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Abstract

Building retrofit is an important facet in the drive to reduce global greenhouse gas emissions.

However, delivering building retrofit at scale is a significant challenge, especially in how to

automate the process of building surveying. On-site survey by expert surveyors is the main

approach in the industry. This can lead to a high workload if planning retrofit at a large-scale.

Remote sensing technology can efficiently capture urban environmental data which contains

substantial information that is essential in identifying building retrofit needs. However, how

to extract the information required for retrofit is still a challenge.

Automatically recognising critical building components such as windows is the first step

towards scalable building retrofit. A substantial number of retrofit-related properties can

be directly inferred or indirectly achieved by integrating other types of data sources such as

thermal images with known building components’ positions. The process of automatically

recognising objects at pixel level is commonly referred to as facade segmentation, which aims

to divide a facade into several groups, each with distinct semantic meanings. The state-

of-the-art works on facade segmentation are predominantly based on rectified images which

would lose useful information needed for the retrofit purpose such as the side of buildings.

In addition, existing datasets do not focus on English houses. Moreover, the ontology of

facades in the existing facade segmentation datasets is inconsistent and they are not targeted

at tackling building retrofit. Therefore, there are significant research gaps in 1) determining

facade ontology for retrofit, 2) building English house-oriented datasets and 3) developing

approaches for the specific retrofit-assisting facade segmentation task.

Two datasets were constructed first based on the determined facade ontology which con-

siders the need for building inspection, energy analysis and stock analysis. The raw im-

ages of the two datasets were captured in regions of Sheffield, UK. Then two deep learning

technique-based models were developed on the first built dataset. The two semantic segmen-

tation models, called FacMagNet-l and -s are designed specifically for this task. FacMagNet-l

aims to tackle class inter- and intra- size discrepancy problems. Accuracy is the priority

over computational cost in designing FacMagNet-l. FacMagNet-s, which aims to balance
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the accuracy and computational cost, is a reduced version of FacMagNet-l. The two models

have achieved 81.01% and 77.87% in mean intersection-over-union (mIoU) metric. The mIoU

metric measures the overlapping ratio of the prediction and ground-truth. The results set a

new standard for state-of-the-art semantic segmentation models on the built dataset.

The state-of-the-art and adaptability of the proposed FacMagNet-s model are further

validated using the recently announced Oxford RobotCar-Facade dataset. The results have

shown that the model has achieved a competitive performance compared to state-of-the-art

approaches on the Oxford dataset. The representativeness of the two datasets built in this

PhD project is validated quantitatively by applying trained models on the Oxford dataset.

The representativeness is further qualitatively validated using raw data captured by the same

rig in building the English house datasets in different geographic locations. These represen-

tativeness experiments show that built datasets can properly represent English housing stock.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Research Background

Under the circumstances of increasingly severe global climate change, reducing greenhouse

gas (GHG) emissions is a worldwide challenge. In an effort to keep the global temperature

rise well below 2◦C, the Paris Agreement was made during the 2015 United Nations Climate

Change Conference (United Nations, 2016), in which involved parties must regularly report

their carbon emissions to strengthen transparency and put forward their nationally deter-

mined contributions, as well as developing mitigation strategies and technologies (United

Nations, 2016). To reach the 2◦C target, many governments have imposed their ambitious

national goals. In 2019, the UK government committed to reducing the UK’s net GHG emis-

sions by 100% of their 1990 levels by 2050 (Great Britain, 2019).

Globally, buildings contribute a large amount of GHG emissions during their construc-

tion and operation phase (Ma et al., 2012), as well as consuming a significant proportion of

end-use total energy is (Lucon et al., 2014). In the European Union, the energy demand of

buildings is estimated to reach 40% of EU energy consumption, and buildings are responsible

for 36% of GHG emissions (European Commission, 2020). Despite the relatively low building

renovation rate, around 1%, and that 75% of the building stock is energy inefficient in the

European Union (European Commission, 2020), existing buildings will continue to contribute

a large amount of GHG emissions if there is no intervention. The building renovation rate is

the ratio of buildings which have been renovated for energy efficiency in each year over the

total building stock. In the UK, across all sectors contributing towards GHG emissions in

2019, residential buildings are responsible for 15% of the total GHG emissions (Department

for Business, Energy & Industrial Strategy, 2021) and consume 29% of the total energy (De-

1
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partment for Business, Energy & Industrial Strategy, 2020) in the UK. In the meantime, the

GHG reductions from the residential sector and efforts to adapt the current housing stock for

the climate change risks are stalled (Department for Business, Energy & Industrial Strategy,

2021; Commitee on Climate Change, 2019). Due to this situation, the UK Climate Change

Committee has requested housing retrofit to be an infrastructure priority (Commitee on Cli-

mate Change, 2019).

Building retrofit has significant potential to decrease GHG emissions owing to the up-

take of energy efficiency. Prior to deploying a retrofit plan for an individual building, a

data collection process needs to be conducted in order to collect data required to assess the

building’s energy condition (Ma et al., 2012). This process collects the key building data

especially for thermal characteristics e.g. building geometry, construction materials, glazing

ratio, window/door type, etc., and fault information. However, the building survey data are

not always available and commonly rely on on-site surveys (Densley Tingley, 2022). Such

a highly labour-intensive and time-consuming process makes it extremely difficult to con-

duct building retrofit on a large scale. The state-of-the-art works contributing to large-scale

retrofit are predominately based on using existing building data and available energy sim-

ulation software packages to automate the energy analytic process (Hong et al., 2020). If

the decarbonisation of the building stock is to be accelerated and scaled, it is vital that the

methods of automating the gathering of spatial information are developed. The generation

of this information from spatial data is a key aspect of delivering upon this challenge. Within

this, collecting and integrating building data in an efficient way is still a big data challenge

in both industry and academia for individual house retrofit on a large scale.

Vehicle-mounted sensors provide a common way of collecting urban environmental data

at scale. A famous example is the Google Street View (Anguelov et al., 2010) project which

captures global image data in the urban environment. More examples have emerged in the

past few years with additional point cloud and thermal image data available to support the

autonomous driving research (Huang et al., 2018; Choi et al., 2018). Given the successes of

these vehicle-mounted sensor platforms, a multi-spectral data collection platform has been

built to support the urban building retrofit research (Meyers et al., 2019). The platform is

vehicle-mounted and designed to collect visual images, thermal images, hyperspectral images

and point clouds with a high automation level. The platform is named MARVEL (Mul-

tispectral Advanced Research VEhicLe). The collected data contains substantial building

information which can be used to identify the building retrofit requirements, e.g. point cloud

data contains building geometry information, thermal image and hyperspectral image data

can be used to identify thermal faults and facade component material types.
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Although MARVEL is designed to capture multi-spectral data and its motions are recorded

by a GNSS (Global Navigation Satellite System)/IMU (Inertial measurement unit) localisa-

tion/acceleration unit. How to automatically identify building components from collected

data is still a challenge. Manually annotating captured image data is an unacceptable option

as it requires heavy labour and funding. Identifying targets in an image at pixel level refers to

semantic segmentation, which is a significant research problem in the computer vision com-

munity. The semantic segmentation technique aims to segregate an image into individual

groups, each with distinct semantic meanings. Using the deep learning technique on solving

semantic segmentation problems on these datasets has achieved remarkable success. In the

past five years, deep learning models have dominated all image semantic segmentation rank-

ing lists such as Cityscapes (Cordts et al., 2016) and Apolloscape (Huang et al., 2018).

In summary, reducing building carbon emissions is an urgent issue. Scalable building

retrofit plays an essential role in reducing building carbon emissions. With more efficient

data capture systems becoming available, the development of these systems has provided a

feasible way of collecting built-environmental data at scale. Automatically identifying key

building elements is a critical step towards scalable retrofit using remote sensing data. For

this purpose, existing publicly available datasets recognising building facades and state-of-

the-art approaches should be reviewed first to identify potential research gaps. The following

subsections will further consolidate the research target and identify potential data require-

ments.

1.1.2 Target House Elements and Data Inclusivity

This section provides an overview of the key building elements required and other features

which the collected data should have in order to assess building retrofit. According to the

low carbon domestic retrofit survey guidance (Smith, 2011), latest literature Densley Tingley

(2022) and RICS professional guidance on surveys of residential properties (RICS, 2016),

the key elements of building fabrics are listed below with descriptions of how they would

contribute to building conditions.

1. Walls and Roofs: their construction types such as whether or not a wall has a cavity

will affect the calculation of the thermal transmittance (U-values); it is also critical to

know whether any areas of these two elements require maintenance, e.g. due to damp.

2. Windows and Doors: the air-tightness of windows, including their frames and glazing

types, and doors will affect the U-value calculations as well; whether or not these

elements require replacement is significant in a building inspection survey.
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3. Chimneys: they might help to estimate the house ventilation type. More importantly,

as chimneys are commonly built on top of roofs it is essential to differentiate them from

the roof to provide a more integrated roof structure.

Apart from identifying the key elements listed above, the data collected must also con-

tain other essential features and elements in order to further assist building retrofit; these

necessities are listed below.

1. Including surrounding environmental information: building retrofit analysis at large

scale, e.g. community level or higher, is not only about assessing individual buildings.

According to the residential property inspection guidance (RICS, 2016), external fea-

tures such as trees, plants, drives, boundary walls also need to be assessed for identifying

safety issues and maintenance requirements. Furthermore, environmental information

can be used to assess urban street-level quality (Xia et al., 2021).

2. Imaging residential buildings from multiple perspectives can provide more information

than a plain facade image. In Zeppelzauer et al. (2018), the authors have demonstrated

that multi-perspective building images contain features that can be used to estimate

building age which is an important indicator in building energy modelling.

3. Capturing high-resolution and low-noise images: collected images should have sharp

boundaries of building elements and contain distinct details to be used further for

extracting building properties. For example, wall construction types could be inferred

from wall textures. Stone walls of Victorian buildings show different textures compared

to brick walls. Cavity walls typically have different outer brick layouts compared to

solid brick walls. By manually measuring the dimensions of standard building objects

such as bricks and mortar joints, the resolution has been determined to be above 150

pixels/meter. The noise level which can be measured by Peak Signal-to-Noise Ratio

(PSNR) should be higher than 50dB.

1.1.3 Deep Learning Technique

This section provides an overview of the main technique which is used in this thesis. Deep

learning technique is a branch of machine learning. Machine learning (ML) technique is the

science and art of enabling a system to improve from experience without being explicitly

programmed. The technique has provided a substantial number of options in automating the

process of data analysis. Machine learning approaches have greatly reshaped many areas ow-

ing to their high efficiency in extracting desired information from large quantities of data by

converting real-world data to some forms of abstract understanding. Machine learning is com-

monly defined as a set of algorithms which can learn from data as in Goodfellow et al. (2016).
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Mitchell (1997) provide a concise definition of the phrase ’learning’ in the machine learn-

ing area: for a certain type of task T, and performance evaluation metric P, a computer

algorithm is able to ’learn’ from experience E, meaning that once the algorithm is advanced

through E, the algorithm performance which is measured by P is improved on T. The ma-

chine learning definition has indicated that the source data, i.e. experience E, is critical

to the success of a machine learning algorithm. Moreover, choosing appropriate machine

learning algorithms is also significant to the task T. Machine learning algorithms contain two

major sectors based on different forms of experience E: supervised and unsupervised learn-

ing. The supervised learning algorithms will learn from annotated data. Annotated data has

corresponding input-output pairs and a supervised learning algorithm will learn the mapping

relationship between these pairs. The unsupervised learning will learn from unlabelled data

by extracting the data source’s valuable structure properties.

Deep learning technique, which is also a machine learning algorithm, has been briefly men-

tioned in the former section as it has achieved great success in autopilot oriented datasets.

These datasets commonly contain a building sector but do not specifically include residen-

tial buildings and not at the component-level. Deep learning approaches have also achieved

remarkable success in general image semantic segmentation tasks. Bearing this in mind,

utilising deep learning technique to identify residential building facades seems highly likely.

However, when this PhD project began in 2019, works using deep learning techniques on

facade segmentation were very limited. Furthermore, deep learning-based semantic segmen-

tation models vary distinctively in their structures and training strategies for different tasks.

Thus, exploring a suitable model structure and determining its training strategy is significant.

Data scarcity is a universal obstacle among all deep learning tasks. Training deep learning

models requires a significant amount of data. As aforementioned, deep learning models will

learn from experience E to improve the performance measured by P on task T. This indicates

that scale and diversity of a dataset would determine the upper-limit of the generalisation

of an applied deep learning model to the real world. The generalisation of a deep learning

model to the real world is the key aspect of whether the model can be deployed in the real

world.
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1.2 Research Scope

1.2.1 English Houses

This section helps to set the research context, by providing an overview of the English

housing Stock. Four key documents are used to demonstrate the house information statis-

tics: English housing survey report (Ministry of Housing, Communities & Local Government,

2018), BRE (Building Research Establishment) English housing stock report (Piddington

et al., 2020) and TABULA building typology database (Loga et al., 2016).

In both TABULA building type database and the BRE report, house typologies are distin-

guished by their age bands and types. The BRE report has five age bands which are pre-1919,

1919-1944, 1945-1964, 1965-1980, 1981-1990 and post-1990, while the TABULA database fur-

ther divides houses built after 1990 into three periods which are 1991-2003, 2004-2009 and

post-2010 (Piddington et al., 2020; Loga et al., 2016). Buildings established pre-1945 are

likely to be built with solid walls (Piddington et al., 2020) which commonly lack insulation

layers (Li and Tingley, 2021). These buildings account for approximately 40% of the total

stock (Piddington et al., 2020).

House types are divided into five categories in the BRE report which are terraced, semi-

detached, detached, bungalow and flat. The presentations of the first four building types are

clear, which are one- to two-storey buildings with pitched roofs (Piddington et al., 2020).

Flats are more varied in their definitions, especially for high-rise buildings, their appearances

are different to others. In the UK, the majority of the housing stock is one-to-two storey,

accounting for 79.1% of the total UK housing stock (Ministry of Housing, Communities &

Local Government, 2018). In Wales the number is significantly higher at 89% (Piddington

et al., 2020). Although around 20% of people live in flats, 70% of them live in flats with fewer

than three storeys and only 10% of them live in flats with more than five storeys, which is

equivalent to 2% of the total households (Ministry of Housing, Communities & Local Gov-

ernment, 2018).

This PhD project focuses on building datasets and developing semantic segmentation ap-

proaches for English houses which are up-to three storeys. The focused building type covers

96% of the total housing stock according to English housing survey results (Ministry of Hous-

ing, Communities & Local Government, 2018).
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1.2.2 The Data Capture Platform

1.2.2.1 Acquisition Platforms and Cameras Comparison Study

This section provides a comparative study of platforms which could be used for scal-

able built-environment data acquisition. The comparative study is based on the latest (6th

edition) RICS guidance on earth observation and aerial surveys (RICS, 2021), which came

into effect from 4 January 2022, other developed platforms for city modelling and current

sensors are used for capturing facade images. The current research on facade segmentation

is predominantly based on terrestrial image data, but there are emerging works using aerial

oblique view data (Mao et al., 2022) as well.

According to the RICS guidance, for civil engineering and infrastructure use case, UAV

(Unmanned Aerial Vehicle) and manned helicopter are recommended. UAV is recommended

for small-size area and helicopter is recommended for medium-size area surveys. Vehicle, e.g.

a van, is also a popular platform in capturing built-environment data as briefly reviewed in

section 1.1.1. UAV has two types, multirotor such as the DJI Matrice series and fixed-wing

such as the eBee-X drones. DJI is a multirotor drone manufacturer with the largest market

share (Clark et al., 2017) and eBee-X is one of an industrialised solution of city modelling

(Hu et al., 2022).

The target building type in this research is houses below three storeys, usually about 6-8

metres high (two-storey) but can be up to 10-12 meters (three-storey), if the average height

of a storey is assumed to be c.3 meters. Narrow streets are common in the UK, this means,

if using aerial photography to capture house facades, the minimum flight height regulations

should be considered first in order to cover the whole facade area properly. A demonstration

diagram using an oblique view camera for facade data capture is shown in figure 1.1. An

oblique view camera has multiple sensors, one points towards the ground providing nadir

view images. As an example, its field-of-view (FOV) is shown in light blue in figure 1.1.

Other sensors are inclined at an angle and provide oblique views.

As shown in the diagram, if an aircraft is flying at its minimum height H and trying to

capture the facade of building A, due to convex structures such as roof overhang or outer

doorways, a portion of a facade will not be captured. The higher the altitude H, the angle θ

will be larger which means a larger area of the facade will be occluded. This problem would

be severe for houses with doorways or lean-to roofs. If the aircraft has to be a certain distance

from targets to get an appropriate image angle, and the street whose width is denoted as L,

is narrow, building B could occlude the lower part of building A.
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Figure 1.1: Demonstration diagram using oblique view camera to capture house
facades. A typical oblique-view camera has five lenses, four of which are inclined
at an angle which is commonly 45◦ (oblique view) and the one remaining is per-
pendicular to the flying plane (nadir view). The letter h denoted the height of the
building, L is the street width, H is the flying height of the platform.

In this case, helicopter might not be an ideal choice. In the UK, helicopters are not

allowed to fly “closer than 500 feet (c.150 metres) to any person, vessel, vehicle or structure”

(Department of Transport, 1996). In order to achieve a favourable camera angle to avoid

occlusions caused by roof overhang structure or outside doorways, a helicopter might have

to be far from the target. For example, if a light-ray angle, α of 45◦ is needed for a door,

the helicopter needs to be approximately 150m horizontal to the target. In addition, light

rays reflected from the surface of the door will be occluded by building B if the height of

a building, h, is larger than the street width L. As an example, a street that is 6 metres

wide could lead to occlusion if building B has a height of 7 metres. In similar cases, targets,

especially for ground floor features, could be easily occluded by their neighbouring structures.

Vehicle and UAV are two potential platforms to capture facade data. In comparison with

UAVs, vehicles are more advantageous in capturing features of ground level. As an example

in figure 1.2, if using a spherical view camera for facade capture, convex structures such as

the roof overhang will not result in loss of features. However, terrestrial data capture is

less favourable in capturing roof structures than using aerial platform due to limited FOV,

especially if there are skylights or dormers.
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Figure 1.2: Demonstration diagram using spherical view camera to capture house
facades. A typical spherical view camera will have one lens point upwards and the
others point parallel with the ground. The letter h denoted the height of the building,
H is the position height of the camera.

This section reviews the state-of-the-art vehicle-based and UAV-based platforms that

could be or have been used for facade image capture, or have been built for city modelling

purposes in table 1.1. Four platforms are included which are Google Street View van which

was built for urban environment mapping (Anguelov et al., 2010), Oxford RobotCar (Mad-

dern et al., 2017) which was built in 2014 but its data were used to build the latest facade

segmentation dataset (Wang et al., 2022), DJI Matrice 300 which is an industry-level mul-

tirotor drone and eBee-X which is an industry-level fixed-wing drone. This review includes

their cruising distances, equipped or potentially equipped sensors with their effective pixels.

It is noted that only enterprise-level UAVs are included in this review to provide a fair

comparison to professional terrestrial platforms. As stated, UAV can be categorised into two

types, multirotor and fixed-wing. In general, fixed-wing UAVs will have longer cruising range

than multirotor UAVs (Boon et al., 2017). Popular manufacturers include DJI and Parrot

for their multirotor aircraft and eBee and Skywalker for their fixed-wing models. Therefore,

both fixed-wing and multirotor models are included in this review. This review does not

include hand-held sensors which have been predominantly used for building facade segmen-

tation datasets, due to their limitations on data capture efficiency.

Table 1.1 has shown that compared to UAVs, vehicle-based platforms have a longer cruis-

ing range. Although eBee-X has a maximum cruising range of 55 km, its signal transmission

distance limit can only fly within 8 km. The latest sensors for vehicle or UAV are equally

powerful in taking images. In order to capture facade images, using UAVs or vehicles are

both feasible solutions. Multirotor drones are more flexible in operation than fixed-wing

drones. Therefore, for the specific facade image capture task, multirotor drones are more ad-

vantageous. Compared to vehicles, multirotor drones have more restrictions such as keeping

drones ‘within visual line of sight’. Such restrictions could make using UAVs in high-density

residential areas become complicated. Different camera lens are then reviewed below. The

CCD and CMOS sensors and various camera types are also reviewed.
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Table 1.1: A review of state-of-the-art data capture platforms including vehicle-
based and fixed-wing and multirotor UAV-based models.

Platform Google Street
View

Oxford
RobotCar

eBee-X DJI Matrice
300

Year announced 2010 2014 2018 2020
Carrier type
(model)

various oil-driven
vehicles
(Chevrolet)

electrical vehicle
(Nissan LEAF)

fixed-wing drone multirotor drone

Camera type custom controlled-
distortion

trinocular stereo
+ wide-angle

oblique (two
oblique and one
nadir views)

wide angle +
zoom

Sensor custom CMOS Sony ICX445
(1/3-inch CCD)

1-inch RGB 1/2.3-inch and
1/1.7-inch CMOS

Effective Pixels 5MPx 1280× 960 5472× 3648 20 and 12MPx
Max. cruising or
transmission range
(battery life)

1000km 270km 8km (90min) 15km (55min)

Imaging sensors for cameras include CCD (Charge-Coupled Device) and CMOS (Comple-

mentary Metal Oxide Semiconductor). Both of the sensors work by capturing light photons

and converting them into electrons. Over decades, Litwiller (2001) stated that CCD was the

choice of high image quality preference but CMOS was a cost-effective solution. However,

nowadays, CMOS is a more popular choice owing to technology development (TELEDYNE

FLIR, 2021). Table 1.1 also shows that latest data capture platforms prefer to use CMOS

sensors.

Camera lenses are critical in photography. The basic classification of lenses include prime

and zoom lenses. Prime lenses have fixed focal length and zoom lenses can adjust their focal

length within a fixed range as required. Lenses can also be categorised based on their angle

of view which can usually be specified by their focal length but it also depends on their

film format. A normal lens will provide a view which approximates the view of human eyes.

Wide-angle and telephoto lenses will provide wider and narrower views compared to normal

lenses, respectively. The four platforms that have been reviewed all employ wide-angle cam-

eras.

Another consideration of cameras for environmental data capture is camera types, al-

though it also based on which platforms have been employed. Oblique view camera can

only be installed on aircraft. In addition, UAV manufacturers provide sensors that could

be installed on their platforms. Those sensors are typically designed for their platforms and

some of them are designed for specific tasks such as mapping or anti-terrorism. For example,

DJI recommends its Zenmuse-h20 camera which integrates prime wide angle and zoom visual

cameras, thermal camera and laser distance measure (DJI, 2022). eBee-X recommends its
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S.O.D.A. 3D camera which is specifically designed for mapping (AgEagle, 2022). Cameras

which can be mounted on a vehicle are various, from common monocular cameras to inte-

grated models such as spherical and stereo cameras. Among them, the spherical camera is a

choice for mobile mapping such as in the Google Street View project (Anguelov et al., 2010).

This type of camera integrates several individual sensors to provide a spherical view of the

environment.

1.2.2.2 Multi-spectral Advanced Research VEhicLe (MARVEL)

In this PhD project, the built multi-spectral advanced research vehicle (MARVEL) plat-

form is adopted for facade image capture. The camera used to capture images in the plat-

form is a Ladybug5+ spherical camera. The camera rig comprises six separate 2/3-inch Sony

IMX264 CMOS sensors with 2048× 2448 effective pixels and wide-angle lenses. The cameras

are oriented with one on the top pointing upwards and the other five positioned horizontally

along the sides forming a regular pentagon. The combined capture has a field-of-view (FOV)

of 90% of full sphere. Figure 1.3 demonstrates the MARVEL rig.

MARVEL is designed to capture buildings up-to three storeys which are beside roads

while driving. Standardised widths for new UK roads were set in 1993. However, to tackle

narrower roads, the design single-side width is reduced to 2.25 m from the standardised

3.65 m. A single building storey is estimated to be 3 meters. Under these assumptions, the

approximate required FOV for a three-storey house is 84.3◦ which is within the sensor’s FOV.

More detailed design specifications are available in the MARVEL paper (Meyers et al., 2019).

Figure 1.3: The developed multi-spectral data collection platform, MARVEL
(Meyers et al., 2019). The visual camera rig is installed on the top of the plat-
form; one LiDAR unit is installed on each of the four corners of the platform;
thermal cameras and the hyperspectral line-scanners are installed on both sides of
the platform. The spherical Ladybug 5+ camera is shown on the right hand side
of the figure.
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1.3 Aims and Objectives

The first aim of this thesis is to build datasets focusing on English housing stock with

up-to three storeys. The second aim is to develop approaches for facade semantic segmen-

tation using street view images. The research questions, and the objectives for answering

them, that form the skeleton of this research are outlined below.

1. What is the state-of-the-art (SOTA) in facade semantic segmentation including datasets

and approaches?

(a) The SOTA approaches developed for facade semantic segmentation and existing

datasets are comprehensively reviewed;

(b) Research gaps between SOTA and the research aims of this thesis are identified.

2. How can key English house components (determined in section 1.1.1) be automatically

identified from street view images?

(a) A dataset construction pipeline is proposed and developed;

(b) Deep learning-based approaches for built facade segmentation datasets are de-

signed or explored;

(c) A publicly available benchmark dataset based on Oxford is used to validate the

generalisation and adaptability of built datasets and designed approaches.

1.4 Road-map and Contributions

The thesis contains five chapters. Chapter 1 introduces the research background and

proposes research questions. In Table 1.2, the road-map and contributions of this thesis

are summarised by showing research challenges, associated contributions to knowledge which

have been made in this thesis with corresponding chapters. The research problems are based

on objectives described previously. All contributions, outcomes and findings are summarised

and discussed in chapter 5.
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Table 1.2: Proposed research questions and challenges addressed in this thesis by
relevant chapters.

Research Challenge Thesis Contributions Chapters

Construct street view-style building image
datasets fitting retrofit needs

1. Review existing facade segmentation
datasets and identify research gap on
datasets availability

2, 3

2. Develop an annotation pipeline for the
specific task
3. Propose annotation rules fitting the task
needs
4. Validate the feasibility of the annotation
pipeline

Develop building facade segmentation
approaches for street-view facade images

1. Review SOTA approaches on facade
segmentation and deep learning
architectures

2, 4

2. Develop deep learning-based facade
segmentation approaches for built datasets
3. Design comparative studies with other
SOTA approaches and architectures to
validate the performance of developed
approaches and representativity of built
datasets

1.5 Publications to Date

The following papers have resulted from works conducted in this thesis:

1. Dai, M., Ward, W.O., Meyers, G., Tingley, D.D. and Mayfield, M. (2021) ‘Residential

building facade segmentation in the urban environment’, Building and Environment,

199, p.107921.

2. Dai, M., Ward, W.O., Arbabi, H., Densley Tingley, D., Mayfield, M. (2022, Septem-

ber) ‘Scalable Residential Building Geometry Characterisation Using Vehicle-Mounted

Camera System’, Energies, 15(16), p. 6090. https://doi.org/10.3390/en15166090

3. Dai, M., Densley Tingley, D., Jurczyk, J., Ward, W.O., Arbabi, H., Mayfield, M.

(2023) ‘Residential Building Material Stock Characterisation and Quantification Using

Computer Vision Techniques with Drive-by Image Capture’, Ongoing.

4. Arbabi, H., Lanau, M., Li, X., Meyers, G., Dai, M., Mayfield, M. and Densley Tingley,

D. (2022) ‘A scalable data collection, characterization, and accounting framework for

urban material stocks’, Journal of Industrial Ecology, 26(1), pp.58-71.

5. Ward, W.O., Li, X., Sun Y., Dai, M., Arbabi, H., Densley Tingley, D., Mayfield, M.

(2023) ‘Estimating Energy Consumption of Residential Buildings at Scale with Drive-

by Image Capture’, Building and Environment, 234, p.110188.
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Work from this thesis has also been presented in the following conferences:

1. Dai, M., Meyers, G., Tingley, D.D. and Mayfield, M. (2019, October) ‘Initial investiga-

tions into using an ensemble of deep neural networks for building façade image semantic

segmentation’ in Remote Sensing Technologies and Applications in Urban Environments

IV (Vol. 11157, p. 1115708). International Society for Optics and Photonics.

2. Ward, W., Dai, M., Arbabi, H., Sun, Y., Tingley, D. and Mayfield, M. (2022, Septem-

ber) ‘Measuring the Cityscape: A Pipeline from Street-Level Capture to Urban Quan-

tification’, in IOP Conference Series: Earth and Environmental Science (Vol. 1078, No.

1, p. 012036). IOP Publishing.



Chapter 2

Literature Review

2.1 Introduction

In (Koziński et al., 2014), the authors define facade segmentation as ‘The goal of facade

parsing is to segment rectified building images into regions corresponding to architectural

elements’. Facade segmentation, as a branch of image semantic segmentation, has attracted

much attention in recent years (Dai et al., 2021; Zhang et al., 2022; Ma et al., 2022). Auto-

matically understanding facade decomposition would contribute towards many applications

such as digital entertainment, building information modelling (BIM), etc.

Image semantic segmentation is a branch of image segmentation, a high-level computer

vision task which aims to partition a digital image into various subgroups of pixels. The

image segmentation family contains three main branches: the semantic segmentation, the

instance segmentation and the panoptic segmentation. The differences between the three

branches is the fineness level of the partitioned pixel subgroups. Semantic segmentation is

the foundation of the other two branches. Semantic segmentation tasks aim to classify each

pixel into different categories with distinct semantic meanings (Liu et al., 2019). Instance

segmentation detects different objects and further identifies each individual instance of in-

terest belonging to the same category (He et al., 2017). Panoptic segmentation unifies the

semantic segmentation and the instance segmentation by categorising objects of interest into

things and stuff (Kirillov et al., 2019). ’Things’ refer to countable objects such as animals

and trees which are partitioned at instance level. ’Stuff’ is an amorphous region of similar

texture or material, such as road and sky, which is partitioned at semantic level.

The classification of image semantic segmentation methods varies. A common view-

point is that the classification depends on whether or not the methods are deep learning

technology-based (Liu et al., 2019). The methods which do not employ deep learning tech-

15
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nologies are usually referred to as ’traditional methods’. On the contrary, methods that do

employ deep learning technologies are named ’deep learning methods’. Deep learning-based

methods have a considerably shorter history than traditional methods but generally out-

perform them (O’Mahony et al., 2019). Traditional methods are usually about designing

handcrafted feature extractors. Deep learning-based methods are about designing learnable

feature extractors. A feature, especially of an image, is a piece of information which relates to

whether a certain region in an image has specific properties. Features include various forms

such as edges, corners, colours, etc. (Nixon and Aguado, 2019). Basic features such as points

and edges which do not contain any shape information are commonly defined as ’low-level’,

and features concerning finding shapes and objects are termed ’high-level’. Compared to tra-

ditional methods, the feature extraction process commonly requires more human-intervention

than the deep learning-based methods.

In this chapter, the deep learning-based general-purpose image semantic segmentation is

first reviewed. The review will include state-of-the-art model architectures and frequently-

used publicly available datasets for autonomous driving. Some deep learning basics are

concisely included as an introduction to this research domain. Then, the facade seman-

tic segmentation research is comprehensively reviewed. The review will contain techniques

developed over the past decade and publicly available datasets.

2.2 Convolutional Neural Network-based Image Segmentation

2.2.1 Introduction

Convolutional neural network (CNN) is an assembly of a series of mathematical opera-

tions. The overall target of CNN is to minimise a designed loss function. Hornik et al. (1989)

establish that multi-layer feed-forward networks which include networks that only have one

hidden layer can theoretically approximate any Borel measurable functions to any given ac-

curacy. The convolution layer is the core building unit of a CNN. It contains a set of learnable

filters which can be computed as below in the forward propagation phase:

yu,v =

m−1∑
i=0

n−1∑
j=0

ki,jxi+u,j+v + bi,j . (2.1)

In which y is output, x is input, k is a filter with size (m,n) which should be smaller than the

input size and b is bias. It is noted that the filter k is also widely referred to as kernel and the

output y is sometimes named feature map. In comparison with node-based neural networks,

convolution operation is more efficient in processing multi-dimensional input, both in reducing

memory requirements and improving statistical efficiency (Goodfellow et al., 2016).
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Similar to the node-based neural network, training a CNN is based on the backpropagation

(BP) algorithm which adjusts kernels’ weights at the direction of gradient descent at a given

point. As an example, in a neural network with a single hidden-layer, the weight adjusted

from the output layer is calculated by:

w′
hj = whj − ∆whj (2.2)

The ∆whj is the gradient of the loss function to the weights connected to the output j,

multiplied by a given learning rate η:

∆whj = −η
∂Ek

∂whj
(2.3)

As the principle of CNN indicates, the performance of a CNN model can be influenced

by its model architecture, loss function, optimiser, weight initialisation as well as hyper-

parameters such as learning rate and batch size. Among these topics, developing more pow-

erful CNN architecture has attracted much attention.

The state-of-the-art (SOTA) architectures developed for semantic segmentation have the

same encoder-decoder structure (Hao et al., 2020). This paradigm was first introduced by

(Long et al., 2015) in ‘Fully convolutional networks (FCN) for semantic segmentation’ in

2015. The work is also widely accepted as the foundation of the CNN-based semantic seg-

mentation models. FCN pioneers semantic segmentation using convolution layers to replace

dense-connection layers to enhance pixel-wise predictions. The author also develops the skip-

connection which aims to recover information lost due to pooling operations by combining

the finer low-level feature maps and coarser high-level feature maps.

The encoder-decoder structure consists of two connected modules: the encoder network

and the decoder network. The encoder network aims to extract image features and the de-

coder network recovers the spatial resolution. The encoder network is also called the backbone

network. The backbone network is the main structure of a CNN model for image classifica-

tion tasks without dense connected layers. Commonly-used backbone networks include VGG

(Simonyan and Zisserman, 2015), Inception (Szegedy et al., 2015, 2016, 2017), ResNet (He

et al., 2016a), DenseNet (Huang, Liu, Van Der Maaten and Weinberger, 2017) and architec-

tures based on the more recent neural architecture search (NAS) technology (Tan and Le,

2019). Figure2.1 visually compares the three SOTA backbone network architectures.
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Figure 2.1: The summary of three convolution neural network modules; a. is
the inception module (Szegedy et al., 2015), b. is the residual module (He et al.,
2016a) and c. is the dense connection module (Huang, Liu, Van Der Maaten and
Weinberger, 2017).

Among these frequently-used backbone networks, VGG is a stack of 3 × 3 convolution

kernels which aims to enlarge the receptive field of the designed model. As shown in fig-

ure 2.1a, the inception module is a structure which contains various sizes of convolution

kernels in a parallel way. The effective design can increase the depth and width of the

network while keeping the computational budget constant. Figure 2.1b shows the residual

module which contains a shortcut structure across convolutional layers in the network. The

module can more effectively transmit weight through the model in the back-propagation pro-

cess. ResNet realises the potential of training networks with thousands of layers: in 2016, a

1001-layer ResNet was produced and it outperformed its shallower-version counterparts (He

et al., 2016b). Figure 2.1c shows the densely connected module which also contains shortcut

structures. Unlike the residual module, the densely connected module collectively aggregates

former feature maps with the following ones. The dense connection can efficiently use the

former information and thus requires fewer feature maps.

2.2.2 A Review of Model Architectures

Following FCN, a series of encoder-decoder networks is proposed such as SegNet (Badri-

narayanan et al., 2017), U-Net (Ronneberger et al., 2015) and DeconvNet (Noh et al., 2015).

These models have a similar U-shape architecture. SegNet and DeconvNet use the unpooling

operation which is the reverse operation of the max-pooling operation to recover the spatial

information, but U-Net uses the concatenation operation instead. The unpooling operation

comes from Zeiler and Fergus (2014). This operation records the locations of the maxima

within each max-pooling region to obtain an approximate inverse of the pooling operation.

The concatenation operation directly concatenates feature maps from shallow layers with

corresponding ones in deep layers in the channel direction.
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Table 2.1: An incomplete list of the U-Net family models. It is noted that the
table is only for the demonstration of the adaptability of the U-Net architecture.
Therefore, some models such as the ResU-Net which have different implementa-
tions with the same name are not included here.

U-Net
variants

R2U-Net
(Alom
et al., 2018)

Attention
U-Net
(Oktay
et al., 2018)

Deformable
U-Net (Jin
et al., 2019)

ResU-Net
(Chu et al.,
2019)

DENSE-
INception
U-Net
(Zhang
et al., 2020)

RAU-Net
(Chen
et al., 2020)

Description Combining
the
recurrent
convolu-
tional
neural
network
(RCNN)
with the
U-Net
model and
identifying
the efficacy
of the
recurrent
structure in
the medical
segmenta-
tion task.

Embedding
the
attention
mechanism
into the
U-Net; the
proposed
attention
gate module
contributes
to small
object
predictions.

Using the
deformable
convolution
which is
designed for
objects with
irregular
shapes to
replace the
normal
convolution
in the
original
U-Net.

Using
ResNet to
replace the
encoder
network of
the original
U-Net, this
work also
utilises a
conditional
random
field (CRF)
model and
the morpho-
logical
operation as
the post-
processing.

A U-shape
model
combining
multiple
techniques
including
the dense
connection,
the
inception
module and
the residual
module.

Embedding
the ResNext
block and
locality
sensitive
hashing
attention
module
(LSH). The
LSH is a
spatial
attention
module
which
enables the
model to
learn
positions of
important
areas.

The models with the encoder-decoder architecture can easily be adjusted to improve the

model performance by embedding different backbone networks or modules such as the feature

pyramid (Chen et al., 2018; Diakogiannis et al., 2020) and the attention (Oktay et al., 2018;

Ni et al., 2019) modules. For example, the U-shape architecture of the original U-Net is

expanded to a series of models. Table 2.1 shows an incomplete collection of models with the

U-Net architecture and their brief introductions.

The U-shape architecture is widely adopted in semantic segmentation models. However,

the encoder-decoder architecture also has other structures including the hierarchical shape

structure such as the RefineNet (Lin, Milan, Shen and Reid, 2017), and the global convolu-

tional network (GCN) (Peng et al., 2017). The RefineNet exploits details from various stages

of convolutions and fuses them together to produce a high-resolution prediction. The GCN

exploits feature maps after every pooling layer. The feature maps are fed into the global

convolutional module which contains two branches: each branch has the integration of larger

kernels with a size of 1× k and k× 1 (k is the kernel size), instead of using small-size square

ones, like 3×3. The branch is designed to exploit the benefit of large-size kernels which have



CHAPTER 2. LITERATURE REVIEW 20

a larger receptive field and without introducing heavier computation cost. The model also

designs a boundary refinement unit to sharpen the output boundary other than using con-

ventional conditional random field (CRF) method. The unsymmetrical convolution design is

also explored in ACNet (Ding et al., 2019)

A feature pyramid is another architecture commonly used in semantic segmentation mod-

els. The feature pyramid itself is not a new thing in the image processing area (Adelson

et al., 1984). The feature pyramid module has a hierarchical structure for the purpose of

multi-scale feature representation (Lin, Dollár, Girshick, He, Hariharan and Belongie, 2017).

The semantic segmentation models utilising the feature pyramid module include the PSP-

Net (Zhao et al., 2017) and the DeepLab-v2 (Chen et al., 2017). The PSPNet introduces

the spatial pyramid pooling module to tackle the issue of similar objects being confused by

exploiting the contextual information. The pyramid module performs the pooling operation

with different sizes of pooling kernels which distribute as a pyramid structure. Following

that, the upsampling operation is applied to the feature maps from the pyramid modules

before concatenating with the feature map from the last convolution layer of the backbone

network.

The attention mechanism itself is from the human visual systems (HVS). The HVS con-

tains two types of attention: the top-down and the bottom-up (Treue, 2003). The top-down

attention is controlled by the high cognition system and the bottom-up attention is how the

visual system naturally responded to the environment, i.e. perception system. For example,

when people look at an image without any purposes, the most conspicuous object is normally

observed first. This kind of attention is the bottom-up attention mechanism. However, if

people look at an image with a purpose beforehand such as guessing the age of buildings,

the attention will be attracted by the building area of the image. The process is operated by

human cognition system and is called the top-down attention mechanism. The two attentions

are combined to create an integrated saliency map which flags regions of interest in the retina

image.

The attention mechanisms are proposed for the CNN by simulating the human attention

mechanisms described above. The CNN attention mechanism contains two different types:

the hard attention and the soft attention. The hard attention mechanism imitates the top-

down attention mechanism. The common hard attention mechanisms use the reinforcement

learning to give the desired region credits (Mnih et al., 2014) or use the recurrent neural net-

work Li et al. (2016). The soft attention is to simulate the bottom-up attention mechanism.

The soft attention is to embed a carefully crafted attention module into the deep learning

model and to learn the attention map through the training process (Woo et al., 2018; Fu
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et al., 2019).

The soft attention can impact on feature maps at the spatial-wise or the channel-wise or

in both facets. Chen et al. (2020) applies a spatial-wise attention which is firstly introduced

in the natural language prediction (NLP) task in (Vaswani et al., 2017). The mechanism is

initially calculated with three variables: Q (Query), K (Key) and V (Values). The compati-

bility between the the Q and the K is calculated first and then multiplied by the V to yield

the attention map. Vaswani et al. (2017) designed a spatial-wise attention module in which

the compatibility is the dot product of the Q and the transpose of the K with a following

softmax. In Chen et al. (2020), the Q, K and V are the same feature maps from a layer. The

channel-wise attention learns weights impacted on channels of feature maps of a layer. An

example is the SENet (Hu et al., 2018). The squeeze-excitation module achieves the receptive

field of the whole feature map of each channel by using the global average pooling layer and

then passing the outputs through a sigmoid layer to compute weights impacting on the initial

feature maps.

Integrating the spatial and the channel attention mechanisms has become popular re-

cently. Fu et al. (2019) designs the dual-attention network which combines spatial and chan-

nel attentions in a parallel way, then fuses the outcomes from the two branches. Woo et al.

(2018) cascades the channel and the spatial attentions instead of connecting them in the

parallel way. Choi et al. (2020) designed a height-driven attention module which emphasises

the informative features or classes selectively according to their vertical positions. Yu et al.

(2020) designed a context prior attention module that aims to solve the classification confu-

sion problem in classes with context dependencies.

2.2.3 Urban Datasets

Building an urban image-based dataset is very common and crucial to support the research

of autonomous driving. Publicly-available examples include CamVid (Brostow et al., 2009),

KITTI (Geiger et al., 2013), Cityscapes (Cordts et al., 2016), Mapillary Vistas (Neuhold

et al., 2017), the ApolloScape (Huang et al., 2018) and the latest A2D2: Audi Autonomous

Driving Dataset (Geyer et al., 2020). Although these datasets do not consider buildings at

the component level and not particularly focus on residential buildings, they still provide

valuable experience in developing a new dataset. CamVid and KITTI datasets are the two

earliest urban datasets developed for the purpose of autonomous driving. Both of their data

are collected using carefully designed vehicle-mounted rigs which ensure the efficiency of the

data collection process. CamVid contains over 700 annotated images. The annotation qual-
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ity is ensured by designated quality inspectors. The KITTI dataset contains 400 annotated

frames in which 200 are for training and 200 for validation.

The Cityscapes dataset contains 25,000 images collected from over 50 different cities by a

moving vehicle. Of those images, 5000 are fine labelled and the remaining 20,000 are coarsely

labelled. A vehicle-mounted camera rig is used to collect these data. The dataset is split

into train, validation and test sets based on pre-processed labels to maintain uniformity in

each set. The Mapillary Vistas dataset was planned to reflect the diverse scenes of the urban

environment at their greatest extent; the dataset does not rely on an ad-hoc data collection

system to collect images as in the Cityscapes dataset. Instead, it collects images with a

wide range type of rigs such as mobile phones and head- or car-mounted equipment such as

a Garmin or GoPro action camera. The dataset also has a wider range of collection area

than the Cityscapes dataset. The Mapillary Vistas dataset considers the scene changes in

detail with regards to weather, season and even time of day. The size of the dataset is also

considerably larger than that of Cityscapes reaching 25,000 fine-grained annotated images.

The ApolloScape dataset provides a comprehensive data source for autonomous driving.

The dataset contains multiple types of data such as visual images, point clouds and depth

maps. A vehicle-mounted data acquisition system is constructed for the data collection task

and an efficient data labelling pipeline is developed. The data acquisition system contains

a collection of sensors such as cameras, LiDAR units and a GNSS/IMU unit. The labelling

pipeline is designed to be highly efficient by fusing the 3D annotation process with the 2D

annotation process. The dataset evolves over time and the latest release contains 146,997

frames with annotations. Similar to the ApolloScape, the A2D2 dataset also employs a

vehicle-mounted data acquisition system which is installed on a mid-size SUV. The dataset

contains 41,280 annotated frames with corresponding depth images and camera poses as in

the ApolloScape dataset. Compared to the rig designed for the ApolloScape dataset, the

A2D2 acquisition rig contains more cameras and LiDAR units.

From CamVid to A2D2, the urban scene datasets for computer vision tasks have pro-

gressed rapidly in the past decade, owing to the development of different sensors and the

needs of autonomous driving. Generally, the early-built datasets such as the KITTI and the

Cityscapes contain less data and sensors in their acquisition system than the later ones. At

the side of the data acquisition method, most of the datasets employ a vehicle-mounted col-

lection platform but the Mapillary Vistas utilises a wide range of cheaper mobile sensors. The

ApolloScape dataset developed a novel data annotation pipeline which fuses the 3D labelling

and the 2D labelling which greatly reduces the cost of the dataset annotation.
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2.2.4 Section Conclusion

The convolutional neural network (CNN) technique has contributed significantly towards

the development of the semantic segmentation community. The state-of-the-art CNN-based

semantic segmentation approaches are built on the encoder-decoder architecture. Various

techniques have been developed to improve the performance of semantic segmentation mod-

els by designing new structures, e.g. enlarging receptive field, utilising class dependencies,

etc. Efforts have been made on both macro and micro aspects of model structures: the U-

shape structure, feature pyramid and attention mechanism are three macro developments of

model structures, and dilated convolution and residual module are located at the micro side.

Datasets have progressed significantly since the deep learning technique became popular. Of

urban datasets, the dataset scale has progressed from a few hundred images to tens of thou-

sands images with significantly more diverse scenes covered.

2.3 Building Facade Segmentation

2.3.1 Introduction

The history of building facade semantic segmentation can be traced back to the 1970s

(Ohta et al., 1978). The paper develops a region growing-based method of segmenting build-

ings and windows from a scene image. In the past decade, the topic of facade segmentation

has attracted a lot of attention and is still an active research area. This review focuses on

facade segmentation works from the past decade, i.e. 2012–2022.

The literature review is divided into two sections: the first section reviews all publicly

available facade segmentation datasets; the second reviews developed approaches and their

performance. The collection of facade segmentation-related papers is achieved using the

Google Scholar database. Key words ‘facade segmentation’ and ‘facade parsing’ are used

and irrelevant papers are manually filtered out of the search results. Then, the citation

history of each facade segmentation dataset is tracked to find potential missing documents.

In particular, Kelly et al. (2017) do not have key words in their title but had still developed a

method for facade segmentation. Apart from (Femiani et al., 2018; Wang et al., 2022), non-

peer reviewed documents are not included. The reason these two documents are included

is specifically stated as such: Femiani et al. (2018) is a frequently referenced literature in

the facade segmentation community, Wang et al. (2022) has not been published but have

uploaded their dataset online which is then used to benchmark in this thesis. There are

works aiming to recognise windows such as (Neuhausen and König, 2018). These works are

not included as these works are not for recognising the whole facade.
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2.3.2 Publicly Available Datasets

From the literature and using Google search service, nine publicly available facade seg-

mentation datasets are found. Descriptions of these datasets are listed below.

1. Oxford RobotCar-Facade (Wang et al., 2022): The Oxford RobotCar-Facade

dataset is the latest publicly available dataset with labels of building components. The

dataset contains 500 annotated images, 400 of which are for training and the remaining

100 are for validation. The raw data is collected by a vehicle-mounted camera which

is forward facing. Therefore, most of the images in this dataset show a street-canyon

view. Buildings are separated into five classes which are wall, window, door, balcony

and shop. The dataset is based on Oxford, in the UK.

2. TMBuD (Orhei et al., 2021): There are 1120 images in total in this dataset and

300 of them are annotated. Smartphone is considered as the input sensor device and

the image size is determined to fit the generic smartphone’s filming size. The dataset is

designed to contribute to the augmented reality domain. Each building in this dataset

is captured from several perspectives. Architectural styles vary distinctively in this

dataset. For example, Gothic, Byzantine and modern styles are all identified in this

dataset. The labelling rule is set to partition an image into eight classes. Five of

them are irrelevant to buildings: background, sky, vegetation, ground and noise. It

is noted that the noise class is considered for temporary objects such as people and

cars. Buildings are divided into three classes: window and door, the remaining area of

a building is labelled as building class.

3. ECP (Teboul et al., 2010): This dataset contains 104 images of Haussmannian style

buildings. Raw images are manually rectified and cropped. This dataset partitions a

building into six categories which are wall, balcony, roof, shop, door and window. The

dataset was not divided for training and validation beforehand.

4. Art Deco (Gadde et al., 2016): This dataset contains 79 annotated images of Art

Deco architectural style buildings. Most of the backgrounds are cropped and images are

rectified. The dataset is designed as a supplement of the ECP dataset to demonstrate

that encoding specific architectural rules into the segmentation algorithm will lead to

a better result. The annotation rule is the same as the ECP dataset. Occlusions are

presented in this dataset with hand-annotated ground-truth for the labels behind the

vegetation.

5. RueMonge 2014 (Riemenschneider et al., 2014): This dataset contains 428 im-

ages and 219 of those are annotated. The 428 images of 60 Haussmannian buildings

were taken continuously along a 700-metre road in Rue Monge, Paris. Since the dataset



CHAPTER 2. LITERATURE REVIEW 25

is captured continuously, it contains several images of the same building from slightly

different perspectives. In this case, overlapping can be frequently observed. The train-

ing and validation data are pre-specified in this dataset with a rough ratio 1:1.

6. CMP (Tyleček and Šára, 2013): This dataset contains 606 annotated images with

various architectural styles. The raw data is collected in two different ways. 312 images

are collected by authors of the dataset and the rest are collected using unlabelled data

of ECP and ZuBuD (Shao et al., 2003) databases.

7. Graz50 (Riemenschneider et al., 2012): According to the literature, the Graz50

dataset contains 50 annotated images, the majority of which are Gruenderzeit archi-

tecture style which is common in Germany and Austria. However, the link to Graz50

dataset was invalid at the time of writing. The dataset only contains four classes:

window, door, wall and sky.

8. LabelMeFacade (Fröhlich et al., 2010): The raw images of LabelMeFacade are

a subset of LabelMe database (Russell et al., 2008). LabelMeFacade contains 945 an-

notated images of substantially different types of architectural styles. The 945 images

are partitioned into 100 images for training and 845 images for validation. The divi-

sion ratio is rare. The author of this thesis has identified different types of buildings,

not limited to: skyscrapers, modern non-commercial buildings, neoclassical buildings,

Baroque buildings, Gothic churches, etc. Unlike other datasets, excluding the latest

TMBuD dataset, the dataset also contains images taken at night. The views of this

dataset also vary distinctively: a substantial number of images show street-canyon

views, a portion of images show the top part of tall buildings, etc.

9. eTRIMS (Korč and Förstner, 2009): eTRIMS dataset is the earliest dataset for the

facade segmentation task. The dataset has 60 annotated images. The dataset has two

versions, the four-class version does not contain building subset items, the eight-class

version contains two extra classes: window and door.

Table2.2 shows a brief summary of these datasets. The number of annotated images and

image sizes are determined by downloading corresponding datasets to find the latest version.

Therefore, the values may vary compared to their introduction documents. For example, the

TMBuD paper introduces 160 images but the authors have added a further 140 images to

their database since the dataset was announced. Furthermore, the authors of CMP dataset

claim that a portion of their raw data has 6MP effective pixels. However, in the published

version, all images are down-sampled to below 1MP. The RueMonge 2014 dataset claims it

has 428 images in the dataset but only 219 of them are annotated. In the ‘Effective pixels’

column, the term ‘fixed’ is used when all images in the dataset have the same size, the term
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‘varied’ is used to indicate that the sizes of images vary in both pixel quantities and height

and weight, the term ‘regular’ indicates that the height and weight sizes vary in this dataset

but pixel quantities remain approximately the same.

Table 2.2: This table demonstrates an overview of publicly available building fa-
cade segmentation datasets. This study includes names of these datasets, numbers
of annotated images, effective pixels and locations of data capture. The last col-
umn of the table records the image style. The table is arranged by order of year
published. It is noted that the URL of the Graz50 dataset is now invalid and thus
the size information cannot be provided.

Name (known as) Citation Number of
Annotated
Image

Effective
Pixels

Location of the
Data Capture

Image Style

Oxford RobotCar
Facade

Wang et al. (2022) 500 Fixed,
1280 × 960
= 1.2MPx

Oxford, UK driving-view,
multi-storey
and two-storey
residential
houses

Timisoara Build-
ing (TMBuD)

Orhei et al. (2021) 300 Fixed,
768 × 1024
= 0.8MPx

Timisoara, Ro-
mania

street view,
mixed archi-
tectural styles
and uses

Paris ArtDeco Gadde et al.
(2016)

79 Varied,
min≈
0.2MPx
max≈
0.5MPx

Paris, France cropped,
multi-storey
buildings

ETHZ CVL
RueMonge2014
(VarCity)

Riemenschneider
et al. (2014)

219 Fixed,
1067 × 800
= 0.9MPx

Paris, France cropped,
multi-storey
buildings

CMP Facade Tyleček and Šára
(2013)

606 Varied,
min≈
0.1MPx
max≈
1.0MPx

Various cities
across Europe
and USA

cropped,
multi-storey
buildings

ICG Graz50 Riemenschneider
et al. (2012)

50 N/A Various Euro-
pean cities

cropped, mixed
architectural
styles

Ecole Centrale
Paris Facades
(ECP)

Teboul et al.
(2010)

104 Varied,
min≈
0.1MPx
max≈
0.3MPx

Paris, France cropped,
multi-storey
buildings

LabelMeFacade Fröhlich et al.
(2010)

945 Regular, ≈
0.3MPx

Various cities
across the
world

various image
styles, mixed
architectural
styles and uses

eTRIMS Korč and Förstner
(2009)

60 Regular, ≈
0.4MPx

Various Euro-
pean cities

cropped, multi-
storey and two-
storey residen-
tial houses
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The earliest dataset, eTRIMS was published over ten years ago and the latest ones, Oxford

RobotCar and TMBuD were published this year (2022) and last year (2021), respectively.

A six-year time gap is identified before TMBuD was constructed for which no new facade

segmentation datasets are publicly available. Three of these datasets have fewer than one-

hundred annotated images and the ECP dataset has just about one-hundred image-mask

pairs. Paris is the most frequent location adopted for raw data captures. Four of the nine

datasets are rectified and cropped in pre-processing. The pre-processing removes the majority

of the background and means images only have frontal-parallel views of buildings. The image

size of current publicly available facade segmentation datasets limits to c.one mega pixel and

four of the eight (excluding Graz50) datasets have effective pixels lower than half a mega pixel.

The annotation strategy varies significantly across the nine datasets. Table 2.3 sum-

marises how these datasets are labelled. These datasets are labelled in two different ways:

the first is the pixel-wise which aims to use polygons to follow the boundary of each object as

accurately as possible, the other is the region-wise which uses bounding boxes to cover objects

to be annotated. The pixel-wise annotation is more accurate in theory than the region-wise

approach, especially in non-rectangle objects such as chimneys. However, the author has

noticed many labelling errors in LabelMeFacade dataset, thus its annotation accuracy might

still be lower than a region-wise annotated dataset.

Table 2.3 shows that five of the eight datasets are labelled at the pixel-wise style. Window

and door are two universal categories in these datasets. Depending on whether other objects

belonging to the building are labelled separately, the wall category is determined. The CMP

dataset has the finest labelling rule which divides a facade into twelve categories. The CMP

dataset also separately annotates windows with glass appearance and with coverage into two

different categories: window and blind. In addition, there are various strategies for treating

occluded objects. eTRIMS, LabelMeFacade and TMBuD individually annotate occluded ob-

jects into separate categories.

Figure 2.2 shows visualised examples of the eight available datasets in the published year

order. ECP, CMP and ArtDeco are the three region-wise annotated datasets. Their exam-

ples show that all elements in these datasets are annotated as bounding boxes and, therefore,

sacrifice annotation accuracy to some extent. Errors are observed in LabelMeFacade such as

unlabelled elements and occlusions. Oxford dataset has a unique street-canyon view among

these datasets.
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Figure 2.2: Visualised examples of publicly available datasets in age order. Gram-
mar parsing-oriented annotation is the mainstream dataset style (four of the seven
including Graz50, three of the six without Graz50) in the facade segmentation com-
munity. ECP and ArtDeco datasets show a more concise segmentation than CMP.
RueMonge 2014 is developed for 3D reconstruction as well, therefore, it only labels
buildings on the same street. eTRIMS is a dataset sitting in between street view
and rectified styles. The recently published facade datasets are all street view styles.

The use frequency of these datasets is counted manually based on the collected papers.

Among the nine datasets, ECP is the most frequently-used dataset: it is used twenty-six

times. The second is eTRIMS which is used eleven times. The least-used is LabelMeFacade

which is only used five times and four of them are before 2017. Figure 2.3 shows the statistics.
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Figure 2.3: Popularity analysis of dataset usages based on collected facade seg-
mentation papers. The analysis is divided into three time intervals: 2012-2016,
2017-2019 and 2020-2022. 2016 is the the first year the deep learning technique
was introduced to the facade segmentation community. In 2020 the deep learning
technique became the dominant technique in this community.

2.3.3 Approaches

2.3.3.1 Overview

In previous facade segmentation literature reviews, the approaches developed for facade

segmentation are commonly categorised into two different groups. The two groups are some-

times named ‘top-down’ and ‘bottom-up’ as in (Rahmani and Mayer, 2018), alternatively,

they are considered to be ‘conventional’ and ‘deep learning-based’ as in (Liu et al., 2022). The

definitions of these two groups vary accordingly. The ‘top-down’–‘bottom-up’ classification

categorises approaches using shape grammar as ‘top-down’ and other classification-based ap-

proaches as ‘bottom-up’. The categorisation is visualised based on the characteristics of these

two approaches. Grammar rule-based approaches firstly divide a facade into bigger parts and

recursively split them into facade components. Bottom-up approaches classify each pixel or

super-pixel into predetermined groups. The ‘top-down’–‘bottom-up’ classification has not

been used since 2019. More and more literature categorises facade segmentation approaches

into deep learning and non-deep learning categories as in the general image segmentation

community. However, the author of this thesis argues that if the machine learning-based

classification approaches are categorised into a separate group, the categorisation rule will
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be more clear to demonstrate the characteristics of each type of approach. Therefore, in this

literature review, facade segmentation approaches are classified into three groups: grammar

parsing-based, machine learning-based classification and deep learning-based classification

approaches.

The three groups of facade segmentation approaches have shown an ‘evolution’ character-

istic. Grammar-based approaches were popular before 2015, and the latest grammar-based

approach was published in 2016 (Gadde et al., 2016). From 2015 to 2018, machine learning-

based classification approaches became the state-of-the-art. After 2018, deep learning-based

approaches dominated the facade segmentation research area. As a research branch of the

general image semantic segmentation research, the development of facade segmentation has

shown a clear coupling relationship with the development of image semantic segmentation,

while with a small time lapse. For example, 2015 is the year that the breakthrough work,

fully convolutional neural network, FCN, was announced (Long et al., 2015). The fully-

convolutional deep learning technique was first introduced to the facade segmentation area in

2016 (Schmitz and Mayer, 2016). Furthermore, the use of transformer technology on semantic

segmentation was studied in 2021 (Zheng et al., 2021) while the technology was first applied

on facade segmentation the following year (Zhang et al., 2022). The next three parts review

the facade segmentation papers of the past decade. Findings and conclusions are summarised

in the ‘Section Conclusion’ as in Section 2.2.

2.3.3.2 Grammar Parsing-based Approaches

The concept of grammar is initially from the Natural Language Processing (NLP) com-

munity (D’Ulizia et al., 2011). The grammar types used widely in facade segmentation are

the shape and split grammar which pre-define a set of rules as object shape and component

relationship constraints. Then the defined rules are implemented to split facades recursively

until no more rules can be applied. A tree-structure is common in representing defined gram-

mars. The grammar rules can be general, e.g. using a rectangle shape to define all facade

components (Gadde et al., 2016). However, more rules are very specific and highly reliant

on architectural styles. A common architectural style which has been widely studied is the

Haussmannian architecture in the ECP (Teboul et al., 2010) dataset. As examples of specific

grammar rules, Teboul et al. (2011) defines rules such as ‘balcony running across the whole

width of a wall’, ‘no wall area between shop and door’, ‘roof window should be as high as the

whole roof’, etc. It is clear that these rules depend on specific architectural styles and rely

upon rectified facade images.
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In the past decade, most works using split grammar rules on facade semantic segmenta-

tion focus on how to optimise the facade-split procedure. The latest grammar-based facade

segmentation approach is (Gadde et al., 2016). This work designs a method of using more

generic rules to replace specific rules to avoid hand-crafted, expertise-involved grammar de-

signs. The authors constructed the Paris Art Deco dataset to validate the capability of the

developed approach on different styles of architecture. The generic grammar defines the

building in axial direction, i.e. vertically and horizontally to separate floors and differentiate

facade component relationships. Reinforced learning technique is adopted to optimise the

grammar implementation procedure.

Koziński et al. (2014); Kozinski et al. (2015) designs a hierarchical representation of facade

segmentation utilising the facade components’ alignment and adjacency. The optimisation

approach is developed based on linear programming and further progressed to use Markov

random field (MRF). Martinovic and Van Gool (2013) utilise a Bayesian model to learn

grammar rules from labels and then utilising reversible-jump Markov chain Monte Carlo

(rjMCMC) method to generate predictions from raw images. Teboul et al. (2012) is the first

to use reinforcement learning technique on parsing shape grammars. Riemenschneider et al.

(2012) strengthen a facade as a group of irregular rectangular tiles which is defined by a split

line across facades in both horizontal and vertical direction instead of patches. The design

can reinforce the component position grammar unlike methods using patches. A dynamic

programming (DP) model is adopted to optimise the label transition.

In summary, grammar parsing-based approaches utilise specific rules of the building facade

to construct parsers. This is feasible because buildings are constructed based on explainable

rules as man-made structures, e.g. component usually shows a rectangular appearance. How-

ever, every architectural style has its own distinct aesthetic features. The situation limits

the generalisation capability of grammar-based approaches. Although the most recent work

(Gadde et al., 2016) tried to use more generic grammar to replace architecture-sensitive gram-

mar. However, in the cross-dataset analysis of this approach, trained parsers still generalise

poorly across different datasets. Furthermore, grammar-based approaches are established on

cropped-rectified fronto-parallel facade images. This prerequisite ensures all facade aesthetic

rules can be maintained. However, if building facade images are captured from various per-

spectives, e.g. street view capture, grammar-based approaches are not applicable.
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2.3.3.3 Pixel-level Classification-based Machine Learning Approaches

Grammar-based models can generate rectangular-shaped predictions which is beneficial

for applications in the computer graphics community, e.g. constructing virtual building mod-

els for digital entertainment, especially under the Manhattan-world assumption. However,

the objective of these approaches is not to generate pixel-level accuracy predictions rather,

the priority is to maintain regular shapes of facades to validate the feasibility of designed

grammar rules. Therefore, the datasets frequently used in validating grammar-based models,

e.g. ECP and Art Deco, are not labelled at pixel-level accuracy as summarised in Table 2.3.

Owing to machine learning-based classifiers developed in the general image semantic segmen-

tation community such as random forest (Schroff et al., 2008), pixel-wise facade segmentation

approaches have been developed over the past decade.

Using the variants of random forest (RF) for facade segmentation is popular in classification-

based facade segmentations. Earlier approaches using RF-based classifiers in the past decade

were established by Fröhlich et al. (2012, 2013). Fröhlich et al. (2012) designed a classi-

fier called iterative context forests (ICF). This approach combines RF with the auto-context

concept that is an incremental method which uses previous-level’s classification results as

features for its subsequent layer (Tu and Bai, 2009). ICF is designed to contain three stages,

initial feature maps are colour features only, the following classification results from RF are

iteratively stacked together. This method is the first piece of work using auto-context in

facade segmentation. In the following year, the same authors developed a general image

semantic segmentation approach which combines RF with Gaussian process (GP) (Fröhlich

et al., 2013). This approach is then tested for facade segmentation in their paper.

Jampani et al. use auto-context and combine boosted decision trees to tackle the facade

segmentation problem (Jampani et al., 2015; Gadde et al., 2017). In their works, the authors

also design a similar three-stage auto-context architecture as in (Fröhlich et al., 2012). In

comparison with Fröhlich et al. (2012), Jampani et al. (2015) and Gadde et al. (2017) use

different features for both initialisation and auto-context stages and various learning tech-

niques. These approaches achieve higher benchmark results on publicly available datasets

than (Fröhlich et al., 2012). This shows that auto-context based approaches rely on carefully

designed features and classifiers.

More recently, Rahmani et al. have utilised structured random forest (SRF) on the facade

segmentation task (Rahmani et al., 2017; Rahmani and Mayer, 2018). Structured random

forest was developed in 2011 (Kontschieder et al., 2011). In comparison with conventional

RF, SRF considers the correlations of neighbouring pixels in classification. Therefore, this ap-
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proach is more beneficial in capturing local context or structured information than a plain RF

approach. Rahmani et al. (2017) introduced the SRF to the facade segmentation community

in 2017; in their subsequent work, the authors designed a feature extraction pre-processing

and fed the outcome feature maps to a SRF classifier (Rahmani and Mayer, 2018) instead

of using raw images as the SRF input. A pre-trained regional proposal network (RPN) is

adopted in the feature extraction process to extract window and door features. RPN is ad-

vantageous in maintaining the rectangular shape of objects.

Cohen et al. introduced the dynamic programming (DP) technique to the facade segmen-

tation community Cohen et al. (2014, 2017). Dynamic programming is a greedy optimisation

strategy which solves a problem as a number of simpler sub-problems. In Cohen et al. (2014),

the problem ‘facade segmentation’ is divided into three sub-problems: 1. find a row of ele-

ments; 2. constrain co-occurrence elements, and; 3. shape optimisation. The architectural

rules are hard-coded as in grammar parsing-based approaches. In the subsequent work, the

authors extend their approach by further exploiting the regularity and symmetry features of

architectures using SIFT features to better handle occlusions (Cohen et al., 2017).

Martinovic et al. propose a three-layer approach named ATLAS (Martinović et al., 2012;

Mathias et al., 2016). In general, the bottom layer is coarse semantic segmentation. The

middle layer is a detection layer for window and door followed by Markov Random Fields.

The top layer applies weak architectural principles to refine the outcome from the middle

layer. In the primary version of this approach (Martinović et al., 2012), recursive neural net-

work (RNN) is adopted in the bottom layer as a pixel classifier and very specific architectural

constraints are applied in the top layer, e.g. balcony running across the whole building on

the second and fifth floors. In the final version of this approach (Mathias et al., 2016), pixel

segmentation in the bottom layer is replaced by superpixel segmentation using multiclass

support vector machine (SVM) and the second layer is strengthened.

The state-of-the-art machine learning-based pixel-wise classification approach (Rahmani

and Mayer, 2018) has outperformed the grammar parsing-based approach in benchmark

datasets. However, machine learning-based approaches still have some drawbacks such as

the system could be very complex, e.g. the ATLAS model has multiple layers and each

layer has multiple individual modules. A clear contribution of the state-of-the-art machine

learning-based approaches compared to grammar-parsing based approaches is that SOTA

approaches do not need to encode architectural hard constraints into models, which improves

the model adaptability to various architectural styles. However,it must be noted that SOTA

(Rahmani and Mayer, 2018) is not, strictly-speaking, a machine learning approach as it uses

RPN technique which belongs to deep learning technology.
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2.3.3.4 Deep Learning-based Approaches

As reviewed in Section 2.2, with the announcement of the FCN model (Long et al., 2015),

2015 was an important year for the image segmentation community. The first work to use

the deep learning technique on facade segmentation was Brust et al. (2015). This is an early

attempt at using convolution neural network (CNN) on facade semantic segmentation while

it still uses fully connected layers for pixel-wise classification. The first work to introduce the

fully convolutional technique to the facade segmentation community was Schmitz and Mayer

(2016). This work uses weights from AlexNet (Krizhevsky et al., 2017) which is trained on

ImageNet dataset (Deng et al., 2009) and uses a concatenation operation to combine low-level

features with high level features. The results show that this work has achieved competitive

results in comparison with the ATLAS model on the eTRIMS dataset.

In the following year, Kelly et al. (2017) explored facade segmentation based on SegNet

(Badrinarayanan et al., 2017) and pre-trained Bayesian SegNet (Kendall et al., 2017). For

a multi-class pixel-wise classification problem, a common output of using CNN is to predict

probabilities of every class to every pixel. Then the label with the highest probability is

assigned to the pixel. In this work, the authors propose a multi-output Bayesian neural net-

work model based on the Bayesian SegNet, which is named at SegNet-Facade. The model

creates output modules for each semantic class and every output layer contains four channels

which are edge, negative, positive and unspecified. The authors of this article claim that the

multi-output design is to achieve sharper features.

In their work, Femiani et al. (2018), further advanced the developed SegNet-Facade. It

is noted that this work has not been published in a peer-review journal or conference yet

although it is referenced multiple times, therefore, this review covers this article. Instead of

using Bayesian neural network, the base model is changed to a normal SegNet with convo-

lution layers. The authors have proposed two additional operations or modules on the basic

multi-output SegNet. The first refinement is to use separable convolutions which were devel-

oped in MobileNet (Howard et al., 2017). The separable convolution separate a common 3×3

convolution kernel into two kernels which are 3 × 1 and 1 × 3. The design is used to reduce

computational costs while Femiani et al. adopt the separable convolution to strengthen the

straight-line features’ extraction of a building. The second refinement is to add a recursive

neural network (RNN) module after the output layers. This refinement is claimed to improve

the performance of neighbouring elements’ predictions. However, according to their experi-

ments, the three different model architectures do not show distinct performance growth. In

the lateral comparisons, F1 score rises when the separable module is implemented but a high

decrease on precision metric is also observed.
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The application of CNN techniques on facade segmentation began to gain popularity in

2020. Liu et al. utilise the symmetry characteristic of buildings (Liu et al., 2020, 2022); in

their first paper, a novel reflective symmetry loss is proposed which aims to minimise the sum

of coordinates variance of each object (Liu et al., 2020). A RPN module is also adopted as

in Rahmani and Mayer (2018) to refine the output shape of objects. In their following work,

the authors extend their symmetry loss to further exploit the transnational symmetry char-

acteristic of facades (Liu et al., 2022). Their model architecture contains two branches. One

is semantic segmentation branch to generate pixel-wise predictions and the other is instance

detection branch which utilises an object detection CNN to produce bounding boxes around

windows and doors. The outcomes from the two branches are refined by the translational

symmetry loss which assumes objects of the same category would have the same dimensions.

Ma et al. have published a series of works on facade segmentation in the past three years

(Ma, Ma, Xu and Zha, 2020; Ma, Xu, Ma and Zha, 2020; Ma et al., 2022). Ma, Ma, Xu and

Zha (2020) developed a pyramid module to capture multi-scale context information. The

separable convolution technique is also adopted in this work to enhance the extraction capa-

bility of straight-line features of facades. Ma, Xu, Ma and Zha (2020) aimed to use multi-view

images to better handle occlusion problems. The designed model uses a series of facade im-

ages which are taken from multiple perspectives as the input. All these images pass through

the same backbone network to extract features. The achieved attention maps are then fused

together to enhance the target facade’s representation. Ma et al. (2022) further explore

how to handle the occlusion problem. This work designs a stage-wise feature learning strat-

egy. The authors utilise a Bayesian CNN to produce an uncertainty map and progressively

use a separable convolution-based module to enhance the prediction confidence on occlusions.

Zhang et al. (2022) introduce the latest transformer technique to the facade segmenta-

tion. Transformer, as the grammar parsing, is a technique initially from the natural language

processing (NLP) community which was first introduced in the prominent paper ‘Attention

is all you need’ (Vaswani et al., 2017) and then promoted to semantic segmentation in Zheng

et al. (2021). This technique can better handle long-range relationships than the CNN archi-

tecture. Zhang et al. (2022) designed a complex model which combines PSPNet (Zhao et al.,

2017) as a semantic segmentation branch and a transformer-architecture object detection

model, and DETR (Carion et al., 2020) as an object detection branch. The model also uses

the symmetry loss developed by Liu et al. (2020) as part of its training loss. Overall, the

structure of the model developed in this work still follows the ‘semantic segmentation for

facade + object detection for elements’ paradigm which was first developed by Rahmani and

Mayer (2018).
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Kong et al. and Tao et al. propose that pixel-wise facade parsing may not be the ideal

form of representing facade decomposition (Kong and Fan, 2020; Tao et al., 2022). In their

views, detection-based representations are better at representing a building decomposition.

Kong and Fan (2020) use a YOLOv3 (Redmon and Farhadi, 2018) object detection model

to recognise facade elements and use a PSPNet to identify facades. The final representation

of a facade decomposition is a hybrid form of pixel-wise mask with bounding box. Tao et al.

(2022) use bounding boxes only to represent a facade. The authors design a self-attention

module encoding the facade layout regularity features to enhance the model performance.

In summary, in the area of facade segmentation, deep learning-based approaches have

outperformed conventional machine learning-based approaches in terms of accuracy. In the

past three years, all works in facade segmentation are based on deep learning techniques.

How to exploit facade prior knowledge, such as symmetry and straight-line features, to refine

segmentation results is still the focus in the facade segmentation community. A common

architecture is to combine a semantic segmentation model with an object detection model.

More recently, works aiming to explicitly encode facade priors into deep learning models have

started to attract attention.

2.3.4 Section Conclusion

The research topic, facade segmentation, has experienced three stages in the past decade:

grammar parsing, machine learning-based classification and deep learning-based classifica-

tion. Deep learning-based classification approaches are the current SOTA. Most of the ap-

proaches developed for recognising facade components are based on cropped-rectified facade

images. These images show a frontal-parallel view of a facade and most of the environmental

information is cropped. In total nine publicly available datasets for facade segmentation were

found; seven of them were announced over seven years ago and two of them were announced

in the last two years.
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2.4 Chapter Discussion and Conclusions

2.4.1 Chapter Discussion

The number of publicly available datasets for facade segmentation is still a barrier in this

area. Before the time of writing, only seven publicly available facade segmentation datasets

were announced. Four of them contain approxaimately or fewer than one hundred images.

The dataset with the largest volume, LabelMeFacade, is rarely used in the facade segmenta-

tion community. Some literature complains about the quality of this dataset (Wang et al.,

2022) and the candidate has also found many obvious annotation imperfections. In compar-

ison with other publicly available built-environment datasets, facade segmentation datasets

are significantly behind in their volumes, diverse scenes, quality and coverage.

Moreover, the drivers of facade segmentation research are considered limited. Most of the

approaches developed for facade segmentation are based on rectified images which show a

frontal-parallel view of facades. This image pre-processing paradigm is to ensure man-made

patterns can be preserved, which is beneficial to computer graphics applications, especially

for procedural modelling. However, as discussed in Section 1.2.1, other applications such

as understanding built-environment require images to be built from multiple perspectives

and preserve environmental information. The limited driver makes the definition of facade

segmentation ambiguous. A definition of facade segmentation is given by Koziński et al.

(2014) which claims facade segmentation is to use rectified images to segment building ele-

ments. The definition is very narrow which eliminates works using street view images out of

the facade segmentation domain. This could further affect the later researchers’ perspectives.

CNN-based technique is a powerful enabler to facade segmentation research. Since 2019,

CNN has become the dominant technique used in this area. The SOTA approaches of facade

segmentation are designed to encode man-made structure priors into their models. However,

if street view images are used for facade segmentation, many architectural priors are no longer

valid e.g. straight-line appearance and component alignment. Prior to this literature review,

only Wang et al. (2022) had adopted built-environment features in driving-environment im-

ages to tackle facade segmentation in their datasets, however, their paper has not been

peer-reviewed yet. Furthermore, SOTA approaches using CNN techniques commonly use

FCN and PSPNet as their base segmentation models, therefore, whether or not other pow-

erful architectures of CNN such as U-Net and DeepLab series can show better performance

in facade segmentation still lacks exploration.
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Urban datasets reviewed in section 2.2.3 could inspire the development of the urban resi-

dential building facade segmentation dataset in many ways. For example, in the data capture

process, the impact of environmental variables such as weather and season need considering.

The vehicle-mounted rig is the main-stream method of capturing the urban environmental

data which provides an efficient solution of data capture and is naturally the method of

collecting data in autonomous driving. The annotators need to be carefully selected as pro-

fessional annotators and amateurs would make different decisions. The state-of-the-art urban

datasets commonly contain over 10,000 images with annotations to cover as many diverse

scenes as possible.

2.4.2 Chapter Conclusions

In this chapter, the research area facade segmentation is comprehensively reviewed includ-

ing the publicly available datasets and developed approaches. General-purpose CNN-based

semantic segmentation models are also reviewed. In summary, the research gap between the

state-of-the-art of facade segmentation and the target of this thesis can be identified as:

1. There are currently no facade segmentation datasets focusing on English houses ex-

cept for the Oxford RobotCar. However, this dataset was constructed after this thesis

was written. In order to assist environmental understanding, a high-resolution, multi-

perspective, English house-based dataset is essential.

2. Previously used facade decomposition schemes for facade understanding vary. Different

application scenarios might be the major reason for this diversity. Among the eight

publicly available facade segmentation datasets, eTRIMS, ECP, ArtDeco and CMP

are for procedural modelling in the computer graphics area. TMBuD dataset is for

Artificial Reality development and Oxford RobotCar Facade focuses on autonomous

driving-style data. Therefore, to fit the building retrofit need, a new definition of

facade decomposition is needed.

3. Facade segmentation using street view images can be tackled using a general-purpose

semantic segmentation model. However, as built-environment is a man-made scene,

whether or not other prior knowledge or dataset features can be adopted to improve

model performance also needs to be explored.



Chapter 3

Data Collection and Annotation

3.1 Introduction

Datasets are the foundation of any data-driven predictive task. The dataset quality and quan-

tity have a crucial impact on the performance of an applied data-driven predictive model.

The diversity and richness of the dataset define how closely the dataset can represent the

real-world situation. Building a dataset can be a time-consuming and high labour/cost piece

of work, especially for high-level computer vision tasks such as supervised semantic and in-

stance segmentation. Apart from the universal data collection and cleaning process, this type

of task requires a labelling process which provides human understanding and knowledge to

the dataset. A selected model can be trained on the dataset to learn the knowledge which is

the mapping relation function Y = f(X) of the input data X and output Y from the labelled

dataset.

Although different public datasets of the urban environment have become more widely

available since the ImageNet project (Deng et al., 2009), as reviewed in section 2.3.2 and

summarised in section 2.4.2, there currently lacks an English house-based facade segmenta-

tion dataset. Therefore, collecting adequate required data becomes critical. As introduced

in section 1.2.2, a multi-spectral urban data collection platform has been previously built to

substantially improve the automation level of the process of collecting the urban data. While

using the urban data collection platform, a substantial quantity of data can be collected in

a highly efficient manner, however, the collected image data still needs to be labelled for

training a deep learning model to characterise building components.

In summary, the overall contribution of this chapter is the development of an urban

residential building facade dataset annotation protocol, and a dataset based on this protocol

isconstructed. The developed annotation protocol is further used to construct another facade

40
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segmentation dataset. The more detailed contributions are listed below:

1. produce a labelling framework of annotating residential building facades and their com-

ponents from urban-style images;

2. construct a dataset based on the protocol with professional annotators involved aiming

for developing solutions to pixel-wise building component detection;

3. design and perform an annotation feasibility experiment to validate the designed pro-

tocol;

4. introduce a larger dataset with fewer trained annotators aiming for exploring a more

efficient and cost-effective solution of a scalable facade annotation task.

3.2 Annotation Protocol

3.2.1 Category Selection

Recognising a building as an integrated object is not a subjective and complex task, how-

ever, recognising buildings as groups of individual components each with distinct semantic

meanings is not straightforward. The first ambiguity is the decomposition of building fa-

cades. A building facade would contain multiple components, commonly including windows,

doors, walls, etc. However, these components can also be decomposed further. For example,

windows can be decomposed into frames and glass panels. For example, Mao et al. aim to

only extract the glass area of windows from oblique aerial images (Mao et al., 2022) which

needs to decompose a window further. Moreover, the wall areas sometimes contain pipes,

decorated pillars, balconies, etc. Decomposing building facades into very fine levels will sub-

stantially increase the annotation cost and may not be necessary. Therefore, the definition of

the decomposition needs to balance the needs of a task and the cost of the annotation strategy.

Referring to Table 2.3, the facade segmentation annotation rules defined in publicly avail-

able datasets vary in many ways. A conclusion was that datasets which were constructed to

validate grammar-parsing models have finer decomposition than other datasets. However, the

conclusion is broken by the latest Oxford RobotCar dataset (Wang et al., 2022). The coarsest

decomposition only contains three classes which are building, window and door (Korč and

Förstner, 2009; Fröhlich et al., 2010). The finest decomposition contains twelve classes in

CMP dataset (Tyleček and Šára, 2013).

The other ambiguity is how to define components of a building such as windows and doors.

The main obstacle is that such components have various distinctive appearances and sizes,
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for example, windows can be conveniently defined as a rectangular glass panel enclosed by

structural frames. Then how to treat many other forms of windows, such as opened, highly

distorted or occluded windows, becomes problematic. In CMP dataset, occluded areas of

windows are annotated as a blind or cornice. The strategy defines window as a glass opening

while it is still unknown why subsequent datasets did not follow this strategy. Particularly as

the definition could reduce the difficulty of the window recognition task by helping a designed

model focus on the simplest type of a window.

Deep learning models extract features to recognise targets, therefore, it will be stronger in

processing objects with more consistent appearances. Apparently, compared to the proposed

window definition, i.e. glass within a frame, ambiguous windows will lose many features such

as shape or surface material. However, from a human’s perspective, those ambiguous windows

can still be recognised as windows with intuitive conjectures. As the mechanism behind why

people can recognise objects in different states, and what features the deep learning models

use for recognising these objects are still unknown, definitions of building components with

ambiguous conditions may largely affect the model performance.

A simple test was conducted by asking five colleagues in the RISE group to recognise

highly-distorted and occluded windows using the Google Street View (Anguelov et al., 2010)

platform. These window objects could be highly-distorted, occluded, blinded or on other

occasions where the objects are not in a normal window appearance. Opinions were collected

from them as to whether an object can still be treated as a window and the reason why

this alternative object can be recognised. The test can also help the author to answer two

questions: 1. how a window might be recognised, whether it is recognised by its own features

or by context information, and 2. to what extent an object can be regarded as it is still in

its normal form. An agreement was made it was unclear if some unusual windows should be

treated as normal windows. This is because if they are isolated from the environment, they

cannot be recognised by the majority of the test participants. For example, with windows

with a highly distorted view or that were occluded, test participants agreed that these ob-

jects could be recognised by the human cognition system’s inference capability but cannot

be treated as its normal form as it is quite subjective.

As examples presented to colleagues are still limited, the alternative class decision is fur-

ther explored by manually building a 300-image dataset using Google Street View images.

Only windows and doors are annotated in this dataset. More details about this dataset are

available in Appendix A.
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Table 3.1: Category descriptors, with properties that can be inferred through the
visible-light image semantic segmentation, as well as information that could be
obtained by incorporating other multi-spectral data, such as LiDAR, thermography
and hyperspectral data.

Category Wall Roof Window Door Chimney

Description The continuous
vertical struc-
ture encloses
the building’s
interior area.
Other walls
used to divide
an area of
land are not
included

The covering
of a building in
the horizontal
plane support
by a wall with
all attached
components
such as soffit
and rain gutter

The opening in
a wall and roof
with glazing
coverings and
frame, other
similar objects
such as doors
and vehicle
windows are
not included

The movable
barrier made of
a panel which
provides access
to the inside of
the building.
Similarities
such as vehicle
doors and
gates are not
included

The architec-
tural ventila-
tion structure
which con-
ducts smoke
and combus-
tion gases up
from a fire
or furnace
vertically, ter-
minating at
or above roof
level

Directly In-
ferrable Prop-
erties

Total area of
external build-
ing element;
total building
height; number
of storeys;
orientation

Roof pitch;
total building
height; roof
surface area

Number of
windows; num-
ber of storeys;
partial room
layout; window
type; total
glazing area

Occupancy;
partial room
layout

Quantity;
chimney type

Inferrable with
Multi-spectral
Data

Thermal
bridge; ma-
terial; cavity
type

Thermal
bridge; mate-
rial

Glazing type;
thermal trans-
mittance
(u-value)

Material Usage

Considering the house inspection needs introduced in section 1.1.1 and the outcome of the

human-level recognition test stated above, a house is categorised into seven classes: window,

alternative window, door, alternative door, chimney, roof and wall. A pseudo-class represent-

ing the ‘background’ categorises all features that do not belong to any of the other classes.

Relevant objects in an image are all labelled regardless of whether they occur in the fore-

ground or background. Choices on labelling rules were considered given desirable properties

of a given feature; for example windows were considered with their frames. A full taxonomy

of the categories, with descriptions and information inferable from their localisation is given

in Table 3.1.

Occlusion is an inevitable feature in the urban data captured. Two strategies are em-

ployed, designed to annotate objects partially covered by two types of occlusions: solid and

sparse. Solid occlusion occurs when objects such as signs and vehicles appear in front of

objects. Solid occluding objects are considered as ‘background’ and are effectively ignored.

Sparse occluding objects are those such as trees and railings. Unlike solid occlusion, objects
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occluded by sparse obstacles are still partially visible, but may not show any explicit struc-

ture. Labelling sparsely occluded features is a dilemma, as if we label these as background, a

substantial quantity of information will be lost, and may detrimentally affect training. The

trade off we make is that if any part of an object is not occluded, the area is still labelled

with its corresponding category, otherwise it is ignored.

3.2.2 Annotation Pipeline

Constructing a large-scale dataset requires multiple decisions including the data scope

and the annotation protocol. As the ultimate goal of this dataset is to provide a substantial

understanding of the residential building facade, the annotation protocol must be efficient

enough to facilitate the influx of new data to be manually labelled. In the previous section,

the categorical divisions of a facade have been determined. However, a complete annotation

protocol still requires an annotation software package and labelling principles.

The semantic segmentation annotation is based on drawing polygons around the target

objects and then filling in pre-defined label codes. Numerous tools can be applied to the task.

The tools which can be used range from the free Windows Paint and the commercial Adobe

Photoshop software packages, to other off-the-shelf and online software such as Amazon Sage

Maker, Hive and LabelMe. The core function of drawing polygons is the same amongst all of

these tools. In the thesis, an open-source software package, LabelMe1, is adopted and modi-

fied to fit the task’s needs. The software package is free and easy to use. In Figure 3.1, the

LabelMe operation window is demonstrated. Also, since it is open-source, changes are easy

to be made for a specific task. The LabelMe can only process images in a singular manner

and store label images in separate folders. Furthermore, the software cannot apply the same

labelling colour codes in different images. However, to create a dataset, labels need to be

in universal colour codes and stored in required folders. Therefore, the software package is

edited first to fit the needs of creating the dataset. A post-processing function is developed

to automate the image renaming and relocation process.

In developing the annotation protocol, images collected by MARVEL, the developed

vehicle-mounted data capture platform introduced before are used. Google Street View im-

ages were also used for the early-stage pipeline design and test.

The annotation rule is demonstrated in Table 3.2. The rule is made based on the building

facade component definitions in Table 3.1. In an annotation process, precisely following the

1available at: https://github.com/wkentaro/labelme

https://github.com/wkentaro/labelme
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Figure 3.1: The left-hand image is the initialised dialogue box of LabelMe, the
right-hand side is the dialogue box after an image is loaded. Click the ‘Open Dir’
button to load the raw images folder. When images are loaded, click ‘Create Poly-
gons’ to start to annotate by creating a polygon by following the boundary of the
destination object.

boundary of instance frames is very challenging because it is very time-consuming. However,

a high-quality annotation will be very beneficial for a deep learning model to learn features

as it reduces noise. Therefore, a trade-off between generating a high-quality annotation and

minimising time expenses needs to be taken. Motivated by the requirement, a trade-off

is taken by sacrificing some of the annotation accuracy by slightly over-covering the frame

boundaries but avoiding missing parts of the frames. The reason for the accuracy sacrifice is

for future thermal performance analysis and identifying the types of window glazing purposes.

The recommended labelling sequence is decided based on the normal building construction

sequence:

1. Wall

2. Roof

3. Chimney

4. Window & alternative window

5. Door & alternative door

The reason for the proposed labelling sequence is to avoid potential boundary gaps between

connected instances due to the degree of labelling precision defect. Among the first three

classes, the previously annotated classes need to slightly exceed the boundary of the subse-

quently annotated class. For example, when the labelling activity is performed on a fresh

image, a wall needs to be annotated first; it is performed by covering the whole wall area, the
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Table 3.2: Annotation rule descriptor sheet.

Category Annotation rule

Window&Alt-window ‘Window’ class is defined as an opening area on a wall comprised by glass and
frame structure in an image. The ‘window’ class should only contain windows
which have no external cover and where the whole frame is visible. Windows with
a clear internal cover (e.g. curtains, blinds) are also classified in the ‘window’ class.
All instances which are imperfect (e.g. partially visible, large shape distortion)
will go to the ‘alt-window’ class.

Door&Alt-door Similar to the window annotation rule, a door annotation should include the door
frame and leaf. The ‘door’ class should only contain doors which are completely
visible.

Chimney Covering the whole visible area of a chimney. The annotation should start from
the linkage between the chimney bottom and roof.

Roof Pitched roof is the majority of roof types in the project. A pitched roof is usually
comprised of multiple parts, e.g. rafter, joist, coverings, etc. Therefore, a com-
prehensive roof annotation should include all visible roof parts of a building. In
addition, it is observed that building extensions are common in UK houses, the
extension roofs should also be classified into the ‘roof’ class.

Wall The wall class should only contain structural walls which are part of the building
facade and should not contain other types of wall (e.g. boundary wall, fence, etc.).
Also, stairs should not be included in a wall annotation. Some attached objects
on the walls can be covered in a wall annotation (e.g. pipe, antenna, CCTV, etc.),
but large objects should be avoided during the wall annotation (e.g. billboard,
waste bin, etc.)

potential windows and doors (with both of the usual and alternative categories) objects on

it. On the border of the wall and other instances except the five classes mentioned above, the

wall annotation should slightly exceed the boundary itself. In addition, the other instance,

e.g. a roof, should follow the border precisely to cover the part to which the wall annotation

exceeds. Similarly, a roof annotation should slightly exceed the boundary of the chimney on

it. For the last four classes, annotations are drawn by directly covering the corresponding

area. Thus, the finished facade annotation should result in an integrated area. In addition,

the wall or roof instances should be annotated individually as all visible wall areas of each

building or a single roof regardless of potential overlapping with other instances in the same

class.

Figure 3.2 demonstrates an example of the annotation sequence. Figure 3.2a shows that

the annotation starts from a single wall and slightly exceeds the boundary of the top of the

roof; Figure 3.2b shows the top roof annotation and follows the roof’s boundary as precisely

as possible and should exceed the chimney boundary slightly; Figure 3.2c-d shows the anno-

tation of chimney and window classes; Figure 3.2e shows that if there are different buildings

in an image, these buildings should be annotated individually; Figure 3.2f shows the finished
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annotation.

Figure 3.2: The proposed annotation sequence. Annotation should start from
bases, i.e. wall and roof, to attachments, i.e. window, door and chimney. Differ-
ent buildings should be annotated individually and boundary should be annotated
slightly overlapped. a. an annotation should start from an individual wall by fol-
lowing its boundary using polygons; b. then the roof should be annotated; c-d.
chimney and window which are attachments are annotated further; e. annotation
for the neighbouring house starts; f. a finished annotation figure of two houses.
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Figure 3.3: Examples of wall annotation. a.& c. dense occlusions should be
avoided in annotations, in these two cases, they are fence, tree trunk and waste
bins; b. boundary walls should not be labelled.

Figure 3.4: Examples of roof annotation. a. all parts belonging to a roof including
eaves and rakes should be included; b. parts with materials that are different from
the wall should be annotated as roof; c. ground floor roof structure should be
labelled.

Figure 3.3 shows examples of wall annotation. Figure 3.3a shows that the antenna and

pipes can be included in a wall annotation; large and dense objects, which are, in this image,

a tree trunk and a fence, should not be included. Figure 3.3b shows boundary walls should

not be labelled as a ‘wall’ annotation. Figure 3.3c shows waste bins should not be included

in a wall annotation.

Figure 3.4 shows examples of roof annotation. Figure 3.4a shows a roof annotation should

include all elements of a roof such as eaves, rakes, etc. Figure 3.4b shows if a gable is made

from wood or other different materials to walls, it also should be included in the roof anno-

tation. Figure 3.4c shows except the primary roof, the roof of a building extension should be

labelled as the ‘roof’ class as well.
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Figure 3.5: Examples of typical window annotations: including window frame
but not including window sill and support beam as well as making a trade-off by
slightly over-covering the window frame. a. a typical window with internal blind;
b. a slightly inclined window; c. a window belonging to a loft; d. a typical bay
window.

Figure 3.5 shows annotations of typical windows. In this project, building window is the

only interest. Window annotation in this project needs to include glass and window frame

but does not include windowsill or support beams and pillars if applicable.

Figure 3.6 shows annotations of alternative windows. Figure 3.6a-b are open casement

and awning windows. In this situation, the philosophy is to try to generate an annotation

to cover the opened window and the area which is not covered by the window but inside the

window frame. Figure 3.6 c-e show occluded window examples. In these occasions, windows

are partially covered by other objects. Annotations need to be made based on the area den-

sity of the covering object: if the object is fairly sparse (e.g. trees, bushes, handrails, etc.),

which makes the window still partially visible behind the object, the mask should cover the

area where the window is covered; if the object is very dense, the mask should avoid the area.

Assumptions are essential to deciding the boundary of the window covered by sparse objects.

Figure 3.6 f-h show highly distorted window annotation examples. If the window frame of

a window is still visible, the instance should be annotated. Figure 3.6 i-j show examples of

skylights.

Figure 3.7 shows annotation examples of bay and bow windows. A bay window has three

faces which form a half hexagon. A bow window has multiple separate windows to form an

approximately curved front face. The two types of windows are difficult to be classified into

alternative or standard classes. The reason is the two window types have a three-dimensional

structure in comparison with planar windows. Thus even if images of these types of windows

are captured at a large viewing angle, there are still visible intact faces. Rules are made on
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Figure 3.6: Examples of alternative window annotations include opened, partially
visible, highly-distorted and dormers. a-b opened window annotation should follow
the boundary of window frame; c-e vegetation-occluded window annotation should
depend on the density of occlusions; f-h highly distorted window should also be
annotated; i-j dormer should be annotated as the alternative whether it is opened
or closed.

bay windows that only if the picture is taken roughly perpendicular to the front window,

which means the majority of the area of the three sides of the bay window is visible, the bay

window will be classified as ‘window’. Otherwise, it will be classified as ‘alternative window’.

Looking at a bow window from different angles, in most of the cases, the majority of all sep-

arate windows are completely visible. In this situation, the bow window should be classified

as a ‘window’ and if the viewing angle is so large that part of the window is hidden; this

window should be put into the ‘alternative window’ class.

Another difficult decision is annotating windows around a door. For example, the window

right above the door and within the door frame is usually called a ‘transom window’. How-



CHAPTER 3. DATA COLLECTION AND ANNOTATION 51

Figure 3.7: Examples of bay and bow window annotations. The top four examples
show bay window annotations and the bottom four show bow window annotations.
Bay window examples a, c, d should be put into standard window class and b should
be in the alternative window class. Bow window examples e and f should be in the
standard class and g and h should be in the alternative.

ever, this type of window can still be recognised as part of a door as they are surrounded by

a same door frame. This decision will not add additional confusion as the door labelling rule

defines a door including the door frame and area within it. If a window is not included in a

door frame, the window will be annotated following the window annotation rule. Annotation

of very tiny windows is another problem. These windows commonly have a blurry boundary,

extremely low resolution and are highly-distorted. Regardless of what angles these windows

are captured at, they are annotated as alternative windows. Figure 3.8 shows some examples

of annotating windows around a door and very tiny windows.

In comparison with windows, doors do not have many variants and are more simple to

annotate. Only doors on a facade are labelled. The main consideration includes if the door is

partially covered by other objects or are significantly distorted. These doors need to be put

into ‘alternative door’ class. Other considerations include whether the door is open or not;

if the door is open, cover the whole frame and classify it as ‘alternative door’. It is noted

that in this project, garage doors and commercial building doors are not considered. The

consideration is out of scope as this project is only about residential buildings. Also, doors

made from steel bars, i.e. gates (normally found in terraced houses), are not considered.

Figure 3.9 shows examples of alternative door annotations.
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Figure 3.8: Annotation examples of windows around doors and tiny windows.
In example a, the window above the door is annotated as part of the door as it is
within the door frame. Examples b and c are annotated as separate windows as
they are not surrounded by the door frame. Example d, e, f show examples of tiny
window annotations.

Figure 3.10 shows some other abnormal annotation conditions. Figure 3.10a-b show un-

certain area examples. Figure 3.10a shows two doors in shade. Under this condition, it is

hard to estimate whether the area above the two doors is window or wall. Thus, the area

above is not annotated. In Figure 3.10c, the area behind the plant is also uncertain and hence

not labelled. Figure 3.10b and d show instances made of unusual materials. These examples

should be annotated as usual but be classified as the alternative. Figure 3.10e-f show unusual

bay windows. The annotations are created by following the boundaries of these instances.

This is because windows here are installed separately unlike that in common bay windows:

glass is installed within the same frame.

Figure 3.11 shows four high-quality fully annotated examples. In the four examples of the

figure, all instances occurring in the figure are correctly, tightly annotated, i.e. no missing

instances, no incorrect labels and no gaps. Furthermore, all annotations precisely follow the

object boundaries which maintain the shape information of the targets.
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Figure 3.9: Alternative door annotation examples. Examples a,b and c show
partially occluded, and opened door annotations. Examples d, e and f show anno-
tation of extended-frame doors: all areas within the door frame should be labelled
as the same door. Examples g, h and i show annotation of outer corridor doors.
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Figure 3.10: Examples of abnormal instances’ annotations. a. due to illumina-
tion conditions, if what is above the door is ambiguous, this should not be labelled;
b. unusual appearance of objects should be labelled as the alternative; c. what is
behind the vegetation is unclear, this should be labelled as the alternative; d. sealed
window should not be labelled; e.-f. heavily decorated bay window annotation should
avoid decorations.

Figure 3.11: High quality annotation examples. It is noted that these examples
are only for illustration purposes and colour scheme inconsistency can be ignored,
when the actual dataset was being built, the colour scheme was followed consistently
which means across the whole dataset, the objects belonging to the same class
should be labelled in the same colour. a. houses with ground-floor shops; b. fence-
occluded terraced houses; c.-d. houses with limited views of roofs.
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3.3 Crookesmoor Dataset and Annotation Feasibility Experi-

ment

3.3.1 Crookesmmor Dataset

In the previous section, a building facade annotation pipeline was constructed. In this

section, a mid-size dataset is first constructed using the developed annotation protocol. The

images used for building the dataset were captured in the city of Sheffield, UK. The buildings

in this dataset are visually matched with the British residential building typology database

(Loga et al., 2016). The database classifies the building typologies based on building types,

e.g. detached, terraced, and sub-classified based on building age bands. The building age

in this area range from 19th to the 21st century which covers the majority of the age bands

determined by the database. The three main building types defined in the database include

single-family, multi-family and terraced houses. Examples of each one are observed in the

captured images. A map of the data capturing route is shown in Figure 3.12 with examples

of each building type highlighted, along with its corresponding location.

The raw data collected by MARVEL platform is spherical-view videos. The video data

can be easily transformed to image data by isolating the data into individual frames. This

type of image is still in spherical view and thus highly distorted. A cube mapping technique

is applied on the captured images. The technique is to map the spherical-view data to six

environmental mapping images, each with an image size of 2048 × 2048 pixels (Lambers,

2020). The six images form a cube covering the entire FOV with a front, right, back, left,

top and bottom view. The top and bottom views, which predominantly show the sky, road

and sensors, respectively, were not used in training or prediction. The benefits of using the

cube mapping technique include 1. a primary view can be set to focus on a priority direction,

2. compared to spherical view images, cube mapping images are less distorted although they

are not rectified.

The dataset is built with 997 urban scene building images 2. The dataset is randomly split

into training, validation and test sets with ratio 80%, 10% and 10%, respectively. Thus, the

training set has 797 images, the validation and the test set have 100 images each. The ratio

selected is a commonly used means of creating an evaluation dataset, as seen, for example,

in (Robinson et al., 2018; Syrris et al., 2020). The dataset was annotated by professionally

trained annotators which will potentially provide a higher-quality annotation result than

inexperienced annotators. These annotators are occupational dataset builders of machine-

2The 997 images were manually picked from image frames of the captured video images by the candidate.
Images with overlapping buildings as well as images without facades are avoided.
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Figure 3.12: The data collection route is marked in blue. The route is selected in
a typical suburb of the North of England residing on the outskirts of Sheffield city
centre. The route contains a wide range of residential building typologies defined in
the TABULA database Loga et al. (2016). Examples of the three main residential
building typologies with corresponding descriptions are marked by the red stars.

learning tasks. An iterative training procedure was taken to train these annotators to be

familiar with the facade annotation task by the candidate3.

The annotation quality is assessed in detail in Table 3.3. Figure 3.13 shows examples of

those images with problematic annotations. The dataset evaluation work provides guidance

for future annotation work, especially if hiring lower-cost amateur annotators. These frequent

labelling errors can be directly listed in the annotation requirement list to avoid them in the

future. The annotation error descriptions are also listed below.

3The candidate acknowledges that the Crookesmoor dataset is outsourced to URBAN DATA DYNAMICS
LTD for annotation and it is contracted by Dr Gregory Meyers. Dr Gregory Meyers also takes the role
of communication with the outsourcer including providing annotation instructions and feedback information
produced by the candidate.
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Table 3.3: Problematic annotation summary.

Problem numbering Annotation problem description Problematic image quantity

0 Unlabelled lean-to roof 63

1 Window on a roof annotation error 27

2 False label assignment 22

3 Other annotations missing 19

4 Billboard inclusion 6

5 Others 15

• The most frequent problem is the missing lean-to roof annotations. Lean-to roofs which

have the same appearance as top roofs are commonly built on ground-floor walls. Sixty-

three images have this problem. This is a significant problem since the shed roof is very

common and if these roofs are labelled as walls, it might confuse the model in predicting

wall and roof. Examples are demonstrated in Figure 3.13P0. For instance, in P0-a, the

second building from the left side has a lean-to roof above the window but it is labelled

as part of the front wall. As the high frequency of the problem occurs, it is necessary

to pay special attention to it for future annotation projects.

• The second problem is annotating windows on a roof. For a roof window structure,

the front side is usually the window with a roof on the top side. The two side parts

could be made of brick or artificial material board or glass. If the side parts are made

from glass, they should be annotated as window. However, if they are made from other

materials, they should be accounted as wall, not roof or background. Examples are

shown in Figure 3.13P1. The first example shows the condition that the roof window

wall is not labelled and the remaining three show walls incorrectly categorised as roofs.

• The third and fourth problems are wrong classification and missing annotation, respec-

tively. Examples are shown in Figure 3.13P2. P2-a annotated a window as a door,

P2-b annotated a roof as a door.

• The fifth problem is billboard avoidance. It was decided that large billboards attached

on walls would not be labelled. However, annotators occasionally ignore this setting.

P3 shows examples in which billboard is included as part of a wall.

• Apart from the five main problems, other labelling errors include unusual circumstances

such as how to define a church tower, and whether solar panel should be included as

part of a roof. These problems are very unique and thus cannot be grouped properly in

the guidance. As these problems are rare, these problems are recognised as data noise.
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Figure 3.13: Visualised problematic annotations. P0 demonstrates the missing
lean-to roof annotation problem; P1 shows the dormer annotation error; P2 shows
wrong label assignment problem and the missing annotation problem; P3 shows the
billboard inclusion problem.
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3.3.2 Labelling Strategy Feasibility Test

3.3.2.1 Test Setup

Although trained deep learning-based models can largely reduce the labour cost of a task,

preparing the data required for them is still extremely costly, both in labour and financially.

Therefore, testing the proposed annotation strategy before promoting it to the whole dataset

is essential to avoid unnecessary costs. The first 240 annotated images in the Crookesmoor

dataset are used to test the validity of the proposed annotation strategy.

The labelling strategy feasibility test is designed to validate: 1. the feasibility of the class

definition, 2. the feasibility of the occlusion labelling, 3. the feasibility of the alternative

class strategy. The annotated multi-class labels are isolated first to create binary labels for

each class. An original U-Net model with an extra encoder and a decoder block is adopted

for each class in the testing work to examine the labelling strategy feasibility. A binary

classification task is easier than a multi-class classification task. Therefore, using individual

models on each individual class can potentially reduce the liability of the task to the model

applied. As introduced in Chapter 2, the model has a symmetry U-shape structure and wide

expandability. The mentioned model components in this section such as convolution and

pooling were introduced in section 2.2.

The model which has been built is demonstrated in Figure 3.14. The U-shape model con-

tains a contracting path, an expansive path and skip structures. The contracting path of the

architecture used here has six convolutional blocks. Every block has two convolution layers

with a 3× 3 size filter with a stride of 1× 1, dropout layer, batch normalisation and rectifier

activation. In addition, zero padding is applied in the convolution process to maintain the

feature map dimension. These blocks will increase the number of feature maps from 3 to

1024. Max pooling with a stride of 2 × 2 is applied to each of these blocks except the last

one. These max-pooling layers will decrease the feature map size from 256 × 256 to 8 × 8.

The expansive path will increase the feature map dimension from 8 × 8 to 256 × 256 with

3 × 3 filter and stride of 2 × 2 deconvolution layer. The deconvolution layer will double the

dimension of a feature map by two and decrease its number by two also. In every block of the

expansive path, feature maps from the contracting path will be concatenated with the feature

maps from the expansive path; and two convolution layers the same as those in the expansive

path will be applied to reduce the number of feature maps. In the end, a convolution layer

with a stride of 1 × 1 and sigmoid activation will be applied to reduce the number of feature

maps to 1 that reflects the probability of the foreground segmentation.
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Figure 3.14: The U-Net model built for the annotation feasibility test.

The 240 images are randomly split into three parts for training, validating and testing the

U-Net model. The choice of the split ratio is very important but empirical. The split ratio

varies in different datasets, MS-COCO (Lin et al., 2014) uses the ratio (50%, 25%, 25%) for

their training, validation and testing dataset, respectively; Cityscape (Cordts et al., 2016)

uses the ratio (60%, 10%, 30%) for their dataset split. Considering the datasets used in

this thesis have a much smaller size and the tradition of (80%, 20%) training and validation

datasets split ratio in the machine learning community, a unique ratio (80%, 5%, 15%) is

adopted. The reason a more consistent ratio (80%, 10%, 10%) is not adopted is that it was

decided that the test set would be larger than the validation set to better reflect the gener-

alisation of models. Thus, 192 images for the training dataset, 12 images for the validation

dataset and 36 images for the testing dataset are achieved.

Applying data augmentation method into deep learning was originally introduced in the

AlexNet paper (Krizhevsky et al., 2017). This method has been applied to medical imagery

to intentionally produce more training images from the original ones before feeding the data

into the U-Net model demonstrated in Figure 3.14. This is realised by performing multiple

augmentation methods on original data, e.g. flip, rotate, shift, shear, brightness adjustment,

etc. The horizontal flip is implemented with a 50% chance of occurring. Also, the width and

height shift is applied with 50% chance of occurring with 10% moving distance. In addition,

the hue is adjusted by 0.1. Building facade image itself limits the application of many other

data augmentation methods compared to medical image datasets. For example, vertical flip

and right-angle rotation cannot be used here since buildings will not be either up-side-down

or falling-over.

A binary-entropy loss is adopted in this test for each individual model except for the

chimney recognition. Binary-entropy loss is a commonly-used loss function in the seman-

tic segmentation community which discretely measures the per-pixel similarity between the
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model predictions and the desired true values:

Lbce = − 1

N

N∑
i

[yi log ŷi + (1 − yi) log (1 − ŷi)], (3.1)

where y is the label, ŷ is the predicted probability distribution, N is the number of pixels

and i is the pixel index.

Chimney is visually significantly smaller than other objects. Therefore, a dice loss (Mil-

letari et al., 2016) term is added to the binary-entropy loss to add a constraint on overlapping

measurement:

Ldice = 1 −
2
∑N

i yiŷi∑N
i y2i +

∑N
i ŷ2i

(3.2)

In tests of each class, built models are trained through the adaptive moment estimator

(Adam) optimiser (Kingma and Ba, 2014). Unlike the traditional stochastic gradient descent

(SGD) optimiser in which the learning rate is a constant, the Adam optimiser can update the

learning rate by utilising the first and second moments of gradients. Other hyper-parameters

are set as: dropout rate = 0.2, batch size = 3 and max epochs = 50. Dropout rate 0.2 is

a commonly-used choice and batch-size is the maxima that the owned hardware equipment

can carry.

The tests are assessed by the evaluation metrics: accuracy, precision, TPR (true positive

rate), TNR (true negative rate) and the F1 score. These metrics are calculated through the

binary classification confusion matrix. A confusion matrix is the summary of predictions.

In a confusion matrix, the foreground prediction is known as positive and the background

is designated as negative. The binary classification confusion matrix contains four values:

the true positive and false positive (TP and FP, respectively) represent the correctly and

falsely predicted true values, the true negative and false negative are the correctly and falsely

predicted negative values. The five equations of evaluation metrics are tabulated in table 3.4.

The accuracy measures the percentile of correctly predicted pixels; the precision measures

the percentage of correctly predicted foreground pixels over the whole foreground; the recall

is the rate of the true positive over all ground-truth positives; the TNR measures the ability

of predicting negative values; the F1 score measures the prediction accuracy considering both

the precision and the recall values.
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Table 3.4: Metrics have been used in the annotation feasibility test.

Metric Calculation Function

accuracy TP+TN
TP+TN+FP+FN

precision TP
TP+FP

recall TP
TP+FN

TNR TN
TN+FP

F1 score 2×precision×recall
precision+recall

All individual networks have been implemented with TensorFlow library (Abadi, 2016)

and trained on an NVIDIA Quadro M1200 GPU with 4GB memory. It took an average of

50 minutes to train an individual model.

3.3.2.2 Test Results and Discussion

Table 3.5 shows the results of each individual test. While it can be seen that all models

achieve very high accuracy and TNR values, the TPR values for positively detecting doors,

alt-doors and alt-windows are low. High class imbalance is visually inspected in window,

door and chimney classes. This highlights that, due to the highly imbalanced positive and

negative classes, using only accuracy and TNR metrics would have been unreliable for mea-

suring true model performance here. When the data is highly imbalanced, the TN value

has a high influence which could lead to the accuracy and the TNR values being extremely

high, which cannot reflect the real performance of the algorithm. Suppose there is a binary

classification problem with n=100 samples (corresponding to pixels in this problem). There

are five samples belonging to the target class. Suppose a model only successfully classifies

one of those. However, the same model correctly identifies 93 of the negative samples: thus

TP=1; TN=93. The sum in the denominator (TP+TN+FP+FN) is always 100 regardless of

the breakdown. Thus the accuracy is 94%, despite only correctly classifying 20% of the true

positive samples. The class imbalance of the built dataset is analysed statistically at the end

of this chapter. Figure 3.15 demonstrates the class imbalance problem of the built Sheffield

Crookesmoor dataset.

Instead, the F1 score appears to be a more reliable indicator of model performance. From

the F1-score, it can be seen that the ‘wall’, ‘chimney’ and ‘roof’ class models achieved good

performance, the ‘window’ class model achieved satisfactory performance and the ‘door’, ‘alt-

door’ and ‘alt-window’ class models do not perform well. In this situation, dividing a single

object type into common and alternative divisions cannot feasibly be evaluated as the low
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Table 3.5: Performance metrics of all of the tests. The test names with prefix
’Per’ indicate the classes of objects without occlusions and distortions, the test
names with prefix ’Alt’ indicate the alternative classes and the names with prefix
’Com’ indicate the classes that combine the corresponding normal and alternative
classes. The trained model has failed to predict any alternative windows in the test
set and thus leads to the precision and recall values being zero.

Category Accuracy Precision TPR TNR F1 score

Wall 0.929 0.893 0.846 0.961 0.869
Roof 0.987 0.670 0.883 0.990 0.762
Chimney 0.998 0.813 0.839 0.999 0.826

Per-door 0.953 0.322 0.143 0.987 0.198
Alt-door 0.985 0.156 0.318 0.989 0.209
Com-door 0.987 0.307 0.739 0.989 0.434

Per-window 0.979 0.705 0.637 0.991 0.669
Alt-window 0.983 0 0 0.983 0
Com-window 0.981 0.735 0.870 0.986 0.796

performance could result from limited data. Control tests are designed to validate the fea-

sibility of differentiating the window and the door class into their correlated alternative and

normal classes. The two tests train single base models on combined normal and alternative

classes. The results are identified as those with prefix ’Com’ in Table 3.5. By comparing

the ’Com’ class tests with their corresponding alternative strategy applied tests, an obvious

increase is observed.

Figure 3.16 shows some examples of the visualised prediction results against their anno-

tations. The top line is the captured raw images, the second line is the manually annotated

masks and the third line is the visualised predictions. The wall example shows that the dense

occlusions can be avoided. Although some boundaries are not smooth enough, considering it

is such a small dataset, the results can still validate the strategy of removing dense occlusions

to be feasible. The roof surface is correctly predicted and the attachments are covered in the

prediction. The chimney example also achieves a feasible result. The models applied fails on

the two alternative classes. For the two classes which only have perfect conditions of objects,

the models easily confuse the objects with a perfect or an alternative condition.
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Figure 3.15: A statistical analysis of class imbalance problem in Crookesmoor
dataset. The figure has shown that pixel accuracy and TNR are not suitable for
assessing madel performance in this task.

Figure 3.16: The visualised results of the labelling strategy feasibility tests. The
wall, roof and chimney have achieved satisfactory results; the door and the window
tests show that the alternative strategy is not feasible in the building component
recognition task.
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3.3.3 Generalisation Experiment

The challenge of whether a trained deep learning model can be applied further on unla-

belled data depends on the generalisation of trained models and, more importantly, whether

the dataset used for training contains adequate variations of targets. A generalisation ex-

periment was collaboratively designed and conducted to validate the generalisation of the

constructed dataset 4. In this experiment, the U-Net models which were trained on com-

bined window and door data in the previous subsection were adopted directly as a black-box

ready-made package. An automatic element counter was developed by the candidate which

computes the number of convex hulls in a prediction map. Noises are filtered out using mor-

phology operations.

An independent batch of 42,451 images were captured in the southwest of Sheffield, UK

with approx. 2500 inhabitants spanning 2.79 km2 using the same data capture platform.

This study area was deliberately chosen to be away from the area where the raw data in

the Crookesmoor dataset was collected. The number of elements counted by the developed

convex hull-counter were compared against manually counted values. The outcome shows

the trained model can provide equivalent results as humans. In the key metric number of

windows per-image and number of doors per-image, the trained model achieved 4.65 and 1.06

with human counting having 4.38 and 1.09, respectively.

3.3.4 Section Conclusions

Recalling the three purposes of the testing work which were validating the class defini-

tion, the occlusion labelling strategy and the alternative class separation strategy. Based

on the results from all the tests, firstly, the alternative class separation is inappropriate as

an obvious performance drop was observed. Secondly, the class definition and the occlusion

labelling strategy is feasible. This is because the evaluation metrics show promising results

in this small dataset and the visualised predictions mostly have smooth boundaries. The

generalisation test shows that the built Crookesmoor dataset can be generalised to a larger

area of buildings, at least in the Sheffield region.

4The candidate acknowledges that three colleagues in RISE research group took the role of manually
counting elements of the collected data and comparing against the results from the developed automatic
element counter. The three colleagues are Dr Hadi Arbabi, Dr Maud Lanau and Dr Xinyi Li. Comprehensive
results are presented in (Arbabi et al., 2022) which have already been peer-reviewed and published.
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3.4 Handsworth Dataset

In the previous sections of this chapter, the data semantic annotation procedure and proposed

definitions of building facade decomposition are explored and validated. The data annota-

tion procedure and facade decomposition definition constitute a building facade annotation

protocol. A mid-size dataset, Crookesmoor dataset, was constructed using the annotation

protocol. Inspired by the annotation pipeline, a larger dataset was constructed as a group-

level project5. This dataset is introduced in this section, as it will be used later in this thesis.

In previous dataset construction works such as ImageNet (Deng et al., 2009), the strat-

egy of using mixed professional and amateur annotators is widely adopted. The development

of the Crookesmoor dataset validates a designed facade annotation protocol. However, the

annotation service provided by the professional outsourcer which was used in developing the

Crookesmoor dataset is expensive and time-inefficient, therefore, it is worth investigating a

more flexible and cost-effective annotation outsource. Amazon launched their crowd-sourcing

marketplace service, Mechanical Turk (MTurk). This service enables individuals and compa-

nies to outsource their tasks and distributes them to an available workforce.

Crookesmoor dataset validates the proposed labelling pipeline, however, the dataset scale

is very limited, therefore, the second data capture was planned and conducted in Handsworth

which is a typical suburb in the North of England. Figure 3.17 shows a snapshot of an area

in Handsworth. After the raw data were captured, instead of using the cube mapping tech-

nique as in the Crookesmoor dataset, the frame images of each camera sensor were adopted

for annotation without pre-processing. In comparison with images processed using the cube

mapping technique, the frame images are highly distorted due to fish-eye lenses.

The collected images were picked first to avoid similar scenes and to maintain the dataset

diversity. After the selection process, 6587 images were outsourced to Amazon MTurk for

annotation. The annotation rule is simplified in comparison with the one provided to the

Crookesmoor dataset outsource. The annotation guidance in the Handsworth dataset is listed

in Table 3.6. Although the annotation guidance is simplified, common mistakes observed

when constructing the Crookesmoor dataset, such as missing bay window roofs are specifically

highlighted. A brief automatic annotation quality inspection was made after receiving the

annotated data. The automatic inspection is to clean unlabelled and insufficiently labelled

images. The automatic data cleaning detects 120 unlabelled and 561 insufficiently labelled

images. The remaining 5906 images were kept and named as Handsworth dataset.

5The candidate acknowledges that Dr Wil Ward is responsible to outsource the data annotation project to
Amazon MTurk and Dr Hadi Arbabi is responsible for taking the raw data capture.
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Figure 3.17: A snapshot of the Handsworth area. The area is also a typical
suburb in the North of England.

3.5 Chapter Discussion and Conclusions

3.5.1 Chapter Discussion

3.5.1.1 Overview of Built Datasets

Any scalable machine learning-based solutions for the problem of semantic segmentation

must rely on a high-quality training set. Such training data must be reliably and accurately

annotated, and any frameworks for procurement must facilitate the influx of new data to

be manually labelled. A residential building facade annotation framework is proposed in

this chapter. The proposed framework has shown satisfactory feasibility in scalable annota-

tions. The determined labelling rule successfully balances the level of detail of annotation

required and the annotation efficiency. The determined labelling strategy partitions a resi-

dential building into five categories: wall, roof, window, door and chimney. The strategy is

enacted in line with the needs of collecting information for building energy modelling and

material stock analysis.
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Index Label What does it include?

0 background Anything that cannot be categorised as the other items, including
occluding items such as trees. Some experts disagree on garden
walls so they may appear as label 0 or 1.

1 wall Main facade component, typically drawn first then overlaid with
other labels. May include garden walls, background garages, etc.

2 roof Visible roof components including eaves, may include bay window
roof and dormers. May include skylights.

3 chimney Visible chimney aspect, limited data due to small pixel sizes.
4 window Glazing panels, possibly including skylights. Opaque windows, e.g.

covered with signage, may be labelled as window.
5 door Ground level doors, including inset doors. Should not include alleys.

Table 3.6: Annotation guidance of Handsworth dataset

A semantically labelled building facade dataset, Crookesmoor dataset, was constructed

in this chapter. A portion of the Crookesmoor dataset was used to validate the feasibil-

ity of the determined partition strategy. The chapter also introduces another semantically

labelled building facade dataset, the Handsworth dataset. The two datasets constitute all

image data which are used in this thesis. All data used in this chapter was collected by

driving a vehicle around suburban areas of Sheffield, the North of England. The two datasets

vary in many facets. In the dataset scale, Crookesmoor dataset contains 997 images and the

cleaned Handsworth dataset has 5906 images. The raw data in the Crookesmoor dataset is

pre-processed with cube mapping algorithm first and then labelled by trained professional

annotators. In the Handsworth dataset, raw frame images were directly outsourced to anno-

tation.

The two datasets also use different outsourcers. Owing to the inefficiency and high-cost

of the Crookesmoor dataset annotation outsourcer, Amazon MTurk service was used for the

Handsworth dataset annotation task. The Crookesmoor outsourcer has a fixed team and

the annotators were trained in this task during the annotation. MTurk has insecure anno-

tators for which an annotator only relied on a literal guidance to learn the labelling rule.

The MTurk service has shown advantageous labelling efficiency and flexibility. The designed

data cleaning process has largely reduced problematic and unnecessary image-mask pairs. In

comparison with using fixed-member outsourcer. MTurk has shown advantages in large-scale

annotation tasks.

There are differences between Crookesmoor and Handsworth datasets in their presenta-

tions and annotations. One of the differences is the image processing technique. The type of
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raw data collected by the vehicle-mounted data capturing system is video. The data captur-

ing system contains six cameras and, therefore, in each data capture journey, six videos are

recorded. Frames at the same timestamp of the videos can provide a spherical view of the

captured environment. Frames containing different residential buildings in the video file are

manually selected. In the Crookesmoor dataset, the cube mapping technique was applied to

generate image data. Cube mapping technique can generate six images from frames at the

same timestamp which can form a cube covering the entire FoV. In the Handsworth dataset,

instead of applying the cube mapping technique, the frame images from each camera are

used directly for annotation without pre-processing. The frame images are highly distorted

due to the wide-angle lens. Moreover, the buildings in the Handsworth dataset can only

occupy c.1/3 of the total area. Sky and road commonly occupy the rest of the image. On

the contrary, images generated through cube mapping can occupy the majority of the image.

In the Crookesmoor dataset, the building components are labelled to maintain their shapes

at most extents except for meeting highly dense occlusions. This is because the shape feature

may be significant in recognising the target objects and predicting boundaries for deep learn-

ing models. In the Handsworth dataset, it is argued that the occlusions should be completely

avoided to maintain the surface material consistency of building components, therefore, the

Handsworth dataset shows a more fragmented annotation than the Crookesmoor dataset.

3.5.1.2 Statistical Analysis of Datasets

The two developed datasets were analysed statistically and compared with publicly avail-

able datasets for facade segmentation. The comparative analysis has eight different datasets

including the built Crookesmoor and Handsworth datasets. The other six datasets are Oxford

RobotCar-Facade (Wang et al., 2022), TMBuD (Orhei et al., 2021), Varcity (RueMonge2014)

(Riemenschneider et al., 2014), and three early datasets: eTRIMS (Korč and Förstner, 2009),

ECP (Teboul et al., 2010) and LabelMeFacade (Fröhlich et al., 2010). The details of these

datasets have been reviewed in section 2.3.2.

Among the eight datasets, eTRIMS and ECP have provided statistical details or been

previously analysed such as in (Kong and Fan, 2020). Crookesmoor dataset annotations

come in JSON files from the outsourcer, thus its statistics can be achieved by summarising

information from them. The other five datasets have not been analysed statistically before.

Therefore, a program was developed to automatically and statistically analyse datasets under

this situation from their annotation images.
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Table 3.7: This table shows a statistical analysis of the developed building fa-
cade datasets and publicly available datasets. SCBuD and SHBuD represent the
Sheffield Crookesmoor and Handsworth datasets. LabelMe is the abbreviation of
LabelMeFacade. Oxford is the abbreviation of the Oxford RobotCar Facade dataset.
The number of alternative- and normal-class objects of the Crookesmoor dataset
have been combined in this table.

Category
Dataset

SCBuD SHBuD eTRIMS ECP LabelMe Varcity TMBuD Oxford

Announcement Year 2019 2021 2009 2010 2010 2014 2021 2022

Number of images 997 5906 60 104 945 219 300 500

Image size (MPx) 4.2 4.2 0.4 ≤ 0.3 0.3 0.9 0.8 1.2

Number of objects

Wall 4251 183,946 142 104 3593 456 2811 1105
Window 14,770 195,868 1016 2976 7664 5834 8770 8820
Door 2406 26,250 85 94 863 196 860 331
Roof 4052 115,754 N/A 104 N/A 219 N/A N/A
Chimney 2536 34,688 N/A N/A N/A N/A N/A N/A

Average per-object resolution (Px)

Wall 234,021 11,671 74,166 82,005 38,891 137,750 32,567 127,686
Window 14,175 2669 2634 855 1519 2503 1656 2118
Door 23,613 4110 3809 2726 2520 14,561 3338 4566
Roof 27,795 65,822 N/A 11,217 N/A 24,012 N/A N/A
Chimney 4101 1567 N/A 1042 N/A N/A N/A N/A

Number of pixels (MPx)

Wall 994.8 2146.9 10.5 8.5 139.7 62.8 91.5 141.1
Window 209.4 522.8 2.7 2.5 11.6 14.6 14.5 18.7
Door 56.8 107.9 0.3 0.3 2.2 2.9 2.9 1.5
Roof 112.6 710.5 N/A 1.2 N/A 5.3 N/A N/A
Chimney 18.4 54.4 N/A 0.3 N/A N/A N/A N/A

The program is based on the element counter software developed in section 3.3.3. Modi-

fications were made to fit the statistic analysis task. The element counter was written using

object-oriented programming (OOP). Therefore, functions can be conveniently added to the

software without sabotaging its initial architecture. A function which can summarise fore-

ground and background pixels was added and the function of removing noise is made void.

The updated software was validated using Crookesmoor and ECP datasets before populating

it to other datasets. The statistical analysis is tabulated in Table 3.7.

Among the eight datasets, the Handsworth dataset has the largest volume and the

Crookesmoor dataset has the second-largest volume and the highest average per-object res-

olutions. The Crookesmoor dataset is annotated to preserve shape information, therefore,

the number of walls can then be used to infer that the Crookesmoor dataset contains c.4000

different scenes of buildings. However, as the Handsworth dataset is labelled in a more ‘frag-

mented’ way, the number of walls does not indicate how many scenes are in the dataset.
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However, the number of scenes may be estimated by the number of doors and chimneys.

Table 3.7 also shows that before 2014, facade segmentation datasets commonly had lower

image sizes. Nowadays, facade segmentation datasets with image size above full-definition

(HD) i.e. 1280× 720 have become more readily available. The latest three datasets, Varcity,

TMBuD and Oxford RobotCar-Facade are all above or approximate to the HD-level image

size. However, an increase in image size (number of pixels) does not necessarily yield an

increased resolution in object space (pixels/meter). The eTRIMS dataset has an average

window resolution of 2634 pixels which is equivalent to datasets with significantly higher

image sizes, especially Handsworth and Oxford RobotCar-Facade datasets. This situation

poses challenges in developing facade segmentation models.

3.5.2 Conclusions

In this chapter, two street view facade segmentation datasets were built focusing on the

UK residential housing stock6. One has 997 labelled images and the other contains 5906

images. A data labelling framework was developed, considering potential needs in assisting

scalable building retrofit. The two datasets were constructed using different outsourcers. The

comparison has shown that the fixed-team annotation is more advantageous than the crowd-

source MTurk annotation when annotation accuracy is the foremost requirement of the task.

MTurk is a more balanced choice than the fixed-team outsource in the residential building

facade labelling task.

6The two built datasets will be made available online after embargo.



Chapter 4

Residential Building Facade

Segmentation

4.1 Introduction

Chapter 2 systematically reviewed the state-of-the-art datasets and developed approaches for

facade segmentation. Recalling the literature review, facade segmentation is a dynamic and

fast-developing scientific field. Prior to 2020, most works focus on developing approaches for

rectified single-facade images for procedural modelling. As facade segmentation is such a fast-

growing field, the timeline of this chapter is important in comparison with the state-of-the-art

works. The Crookesmoor dataset was built throughout 2019 given the facade segmentation

project started at the end of December, 2018. The first developed model FacMagNet was

built in 2020 and is presented in section 4.2. The model was re-developed the following year

and this is presented in section 4.3. The Handsworth dataset was built in 2021. The contents

in section 4.4 were finished in the same year. The timeline is structured in table 4.1 with the

state-of-the-art (SOTA) works at the same time in facade segmentation.

The overall contribution of this chapter includes 1: development of novel scalable ap-

proaches to the automation of residential building facade component recognition; 2: ex-

ploration of an advantageous end-to-end deep learning model and training strategy. The

Crookesmoor dataset was adopted for contribution one to develop the facade segmentation

models. The Handsworth dataset was adopted for contribution two. The solutions outlined

in this paper are summarised thus:

72
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Table 4.1: Thesis timeline with corresponding state-of-the-art works. The year
2021 was rather a quiet time for facade segmentation but many papers were pub-
lished in 2022 according to the literature review. This might be because of the
impact from the global Covid-19 pandemic.

Time Thesis work State-of-the-art

November, 2019 Crookesmoor dataset was built SRF+RPN(Rahmani and Mayer,
2018) and MULTIFACSEG-
NET(Femiani et al., 2018)

August, 2020 FacMagNet-l was developed in
section4.2

DeepFacade(Liu et al., 2020)

February, 2021 Handsworth dataset was built Pyramid ALKNet(Ma, Ma, Xu
and Zha, 2020), Combo represen-
tation(Kong and Fan, 2020)

March, 2021 FacMagNet-s was re-developed in
section4.3

FacMagNet-l(Dai et al., 2021)

September, 2021 Attention mechanism experi-
ments in section4.4

No update

November, 2022 Thesis completion DETR+PSPNet(Zhang et al.,
2022), DeepFacade-v2(Liu et al.,
2022)

1. a novel ensemble segmentation model tailored to handle facade images with inter-

category size discrepancies e.g. window and wall and intra-category single-object class

imbalance, e.g. due to perspective or capture distance, by incorporating a novel mag-

nifier strategy;

2. the developed magnifier model is simplified to consider efficiency and achieved promising

performance on the same dataset;

3. an exploration study using focal loss and attention mechanism on class-imbalance prob-

lem and testing an advantageous end-to-end model.

The next three sections describe the development of the residential building facade seg-

mentation models. The first section describes the developed facade segmentation model -

FacMagNet-l. The second section describes the simplified version of the re-developed Fac-

MagNet, FacMagNet-s. The last section contains the exploration study of applying focal

loss and various model architectures and attention mechanisms. After these, a cross-dataset

adaptability test is designed to demonstrate the performance of the proposed magnifier strat-

egy.
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4.2 Residential Building Facade Segmentation

4.2.1 Categorical Semantic Segmentation Models

As reviewed in chapter 2, supervised deep learning-based semantic segmentation models

were developed based on the fully convolutional neural network (FCN) (Long et al., 2015)

with an encoder-decoder architecture. The spatial resolution of the feature maps, i.e. the

outputs of each convolution layer, decreases throughout the feature extraction process i.e. the

encoder network. This allows the learned feature maps to be more invariant to small trans-

lations of the inputs. Consequently, the ratio of the input image size to the output feature

map size, known as downsampling rate, becomes a significant concern as redundant spatial

resolution reductions will lead to target objects vanishing and insufficient resolution reduction

may result in the model lacking sufficient translation invariance. Operations called skip con-

nections were developed to concatenate feature maps at different levels, to help maintain the

low-level information of the model, which is often lost in a linear convolution-deconvolution

model (Long et al., 2015).

The multi-scale problem is a universal challenge in designing a CNN model for computer

vision tasks. This problem means, in an image, the size of target objects varies in a large

scope. Multiple techniques and model structures have been developed in this field including

symmetric architecture (Badrinarayanan et al., 2017), feature pyramid (Zhao et al., 2017),

and dilated convolution (Chen et al., 2018). These methods have shown deep learning-based

models to have powerful capabilities to solve this problem. However, these approaches are

designed to be a universal solution of urban scene segmentation, and, accordingly, lack re-

finement for a certain scenario, such as for facade segmentation.

U-Net model is another semantic segmentation model, based on the FCN, that was devel-

oped initially for medical images (Ronneberger et al., 2015). Its architecture has an efficient

symmetric structure and is highly expandable. U-Net outperformed base FCN and related

architectures, and the model structure has been applied in various fields, such as remote sens-

ing (Chu et al., 2019). As introduced in chapter 2, the original U-Net comprises an encoder

network with a standard CNN architecture, and a symmetric decoder network that recovers

the spatial resolution of feature maps. Skip connections concatenate feature maps from the

contracting path before doubling the number of feature channels to the symmetric feature

maps in the expansive path. The design allows for features representing small object infor-

mation to be transmitted to higher levels of the network. Compared with other multi-scale

architectures, such as feature pyramids (Zhao et al., 2017), the symmetric architecture is able

to better retain small object information. Because the images in the facade dataset contain a
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number of small objects, the benefits of the symmetric U-Net architecture are highly relevant

to this problem.

Another benefit of using U-Net architecture in facade segmentation is its success on prop-

erties that are common in both facade images and medical images. For example, targets in

medical images such as brain tumours usually have diffused and ambiguous boundaries which

can make them difficult to segment (Havaei et al., 2017). Diffuse boundaries require low-level

high-resolution edge information to refine the segmentation boundaries. In the captured fa-

cade image set, boundary ambiguity has been identified in all classes. Additionally, a degree

of semantic information in the structure of a building has been identified, e.g. chimneys are

typically located on roofs. This type of information is often found in medical images on which

U-Net has proven to be effective, such as the human brain with a defined interior structure

(Kermi et al., 2018). The high-level semantic information can support the detection of the

target objects.

Employing the original U-Net architecture directly to the developed facade segmentation

dataset is ill-considered. The original U-Net takes inputs with size 572 × 572 and has a

downsampling rate of 16. The data captured by the vehicle-mounted system has a size of

2048 × 2048 and the intended input size for facade segmentation is 1024 × 1024. Therefore,

data used here has a much greater size. In addition, the U-shape structure has been widely

explored to fit it into different scenarios nowadays. As such, a new model was developed.

In the Crookesmoor dataset, most of the wall objects can occupy the majority area of

an image and the roof objects are mainly slender shapes across the long-side of an image.

However, the three smaller-sized categories, i.e. the window, the door and the chimney, have

significant size differences because of elements including viewing perspective. By measuring

the size of the minimum bounding rectangles (MBR) of the three smaller-size categories, the

size distributions are plotted in Figure 4.1. These plots show that the objects in these three

categories are distributed very widely and unevenly. An effective method of solving the high

size discrepancy problem is to use different receptive fields aiming for different scales Hu and

Ramanan (2017). Therefore, it was decided that the ensemble learning strategy would be

adopted to build different models for different classes in this paper.

Ensemble learning is a common strategy in the machine learning community. The core

of ensemble learning is to use multiple individual machine learning algorithms for a task and

fuse predictions from them with a designated voting strategy to achieve better performance

than using a single algorithm (Dong et al., 2020). In particular, random forest (Breiman,

2001) is an iconic representation of ensemble learning. Its variant, structured random forest
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Figure 4.1: Relative feature size statistics of window, door and chimney under
the raw data image size; the plot shows the width and height distributions, the
distributions show high varieties in sizes.

has been used for facade segmentation in (Rahmani and Mayer, 2018). Ensemble learning has

several different paradigms including bagging, boosting and stacking. Bagging is a parallel

structure for which all individual algorithms generate predictions independently. Boosting is

to improve model performance on handling difficulties. The strategy uses predictions from a

base-model to adjust the dataset by applying weights and then training another base-model

based on the weighted dataset. Stacking is a stage-wise approach which utilises a meta model

to generate predictions based on inferences from base models.

To be more clear, bagging is a technique where multiple models are trained on different

subsets of the training data, with replacement, to reduce variance and improve accuracy.

The final prediction is obtained by averaging the predictions of all the models. Stacking is a

more complex technique that involves training multiple models, or base models, on the same

training data, but with different features or algorithms. The predictions of these base models

are then used as input features for a higher-level model, called the meta-model, which learns

to combine the base models to make the final prediction.

Three different downsampling rates were determined for this task. For the three smaller-

size categories, the downsampling rate of 32 was selected to be 32, i.e. log232 = 5 layers,

which means the model will reduce the feature map size to 32 times smaller than the input

size. The decision is in terms of the largest objects in the three categories occupying a signifi-

cantly larger proportion than the target objects in medical images used in the original U-Net.

For the roof model and the wall model, the downsampling rate is 64 and 128, respectively,

because these two categories are both significantly larger than the smaller-size categories and

thus require deeper models to extract semantic information.
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Figure 4.2: The semantic segmentation model for window, door and chimney
categories, the ‘Conv’ stands for the convolution operation and ‘BN’ is the abbre-
viation of batch normalisation which is a common way to prevent over-fitting. The
numbers in the encoder-decoder network represent the channel number and num-
bers in the dilation block are the dilation rates. The feature maps from the dilation
convolution layers are added at the end with subsequent batch normalisation and
activation layer in the centre dilation block.

Figure 4.2 shows an example of the model structure with a downsampling rate of 32. The

black arrows indicate the skip connection which is the operation to concatenate the feature

maps in the encoder network to the their symmetric ones in the decoder network. As the

encoder network increases the translation invariance of the model, it loses detailed edge in-

formation and location information. The skip connection is included to combine low-level

features with high-level features, which helps the model maintain information from different

scales (Drozdzal et al., 2016). In the three smaller-sized categories, to prevent the small

objects vanishing, a lower downsampling rate is selected. This benefits the detection of small

objects in the image, however, there is a trade-off in the detection of larger objects. Inspired

by the dilated convolution technique, which has been shown to extract richer semantic infor-

mation, such as in the DeepLab and D-LinkNet models (Chen et al., 2017; Zhou et al., 2018),

five dilated convolution layers with exponential growth dilation rates are utilised to replace

the two convolution layers in the centre block. The five layers are concatenated using skip

connections, as shown in Figure 4.2.

The detection of the roof and walls requires higher downsampling rates, and the convo-

lution layers in the model are replaced with residual blocks(He et al., 2016a) to deal with

the gradient vanishing problem: a common issue that occurs in this type of model architec-

ture when detecting large objects. Residual blocks are built with a skip connection and two

adjacent convolution layers to mitigate gradient vanishing. The centre dilation block is also

replaced with two residual blocks for both the roof and the wall models.
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The loss function is another crucial part of the model structure, that determines how ef-

fective the classification model is. A common loss function for the classification is the binary

cross entropy, Lbce, which represents the similarity between two distributions, and can be

calculated as an average per-pixel loss. The dice loss, Ldice is another approach that repre-

sents the loss as a global function, i.e. it does not treat all pixels independently, like binary

cross entropy. Dice loss is particularly useful for segmentation problems where there is class

imbalance (Milletari et al., 2016).

In this work, a joint loss function is applied to combine the benefits of binary cross entropy

and dice loss. For vectors containing true, y, and predicted, ŷ, pixel labels, the loss is defined:

L(y, ŷ) = − 1

N

N∑
i

[yi log ŷi + (1 − yi) log (1 − ŷi)]︸ ︷︷ ︸
Lbce

+ 1 −
2
∑N

i yiŷi∑N
i y2i +

∑N
i ŷ2i︸ ︷︷ ︸

Ldice

,

where N is the number of pixels.

To combine the results of each semantic segmentation model, the output score maps are

voted to find the most confident classification for each pixel.

Small object recognition is a common problem when using deep learning models. One

of the reasons is that small objects often vanish in the down-sampling process. Symmetric

model structure and ensemble learning strategy is adopted to solve this problem. A related

issue is that small objects, by definition, only occupy a tiny area of an image. This can lead to

severe class imbalance. As deep learning models are trained to learn gradients and minimise a

loss function, class imbalance makes the model prone to classifying these pixels as background.

4.2.2 Using Object Detection as a Magnifier

In dealing with class imbalance as a result of differing object sizes in segmentation images,

one approach was developed by cropping images into small tiles and feeding those into the

model (Van Etten, 2018). However, using this approach directly can cause target objects to

lose contextual shape information, which is essential in identification, especially in building

facade images. Therefore, a new method is proposed: using an object detection model to

extract objects from the image and applying a magnifying factor to balance the foreground

and background. The magnification approach is only adopted for the three category models

where small objects and class imbalance are observed in the data, specifically windows, doors

and chimneys.



CHAPTER 4. RESIDENTIAL BUILDING FACADE SEGMENTATION 79

Mask-RCNN is an example of a model, designed for instance segmentation, that incorpo-

rates a joint object detection and semantic segmentation structure (He et al., 2017). However,

as the design purpose is completely different, this model is not applicable in our task: the

model uses only a single FCN model which, as discussed in the previous section, does not

perform well in the multi-scale problems we are looking at. The Mask-RCNN model feeds the

detected area directly into the semantic segmentation model, which does not balance input

sizes to combat the intra-size discrepancy.

Object detection is an important topic in computer vision, the same as the semantic seg-

mentation technique. The technique is designed to locate the target objects via bounding

boxes. In previous work on building facade segmentation, object detection has been used as

a shape refinement strategy (Rahmani and Mayer, 2018; Liu et al., 2020). As in the rectified

frontal-parallel view facade images, objects such as windows and doors are in a rectangular

shape. In the Crookesmoor dataset, it is not possible to use the technique as a shape refine-

ment module. However, a potential is identified for integrating the technique to solve the

class imbalance problem.

To use the object detection model, bounding box information is generated automatically

by calculating the minimum bounding rectangles (MBR) of the pixel-wise annotations. For

each annotation patch, its MBR coordinates are calculated first. As the MBR is not nor-

mally parallel to the axes, the coordinates of the minimum rectangle which covers the MBR,

parallel to the axes, are calculated as the bounding box information.

An object detection model is trained to locate the bounding boxes of the three smaller-

sized categories. Patches formed from the contents of the bounding boxes are expanded by

a magnifying factor, based on their size. If the length of the bounding box’s shorter side is

fewer than 64 pixels, the area of the bounding box will be magnified by 25. When the short

side is between 65 and 128 pixels, the magnification factor of 16, and all bounding boxes with

short side larger than 128 pixels are magnified by 9. The magnified patches are tailored from

the raw image and act as the input to their corresponding categorical semantic segmentation

model. The output score maps of each patch are then recovered to their initial locations.

The object detection model integration is shown in Figure 4.3.

To learn and predict bounding boxes, the Faster R-CNN model is used (Ren et al., 2015).

In this model, a base CNN network is employed first to generate feature maps, similar to the

encoder network in the semantic segmentation model. The outputs from this base network

are fed into a region proposal network (RPN). The RPN proposes nine different anchor boxes

for each point in the feature maps and determines if each of the anchor boxes contains a
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Figure 4.3: Model workflow with object detection; the input image passes into
the detection model to generate bounding boxes first; the interested areas are then
expanded and extracted; the extracted patches are magnified to a unified size then
fed into the corresponding semantic segmentation models; the output score maps
are resized to the original size and spliced together in the end.

target, along with their coordinates. The RPN uses the non-maximum suppression (NMS)

to filter redundant anchor boxes. The technique determines a threshold, and any bounding

boxes with an overlapping area larger than the threshold are removed. After the RPN, the

classification and coordinates regression model will determine the category and refine the

anchor box coordinates.

In this work, instead of using the VGG-16 model as the base network in the original paper

of Faster R-CNN (Ren et al., 2015), the Inception ResNet-V2 (Huang, Rathod, Sun, Zhu,

Korattikara, Fathi, Fischer, Wojna, Song, Guadarrama et al., 2017) is adopted. The anchor

box ratios are fixed, as in the original paper, at 1:1, 1:2, and 2:1. The NMS threshold is fixed

at 0.7.

The developed FacMagNet is demonstrated in Figure 4.4. The input image simultane-

ously passes into the detection model to generate bounding boxes and the two segmentation

models for the wall and the roof class. In the detection branch, the interested areas are then

expanded and extracted; the extracted patches are magnified to a unified size then fed into

the corresponding semantic segmentation models; the output score maps are resized to the

original size and spliced together at the end. At the end, the predictions from all the tailored

segmentation models are merged together through voting. The voting strategy is made as if

none of the scores from the tailored models in the same pixel are higher than 50%, the pixel

will be set as background; otherwise, the category of the tailored model with the highest

output score will be set.
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Figure 4.4: The developed FacMagNet model workflow which combines the mag-
nifier module.

4.2.3 Experiments and Results

4.2.3.1 Training Strategy and Evaluation

Experiments are first conducted in each category to explore the best combination from

various model choices discussed in section 4.2.1. A base U-Net model was built for the pur-

pose of comparison. For the roof and wall category, a deeper U-Net model with a larger

down-sampling rate, as well as a residual connection version of the deeper U-Net model was

built. For the other three categories, the performance of the base U-Net model, the dilated

version of the base U-Net and the object detection integration model was tested. Finally, the

combined model was compared with existing state-of-the-art semantic segmentation models

including DeepLab-v3plus (Chen et al., 2018), HRNet-v2 (Wang et al., 2020), PSPNet (Zhao

et al., 2017), and SegNet (Badrinarayanan et al., 2017). DeepLab-v3plus and HRNet-v2

are two top performing methods in the Cityscapes semantic segmentation challenge (Cordts

et al., 2016). PSPNet and SegNet were introduced in the literature review as two models used

for urban scene segmentation tasks and widely used in the facade segmentation community.

To keep the detail of the images as high-quality as possible, and considering limitations to

available computational resources, the input images were rescaled to 1024×1024 pixels. After

the magnifier extracts image patches, each patch is re-scaled to 512× 512 pixels before being

fed into the smaller category models. A data augmentation technique was used during model

training: geometric transformations and colour adjustments were applied to the base dataset

to produce a larger training set. Horizontal mirroring, vertical and horizontal translations

and small rotations were applied randomly to 50% of the data. The hue of the images was
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adjusted randomly by up to 10%.

The adaptive moment estimator (Adam) optimiser with a learning rate reduction strat-

egy was used (Kingma and Ba, 2014). The minimum learning rate was set to 10−5. To

prevent overfitting, early-stopping is applied, stopping the training process if validation loss

does not decrease for 30 epochs. The maximum number of training epochs was 500 for all

models; typically, models took fewer than 200 epochs to train. All convolution layers in all

segmentation models were initialised with Kaiming distribution (He et al., 2015).

Categorical models’ performance is evaluated both qualitatively and quantitatively. Qual-

itative evaluation is based on visual inspection, and the quantitative evaluation includes the

use of a confusion matrix and comparative evaluation metrics on component models. Accu-

racy, precision, recall, true negative rate (TNR), intersection-over-union (IoU) and the F1

score are used to indicate the quality of models. Each of these metrics relies on true positive,

true negative, false positive and false negative numbers for each image. The true positive

and negative represent the pixel quantities which are correctly predicted by the model, and

the converse count incorrectly classified pixels. Accuracy denotes the percentage of correct

classifications; precision measures the percentage of correct positive samples in all positive

predictions; recall is a measure of the correct positive predictions over all positive samples;

TNR measures a model’s ability to correctly classify negative samples; and IoU measures the

overlapping ratio of the positive predictions and the positive samples. Finally, the F1 score is

widely used to measure the overall model performance by considering the impact of both the

precision and recall values. The ensemble model is evaluated using the multi-class confusion

matrix and visual inspection of the combined masks.

In this work, all code was written in Python, with all deep neural networks implemented

with the TensorFlow library (Abadi, 2016). All models were trained on a workstation with

Windows 10, 16GB RAM, an Intel Xeon E5-1620 v4 CPU and an NVIDIA Quadro P5000

GPU.

4.2.3.2 Object Detection Model Evaluation

The performance of the object detection model is assessed both quantitatively and quali-

tatively. The most common evaluation metric for an object detection task, average precision

(AP50), is adopted here. The calculation of the metric varies in different guidelines (Evering-

ham et al., 2010; Lin et al., 2014). This thesis employs the Microsoft COCO guideline (Lin

et al., 2014) to calculate the AP50 metric. The AP50 values for the window, door and chim-

ney categories have achieved 63.4%, 59.5% and 79.2%, respectively. The result is competitive
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in using YOLO-v3 model in a similar task (Kong and Fan, 2020). Qualitative assessment is

demonstrated in Figure 4.5.

Figure 4.5: The qualitative assessment examples of the object detection model.
The figure clearly shows that target objects can be detected with high confidence
levels.

4.2.3.3 Categorical Model Evaluation

Metrics for the small component segmentation models are given in Table 4.2. Both the

proposed model architectures outperform the base U-Net structure. Looking at the F1 score

and IoU metrics, it is found that the proposed integrated magnifier model performs particu-

larly highly for the chimney and door categories. The dilated centre block models, without

magnification, tend to show higher precision value and lower recall value than with the mag-

nifier. Since the denominator of the recall metric is a constant in predictions of the same

image, this phenomenon indicates that the magnifier integration model tends to predict more

positive pixels. Moreover, the results show that the accuracy and TNR metrics both have

high values across different models due to the robust capabilities of all models of predicting

negative samples and the highly imbalanced dataset. However, the two metrics are not suit-

able for comparing model performances in this task.
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Table 4.2: Smaller-sized categories’ segmentation performance; The ‘U-Net 32’
is the base U-Net with a downsampling rate of 32. The ‘Dilated U-Net 32’ is the
base U-Net with the dilation centre block and the ‘With Magnifier’ is to integrate
the Faster-RCNN into the dilated U-Net 32 model.

Model Accuracy Precision Recall TNR IoU F1 score

C
h
im

n
ey U-Net 32[%] 99.86 83.91 82.20 99.94 71.01 83.05

Dilated U-Net 32[%] 99.89 90.52 81.24 99.97 74.87 85.63
With Magnifier[%] 99.90 89.59 85.12 99.96 77.46 87.30

D
o
o
r U-Net 32[%] 99.53 82.65 64.83 99.87 57.06 72.66

Dilated U-Net 32[%] 99.59 89.61 64.87 99.93 60.33 75.26
With Magnifier[%] 99.61 81.93 76.50 99.84 65.46 79.12

W
in
d
ow U-Net 32[%] 99.43 93.79 91.78 99.75 86.52 92.77

Dilated U-Net 32[%] 99.51 95.44 92.18 99.82 88.30 93.78
With Magnifier[%] 99.42 91.23 94.60 99.62 86.71 92.88

The qualitative analysis demonstrates the same overall results. Examples of segmentations

are shown in Figure 4.6 and Figure 4.7 for the detection of doors and windows, respectively.

The magnifier integration model generally shows better performance in handling boundaries

and small objects.

Figure 4.6: Door qualitative examples; (a) clearly shows the performance im-
provements and (b) shows the object detection integration model predicting the
object without annotation.

For the window category, the F1 and IoU show distinct improvements in using the dilated

centre block but only very minor refinements with the magnifier integration model compared

to the base U-Net. Figure 4.7 demonstrates that the magnifier integration can generate

more precise boundaries. However, as the model tends to classify glazing surfaces belonging



CHAPTER 4. RESIDENTIAL BUILDING FACADE SEGMENTATION 85

to buildings as windows, such as the solar panel in Figure 4.7(b), and these kind of surfaces

commonly exist on building facades, the tendency lowers its overall quantitative performance.

Figure 4.7: Window qualitative examples; (a) shows the performance improve-
ments and (b) shows the object integration model improving the performance but
also recognises the solar panel as a window.

The evaluation metrics for the roof and wall categories with different downsampling rates

are shown in Table 4.3. The results for the roof category show that, with the higher down-

sampling, the overall performance drops. Although the use of residual blocks can improve

the performance, the base U-Net model still performs highly. However, the results in wall

classification show that the residual central block performs much better than the base U-Net,

regardless of the downsampling rate. The quantitative analysis shows that the roof base

U-Net model can produce more coherent predictions, and the residual model of the wall cate-

gory is more friendly to boundary predictions. Visual examples of this are shown in Figure 4.8.

Table 4.3: Roof & Wall segmentation performance; The ‘U-Net’ ‘64’ and ‘128’
means using the U-Net structure with downsampling rates of 64 and 128, respec-
tively. ‘Residual’ means using the residual blocks across the model.

Model Accuracy Precision Recall TNR IoU F1 score

R
o
o
f U-Net 32[%] 99.48 92.74 89.65 99.78 83.77 91.17

U-Net 64[%] 99.30 91.10 84.88 99.74 78.39 87.88
Residual U-Net 64[%] 99.42 92.20 88.14 99.77 82.02 90.12

W
a
ll U-Net 32[%] 97.16 93.00 94.25 97.98 88.01 93.62

U-Net 128[%] 96.63 92.87 91.84 97.99 85.78 92.35
Residual U-Net 128[%] 97.60 95.31 93.78 98.69 89.64 94.54
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Figure 4.8: Roof and Wall qualitative examples, the number in brackets indicates
the down-sampling ratio of the wall category model; the roof category is more
suitable for the base model and the residual model is more friendly to the wall
category.

4.2.3.4 Ensemble Model Evaluation

Based on the findings in the evaluation of each categorical model, the model ensemble,

FacMagNet, uses the magnifier integration model for the three smaller-sized categories, be-

cause of its advantages in boundary and small-object predictions. The base U-Net for the

roof category and the proposed residual U-Net 128 for the wall were selected due to sharing

the highest IoU and F1 values in each category.

Figure 4.9 shows the produced multi-class confusion matrix of FacMagNet trained on the

dataset. The confusion matrix shows that the window and the wall achieves the highest

accuracy and the door is the lowest. Most of the considerable errors are caused by wrongly

classifying pixels belonging to objects as background. Walls are the category to which the

model will incorrectly assign pixels second-most often.

The proposed FacMagNet was compared using other models which are widely adopted

in the semantic segmentation area, the categorical IoU values of each model are shown in

Table 4.4. The mean IoU (mIoU) is calculated by computing the IoU average of all classes

excluding the background.
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Figure 4.9: Normalised ensemble model confusion matrix, the confusion matrix
is normalised by dividing the sum of the ground-truth pixels in each category, the
diagonal shows the percentages of the correctly predicted pixels over the sum of
corresponding ground-truth pixels, i.e. precision values.

Table 4.4: Categorical IoU, the first row is the metrics using the developed Fac-
MagNet, the second row is using the base U-Net with ensemble strategy. The
third, fourth, fifth, sixth and seventh rows are using DeepLab-v3plus, HRNet, U-
Net, PSPNet, and SegNet models, correspondingly, as multi-class classifiers. It is
noted that DeepLab-v3plus is initialised by training on Cityscapes (Cordts et al.,
2016) dataset. While other benchmark models are initialised by Kaiming initiali-
sation (He et al., 2015).

Model
IoU%

Chimney Door Window Roof Wall mIoU

FacMagNet[%] 77.90 65.82 87.83 83.62 89.87 81.01
Ensemble U-Net[%] 72.52 56.52 86.60 83.57 88.39 77.52
DeepLab-v3plus[%] 75.84 59.74 84.30 79.17 85.86 76.98
HRNet[%] 73.52 56.98 80.00 74.01 82.33 73.37
U-Net[%] 74.40 51.33 76.66 68.04 77.57 69.60
PSPNet[%] 59.85 48.67 73.46 66.86 72.53 64.27
SegNet[%] 54.01 39.97 57.67 36.58 65.32 50.71
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From Table 4.4, it is clear that the designed FacMagNet model performed highest across all

categories. FacMagNet’s largest improvements were in the chimney and door categories, when

compared to the other models. The table shows the benefits of applying the magnifier strategy

and designing model structures for each facade component class: the mIoU of the FacMagNet

is 3.49% higher than the ensemble U-Net model. Figure 4.10 shows that FacMagNet visually

achieves a high performance segmentation, even when dealing with high-distortions, small-

objects and obstacles. It can also be seen from Figure 4.10 that the designed approach can

easily handle segmentation, even when the components are partially occluded by objects such

as trees and fences.

Figure 4.10: Qualitative examples of the FacMagNet model; the visual results
show the model has achieved high accuracy in large objects, and is friendly in
handling small-object and occlusion problems.
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4.3 Rethinking the Residential Building Facade Segmentation

4.3.1 Rethinking the FacMagNet Model

This section re-develops the FacMagNet model by using the trained DeepLab-v3plus

model as the stem and using the trained door model as a refinement branch. This can sig-

nificantly reduce the complexity of the developed FacMagNet.

From the experiment results of the developed model FacMagNet, the model has achieved

the SOTA performance on the built Crookesmoor dataset. However, the model has obvious

drawbacks such as its efficiency and usability. The FacMagNet model is hard to train as it

contains six individual models and thus it will take longer to predict an image in comparison

with other end-to-end semantic segmentation models. In addition, training deep learning

models takes a considerable amount of resources including electricity and time. The Fac-

MagNet contains six individual deep learning-based models and thus requires a significant

amount of resources during training. These drawbacks should not be heavily problematic

as the model only needs training once and the inference stage is fully automatic. However,

these drawbacks could limit the model to be promoted to large-sized datasets. Therefore, it

is necessary to develop a more efficient residential building facade segmentation model.

Recalling the experiments conducted to develop the categorical semantic segmentation

models for the three smaller-sized categories in Table 4.2, the magnifier strategy has increased

8.4% in IoU on the door category in comparison with a vanilla U-shape model. However, for

the chimney and the window categories, implementing the magnifier strategy does not make

a striking increase on the evaluation metrics. Therefore, it is unclear whether implementing

the magnifier module on the window and the chimney categories is necessary , especially if a

more efficient model is required.

The designed magnifier module is mainly based on an object detection model, Faster

R-CNN (Ren et al., 2015). In the magnifier module, the raw images are fed into the Faster

R-CNN first to detect the target objects with bounding boxes. The model contains a con-

volutional neural network which is to generate feature maps and a region proposed network

(RPN) to propose anchor boxes. In the two-stage process, the output bounding boxes are

scaled and adjusted to a square shape first. Raw images are sliced based on the adjusted

bounding boxes, then the sliced image patches are fed into the semantic segmentation model

to generate pixel-level predictions. At the end, patches are spliced together. The two-stage

design makes the model become complicated in the training and inference stage.
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As reviewed in chapter 2, attention mechanism in CNN is a method which simulates

the human attention mechanism to improve the CNN performance. The CNN attention

mechanisms have two different types: the hard attention (Mnih et al., 2014) and the soft

attention (Woo et al., 2018). The hard attention mechanism is to give the desired region

credits and the soft mechanism impacts on feature maps through the CNN learning process.

In this attention mechanism facet, the magnifier module can be regarded as a hard attention

mechanism method. The module uses the object detection model to find the target area in

an image and then focuses on the target area to find the targets. Also, from the visualised

experiment results such as in Figure 4.7 and Figure 4.6, two capabilities of the magnifier

module are identified: 1. the module can refine the boundaries of detected target objects,

2. the module can detect some objects which failed to be found by directly applying the

semantic segmentation models. These findings validate the success of the magnifier module

as a hard attention mechanism.

In the contents above, the necessity of developing a light-weight building facade semantic

segmentation model, the compromise which can be made to improve the efficiency of the

FacMagNet and the essence of the magnifier module which is a type of hard attention mech-

anism are discussed. Based on these discussions, a reduced version of the proposed building

facade semantic segmentation model, FacMagNet is proposed. The model is designated as

FacMagNet-s; the ’s’ is the abbreviation of small and the developed full-size FacMagNet is

renamed as FacMagNet-l. The FacMagNet-s is still a two-stage model but it only contains

two deep learning-based semantic segmentation models. The FacMagNet-s is shown below in

Figure 4.11. The model contains a multi-class facade segmentation model acting as a base

model and a door enhancement module. The multi-class facade segmentation model predicts

the raw image of all classes of objects first. In the benchmark test results shown in Table 4.4,

the DeepLab-v3plus model has shown powerful performance in comparison with other single-

stage models. Specifically, it is easy to find it performs much better than its single-stage

competitors in the door prediction. Therefore, it is chosen here as the base model.

The door objects in the predicted mask are extracted and processed with morphological

operations. The morphological operation is a series of image processing algorithms for re-

moving noise. In the FacMagNet-s model, the open and the closed operations are applied.

The morphological open operation is the dilation of the erosion operation (Dougherty, 1992).

The erosion operation is to use a kernel scanning a binary image, and if the scanning area

is completely contained by the foreground, the pixel in the centre of the scanning area will

be kept, otherwise it will be deleted. The dilation operation will expand the foreground area

if the locus of the kernel is inside the foreground. The operation of using the open then the

closed operations helps to remove the noises of the predicted door masks.
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Figure 4.11: The developed FacMagNet-s model, the model first uses a single se-
mantic segmentation model to generate multi-class prediction, then the door object
is separated and processed with morphological operations. The bounding box of the
processed mask is calculated and expanded as in the FacMagNet. The scaled bound-
ing box area is then sliced and fed in to the door semantic segmentation model.
The prediction from the door model is copied back to the multi-class prediction
mask.

The bounding boxes of the processed door masks are then calculated, expanded and

reshaped as in the FacMagNet-l. The altered bounding box information is used to slice the

image patches from the raw images. The process inherits the idea of the magnifier module

but without the object detection model. Therefore, the module is potentially able to refine

the predicted objects. Thus, the module is called the door enhancement module. The image

patches are fed into the door model illustrated in Figure 4.2. The predictions of the door

model are merged together with the prediction of the base model by an ordinary voting

strategy to generate the final output.

4.3.2 Experiments and Results

FacMagNet-s contains two convolutional neural network models which need training.

DeepLab-v3plus was chosen as the base model which is initialised by training it on the

Cityscapes dataset (Cordts et al., 2016), and the categorical model developed in the FacMagNet-

l was chosen as the enhancement model. Since the two models have already been trained on

the same dataset, they are implanted in the FacMagNet-s. Therefore, the training process

is exactly the same as in the FacMagNet-l. In the FacMagNet-s model, the morphological
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close and open operations are employed for noise removal. The structured element sizes of

the operations are determined to be 30 and 5, respectively. The values are determined based

on multiple tests and visual inspections.

Table 4.5 shows the quantitative comparisons of the FacMagNet-s model with FacMagNet-

l model and other models in Table 4.4. The intersection-over-union (IoU) is still chosen as the

evaluation metric as in Table 4.4. As shown in Table 4.5, FacMagNet-s model has achieved

the second-best result, the most accurate model is still the FacMagNet-l. The model efficiency

is analysed using FLOPs (Floating Point Operations), trainable parameters and training time

per epoch are shown in Table 4.6 1. In comparison with FacMagNet-l and -s, FacMagNet-

l model is 3.14% higher than -s in mIoU while it requires significantly more resources in

training: nearly triple trainable parameters and significantly higher FLOPs. Therefore, con-

sidering the two models’ performance, training and future deployment costs, FacMagNet-s is

a more efficient choice than -l, which is the development target of FacMagNet-s. Ensemble

U-Net achieves similar performance on mean IoU. However, ensemble U-Net contains five

models which is also larger than FacMagNet-s in size and has higher a computational cost.

Besides, Ensemble U-Net is 7.46% lower than FacMagNet-s in door predictions. By compar-

ing the results of the FacMagNet-s and the DeepLab-v3plus which is acting as the base model

of the FacMagNet-s, it is explicit that the door enhancement module has achieved excellent

results. The door metric is raised by 4.24%. The enhancement module also slightly raises

the performance of the DeepLab-v3plus on window and wall classes’ predictions.

Table 4.5: Categorical IoU, the first and the second row are the metrics of us-
ing our developed FacMagNet series model, the third row is using the base U-Net
with ensemble strategy. The fourth row is using the DeepLab-v3plus as multi-class
classifiers.

Model
IoU%

Chimney Door Window Roof Wall mIoU

FacMagNet-l[%] 77.90 65.82 87.83 83.62 89.87 81.01
FacMagNet-s[%] 75.84 63.98 84.40 79.17 85.99 77.87
Ensemble U-Net[%] 72.52 56.52 86.60 83.57 88.39 77.52
DeepLab-v3plus[%] 75.84 59.74 84.30 79.17 85.86 76.98

1TensorFlow Profiler tool is used for the trainable parameters and FLOPs analysis. However, the tool
experienced a problem during processing Faster R-CNN model. Therefore, its statistics are estimated using
its backbone network Inception ResNetv2 whose statistics are available at: https://paperswithcode.com/

model/inception-resnet-v2?variant=inception-resnet-v2-1

https://paperswithcode.com/model/inception-resnet-v2?variant=inception-resnet-v2-1
https://paperswithcode.com/model/inception-resnet-v2?variant=inception-resnet-v2-1
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Table 4.6: Comparison between demanded computational resources of developed
models. It is noted that, as FacMagNet series models utilise ensemble learning
strategy, their trainable parameters and FLOPs are the sum of all their individual
models. Their training time per epoch is also the sum of their individual models.

Model
Metric

Trainable parameters FLOPs (floating point
operations)

Approximate training
time (minute/epoch)

FacMagNet-l 294.79M 17.5G 250
FacMagNet-s 100.47M 200.93M 63
Ensemble U-Net 240.51M 480.95M 53
DeepLab-v3plus 41.05M 82.10M 35

Dilated U-Net 59.42M 118.83M 13
U-Net32 31.11M 62.21M 7
ResU-Net128 31.13M 62.25M 7

Figure 4.12 shows the qualitative evaluation of FacMagNet-s. The figure shows the

FacMagNet-s has achieved accurate predictions in all examples. In comparison with FacMagNet-

l, FacMagNet-s sacrifices some boundary precision and consistency in wall and roof predic-

tions. The same defect is also observed in window and door inference but is less obvious. The

chimney qualitative prediction has achieved nearly the same performance as FacMagNet-l.

In all, FacMagNet-s has achieved competitive accuracy in the building component inference

task with higher efficiency than FacMagNet-l.

Figure 4.12: The visualisation masks inferred by the FacMagNet-s. These ex-
amples are compared with the results from the FacMagNet-l and the ground truth
masks.



CHAPTER 4. RESIDENTIAL BUILDING FACADE SEGMENTATION 94

4.4 Loss Function and Model Architecture Studies

4.4.1 Residential Building Semantic Segmentation on Handsworth Dataset

In the previous sections of this chapter, two residential building facade semantic seg-

mentation models were developed, which are FacMagNet-l and FacMagNet-s based on the

Crookesmoor dataset. The key motivation of designing FacMagNet-l is that building com-

ponents show both large inter- and intra- varieties on their sizes and shapes. FacMagNet-l

exploits models built on U-Net (Ronneberger et al., 2015) structure with different numbers of

down-sampling layers to counter the inter- size difference problem. A novel magnifier module

is developed to counter the intra- size difference problem. The developed magnifier module

acts as a hard attention mechanism. The main findings in developing the FacMagNet-l model

include the feasibility of U-Net structure in the residential building recognition task and the

designed magnifier strategy can lead to a performance rise.

FacMagNet-s is designed to tackle the door prediction difficulty and improve efficiency.

The FacMagNet-s model focuses on reducing the computational cost of FacMagNet-l by

shrinking the six-model-made FacMagNet-l to two models. DeepLab-v3plus is the founda-

tion of FacMagNet-s which has also achieved the highest accuracy among other end-to-end

models tested while developing FacMagNet models. FacMagNet-s employs door predictions

from the end-to-end DeepLab-v3plus and a set of morphology operations to replace the object

detection model. FacMagNet-s shows competitive results in comparison with FacMagNet-l

while largely reducing the model’s magnitude and computational cost. Although the U-Net

structure has shown capability in binary building components classification in section 4.3,

for example, Table 4.5 and 4.6 show that using smaller U-shape models, i.e. U-Net32 and

ResU-Net128 on binary classification can achieve better performance than using a single

larger model, i.e. DeepLab-v3plus, FacMagNet-s does not further explore the feasibility of

the U-Net structure on the multi-class building components identification task.

The Handsworth dataset is more than five times larger than the Crookesmoor dataset

and also has over ten times more door objects than the Crookesmoor dataset. Therefore, the

development of an end-to-end semantic segmentation model is vital. The Handsworth dataset

also has more complex scenes than the Crookesmoor dataset as accounted in table 3.7. In

addition, annotations of the Handsworth dataset are commonly fragmented which deterio-

rates component shape features. In this case, the effect of magnifier strategy is unknown. In

this study, three sets of experiments were designed to explore a suitable semantic segmen-

tation model for the Handsworth dataset. Experiments were designed based on findings on

developing FacMagNet series of models on the Crookesmoor dataset.
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The first experiment was designed to explore the effect of focal loss (Lin, Goyal, Girshick,

He and Dollár, 2017) on identifying building components. Focal loss is designed to add weight

to categories which are hard to classify:

Lfocal = − 1

N

N∑
i

[(1 − yi)
γyi log ŷi + yγi (1 − yi) log (1 − ŷi)], (4.1)

where γ ≥ 0 and when γ = 0, the focal loss is equal to the cross entropy.

Based on the experiments taken on developing FacMagNet models, the five defined cate-

gories are not equally difficult to classify: door is the hardest category and wall and window

are relatively simpler. Therefore, testing whether focal loss can improve inference perfor-

mance on accuracy is valuable. In the first experiment, DeepLab-v3plus (Chen et al., 2018),

U-Net (Ronneberger et al., 2015) and U-Net with residual connections (Chu et al., 2019)

were adopted. The adopted U-Net is the original version developed in 2015. The residual

connection can effectively resolve the gradient vanishing problem which is common in training

a ‘very deep’ deep learning model (He et al., 2016a). The adopted ResU-Net is built based

on the original version with two extra downsampling layers and each convolution layer in the

original version U-Net is replaced by a residual module. The ResU-Net model structure is

demonstrated in Figure 4.13. The first set of experiments is to find the answer to whether

focal loss is more appropriate as a loss function. Furthermore, it also explores whether, in

comparison with DeepLab-v3plus, the U-Net architecture is more suitable for the building

component identification task.

The second experiment is to further explore a suitable model under the U-Net architecture

for the building component identification task. In this set of experiments, various models

under the ResU-Net architecture, which is used in the first experiment set, is built. This

set first explores the optimum number of downsampling layers by testing models under the

ResU-Net architecture with 4, 5, 6 and 7 max pooling layers. The number of downsampling

layers is significant in designing deep learning models: insufficient downsampling layers may

lead to inadequate feature extractions. In developing roof and wall models, the experiment in

table 4.3 has shown an optimised number of downsampling layers can result in up to 5.38%

of intersection-over-union (IoU) growth.
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Figure 4.13: The ResU-Net model architecture demonstration. The upper side
which is separated by the long dashed line shows the architecture of the ResU-Net
and the lower side shows the structure of every block and the residual connection.
ResU-Net is to replace every convolution layer in a U-Net model with residual
blocks. The residual block structure is shown in the figure. The structure contains
a short connection between the first and last convolution layers of each block.
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As introduced in Chapter 2, attention mechanism in deep learning is inspired by the

human vision system. Naturally, humans can effectively find salient regions in complex sce-

narios. The human vision system has two different attention mechanisms: the hard attention

and the soft attention. In developing FacMagNet models, a hard attention mechanism mod-

ule, magnifier, was proposed. The hard attention mechanism module has shown a distinct

growth in detecting doors and other small objects in the Crookesmoor dataset. In boosting

the deep learning model performance, soft attention has also become a focus over the past

few years (Hu et al., 2018; Fu et al., 2019; Woo et al., 2018). The soft attention mechanism

in the deep learning model is designed to be a dynamic and learnable weight adjustment pro-

cess. Spatial-wise and channel-wise soft attention are two major soft attention types applied

on visual tasks such as semantic segmentation and image classification (Guo et al., 2022).

Spatial-wise attention is to generate attention masks on the spatial domain and emphasises

salient regions. Channel-wise attention creates attention masks on the channel domain and

select significant channels. The integration of both of the two soft attention types has also

been widely studied. Soft attention modules are commonly used by inserting them directly

into off-the-peg deep learning models. The flexibility makes the soft attention mechanism a

more economic choice, rather than applying hard attention mechanisms. However, the soft

attention mechanism has not yet been explored on the building component identification task

in 2021.

In this study, two different soft attention modules, CBAM (Woo et al., 2018) and dual

attention (Fu et al., 2019), were selected to test the feasibility of using soft attention mech-

anisms on the building component identification task. Both of these two attention modules

are spatial-channel integrated. The CBAM modules have been implemented in models with

the U-shape architecture previously used for medical image segmentation (Zhao et al., 2021).

The CBAM module contains a cascading structure in which the channel attention mask is

generated and applied to the input feature maps. Then the output feature maps are used

to produce the spatial attention masks and applied. Unlike the CBAM module, the dual

attention module has a parallel structure in which the spatial and channel attention masks

are produced using the same input feature maps and then summarised together.

The position where the attention module is inserted is also critical. The CBAM mod-

ule is initially implemented to refine feature maps from every convolution block in ResNet,

however, this would lead to a high computational cost, especially as the Handsworth dataset

has an image size 1024 × 1024. Therefore, in this task, two different implementations were

designed: the first one is inserting the CBAM module after each concatenation layer shown

in Figure 4.13; the second one is implementing the module after every last convolution layer

in the encoder path. The second implementation approach has achieved success for tissue
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segmentation in medical imaging (Khanh et al., 2020). The fist method is because it is argued

that the concatenation operation would lead to a substantial redundancy of feature maps,

the attention module may filter these redundancies. The dual attention module is inserted

in the centre block of the built ResU-Net model. The dual attention module can capture

contextual information at long distance. Therefore, installing the module at the centre block

may improve the model capability for identifying individual objects, since high-level feature

maps contain a substantial amount of semantic information.

All experiments were implemented using TensorFlow (Abadi, 2016) library and trained

on a workstation with Windows 10, 16 GB RAM, an Intel Xeon E5-1620 v4 CPU and an

NVIDIA Quadro P5000 GPU. The adaptive moment estimator (Adam) (Kingma and Ba,

2014) optimiser was adopted with a learning rate reduction strategy starting from 10−3, the

minimum learning rate is set to 10−5. To prevent overfitting, an early-stopping strategy is

applied which will stop the training process if validation loss does not decrease in 10 epochs.

The maximum epochs are set to 200 across all models. All convolution layers are initialised

with Kaiming distribution (He et al., 2015).

4.4.2 Results and Discussion

Table 4.7 shows the experimental results of focal loss and model architecture tests. The

models trained with the focal loss are advantageous over their reproductions trained with

the cross entropy loss except for the vanilla U-Net. DeepLab-v3plus has achieved the high-

est scores among all end-to-end segmentation models including U-Net in the Crookesmoor

dataset, however, it was observed that the U-Net model achieved an equivalent performance

with the DeepLab-v3plus model in both cross entropy and focal loss experiments. The ResU-

Net model with the focal loss has achieved the highest intersection-over-union (IoU) scores

in every category, while not distinct. Thus, whether or not focal loss can contribute to this

task is still ambiguous.

Model name Loss mIoU Wall Roof Chimney Window Door

DeepLab+
v3 CE 77.70% 83.92% 78.49% 79.90% 80.91% 63.76%

ResU-Net64 CE 80.66% 86.58% 82.68% 84.37% 84.06% 65.58%
U-Net CE 79.80% 85.78% 81.44% 83.22% 84.14% 64.41%

DeepLab+
v3 FL 78.68% 85.21% 80.66% 82.37% 81.87% 63.31%

ResU-Net64 FL 81.24% 86.91% 83.13% 84.87% 84.33% 66.95%
U-Net FL 78.55% 84.90% 82.01% 83.57% 81.88% 60.39%

Table 4.7: The focal loss feasibility test results. Models trained with focal loss have
achieved more accurate results than their repetitions trained with cross entropy loss,
except for the plain U-Net. Using focal loss has only shown inconspicuous benefits
in this experiment.
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Figure 4.14 shows the qualitative comparisons of using the cross entropy loss and the

focal loss. The figure also shows the qualitative comparisons of various model architectures.

Five examples are selected in this figure. Example 0 is a sample of a complex scene including

buildings orientated in different directions; example 1 is a sample of a semi-detached build-

ing; example 2 is a terraced building with occlusions; examples 3 and 4 are street scenes

with less light over-exposures. Over-exposure is a serious problem in photography which will

cause a region of an image taken in extremely bright light to lose information or detail. The

over-exposure is common in the Handsworth dataset. The raw images in example 0, 1 and 2

were taken with strong over-exposures. However, there is no distinct evidence observed in the

inference masks of all models applied that over-exposure would affect the model precision.

Comparing the results of line 3 and 4, and 5 and 6, models trained with focal loss would

generate predictions with more precise boundaries and less noise in these cases. However,

U-Net and ResU-Net models can handle occlusions better than DeepLab-v3plus. This is very

obvious in example 2, DeepLab-v3plus tends to predict the whole area with tree branches as

occlusions which leads to a large region of the building area being avoided.

A bizarre situation is shown in example 3, when DeepLab-v3plus is trained by the cross

entropy loss, the left-hand side of the building is ignored by the model. The situation is also

observed in other inference examples in the test set. However, the reason is still unknown.

Looking at the last three lines in example 1 of the figure, the U-Net model has achieved a

better result predicting roofs and the ResU-Net trained with focal loss achieves the second

best. This comparison shows that an appropriate number of down-sampling layers is essen-

tial in designing deep learning models for the building component identification task. In the

Crookesmoor dataset, identifying small objects is a considerable problem and the strategy

named magnifier is developed to tackle the problem. However, in all examples shown in Fig-

ure 4.14, small objects can be effectively recognised across all different models, even though

the Handsworth dataset has more small objects. The only explanation of why the same

model would achieve a better performance in the Handsworth dataset is the dataset scope.

The Handsworth dataset has over five times more data than the Crookesmoor dataset which

could provide a deep learning model more experience on learning features of small objects.

The model architecture experiments show ResU-Net is an appropriate model architecture

in the building component identification task. However, there are still other numerous ad-

justments which can be made to refine a model, such as the model depth, model width and

off-the-peg refinement strategies, for example attention modules. Table 4.8 shows the exper-

imental results of exploring a predominant model refinement structure with the ResU-Net

architecture.
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Figure 4.14: Qualitative analysis of the model architecture and loss function
experiments. Five examples with different scenarios and light conditions were se-
lected for demonstration. The abbreviation CE (cross entropy) and FL (focal loss)
indicates which loss function has been applied.
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Model name mIoU Wall Roof Chimney Window Door

ResU-Net16 81.96% 87.82% 83.83% 85.86% 85.18% 67.12%

ResU-Net32 82.15% 88.19% 83.48% 86.03% 85.25% 67.79%
ResU-Net32+CBAML 81.90% 88.14% 83.65% 85.55% 85.21% 66.98%
ResU-Net32+CBAMR 81.99% 88.03% 83.69% 85.24% 85.04% 67.95%
ResU-Net32+DACAM 81.99% 88.05% 83.76% 85.79% 85.18% 67.19

ResU-Net64 81.24% 86.91% 83.13% 84.87% 84.33% 66.95%
ResU-Net64+CBAMR 81.04% 86.90% 82.65% 84.62% 84.29% 66.74%
ResU-Net64+DA 80.96% 86.99% 82.39% 84.13% 84.16% 67.10%

ResU-Net128 81.09% 86.68% 82.81% 84.36% 84.43% 67.14%

Table 4.8: The ResU-Net based model refinement test. CBAM and DA represent
models adding these two attention modules. The L and R show that the CBAM
module is inserted on the encoder or decoder path of the Res-UNet, respectively.

The quantitative results have shown that the ResU-Net models with five deconvolution

layers are slightly more advantageous than other candidates. Two of the top three mean IoU

values are observed in models with five deconvolution layers. Among the results of the top-

three models, ResU-Net32 has shown the best performance: it has achieved the highest mean

IoU and also gained the highest in three over five categorical IoU(s). Moreover, although

attention modules have achieved great success in many other tasks and datasets, attention

modules are only observed to deteriorate the model performance in the Handsworth dataset.

The mIoU would decrease c.0.2% once an attention module is applied.

Figure 4.15 shows the selected qualitative results of the model structure refinement ex-

periment. Observing the five examples on the first four models, ResU-Net32 has shown a

more comprehensive and competitive performance over the other candidates: ResU-Net32

has generated the most smooth and integrated roof prediction in example 0; in example 1,

it has produced the most accurate occlusion boundary; in examples 3 and 4, it can prop-

erly infer the out-of-the-ordinary windows which are on the garage doors (example 3) and

highly distorted on the wall top (example 4). Other models have shown better predictions in

some facets, for example, ResU-Net128 has achieved the most smooth prediction in walls on

example 4. However, ResU-Net32 is still the most balanced choice among the four models.

ResU-Net32-CBAMR has clearly deteriorated the prediction performance. It has generated a

plurality of noises in examples 2 and 3. ResU-Net32-CBAML does not show distinct benefits

or defects compared to ResU-Net32. In the qualitative analysis study, ResU-Net32 is slightly

more superior to other candidates. In addition, although the CBAM and dual-attention

modules were reported to be beneficial to model inference capability, there is no evidence in

this building component identification task on the Handsworth dataset showing that using

attention modules is advantageous.
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Figure 4.15: Qualitative analysis of the model architecture refinement experi-
ment. Five samples are selected here to compare qualitative performances of the
six different models.

4.5 Cross-dataset Adaptability Test

4.5.1 Test Aims and Experiment Design

The generalisation of a trained model and the representativeness of a dataset is criti-

cal. In section 3.3.3, the generalisation of a portion of the Crookesmoor dataset is primarily

validated. However, this test only counts the number of predicted objects while the general-

isation performance on pixel-level accuracy of this dataset has not yet been explored much.

In this section, a series of experiments are proposed to validate 1. the representativeness of

both the Crookesmoor and Handsworth datasets and 2. the generalisation of the designed

FacMagNet-s model using the latest Oxford RobotCar-Facade dataset.

Two model architectures are selected as the base models. One is DeepLab-v3plus which

has achieved the best result of all end-to-end models on the Crookesmoor dataset, as shown

in Table 4.4. The other is the ResU-Net16 which has shown an equivalent competitiveness on

the Handsworth dataset as shown in Table 4.8. The door magnifier model is initialised using

weights of the door segmentation model of the trained FacMagNet-s on the Crookesmoor

dataset. The designed test contains eight experiments including:

1. model generalisation test: Experiments applying the DeepLab-v3plus and the ResU-

Net16 which have been trained on the Crookesmoor and the Handsworth datasets,

respectively, directly on the test sets of the Oxford dataset;

2. transfer learning test: Experiments re-training the two models in 1. using the

training set of the Oxford dataset. In each model, their last convolution layer has been
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removed and replaced with a new head which is initialised by the Kaiming initialisation;

3. transfer learning necessity test: Experiments training a pre-trained DeepLab-

v3plus with weights initialised by the Cityscapes dataset and training a ResU-Net16

with weights initialised by the Kaiming initialisation;

4. magnifier strategy adaptability test: Experiments adding door magnifier modules

on the best re-trained models for each architecture in test 2. and 3.

All experiments are implemented using TensorFlow (Abadi, 2016) library and trained

on a workstation with Windows 10, 16 GB RAM, an Intel Xeon E5-1620 v4 CPU and an

NVIDIA Quadro P5000 GPU. The adaptive moment estimator (Adam) (Kingma and Ba,

2014) optimiser is adopted with a learning rate decay strategy starting from 10−4, the mini-

mum learning rate is set to 10−6. To prevent overfitting, an early-stopping strategy is applied

which will stop the training process if validation precision does not increase in 10 epochs.

All models are trained with categorical cross-entropy loss. Data augmentation setting is the

same as in experiments on Crookesmoor dataset. The door magnifier module is trained using

Adam optimiser with a learning rate decay strategy from 10−5 to 10−6 for 200 epochs, and

the joint loss function defined in equation 4.2.1 is adopted here.

4.5.2 Oxford RobotCar-Facade Dataset

Oxford RobotCar-Facade dataset was announced in May, 2022 (Wang et al., 2022) which

is the latest facade segmentation dataset publicly available. The dataset has been briefly

reviewed in section 2.3.2. The dataset is a re-development of the Oxford RobotCar dataset

(Maddern et al., 2017) which is based on a certain route in Oxford, UK. The dataset con-

tains six categories which are background, facade, window, door, shop and balcony. The

annotation strategy purpose is unknown. The class shop is not labelled as in other facade

segmentation datasets such as ECP as an integration of billboards and show windows. Only

billboards are annotated. Balconies are railing-made platforms.

A key characteristic of this dataset is that the camera used for capturing data only points

towards the front. Therefore, the majority of data collected shows a street-canyon view.

Street-canyon images were used for measuring radiation view factors previously by Gong

et al. (2018). An ambiguity is how the authors annotated objects with occlusions. In some

cases, objects with very sparse occlusions are not annotated. In comparison with region-wise

annotation datasets such as CMP and ECP, Oxford RobotCar-Facade performs pixels-level

annotation which provides more accurate ground-truth. However, annotation errors are still

observed in this dataset, especially for missing elements. Whether or not the annotation
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Figure 4.16: Annotation examples of the Oxford RobotCar-Facade dataset. Ex-
ample 1, annotation with all categories; Example 2, annotation with sparse occlu-
sions; Example 3, annotation with missing elements, the top and third floor have
missing windows, the ground floor has missing windows and incorrectly labelled
doors; Example 4, annotation with shop instances.

process has a quality control is still unknown. Some examples are shown in Figure 4.16.

Another problem of the Oxford dataset is its image quality although its image size is the

highest among other publicly available facade segmentation datasets, as shown in table 2.2.

However, its data has more noise which may be because of their sensor or camera settings

such as exposure and shutter speed. From the images, it is suspected that they have stretched

the image contrast while objects are still blurry in many cases.

4.5.3 Results and Discussion

4.5.3.1 Test Results

As the annotation rule of the Oxford RobotCar-Facade dataset is different to the proposed

rule in section 3.2. The following changes were made first on the Oxford dataset:

1. The classes ‘balcony’ and ‘shop’ were merged with the class ‘facade’. This decision

is feasible and potentially it will change component features at a minimum as the

‘shop’ class is actually billboards. However, it seems like only shop headers have been

annotated while some large billboards are not labelled as in figure 4.16 Example 4. The

‘balcony’ is not merged with the ‘window’ class since it is observed that the boundary

of a ‘balcony’ object will commonly exceed the boundary of a window.
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2. The raw Oxford data has a fixed image size of 1280 × 960, however, the data used for

models trained in this thesis needs to be a square shape. Therefore, a raw image is

split into two images, each with a fixed size of 960 × 960 and is resized to 1024 × 1024

to fit the input image size of the trained models. Then, during the inference stage, the

predicted split twin is merged through a regular voting strategy.

Table 4.9 demonstrates the outcome of the eight tests described above. Considering the

state-of-the-art results on this dataset is 53.8% in mIoU (Wang et al., 2022), models trained

on the Crookesmoor and Handsworth datasets can generalise properly in the Oxford dataset,

40.87% and 34.32%, respectively, in mIoU. After training on the Oxford dataset, their per-

formance reaches the same level c.57%. In comparison with using a random initialisation,

using pre-trained weights leads to a 3% increase in the ResU-Net16 model. However, it is

observed that using weights trained on the Cityscapes dataset leads to a better result than

using weights trained on the Crookesmoor dataset. Applying the magnifier strategy improves

the DeepLab-v3plus’s performance by 0.03% while it deteriorates ResU-Net16’s performance

by 0.28%.

Table 4.9: The mIoU results of the cross-dataset adaptability test on the Oxford
RobotCar Facade dataset.

Base model DeepLab+
v3 ResU-Net16

Weight initialisation Crookesmoor Cityscapes Handsworth Kaiming

Cat.%
Method

Trained Transfer Transfer Magnifier Trained Transfer Magnifier Random

Background 84.50 92.54 93.46 93.47 79.08 91.75 91.65 91.27
Window 28.65 46.80 51.67 51.70 28.66 50.05 49.86 47.41
Door 4.11 17.27 26.11 26.40 8.60 15.19 14.72 8.36
Wall 46.24 72.85 75.39 75.39 20.90 71.19 70.86 68.98
mIoU 40.87 57.37 61.71 61.74 34.31 57.05 56.77 54.00

Figure 4.17 shows two examples of the qualitative results of each experiment. Comparing

predictions (c) and (d) of ResU-Net16 and (b) and (d) of DeepLab-v3plus in Figure 4.17, the

magnifier module can help to refine the door boundaries. However, it will also refine falsely

detected doors, e.g. Example 1(d) using the DeepLabv3plus model. Oxford RobotCar-Facade

is a challenging dataset. A substantial amount of images in this dataset contain a considerable

amount of noises. This leads to object boundaries being ambiguous in many cases, especially

for doors as seen in the dataset. Therefore, without sufficient features, wrong features could

be learned from the noised data and that is potentially why the biased predictions are not

found on the Crookesmoor dataset as shown in Figure 4.12.



CHAPTER 4. RESIDENTIAL BUILDING FACADE SEGMENTATION 107

Figure 4.17: Qualitative analysis of the Oxford RobotCar-Facade dataset bench-
mark test. (a) is the results of using pre-trained models; (b) is the results of using
random initialisation in ResUnet16 model and Cityscapes weights in DeepLab-
v3plus model; (c) is the results of using fine-tuning training and (d) is the results
of adding a magnifier module.
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In order to quantitatively measure the boundary refinement capability of the magnifier

module, the recall metric results of the test are reported in table 4.10. The recall metric

measures the ratio of true positives over the ground-truth. Therefore, the metric can well

represent how object boundaries have been refined. The results have shown that the pro-

posed magnifier strategy can help both models increase their recall values. Their recall values

have been raised by the magnifier module for 15.1% and 15.5% for the Cityscapes-initialised

DeepLab-v3plus and the Handsworth-initialised ResU-Net16 models, respectively.

Table 4.10: The recall results of the cross-dataset adaptability test on the Oxford
RobotCar Facade dataset. ‘Before’ sections represent recall results without inte-
grating the magnifier module; ‘After’ sections are results after adding the magnifier
module.

Model
Category

Background Wall Window Door

DeepLab+
v3

Before 0.975 0.848 0.622 0.330
After 0.974 0.845 0.621 0.481(+0.151)

ResU-Net16
Before 0.965 0.821 0.584 0.253
After 0.964 0.816 0.580 0.408(+0.155)

4.5.3.2 Full-Category Test Results

The results which have been achieved above have shown that the developed magnifier

strategy can improve door prediction performance. The highest score of mIoU which has

been achieved in the Oxford dataset is 53.8% (Wang et al., 2022). Therefore, FacMagNet-s

may be also competitive in the state-of-the-art works although it was proposed over a year

ago and only aimed to enhance door predictions. However, as shop and balcony classes

are merged into the wall category in this experiment to fit proposed labelling definitions

in chapter 3, how FacMagNet-s will perform in the initial six-class classification is still un-

known. Therefore, the declaration that FacMagNet-s is state-of-the-art cannot be made here.

In order to investigate the performance of the developed FacMagNet-s compared to other

facade segmentation approaches, an extra experiment is conducted which includes all the six

categories in the Oxford dataset. A DeepLab-v3plus is adopted as the stem segmentation

model and the magnifier module is the same as in the previous magnifier strategy adaptabil-

ity test. The DeepLab-v3plus is initialised by training on the Cityscapes dataset and the

loss function is changed to focal loss. Other experiment settings are the same as the pre-

vious 4-category experiments. Table 4.11 demonstrates quantitative comparisons of SOTA

approaches of facade segmentation on the Oxford RobotCar-Facade dataset.
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Table 4.11: Benchmark results on the Oxford RobotCar-Facade dataset. Wang
et al. (2022) also train their DeepLab+v3 on this dataset. Their result is included in
the bracket. Benchmark models include DeepFacade (Liu et al., 2020), Pyramid
ALKNet (Ma, Ma, Xu and Zha, 2020) and the Facade R-CNN (Wang et al., 2022)
which are SOTA in facade segmentation and have all been reviewed in section 2.3.3.

Model DeepFacade Pyramid ALKN Facade R-CNN FacMagNet-s DeepLab+
v3

mIoU(%) 47.31 51.22 53.8 50.22 49.96 (50.33)

Overall, FacMagNet has shown a comparable result among state-of-the-art facade seg-

mentation models. The magnifier module has helped the DeepLab-v3plus to increase 0.26%

on mIoU. Wang et al. (2022) do not include categorical IoUs in their article. However, here

the categorical IoU results are included in table 4.12. The table has shown that the door

magnifier module has led to a 1.71% door IoU increase while it leads to an IoU decrease in

wall and background categories.

Table 4.12: Benchmark results on the Oxford RobotCar-Facade dataset with full
categories included.

Model
Cat.%

mIoU Background Wall Window Door Balcony Shop

DeepLab-v3plus 49.96 92.99 74.67 49.70 22.01 23.41 36.98
FacMagNet-s 50.22 92.97 74.51 49.71 23.72 23.41 37.00

4.5.3.3 Section Discussion and Conclusion

The developed magnifier strategy does not lead to a significant door prediction increase

on the Oxford dataset. The major potential reason is that the data quality of the Oxford

dataset is not satisfactory. Most of the door instances are highly distorted due to street

canyon views and a significant portion of door instances have blurred boundaries and ap-

pearances. This may cause these instances to not contain sufficient features for deep learning

models to learn. Figure 4.18 compares door instances from the Oxford dataset and the built

Crookesmoor and Handsworth datasets. The figure clearly shows that door instances in the

Crookesmoor and Handsworth datasets contain much more details than ones in the Oxford

dataset and have sharper boundaries. The data quality problems are less severe for window

and shop instances. Therefore, from table 4.12, it can be seen that window and shop can

achieve higher scores. Besides, the Oxford dataset contains 8820 windows but only has 331

doors. The limited quantity of door instances also leads to insufficient features.
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Labelling quality is another potential reason of why the magnifier strategy does not

achieve distinct quantitative performance refinement on the Oxford dataset. As an example,

in figure 4.17 example 2, there is a highly distorted door on the left-hand side of building

blocks while it is not annotated. Nearly all models can recognise this instance and magnifier

models have given confident shapes. However, as it is not labelled, in calculating IoU, pre-

dictions of this instance will be accounted as false positives rather than true positives. It is

unknown whether this is a labelling error or whether the builders of the Oxford dataset have

defined specific rules to avoid annotating ambiguous instances. In comparison, the ‘labelling

all visible’ rule defined in section 3.2.2 clearly shows its advantage in more precisely measur-

ing model performances.

Figure 4.18: Door instance comparison across three datasets.
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4.6 Chapter Discussion and Conclusions

4.6.1 Discussion

In this chapter, a building facade semantic segmentation model, FacMagNet-l, is first

developed to recognise residential building facades at component level. The model has been

carefully designed to detect features of residential buildings from street-level imaging. A key

characteristic of the data used is that there is a high size discrepancy both between different

classes and within the same class. The proposed model employs a symmetric structure, di-

lated convolution and a bagging ensemble learning strategy, as well as a magnifier to handle

intra-class imbalance. The results presented in section 4.2.3.4 demonstrate the prediction

performance of the developed model on facade segmentation against contemporary semantic

segmentation models. The results have shown the proposed model exceeds the DeepLab-

v3plus model for 4.03% in mIoU. The FacMagNet-l model is further explored and shrunken

for efficiency purposes. The designed FacMagNet-s model has achieved the second-best ac-

curacy performance over the state-of-the-art models while it has a smaller size and lower

computational cost than the FacMagNet-l model.

A critical drawback of the proposed models, due to the ensemble nature of the two mod-

els, is the high time and computational resource requirements, both for the training and

more importantly for prediction. As six individual models are integrated with differing ar-

chitectures in FacMagNet-l and two individual models are cooperated in FacMagNet-s, the

designed models require more resources compared with using an end-to-end model, such as

the DeepLab-v3plus (Chen et al., 2018). Table 4.6 shows that FacMagNet-s exceeds the

DeepLab-v3plus model for over 118M FLOPs and has 59M more trainable parameters. Al-

though, in comparison with some other SOTA works in the computer vision community

such as the latest vision transformer (Dosovitskiy et al., 2021) which contains 87M trainable

parameters and 67G FLOPs, the designed FacMagNet-s is still within a reasonable level.

The two-stage design would still make the training and inference more complicated, how-

ever, because the use case of the model, for example within the retrofit pipeline, is unlikely

to need real-time execution, this is not likely to impact the usefulness of the proposed models.

Soft attention mechanism and focal loss were tested on the Handsworth dataset, however,

unlike they are validated in corresponding papers, there is no obvious evidence showing that

they are beneficial to facade segmentation at this point. The computational resource that the

PhD project owned also limits validating more attention models. A cross-dataset adaptabil-

ity test was designed in this chapter using the most recent Oxford RobotCar-Facade dataset.

Results show that the proposed FacMagNet-s is a comparable state-of-the-art approach in
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facade segmentation using street-view images. Besides that, the generalisation capability of

trained models on the built Crookesmoor and Handsworth dataset has been quantitatively

and qualitatively validated. Corresponding experiments show that the model trained on the

Crookesmoor dataset is more beneficial on the Handsworth dataset.

4.6.2 Conclusions

The data collected by street-level capture contains a significant amount of environmental

noise irrelevant to buildings. To extract building information such as building geometry and

thermal characteristics, from the data collected, a facade segmentation model with accuracy

priority is essential. The state-of-the-art related works in the areas of facade segmenta-

tion and urban scene segmentation show the dominant position of the convolutional neural

network technology. The state-of-the-art works in the facade segmentation area show the sig-

nificance of refining the boundaries of smaller facade components such as windows and doors

to improve the segmentation results. Smaller facade components are also key components

which require high accuracy in assisting building retrofit. The state-of-the-art works in the

urban scene segmentation make many contributions to the multi-scale challenge. However,

these works lack component-level consideration in segmenting buildings. Before 2021, the

state-of-the-art facade segmentation methods commonly focus on heavily pre-processed data

according to the literature review in chapter 2.

In this chapter, two models are presented for the semantic segmentation task of building

facade components, known as FacMagNet-l and FacMagNet-s. These models were purposely

built for the task, utilising contemporary deep learning architectures and utilising ensemble

learning strategies to categorise each object. The results have demonstrated that the accu-

racy of these two models on labelling images is at a promising level. The cross-dataset test

demonstrates that the developed FacMagNet-s has achieved a comparable result among other

state-of-the-art models for the given task.

Along with the development of the model and evaluation of urban street-level data, clear

motivation has been identified for this approach in the pathway to scalable residential retrofit.

By incorporating multispectral capture, the localised building features will be able to directly

contribute to automating the current building energy analysis and building material stock

modelling, for use by stakeholders such as local government authorities.



Chapter 5

Discussion and Conclusions

5.1 Discussion

This section provides a comprehensive discussion of the thesis. The section is arranged by

individual topics in each subsection.

5.1.1 Dataset Construction and Scope

5.1.1.1 Experience on Building Datasets for Facade Segmentation

Building the dataset is the first step of any data-driven task. The pipeline of dataset

annotation is common in the machine learning community: an annotation guide should be

proposed first, which should meet needs of a specific task; then annotators should be ap-

pointed to label the collected data. In this thesis an annotation pipeline is proposed with

annotation rules defined to fit building retrofit needs. Two datasets were built based on the

determined rules with different annotators.

A critical problem which may be raised during constructing datasets is how to manage

annotation quality. Ideally, annotators should be experienced in annotation tasks and have

expertise on the target domain of the task. Experienced annotators are more efficient in using

labelling tools. The candidate has independently annotated a 300-image window-and-door

dataset. The dataset is introduced in Appendix A. In the window-and-door annotation task,

the labelling speed can be reduced from 30 min to 10 min per-image once the annotator

becomes familiar with the annotation tool and rules. Having knowledge of the task target

can help annotators make more accurate decisions when making annotations. However, ex-

perienced and knowledgeable annotators are not always available. Therefore, a preliminary

annotation guide was produced for constructing the Crookesmoor dataset. In table 3.3, the

evaluation shows that, even with preliminary guidance, a significant number of annotation

113
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errors are still observed. Therefore, apart from a preliminary interactive annotation training,

a quality inspection process is also necessary to build a high-quality dataset.

5.1.1.2 The Representativeness of Built Datasets

The scope of the dataset determines the upper bounds of the generalisation of trained

models to the real-world. The raw images in the Crookesmoor and Handsworth datasets were

all collected in the Sheffield region. However, due to the architectural similarities of houses

to those in other parts of the country, this does not mean the built dataset can only repre-

sent houses in the Sheffield region. In section 4.5, trained models are applied on the Oxford

RobotCar-Facade dataset directly and have shown satisfactory results. The DeepLab-v3plus

model which was trained on the Crookesmoor dataset shows 40.87% in mIoU and the per-

formance of the re-trained model is 57.37%. Training the same model on the Oxford dataset

only raise its mIoU for 16.5%. In June, 2022, a batch of new data was captured by MARVEL

in Merthyr Tydfil, Wales. Although these data are not labelled, they can still be used to

qualitatively test, i.e. by visual inspection, the generalisation of created datasets in different

regions. As this database consisted of distorted raw images as in the Handsworth data, the

trained ResU-Net16 was adopted as in section 4.5. Figure 5.1 shows the qualitative test

results. All examples were randomly selected. The quantitative test on the Oxford dataset

and the qualitative test on the Merthyr Tydfil database validate that the built datasets can

be populated against data captured in other regions, at least in the three designated areas

in the UK.

Figure 5.1: Qualitative analysis of generalisation capability of model trained on
Sheffield houses using Merthyr Tydfil data.
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5.1.2 Facade Segmentation Using Street View Images

Prior to 2019, approaches developed for facade segmentation were dominantly based on

using rectified frontal-parallel images. This type of image is beneficial for building pro-

cedural modelling for computer graphic applications such as video games. However, from

environmental modelling perspectives, cropped frontal-parallel facade images do not contain

much required information for retrofit such as multi-perspectives. RueMonge 2014 (Riemen-

schneider et al., 2014) is the first dataset developed for structure-from-motion based building

reconstruction. However, this dataset has cropped views and labelling only on buildings on

the data-capture street. The drivers, i.e. what applications will be used for, and enablers,

i.e. what datasets are available to use, in the facade segmentation community both limited

the progress of this research domain. Street view building images contain more information

such as surrounding environment and multi-perspectives which is more beneficial to built en-

vironment modelling. From 2021, two street view image based facade segmentation datasets

became publicly available (Orhei et al., 2021; Wang et al., 2022). In the coming years, it

could be expected that more attention could be paid to street view facade segmentation since

more street view datasets become available.

A significant consideration of using street view images on facade segmentation is what

segmentation methods to use. Among state-of-the-art approaches for facade segmentation

using frontal-parallel facade images, prior knowledge of facade is widely-exploited and is crit-

ical to improve segmentation results. However, building facades in street view images will

lose many critical architectural features such as regularity and symmetry. Therefore, segmen-

tation approaches developed based on building priors such as regularity and symmetry will

not theoretically bring benefits to facade segmentation using street view images. As shown in

Wang et al. (2022), a vanilla DeepLab-v3plus exceeds the state-of-the-art DeepFacade model

by 3.02% in mIoU on the Oxford RobotCar-Facade dataset. The result is also demonstrated

in table 4.11.

Whether or not an advantageous model architecture like U-Net in medical image segmen-

tation exists for facade segmentation is unknown. This is very possible, as a building is an

organised structure like organs and cells even without rectification. Facade segmentation is

a branch of the general image segmentation which is a dynamic and fast-growing research

domain. Many off-the-peg algorithms have been developed for image segmentation, although

they do not consider the uniqueness of buildings as a man-made structure and have not yet

been benchmarked in facade segmentation. In section 4.2 and 4.3, contemporary models have

been tested including DeepLab-v3plus, PSPNet, SegNet, U-Net, attention modules. These

experiments have shown that different model architectures may vary distinctively. For exam-
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ple, PSPNet only reaches 64.27% in mIoU in the Crookesmoor dataset, while it has achieved

success in rectified facade segmentation (Zhang et al., 2022). It is unknown whether this is

due to different training strategies or simply because of model structure fitness. DeepLab-

v3plus and the U-shape structure model both have achieved promising results in this thesis.

In the Crookesmoor dataset, DeepLab-v3plus has achieved 76.98% and U-Net has achieved

69.6% in mIoU.

Soft attention mechanism does not show performance improvement on the Handsworth

dataset. In the best case, adding attention mechanism only increases door prediction per-

formance for 0.16% while it decreases the mIoU for 0.16%. However, attention mechanism

should be effective for facade segmentation as each category is not equally hard to pre-

dict. There could be multiple reasons leading to failed attention mechanism outcome such as

training strategies, hyper-parameters, base model’s architectures, etc. Apart from this, the

stability of attention mechanism might be another reason. As introduced in chapter 2, the

attention mechanism is proposed in the computer vision community but is then progressed in

the natural language processing community of the Query-Key-Value paradigm before being

populated back to the computer vision community. A common and plausible explanation

of attention mechanism feasibility is that the human vision system also has an attention

mechanism. However, prior to 2021, research on attention mechanism in the computer vision

community were based on plug-and-play modules, to the best of the candidate’s knowledge.

Whether or not these modules can be globally effective like the fully convolution architecture

has not been sufficiently studied. In 2021, a novel attention-based architecture was developed

called Transformer (Liu et al., 2021) which may be useful for facade segmentation.

How data scope will impact on results and generalisation of facade segmentation models is

still not clear, especially for facade segmentation using street view images. The Crookesmoor

dataset has 997 images and the Handsworth dataset has 5905, however, the same DeepLab-

v3plus model has achieved equivalent performance on these two datasets: 76.98% and 77.70%,

respectively, in mIoU. Therefore, it is unknown why model performance does not increase

with significantly more samples. If c.80% is the ceiling of British house recognition using

DeepLab-v3plus it means that it is unnecessary to build any larger datasets for this task.

One plausible reason could be that objects in these datasets are not equivalently hard to

predict: according to table 3.7, objects in the Handsworth dataset are smaller than those in

the Crookesmoor dataset with the same image size. However, it is still significant to know

how much data would be required in order to provide sufficient information for a facade seg-

mentation model.
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The scope of the dataset will affect the model generalisation performance. In conven-

tional facade segmentation research that uses frontal-parallel facade images, the top-three

frequently-used facade segmentation datasets, all have sizes smaller than, or approximate to

one-hundred images which is extremely small in this deep learning era. Also, works discussing

whether models trained on these datasets can be applied or populated to other scenes is cur-

rently lacking. Kelly et al. (2017) built an 800-image private dataset to compensate for the

data scarcity for their application which was scalable building reconstruction. Compared to

a rectified facade image, a street view image contains scenes from different perspectives and

environmental information. Therefore, generalisation will be more challenging for models

trained on street view images which makes knowing the number of sufficient scenes critical

to a real-world application.

Door prediction is a difficulty in facade segmentation. Table 5.1 lists the state-of-the-art

door prediction performance in three street view image datasets and it also includes results

from the ECP dataset which is the most frequently used dataset in conventional facade seg-

mentation domain. In all four datasets, door prediction performance is significantly lower

than their average IoUs. The proposed magnifier strategy can refine door predictions al-

though it it still cannot fully address the door prediction weakness.

Table 5.1: Comparisons of building component prediction performance across
different datasets.

Category%
Dataset

Crookesmoor Handsworth Oxford ECP

Door 65.82 67.79 26.40 66.2
Window 87.83 82.25 51.70 81.6
mIoU 81.01 82.15 61.74 81.9
Source Dai et al. (2021) Table 4.8 Table 4.9 Zhang et al. (2022)

5.1.3 The Magnifier Strategy and its Limitations

The magnifier strategy is proposed in this thesis, which aims to reduce the intra-class

data imbalance problem. The strategy crops an area of raw images containing target objects

to balance the foreground and background. Using an individual object detection model to

generate object patches has validated that it can refine object boundaries and detect missing

objects on the Handsworth dataset. The magnifier strategy has shown distinct capability

in improving door predictions. FacMagNet-l has contributed to a 9.3% mIoU increase and

FacMagNet-s has led to a 4.24% increment. FacMagNet-s was then applied to the Oxford

RobotCar-Facade dataset. Using DeepLab-v3plus as the base model contributes to a 0.03%
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increment. However, using the Handsworth dataset lead to a 0.47% performance drop. Al-

though the magnifier strategy does not show prominent capability in the mIoU metric on the

Oxford dataset, it has raised c.15% in the recall metric.

Overall, as a strategy to improve hard case predictions, i.e. door, the magnifier mod-

ule has shown promising and effective performance. However, as a data-driven approach,

the magnifier strategy is still heavily relied on the quality of dataset. This limitation is

very obvious in experiments conducted on the Oxford dataset: falsely detected objects from

stem segmentation models and ambiguous boundaries due to dataset quality will cause the

magnifier model even to be negative to the mIoU performance. Although, thanks to the

advancement of camera sensors, high-quality images become moor achievable than a decade

before. They are not still always available. How to reduce negative impacts caused by data

quality becomes critical towards further improving the magnifier strategy. An new idea from

the candidate is to exploit vanishing points of images, but it still needs time to explore and

validate.

Using an object detection model to extract objects will significantly increase model sizes

and computational cost as shown in table 4.6. However, comparing results of FacMagNet-l

and FacMagNet-s in table 4.5, an object detection model might still be necessary. Although

ensemble learning is widely used in SOTA approaches of conventional facade segmentation,

reducing computational cost is still essential to make the training process more feasible. As

an example, Zhang et al. (2022) use four NVIDIA GFORCE 2080Ti GPUs to train their

model which requires approximately £6000 at 2022 price according to Amazon.co.uk. In

order to reduce computational cost, FacMagNet-l can be reduced to three models i.e. an

object detection model, a three-class segmentation model for window, door and chimney and

a two-class segmentation model for wall and roof.

5.1.4 The Overall Target of Assisting Building Retrofit

The thesis target is building a facade segmentation pipeline to assist large-scale building

retrofit. As discussed in section 1.1.1, an efficient and flexible data collection approach with

automated data analysis methods is vital in delivering building retrofit at scale. On-street

data capture, such as MARVEL (Meyers et al., 2019), is designed to scale the data collection

of urban environmental data. It is impractical, even infeasible, to manually extract informa-

tion at this scale. Automating feature extraction leads to efficient strategies for urban data

analysis.
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A vehicle-mounted remote sensing system realises a highly efficient solution to multi-

spectral urban environmental data capture. Localisation of properties in space can help build

a portrait of a building, for entry into further modelling such as building energy models, which

are vital in building retrofit solutions. Combining localised properties with co-captured data

from thermal and hyperspectral cameras can provide high fidelity representations of different

features. When incorporating hyperspectral information, it may be possible to characterise

the material properties of the wall that may not be possible with visible light only due to, for

example, painted surfaces. Likewise, thermal images can be divided and the thermal bridges

of different components can be assessed independently. This is useful for fault detection in

glazing, or determining the nature of the cavity in a wall. Both of these features are impor-

tant when building high quality models for facade recognition.

The developed facade segmentation pipeline demonstrates an accurate process for seg-

menting features on building facades, thus inferences can be made on the properties such as

some of those outlined in Table 3.1, e.g. number of storeys and number of windows. Per-

forming this in a scalable manner is the first step towards automating or semi-automating

the development of retrofit solutions for residential buildings. The developed model has been

shown to give high quality segmentations of all defined components which are determined in

section 1.1.1, in a wide range of building types, with little noise from unrelated structures or

objects.

The integration of the proposed building facade segmentation approach and other types of

data collected by vehicle-mounted data capture system will provide higher-level understand-

ings of buildings in the selected area. The 3D point-cloud urban environment models can be

generated by the LiDAR units. Through integrating the facade segmentation results with the

3D models, the buildings and their components can be identified from the urban environmen-

tal models. The integrated model will then provide a comprehensive understanding of the

regional buildings. As the point cloud data contains real-world space information, building

volume can be calculated. The building components’ quantities in an area, e.g. window and

door, can also be counted automatically. Other important building metrics such as the glaz-

ing ratio, which is a significant parameter in evaluating the building energy behaviour, can

also be calculated by the point cloud-semantic segmentation integration model. This ratio

can be used to evaluate the building’s natural illumination and ventilation conditions. For

example, a building with a low glazing ratio might need the introduction of synthetic ventila-

tion, such as the THEX (Total Heat EXchanger) (Fukami and Okamoto, 1984) during retrofit.
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The thermal images and hyperspectral images determine the thermal performance and

material types of buildings, respectively. The use of integration of point-cloud and infrared

thermography data to detect thermal leakage was previously explored in (Hoegner and Stilla,

2015). With the integration of the facade segmentation approach, certain building com-

ponents of thermal leakages can be determined. This will contribute to a more precise

retrofitting plan in terms of material replacement or improvement. The spectral information

can be used to identify building materials (Ilehag et al., 2019). Incorporating the hyperspec-

tral data with the integrated 3D model could be used to gather statistics of building material

stock. Compared to the traditional methods, this method has fewer constraints since it does

not require historical records. In addition, the method is also potentially more accurate since

it does not need to define archetypes to approximate the building types in an area.

To identify the potential superiority of using hyper-spectral imaging in identifying build-

ing construction materials in the future, a wall construction type dataset is built by the

candidate and introduced in Appendix B using Google Street View images and energy per-

formance certificates (EPCs). In the UK, EPC contains building type information which

relates to heat transmittance. The dataset is built by registering GSV building images with

corresponding EPC building types using address information through the Google Street View

API. The GSV API will return the nearest image based on the input address. Therefore, the

returned images may not be captured perpendicular to target building facades. Particularly

for the designated area, Merthyr Tydfil, it was found that the density of the data capture

point is rather sparse. In some cases, only one data capture point is observed and thus the

registered dataset needs to be manually filtered first. After filtering, the dataset contains

three categories: cavity, stone and solid brick with each containing 4412, 4208 and 1182

images. A preliminary experiment is conducted by applying a vanilla ResNet50 (He et al.,

2016a) onto this dataset which has achieved 85% in overall accuracy.
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5.2 Conclusion

The thesis has developed two supervised deep learning-based models to detect the building

facades and their components from visual images. The work builds the foundation of the

building retrofit pipeline. The supervised learning-based approaches have shown promising

performance in detecting building facade components in both the accuracy and the generali-

sation facets. The major research contributions can be summarised as follows:

• The thesis provides a pipeline of automatically characterising English house-building

facades using the deep learning technique. The pipeline includes an annotation protocol

and a building ontology which is proposed to fit building retrofit needs; five key ele-

ments, window, door, chimney, wall and roof, for building retrofit were identified. The

protocol can be conveniently extended if a building facade requires more sophisticated

annotation, e.g. window needs to be further segmented into frame and glass. Two

datasets were constructed based on the proposed protocol. Their raw data is captured

in the Crookesmoor and Handsworth areas in Sheffield, UK. Compared to existing fa-

cade segmentation datasets, these two datasets have the highest image sizes, and more

diverse scenes and they are the first proper facade segmentation datasets using street

view images. The process of constructing the two datasets is carefully designed and

dataset quality is inspected. It is found that an interactive training process could reduce

labelling errors and a quality inspection procedure is important.

• A deep learning technique-based strategy, magnifier, is proposed in this thesis. The

strategy is developed to balance foreground and background pixels. Implementing the

strategy has two different formats. The first, FacMagNet-l is to use an object detection

model to extract patches containing target objects. The second, FacMagNet-s is to

use predictions from a multi-class semantic segmentation model and morphology oper-

ations to extract target objects’ patches. Results have demonstrated that both of the

implementation approaches can contribute to performance improvement. However, the

implementation with an individual object detection model shows a 4.03% higher result

in mIoU in the Crookemoor dataset. The FacMagNet models are the state-of-the-art in

the Crookesmoor dataset. The FacMagNet-s is applied to the latest Oxford RobotCar-

Facade dataset, it also achieved a comparable state-of-the-art. The generalisations of

trained models and representativeness of constructed datasets were tested using the

Oxford dataset and raw data captured in Merthyr Tydfil by MARVEL. The results

have shown that without re-training, models trained on developed datasets can be di-

rectly used for segmenting facades on images captured by MARVEL and data captured

by different rigs. In addition, they have also shown competitive results on the dataset

with different scenes and quality.
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Figure 5.2: Examples of using bounding boxes to cover building area. The green
area represents the minimum bounding box cover. Terraced houses commonly show
a long rectangular shape and detached houses normally approach a square shape.
Large viewing angle would commonly lead to low occupation ratio and the opposite
would result in high occupation ratio.

5.3 Recommendations of Future work

The residential building is a highly-organised artificial structure which contains substantial

prior knowledge. Although using the prior knowledge of buildings on the facade detection

has been widely explored, the state-of-the-art approaches only focus on exploiting structure

pattern features such as the grid outlines by using the rectified images (Femiani et al., 2018).

However, for the street view residential building images, the buildings will not appear with

structured patterns but with distortions instead. During the data annotation process, it was

observed that although the facade patterns are destroyed due to image distortions, the build-

ing envelope scenes still have weak regularities. For example, if using the minimum bounding

boxes to cover the detached and semi-detached houses in the captured visual images, the

bounding box commonly approximates a short rectangular shape and building envelopes will

normally occupy the majority of the bounding box areas. The occupied area ratio, which can

be defined as the area of the building, envelops over the bounding box area. Terraced houses

will commonly show a long rectangular appearance and their occupation can be estimated

fluctuating in a range. Some examples are shown in Figure 5.2. The examples have shown

the building types and orientations can potentially be estimated by the building box shapes

and the occupation ratio.

The estimated building type and orientation information can be treated as a valuable

prior in improving the performance of a semantic segmentation model. For example, if the

bounding box has a long shape and occupation ratio is relatively low, the hypothesis can

be made that the building inside the bounding box could be terraced with an inclined view.

Then the box area can be sliced vertically to generate building patches. One of the difficulties

in the facade component detection is the small object problem. The developed FacMagNet
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models utilise the component-level bounding boxes with the magnifier strategy to try to ad-

dress the problem. The sliced building patches can then be magnified and inferred as in

the developed magnifier module in FacMagNet models. As the magnifier strategy has shown

clear advancement in improving the accuracy level, if using the strategy in magnified building

patches, accuracy level may also rise.

The magnifier strategy has shown a distinct advantage in improving the door prediction

accuracy level. However, using the component-level bounding boxes will inevitably introduce

additional deep learning models whether an object detection model (in the FacMagNet-l) or

a door semantic segmentation model (in the FacMagNet-s) or in the proposed building patch

magnifier aforementioned. The unsupervised learning technology has been greatly explored

in the past few years in the semantic segmentation area (Zou et al., 2018). If using an unsu-

pervised learning model to roughly segment the building envelope from the image data first,

the minimum bounding box can be used to extract the building locations and dimensions, in

pixels. Then, without introducing an extra segmentation or detection model, the small-scale

buildings can be magnified as in the FacMagNet model. The accuracy can then be potentially

improved.

Deep learning-based semantic segmentation techniques have been widely explored in this

thesis to identify building components. The exploration study shows that U-Net architecture-

based models have outstanding performance in identifying building components. Besides

designing a more advanced model architecture, action can be taken to optimise the model

training process. The training strategies applied are still very restricted. Relevant literature

has shown that various training tactics such as a different optimiser, starting learning rate

and its reduction scheme choices would impact on inference results variously. Therefore, ex-

periments on different training strategies are still required.
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Martinović, A., Mathias, M., Weissenberg, J. and Gool, L. V. (2012), A three-layered ap-

proach to facade parsing, in ‘Proceedings of the 12th European Conference on Computer

Vision’, Springer, pp. 416–429.

Martinovic, A. and Van Gool, L. (2013), Bayesian Grammar Learning for Inverse Procedu-

ral modeling, in ‘Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition’, pp. 201–208.
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Google Street View

Window-and-Door Dataset

Dataset

This appendix introduces a high-quality dataset labelled by the candidate to identify key

building components focusing on windows and doors. The dataset was constructed in the

year 2019. The dataset contains 300 annotated images and the annotation process takes

about 20 days at a daily eight-hour working basis. The raw images were collected using the

Google Street View service (Anguelov et al., 2010) in the Sheffield region. However, instead

of using their API to download images automatically, the raw images collected are screen

shots which are manually adjusted for views to be roughly perpendicular to facades and

scaled to fit the majority of an image. The dataset will be made available online with the

name ‘Sheffield window and door’ once the thesis is submitted to WhiteRose e-Theses online.

Sample images are shown in Figure 3. The dataset is randomly split into 80% training and

20% validation.

Figure 3: The demonstration of ‘Sheffield window and door’ dataset.
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Benchmark Test

A benchmark test was conducted using the same model structure as in figure 3.14. Data

augmentation setup includes a 50% chance of horizontal flip, 50% chance of 10% shift and

0.1 hue adjusting. The learning rate is set as 10−3, the input resolution is 256 × 256, batch

size is set to be 6. The training set is trained for 30 epochs on a laptop with 8GB RAM, an

Intel i7-7700HQ CPU and an Nvidia GTX 1050 GPU. The benchmark test results are shown

in table 2.

Table 2: ‘Sheffield window and door’ benchmark test results.

Category
Metrics

Accuracy Precision TPR TNR F1 score

Window 0.979 0.933 0.908 0.990 0.921
Door 0.958 0.670 0.650 0.979 0.660

Summary

In summary, this appendix introduces a dataset manually labelled by the candidate.

Building the dataset has three purposes:

1. Exploring annotation rules by viewing various window and door instances;

2. Estimating the time expenses of building datasets for facade segmentation. The time

expense of building this dataset was used to evaluate whether an outsourcer was nec-

essary for this PhD project;

3. Estimating the feasibility of using deep learning techniques on recognising building

components. Therefore, great care was taken in annotating this dataset to ensure it is

a high-quality dataset.

Results have shown that to build a facade segmentation dataset of over 1000 images, hiring

outsourcers is essential. Using deep learning techniques on facade segmentation is seeming

feasible. However, care should be taken in improving door prediction performance.



Google Street View Wall

Construction Type Dataset

Introduction

This Appendix introduces a dataset created by the candidate for wall construction type clas-

sification. The dataset will be made available online with the name ‘Merthyr Tydfil wall type

classification’ once the thesis is submitted to WhiteRose e-Theses online.

Wall construction types closely correlate to building energy cost and construction mate-

rial stock. For example, cavity walls commonly have thermal insulation between the outer

and inner leaves which provides better thermal performance than solid wall buildings and

leads to smaller U-values. If wall construction types can be automatically categorised, the

U-value of a specific building can then be inferred and the building’s material stock can be

more accurately predicted. The British energy performance certificates (EPCs) categorise

wall types into five groups, 1) cavity, 2) solid brick, 3) sedimentary rock, 4) igneous rock and

5) timber frame. Theoretically, the five wall types can be simply differentiated by their visual

features: stone walls should have different aesthetic features to brick walls, solid brick walls

have different brick layout to cavity walls, etc. In previous works, efforts have been made on

using image patches to identify construction materials (Dimitrov and Golparvar-Fard, 2014;

Sun and Gu, 2022). However, in reality, the situation becomes more complicated of using

image patches for material recognition.

The hardest problem is outer wall painting. If a wall is painted, its texture feature, which

is the critical characteristic to be used for identifying wall types, could be largely covered.

Therefore, whether other features on facades can be used to infer building wall types becomes

critical to investigate. If without other features that could be used to identify wall construc-

tion types, raw images cannot be correctly labelled on painted walls. Although registering

wall type data of EPCs with Google Street View facade images using geo-location information

can produce an annotated wall type dataset, explainable machine learning is still significant
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to real-world applications and thus more evidence of whether using images to identify wall

types need to be justified.

From a civil engineering perspective, wall construction types may possibly be correlated

to building ages. For example, solid walls are common in Victorian buildings. Cavity walls

started to become widespread from the 1920s (Fewins, 2004). Using facade images for build-

ing age detection has been studied and validated by Zeppelzauer et al. (2018). Therefore, if

building wall construction types can be validated to have a correlation with building ages,

using facade images on wall type recognition will stand at a more solid ground.

In this study, the residential EPCs of Merthyr Tydfil, a county borough in Wales, are col-

lected and analysed. After filtering records without wall types, 21,207 records are achieved.

Their wall type occupations of the whole stock and by age band are plotted in figure 4.

The whole stock occupation figure has shown that cavity walls dominate the Merthyr

Tydfil building stock and timber frames are the least common. The occupation by age band

figure has shown that solid walls including solid rock and brick were the dominant types be-

fore 1930, after which cavity walls became the majority. Therefore, based on the building age

band distribution analysis, at least cavity walls and solid walls can potentially be recognised

without fine wall fabric texture information.

Dataset Annotation and Benchmark Test Design

Next the collected EPCs are registered with Google Street View images using geo-location

information. The resulted dataset is quite coarse. The first problem is that data capture

points of Google Street View are sparse in some cases. It has been found that in some

streets, only one image is captured and, therefore, all properties on that street are labelled

the same. The second problem is that Google Street View API will return the nearest image

of the designated address which does not ensure the nearest image is captured in front of

target properties. It has been found in many cases, especially for rural areas, that Street

View images do not contain any architecture. In order to avoid such duplication and capture

location floating errors, all images in the dataset were manually inspected by the candidate.

During the manual dataset inspection process, it was found that the resulted timber

frame buildings are duplicated significantly and their appearances show that they have cav-

ity walls. Therefore, timber frame buildings are not included in the final dataset. Sedimentary

and igneous rocks can be easily recognised in a museum since they have different aesthetic
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Figure 4: Analysis of wall construction types of building stock in Merthyr Tydfil.
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appearances, however, using Street View images cannot properly differentiate them in all

cases, at least by the candidate. Therefore, an extra label ‘suspicious rock’ is added for those

images with less confident labels. The three rock wall classes were given the same summary

label ‘natural stone’ as well. Cavity walls are the dominant wall types, to balance the number

of cavity wall building images with other categories, the final version dataset does not include

all inspected cavity wall house images. The statistics of the final version of the Merthyr Tydfil

wall type dataset are shown in table 3. The dataset is randomly split into 80% training, 10%

validation and 10% test, which results in a 7842-image training set, a 981-image validation

set and a 980-image test set.

Table 3: Merthyr Tydfil wall type classification task dataset statistics.

Category Cavity Igneous Sedimentary Suspicious rock Solid brick Total

Num. of images 4412 2148 1968 92 1182 9802

A benchmark test was designed using four commonly-used classification models including

a ResNet50 (He et al., 2016a), a DenseNet121 (Huang, Liu, Van Der Maaten and Weinberger,

2017), a NASNet-Large (Zoph et al., 2018), a VGG19 (Simonyan and Zisserman, 2015) and

an Xception (Chollet, 2017). The test uses three classes: cavity, natural stone and solid

brick. The test configurations are shown in table 4. A label smoothing strategy (Müller

et al., 2019) is applied to labels in this test to prevent overfitting. The test is implemented

using TensorFlow (Abadi, 2016) library and trained on a workstation with Windows 10, 16

GB RAM, an Intel Xeon E5-1620 v4 CPU and an NVIDIA Quadro P5000 GPU.

Table 4: Test settings of Merthyr Tydfil wall type classification using chosen
classification models.

Data augmentation General settings Weight Initialisation
and loss function

Learning rate strat-
egy

50% chance of shifting
horizontally or vertically
with 10% range, 50%
chance of horizontal flip,
0.1 hue adjusting

Adam optimiser with an
input resolution 640 ×
640, batch size=12 while
8 for DenseNet and
trained 100 epochs

ImageNet weight initial-
isation and categorical
cross entropy with label
smoothing=0.1

starting at 10−3 and
weight decay 10−5, no
early stop setting
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Results and Discussion

The test has achieved the highest macro accuracy result in the ResNet50 and the NASNet-

Large for 85% while the DenseNet and Xception have achieved similar results: 83% and 84%,

respectively. The VGG19 does not learn anything from the dataset. The quantitative bench-

mark test results for all models are shown in table 5. These results have shown that all

trained models can recognise cavity and stone walls with high confidence while they have

difficulty in predicting solid brick walls.

Table 5: ‘Merthyr Tydfil wall construction type classification’ benchmark test
results. The numbers in the second row represent different models: [1] is the
ResNet50, [2] is the NASNet-Large, [3] is the DenseNet121, [4] is the Xception.

Category
Metrics Recall Precision F1 score

Model [1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]

Cavity 0.93 0.93 0.92 0.90 0.93 0.95 0.91 0.96 0.93 0.94 0.92 0.93
Nature stone 0.89 0.93 0.88 0.95 0.83 0.81 0.81 0.78 0.86 0.86 0.84 0.85
Solid brick 0.39 0.28 0.32 0.25 0.50 0.56 0.50 0.51 0.44 0.38 0.39 0.34
Mean 0.75 0.72 0.71 0.70 0.73 0.77 0.74 0.75 0.74 0.73 0.72 0.71

Figure 5 demonstrates confusion matrices of the benchmark test. These confusion matri-

ces have shown that solid brick walls are frequently confused with stone walls. One reason

could be a share of solid brick walls have stone-like appearances which might be faux-stone

coverings. Furthermore, whether or not they are really solid brick-wall buildings is suspicious.

EPCs might have survey errors and the registered Street View images might not be the right

properties. Another reason could be what features a deep learning classification model was

using to recognise wall types. If the model only uses features related to age predictions for

wall type recognition, the model is likely to get confused predicting solid brick walls as the

construction ages of solid wall is mixed with both stone and cavity walls.

As examples, the ResNet50 prediction results of buildings which are tagged as having

a solid wall but with stone features are visualised in figure 6. The trained model predicts

all examples of the first row and first two examples on the second row as ‘natural stone’.

However, even though the last two examples on the second row have stone textures, they are

still categorised as ‘solid brick’.
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Figure 5: The normalised confusion matrices of the benchmark test using a
ResNet50, a NASNet-Large, a DenseNet121 and a Xception models.

Figure 6: The visualisation of model predictions on buildings which are tagged
with ‘solid brick’ but have stone-made appearances. The three values below each
image are probabilities of cavity, nature stone and solid brick.
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Conclusion

In summary, a house outer wall construction type dataset containing 9802 facade images

has been built in this appendix. To the best of the candidate’s knowledge, the dataset is

the first that aims to use street view images for wall type predictions. The wall type ground

truth data is provided by British EPC records and manually filtered by the candidate first.

The benchmark test shows that deep learning models can differentiate cavity and stone walls

with high confidence. However, they will meet problems when dealing with solid brick wall

recognition. Potential reasons include the fact that there are no sufficient features on painted

facades that can be used to identify wall types and EPC survey mistakes.
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