only the renewable uncertainty is involved (i.e., Level 1). In concerning both renewable

and reserve uncertainties, the stochastic MMR model is formulated (i.e., Level 2). Last, in the

presence of all operational uncertainties including price uncertainty, the VPP bidding curves are

formed (i.e., Level 3). The hierarchical structure of the proposed bidding strategy is illustrated

below and presented in Fig. 3.2. It is worth mentioning that the optimal bidding result ob-

tained from the day-ahead bidding model is determined by factors including thermal generator

production, renewable generator production, and reserve deployment scenarios.

(1) Level 1: Regret Maximization

In our problem, regret is defined as the profit difference between the optimal solution with full
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Figure 3.2: The hierarchical structure of the day-ahead bidding model

knowledge of uncertainties and the solution obtained with incomplete information. At this level,

both the market-clearing price and reserve volume requested by the system operator are given,

the only uncertainty is related to wind power generation. The regret model identifies the worst-

case scenario regarding wind uncertainty for a given self-scheduling solution D =
{
PDA, PG

i

}
,

where PDA denotes the energy offered in the market and PG
i denotes the power generation of

the ith thermal generator.

Given the market-clearing price λDA and a called reserve volume PR, the maximum regret

θ(D|PR) for the self-scheduling decision D can be acquired by solving the following optimization

problem:

max
u

min
PDA,u,PG,u

i ,PB,u,yui

{∑
i f

G
(
PG,u
i

)
+ fB

(
PB,u

)
− fM

(
PDA,u

)
− fR (PR)

}
−minPB

{∑
i f

G
(
PG
i

)
+ fB

(
PB

)
− fM

(
PDA

)
− fR (PR)

}
 (3.6)
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s.t.

(3.1)− (3.4) (3.7)

fM (PDA) = λDA · PDA (3.8)

fR(PR) = λDA · PR (3.9)

fG(PG
i ) = ci(P

G
i )2 + bi · PG

i + ai (3.10)

fB
(
PB

)
=

 PB · λ+, PB ≥ 0

PB · λ−, PB ≤ 0
(3.11)

PB,u +
∑
i

PG,u
i + ηu = PDA,u + PR (3.12)

PB +
∑
i

PG
i + ηu = PDA + PR (3.13)

yui P
G,min
i ≤ PG,u

i ≤ yui P
G,max
i (3.14)
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(1− σDA)fvrt ≤ u ≤ min
{
(1 + σDA)fvrt , P

r,ic
}

(3.15)

yui ∈ (0, 1) (3.16)

The energy exchanged in the market is denoted as PDA, and the power generation of the ith

thermal generator is denoted as PG
i . Renewable energy production is represented by u, and η is

the conversion efficiency of the DC/AC converters. The energy deviation is represented by PB.

In this formulation, terms with the superscript u mean that they are optimization variables

in the optimal self-scheduling problem under the renewable generation scenario u. The binary

variable yui is used to indicate the on/off status of the dispatchable generators.

The revenue from the energy market, revenue from responding to the reserve calls, the fuel

cost of thermal generators, and balancing the cost of energy deviations are represented by

fM (PDA), fR(PR), f
G(PG

i ), and fB(PB), respectively. Eqs. (3.12) and (3.13) are energy-

balancing constraints in the VPP. Constraints in (3.14) restrict the power outputs of the thermal

generators. Constraint (3.15) gives the interval for wind power production.

The first inner minimization problem aims to reach the optimal self-scheduling decisions such

that the profit of VPP can be maximized under the uncertainty scenario u. The second inner

minimization problem is meant to find the optimal recourse action that minimizes the balancing

cost under scenario u and first-stage decision D. The overall objective function is the regret

of the decision D under the wind generation scenario u. Therefore, the outer maximization

problem aims to locate a renewable generation scenario such that the profit difference between

the optimal solution and the given solution is maximized.

The regret model presented at this level will be solved multiple times using different reserve

deployment scenarios to yield multiple maximum regrets under the wind generation uncertainty.

The obtained maximum regrets will be passed to level 2 for further processing.

Level 2: Stochastic MMR Optimization
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At level 2, the model is extended to include the uncertain call for reserve deployments. To

this end, scenarios complying with a certain probability distribution are used to represent

the reserve call uncertainty. As concerned in the level-1 problem, for a given self-scheduling

decision D under the reserve call scenario PR,s, its maximum regret θ(D|PR,s) can be obtained

by solving the problem (3.6) - (3.16). For a total number of S reserve call scenarios, S regrets

can be obtained by solving the problem for S individual times. Since each reserve call scenario

corresponds to a certain probability πs, the ‘Expected regret’ for the self-scheduling decision D

can be obtained by summing up the products of each regret and their corresponding probability.

Therefore, the resulting model becomes a hybrid stochastic MMR optimization problem, which

aims to make such a decision, in which the expected regret is minimized.

min
D
{θ(D|PR,1)π1 + ...+ θ(D|PR,S)πS} (3.17)

s.t.

(3.6)− (3.16) (3.18)

yiP
G,min
i ≤ PG

i ≤ yiP
G,max
i (3.19)

∑
i

PG
i + (1− σDA)fvrt ≤ PDA − PR,s ≤

∑
i

PG
i +min

u

{
(1 + σDA)fvrt , P

r,ic
}

(3.20)

π1 + ...+ πS = 1 (3.21)
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yi ∈ (0, 1) (3.22)

In this formulation, PR,s and πs are the sth reserve call scenario and its probability. The term

θ(D|PR,s) represents the maximum regret of the self-scheduling decision D under the reserve

call scenario PR,s. Constraints in (3.19) restrict the power generation of the thermal generators.

Constraint (3.20) limits the energy bidding quantity. Constraint (3.21) ensures that the sum of

the reserve call scenario probabilities equals to one.

The stochastic MMR optimization model presented at this level is solved several times to obtain

the optimal bidding quantities under different market-clearing price scenarios. The acquired

bidding quantities will be communicated with level 3 for the final construction of the stepwise

bidding curve.

Level 3: Bidding Curve Construction

At this level, to handle the price uncertainty, price scenarios ranging from low to high are

generated to represent different price levels. The generated price scenarios are used as the

bidding prices in the stepwise bidding curves, and the bidding volumes corresponding to each

price scenario can be obtained by solving problem (3.17) – (3.22) independently for each price

scenario. As S price scenarios are considered as the input of problem (3.17) – (3.22), the same

number of price-quantity pairs can be acquired. By combining the obtained price-quantity pairs,

the bidding curves can be hereby constructed.

It should be noted that the order to explain the bidding model is inverse to the actual implemen-

tation order of it for ease of understanding. Hence, starting from level 3, the price uncertainty

is firstly addressed by generating different price scenarios to form the bidding curves, then the

reserve deployment uncertainty is addressed by the stochastic optimization in level 2. Finally,

level 1 deals with the wind generation uncertainty using the regret model.

3.3.2 Real-Time Dispatch Model

The market-clearing results are passed from the day-ahead stage to the real-time stage. At the

real-time stage, the system operator has also informed the VPP of the called reserve volume.

Hence, thermal generators shall be duly dispatched given the wind generation uncertainty to
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meet both the day-ahead market-clearing results and the real-time reserve deployment requests.

The MMR-based dispatching problem is formulated as follows:

min
PG
i,t

{∑
i

fG(PG
i,t) + max

ut

{
min
PB
t

fB(PB
t )− min

PG,u
i,t ,PB,u

t

{∑
i

fG(PG,u
i,t ) + fB(PB,u

t )

}}}
(3.23)

s.t.

(3.7)− (3.11) (3.24)

yui,tP
G,min
i,t ≤ PG,u

i,t ≤ y
u
i,tP

G,max
i,t (3.25)

yi,tP
G,min
i,t ≤ PG

i,t ≤ yi,tP
G,max
i,t (3.26)

−RDi ≤ PG
i,t+1 − PG

i,t ≤ RUi (3.27)

−RDi ≤ PG,u
i,t+1 − P

G,u
i,t ≤ RUi (3.28)

PDA,u
t + PR,t =

∑
i

PG
i,t + PB,u

t + ut (3.29)
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PDA
t + PR,t =

∑
i

PG
i,t + PB

t + ut (3.30)

(1− σRT )fvrt ≤ ut ≤ min
{
(1 + σRT )fvrt , P

r,ic
}

(3.31)

[yui,t, yi,t] ∈ (0, 1) (3.32)

3.4 Solution Methodology

The C&CG algorithm (Zeng and Zhao 2013) has been proven efficient for solving two-stage

minimax problems, yet it cannot be directly applied to the formulated MMR models because of

the extra step that is needed to locate the “optimal solution” under scenario u. Hence, in this

section, a reformulation methodology is firstly proposed to transform the bidding and dispatch-

ing problems into two-stage robust optimization problems, then a detailed C&CG framework

is developed to solve the reformulated problems. The proposed self-adaptive algorithm is given

at the end of this section.

3.4.1 Problem Reformulation

It can be observed that both the bidding and dispatching MMR optimization problems can be

written in the following compact form:

min
y

{
f1(y) + max

u

{
min
x
f2(x)− min

yu,xu
{f1(yu) + f2(x

u)}
}}

(3.33)

s.t.

A1y ≤ p, y ∈ SY (3.34)
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A2y +A3x−A4u ≤ q (3.35)

A1y
u ≤ p, yu ∈ SY (3.36)

A2y
u +A3x

u −A4u ≤ q (3.37)

A5u ≤ l, u ∈ SU (3.38)

where y represents the first-stage decision variables. The recourse actions are represented by

x. The uncertainty scenario is represented by u and the optimal solution under the uncertainty

realization u is given by (yu, xu). The negative utility functions of the first- and second-stage

variables are given by f1(y) and f2(x), respectively.

Proposition: Given that the recourse action solution set is always non-empty, problem (3.33) –

(3.38) is equivalent to the following two-stage robust optimization problem:

min
y

{
f1(y) + max

ζ

{
min
x
{f2(x)− f1(yu)− f2(xu)}

}}
(3.39)

s.t.

(3.34), (3.35) (3.40)
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E
′
ζ ≤ l′ (3.41)

ζ = [uT , (yu)T , (xu)T ]T (3.42)

E
′
=


0 A1 0

−A4 A2 A3

A5 0 0

 (3.43)

l
′
=


p

q

l

 (3.44)

Proof : See appendix 1.

3.4.2 C&CG Solution framework

To solve the problem (3.39) – (3.44), a detailed C&CG framework is developed in this sub-

section. Under the C&CG framework, the original problem will be decomposed into primary

and secondary problems. In this chapter, the primary problem is meant to find the optimal

first-stage decisions that will minimize the maximum regret, and it can be written as:

min
y,ϑ
{f1(y) + ϑ} (3.45)

s.t.
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(3.34) (3.46)

ϑ ≥ −H (3.47)

A2y +A3xv+1 −A4u
c
v ≤ q (3.48)

ϑ ≥ f2(xv+1)− f1(yu,cv )− f2(xu,cv ) (3.49)

xv+1 ∈ SX (3.50)

where ϑ is the auxiliary variable. Variables xv+1 are new variables created in the (v + 1)th

iteration. Terms ucv x
c
v, y

u,c
v , and xu,cv are the optimal values calculated in the vth iteration

from the secondary problem. The symbol H represents a big enough number to ensure that

the primary problem is bounded in the first iteration. Note that in the first iteration, only

constraints (3.46) and (3.47) are considered.

Since the primary problem is a relaxation of the original problem, its optimal objective value

will be no bigger than the actual optimal objective value of the original problem. Therefore,

the lower bound will be updated after solving the primary problem:

LB = max
{
LB, f1(y

c
v+1) + ϑcv+1

}
(3.51)
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where ycv+1 and ϑ
c
v+1 represent the optimal primary problem solutions calculated in the (v+1)th

iteration.

There are two purposes for the secondary problem, one is to identify the worst-case condition

that will maximize the regret of the primary problem decisions, and the other is to determine

the optimal recourse actions under the worst-case scenario. Using the results obtained from the

primary problem, the secondary problem can be formulated as:

max
ξ

{
min
x
{f2(x)− f1(yu)− f2(xu)}

}
(3.52)

s.t.

(3.41)− (3.44) (3.53)

A2y
c
v+1 +A3x−A4u ≤ q (3.54)

The feasible domain of the secondary problem is more restricted, and the optimal objective

value of the secondary problem is no less than that of the original problem. Thus, the upper

bound can be obtained by solving the secondary problem:

UB = min
{
UB, f1(y

c
v+1) + f2(x

c
v+1)− f1(y

u,c
v+1)− f2(x

u,c
v+1)

}
(3.55)

where xcv+1, y
u,c
v+1, and x

u,c
v+1 are optimized values of the secondary problem. The convergence of

the problem can be declared once the following criterion is satisfied:
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UB − LB ≤ εccg (3.56)

where the convergence threshold of the C&CG algorithm is given by εccg. The complete solution

algorithm is provided in algorithm 3-1.

Algorithm 3-1 C&CG solution algorithm

1: Initialization v = 0, UB =∞, LB = −∞, εccg = 0.001

2: While (3.56) is False, v ← v + 1 do

3: Solve (3.45) - (3.50), derive (ycv+1, ϑ
c
v+1) and update the lower bound using (3.51).

4: Solve (3.52) – (3.54), derive (xcv+1, y
u,c
v+1, x

u,c
v+1) and update the upper bound using

(3.55).

5: Create xv+2, add (3.48), (3.49), and (3.50) to the primary problem.

6: End While

7: Return ycv+1

As referred to (Zeng and Zhao 2013), the developed C&CG framework will converge in O(Q)

iterations, where Q is the number of extreme points of the renewable generation uncertainty

set.

3.4.3 Self-Adaptive Algorithm

Due to the minimax nature of the MMR approach in the real-time stage, the dispatch solutions

will inevitably be conservative if the uncertainty intervals are too big. To obtain dispatch

solutions that are more economic, this section proposes an effective look-back-and-adjust self-

adaptive algorithm that can reduce the size of the uncertainty intervals. By observing the past

wind uncertainty realizations, the optimal uncertainty coefficient that minimizes the total profit

loss of the n previous time windows will be identified and used at the current decision period.

Based on the revealed uncertainty information (i.e., the real renewable production value rvr),

the optimal uncertainty coefficient σ that minimizes the total profit loss of the n previous
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decision periods can be obtained by solving the consensus optimization problem under the

ADMM framework. In this framework, the primary problem is meant to address the conflicts

between different time windows, and the secondary problems are designed to locate their own

optimal uncertainty coefficient σ. The self-adaptive process is summarized as follows:

(1) Select proper values for ρ and ξ0, set v = 0, and εcoef = 0.001.

(2) Identify such an overall uncertainty coefficient σ that will coordinate the optimal uncer-

tainty coefficients στ for the n previous time windows:

σv+1 = argmin
σv+1

[
t−1∑

τ=t−n

(σv+1 − σvτ )2 +
ρ

2

t−1∑
τ=t−n

(σv+1 − σvτ − ξv)2
]

(3.57)

paragraph(3) For each past time window, using the revealed uncertainty information and the

calculated optimal overall uncertainty coefficient σv+1 to concurrently minimize the energy

imbalance cost and the difference between the optimal single window σv+1
τ and the overall

optimal σv+1:

σv+1
τ = argmin

σv+1
τ

[
fB(PB

τ ) +
ρ

2
(σv+1 − σv+1

τ − ξv)2
]
, PB

τ ∝ fvrτσv+1
τ ,∀τ ∈ [t− n, t− 1] (3.58)

(4) Update the scaled dual variable ξv+1 using the optimized solutions from problems (3.57)

and (3.58):

ξv+1 ← ξv − (σv+1 − σv+1
τ ) (3.59)

(5) Check the convergence by:

√
(ξv+1 − ξv)2 ≤ εcoef (3.60)
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(6) If the problem has converged, then the optimal overall uncertainty coefficient can be

obtained as σv+1. Otherwise, update the iteration number to v ← v + 1 and go back to step 2.

where the penalty factor, scaled dual variables, and convergence threshold in the ADMMmethod

are given by ρ, ξ, and εcoef , respectively. The process for selecting the optimal uncertainty

coefficient is illustrated in Algorithm 3-2.

Algorithm 3-2 Self-adaptive algorithm for adjusting σ

1: Initialization v = 0, ξ0 = 0, ρ = 100, εcoef = 0.001,σ0τ = |rvrτ−fvrτ |
fvrτ

2: While (3.60) is False, v ← v + 1 do

3: Solve (3.57) to obtain σv+1

4: Solve (3.58) for each past time window parallelly with (σv+1, ξv) to obtain σv+1
τ .

5: Update ξv+1 ← ξv − (σv+1 − σv+1
τ )

6: End While

7: Return σv+1

3.5 Case Study

This section provides the numerical results to demonstrate the superiority of the proposed

operation regime for VPPs.

3.5.1 Experiment Setup

The VPP under study is composed of two thermal generators and one wind generator. Battery is

not considered in the case study due to its high investment costs. The generator characteristics

are presented in Table 3.2. The Finland day-ahead market price and called reserve volume

data from the NORDPOOL market (Day Ahead Auction Prices 2019) are used. The renewable

generation data is the scaled wind generation from Finland (Wind Generation Data 2019). The

penalty coefficients ψ+ and ψ− are set to be 1.5 and 0.5, respectively. At the day-ahead and

real-time stages, the empirical worst-case uncertainty coefficients are set to be 0.7 and 0.4,

respectively. In the real-time stage, three look-back time windows are considered.
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Table 3.2: Generator Characteristics

Generator Pmax

[MW]
EcoPmin

[MW]
RU
[MW/h]

RD
[MW/h]

a[$/h] b[$/MWh] c[($/MWh)2]

Diesel 45 5 25 15 708 30.7 0.77

Gas 55 5 35 25 531 34.2 0.83

Wind 65 0 / / / / /

Fig.3.3a gives the day-ahead wind forecast data, where the uncertainty coefficient is constant;

Fig.3.3b shows the real-time wind forecast data, where the uncertainty coefficient is continuously

modified.

Figure 3.3: (a) the forecast data and the day-ahead forecast intervals (b) the real-time wind
forecast intervals

The market accepts bidding curves with at most five steps. Hence, five price-quantity pairs are

required in each market-clearing period to construct the bidding curve. Because each bidding

step is obtained by a price scenario and its corresponding bidding quantity, five price scenarios

are generated for each market-clearing hour to yield five price-quantity pairs. The actual price

and generated price scenarios are presented in Fig.3.4.

3.5.2 Results and Discussions

The computation platform is AMD Ryzen 8-3700X 3.60 GHz with 16G RAM. The average total

computation time is 1,424s, which is acceptable under the time scales of day-ahead bidding (i.e.,

multiple hours) and real-time dispatching (i.e., within one hour).
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Figure 3.4: Generated price scenarios and the actual price.

The stepwise energy offers of the VPP in several representative hours are depicted in Fig.3.5. In

hour 3, the forecast price is low and the VPP is only willing to offer the energy from the wind

generator for the first 3 price scenarios. As the price increases, the VPP starts to offer energy

generated by the thermal generators for the fourth and fifth price scenarios. Therefore, three

bidding steps are constructed for hour 3. In hour 15, the forecast price is medium and for each

price scenario, the VPP has a different bidding volume. In hour 21, the forecast price is high

and the VPP is willing to offer its maximum capacity at the fourth price scenario. Though the

fifth price scenario is higher than the fourth scenario, the VPP cannot offer more energy to the

market, thus, only four steps in hour 21 can be observed.

According to the market-clearing prices, the accepted VPP energy offers together with the called

reserve are presented in Fig.3.6. The required energy is the sum of the market-allocated energy

and the reserve volume called by the system operator.

Fig.3.7 shows the dispatching decisions of the thermal generators over the day. In Fig.3.7, the

VPP does not turn on the thermal generators in hours 1 to 5 and 24 because the market prices

are very low. In hours 13, 21 to 23, only the diesel generator remains online, the gas generator is

turned off due to its higher variable cost. In hours 12 and 14, both the diesel and gas generators

are not generating at their optimal power because of the minimum economic power restriction.
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Figure 3.5: Bidding curves for hours 3, 15, and 21

Figure 3.6: The market allocated energy, called reserve, and required energy
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Figure 3.7: The dispatching results of the thermal generators

It should be noted that in Fig.3.7, the scheduled generation levels do not exactly match the

market price levels. For example, the market price at hour 19 is the highest over the day,

while the production at hour 19 is not the highest. This violation is due to the VPP’s need to

respond to the system operator’s call for reserve deployments. Therefore, the VPP may curtail

its production even at high price hours as shown in Fig.3.14.

The hourly net profit and the details of the profit components of the VPP are shown in Fig.3.8.

The question of how to participate in the forward reserve market is out of the scope of this

chapter; thus, the revenue in the forward reserve market is not presented here. Due to the

existence of the reserve contract, the VPP must respond to the reserve calls from the system

operator, which induced $6,156 of revenue loss. The most important revenue is from selling

energy to the day-ahead market ($92,875), and the major cost comes from the thermal generator

fuel costs ($45,179). The total cost in the balancing market is $3,444, and the overall operating

profit from the proposed operation regime is $38,096.

To evaluate the economic performance of the proposed operation regime (Case 1), multiple

strategies and optimization models are also tested for the VPP under study. The results from

the price-dependent bidding using the stochastic robust optimization model (Case 2), the price-

dependent bidding using the multistage stochastic programming model (Case 3), the price-
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Figure 3.8: The VPP’s profit using the proposed methods (case 1)

independent bidding using the stochastic MMRmodel (Case 4), and the price-dependent bidding

using the stochastic MMR model without performing real-time dispatch (Case 5) are provided

in Fig.3.9 to Fig.3.12. The daily profit results of the discussed strategies are summarized in

Table 3.3.

To compare the stochastic MMR model with the stochastic robust optimization model, the

stochastic MMR optimization model is replaced with the stochastic robust optimization model

while maintaining everything else unchanged. Since the bidding decisions of different hours

are independent of each other, the considered budget of uncertainty in the stochastic robust

optimization model is set to be 1.

The VPP’s revenue from the energy market is $65,765. Compared to the revenue ($92,875)

obtained when using the stochastic MMR model, one can see that the stochastic robust opti-

mization model offers less energy in the electricity market for the same price levels. The overall

profit obtained from the stochastic robust optimization model is $29,314, which is only 76.95%

of the profit when the stochastic MMR model is used. Therefore, one can conclude that, com-

pared to the stochastic robust optimization model, the proposed stochastic MMR model can

significantly improve the economic performance of the VPP. Also, it can be observed that the

deviation cost is negative, which means that the revenue in the balancing market is larger than
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Figure 3.9: The VPP’s profit using the stochastic robust optimization model under the price-
dependent framework (case 2)

the cost. This result confirms the conclusion that the performance of the stochastic robust

optimization model is very conservative and leads to significant positive energy deviations.

In Fig. 3.9, the bars located above the x-axis represent the revenues earned by the VPP, while

the bars below the x-axis indicate the costs incurred by the VPP. It is important to note that

the day-ahead market payments always count towards the VPP’s revenues, which is why the

green bars are always located above the x-axis. Conversely, the fuel cost is an expense that

reduces the VPP’s net profit, and as such, the blue bars are always negative. Furthermore, the

bars that represent energy deviations and reserve calls can be either positive or negative. In

the case of positive energy deviations (energy surplus) and up-reserve calls (energy increment

requests), the VPP can generate additional revenues, while negative energy deviations (energy

deficiency) and down-reserve calls (energy reduction requests) can result in additional costs for

the VPP. Therefore, the bars representing energy deviations and reserve calls can be either

positive or negative, depending on the specific circumstances.

To further demonstrate that the proposed method can provide economic solutions without the

accurate probability distribution of wind uncertainty, the multistage stochastic programming

approach is applied to the VPP under study. In stochastic programming, the restriction that
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Figure 3.10: The VPP’s profit using the multistage stochastic programming approach (case 3)

the accurate probability distribution of wind uncertainty is not available is removed, and wind

uncertainty is modeled by using scenarios instead of uncertainty intervals. From the result in

Table 3.3, one can see that our method performs very closely to the stochastic programming

approach. The overall profit by using the proposed method has been merely reduced by 0.25%

compared to the multistage stochastic programming approach. The major reason for this differ-

ence is that the stochastic programming approach has more precise information that enables it

to handle the wind uncertainty by using expected values as the objective, whereas the proposed

method only has less-precise information and needs to deal with wind uncertainty based on

the minimax criterion. As a result, the conservativeness in the bidding and dispatching solu-

tions of the proposed method has increased slightly compared with the multi-stage stochastic

optimization approach.

Then, to evaluate the difference between price-dependent and price-independent bidding strate-

gies, in the price-independent bidding using the stochastic MMR model, a single bidding profile

is generated by using the expected market price. Compared to the price-dependent bidding

strategy, the price-independent bidding strategy is less capable of capturing arbitraging op-

portunities due to insufficient flexibility. This effect is obvious when the market price signif-

icantly deviates from the expected price, such as in hours 15, 16, and 19, the ratios of the
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Figure 3.11: The VPP’s profit using the proposed stochastic MMR model under the price-
independent framework (case 4)

price-independent strategy profit to the price-dependent strategy profit are 60.28%, 70.85%,

and 70.89%, respectively. As a result, the overall profit using the price-independent strategy

($32,440) only takes up 85.15% of the price-dependent strategy profit.

The impact of performing the real-time dispatch is illustrated by comparing Fig.3.12 with

Fig.3.8. It is easy to notice that the generation cost has been increased when real-time dispatch

is not considered. This is because, with less accurate wind power production prediction, the

day-ahead dispatching result is more conservative, which leads to overproduction of the thermal

generators. The overproduced energy can only be sold at penalty prices and cause losses in the

overall VPP profit.

To illustrate the effectiveness of the proposed self-adaptive algorithm, the same dispatching

problem is solved using both the adjusted and unadjusted uncertainty coefficients. Fig.3.13

shows the hourly profit loss using both uncertainty coefficients. The profit losses are obtained

by subtracting the profits of the dispatching solutions obtained with incomplete information

from the profits of the perfect information approach (Jia et al. 2019). Most of the time, the

profit loss from using the adjusted uncertainty coefficient is significantly lower than using the

constant worst-case uncertainty coefficient. However, in hour 20, the VPP’s profit loss using the
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Figure 3.12: The VPP’s profit using the proposed price-dependent stochastic MMR model
without performing real-time dispatch (case 5)

Table 3.3: Profit Results Using Different Strategies and Models

Operating strategy Energy market
revenue [$]

Fuel cost [$] Deviation
cost [$]

Net profit [$]

Proposed methods 92,875 45,179 3,444 38,096

Stochastic robust opti-
mization

65,765 32,809 -2,514 29,314

Multistage stochastic 93,450 45,547 3,556 38,191

Price independent 76,121 35,187 2,338 32,440

Day-ahead only 92,875 60,982 -9,986 35,723
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Figure 3.13: Profit loss in the dispatching stage using the adjusted and constant uncertainty
coefficients

adjusted σ is larger than using the worst-case σ, this is because the adjusted confidence bounds

failed to contain the real wind generation scenario, as shown in Fig.3.4b. This failure is due to

the tradeoff that is made between robustness and economic performance. Though larger profit

loss may be induced in some hours, the overall profit loss in the dispatching stage using the

adjusted σ is $3,280, which is only 32.34% of the profit loss when using the constant worst-case

σ ($10,143).

The reserve response result is presented in Fig.3.14 which shows that for most of the time, the

VPP can exactly complete the reserve requests from the system operator. However, the VPP’s

capability for reserve deployment is also limited at some hours. When the price is very low, the

thermal generators are either offline or producing at minimum economic power. Hence, the VPP

cannot flexibly change its power output to complete the reserve calls, such as hours 5, 23, and

24. Similar limitations can also happen when the market price is exceptionally high. Another

situation that can limit the VPP’s reserve provision capability is large price differences between

adjacent hours, which happened at hours 20 and 21. Because most of the ramping capability

is used to fulfill the market-clearing results, the flexibility left for responding to reserve calls

is not enough to complete the task. The frequency of observing such limitations depends on

how often the aforementioned extreme scenarios will happen in the energy market. In total, the
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Figure 3.14: Reserve response results of the VPP

VPP complete 91.29% of the requested reserve volume

It should be noted that such limitations in the VPP’s reserve response capability are acceptable

in this case study because system security is not involved. If extreme operational scenarios that

can severely threaten the system security must be considered, some economically unfavorable

approaches such as cutting down the renewable generation and investing in expensive energy

storage systems can be adopted to eliminate such limitations.

Although a small-scale VPP is investigated in the case study, the proposed operation regime

can be effectively extended for larger VPPs consisting of more generators without significantly

increasing the computational burden. Table 3.4 gives the average total computation time for

VPPs managing different numbers of generators. As the number of generators is increased

from 3 (2 thermal generators and 1 renewable generator) to 40 (20 thermal generators and

20 renewable generators), the total computation time only increases from 1,424s to 1,625s.

The reason for this result is two-fold. Firstly, calculating the optimal power generation of the

thermal generators does not take too much time. Secondly, increasing the number of renewable

generators will not substantially affect the convergence rate of the C&CG algorithm because

the number of extreme scenarios for renewable energy production is not changed. Hence, the

computational burden increment due to the increased number of generators is not significant
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Table 3.4: Computation time analysis

Number of generators 2T / 1R 5T / 5R 10T / 10R 20T / 20R

Computation time 1,424s 1,497s 1,554s 1,652s

TP: thermal power plant; RP: renewable power plant

compared with the time required to solve the stochastic MMR model.

3.6 Chapter Summary

This chapter proposes an optimal VPP operation regime under reserve uncertainty. In the

day-ahead bidding stage, the developed price-dependent bidding strategy improves the bidding

flexibility of the VPP in the energy market. Also, the proposed stochastic MMR optimization

model utilizes a combination of scenarios and uncertainty intervals to describe the uncertain-

ties, making it advantageous for problems where some uncertainties have accurate probability

distributions while others do not. In the real-time dispatching stage, the proposed self-adaptive

algorithm can optimally determine the size of the uncertainty intervals in a look-back-and-adjust

manner. The proposed regime was assessed using the typical day data.

The results suggest that the price-dependent bidding strategy can increase the VPP profitability

in contrast with the price-independent strategy, this effect is most obvious when the real price

deviates a lot from the price forecast. Also, the proposed stochastic MMR model can provide

bidding decisions that are less conservative compared with the stochastic robust optimization

model. Furthermore, by properly determining the size of the uncertainty intervals, the proposed

self-adaptive algorithm significantly reduces the profit loss due to incomplete information in the

dispatching stage.

Though all the above conclusions are based on offline analysis, the proposed method is of high

potential to be implemented in the future because joint participation in multiple markets and

price-dependent bidding strategy are widely adopted in existing electricity markets. Besides,

methods that can improve the economic performance of VPPs will be more favorable in practical

applications because profitability is the major concern for VPPs.

In this chapter, the DERs considered in the VPP operation only include renewable and ther-

mal generators. The results show that the uncertainty in renewable generation and electricity
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markets can bring negative impacts on the VPP operation in terms of its profit. Such negative

impacts can be partially reduced by using the energy flexibility of thermal generators. EVs are

not considered in this chapter, but they can also offer energy flexibility to mitigate the negative

impacts of operational uncertainties. Hence, to further enhance the energy flexibility of the

VPP, integrating EVs into the VPP operation is a promising topic due to the energy storage

nature of EV batteries. In the next chapter, energy management methods for EV fleets through

EV charging stations will be developed to control the EV charging load and make use of EV

energy flexibility.
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Chapter 4

EV Charging Station Energy

Management

EVs are important components in this thesis to maximize the utility of DERs. Due to the heavy

capital cost of energy storage devices (Rahman et al. 2020), building energy storage systems

to mitigate the negative impacts of operation uncertainties can be economically unfavorable.

Fortunately, EVs are natural energy buffers that can perform similar functionalities as tradi-

tional energy storage systems thanks to their rapidly increasing stock (Global electric car stock

2022) and energy flexibility (Heinisch et al. 2021). However, exploiting EV energy flexibility is

hindered by many factors such as insufficient EV user cooperation and the complexity of EV

charging scheduling problems. To fully make use of EV energy flexibility, an EV user incentive

program is proposed in this chapter as the main focus to encourage the proactive participation

of EV users in the smart charging process. Based on the incentive method proposed in this

chapter, an EV charging station energy management strategy under volatile electricity prices

can be developed as optimization problems.

4.1 Chapter Introduction

Transportation is one of the largest emitting sectors of greenhouse gas emissions largely due

to internal combustion engine vehicles (Koufakis et al. 2019). Hence, shifting from internal

combustion engine vehicles to EVs has been widely recognized as one of the most effective

means to decarbonize the transportation sector because EVs can be powered by electricity
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generated from renewable sources.

The EV charging demand has grown dramatically over the past few years (Injeti and Thunuguntla

2020). This is contributed by the mass roll-out of EVs in many countries and regions, and the

advances in EV battery technology. The increased charging demand can impose significant

challenges to the power network operation if the EV charging behavior is unscheduled and

unregulated (Shi et al. 2018). Previous research reveals that the EV parking time is often

longer than that is required for charging in many scenarios (Heinisch et al. 2021), which leads

to charging flexibility that can support economic and secured power system operations in the

future (Richardson 2013).

Due to the distributed nature and large quantities of EVs, direct control of EV charging by

the system operator is computationally challenging. Hence, EV charging coordination is often

accomplished by intermediary agents including EV aggregators, charging stations, VPP oper-

ators, and microgrid operators. For these intermediary agents, the EVs under their control

can act as flexible demand response resources to generate revenues and benefits in many ways,

such as participating in the energy market to reduce the energy procurement cost (Zheng et al.

2020; Rassaei, Soh, and Chua 2015; Hajebrahimi et al. 2020), providing ancillary services to

generate income (Duan, Hu, and Song 2020; Sarker, Dvorkin, and Ortega-Vazquez 2015; Vayá

and Andersson 2015), and gaining remunerations by responding to the demand response signals

(Shafie-Khah et al. 2015; Yao, Lim, and Tsai 2016). The underlying assumption in these works

is that the intermediary agents can utilize EV charging flexibility without incentivizing EV

users, which is bluntly unrealistic as scheduled charging may bring considerable inconvenience

to EV users, and convenience is the primary motivation for personal ownership of vehicles.

Hence, the design of incentives for EV users is vital for the intermediary agents to acquire their

expected EV charging flexibility.

Since EV users tend to charge their EVs as quickly as possible (Chung et al. 2018), incentive

programs are needed to remunerate EV users for acquiring their charging flexibility and reshap-

ing EV charging load. Otherwise, EV users will not be motivated to participate in the demand

response programs. In a demand response incentive program, the demand response program

operator should specify what kinds of EV users’ actions will be rewarded and how much will

be paid for these actions. Hence, this chapter is specifically focused on the design of EV users’

remunerative actions and the pricing methods for these actions.
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In the literature, a variety of incentive programs have been proposed for inspiring EV users

to participate in demand response programs managed by intermediary agents. These incentive

programs, though varying from one to another, can be categorically classified as static programs

and dynamic programs from the incentive signal update frequency angle.

The incentive signal update frequency of static incentive programs is relatively low, which

keeps the incentive programs unchanged over a relatively long period. The advantages of such

programs are that they are consistent and simple for implement, EV users can easily use them

as a reference for scheduling their charging plans.

Practices of static incentive programs include time-of-use pricing and critical peak pricing. In

(Su, Lie, and Zamora 2020), an optimal time-of-use tariff plan decision model is proposed to

shift the EV charging load from high-price hours to low-price hours. In (Dubey et al. 2015),

an optimal time-of-use tariff plan is proposed by evaluating various aspects of EV charging

behavior under the time-of-use tariff. In (Muñoz et al. 2016), several strategies including time-

of-use tariff is applied to EV charging load to mitigate the transformer burden imposed by the

high penetration level of EVs. In (Song, Shangguan, and Li 2021), a time-of-use charging price

program with a price reduction strategy is applied to reduce the energy procurement costs and

distribute the benefits between EV users and charging infrastructure operators. In (Sheidaei

and Ahmarinejad 2020), both time-of-use and critical-peak-pricing mechanisms are applied to

the EVs to improve the VPP’s profitability. Similarly, both time-of-use and critical-peak-pricing

programs are used in (Sadati et al. 2019) to increase the profit of a distribution company. In

static incentive programs, consumers are allowed to sacrifice a certain degree of convenience in

return for reduced charging fees in a simple way. However, existing static programs do not offer

the intermediary agents the controllability to maximize their gain from short-term market and

system fluctuations.

Compared with static programs, dynamic programs update incentive signals more frequently

in response to short-term market and system information, which enables more controllable

actions to handle short-term market and system fluctuations, hence encouraging more proactive

participation of EV users in offering flexibility services to the power grid through intermediary

agents.

The most popular dynamic programs are dynamic pricing and transactive control programs. In

(Zhao et al. 2017), a charging station uses real-time energy and reserve price signals to incen-
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tivize EV users for altering their charging schedules. In (Liu et al. 2021), an EV aggregator

sends dynamic price signals to encourage EV users to change their charging plan or authorize

the battery access right to the aggregator. In (Moghaddam et al. 2019), a dynamic pricing

model is proposed for multiple charging stations to coordinately shift EV charging load from

residential load peaks. A dynamic pricing framework for charging stations is proposed in (Lim-

mer and Rodemann 2019) to concurrently maximize the profit of charging stations and reduce

the peak load. In (Liu et al. 2018), the EV aggregator manages the charging load by clearing

the transactive market according to the day-ahead energy procurement and real-time requests

of EV users. The charging load in (Wu et al. 2018) is controlled through a transactive market

to which EV users need to submit their real-time charging requirements and preference setting

of demand response. A sensitivity-based real-time transactive control framework is proposed in

(Hoque et al. 2021) to coordinate the EV charging behavior through a local energy market.

Although dynamic programs are more controllable, they lack simplicity and consistency com-

pared to static programs. Besides, dynamic incentive programs assume that EV users can

actively respond to the price signals and alter their charging behavior responsively (Zhou et al.

2019), which is too optimistic as it takes effort and specific knowledge to complete such tasks.

Furthermore, in order to make the optimal decisions to maximize the benefit, EV users have

to be constantly updated with the latest market information, which demands extra effort from

the EV users.

Considering the pros and cons of existing EV incentive programs, a hybrid incentive program

is proposed for a charging station that aims to offer incentives to the EV users to share their

charging flexibility. The proposed hybrid incentive program combines static incentives with

dynamic control. Under the proposed hybrid incentive program, the consistency and simplicity

of static programs are retained, while the controllability of dynamic programs can be achieved.

Table 4.1 compares the key features of the proposed incentive program with both static incentive

programs and dynamic incentive programs.

In Table 4.1, the properties of different incentive programs are ranked by comparing them with

each other. The simplicity of dynamic programs is the lowest because EV users are required

to regularly react to incentive signals. Besides, the proposed programs are ranked higher in

simplicity than static programs as the proposed programs eliminate the need for EV users to

wait for low-price hours for recharging. Hence, the simplicity property for static, dynamic,
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Table 4.1: Key properties of different types of incentive programs

Simplicity Consistency Controllability

Static programs Medium High Low

Dynamic programs Low Low High

Proposed program High High Medium

and the proposed programs are listed as medium, low, and high. In terms of consistency, it is

assumed that the incentive signals for both static and proposed incentive programs will remain

effective for a relatively long period. On the other hand, dynamic programs regularly change

the incentive signals to deal with short-term variations. Hence, the consistency property is

listed as high for static and proposed programs and low for dynamic programs. The ranking

of controllability is based on the calculated results of the controllability index, which will be

presented in the case study later.

The considered charging station faces volatile day-ahead wholesale market-clearing prices and

variability of EV users’ willingness to sell their charging flexibility. For the charging station, the

incentive prices can affect both the incentive payment and the amount of charging flexibility that

can be acquired to reduce energy bills. Therefore, the selection of incentive prices is crucial for

the performance of the proposed hybrid incentive program. To maximize the charging station’s

benefit while encouraging proactive participation of the EV users, an optimal incentive price

selection model is developed in this chapter to determine the incentive prices for EV charging

flexibility.

As the proposed hybrid incentive program needs to retain consistency for a relatively long

period, market price patterns at different times should be considered in the optimization model

to ensure unbiased incentive price selection. Increasing the number of price scenarios leads to a

larger number of EVs under consideration, which makes the solution process computationally

challenging. In confronting the dimensional problem for large EV fleets, distributed and meta-

heuristic methods are the most popular approaches in the literature (Solanke et al. 2020).

Compared with meta-heuristic approaches, distributed methods are more specific and take less

time to converge (Zheng et al. 2019). Hence, a distributed solution process based on the ADMM

method is developed in this chapter to guarantee computational efficiency in solving the optimal
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incentive price selection problem.

The major contributions of this chapter are as follows:

• A novel hybrid incentive program is proposed to encourage EV users to sell their charging

flexibility to the charging station. The proposed hybrid incentive program combines the

advantages of both static and dynamic incentive programs, namely, it has the features of

simplicity, consistency, and controllability.

• An optimal incentive price selection model is developed to maximize the charging station’s

profit from the electricity market and the demand response program. The optimization

results of the proposed model can serve as a reference for policymakers who adopt the

proposed hybrid incentive program.

• An ADMM with adaptive penalty (ADMM-AP) solution algorithm is presented to effi-

ciently solve the problem in a distributed manner for large EV fleets.

The remainder of this chapter is organized as follows. Section 4.1 gives an overview of the

charging station operation framework and provides the details of the proposed hybrid incen-

tive program. Section 4.3 presents the optimal incentive price selection model. The proposed

solution methodology is detailed in Section 4.4. Section 4.5 presents the numerical results and

discussions. Section 4.6 concludes this chapter.

4.2 Problem and Model Description

This section first introduces the operation framework of the considered charging station, then

presents the details of the proposed EV user incentive program.

4.2.1 Charging Station Operation Framework

The configuration of the charging station’s operation framework is presented in Fig. 4.1. The

charging station under consideration is a public charging station, which can directly control the

charging rates of its charging piles. To acquire information about the EV users’ demand response

preferences, it is assumed that EV users can directly communicate with the charging station in

advance before they choose to park and charge there. In the day-ahead wholesale market, the

clearing resolution is one hour, and the charging station is a price-taker who purchases energy

at the market-clearing price to satisfy EV energy requirements.

72



Chapter 4. EV Charging Station Energy Management 4.2. Problem and Model Description

Figure 4.1: Operation framework of the charging station

Due to market entrance requirements, the considered charging station may not have access to

the wholesale market and benefit from competitive wholesale prices. Hence, an intermediary

agent that can integrate the charging station and access the wholesale market (e.g., virtual

power plants that can integrate the charging stations) is needed in the energy procurement

process. Since the charging station cannot affect the market price, it is motivated to shift the

EV charging load from high-price hours to low-price hours to reduce energy bills.

Under the time-of-use pricing scheme, EV users who want to reduce their charging fee must wait

for low-price hours to park and charge, which reduces the simplicity of the incentive program

by significantly limiting EV users’ convenience. Hence, to minimize the restrictions on EV

users’ traveling and parking plans, a flat charging price is applied to the charging station.

The charging loads are shifted through the charging station’s demand response program, which

provides certain remuneration to EV users in exchange for access rights to EV batteries. The

demand response program managed by the charging station includes the buy-out (BO) program

and pay-as-use (PAU) program, which correspond to different incentive payment calculation

methods in the proposed hybrid incentive program.
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The charging station needs to set up proper incentive prices to encourage EV users to sell

their charging flexibility. Also, the charging station is responsible for scheduling the charging

flexibility to minimize the energy procurement cost. EV users only need to claim their charging

demands and demand response preferences upon arrival. Besides the dwelling time, other

battery information including the initial SOC, battery capacity, and maximum charging rate

can be directly acquired from the battery management system of the EVs. The demand response

preference information includes which incentive they want to receive and the minimum prices

they can accept for authorizing the battery access rights.

There are several advantages of applying such a flat pricing and incentive demand response

program operation framework. Firstly, EV users do not have to wait for low-price hours to park

and charge. Secondly, EV users do not need to actively respond to the incentive signals during

the charging duration. Instead, they only need to clarify their demand response preferences

upon arrival. Thirdly, the negotiation process for real-time demand response is avoided since

all the information needed to approach the optimal solution is pre-communicated.

4.2.2 Proposed EV User Incentive Program

This subsection first discusses the key properties of existing incentive programs for EV users.

The strengths and drawbacks of different types of incentive programs are analyzed based on the

discussed key properties. To combine the advantages of existing EV user incentive programs,

two incentive programs, including the BO and the PAU incentive programs are proposed in this

subsection.

(1) Discussion on Key Properties of Incentive Programs

In this chapter, an incentive program is considered to be simple if the required actions from the

EV users are minimal. Consistency of an incentive program means that EV users’ knowledge

about the incentives does not have to be updated frequently. Besides, the controllability of

incentive programs refers to the ability to match the charging load with short-term market price

variations. Simplicity and consistency can be difficult to quantify because the criteria can vary

from person to person. One example of simple and consistent incentive programs is time-of-use

pricing, where prices for peak-flat-valley periods are stable for a relatively long period to allow

decision-making simple and straightforward. An opposite example is the transactive control

program, where EV users need to actively respond to the incentive signals that change in real-
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time. For controllability, a controllability index (CI) is defined in this chapter to quantitatively

reflect how controllable a demand response incentive program is:

CI($/kWh) =
Energy Bill Reduction($)

Effective F lexibility(kWh)
(4.1)

where energy bill reduction is the reduced energy procurement cost (measured in $) in the

wholesale market, and effective flexibility (measured in kWh) is the flexibility that is utilized.

A larger CI implies more efficient utilization of each unit of effective flexibility, which can be

achieved by more exactly matching the charging load with the variable market price.

For EV users, simplicity and consistency are favorable properties of an incentive program. From

the charging station’s point of view, controllability is a desirable property as it can achieve more

benefits. However, achieving controllability may contradict the simplicity and consistency if

EV users have to actively respond to incentive signals. To address this contradiction, a hybrid

incentive program is proposed for the charging station, which consists of the BO incentive and

the PAU incentive. The prices for both the BO and PAU incentives will remain unchanged for

a relatively long period. Under the proposed hybrid incentive program, if EV users accept the

charging station’s offer, they would receive payments for the access right of their EV batteries.

With access rights to the batteries, the charging station can achieve accurate EV charging

load control under the constraint of satisfying EV charging demand. Specifically, by directly

controlling the operation of its charging piles, the charging station can determine the charging

time and charging rates of EVs that chose to participate in the demand response programs.

To this end, the proposed hybrid incentive program features simplicity in terms of EV users’ par-

ticipation, while consistency is retained regarding the incentive price update frequency. More-

over, controllability can be achieved by the dynamic charging control of the charging station.

(2) Buy-Out Incentive Program

For EV users who accept the offers from the BO program, they will receive a payment to buy

out all the potential charging flexibility (measured in kWh), which may or may not be used

in the charging scheduling. Since the battery charging rates are assumed to be continuously

controllable (Jin and Xu 2020), the potential flexibility pfn of the nth EV can be calculated as:
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Figure 4.2: EV Flexibility in the BO program

tdwell
n = toutn − tinn (4.2)

Eev
n = (SOCmax

n − iSOCn)Cap
ev
n (4.3)

pfn = min
{
Eev

n , t
dwell
n Pmax

n − Eev
n

}
(4.4)

where n is the index for EVs in the BO program. The plug-in and plug-out times are represented

by tinn and toutn , respectively. Term tdwell
n denotes the total parking time. The energy requirement

Eev
n is calculated using the initial SOC (iSOC) and battery capacity Capevn through Eq (4.3),

in which SOCmax
n represents the maximum SOC. The potential charging flexibility pfn is given

by Eq (4.4), which states that pfn is the maximum shiftable load. The calculation of pfn is

schematically illustrated in Fig. 4.2.

Fig. 4.2 illustrates two possible charging scenarios for a typical EV whose parking time is

longer than the time required for charging. Real charging load represents the energy that the

EV consumes when parking; virtual charging load is the energy that the EV is parking but not

consuming because the battery is already fully charged. In both scenarios, the real charging
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load can be shifted to the virtual charging load, which yields potential EV charging flexibility.

In Fig. 4.2a, only part of the real charging load can be shifted to the virtual charging load,

whereas all real charging load can be shifted to virtual charging load in scenarios illustrated

in Fig. 4.2b. When only part of the real charging load can be shifted to the virtual charging

load, the potential charging flexibility is given by the totality of the virtual charging load.

Otherwise, the potential flexibility is restricted by the real charging load. For EVs with the

required charging time less than the parking time, their potential charging flexibility is 0.

(3) Pay-as-Use Incentive Program

Unlike paying for all the potential flexibility in the BO program, the remuneration in the PAU

program depends on effective flexibility. Hence, to calculate the payment in the PAU program,

the unscheduled load profile for each EV must be identified. In the unscheduled charging

scenario, the EV will charge at the maximum rate before reaching the battery capacity Capevn

of EV m:

P us
m,t = Pmax

m ,

(
SOCm,t−1 +

Pmax
m ∆t

Capevm

)
≤ SOCmax

m (4.5)

where m is the index for EVs in the PAU program. The unscheduled charging rate of the mth

EV at time t is given by P us
m,t, whose upper bound is Pmax

m . The scheduling interval is given by

∆t. P us
m,t with superscript ‘us’ refers to the charging power in the unscheduled charging scenario.

When the EV is about to be fully charged, it will charge at a rate such that the EV just reaches

the maximum SOC:

P us
m,t =

(
SOCmax

m − SOCmax
m,t−1

)
Capevm

∆t
,
Pmax
m ∆t

Capevm
≥ SOCmax

m − SOCm,t−1 (4.6)

After the EV is fully charged, the charging rate becomes 0 because discharging is not considered:

P us
m,t = 0, SOCm,t−1 = SOCmax

m (4.7)
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As Eqs (4.5) – (4.7) are derived for unscheduled EV charging of the PAU program, they also

apply to the BO program. After acquiring the unscheduled charging profile, the change in

charging power can be obtained as the difference between the unscheduled charging power P us
m,t

and the scheduled charging power P s
m,t:

∆Pm,t = P s
m,t − P us

m,t (4.8)

To avoid double remuneration, only the downward power change will be accounted for when

calculating the incentive payment. Hence, the power change in the PAU program is divided

into downward ∆P d
m,t and upward∆P u

m,t changes:

∆Pm,t = ∆P u
m,t −∆P d

m,t (4.9)

[
∆P u

m,t,∆P
d
m,t

]
≥ 0 (4.10)

Thus, the power changes are obtained as:

∆P u
m,t −∆P d

m,t = P s
m,t − P us

m,t (4.11)

The flexibility calculation for the PAU program is schematically depicted in Fig. 4.3.

Fig. 4.3a shows the unscheduled (left) and scheduled (right) charging load profiles for a typical

EV. Comparing the unscheduled load with the scheduled load, it is observed that only the

charging loads between hours 9 and 13 are shifted to hours between 17 and 21, whereas the

loads at hours 14, 15 and 16 remain unchanged. The load change result from the unscheduled

charging scenario to the scheduled charging scenario is summarized in Fig. 4.3b, which shows

that only the reduced load is counted as remunerable effective flexibility.
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Figure 4.3: EV flexibility illustration in the pay-as-use program
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(4) EV User Participation Status Decision

As the price threshold for authorizing the battery access right can vary among a large group

of EV users, it is not likely that all the EVs will be involved in the demand response program.

Instead, only EV users with minimum acceptable prices lower than the incentive prices are

willing to sell their charging flexibility. Besides, the price for each unit of charging flexibility

in each incentive program should be uniform to ensure fairness and consistency. Hence, the

incentive prices must be determined before EV users can decide if they want to join the demand

response program.

In the proposed hybrid incentive program, two prices need to be specified. In the BO program,

the incentive price α represents the financial incentive paid to EV users for each unit of potential

flexibility they can provide. In the PAU program, the incentive price β is the financial incentive

paid to EV users for each unit of effective flexibility.

Once the incentive price information becomes available, the participation status of each EV can

be determined through the following relationship:

yn(α− γn) ≥ 0 (4.12)

ym(β − γm) ≥ 0 (4.13)

[yn, ym] ∈ (0, 1) (4.14)

where γn and γm are the minimum acceptable prices for EV users to authorize their battery

access right in the BO and PAU programs, respectively. Correspondingly, binary terms yn

and ym are availability indicators for the battery access rights in the BO and PAU programs,

respectively. As stated in (4.12) and (4.13), EV users will allow the charging station to control

their EV charging rates only if the incentive price is higher than their minimum acceptable
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prices.

In real-life applications, the minimum acceptable prices of EV users depend on their specific

features. Hence, the charging station needs to perform surveys of its consumers in order to

determine the prices that would yield the best outcome.

4.3 Optimal Incentive Price Selection

From the charging station’s perspective, higher incentive prices can encourage more EV users

to share their charging flexibility, which allows the charging station to reduce the energy pro-

curement cost. Meanwhile, the financial incentives paid to EV users will also increase due to

uplifted incentive prices and a larger purchased flexibility volume. Hence, the selection of incen-

tive prices α and β is of vital importance to the performance of the proposed hybrid incentive

program.

To determine the optimal incentive price set (α, β) that will maximize the charging station’s

overall benefit, an optimal incentive price selection model is developed in this section. In the

developed optimization model, the objective is to minimize the total cost from the wholesale

energy market and the demand response program. Therefore, before presenting the optimal

incentive price selection model, the incentive payment of EV users needs to be calculated. The

payments of EV users are calculated as follows:

ωB
n = α · pfn (4.15)

ωP
m =

∑
t

β ·∆P d
m,t

R
(4.16)

where ωB
n and ωP

n are the incentive payments in the BO and PAU programs, respectively. The

term R is the ratio between one hour and the scheduling resolution of the charging station.

After obtaining the incentive payments of EV users, the optimization problem can be formulated

as:
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min
α,β,yn,ym,∆Pn,t,∆Pu

m,t,∆P d
m,t,P

M
t

{∑
t

λtP
M
t +

∑
n

ωB
n yn +

∑
m

ωB
mym

}
(4.17)

s.t.

(4.2)− (4.7), (4.10)− (4.16) (4.18)

(
P us
n,t + P us

m,t +∆Pn,t +∆P u
m,t −∆P d

m,t

)
∆t = PM

t (4.19)

0 ≤ P us
n,t +∆Pn,t ≤ Pmax

n (4.20)

−ynPmax
n ≤ ∆Pn,t ≤ ynPmax

n (4.21)

0 ≤ P us
m,t +∆P u

m,t −∆P d
m,t ≤ Pmax

m (4.22)

[
∆P d

m,t,∆P
u
m,t

]
≤ ymPmax

m (4.23)

∑
t

∆Pn,t = 0 (4.24)
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∑
t

(
∆P u

m,t −∆P d
m,t

)
= 0 (4.25)

0 ≤ α ≤ α (4.26)

0 ≤ β ≤ β (4.27)

where λt and PM
t represent the market-clearing price and energy purchased from the market

at time t, respectively. The time interval for one charging scheduling period is given by ∆t.

The objective function contains the energy procurement cost and the incentive payments. Pa-

rameters α and β are upper bounds for the incentive prices, which are selected as the highest

minimum acceptable prices of EV users so as not to affect the optimality of the problem.

Constraint (4.19) is the power balance constraint. Constraints (4.20) – (4.23) represent the

battery charging rate limitations under the EV participation status restrictions. Constraints

(4.24) and (4.25) ensure that EV charging demands are satisfied across the scheduling horizon.

Constraints (4.26) and (4.27) provide reasonable ranges for the incentive prices to reduce the

searching domain and ensure problem convergence.

4.4 Proposed Solution Methodology

This section first provides a linearized form of the original problem by transforming the bilin-

ear terms. Then, a distributed solution approach is developed based on the ADMM solution

algorithm. To accelerate the convergence of the distributed solution approach, a penalty factor

adaptive process is further proposed.
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4.4.1 Problem Linearization

The proposed optimization model has bilinear terms β · ∆P d
m,t from the PAU program and

α · yn from the BO program. Besides, the solution process for EV charging scheduling under

large EV fleets is challenged by the curse of dimensionality issue. Hence, in this section, a

linear reformulation of the original problem is provided first, then an ADMM-AP algorithm is

developed to efficiently solve the reformulated problem for large EV fleets.

The bilinear term α ·yn is the product of a bounded continuous variable α and a binary variable

yn. According to the method proposed in (Shabanzadeh, Sheikh-El-Eslami, and Haghifam

2017), this term can be modeled by introducing a new continuous variable ϑBn and the following

constraints:

α · yn = ϑBn (4.28)

α− (1− yn)M ≤ ϑBn ≤ α+ (1− yn)M (4.29)

−ynM ≤ ϑBn ≤ ynM (4.30)

where M is a large enough positive constant.

Another bilinear term β ·∆P d
m,t is the product of two bounded continuous variables β and ∆P d

m,t.

This term can be transformed into the product of a binary variable ydm,t, a continuous variable β,

and a constant P us
m,t derived in (4.5) – (4.7). The transformation process is provided in Appendix

2. After the transformation, the original bilinear term β ·∆P d
m,t is equivalent to βy

d
m,tP

us
m,t. This

new term βydm,tP
us
m,t can be modeled by using the same method as in (Shabanzadeh, Sheikh-El-

Eslami, and Haghifam 2017).

The new term βydm,tP
us
m,t is the bilinear product of a bounded continuous variable β, a binary
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variable ydm,t, and a constant P us
m,t. Similarly, the term βydm,tP

us
m,t can be modeled by introducing

a new continuous variable ϑPm,t and the following constraints:

βydm,tP
us
m,t = ϑPm,tP

us
m,t (4.31)

β −
(
1− ydm,t

)
M ≤ ϑPm,t ≤ β +

(
1 + ydm,t

)
M (4.32)

−ydm,tM ≤ ϑPm,t ≤ ydm,tM (4.33)

where the bilinear term βydm,t is replaced by the auxiliary variable ϑPm,t bounded by constraints

(4.32) and (4.33).

Hence, the original problem can be reformulated as:

min
α,β,yn,ym,∆Pn,t,∆Pu

m,t,∆P d
m,t,P

M
t ,ϑB

n ,ϑP
m,t

{∑
n

ϑBn · pfn +
∑
t

[∑
m ϑ

P
m,tP

us
m,t

R
+ λtP

M
t

]}
(4.34)

s.t.

(4.18)− (4.33) (4.35)

4.4.2 Distributed Solution Approach

As the numbers of price scenarios, as well as EVs, need to be large enough to obtain statisti-

cally significant results, the dimensional disaster in EV charging scheduling problem is hardly

avoidable. To address this challenge, the original problem (4.34) – (4.35) is decomposed into

a distributed form based on the ADMM algorithm. In the distributed problem, EVs are di-
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vided into different groups according to the date they park in the charging station. Specifically,

EVs that are parked on the same day will be clustered within the same group. In the ADMM

method, the primary problem is responsible for coordinating the optimal incentive prices from

different groups. By using the scaled form of the ADMM method, the primary problem in the

(v + 1)th iteration can be written as:

min
α,β,yn,ym


∑

n yn (α · pfn − CRn,v) +
∑

m ym
(
β∆P d

m,v − CRm,v

)
+
∑

g

[
(α− αg,v)

2 + (β − βg,v)2
]
+

ρg,v
2

(
∥α− αg,v −Ag,v∥22 + ∥β − βg,v −Bg,v∥22

)


(4.36)

s,t.

(4.2)− (4.4), (4.12)− (4.14) (4.37)

∆P d
m,v =

1

R

∑
t

∆P d
m,t,v (4.38)

CRn,v = − 1

R

∑
t

(∆Pn,t,vλt) (4.39)

CRm,v = − 1

R

∑
t

(
∆P d

m,t,v −∆P u
m,t,v

)
λt (4.40)

min {αg,v} ≤ α ≤ max {αg,v} (4.41)

86



Chapter 4. EV Charging Station Energy Management 4.4. Proposed Solution Methodology

min {βg,v} ≤ β ≤ max {βg,v} (4.42)

where ∆P d
m,v is the total power reduction of the mth EV calculated in the vth iteration. The

cost reductions CRn,v in the BO program and CRm,v in the PAU program are also calculated

values obtained from the scheduling results of the secondary problems by using Eqs (4.39) and

(4.40). The optimal incentive price set to be coordinated is represented by (α, β). Incentive

price set (αg,v, βg,v) gives the optimal values of the gth group obtained in the vth iteration. The

term ρg,v is the penalty for the gth group in the vth iteration. Terms Ag,v and Bg,v are scaled

dual variables in the ADMM method. The ranges of the coordinated optimal incentive prices

are given by Eqs (4.41) and (4.42). The bilinear terms in (4.36) are handled in a similar way

as (4.28) - (4.30).

Upon receiving the optimized values of αv+1, βv+1 from the primary problem, each group re-

calculates the incentive prices using the secondary problem that considers the deviation penalty

from the coordinated optimal incentive prices:

min
α,β,yn,ym


∑

n ϑ
B
n · pfn +

∑
t

[∑
m ϑP

m,tP
us
m,t

R + λtP
M
t

]
+
∑

g

[
(α− αg,v)

2 + (β − βg,v)2
]

+
ρg,v
2

(
∥α− αg,v −Ag,v∥22 + ∥β − βg,v −Bg,v∥22

)
 (4.43)

s.t.

(4.18)− (4.33) (4.44)

where αg and βg are incentive prices to be optimized by group g. Notably, the penalty terms

are not included in the secondary problems in the first iteration.

By solving the primary and secondary problems, the scaled dual variables (Av+1, Bv+1) are

updated:
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Ag,v+1 = Ag,v + αv+1 − αg,v+1 (4.45)

Bg,v+1 = Bg,v + βv+1 − βg,v+1 (4.46)

The convergence of the problem is declared when the change in scaled dual variables falls below

a certain criterion:

√
∥Av+1 −Av∥22 + ∥Bv+1 −Bv∥22 ≤ εadmm (4.47)

4.4.3 Adaptive Penalty Factors

The conventional ADMM method applies the same penalty factors to all groups, which cannot

reflect different qualities of the obtained incentive price sets. To accelerate the convergence of the

solution process, an adaptive algorithm is proposed in this chapter to adjust the penalty factors

at the early stages of the consensus optimization problem. The proposed adaptive algorithm

assigns heavier penalties to price sets with better qualities to increase their significance in the

coordination process. The quality of each price set is evaluated by calculating the charging

station’s final gain FGg,v using that price set:

FGg,v =
∑
n

yn (αg,v · pfn − CRn,v) +
∑
m

ym

(
βg,v∆P

d
m,v − CRm,v

)
(4.48)

The first and second terms represent the charging station’s gains from the BO and PAU pro-

grams, respectively. In (4.48), the values of
{
αg,v, βg,v, pfn,∆P

d
m,v, CRn,v, CRm,v

}
are optimized

results of the secondary problems for each group. Besides, the participation status (yn, ym) in

the BO and PAU programs can be determined through equations (4.12) – (4.14). Hence, the

charging station’s gain under each group incentive price set can be obtained from a simple
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calculation process that only takes negligible computation time.

After obtaining the qualities of the price sets, the adaptive weight φg,v of each group is acquired

from (4.49) – (4.51):

FGmax
v = max {FGg,v, g ∈ G} (4.49)

FGmin
v = min {FGg,v, g ∈ G} (4.50)

φg,v =
FGg,v − FGmin

v

FGmax
g,v − FGmin

v

(4.51)

where FGmax
v and FGmin

v denote the charging station’s maximum and minimum gains under

different price sets in the vth iteration. The adaptive weight φg,v is calculated based on the

quality of each group by using (4.51).

Denote ρ0 as the initial penalty factor, the penalty factors for different groups in each iteration

can be acquired by:

 ρg,v+1 = ρ0 (1 + φg,v) , ∀v ≤ vmax

ρg,v+1 = ρ0, ∀v > vmax

(4.52)

where vmax is the iteration threshold, after which the adaptive update of the penalty factors is

terminated

4.4.4 Convergence Discussion

In the early stages of the consensus optimization problem, the optimized incentive prices among

different groups deviate hugely from each other, resulting in large quality variations. By using
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the adaptive algorithm, the qualities of different price sets are accounted for to accelerate the

convergence. After some iterations, such quality differences become insignificant. Hence, the

adaptive update of penalty factors is not needed, and the subsequent iterations work as the

standard ADMM method to guarantee the convergence of the solution process.

In this chapter, an event-triggered mechanism is proposed to determine the timing vmax for

switching from the pre-event stage to the post-event stage without requiring pre-knowledge on

the problem convergence speed. The switch between stages occurs when the maximum quality

difference among the price sets falls below a given threshold:

FGmax
v − FGmin

v

FGmin
v

≤ εadaptive (4.53)

After the switch of stage, the adaptive update of penalty factors is terminated, and the solution

process enters the post-event stage for convergence. To this end, the ADMM-AP algorithm can

be summarized as follows:

Algorithm 4-1 Solution algorithm based on ADMM-AP

1: Initialization εadmm = 0.00001, ρ0 = 100, εadaptive = 0.01

2: While (4.47) is False, v ← v + 1 do

3: Obtain ρg,v+1 for each group from (4.48) – (4.53)

4: Solve (4.36) – (4.42) and Derive (αv+1, βv+1)

5: Solve Problem (4.43) – (4.44) for each group and Derive (αg,v+1, βg,v+1).

6: Update Av+1 and Bv+1 using (4.45) – (4.46)

7: End While

8: Return (αv+1, βv+1)

4.5 Case Study

This section provides the simulation results and discussions about the proposed EV energy

management methods for an EV charging station.
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Figure 4.4: Selected market energy price scenarios for 24 operating days.

4.5.1 Experiment Setup

The case study considers 24 operating days that are uniformly distributed over the year 2020.

The price data for 24 days from the Nord Pool UK day-ahead market (Day Ahead Auction

Prices 2019) is shown in Fig. 4.4.

Four typical EV models provided in Table 4.2 are selected to generate EV charging scenarios

through the Monte-Carlo-Simulation method introduced in (Su, Lie, and Zamora 2019). For

each EV, the charging efficiency is assumed to be 0.95 and the maximum SOC is 0.95 (Wang

et al. 2022c). A total of 2,400 EV charging scenarios are generated and evenly distributed to the

selected 24 operating days. Among the 2,400 EV charging scenarios, it is assumed that half of

the EV users prefer the BO program and the rest prefer the PAU program. In the BO program,

EV users’ minimum acceptable prices are assumed to follow the normal distribution with mean

and variance equal to 25% of the average energy market price. Since the PAU incentive is risker

than the BO incentive, the minimum acceptable prices for EV users in the PAU program are

assumed to be 50% higher than the BO programs. The scheduling resolution of the charging

station is set to be 15 minutes (Saner, Trivedi, and Srinivasan 2022).
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Table 4.2: EV model parameters

Model Tesla model Y Tesla Model 3 BYD Qin plus Volkswagen ID.4

Capacity 66kWh 62kWh 57kWh 62kWh

Maximum charging rate 11.5kW 11.5kW 11kW 11kW

Figure 4.5: Flexibility distributions for (a) different flexibility amounts and (b) different EV
arrival time.

4.5.2 Results and Discussions

The potential flexibility distributions of the generated EV charging scenarios are presented in

Fig. 4.5 regarding different flexibility amounts and EV arrival times. The distribution of EV

charging flexibility amount is provided in Fig. 4.5a, which shows that most EVs can provide an

amount of charging energy flexibility between 30 kWh and 45 kWh. Given the battery capacities

shown in Table 4.2, it can be concluded that a considerable amount of the EV charging demand

in this chapter can be treated as flexible loads. The potential flexibility distribution regarding

different EV arrival times is shown in Fig. 4.5b. The peaks in Fig. 4.5b correspond to the

time windows when most EVs come and charge, one is from hour 8 to hour 9, and the other

is between hours 18 and 21. Especially, the second peak covers the price spikes shown in Fig.

4.4, which makes this part of flexibility highly valuable. Hence, the amount and value of EV

charging flexibility make it promising for supporting the economic operation of the charging

station.

Fig. 4.6a presents the optimal incentive price selection results together with the minimum ac-

ceptable price distributions. By considering the typical price scenarios over a year, the incentive
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Figure 4.6: (a) EV user minimum acceptable prices and optimized incentive prices, (b) partici-
pation results

prices that can maximize the charging station’s benefit are selected to be 0.0114 $/kWh and

0.0177 $/kWh in the BO and PAU programs, respectively. In the PAU program, all the remu-

nerated charging flexibility is effective for reducing the energy procurement cost of the charging

station. However, in the BO program, the charging station must pay for potential charging

flexibility that may not be useful. Hence, the BO incentive price is lower than the PAU incen-

tive price. Fig. 4.6b shows the participation status of EV users. Under the selected incentive

prices, 44% and 46% of EV users are involved in the BO and PAU programs, respectively. In

total, 90% of EV users are incentivized to offer their EV charging energy flexibility.

In the case study, 1,066 EV users are participating in the BO program. Because the BO program

remunerates EV users based on their potential charging flexibility, all the participating users

are paid even if their charging flexibility is not utilized during the charging scheduling. Thus,

the average incentive payment is $0.42 per EV user in the BO program. On the other hand,

1,113 EV users are participating in the PAU program. However, since the PAU program only

considers effective charging flexibility, some EV users are not rewarded because their charging

flexibility is not used during the charging scheduling. Consequently, only 762 EV users are

paid in the PAU program with an average incentive payment of $0.57 per EV user, and a total

of 351 EV users participating in the PAU program are not rewarded at all. From the EV

users’ perspective, this result implies that the PAU program is a more risky program but with

a higher average return. Hence, for conservative EV users, the BO program can be a better
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Figure 4.7: PFUR distribution for individual EV users in (a) the BO program and (b) the PAU
program.

choice because it offers a stable return. For risk-seeking EV users, the PAU program may be

preferable because it has a higher average return.

An important criterion to assess the incentive programs is the potential flexibility utilization

ratio (PFUR), which can reflect the effectiveness of incentive programs in motivating the uti-

lization of potential charging flexibility:

PFUR =
Effective F lexibility(kWh)

Potential F lexibility(kWh)
(4.54)

In the optimization result, the PFUR for individual EVs in both the BO and PAU programs

are presented in Fig. 4.7. The PFUR distribution for EVs in the BO program is shown in Fig.

4.7a. The number of EVs whose potential flexibility is not utilized at all is 134, which is in line

with the participation status presented in Fig. 4.6b. In the BO program, the PFUR for 699

EVs reaches 100%, which implies that all their potential charging flexibility is utilized to reduce

the energy procurement cost. It is also shown that the PFURs for some EVs are distributed

between 0% and 100%, indicating that their potential flexibility is not fully utilized. Since

utilizing the purchased potential flexibility will not induce extra costs to the charging station,

the only reason for this result is that some potential flexibility is useless in terms of reducing the

charging station’s energy procurement cost. In total, 71.05% (31,328 kWh out of 44,091 kWh)

of the potential flexibility is used by the charging station through the BO incentive program.
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Figure 4.8: Convergence rates of (a) the proposed ADMM-AP algorithm and (b) the conven-
tional ADMM algorithm

Fig. 4.7b illustrates the PFUR distribution for EVs in the PAU program. Similar to the BO

program, two peaks are observed at PFUR equals to 0% and 100%, respectively. However, the

number of EVs whose potential flexibility is not utilized is 438, which exceeds the number of EVs

that are not selected in the PAU program (87 EVs). This is because the utilization of charging

flexibility in the PAU program will lead to extra costs. The utilization of charging flexibility

depends on the competing result of the flexibility price and energy bill reduction. Hence, though

some EVs are involved in the PAU program, their flexibility is not utilized because the reduced

energy procurement cost cannot cover the incentive payment. In the PAU program, there are

also some EVs with PFUR distributed between 0% and 100%. The reason for this situation is

twofold, one is that some flexibility cannot be used to reduce the energy cost, and the other

is that the cost of utilizing some flexibility is larger than the benefit. Overall, 59.06% (25,072

kWh out of 42,452 kWh) of the potential EV charging flexibility is deployed through the PAU

incentive program.

The convergence rates of the proposed ADMM-AP and the conventional ADMM approaches

using different numbers of groups are shown in Fig. 4.8. It can be seen that the convergence

speed of the proposed ADMM-AP algorithm becomes more accelerated as the number of groups

increases. This is due to the fact that a larger number of groups leads to larger variations of

EV charging information and market price data among different groups, and hence reflecting

the quality of different price sets becomes more important in the algorithm design.
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Figure 4.9: (a) Charging prices at the charging station. (b) EV response curve in the transactive
control program.

4.5.3 Comparative Case Study

To demonstrate the performance of the proposed hybrid incentive program, it is compared with

the time-of-use program and transactive control program in this subsection. In the comparative

case studies, typical day price data from the Nord Pool market is used to evaluate these incentive

programs. The flat and time-of-use prices (TIDE: Take control of your energy bills the smart

way 2022) at the charging station are presented in Fig. 4.9a. In the proposed hybrid incentive

program, EV users with minimum acceptable prices lower than the incentive prices (i.e., 0.0114

$/kWh in the BO program and 0.0177 $/kWh in the PAU program) will be involved in the

demand response program. In the time-of-use program, EV users with minimum acceptable

prices lower than the peak-flat-valley price differences will participate in the demand response

program. In the transactive control program, the charging station determines the price signals

to shift EV charging load based on the relationship between the load change and incentive price

signal λinc, which is illustrated in Fig. 4.9b (Liu et al. 2018). The comparative cases are tested

using 200 EV charging scenarios shown in Fig. 4.10.

The energy market price and net load change in the time-of-use program are provided in Fig.

4.11, in which one can observe that the load is only shifted from hours between 16 and 24 to

hours between 1 to 4 of the next day. No load shift is observed in other periods of the day

because EV users shift their charging load based on the fixed time-of-use price, which cannot

accurately reflect the short-term market price fluctuations. Notably, in some periods, there are
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Figure 4.10: 200 EV charging scenarios.

both loads shifted in from higher price hours and loads shifted out to lower price hours, which

cancel each other in the net load change result. Hence, the net load change is less than the total

utilized charging flexibility.

In the time-of-use program, the charging station’s revenue and energy bill for charging the

EVs are $260.90 and $227.46, respectively. Compared to the unscheduled charging scenario,

the charging station’s revenue and energy procurement cost have been reduced by $44.95 and

$65.84, respectively. In total, the charging station’s profit is increased by $20.89 (from $12.55

to $33.44). Meanwhile, by shifting the charging load in the time-of-use program, EV users’ cost

is reduced by $44.95.

The net load change and optimized incentive price signals in the transactive control program

are shown in Fig. 4.12. Compared to the load shift in the time-of-use program, the load change

in the transactive control program can more accurately capture the market price variations. For

instance, in the transactive control program, the load increment is more concentrated at hours

2 and 3, which have lower energy prices. Also, the transactive control program shifts loads from

high-price hours (10 to 14) to low-price hours (15 to 17), whereas the time-of-use program does

not react to the price differences during this period.
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Figure 4.11: Load shift results in the time-of-use pricing program

When the market price is high, the charging station uses high incentive prices to shift the EV

charging load. At low-price hours, to motivate EV users to charge at full power, the incentive

prices can be very low or even zero, such as hours 2 to 7.

In the transactive control program, the charging station pays $25.06 for utilizing the charging

flexibility, which reduces the energy procurement cost by $57.15. In total, the charging station’s

profit is increased by $32.09 (from $12.55 to $44.64) compared to the unscheduled charging

scenario. For EV users, their charging fee is reduced by $25.06 due to the incentive payment.

The net load shift result in the proposed hybrid incentive program is presented in Fig. 4.13. In

the BO program, the charging load is shifted from high-price hours to low-price hours even if the

price differences are small, which can maximize the charging station’s gain because utilizing the

charging flexibility in the BO program will not induce extra costs. In the PAU program, because

shifting the load can bring extra incentive costs, the charging load is only shifted between hours

with large price differences (e.g., price differences between hours 18 to 24 and hours 2 to 3) to

be profitable.

By applying the proposed hybrid incentive program, the charging station’s electricity bill is

reduced by $91.45. The incentive payments in the BO and PAU programs are $37.75 and

$31.11, respectively. Overall, the charging station’s profit is increased by $22.59 compared to
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Figure 4.12: Load shift results in the transactive control program

the unscheduled charging scenario. For EV users, their charging fee is significantly reduced by

$68.86 from the proposed hybrid incentive program.

The performances of the unscheduled charging scenario and investigated incentive programs are

all summarized in Table 4.3. Among the investigated programs, the proposed hybrid incen-

tive program achieves the smallest EV users’ cost, which is reduced by 22.51% compared to

the unscheduled charging scenario (from $305.85 to $236.99). Hence, the proposed program is

the most attractive program for EV users. It also reduces 31.18% of wholesale market energy

procurement cost for the charging station (from $293.30 to $201.85), which is more than other

programs. Among the investigated incentive programs, the proposed hybrid incentive program

has the largest PFUR of EVs, which confirms that it is the most efficient program in encourag-

ing the utilization of EV charging flexibility and makes it more attractive to the power system.

As a simple and consistent incentive program, the controllability of the proposed hybrid incen-

tive program is much better than the time-of-use program. Though the CI of the transactive

control program is higher than the proposed hybrid incentive program, it has however sacrificed

simplicity and consistency.

The charging station’s profit obtained from the proposed hybrid incentive program is higher

than the time-of-use program and lower than the transactive control program. The better
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Figure 4.13: Load shift results in the proposed hybrid incentive program.

Table 4.3: Scheduling results

Charging station
profit [$]

EV user
cost [$]

Market bill
[$]

CI [$/kWh] PFUR(%)

Unscheduled
charging

12.55 305.85 293.30 0 0

Transactive
control

44.64 280.79 236.15 0.0225 35.50

TOU program 33.44 260.90 227.46 0.0183 50.25

Proposed pro-
gram

35.14 236.99 201.85 0.0200 64.13
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profitability of the transactive control program comes from the adjustability of flexibility prices.

Notably, the charging station’s profits shown in Table 4.3 are obtained under the assumption

that the numbers of EVs participating in the incentive programs are all the same. However,

compared to the transactive control program, the proposed hybrid incentive program is simpler,

more consistent, and less costly to EV users. Hence, it is very likely that a charging station

adopting the proposed hybrid incentive program can attract more EVs than a charging station

applying the transactive control program, which can potentially increase the charging station’s

profit.

In summary, the proposed hybrid incentive program is consistent and simple for EV users

to participate. Meanwhile, the proposed hybrid incentive program can minimize the potential

restrictions and impacts on EV users’ daily plans and charging costs. Thus, the proposed hybrid

incentive program can be a highly attractive and practical program for real-world EV users

that are willing to participate in the demand response programs. Besides, the high potential

profitability feature of the proposed hybrid incentive program makes it also attractive to the

charging stations facing volatile electricity prices. Hence, the proposed hybrid incentive program

has great potential for practical implementation.

Notably, to avoid disturbances of uncertain factors, deterministic price and EV charging sce-

narios are used in the case studies to compare the proposed hybrid incentive program with

existing methods. However, uncertainties in the variable market price and the EV charging

demand are inevitable in real-world applications. These uncertainties may have several impacts

on charging station operations. Firstly, in the day-ahead scheduling stage, to consider the price

and EV charging demand uncertainties, some uncertainty handling techniques such as stochas-

tic and robust optimization approaches are required to determine the energy procurement in

the wholesale market. Secondly, due to the information gap between the forecast and real EV

charging demand, the real-time operational stage needs to simultaneously consider the deviation

penalty and price differences. The uncertainty problem in EV charging demand and electricity

prices will be comprehensively considered in Chapter 5, and the methodologies for handling the

uncertainties will also be discussed.
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4.6 Chapter Summary

This chapter has proposed a novel hybrid incentive program for motivating EV users to share

their EV charging flexibility. The proposed hybrid incentive program combines the advantages

of both the static and dynamic incentive programs, making it simple and consistent for EV

users, as well as controllable for the charging station. To determine the incentive prices, an

optimal incentive price selection model is developed in this chapter. Because large EV fleets are

involved in the optimization model, an improved ADMM algorithm with adaptive penalties is

proposed to efficiently solve the incentive price selection problem.

The proposed hybrid incentive program is compared with the time-of-use and transactive control

programs using real-world price data. The numerical results confirm that the proposed hybrid

incentive program is highly efficient in cutting down the charging station’s energy market bill,

reducing EV users’ charging fees, and encouraging the utilization of EV charging flexibility.

The proposed hybrid incentive program has superior controllability compared to the time-of-

use program while maintaining simplicity and consistency. Though the transactive control

program is more controllable than the proposed hybrid dynamic incentive program, it is more

demanding for EV users in order to participate. The charging station’s profit is also improved

considerably by applying the proposed hybrid incentive program. Although the improvement

is not as significant as the transactive control program, the proposed hybrid incentive program

is more attractive to EV users, which may further increase the charging station’s profit.

In this chapter, the energy management strategy of EVs is considered separately from other

DERs (e.g., renewable energy resources and thermal generators), this can undermine the func-

tionality of EVs in providing energy flexibility to handle uncertainties. To further unleash the

potential of EV energy flexibility, the next chapter will integrate EVs into the VPP operation

via EV charging stations. Besides, the EV charging station operation strategy is formulated as

a deterministic optimization problem in this chapter. To make the proposed method more prac-

tical, uncertainties including EV charging demand and market prices will be comprehensively

considered in the next chapter.
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Chapter 5

VPP Operation Considering EV

Charging Stations

In chapter 3, a VPP operation strategy for managing renewable generation resources and ther-

mal generators to maximize the financial benefits in the electricity market environment is in-

troduced. Then, chapter 4 provides an energy management method for EV charging stations

to encourage EV users and optimally schedule EV energy. Based on the methods proposed

in chapters 3 and 4, this chapter further proposes a mutually beneficial framework for a VPP

and multiple EV charging stations to coordinate the energy scheduling of renewable energy

resources, thermal generators, and EVs via the cooperative operation between the VPP and

EV charging stations.

5.1 Chapter Introduction

The growing concerns about climate change are boosting the worldwide decarbonization trend

(Zhang and Hredzak 2020). To achieve cleaner production and more efficient energy utilization,

the VPP (Naval and Yusta 2021) research and EV (Wu et al. 2022) research have attracted

much attention over the past years.

To further unleash the potential of VPPs and EVs in supporting sustainable developments,

researchers have made pioneering efforts in integrating EV charging scheduling into the VPP

operation (Yang and Zhang 2021). In the literature, EVs are normally used as energy storage

that can be directly managed by the VPP operator to strengthen the VPP performance. For
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example, to enhance the VPP power quality, the energy flexibility of EVs is controlled by the

VPP to smooth out the energy fluctuations of renewable generators in (Abbasi et al. 2019)

and (Ju et al. 2016b). Besides, to improve the VPP profitability, the VPP operator can utilize

the EV energy flexibility to compensate for energy deviations stemming from various uncertain

factors, such as in (Shayegan-Rad, Badri, and Zangeneh 2017; Vasirani et al. 2013; Sheidaei and

Ahmarinejad 2020; Alahyari, Ehsan, and Mousavizadeh 2019; Sadeghi et al. 2021; Yang et al.

2020a).

Existing research has made remarkable progress in integrating EVs into the VPP operation.

However, most proposals assume the same ownership for both the VPP and EV charging fa-

cilities and little has been done on addressing the challenges when they are owned by different

stakeholders. In real-world applications, public charging stations are the major EV charging

facility owners (Ministry 2021). charging stations can also act as natural aggregators for EV

energy scheduling because they can deal with a greater number of charging piles than individual

household charger owners. Hence, some early attempts have been made to incorporate charging

stations into the VPP operation.

In (Behi et al. 2021), a VPP comprising dwellings, renewables, energy storage systems, and a

charging station is investigated. However, the VPP considered in (Behi et al. 2021) owns the

charging station and gives direct dispatching signals to control the charging station operation.

In (Zhou et al. 2020), a VPP composed of renewables and a charging station is considered.

The work in (Zhou et al. 2020) also assumes that the VPP and charging station have the same

interest and there is a central control unit to coordinate the charging station operation with

other VPP components. In (Wang et al. 2022d), the authors considered a VPP with thermal

generators, renewables, and energy storage. A self-interested charging station is also considered

in (Wang et al. 2022d), and the interactions between the VPP and charging station are modeled

by using a Stackelberg game framework. In (Fan et al. 2020), a VPP containing distributed

generation and a self-interested charging station is investigated. The charging station operation

in (Fan et al. 2020) is affected by the VPP price signals. Hence, the VPP in (Fan et al. 2020)

can set different prices to indirectly adjust the charging load of the charging station in (Fan

et al. 2020). Though (Wang et al. 2022d; Fan et al. 2020) considered VPP and charging stations

with different ownerships, the charging stations in (Wang et al. 2022d; Fan et al. 2020) can only

passively respond to VPP price signals instead of proactively interacting with the VPP operator,
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which can weaken the functionality of EVs as energy buffers. To address this issue and allow

proactive interactions between the VPP and charging stations, this chapter proposes a mutually

beneficial operation framework for VPP-Charging stations (VPP-CSs) systems consisting of a

distributed generator-based VPP and multiple charging stations.

The proposed mutually beneficial VPP-CSs operation framework includes day-ahead offering

and real-time balancing models. In the day-ahead stage, charging stations schedule their energy

procurements to satisfy the expected EV charging demand under both the EV charging demand

and market price uncertainties. After charging stations complete their energy scheduling, the

VPP collects charging station energy procurement plans to generate the aggregated day-ahead

energy market offering strategy considering the price and renewable uncertainties. In the real-

time stage, the VPP and charging stations coordinately schedule the generator generations and

EV charging plans to compensate for energy deviations stemming from forecast errors.

The day-ahead offering and real-time balancing models in the proposed operation framework are

meant to maximize the total benefit of the VPP-CSs system. To maximize the total benefit of

the VPP-CSs system, EV energy flexibility is a crucial solution to mitigate the negative impacts

of forecast errors. A key enabler of utilizing EV energy flexibility is EV user cooperation, which

directly affects the regulation capability of charging stations. When no incentives are provided

to change the charging behaviors, EV users tend to recharge their EVs as quickly as possible to

mitigate range anxieties (Chung et al. 2018), leaving no EV energy flexibility for the VPP-CSs

system. Hence, the problem of how to encourage EV users to respond to control signals from

charging stations awaits to be addressed.

As discussed in chapter 4, previous incentivizing methods can be roughly classified as static and

dynamic methods. The static incentive programs have low incentive signal update frequency.

That is, the incentive signals will remain effective for a relatively long time in static programs.

Typical static incentive programs for EV users include time-of-use pricing and critical peak

pricing. In (Su, Lie, and Zamora 2020; Dubey et al. 2015; Song, Shangguan, and Li 2021),

the time-of-use pricing program is used to shift the EV charging load from high-price periods

to low-price periods. In (Sadati et al. 2019; Sheidaei and Ahmarinejad 2020), the time-of-use

and critical peak pricing programs are jointly applied to affect EV user charging behavior. As

compared to static incentive programs, dynamic incentive programs update incentive signals

more frequently to handle short-term system variations. Typical dynamic incentive programs
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include transactive control and dynamic pricing methods. In (Wu et al. 2018; Hoque et al.

2021; Liu et al. 2018), the transactive control method is applied to manage EV charging load

through local transactive markets. In (Zhao et al. 2017; Liu et al. 2021; Moghaddam et al.

2019), the real-time dynamic pricing strategy is applied to instantly affect the EV charging load

to maximize the charging station profit or reduce residential load peaks.

As a hybrid method that combines the advantages of both static and dynamic methods, the

incentive method proposed in chapter 4 is proven effective in encouraging EV user cooperation.

However, two factors can restrict the efficiency of the methods proposed in chapter 4. Firstly, the

V2G operation is not considered. Also, the uniform pricing strategy in chapter 4 can discourage

EV energy flexibility utilization on some occasions. Hence, on top of the methods proposed in

chapter 4, an enhanced incentive program is proposed in this chapter to further encourage EV

user cooperation.

After maximizing the total benefit of the VPP-CSs system by using both generator and EV

energy flexibility, the conflicting interests between different stakeholders in the system need

to be addressed to maintain the willingness of different stakeholders to cooperate. In power

engineering, the Shapley Value method is the most popular approach for handling the cost al-

location problem in cooperative games (Sharma and Abhyankar 2016; Li et al. 2018; Mei et al.

2019). However, the application of the Shapley Value method is hindered by its computational

intractability, which makes it impractical for the considered cost allocation problem. To solve

the cost allocation problem while keeping the computational burden under control, an estimated

τ -value cost allocation method is proposed in this chapter. In the conventional τ -value method,

all possible sub-coalitions need to be evaluated to compute the τ -values, which is bluntly unre-

alistic for the considered cost allocation problem. By utilizing some key features in the τ -value

calculation process, the proposed estimated τ -value method can significantly reduce the number

of evaluated sub-coalitions, meanwhile, achieving a high estimation accuracy.

To summarize, this chapter is dedicated to proposing a cooperative operation framework for

VPPs and charging stations with different ownerships. To handle the interest conflicts between

different stakeholders, an EV user incentive program and a cost allocation method are proposed

in this chapter. To this end, the original contributions of this chapter can be summarized as

follow:

• A multi-stakeholder VPP-CSs system consisting of a distributed generator-based VPP
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and multiple charging stations is investigated. A cooperative operation framework is

proposed to handle the interactive day-ahead offering and real-time balancing problems

of the VPP-CSs system.

• An EV user incentive program is proposed. Compared to the methods in chapter 4, the

incentive program proposed in this chapter can achieve more EV user cost reduction,

higher EV energy flexibility utilization, and lower total system cost

• An estimated τ -value cost allocation method is proposed to efficiently address the cost

allocation problem of the VPP-CSs system.

The remainder of this chapter is organized as follows: Section 5.2 presents the proposed VPP-

CSs operation framework and the EV user incentive program. Section 5.3 gives the detailed

problem formulations of the day-ahead offering and real-time dispatching models. Section 5.4

provides the estimated τ -value cost allocation method. Numerical results are given and discussed

in Section 5.5. Section 5.6 concludes this chapter.

5.2 Problem Description

This section first presents an overview of the investigated VPP-CSs system, then provides the

details of the proposed EV user incentive program.

5.2.1 VPP-CSs System

The configuration of the considered VPP-CSs system is presented in Fig. 5.1.

This chapter considers a distributed generator-based VPP (with both wind and thermal power

plants) and multiple charging stations (with level 2 charging rate) to form a VPP-CSs system.

Due to the heavy capital cost of energy storage devices (Rahman et al. 2020), only renewable

generators and thermal power plants are considered to form the VPP, and energy storage devices

are not included in the VPP configuration. In this system, the stakeholders include the VPP,

the charging stations, and EV users. The VPP can directly manage the wind and thermal

power plants to participate in electricity markets. The charging stations can directly manage

the charging/discharging behavior of EVs. In this configuration, the charging stations can

indirectly benefit from the competitive market price through the VPP. The VPP benefits from

charging stations by indirectly making use of the energy flexibility of EVs. Due to the small
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Figure 5.1: Configuration of the VPP-CSs system
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Figure 5.2: Operation framework of the considered VPP-CSs system.

capacities of individual EVs, EV users are not involved in the market operation. To address

the interests of EV users, the contribution of EV users is financially remunerated through an

incentive program.

The proposed operation framework for the VPP-CSs system is summarized in Fig. 5.2. The

considered VPP-CSs system participates in both the day-ahead energy market and the balancing

market. Under this framework, the considered VPP-CSs system needs to face uncertainties in

market price, renewable generation, and EV charging demand.

In the day-ahead market, the investigated VPP-CSs system acts as a price-taker who submits

offering curves to the market operator. The submitted offering curves should contain price-
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quantity pairs that reflect how much energy the VPP-CSs system is willing to sell to or buy

from the day-ahead market at different market-clearing prices. In the balancing market, due

to uncertainties in renewable generation and EV charging demand, the VPP-CSs system is

considered a deviator. The balancing market settles the energy deviations of the considered

VPP-CSs system by using penalty prices. Specifically, energy surplus will be sold at a lower

price, and energy deficiency needs to be compensated at a higher price (Kardakos, Simoglou,

and Bakirtzis 2015):

λ+t = ψ+ · λDA
t (5.1)

λ−t = ψ− · λDA
t (5.2)

ψ+ ≥ 1 (5.3)

ψ− ≤ 1 (5.4)

where λDA
t is the day-ahead energy market-clearing price at time t; The balancing prices for

energy deficiency and energy surplus are given by λ+t and λ−t , respectively. Parameters ψ+ and

ψ− are the market penalty coefficients, which can reflect how severely the market penalizes

energy deviations.

In the day-ahead stage, charging stations need to forecast the market price and charging de-

mand. Based on the forecast information, charging stations can schedule their energy procure-

ment plans under both market price and EV charging demand uncertainties to minimize their

energy procurement cost. After charging stations complete their energy procurement plans, the

VPP collects the charging station energy procurement plans to develop the aggregated VPP-CSs
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system offering curves under uncertain prices and renewable power generation. Before devel-

oping the aggregated offering curve, the VPP needs to predict the market price and renewable

energy production. With the forecast information and charging station energy plans, the VPP

can schedule the thermal power plants and offer different energy quantities at different price

scenarios to maximize its profit. Once the market is cleared, the VPP gets paid by the market

for energy sales or pays the market for energy procurements at the market-clearing price. Be-

sides, the charging stations should also pay the VPP for their scheduled energy procurements

or get paid for energy sales at the market-clearing price.

To handle uncertainties in the day-ahead stage, uncertainties in renewable productions and EV

charging demands are modeled using intervals. Each interval is characterized by a forecast

value (i.e., fvrt for renewable production and fvcst for charging station charging demand) and

an uncertainty coefficient that indicates the accuracy of the forecasts (i.e., σDA for renewable

production and σCS for charging station charging demand), as shown below:

(
1− σDA

)
fvrt ≤ urt ≤ min

{(
1 + σDA

)
fvrt , P

r,ic
}

(5.5)

(
1− σCS

)
fvcst ≤ ucst ≤ min

{(
1 + σCS

)
fvcst , P

cs,ic
}

(5.6)

where urt and ucst represent the renewable power production and EV charging demand, respec-

tively. The installed renewable power generation capacity is given by P r,ic, and the charging

station service capacity is given by P cs,ic.

Besides, the market price uncertainty is modeled using representative scenarios. The repre-

sentative price scenarios are selected to cover price scenarios ordered from high to low in an

unbiased manner (Alahyari, Ehsan, and Mousavizadeh 2019). To this end, the charging sta-

tion day-ahead energy scheduling problems can be formulated as stochastic minimax regret

problems, which minimize the expected worst-case regret under both EV charging demand and

market price uncertainties. For the VPP, the day-ahead offering problems can be formulated as

minimax regret optimization problems that minimize the worst-case regret regarding uncertain
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renewable power generation.

In the real-time stage, the VPP and charging stations cooperatively schedule the thermal power

plants and EV charging plans to minimize energy deviation costs resulting from the renew-

able output and EV charging demand forecast errors. In this stage, the market prices and EV

charging information become known parameters, the remaining uncertain factor is renewable

production. To handle the renewable uncertainty and keep up with the constantly updated EV

charging information, a rolling horizon optimization approach is developed in this chapter. In

the rolling horizon approach, the generator generation and EV charging decisions are contin-

uously optimized to minimize the total operation cost. Notably, in this VPP-CSs system, the

generator generation can be directly controlled, but the charging power of EVs cannot be arbi-

trarily changed since EVs belong to EV users instead of the VPP-CSs system. Hence, an EV

user incentive program is proposed in the next subsection to remunerate EV users in exchange

for EV charging power control rights.

5.2.2 EV User Incentives

By controlling the charging and discharging of batteries, EVs can play an important role in

reshaping the aggregated load profile of the VPP-CSs system. However, controlling EV charging

and discharging behaviors requires cooperation from EV users who wish to recharge their EVs

as quickly as possible. Hence, a well-designed incentive program is of great significance to

encourage EV user participation in smart charging and improve the overall profitability of the

VPP-CSs system.

Existing incentive programs can be categorically classified as static and dynamic programs.

Static incentive programs have the advantages of being simple and consistent, but dynamic

programs can offer more controllability for charging station operators to improve their profitabil-

ity. By combining the strengths of both static and dynamic programs, the method proposed in

chapter 4 shows promising performances in encouraging EV energy flexibility utilization.

However, two factors can undermine the performance of the original methods proposed in chap-

ter 4. Firstly, the V2G operation is not considered. The original method only utilizes the EV

charging flexibility and ignores the discharging flexibility. As the V2G technology matures,

the importance of utilizing EV discharging flexibility has been intensively researched (Sovacool

et al. 2018; Heilmann and Friedl 2021; Bibak and Tekiner-Moğulkoç 2021). Hence, the first
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improvement of the proposed incentive program is to encourage the V2G operation. Besides,

the original method adopts the uniform pricing mechanism, which can discourage flexibility

utilization on some occasions. By using the uniform pricing mechanism, the variation in EV

users’ willingness to respond to system regulation signals cannot be reflected, hence, reducing

the efficiency of incentive programs in encouraging EV users. Compared to the uniform pricing

mechanism, the pay-as-bid mechanism is more efficient in reflecting different EV users’ will-

ingness to offer their energy flexibility. Therefore, the second improvement in the proposed

incentive program is to adopt the pay-as-bid mechanism to encourage more proactive EV users’

participation. The proposed incentive program details are presented next.

In the considered framework, EV users buy energy from charging stations to recharge their EVs.

Meanwhile, EV users can get paid by selling their EV energy flexibility to charging stations.

If the time-of-use pricing is applied to affect the charging behavior of EV users, EV users will

need to wait for low-price hours to recharge their EVs if they wish to reduce their charging bills.

Making EV users wait can disturb their parking and travel plans, which causes inconvenience

for EV users. Hence, the energy retail price at charging stations for EV users to recharge

their EVs is always the same. To encourage EV users to respond to regulation signals from

charging stations, incentives are used in the proposed incentive program to acquire EV battery

access rights and control the charging process of EVs. In the proposed incentive program, the

remuneration is based on the pay-as-bid and pay-as-use principles. That is, the payment for

using the EV charging and discharging flexibility depends on both the EV user offering price

γm ($/kWh) and the quantity of adopted energy flexibility (kWh).

The adopted charging energy flexibility is the load shifted between different periods, and the

adopted discharging energy flexibility is the energy injected back into the grid from EVs.

Through the proposed incentive program, charging stations will remunerate EV users for adopt-

ing their energy flexibility. Besides, battery degradation will also be compensated when dis-

charging energy flexibility is adopted. The payment computations are schematically illustrated

in Fig. 5.3, which shows how much will EV users be remunerated for adopting their energy

flexibility. Fig. 5.3a shows the EV charging load before (left) and after (right) the scheduling.

In hours 13 and 14, the charging station not only reduces the EV charging power but also dis-

charges the EV to inject power back into the grid. In hours 15 to 18, the EV charging power is

increased to fulfill the EV charging demand. These EV power changes are summarized in Fig.
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Figure 5.3: Payments for using EV energy flexibility

5.3b, in which one can observe that the EV user gets remunerated for both the reduced charg-

ing power (adopted charging energy flexibility) and the scheduled discharging power (adopted

discharging energy flexibility).

Notably, increasing the EV charging load cannot generate remuneration for EV users. This is

because EV users always tend to recharge their EVs as quickly as possible to reduce their range

anxiety (Chung et al. 2018), and increasing the charging power can rarely cause inconvenience

to EV users.

When energy flexibility is adopted, the payment for EV user m is based on the adopted en-

ergy flexibility and the offering prices γm. To obtain the energy flexibility adopting results,

the unscheduled charging load should be computed first. It is assumed that in the unsched-
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uled charging scenario, EV users would recharge their EVs at the maximum charging power

immediately after they arrive at the charging stations to mitigate their range anxieties. In

the unscheduled charging scenario, the maximum charging power continues until EVs are fully

charged. The charging load in the unscheduled charging scenario is defined as the unscheduled

charging load P us
m,t. In the unscheduled charging scenario, the unscheduled charging load P us

m,t

of EV user m at time t can be summarized as follows:

P us
m,t =


0 : SOCm,t−1 = SOCmax

SOCmax
m −SOCm,t

Capevm
: Pmax

m >
SOCmax

m −SOCm,t

Capevm∆t

Pmax
m : Pmax

m ≤ SOCmax
m −SOCm,t

Capevm∆t

(5.7)

where SOCmax is the maximum SOC of EV m, Pmax
m is the maximum charging rate of energy

for EV m, and Capm is the battery capacity of EV m. The SOC of EV m at each scheduling

period t is given by SOCm,t, and ∆t is the length of a scheduling time interval.

By using Eq (5.7), the upward ∆P u
m,t and downward ∆P d

m,t power changes can be obtained by

comparing the scheduled load P s
m,t with the unscheduled load P us

m,t:

∆P u
m,t −∆P d

m,t = P s
m,t − P us

m,t (5.8)

In this formulation, the unscheduled EV charging load is used as the baseline to calculate the

adopted EV energy flexibility, which further determines the financial remuneration of EV users.

Since EV users always tend to recharge their battery as quickly as possible, adding charging loads

within the maximum EV charging power to the no-load periods will not cause inconvenience to

EV users. Hence, the incentive payment ωm,t only considers downward changes ∆P d
m,t:

ωm,t = ∆P d
m,tγm∆t (5.9)

where γm is the flexibility offering price of EV user m.
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When V2G operation is involved, the battery degradation cost will also be included in the

payment:

ωm,t = (∆P d
m,t + P dis

m,t)γm∆t+ Cbd
m,t (5.10)

where the battery degradation cost is denoted by Cbd
m,t. In this chapter, the battery degradation

cost is modeled by using the battery investment cost Cbi
m and the total life cycles nlc (Das et al.

2020):

Cbd
m,t =

P dis
m,t∆t

Em
Cbi
m (5.11)

Em = nlcCapevm (5.12)

where the prospective lifetime energy output of EV m is denoted by Em, which is given by Eq

(5.12). Terms nlc and Capevm represent the battery life cycles and energy capacity of EV m,

respectively.

5.3 Problem Formulation

This section firstly presents the day-ahead charging station scheduling and VPP offering prob-

lems, then gives the real-time VPP-CSs cooperative balancing problem.

5.3.1 Charging Station Day-Ahead Energy Scheduling

For charging stations, both the market price and EV charging demand uncertainties need to be

considered in the day-ahead charging station scheduling problem. In this chapter, the market

price is modeled by representative scenarios, and the EV charging demand is modeled using

confidence intervals. Hence, the day-ahead scheduling problem for charging stations is formu-

lated as a stochastic minimax regret problem based on the forecasts. In stochastic minimax
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regret problems, the expected maximum regret is minimized under both market price and EV

charging demand uncertainties:

min
PDA,cs
n,t

∑
t∈1:24

{
fDA

(
PDA,cs
n,t

)
+max

ucs
t

∑
k∈K

πk min
PDA,cs,u
n,t PB,u

n,t ,PB
n,t

[
fB

(
PB
n,t

)
− fDA

(
PDA,cs,u
n,t

)
− fB

(
PB,u
n,t

)]}
(5.13)

fDA(PDA
t ) = λDA,f

k,t · PDA
t (5.14)

fB(PB
t ) =


∣∣PB

t λ
+
t

∣∣ : PB
t ≥ 0

−
∣∣PB

t λ
−
t

∣∣ : PB
t ≤ 0

(5.15)

s.t.

(5.1)–(5.4), (5.6) (5.16)

PDA,cs
n,t + PB

n,t = ucst (5.17)

PDA,cs,u
n,t + PB,u

n,t = ucst (5.18)

(1− σCS)fvcsn,t ≤ P
DA,cs
n,t ≤ min

{
(1− σCS)fvcsn,t, P

cs,ic
n

}
(5.19)
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π1 + π2 + ...+ πK = 1 (5.20)

where PDA,cs
n,t and PB,cs

n,t represent the energy procurement and balancing market energy devia-

tion of charging station n at time t, respectively. Correspondingly, the optimal charging station

solutions under the charging demand scenario ucst are represented by PDA,cs,u and PB,cs
n,t , re-

spectively. The probability of price scenario k is given by πk. Functions f
DA(PDA

t ) and fB(PB
t )

are the day-ahead energy procurement cost and energy balancing cost, respectively.

Constraints (5.17) and (5.18) are energy-balancing constraints. Constraint (5.19) provides a

reasonable range for energy procurements to reduce the searching domain without affecting

optimality. Constraint (5.20) ensures that the summation of all scenario probabilities equals to

one.

After charging stations complete their day-ahead energy procurement scheduling, the scheduling

results PDA,cs
n,t of each charging station n are reported to the VPP to form an aggregated VPP-

CSs offering strategy in the day-ahead energy market.

5.3.2 VPP Day-Ahead Bidding

In the day-ahead stage, after collecting the charging station energy scheduling plans, the VPP

needs to develop an aggregated offering strategy confronting price and renewable uncertainties.

Based on the forecast information, the offering problem of the VPP is divided into two levels

to handle these uncertainties. In the upper level, different price scenarios are generated as

the inputs of the lower-level problem to acquire several price-quantity pairs for constructing

offering curves. In the lower-level problem, the VPP optimizes the offering quantity and thermal

productions for each forecast market price scenario λDA
k,t under renewable output uncertainty.

At the lower level, the VPP offering problem is formulated as minimax regret optimization

problems. In the minimax regret problems, the maximum regret of the worst-case renewable

generation is minimized for a given market price scenario λDA
k,t at time t:
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min
PDA
t ,PG

i,t


[∑
i∈I

fG(PG
i,t)− fDA(PDA

t )

]
+max

ur
t

 min
PDA,u
t ,PG,u

i,t ,PB,u
t ,PB

t

fB(PB
t )−

∑
i∈I f

G(PG,u
i,t )

+fDA(PDA,u
t )− fB(PB,u

t )





(5.21)

fG(PG
i,t) = ci(P

G
i,t)

2 + biP
G
i,t + ai (5.22)

s.t.

(5.1)− (5.5), (5.14), (5.15) (5.23)

PB,u
t +

∑
i

PG,u
i,t + urt −

∑
n∈N

PDA,cs
n,t = PDA,u

t (5.24)

PB
t +

∑
i

PG
i,t + urt −

∑
n∈N

PDA,cs
n,t = PDA

t (5.25)

yui P
G,min
i ≤ PG,u

i,t ≤ y
u
i P

G,max
i (5.26)

yiP
G,min
i ≤ PG

i,t ≤ yiP
G,max
i (5.27)
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[yui , yi] ∈ (0, 1) (5.28)

where PDA
t , PG

i,t, P
B
t and urt represent the market offering energy, the energy production of

thermal power plant i, balancing market energy deviation, and renewable production at time

t, respectively. Similarly, terms with a superscript u, including PDA
t , PG

i,t and PB
t , are the

optimal VPP solutions under the scenario urt . The binary variables [yui , yi] are the on/off

status indicators of the thermal generators. Term PDA,cs
n,t is the reported day-ahead energy

procurement of charging station n at time t. The thermal generator fuel cost is given by

fG(PG
i,t) in (5.22).

Constraints (5.24) and (5.25) are energy-balancing constraints. Constraints (5.26) to (5.27) are

the power limit and unit commitment constraints of the thermal generators.

In the upper level, several price scenarios k ∈ K are generated as inputs of the problem (5.21)

– (5.28). After solving the lower-level minimax regret offering problem K times with different

price scenarios, several optimal offering quantities can be obtained. To construct the VPP-CSs

day-ahead offering curves, these optimal offering quantities are paired with the corresponding

price scenarios to form price-quantity pairs as the building blocks of offering curves.

Notably, in the day-ahead stage, to be consistent with the market-clearing resolution, the

scheduling time interval for the thermal power plants, renewable power plants, and charging

stations is set to be one hour.

5.3.3 VPP-CSs Real-Time Balancing

In the real-time stage, the VPP-CSs system needs to balance energy deviations resulting from

the forecast errors to minimize the total cost. In the real-time stage, the market has been

cleared, the connected EV charging information becomes available, and the EV charging/dis-

charging load can be controlled by the EV charging stations. Hence, the only uncertainty

remaining in this stage is renewable energy production. Besides, The EV energy scheduling

problem should keep updated with EV charging information to meet the energy requirements

of each EV. Therefore, the real-time VPP-CSs coordinated balancing problem is formulated as a

rolling horizon optimization problem to handle the constantly updated EV charging information
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and renewable production forecast. Notably, to keep pace with the updated EV charging and

renewable forecast information, only the first step in the solution of each scheduling horizon will

be implemented. Hence, a real-time rolling horizon optimization problem needs to be solved

for every scheduling period. In the real-time rolling horizon optimization model, to keep pace

with the constantly updated EV charging and renewable forecast information, the optimization

horizon is set to be 8 hours, and the scheduling resolution is set to be 15 minutes (Su, Lie, and

Zamora 2020; Wang et al. 2022b). That is, in the real-time stage, the scheduling horizon for all

energy resources is 15 minutes.

In the real-time coordinated balancing problem, the VPP-CSs system simultaneously schedules

the generator generation and EV charging/discharging power to minimize the total system costs,

which include the fuel cost, EV user incentive cost, and energy deviation cost.

min
PG
i,t,P

B,vc
t ,∆P d

m,t,∆Pu
m,t,P

dis
m,t

{∑
t∈T

[∑
i∈I

fG(PG
i,t) + fB(PB,vc

t ) +
∑
m∈M

ωm,t

]}
(5.29)

(5.1)–(5.4), (5.7)–(5.12), (5.15), (5.22), (5.27), (5.28) (5.30)

PDA
t −

∑
n∈N

PDA,cs
n,t =

∑
i∈I

PG
i,t + fvr,rtt + PB,vc

t −
∑
m∈M

[
P us
m,t +∆P u

m,t −∆P d
m,t

η
− ηP dis

m,t

]
(5.31)

−RDi ≤ PG
i,t − PG

i,t−1 ≤ RUi (5.32)

−P dis,max
m ≤ P us

m,t +∆P u
m,t −∆P d

m,t − P dis
m,t ≤ Pmax

m (5.33)
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P us
m,t +∆P u

m,t −∆P d
m,t ≤ Pmax

m (5.34)

∑
t∈T

(
∆P u

m,t −∆P d
m,t − P dis

m,t

)
= 0 (5.35)

SOCm,t = SOCm,t−1 +
P us
m,t +∆P u

m,t −∆P d
m,t − P dis

m,t

Capevm
∆t (5.36)

SOCmin
m ≤ SOCm,t ≤ SOCmax

m (5.37)

∆P u
m,t∆P

d
m,t = 0 (5.38)

∆P u
m,tP

dis
m,t = 0 (5.39)

[
∆P u

m,t,∆P
d
m,t, P

dis
m,t

]
≥ 0 (5.40)

where the entire scheduling horizon is given by T . The energy deviation of the VPP-CSs

system at time t is denoted by PB,vc
t . The real-time renewable production forecast at time t is

given by fvr,rtt . The reduced charging power, the increased charging power, and the discharged

power of EV m at time t are given by ∆P d
m,t, ∆P

u
m,t, and P

dis
m,t, respectively. The charging and
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discharging efficiency are given by η. Parameters RDi and RUi denote the ramp-down and

ramp-up capabilities of thermal power plant i. The power limits of EV m are given by Pmax
m

and P dis,max
m , respectively.

Constraint (5.31) is the energy-balancing constraint. The thermal power plant ramping capa-

bility is restricted by constraint (5.32). Constraints (5.33) and (5.34) limit the EV power. Con-

straint (5.35) ensures that the EVs are fully charged within the parking duration. Constraints

(5.36) and (5.37) are the SOC constraints of EVs. Constraints (5.38) – (5.40) guarantee the

rationality of the optimization results.

The solution methodology for day-ahead minimax regret problems can be referred to chapter

3. As a mixed-integer quadratic programming problem, the real-time balancing problem can

be readily solved by commercial solvers such as GUROBI (GUROBI optimizer 2022). Besides,

to efficiently solve the real-time scheduling problem for large EV fleets, the distributed solution

approach (Wang et al. 2022b) based on the ADMM algorithm is applied. Hence, the solution

methodology to the formulated optimization problems is not provided in this chapter.

5.4 Cost Allocation Method

This section first develops a τ -value cost allocation method, then proposes a maximum right

cost estimation approach to reduce the computational burden of calculating the τ -values.

5.4.1 τ-value Cost Allocation

The VPP and charging stations cooperatively minimize the total cost, which includes the ther-

mal generator fuel cost, the EV user incentive cost, and the energy deviation cost. Because

the VPP and charging stations have different ownerships, a fair cost allocation mechanism to

share the total cost among the players is the key to stabilize this VPP-CSs coalition. In this

sub-section, a τ -value method is developed to solve the cooperative game problem and allocate

the costs among players.

In this cooperative game problem, the VPP and charging stations represent the players in the

game. That is, each stakeholder is a player in the game. The goal of this game is to analyze

the contributions of each stakeholder and allocate the cost to the VPP and charging stations

based on their contributions.
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Firstly, the VPP-CSs system is considered as a grand coalition Z. In this grand coalition,

each player corresponds to a VPP or a charging station. Besides, the cost generated from any

sub-coalition S ∈ Z is defined as the characteristic function v : 2Z → R with v(∅) = 0. Then,

a cooperative game can be defined as the ordered pair ⟨Z, v⟩, in which the real number v(S)

represents the cost generated from the members of S when they cooperate.

In this cooperative game ⟨Z, v⟩, for each player l ∈ Z in the sub-coalition S : {S ∈ Z, l ∈ S},

the marginal cost contribution Ml(S, v) of player l to the coalition S is:

Ml(S, v) = v(S)− v(S\{l}) (5.41)

where the last term represents the cost generated by the rest members of S without player l.

When the considered sub-coalition is the grand coalition Z, this marginal contribution of player

l is defined as its utopia cost Mu
l (Z, v):

Mu
l (Z, v) = v(Z)− v(Z\{l}) (5.42)

The utopia cost represents the cost contribution of a considered player to the total cost of the

grand coalition. Namely, when a new player is added to the grand coalition, the utopia cost of

the added new player is the increment of the total grand coalition cost due to the addition of

this new player. The utopia cost Mu
l (Z, v) is the minimum cost player l should pay. Because if

player l wants to pay less, then it is more advantageous for other players in the grand coalition Z

to remove player l. Hence, the utopia costMu
l (Z, v) provides a lower bound of the cost allocated

to player l. Next, an upper bound of the cost allocated to player l is found by identifying the

maximum cost player l should pay.

The remainder R(S, l) of player l in a sub-coalition S is defined as the cost remanent for player

l in the coalition S if all other players h : {h ∈ S, h ̸= l} only pay their utopia costs:
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R(S, l) = v(S)−
∑

h∈S\{l}

Mu
h (Z, v) (5.43)

Then, for each player l ∈ Z, the maximum right cost Mmrc
l (v) is defined as the minimum

remainder player l can have from all possible sub-coalitions that contain player l:

Mmrc
l (v) = min

S:l∈S
R(S, l) (5.44)

The maximum right cost of player l is the maximum cost player l needs to pay in the grand

coalition. Because if player l pays more than Mmrc
l (v), then the sub-coalition S with R(S, l) =

Mmrc
l (v) would form a more solid coalition by making all other players in S pay their utopia

costs. Hence, Mmrc
l (v) can serve as an upper bound of the cost allocated to the player l.

After obtaining the utopia costs and maximum right costs, the lower and upper bounds of costs

allocated to the VPP and each charging station can be determined. With these upper and

lower bounds, it is reasonable to find a compromise between the lower and upper bounds to

be the solution for the cost allocation problem. By using the lower and upper bounds of costs

allocated to players, the τ -values for each player l ∈ Z can be computed such that each player

pays a cost that lies between their lower and upper cost bounds:

τl(v) = ϕMmrc
l (v) + (1− ϕ)Mu

l (Z, v) (5.45)

where the coefficient ϕ ∈ [0, 1] can be uniquely determined by satisfying the efficiency criterion:

∑
l∈Z

τl(v) = v(Z) (5.46)

where v(Z) is the total cost generated by the grand coalition. In the cost allocation problem,

the obtained τ -value τl(v) for player l is the cost allocated to that player.
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Notably, the stakeholders in the cooperative game problem only include the VPP and charging

stations. Thus, the cost allocation method only handles the cost allocation problem between the

VPP and charging stations. For EV users, they participate in the scheduling process through

the proposed incentive program, and their contributions are rewarded through the incentive

program. Hence, EV users are not included in the cost allocation problem.

5.4.2 Proposed Maximum Right Cost Estimation Approach

In the conventional τ -value method, computing the maximum right costs requires evaluating

the characteristic function v : 2Z → R for 2Z times, which is unrealistic for the considered cost

allocation problem. To keep the computational burden under control, an estimation method

is proposed to use fewer coalition samples to estimate the maximum right costs. By utilizing

some characteristics in the τ -value calculation process, the proposed estimation approach can

reduce the number of evaluated coalitions from two dimensions, including reducing the number

of players considered for sampling and reducing the number of considered coalition sizes.

The first attempt to reduce the computational burden is to reduce the number of considered

players. When calculating the remainder R(S, l) for player l in coalition S, the decisive factors

include the utopia costs Mu
h (Z, v) of other players and the total cost v(S) generated from

coalition S. Hence, it is straightforward to imply that smaller remainders for player l can be

achieved with smaller total costs v(S) and larger utopia costs Mu
h (Z, v) of other players in the

coalition S. Based on this implication, the attractiveness Attractiveness(h, l) of player h to

player l is defined as the opposite of R(S, l), in which the coalition S only consists of players l

and h:

Attractiveness(h, l) =Mu
h (Z, v)− v(l + h) (5.47)

The attractiveness Attractiveness(h, l) serves as a measure of how attractive it is for player

l to cooperate with player h. The less player l needs to pay by cooperating with player h,

the more attractive player h is to player l. By evaluating all two-member coalitions, one can

obtain an attractive matrix AttM that records the attractiveness of all players to other players

in the grand coalition. With the attractiveness matrix, the coalition sampling for calculating
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the maximum right costs can be more instructive. That is, when choosing members to form

coalitions with player l, one can selectively consider those players with large attractiveness

Attractiveness(h, l) to player l.

To select attractive players to form coalitions with player l, players h ∈ Z\{l} are ordered based

on their attractiveness to player l. In the decreasingly ordered list OAttMl = {hl1. . . hlj . . . hlZ−1},

the jth element hlj is the jth attractive member to player l. Then, the players that will be

selected for sampling can be shortlisted by finding a number J , which determines how many

players will be considered when estimating the maximum right cost for player l. The number of

considered shortlisted players is constrained by the value of J . More specifically, only the first J

attractive players in OAttMl = {hl1. . . hlj . . . hlZ−1} will be considered to form coalition samples

with player l. Setting the value of J is meant to filter out the members that are less likely to

yield better maximum right cost estimation, which can reduce the computational burden for

estimation.

On the one hand, increasing J can increase the sampling domain, which may provide closer

estimations of the actual maximum right costs. On the other hand, a larger J will increase the

computational burden by enlarging the sampling domain. Hence, it is of vital importance to

find a proper value of J to meet the estimation accuracy requirements while avoiding unbearable

computational burdens. In the proposed estimation approach, the optimal value of J can be

uniquely determined by the number of considered coalition sizes, as will be shown later in Eq

(5.49).

The number of considered coalition sizes is another factor that can affect the computational

burden for estimating the maximum right costs. Considering more coalition sizes will increase

the computational burden. The process of determining the minimum number of considered

coalition sizes is given next.

For each player l, coalitions with increasing sizes are formed by gradually adding members

according to OAttMl. Meanwhile, the remainder for player l under each coalition size |S|

is recorded to generate a remainder matrix RM(l, |S|). In each row of the remainder matrix

RM(l, |S|), the global minimum remainder for player l can be found. For different coalition sizes,

the difference between the global minimum remainder and the local minimum remainder found

before this coalition size can shed some light on the maximum right cost estimation accuracy

because the true maximum right cost is the global minimum remainder obtained from a larger
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coalition sample domain. Hence, to determine the number of coalition sizes for evaluation, one

only needs to identify a maximum coalition size |S|max, such that for all players l ∈ Z, the

maximum deviation between the global minimum remainder and the local minimum remainder

found before this coalition size is below the given accuracy threshold ετ :

max
l∈Z

{
min[RM(l, |S| ≤ |S|max)]

min[RM(l, S ≤ Z)]
− 1

}
≤ ετ (5.48)

In this condition, the numerator refers to the local minimum of player l in the remainder matrix,

considering only coalition sizes |S| ≤ |S|max, and the denominator is the global minimum of

player l in the remainder matrix considering all coalition sizes. Hence, this condition can be

satisfied by taking into account a sufficient number of coalition sizes. However, if too many

coalition sizes need to be considered to satisfy this condition, a larger threshold ετ may need

to be employed, thus compromising a certain degree of accuracy in exchange for a reduced

computational burden.

After identifying the maximum evaluated coalition size |S|max, the optimal value of J can be

determined.

J = |S|max − 1 (5.49)

The optimal value of J is given by (5.49) because the considered player l must be included

in all sampled sub-coalitions, and at least (|S|max − 1) extra members are needed to form a

sub-coalition with size |S|max.

After determining J and |S|max, one can estimate the maximum right cost for player l by evaluat-

ing all possible coalitions Ssample that can be formed by player l and members in {hl1. . . hlj . . . hlJ}:

estMmrc
l (v) = min

Ssample,l∈Ssample

R(Ssample, l) (5.50)

where estMmrc
l (v) represents the estimated maximum right cost for player l. To this end,
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the estimated τ -values for each player can be obtained by replacing the Mmrc
l (v) in (45) with

estMmrc
l (v).

The proposed estimated τ -value cost allocation method can be summarized as follows:

Step 1: Set the remainder deviation threshold ετ .

Step 2: Calculate the utopia costs for all players l ∈ Z.

Step 3: Derive the attractive matrix AttM(h, l) and create the ordered list OAttMl for each

player.

Step 4: Derive the remainder matrix RM(l, |S|).

Step 5: Obtain the considered coalition size |S|max, derive shortlisted member size J through

(5.48) and (5.49).

Step 6: For each player l, evaluate all possible coalitions formed by l and members in {hl1. . . hlj . . . hlJ},

derive the estimated maximum right costs for all players from (5.50).

Step 7: Obtain the estimated τ -values from (5.45) and (5.46) and allocate the cost based on

the estimated τ -values.

The flowchart for applying the estimated τ -value cost allocation method is summarized in Fig.

5.4.

Under the proposed estimation approach, the maximum number of required evaluations N eval
max

is reduced from 2Z to:

N eval
max = C2

Z + (Z2 − 3Z + 1) + Z

|S|max∑
|S|=3

C
|S|−1
J (5.51)

where the first term is for deriving the attractiveness matrix AttM(h, l). The second term is

for developing the remainder matrix RM(l, Z) and utopia costs Mu
h (Z, v). The third term is

for estimating other possible coalitions. Notably, (5.51) only gives a theoretical upper bound

for the number of required evaluations. When applying the proposed estimation approach,

the sampled coalitions for estimating the maximum right costs may overlap with each other,

and these repeatedly sampled coalitions only need to be evaluated once. Besides, based on
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Figure 5.4: Flowchart of the estimated τ -value cost allocation method.
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(5.51), as more players join this coalition, the computational complexity of the proposed cost

allocation method becomes O(n2), whereas the computational complexity of the conventional

τ -value method is O(2n).

5.5 Case Study

5.5.1 Experiment Setup

The considered VPP-CSs system consists of a distributed generator-based VPP and 10 charging

stations. The generator parameters are given in Table 5.1. The day-ahead forecast renewable

generation (Wind Generation Data 2019) and market price scenarios (Day Ahead Auction Prices

2019) are presented in Fig. 5.5, which are generated from ARIMA models (Wang et al. 2021b)

by using historical data. As in chapter 3, the market penalty coefficients are also set to ψ+ = 1.5

and ψ− = 0.5 to moderately penalize the energy deviations. Fig. 5.5b also shows the forecast

charging station load profiles generated by using the k-means scenario reduction method (Gray

and Morsi 2014). Negative charging station loads in Fig. 5.5b suggest that charging stations

would discharge the EVs at those high average forecast price periods. The number of price

scenarios generated to construct the offering curves is set to five. Uncertainty coefficients σDA

and σCS are set to 0.3.

Figure 5.5: (a) day-ahead renewable generation information, (b) forecast charging station load
profiles and average forecast market price
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Table 5.1: Generator Characteristics

Generator Pmax

[MW]
EcoPmin

[MW]
RU
[MW/h]

RD
[MW/h]

a[$/h] b[$/MWh] c[($/MWh)2]

TP 1 9 1 3 3 120 40 1.10

TP 2 7 1 2.5 2.5 100 45 1.15

TP 3 5 1 2 2 80 50 1.20

WP 6 0 / / / / /

TP: thermal power plant; WP: wind power plant

In the real-time stage, the scheduling horizon is set to 8 hours with a scheduling resolution of

15 minutes (Su, Lie, and Zamora 2020). The real-time EV charging data is obtained from the

same dataset of chapter 4. It is assumed that the number of EVs charging in each charging

station follows the uniform distribution U(160, 240). In total, 2,031 EVs are generated for

the considered 10 charging stations. The EV user offering prices γm for energy flexibility are

assumed to follow the normal distribution with mean and variance equal to half of the average

market energy prices. The EV charging price is set to 1.5 times of the average day-ahead

energy market price. The charging and discharging efficiency of EVs is set to be 0.95. In the

cost allocation stage, the remainder deviation threshold ετ is set to be 0.01.

5.5.2 Numerical Results

Fig. 5.6 gives several typical offering curves from the VPP-CSs system and the day-ahead

market-clearing results. The offering curves in Fig. 5.6 correspond to low (hour 5), medium

(hour 14), and high (hour 18) average forecast prices, respectively. In hour 5, the VPP-CSs

system decides not to turn on the thermal power plants for some low-price scenarios, making

the first three steps offer the same energy in the market. Thus, the offering curve for hour 5

only has three price-quantity pairs. In hour 14, the forecast price scenarios are distributed in

a range that allows the VPP-CSs system to offer a different quantity at each price scenario,

leading to a five-step offering curve for hour 14. Hour 18 has high forecast prices, making it

offer at full capacity for the last two price scenarios. Thus, only four price-quantity pairs are

observed in that offering curve.

The day-ahead market-clearing results are presented in Fig. 5.6b together with the total sched-
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Figure 5.6: (a) typical offering curves, (b) day-ahead scheduling results

uled day-ahead charging station loads. Due to low average forecast prices, the aggregated

VPP-CSs loads are negative in hours 1 to 4, suggesting that the considered VPP-CSs system is

a consumer that imports energy from the grid. When forecast prices are high enough, to max-

imize the total profit, the VPP-CSs system not only offers its energy generation but also offers

discharged EV energy to the market, such as in hours 19 and 20. In some hours, the market

energy exchange is nearly zero, because the generated energy is used to satisfy EV charging

demands, such as hours 4, 21, and 23.

The revenues and costs of the VPP-CSs system are shown in Fig. 5.7. The revenues include the

day-ahead market revenue, EV charging revenue, and the balancing market revenue when there

is an energy surplus. The costs include fuel costs, EV incentive costs, EV energy discharging

costs, and balancing market costs when there is an energy deficiency. The largest revenue comes

from the day-ahead market, which is $16,366 in total. The revenue for charging EVs is $5,930.

Because the forecast renewable power generation is much lower than the actual renewable power

output, the total balancing cost is $-650, which suggests that the VPP-CSs system is earning

money from the balancing market under the dual pricing rule. The largest cost of the VPP-CSs

system is the fuel cost, which is $11,251 in total. The total EV incentive cost is $964, which

is mostly concentrated at high-price hours 19 and 20. Throughout the operating day, each EV

user gets an average incentive payment of $0.475, which is 16.3% of their average charging cost

($2.920). Overall, the net profit of the VPP-CSs system over the day is $10,731.

The VPP load profile and revenue are also presented in Fig. 5.7. In Fig. 5.7, there are some
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Figure 5.7: Optimization results of the VPP-CSs system

mismatches between the VPP revenue and VPP load profile. For example, the VPP produces

the most energy in hour 10, whereas its revenue in hour 10 is not the highest. Such mismatches

are caused by the energy prices in the electricity market. Due to the volatile energy prices,

producing the same energy may lead to different VPP revenues.

Define the τ -value estimation accuracy θl for player l as (5.52), the average estimation accuracy

by using the proposed estimated τ -value method can reach 99.2%.

θl = 1−

√(
τ estl − τ convl

τ convl

)2

(5.52)

where τ estl and τ convl are τ -values of player l obtained from the estimated and conventional

τ -value methods, respectively.

By applying the estimated τ -value method and the conventional τ -value method, the profits

of each player in the VPP-CSs system are presented in Fig. 5.8a. In Fig. 5.8a, the results

obtained from the estimated and conventional τ -value methods are very close to each other,

which further confirms that the proposed method can achieve accurate estimations.

To prove the performance of the proposed cooperative VPP-CSs operation framework, the

profits of the non-cooperative case (VPP and each charging station operate separately) are
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Figure 5.8: (a) Profits using the estimated τ -value method and standard τ -value method, (b)
profits using the estimated τ -value method and under no cooperation.
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Table 5.2: Comparison of different cooperative levels

Cooperative
level

Deviation cost
[$]

Incentive cost
[$]

CS profit[$] VPP profit
[$]

Total profit
[$]

Non-
cooperative

-401 1,397 1350.8
(100%)

8700.2
(100%)

10,051
(100%)

Semi-
cooperative

-523 1,398 1472.8
(109.0%)

8700.2
(100%)

10,173
(101.2%)

Cooperative -650 964 1630.0
(120.7%)

9101.0
(104.6%)

10,731
(106.8%)

provided in Fig. 5.8b. The VPP profit increment is $400.8 as compared to the case of no

cooperation ($8,700.2). The charging station profit increments are distributed from $8.4 to

$37.4 with an average value of $27.9. Considering that the average charging station profit

without cooperation is $135.1, the average charging station profit is increased by 20.7% through

the proposed cooperative operation. As compared to the non-cooperation case, the proposed

cooperative framework increases the total profit of the VPP-CSs system by 6.8%, from $10,051

to $10,731.

To further confirm the benefits of charging stations in collaborating with the VPP, the case in

which the charging stations form a coalition without involving the VPP (semi-cooperative, case

2) is also investigated. The results are presented in Table 5.2 together with the non-cooperative

case (VPP and each charging station operate separately, case 1) and the proposed cooperative

framework (case 3). Notably, the data in Table 5.2 is the aggregated result of both the VPP

and charging stations.

Comparing case 2 with case 1, the cooperation among charging stations can moderately reduce

the total balancing cost of charging stations, and the incentive payment remains almost the

same. Hence, in the semi-cooperative case, the profit increment mainly comes from the cross-

balancing effect among the charging stations. When VPP is involved in the coalition, on the

one hand, the cross-balancing effect is more significant. On the other hand, the VPP can absorb

the charging station deviations at lower costs, hence, reducing both the balancing cost and the

EV incentive cost. Consequently, in the cooperative case, the involvement of the VPP can bring

a huge benefit to charging stations, as shown in Table 5.2.

Notably, it is assumed that charging stations can participate in the wholesale market in all
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Table 5.3: Comparison of different incentive programs

VPP-CSs system Benchmark With V2G With pay-as-
bid

Proposed

Total revenue [$] 21,211 21,494 21,715 22,296

Total cost [$] 10,928 11,113 11,123 11,565

Total profit [$] 10,283
(100%)

10,381
(100.9%)

10,592
(103.0%)

10,731
(104.4%)

Incentive Payment
[$]

489 716 630 964

Adopted energy
flexibility [kWh]

15,686 20,774 22,114 30,090

cases. Whereas in practical scenarios, charging stations are generally not allowed to access the

wholesale market due to their small capacities. In that case, they must face higher electricity

prices from the distribution network operator.

To verify the superiority of the proposed incentive program, four incentive programs are eval-

uated in this chapter. Program 1 is the benchmark incentive program proposed in chapter 4,

in which the V2G operation is not considered, and the uniform pricing mechanism is used. In

program 2, the V2G operation is added on top of the benchmark program. In program 3, the

uniform pricing in the benchmark program is replaced with the pay-as-bid mechanism. Pro-

gram 4 is the proposed incentive program, which concurrently adopts the V2G operation and

the pay-as-bid rule. The optimization results of different programs are summarized in Table

5.3.

By comparing program 2 with the benchmark, one can observe that with the V2G operation,

the profit of the VPP-CSs system is increased by $98, and the incentive payment for EV

users is increased by $227. These economic benefits are generated by adopting EV discharging

energy flexibility through the V2G operation. The advantage of the pay-as-bid rule can be

demonstrated by comparing program 3 with the benchmark. In program 3, the pay-as-bid rule

allows 6,428 kWh more EV energy flexibility to be adopted as compared to the uniform pricing

mechanism, suggesting that the pay-as-bid rule is more efficient in encouraging the utilization

of EV energy flexibility. With an increased EV energy flexibility utilization rate, the total profit

of the VPP-CSs system and the total incentive payment for EV users are increased by $309

and $141, respectively. When both the V2G operation and pay-as-bid are considered, as in the

proposed incentive program, the incentive payment for EV users almost doubled (from $489 to
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Figure 5.9: Attractive matrix for (a) all players and (b) charging stations only.

$964). For the VPP-CSs system, its total profit is also increased by $448, which is 4.4% of its

total profit. Besides, by using the proposed incentive program, the adopted EV energy flexibility

is almost twice of the adopted EV energy flexibility from the benchmark, which confirms its

superiority in encouraging the utilization of EV energy flexibility.

5.5.3 τ-value Estimation

This sub-section provides some analysis of the proposed estimation approach. The obtained

attractiveness matrix is presented in Fig. 5.9. In Fig. 5.9a, the VPP is set to be player 1,

and charging stations are set to be players 2 to 11. As shown in Fig. 5.9a, the attractiveness

of charging stations to the VPP is much smaller than their attractiveness to other charging

stations. This is because the VPP has much larger remainders than charging stations in all

cases. Besides, the VPP’s attractiveness to other charging stations is also obviously lower than

the attractiveness of charging stations to other charging stations. This is because the utopia

cost of the VPP is much lower than the total cost of any two-player coalition that includes the

VPP and a charging station. To show the variance of the attractiveness matrix more clearly,

the rest part of the attractiveness matrix without the VPP is presented in Fig. 5.9b, which

shows that the attractiveness between different players can be very different. Fig. 5.9b also

gives straightforward information on which players are more attractive to the considered player

when estimating the maximum right cost for player l. Notably, in the diagonals of Fig. 5.9, the

attractiveness is not presented because they represent one-member coalitions.

The remainders for all players under different coalition sizes are shown in Fig. 5.10. Fig.
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Figure 5.10: (a) Remainders and remainder drops for the VPP, (b) remainders for charging
stations.

5.10a provides the remainders for the VPP. One can observe that the remainder for the VPP

gradually decreases with increasing coalition sizes until coalition sizes 10 and 11, in which the

VPP remainder reaches $10,238.9. Besides, Fig. 5.10a also shows that with increasing coalition

sizes, the VPP remainder drops most significantly when coalition sizes are small, which suggests

that cooperation with more attractive charging stations can give more remainder drops for

the VPP. The remainders of charging stations are shown in Fig. 5.10b, which tells that the

remainders of charging stations are always increasing with enlarged coalition sizes. Hence,

the global minimum remainders of charging stations are all obtained by forming two-member

coalitions of charging station l and its most attractive player hl1.

The ratios between the estimated τ -values and the actual τ -values under different |S|max and

J are presented in Fig. 11. In Fig. 5.11, the VPP is player 1, and charging stations are

players 2 to 11. Because |S|max is uniquely related to J , only J is used to represent each

|S|max and J combination. As shown in Fig. 11, when J = 2, the maximum deviation of the

estimated τ -value from the true τ -value is about 2%. The τ -value estimation deviations are

gradually reduced with increased coalition samples. Such deviation reduction is less significant

for larger estimation sizes, suggesting that the marginal effect of considering larger coalition

sizes is decreasing.

By using the proposed τ -value estimation approach, the minimum |S|max and J that can satisfy

this accuracy threshold are 4 and 3, respectively. In that case, the maximum number of coalitions

that should be evaluated in the estimation process is N eval
max = 188, which is much less than
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Figure 5.11: Estimated deviations under different J and |S|max.

2,048 evaluations of the conventional τ -value method. To show the scalability of the proposed

cost allocation method, the required numbers of evaluations using the conventional τ -value

method, the coalitional τ -value method (Casas-Méndez et al. 2003), and the proposed estimation

approach are presented in Fig. 5.12. In the coalitional τ -value method, it is assumed that there

are three prior unions, including the VPP and two charging station unions. In Fig. 5.12, as

the coalition size grows, the conventional τ -value method becomes computationally impractical

because of its exponential computational complexity. Compared with the coalitional τ -value

method, the proposed estimated τ -value method suffers slightly more computational burden at

small coalition sizes (N ≤ 10). As the number of players grows, the computational burden of

the coalitional τ -value method also grows exponentially, whereas the number of computations

of the proposed method remains to be low.

Notably, under the distributed solution approach, the proposed methods have good scalability

concerning the number of EVs. The solution time for the real-time scheduling problem is mainly

affected by the charging station that has the most EVs to be scheduled. Normally, it takes a

few seconds to solve a single real-time scheduling problem. Besides, evaluating a single sub-

coalition requires solving the real-time scheduling problem 96 times. On average, evaluating

one sub-coalition takes 198.9s.
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Figure 5.12: Computational performance comparison.

5.6 Chapter Summary

This chapter is devoted to proposing a cooperative operation framework for VPPs and charging

stations that have different interests. To support the flexible operation of the considered VPP-

CSs system, an EV user incentive program is proposed for acquiring EV energy flexibility. To

efficiently address the conflicting interests between different stakeholders, an estimated τ -value

cost allocation method is also proposed.

In the cooperative framework, the cross-balancing effect that can reduce the deviation cost is

obvious among the players. To fully make use of this cross-balancing effect, large EV charging

management platforms should be established to collectively manage the charging load of larger

EV fleets. Besides, new electricity market products should be designed to further unleash the

potential of EV energy flexibility. As compared to the case of no cooperation, the average

charging station profit and VPP profit has been increased by 20.7% and 4.6%, respectively,

achieving a win-win situation for all members. For the proposed EV user incentive program,

numerical results suggest that both the V2G operation and pay-as-bid strategy can enhance

the profitability of the considered system. But the improvement from adopting the pay-as-bid

strategy (3.0%) is more obvious than involving the V2G operation (0.9%). For the considered

VPP-CSs system, compared to the conventional τ -value method, the proposed τ -value estima-
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tion approach can reduce the computational burden from 2047 evaluations to 188 evaluations,

meanwhile, achieving an average of 99.2% estimation accuracy. As compared to the coalitional

τ -value method, the proposed method can also significantly reduce the computational burden

for large coalitions. The computational burden reduction of the proposed method will become

more significant as the size of the coalition grows.

Based on the methods developed in previous chapters, this chapter further proposes a multi-

stakeholder operation framework for VPP and EV charging stations to coordinately manage

DERs to improve the financial benefits of all stakeholders. To this end, the methodologies

developed in this thesis provide DER operators with solutions for several important problems,

including exchanging energy and energy flexibility with the electricity markets, handling uncer-

tainties in DER operation, and effectively coordinating different DER components as well as

stakeholders to operate as a whole system.
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Chapter 6

Conclusion

Power systems are transforming to provide cleaner, cheaper, and more reliable electricity, and

developing DERs is becoming a key enabler for supporting the upgrade of power systems.

Because of the distributed and stochastic nature of DERs, better energy management methods

need to be developed to seize the opportunities and deal with the challenges brought by the

massive integration of DERs.

The primary objective of this thesis is to propose economic operation strategies for VPPs and

EV charging stations to improve the financial benefits of managing the energy and energy

flexibility of DERs. To realize the target, this thesis first proposes an optimal VPP operation

framework considering multiple electricity markets under multiple uncertainties. Then, an EV

charging station energy management strategy is proposed by taking EV user incentives into

account. Based on the methods proposed for VPPs and EV charging stations, the operation of

a multi-stakeholder VPP-CSs system is further investigated to allow cooperation between VPPs

and EV charging stations.

The methods proposed in this thesis can help VPP and EV charging station operators im-

prove their financial benefits by effectively managing the DER energy and interacting with the

electricity markets. The major contributions of this thesis can be summarized as follows:

(1) An optimal VPP operation regime considering multiple electricity markets and multiple

uncertainties is proposed. The proposed operation regime includes a day-ahead market bidding

model and a real-time energy scheduling model. In the day-ahead bidding stage, the developed

price-dependent offering strategy improves the bidding flexibility of the VPP in the energy
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market. Also, the proposed stochastic minimax regret optimization model utilizes a combination

of scenarios and confidence intervals to describe the uncertainties, making it advantageous

for problems where some uncertainties have accurate probability distributions while others do

not. In the real-time energy scheduling stage, the proposed self-adaptive algorithm optimally

determines the size of the confidence intervals in a look-back-and-adjust manner. The proposed

methods improve the decision-making flexibility of the VPP in both market participation and

energy scheduling problems, which significantly enhances the VPP’s profitability.

(2) An EV charging station energy management strategy with an EV user incentive program

is proposed. Besides, an optimal pricing model is developed to help the EV charging station

optimally determine the incentive price that can maximize its financial benefit. To deal with

the dimensionality of the EV charging station operation problem, an ADMM algorithm with

adaptive penalty factors is further proposed. As compared to traditional static and dynamic

incentive programs, the proposed EV charging station operation strategy simultaneously real-

izes simplicity, consistency, and controllability in the interactions with EV users, making the

proposed methods highly potential for practical implementations.

(3) A mutually beneficial operation framework is proposed for VPPs considering EV charg-

ing stations. The proposed operation framework handles the conflicting interests of different

stakeholders by using the cooperative game theory. To support the flexible operation of the

investigated VPP-CSs system, an EV user incentive program is proposed. The cost allocation

problem between different stakeholders is addressed by using the τ -value method. To facilitate

practical applications of the proposed methods, the computational intractability of the τ -value

method is addressed by a proposed estimation approach. The proposed VPP-CSs operation

allows VPPs to integrate EV fleets to perform similar functionalities of energy storage systems,

hence, reducing the capital cost of building additional energy storage devices. EV charging

stations can also benefit from this cooperation and improve their financial gains.

In the future, several interesting topics can be further investigated as the extension of the

methods proposed in this thesis, including:

(1) More energy flexibility products can be considered to diversify the income sources. This

thesis only considers energy and reserve products, which cannot fully exploit the potential of

DERs. Some other electricity market products such as frequency regulation service, voltage

regulation service, and ramping flexibility (Wang and Hobbs 2014) service can be involved in
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the operation to increase the profitability of managing DERs.

(2) Real-world data can be used and analyzed by machine-learning techniques to replace some

assumptions in this thesis. For example, the EV user price preferences are assumed to follow the

normal distribution, which may not be accurate in general. If real-world EV user charging price

data can be acquired, some machine-learning techniques such as neural networks and decision

tree models can be applied to estimate the price sensitivity of EV users.

(3) The economic analysis in this work only considers the operation stage. Future works can

extend the analysis horizon to include the cost of investment, maintenance, reuse, recycling,

and disposal of DERs to analyze the economics over a longer period.

(4) This thesis is based on steady-state analysis, the time-varying features such as system voltage

and frequency during operation may also be included in further research.
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Appendix A

Appendix Chapter

A.1 Two-Stage Minimax Regret Problem Reformulation

The original two-stage minimiax regret problem is as follows:

min
y

{
f1(y) + max

u

{
min
x
f2(x)− min

yu,xu
[f1(y) + f2(x

u)]

}}
(A.1)

Firstly, the inner minimization problem is transformed into a maximization problem, this can

be achieved by altering the sign of the optimal solution cost functions and turn it into a maxi-

mization problem. Hence, equation (A.1) can be written as:

min
y

{
f1(y) + max

u

{
max
yu,xu

[−f1(y)− f2(xu)] + min
x
f2(x)

}}
(A.2)

The optimal solutions yu and xu are dependent on the uncertainty realizations u. Because both

the uncertainty realization u and optimal solutions under u are optimization variables, and

both are maximization problems, the second inner maximization problem can be integrated for

the optimal solution under scenario u into the middle maximization problem. Following this

operation, equation (A.2) is equivalent to equation (A.3):
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min
y

{
f1(y) + max

u,yu,xu

{
min
x

[f2(x)− f1(y)− f2(xu)]
}}

(A.3)

In equation (A.3), the worst-case uncertainty realization u, the optimal first-stage decision yu

and second-stage decision xu under u are all decision variables of the middle maximization

problem. To this end, by considering a lifted uncertain vector ζ that represents all the variables

in the middle maximization problem, equation (A.3) can be reformulated as:

min
y

{
f1(y) + max

ζ

{
min
x

[f2(x)− f1(y)− f2(xu)]
}}

(A.4)

A.2 Bilinear Term Transformation

The Bilinear term β∆P d
m,t is the product of two bounded continuous variables β and ∆P d

m,t. To

transform it into the product of a binary variable ydm,t, a continuous variable β, and a constant

P us
m,t, the optimality condition can be utilized. Firstly, when ∆P d

m,t > 0, from the objective

function one can conclude that:

λoutm − λinm > β (A.5)

where λoutm is the market price when the load is shifted out, and λinm is the market price when the

load is shifted in. In this case, the profit improvement ∆Profit from shifting the load ∆P d
m,t

is:

∆Profit = ∆P d
m,t(λ

out
m − λinm − β) (A.6)

The profit change ∆Profit is an increasing function of ∆P d
m,t. Hence, in the optimal solution,

the value of ∆P d
m,t is either 0 or its maximum possible value P us

m,t. To this end, the continuous

variable ∆P d
m,t can be transformed into the product of a binary variable ydm,t and a constant

P us
m,t.
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